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Abstract

Nowadays several indicators suggest that the statistical approach to

machine translation is the most promising. It allows fast development

of systems for any language pair provided that sufficient training data

is available. Statistical Machine Translation (SMT) systems use par-

allel texts - also called bitexts - as training material for creation of

the translation model and monolingual corpora for target language

modeling. The performance of an SMT system heavily depends upon

the quality and quantity of available data. In order to train the trans-

lation model, the parallel texts is collected from various sources and

domains. These corpora are usually concatenated, word alignments

are calculated and phrases are extracted. However, parallel data is

quite inhomogeneous in many practical applications with respect to

several factors like data source, alignment quality, appropriateness to

the task, etc. This means that the corpora are not weighted according

to their importance to the domain of the translation task. Therefore,

it is the domain of the training resources that influences the transla-

tions that are selected among several choices. This is in contrast to

the training of the language model for which well known techniques

are used to weight the various sources of texts.

We have proposed novel methods to automatically weight the hetero-

geneous data to adapt the translation model. In a first approach, this

is achieved with a resampling technique. A weight to each bitexts is

assigned to select the proportion of data from that corpus. The align-

ments coming from each bitexts are resampled based on these weights.

The weights of the corpora are directly optimized on the development

data using a numerical method. Moreover, an alignment score of each

aligned sentence pair is used as confidence measurement.



In an extended work, we obtain such a weighting by resampling align-

ments using weights that decrease with the temporal distance of bi-

texts to the test set. By these means, we can use all the available

bitexts and still put an emphasis on the most recent one. The main

idea of our approach is to use a parametric form or meta-weights for

the weighting of the different parts of the bitexts. This ensures that

our approach has only few parameters to optimize.

In another work, we have proposed a generic framework which takes

into account the corpus and sentence level ”goodness scores” during

the calculation of the phrase-table which results into better distribu-

tion of probability mass of the individual phrase pairs.

We have reported the experimental results for various reputed interna-

tional evaluation tasks including IWSLT, NIST OpenMT, and WMT

on English-French/Arabic language pairs and showed significant im-

provements in translation quality.
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Chapter 1

Introduction

Since the beginning of the human kind, the diversity of the cultures, the tra-

ditions and the languages have changed immensely along different geographical

boundaries. It is widely acknowledged that we are living in an era in which global

communication technology has enabled us to go beyond borders and that we are

observing the beginning of a global community. Given the fact that many obsta-

cles are sorted out to create the a global village in the world, there are still certain

barriers which require to be jumped over. The language barrier is considered as

one of the main hurdle for global communication. Each community developed

social and scientific literature in their own languages, which is understandable

to their own community and hence profitable to a limited group of people. The

need to know and understand the material published in other languages com-

pelled people for text translation. It gave an immense need to hire bilingual or

multilingual translators. But the text in various languages was so enormous that

it seemed impossible for human translators to translate this huge amount of data.

The need for machine translation has emerged as possible alternative to hu-

man translators. Specially, revolutionary development in computer technology

and their capability to process mountains of data made it possible to develop

reasonable translation systems. In this world of global communication, machine

translation has become a key technology. We can anticipate that translation is

an essential tool in our daily life.

The idea of machine translation may be traced back to the 17th century when

René Descartes proposed a universal language, with equivalent ideas in different

1



languages sharing a common symbol. During 1950s, the Georgetown experiment

(1954) involved fully automatic translation of several Russian sentences into En-

glish. The authors claimed that within three to five years machine translation

would be a solved problem. However the actual progress was much slower. After

the ALPAC report (1966), which found that the many-year-long research had

failed to fulfill expectations, funding was greatly reduced. During the late 1980s,

as computational power increased and became less expensive, more interest went

to statistical models for machine translation. Currently, the scientific community

around this topic is growing rapidly, the performance of such systems are con-

stantly improving and large companies such as Google, Microsoft and IBM are

investing heavily in this area.

The automatic translation of texts is a research topic for several decades and

various approaches have been proposed. They initially were based on linguistic

rules. Generally, rule-based approaches parse a text, usually creating an inter-

mediate, symbolic representation, from which the text in the target language is

generated. Based on an intermediate representation, an approach is described

as interlingual machine translation or transfer-based machine translation. These

methods require large lexicons with morphological, syntactic, and semantic infor-

mation, along with large sets of rules. On the other hand, data-driven machine

translation systems often work well enough for a native speaker of one natural

language to get an approximate translation of what is written in another language

provided that sufficient data is available. The arguments in support of a partic-

ular method are orthogonal. For example, the large multilingual corpus of data

needed for statistical methods is not necessary for the grammar-based methods.

But then, the grammar based methods need a skilled linguist to carefully design

the grammar between the various language pairs.

Now several indicators suggest that the statistical approach to machine trans-

lation is the most promising. It allows fast development of systems for any lan-

guage pair, provided that sufficient training data is available. Statistical Machine

Translation (SMT) systems use parallel texts – also called bitexts – as training

material for creation of the translation model and monolingual corpora for target

language modeling.

While monolingual texts are in general easily available in many domains, the

2



freely available parallel texts mainly come from international organisations, like

the European Union or the United Nations. These texts, written in a particular

jargon, are usually much larger than in-domain bitexts. As an example, we can

cite the development of Arabic/English translation system with data available in

OpenMT evaluation by NIST1. The current NIST test sets are composed of a news

wire part and a second part of web-style texts. For both domains, there are only

several millions of words of in-domain bitexts available, in comparison to almost

200 millions words of out-of-domain United Nation (UN) texts. The later corpus

is therefore likely to dominate the estimation of the probability distributions of

the translation model.

Performance of statistical machine translation heavily depends upon quality

and quantity of available data. Today, most SMT systems are generic, i.e. the

same system is used to translate texts of all kinds. Therefore, it is the domain

of the training resources that influences the translations that are selected among

several choices.

The parallel data is (wrongly) considered as one homogeneous pool of knowl-

edge. It is argued that the parallel data is quite inhomogeneous in many practical

applications with respect to several factors:

• the data may come from different sources that are more or less relevant to

the translation task (in-domain versus out-of-domain data).

• more generally, the topic or genre of the data may be more or less relevant.

• the data may be of different quality (carefully performed human translations

versus automatically crawled and aligned data).

• the recency of the data with respect to the task may have an influence.

This is of interest in the news domain where named entities, etc change

over time.

These factors may prevent good domain specific translations. For instance,

the English word ”cluster” may be translated into the French word grappe (in-

formatics), regroupement (mathematics), amas (astronomy), etc.

1National Institute of Standard and Technology
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These problems could be tackled by adapting the models to the given domain.

Current state-of-the-art SMT systems are based on many models while domain

adaptation is centered around two: the translation model (TM) and the language

model (LM). While many techniques exist to adapt a language model to a specific

domain (most of them are borrowed from automatic speech recognition), it seems

that very little research has been done that seeks to apply similar ideas to the

translation model. The work presented in this thesis is centered on translation

model adaptation when the bitexts are heterogeneous with respect to the above

mentioned factors.

1.1 Scientific goals and objectives

The aim of this PhD thesis is to perform domain adaptation of state-of-the-

art SMT systems by employing new approaches which are flexible, efficient and

robust. In particular, the following scientific goals are pursued:

• to focus on translation model adaptation. As described above, there

are well known techniques to adapt language models, borrowed from speech

recognition, but there doesn’t exist well recognized approaches to adapt the

translation model. Therefore, the work presented in this thesis is focused

on translation model adaptation.

• to exploit given parallel corpora as much as possible. A straight-

forward way to adapt a model is to collect more domain specific data. This

is conceivable for monolingual data, but quite difficult and costly for bilin-

gual data, as already mentioned. Therefore, alternative approaches were

proposed in the literature: extracting bitexts from comparable corpora,

e.g [Abdul-Rauf and Schwenk, 2009; Do, 2011; Munteanu and Marcu, 2005]

or unsupervised training, e.g [Schwenk and Senellart, 2009]. In this work,

we do not use any additional data, but we strive to take best advantage of

existing resources.

• to use training data which is freely and easily available. This is an

important constraint because of the fact that the SMT systems heavily de-

4



pend upon the training resources used to built those models. By this mean

the systems developed at different labs by various researchers are compa-

rable easily. The data used in our experiments is provided by international

organizations such as Europarl, News-Commentary, UN etc and is freely

available. Therefore, anyone could employ the proposed techniques and

reproduce the results with ease.

• to consider an automatic way of adapting the models to the domain of

interest. Sometimes, the domain of the training data is unknown and often

even a training corpora may contain the text from various domains and the

quality of the data might be questionable. An automatic way of adapting

the models is considered in our experiments.

• to work on a language independent techniques which could be em-

ployed on any language pair. In this thesis, the proposed techniques are

generic and the do not depend on the language pairs.

• to show the improvements in translation quality on very competi-

tive systems which are well ranked in various internationally evaluation

campaigns. During this PhD thesis, the experiments are done on state-of-

the-art systems built at LIUM. These systems were among the best systems

in well known international evaluation campaigns, namely NIST OpenMT,

WMT and IWSLT in the period 2009 to 2012.

• to propose a generic approach which gives the flexibility to inject alterna-

tive features that estimate the quality and appropriateness of heterogeneous

corpus.

1.2 Research Contribution

The work done in this thesis is based on the following assumptions:

• The parallel training data is heterogeneous with respect to genre, source,

topic, size and quality.

• The domain of the data is unknown.
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• We dispose of state-of-the-art SMT systems for an arbitrary language pair.

Based on those assumptions the contributions of this thesis are as follows:

• We propose to resample the bitexts coming from different sources. Consid-

ering the fact that the performance of the SMT system is proportional to the

quantity of training data used to build those systems, data is collected and

merged together regardless of its source, nature/domain, size and quality.

This introduces the sample bias problem. Any statistics calculated from the

biased sample are erroneous and can lead to under or over representation

of related parameters. In other words, it will not accurately represent the

target domain. The sample bias is adjusted by picking the random sam-

ple, which results into reasonable approximations of related parameters. A

weight to each sample - also called sample weight - is introduced for ap-

propriate estimation from randomly selected sample drawn from complete

sample. In our experiments we considered bitexts from each source as a

different sample. A weighting coefficient to each bitexts is associated. This

method does not require an explicit specification of the in-domain and out-

of-domain training data. The weights of the corpora are directly optimized

on the development data using a numerical method, similar to the tech-

niques used in the standard minimum error training of the weights of the

feature functions in the log-linear criterion. This work has been published

in Shah et al. [2010].

• In another approach, we exploited the so-called recency effect to weight

the bitexts. In principle, the data with less temporal distance will most

likely be similar with respect to style and vocabulary. The recency effect is

of interest specially in the news domain where named entities, etc change

over time. The idea is to consider some kind of meta-weights on the con-

tinuous stream of training data over time. Instead of dividing the corpora

in different parts and numerically optimizing all the weights for each part,

these meta-weights only depend on few parameters that need to be opti-

mized. The weighting is still done by resampling. This work has been

published in Shah et al. [2011]
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• In a third approach, we integrate various weighting schemes directly in

the calculation of the translation probabilities. Resampling the bitexts or

alignments is computationally expensive for large corpora since the resam-

pled data is ideally much bigger than the original one. Instead, we directly

worked on the translation probabilities. This work is an extension and gen-

eralization of several ideas proposed in previous works such as weighted

counts with feature scores. However, our proposed framework gives the

flexibility to inject the feature scores in a unified formulation calculated at

various levels. It is based on the following principles:

– the use of a set of “quality measures” at different levels: weights for

each corpus (or data source) and for each individual sentence in the

bitexts.

– a small number of parameters to be optimized.

– we do not introduce additional feature functions during decoding, but

we only modify the existing phrase probabilities. By these means,

we don’t have to deal with the additional complexity of decoding and

optimizing the weights of many feature functions.

1.3 Outline of the thesis

The thesis is organized into 6 chapters.

Chapter 2 summarizes the current state-of-art SMT technology relevant to

our work. A brief description of various MT approaches is presented first. Then,

we describe the mathematical framework of early word-based SMT systems and

present phrase-based systems as a natural evolution of the original approaches.

An overview of the word alignment process and the different alignment models

is also given. Language modeling concepts are also presented. The section on

SMT concludes by discussing the difficulties of MT evaluation and presenting the

most commonly used evaluation metrics. In the next section, the need for model

adaptation is explained and we give a detailed analysis of approaches proposed

in the literature.
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Chapter 3 describes our approach to adapt translation models by resampling.

We start by a description of the algorithm, followed by the general architecture

and we then present the individual components in detail. The approach is eval-

uated on two well known evaluation tasks, i.e. NIST OpenMT and IWSLT.

Chapter 4 presents an extended work to weight the corpora by using paramet-

ric weighting. We first describe the algorithm along with the architecture of our

proposed approach. We then present the experimental evaluation on the WMT

task showing improvements over our baseline systems. At the end, we discuss our

approach by showing various examples along with their translations.

Chapter 5 finally explains a general framework to weight the parallel data on

various levels by an efficient approach, along with various methods to calculate

the corpus weights and sentence features. Experiments on the WMT and IWSLT

tasks are reported and a comparative analysis of the impact on the translation

quality with various weights and features is presented.

Chapter 6 concludes the thesis by presenting a brief summary of the work and

discussing various prospects for future research.
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Chapter 2

Survey of Machine Translation

In this chapter we start with the introduction of Machine Translation (MT) fol-

lowed by a brief overview of various approaches and concepts applied to MT.

Subsequently, main ideas of SMT along with an explanation of fundamental

techniques are presented. The experiments and results reported in this thesis

are based on the so-called phrase-based approach, therefore we will discuss in

detail its underlying concepts and ideas.

2.1 Machine translation

Machine translation is the process of translating automatically from one natural

language into another. There are some close terms being used in literature such as

machine-aided translation or computer-assisted translation. These terminologies

are generally used in the context where computer programs are employed to assist

or to facilitate human translators.

There are various strategies to perform machine translation, which are in-

spired by the principles how languages are analyzed – from complete linguistic

representation to direct translation. Generally, machine translation systems are

categorized in the following three approaches as shown in the well-known machine

translation pyramid of Bernard Vauquois (Figure 2.1):

• Direct approach

• Transfer-based approach
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Figure 2.1: Bernard Vauquois’ pyramid

• Interlingua

Figure 2.2 shows the analysis performed at each level in the pyramid. As

we climb up the pyramid deeper analysis is performed. A brief overview of each

approach is given in next the section. A more detailed description can be found

in [Hutchins and Somers, 1992].

2.1.1 Direct approach

The direct translation approach belongs to the first generation of translation

systems in which source text is directly translated into target text without any

intermediate steps. This approach was first introduced in the 1950s, the computer

systems were thousand times less powerful as compared to the present systems.

No high level language was available and most of the programming was done in

assembly language. The approach was based on a bilingual dictionary look-up to

translate the text. The translation unit of the approach was usually a word. A di-

rect translation system is developed for a specific source and target language pair.

No syntactic or semantic analysis is performed during the translation process.
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Figure 2.2: Analysis performed in machine translation pyramid

2.1.2 Transfer-based approach

The first generation translation systems failed to perform well in the absence of

syntactic and semantic analysis and due to limited computational resources. It

was soon proposed to use linguistic models in the translation process to some

extent, or to create an intermediate representation of the source languages that

could be used for translation into the target language. This gave birth to indirect

approaches like the transfer-based-approach and interlingua.

The transfer-based approach is based on the analysis of the text in the source

language to form an intermediate representation which is then used to generate

text in the target language. Generally, three main modules are involved in this

approach, i.e. analysis, transfer and generation [Arnold et al., 1993]. The inter-

mediate representations are language dependent and for any language pair there

is an unique intermediate representation which could be used to perform trans-

lation between the given language pairs. In multilingual system, the addition

of a new language pair involves not only the development of a separate module

for text analysis and generation, but also an new transfer module between them.

So, for n languages there would be n analysis, n generation and n(n-1) transfer

11



modules. This was a clear drawback of the approach which led the researchers to

look for a new framework in which the addition of a new language requires less

work.

Analysis
Language 1

Generation
Language 2

Analysis
Language 2

Generation
Language 1

Interlingua

Figure 2.3: Interlingua machine translation

2.1.3 Interlingua

Interlingua translation systems are based on an abstract language-independent

approach called interlingua. The source text is converted into interlingua which

is then used to generate target language as shown in figure 2.3. The most diffi-

cult module of this approach is to create an interlingua that would be language

independent [Hutchins and Somers, 1992]. It may be possible in an ideal scenario

to create such an interlingua for a specific domain in a multilingual system. The

obvious advantage is to create fewer new modules when a new language is added

into the multilingual system, i.e. in contrast to the transfer-based approach, it

requires only 2n modules.
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2.2 Corpus-based approach

With the availability of reasonable amounts of already human-translated data in

various languages, it was realized that the translations could be generated with

ease and in less time consuming manner by using translation memories which

contain multilingual corpora.

The corpus-based approach is also termed as an empirical approach in which

the knowledge sources to develop an MT system are computed automatically

by analyzing example translations. A major benefit of empirical approaches is

that MT systems for new language pairs and domains can be developed rapidly

and with ease, provided sufficient training data is available. Figure 2.4 shows

the architecture of a corpus-based MT system. Generally, the starting point is

a parallel training corpus consisting of translation examples produced by human

translators. In the training phase, the necessary knowledge base is computed

automatically. The search or decision process is employed to achieve an optimal

combination of the knowledge sources to perform the best possible translation.

Corpus-based approaches are based on sentence-aligned parallel corpora and good

alignment is important for better translation output. A good review of algorithms

that have achieved good results for sentence alignment is described in [Gale and

Church, 1993; Haruno and Yamazaki, 1996; Kay and Röscheisen, 1993]. The two

main corpus-based approaches which have emerged are example-based approach

and statistical-based approach.

In the example-based approach, translation is performed by analogy. The

source sentence to be translated is searched in parallel corpora, translation ex-

amples are extracted and combined to generate the target sentence. Somers [1999]

gives a survey of various EBMT techniques, whereas Hutchins [2005] presents a

historical review.

Statistical machine translation is based on statistical models which are trained

on bilingual and monolingual data. Today, a lot of work is being done to include

in addition syntactic and linguistic information. In the beginning, the approach

was based on words, and therefore, it could be classified as a direct approach. In

the following section, various models and techniques used in SMT are discussed

thoroughly.
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Figure 2.4: Corpus-based machine translation (taken from [Och, 2002])

2.3 Statistical machine translation

Modern machines can be programmed to learn from empirical data with the de-

sign and development of sophisticated algorithms. The algorithms automatically

extract knowledge to recognize complex patterns and make intelligent guesses

based on data. This paradigm is named machine learning and is widely used to

solve many problems. SMT is based on translation by learning statistical models.

These models are learned by already available translated text.

First, we formally describe the task of translating a sentence f in the source

language to a sentence e in the target language. Treating sentences as sequences

of words, we define them as f = f1, ..., fi, ..., fI and e = e1, ..., ej, ..., eJ , where

fi and ej denote the words in position i of f and position j of e, respectively.

In a historical prospective, SMT is viewed as a noisy channel paradigm, which

considers the translation process as a channel which distorts the target sentence

and outputs the source sentence. It is derived from the Bayes’ theorem which is

written as:
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Figure 2.5: SMT based on source-channel models

e∗ = arg max
e

Pr(e|f) =
Pr(e)Pr(f |e)

Pr(f)
(2.1)

Independence of the denominator Pr(f) and our goal to maximize the product

simplifies equation 2.1 to

e∗ = arg max
e

Pr(e)Pr(f |e) (2.2)

Equation 2.2 is the fundamental equation of statistical machine translation

and divides the overall framework into two separate models: a target language

model Pr(e) and a translation model Pr(f |e). The translation process consists

in maximizing the product of the two functions. The translation model (TM)

is learned from parallel corpora whereas the language model (LM) is build on

monolingual data. The translation model provides the best translation according

to the input text while the target language model ensures that the translation is

grammatically correct, regardless of the input text. The decoder performs the

search for the best translation e∗ given the search space of all possible translations

based on the probabilities of the language and translation models.
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There exists numerous techniques to represent and train translation models.

They vary in the choice of the basic translation unit. Early translation models

were based on a word-by-word alignment model and word translation probabili-

ties. Recent systems operate on sequences of words, called phrase-based systems.

A phrase is a contiguous sequence of words and a phrase pair is a translation

equivalent of each other in a given language pair. These phrase pairs are stored

along with their frequency and are then used as building blocks for new trans-

lations. Also some phrase-based SMT approaches are based on non-contiguous

phrases or phrases with gaps as in [Gimpel and Smith, 2011; Simard et al., 2005].

The probability distributions of all these statistical models are automatically es-

timated from a sentence-aligned parallel corpus.

2.3.1 IBM translation models

It is not practical to model full sentences since most sentences occur only once or

few times even in large texts. Therefore, breaking up the sentences into smaller

components is an ultimate choice, e.g. words which are more auspicious to col-

lect enough statistics to estimate probability distribution. [Brown et al., 1993,

1990] proposed word-based models in the 1990s which opened the door for the

researchers in many domains. These models are based on the same noisy channel.

According to equation 2.2, we need to calculate the inverted translation proba-

bility Pr(f |e) in order to translate the text f in the source language to a string

e in the target language. The first difficult task is to establish the correspon-

dences between the words in source and target sentences. Typically, the number

of words and the order of the corresponding appearances in translated sentences

is different. This problem is handled by using a hidden variable a which accounts

for all possible pair-wise alignment links between the two sentences:

Pr(f |e) =
∑

a

Pr(f, a|e) (2.3)

Pr(f, a|e) can be expanded to smaller models as
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Pr(f, a|e) = Pr(J |e)
J∏

j=1

Pr(aj|a
j−1
1 , f

j−1
1 , J, e)Pr(fj|a

j
1, f

j−1
1 , J, e) (2.4)

where,

J = length of the source sentence f

fj = word in position j of source sentence f

aj= hidden alignment of word fj indicating the position at which fj aligns in the

target sentence

which says that given target sentence f, choose the length J of source sen-

tence e from which we could find where to link the first source position given

target sentence and the length of source sentence. Then given target sentence,

the length of source sentence and the target word linked to the first source po-

sition, we could identify the first source word and so on. The source words that

are not aligned to any target words are aligned to empty word (NULL). The

Expectation-Maximization (EM) algorithm is used to find out hidden parame-

ters by maximizing the likelihood of the parallel corpus. There are 5 models

proposed by IBM.

Model 1 makes use of co-occurrence of word pairs and is based on lexical

translation probability distribution only. The translation probability between

given foreign sentence f = (f1, f2, ..., flf ) and target sentence e = (e1, e2, ..., ele)

with an alignment of each target word ej to a foreign word fi according to the

alignment function a could be written as:

p(e, a|f) =
ǫ

(lf + 1)le

le∏

j=1

t(ej|fa(j)) (2.5)

which shows the generated output words ej for all le by taking the product

over all the lexical translation probabilities along with normalization. ǫ is a

normalization constant to make the summation of all possible target translation

probabilities to one. The lexical translation probabilities are learned by EM

algorithm as follows:
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• Initialize the model with uniform distribution

• Expectation step by applying the model over the data

• Maximization step by learning the model over the data

• Loop through step 2 and 3 unless converged

The convergence of EM algorithm is determined by calculating the perplexity

of the model at each iteration. The perplexity is calculated as follows:

log2 PP = −
∑

s

log2 p(es|fs) (2.6)

The perplexity is supposed to decrease at each iteration and it ensures the

convergence of the EM algorithm.

IBM model 1 gives the basic functionality to build word-to-word alignments,

but it has many defects. For example, it doesn’t take care about word reordering.

IBM model 2 introduce the notion of alignment probability distribution

based on the positions of the words. The two steps to build IBM model 2 involving

lexical translation step and alignment step are formulated as:

p(e, a|f) = ǫ

le∏

j=1

t(ej|fa(j))a(a(j)|j, le, lf ) (2.7)

It could be observed from the above equation that IBM model 1 is a special

case of IBM model 2 where second part of the product is fixed in model 1. Though

IBM model 2 seems reasonable to tackle with the problem of reordering but still

things are more complicated when considering that the words in one language

could be translated into zero, one or many words in other language.

IBM model 3 introduces two more steps in translation process called the

fertility and NULL insertion step which gives the solid formulation along with

model 1 and 2 to build word-to-word translations. However this need further im-

provements to deal with large sentences where words movements are not depicted

correctly.

IBM model 4 introduces the concept of relative distortion by making the

words groups.
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IBM model 5 resolves the problem of deficiency in model 3 and 4 where

multiple words could be placed in the same position. The placement of the words

is done by keeping track of vacant positions.

Homogeneous HMM is a modification of the IBM model 2 model with first-

order dependencies in alignment probabilities [Vogel et al., 1996] which deals with

lexicon plus relative position.

These IBM models give the comprehensive formulation to build word-to-word

alignment between the sentence pairs. However, one problem persists: the asym-

metric word-to-word alignment does not allow to align multiple input words to

one output word. The procedure deployed to overcome this problem is to run

IBM models in both directions, i.e. source-to-target and target-to-source. The

word alignments are symmetrized by taking the intersection or union of alignment

points [Och and Ney, 2003]. A comprehensive detail about the IBM models 1−5

is described in [Och, 2002] whereas [Och and Ney, 2003] presents a systematic

performance comparison of various models.

2.3.2 Phrase-based translation models

In the previous section we discussed the IBM models which use words as basic

translation units. There is a reasonable point that words may not be the best

option as translation unit. A word in one language may translate into many

words in another language and many words in a language may translate into

a single word in another one. It looks more intuitive to use group of words -

called phrases - as translation units. This concept emerged as the phrase-based

approach [Koehn et al., 2003]. Phrase-Based SMT (PBSMT) has proven to be

one of the best performing technique. The idea behind this approach is to use a

simplified version of the alignment template approach [Och and Ney, 2004]. The

approach is based on phrases which are not necessarily linguistically formulated

and which may be reordered as shown in figure 2.6.

Figure 2.6 illustrates many benefits of translation based on phrases instead of

words. Words may not be the good atomic units for translation due to one-to-

many and many-to-one mappings. For instance, the french word sera is translated

into will be and an english word month is produced by le mois. By this way,
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la        soutenance        de        thèse sera  le   mois prochain 

the        thesis        defense will be   next month 

NULL

NULL

Figure 2.6: Phrase-based machine translation

translating phrases instead of single word helps to resolve translation ambiguities.

Finally, the model seems much simpler and intuitive that does not allow the

arbitrary adding and dropping of words. This kind of formulation urges to map

phrases instead of words. PBSMT approach follows the same foundation as word-

based SMT models. Equation 2.2 is further decomposed as follows:

P (f |e) =
I∏

i=1

φ(f̄i|ēi)d(starti − endi−1 − 1) (2.8)

The f sentence in source language is decomposed into I phrases f̄i . The

equation 2.8 constitutes two models, the first part of the product states that each

source phrase f̄i is translated into a target phrase ēi. The term d(starti−endi−1−

1) in the formula represents the distance based reordering model. According to

this model, the reordering of a phrase is relative to the previous phrase: starti and

endi denote the start and end words of the ith source phrase that translates into

ith target phrase. Since the translation direction was mathematically inverted in

the noisy channel model, the phrase translation probability φ(f̄i|ēi) is modeled

from target to source.

Phrase extraction and scoring

Phrases are the core component in PBSMT. They are not supposed to be lin-

guistically formulated. Bilingual phrases, also called phrase pairs, are extracted

from word-to-word alignments which are contiguous and consistent. Phrases are

extracted by applying a set of heuristics to the word aligned parallel corpora. Ac-
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cording to a criterion any sequence of consecutive source words and consecutive

target words which are aligned to each other and are not aligned to any other

token in the sentence become a phrase. Och et al. [1999b] and Zens et al. [2002]

give details of the criterion.

All words in the target language are aligned to the words in the source lan-

guage and otherwise. There must be at least one word in the target language

phrase which is aligned to at least one word in the source language phrase. Possi-

ble unaligned words at the boundaries of the phrases are taken into account by a

phrase extraction algorithm. Formally, an alignment a having words f1, ..., fn in

f̄ contains alignment points with words e1, ..., en in ē creates a consistent phrase

pair ( f̄ , ē) as shown in 2.7.

Figure 2.7: Phrase Pairs being consistent with word alignment. The grey part
shows the probable phrases [Koehn, 2010].

All words have to align with each other which is the case in example 1 but

violated in example 2 where one alignment point in the second column is outside

the phrase pair. Example 3 includes an unaligned word which is consistent.

The phrase extraction process results into pairs of source and target phrases

which have consecutive words and are consistent with the word alignment matrix.

These alignments are produced in both directions since alignment is asymmetric,

the intersection and/or union (or other alignment methods) of these two align-

ments is then used.

The phrase translation probabilities are estimated over all bilingual phrases

using the relative frequency of the target sequence given the source sequence. The
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phrase translation probabilities φ(f̄i|ēi) are learned using the Maximum Likeli-

hood Estimation (MLE):

φ(f̄i|ēi) =
count(ēi, f̄i)∑
f̄j

count(ēi, f̄j)
(2.9)

Nowadays, many SMT systems follow a phrase-based approach, in that their

translation unit is the bilingual phrase, such as [Bertoldi et al., 2006; Hewavitha-

rana et al., 2005; Matusov et al., 2006]. There are various other popular modern

approaches to SMT which includes, factored translation model [Koehn et al.,

2007a], hierarchical approach [Chiang, 2005, 2007; Wu, 1997], N-gram based ap-

proach [Casacuberta and Vidal, 2004; Casacuberta et al., 2002] and syntax-based

MT [Och et al., 2003; Yamada and Knight, 2001].

2.4 Log-linear models

In a standard phrase-based statistical machine translation system, all the models

are multiplied together, i.e. the translation model, the distortion model and the

language model as follows:

ebest = arg max
e

I∏

i=1

φ(f̄i|ēi)d(starti − endi−1 − 1)PLM(e) (2.10)

It seems obvious that different models may have different impact on the trans-

lation output. The available models and methods only provide poor approxima-

tions of the true probability distributions. Hence, certain models may be given

more weight than others. Formally this is done by introducing the weights λφ,

λd, λLM that scale the contribution of each of the three components. In log-linear

model each of these models is considered as a feature and weighted according to

the following form:

p(x) = exp

n∑

i=1

λihi(x) (2.11)
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where

h1 = log φ (2.12)

h2 = log d (2.13)

h3 = log PLM (2.14)

This framework is widely used since it gives the flexibility to include many

models as feature functions. The popular maximum entropy and perception learn-

ing methods are all based on log-linear models. In the next sections, we will

discuss some well known models which are often used in many state-of-the-art

systems.

2.4.1 Bidirectional translation probabilities

The paradigm based on Bayes rule results in the use of inverse translation di-

rection. In practice, translation probabilities in both directions are considered

in most state-of-the-art systems and it is proven that it outperforms the model

based on one directional translation probabilities.

2.4.2 Lexical weighting

It is shown in Koehn et al. [2003] that the performance of the log-linear model

improves by incorporating a feature which measures how well individual words

translate to each other. This model is so called the lexical weighting which is

computed by the product of the individual words in the phrases for the entire

sentence pair as follows:

lex(ē|f̄ , a) =

n(ē)∏

i=1

1

|{j|(i, j) ∈ a}|

∑

∀(i,j)∈a

w(ei|fj) (2.15)

where a is the alignment between the target word positions i = 1, ..., n and the

source word positions j = 1, ...,m. w(ei|fj) is the lexical translation probability

and is estimated by relative frequency. It is also useful to use lexical translation

probabilities in both directions as for phrase translation probabilities.
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Figure 2.8: Three orientations types: (m) monotone, (s) swap, (d) discontinuous
(taken from [Koehn, 2010]).

2.4.3 Lexicalized reordering model

Standard phrase-based statistical machine translation is only based on movement

distance distortion model which is considered weak. It is obvious to note that

some phrases are more frequently reordered than others. Therefore, lexicalized

reordering model is proposed based on three orientations as shown in figure 2.8 :

• monotone : if a word alignment point to the top left exists

• swap : if a word alignment point to the top right exists

• discontinuous : neither monotone nor swap

Each extracted phrase pair is counted with each of the three orientation types

and probability distribution po is calculated based on the maximum likelihood:

po(orientation|f̄ , ē) =
count(orientation, ē, f̄)∑

o count(o, ē, f̄)
(2.16)

Due to the sparseness in the data to calculate the statistics of the each orien-

tation type; the counts are smoothed with a factor σ :
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po(orientation) =

∑
f̄

∑
ē count(orientation, ē, f̄)

∑
o

∑
f̄

∑
ē count(o, ē, f̄)

(2.17)

po(orientation|f̄ , ē) =
σ p(orientation) + count(orientation, ē, f̄)

σ +
∑

o count(o, ē, f̄)
(2.18)

There are certain variations proposed on this lexicalized reordering orientation

types which are beneficial for certain language pairs.

2.4.4 Word and phrase penalty

These feature functions aim to model the output length in term of number of

words and phrases. A word penalty tries to avoid too long or too short candidate

sentences by introducing a feature ω for each produced word. In the case of ω < 1

the score of shorter translations is increased otherwise longer translations are

preferred. This parameter improves the translation performance by optimizing

the length of the output.

Similarly, it is questionable whether longer or shorter phrases are better. Sim-

ilar to word penalty a feature ρ is introduced for each phrase translation called

phrase penalty. If ρ < 1 longer phrases are preferred and shorter phrases get

emphasis in case of ρ > 1.

2.5 Language models

The language model is an important component of many natural language pro-

cessing applications such as speech recognition [Chen and Goodman, 1996; Roark

et al., 2007], information retrieval [Song and Croft, 1999] and SMT. It ensures

the fluency of the sentence. Most SMT systems simply borrow the language

models originally employed for speech recognition. According to [Lopez, 2008],

the main focus of SMT research has been on translation models, but it is proven

that improvements in the language model generally leads to better translation

performance [Brants et al., 2007].
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A statistical language model assigns a probability to a sequence of m words

P (e1, . . . , em) by means of a probability distribution. A simple choice for this

model consists in dividing the sentences into smaller parts (n-grams), small

enough to be frequent in the corpus, but large enough to contain some language

context. An n-gram is a contiguous sequence of n items from a given sequence

of text. When n is 1 the n-gram is referred to as a ”unigram”, when n is 2 it

is called ”bigram” , when n is 3 it is a ”trigram” and so on. The probability

P (e1, . . . , em) of observing the sentence e1, ..., em is approximated as:

P (e1, . . . , em) =
m∏

i=1

P (ei|e1, . . . , ei−1) ≈
m∏

i=1

P (ei|ei−(n−1), . . . , ei−1) (2.19)

which means that the probability of observing the ith word ei in the context

history of the preceding i − 1 words can be approximated by the probability of

observing it in the shortened context history of the preceding n − 1 words.

The conditional probability can be estimated from n-gram frequency counts

as follows:

P (ei|ei−(n−1), . . . , ei−1) =
count(ei−(n−1), . . . , ei−1, ei)

count(ei−(n−1), . . . , ei−1)
(2.20)

The derived model has major problem when observing any n-grams that has

not explicitly been seen before. According to the formulation given above, n-

grams not seen in the corpus will have a probability of zero and will nullify

the whole sentence probability. The problem is tackled by a technique called

smoothing in which a very small positive value is assigned to zero probabilities.

The simplest approach is to add one to all the counts of n-grams, this is known

as add-one smoothing, for example for bigrams:

P (ej|ei) =
count(eiej) + 1

count(ei) + V
(2.21)

where V is the size of the vocabulary.

The smoothing techniques include interpolation and back-off models. A good

overview of n−gram smoothing techniques is presented in [Chen and Goodman,
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1996]. Generally, back-off n-gram models are used in SMT, however various

language modeling techniques exist and have shown to improve SMT quality,

some of these include for instance continuous space LM based on neural networks

[Schwenk, 2007; Schwenk et al., 2006], syntax based models based on context free

grammars [Charniak et al., 2003; Marcu et al., 2006; Wu et al., 1998].

2.6 Decoder

So far we have introduced the two main components of an SMT system, the

translation model - learned from bilingual corpus and the language model esti-

mated from monolingual data in the target language. In order to translate an

observed source sentence f , we seek the target sentence e which maximizes the

product of those two terms. This process is also called decoding step. Decoding

is an important part in the SMT process. Without a reliable and efficient decod-

ing algorithm, the system could miss the best translation of an input sentence

even if it is perfectly predicted by the models. The decoding process in machine

translation finds the best scoring translation among many choices.

In word-based SMT systems, decoding was done with different approaches

including optimal A* search [Och et al., 2001], integer programming [Germann

et al., 2001], greedy search algorithms [Wang and Waibel, 1998]. An impor-

tant problem of these decoders is the computational complexity introduced by

reordering when single words are considered instead of longer units.

In phrase-based decoders, short-distance reorderings between source and tar-

get sentences are already captured within the translation units, which relieve the

reordering problem [Koehn, 2004; Och and Ney, 2004; Tillmann and Ney, 2000].

Pharaoh [Koehn, 2004] was an efficient and freely available beam search phrase-

based decoder. It was very successful and contributed in making SMT more

accessible and more popular. Recently, Pharaoh has been upgraded by another

decoder which is called Moses [Koehn et al., 2007a]. Moses is much more powerful

than Pharaoh and very popular in research community. It is also a phrase-based

decoder implementing a beam search, allowing to input a word lattice with confu-

sion networks and using a factored representation of the raw words (surface forms,

lemma, part-of-speech, morphology, word classes, etc.). Nowadays, many SMT
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systems employ a phrase-based beam search decoder because of the reasonable

performance results achieved in terms of accuracy and efficiency.

2.7 Minimum error rate training

The commonly used log-linear model in SMT is a combination of several features

weighted by the parameter λi as shown in 2.11. It is important to learn the pa-

rameter λi for the features hi in order to achieve good translation performance.

This can be performed by minimizing translation error over a development corpus

for which manually translated references are available. This minimization in mul-

tiple dimensions is a complicated problem for given objective function. It has no

analytic representation, therefore the gradient cannot be estimated. Also, it may

have many local minima. Moreover, its evaluation has a significant computational

cost.

Och [2003] proposed an efficient supervised algorithm -so called Minimum

error rate training (MERT ) to calculate the optimal weights of the parameter λi

for the features hi. These weights are tuned on a given development set. During

MERT optimization, it is assumed that the best model is the one that produces

the minimum overall translation error with respect to given error function. A

simple pseudo code is as follows:

• Initialization : initialize λi randomly or heuristics based

• Translation: n-best translation of the development set with given λi

• Comparison: compare the objective score (such as BLEU) of the n-best

translation with previous run

• Re-estimation: Re-estimate the weights λi

• Iterate: Iterate until weights are converged

The other popular approaches in literature are Powell’s method [Powell, 1964]

and the downhill simplex method [Cettolo et al., 2005; Nelder and Mead, 1965;

Press et al., 2002].
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2.8 Evaluation metrics

MT evaluation is a large field of research by itself. The purpose of MT evaluation

is to judge the correctness of an SMT output. It can be measured according to

several factors including intelligibility, fidelity, coherence, usability, adequacy and

fluency. Initially, MT evaluation was performed by humans only, no automatic

measures were available. Human evaluation requires human intervention in order

to judge the quality of the translation. The focus of MT evaluation has been to

evaluate adequacy and fluency according to a certain quality scale [White, 1994].

Fluency expresses how natural the hypothesis sounds to a native speaker of the

target language while adequacy indicates how much of the information from the

original translation is expressed in the translation. Many international evaluation

campaigns conduct human evaluation with different grades to compare the quality

of various systems. For instance, fluency is usually measured with these possible

scores: 5 for flawless, 4 for good, 3 for non-native, 2 for disfluent and 1 for

incomprehensible. To measure adequacy the judge is presented with a reference

translation to grade how much of the information is present in comparison to

the references. The information expressed in original translation: 5 for all of the

information, 4 for most of the information, 3 for much of the information, 2 for

little information, and 1 for none of it.

The cost of human evaluation makes it very difficult to use it in iterative

system development, where regular evaluation is required to determine system

performance. It can take weeks to finish and involve human labor that can

not be reused. Nowadays, the focus is on doing system comparisons. There-

fore, methods for automatic machine translation evaluation got attention, that

is quick, inexpensive, and language-independent, that correlates highly with hu-

man evaluation, and that has little marginal cost per run. This need has resulted

in emergence of various automatic evaluation metrics, however, so far the MT

community has not yet accepted a unified evaluation criteria.

The automatic metrics make use of a set of test sentences for which we already

have human translations, called reference translations. The intuition behind these

metrics is that MT must be good if it resembles human translation of the same

sentence [Papineni et al., 2002]. The metrics perform partial string match between
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the MT output and the reference translations. However, having a single reference

translation may bias the evaluation towards a particular translation style, so

multiple reference translations is generally preferred to take into account the

diversity of translation styles. In the following, we give an overview of the most

popular MT evaluation metrics:

Word Error Rate (WER) [Och et al., 1999a], also known as Levenshtein

or edit distance. WER scores the sentences based on the number of insertions,

deletions and substitutions required to transform the output sentence to the refer-

ence sentence. WER is considered as less appropriate for MT evaluation because

a word that is translated correctly but is in the wrong location will be penalized

as a deletion (in the output location) and an insertion (in the correct location).

This problem motivated the use of Position independent word Error Rate

(PER), which regards the output and the reference sentence as unordered bags

of words rather than totally ordered strings [Och et al., 1999a].

Another variant, Translation Edit Rate (TER) is an evaluation metric

which allows block movements of words and thus takes into account the reordering

of words and phrases in the translation [Snover et al., 2006]. It also measures

the amount of editing that would have to be performed to change a hypothesis

so that it exactly matches the reference.

An extension of TER is Translation edit rate plus (TERp). It uses all

the edit operations of TER along with three new edit operations: stem matches,

synonym matches and phrase substitutions. Unlike TER, the TERp implemen-

tation assigns a varying cost to substitution so that a lower cost is used if the

two words are synonyms, share the same stem, or are paraphrases of each other.

TERp identifies words in the hypothesis and reference that share the same stem

using the Porter stemming algorithm. Two words are determined to be syn-

onyms if they share the same synonym set according to Word Net. Sequences of

words in the reference are considered to be paraphrases of a sequence of words in

the hypothesis if that phrase pair occurs in the TERp paraphrase phrase table.

With the exception of phrase substitutions, the edit operations have fixed cost

regardless of the word in question [Snover et al., 2009].

The most widely used MT evaluation metric is BLEU, short for bilingual

evaluation under study [Papineni et al., 2002]. The metric works by measuring
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the n-gram co-occurrence between a given translation and the set of reference

translations and then taking the weighted geometric mean. BLEU is a precision

oriented metric as it considers the number of n-gram matches as a fraction of the

total number of n-grams in the output sentence.

A variant of BLEU score is the NIST evaluation metric [Doddington, 2002],

which also calculates how informative a particular n-gram is, the rarer a correct

n-gram, the more weight it is given. The NIST score also differs in its calculation

of the brevity penalty.

The METEOR metric [Denkowski and Lavie, 2011] was developed made to

address some of the drawbacks of the BLEU metric. It is based on the weighted

harmonic mean of unigram precision and unigram recall. The metric was de-

signed after research by [Lavie and Agarwal, 2007] on the significance of recall

in evaluation metrics. Their research showed that metrics based on recall con-

sistently achieved higher correlation to human evaluation than those based on

precision alone, such as BLEU and NIST. METEOR also includes other features,

such as synonym matching, where instead of matching only the exact word form,

the metric also matches on synonyms. For example, the word ”nice” in the ref-

erence rendering as ”beautiful” in the translation counts as a match. The metric

also includes a stemmer, which lemmatizes words and matches on the lemmatized

forms. The implementation of the metric is modular insofar as the algorithms

that match words are implemented as modules, and new modules that implement

different matching strategies may easily be added.

2.9 Adaptation techniques

Statistical machine translation systems are learned with bilingual data. These

systems are evaluated on a test corpus that is distinct from the training data. In

most cases, the test corpus belongs to the same subject as the original training

corpus and therefore may belong to the same domain - so called in-domain. To

evaluate SMT quality in a different domain than the one for which the system was

trained, a corpus from the different domain is required. Out-of-domain describes

the type of training corpus, which is not subject of the current test. The corpora

could be distinguished based on many factors. For instance, spoken text versus
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written text, formal versus informal style., human translated vs automatically

extracted. There is large variety of possible domains, some of which are news,

political speech, talk shows, scientific press, teaching, preaching, sport, interviews,

law, political debate and business. Even within a certain domain there could

be many sub-domains, for instance, scientific press may have different scientific

subjects ranging from biological sciences to computer technology.

The purpose of SMT adaptation is to improve translation performance on a

specific domain. This is particular important for SMT systems since their perfor-

mance heavily depends on the training data domain. Data can be very different in

many aspects such as size, vocabulary, style, quality or genre. Since the statistical

methods are heavily influenced by both domain differences and noise, model adap-

tation is one of active research area in statistical machine translation. There have

been several attempts in recent years that outline various techniques to adapt the

models to the domain of interest. Model adaptation usually concentrated around

language model or translation model adaptation.

[Béchet et al., 2004] enumerated various approaches to language model adap-

tation as follows:

• to train an LM in the new domain if sufficient data are available.

• pool data of various domains with the data from the new domain.

• linearly interpolate the general and a domain-specific model as shown in [Sey-

more and Rosenfeld, 1997].

• back-off domain specific probabilities with those of the general model.

• retrieve documents relevant to the new domain and training a new LM

on-line with those data [Iyer and Ostendorf, 1996].

• apply maximum entropy and minimum discrimination adaptation [Chen

et al., 1998].

• adapt with maximum posteriori Probability (MAP) [Seymore and Rosen-

feld, 1997].
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• adapt by linear transformation of vectors of bigram counts in a reduced

space.

Generally, these approaches are being studied in the context of speech process-

ing, but some of them are successfully applied to SMT. For instance, Zhao et al.

[2004a] studied the linear-interpolation of out-of-domain and in-domain models.

They retrieved documents from a large monolingual text which are similar to

the desired domain and they build a new in-domain LM. This in-domain LM is

linearly interpolated with the generic out-of-domain LM.

[Wu et al., 2008] experimented with two approaches for language model inter-

polation. They linearly interpolate LMs in a first approach while in another one

they considered each language model as distinct feature in a log-linear paradigm.

They showed that linear interpolation performs better.

Domain adaptation seems to be more tricky for the translation model. Today

current best practice to build an SMT system is to concatenate all available

parallel data, to perform word alignment and to extract and score the phrase

pairs by simple relative frequency. Doing this, the parallel data is (wrongly)

considered as one homogeneous pool of knowledge. To the best of our knowledge,

there is no commonly accepted method to weight the bitexts coming from different

sources so that the translation model is best optimized to the domain of the task.

In previous work, translation model adaptation is done by using mixture mod-

els, by self-enhancement of translation models, by exploiting comparable corpora,

by data selection and by data weighting. We will summarize these approaches in

the following sections.

2.9.1 Mixture models

Mixture models correspond to the mixture distribution of data to estimate prob-

ability. Assume that a corpus is composed of N different domains from a total of

size S, where each domain corresponds to one of K possible topics. The distribu-

tion of such corpus could be modeled as a mixture of K different S-dimensional

distribution. These kind of models are termed as topic models. In context of

SMT, the mixture models could be applied at different levels. For instance, dur-

ing word-to-word alignment to extract topic-dependent alignments, to construct
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specific language models, to adapt translation models by mixture components

etc.

Civera and Juan [2007] proposed a model that can be used to generate topic-

dependent alignments by extension of the HMM alignment model and derivation

of Viterbi alignments. Foster and Kuhn [2007] applied a mixture model approach

to adapt the system to a new domain by using weights that depend on text

distances to mixture components. The training corpus was divided into different

components, a model was trained on each part and then weighted appropriately

for the given context. Koehn and Schroeder [2007] used two language models

and two translation models: one in-domain and other out-of-domain to adapt the

system. Two decoding paths were used to translate the text.

2.9.2 Self-enhancing approach

Another direction of research is self-enhancing of the translation model. This was

first proposed by Ueffing [2006]. The idea is to translate the test data, to filter the

translations with the help of a confidence score and to use the most reliable ones to

train an additional small phrase table that is jointly used with the generic phrase

table. This could be also seen as a mixture model with the in-domain component

being build on-the-fly for each test set. In practice, such an approach is probably

only feasible when large amounts of test data are collected and processed at once,

e.g. a typical evaluation set up with a test set of about 50k words. This method of

self-enhancing the translation model seems to be more difficult to apply for on-line

SMT, e.g. a WEB service, since often the translation of some sentences only is

requested. Ueffing [2007] further refined this approach by using transductive semi-

supervised methods for effective use of monolingual data from the source text.

A related approach was investigated in [Schwenk, 2008; Schwenk and Senellart,

2009] in which lightly supervised training was used. An SMT system was used

to translate large collections of monolingual texts, which were then filtered and

added to the training data. Although this technique seems to be close to self

enhancing as proposed in [Ueffing, 2006] there is a conceptual difference. They

do not use the test data to adapt the translation model, but large amounts of

monolingual training data in the source language and they create a complete new
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model that can be applied to any test data without additional modification of

the system. This kind of adapted system can be used in WEB service. In an

extended approach, Lambert et al. [2011] argued that the automatic translations

should not be performed from the source to the target language, but in the

opposite direction. Secondly, they proposed to use the segmentation obtained

during translation instead of performing word alignments. Finally, they proposed

to enrich the vocabulary of the adapted system by detecting untranslated words

and automatically inferring possible translations from the stemmed form and the

existing translations in the phrase table. Bertoldi and Federico [2009] exploited

large in-domain monolingual corpora either in source or in target language. In an

another approach Chen et al. [2008] performed domain adaptation simultaneously

for the translation, language and reordering model .

2.9.3 Comparable corpora

Because of the fact that parallel data in various specific domains is a sparse

resource, it is an alternate choice to explore non-parallel data which could provide

additional information somehow.

Comparable corpora is of set of texts in different languages that are not trans-

lations of each other. It is a collection of texts composed independently in the

respective languages and combined on the basis of similarity of content. These are

documents in one to many languages, that are comparable in content and form in

various degrees and dimensions. The good amount of availability of these compa-

rable corpora and the potential for parallel corpus as well as dictionary creation

has motivated an interest in trying to make maximum use of these comparable

data.

In SMT the comparable corpora are exploited to find additional parallel texts.

Information retrieval techniques are used to identify candidate sentences Hilde-

brand et al. [2005]. Snover et al. [2008a] used cross-lingual information retrieval

to find texts in the target language that are related to the domain of the source

texts. Comparable corpora has been used for language and translation model

adaptation in [Snover et al., 2008b]. Munteanu and Marcu [2005] proposed a

technique to improve SMT performance using extracted parallel sentences. Can-
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didate sentences are determined based on word overlap and the decision whether

a sentence pair is parallel or not is performed by a maximum entropy classifier

trained on parallel sentences. In a similar technique, Abdul-Rauf and Schwenk

[2009] bypass the need of the bilingual dictionary by using proper SMT trans-

lations and instead of a maximum entropy classifier they used simple measures

like the word error rate (WER) and the translation error rate (TER) to decide

whether sentences are parallel or not.

2.9.4 Data selection

Another line of research in domain adaptation is data selection. Data selection

is the process of determining and selecting the appropriate data to a given task

among all available data. The approach of data selection has been studied for

both monolingual data to adapt the language models as well as for bilingual data

to adapt the translation models. Most of the techniques rely on information

retrieval, perplexity or cross entropy. Zhao et al. [2004a] constructed specific

language models by using machine translation output as queries to extract similar

sentences from large monolingual corpora. Hildebrand et al. [2005] assumed that

the general corpus is composed of different domain sub-corpora. Therefore, they

filtered the large bilingual out-of-domain corpus to select those sentence pairs

only, which belongs to the in-domain test set. By these means, the bilingual out-

of-domain corpus is filtered to a bilingual in-domain corpus. In an another work

two approaches are explored in Lu et al. [2007]. They proposed offline versus on-

line optimization. Offline data optimization is done by using information retrieval

to select similar data to a given task and redistribute weight to each sentence.

In on-line optimization process, several translation models and a general one are

created. During the translation, similarity between the input and translation

models is calculated and given certain weight. Another approach for translation

model adaptation is investigated in Axelrod et al. [2011] by using cross-entropy

to select so called pseudo in-domain sentences from general domain corpus. They

proposed to rank the sentences in a general-domain corpus with respect to an in-

domain corpus. A cutoff can then be applied to produce a very small sub-corpus,

which in turn can be used to train a domain-adapted MT system. They showed
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that it is possible to use data selection methods to sub-select less than 1% of a

large general training corpus and still increase translation performance.

2.9.5 Data weighting

Most recently, weighting the data is getting much attention from the research

community. Various features extracted at different levels during model training

are considered to weight the data. The data with a higher feature scores is given

higher weights.

Matsoukas et al. [2009] proposed a technique in which they weighted each

sentence in the training bitexts to optimize a discriminative function on a given

tuning set. Sentence level features were extracted to estimate the weights that

are relevant to the given task. The feature vectors were mapped to scalar weights

(0, 1) which are then used to estimate probabilities with weighted counts. Their

technique is only concerned with influencing the translation probabilities via the

corpus weights; it does not change the set of rules extracted.

Foster et al. [2010] proposed an extended approach by an instant weighting

scheme which learns weights on individual phrase pairs instead of sentences and

incorporated the instance-weighting model into a linear combination. Phillips

and Brown [2011] trained the models with a second-order Taylor approximation

of weighted translation instances and discount models on the basis of this approxi-

mation. Zhao et al. [2004b] rescore phrase translation pairs for statistical machine

translation using TF.IDF to encode the weights in phrase translation pairs. The

translation probability is then modeled by similarity functions defined in a vector

space. Huang and Xiang [2010] proposed a rescoring algorithm in which phrase

pair features are combined with linear regression model and neural network to

predict the quality score of the phrase translation pair. These phrase scores

are used to boost good phrase translations and bad translations are discarded.

Sennrich [2012] demonstrated perplexity optimization for weighted counts. They

also show that variable features in translation table could be optimized separately

through perplexity optimization.

Among other adaptation techniques Duh et al. [2011]; Sanchis-Trilles and

Casacuberta [2010] proposed Bayesian adaptation, cache-based adaptation Nepveu
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et al. [2004].

2.10 Conclusion

In this chapter, we have presented various MT concepts. After the brief descrip-

tion of different MT approaches , we have focused on various SMT paradigms from

word-to-word alignment to phrase based approaches. The concepts of translation

and language modeling along with decoding and evaluation metrics are explained

in detail. The various techniques for model adaptation in literature are catego-

rized according to underlying methodologies.

The work proposed in this thesis is an extension and generalization of several

ideas proposed in previous works such as weighted counts with feature scores.

However our proposed framework gives the flexibility to inject the feature scores

in a unified formulation calculated at various levels. It is based on the following

principles:

• the use of a set of “quality measures” at different levels: weights for each

corpus (or data source) and for each individual sentence in the bitexts.

• There are various methods to estimate the probability distribution of the

models given the training corpora, and it may be difficult to integrate

weights at the corpus or sentence level directly in this procedure. Therefore

we started by weighting corpora without assuming how translation proba-

bilities are estimated. The idea we proposed is to use resampling to produce

a new collection of weighted alignment files. A weighting coefficient to each

bitext is associated. This method does not require an explicit specifica-

tion of the in-domain and out-of-domain training data. The weights of the

corpora are directly optimized on the development data using a numeri-

cal method, similar to the techniques used in the standard minimum error

training of the weights of the feature functions in the log-linear criterion.

• The second idea proposed in this thesis is to consider some kind of meta-

weights for each part of the training data. Instead of numerically optimizing

all the weights, these meta-weights only depend on few parameters that need
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to be optimized. The weighting of the parts is still done by resampling the

alignments.

• In a third approach , we integrate the various weighting schemes directly in

the calculation of the translation probabilities. Resampling the bitexts or

alignments is computationally expensive for large corpora since the resam-

pled data is ideally much bigger than the original one. Instead, we worked

on direct translation probabilities.

• our approach has only a small number of parameter to optimize.

• No additional feature functions to express the quality or appropriateness of

certain phrase pairs, but we modify only the existing phrase probabilities.

By these means, we don’t have to deal with the additional complexity of

decoding and optimizing the weights of many feature functions.

The novel approaches are explained in next chapters along with their detailed

architecture and experimental evaluation.
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Chapter 3

Weighting Data by Resampling

3.1 Background

Recently weighting the data coming from different sources belonging to differ-

ent domains has attained a great attention by research community in machine

translation. This is because of the fact that there is still a huge potential to get

maximum out of all available sparse resources specially the parallel texts, which

is available in limited domains. Considering the fact, that the performance of an

SMT system is proportional to the quantity of training data used to build these

systems, data is collected and merged together regardless of its nature/domain,

size and quality. This introduces the sample bias problem. In practice, all the

text available is biased in one or other way. For example, the UN proceedings

mostly contain the political discussions and data is biased towards political do-

main, the text collected from news agencies is centered around news domain.

Any statistics calculated from the biased sample are erroneous and can lead to

under or over representation of related parameters. In other words, it will not

accurately represent the target domain.

3.2 Overview of proposed schemes

The translation model of a statistical machine translation systems is trained on

parallel data coming from various sources and domains.
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In the following, we will first summarize how the phrase-table is calculated in

the popular Moses SMT toolkit. Each research team has its own heuristics, but

we assume that the basic procedure is very similar for most phrase-based systems.

Moses uses four probabilities: the forward phrase-translation probability P (ẽ|f̃),

the backward phrase-translation probability P (f̃ |ẽ), and two lexical probabilities,

again in the forward and backward direction. These probabilities are used in the

standard log-linear model as feature functions fti(f, e):

e∗ = arg max
e

∑

i

λi log fti(f, e) (3.1)

Moses uses in total fourteen feature functions: the above mentioned four scores

for the phrases, a phrase and word penalty, six scores for the lexicalized distortion

model, a language model score and a distance based reordering model.

The phrase-table itself is created by the following procedure:

1. collect parallel training data

2. eventually discard sentence pairs that are too long or which have a large

length difference

3. run Giza++ on this data in both directions (source-to-target and target-

to-source)

4. use some heuristics to symmetrize the alignments in both directions, e.g

the so-called grow-diagonal-final-and Koehn et al. [2003]

5. extract a list of phrases

6. calculate the lexical probabilities

7. calculate the phrase probabilities P (ẽ|f̃) and P (f̃ |ẽ).

8. create the phrase table by merging the forward and backward probabilities

During all these steps, the corpora are not weighted according to their impor-

tance to the domain of the translation task. This is in contrast to the training
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Figure 3.1: Proposed weighting schemes at different steps during translation
model creation.

of the language model for which well known techniques are used to weight the

various sources of texts. We propose two methods to adapt the translation model

of an SMT system as shown in figure 3.1.

In a first method, the sample bias problem is adjusted by picking a random

sample, which result into a better approximations of the related parameters. The

main idea is to use resampling to produce a new collection of alignment files,
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followed by the standard procedure to extract the phrases. In a second step, we

also consider the alignment score of each parallel sentence pair. By these means,

the good alignments are emphasized and the less reliable ones are down-weighted.

All the alignments of the bitexts are resampled and given equal chance to be

selected and therefore influence the translation model in a different way. Our pro-

posed technique does not require the calculation of extra sentence level features,

however, it may use the alignment score associated with each sentence pair as a

confidence score.

In a second approach, we have employed direct weighting of phrase transla-

tion probabilities. It is done by weighted counts of phrase pairs extracted from

the parallel data. Further, some features are considered for each phrase pair,

which directly effects the probability estimations and results into better system

performance. We will discuss this approach in detail in chapter 5.

We only perform experiments with phrase-based systems, but the methods are

generic and could be easily applied to a hierarchical system. All the parameters

of our procedure are automatically tuned by optimizing the BLEU score on the

development data. Our method does not require an explicit specification of the in-

domain and out-of-domain training data. The weights of the corpora are directly

optimized on the development data using a numerical method, similarly to the

techniques used in the standard minimum error training of the weights of the

feature functions in the log-linear criterion.

The rest of the chapter is organized as follows. Section 3.3 describes the

architecture allowing to resample and to weight the bitexts. Experimental results

are presented in section 3.4 and the chapter concludes with a discussion.

3.3 Description of the resampling algorithm

The architecture of the algorithm is summarized in figure 3.2. The starting point

is an (arbitrary) number of parallel corpora. We first concatenate these bitexts

and perform word alignments in both directions using GIZA++. This is done

on the concatenated bitexts since GIZA++ may perform badly if some of the

individual bitexts are rather small. Next, the alignments are separated in parts

corresponding to the individual bitexts and a weighting coefficient is associated
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Figure 3.2: Architecture of SMT Weighting System

to each one. We are not aware of any procedure to calculate these coefficients in

an easy and fast way without building an actual SMT system. Note that an EM

procedure exists to do this for language modeling.

In the next section, we will experimentally compare equal coefficients, coeffi-

cients set to the same values than those obtained when building an interpolated

language model on the source language, and a new method to determine the
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coefficients by optimizing the BLEU score on the development data.

One could imagine to directly use these coefficients when calculating the var-

ious probabilities of the extracted phrases which will be presented in chapter

5.

In this chapter, we propose a different procedure that makes no assumptions

on how the phrases are extracted and probabilities are calculated. The idea is

to resample the alignments of each corpus according to the weighting coefficient

associated to the corpus. By these means, we create a new, potentially larger

alignment file, which will in turn be used by the standard phrase extraction

procedure.

3.3.1 Resampling the alignments

In statistics, resampling is based upon repeated sampling within the same sample

until a sample is obtained which better represents a given data set Yu [2003]. Re-

sampling is used for validating models on given data set by using random subsets.

It overcomes the limitation about making assumptions about the distribution of

the data. The more often we resample, the closer we get to the true probability

distribution.

In our case we performed resampling with replacement according to the fol-

lowing algorithm:

Algorithm 1 Resampling

1: for i = 0 to required size do
2: Select any alignment randomly
3: Alscore ← normalized alignment score
4: Threshold ← rand[0, 1]
5: if Alscore > Threshold then
6: keep it
7: end if
8: end for

Let us call resampling factor, the number of times resampling is applied. An

interesting question is to determine the optimal value of this resampling factor.

It actually depends upon the task or data we are experimenting on. We may

start with one time resampling and could stop when results become stable. Fig-
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ure 3.3 shows the BLEU score as a function of the number of times we resample.

It can be observed that the curve is growing proportionally to the resampling

factor until it becomes stable after a certain point.
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Figure 3.3: The curve shows that by increasing the resampling factor we get
better and stable results on Dev and Test.(on IWSLT’09 task - section 3.4)

3.3.2 Weighting Schemes

We concentrated on translation model adaptation when the bitexts are hetero-

geneous, e.g. in-domain and out-of-domain or of different sizes. In this case,

weighting these bitexts seems interesting and can be used in order to select data

which better represents the target domain. Secondly, some sentence pairs are

more reliable or useful than others. Using unreliable alignments can put a neg-

ative effect on the translation quality. So, we need to exclude or down-weight

unreliable alignments. Weighting data can be done at two different steps that

are:

• weighting the corpora: the goal is to give more importance to in-domain

data
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• weighting the alignments: the goal is to discard or down-weight unreliable

sentence pairs

Weighting Corpora

We started to resample the bitexts with equal weights to see the effect of resam-

pling. This gives equal importance to each bitext without taking into account

the domain of the text to be translated. However, it should be better to give

appropriate weights according to a given domain as shown in equation 3.2

α1bitext1 + α2bitext2 + .. + αnbitextn (3.2)

in-domain 
bitexts

out-domain
bitexts

automaticaly
extracted

bitexts

resampled bitexts 

!1  !2 !n

Figure 3.4: Proportion of data selected from each bitexts based on coefficients αn

where the αn are the coefficients to optimize representing the proportion of

the data to be selected from corpus n as shown in figure 3.4 . One important

question is how to find out the appropriate coefficient for each corpus.
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There exists a well known technique to estimate interpolation weights in order

to merge various language models into one improved LM. Those weights are

estimated by an EM procedure which tends to minimize the perplexity (computed

on an in-domain development corpus) of the resulting LM. They also can be seen

as coefficients representing the importance of each individual model and therefore

the importance of the data from which the model has been learned.

We have considered to use those coefficients to weights the available bitexts.

To do so, we built an interpolated LM on the source side of the corpus and used

the estimated coefficients as corpus weights. One can certainly ask the question

whether the perplexity is a good criterion for weighting bitexts.

Therefore, we worked on direct optimization of these coefficients by CON-

DOR [Berghen and Bersini, 2005]. This freely available tool is a numerical op-

timizer based on Powell’s UOBYQA algorithm Powell [1994]. The aim of CON-

DOR is to minimize an objective function using the least number of function

evaluations. Formally, it is used to find x∗ ∈ Rn with given constraints which

satisfies

F (x∗) = min
x

F (x) (3.3)

where n is the dimension of search space and x∗ is the optimum of x. The

following algorithm was used to weight the bitexts.

Algorithm 2 WeightingCorpora

1: Determine word to word alignment with GIZA++ on concatenated bitext
2: Initialize CONDOR with LM interpolation weights
3: while Not converged do
4: Create new alignment file by resampling according to weights given by

CONDOR
5: Use the alignment file to extract phrases and build the translation table

(phrase table)
6: Tune the system with MERT
7: Calculate the BLEU score on the development corpus
8: end while

During experiments, the tuning step can be skipped until weights are opti-

mized in order to save time. This has not been shown to produce worse results.
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Weighting Alignments

The alignments produced by GIZA++ have an alignment score associated with

each sentence pair in both direction, i.e. source to target and target to source.

These alignment scores are meant to reflect the quality of the alignment produced.

In order to refine the resampling, we used these alignment scores as a confidence

measurement during the selection process. However, they can’t be used as is

because they depend upon the length of each sentence, and are therefore not

comparable one with each other. Consequently, they have to be normalized in

function of the sentence length.

Also, alignment scores have a very large dynamic range with a sharp distribu-

tion which make them hardly discriminant. The following logarithmic mapping

has been used in order to flatten the distribution of the scores:

log(λ ·
( ntrg

√
asrc trg + nsrc

√
atrg src)

2
) (3.4)

where a is the alignment score, n is the size of a sentence and λ is a coefficient

to optimize. This is also done by CONDOR.

Of course, some alignments will appear several times, but this will increase the

probability of certain phrase-pairs which are supposed to be more related to the

target domain. We have observed that the weights of an interpolated LM built

on the source side of the bitext are good initial values for CONDOR. Moreover,

weights optimized by CONDOR are in the same order than these “LM weights”.

Therefore, we do not perform MERT of the SMT systems build at each step of the

optimization of the weights αi and λ by CONDOR, but use the values obtained

by running MERT on a system obtained by using the “LM weights” to weight

the alignments. Once CONDOR has converged to optimal weights, we can then

tune our system by MERT. This saves lot of time taken by the tuning process

and it had no impact on the results.

3.4 Experimental evaluation

We considered Arabic to English translation. The baseline system is a standard

phrase-based SMT system based on the Moses toolkit Koehn et al. [2007b]. In
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IWSLT Task NIST Task
Dev (Dev6) Test (Dev7) Dev (NIST06) Test (NIST08)

Baseline 53.98 53.37 43.16 42.21
With equal weights 53.71 53.20 43.10 42.11
With LM weights 54.20 53.71 43.42 42.22
CONDOR weights 54.80 53.98 43.49 42.28

Table 3.1: BLEU scores when weighting corpora (one time resampling)

IWSLT Task NIST Task
Dev (Dev6) Test (Dev7) Dev (NIST06) Test (NIST08)

Baseline 53.98 53.37 43.16 42.21
With equal weights 53.80 53.30 43.13 42.15
With LM weights 54.32 53.91 43.54 42.37
CONDOR weights 55.10 54.13 43.80 42.40

Table 3.2: BLEU scores when weighting corpora (optimum number of resam-
pling)

our system we used fourteen features functions. These features functions include

phrase and lexical translation probabilities in both directions, seven features for

lexicalized distortion model, a word and phrase penalty, and a target language

model. The MERT tool is used to tune the coefficients of these feature func-

tions. The tokenization of the Arabic source texts is done by a tool provided by

SYSTRAN which also performs a morphological decomposition. We considered

two well known official evaluation tasks to evaluate our approach, namely NIST

OpenMT and IWSLT.

For IWSLT evaluation, we used the BTEC bitexts (194K words), Dev1, Dev2,

Dev3 (60K words each) as training data, Dev6 as development set and Dev7 as

test set. From previous experiments, we have evidence that the various devel-

opment corpora are not equally important and weighting them correctly should

improve the SMT system. We analyzed the translation quality as measured by

the BLEU score for the three conditions: equal weights, LM weights and opti-

mized weights. In all cases, the resampling has been done only once. Further

experiments were performed using the optimized number of resampling with and
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IWSLT Task
Dev (Dev6) Test (Dev7) TER(Test)

Baseline 53.98 53.37 32.75

With equal weights 53.85 53.33 32.80

With LM weights 54.80 54.10 31.50

CONDOR weights 55.48 54.58 31.31

NIST Task
Dev (NIST06) Test (NIST08) TER(Test)

Baseline 43.16 42.21 51.69

With equal weights 43.28 42.21 51.72

With LM weights 43.42 42.41 51.50

CONDOR weights 43.95 42.54 51.35

Table 3.3: BLEU and TER scores when weighting corpora and alignments (op-
timum number of resampling)

without weighting the alignments. We have realized that it is beneficial to always

include the original alignments. Even if we resample many times there is a chance

that some alignments might never be selected but we do not want to loose any

information. By keeping original alignments, all alignments are given a chance

to be selected at least once. All these results are summarized in tables 3.1, 3.2

and 3.3.

One time resampling along with equal weights gave worse results than the

baseline system while improvements in the BLEU score were observed with LM

and CONDOR weights for the IWSLT task, as shown in table 3.1. Resampling

many times always gave more stable results, as already shown in figure 3.3 and as

theoretically expected. For this task, we resampled 15 times. The improvements

in the BLEU score are shown in table 3.2. Furthermore, using the alignment

scores resulted in additional improvements in the BLEU score. For the IWSLT

task, we achieved an overall improvement of 1.5 BLEU points on the development

set and 1.2 BLEU points on the test set as shown in table 3.3
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IWSLT Task BTEC Dev1 Dev2 Dev3

# of Words 194K 60K 60K 60K
LM Coeffs 0.7233 0.1030 0.0743 0.0994

Optimized Coeffs 0.6572 0.1058 0.1118 0.1253

NIST TASK Gale NewsWire TreeBank Dev ISI

# of words 1.6M 8.1M 0.4M 1.7M 43.7M
LM Coeffs 0.3215 0.1634 0.0323 0.1102 0.3726

Optimized Coeffs 0.4278 0.1053 0.0489 0.1763 0.2417

Table 3.4: Weights of the different bitexts.

To validate our approach, we further experimented with the NIST OpenMT

evaluation task. Most of the training data used in our experiments for the NIST

OpenMT task is made available through the LDC. The bitexts consist of texts

from the GALE project1 (1.6M words), various news wire translations2 (8.0M

words) on development data from previous years (1.6M words), LDC treebank

data (0.4M words) and the ISI extracted bitexts (43.7M words). The official

NIST06 evaluation data was used as development set and the NIST08 evaluation

data was used as test set. The same procedure was adapted for the NIST OpenMT

task as for the IWSLT task. Results are shown in table 3.1 by using different

weights and one time resampling. Further improvements in the results are shown

in table 3.2 with the optimum number of resampling which is 10 for this task.

Finally, results by weighting alignments along with weighting corpora are shown

in table 3.3. Our final system achieved an improvement of 0.79 BLEU points on

the development set and 0.33 BLEU points on the test set. TER scores are also

shown on test set of our final system in table 3.3. Note that these results are

state-of-the-art when compared to the official results of the 2008 NIST OpenMT

evaluation3.

The weights of the different corpora are shown in table 3.4 for the IWSLT

and NIST OpenMT task. In both cases, the weights optimized by CONDOR

are substantially different form those obtained when creating an interpolated

1 LDC2005E83, 2006E24, E34, E85 and E92
2LDC2003T07, 2004E72, T17, T18, 2005E46 and 2006E25.
3http://www.nist.gov/speech/tests/mt/2008/
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LM on the source side of the bitexts. In any case, the weights are clearly non

uniform, showing that our algorithm has focused on in-domain data. This can be

nicely seen for the NIST OpenMT task. The Gale texts were explicitly created

to contain in-domain news wire and WEB texts and actually get a high weight

despite their small size, in comparison to the more general news wire collection

from LDC.

3.5 Conclusion

We have proposed a new technique to adapt the translation model by resampling

the alignments, giving a weight to each corpus and using the alignment score

as confidence measurement of each aligned phrase pair. Our technique does not

change the phrase pairs that are extracted,1 but only the corresponding proba-

bility distributions. By these means, we hope to adapt the translation model in

order to increase the weight of translations that are important to the task, and

to down-weight the phrase pairs which result from unreliable alignments.

We experimentally verified the new method on the low-resource IWSLT and

the resource-rich NIST’08 OpenMT tasks. We observed significant improvement

on both tasks over the state-of-the-art baseline systems. This weighting scheme

is generic and it can be applied to any language pair and target domain. We

made no assumptions on how the phrases are extracted and it should be possible

to apply the same technique to other SMT systems which rely on word-to-word

alignments.

On the other hand, our method is computationally expensive since the opti-

mization of the coefficients requires the creation of a new phrase table and the

evaluation of the resulting system in the tuning loop. Note however, that we run

GIZA++ only once.

Finally, it is straight forward to consider more feature functions when resam-

pling the alignments. This may be a way to integrate linguistic knowledge into the

SMT system, e.g. giving low scores to word alignments that are “grammatically

not reasonable”.

1when also including the original alignments
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Chapter 4

Parametric Weighting of Data

As discussed in chapter 1, the parallel data is inhomogeneous with respect to

various factors. One of them is the recency of the data with respect to the

given task. In principle, data with less temporal distance will most likely be

similar with respect to style and vocabulary. This so-called recency effect is of

interest specially in the news domain where named entities, etc change over time.

We could for instance consider the translation of a continuous stream of news.

Adapting the system to recent texts should be beneficial.

[Hardt and Elming, 2010] have shown a recency effect in terms of file-context

and concluded that data within the same file is of greater importance than the

rest. In another work [Levenberg et al., 2010] proposed an incremental training

procedure to deal with a continuous stream of parallel text. Word alignment

was performed by the stepwise online EM algorithm and the phrase table was

represented with suffix arrays. The authors showed that it is better to use parallel

data close to the test data than all the available data.

4.1 Overview of the idea

The work presented in this chapter is an extension of the ideas discussed in the

previous chapter to weight corpora by resampling and the work of Levenberg

et al. [2010] to consider the recency of the training data. In fact, we could split

the training data into several parts over the time scale and use the resampling

54



approach discussed in the previous chapter to automatically optimize the weights

of each time period. However, this approach does not scale very well when the

number of individual corpora increases. Numerical optimization of more than

ten corpus weights would probably need a large number of iterations, each one

consisting in the creation of a complete phrase table and its evaluation on the

development data.

Therefore, the main idea is to consider some kind of meta-weights for each

part of the training data. Instead of numerically optimizing all the weights,

these meta-weights only depend on few parameters that need to be optimized.

Concretely, in this work we study the exponential decrease of the importance of

parallel data in function of its temporal distance to the development and test

data. The weighting of the parts is still done by resampling the alignments.

However, our general approach is not limited to weighting the training data with

respect to recency to the development and test data. Any other criterion could

be used as long as it can be calculated by a parametric function, e.g. to measure

the topic appropriateness.

The rest of chapter is organized as follows. Section 4.2 describes the architec-

ture of the weighting scheme. Section 4.3 explains the algorithm. Experimental

results are presented in section 4.4 and the chapter concludes with a discussion.

4.2 Architecture of weighting scheme

The main idea of our work is summarized in Figure 4.1. We consider that time

information is available for the bitexts. If this is not the case, one can consider

that the time advances sequentially with the lines in the file. First, the data is

considered in parts according to the time information. In Figure 4.1, we group

together all data within the same year, but any other granularity is possible

(months, weeks, days, etc). Given the observation that more recent training

data seems to be more important than older one, we apply an exponential decay

function:

e−λ·∆t (4.1)
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Figure 4.1: Overview of the weighting scheme. The alignments are weighted by
an exponential decay function, parametrized by λ. Resampling with replacement
is used to create a new corpus (parts with higher weight will appear more often).
The phrase table is built from this corpus using the standard procedure.

where λ is the decay factor and ∆t is the discretized time distance (0 for most

recent part, 1 for the next one, etc.). Therefore, our weighting scheme has only

one parameter to be optimized.

Following our work described in previous chapter we resample the alignments

in order to obtain a weighting of the bitexts according to their recency. The

weight of each part of the bitexts is normalized (sum to one). The normalized

weights represent the percentage of the final aligned corpus that is originated

from each part of the source corpus: word alignments corresponding to bitexts

that are close to the test period will appear more often than the older ones in the

final corpus.

In addition, we considered the quality of the alignments during resampling,

as described in section 3.3.2 of chapter 3.

log(α ·
( ntrg

√
asrc trg + nsrc

√
atrg src)

2
) (4.2)
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Figure 4.2: Architecture of SMT Weighting System.

where a is the alignment score, n the size of a sentence and α a smoothing

coefficient to optimize. We used the normalized alignment scores as confidence

measurement for each sentence pair.

4.3 Description of the algorithm

The architecture is presented in Figure 4.2. The starting point is a parallel corpus.

We performed word alignment in both directions using GIZA++. The corpus is

then separated into several parts on the basis of a given time span. We performed

experiments with different span sizes, namely year, month, week and day. The
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Algorithm 3 Weighting with Exponential Decay function using resampling

1: Determine word to word alignment with GIZA++ on concatenated bitexts.
2: Initialize λ and α with equal weights.
3: while not Optimized do
4: Compute time-spans weights by eq. 4.1
5: Normalize weights
6: for i = 0 to #time-span do
7: proportion ← required size1 ∗ weights[i]
8: j = 0
9: while j < proportion do

10: Al ← Random alignment
11: Alscore ← normalized score of Al

12: Flatten Alscore with α

13: Threshold ← rand[0, 1]
14: if Alscore > Threshold then
15: keep it
16: j = j + 1
17: end if
18: end while
19: end for
20: Create new resampled alignment file.
21: Extract phrases and build the phrase table.
22: Decode
23: Calculate the BLEU score on Dev
24: Update λ and α

25: end while

decay function is scaled so that the range does not change when using different

span sizes. A weighting coefficient obtained with the exponential decay function

is associated to each part.

Then, for each part, resampling with replacement is performed in order to

select the required number of alignments and form the final corpus. We follow

the same algorithm for resampling as described in section 3.3 of chapter 3.

Note that some alignments may appear several times, but this is exactly what

is expected as it will increase the probability of certain phrase pairs which are

supposed to be more related to the test data (in terms of recency) and of better

1required size depends upon the number of times we resample - see section 5.
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quality. The smoothing and decay factors, α and λ respectively, are optimized

with a same numerical optimizer CONDOR Berghen and Bersini [2005] as men-

tioned in previous chapter. The procedure and steps involved in our weighting

scheme are shown in algorithm 3.

4.4 Experimental evaluation

Our first experiments are based on the French-English portion of the freely avail-

able time-stamped Europarl data Koehn [2005] from April 1996 to December

2010. We have built several phrase-based systems using the Moses toolkit Koehn

et al. [2007b], though our approach is equally applicable to any other approach

based on alignments and could be used for any language pairs.

In the first experiments, the whole Europarl corpus was split into train, de-

velopment and test as shown in Figure 4.3. The most recent 5K sentences are

split into two sets of equal size, one for development and the other for testing.

The remaining data was used as training bitexts to build the different systems.
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Figure 4.3: Data used to build the different systems (# sentences)

Since we want to focus on the impact of the weighting scheme of the bitexts,

we used the same language model for all systems. It has been trained with

the SRILM toolkit Stolcke [2002] on the target side of all the training data. In

addition, the weights of the feature functions were tuned once for the system

that uses all the training data and then kept constant for all the subsequent
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Europarl Ancient data Recent data
Ancient 1 Ancient 2 Recent 1 Recent 2 All

# of sentences/words 500K/15M 800K/25M 500K/15M 800K/24M 1800K/55M
BLEU (on dev) 29.84 30.08 30.80 31.09 31.34
BLEU (on test) 29.30 29.43 30.32 30.44 30.48

Table 4.1: BLEU scores obtained with systems trained on data coming from
different time spans.

experiments, i.e. no tuning of the feature functions weights is done during the

optimization of the weighting coefficients λ and α.

Table 4.1 presents the results of the systems trained on various parts of the

available bitexts without using the proposed weighting scheme. The best per-

formance is obtained when using all the data (55M words, BLEU=30.48), but

almost the same BLEU score is obtained by using only the most recent part of

the data (24M words, part Recent 2 ). However, if we use the same amount of

data that is further away from the time period of the test data (25M words,

part Ancient 2 ), we observe a significant loss in performance. These results are

in agreement with the observations already described in Levenberg et al. [2010].

Using less data, but still close to the evaluation period (15M words, part Recent

1 ) results in a small loss in the BLEU score. The goal of the proposed weighting

scheme is to be able to take advantage of all the data while giving more weight

to recent data than to older one. By these means we are not obliged to disregard

older parts of the data that may contain additional useful translations. If the

weighting scheme does work correctly, we cannot perform worse than using all

the data. Of course, we expect to achieve better results by finding the optimal

weighting between recent and ancient data.

The amount of data per year in the Europarl data can vary substantially in

function of time period since it depends on the frequency and length of the sessions

of the European Parliament. As an example Figure 4.4 shows the histogram of

the data per year.

One can ask which time granularity should be used to achieve best weights.

Only one parametrized weight is given to each time span, consequently the span
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Figure 4.4: Amount of data available in the Europarl corpus for each year

Europarl Weighting + alignment selection Best+retune

Time span Days Weeks Months Years Years
Optimized λ 0.0099 0.0109 0.0110 0.0130 0.0130

BLEU (on dev) 31.73 31.82 31.75 31.80 31.92
BLEU (on test) 30.94 30.97 30.92 30.98 31.09

Table 4.2: Results in BLEU score after weighting.

size will have an impact on the alignment selection process. Using smaller spans

results in a more fine grained weighting scheme. We have tested different settings

with different time spans to see whether the impact of weighting changes with

the size of each span. The results are shown in Table 4.2.

It is observed that all four systems obtained very similar results, which indi-

cates that the size of the spans is not very important. One surprising observation

is that the optimized decay factor for all time span sizes are really close to each

other. The reason to this could be the scaling of the exponential decaying func-

tion based on the time span size. In fact scaled values ensure that the oldest data

point get roughly the same value independent of using years, months or days as

time span. Looking at the optimized values of λ in Table 4.2, we can observe

that the relative difference between recent and ancient data is rather small, i.e.
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Figure 4.5: Distribution of data after weighting

the ancient data is still somehow important and cannot be neglected.

By using years as time span, we obtain an improvement of +0.50 BLEU score

on the test set compared to using all data without weighting (30.48 → 30.98).

It is clear that recency has a positive impact on system performance, however,

weighting properly the different parts gives better performance than using the

most recent or all available data.

Finally, the best system is retuned (feature functions weights) and an overall

improvement of +0.61 in the BLEU score is observed on test set.

4.5 Discussion

The optimal decay factor of approximately 0.01 actually leads to an almost linear

decrease over time. The difference in the quantity of data taken from most

recent and least recent data is only 1.4% (which still represent 200k sentences).

Therefore, one could think that the weighting does not favor recent data that

much. This is not the case as we can see in Figure 4.5 where the distribution

of data used to build the adapted model is presented. When comparing it to

Figure 4.4, the overall proportion of data coming from recent years is clearly
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Europarl Resampling only Weighting only alignment selection only

BLEU (on dev) 31.36 31.69 31.45
BLEU (on test) 30.51 30.84 30.64

Table 4.3: Results in BLEU score with different settings.

bigger when using our resampling approach. This leads to different word choices

while decoding.

Note that resampling is performed several times to estimate and select the

samples which better represent the target data set. The more often we resample,

the closer we get to the true probability distribution. The required-size in algo-

rithm 3 depends upon the number of times we resample. We resampled ten times

in our experiments. It is also worth to note that, we keep the original training

data along with resampled one. It ensures that no information is lost and the set

of extracted phrase pairs remain the same - only the corresponding probability

distributions in the phrase table are changed.

In order to get more insight in our method, we separately performed the

different techniques:

• resampling the training data without weighting;

• resampling the training data using weighting only (with respect to recency);

• resampling the training data using alignment selection.

These results are summarized in Table 4.3.

Note that the first case does not correspond to duplicating the training data a

certain amount of time (which would of course produce exactly the same phrase-

table). Since we perform resampling with replacement, this procedure introduces

some randomness which could be beneficial. According to our results, this is not

the case: we obtained exactly the same BLEU scores on the dev and test data

than with the standard training procedure. Weighting with respect to recency

or alignment quality both slightly improve the BLEU, but not as much as both

techniques together. The performance increase seems actually to be complemen-

tary.
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Example 1
A: Mr Ribeiro e Castro, we shall see all this in the Conference of Presidents.
B: Mr Ribeiro e Castro, we will see all this at the Conference of Presidents.
R: Mr Ribeiro e Castro, we will look at all these questions in the Conference of

Presidents’ meeting.

Example 2
A: We shall most probably consider again lodge a complaint with the Court of

Justice of the European Communities.
B: We will most probably consider again to lodge a complaint to the European

Court of Justice.
R: Most probably we will again discuss renewed recourse to the European Court

of Justice.

Example 3
A: no Member State has not led to field trials as regards the BST .
B: no Member State has led to tests on the ground as regards BST .
R: No Member State has yet carried out field tests with BST .

Table 4.4: Example translations produced by systems All (A) and Best+retune
(B) versus reference (R)

Some comparative examples between the translations produced by systems All

and Best+retune versus the reference translations are given in Table 4.4. It was

noticed that a lot of occurrences of “will” in the reference are actually translated

into “shall” with system All whereas the correct word choice is made by the

system Best+retune as shown in Example 1. This could be explained by the

fact that recently the word “will” is more frequently seen in the training corpus

and adapting the model by weighting the most recent data produced correct

translation. Actually, it was found that the word “will” is 10% more frequent in

recent data (Recent 1 ) than in ancient data (Ancient 1 ) while the word “shall”

is 2% less frequent.

Another interesting example is Example 2, in which the correct name for

the European Court of Justice is proposed by the adapted system unlike the sys-

tem All which proposed Court of Justice of the European Communities. Actually,

it appears that the Court of Justice of the European Communities is the former

name of the European Court of Justice prior to December 2009. The use of recent
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data allows to correctly translate the named entities which can change over time.

The correct translation proposed by System Best+retune could be observed in

Example 3 because of the alignment selection procedure.

In our experiments, we assume that the test data is in present time (the usual

case in a news translation system), and consequently we decrease the weight of

the bitexts towards the past. This principle could be of course adapted to other

scenarios.

An alternative approach could be to directly use the time decay function as

the count for each extracted phrase. However, resampling the alignments and

changing the counts of extracted phrases is not exactly the same. Same phrase

pairs could be extracted from different parallel sentences coming from different

time spans. Furthermore, weighting the alignments with their scores has shown

improvements in the BLEU score as presented in Table 4.3, but considering the

alignment score at the phrase level is not straight forward.

4.6 Experiments on the WMT task

To further verify whether our results are robust beyond the narrow experimental

conditions, we considered a task where the development and test data do not

come from the same source than the bitexts. We took the official test sets of the

2011 WMT translation tasks as dev and test sets Schwenk et al. [2011], i.e. news-

test09 and news-test10 respectively. We built English-French systems by using

the Europarl and News-Commentary (NC) corpora, both contain news data over

a long time period.

For this set-up, there are three coefficients to optimize: the decay factor for

Europarl λ1, the decay factor for the news-commentary texts λ2 and a coefficient

for the alignments α. The Europarl corpus was divided into time span according

to years and NC corpus was assumed to be sorted over time since time-stamp

information was not available for the NC corpus. Remaining settings are kept

the same as mentioned in previous experiments to build the system Best+retune.

The results are shown in Table 4.5. Finally, we considered the relative importance

of the Europarl and NC corpora. For this, a weight is attached to each corpus

which represents the percentage of the final aligned corpus that comes from each
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WMT Task Baseline WWR WWR + AS
+ AS + RI

BLEU (on dev) 26.08 26.51 26.60
BLEU (on test) 28.16 28.59 28.69

Table 4.5: Results in BLEU score after weighting on English to French WMT
Task. WWR=Weighting With Recency, AS=Alignment Selection, RI=Relative
Importance

source corpus. These weights are also optimized on the development data using

the same technique as proposed in our previous chapter. Using all these methods,

we have achieved an overall improvement of approximately +0.5 BLEU on the

development and test data, as shown in Table 4.5.

4.7 Conclusion

In this chapter, a parametric weighting technique along with resampling is pro-

posed to weight the training data of the translation model of an SMT system.

By using a parametric weighting function we circumvented the difficult problem

to numerically optimize a large number of parameters. Using this formalism,

we were able to weight the parallel training data according to the recency with

respect to the period of the test data. By these means, the system can still

take advantage of all data, in contrast to methods which only use a part of the

available bitexts. We evaluated our approach on the Europarl corpus, translat-

ing from French into English and further tested it on official English to French

WMT Task. A reasonable improvement in BLEU score on the test data was ob-

served in comparison to using all the data or only the most recent one. We argue

that weighting the training data with respect to its temporal closeness should be

quite important for translating news material since word choice in this domain is

rapidly changing.

An interesting continuation of this work is to consider other criteria for weight-

ing the corpora than the temporal distance. It is clear that recency is a relevant

information and this could be associated with other features, e.g. thematic or

linguistic distance. Also, this work can be included into a stream-based frame-
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work where new data is incorporated in an existing system by exponential growth

function and making use of online retraining procedure as discussed in Levenberg

et al. [2010].
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Chapter 5

A General Framework

5.1 Background

The approaches discussed in chapter 3 and 4 to adapt the SMT models by resam-

pling the data has shown positive results. In spite the fact, those improvements

are quite reasonable; there is an issue about the practical execution of the ap-

proach. Generally data is resampled many times for better data distribution,

which results into better estimations. Secondly tuning of the sample coefficients

is needed to adjust the weights for each sample. More sample groups in the data

results into more coefficients to optimize. An SMT model trained on huge amount

of data takes great deal of time. Resampling many times introduces the overhead

of bigger training data and rebuilding the models in many iterations to optimize

the sample weights makes the procedure incredibly long.

5.2 Overview of idea

The framework proposed in this chapter is motivated along two axes. Firstly to

coup with the problem of time effectiveness and secondly to suppress the sample

bias problem on a smaller granularity like phrases at later stages of translation

model training. The technique is based on shifting the balance of probability

estimation from biased sample to the domain of interest at scoring step. The size

of the data remains the same as original.
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The proposed framework is an extension and generalization of several ideas

proposed in previous chapters and to investigate weighted counts with feature

scores. Our proposed framework gives the flexibility to inject the feature scores

in a unified formulation calculated at various levels. It is based on the following

principles:

• the use of a set of “quality measures” at different levels: weights for each

corpus (or data source) and for each individual sentence in the bitexts.

• no additional feature functions to express the quality or appropriateness of

certain phrase pairs, but we modify only the existing phrase probabilities.

By these means, we don’t have to deal with the additional complexity of

decoding and optimizing the weights of many feature functions.

• resampling the bitexts or alignments is computationally expensive for large

corpora since the resampled data is ideally much bigger than the original

one. Instead, we integrate the various weighting schemes directly in the

calculation of the translation probabilities.

• our approach has only a small number of parameter to optimize.

The rest of the chapter is organized as follows. In the next section we present

in detail the architecture of our approach. Experimental results for IWSLT’11

and WMT’11 task are summarized and discussed in section 5.4. The chapter

concludes with a discussion and perspectives of this work.

5.3 Architecture of our approach

In our approach we only modify the way how the phrase translations probabilities

P (ẽ|f̃) and P (f̃ |ẽ) are calculated. The goal is to increase the probability of phrase

pairs which are more important or reliable for the considered task, and conse-

quently, to down weight those which should be used less often. It is important to

point out that our phrase table has exactly the same number of entries than the

original one and that we do not add more scores or feature functions. Currently,

we do not modify the lexical scores of each phrase pair, but we will investigate
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this in the future. In summary, we only modify step 7 in the procedure described

in section 3.2. For this we modified the tool memscore Hardmeier [2010].

In practice, we also need to adapt step 5 since we need to keep track for each

phrase pair , the corpus it was extracted from and the scores of the corresponding

sentence.

5.3.1 Standard phrase probabilities

The standard procedure to calculate the phrase probabilities is simple relative

frequency:

P (ẽij|f̃i) =
Count(f̃i, ẽij)∑

k

Count(f̃i, ẽik)
(5.1)

The memscore tool also implements various smoothing methods such as Witten-

Bell, Kneser-Ney discounting etc. but to the best of our knowledge, their eventual

benefit was not extensively studied and these smoothing techniques are not widely

used. In any case, the calculation of the phrase probabilities does not consider

from which corpus the phrase was extracted, or more generally, any kind of weight

that was attached to the originating sentence.

This can obviously lead to wrong probability distributions. As a simple ex-

ample we can consider a phrase pair f̃i, ẽij which appears a couple of times in the

in-domain corpus, and which provides the correct translation for the task, and

another phrase pair f̃i, ẽik which appears many times in a (larger) out of-domain

corpus. This wrong translation will wrongly get a higher probability when relative

frequency estimates are used (or any of the standard smoothing techniques).

A similar argumentation holds at the sentence or even phrase level. For in-

stance, even a generally in-domain corpus can contain few sentences which are

out-of topic or badly aligned.

5.3.2 Weighted phrase probabilities

We have modified the memscore tool in order to take into account a weight

attached to each corpus and let us assume that we have the following information

on our parallel training data:
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• the parallel data can be organized into C different parts. In most of the

cases, we will use the source of the data to partition it, e.g. Europarl,

United Nations, web-crawled, but one could also use some kind of clustering

algorithm. We associate the weight wc, to each corpus c=1 . . . C. We will

discuss later how to obtain those weights.

• a set of S “goodness scores” qs(fi, ei), s = 1 . . . S for each parallel sen-

tence pair (fi, ei), i = 1 . . . L where L is the number of parallel sentences.

Again, we will delay for now how to produce those sentence scores. We keep

track of these sentence scores when extracting phrases. All the phrases ex-

tracted from the same sentence obtain the same phrase-level goodness scores

hs(fj, ej), j = 1 . . . P where P ≫ S is the number of extracted phrases.

Using these notations we will calculate the phrase probability as follows. Let

us first consider only the weights of the individual corpora. This is achieved by

extending equation 5.1 as follows:

P (ẽij|f̃i) =

C∑

c=1

wcCountc(f̃i, ẽij)

C∑

c=1

wc

∑

k

Countc(f̃i, ẽik)

(5.2)

The equation 5.2 is identical as given in Matsoukas et al. [2009], where wc

represents the features-mapped to a weight calculated for each sentence by neural

network. However in our case it represents the direct weight for each corpus. If

all corpus weights are identical, equation 5.2 simplifies to the original formulation

in equation 5.1. Considering in addition the goodness scores at the sentence level,

we will get:

P (ẽij|f̃i) =

C∑

c=1

wcCountc(f̃i, ẽij) ·
S∏

s=1

γshc,s(fi, eij)

C∑

c=1

wc

∑

k

Countc(f̃i, ẽik) ·
S∏

s=1

γshc,s(fi, eik)

(5.3)
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where γs is an additional parameter to weight the different sentence good-

ness scores among each other. We implemented phrase probability calculation

according to equation 5.3 in the memscore tool of Moses.

5.3.3 Calculation of the corpus weights and sentence fea-

tures

Our theoretical framework and implementation is generic and does not depend

on the exact calculation of the corpus weights or the sentences goodness scores.

Any value that expresses the appropriateness of the corpus and sentence with

respect to the task can be used. In the following we outline some possibilities

which were used in our experiments.

Weighting parallel corpora was already investigated in previous chapters,

where we used a resampling technique to weight parallel corpora. We have pro-

posed two methods to obtain the corpus weights: via LM interpolation and nu-

merical optimization to maximize the BLEU score on some development data.

The second approach showed slightly better performance, but it is computation-

ally quite expensive (a new phrase table must be build for each optimization

loop). Therefore, we decided to use corpus weights obtained by LM interpolation

in our experiments. The idea is to build a LM on the source (or target) side of

the bitexts, independently for each corpus. The resulting corpus coefficients can

be directly used to weight the parallel corpora.

Perplexity can also be used to weight each individual sentence. This was used

to select a relevant subset of LM data [Axelrod et al., 2011] or bitexts [Moore

and Lewis, 2010]. In our case, we build a LM on the source side of the in-domain

corpus and use this model to calculate the perplexity of each sentence in all

the other corpora. Since lower perplexity represents “better” sentences, we set

q(si, ti) to the inverse of the perplexity. It is important to note that our approach

is a generalization of data selection approaches: instead of doing a hard decision

which data to keep to discard, we keep all the sentences and attach a weight to

each one (this weight could be zero in an extreme case).

It was also observed that parallel sentences which are closer to the test set

period are more important than older ones [Hardt and Elming, 2010; Levenberg

72



et al., 2010; Shah et al., 2011], in particular when translating texts in the news

domain. Following our work described in section 4.1 of chapter 4, we use an

exponential decay function or this goodness function:

q(fi, ei) = e−α·∆ti (5.4)

where α is the decay factor and ∆t is the discretized time distance (0 for most

recent part, 1 for the next one, etc.).

Finally, it was argued in previous chapters that the alignment score produced

by Giza++ could be used as a measure whether the phrases extracted from the

corresponding sentence pair should be up- or down-weighted. In order to ease

comparison, we used the same equation as described in previous chapters:

q(fi, ei) = log(β ·
( ntrg

√
asrc trg + nsrc

√
atrg src)

2
) (5.5)

where a is the alignment score, n the size of a sentence and β a smoothing

coefficient to optimize.

5.3.4 Overall architecture

The overall architecture of our approach is given in figure 5.1. Suppose we have

several parallel corpora coming from various sources. First of all, sentence level

features are calculated and synchronized with the parallel sentences. These sen-

tences are concatenated to perform word-to-word alignment in both directions

using GIZA++. Alignment scores corresponding to each sentence pair are added

to the feature file. Then, phrases are extracted and the goodness score q(si, ti) is

synchronized with the phrases. Finally, the phrase-translation probabilities are

calculated according to equation 5.3 in forward and backward direction.

The parameters of our approach α , β and γ along with wc are numerically

optimized. In this optimization loop we keep the weights of the feature functions

constant, i.e. λi in equation 3.1 (we use the ones of the standard system without

weighted phrase translation probabilities). Eventually, these weights are opti-

mized using the standard MERT procedure once we have fixed the parameters of

our approach.
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Figure 5.1: Overall architecture of our approach.

5.4 Experimental evaluation

We have built several phrase-based systems using the Moses toolkit Koehn et al.

[2007b]. The scoring framework is implemented by extending the memory based

scoring tool called memscore Hardmeier [2010] available in the Moses toolkit.

74



Corpus En tokens Fr tokens

TED 2.0 2.2
News-Commentary 2.8 3.3
Europarl v6 50.6 56.2
ccb2 232.5 272.6

TOTAL 287.9 334.3

Table 5.1: Size of parallel corpora (in millions) to build baseline systems for
WMT and IWSLT Tasks.

WMT Task
Corpus Alignment Temporal

perplexity BLEU (on test)
weights scores distance

Baseline 28.16
System 1 yes 28.41
System 2 yes 28.21
System 3 yes 28.35
System 4 yes 28.56

System 5 yes yes 28.55
System 6 yes yes 28.60
System 7 yes yes 28.61
System 8 yes yes 28.79

System 9 yes yes yes 28.65
System 10 yes yes yes 28.67
System 11 yes yes yes 28.89
System 12 yes yes yes 29.11 (optimized)

Table 5.2: BLEU scores obtained with systems trained with different features on
WMT Task.

The experiments are performed on two well-known evaluation tasks, i.e. the

2011 WMT and IWSLT English/French evaluations. The corpora and their sizes

used to build the systems for both these tasks are given in table 5.1.

5.4.1 Experiments on the WMT task

For the WMT task we used the official development sets of the 2011 WMT transla-

tion tasks, i.e news-test09 as development corpus and news-test10 as test corpus.

We built English-French systems by using the time-stamped Europarl and news-
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commentary (nc) corpora. The LM is created by interpolating several language

models trained separately on the target side of the bitexts and all available tar-

get language monolingual data (about 1.5G words). These individual language

models are interpolated and merged into one huge model. The coefficient of

the individual models are optimized using the usual EM procedure to minimize

perplexity on the development data. Initial corpus weights for the bitexts were

obtained by building another interpolated LM on the target side of the bitexts

only.

We explored the following features to weight the relevance of the bitexts and

the individual sentences: corpus weights, alignment scores, recency of the data

with respect to the test set period and the sentence perplexity in the target

language with respect to an in-domain language model. The news-commentary

(nc) corpus was used for that purpose. The time information provided with

Europarl data is used to estimate recency feature. This information was not

available for nc, so we considered the sentences in chronologically ordered with

respect to temporal distance. The alignment scores provided by GIZA++ were

normalized using equation 5.5.

The results of the baseline system and various combinations of the different

feature functions are summarized in table 5.2. In order to get an idea which

feature functions give best results, we have first performed experiments using

default values for the parameters of the feature functions. For this purpose, we

have used the values reported to be optimal in previous chapter.

The baseline system achieves a BLEU score of 28.16 on the test set. Each

feature functions alone brought small improvements in the BLEU score (systems

1–4 in Table 5.2), the best being sentence perplexity (+0.4 BLEU). An interest-

ing property of our approach is that the individual gains seem to add up when

we use several feature functions, for instance combining recency and sentence

perplexity gives and improvement by 0.63 BLEU (system 8) while the individual

improvements are only +0.19 and 0.40 respectively. Combining corpus weights

and sentence perplexity is less useful, as expected, since sentence perplexity im-

plicitly weights the corpora. This is in fact an improved corpus weighting with a

finer granularity. Our best system was obtained when combining corpus weights,

recency and sentence perplexity weighting (system 11). For this system only,
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IWSLT Task Corpus weights Alignment scores perplexity BLEU (on test)

Baseline 26.34
System 1 yes 26.61
System 2 yes 26.41
System 3 yes 26.77

System 4 yes yes 26.51
System 5 yes yes 26.86
System 6 yes yes 26.99 (optimized)

System 7 yes yes 26.81
System 8 yes yes yes 26.91
System 9 yes yes yes 27.07 (optimized)

Table 5.3: BLEU scores obtained with systems trained with different features on
IWSLT Task.

we numerically optimized the weights wc, α and γ on the development set (see

figure 5.1). The default and new weights are:

weparl = 0.47714 → 0.32823

wnc = 0.52285 → 0.67121

α = 0.01300 → 0.02102

β = 0.14530 → 0.12901

γas = 0.1 → 0.01289

γtd = 0.1 → 0.19201

γppl = 0.1 → 0.15451

where γx is the coefficient among alignment score (as), temporal distance(td)

and perplexity(ppl). By these means, we get an overall improvement of roughly

+1 BLEU score (28.16 → 29.11) on test set. It is important to stress that this

system is trained on exactly the same data than the baseline system and that

the phrase table contains the same phrase-pairs. Our approach only improves the

forward and backward probability estimates P (t̃|s̃) and P (s̃|t̃).
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IWSLT Task cted cnc cccb2.px70 β γppl γas

Default values 0.74032 0.17378 0.08591 0.1 0.1 0.1
Optimized 0.69192 0.16982 0.13831 0.19251 0.18151 0.03118

Table 5.4: Feature weights on IWSLT Task (ppl=perplexity, as=alignment score).

5.4.2 Experiments on the IWLST task

We performed the same type of experiments for the IWSLT task. The parallel

training data was the in-domain TED corpus, the news-commentary corpus (nc)

and a subset of the French–English 109 Gigaword (internally called ccb2 ). The

results for this task are summarize in Table 5.3. The official Dev and test sets of

the 2011 IWSLT talk task are used. Initial experiments have shown that large

parts of the ccb2 corpus are not relevant for this task (looking at the sentence

perplexities). Therefore, we decided to only use a subset of this corpus, namely

all the sentences with a perplexity lower than 70. This process preserve only 3%

of the ccb2 data. The baseline system trained on this data achieves a BLEU score

of 26.34 on the test data. Using all the data in ccb2 worsens significantly the

results: the BLEU scores is 25.73. In principle, it is not necessary to select subsets

of the parallel training data with our approach to weight sentences by perplexity,

but this speeds up processing since we do not need to consider many sentences

pairs with a very low weight. We perform a kind of pruning: all those sentences

get a zero weight and are discarded right away. We used the LM build on the

in-domain TED to calculate the sentence perplexities and the LM interpolation

weights are used as corpus weights. The recency feature was not used for this

task since the test set of the TED corpus has no time information.

We observed the same behavior than for the WMT task: each individual fea-

ture function improves the BLEU score on the test set (systems 1–3), weighting

by sentence perplexity being the best one (+0.43 BLEU). The best system is ob-

tained when combining all three feature functions, leading a BLEU score of 26.91

(system 8). Again, the numerical optimization of the weights of the feature func-

tions achieves an additional small improvement, giving an overall improvement

of 0.73 BLEU. The weight of the feature functions are shown in table 5.4.
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5.5 Comparative Analysis

It is interesting to compare the impact of the different features considered. An

interesting fact is that the trend is similar for both tasks.

By comparing the results obtained with the various systems, we can observe

that the corpus weights, used alone or in combination with other features,

are always beneficial (by pairwise comparison of e.g. systems 2 and 5, systems

3 and 6 or systems 4 and 7 from WMT task). The average gain provided by

such weighting is around 0.2. Those weights correspond to the LM interpolation

coefficient optimized to minimize the perplexity on the development set. They

are useful to weight a whole corpus and to ensure that the in-domain corpus will

globally receive higher weight than the other corpora.

Sentence level perplexity is also always useful (compare e.g. systems 1

and 7 or systems 6 and 11 from WMT task). While one could think that this

feature is redundant with corpus weight, it does bring additional information

about the relevance of the sentence. This can be explained by the fact that a

globally out-of-domain corpus can contain a fraction of useful sentences while, on

the contrary, an in-domain corpus may contain some less useful ones. This is part

of the heterogeneous aspect of any corpus. The average gain of using sentence

perplexity is almost 0.3 for the WMT task and 0.37 for IWSLT task.

Concerning the alignment score, the results obtained are more mitigated

(see e.g. the comparison between systems 2 and 5 on WMT and systems 2 and 4

from IWSLT task). The average gain is very low, and it is the only feature which

sometimes decrease the BLEU score. The temporal distance has the expected

behavior. When comparing systems 1 and 6, 3 and 8 or 4 and 11 from WMT

Task, we can observe that an improvement of more than 0.2 is obtained.

5.6 Conclusion

We have proposed a general framework to improve the phrase translation proba-

bilities in a phrase-based SMT system. For this, we use a set of “goodness scores”

at the corpus or sentence level. These feature functions are used to calculate for-

ward and backward phrase translations probabilities which are better adapted to
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the task. Our framework and implementation is generic and does not depend on

the exact calculation of the corpus weights or the sentences goodness scores. Any

value that expresses the appropriateness of the corpus and sentence with respect

to the task can be used. The adapted system has exactly the same time and

space complexity than the baseline system since we do not modify the number of

entries in the phrase-table or add additional features. Also, the training time is

only slightly increased.

We evaluated this approach on two well-known tasks: the 2011 WMT and

IWSLT English/French evaluations. We have investigated several feature func-

tions: weights for corpora coming from different sources and weights at the sen-

tence level based on the quality of the GIZA++ alignments, the recency with

respect to the test set period and task appropriateness measured by the perplex-

ity with respect to an in-domain language model. Using each one of these feature

functions, improved the BLEU score with respect to a strong baseline. However,

best results were obtained by using all the feature functions. This yielded an

overall improvement of almost 1 point BLEU for the WMT task and more than

0.7 BLEU on the IWSLT task.
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Chapter 6

Conclusions and future
prospectives

In this thesis, we have proposed new techniques to automatically adapt the trans-

lation model of an SMT system. In contrast to many other works, we did not try

to collect additional resources (bitexts, comparable corpora, etc), but developed

methods that aim to use the available resources in the best possible manner.

Given the fact that parallel texts is a sparse resource and heterogeneous with

respect to many factors, it is important to weight them for better translation

quality. Since many years, the focus of research in domain adaptation has been

data selection, i.e. extracting a subset of the training data that is considered

more relevant for the given task. This has been proposed for monolingual data to

build language models as well as for bilingual data to train translation models.

Data selection performs a hard binary decision to select data and it is difficult

to determine the optimal amount of data to select. Discarding too much data

may result in information loss. Weighting the data offers an attractive way to

give more importance to relevant data for a given task by assigning appropriate

weights to each data subset without discarding any data.

We have introduced multi-level weighting schemes in order to adapt the trans-

lation model. These schemes allow the integration of several “quality scores” at

various levels during the creation of an SMT system. These scores include: corpus

weights, sentences goodness scores like perplexity, temporal distance and align-

ment quality. These scores are considered in two ways: by resampling the data

and by direct weighting of parameters. The first method was based on resampling

81



the alignments, giving a weight to each corpus and using the GIZA++ alignment

score as confidence measure of each aligned sentence pair. This technique does

not change the phrase pairs that are extracted,1 but only the corresponding prob-

ability distributions. By these means, we adapt the translation model in order

to increase the weight of translations that are important to the task, and we

down-weight the phrase pairs which result from unreliable alignments. We made

no assumptions on how the phrases are extracted and it should be possible to

apply the same technique to other SMT systems which rely on word-to-word

alignments. We experimentally verified the new method on two very different

tasks: IWSLT for which only a limited amount of resources are available, and

NIST’08 OpenMT which is considered to have a large amount of training material

for the translation model. We observed significant improvement on both tasks

over state-of-the-art baseline systems. This weighting scheme is generic and can

be applied to any language pair and target domain.

In an extended work, a parametric weighting technique along with resampling

is proposed to weight the training data of the translation model of an SMT system.

By using a parametric weighting function we circumvented the difficult problem

to numerically optimize a large number of parameters. Using this formalism,

we were able to weight the parallel training data according to the recency with

respect to the period of the test data. By these means, the system can still

take advantage of all data, in contrast to methods which only use a part of the

available bitexts. We evaluated our approach on the Europarl corpus, translating

from French into English and further tested it on the official English to French

WMT Task. A good improvement in the BLEU score on the test data was

observed in comparison to using all the data or only the most recent one. We

argue that weighting the training data with respect to its temporal closeness

should be quite important for translating news material since word choice in this

domain is rapidly changing.

Finally, we directly use the weights of the corpora in the algorithm that ex-

tracts the phrase pairs and calculates their probabilities. This answered the

interesting question whether resampling itself is needed or whether weighting the

corpora and alignments is the key to the observed improvements in the BLEU

1when also including the original alignments
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score. For this, we have used a set of goodness scores calculated at the corpus or

sentence level. These goodness scores are used directly in the algorithm to calcu-

late the phrase translation probabilities. The proposed framework is generic and

does not depend on the exact calculation of the corpus weights or the sentences

goodness scores. Any value that expresses the appropriateness of the corpus and

sentences with respect to the task can be used. The adapted system has exactly

the same time and space complexity than the baseline system since we do not

modify the number of entries in the phrase-table or add additional features. We

evaluated this approach on two well-known tasks: the 2011 WMT and the IWSLT

English/French evaluations.

We reach to the following conclusion: Weighting the data is very important

to improve the translation quality of SMT systems because of the heterogeneous

nature of the data. Resampling the data showed promising results but at the

cost of longer computational time. On the other hand, if the underlying phrase

extraction and scoring algorithms are unknown, resampling is an ultimate choice.

Direct weighting gives the flexible and efficient framework to integrate quality

scores calculated at various levels directly into scoring framework.

6.1 Future prospectives

Our work on domain adaptation proposed in this thesis has many future prospec-

tives. These may include:

• to explore other measures which predict the relevance of the training data to

a given domain at various levels, i.e. corpus level, sentence level, alignment

level or phrase level. These measure may include thematic or linguistic

distance, topic closeness, cosine measure, etc.

• to integrate our proposed goodness scores directly into the log-linear frame-

work as feature functions. By this mean we could try to analyze at which

step of SMT system training, weighting perform best in term of time effi-

ciency and translation quality.
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• to use other objective functions than BLEU while optimizing the coefficients

of the goodness scores
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• Kashif Shah, Löıc Barrault, and Holger Schwenk. Translation model adap-

tation by resampling. In Proceedings of the Joint Fifth Workshop on Sta-

tistical Machine Translation and MetricsMATR, WMT 10, pages 392399,

Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

ISBN 978-1-932432-71-8.

• Kashif Shah, Löıc Barrault, and Holger Schwenk. Parametric weighting of

parallel data for statistical machine translation. In Proceedings of 5th Inter-

national Joint Conference on Natural Language Processing, pages 13231331,

Chiang Mai, Thailand, November 2011. Asian Federation of Natural Lan-

guage Processing.

• Holger Schwenk, Patrik Lambert, Löıc Barrault, Christophe Servan, Sadaf

Abdul-Rauf, Haithem Ai, and Kashif Shah. Liums smt machine translation

systems for wmt 2011. In Proceedings of the Sixth Workshop on Statistical

Machine Translation, pages 464469, Edinburgh, Scotland, 2011. Associa-

tion for Computational Linguistics

• Kashif Shah, Adaptation in statistical Machine Translation, journe des doc-

torants de l’école doctorale STIM (JDOC’10), Nantes, France.

• Kashif Shah, Löıc Barrault, and Holger Schwenk. A General Framework
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Martin Kay and Martin Röscheisen. Text-translation alignment. Computational

Linguistics, 19:121–142, March 1993. 13

Philipp Koehn. Pharaoh: A beam search decoder for phrase-based statistical ma-

chine translation models. Machine Translation: From Real Users to Research,

3265:115–124, 2004. doi: 10.1007/978-3-540-30194-3 13. 27

Philipp Koehn. Europarl: A Parallel Corpus for Statistical Machine Trans-

lation. In Conference Proceedings: the tenth Machine Translation Summit,

pages 79–86, Phuket, Thailand, 2005. AAMT. URL http://mt-archive.

info/MTS-2005-Koehn.pdf. 59

Philipp Koehn. Statistical Machine Translation. Cambridge University Press,

New York, NY, USA, 1st edition, 2010. ix, 21, 24

Philipp Koehn and Josh Schroeder. Experiments in domain adaptation for statis-

tical machine translation. In Proceedings of the Second Workshop on Statistical

Machine Translation, pages 224–227. Association for Computational Linguis-

tics, 2007. 34

Philipp Koehn, Franz Josef Och, and Daniel Marcu. Statistical phrase-based

translation. In Proceedings of the 2003 Conference of the North American

Chapter of the Association for Computational Linguistics on Human Language

Technology - Volume 1, NAACL ’03, pages 48–54, Stroudsburg, PA, USA, 2003.

Association for Computational Linguistics. 19, 23, 41

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Mar-

cello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,

Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, and Evan

Herbst. Moses: Open source toolkit for statistical machine translation. In Meet-

ing of the Association for Computational Linguistics, pages 177–180, 2007a. 22,

27

92



BIBLIOGRAPHY

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Mar-

cello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran,
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