
HAL Id: tel-00718537
https://theses.hal.science/tel-00718537v1
Submitted on 17 Jul 2012 (v1), last revised 27 Aug 2012 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms and Ordering Heuristics for Distributed
Constraint Satisfaction Problems

Mohamed Wahbi

To cite this version:
Mohamed Wahbi. Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction Prob-
lems. Artificial Intelligence [cs.AI]. Université Montpellier II - Sciences et Techniques du Languedoc;
Université Mohammed V-Agdal, Rabat, 2012. English. �NNT : �. �tel-00718537v1�

https://theses.hal.science/tel-00718537v1
https://hal.archives-ouvertes.fr

LIRMM

Université Montpellier 2 Université Mohammed V - Agdal
Sciences et Techniques du Languedoc Faculté des Sciences du Rabat
France Maroc

Ph.D Thesis

présentée pour obtenir le diplôme de Doctorat en Informatique
de l’Université Montpellier 2 & l’Université Mohammed V-Agdal

par

Mohamed Wahbi

Spécialité : Informatique

École Doctorale Information, Structures, Systèmes- France &
Le Centre d’Etudes Doctorales en Sciences et Technologies de Rabat- Maroc

Algorithms and Ordering Heuristics for
Distributed Constraint Satisfaction Problems

Soutenue le 03 Juillet 2012, devant le jury composé de :

President

Mme. Awatef Sayah, PES . Université Mohammed V-Agdal, Maroc

Reviewers

Mr. Pedro Meseguer, Directeur de recherche . IIIA, Barcelona, Espagne
Mr. Mustapha Belaissaoui, Professeur Habilité l’ENCG, Université Hassan I, Maroc

Examinator

Mr. Rémi Coletta, Maitre de conférence LIRMM, Université Montpellier 2, France

Supervisors

Mr. Christian Bessiere, Directeur de recherche . LIRMM, Université Montpellier 2, France
Mr. El Houssine Bouyakhf, PES. Université Mohammed V-Agdal, Maroc

iii

To my family

Acknowledgements

The research work presented in this thesis has been performed in the Laboratoire

d’Informatique Mathématiques appliquées Intelligence Artificielle et Reconnaissance de

Formes (LIMIARF), Faculty of Science, University Mohammed V-Agdal, Rabat, Morocco

and the Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier

(LIRMM), University Montpellier 2, France.

This thesis has been done in collaboration between University Mohammed V-Agdal,

Morocco and University Montpellier 2, France under the financial support of the scholar-

ship of the programme Averroés funded by the European Commission within the frame-

work of Erasmus Mundus.

First and foremost, it is with immense gratitude that I acknowledge all the support,

advice, and guidance of my supervisors, Professor El-Houssine Bouyakhf and Dr. Christian

Bessiere. It was a real pleasure to work with them. Their truly scientist intuition has

made them as a source of ideas and passions in science, which exceptionally inspire and

enrich my growth as a student, a researcher and a scientist want to be. I want to thank

them especially for letting me wide autonomy while providing appropriate advice. I am

indebted to them more than they know and hope to keep up our collaboration in the future.

I gratefully acknowledge Professor Awatef Sayah (Faculty of sciences, University Mo-

hammed V-Agdal, Morocco) for accepting to preside the jury of my dissertation. I am most

grateful to my reviewers Professor Pedro Meseguer (Scientific Researcher, the Artificial In-

telligence Research Institute (IIIA), Barcelona, Spain) and Professor Mustapha Belaissaoui

(Professeur Habilité, ENCG, University Hassan I, Morocco) for their constructive comments

on this thesis. I am thankful that in the midst of all their activities, they accepted to re-

view my thesis. I would like to record my gratitude to Professor Rémi Coletta, (Maître de

conférence, University Montpellier 2, France) for his thorough examination of the thesis.

Many of the works published during this thesis have been done in collaboration with so

highly motivated, smart, enthusiastic, and passionate coauthors. I want to thank them for

their teamwork, talent, hard work and devotion. I cannot thank my coauthors without giv-

ing my special gratefulness to Professor Redouane Ezzahir and Doctor Younes Mechqrane.

I thank the great staffs of the LIRMM and LIMIARF Laboratories for the use of facilities,

consultations and moral support. The LIRMM has provided the support and equipment

I have needed to produce and complete my thesis. I also want to thank my colleagues at

the LIRMM and LIMIARF Laboratories for the joyful and pleasant working environment.

v

vi Acknowledgements

Especially, I would like to thank the members of the Coconut/LIRMM and IA/LIMIARF

teams. I acknowledge Amine B., Fabien, Eric, Imade, Saida, Fred, Philippe, Brahim and

Jaouad.

In my daily work I have been blessed with a friendly and cheerful group of fellow

students. I would like to particularly thank Hajer, Younes, Mohamed, Kamel, Nawfal,

Mohammed, Nabil Z., Farid, Azhar, Kaouthar, Samir, Nabil Kh., Amine M., and Hassan.

It is a pleasure to express my gratitude wholeheartedly to Baslam’s family for their kind

hospitality during my stay in Montpellier.

Further, I am also very thankful to the professors of the department of Computer Sci-

ence, University Montpellier 2, with whom I have been involved as a temporary assistant

professor (Attaché Temporaire d’Enseignement et de Recherche - ATER) for providing an

excellent environment to teach and develop new pedagogical techniques. I convey special

acknowledgment to Professor Marianne Huchard.

Most importantly, words alone cannot express the thanks I owe to my family for be-

lieving and loving me, especially my mother who has always filled my life with generous

love, and unconditional support and prayers. My thanks go also to my lovely sister and

brother, my uncles and antes and all my family for their endless moral support throughout

my career. To them I dedicate this thesis. Last but not the least, the one above all of us, the

omnipresent God, for answering my prayers for giving me the strength to plod on despite

my constitution wanting to give up and throw in the towel, thank you so much Dear Lord.

Finally, I would like to thank everybody who was important to the successful realization

of thesis, as well as expressing my apology that I could not mention personally one by one.

Montpellier, July 3rd, 2012 Mohamed Wahbi

Abstract

Distributed Constraint Satisfaction Problems (DisCSP) is a general framework for solv-

ing distributed problems. DisCSP have a wide range of applications in multi-agent coor-

dination. In this thesis, we extend the state of the art in solving the DisCSPs by proposing

several algorithms. Firstly, we propose the Nogood-Based Asynchronous Forward Check-

ing (AFC-ng), an algorithm based on Asynchronous Forward Checking (AFC). However,

instead of using the shortest inconsistent partial assignments, AFC-ng uses nogoods as

justifications of value removals. Unlike AFC, AFC-ng allows concurrent backtracks to be

performed at the same time coming from different agents having an empty domain to

different destinations. Then, we propose the Asynchronous Forward-Checking Tree (AFC-

tree). In AFC-tree, agents are prioritized according to a pseudo-tree arrangement of the

constraint graph. Using this priority ordering, AFC-tree performs multiple AFC-ng pro-

cesses on the paths from the root to the leaves of the pseudo-tree. Next, we propose to

maintain arc consistency asynchronously on the future agents instead of only maintaining

forward checking. Two new synchronous search algorithms that maintain arc consistency

asynchronously (MACA) are presented. After that, we developed the Agile Asynchronous

Backtracking (Agile-ABT), an asynchronous dynamic ordering algorithm that does not fol-

low the standard restrictions in asynchronous backtracking algorithms. The order of agents

appearing before the agent receiving a backtrack message can be changed with a great free-

dom while ensuring polynomial space complexity. Next, we present a corrigendum of the

protocol designed for establishing the priority between orders in the asynchronous back-

tracking algorithm with dynamic ordering using retroactive heuristics (ABT_DO-Retro).

Finally, the new version of the DisChoco open-source platform for solving distributed con-

straint reasoning problems is described. The new version is a complete redesign of the

DisChoco platform. DisChoco 2.0 is an open source Java library which aims at implement-

ing distributed constraint reasoning algorithms.

Keywords: Distributed Artificial Intelligence, Distributed Constraint Satisfaction (DisCSP),

Distributed Solving, Maintaining Arc Consistency, Reordering, DisChoco.

vii

Résumé

Les problèmes de satisfaction de contraintes distribués (DisCSP) permettent de formali-

ser divers problèmes qui se situent dans l’intelligence artificielle distribuée. Ces problèmes

consistent à trouver une combinaison cohérente des actions de plusieurs agents. Durant

cette thèse nous avons apporté plusieurs contributions dans le cadre des DisCSPs. Pre-

mièrement, nous avons proposé le Nogood-Based Asynchronous Forward-Checking (AFC-

ng). Dans AFC-ng, les agents utilisent les nogoods pour justifier chaque suppression d’une

valeur du domaine de chaque variable. Outre l’utilisation des nogoods, plusieurs back-

tracks simultanés venant de différents agents vers différentes destinations sont autorisés.

En deuxième lieu, nous exploitons les caractéristiques intrinsèques du réseau de contraintes

pour exécuter plusieurs processus de recherche AFC-ng d’une manière asynchrone à tra-

vers chaque branche du pseudo-arborescence obtenu à partir du graphe de contraintes

dans l’algorithme Asynchronous Forward-Checking Tree (AFC-tree). Puis, nous proposons

deux nouveaux algorithmes de recherche synchrones basés sur le même mécanisme que

notre AFC-ng. Cependant, au lieu de maintenir le forward checking sur les agents non

encore instanciés, nous proposons de maintenir la consistance d’arc. Ensuite, nous propo-

sons Agile Asynchronous Backtracking (Agile-ABT), un algorithme de changement d’ordre

asynchrone qui s’affranchit des restrictions habituelles des algorithmes de backtracking

asynchrone. Puis, nous avons proposé une nouvelle méthode correcte pour comparer les

ordres dans ABT_DO-Retro. Cette méthode détermine l’ordre le plus pertinent en compa-

rant les indices des agents dès que les compteurs d’une position donnée dans le timestamp

sont égaux. Finalement, nous présentons une nouvelle version entièrement restructurée de

la plateforme DisChoco pour résoudre les problèmes de satisfaction et d’optimisation de

contraintes distribués.

Mots clefs : L’intelligence artificielle distribuée, les problèmes de satisfaction de contraintes dis-

tribués (DisCSP), la résolution distribuée, la maintenance de la consistance d’arc, les heuristiques

ordonnancement, DisChoco.

ix

Contents

Acknowledgements v

Abstract (English/Français) vii

Contents xi

Introduction 1

1 Background 7

1.1 Centralized Constraint Satisfaction Problems (CSP) 7

1.1.1 Preliminaries . 9

1.1.2 Examples of CSPs . 10

1.1.2.1 The n-queens problem . 10

1.1.2.2 The Graph Coloring Problem 11

1.1.2.3 The Meeting Scheduling Problem 11

1.2 Algorithms and Techniques for Solving Centralized CSPs 13

1.2.1 Algorithms for solving centralized CSPs 14

1.2.1.1 Chronological Backtracking (BT) 15

1.2.1.2 Conflict-directed Backjumping (CBJ) 16

1.2.1.3 Dynamic Backtracking (DBT) 18

1.2.1.4 Partial Order Dynamic Backtracking (PODB) 19

1.2.1.5 Forward Checking (FC) . 20

1.2.1.6 Arc-consistency (AC) . 21

1.2.1.7 Maintaining Arc-Consistency (MAC) 23

1.2.2 Variable Ordering Heuristics for Centralized CSP 23

1.2.2.1 Static Variable Ordering Heuristics (SVO) 24

1.2.2.2 Dynamic Variable Ordering Heuristics (DVO) 25

1.3 Distributed constraint satisfaction problems (DisCSP) 28

1.3.1 Preliminaries . 29

1.3.2 Examples of DisCSPs . 30

1.3.2.1 Distributed Meeting Scheduling Problem (DisMSP) 31

1.3.2.2 Distributed Sensor Network Problem (SensorDCSP) 32

1.4 Methods for solving distributed CSPs . 33

1.4.1 Synchronous search algorithms on DisCSPs 34

1.4.1.1 Asynchronous Forward-Checking (AFC) 35

1.4.2 Asynchronous search algorithms on DisCSPs 37

xi

1.4.2.1 Asynchronous Backtracking (ABT) 37

1.4.3 Dynamic Ordering Heuristics on DisCSPs 42

1.4.4 Maintaining Arc Consistency on DisCSPs 43

1.5 Summary . 43

2 Nogood based Asynchronous Forward Checking (AFC-ng) 45

2.1 Introduction . 46

2.2 Nogood-based Asynchronous Forward Checking 47

2.2.1 Description of the algorithm . 47

2.3 Correctness Proofs . 51

2.4 Experimental Evaluation . 52

2.4.1 Uniform binary random DisCSPs . 52

2.4.2 Distributed Sensor Target Problems . 55

2.4.3 Distributed Meeting Scheduling Problems 56

2.4.4 Discussion . 58

2.5 Other Related Works . 59

2.6 Summary . 59

3 Asynchronous Forward Checking Tree (AFC-tree) 61

3.1 Introduction . 62

3.2 Pseudo-tree ordering . 63

3.3 Distributed Depth-First Search trees construction 64

3.4 The AFC-tree algorithm . 67

3.4.1 Description of the algorithm . 68

3.5 Correctness Proofs . 70

3.6 Experimental Evaluation . 70

3.6.1 Uniform binary random DisCSPs . 71

3.6.2 Distributed Sensor Target Problems . 73

3.6.3 Distributed Meeting Scheduling Problems 74

3.6.4 Discussion . 76

3.7 Other Related Works . 76

3.8 Summary . 76

4 Maintaining Arc Consistency Asynchronously in Synchronous Distributed

Search 77

4.1 Introduction . 78

4.2 Maintaining Arc Consistency . 79

4.3 Maintaining Arc Consistency Asynchronously 79

4.3.1 Enforcing AC using del messages (MACA-del) 80

4.3.2 Enforcing AC without additional kind of message (MACA-not) 83

4.4 Theoretical analysis . 84

4.5 Experimental Results . 85

4.5.1 Discussion . 87

4.6 Summary . 88

xii

5 Agile Asynchronous BackTracking (Agile-ABT) 89

5.1 Introduction . 90

5.2 Introductory Material . 91

5.2.1 Reordering details . 91

5.2.2 The Backtracking Target . 92

5.2.3 Decreasing termination values . 94

5.3 The Algorithm . 95

5.4 Correctness and complexity . 98

5.5 Experimental Results . 100

5.5.1 Uniform binary random DisCSPs . 101

5.5.2 Distributed Sensor Target Problems . 103

5.5.3 Discussion . 104

5.6 Related Works . 106

5.7 Summary . 106

6 Corrigendum to “Min-domain retroactive ordering for Asynchronous Backtrack-

ing” 107

6.1 Introduction . 107

6.2 Background . 108

6.3 ABT_DO-Retro May Not Terminate . 110

6.4 The Right Way to Compare Orders . 112

6.5 Summary . 114

7 DisChoco 2.0 115

7.1 Introduction . 115

7.2 Architecture . 116

7.2.1 Communication System . 117

7.2.2 Event Management . 118

7.2.3 Observers in layers . 118

7.3 Using DisChoco 2.0 . 119

7.4 Experimentations . 121

7.5 Conclusion . 123

Conclusions and perspectives 125

Bibliography 129

List of Figures 139

List of Tables 141

List of algorithms 143

xiii

Introduction

Constraint programming is an area in computer science that has gained increasing

interest in the last four recent decades. Constraint programming is based on its powerful

framework named Constraint Satisfaction Problem (CSP). A constraint satisfaction problem is

a general framework that can formalize many real world combinatorial problems. Various

problems in artificial intelligence can be naturally modeled as CSPs. Therefore, the CSP

paradigm has been widely used for solving such problems. Examples of these problems

can inherent from various areas related to resource allocation, scheduling, logistics and

planning. Solving a constraint satisfaction problem (CSP) consists in looking for solutions

to a constraint network, that is, a set of assignments of values to variables that satisfy the

constraints of the problem. These constraints represent restrictions on values combinations

allowed for constrained variables.

Numerous powerful algorithms were designed for solving constraint satisfaction prob-

lems. Typical systematic search algorithms try to construct a solution to a CSP by incre-

mentally instantiating the variables of the problem. However, proving the existence of

solutions or finding these solutions in CSP are NP-complete tasks. Thus, many heuristics

were developed to improve the efficiency of search algorithms.

Sensor networks [Jung et al., 2001; Béjar et al., 2005], military unmanned aerial vehicles

teams [Jung et al., 2001], distributed scheduling problems [Wallace and Freuder, 2002;

Maheswaran et al., 2004], distributed resource allocation problems [Petcu and Faltings,

2004], log-based reconciliation [Chong and Hamadi, 2006], Distributed Vehicle Routing

Problems [Léauté and Faltings, 2011], etc. are real applications of a distributed nature, that

is, knowledge is distributed among several physical distributed entities. These applications

can be naturally modeled and solved by a CSP process once the knowledge about the whole

problem is delivered to a centralized solver. However, in such applications, gathering the

whole knowledge into a centralized solver is undesirable. In general, this restriction is

mainly due to privacy and/or security requirements: constraints or possible values may

be strategic information that should not be revealed to others agents that can be seen as

competitors. The cost or the inability of translating all information to a single format

may be another reason. In addition, a distributed system provides fault tolerance, which

means that if some agents disconnect, a solution might be available for the connected part.

Thereby, a distributed model allowing a decentralized solving process is more adequate.

The Distributed Constraint Satisfaction Problem (DisCSP) has such properties.

A distributed constraint satisfaction problem (DisCSP) is composed of a group of au-

tonomous agents, where each agent has control of some elements of information about

the whole problem, that is, variables and constraints. Each agent owns its local constraint

network. Variables in different agents are connected by constraints. In order to solve a

1

2 Introduction

DisCSP, agents must assign values to their variables so that all constraints are satisfied.

Hence, agents assign values to their variables, attempting to generate a locally consistent

assignment that is also consistent with constraints between agents [Yokoo et al., 1998;

Yokoo, 2000a]. To achieve this goal, agents check the value assignments to their variables

for local consistency and exchange messages among them to check consistency of their pro-

posed assignments against constraints that contain variables that belong to others agents.

In solving DisCSPs, agents exchange messages about the variable assignments and con-

flicts of constraints. Several distributed algorithms for solving DisCSPs have been designed

in the last two decades. They can be divided into two main groups: asynchronous and syn-

chronous algorithms. The first category are algorithms in which the agents assign values

to their variables in a synchronous, sequential way. The second category are algorithms

in which the process of proposing values to the variables and exchanging these proposals

is performed asynchronously between the agents. In the former category, agents do not

have to wait for decisions of others, whereas, in general only one agent has the privilege of

making a decision in the synchronous algorithms.

Contributions

A major motivation for research on distributed constraint satisfaction problem (DisCSP)

is that it is an elegant model for many every day combinatorial problems that are dis-

tributed by nature. By the way, DisCSP is a general framework for solving various problems

arising in Distributed Artificial Intelligence. Improving the efficiency of existing algorithms

for solving DisCSP is a central key for research on DisCSPs. In this thesis, we extend the

state of the art in solving the DisCSPs by proposing several algorithms. We believe that

these algorithms are significant as they improve the current state-of-the-art in terms of

runtime and number of exchanged messages experimentally.

Nogood-Based Asynchronous Forward Checking (AFC-ng) is an asynchronous algo-

rithm based on Asynchronous Forward Checking (AFC) for solving DisCSPs. In-

stead of using the shortest inconsistent partial assignments AFC-ng uses nogoods as

justifications of value removals. Unlike AFC, AFC-ng allows concurrent backtracks

to be performed at the same time coming from different agents having an empty

domain to different destinations. Thanks to the timestamps integrated in the CPAs,

the strongest CPA coming from the highest level in the agent ordering will eventually

dominate all others. Interestingly, the search process with the strongest CPA will

benefit from the computational effort done by the (killed) lower level processes. This

is done by taking advantage from nogoods recorded when processing these lower

level processes.

Asynchronous Forward-Checking Tree (AFC-tree) The main feature of the AFC-tree al-

gorithm is using different agents to search non-intersecting parts of the search space

concurrently. In AFC-tree, agents are prioritized according to a pseudo-tree arrange-

ment of the constraint graph. The pseudo-tree ordering is built in a preprocessing

step. Using this priority ordering, AFC-tree performs multiple AFC-ng processes on

the paths from the root to the leaves of the pseudo-tree. The agents that are brothers

Introduction 3

are committed to concurrently find the partial solutions of their variables. Therefore,

AFC-tree exploits the potential speed-up of a parallel exploration in the processing

of distributed problems.

Maintaining Arc Consistency Asynchronously (MACA) Instead of maintaining forward

checking asynchronously on agents not yet instantiated, as is done in AFC-ng, we pro-

pose to maintain arc consistency asynchronously on these future agents. We propose

two new synchronous search algorithms that maintain arc consistency asynchronously

(MACA). The first algorithm we propose, MACA-del, enforces arc consistency thanks

to an additional type of messages, deletion messages (del). Hence, whenever values

are removed during a constraint propagation step, MACA-del agents notify others

agents that may be affected by these removals, sending them a del message. The sec-

ond algorithm, MACA-not, achieves arc consistency without any new type of mes-

sage. We achieve this by storing all deletions performed by an agent on domains of

its neighboring agents, and sending this information to these neighbors within the

CPA message.

Agile Asynchronous Backtracking (Agile-ABT) is an asynchronous dynamic ordering al-

gorithm that does not follow the standard restrictions in asynchronous backtracking

algorithms. The order of agents appearing before the agent receiving a backtrack

message can be changed with a great freedom while ensuring polynomial space com-

plexity. Furthermore, that agent receiving the backtrack message, called the back-

tracking target, is not necessarily the agent with the lowest priority within the con-

flicting agents in the current order. The principle of Agile-ABT is built on termination

values exchanged by agents during search. A termination value is a tuple of posi-

tive integers attached to an order. Each positive integer in the tuple represents the

expected current domain size of the agent in that position in the order. Orders are

changed by agents without any global control so that the termination value decreases

lexicographically as the search progresses. Since a domain size can never be negative,

termination values cannot decrease indefinitely. An agent informs the others of a new

order by sending them its new order and its new termination value. When an agent

compares two contradictory orders, it keeps the order associated with the smallest

termination value.

Corrigendum to “Min-domain retroactive ordering for Asynchronous Backtracking”:

A corrigendum of the protocol designed for establishing the priority between or-

ders in the asynchronous backtracking algorithm with dynamic ordering using

retroactive heuristics (ABT_DO-Retro). We presented an example that shows how

ABT_DO-Retro can enter an infinite loop following the natural understanding of the

description given by the authors of ABT_DO-Retro. We describe the correct way for

comparing time-stamps of orders. We give the proof that our method for comparing

orders is correct.

DisChoco 2.0: is open-source platform for solving distributed constraint reasoning prob-

lems. The new version 2.0 is a complete redesign of the DisChoco platform. DisChoco

4 Introduction

2.0 is not a distributed version of the centralized solver Choco 1, but it implements

a model to solve distributed constraint networks with local complex problems (i.e.,

several variables per agent) by using Choco as local solver to each agent. The novel

version we propose contains several interesting features: it is reliable and modular,

it is easy to personalize and to extend, it is independent from the communication

system and allows a deployment in a real distributed system as well as the simula-

tion on a single Java Virtual Machine. DisChoco 2.0 is an open source Java library

which aims at implementing distributed constraint reasoning algorithms from an ab-

stract model of agent (already implemented in DisChoco). A single implementation

of a distributed constraint reasoning algorithm can run as simulation on a single

machine, or on a network of machines that are connected via the Internet or via a

wireless ad-hoc network, or even on mobile phones compatible with J2ME.

Thesis Outline

Chapter 1 introduces the state of the art in the area of centralized and distributed

constraint programming. We define the constraint satisfaction problem formalism (CSP)

and present some academic and real examples of problems that can be modeled and solved

by CSP. We then briefly present typical methods for solving centralized CSP. Next, we

give preliminary definitions on the distributed constraint satisfaction problem paradigm

(DisCSP). Afterwards we describe the main algorithms that have been developed in the

literature to solve DisCSPs.

We present our first contribution, the Nogood-Based of Asynchronous Forward Check-

ing (AFC-ng), in Chapter 2. Besides its use of nogoods as justification of value removals,

AFC-ng allows simultaneous backtracks to go from different agents to different destina-

tions. We prove that AFC-ng only needs polynomial space. Correctness proofs of the

AFC-ng are also given. We compare the performance of our algorithm against others

well-known distributed algorithms for solving DisCSP. We present the results on random

DisCSPs and instances from real benchmarks: sensor networks and distributed meeting

scheduling.

In Chapter 3, we show how to extend our nogood-based Asynchronous Forward-

Checking (AFC-ng) algorithm to the Asynchronous Forward-Checking Tree (AFC-tree) algo-

rithm using a pseudo-tree arrangement of the constraint graph. To achieve this goal,

agents are ordered a priory in a pseudo-tree such that agents in different branches of

the tree do not share any constraint. AFC-tree does not address the process of ordering

the agents in a pseudo-tree arrangement. Therefore, the construction of the pseudo-tree is

done in a preprocessing step. We demonstrate the good properties of the Asynchronous

Forward-Checking Tree. We provide a comparison of our AFC-tree to the AFC-ng on

random DisCSPs and instances from real benchmarks: sensor networks and distributed

meeting scheduling.

Chapter 4 presents the first attempt to maintain the arc consistency in the synchronous

1. http://choco.emn.fr/

http://choco.emn.fr/

Introduction 5

search algorithm. Indeed, instead of using forward checking as a filtering property like

AFC-ng we propose to maintain arc consistency asynchronously (MACA). Thus, we pro-

pose two new algorithms based on the same mechanism as AFC-ng that enforce arc con-

sistency asynchronously. The first algorithm we propose, MACA-del, enforces arc consis-

tency thanks to an additional type of messages, deletion messages. The second algorithm,

MACA-not, achieves arc consistency without any new type of message. We provide a

theoretical analysis and an experimental evaluation of the proposed approach.

Chapter 5 proposes Agile Asynchronous Backtracking algorithm (Agile-ABT), a search

procedure that is able to change the ordering of agents more than previous approaches.

This is done via the original notion of termination value, a vector of stamps labeling the

new orders exchanged by agents during search. We first describe the concepts needed to

select new orders that decrease the termination value. Next, we give the details of our

algorithm and we show how agents can reorder themselves as much as they want as long

as the termination value decreases as the search progresses. We also prove Agile-ABT in

Chapter 5. An experimental evaluation is provided by the end of this chapter.

Chapter 6 provides a corrigendum of the protocol designed for establishing the priority

between orders in the asynchronous backtracking algorithm with dynamic ordering using

retroactive heuristics (ABT_DO-Retro). We illustrate in this chapter an example that shows,

if ABT_DO-Retro uses that protocol, how it can fall into an infinite loop. We present

the correct method for comparing time-stamps and give the proof that our method for

comparing orders is correct.

Finally, in Chapter 7, we describe our distributed constraint reasoning platform

DisChoco 2.0. DisChoco is an open-source framework that provides a simple implementa-

tion of all these algorithms and obviously many other. DisChoco 2.0 then offers a complete

tool for the research community for evaluating algorithms performance or being used for

real applications.

1Background

Contents
3.1 Introduction . 62

3.2 Pseudo-tree ordering . 63

3.3 Distributed Depth-First Search trees construction 64

3.4 The AFC-tree algorithm . 67

3.4.1 Description of the algorithm . 68

3.5 Correctness Proofs . 70

3.6 Experimental Evaluation . 70

3.6.1 Uniform binary random DisCSPs . 71

3.6.2 Distributed Sensor Target Problems . 73

3.6.3 Distributed Meeting Scheduling Problems . 74

3.6.4 Discussion . 76

3.7 Other Related Works . 76

3.8 Summary . 76

This chapter introduces the state of the art in the area of centralized and distributed con-

straint programming. In Section 1.1 we define the constraint satisfaction problem formal-

ism (CSP) and present some academic and real examples of problems modeled and solved

by CSPs. Typical methods for solving centralized CSP are presented in Section 1.2. Next,

we give preliminary definitions on the distributed constraint satisfaction problem paradigm

(DisCSP) in Section 1.3. The state of the art algorithms and heuristic for solving DisCSPs

are provided in Section 1.4.

1.1 Centralized Constraint Satisfaction Problems (CSP)

Many real world combinatorial problems in artificial intelligence arising from areas

related to resource allocation, scheduling, logistics and planning are solved using con-

straint programming. Constraint programming is based on its powerful framework named

constraint satisfaction problem (CSP). A CSP is a general framework that involves a set of

7

8 Chapter 1. Background

variables and constraints. Each variable can assign a value from a domain of possible val-

ues. Constraints specify the allowed values for a set of variables. Hence, a large variety

of applications can be naturally formulated as CSP. Examples of applications that have

been successfully solved by constraint programming are: picture processing [Montanari,

1974], planning [Stefik, 1981], job-shop scheduling [Fox et al., 1982], computational vi-

sion [Mackworth, 1983], machine design and manufacturing [Frayman and Mittal, 1987;

Nadel, 1990], circuit analysis [De Kleer and Sussman, 1980], diagnosis [Geffner and

Pearl, 1987], belief maintenance [Dechter and Pearl, 1988], automobile transmission de-

sign [Nadel and Lin, 1991], etc.

Solving a constraint satisfaction problem consists in looking for solutions to a constraint

network, that is, a set of assignments of values to variables that satisfy the constraints of

the problem. These constraints represent restrictions on values combinations allowed for

constrained variables. Many powerful algorithms have been designed for solving constraint

satisfaction problems. Typical systematic search algorithms try to construct a solution to a

CSP by incrementally instantiating the variables of the problem.

There are two main classes of algorithms searching solutions for CSP, namely those of

a look-back scheme and those of look-ahead scheme. The first category of search algo-

rithms (look-back scheme) corresponds to search procedures checking the validity of the

assignment of the current variable against the already assigned (past) variables. When

the assignment of the current variable is inconsistent with assignments of past variables

then an new value is tried. When no values remain then a past variable must be re-

assigned. Chronological backtracking (BT) [Golomb and Baumert, 1965], backjumping

(BJ) [Gaschnig, 1978], graph-based backjumping (GBJ) [Dechter, 1990], conflict-directed

backjumping (CBJ) [Prosser, 1993], and dynamic backtracking (DBT) [Ginsberg, 1993] are

algorithms performing a look-back scheme.

The second category of search algorithms (look-ahead scheme) corresponds to search

procedures that check forwards the assignment of the current variable. In look-ahead

scheme, the not yet assigned (future) variables are made consistent, to some degree, with

the assignment of the current variable. Forward checking (FC) [Haralick and Elliott, 1980]

and maintaining arc consistency (MAC) [Sabin and Freuder, 1994] are algorithms that

perform a look-ahead scheme.

Proving the existence of solutions or finding them in CSP are NP-complete tasks.

Thereby, numerous heuristics were developed to improve the efficiency of solution methods.

Though being various, these heuristics can be categorized into two kinds: variable ordering

and value ordering heuristics. Variable ordering heuristics address the order in which the

algorithm assigns the variables, whereas the value ordering heuristics establish an order

on which values will be assigned to a selected variable. Many studies have been shown

that the ordering of selecting variables and values dramatically affects the performance of

search algorithms.

We present in the following an overview of typical methods for solving centralized

CSP after defining formally a constraint satisfaction problem and given some examples of

problems that can be encoded in CSPs.

1.1. Centralized Constraint Satisfaction Problems (CSP) 9

1.1.1 Preliminaries

A Constraint Satisfaction Problem - CSP (or a constraint network [Montanari, 1974])

involves a finite set of variables, a finite set of domains determining the set of possibles

values for a given variable and a finite set of constraints. Each constraint restricts the

combination of values that a set of variables it involves can assign. A solution of a CSP is

an assignment of values to all variables satisfying all the imposed constraints.

Definition 1.1 A constraint satisfaction problem (CSP) or a constraint network was for-

mally defined by a triple (X ,D, C), where:

• X is a set of n variables {x1, . . . , xn}.

• D = {D(x1), . . . , D(xn)} is a set of n current domains, where D(xi) is a finite set of

possible values to which variable xi may be assigned.

• C = {c1, . . . , ce} is a set of e constraints that specify the combinations of values (or tuples)

allowed for the variables they involve. The variables involved in a constraint ck ∈ C form its

scope (scope(ck)⊆ X).

During a solution method process, values may be pruned from the domain of a

variable. At any node, the set of possible values for variable xi is its current domain,

D(xi). We introduce the particular notation of initial domains (or definition domains)

D0 = {D0(x1), . . . , D0(xn)}, that represents the set of domains before pruning any value

(i.e., D ⊆ D0).

The number of variables on the scope of a constraint ck ∈ C is called the arity of

the constraint ck. Therefore, a constraint involving one variable (respectively two or n

variables) is called unary (respectively binary or n-ary) constraint. In this thesis, we are

concerned by binary constraint networks where we assume that all constraints are binary

constraints (they involve two variables). A constraint in C between two variables xi and

xj is then denoted by cij. cij is a subset of the Cartesian product of their domains (i.e.,

cij ⊆ D0(xi)×D0(xj)). A direct result from this assumption is that the connectivity between

the variables can be represented with a constraint graph G [Dechter, 1992].

Definition 1.2 A binary constraint network can be represented by a constraint graph G =

{XG, EG}, where vertexes represent the variables of the problem (XG = X) and edges (EG) represent

the constraints (i.e., {xi, xj} ∈ EG iff cij ∈ C).

Definition 1.3 Two variables are adjacent iff they share a constraint. Formally, xi and xj are

adjacent iff cij ∈ C. If xi and xj are adjacent we also say that xi and xj are neighbors. The set of

neighbors of a variable xi is denoted by Γ(xi).

Definition 1.4 Given a constraint graph G, an ordering O is a mapping from the variables (ver-

texes of G) to the set {1, . . . , n}. O(i) is the ith variable in O.

Solving a CSP is equivalent to find a combination of assignments of values to all vari-

ables in a way that all the constraints of the problem are satisfied.

We present in the following some typical examples of problems that can be intuitively

10 Chapter 1. Background

modeled as constraint satisfaction problems. These examples range from academic prob-

lems to real-world applications.

1.1.2 Examples of CSPs

Various problems in artificial intelligence can be naturally modeled as a constraint sat-

isfaction problem. We present here some examples of problems that can be modeled and

solved by the CSP paradigm. First, we describe the classical n-queens problem. Next, we

present the graph-coloring problem. Last, we introduce the problem of meeting scheduling.

1.1.2.1 The n-queens problem

The n-queens problem is a classical combinatorial problem that can be formalized and

solved by constraint satisfaction problem. In the n-queens problem, the goal is to put n

queens on an n × n chessboard so that none of them is able to attack (capture) any other.

Two queens attack each other if they are located on the same row, column, or diagonal on

the chessboard. This problem is called a constraint satisfaction problem because the goal is

to find a configuration that satisfies the given conditions (constraints).

q1 q2 q3 q4

1 zZzzZz
2 zzZzzZ
3 zZzzZz
4 zzZzzZ
qqqq

variables

v
a

lu
e
s ∀i, j ∈ {1, 2, 3, 4} such that i �= j:

(qi �= qj) ∧ (| qi − qj | �=| i − j |)

Figure 1.1 – The 4-queens problem.

In the case of 4-queens (n = 4), the problem can be formalized as a CSP as follows

(Figure 1.1).

• X = {q1, q2, q3, q4}, each variable qi corresponds to the queen placed in the ith

column.

• D = {D(q1), D(q2), D(q3), D(q4)}, where D(qi)={1, 2, 3, 4} ∀i ∈ 1..4. The value v ∈

D(qi) corresponds to the row where can be placed the queen representing the ith

column.

• C = {cij : (qi �= qj) ∧ (| qi − qj | �=| i − j |) ∀ i, j ∈ {1, 2, 3, 4} and i �= j} is the set

of constraints. There exists a constraint between each pair of queens that forbids the

involved queens to be placed in the same row or diagonal line.

The n-queen problem admits in the case of n = 4 (4-queens) two configuration as

solution. We present the two possible solution in Figure 1.2. The first solution Figure 1.2(a)

is (q1 = 2, q2 = 4, q3 = 1, q4 = 3) where we put q1 in the second row, q2 in the row 4,

1.1. Centralized Constraint Satisfaction Problems (CSP) 11

q3 in the first row, and q4 is placed in the third row. The second solution Figure 1.2(b) is

(q1 = 3, q2 = 1, q3 = 4, q4 = 2).

q1 q2 q3 q4

1 zZz5™Xqz
2 5XqzZzzZ
3 zZzzZ5Xq
4 z5™XqzzZ

(a)
(q1 = 2, q2 = 4, q3 = 1, q4 = 3)

q1 q2 q3 q4

1 zZ5XqzZz
2 zzZz5™Xq
3 5™XqzzZz
4 zzZ5XqzZ

(b)
(q1 = 3, q2 = 1, q3 = 4, q4 = 2)

Figure 1.2 – The solutions for the 4-queens problem.

1.1.2.2 The Graph Coloring Problem

Another typical example problem is the graph coloring problem. Graph coloring is

one of the most combinatorial problem studied in artificial intelligence since many real

applications such as time-tabling and frequency allocation can be easily formulated as a

graph coloring problem. The goal in this problem is to color all nodes of a graph so that

any two adjacent vertexes should get different colors where each node has a finite number

of possible colors. The Graph Coloring problem is simply formalized as a CSP. Hence, the

nodes of the graph are the variables to color and the possible colors of each node/variable

form its domain. There exists a constraint between each pair of adjacent variables/nodes

that prohibits these variables to have the same color.

A practical application of the graph coloring problem is the problem of coloring a

map (Figure 1.3). The objective in this case is to assign a color to each region so that

no neighboring regions have the same color. An instance of the map-coloring problem is

illustrated in Figure 1.3(a) where we present the map of Morocco with its 16 provinces. We

present this map-coloring instance as a constraint graph in Figure 1.3(b). This problem can

be modeled as a CSP by representing each node of the graph as a variable. The domain of

each variable is defined by the possible colors. There exits a constraint between each pair

neighboring regions. Therefore we get the following CSP:

• X = {x1, x2, . . . , x16}.

• D = {D(x1), D(x2), . . . , D(x16)}, where D(xi) = {red, blue, green}.

• C = {cij : xi �= xj | xi and xj are neighbors}.

1.1.2.3 The Meeting Scheduling Problem

The meeting scheduling problem (MSP) [Sen and Durfee, 1995; Garrido and Sycara, 1996;

Meisels and Lavee, 2004] is a decision-making process that consist at scheduling several

12 Chapter 1. Background

(a) The 16 provinces of Morocco.

x11

x7

x6

x13

x8

x14

x9x2
x1

x5 x12 x3 x10

x4

x16

x15

(b) The map-coloring problem represented as a constraint
graph.

Figure 1.3 – An example of the graph-coloring problem.

meetings among various people with respect to their personal calendars. The meeting

scheduling problem has been defined in many versions with different parameters (e.g,

duration of meetings [Wallace and Freuder, 2002], preferences of agents [Sen and Durfee,

1995], etc). In MSP, we have a set of attendees, each with his/her own calendar (divided on

time-slots), and a set of n meetings to coordinate. In general, people/participants may have

several slots reserved for already filled planning in their calendars. Each meeting mi takes

place in a specified location denoted by location(mi). The proposed solution must enable

the participating agents to travel among locations where their meetings will be hold. Thus,

an arrival-time constraint is required between two meetings mi and mj when at least one

attendee participates on both meetings. The arrival time constraint between two meetings

mi and mj is defined in Equation 1.1:

| time(mi)− time(mj) | −duration > TravelingTime(location(mi), location(mj)). (1.1)

The meeting scheduling problem [Meisels and Lavee, 2004] can be encoded in a cen-

tralized constraint satisfaction problem as follows:

• X = {m1, . . . , mn} is the set of variables, each variable represents a meeting.

• D = {D(m1), . . . , D(mn)} is a set of domains where D(mi) is the domain of vari-

able/meeting (mi). D(mi) is the intersection of time-slots from the personal calendar

of all agents attending mi (i.e., D(mi) =
�

Aj∈ attendees of mi

calendar(Aj)).

• C is a set of arrival-time constraints. There exists an arrival-time constraint for every

pair of meetings (mi, mj) if there is an agent that participates in both meetings.

A simple instance of a meeting scheduling problem is illustrated in Figure 1.4. There

1.2. Algorithms and Techniques for Solving Centralized CSPs 13

m11

m13

m14

m21

m22

m32

m33

m34

m44

�=

�=
�=

meeting 1

meeting 2

meeting 3

meeting 4

meeting 4

meeting 4

Med

Alice

Fred

Adam

August 2011

1 2 3 4 5 6 7

8 9 10 11 12 13 14

August 2011

1 2 3 4 5 6 7

8 9 10 11 12 13 14

August 2011

1 2 3 4 5 6 7

8 9 10 11 12 13 14

August 2011

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Figure 1.4 – A simple instance of the meeting scheduling problem.

are 4 attendees: Adam, Alice, Fred and Med, each having its personal calendar. There are

4 meetings to be scheduled. The first meeting (m1) will be attended by Alice and Med.

Alice and Fred will participate on the second meeting (m2). The agents going to attend the

third meeting (m3) are Fred and Med while the last meeting (m4) will be attended by three

persons: Adam, Fred and Med.

The instance presented in Figure 1.4 is encoded as a centralized CSP in Figure 1.5. The

nodes are the meetings/variables (m1, m2, m3, m4). The edges represent binary arrival-

time constraint. Each edge is labeled by the person, attending both meetings. Thus,

• X = {m1, m2, m3, m4}.

• D = {D(m1), D(m2), D(m3), D(m4)}.

– D(m1) = {s | s is a slot in calendar(Alice) ∩ calendar(Med)}.

– D(m2) = {s | s is a slot in calendar(Alice) ∩ calendar(Fred)}.

– D(m3) = {s | s is a slot in calendar(Adam) ∩ calendar(Fred) ∩ calendar(Med)}.

– D(m4) = {s | s is a slot in calendar(Adam) ∩ calendar(Fred) ∩ calendar(Med)}.

• C = {c12, c13, c14, c23, c24, c34}, where cij is an arrival-time constraint between mi

and mj.

These examples show the power of the CSP paradigm to easily model different combi-

natorial problems arising from different issues. In the following section, we describe the

main generic methods for solving a constraint satisfaction problem.

1.2 Algorithms and Techniques for Solving Centralized CSPs

In this section, we describe the basic methods for solving constraint satisfaction prob-

lems. These methods can be considered under two board approaches: constraint propaga-

tion and search. We also describe here a combination of those two approaches. In general,

14 Chapter 1. Background

m1 m2

m3m4

Alice

Med

Med Fred

Fred

Med, Fred, Adam

Med attends meetings: m1, m2 and m4

Alice attends meetings: m1 and m2

Fred attends meetings: m2, m3 and m4

Adam attends meetings: m4

Figure 1.5 – The constraint graph of the meeting-scheduling problem.

the search algorithms explore all possible combinations of values for the variables in order

to find a solution of the problem, that is, a combination of values for the variables that

satisfies the constraints. However, the constraint propagation techniques are used to re-

duce the space of combinations that will be explored by the search process. Afterwards,

we present the main heuristics used to boost the search in the centralized CSPs. We partic-

ularly summarize the main variable ordering heuristics while we briefly describe the main

value ordering heuristics used in the constraint satisfaction problems.

1.2.1 Algorithms for solving centralized CSPs

Usually, algorithms for solving centralized CSPs search systematically through the pos-

sible assignments of values to variables in order to find a combination of these assignments

that satisfies the constraints of the problem.

Definition 1.5 An assignment of value vi to a variable xi is a pair (xi, vi) where vi is a value

from the domain of xi (i.e., vi ∈ D(xi)). We often denote this assignment by xi = vi.

Henceforth, when a variable is assigned a value from its domain, we say that the vari-

able is assigned or instantiated.

Definition 1.6 An instantiation I of a subset of variables {xi, . . . , xk} ⊆ X is an ordered set

of assignments I = {[(xi = vi), . . . , (xk = vk)] | vj ∈ D(xj)}. The variables assigned on an

instantiation I = [(xi = vi), . . . , (xk = vk)] are denoted by vars(I) = {xi, . . . , xk}.

Definition 1.7 A full instantiation is an instantiation I that instantiates all the variables of the

problem (i.e., vars(I) = X) and conversely we say that an instantiation is a partial instantia-

tion if it instantiates in only a part.

Definition 1.8 An instantiation I satisfies a constraint cij ∈ C if and only if the variables involved

in cij (i.e., xi and xj) are assigned in I (i.e., (xi = vi), (xj = vj) ∈ I) and the pair (vi, vj) is allowed

by cij. Formally, I satisfies cij iff (xi = vi) ∈ I ∧ (xj = vj) ∈ I ∧ (vi, vj) ∈ cij.

Definition 1.9 An instantiation I is locally consistent iff it satisfies all of the constraints whose

1.2. Algorithms and Techniques for Solving Centralized CSPs 15

scopes have no uninstantiated variables in I. I is also called a partial solution. Formally,

I is locally consistent iff ∀cij ∈ C | scope(cij) ⊆ vars(I), I satisfies cij.

Definition 1.10 A solution to a constraint network is a full instantiation I, which is locally

consistent.

The intuitive way to search a solution for a constraint satisfaction problem is to generate

and test all possible combinations of the variable assignments to see if it satisfies all the

constraints. The first combination satisfying all the constraints is then a solution. This is the

principle of the generate & test algorithm. In other words, a full instantiation is generated

and then tested if it is locally consistent. In the generate & test algorithm, the consistency of

an instantiation is not checked until it is full. This method drastically increases the number

of combinations that will be generated. (The number of full instantiation considered by

this algorithm is the size of the Cartesian product of all the variable domains). Intuitively,

one can check the local consistency of instantiation as soon as its respective variables are

instantiated. In fact, this is systematic search strategy of the chronological backtracking

algorithm. We present the chronological backtracking in the following.

1.2.1.1 Chronological Backtracking (BT)

The chronological backtracking [Davis et al., 1962; Golomb and Baumert, 1965;

Bitner and Reingold, 1975] is the basic systematic search algorithm for solving CSPs. The

Backtracking (BT) is a recursive search procedure that incrementally attempts to extend a

current partial solution (a locally consistent instantiation) by assigning values to variables

not yet assigned, toward a full instantiation. However, when all values of a variable are

inconsistent with previously assigned variables (a dead-end occurs) BT backtracks to the

variable immediately instantiated in order to try another alternative value for it.

Definition 1.11 When no value is possible for a variable, a dead-end state occurs. We usually say

that the domain of the variable is wiped out (DWO).

Algorithm 1.1: The chronological Backtracking algorithm.
procedure Backtracking(I)
01. if (isFull(I)) then return I as solution; /* all variables are assigned in I */
02. else
03. select xi in X \ vars(I) ; /* let xi be an unassigned variable */
04. foreach (vi ∈ D(xi)) do
05. xi ← vi;
06. if (isLocallyConsistent(I ∪ {(xi = vi)})) then
07. Backtracking(I ∪ {(xi = vi)});

The pseudo-code of the Backtracking (BT) algorithm is illustrated in Algorithm 1.1.

The BT assigns a value to each variable in turn. When assigning a value vi to a variable xi,

the consistency of the new assignment with values assigned thus far is checked (line 6, Al-

gorithm 1.1). If the new assignment is consistent with previous assignments BT attempts to

extend these assignments by selecting another unassigned variable (line 7). Otherwise (the

16 Chapter 1. Background

new assignment violates any of the constraints), another alternative value is tested for xi if

it is possible. If all values of a variable are inconsistent with previously assigned variables

(a dead-end occurs), backtracking to the variable immediately preceding the dead-end vari-

able takes place in order to check alternative values for this variable. By the way, either a

solution is found when the last variable has been successfully assigned or BT can conclude

that no solution exist if all values of the first variable are removed.

On the one hand, it is clear that we need only linear space to perform the backtracking.

However, it requires time exponential in the number of variables for most nontrivial prob-

lems. On the other hand, the backtracking is clearly better than “generate & test” since

a subtree from the search space is pruned whenever a partial instantiation violates a con-

straint. Thus, backtracking can detect early unfruitful instantiation compared to “generate

& test”.

Although the backtracking improves the “generate & test”, it still suffer from many

drawbacks. The main one is the thrashing problem. Thrashing is the fact that the same

failure due to the same reason can be rediscovered an exponential number of times when

solving the problem. Therefore, a variety of refinements of BT have been developed in

order to improve it. These improvements can be classified under two main schemes: look-

back methods as conflict directed backjumping or look-ahead methods such as forward

checking.

1.2.1.2 Conflict-directed Backjumping (CBJ)

From the earliest works in the area of constraint programming, researchers were con-

cerned by the trashing problem of the Backtracking, and then proposed a number of tools

to avoid it. backjumping concept was one of the pioneer tools used for this reason. Thus,

several non-chronological backtracking (intelligent backtracking) search algorithms have

been designed to solve centralized CSPs. In the standard form of backtracking, each time

a dead-end occurs the algorithm attempts to change the value of the most recently instan-

tiated variable. However, backtracking chronologically to the most recently instantiated

variable may not address the reason for the failure. This is no longer the case in the back-

jumping algorithms that identify and then jump directly to the responsible of the dead-end

(culprit). Hence, the culprit variable is re-assigned if it is possible or an other jump is

performed. By the way, the subtree of the search space where the thrashing may occur is

pruned.

Definition 1.12 Given a total ordering on variables O, a constraint cij is earlier than ckl if the

latest variable in scope(cij) precedes the latest one in scope(ckl) on O.

Example 1.1 Given the lexicographic ordering on variables ([x1, . . . , xn]), the constraint c25

is earlier than constraint c35 because x2 precedes x3 since x5 belongs to both scopes (i.e.,

scope(c25) and scope(c35)).

Gaschnig designed the first explicit non-chronological (backjumping) algorithm (BJ) in
[Gaschnig, 1978]. BJ records for each variable xi the deepest variable with which it checks

1.2. Algorithms and Techniques for Solving Centralized CSPs 17

its consistency with the assignment of xi. When a dead-end occurs on a domain of a

variable xi, BJ jumps back to the deepest variable, say xj, to witch the consistency of xi

is checked against. However, if there are no more values remaining for xj, BJ perform

a simple backtrack to the last assigned variable before assigning xj. Dechter presented

in [Dechter, 1990; Dechter and Frost, 2002] the Graph-based BackJumping (GBJ) algorithm,

a generalization of the BJ algorithm. Basically, GBJ attempts to jump back directly to

the source of the failure by using only information extracted from the constraint graph.

Whenever a dead-end occurs on a domain of the current variable xi, GBJ jumps back to

the most recent assigned variable (xj) adjacent to xi in the constraint graph. Unlike BJ, if

a dead-end occurs again on a domain of xj, GBJ jumps back to the most recent variable xk

connected to xi or xj. Prosser proposed the Conflict-directed BackJumping (CBJ) that rectify

the bad behavior of Gaschnig’s algorithm in [Prosser, 1993].

Algorithm 1.2: The Conflict-Directed Backjumping algorithm.
procedure CBJ(I)
01. if (isFull(I)) then return I as solution; /* all variables are assigned in I */
02. else
03. choose xi in X \ vars(I) ; /* let xi be an unassigned variable */
04. EMCS[i] ← ∅ ;
05. D(xi) ← D0(xi) ;
06. foreach (vi ∈ D(xi)) do
07. xi ← vi;
08. if (isConsistent(I ∪ (xi = vi))) then
09. CS ← CBJ(I ∪ {(xi = vi)}) ;
10. if (xi /∈ CS) then return CS ;
11. else EMCS[i] ← EMCS[i] ∪ CS \ {xi} ;
12. else
13. remove vi from D(xi) ;
14. let cij be the earliest violated constraint by (xi = vi);
15. EMCS[i] ← EMCS[i] ∪ xj ;
16. return EMCS[i] ;

The pseudo-code of CBJ is illustrated in Algorithm 1.2. Instead of recording only the

(deepest variable, CBJ records for each variable xi the set of variables that were in conflict

with some assignment of xi. Thus, CBJ maintains a set of earliest minimal conflict set for each

variable xi (i.e., EMCS[i]) where it stores the variables belonging to the earliest violated

constraints with an assignment of xi. Whenever a variable xi is chosen to be instantiated

(line 3), CBJ initializes EMCS[i] to the empty set. Next, CBJ initializes the current domain

of xi to its initial domain (line 5). Afterward, a consistent value vi with the current search

state is looked for variable xi. If vi is inconsistent with the current partial solution, then vi

is removed from current domain D(xi) (line 13), and xj such that cij is the earliest violated

constraint by the new assignment of xi (i.e., xi = vi) is then added to the earliest minimal

conflict set of xi, i.e., EMCS[i] (line 15). EMCS[i] can be seen as the subset of the past

variables in conflict with xi. When a dead-end occurs on the domain of a variable xi, CBJ

jumps back to the last variable, say xj, in EMCS[i] (lines 16,9 and line 10). The information

in EMCS[i] is earned upwards to EMCS[j] (line 11). Hence, CBJ performs a form of “in-

18 Chapter 1. Background

telligent backtracking” to the source of the conflict allowing the search procedure to avoid

rediscovering the same failure due to the same reason.

When a dead-end occurs, the CBJ algorithm jumps back to address the culprit vari-

able. During the backjumping process CBJ erases all assignments that were obtained since

and then wastes a meaningful effort done to achieve these assignments. To overcome this

drawback Ginsberg (1993) have proposed Dynamic Backtracking.

1.2.1.3 Dynamic Backtracking (DBT)

In the naive chronological of backtracking (BT), each time a dead-end occurs the algo-

rithm attempts to change the value of the most recently instantiated variable. Intelligent

backtracking algorithms were developed to avoid the trashing problem caused by the BT.

Although, these algorithms identify and then jump directly to the responsible of the dead-

end (culprit), they erase a great deal of the work performed thus far on the variables that

are backjumped over. When backjumping, all variables between the culprit of the dead-end

and the variable where the dead-end occurs will be re-assigned. Ginsberg (1993) proposed

the Dynamic Backtracking algorithm (DBT) in order to keep the progress performed before

the backjumping. In DBT, the assignments of non conflicting variables are preserved dur-

ing the backjumping process. Thus, the assignments of all variables following the culprit

are kept and the culprit variable is moved to be the last among the assigned variables.

In order to detect the culprit of the dead-end, CBJ associates a conflict set (EMCS[i]) to

each variable (xi). EMCS[i] contains the set of the assigned variables whose assignments

are in conflict with a value from the domain of xi. In a similar way, DBT uses nogoods to

justify the value elimination [Ginsberg, 1993]. Based on the constraints of the problem, a

search procedure can infer inconsistent sets of assignments called nogoods.

Definition 1.13 A nogood is a conjunction of individual assignments, which has been found

inconsistent, either because the initial constraints or because searching all possible combinations.

Example 1.2 The following nogood ¬[(xi = vi)∧ (xj = vj)∧ . . .∧ (xk = vk)] means that as-

signments it contains are not simultaneously allowed because they cause an inconsistency.

Definition 1.14 A directed nogood ruling out value vk from the initial domain of variable xk is

a clause of the form xi = vi ∧ xj = vj ∧ . . . → xk �= vk, meaning that the assignment xk = vk is

inconsistent with the assignments xi = vi, xj = vj, When a nogood (ng) is represented as an

implication, the left hand side, lhs(ng), and the right hand side, rhs(ng), are defined from the

position of →.

In DBT, when a value is found to be inconsistent with previously assigned values, a

directed nogood is stored as a justification of its removal. Hence, the current domain D(xi)

of a variable xi contains all values from its initial domain that are not ruled out by a stored

nogood. When all values of a variable xi are ruled out by some nogoods, a dead-end

occurs, DBT resolves these nogoods producing a new nogood (newNogood). Let xj be the

most recent variable in the left-hand side of all these nogoods and xj = vj, that is xj is

the culprit variable in the CBJ algorithm. The lhs(newNogood) is the conjunction of the

1.2. Algorithms and Techniques for Solving Centralized CSPs 19

left-hand sides of all nogoods except xj = vj and rhs(newNogood) is xj �= vj. Unlike the

CBJ, DBT only removes the current assignment of xj and keeps assignments of all variables

between it an xi since they are consistent with former assignments. Therefore, the work

done when assigning these variables is preserved. The culprit variable xj is then placed

after xi and a new assignment for it is searched since the generated nogood (newNogood)

eliminates its current value (vj).

Since the number of nogoods that can be generated increases monotonically, recording

all of the nogoods as is done in Dependency Directed Backtracking algorithm [Stallman

and Sussman, 1977] requires an exponential space complexity. In order to keep a polyno-

mial space complexity, DBT stores only nogoods compatible with the current state of the

search. Thus, when backtracking to xj, DBT destroys all nogoods containing xj = vj. As a

result, with this approach a variable assignment can be ruled out by at most one nogood.

Since each nogood requires O(n) space and there are at most nd nogoods, where n is the

number of variables and d is the maximum domain size, the overall space complexity of

DBT is in O(n2d).

1.2.1.4 Partial Order Dynamic Backtracking (PODB)

Instead of backtracking to the most recently assigned variable in the nogood, Ginsberg

and McAllester proposed the Partial Order Dynamic Backtracking (PODB), an algorithm that

offers more freedom than DBT in the selection of the variable to put on the right-hand side

of the directed nogood [Ginsberg and McAllester, 1994]. thereby, PODB is a polynomial

space algorithm that attempted to address the rigidity of dynamic backtracking.

When resolving the nogoods that lead to a dead-end, DBT always select the most among

the set of inconsistent assignments recent assigned variable to be the right hand side of the

generated directed nogood. However, there are clearly many different ways of representing

a given nogood as an implication (directed nogood). For example, ¬[(xi = vi)∧ (xj = vj)∧

· · · ∧ (xk = vk)] is logically equivalent to [(xj = vj) ∧ · · · ∧ (xk = vk)] → (xi �= vi) meaning

that the assignment xi = vi is inconsistent with the assignments xj = vj, . . . , xk = vk.

Each directed nogood imposes ordering constraints, called the set of safety conditions for

completeness [Ginsberg and McAllester, 1994]. Since all variables in the left hand side of

a directed nogood participate in eliminating the value on its right hand side, these variable

must precede the variable on the right hand side.

Definition 1.15 safety conditions imposed by a directed nogood (ng) ruling out a value from the

domain of xj are the set of assertions of the form xk ≺ xj where xk is a variable in the left hand side

of ng (i.e., xk ∈ vars(lhs(ng))).

The Partial Order Dynamic Backtracking attempts to offer more freedom in the selection

of the variable to put on the right-hand side of the generated directed nogood. In PODB, the

only restriction to respect is that the partial order induced by the resulting directed nogood

must safety the existing partial order required by the set of safety conditions, say S. In a

later study, Bliek shows that PODB is not a generalization of DBT and then proposes the

Generalized Partial Order Dynamic Backtracking (GPODB), a new algorithm that generalizes

20 Chapter 1. Background

both PODB and DBT [Bliek, 1998]. To achieve this, GPODB follows the same mechanism of

PODB. The difference between two resides in the obtained set of safety conditions S� after

generating a new directed nogood (newNogood). The new order has to respect the safety

conditions existing in S�. While S and S� are the similar for PODB, when computing S�

GPODB relaxes from S all safety conditions of the form rhs(newNogood) ≺ xk. However,

both algorithms generates only directed nogoods that satisfy the already existing safety

conditions in S. In the best of our knowledge, no systematic evaluation of either PODB or

GPODB have been reported.

All algorithms presented previously incorporates a form of look-back scheme. Avoid-

ing possible future conflicts may be more attractive than recovering from them. In the

backtracking, backjumping and dynamic backtracking, we can not detect that an instan-

tiation is unfruitful till all variables of the conflicting constraint are assigned. Intuitively,

each time a new assignment is added to the current partial solution, one can look ahead by

performing a forward check of consistency of the current partial solution.

1.2.1.5 Forward Checking (FC)

The forward checking (FC) algorithm [Haralick and Elliott, 1979; Haralick and Elliott,

1980] is the simplest procedure of checking every new instantiation against the future

(as yet uninstantiated) variables. The purpose of the forward checking is to propagate

information from assigned to unassigned variables. Then, it is classified among those

procedures performing a look-ahead.

Algorithm 1.3: The forward checking algorithm.
procedure ForwardChecking(I)
01. if (isFull(I)) then return I as solution; /* all variables are assigned in I */
02. else
03. select xi in X \ vars(I) ; /* let xi be an unassigned variable */
04. foreach (vi ∈ D(xi)) do
05. xi ← vi;
06. if (Check-Forward(I, (xi = vi))) then
07. ForwardChecking(I ∪ {(xi = vi)});
08. else
09. foreach (xj /∈ vars(I) such that ∃ cij ∈ C) do restore D(xj);

function Check-Forward(I, xi = vi)

10. foreach (xj /∈ vars(I) such that ∃ cij ∈ C) do

11. foreach (vj ∈ D(xj) such that (vi , vj) /∈ cij) do remove vj from D(xj) ;
12. if (D(xj) = ∅) then return false;
13. return true;

The pseudo-code of FC procedure is presented in Algorithm 1.3. FC is a recursive

procedure that attempts to foresee the effects of choosing an assignment on the not yet

assigned variables. Each time a variable is assigned, FC checks forward the effects of this

assignment on the future variables domains (Check-Forward call, line 6). So, all values

from the domains of future variables which are inconsistent with the assigned value (vi) of

the current variable (xi) are removed (line 11). Future variables concerned by this filtering

1.2. Algorithms and Techniques for Solving Centralized CSPs 21

process are only those sharing a constraint with xi, the current variable being instantiated

(line 10). By the way, each domain of a future variable is filtered in order to keep only

consistent values with past variables (variables already instantiated). Hence, FC does not

need to check consistency of new assignments against already instantiated ones as opposed

to chronological backtracking. The forward checking is then the easiest way to prevent

assignments that guarantee later failure.

Unlike backtracking, forward checking algorithm enables to prevent assignments that

guarantee later failure. This improves the performance of backtracking. However, forward

checking reduces the domains of future variables checking only the constraints relating

them to variables already instantiated. In addition to these constraints, one can checks also

the constraints relating future variables to each other. By the way, domains of future vari-

ables may be reduced and further possible conflicts will be avoided. This is the principle of

the full look-ahead scheme or constraint propagation. This approach is called maintaining

arc consistency (MAC).

1.2.1.6 Arc-consistency (AC)

In constraint satisfaction problems, checking the existence of solutions is NP-complete.

Therefore, the research community has devoted a great interest in studying the constraint

propagation techniques. Constraint propagation techniques are filtering mechanisms that

aim to improve the performance of the search process by attempting to reduce the search

space. They have been widely used to simplify the search space before or during the

search of solutions. Thus, constraint propagation became a central process of solving CSPs
[Bessiere, 2006]. Historically, different kinds of constraint propagation techniques have

been proposed: node consistency [Mackworth, 1977], arc consistency [Mackworth, 1977]

and path consistency [Montanari, 1974] . The oldest and most commonly used technique

for propagating constraints in literature is the Arc Consistency, AC.

Definition 1.16 A value vi ∈ D(xi) is consistent with cij in D(xj) iff there exists a value vj ∈

D(xj) such that (vi, vj) is allowed by cij. Value vj is called a support for vi in D(xj).

Let us assume the constraint graph G = {XG, EG} (see Definition 1.2) associated to our

constraint satisfaction problem.

Definition 1.17 An arc {xi, xj} ∈ EG (constraint cij) is arc consistent iff ∀ vi ∈ D(xi), ∃ vj ∈

D(xj) such that (vi, vj) is allowed by cij and ∀ vj ∈ D(xj), ∃ vi ∈ D(xi) such that (vi, vj) is

allowed by cij. A constraint network is arc consistent iff all its arcs (constraints) are arc consistent.

A constraint network is arc consistent if and only if for any value vi in the domain,

D(xi), of a variable xi there exist in the domain D(xj) of an adjacent variable xj a value

vj that is compatible with vi. Clearly, if an arc {xi, xj} (i.e., a constraint cij) is not arc

consistent, it can be made arc consistent by simply deleting all values from the domains

of the variables in its scope for which there is not a support in the other domain. It is

obvious that these deletions maintains the problem solutions since the deleted values are

in no solution. The process of removing values from the domain of a variable xi, when

22 Chapter 1. Background

making an arc {xi, xj} arc consistent is called revising D(xi) with respect to constraint cij.

A wide variety of algorithms establishing arc consistency on CSPs have been developed:

AC-3 [Mackworth, 1977], AC-4 [Mohr and Henderson, 1986], AC-5 [Van Hentenryck et

al., 1992], AC-6 [Bessiere and Cordier, 1993; Bessiere, 1994], AC-7 [Bessiere et al., 1999],

AC-2001 [Bessiere and Régin, 2001], etc. The basic algorithm and the most will-known

one is Mackworth’s AC-3.

Algorithm 1.4: The AC-3 algorithm.
function Revise(xi , xj)

01. change ← false;
02. foreach (vi ∈ D(xi)) do
03. if (� vj ∈ D(xj) such that (vi , vj) ∈ cij) then

04. remove vi from D(xi) ;
05. change ← true;
06. return change ;
function AC-3()

07. foreach ({xi , xj} ∈ EG) do /* {xi , xj} ∈ EG iff ∃ cij ∈ C */
08. Q ← Q ∪ {(xi , xj); (xj, xi)} ;
09. while (Q �= ∅) do
10. (xi , xj) ← Q.pop() ; /* Select and remove (xi , xj) from Q */
11. if (Revise(xi , xj)) then

12. if (D(xi) = ∅) then return false ; /* The problem is unsatisfiable */
13. else Q ← Q ∪ { (xk , xi) | {xk , xi} ∈ EG , k �= i, k �= j } ;
14. return true ; /* The problem is arc consistent */

We illustrate the AC-3 algorithm in Algorithm 1.4. The AC-3 algorithm maintains a

queue Q 1 of arcs to render arc consistent. AC-3 algorithm will return true once the problem

is made arc consistent or false if an empty domain was generated (a domain is wiped out)

meaning that the problem is not satisfiable. Initially, Q is filled with all ordered pair of

variables that participates in a constraint. Thus, for each constraint cij ({xi, xj}) we add

to Q the ordered pair (xi, xj) to revise the domain of xi and the ordered pair (xj, xi) the

revise the domain of xj (line 8). Next, the algorithm loops until it is guaranteed that all arcs

have been made arc consistent (i.e., while Q is not empty). The ordered pair of variables

are selected and removed one by one from Q to revise the domain of the first variable.

Each time an ordered pair of variable (xi, xj) is selected and removed from Q (line 10),

AC-3 calls function Revise(xi, xj) to revise the domain of xi. When revising D(xi) with

respect to an arc {xi, xj} (Revise call, line 11), all values that are not consistent with cij

are removes from D(xi) (lines 2-4). Thus, only values having a support on D(xj) are kept

in D(xi). The function Revise returns true if the domain of variable xi has been reduced,

false otherwise (line 6). If Revise results in the removal of values from D(xi) it can be the

case that a value for another variable xk has lost its support on D(xi). Thus, all ordered

pairs (xk, xi) such that k �= j are added onto Q so long as they are not already on Q in order

to revise the domain of xk. Obviously, the AC-3 algorithm will not terminate as long as

there is any pair in Q. When Q is empty, we are guaranteed that all arcs have been made

arc consistent. Hence, the constraint network is arc consistent. The while loop of AC-3 can

1. Other data structures as queue or stack can perfectly serve the purpose

1.2. Algorithms and Techniques for Solving Centralized CSPs 23

be intuitively understood as constraint propagation (i.e., propagation the effect of value

removals on other domains potentially affected by these removals).

1.2.1.7 Maintaining Arc-Consistency (MAC)

Historically, constraint propagation techniques are used in a preprocessing step to

prune values before search. Thus, the search space that will be explored by the search algo-

rithm is reduced since domains of all variables are refined. By the way, subsequent search

efforts by the solution method will be reduced. Afterward, the search method can be called

for searching a solution. Constraint propagation techniques are also used during search.

This strategy is that used by the forward checking algorithm. Forward checking combines

backtrack search with a limited form of arc consistency maintenance on the domains of fu-

ture variables. Instead of performing a limited form of arc consistency, Sabin and Freuder

proposed in [Sabin and Freuder, 1994] the Maintaining Arc-Consistency (MAC) algorithm

that established and maintained a full arc consistency on the domains of future variables.

The Maintaining Arc Consistency (MAC) algorithm is a modern version of CS2 algorithm
[Gaschnig, 1974]. MAC alternates the search process and constraint propagation steps as

is done in forward checking [Haralick and Elliott, 1980]. Nevertheless, before starting

the search method, MAC makes the constraint network arc consistent. In addition, when

instantiating a variable xi to a value vi, all the other values in D(xi) are removed and

the effects of these removals are propagated through the constraint network [Sabin and

Freuder, 1994]. The maintaining arc consistency algorithm enforces arc consistency in the

search process as follows. At each step of the search, a variable assignment is followed by a

filtering process that corresponds to enforcing arc consistency. Therefore, MAC maintains

the arc consistency each time an instantiation is added to the partial solution. In other

word, whenever a value vi is instantiated to a variable xi, D(xi) is reduced momentarily to

a single value vi (i.e., D(xi) ← {vi}) and the resulting constraint network is then made arc

consistent.

1.2.2 Variable Ordering Heuristics for Centralized CSP

Numerous efficient search algorithms for solving constraint satisfaction problems have

been developed. The performance of these algorithms were evaluated in different stud-

ies and then shown to be powerful tools for solving CSPs. Nevertheless, since CSPs are

in general NP-complete, these algorithms still exponential. Therefore, a large variety of

heuristics were developed to improve their efficiency. That is, search algorithms solving

CSPs are commonly combined with heuristics for boosting the search. The literature is rich

in heuristics designed for this task. The order in which variables are assigned by a search

algorithm was one of the early concern for these heuristics. The order on variables can be

either static or dynamic.

24 Chapter 1. Background

1.2.2.1 Static Variable Ordering Heuristics (SVO)

The first kind of heuristics addressing the ordering of variables was based on the initial

structure of the network. Thus, the order of the variables can be determined prior the

search of solution. These heuristics are called Static Variable Ordering heuristics (SVO).

When presenting the main search procedures (Section 1.2), we always assumed without

specifying it each time, a static variable ordering. Therefore, in the previous examples we

have always used the lexicographic ordering of variables. That lexicographic ordering can

be simply replaced by an other ordering more appropriate to the structure of the network

before starting search.

Static variable ordering heuristics (SVO) are heuristics that keep the same ordering all

along the search. Hence, the ordering computed on a preprocessing step only exploit (struc-

tural) information about the initial state of the search. Examples of such SVO heuristics

are:

min-width The minimum width heuristic [Freuder, 1982] chooses an ordering that mini-

mizes the width of the constraint graph. The width of an ordering O is the maxi-

mum number of neighbors of any variable xi that occur earlier than xi under O. The

width of a constraint graph is the minimum width over all orderings of variables of

that graph. Minimizing the width of the constraint graph G can be accomplished

by a greedy algorithm. Hence, variables are ordered from last to first by choosing,

at each step, a variable having the minimum number of neighbors (min degree) in

the remaining constraint graph after deleting from the constraint graph all variables

which have been already ordered.

max-degree The maximum degree heuristic [Dechter and Meiri, 1989] orders the vari-

ables in a decreasing order of their degrees in the constraint graph (i.e., the size

of their neighborhood). This heuristic also aims at, without any guarantee, finding a

minimum-width ordering.

max-cardinality The maximum cardinality heuristic [Dechter and Meiri, 1989] orders the

variables according to the initial size of their neighborhood. max-cardinality puts

in the first position of the resulting ordering an arbitrarily variable. Afterward,

other variables are ordered from second to last by choosing, at each step, the most

connected variable with previously ordered variables. In a particular case, max-

cardinality may choose as the first variable the one that has the largest number of

neighbors.

min-bandwidth The minimum bandwidth heuristic [Zabih, 1990] minimizes the bandwidth

of the constraint graph. The bandwidth of an ordering is the maximum distance

between any two adjacent variables in the ordering. The bandwidth of a constraint

graph is the minimum bandwidth over all orderings on variables of that graph. Zabih

claims that an ordering with a small bandwidth will reduce the need for backjump-

ing because the culprit variable will be close to the variable where a dead-end occurs.

Many heuristic procedures for finding minimum bandwidth orderings have been de-

veloped, a survey of these procedures is given in [Chinn et al., 1982]. However, there

1.2. Algorithms and Techniques for Solving Centralized CSPs 25

is currently little empirical evidence that min-bandwidth is an effective heuristic.

Moreover, bandwidth minimization is NP-complete.

Another static variable ordering heuristic that tries to exploit the structural information

residing in the constraint graph is presented in [Freuder and Quinn, 1985]. Freuder and

Quinn (1985) have introduced the use of pseudo-tree arrangement of a constraint graph in

order to enhance the research complexity in centralized constraint satisfaction problems.

Definition 1.18 A pseudo-tree arrangement T = (XT , ET) of a constraint graph G = (XG, EG)

is a rooted tree with the same set of vertexes as G (i.e., XG = XT) such that vertexes in different

branches of T do not share any edge in G.

The concept of pseudo-tree arrangement of a constraint graph has been introduced first

by Freuder and Quinn in [Freuder and Quinn, 1985]. The purpose of this arrangement is to

perform search in parallel on independent branches of the pseudo-tree in order to improve

search in centralized CSPs. A recursive procedure for heuristically building pseudo-trees

have been presented by Freuder and Quinn in [Freuder and Quinn, 1985]. The heuristic

aims to select from GX the minimal subset of vertexes named cutset whose removal divides

G into disconnected sub-graphs. The selected cutset will form the first levels of the pseudo-

tree while next levels are build by recursively applying the procedure to the disconnected

sub-graphs obtained previously. By the way, the connected vertexes in the constraint graph

G belongs to the same branch of the obtained tree. Thus, the tree obtained is a pseudo-tree

arrangement of the constraint graph. Once, the pseudo-tree arrangement of the constraint

graph is built, several search procedure can be performed in parallel on each branch of the

pseudo-tree.

Although static variable ordering heuristics are undoubtedly cheaper since they are

computed once and for all, using this kind of variable ordering heuristics does not change

the worst-case complexity of the classical search algorithms. On the other hand, researchers

have been expected that dynamic variable ordering heuristics (DVO) can be more efficient.

DVO heuristics were expected to be potentially more powerful because they can take ad-

vantage from the information about the current search state.

1.2.2.2 Dynamic Variable Ordering Heuristics (DVO)

Instead of fixing an ordering as is done is SVO heuristics, dynamic variable ordering

(DVO) heuristics determines the order of the variables as search progresses. The order

of the variables may then differ from one branch of the search tree to another. It has

been shown empirically for many practical problems that DVO heuristics are more ef-

fective than choosing a good static ordering [Haralick and Elliott, 1980; Purdom, 1983;

Dechter and Meiri, 1989; Bacchus and Van Run, 1995; Gent et al., 1996]. Hence, the field

of constraint programming has so far mainly focused on such king of heuristics. There-

fore, many dynamic variable ordering heuristics for solving constraint networks have been

proposed and evaluated over the years. These heuristics are usually combined with search

procedures performing some form of look ahead (see Section 1.2.1.5 and Section 1.2.1.7) in

order to take into account changes on not yet instantiated (future) variables.

26 Chapter 1. Background

The guiding idea of the most DVO heuristic is to select the future variable with the

smallest domain size. Henceforth, this heuristic is named dom. Historically, Golomb and

Baumert (1965) where the first to propose the dom heuristic. However, it was popularized

when it was combined with the forward checking procedure by Haralick and Elliott (1980).

dom investigates the future variables (remaining sub-problem) and provides choosing as

next variable the one with the smallest remaining domain. Haralick and Elliott proposed

dom under the rubric of an intuition called fail first principle: “to succeed, try first where you

are likely to fail”. Moreover, they assume that “the best search order is the one which minimizes

the expected length or depth of each branch” (p. 308). Thus, they estimate that minimizing

branch length in a search procedure should also minimize search effort.

Many studies has gone into understanding the dom heuristic that is a simple but ef-

fective heuristic. Following the same principle of Haralick and Elliott saying that search

efficiency is due to earlier failure, Smith and Grant (1998) have derived from dom new

heuristics that detect failures earlier than dom. Their study is based on a intuitive hy-

potheses saying that earlier detection of failure should lead the heuristic to lower search

effort. Surprisingly, Smith and Grant’s experiments refuted this hypotheses contrary to

their expectations. They concluded that increasing the ability to fail early in the search

did not always lead to increased search efficiency. In follow on work, Beck et al. (2005)

shown that in forward checking (Section 1.2.1.5) minimizing branch depth is associated

with an increase in the branching factor. This can lead forward checking to perform badly.

Nevertheless, their experiments show that minimizing branch depth in Maintained Arc

Consistency (Section 1.2.1.7) reduces the search effort. Therefore, Beck et al. do not over-

look the principle of trying to fail earlier in the search. They propose to redefine failing

early in a such way to combine both the branching factor and the branch depth as it was

suggested by Nudel in [Nudel, 1983] (for instance, minimizing the number of nodes in the

failed subtrees).

In addition to the studies that has gone into understanding dom, considerable research

effort has been spent on improving it by suggesting numerous variants. These variants

express the intuitive idea that a variable which is constrained with many future variables

can also lead to a failure (a dead-end). Thus, these variants attempts to take into account

the neighborhood of the variables as well as their domain size. We present in the following

a set of well-known variable ordering heuristics derived from dom.

dom+deg A variant of dom, dom+deg, have been designed in [Frost and Dechter, 1994] to

break ties when all variables have the same initial domain size. dom+deg heuristic

breaks ties by giving priority to variable with the highest degree (i.e., the one with the

largest number of neighbors).

dom+futdeg Another variant breaking ties of dom is the dom+futdeg heuristic [Brélaz,

1979; Smith, 1999]. Originally, dom+futdeg was developed by Brélaz for the graph

coloring problem and then applied later to CSPs. dom+futdeg chooses a variable

with smallest remaining domain (dom), but in case of a tie, it chooses from these

the variable with largest future degree, that is, the one having the largest number of

neighbors in the remaining subproblem (i.e., among future variables).

1.2. Algorithms and Techniques for Solving Centralized CSPs 27

dom/deg Both dom+deg and dom+futdeg use the domain size as the main criterion. The

degree of the variables is considered only in case of ties. Alternatively, Bessiere

and Régin (1996) combined dom with deg in a new heuristics called dom/deg. The

dom/deg do not gives priority to the domain size or degree of variables but uses them

equally. This heuristic selects the variable that minimizes the ratio of current domain

size to static degree. Bessiere and Régin have been shown that dom/deg gives good

results in comparison with dom when the constraint graphs are sparse but performs

badly on dense constraint graphs. They, considered a variant of this heuristic which

minimizes the ratio of current domain size to future degree dom/futdeg. However,

they found that the performance of dom/futdeg is roughly similar to that of dom/deg.

Multi-level-DVO A general formulation of dynamic variable ordering heuristics which

approximates the constrainedness of variables and constraints, denoted Multi-level-

DVO, have been proposed in [Bessiere et al., 2001a]. Multi-level-DVO heuristics are

considered as neighborhood generalizations of dom and dom/deg and the selection

function for variable xi they suggested is as follows:

H�
α (xi) =

∑
xj∈Γ(xi)

(α(xi)� α(xj))

| Γ(xi) |2

where Γ(xi) is the set of xi neighbors, α(xi) can be any syntactical property of the

variable such as dom or dom/deg and � ∈ {+,×}. Therefore, Multi-level-DVO take

into account the neighborhood of variables which have shown to be quite promising.

Moreover, it allows using functions to measure the weight of a given constraint.

dom/wdeg Conflict-driven variable ordering heuristics have been introduced in [Bousse-

mart et al., 2004]. These heuristics learn from previous failures to manage the choice

on future variables. When a constraint leads to a dead-end, its weight is incremented

by one. Each variable has a weighted degree, which is the sum of the weights over all

constraints involving this variable. This heuristic can simply select the variable with

the largest weighted degree (wdeg) or incorporating the domain size of variables

to give the domain-over-weighted-degree heuristic (dom/wdeg). dom/wdeg selects

among future variables the one with minimum ratio between current domain size

and weighted degree. wdeg and dom/wdeg (especially dom/wdeg) have been shown

to perform well on a variety of problems.

In addition to the variable heuristics we presented here, other elegant dynamic

heuristics have been developed for centralized CSPs in many studies [Gent et al., 1996;

Horsch and Havens, 2000]. However, these heuristics require extra computation and have

only been tested on random problems. On other hand, it has been shown empirically

that maintaining arc-consistency (MAC) combined to the dom/deg or the dom/wdeg can

reduce or remove the need for backjumping on some problems [Bessiere and Régin, 1996;

Lecoutre et al., 2004]. Although, the variable ordering heuristics proposed are numerous,

one has to notice that none of these heuristics has been proved to be efficient in every

instance of the problems.

28 Chapter 1. Background

Beside different variable ordering heuristics designed to improve the efficiency of

search procedure, researchers developed many Look-ahead Value Ordering (LVO) heuris-

tics. This is because value ordering heuristic are powerful way of reducing the ef-

forts of search algorithms [Haralick and Elliott, 1980]. Therefore the constraint pro-

gramming community developed various LVO heuristics that choose which value to

instantiate to the selected variable. Many designed value ordering heuristics attempt

to choose next the least constraining values, i.e., values that are most likely to suc-

ceed. By the way, values that are expected to participate in many solutions are priv-

ileged. Minton et al. designed a value ordering heuristic, the min-conflicts, that at-

tempts to minimize the number of constraint violations after each step [Minton et al.,

1992]. Selecting first min-conflicts values maximizes the number of values available for

future variables. Therefore, partial solutions that cannot be extended will be avoided.

Other heuristics try to first select value maximizing the product [Ginsberg et al., 1990;

Geelen, 1992] or the sum of support in future domain after propagation [Frost and Dechter,

1995]. Nevertheless, However, all these heuristics are costly. Literature is rich on other LVO,

to mention a few [Dechter and Pearl, 1988; Frost and Dechter, 1995; Meisels et al., 1997;

Vernooy and Havens, 1999; Kask et al., 2004].

1.3 Distributed constraint satisfaction problems (DisCSP)

A wide variety of problems in artificial intelligence are solved using the constraint sat-

isfaction problem paradigm. However, there exist applications that are of a distributed

nature. In this kind of applications the knowledge about the problem, that is, vari-

ables and constraints, may be logically or geographically distributed among physical

distributed agents. This distribution is mainly due to privacy and/or security require-

ments: constraints or possible values may be strategic information that should not be

revealed to other agents that can be seen as competitors. In addition, a distributed sys-

tem provides fault tolerance, which means that if some agents disconnect, a solution

might be available for the connected part. Several applications in multi-agent coordina-

tion are of such kind. Examples of applications are sensor networks [Jung et al., 2001;

Béjar et al., 2005], military unmanned aerial vehicles teams [Jung et al., 2001], distributed

scheduling problems [Wallace and Freuder, 2002; Maheswaran et al., 2004], distributed

resource allocation problems [Petcu and Faltings, 2004], log-based reconciliation [Chong

and Hamadi, 2006], Distributed Vehicle Routing Problems [Léauté and Faltings, 2011], etc.

Therefore, a distributed model allowing a decentralized solving process is more adequate

to model and solve such kind of problems. The distributed constraint satisfaction problem has

such properties.

A Distributed Constraint Satisfaction Problem (DisCSP) is composed of a group

of autonomous agents, where each agent has control of some elements of informa-

tion about the whole problem, that is, variables and constraints. Each agent owns its

local constraint network. Variables in different agents are connected by constraints.

Agents must assign values to their variables so that all constraints are satisfied. Hence,

1.3. Distributed constraint satisfaction problems (DisCSP) 29

agents assign values to their variables, attempting to generate a locally consistent as-

signment that is also consistent with constraints between agents [Yokoo et al., 1998;

Yokoo, 2000a]. To achieve this goal, agents check the value assignments to their vari-

ables for local consistency and exchange messages among them to check consistency of

their proposed assignments against constraints that contain variables that belong to other

agents.

1.3.1 Preliminaries

The Distributed Constraint Satisfaction Problem (DisCSP) is a constraint network where

variables and constraints are distributed among multiple automated agents [Yokoo et al.,

1998].

Definition 1.19 A DisCSP (or a distributed constraint network) has been formalized as a tuple

(A,X ,D, C), where:

• A = {A1, . . . , Ap} is a set of p agents.

• X = {x1, . . . , xn} is a set of n variables such that each variable xi is controlled by one agent

in A.

• D = {D(x1), . . . , D(xn)} is a set of current domains, where D(xi) is a finite set of possible

values for variable xi.

• C = {C1, . . . , Ce} is a set of e constraints that specify the combinations of values allowed

for the variables they involve.

Values may be pruned from the domain of a variable. At any node, the set of possible

values for variable xi is its current domain, D(xi). In the same manner for centralized

CSPs, we introduce the particular notation of initial domains (or definition domains) D0 =

{D0(x1), . . . , D0(xn)}, that represents the set of domains before pruning any value (i.e.,

D ⊆ D0).

In the following, we provide some material assumptions in context of DisCSPs. First, we

assume a binary distributed constraint network where all constraints are binary constraints

(they involve two variables). A constraint cij ∈ C between two variables xi and xj is a subset

of the Cartesian product of their domains (cij ⊆ D0(xi)× D0(xj)). For simplicity purposes,

we consider a restricted version of DisCSPs where each agent controls exactly one variable

(p = n). Thus, we use the terms agent and variable interchangeably and we identify the

agent ID with its variable index. We assume also that each agent (Ai) knows all constraints

involving its variable and its neighbors (Γ(xi)) with whom it shares these constraints. We

also assume that only the agent who is assigned a variable has control on its value and

knowledge of its domain. In this thesis, we adopt the model of communication between

agents presented in [Yokoo, 2000b] where it is assumed that:

• agents communicate by exchanging messages,

• the delay in delivering a message is random but finite and

• an agent can communicate with other agents if it knows their addresses.

Initially, each agent knows addresses of all its neighbors without excluding the possi-

bility of getting addresses of other agents if it is necessary. However we discard the FIFO

30 Chapter 1. Background

assumption on communication channels between agents. Hence, we assume that commu-

nication between two agents is not necessarily generalized FIFO (aka causal order) channels
[Silaghi, 2006].

Almost all distributed algorithms designed for solving distributed CSPs require a total

priority order on agents. The total order on agents is denoted by O (see Definition 1.4).

In this thesis, we present two classes of distributed algorithms with regard the agents

ordering. The first category of distributed algorithms for solving DisCSPs corresponds to

those using a static ordering on agents. The second category of distributed algorithms for

solving DisCSPs corresponds to those performing a dynamic reordering of agents during

search. For the first category of algorithms and without loss any generality, we will assume

that the total order on agents is the lexicographic ordering [A1, A2, . . . , An].

For each agent Ai ∈ A, an agent Aj has a higher priority than Ai if it appears before Ai

in the total ordering on agents. We say that xj precede xi in the ordering and we denote

this by xj ≺ xi. Conversely, Aj has a lower priority than Ai if it appears after Ai in the total

ordering on agents (i.e., xj � xi). Hence, the higher priority agents are those appearing

before Ai in O. Conversely, the lower priority agents are those appearing after Ai. As a

results, O divides the neighbors of Ai, Γ(xi), into higher priority neighbors, Γ
−
(xi), and

lower priority neighbors, Γ
+
(xi).

Instead of assuming that communication between agents is necessarily FIFO, we adopt a

model where each agent (Ai) maintains a counter that is incremented whenever Ai changes

its value. The current value of the counter tags each generated assignment.

Definition 1.20 An assignment for an agent Ai ∈ A is a tuple (xi, vi, ti), where vi is a value

from the domain of xi and ti is the tag value. When comparing two assignments, the most up to

date is the one with the greatest tag ti. Two sets of assignments {(xi1 , vi1 , ti1), . . . , (xik
, vik

, tik
)}

and {(xj1 , vj1 , tj1), . . . , (xjq , vjq , tjq)} are compatible if every common variable is assigned the same

value in both sets.

In order to solve distributed CSPs agents exchange their proposals with other agents.

Definition 1.21 The AgentView of an agent Ai ∈ A is an array containing the most up to date

assignments received from other agents.

1.3.2 Examples of DisCSPs

A major motivation for research on Distributed Constraint Satisfaction Problems (DisC-

SPs) is that it is an elegant model for many every day combinatorial problems arising

in Distributed Artificial Intelligence. Thus, DisCSPs have a wide range of applications in

multi-agent coordination. Sensor networks [Jung et al., 2001; Béjar et al., 2005], distributed

resource allocation problems [Prosser et al., 1992; Petcu and Faltings, 2004], distributed

meeting scheduling [Wallace and Freuder, 2002; Maheswaran et al., 2004], log-based rec-

onciliation [Chong and Hamadi, 2006] and military unmanned aerial vehicles teams [Jung

et al., 2001] are non-exhaustive examples of real applications of a distributed nature that are

1.3. Distributed constraint satisfaction problems (DisCSP) 31

successfully modeled and solved by the DisCSP framework. We present in the following

some instances of these applications.

1.3.2.1 Distributed Meeting Scheduling Problem (DisMSP)

In Section 1.1.2.3, we presented the Meeting Scheduling Problem as a centralized CSP.

Nonetheless, it is a problem of a distributed nature. The Distributed Meeting Scheduling

Problem (DisMSP) is a truly distributed problem where agents may not desire to deliver

their personal information to a centralized agent to solve the whole problem [Wallace and

Freuder, 2002; Meisels and Lavee, 2004]. The DisMSP involves a set of n agents having a

personal private calendar and a set of m meetings each taking place in a specified location.

Each agent, Ai ∈ A, knows the set of the ki among m meetings he/she must attend. It

is assumed that each agent knows the traveling time between the locations where his/her

meetings will be held. The traveling time between locations where two meetings mi and

mj will be hold is denoted by TravellingTime(mi, mj). Solving the problem consists in

satisfying the following constraints: (i) all agents attending a meeting must agree on when

it will occur, (ii) an agent cannot attend two meetings at same time, (iii) an agent must have

enough time to travel from the location where he/she is to the location where the next

meeting will be held.

Distributed Meeting Scheduling Problem (DisMSP) is encoded in DisCSP as follows.

Each DisCSP agent represents a real agent and contains k variables representing the k

meetings to which the agent participates. The domain of each variable contains the d × h

slots where a meeting can be scheduled such that there are h slots per day and d days. There

is an equality constraint for each pair of variables corresponding to the same meeting in

different agents. This equality constraint means that all agents attending a meeting must

schedule it at the same slot (constraint (i)). There is an arrival-time constraint between all

variables/meetings belonging to the same agent. The arrival-time constraint between two

variables mi and mj is defined as follows (Equation 1.2):

|mi − mj|− duration > TravellingTime(mi, mj) (1.2)

where duration is the duration of every meeting. This arrival-time constraint allows us to

express both constraints (ii) and (iii).

We illustrate in Figure 1.6 the encoding of the instance of the meeting scheduling prob-

lem shown in Figure 1.4 in the distributed constraint network formalism. This figure shows

4 agents where each agent has a personal private calendar and a set of meetings each taking

place in a specified location. Thus we get the following DisCSP:

• A = {A1, A2, A3, A4}, each agent Ai corresponds to a real agent.

• For each agent Ai ∈ A there is a variable mik, for every meeting mk that Ai attends,

X = {m11, m13, m14, m21, m22, m32, m33, m34, m44}.

• D = {D(mik) | mik ∈ X} where,

– D(m11) = D(m13) = D(m14) = {s | s is a slot in calendar(A1)}.

– D(m21) = D(m22) = {s | s is a slot in calendar(A2)}.

32 Chapter 1. Background

m11

m13

m14

m21

m22

m32

m33

m34

m44

arrival-time constraints

=

=

=

=

=

=

A1

A2

A3

A4

August 2011

1 2 3 4 5 6 7

8 9 10 11 12 13 14

August 2011

1 2 3 4 5 6 7

8 9 10 11 12 13 14

August 2011

1 2 3 4 5 6 7

8 9 10 11 12 13 14

August 2011

1 2 3 4 5 6 7

8 9 10 11 12 13 14

Figure 1.6 – The distributed meeting-scheduling problem modeled as DisCSP.

– D(m32) = D(m33) = D(m34) = {s | s is a slot in calendar(A3)}.

– D(m44) = {s | s is a slot in calendar(A4)}.

• For each agent Ai, there is a private arrival-time constraint (ci
kl) between every pair of

its local variables (mik, mil). For each two agents Ai, Aj that attend the same meeting

mk there is an equality inter-agent constraint (cij
k) between the variables mik and mjk,

corresponding to the meeting mk on agent Ai and Aj. Then, C = {ci
kl , c

ij
k }.

1.3.2.2 Distributed Sensor Network Problem (SensorDCSP)

The Distributed Sensor Network Problem (SensorDisCSP) is a real distributed resource

allocation problem [Jung et al., 2001; Béjar et al., 2005]. This problem consists of a set of

n stationary sensors, {s1, . . . , sn}, and a set of m targets, {t1, . . . , tm}, moving through

their sensing range. The objective is to track each target by sensors. Thus, sensors have to

cooperate for tracking all targets. In order, for a target, to be tracked accurately, at least

3 sensors must concurrently turn on overlapping sectors. This allows the target’s position

to be triangulated. However, each sensor can track at most one target. Hence, a solution

is an assignment of three distinct sensors to each target. A solution must satisfy visibility

and compatibility constraints. The visibility constraint defines the set of sensors to which

a target is visible. The compatibility constraint defines the compatibility among sensors

(sensors within the sensing range of each other).

Figure 1.7 illustrates an instance of the SensorDCSP problem. This example includes

25 sensors (blue circular disks) placed on a grid of 5×5 and 5 targets (red squares) to be

tracked. Figure 1.7 illustrates the visibility constraints, that is, the set of sensors to which

a target is visible. Two sensors are compatible if and only if they are in sensing range of

each other.

1.4. Methods for solving distributed CSPs 33

t1

t2
t3

t4

t5

s11

s21

s31

s41

s51

s12

s22

s32

s42

s52

s13

s23

s33

s43

s53

s14

s24

s34

s44

s54

s15

s25

s35

s45

s55

sensors

Figure 1.7 – An instance of the distributed sensor network problem.

The distributed sensor network problem (SensorDisCSP) was formalized in [Béjar et

al., 2005] as follows:

• S = {s1, . . . , sn} is a set of n sensors;

• T = {t1, . . . , tm} is a set of m targets;

Each agent represents one target (i.e., A = T). There are three variables per agent, one for

each sensor that we need to allocate to the corresponding target. The domain of each vari-

able is the set of sensors that can detect the corresponding target (the visibility constraint

defines such sensors). The intra-agent constraints between the variables of one agent (tar-

get) specify that the three sensors assigned to the target must be distinct and pairwise

compatible. The inter-agent constraints between the variables of different agents specify

that a given sensor can be selected by at most one agent.

1.4 Methods for solving distributed CSPs

A trivial method for solving distributed CSPs will be to gather all information about

the problem (i.e., the variables, their domains, and the constraints) into a leader (i.e., system

agent). Afterward the leader agent can solve the problem alone by a centralized constraint

satisfaction algorithm. Such leader agent can be elected using a leader election algorithm.

An example of leader election algorithm was presented in [Abu-Amara, 1988]. However,

the cost of gathering all information about a problem can be a major obstacle of such

approach. Moreover, for security/privacy reasons gathering the whole knowledge to a

single agent is undesirable or impossible in some applications.

Several distributed algorithms for solving distributed constraint satisfaction problem

(DisCSPs) have been developed in the last two decades. To mention only a few [Yokoo et

al., 1992; Yokoo, 1995; Yokoo and Hirayama, 1995; Hamadi et al., 1998; Yokoo et al., 1998;

Bessiere et al., 2001b; Meisels and Razgon, 2002; Brito and Meseguer, 2003; Meisels and

Zivan, 2003; Brito and Meseguer, 2004; Bessiere et al., 2005; Silaghi and Faltings, 2005;

Ezzahir et al., 2009]. Regarding the manner on which assignments are processed on these

algorithms, they are clustered as synchronous, asynchronous or hybrid ones.

In synchronous search algorithms for solving DisCSPs, agents sequentially assign their

34 Chapter 1. Background

variables. Synchronous algorithms are based on notion of token, that is, the privileged of

assigning the variable. The token is passed among agents in synchronous algorithms and

then only the agent holding the token is activated while the rest of agents are waiting. Thus,

agents perform the assignment of their variable only when they hold a token. Although

synchronous algorithms do not exploit the parallelism inherent from the distributed sys-

tem, their agents receive consistent information from each other.

In the asynchronous search algorithms, agents act concurrently and asynchronously

without any global control. Hence, all agents are activated an then have the privileged

of assigning their variables asynchronously. Asynchronous algorithms are executed au-

tonomously by each agent in the distributed problem where agents do not need to wait

for decisions of other agents. Thus, agents take advantage from the distributed formalism

to enhance the degree of parallelism. However, in asynchronous algorithms, the global

assignment state at any particular agent is in general inconsistent.

1.4.1 Synchronous search algorithms on DisCSPs

Synchronous Backtracking (SBT) is the simplest search algorithm for solving DisCSPs
[Yokoo, 2000b]. SBT is a straightforward extension of the chronological Backtracking al-

gorithm for centralized CSPs (Section 1.2.1.1). SBT requires a total order on which agents

will be instantiated. Following this ordering, agents perform assignments sequentially and

synchronously. When an agent receives a partial solution from its predecessor, it assigns

its variable a value satisfying constraints it knows. If it succeeds in finding such value, it

extends the partial solution by adding its assignment on it and passes it on to its successor.

When no value is possible for its variable, then it sends a backtracking message to its pre-

decessor. In SBT, only the agent holding the current partial assignment (CPA) performs an

assignment or backtrack.

Zivan and Meisels (2003) proposed the Synchronous Conflict-Based Backjumping (SCBJ),

a distributed version of the centralized (CBJ) algorithm [Prosser, 1993], see Section 1.2.1.2.

While SBT performs chronological backtracking, SCBJ performs backjumping. Each agent

Ai keep the conflict set (CSi). When a wipe-out occurs on its domain, a jump is performed

to the closest conflict variable in CSi. The backjumping message will contain CSi. When an

agent receives a backjumping message, it discards it current value, and updates its conflict

set to be the union of its old conflict-set and the one received.

Extending SBT, Meisels and Zivan (2007) proposed the Asynchronous Forward-

Checking (AFC). Besides assigning variables sequentially as is done in SBT, agents in AFC

perform forward checking (FC [Haralick and Elliott, 1980]) asynchronously. The key here

is that each time an agent succeeds to extend the current partial assignment (by assigning

its variable), it sends the CPA to its successor and copies of this CPA to all agents whose

assignments are not yet on the CPA. When an agent receives a copy of the CPA, it performs

the forward checking phase. In the forward checking phase all inconsistent values with

assignments on the received CPA are removed. The forward checking operation is per-

formed asynchronously where comes the name of the algorithm. When an agent generates

an empty domain as a result of a forward checking, it informs all agents with unassigned

1.4. Methods for solving distributed CSPs 35

variables on the (inconsistent) CPA. Afterwards, one of these agents will receive the CPA

and will backtrack. Thereby, only one backtrack can be generated for a given CPA.

1.4.1.1 Asynchronous Forward-Checking (AFC)

The Asynchronous Forward-Checking (AFC) is a synchronous search algorithm that

processes only consistent partial assignments. These assignments are processed syn-

chronously. In AFC algorithm, the state of the search process is represented by a data

structure called Current Partial Assignment (CPA).

Definition 1.22 A current partial assignment, CPA, is an ordered set of assignments

{[(x1, v1, t1), . . . , (xi, vi, ti)] | x1 ≺ · · · ≺ xi}. Two CPAs are compatible if every common

variable is assigned the same value in both CPAs.

Each CPA is associated with a counter that is updated by each agent when it succeeds

in assigning its variable on the CPA. This counter, called Step-Counter (SC), acts as a time-

stamp for the CPA. In AFC algorithm, each agent stores the current assignments state of its

higher priority agents on the AgentView. The AgentView of an agent Ai ∈ A has a form

similar to a CPA. The AgentView contains a consistency flag, AgentView.Consistent, that

represents whether the partial assignment it holds is consistent. The pseudo-code of AFC

algorithm executed by a generic agent Ai is shown in Algorithm 1.5.

Agent Ai starts the search by calling procedure AFC() in which it initializes counters to

0. Next, if Ai is the initializing agent IA (the first agent in the agent ordering, O), it initiates

the search by calling procedure Assign() (line 2). Then, a loop considers the reception and

the processing of the possible message types. Thus, agents wait for messages, and then call

the procedures dealing with the relevant type of message received.

When calling procedure Assign() Ai tries to find an assignment, which is consis-

tent with its AgentView. If Ai fails to find a consistent assignment, it calls procedure

Backtrack() (line 13). If Ai succeeds, it generates a CPA from its AgentView augmented

by its assignment, increments the Step Counter SC (lines 10-11), and then calls procedure

SendCPA(CPA) (line 12). If the CPA includes all agents assignments (Ai is the lowest agent

in the ordering, line 14), Ai reports the CPA as a solution of the problem and marks the

end flag true to stop the main loop (line 15). Otherwise, Ai sends forward the CPA to every

agent whose assignments are not yet on the CPA (line 17). Next agent on the ordering (suc-

cessor, Ai+1) will receive the CPA in a cpa message and then will try to extend this CPA by

assigning its variable on it (line 17). Other unassigned agents will receive the CPA, gener-

ated by Ai, in fc_cpa (line 18). Therefore, these agents will perform the forward-checking

phase asynchronously to check its consistency.

Ai calls procedure Backtrack() when it is holding the CPA in one of two cases. Ei-

ther Ai can not find a consistent assignment for its variable (line 13), or its AgentView is

inconsistent and is found to be compatible with the received CPA (line 30). If Ai is the

initializing agent IA, line 19, this means that the problem is unsolvable. Ai ends then the

search by marking the end flag true to stop the main loop and sending a stp message to all

agent informing them that search ends unsuccessfully (line 19). Other agents performing a

36 Chapter 1. Background

Algorithm 1.5: The AFC algorithm running by agent Ai.
procedure AFC()

01. vi ← empty; ti ← 0; SC ← 0; end ← false; AgentView.Consistent ← true;
02. if (Ai = IA) then Assign();
03. while (¬end) do
04. msg ← getMsg();
05. switch (msg.type) do
06. cpa : ProcessCPA(msg); fc_cpa : ProcessFCCPA(msg.CPA);
07. back_cpa : ProcessCPA(msg); not_ok : ProcessNotOk(msg.CPA);
08. stp : end ← true;

procedure Assign()

09. if (D(xi) �= ∅) then
10. vi ← ChooseValue(); ti ← ti + 1 ;
11. CPA ← {AgentView ∪ myAssig}; CPA.SC ← AgentView.SC + 1 ;
12. SendCPA(CPA) ;
13. else Backtrack();
procedure SendCPA(CPA)
14. if (Ai is the last agent in O) then
15. end ← true; broadcastMsg : stp(CPA)
16. else
17. sendMsg : cpa(CPA) to Ai+1 ; /* Ai+1 is the agent next Ai */
18. foreach (Ak � Ai+1) do sendMsg : fc_cpa(CPA) to Ak ;

procedure Backtrack()

19. if (Ai = IA) then end ← true; broadcastMsg : stp() ;
20. else
21. AgentView ← shortest inconsistent partial assignment ;
22. AgentView.Consistent ← false;
23. sendMsg : back_cpa(AgentView) to Aj ; /* Aj denotes the last agent on AgentView */

procedure ProcessCPA(msg)
24. CheckConsistencyOfAgentView(msg.CPA) ;
25. if (AgentView.Consistent) then
26. if (msg.Sender � xi) then store msg.CPA as justification of vi removal ;
27. else UpdateAgentView(msg.CPA) ;
28. Assign() ;

procedure CheckConsistencyOfAgentView(CPA)
29. if (¬AgentView.Consistent) then
30. if (AgentView ⊆ CPA) then Backtrack() ;
31. else AgentView.Consistent ← true ;

procedure UpdateAgentView(CPA)
32. AgentView ← CPA; AgentView.SC ← CPA.SC ;
33. foreach (v ∈ D(xi) such that ¬isConsistent(v, CPA)) do
34. store the shortest inconsistent partial assignment as justification of v removal;
procedure ProcessFCCPA(CPA)
35. if (CPA.SC > AgentView.SC) then
36. if (¬AgentView.Consistent) then
37. if (¬AgentView ⊆ CPA) then AgentView.Consistent ← true ;
38. if (AgentView.Consistent) then
39. UpdateAgentView(CPA) ;
40. if (D(xi) = ∅) then
41. sendMsg : not_ok(CPA) to unassigned agents on AgentView ;

procedure ProcessNotOk(CPA)
42. if (CPA ⊆ AgentView ∨ (AgentView � CPA ∧ CPA.SC > AgentView.SC)) then
43. AgentView ← msg.CPA ;
44. AgentView.Consistent ← false ;

1.4. Methods for solving distributed CSPs 37

backtrack operation, copy to their AgentView the shortest inconsistent partial assignment

(line 21) and set its flag to f alse. Next, they send the AgentView back to the agent which

is the owner of the last variable in the inconsistent partial assignment (line 23).

Whenever Ai receives a cpa or a back_cpa messages, procedure ProcessCPA() is called.

Ai then checks the consistency of its AgentView (procedure CheckConsistencyOfAgentView

call, line 24). If the AgentView is not consistent and it is a subset of the received CPA, this

means that Ai has to backtrack (line 30). If the AgentView is not consistent and not a subset

of the received CPA, Ai marks its AgentView consistent by setting AgentView.Consistent

flag to true (line 31). Afterwards, Ai checks the consistency of its AgentView. If it is the

case, Ai calls procedure Assign() to assign its variable (line 28) once it removes its current

value vi storing the received CPA as a justification of its removal if the received message is

a back_cpa message (line 26), or it updates its AgentView if the received message is a cpa

message (line 27). When calling procedure UpdateAgentView, Ai sets its AgentView to the

received CPA and the step counter of its AgentView to that associated to the received CPA

(line 32). Then, Ai performs the forward-checking to remove from its domain all values

inconsistent with the received CPA (lines 33-34).

Whenever a fc_cpa message is received, Ai calls procedure ProcessFCCPA(msg) to pro-

cess it. If the SC associated to the received CPA is less than or equal that of the AgentView,

this message is ignored since it is obsolete. Otherwise, Ai set its AgentView to be consistent

if it was not consistent and it is not included in the received CPA (line 37). Afterwards, Ai

checks the consistency of its AgentView. If it is the case, it calls procedure UpdateAgentView

to perform the forward-checking (line 39). When an empty domain is generated as result of

the forward-checking phase, Ai initiates a backtrack process by sending not_ok messages to

all agents with unassigned variables on the (inconsistent) CPA (line 41). not_ok messages

carry the shortest inconsistent partial assignment which caused the empty domain.

When an agent Ai receives the not_ok message (procedure ProcessNotOk(msg)), it

checks the relevance of the CPA carried in the received message with its AgentView. If the

received CPA is relevant, Ai replaces its AgentView by the content of the not_ok message

and set it to be inconsistent (lines 43-44)

1.4.2 Asynchronous search algorithms on DisCSPs

Several distributed asynchronous algorithms for solving DisCSPs have been developed,

among which Asynchronous Backtracking (ABT) is the central one.

1.4.2.1 Asynchronous Backtracking (ABT)

The first complete asynchronous search algorithm for solving DisCSPs is the Asyn-

chronous Backtracking (ABT) [Yokoo et al., 1992; Yokoo, 2000a; Bessiere et al., 2005]. ABT is

an asynchronous algorithm executed autonomously by each agent in the distributed prob-

lem. Agents do not have to wait for decisions of others but they are subject to a total

(priority) order. Each agent tries to find an assignment satisfying the constraints with what

is currently known from higher priority neighbors. When an agent assigns a value to its

38 Chapter 1. Background

variable, the selected value is sent to lower priority neighbors. When no value is possi-

ble for a variable, the inconsistency is reported to higher agents in the form of a nogood

(see Definition 1.13). ABT computes a solution (or detects that no solution exists) in a finite

time. To be complete, ABT requires a total ordering on agents. The total ordering on agents

is static.

The required total ordering on agents in ABT provides a directed acyclic graph. Con-

straints are then directed according to the total order among agents. Hence, a directed

link between each two constrained agents is established. ABT uses this structure between

agent to perform the asynchronous search. Thus, the agent from which a link departs is

the value-sending agent and the agent to which the link arrives is the constraint-evaluating

agent. The pseudo-code executed by a generic agent Ai ∈ A is presented in Algorithm 1.6.

In ABT, each agent keeps some amount of local information about the global search,

namely an AgentView and a NogoodStore. A generic agent, say Ai, stores in its AgentView

the most up to date values that it believes are assigned to its higher priority neighbors.

Ai stores in its NogoodStore nogoods justifying values removal. Agents exchange the

following types of messages (where Ai is the sender):

ok?: Ai informs a lower priority neighbor about its assignment.

ngd: Ai informs a higher priority neighbor of a new nogood.

adl: Ai requests a higher priority agent to set up a link.

stp: The problem is unsolvable because an empty nogood has been generated.

In the main procedure ABT(), each agent selects a value and informs other agents

(CheckAgentView call, line 2). Then, a loop receives and processes messages (line 3-7).

CheckAgentView checks if the current value (vi) is consistent with AgentView. If vi is

inconsistent with assignments of higher priority neighbors, Ai tries to select a consistent

value (ChooseValue call, line 9). In this process, some values from D(xi) may appear as

inconsistent. Thus, nogoods justifying their removal are added to the NogoodStore of Ai

(line 39). When two nogoods are possible for the same value, Ai selects the best with the

Highest Possible Lowest Variable heuristic [Hirayama and Yokoo, 2000; Bessiere et al., 2005].

If a consistent value exist, it is returned and then assigned to xi. Then, Ai notifies its new

assignment to all agents in Γ
+
(xi) through ok? messages (line 11). Otherwise, Ai has to

backtrack (procedure Backtrack() call, line 12).

Whenever it receives an ok? message, Ai processes it by calling procedure

ProcessInfo(msg). The AgentView of Ai is updated (UpdateAgentView call, line 13) only

if the received message contains an assignment more up to date than that already stored

for the sender (line 16) and all nogoods becomes non compatible with the AgentView of

Ai are removed (line 18). Then, a consistent value for Ai is searched after the change in the

AgentView (CheckAgentView call, line 14).

When every value of Ai is forbidden by its NogoodStore, procedure Backtrack()

is called. In procedure Backtrack(), Ai resolves its nogoods, deriving a new nogood,

newNogood (line 19). If newNogood is empty, the problem has no solution. Ai broadcasts

the stp messages to all agents and terminates the execution (line 20). Otherwise, the new

nogood is sent in a ngd message to the agent, say Aj, owning the variable appearing in its

1.4. Methods for solving distributed CSPs 39

Algorithm 1.6: The ABT algorithm running by agent Ai.
procedure ABT()

01. vi ← empty; ti ← 0; end ← false;
02. CheckAgentView() ;
03. while (¬end) do
04. msg ← getMsg();
05. switch (msg.type) do
06. ok? : ProcessInfo(msg); ngd : ResolveConflict(msg);
07. adl : AddLink(msg); stp : end ← true;

procedure CheckAgentView()

08. if (¬isConsistent(vi , AgentView)) then
09. vi ← ChooseValue() ;
10. if (vi �= empty) then

11. foreach (child ∈ Γ
+
(xi)) do sendMsg : ok?(myAssig�xi , vi , ti�) ;

12. else Backtrack() ;

procedure ProcessInfo(msg)
13. UpdateAgentView(msg.Assig) ;
14. CheckAgentView() ;
procedure UpdateAgentView(newAssig)
15. if (newAssig.tag > AgentView[j].tag) then /* xj ∈ newAssig */
16. AgentView[j] ← newAssig ;
17. foreach (ng ∈ myNogoodStore) do
18. if (¬Compatible(lhs(ng), AgentView)) then remove(ng,myNogoodStore) ;
procedure Backtrack()

19. newNogood ← solve(myNogoodStore) ;
20. if (newNogood = empty) then end ← true; sendMsg : stp(system);
21. else
22. sendMsg : ngd(newNogood) to Aj ; /* Let xj denote the variable on rhs(newNogood) */
23. UpdateAgentView(xj ← empty) ;
24. CheckAgentView() ;

procedure ResolveConflict(msg)
25. if (¬Compatible(lhs(msg.Nogood), AgentView)) then
26. CheckAddLink(msg.Nogood);
27. add(msg.Nogood, myNogoodStore) ;
28. CheckAgentView();
29. else if (rhs(msg.Nogood).Value = vi) then
30. sendMsg : ok?(myAssig) to msg.Sender ;

procedure CheckAddLink(nogood)

31. foreach (xj ∈ lhs(nogood) \ Γ
−
(xi)) do

32. add(xj = vj, AgentView) ;

33. Γ
−
(xi) ← Γ

−
(xi) ∪ {xj} ;

34. sendMsg : adl(xj = vj) to Aj ;

procedure AddLink(msg)

35. add(msg.Sender,Γ
+
(xi)) ;

36. if (vi �= msg.Assig.Value) then sendMsg : ok?(myAssig) to msg.Sender ;
function ChooseValue()

37. foreach (v ∈ D(xi)) do
38. if (isConsistent(v, AgentView)) then return v;
39. else store the best nogood for v ;
40. return empty;

40 Chapter 1. Background

rhs (line 22). Then, the assignment of xj is deleted from the AgentView (UpdateAgentView

call, line 23). Finally, a new consistent value is selected (CheckAgentView call, line 24).

Whenever Ai receives a ngd message, procedure ResolveConflict is called. The no-

good included in the ngd message is accepted only if its lhs is compatible with assignments

on the AgentView of Ai. Next, Ai calls procedure CheckAddLink (line 26). In procedure,

CheckAddLink() the assignments in the received nogood for variables not directly linked

with Ai are taken to update the AgentView (line 32) and a request for a new link is sent to

agents owning these variables (line 34). Next, the nogood is stored, acting as justification

for removing the value on its rhs (line 27). A new consistent value for Ai is then searched

(CheckAgentView call, line 28) if the current value was removed by the received nogood.

If the nogood is not compatible with the AgentView, it is discarded since it is obsolete.

However, if the value of xi was correct in the received nogood, Ai re-sends its assignment

to the nogood sender by an ok? message (lines 29-30).

When a link request is received, Ai calls procedure AddLink(msg). Then, the sender is

included in Γ
+
(xi) (line 35). Afterwards, Ai sends its assignment through an ok? message

to the sender if its value is different than that included in the received msg (line 36).

In order to be complete, ABT in its original version may request adding links between

initially unrelated agents. Given the manner to how these links are set Bessiere et al.

proposed 4 version of ABT that have been all proven to be complete [Bessiere et al., 2005].

By the way, they rediscover already existent algorithms like ABT [Yokoo et al., 1998], or

DIBT [Hamadi et al., 1998].

ABT (Adding links during search): In ABT, presented above, new links between unrelated

agents may be added during search. A link is requested by an agent when it receives

a ngd message containing unrelated agents in the ordering. New links are permanent.

These links are used to remove obsolete information stored by a given agent.

ABTall (Adding links as preprocessing): In ABTall , all the potentially useful links are added

during a preprocessing step. New links are permanent.

ABTtemp(k) (Adding temporary links): In ABTtemp(k), unrelated agents may be requested to

add a link between them. However, the added links are temporary. This idea was

firstly introduced in [Silaghi et al., 2001d]. New links are kept only for a fixed

number of messages (k). Hence, each added link is removed after exchanging k

messages through it.

ABTnot (No links): ABTnot no more needs links to be complete. To achieve its completeness,

it has only to remove obsolete information in finite time. Thus, all nogoods that

hypothetically could become obsolete are forgotten after each backtrack.

Figure 1.8 illustrates an example of Asynchronous Backtracking algorithm execution

on a simple instance (Figure 1.8(a)). This instance includes three agents, each holding

one variable (x1, x2 and x3). There domains are respectively {1, 2}, {2} and {1, 2}. This

instance includes two constraints x1 �= x3 and x2 �= x3. In Figure 1.8(b), by receiving ok?

messages from x1 and x2, the AgentView of x3 will be [x1 = 1, x2 = 2]. These assignments

remove values 1 and 2 from D(x3) storing two nogoods as justification of there removal

1.4. Methods for solving distributed CSPs 41

x1 x2

x3

�= �=

D(x1)={1, 2} D(x2)={2}

D(x3)={1, 2}

(a)

x1 x2

x3

�= �=

D(x1)={1, 2} D(x2)={2}

D(x3)={1, 2}

ok?(x1 = 1) ok?(x2 = 2)

AgentV iew : [x1 = 1, x2 = 2]

x1 = 1 → x3 �= 1

x2 = 2 → x3 �= 2

(b)

x1 x2

x3

�= �=

D(x1)={1, 2} D(x2)={2}

D(x3)={1, 2}

AgentV iew : [x1 = 1]

x1 = 1 → x3 �= 1

x1 = 1 → x2 �= 2

ngd(x1 = 1 → x2 �= 2)

(c)

x1 x2

x3

�= �=

D(x1)={1, 2} D(x2)={2}

D(x3)={1, 2}

AgentV iew:[x1=1]

x1 = 1 → x3 �= 1

AgentV iew:[x1=1]

adl(x1 = 1)

x1=1 → x2 �= 2

(d)

x1 x2

x3

�= �=

D(x1)={1, 2} D(x2)={2}

D(x3)={1, 2}

AgentV iew : [x1 = 1]

x1 = 1 → x3 �= 1

ngd([] → x1 �= 1)
[]→x1 �=1

(e)

x1 x2

x3

�= �=

D(x1)={1, 2} D(x2)={2}

D(x3)={1, 2}

[] → x1 �= 1

ok?(x2 = 2)

ok?(x1 = 2)

ok?(x1=2)

AgentV iew:[x1=2]

AgentV iew:[x1=2, x2=2]

(f)

Figure 1.8 – An example of Asynchronous Backtracking execution.

(i.e., x1=1 → x3 �= 1 respectively, x2=2 → x3 �= 2). Since there is no possible value

consistent with its AgentView, agent x3 resolves its nogoods producing a new nogood

(x1=1 → x2 �= 2) (Figure 1.8(c)). This nogood is then sent to x2 in ngd message. By receiving

this ngd message, agent x2 records this nogood. This nogood contains assignment of agent

x1, which is not connected to x2 by a link. Therefore, agent x2 requests a new link between

him and x1 by sending an adl message (Figure 1.8(d)). Agent x2 checks whether its value

is consistent with its AgentView ([x1 = 1]). Since its only value 2 is removed by the nogood

received from x3, agent x2 resolves its NogoodStore producing a new nogood, [] → x1 �= 1.

This nogood is then sent to agent x1 (Figure 1.8(e)). This nogood will lead x1 to change its

current value to 1, and henceforth it will send its assignment on an ok? message to both

42 Chapter 1. Background

agent x2 and x3. Simultaneously, agent x2 assigns its variable and then sends its assignment

to its lower priority neighbor x3. Hence, we get the situation shown in Figure 1.8(f).

1.4.3 Dynamic Ordering Heuristics on DisCSPs

In algorithms presented above for solving DisCSPs, the total ordering on agents is static.

Therefore, a single mistake on the order is very penalizing. Moreover, it is known from

centralized CSPs that dynamic reordering of variables during search drastically fastens the

search procedure (see Section 1.2.2.2). Many attempts were made to apply this principle

for improving distributed constraint algorithms.

The first reordering algorithm for DisCSP is the Asynchronous Weak Commitment

(AWC) [Yokoo, 1995]. Asynchronous Weak Commitment (AWC) dynamically reorders

agents during search by moving the sender of a nogood higher in the order than the other

agents in the nogood. Whenever a wipe-out occurs on the domain of a variable xi, the total

agent ordering is revised so as to assign the highest priority to the agent xi. While AWC

was shown to outperform ABT empirically on small problems, contrary to ABT, the AWC

algorithm requires an exponential space for storing all generated nogoods.

Silaghi et al. (2001c) later proposed Asynchronous Backtracking with Reordering

(ABTR) an attempt to hybridize ABT with AWC. Abstract agents fulfill the reordering

operation to guarantee a finite number of asynchronous reordering operations. Asyn-

chronous Backtracking with Reordering is the first asynchronous complete algorithm with

polynomial space requirements that enables a largest number of reordering heuristics in

asynchronous search. However, to achieve this the position of first agent on the ordering

had to be fix. A dynamic variable reordering heuristic for ABTR that exactly mimics the

one employed in centralized Dynamic Backtracking [Ginsberg, 1993] and that requires no

exchange of heuristic messages was presented in [Silaghi, 2006].

Zivan and Meisels (2006a) proposed Dynamic Ordering for Asynchronous Backtrack-

ing (ABT_DO aka ABTR). ABT_DO is a simple algorithm for dynamic ordering in Asyn-

chronous Backtracking search. Agents choose orders dynamically and asynchronously

while keeping space complexity polynomial. When an ABT_DO agent changes its assign-

ment, it can reorder all agents with lower priority. Zivan and Meisels proposed three dif-

ferent ordering heuristics in ABT_DO. In the best of those heuristics called Nogood-triggered

heuristic, inspired by dynamic backtracking [Ginsberg, 1993], the agent that generates a

nogood is placed in front of all other lower priority agents.

A new kind of ordering heuristics for ABT_DO is presented in [Zivan et al., 2009].

These heuristics, called retroactive heuristics, enable the generator of the nogood to be

moved to a higher position than that of the target of the backtrack. The degree of flexibility

of these retroactive heuristics depends on a parameter K. K defines the level of flexibility of

the heuristic with respect to the amount of information an agent can store in its memory.

Agents that detect a dead end move themselves to a higher priority position in the order.

If the length of the nogood generated is not larger than K then the agent can move to any

position it desires (even to the highest priority position) and all agents that are included in

the nogood are required to add the nogood to their set of constraints and hold it until the

1.5. Summary 43

algorithm terminates. Since agents must store nogoods that are smaller than or equal to

K, the space complexity of agents is exponential in K. If the size of the created nogood is

larger than K, the agent that generated the nogood can move up to the place that is right

after the second last agent in the nogood.

The best retroactive heuristic introduced in [Zivan et al., 2009] is called ABT_DO-Retro-

MinDom. This heuristic does not require any additional storage (i.e., K = 0). In this

heuristic, the agent that generates a nogood is placed in the new order between the last

and the second last agents in the generated nogood. However, the generator of the nogood

moves to a higher priority position than the backtracking target (the agent the nogood

was sent to) only if its domain is smaller than that of the agents it passes on the way up.

Otherwise, the generator of the nogood is placed right after the last agent with a smaller

domain between the last and the second last agents in the nogood.

1.4.4 Maintaining Arc Consistency on DisCSPs

Although, its success for solving centralized CSPs was empirically demonstrated, the

Maintenance of Arc Consistency (MAC) has not yet been well investigated in distributed

CSPs. Silaghi et al. (2001b) introduced the Distributed Maintaining Asynchronously Con-

sistency for ABT, DMAC-ABT, the first algorithm able to maintain arc consistency in dis-

tributed CSPs [Silaghi et al., 2001b]. DMAC-ABT considers consistency maintenance as

a hierarchical nogood-based inference. However, the improvement obtained on ABT was

minor.

Brito and Meseguer (2008) proposed ABT-uac and ABT-dac, two algorithms that con-

nect ABT with arc consistency [Brito and Meseguer, 2008]. The first algorithm they pro-

pose, ABT-uac, propagates unconditionally deleted values (i.e., values removed by a no-

good having an empty left-hand side) to enforce an amount of full arc consistency. The

intuitive idea behind ABT-uac is since unconditionally deleted values are removed once

and for all, their propagation may causes new deletions in the domains of other variables.

Thus, the search effort required to solve the DisCSP can be reduced. The second algo-

rithm they propose, ABT-dac, extends the first one in order to propagate conditionally and

unconditionally deleted values using directional arc consistency. ABT-uac shows minor

improvement in communication load and ABT-dac is harmful in many instances.

1.5 Summary

We have described in this chapter the basic issues of centralized constraint satisfac-

tion problems (CSPs). After defining the constraint satisfaction problem formalism (CSP)

and presenting some examples of academical and real combinatorial problems that can be

modeled as CSP, we reported the main existent algorithms and heuristics used for solving

centralized constraint satisfaction problems. Next, we formally define the distributed con-

straint satisfaction problem (DisCSP) paradigm. Some examples of real world applications

have been presented and then encoded in DisCSP. Finally, we provide the state of the art

methods for solving DisCSPs.

2Nogood based Asynchronous

Forward Checking (AFC-ng)

Contents
4.1 Introduction . 78

4.2 Maintaining Arc Consistency . 79

4.3 Maintaining Arc Consistency Asynchronously . 79

4.3.1 Enforcing AC using del messages (MACA-del) 80

4.3.2 Enforcing AC without additional kind of message (MACA-not) 83

4.4 Theoretical analysis . 84

4.5 Experimental Results . 85

4.5.1 Discussion . 87

4.6 Summary . 88

This chapter introduces our first contribution, that is, an asynchronous algorithm for

solving Distributed Constraint Satisfaction Problems (DisCSPs). Our algorithm is a

nogood-based version of Asynchronous Forward Checking (AFC). We call it Nogood-Based

Asynchronous Forward Checking (AFC-ng). Besides its use of nogoods as justification of

value removals, AFC-ng allows simultaneous backtracks going from different agents to

different destinations. We prove that AFC-ng only needs polynomial space. We compare

the performance of our contribution with other DisCSP algorithms on random DisCSPs

and instances from real benchmarks: sensor networks and distributed meeting scheduling.

Our experiments show that AFC-ng improves on AFC.

This chapter is organized as follows. Section 2.1 introduces our algorithm by briefly

recalling necessary background on the AFC algorithm. Our Nogood-Based Asynchronous

Forward Checking is described in Section 2.2. Correctness proofs are given in Section 2.3.

Section 2.4 presents an experimental evaluation of our proposed algorithm against other

well-known distributed algorithms. Section 2.5 summarizes several related works and we

conclude the chapter in Section 2.6.

45

46 Chapter 2. Nogood based Asynchronous Forward Checking (AFC-ng)

2.1 Introduction

As seen in Section 1.4.1 Asynchronous Forward-Checking (AFC) incorporates the idea

of the forward-checking (FC) algorithm for centralized CSP [Haralick and Elliott, 1980].

However, agents perform the forward checking phase asynchronously [Meisels and Zi-

van, 2003; Meisels and Zivan, 2007]. As in synchronous backtracking, agents assign their

variables only when they hold the current partial assignment (cpa). The cpa is a unique

message (token) that is passed from one agent to the next one in the ordering. The cpa

message carries the partial assignment (CPA) that agents attempt to extend into a complete

solution by assigning their variables on it. When an agent succeeds in assigning its vari-

able on the CPA, it sends this CPA to its successor. Furthermore, copies of the CPA are

sent to all agents whose assignments are not yet on the CPA. These agents perform the

forward checking asynchronously in order to detect as early as possible inconsistent par-

tial assignments. The forward-checking process is performed as follows. When an agent

receives a CPA, it updates the domain of its variable, removing all values that are in con-

flict with assignments on the received CPA. Furthermore, the shortest CPA producing the

inconsistency is stored as justification of the value deletion.

When an agent generates an empty domain as a result of a forward-checking, it initi-

ates a backtrack process by sending not_ok messages. not_ok messages carry the shortest

inconsistent partial assignment which caused the empty domain. not_ok messages are sent

to all agents with unassigned variables on the (inconsistent) CPA. When an agent receives

the not_ok message, it checks if the CPA carried in the received message is compatible

with its AgentView. If it is the case, the receiver stores the not_ok, otherwise, the not_ok

is discarded. When an agent holding a not_ok receives a CPA on a cpa message from its

predecessor, it sends this CPA back in a back_cpa message. When multiple agents reject

a given assignment by sending not_ok messages, only the first agent that will receive a

cpa message from its predecessor and is holding a relevant not_ok message will eventually

backtrack. After receiving a new cpa message, the not_ok message becomes obsolete when

the CPA it carries is no longer a subset of the received CPA.

The manner in which the backtrack operation is performed is a major drawback of

the AFC algorithm. The backtrack operation requires a lot of work from the agents. An

improved backtrack method for AFC was described in Section 6 of [Meisels and Zivan,

2007]. Instead of just sending not_ok messages to all agents unassigned in the CPA, the

agent who detects the empty domain can itself initiate a backtrack operation. It sends a

backtrack message to the last agent assigned in the inconsistent CPA in addition to the

not_ok messages to all agents not instantiated in the inconsistent CPA. The agent who

receives a backtrack message generates (if it is possible) a new CPA that will dominate

older ones thanks to a time-stamping mechanism.

We present in this chapter the Nogood-based Asynchronous Forward Checking (AFC-

ng), an algorithm for solving DisCSPs based on Asynchronous Forward Checking (AFC).

Instead of using the shortest inconsistent partial assignments we use nogoods as justifica-

tions of value removals. Unlike AFC, AFC-ng allows concurrent backtracks to be performed

at the same time coming from different agents having an empty domain to different des-

2.2. Nogood-based Asynchronous Forward Checking 47

tinations. As a result, several CPAs could be generated simultaneously by the destination

agents. Thanks to the timestamps integrated in the CPAs, the strongest CPA coming from

the highest level in the agent ordering will eventually dominate all others. Interestingly, the

search process with the strongest CPA will benefit from the computational effort done by

the (killed) lower level processes. This is done by taking advantage from nogoods recorded

when processing these lower level processes.

2.2 Nogood-based Asynchronous Forward Checking

The nogood-based Asynchronous Forward-Checking (AFC-ng) is based on the Asyn-

chronous Forward Checking (AFC). AFC-ng tries to enhance the asynchronism of the for-

ward checking phase. The two main features of AFC-ng are the following. First, it uses the

nogoods as justification of value deletions. Each time an agent performs a forward-check, it

revises its initial domain, (including values already removed by a stored nogood) in order to

store the best nogoods for removed values (one nogood per value). When comparing two

nogoods eliminating the same value, the nogood with the Highest Possible Lowest Variable

involved is selected (HPLV heuristic) [Hirayama and Yokoo, 2000]. As a result, when an

empty domain is found, the resolvent nogood contains variables as high as possible in the

ordering, so that the backtrack message is sent as high as possible, thus saving unnecessary

search effort [Bessiere et al., 2005].

Second, each time an agent Ai generates an empty domain it no longer sends not_ok

messages. It resolves the nogoods ruling out values from its domain, producing a new

nogood newNogood. newNogood is the conjunction of the left hand sides of all nogoods

stored by Ai. Then, Ai sends the resolved nogood newNogood in a ngd (backtrack) message

to the lowest agent in newNogood. Hence, multiple backtracks may be performed at the

same time coming from different agents having an empty domain. These backtracks are

sent concurrently by these different agents to different destinations. The reassignment of

the destination agents then happen simultaneously and generate several CPAs. However,

the strongest CPA coming from the highest level in the agent ordering will eventually

dominate all others. Agents use the timestamp (see Definition 2.1) to detect the strongest

CPA. Interestingly, the search process of higher levels with stronger CPAs can use nogoods

reported by the (killed) lower level processes, so that it benefits from their computational

effort.

2.2.1 Description of the algorithm

In the Asynchronous Forward-Checking only the agent holding the current partial as-

signment, CPA (Definition 1.22) can perform an assignment or backtracks. In order to

enhance the asynchronism of the forward-checking phase, unlike AFC, the nogood-based

Asynchronous Forward-Checking algorithm (AFC-ng) allows simultaneous backtracks go-

ing from different agents to different destinations. The reassignments of the destination

agents then happen simultaneously and generate several CPAs. For allowing agents to

48 Chapter 2. Nogood based Asynchronous Forward Checking (AFC-ng)

simultaneously propose new CPAs, they must be able to decide which CPA to select. We

propose that the priority between the CPAs is based on timestamp.

Definition 2.1 A timestamp associated with a CPA is an ordered list of counters [t1, t2, . . . , ti]

where tj is the tag of the variable xj. When comparing two CPAs, the strongest one is that associated

with the lexicographically greater timestamp. That is, the CPA with greatest value on the first

counter on which they differ, if any, otherwise the longest one.

Based on the timestamp associated with each CPA, now agents can detect the strongest

CPA. Therefore, the strongest CPA coming from the highest level in the agent ordering will

eventually dominate all others.

Each agent Ai ∈ A executes the pseudo-code shown in Algorithm 2.1. Each agent Ai

stores a nogood per removed value in the NogoodStore. The other values not ruled out

by a nogood form D(xi), the current domain of xi. Moreover, Ai keeps an AgentView that

stores the most up to date assignments received from higher priority agents in the agent

ordering. It has a form similar to a current partial assignment CPA (see, Definition 1.22)

and is initialized to the set of empty assignments {(xj, empty, 0) | xj ≺ xi}.

Agent Ai starts the search by calling procedure AFC-ng() in which it initializes its

AgentView (line 1) by setting counters to zero (line 9). The AgentView contains a consis-

tency flag that represents whether the partial assignment it holds is consistent. If Ai is the

initializing agent IA (the first agent in the agent ordering), it initiates the search by calling

procedure Assign() (line 2). Then, a loop considers the reception and the processing of

the possible message types (lines 3-8). In AFC-ng, agents exchange the following types of

messages (where Ai is the sender):

cpa Ai passes on the current partial assignment (CPA) to a lower priority agent. According

to its position on the ordering, the receiver will try to extend the CPA (when it is the

next agent on the ordering) or perform the forward-checking phase.

ngd Ai reports the inconsistency to a higher priority agent. The inconsistency is reported

by a nogood.

stp Ai informs agents either if a solution is found or the problem is unsolvable.

When calling Assign() Ai tries to find an assignment, which is consistent with its

AgentView. If Ai fails to find a consistent assignment, it calls procedure Backtrack()

(line 14). If Ai succeeds, it increments its counter ti and generates a CPA from its AgentView

augmented by its assignment (line 12). Afterwards, Ai calls procedure SendCPA(CPA)

(line 13). If the CPA includes all agents assignments (Ai is the lowest agent in the order,

line 15), Ai reports the CPA as a solution of the problem and marks the end flag true to

stop the main loop (line 16). Otherwise, Ai sends forward the CPA to every agent whose

assignments are not yet on the CPA (line 17). So, the next agent on the ordering (successor)

will try to extend this CPA by assigning its variable on it while other agents will perform

the forward-checking phase asynchronously to check its consistency.

Whenever Ai receives a cpa message, procedure ProcessCPA(msg) is called (line 6). Ai

checks its AgentView status. If it is not consistent and the AgentView is a subset of the

received CPA, this means that Ai has already backtracked, then Ai does nothing (line 18).

2.2. Nogood-based Asynchronous Forward Checking 49

Algorithm 2.1: Nogood-based AFC (AFC-ng) algorithm running by agent Ai.
procedure AFC-ng()

01. end ← false; AgentView.Consistent ← true; InitAgentView();
02. if (Ai = IA) then Assign() ;
03. while (¬end) do
04. msg ← getMsg();
05. switch (msg.type) do
06. cpa : ProcessCPA(msg);
07. ngd : ProcessNogood(msg);
08. stp : end ← true; if (msg.CPA �= ∅) then solution ← msg.CPA ;

procedure InitAgentView()

09. foreach (xj ≺ xi) do AgentView[j] ← {(xj, empty, 0)} ;

procedure Assign()

10. if (D(xi) �= ∅) then
11. vi ← ChooseValue() ; ti ← ti + 1 ;
12. CPA ← {AgentView ∪ myAssig} ;
13. SendCPA(CPA) ;
14. else Backtrack();
procedure SendCPA(CPA)
15. if (size(CPA) = n) then /* Ai is the last agent in O */
16. broadcastMsg : stp(CPA) ; end ← true
17. else foreach (xk � xi) do sendMsg : cpa(CPA) to Ak ;
procedure ProcessCPA(msg)
18. if (¬AgentView.Consistent ∧ AgentView ⊂ msg.CPA) then return ;
19. if (msg.CPA is stronger than AgentView) then
20. UpdateAgentView(msg.CPA) ; AgentView.Consistent ←true;
21. Revise();
22. if (D(xi) = ∅) then Backtrack() ;
23. else CheckAssign(msg.Sender) ;

procedure CheckAssign(sender)
24. if (Ai−1 = sender) then Assign() ; /* the sender is the predecessor of Ai */
procedure Backtrack()

25. newNogood ← solve(myNogoodStore) ;
26. if (newNogood = empty) then broadcastMsg : stp(∅); end ← true;
27. else
28. sendMsg : ngd(newNogood) to Aj ; /* xj denotes the variable on rhs(newNogood) */
29. foreach (xk � xj) do AgentView[k].value ← empty ;
30. foreach (ng ∈ NogoodStore) do
31. if (¬Compatible(ng, AgentView)∨ xj ∈ ng) then remove(ng, myNogoodStore) ;
32. AgentView.Consistent ← false; vi ← empty;

procedure ProcessNogood(msg)
33. if (Compatible(msg.Nogood, AgentView)) then
34. add(msg.nogood, NogoodStore) ; /* according to the HPLV */
35. if (rhs(msg.nogood).Value = vi) then vi ← empty; Assign() ;

procedure Revise()

36. foreach (v ∈ D0(xi)) do
37. if (¬isConsistent(v, AgentView)) then store the best nogood for v;
procedure UpdateAgentView(CPA)
38. AgentView ← CPA ; /* update values and tags */
39. foreach ((ng ∈ myNogoodStore)) do
40. if ((¬Compatible(ng, AgentView))) then remove(ng, myNogoodStore) ;

50 Chapter 2. Nogood based Asynchronous Forward Checking (AFC-ng)

Otherwise, if the received CPA is stronger than its AgentView, Ai updates its AgentView

and marks it consistent (lines 19-20). Procedure UpdateAgentView(CPA) (lines 38-40) sets

the AgentView and the NogoodStore to be consistent with the received CPA. Each nogood

in the NogoodStore containing a value for a variable different from that on the received

CPA will be deleted (line 40). Next, Ai calls procedure Revise() (line 21) to store nogoods

for values inconsistent with the new AgentView or to try to find a better nogood for values

already having one in the NogoodStore (line 37). A nogood is better according to the HPLV

heuristic if the lowest variable in the body (lhs) of the nogood is higher. If Ai generates

an empty domain as a result of calling Revise(), it calls procedure Backtrack() (line 22),

otherwise, Ai calls procedure CheckAssign(sender) to check if it has to assign its variable

(line 23). In CheckAssign(sender), Ai calls procedure Assign to try to assign its variable

only if sender is the predecessor of Ai (i.e., CPA was received from the predecessor, line 24).

When every value of Ai’s variable is ruled out by a nogood (line 22), the proce-

dure Backtrack() is called. These nogoods are resolved by computing a new nogood

newNogood (line 25). newNogood is the conjunction of the left hand sides of all nogoods

stored by Ai in its NogoodStore. If the new nogood (newNogood) is empty, Ai terminates

execution after sending a stp message to all agents in the system meaning that the problem

is unsolvable (line 26). Otherwise, Ai backtracks by sending one ngd message to the agent

owner of the variable in the right hand side of newNogood, say Aj, (line 28). The ngd mes-

sage carries the generated nogood (newNogood). Next, Ai updates its AgentView by remov-

ing assignments of every agent that is placed after the agent Aj owner of rhs(newNogood)

in the total order (line 29). Ai also updates its NogoodStore by removing obsolete nogoods

(line 31). Obsolete nogoods are nogoods inconsistent with the AgentView or containing the

assignment of xj, i.e., the variable on the right hand side of newNogood, (line 31). Finally, Ai

marks its AgentView as inconsistent an removes its last assignment (line 32). Ai remains in

an inconsistent state until receiving a stronger CPA holding at least one agent assignment

with counter higher than that in the AgentView of Ai.

When a ngd message is received by an agent Ai, it checks the validity of the received

nogood (line 33). If the received nogood is consistent with the AgentView, this nogood is

a valid justification for removing the value on its right hand side rhs. Then if the value

on the rhs of the received nogood is already removed, Ai adds the received nogood to its

NogoodStore if it is better (according to the HPLV heuristic [Hirayama and Yokoo, 2000])

than the current stored nogood. If the value on the rhs of the received nogood belongs to

the current domain of xi, Ai simply adds it to its NogoodStore. If the value on the rhs of

the received nogood equals vi, the current value of Ai, Ai dis-instantiates its variable and

calls the procedure Assign() (line 35).

Whenever stp message is received, Ai marks end flag true to stop the main loop (line 8).

If the CPA attached to the received message is empty then there is no solution. Otherwise,

the solution of the problem is retrieved from the CPA.

2.3. Correctness Proofs 51

2.3 Correctness Proofs

Theorem 2.1. The spatial complexity of AFC-ng is polynomially bounded by O(nd) per agent.

Proof. In AFC-ng, the size of nogoods is bounded by n, the total number of variables.

Now, on each agent, AFC-ng only stores one nogood per removed value. Thus, the space

complexity of AFC-ng is in O(nd) on each agent.

Lemma 2.1. AFC-ng is guaranteed to terminate.

Proof. We prove by induction on the agent ordering that there will be a finite number of

new generated CPAs (at most dn, where d is the size of the initial domain and n the number

of variables.), and that agents can never fall into an infinite loop for a given CPA. The base

case for induction (i = 1) is obvious. The only messages that x1 can receive are ngd messages.

All nogoods contained in these ngd messages have an empty lhs. Hence, values on their

rhs are removed once and for all from the domain of x1. Now, x1 only generates a new

CPA when it receives a nogood ruling out its current value. Thus, the maximal number of

CPAs that x1 can generate equals the size of its initial domain (d). Suppose now that the

number of CPAs that agents x1, . . . , xi−1 can generate is finite (and bounded by di−1). Given

such a CPA on [x1, . . . , xi−1], xi generates new CPAs (line 12, Algorithm 2.1) only when it

changes its assignment after receiving a nogood ruling out its current value vi. Given the

fact that any received nogood can include, in its lhs, only the assignments of higher priority

agents ([x1, . . . , xi−1]), this nogood will remain valid as long as the CPA on [x1, . . . , xi−1]

does not change. Thus, xi cannot regenerate a new CPA containing vi without changing

assignments on higher priority agents ([x1, . . . , xi−1]). Since there are a finite number of

values on the domain of variable xi, there will be a finite number of new CPAs generated

by xi (di). Therefore, by induction we have that there will be a finite number of new CPAs

(dn) generated by AFC-ng.

Let cpa be the strongest CPA generated in the network and Ai be the agent that gen-

erated cpa. After a finite amount of time, all unassigned agents on cpa ([xi+1, . . . , xn]) will

receive cpa and thus will discard all other CPAs. Two cases occur. First case, at least one

agent detects a dead-end and thus backtracks to an agent Aj included in cpa (i.e., j ≤ i)

forcing it to change its current value on cpa and to generate a new stronger CPA. Second

case (no agent detects dead-end), if i < n, Ai+1 generates a new stronger CPA by adding

its assignment to cpa, else (i = n), a solution is reported. As a result, agents can never fall

into an infinite loop for a given CPA and AFC-ng is thus guaranteed to terminate.

Lemma 2.2. AFC-ng cannot infer inconsistency if a solution exists.

Proof. Whenever a stronger CPA or a ngd message is received, AFC-ng agents update their

NogoodStore. Hence, for every CPA that may potentially lead to a solution, agents only

store valid nogoods. In addition, every nogood resulting from a CPA is redundant with

regard to the DisCSP to solve. Since all additional nogoods are generated by logical infer-

ence when a domain wipe-out occurs, the empty nogood cannot be inferred if the network

is solvable. This mean that AFC-ng is able to produce all solutions.

52 Chapter 2. Nogood based Asynchronous Forward Checking (AFC-ng)

Theorem 2.2. AFC-ng is correct.

Proof. The argument for soundness is close to the one given in [Meisels and Zivan, 2007;

Nguyen et al., 2004]. The fact that agents only forward consistent partial solution on the

CPA messages at only one place in procedure Assign() (line 12, Algorithm 2.1), implies

that the agents receive only consistent assignments. A solution is reported by the last

agent only in procedure SendCPA(CPA) at line 16. At this point, all agents have assigned

their variables, and their assignments are consistent. Thus the AFC-ng algorithm is sound.

Completeness comes from the fact that AFC-ng is able to terminate and does not report

inconsistency if a solution exists (Lemma 2.1 and 2.2).

2.4 Experimental Evaluation

In this section we experimentally compare AFC-ng to two other algorithms: AFC
[Meisels and Zivan, 2007] and ABT [Yokoo et al., 1998; Bessiere et al., 2005]. Algorithms

are evaluated on three benchmarks: uniform binary random DisCSPs, distributed sensor-

target networks and distributed meeting scheduling problems. All experiments were per-

formed on the DisChoco 2.0 platform 1 [Wahbi et al., 2011], in which agents are simu-

lated by Java threads that communicate only through message passing (see Chapter 7).

All algorithms are tested on the same static agents ordering using the dom/deg heuristic
[Bessiere and Régin, 1996] and the same nogood selection heuristic (HPLV) [Hirayama

and Yokoo, 2000]. For ABT we implemented an improved version of Silaghi’s solution

detection [Silaghi, 2006] and counters for tagging assignments.

We evaluate the performance of the algorithms by communication load [Lynch, 1997]

and computation effort. Communication load is measured by the total number of ex-

changed messages among agents during algorithm execution (#msg), including those of

termination detection (system messages). Computation effort is measured by the number

of non-concurrent constraint checks (#ncccs) [Zivan and Meisels, 2006b]. #ncccs is the

metric used in distributed constraint solving to simulate the computation time.

2.4.1 Uniform binary random DisCSPs

The algorithms are tested on uniform binary random DisCSPs which are characterized

by �n, d, p1, p2�, where n is the number of agents/variables, d is the number of values in

each of the domains, p1 the network connectivity defined as the ratio of existing binary

constraints, and p2 the constraint tightness defined as the ratio of forbidden value pairs.

We solved instances of two classes of constraint graphs: sparse graphs �20, 10, 0.2, p2� and

dense ones �20, 10, 0.7, p2�. We vary the tightness from 0.1 to 0.9 by steps of 0.05. For each

pair of fixed density and tightness (p1, p2) we generated 25 instances, solved 4 times each.

Thereafter, we report average over the 100 runs.

Figure 2.1 presents computational effort of AFC-ng, AFC, and ABT running on the

sparse instances (p1 =0.2). We observe that at the complexity peak, AFC is the less ef-

ficient algorithm. It is better than ABT (the second worst) only on instances to the right

1. http://www2.lirmm.fr/coconut/dischoco/

http://www2.lirmm.fr/coconut/dischoco/

2.4. Experimental Evaluation 53

0.0⋅10
0

5.0⋅10
3

1.0⋅10
4

1.5⋅10
4

2.0⋅10
4

2.5⋅10
4

3.0⋅10
4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
n
c
c
c
s

p2

ABT

AFC

AFC-ng

Figure 2.1 – The number of non-concurrent constraint checks (#ncccs) performed on sparse
problems (p1 =0.2).

of the complexity peak (over-constrained region). On the most difficult instances, AFC-ng

improves the performance of standard AFC by a factor of 3.5 and outperforms ABT by a

factor of 2.

0.0⋅10
0

5.0⋅10
3

1.0⋅10
4

1.5⋅10
4

2.0⋅10
4

2.5⋅10
4

3.0⋅10
4

3.5⋅10
4

4.0⋅10
4

4.5⋅10
4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

p2

ABT

AFC

AFC-ng

Figure 2.2 – The total number of messages sent on sparse problems (p1 =0.2).

The total number of exchanged messages by compared algorithms on sparse problems

(p1 =0.2) is illustrated in Figure 2.2. When comparing the communication load, AFC

dramatically deteriorates compared to other algorithms. AFC-ng improves AFC by a factor

of 7. AFC-ng exchanges slightly fewer messages than ABT in the over-constrained area. In

the complexity peak, both algorithms (ABT and AFC-ng) require almost the same number

of messages.

Figure 2.3 presents the number of non-concurrent constraint checks (#ncccs) performed

54 Chapter 2. Nogood based Asynchronous Forward Checking (AFC-ng)

0.0⋅10
0

5.0⋅10
5

1.0⋅10
6

1.5⋅10
6

2.0⋅10
6

2.5⋅10
6

3.0⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
n
c
c
c
s

p2

ABT

AFC

AFC-ng

Figure 2.3 – The number of non-concurrent constraint checks (#ncccs) performed on dense
problems (p1 =0.7).

by compared algorithms on dense instances (p1 =0.7). The results obtained show that ABT

dramatically deteriorates compared to synchronous algorithms. This is consistent with

results presented in [Meisels and Zivan, 2007]. Among all compared algorithms, AFC-ng

is the fastest one on these dense problems.

0.0⋅10
0

2.0⋅10
5

4.0⋅10
5

6.0⋅10
5

8.0⋅10
5

1.0⋅10
6

1.2⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

p2

ABT

AFC

AFC-ng

Figure 2.4 – The total number of messages sent on the dense problems (p1 =0.7).

Regarding the number of exchanged messages (Figure 2.4), ABT is again significantly

the worst. AFC requires less messages than ABT. Our AFC-ng algorithm outperforms AFC

by a factor 3. Hence, our experiments on uniform random DisCSPs show that AFC-ng

improves on AFC and ABT algorithms.

2.4. Experimental Evaluation 55

2.4.2 Distributed Sensor Target Problems

The Distributed Sensor-Target Problem (SensorDisCSP) [Béjar et al., 2005] is a benchmark

based on a real distributed problem (see Section 1.3.2.2). It consists of n sensors that track m

targets. Each target must be tracked by 3 sensors. Each sensor can track at most one target.

A solution must satisfy visibility and compatibility constraints. The visibility constraint

defines the set of sensors to which a target is visible. The compatibility constraint defines

the compatibility among sensors. In our implementation of the DisCSP algorithms, the

encoding of the SensorDisCSP presented in Section 1.3.2.2 is translated to an equivalent

formulation where we have three virtual agents for every real agent, each virtual agent

handling a single variable.

Problems are characterized by �n, m, pc, pv�, where n is the number of sensors, m is the

number of targets, each sensor can communicate with a fraction pc of the sensors that are

in its sensing range, and each target can be tracked by a fraction pv of the sensors having

the target in their sensing range. We present results for the class � 25, 5, 0.4, pv�, where we

vary pv from 0.1 to 0.9 by steps of 0.05. For each pair (pc, pv) we generated 25 instances,

solved 4 times each, and averaged over the 100 runs.

0.0⋅10
0

5.0⋅10
5

1.0⋅10
6

1.5⋅10
6

2.0⋅10
6

2.5⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
n
c
c
c
s

pv

ABT

AFC

AFC-ng

Figure 2.5 – The number non-concurrent constraint checks performed on sensor target
instances where pc =0.4.

Figure 2.5 presents the computational effort performed by AFC-ng, AFC, and ABT

on sensor target problems where �n =25, m=5, pc =0.4�. Our results show that ABT

outperforms AFC whereas AFC-ng outperforms both. We observe that on the exceptionally

hard instances (where 0.1< pv <0.25) the improvement on the Asynchronous Backtracking

is minor.

Concerning the communication load (Figure 2.6), the ranking of algorithms is similar

to that on computational effort, though differences tend to be smaller between ABT and

AFC-ng. AFC-ng remains the best on all problems.

56 Chapter 2. Nogood based Asynchronous Forward Checking (AFC-ng)

0.0⋅10
0

5.0⋅10
4

1.0⋅10
5

1.5⋅10
5

2.0⋅10
5

2.5⋅10
5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

pv

ABT

AFC

AFC-ng

Figure 2.6 – The total number of exchanged messages on sensor target instances where
pc =0.4.

2.4.3 Distributed Meeting Scheduling Problems

The Distributed Meeting Scheduling Problem (DisMSP) is a truly distributed benchmark

where agents may not desire to deliver their personal information to a centralized agent

to solve the whole problem [Wallace and Freuder, 2002; Meisels and Lavee, 2004] (see

Section 1.3.2.1). The DisMSP consists of a set of n agents having a personal private calendar

and a set of m meetings each taking place in a specified location.

We encode the DisMSP in DisCSP as follows. Each DisCSP agent represents a real agent

and contains k variables representing the k meetings to which the agent participates. These

k meetings are selected randomly among the m meetings. The domain of each variable

contains the d × h slots where a meeting can be scheduled. A slot is one hour long, and

there are h slots per day and d days. There is an equality constraint for each pair of

variables corresponding to the same meeting in different agents. There is an arrival-time

constraint between all variables/meetings belonging to the same agent. We place meetings

randomly on the nodes of a uniform grid of size g × g and the traveling time between

two adjacent nodes is 1 hour. Thus, the traveling time between two meetings equals the

Euclidean distance between nodes representing the locations where they will be held. For

varying the tightness of the arrival-time constraint we vary the size of the grid on which

meetings are placed.

Problems are characterized by �n, m, k, d, h, g�, where n is the number of agents, m is

the number meetings, k is the number of meetings/variables per agent, d is the number of

days and h is the number of hours per day, and g is the grid size. The duration of each

meeting is one hour. In our implementation of the DisCSP algorithms, this encoding is

translated to an equivalent formulation where we have k (number of meetings per agent)

virtual agents for every real agent, each virtual agent handling a single variable. We present

2.4. Experimental Evaluation 57

results for the class � 20, 9, 3, 2, 10, g� where we vary g from 2 to 22 by steps of 2. Again,

for each g we generated 25 instances, solved 4 times each, and averaged over the 100 runs.

0.0⋅10
0

2.0⋅10
6

4.0⋅10
6

6.0⋅10
6

8.0⋅10
6

1.0⋅10
7

1.2⋅10
7

1.4⋅10
7

1.6⋅10
7

1.8⋅10
7

 2 4 6 8 10 12 14 16 18 20 22

#
n
c
c
c
s

GridSize

ABT

AFC

AFC-ng

Figure 2.7 – The number of non-concurrent constraint checks performed on meeting
scheduling benchmarks where the number of meeting per agent is 3.

On this class of meeting scheduling benchmarks AFC-ng continues to perform well.

AFC-ng is significantly better than ABT and AFC, both for computational effort (Figure 2.7)

and communication load (Figure 2.8). Concerning the computational effort, ABT is the

slowest algorithm to solve such problems. AFC outperforms ABT by a factor of 2 at the

peak (i.e., where the GridSize equals 8). However, ABT requires less messages than AFC.

0.0⋅10
0

2.0⋅10
6

4.0⋅10
6

6.0⋅10
6

8.0⋅10
6

1.0⋅10
7

1.2⋅10
7

1.4⋅10
7

1.6⋅10
7

1.8⋅10
7

 2 4 6 8 10 12 14 16 18 20 22

#
m

sg

GridSize

ABT

AFC

AFC-ng

Figure 2.8 – The total number of exchanged messages on meeting scheduling benchmarks
where the number of meeting per agent is 3.

58 Chapter 2. Nogood based Asynchronous Forward Checking (AFC-ng)

2.4.4 Discussion

Table 2.1 – The percentage of messages per type exchanged by AFC to solve instances of
uniform random DisCSPs where p1=0.2.

p2 #msg cpa back_cpa fc_cpa not_ok

0.55 8297 5,93% 3,76% 50,99% 38,58%
0.60 8610 4,49% 2,75% 52,46% 39,57%
0.65 41979 3,37% 1,77% 42,20% 52,60%
0.70 23797 3,00% 1,75% 43,48% 51,68%
0.75 8230 2,61% 1,53% 40,66% 54,97%

Table 2.2 – The percentage of messages per type exchanged by AFC to solve instances of
uniform random DisCSPs where p1=0.7.

p2 #msg cpa back_cpa fc_cpa not_ok

0.25 83803 4,85% 2,86% 47,68% 44,54%
0.30 572493 3,61% 2,11% 43,64% 50,63%
0.35 142366 2,90% 1,69% 39,35% 56,27%
0.40 46883 2,60% 1,52% 37,77% 58,58%
0.45 24379 2,35% 1,41% 35,56% 61,52%
0.50 14797 2,14% 1,29% 33,32% 64,38%

Table 2.3 – The percentage of messages per type exchanged by AFC to solve instances of
distributed sensor-target problem where pc=0.4.

pv #msg cpa back_cpa fc_cpa not_ok

0.30 76914 23,16% 23,14% 49,50% 4,14%
0.35 119759 24,91% 24,90% 47,49% 2,66%
0.40 209650 23,55% 23,55% 47,52% 5,35%
0.45 104317 19,07% 19,06% 57,17% 4,68%

Table 2.4 – The percentage of messages per type exchanged by AFC to solve instances of
distributed meeting scheduling problem where k=3.

GridSize #msg cpa back_cpa fc_cpa not_ok

4 39112 2,71% 1,70% 50,41% 44,71%
6 8376151 2,19% 1,59% 49,31% 46,91%
8 17911100 2,39% 1,66% 53,88% 42,07%
10 7855300 2,30% 1,66% 52,20% 43,83%
12 3653697 1,77% 1,33% 57,19% 39,71%

We present in Tables 2.1, 2.2, 2.4 and 2.3 the percentage of messages per type exchanged

by the AFC algorithm to solve instances around the complexity peak of respectively sparse

random DisCSPs, dense random DisCSPs, distributed sensor-target problem where pc=0.4

and distributed meeting scheduling problem where k=3. These tables allow us to more

understand the behavior of the AFC algorithm and to explain the good performance of

AFC-ng compared to AFC.

A first observation on our experiments is that AFC-ng is always better than AFC, both

2.5. Other Related Works 59

in terms of exchanged messages and computational effort (#ncccs). A closer look at the

type of exchanged messages shows that the backtrack operation in AFC requires exchang-

ing a lot of not_ok messages (approximately 50% of the total number of messages sent

by agents). This confirms the significance of using nogoods as justification of value re-

movals and allowing several concurrent backtracks in AFC-ng. A second observation on

these experiments is that ABT performs bad in dense graphs compared to synchronous

algorithms.

2.5 Other Related Works

In [Brito and Meseguer, 2004; Zivan and Meisels, 2003] the performance of asyn-

chronous (ABT), synchronous (Synchronous Conflict BackJumping, SCBJ), and hybrid ap-

proaches (ABT-Hyb) was studied. It is shown that ABT-Hyb improves over ABT and that

SCBJ requires less communication effort than ABT-Hyb. Dynamic Distributed BackJump-

ing (DDBJ) was presented in [Nguyen et al., 2004]. It is an improved version of the basic

AFC. DDBJ combines the concurrency of an asynchronous dynamic backjumping algo-

rithm, and the computational efficiency of the AFC algorithm, coupled with the possible

conflict heuristics of dynamic value and variable ordering. As in DDBJ, AFC-ng performs

several backtracks simultaneously. However, AFC-ng should not be confused with DDBJ.

DDBJ is based on dynamic ordering and requires additional messages to compute ordering

heuristics. In AFC-ng, all agents that received a ngd message continue search concurrently.

Once a stronger CPA is received by an agent, all nogoods already stored can be kept if

consistent with that CPA.

2.6 Summary

A new complete, asynchronous algorithm is presented for solving distributed CSPs.

This algorithm is based on the AFC an uses nogoods as justification of value removals.

We call it nogood-based Asynchronous Forward Checking (AFC-ng). Besides its use of

nogoods as justification of value removal, AFC-ng allows simultaneous backtracks going

from different agents to different destinations. Thus, it enhances the asynchronism of the

forward-checking phase. Our experiments show that AFC-ng improves the AFC algorithm

in terms of computational effort and number of exchanged messages.

3Asynchronous Forward Checking

Tree (AFC-tree)

Contents
5.1 Introduction . 90

5.2 Introductory Material . 91

5.2.1 Reordering details . 91

5.2.2 The Backtracking Target . 92

5.2.3 Decreasing termination values . 94

5.3 The Algorithm . 95

5.4 Correctness and complexity . 98

5.5 Experimental Results . 100

5.5.1 Uniform binary random DisCSPs . 101

5.5.2 Distributed Sensor Target Problems . 103

5.5.3 Discussion . 104

5.6 Related Works . 106

5.7 Summary . 106

This chapter shows how to extend our nogood-based Asynchronous Forward-Checking

(AFC-ng) algorithm to the Asynchronous Forward-Checking Tree (AFC-tree) algorithm

using a pseudo-tree arrangement of the constraint graph. To achieve this goal, agents are

ordered a priory in a pseudo-tree such that agents in different branches of the tree do

not share any constraint. AFC-tree does not address the process of ordering the agents

in a pseudo-tree arrangement. Therefore, the construction of the pseudo-tree is done in a

preprocessing step.

This chapter is organized as follows. Section 3.1 recalls the principle of our AFC-ng

algorithm. The concept of the pseudo-tree arrangement of the constraint graph is given in

Section 3.2. A Distributed Depth-First Search trees construction is presented in Section 3.3.

The AFC-tree is described in Section 3.4 and correctness proofs are given in Section 3.5.

Section 3.6 presents an experimental evaluation of AFC-tree against AFC-ng. Section 3.7

summarizes some related works and we conclude the chapter in Section 3.8.

61

62 Chapter 3. Asynchronous Forward Checking Tree (AFC-tree)

3.1 Introduction

We have described in Chapter 1, Synchronous Backtracking (SBT), the simplest search

algorithm for solving distributed constraint satisfaction problems. Since it is a straight-

forward extension of the chronological algorithm for centralized CSPs, SBT performs as-

signments sequentially and synchronously. Thus, only the agent holding a current partial

assignment (CPA) performs an assignment or backtrack [Yokoo, 2000b]. Researchers in

distributed CSP area have devoted many effort to improve the SBT algorithm. Thus, a

variety improvements have been proposed. Hence, Zivan and Meisels (2003) proposed

the Synchronous Conflict-Based Backjumping (SCBJ) that performs backjumping instead

of chronological backtracking as is done in SBT.

In a subsequent study, Meisels and Zivan proposed the Asynchronous Forward-

Checking (AFC) another promising distributed search algorithm for DisCSPs [Meisels and

Zivan, 2007]. AFC algorithm is based on the forward checking (FC) algorithm for CSPs
[Haralick and Elliott, 1980]. The forward checking operation is performed asynchronously

while the search is performed synchronously. Hence, this algorithm improves on SBT by

adding to them some amount of concurrency. The concurrency arises from the fact that

forward checking phase is processed concurrently by future agents. However, the manner

in which the backtrack operation is performed is a major drawback of the AFC algorithm.

The backtrack operation requires a lot of work from the agents.

We presented in Chapter 2, our nogood-based Asynchronous Forward-Checking (AFC-

ng), a new complete and asynchronous algorithm that is based on the AFC. Besides its

use of nogoods as justification of value removal, AFC-ng allows simultaneous backtracks

going from different agents to different destinations. Thus, AFC-ng enhances the asynchro-

nism of the forward-checking phase and attempts to avoid the drawbacks of the backtrack

operation of the AFC algorithm. Our experiments show that AFC-ng improves the AFC

algorithm in terms of computational effort and number of exchanged messages.

In this chapter, we propose another algorithm based on AFC-ng and is named Asyn-

chronous Forward-Checking Tree (AFC-tree). The main feature of the AFC-tree algorithm

is using different agents to search non-intersecting parts of the search space concurrently.

In AFC-tree, agents are prioritized according to a pseudo-tree arrangement of the constraint

graph. The pseudo-tree ordering is build in a preprocessing step. Using this priority order-

ing, AFC-tree performs multiple AFC-ng processes on the paths from the root to the leaves

of the pseudo-tree. The agents that are brothers are committed to concurrently find the

partial solutions of their variables. Therefore, AFC-tree exploits the potential speed-up of a

parallel exploration in the processing of distributed problems [Freuder and Quinn, 1985].

A solution is found when all leaf agents succeed in extending the CPA they received. Fur-

thermore, in AFC-tree privacy may be enhanced because communication is restricted to

agents in the same branch of the pseudo-tree.

3.2. Pseudo-tree ordering 63

3.2 Pseudo-tree ordering

We have seen in Chapter 1 that any binary distributed constraint network (DisCSP) can

be represented by a constraint graph G = (XG, EG), whose vertexes represent the variables

and edges represent the constraints (see, Definition 1.2). Therefore, XG = X and for each

constraint cij ∈ C connecting two variables xi and xj there exists an edge {xi, xj} ∈ EG

linking vertexes xi and xj.

x1

x2

x3

x4

x5 x6

x7

x8

x9

Figure 3.1 – Example of a constraint graph G.

Figure 3.1 shows an example of a constraint graph G of a problem involving 9 variables

X = XG = {x1, . . . , x9} and 10 constraints C = {c12, c14, c17, c18, c19, c25, c26, c37, c38, c49}.

There are constraint between x1 and x2 (c12), x1 and x4, etc.

The concept of pseudo-tree arrangement (see Definition 1.18) of a constraint graph has

been introduced first by Freuder and Quinn in [Freuder and Quinn, 1985]. The purpose of

this arrangement is to perform search in parallel on independent branches of the pseudo-

tree in order to improve search in centralized constraint satisfaction problems. The aim in

introducing the pseudo-tree is to boost the search by performing search in parallel on the

independent branches of the pseudo-tree. Thus, variables belonging to different branches

of the pseudo-tree can be instantiated independently.

An example of a pseudo-tree arrangement T of the constraint graph G (Figure 3.1) is

illustrated in Figure 3.2. Notice that G and T have the same vertexes (XG = XT). However,

a new (dotted) edge, {x1, x3}, linking x1 to x3 is added to T where {x1, x3} /∈ EG. Moreover,

edges {x1, x7}, {x1, x8} and {x1, x8} belonging to the constraint graph G are not part of T.

They are represented in T by dashed edges to show that constrained variables must be

located in the same branch of T even if there is not an edge linking them.

From a pseudo-tree arrangement of the constraint graph we can define:

• A branch of the pseudo-tree is a path from the root to some leaf (e.g., {x1, x4, x9}).

• A leaf is a vertex that has no child (e.g., x9).

• The children of a vertex are its descendants connected to it through tree edges (e.g.,

children(x1) = {x2, x3, x4}).

• The descendants of a vertex xi are vertexes belonging to the subtree rooted at xi (e.g.,

descendants(x2) ={x5, x6} and descendants(x1)={X \ x1}).

64 Chapter 3. Asynchronous Forward Checking Tree (AFC-tree)

Level 1

Level 2

Level 3

x1

x2 x3 x4

x5 x6 x7 x8 x9

Figure 3.2 – Example of a pseudo-tree arrangement T of the constraint graph illustrated in
Figure 3.1.

• The linked descendants of a vertex are its descendants constrained with it together with

its children, (e.g., linkedDescendants(x1) = {x2, x3, x4, x7, x8, x9}).

• The parent of a vertex is the ancestor connected to it through a tree edge (e.g.,

parent(x9) = {x4}, parent(x3) = {x1}).

• A vertex xi is an ancestor of a vertex xj if xi is the parent of xj or an ancestor of the

parent of xj.

• The ancestors of a vertex xi is the set of agents forming the path from the root to xi’s

parent (e.g., ancestors(x8) = {x1, x3}).

3.3 Distributed Depth-First Search trees construction

The construction of the pseudo-tree can be processed by a centralized procedure. First, a

system agent must be elected to gather information about the constraint graph. Such system

agent can be chosen using a leader election algorithm like that presented in [Abu-Amara,

1988]. Once, all information about the constraint graph is gathered by the system agent, it

can perform a centralized algorithm to build the pseudo-tree ordering (see Section 1.2.2.1).

A decentralized modification of the procedure for building the pseudo-tree was introduced

by Chechetka and Sycara in [Chechetka and Sycara, 2005]. This algorithm allows the

distributed construction of pseudo-trees without needing to deliver any global information

about the whole problem to a single process.

Whatever the method (centralized or distributed) for building the pseudo-tree, the ob-

tained pseudo-tree may require the addition of some edges not belonging to the original

constraint graph. In the example presented in Figure 3.2, a new edge linking x1 to x3 is

added to the resulting pseudo-tree T. The structure of the pseudo-tree will be used for

communication between agents. Thus, the added link between x1 and x3 will be used to

exchange messages between them. However, in some distributed applications, the commu-

nication might be restricted to the neighboring agents (i.e., a message can be passed only

locally between agents that share a constraint). The solution in such applications is to use a

3.3. Distributed Depth-First Search trees construction 65

depth-first search tree (DFS-tree). DFS-trees are special cases of pseudo-trees where all edges

belong to the original graph.

Algorithm 3.1: The distributed depth-first search construction algorithm.
procedure distributedDFS()

01. Select the root via a leader election algorithm ;
02. Visited ← ∅; end ← false ;
03. if (xi is the elected root) then CheckNeighbourhood() ;
04. while (¬end) do
05. msg ← getMsg();
06. Visited ← Visited ∪ {Γ(xi) ∩ msg.DFS)} ;
07. if (msg.Sender ∈ children(xi)) then
08. descendants(xi)← descendants(xi) ∪ msg.DFS ;
09. else
10. parent(xi) ← msg.Sender ;
11. ancestors(xi) ← msg.DFS ;
12. CheckNeighbourhood() ;

procedure CheckNeighbourhood()

13. if (Γ(xi) = Visited) then
14. sendMsg : token(descendants(xi) ∪ {xi}) to parent(xi) ;
15. end ← true ;
16. else
17. select xj in Γ(xi) \ Visited ;
18. children(xi) ← children(xi) ∪ {xj} ;
19. sendMsg : token(ancestors(xi)∪ {xi}) to Aj ;

We present in Algorithm 3.1 a simple distributed algorithm for the distributed construc-

tion of the DFS-tree named DistributedDFS algorithm. The DistributedDFS is similar to

the algorithm proposed by Cheung in [Cheung, 1983]. The DistributedDFS algorithm is a

distribution of a DFS traversal of the constraint graph. Each agent maintains a set Visited

where it stores its neighbors which are already visited (line 2). The first step is to design

the root agent using a leader election algorithm (line 1). An example of leader election

algorithm was presented by Abu-Amara in [Abu-Amara, 1988]. Once the root is designed,

it can start the distributed construction of the DFS-tree (procedure CheckNeighbourhood()

call, line 3). The designed root initiates the propagation of a token, which is a unique mes-

sage that will be circulated on the network until “visiting" all the agents of the problem.

When an agent xi receives the token, it marks all its neighbors included in the received

message as visited (line 6). Next, xi checks if the token is sent back by a child. If it is the

case, xi sets all agents belonging to the subtree rooted at message sender (i.e., its child)

as its descendants (lines 7-8). Otherwise, the token is received for the first time from the

parent of xi. Thus, xi marks the sender as its parent (line 10) and all agents contained in the

token (i.e., the sender and its ancestors) as its ancestors (line 11). Afterwards, xi calls the

procedure CheckNeighbourhood() to check if it has to pass on the token to an unvisited

neighbor or to return back the token to its parent if all its neighbors are already visited.

The procedure CheckNeighbourhood() checks if all neighbors are already visited

(line 13). If it is the case, the agent xi sends back the token to its parent (line 14). The

token contains the set DFS composed by xi and its descendants. Until this point the agent

66 Chapter 3. Asynchronous Forward Checking Tree (AFC-tree)

xi knows all its ancestors, its children and its descendants. Thus, the agent xi terminates

the execution of DistributedDFS (line 15). Otherwise, agent xi chooses one of its neighbors

(xj) not yet visited and designs it as a child (lines 17-18). Afterwards, xi passes on to xj the

token where it puts the ancestors of the child xj (i.e., ancestors(xi) ∪ {xi}) (line 19).

Level 1

Level 2

Level 3

Level 4

x1

x2

x3

x4

x5 x6

x7

x8

x9

Figure 3.3 – A DFS-tree arrangement of the constraint graph in Figure 3.1.

Consider for example the constraint graph G presented in Figure 3.1. Figure 3.3 shows

an example of a DFS-tree arrangement of the constraint graph G obtained by performing

distributively the DistributedDFS algorithm. The DistributedDFS algorithm can be per-

formed as follows. First, let x1 be the elected root of the DFS-tree (i.e., the leader election

algorithm elects the most connected agent). The root x1 initiates the DFS-tree construction

by calling procedure CheckNeighbourhood() (line 3). Then, x1 selects from its unvisited

neighbors x2 to be its child (lines 17-18). Next, x1 passes on the token to x2 where it put

itself to be the ancestor of the receiver (x2) (line 19). After receiving the token, x2 updates

the set of its visited neighbors (line 6) by marking x1 (the only neighbor included in the

token) visited. Afterwards, x2 sets x1 to be its parent and puts {x1} to be its set of ancestors

(lines 10-11). Next, x2 calls procedure CheckNeighbourhood() (line 12). Until this point,

x2 has one visited neighbor (x1) and two unvisited neighbors (x5 and x6). For instance, let

x2 chooses x5 to be its child. Thus, x2 sends the token to x5 where it sets the DFS set to

{x1, x2}. After receiving the token, x5 marks its single neighbor x2 as visited (line 6), sets

x2 to be its parent (line 10), sets {x1, x2} to be its ancestors ans sends the token back to x2

where it puts itself. After receiving back the token from x5, x2 adds x5 to its descendants

and selects the last unvisited neighbor (x6) to be its child and passes the token to x6. In

a similar way, x6 returns back the token to x2. Then, x2 sends back the token to its par-

ent x1 since all its neighbors have been visited. The token contains the descendants of x1

({x2, x5, x6}) on the subtree rooted at x2. After receiving the token back from x2, x1 will

select an agent from its unvisited neighbors {x4, x7, x8, x9}. Hence, the subtree rooted at

x2 where each agent knows its ancestors and its descendants is build without delivering

any global information. The other subtrees respectively rooted at x7 and x4 are build in a

similar manner. Thus, we obtain the DFS-tree shown in Figure 3.3.

3.4. The AFC-tree algorithm 67

3.4 The AFC-tree algorithm

The AFC-tree algorithm is based on AFC-ng performed on a pseudo-tree ordering of

the constraint graph (built in a preprocessing step). Agents are prioritized according to

the pseudo-tree ordering in which each agent has a single parent and various children.

Using this priority ordering, AFC-tree performs multiple AFC-ng processes on the paths

from the root to the leaves. The root initiates the search by generating a CPA, assigning its

value on it, and sending cpa messages to its linked descendants. Among all agents that

receive the CPA, children perform AFC-ng on the sub-problem restricted to its ancestors

(agents that are assigned in the CPA) and the set of its descendants. Therefore, instead of

giving the privilege of assigning to only one agent, agents who are in disjoint subtrees may

assign their variables simultaneously. AFC-tree thus exploits the potential speed-up of a

parallel exploration in the processing of distributed problems. The degree of asynchronism

is enhanced.

Level 1

Level 2

Level 3x5

x1

x2 x3 x4

x6 x8x7 x9

cpa message

ngd message

assigned agent

inconsistent agent

not assigned agenta
sy
n
ch
ro
n
o
u
s
ex
ec
u
ti
o
n

Figure 3.4 – An example of the AFC-tree execution.

An execution of AFC-tree on a sample DisCSP problem is shown in Figure 3.4. At time

t1, the root x1 sends copies of the CPA on cpa messages to its linked descendants. Children

x2, x3 and x4 assign their values simultaneously in the received CPAs and then perform con-

currently the AFC-tree algorithm. Agents x7, x8 and x9 only perform a forward-checking.

At time t2, x9 finds an empty domain and sends a ngd message to x1. At the same time,

other CPAs propagate down through the other paths. For instance, a CPA has propagated

down from x3 to x7 and x8. x7 detects an empty domain and sends a nogood to x3 attached

on a ngd message. For the CPA that propagates on the path (x1, x2, x6), x6 successfully

assigned its value and initiated a solution detection. The same thing is going to happen on

the path (x1, x2, x5) when x5 (not yet instantiated) will receive the CPA from its parent x2.

When x1 receives the ngd message from x9, it initiates a new search process by sending a

new copy of the CPA which will dominate all other CPAs where x1 is assigned its old value.

This new CPA generated by x1 can then take advantage from efforts done by the obsolete

CPAs. Consider for instance the subtree rooted at x2. If the value of x2 is consistent with

the value of x1 on the new CPA, all nogoods stored on the subtree rooted at x2 are still

valid and a solution is reached on the subtree without any nogood generation.

68 Chapter 3. Asynchronous Forward Checking Tree (AFC-tree)

In AFC-ng, a solution is reached when the last agent in the agent ordering receives

the CPA and succeeds in assigning its variable. In AFC-tree, the situation is different

because a CPA can reach a leaf agent without being complete. When all agents are assigned

and no constraint is violated, this state is a global solution and the network has reached

quiescence, meaning that no message is traveling through it. Such a state can be detected

using specialized snapshot algorithms [Chandy and Lamport, 1985], but AFC-tree uses

a different mechanism that allows to detect solutions before quiescence. AFC-tree uses

an additional type of messages called accept that informs parents of the acceptance of

their CPA. Termination can be inferred earlier and the number of messages required for

termination detection can be reduced. A similar technique of solution detection was used

in the AAS algorithm [Silaghi and Faltings, 2005].

The mechanism of solution detection is as follows: whenever a leaf node succeeds in

assigning its value, it sends an accept message to its parent. This message contains the

CPA that was received from the parent incremented by the value-assignment of the leaf

node. When a non-leaf agent Ai receives accept messages from all its children that are

all consistent with each other, all consistent with Ai’s AgentView and with Ai’s value, Ai

builds an accept message being the conjunction of all received accept messages plus Ai’s

value-assignment. If Ai is the root a solution is found, and Ai broadcasts this solution to

all agents. Otherwise, Ai sends the built accept message to its parent.

3.4.1 Description of the algorithm

We present in Algorithm 3.2 only the procedures that are new or different from those

of AFC-ng in Algorithm 2.1. In InitAgentView(), the AgentView of Ai is initialized to

the set ancestors(Ai) and tj is set to 0 for each agent xj in ancestors(Ai) (line 10).

The new data structure storing the received accept messages is initialized to the empty

set (line 11). In SendCPA(CPA), instead of sending copies of the CPA to all agents

not yet instantiated on it, Ai sends copies of the CPA only to its linked descendants

(linkedDescendants(Ai), lines 13-14). When the set linkedDescendants(Ai) is empty

(i.e., Ai is a leaf), Ai calls the procedure SolutionDetection() to build and send an accept

message. In CheckAssign(sender), Ai assigns its value if the CPA was received from its

parent (line 16) (i.e., if sender is the parent of Ai).

In ProcessAccept(msg), when Ai receives an accept message from its child for the first

time, or the CPA contained in the received accept message is stronger than that received

before, Ai stores the content of this message (lines 17-18) and calls the SolutionDetection

procedure (line 19).

In procedure SolutionDetection(), if Ai is a leaf (i.e., children(Ai) is empty, line 20),

it sends an accept message to its parent. The accept message sent by Ai contains its

AgentView incremented by its assignment (lines 20-21). If Ai is not a leaf, it calls func-

tion BuildAccept() to build an accept partial solution PA (line 23). If the returned partial

solution PA is not empty and Ai is the root, PA is a solution of the problem. Then, Ai broad-

casts it to other agents including the system agent and sets the end flag to true (line 25).

Otherwise, Ai sends an accept message containing PA to its parent (line 26).

3.4. The AFC-tree algorithm 69

Algorithm 3.2: New lines/procedures of AFC-tree with respect to AFC-ng.
procedure AFC-tree()

01. end ← false; AgentView.Consistent ← true; InitAgentView() ;
02. if (Ai = IA) then Assign() ;
03. while (¬end) do
04. msg ← getMsg();
05. switch (msg.type) do
06. cpa : ProcessCPA(msg);
07. ngd : ProcessNogood(msg);
08. stp : end ← true; if (msg.CPA �= ∅) then solution ← msg.CPA ;
09. accept : ProcessAccept(msg);

procedure InitAgentView()

10. foreach (Aj ∈ ancestors(Ai)) do AgentView[j] ← {(xj, empty, 0)} ;
11. foreach (child ∈ children(Ai)) do Accept[child] ← ∅ ;
procedure SendCPA(CPA)
12. if (children(Ai) �= ∅) then
13. foreach (descendant ∈ linkedDescendants(Ai)) do
14. sendMsg : cpa(CPA) to descendant ;
15. else SolutionDetection() ;
procedure CheckAssign(sender)
16. if (parent(Ai) = sender) then Assign() ;
procedure ProcessAccept(msg)
17. if (msg.CPA is stronger than Accept[msg.Sender]) then
18. Accept[msg.Sender] ← msg.CPA ;
19. SolutionDetection() ;

procedure SolutionDetection()

20. if (children(Ai) = ∅) then
21. sendMsg : accept(AgentView ∪ {(xi , xi , ti)}) to parent(Ai) ;
22. else
23. PA ← BuildAccept() ;
24. if (PA �= ∅) then
25. if (Ai = root) then broadcastMsg : stp(PA); end ← true;
26. else sendMsg : accept(PA) to parent(Ai) ;

function BuildAccept()

27. PA ← AgentView ∪ {(xi , xi , ti)} ;
28. foreach (child ∈ children(xi)) do
29. if (Accept[child] = ∅∨ ¬isConsistent(PA, Accept[child])) then
30. return ∅ ;
31. else PA ← PA ∪ Accept[child] ;
32. return PA ;

In function BuildAccept, if an accept partial solution is reached. Ai generates a partial

solution PA incrementing its AgentView with its assignment (line 27). Next, Ai loops over

the set of accept messages received from its children. If at least one child has never sent

an accept message or the accept message is inconsistent with PA, then the partial solution

has not yet been reached and the function returns empty (line 30). Otherwise, the partial

solution PA is incremented by the accept message of child (line 31). Finally, the accept

partial solution is returned (line 32).

70 Chapter 3. Asynchronous Forward Checking Tree (AFC-tree)

3.5 Correctness Proofs

Theorem 3.1. The spatial complexity of AFC-tree is polynomially bounded by O(nd) per agent.

Proof. In AFC-tree, the size of nogoods is bounded by h (h ≤ n), the height of the pseudo-

tree where n is the total number of variables. Now, on each agent, AFC-tree only stores

one nogood per removed value. Thus, the space complexity of nogoods storage is in O(hd)

on each agent. AFC-tree also stores its set of descendants and ancestors, which is bounded

by n on each agent. Therefore, AFC-tree has a space complexity in O(hd + n).

Theorem 3.2. AFC-tree algorithm is correct.

Proof. AFC-tree agents only forward consistent partial assignments (CPAs). Hence, leaf

agents receive only consistent CPAs. Thus, leaf agents only send accept message holding

consistent assignments to their parent. Since a parent builds an accept message only when

the accept messages received from all its children are consistent with each other and all

consistent with its own value, the accept message it sends contains a consistent partial so-

lution. The root broadcasts a solution only when it can build itself such an accept message.

Therefore, the solution is correct and AFC-tree is sound.

From Lemma 2.1 we deduce that the AFC-tree agent of highest priority cannot fall

into an infinite loop. By induction on the level of the pseudo-tree no agent can fall in

such a loop, which ensures the termination of AFC-tree. AFC-tree performs multiple AFC-

ng processes on the paths of the pseudo-tree from the root to the leaves. Thus, from

Lemma 2.2, AFC-tree inherits the property that an empty nogood cannot be inferred if the

network is solvable. As AFC-tree s terminates, this ensures its completeness.

3.6 Experimental Evaluation

In this section we experimentally compare AFC-tree to our AFC-ng presented pre-

viously in Chapter 2. Algorithms are evaluated on three benchmarks: uniform binary

random DisCSPs, distributed sensor-target networks and distributed meeting scheduling

problems. All experiments were performed on the DisChoco 2.0 platform 1 [Wahbi et al.,

2011], in which agents are simulated by Java threads that communicate only through mes-

sage passing (see Chapter 7). All algorithms are tested using the same nogood selection

heuristic (HPLV) [Hirayama and Yokoo, 2000].

We evaluate the performance of the algorithms by communication load [Lynch, 1997]

and computation effort. Communication load is measured by the total number of ex-

changed messages among agents during algorithm execution (#msg), including those of

termination detection for AFC-tree. Computation effort is measured by the number of

non-concurrent constraint checks (#ncccs) [Zivan and Meisels, 2006b]. #ncccs is the metric

used in distributed constraint solving to simulate the computation time.

1. http://www2.lirmm.fr/coconut/dischoco/

http://www2.lirmm.fr/coconut/dischoco/

3.6. Experimental Evaluation 71

3.6.1 Uniform binary random DisCSPs

The algorithms are tested on uniform binary random DisCSPs which are characterized

by �n, d, p1, p2�, where n is the number of agents/variables, d is the number of values in

each of the domains, p1 the network connectivity defined as the ratio of existing binary

constraints, and p2 the constraint tightness defined as the ratio of forbidden value pairs.

We solved instances of two classes of constraint graphs: sparse graphs �20, 10, 0.2, p2� and

dense ones �20, 10, 0.7, p2�. We vary the tightness from 0.1 to 0.9 by steps of 0.05. For each

pair of fixed density and tightness (p1, p2) we generated 25 instances, solved 4 times each.

We report average over the 100 runs.

0.0⋅10
0

1.0⋅10
3

2.0⋅10
3

3.0⋅10
3

4.0⋅10
3

5.0⋅10
3

6.0⋅10
3

7.0⋅10
3

8.0⋅10
3

9.0⋅10
3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
n
c
c
c
s

p2

AFC-ng

AFC-tree

Figure 3.5 – The number of non-concurrent constraint checks (#ncccs) performed on sparse
problems (p1 = 0.2).

0.0⋅10
0

1.0⋅10
3

2.0⋅10
3

3.0⋅10
3

4.0⋅10
3

5.0⋅10
3

6.0⋅10
3

7.0⋅10
3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

p2

AFC-ng

AFC-tree

Figure 3.6 – The total number of messages sent on sparse problems (p1 = 0.2).

72 Chapter 3. Asynchronous Forward Checking Tree (AFC-tree)

Figures 3.5 and 3.6 present the performance of AFC-tree and AFC-ng run on the sparse

instances (p1=0.2). In terms of computational effort (Figures 3.5), we observe that at the

complexity peak, AFC-tree takes advantage of the pseudo-tree arrangement to improve the

speed-up of AFC-ng. Concerning communication load (Figure 3.6), AFC-tree improves on

our AFC-ng algorithm. The improvement of AFC-tree over AFC-ng is approximately 30%

on communication load and 35% on the number of non-concurrent constraint checks.

0.0⋅10
0

5.0⋅10
4

1.0⋅10
5

1.5⋅10
5

2.0⋅10
5

2.5⋅10
5

3.0⋅10
5

3.5⋅10
5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
n
c
c
c
s

p2

AFC-ng

AFC-tree

Figure 3.7 – The number of non-concurrent constraint checks (#ncccs) performed on the
dense problems (p1 = 0.7).

Figures 3.7 and 3.8 illustrates respectively the number of non-concurrent constraint

checks (#ncccs) performed by compared algorithms and the total number of exchanged

messages on the dense problems (p1=0.7). On these dense graphs, AFC-tree behaves like

0.0⋅10
0

5.0⋅10
4

1.0⋅10
5

1.5⋅10
5

2.0⋅10
5

2.5⋅10
5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

p2

AFC-ng

AFC-tree

Figure 3.8 – The total number of messages sent on the dense problems (p1 = 0.7).

3.6. Experimental Evaluation 73

AFC-ng with a very slight domination of AFC-ng. This is AFC-tree does not benefit from

the pseudo-tree arrangement, which is like a chain-tree in such graphs.

3.6.2 Distributed Sensor Target Problems

The Distributed Sensor-Target Problem (SensorDisCSP) [Béjar et al., 2005] is a benchmark

based on a real distributed problem (see Section 1.3.2.2). It consists of n sensors that track m

targets. Each target must be tracked by 3 sensors. Each sensor can track at most one target.

A solution must satisfy visibility and compatibility constraints. The visibility constraint

defines the set of sensors to which a target is visible. The compatibility constraint defines

the compatibility among sensors. In our implementation of the DisCSP algorithms, the

encoding of the SensorDisCSP presented in Section 1.3.2.2 is translated to an equivalent

formulation where we have three virtual agents for every real agent, each virtual agent

handling a single variable.

Problems are characterized by �n, m, pc, pv�, where n is the number of sensors, m is the

number of targets, each sensor can communicate with a fraction pc of the sensors that are

in its sensing range, and each target can be tracked by a fraction pv of the sensors having

the target in their sensing range. We present results for the class � 25, 5, 0.4, pv�, where

we vary pv from 0.1 to 0.9 by steps of 0.05. Again, for each pair (pc, pv) we generated 25

instances, solved 4 times each, and averaged over the 100 runs.

0.0⋅10
0

2.0⋅10
5

4.0⋅10
5

6.0⋅10
5

8.0⋅10
5

1.0⋅10
6

1.2⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
n
c
c
c
s

pv

AFC-ng

AFC-tree

Figure 3.9 – Total number non-concurrent constraint checks performed on instances where
pc = 0.4.

We present the results obtained on the SensorDisCSP benchmark in Figures 3.9 and

Figure 3.10. Our experiments shows that AFC-tree outperforms AFC-ng algorithm when

comparing the computational effort (Figure 3.9). Concerning the communication load (Fig-

ure 3.10), the ranking of algorithms is similar to that on computational effort for the in-

stances at the complexity peak. However it is slightly dominated by the AFC-ng on the

74 Chapter 3. Asynchronous Forward Checking Tree (AFC-tree)

0.0⋅10
0

1.0⋅10
4

2.0⋅10
4

3.0⋅10
4

4.0⋅10
4

5.0⋅10
4

6.0⋅10
4

7.0⋅10
4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

pv

AFC-ng

AFC-tree

Figure 3.10 – Total number of exchanged messages on instances where pc = 0.4.

exceptionally hard problems (pv = 1.5). Hence, AFC-tree remains the best on all problems

except for a single point (pv = 1.5), where AFC-ng shows a trivial improvement.

3.6.3 Distributed Meeting Scheduling Problems

The Distributed Meeting Scheduling Problem (DisMSP) is a truly distributed benchmark

where agents may not desire to deliver their personal information to a centralized agent

to solve the whole problem [Wallace and Freuder, 2002; Meisels and Lavee, 2004] (see

Section 1.3.2.1). The DisMSP consists of a set of n agents having a personal private calendar

and a set of m meetings each taking place in a specified location.

We encode the DisMSP in DisCSP as follows. Each DisCSP agent represents a real agent

and contains k variables representing the k meetings to which the agent participates. These

k meetings are selected randomly among the m meetings. The domain of each variable

contains the d × h slots where a meeting can be scheduled. A slot is one hour long, and

there are h slots per day and d days. There is an equality constraint for each pair of

variables corresponding to the same meeting in different agents. There is an arrival-time

constraint between all variables/meetings belonging to the same agent. We place meetings

randomly on the nodes of a uniform grid of size g × g and the traveling time between

two adjacent nodes is 1 hour. Thus, the traveling time between two meetings equals the

Euclidean distance between nodes representing the locations where they will be held. For

varying the tightness of the arrival-time constraint we vary the size of the grid on which

meetings are placed.

Problems are characterized by �n, m, k, d, h, g�, where n is the number of agents, m is

the number meetings, k is the number of meetings/variables per agent, d is the number of

days and h is the number of hours per day, and g is the grid size. The duration of each

meeting is one hour. In our implementation of the DisCSP algorithms, this encoding is

translated to an equivalent formulation where we have k (number of meetings per agent)

3.6. Experimental Evaluation 75

virtual agents for every real agent, each virtual agent handling a single variable. We present

results for the class � 20, 9, 3, 2, 10, g� where we vary g from 2 to 22 by steps of 2. Again,

for each g we generated 25 instances, solved 4 times each, and averaged over the 100 runs.

0.0⋅10
0

5.0⋅10
5

1.0⋅10
6

1.5⋅10
6

2.0⋅10
6

2.5⋅10
6

3.0⋅10
6

 2 4 6 8 10 12 14 16 18 20 22

#
n
c
c
c
s

GridSize

AFC-ng

AFC-tree

Figure 3.11 – Total number of non-concurrent constraint checks performed on meeting
scheduling benchmarks where the number of meeting per agent is 3 (i.e., k = 3).

0.0⋅10
0

5.0⋅10
5

1.0⋅10
6

1.5⋅10
6

2.0⋅10
6

2.5⋅10
6

3.0⋅10
6

3.5⋅10
6

 2 4 6 8 10 12 14 16 18 20 22

#
m

sg

GridSize

AFC-ng

AFC-tree

Figure 3.12 – Total number of exchanged messages on meeting scheduling benchmarks
where the number of meeting per agent is 3 (i.e., k = 3).

On this class of meeting scheduling benchmarks AFC-tree continues to perform well

compared to AFC-ng. AFC-tree is significantly better than AFC-ng both for computa-

tional effort (Figure 3.11) and communication load (Figure 3.12). The improvement on the

complexity peak approximates 45% for the number of non-concurrent constraint checks.

Regarding the number of exchanged messages this improvement approximates 30%.

76 Chapter 3. Asynchronous Forward Checking Tree (AFC-tree)

3.6.4 Discussion

Our experiments demonstrates that AFC-tree is almost always better than or equivalent

to AFC-ng both in terms of communication load and computational effort. When the graph

is sparse, AFC-tree benefits from running separate search processes in disjoint problem

subtrees. When agents are highly connected (dense graphs), AFC-tree runs on a chain-tree

pseudo-tree and thus mimics AFC-ng.

3.7 Other Related Works

The Synchronous Backtracking (SBT) [Yokoo, 2000b] is the naive search method for

solving distributed CSPs. SBT is a decentralized extension of the chronological backtrack-

ing algorithm for centralized CSPs. Although this algorithm communicates only consistent

current partial assignments (CPA), it does not take advantage of parallelism, because the

problem is solved sequentially and only the agent holding the current partial assignments

is activated while other agents are in an idle state. Collin et al. (1991) proposed Network

Consistency Protocol (NCP) a variation of the synchronous backtracking. NCP agents are

prioritized using a depth-first search tree. Despite the fact that agents on the same branch

act synchronously, agents having the same parent can act concurrently. Thus, instead of

given the privilege to only one agent, as is done in SBT, an agent passes on the privilege of

extending the CPA or backtracking to all its children concurrently.

In Interleaved Asynchronous Backtracking (IDIBT) [Hamadi, 2002], agents partici-

pate in multiple processes of asynchronous backtracking. Each agent keeps a separate

AgentView for each search process in IDIBT. The number of search processes is fixed by

the first agent in the ordering. The performance of concurrent asynchronous backtrack-

ing [Hamadi, 2002] was tested and found to be ineffective for more than two concurrent

search processes [Hamadi, 2002].

3.8 Summary

A new complete, asynchronous algorithm, which needs polynomial space is presented.

This algorithm called Asynchronous Forward-Checking Tree (AFC-tree), is based on our

nogood-based Asynchronous Forward Checking (AFC-ng) and is performed on a pseudo-

tree arrangement of the constraint graph. AFC-tree runs simultaneous AFC-ng processes

on each branch of the pseudo-tree to exploit the parallelism inherent in the problem. Our

experiments show that AFC-tree is more robust than AFC-ng. It is particularly good when

the problems are sparse because it takes advantage of the pseudo-tree ordering.

4Maintaining Arc Consistency

Asynchronously in Synchronous

Distributed Search

Contents
6.1 Introduction . 107

6.2 Background . 108

6.3 ABT_DO-Retro May Not Terminate . 110

6.4 The Right Way to Compare Orders . 112

6.5 Summary . 114

We presented in (Chapter 2) our Nogood-Based Asynchronous Forward Checking

(AFC-ng). AFC-ng is an efficient and robust algorithm for solving Distributed Con-

straint Satisfaction Problems (DisCSPs). AFC-ng performs an asynchronous forward check-

ing phase during synchronous search. In this chapter, we propose two new algorithms

based on the same mechanism as AFC-ng. However, instead of using forward checking

as a filtering property, we propose to maintain arc consistency asynchronously (MACA).

The first algorithm we propose, MACA-del, enforces arc consistency thanks to an addi-

tional type of messages, deletion messages. The second algorithm, MACA-not, achieves

arc consistency without any new type of message. We provide a theoretical analysis and

an experimental evaluation of the proposed approach. Our experiments show the good

performance of MACA algorithms, particularly those of MACA-not.

This chapter is organized as follows. Section 4.1 introduces the previous works for

maintenance of arc consistency in DisCSPs and situates our contribution in the domain.

Section 4.2 recalls the necessary background on MAC. Sections 4.3 describes the MACA-

del and MACA-not algorithms. Theoretical analysis and correctness proofs are given in

Section 4.4. Section 4.5 presents an experimental evaluation of our proposed algorithms

against state-of-the-art other algorithms. Finally, we will conclude this chapter in Sec-

tion 4.6.

77

78 Chapter 4. Maintaining Arc Consistency Asynchronously in Synchronous Distributed Search

4.1 Introduction

We presented in Chapter 1 many backtrack search algorithms that were developed

for solving constraint satisfaction problems. Typical backtrack search algorithms try to

build a solution to a CSP by interleaving variable instantiation with constraint propaga-

tion. Forward Checking (FC) [Haralick and Elliott, 1980] and Maintaining Arc Consis-

tency (MAC) [Sabin and Freuder, 1994] are examples of such algorithms. In the 80’s, FC

was considered as the most efficient search algorithm. In the middle 90’s, several works

have empirically shown that MAC is more efficient than FC on hard and large problems
[Bessiere and Régin, 1996; Grant and Smith, 1996].

Although, many studies incorporated FC successfully in distributed CSPs [Brito and

Meseguer, 2003; Meisels and Zivan, 2007; Ezzahir et al., 2009], MAC has not yet been well

investigated. The only tentatives to include arc consistency maintenance in distributed al-

gorithms were done on the Asynchronous Backtracking algorithm. Silaghi et al. (2001b)

introduced the Distributed Maintaining Asynchronously Consistency for ABT, (DMAC-

ABT), the first algorithm able to maintain arc consistency in distributed CSPs [Silaghi et

al., 2001b]. DMAC-ABT considers consistency maintenance as a hierarchical nogood-based

inference. Brito and Meseguer (2008) proposed ABT-uac and ABT-dac, two algorithms that

connect ABT with arc consistency [Brito and Meseguer, 2008]. ABT-uac propagates uncon-

ditionally deleted values to enforce an amount of full arc consistency. ABT-dac propagates

conditionally and unconditionally deleted values using directional arc consistency. ABT-

uac shows minor improvement in communication load and ABT-dac is harmful in many

instances.

In this chapter, we propose two new synchronous search algorithms based on the same

mechanism as AFC-ng. However, instead of maintaining forward checking asynchronously

on agents not yet instantiated, we propose to maintain arc consistency asynchronously

on these future agents. We call this new scheme MACA, for maintaining arc consistency

asynchronously. As in AFC-ng, only the agent holding the current partial assignment (CPA)

can perform an assignment. However, unlike AFC-ng, MACA attempts to maintain the

arc consistency instead of performing only FC. The first algorithm we propose, MACA-

del, enforces arc consistency thanks to an additional type of messages, deletion messages

(del). Hence, whenever values are removed during a constraint propagation step, MACA-

del agents notify other agents that may be affected by these removals, sending them a

del message. del messages contain all removed values and the nogood justifying their

removal. The second algorithm, MACA-not, achieves arc consistency without any new type

of message. We achieve this by storing all deletions performed by an agent on domains

of its neighboring agents, and sending this information to these neighbors within the CPA

message.

4.2. Maintaining Arc Consistency 79

4.2 Maintaining Arc Consistency

Constraint propagation is a central feature of efficiency for solving CSPs [Bessiere,

2006]. The oldest and most commonly used technique for propagating constraints is arc

consistency (AC).

The Maintaining Arc Consistency (MAC) algorithm [Sabin and Freuder, 1994] alter-

nates exploration steps and constraint propagation steps. That is, at each step of the search,

a variable assignment is followed by a filtering process that corresponds to enforcing arc

consistency. For implementing MAC in a distributed CSP, Each agent Ai is assumed to

know all constraints in which it is involved and the agents with whom it shares a con-

straint (i.e., Γ(xi)). These agents and the constraints linking them to Ai form the local

constraint network of Ai, denoted by CSP(i).

Definition 4.1 The local constraint network CSP(i) of an agent Ai ∈ A consists of all con-

straints involving xi and all variables of these constraints (i.e., its neighbors).

In order to allow agents to maintain arc consistency in distributed CSPs, our proposed

approach consists in enforcing arc consistency on the local constraint network of each agent.

Basically, each agent Ai stores locally copies of all variables in CSP(i). We also assume that

each agent knows the neighborhood it has in common with its own neighbors, without

knowing the constraints relating them. That is, for each of its neighbors Ak, an agent Ai

knows the list of agents Aj such that there is a constraint between xi and xj and a constraint

between xk and xj.

Agent Ai stores nogoods for its removed values. They are stored in NogoodStore[xi].

But in addition to nogoods stored for its own values, Ai needs to store nogoods for values

removed from variables xj in CSP(i). Nogoods justifying the removals of values from D(xj)

are stored in NogoodStore[xj]. Hence, the NogoodStore of an agent Ai is a vector of several

NogoodStores, one for each variable in CSP(i).

4.3 Maintaining Arc Consistency Asynchronously

In AFC-ng, the forward checking phase aims at anticipating the backtrack. Neverthe-

less, we do not take advantage of the value removals caused by FC if it does not completely

wipe out the domain of the variable. One can investigate these removals by enforcing arc

consistency. This is motivated by the fact that the propagation of a value removal, for

an agent Ai, may generate an empty domain for a variable in its local constraint network

CSP(i). We can then detect an earlier dead-end and then anticipate as soon as possible the

backtrack operation.

In synchronous search algorithms for solving DisCSPs, agents sequentially assign their

variables. Thus, agents perform the assignment of their variable only when they hold the

current partial assignment, CPA. We propose an algorithm in which agents assign their

variable one by one following a total ordering on agents. Hence, whenever an agent suc-

ceeds in extending the CPA by assigning its variable on it, it sends the CPA to its successor

to extend it. Copies of this CPA are also sent to the other agents whose assignments are not

80 Chapter 4. Maintaining Arc Consistency Asynchronously in Synchronous Distributed Search

yet on the CPA in order to maintain arc consistency asynchronously. Therefore, when an agent

receives a copy of the CPA, it maintains arc consistency in its local constraint network. To

enforce arc consistency on all variables of the problem, agents communicate information

about value removals produced locally with other agents. We propose two methods to

achieve this. The first method, namely MACA-del, uses a new type of messages (del mes-

sages) to share this information. The second method, namely MACA-not, includes the

information about deletions generated locally within cpa messages.

4.3.1 Enforcing AC using del messages (MACA-del)

In MACA-del, each agent Ai maintains arc consistency on its local constraint network,

CSP(i) whenever a domain of a variable in CSP(i) is changed. Changes can occur either on

the domain of Ai or on another domain in CSP(i). In MACA-del on agent Ai, only removals

on D(xi) are externally shared with other agents. The propagation of the removals on D(xi)

is achieved by communicating to other agents the nogoods justifying these removals. These

removals and their associated nogoods are sent to neighbors via del messages.

The pseudo code of MACA-del, executed by each agent Ai, is shown in Algorithm 4.1.

Agent Ai starts the search by calling procedure MACA-del(). In procedure MACA-del(), Ai

calls function Propagate() to enforce arc consistency (line 1) in its local constraint network,

i.e., CSP(i). Next, if Ai is the initializing agent IA (the first agent in the agent ordering),

it initiates the search by calling procedure Assign() (line 2). Then, a loop considers the

reception and the processing of the possible message types.

When calling procedure Assign(), Ai tries to find an assignment which is consis-

tent with its AgentView. If Ai fails to find a consistent assignment, it calls procedure

Backtrack() (line 12). If Ai succeeds, it increments its counter ti and generates a CPA

from its AgentView augmented by its assignment (lines 9 and 10). Afterwards, Ai calls

procedure SendCPA(CPA) (line 11). If the CPA includes all agents assignments (Ai is the

lowest agent in the order, line 13), Ai reports the CPA as a solution of the problem and

marks the end flag true to stop the main loop (line 13). Otherwise, Ai sends forward the

CPA to all agents whose assignments are not yet on the CPA (line 14). So, the next agent

on the ordering (successor) will try to extend this CPA by assigning its variable on it while

other agents will maintain arc consistency asynchronously.

Whenever Ai receives a cpa message, procedure ProcessCPA() is called (line 6). The

received message will be processed only when it holds a CPA stronger than the AgentView

of Ai. If it is the case, Ai updates its AgentView (line 16) and then updates the NogoodStore

of each variable in CSP(i) to be compatible with the received CPA (line 17). Afterwards,

Ai calls function Propagate() to enforce arc consistency on CSP(i) (line 18). If arc consis-

tency wiped out a domain in CSP(i) (i.e., CSP(i) is not arc consistent), Ai calls procedure

Backtrack() (line 18). Otherwise, Ai checks if it has to assign its variable (line 19). Ai

tries to assign its variable by calling procedure Assign() only if it received the cpa from

its predecessor.

When calling function Propagate(), Ai restores arc consistency on its local constraint

network according to the assignments on its AgentView (line 20). In our implementation

4.3. Maintaining Arc Consistency Asynchronously 81

Algorithm 4.1: MACA-del algorithm running by agent Ai.
procedure MACA-del()

01. end ← false; Propagate() ;
02. if (Ai = IA) then Assign() ;
03. while (¬end) do
04. msg ← getMsg();
05. switch (msg.type) do
06. cpa : ProcessCPA(msg); ngd : ProcessNogood(msg);
07. del : ProcessDel(msg); stp : end ← true;

procedure Assign()

08. if (D(xi) �= ∅) then
09. vi ← ChooseValue() ; ti ← ti+1 ;
10. CPA ← {AgentView ∪ (xi , vi , ti)} ;
11. SendCPA(CPA) ;
12. else Backtrack() ;
procedure SendCPA(CPA)
13. if (size(CPA) = n) then broadcastMsg : stp(CPA) ; end ← true ;
14. else foreach (xk � xi) do sendMsg : cpa(CPA) to Ak ;
procedure ProcessCPA(msg)
15. if (msg.CPA is stronger than the AgentView) then
16. AgentView ← CPA ;
17. Remove all nogoods incompatible with AgentView ;
18. if (¬Propagate()) then Backtrack() ;
19. else if (msg.sender = predecessor(Ai)) then Assign();

function Propagate()

20. if (¬AC(CSP(i))) then return false ;
21. else if (D(xi) was changed) then
22. foreach (xj ∈ CSP(i)) do

23. nogoods ← get nogoods from NogoodStore[xi] that are relevant to xj ;
24. sendMsg : del(nogoods) to Aj ;
25. return true ;
procedure ProcessDel(msg)
26. foreach (ng ∈ msg.nogoods such that Compatible(ng, AgentView)) do
27. add(ng, NogoodStore[xk]) ; /* Ak is the agent that sent msg */
28. if (D(xk) = ∅∧ xi ∈ NogoodStore[xk]) then
29. add(solve(NogoodStore[xk]), NogoodStore[xi]) ; Assign() ;
30. else if (D(xk) = ∅∨ ¬Propagate()) then Backtrack() ;
procedure Backtrack()

31. newNogood ← solve(NogoodStore[xk]) ; /* xk is a variable such that D(xk)=∅ */
32. if (newNogood = empty) then broadcastMsg : stp(∅); end ← true ;
33. else /* Let xj be the variable on the rhs(newNogood) */
34. sendMsg : ngd(newNogood) to Aj ;
35. foreach (xl � xj) do AgentView[xl].Value ← empty ;
36. Remove all nogoods incompatible with AgentView ;

procedure ProcessNogood(msg)
37. if (Compatible(lhs(msg.nogood), AgentView)) then
38. add(msg.nogood, NogoodStore[xi]) ; /* using to the HPLV Hirayama and Yokoo (2000) */
39. if (rhs(msg.nogood).Value = vi) then Assign();
40. else if (¬Propagate()) then Backtrack() ;

82 Chapter 4. Maintaining Arc Consistency Asynchronously in Synchronous Distributed Search

we used AC-2001 [Bessiere and Régin, 2001] to enforce arc consistency but any generic AC

algorithm can be used. MACA-del requires from the algorithm enforcing arc consistency

to store a nogood for each removed value. When two nogoods are possible for the same

value, we select the best with the Highest Possible Lowest Variable heuristic [Hirayama and

Yokoo, 2000]. If enforcing arc consistency on CSP(i) has failed, i.e., a domain was wiped

out, the function returns f alse (line 20). Otherwise, if the domain of xi was changed (i.e.,

there are some deletions to propagate), Ai informs its constrained agents by sending them

del messages that contain nogoods justifying these removals (lines 23-24). Finally, the

function returns true (line 25). When sending a del message to a neighboring agent Aj,

only nogoods such that all variables in their left hand sides have a higher priority than Aj

will be communicated to Aj. Furthermore, all nogoods having the same left hand side are

factorized in one single nogood whose right hand side is the set of all values removed by

this left hand side.

Whenever Ai receives a del message, it adds to the NogoodStore of the sender, say Ak,

(i.e., NogoodStore[xk]) all nogoods compatible with the AgentView of Ai (lines 26-27). Af-

terward, Ai checks if the domain of xk is wiped out (i.e., the remaining values in D(xk) are

removed by nogoods that have just been received from Ak) and xi belongs to the Nogood-

Store of xk (i.e., xi is already assigned and its current assignment is included in at least one

nogood removing a value from D(xk)) (line 28). If it is the case, Ai removes its current value

by storing the resolved nogood from the NogoodStore of xk (i.e., solve(NogoodStore[xk]))

as justification of this removal, and then calls procedure Assign() to try an other value

(line 29). Otherwise, when D(xk) is wiped-out (xi is not assigned) or if a dead-end occurs

when trying to enforce arc consistency, Ai has to backtrack and thus it calls procedure

Backtrack() (line 30).

Each time a dead-end occurs on a domain of a variable xk in CSP(i) (including xi), the

procedure Backtrack() is called. The nogoods that generated the dead-end are resolved

by computing a new nogood newNogood (line 31). newNogood is the conjunction of the

left hand sides of all these nogoods stored by Ai in NogoodStore[xk]. If the new nogood

newNogood is empty, Ai terminates execution after sending a stp message to all agents in

the system meaning that the problem is unsolvable (line 32). Otherwise, Ai backtracks by

sending a ngd message to agent Aj, the owner of the variable on the right hand side of

newNogood (line 34). Next, Ai updates its AgentView in order to keep only assignments

of agents that are placed before Aj in the total ordering (line 35). Ai also updates the

NogoodStore of all variables in CSP(i) by removing nogoods incompatible with its new

AgentView (line 36).

Whenever a ngd message is received, Ai checks the validity of the received nogood

(line 37). If the received nogood is compatible with its AgentView, Ai adds this nogood to

its NogoodStore (i.e. NogoodStore[xi], line 38). Then, Ai checks if the value on the right

hand side of the received nogood equals its current value (vi). If it is the case, Ai calls

the procedure Assign() to try another value for its variable (line 39). Otherwise, Ai calls

function Propagate() to restore arc consistency. When a dead-end was generated in its

local constraint network, Ai calls procedure Backtrack() (line 40).

4.3. Maintaining Arc Consistency Asynchronously 83

4.3.2 Enforcing AC without additional kind of message (MACA-not)

In the following, we show how to enforce arc consistency without additional kind of

messages. In MACA-del, global consistency maintenance is achieved by communicating to

constrained agents (agents in CSP(i)) all values pruned from D0(xi). This may generate

many del messages in the network, and then result in a communication bottleneck. In

addition, many del messages may lead agents to perform more efforts to process them. In

MACA-not, communicating the removals produced in CSP(i) is delayed until the agent Ai

wants to send a cpa message. When sending the cpa message to a lower priority agent Ak,

agent Ai attaches nogoods justifying value removals from CSP(i) to the cpa message. But

it does not attach all of them because some variables are irrelevant to Ak (not connected to

xk by a constraint).

MACA-not shares with Ak all nogoods justifying deletions on variables not yet instan-

tiated that share a constraint with both Ai and Ak (i.e., variables in {CSP(i) ∩ CSP(k)} \

vars(CPA)). Thus, when Ak receives the cpa it receives also deletions performed in CSP(i)

that can lead him to more arc consistency propagation.

Algorithm 4.2: New lines/procedures for MACA-not with respect to MACA-del.
procedure MACA-not()

01. end ← false; Propagate() ;
02. if (Ai = IA) then Assign() ;
03. while (¬end) do
04. msg ← getMsg();
05. switch (msg.type) do
06. cpa : ProcessCPA(msg); ngd : ProcessNogood(msg);
07. stp : end ← true;

procedure SendCPA(CPA)
08. if (size(CPA) = n) then broadcastMsg : stp(CPA) ; end ← true ;
09. else
10. foreach (xk � xi) do
11. nogoods ← ∅;
12. foreach (xj ∈ {CSP(i) ∩ CSP(k)} such that xj � xi) do

13. nogoods ← nogoods ∪ getNogoods(xj) ;
14. sendMsg : cpa(CPA, nogoods) to Ak ;

procedure ProcessCPA(msg)
15. if (msg.CPA is stronger than the AgentView) then
16. AgentView ← CPA ;
17. Remove all nogoods incompatible with AgentView ;
18. foreach (nogoods ∈ msg.nogoods) do add(nogoods, NogoodStore) ;
19. if (¬Propagate()) then Backtrack() ;
20. else if (msg.sender = predecessor(Ai)) then Assign();

function Propagate()

21. return AC(CSP(i)) ;

We present in Algorithm 4.2 the pseudo-code of MACA-not algorithm. Only proce-

dures that are new or different from those of MACA-del in Algorithm 4.1 are presented.

Function Propagate() no longer sends del messages, it just maintains arc consistency on

CSP(i) and returns true iff no domain was wiped out.

In procedure SendCPA(CPA), when sending a cpa message to an agent Ak, Ai attaches

84 Chapter 4. Maintaining Arc Consistency Asynchronously in Synchronous Distributed Search

to the CPA the nogoods justifying the removals from the domains of variables in CSP(i)

constrained with Ak (lines 10-14, Algorithm 4.2).

Whenever Ai receives a cpa message, procedure ProcessCPA() is called (line 6). The

received message will be processed only when it holds a CPA stronger than the AgentView

of Ai. If it is the case, Ai updates its AgentView (line 16) and then updates the NogoodStore

to be compatible with the received CPA (line 17). Next, all nogoods contained in the

received message are added to the NogoodStore (line 18). Obviously, nogoods are added

to the NogoodStore referring to the variable in their right hand side (i.e., ng is added to

NogoodStore[xj] if xj is the variable in rhs(ng)). Afterwards, Ai calls function Propagate()

to restore arc consistency in CSP(i) (line 19). If a domain of a variable in CSP(i) wiped

out, Ai calls procedure Backtrack() (line 19). Otherwise, Ai checks if it has to assign its

variable (line 20). Ai tries to assign its variable by calling procedure Assign() only if it

received the cpa from its predecessor.

4.4 Theoretical analysis

We demonstrate that MACA is sound, complete and terminates, with a polynomial

space complexity.

Lemma 4.1. MACA is guaranteed to terminate.

Proof. (Sketch) The proof is close to the one given in Lemma 2.1, Chapter 2. It can easily

be obtained by induction on the agent ordering that there will be a finite number of new

generated CPAs (at most nd, where n the number of variables and d is the maximum

domain size), and that agents can never fall into an infinite loop for a given CPA.

Lemma 4.2. MACA cannot infer inconsistency if a solution exists.

Proof. Whenever a stronger cpa or a ngd message is received, MACA agents update their

NogoodStores. In MACA-del, the nogoods contained in del are accepted only if they are

compatible with AgentView (line 27, Algorithm 4.1). In MACA-not, the nogoods included

in the cpa messages are compatible with the received CPA and they are accepted only when

the CPA is stronger than AgentView (line 15, Algorithm 4.2). Hence, for every CPA that

may potentially lead to a solution, agents only store valid nogoods. Since all additional

nogoods are generated by logical inference when a domain wipe-out occurs, the empty

nogood cannot be inferred if the network is satisfiable.

Theorem 4.1. MACA is correct.

Proof. The argument for soundness is close to the one given in Theorem 2.2, Chapter 2.

The fact that agents only forward consistent partial solution on the cpa messages at only

one place in procedure Assign() (line 11, Algorithm 4.1), implies that the agents receive

only consistent assignments. A solution is found by the last agent only in procedure

SendCPA(CPA) at (line 13, Algorithm 4.1 and line 8, Algorithm 4.2). At this point, all

agents have assigned their variables, and their assignments are consistent. Thus MACA is

4.5. Experimental Results 85

sound. Completeness comes from the fact that MACA is able to terminate and does not

report inconsistency if a solution exists (Lemma 4.1 and 4.2).

Theorem 4.2. MACA is polynomial in space.

Proof. On each agent, MACA stores one nogood of size at most n per removed value in its

local constraint network. The local constraint network contains at most n variables. Thus,

the space complexity of MACA is in O(n2d) on each agent where d is the maximal initial

domain size.

Theorem 4.3. MACA messages are polynomially bounded.

Proof. The largest messages for MACA-del are del messages. In the worst-case, a del mes-

sage contains a nogood for each value. Thus, the size of del messages is in O(nd). In

MACA-not, the largest messages are cpa messages. The worst-case is a cpa message con-

taining a CPA and one nogood for each value of each variable in the local constraint net-

work. Thus, the size of a cpa message is in O(n + n2d) = O(n2d).

4.5 Experimental Results

In this section we experimentally compare MACA algorithms to ABT-uac, ABT-

dac [Brito and Meseguer, 2008] and AFC-ng Chapter 2. These algorithms are evaluated

on uniform random binary DisCSPs. All experiments were performed on the DisChoco 2.0

platform 1 [Wahbi et al., 2011], in which agents are simulated by Java threads that commu-

nicate only through message passing. All algorithms are tested on the same static agents

ordering (lexicographic ordering) and the same nogood selection heuristic (HPLV) [Hi-

rayama and Yokoo, 2000]. For ABT-dac we implemented an improved version of Silaghi’s

solution detection [Silaghi, 2006] and counters for tagging assignments.

We evaluate the performance of the algorithms by communication load [Lynch, 1997]

and computation effort. Communication load is measured by the total number of ex-

changed messages among agents during algorithm execution (#msg), including those of

termination detection (system messages). Computation effort is measured by the number

of non-concurrent constraint checks (#ncccs) [Zivan and Meisels, 2006b]. #ncccs is the

metric used in distributed constraint solving to simulate the computation time.

The algorithms are tested on uniform random binary DisCSPs which are characterized

by �n, d, p1, p2�, where n is the number of agents/variables, d is the number of values in

each of the domains, p1 the network connectivity defined as the ratio of existing binary

constraints, and p2 the constraint tightness defined as the ratio of forbidden value pairs.

We solved instances of two classes of constraint networks: sparse networks �20, 10, 0.25, p2�

and dense ones �20, 10, 0.7, p2�. We vary the tightness from 0.1 to 0.9 by steps of 0.1. For

each pair of fixed density and tightness (p1, p2) we generated 100 instances. The average

over the 100 instances is reported.

1. http://www.lirmm.fr/coconut/dischoco/

http://www.lirmm.fr/coconut/dischoco/

86 Chapter 4. Maintaining Arc Consistency Asynchronously in Synchronous Distributed Search

0.0⋅10
0

2.0⋅10
4

4.0⋅10
4

6.0⋅10
4

8.0⋅10
4

1.0⋅10
5

1.2⋅10
5

1.4⋅10
5

1.6⋅10
5

1.8⋅10
5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
n
c
c
c
s

p2

AFC-ng

ABT-uac

ABT-dac

MACA-del

MACA-not

Figure 4.1 – The number of non-concurrent constraint checks (#ncccs) performed for solving
sparse problems (p1 = 0.25).

First, we present the performance of the algorithms on the sparse instances, p1 = 0.25,

(Figures 4.1 and 4.2). Concerning the computational effort (Figure 4.1), algorithms enforc-

ing an amount of arc consistency are better than AFC-ng, which only enforces forward

checking. Among these algorithms MACA-del is the fastest one. MACA-not behaves like

ABT-dac, which is better than ABT-uac.

0.0⋅10
0

1.0⋅10
5

2.0⋅10
5

3.0⋅10
5

4.0⋅10
5

5.0⋅10
5

6.0⋅10
5

7.0⋅10
5

8.0⋅10
5

9.0⋅10
5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

p2

AFC-ng

ABT-uac

ABT-dac

MACA-del

MACA-not

Figure 4.2 – The total number of messages sent for solving sparse problems (p1 = 0.25).

Concerning the communication load (Figure 4.2), algorithms performing an amount of

arc consistency improve on AFC-ng by an even larger scale than for computational effort.

ABT-uac and ABT-dac require almost the same number of exchanged messages. Among the

algorithms maintaining an amount of arc consistency, the algorithms with a synchronous

behavior (MACA algorithms) outperform those with an asynchronous behavior (ABT-dac

4.5. Experimental Results 87

and ABT-uac) by a factor of 6. It thus seems that on sparse problems, maintaining arc

consistency in synchronous search algorithms provides more benefit than in asynchronous

ones. MACA-not exchanges slightly fewer messages than MACA-del at the complexity

peak.

0.0⋅10
0

2.0⋅10
5

4.0⋅10
5

6.0⋅10
5

8.0⋅10
5

1.0⋅10
6

1.2⋅10
6

1.4⋅10
6

1.6⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
n
c
c
c
s

p2

AFC-ng

ABT-uac

ABT-dac

MACA-del

MACA-not

Figure 4.3 – The number of non-concurrent constraint checks (#ncccs) performed for solving
dense problems (p1 = 0.7).

In the following, we present the performance of the algorithms on the dense instances

(p1 = 0.7). Concerning the computational effort (Figure 4.3), the first observation is that

asynchronous algorithms are less efficient than those performing assignments sequentially.

Among all compared algorithms, AFC-ng is the fastest one on these dense problems. This

is consistent with results on centralized CSPs where FC had a better behavior on dense

problems than on sparse ones [Bessiere and Régin, 1996; Grant and Smith, 1996]. As on

sparse problems, ABT-dac outperforms ABT-uac. Conversely to sparse problems, MACA-

not outperforms MACA-del.

Concerning the communication load (Figure 4.4), on dense problems, asynchronous al-

gorithms (ABT-uac and ABT-dac) require a large number of exchanged messages. MACA-

del does not improve on AFC-ng because of a too large number of exchanged del messages.

On these problems, MACA-not is the algorithm that requires the smallest number of mes-

sages. MACA-not improves on synchronous algorithms (AFC-ng and MACA-del) by a

factor of 11 and on asynchronous algorithms (ABT-uac and ABT-dac) by a factor of 40.

4.5.1 Discussion

From these experiments we can conclude that in synchronous algorithms, maintaining

arc consistency is better than maintaining forward checking in terms of computational

effort when the network is sparse, and is always better in terms of communication load.

We can also conclude that maintaining arc consistency in synchronous algorithms produces

88 Chapter 4. Maintaining Arc Consistency Asynchronously in Synchronous Distributed Search

0.0⋅10
0

5.0⋅10
5

1.0⋅10
6

1.5⋅10
6

2.0⋅10
6

2.5⋅10
6

3.0⋅10
6

3.5⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

p2

AFC-ng

ABT-uac

ABT-dac

MACA-del

MACA-not

Figure 4.4 – The total number of messages sent for solving dense problems (p1 = 0.7).

much larger benefits than maintaining arc consistency in asynchronous algorithms like

ABT.

4.6 Summary

We have proposed two new synchronous search algorithms for solving DisCSPs. These

are the first attempts to maintain arc consistency during synchronous search in DisCSPs.

The first algorithm, MACA-del, enforces arc consistency thanks to an additional type of

messages, deletion messages. The second algorithm, MACA-not, achieves arc consistency

without any new type of message. Despite the synchronicity of search, these two algo-

rithms perform the arc consistency phase asynchronously. Our experiments show that

maintaining arc consistency during synchronous search produces much larger benefits

than maintaining arc consistency in asynchronous algorithms like ABT. The communi-

cation load of MACA-del can be significantly lower than that of AFC-ng, the best syn-

chronous algorithm to date. MACA-not shows even larger improvements thanks to its

more parsimonious use of messages.

5Agile Asynchronous BackTracking

(Agile-ABT)

Contents
7.1 Introduction . 115

7.2 Architecture . 116

7.2.1 Communication System . 117

7.2.2 Event Management . 118

7.2.3 Observers in layers . 118

7.3 Using DisChoco 2.0 . 119

7.4 Experimentations . 121

7.5 Conclusion . 123

It is known from centralized CSPs that reordering variables dynamically improves the

efficiency of the search procedure. Moreover, reordering in ABT is required in various

applications (e.g., security [Silaghi et al., 2001a]). All polynomial space algorithms pro-

posed so far to improve Asynchronous Backtracking by reordering agents during search

only allow a limited amount of reordering Section 1.4.3. In this chapter, we propose Agile-

ABT, a search procedure that is able to change the ordering of agents more than previous

approaches. This is done via the original notion of termination value, a vector of stamps

labeling the new orders exchanged by agents during search. In Agile-ABT, agents can re-

order themselves as much as they want as long as the termination value decreases as the

search progresses. Agents cooperate without any global control to reduce termination val-

ues rapidly, gaining efficiency while ensuring polynomial space complexity. We compare

the performance of Agile-ABT with other algorithms and our experiments show the good

performance of Agile-ABT when compared to other dynamic reordering techniques.

The rest of the chapter is organized as follows. Section 5.1 introduces and situates our

contribution (Agile-ABT). Section 5.2 describes the concepts needed to select new orders

that decrease the termination value. We give the details of our algorithm in Section 5.3 and

we prove it in Section 5.4. An experimental evaluation is given in Section 5.5. Section 5.7

concludes the chapter.

89

90 Chapter 5. Agile Asynchronous BackTracking (Agile-ABT)

5.1 Introduction

Several distributed algorithms for solving DisCSPs have been developed, among which

Asynchronous Backtracking (ABT) is the central one [Yokoo et al., 1998; Bessiere et al.,

2005]. ABT is an asynchronous algorithm executed autonomously by each agent in the

distributed problem. In ABT, the priority order of agents is static, and an agent tries to

find an assignment satisfying the constraints with higher priority agents. When an agent

sets a variable value, the selected value will not be changed unless an exhaustive search is

performed by lower priority agents. Now, it is known from centralized CSPs that adapting

the order of variables dynamically during search drastically fastens the search procedure.

Moreover, reordering in ABT is required in various applications (e.g., security [Silaghi et

al., 2001a]).

Asynchronous Weak Commitment (AWC) dynamically reorders agents during search

by moving the sender of a nogood higher in the order than the other agents in the nogood
[Yokoo, 1995]. But AWC requires exponential space for storing nogoods. Silaghi et al.

(2001c) tried to hybridize ABT with AWC. Abstract agents fulfill the reordering operation

to guarantee a finite number of asynchronous reordering operations. In [Silaghi, 2006], the

heuristic of the centralized dynamic backtracking [Ginsberg, 1993] was applied to ABT.

However, in both studies, the improvement obtained on ABT was minor.

Zivan and Meisels (2006a) proposed another algorithm for Dynamic Ordering in Asyn-

chronous Backtracking (ABT_DO). When an agent assigns a value to its variable, ABT_DO

can reorder only lower priority agents. A new kind of ordering heuristics for ABT_DO is

presented in [Zivan et al., 2009]. These heuristics, called retroactive heuristics ABT_DO-

Retro, enable the generator of the nogood to be moved to a higher position than that of

the target of the backtrack. The degree of flexibility of these heuristics is dependent on

the size of the nogood storage capacity, which is predefined. Agents are limited to store

nogoods equal or smaller than a predefined size K. The space complexity of the agents is

thus exponential in K. However, the best heuristic, ABT_DO-Retro-MinDom, proposed in
[Zivan et al., 2009] is a heuristic that does not require this exponential storage of nogoods.

In ABT_DO-Retro-MinDom, the agent that generates a nogood is placed in the new order

between the last and the second last agents in the nogood if its domain size is smaller than

that of the agents it passes on the way up.

In this chapter, we propose Agile Asynchronous Backtracking (Agile-ABT), an asyn-

chronous dynamic ordering algorithm that does not follow the standard restrictions in

asynchronous backtracking algorithms. The order of agents appearing before the agent

receiving a backtrack message can be changed with a great freedom while ensuring poly-

nomial space complexity. Furthermore, that agent receiving the backtrack message, called

the backtracking target, is not necessarily the agent with the lowest priority within the

conflicting agents in the current order. The principle of Agile-ABT is built on termina-

tion values exchanged by agents during search. A termination value is a tuple of positive

integers attached to an order. Each positive integer in the tuple represents the expected cur-

rent domain size of the agent in that position in the order. Orders are changed by agents

without any global control so that the termination value decreases lexicographically as the

5.2. Introductory Material 91

search progresses. Since, a domain size can never be negative, termination values cannot

decrease indefinitely. An agent informs the others of a new order by sending them its new

order and its new termination value. When an agent compares two contradictory orders,

it keeps the order associated with the smallest termination value.

5.2 Introductory Material

In Agile-ABT, all agents start with the same order O. Then, agents are allowed to

change the order asynchronously. Each agent Ai ∈ A stores a unique order denoted by Oi.

Oi is called the current order of Ai. Agents appearing before Ai in Oi are the higher priority

agents (predecessors) denoted by O−
i and conversely the lower priority agents (successors)

O+
i are agents appearing after Ai.

Agents can infer inconsistent sets of assignments, called nogoods. A nogood can be

represented as an implication. There are clearly many different ways of representing a

given nogood as an implication. For example, ¬[(xi=vi) ∧ (xj=vj) ∧ · · · ∧ (xk=vk)] is logi-

cally equivalent to [(xj=vj) ∧ · · · ∧ (xk=vk)] → (xi �= vi). When a nogood is represented

as an implication, the left hand side (lhs) and the right hand side (rhs) are defined from the

position of →. A nogood ng is relevant with respect to an order Oi if all agents in lhs(ng)

appear before rhs(ng) in Oi.

The current domain of xi is the set of values vi ∈ D0(xi) such that xi �= vi does not

appear in any of the right hand sides of the nogoods stored by Ai. Each agent keeps only

one nogood per removed value. The size of the current domain of Ai is denoted by di (i.e.,

|D(xi)| = di). The initial domain size of a variable xi, before any value has been pruned, is

denoted by d0
i (i.e., d0

i = |D0(xi)| and di = |D(xi)|).

Before presenting Agile-ABT, we need to introduce new notions and to present some

key subfunctions.

5.2.1 Reordering details

In order to allow agents to asynchronously propose new orders, they must be able to

coherently decide which order to select. We propose that the priority between the different

orders is based on termination values. Informally, if Oi = [A1, . . . , An] is the current order

known by an agent Ai, then the tuple of domain sizes [d1, . . . , dn] is the termination value

of Oi on Ai. To build termination values, agents need to know the current domain sizes of

other agents. To this end, agents exchange explanations.

Definition 5.1 An explanation ej is an expression lhs(ej) → dj, where lhs(ej) is the conjunc-

tion of the left hand sides of all nogoods stored by Aj as justifications of value removals for xj, and

dj is the number of values not pruned by nogoods in the domain of Aj. dj is the right hand side of

ej, rhs(ej).

Each time an agent communicates its assignment to other agents (by sending them an

ok? message, see Section 5.3), it inserts its explanation in the ok? message for allowing

other agents to build their termination value.

92 Chapter 5. Agile Asynchronous BackTracking (Agile-ABT)

The variables in the left hand side of an explanation ej must precede the variable xj

in the order because the assignments of these variables have been used to determine the

current domain of xj. An explanation ej induces ordering constraints, called safety conditions

in [Ginsberg and McAllester, 1994] (see Section 1.2.1.4).

Definition 5.2 A safety condition is an assertion xk ≺ xj. Given an explanation ej, S(ej) is the

set of safety conditions induced by ej, where S(ej)={(xk ≺ xj) | xk ∈ lhs(ej)}.

An explanation ej is relevant to an order O if all variables in lhs(ej) appear before xj

in O. Each agent Ai stores a set Ei of explanations sent by other agents. During search, Ei

is updated to remove explanations that are no longer valid.

Definition 5.3 An explanation ej in Ei is valid on agent Ai if it is relevant to the current order

Oi and lhs(ej) is compatible with the AgentView of Ai.

When Ei contains an explanation ej associated with Aj, Ai uses this explanation to

justify the size of the current domain of Aj. Otherwise, Ai assumes that the size of the

current domain of Aj is equal to its initial domain size d0
j . The termination value depends

on the order and the set of explanations.

Definition 5.4 Let Ei be the set of explanations stored by Ai, O be an order on the agents such that

every explanation in Ei is relevant to O, and O(k) be such that AO(k) is the kth agent in O. The

termination value TV(Ei,O) is the tuple [tv1, . . . , tvn], where tvk = rhs(eO(k)) if eO(k) ∈ Ei,

otherwise, tvk = d0
O(k).

In Agile-ABT, an order Oi is always associated with a termination value TVi. When

comparing two orders the strongest order is that associated with the lexicographically

smallest termination value. In case of ties, we use the lexicographic order on agents IDs, the

smaller being the stronger.

Example 5.1 Consider for instance the two orders O1=[A1, A2, A5, A4, A3] and

O2=[A1, A2, A4, A5, A3]. If the termination value associated with O1 is equal to the termi-

nation value associated with O2, O2 is stronger than O1 because the vector [1, 2, 4, 5, 3] of

IDs in O2 is lexicographically smaller than the vector [1, 2, 5, 4, 3] of IDs in O1.

In the following we will show that the interest of the termination values is not limited

to the role of establishing a priority between the different orders proposed by agents. We

use them to provide more flexibility in the choice of the backtracking target and to speed

up the search.

5.2.2 The Backtracking Target

When all the values of an agent Ai are ruled out by nogoods, these nogoods are re-

solved, producing a new nogood newNogood. newNogood is the conjunction of the left

hand side (lhs) of all nogoods stored by Ai. If newNogood is empty, then the inconsistency

is proved. Otherwise, one of the conflicting agents must change its value. In standard

ABT, the backtracking target (i.e., the agent that must change its value) is the agent with

5.2. Introductory Material 93

the lowest priority. Agile-ABT overcomes this restriction by allowing Ai to select with great

freedom the backtracking target. When a new nogood newNogood is produced by resolu-

tion, the only condition to choose a variable xk as the backtracking target (i.e., the variable

to put in the right hand side of newNogood) is to find an order O� such that TV(up_Ei,O�)

is lexicographically smaller than the termination value associated with the current order of

Ai (i.e., Oi). up_Ei is obtained by updating Ei after placing xk in rhs(newNogood).

Function UpdateExplanations takes as arguments the set of explanations stored by

Ai (i.e., Ei), the generated nogood newNogood and the variable xk to place in the right

hand side (rhs) of newNogood. UpdateExplanations removes all explanations that are

no longer compatible with the AgentView of Ai after placing xk in the right hand side of

newNogood. (The assignment of xk will be removed from AgentView after backtracking).

Next, it updates the explanation of agent Ak stored in Ai and it returns a set of (updated)

explanations up_Ei.

Algorithm 5.1: Function Update Explanations.
function UpdateExplanations(Ei , newNogood, xk)

01. up_Ei ← Ei ;
02. SetRhs(newNogood, xk) ;
03. remove each ej ∈ up_Ei such that xk ∈ lhs(ej) ;
04. if (ek /∈up_Ei) then

05. ek ← {∅ → d0
k} ;

06. add(ek, up_Ei) ;
07. e�k ← {[lhs(ek)∪ lhs(newNogood)] → rhs(ek)− 1} ;
08. replace ek by e�k ;
09. return up_Ei;

This function does not create cycles in the set of safety conditions S(up_Ei) if S(Ei)

is acyclic. Indeed, all the explanations added or removed from S(Ei) to obtain S(up_Ei)

contain xk. Hence, if S(up_Ei) contains cycles, all these cycles should contain xk. However,

there does not exist any safety condition of the form xk ≺ xj in S(up_Ei) because all of

these explanations have been removed in line 3. Thus, S(up_Ei) cannot be cyclic. As we

will show in Section 5.3, the updates performed by Ai ensure that S(Ei) always remains

acyclic. As a result, S(up_Ei) is acyclic as well, and it can be represented by a directed

acyclic graph
−→
G = (X−→

G
, E−→

G
) where X−→

G
= X = {x1, . . . , xn}. An edge (xj, xl) ∈ E−→

G
if the

safety condition (xj ≺ xl) ∈ S(up_Ei), i.e., el ∈ up_Ei and xj ∈ lhs(el). Any topological

sort of
−→
G is an order relevant to the safety conditions induced by up_Ei.

To recap, when all values of an agent Ai are ruled out by some nogoods, they are

resolved, producing a new nogood (newNogood). In Agile-ABT, Ai can select with great

freedom the variable xk whose value is to be changed. The only restriction to place a

variable xk in the rhs(newNogood) is to find an order O� such that TV(up_Ei,O�) is lex-

icographically smaller than the termination value associated with the current order of Ai.

Note that up_Ei being acyclic, there are always one or more topological orders that agree

with S(up_Ei). In the following, we will discuss in more details how to choose the order

O�.

94 Chapter 5. Agile Asynchronous BackTracking (Agile-ABT)

5.2.3 Decreasing termination values

Termination of Agile-ABT is based on the fact that the termination values associated

with orders selected by agents decrease as search progresses. To speed up the search,

Agile-ABT is written so that agents decrease termination values whenever they can. When

an agent resolves its nogoods, it checks whether it can find a new order of agents such

that the associated termination value is smaller than that of the current order. If so, the

agent will replace its current order and termination value by those just computed, and will

inform all other agents.

Algorithm 5.2: Function Compute Order.
function ComputeOrder(up_Ei)

10.
−→
G = (X−→

G
, E−→

G
) is the acyclic directed graph associated to up_Ei ;

11. p ← 1 ;
12. O is an array of length n ;

13. while (
−→
G �= ∅) do

14. Roots ← {xj ∈ X−→
G

| xj has no incoming edges} ;
15. O(p) ← xj such that dj = min{dk | xk ∈ Roots} ;

16. remove xj from
−→
G ; /* with all outgoing edges from xj */

17. p ← p + 1 ;
18. return O ;

Assume that after resolving its nogoods, an agent Ai, decides to place xk in the

right hand side of the nogood (newNogood) produced by the resolution and let Ei =

UpdateExplanations(Ei, newNogood, xk). The function ComputeOrder takes as parame-

ter the set up_Ei and returns an order O relevant to the partial ordering induced by up_Ei.

Let
−→
G be the acyclic directed graph associated with up_Ei. The function ComputeOrder

works by determining, at each iteration p, the set Roots of vertexes that have no prede-

cessor (line 14). As we aim at minimizing the termination value, function ComputeOrder

selects the vertex xj in Roots that has the smallest domain size (line 15). This vertex is

placed at the pth position. Finally, p is incremented after removing xj and all outgoing

edges from xj from
−→
G (lines 16-17).

Algorithm 5.3: Function Choose Variable Ordering.
function ChooseVariableOrder(Ei , newNogood)
19. O� ← Oi; TV� ← TVi; E � ← nil; x� ← nil ;
20. foreach (xk ∈ newNogood) do
21. up_Ei ← UpdateExplanations(Ei , newNogood, xk) ;
22. up_O ← ComputeOrder(up_Ei) ;
23. up_TV ← TV(up_Ei, up_O) ;
24. if (up_TV is smaller than TV�) then
25. x� ← xk;
26. O� ← up_O;
27. TV� ← up_TV;
28. E � ← up_Ei ;
29. return �x�,O�, TV�, E ��;

Having proposed an algorithm that determines an order with small termination value

5.3. The Algorithm 95

for a given backtracking target xk, one needs to know how to choose this variable to obtain

an order decreasing more the termination value. The function ChooseVariableOrder iter-

ates through all variables xk included in the nogood, computes a new order and termination

value with xk as the target (lines 21-23), and stores the target and the associated order if it

is the strongest order found so far (lines 24-28). Finally, the information corresponding to

the strongest order is returned.

5.3 The Algorithm

Each agent, say Ai, keeps some amount of local information about the global search,

namely an AgentView, a NogoodStore, a set of explanations (Ei), a current order (Oi) and

a termination value (TVi). Agile-ABT allows the following types of messages (where Ai is

the sender):

ok?: The ok? message is sent by Ai to lower agents to ask whether a chosen value is

acceptable. Besides the chosen value, the ok? message contains an explanation ei

which communicates the current domain size of Ai. An ok? message also contains

the current order Oi and the current termination value TVi stored by Ai.

ngd: The ngd message is sent by Ai when all its values are ruled out by its NogoodStore.

This message contains a nogood, as well as Oi and TVi.

order: The order message is sent to propose a new order. This message includes the order

Oi proposed by Ai accompanied by the termination value TVi.

Agile-ABT (Algorithm 5.4-5.5) is executed on every agent Ai. After initialization, each

agent assigns a value and informs lower priority agents of its decision (CheckAgentView

call, line 31) by sending ok? messages. Then, a loop considers the reception of the possible

message types. If no message is traveling through the network, the state of quiescence is

detected by a specialized algorithm [Chandy and Lamport, 1985], and a global solution is

announced. The solution is given by the current variables’ assignments.

When an agent Ai receives a message (of any type), it checks if the order included in

the received message is stronger than its current order Oi (CheckOrder call, lines 37, 41 and

43). If it is the case, Ai replaces Oi and TVi by those newly received (line 52). The nogoods

and explanations that are no longer relevant to Oi are removed to ensure that S(Ei) remains

acyclic (line 55).

If the message was an ok? message, the AgentView of Ai is updated to include the

new assignments (UpdateAgentView call, line 38). Beside the assignment of the sender, Ai

also takes newer assignments contained in the left hand side of the explanation included

in the received ok? message to update its AgentView. Afterwards, the nogoods and the ex-

planations that are no longer compatible with AgentView are removed (UpdateAgentView,

lines 68-71). Then, if the explanation in the received message is valid, Ai updates the set

of explanations by storing the newly received explanation. Next, Ai calls the procedure

CheckAgentView (line 40).

When receiving an order message, Ai processes the new order (CheckOrder) and calls

CheckAgentView (line 42).

96 Chapter 5. Agile Asynchronous BackTracking (Agile-ABT)

Algorithm 5.4: The Agile-ABT algorithm executed by an agent Ai (Part 1).
procedure Agile-ABT()

30. ti ← 0; TVi ← [∞, ∞, . . . , ∞]; end ← false; vi ← empty ;
31. CheckAgentView() ;
32. while (¬end) do
33. msg ← getMsg();
34. switch (msg.type) do
35. ok? : ProcessInfo(msg); ngd : ResolveConflict(msg);
36. order : ProcessOrder(msg); stp : end ← true;

procedure ProcessInfo(msg)
37. CheckOrder(msg.Order, msg.TV) ;
38. UpdateAgentView(msg.Assig ∪ lhs(msg.Exp)) ;
39. if (msg.Exp is valid) then add(msg.Exp, Ei);
40. CheckAgentView() ;
procedure ProcessOrder(msg)
41. CheckOrder(msg.Order,msg.TV) ;
42. CheckAgentView() ;
procedure ResolveConflict(msg)
43. CheckOrder(msg.Order,msg.TV) ;
44. UpdateAgentView(msg.Assig ∪ lhs(msg.Nogood)) ;
45. if (Compatible(msg.Nogood, AgentView ∪ myAssig)) then
46. if (Relevant(msg.Nogood,Oi)) then
47. add(msg.Nogood,NogoodStore) ;
48. vi ← empty ;
49. CheckAgentView() ;
50. else if (rhs(msg.Nogood) = vi) then
51. sendMsg : ok?(myAssig, ei ,Oi , TVi) to msg.Sender

procedure CheckOrder(O�, TV�)

52. if (O�is stronger than Oi) then
53. Oi ← O� ;
54. TVi ← TV� ;
55. remove nogoods and explanations non relevant to Oi ;

procedure CheckAgentView()

56. if ((¬isConsistent(vi , AgentView)) then
57. vi ← ChooseValue() ;
58. if (vi) then
59. foreach (xk � xi) do
60. sendMsg : ok?(myAssig, ei ,Oi , TVi) to Ak ;
61. else Backtrack() ;
62. else if (Oi was modified) then
63. foreach (xk � xi) do
64. sendMsg : ok?(myAssig, ei ,Oi , TVi) to Ak ;

procedure UpdateAgentView(Assignments)
65. foreach (xj ∈ Assignments) do

66. if (Assignments[j].tag > AgentView[j].tag) then
67. AgentView[j] ← Assignments[j] ;
68. foreach (ng ∈ NogoodStore such that ¬Compatible(lhs(ng), AgentView)) do
69. remove(ng,myNogoodStore) ;
70. foreach (ej ∈ Ei such that ¬Compatible(lhs(ej), AgentView)) do

71. remove(ej, Ei) ;

5.3. The Algorithm 97

When Ai receives a ngd message, it calls CheckOrder and UpdateAgentView (lines 43

and 44). The nogood contained in the message is accepted if it is compatible with the

AgentView and the assignment of xi and relevant to the current order of Ai. Otherwise,

the nogood is discarded and an ok? message is sent to the sender as in ABT (lines 50

and 51). When the nogood is accepted, it is stored, acting as justification for removing

the current value of Ai (line 47). A new value consistent with the AgentView is searched

(CheckAgentView call, line 49).

The procedure CheckAgentView checks if the current value vi is consistent with the

AgentView. If vi is consistent, Ai checks if Oi was modified (line 62). If so, Ai must

send its assignment to lower priority agents through ok? messages. If vi is not consistent

with its AgentView, Ai tries to find a consistent value (ChooseValue call, line 57). In this

process, some values of Ai may appear as inconsistent. In this case, the nogoods justifying

their removal are added to the NogoodStore (line 92 of function ChooseValue()). If a new

consistent value is found, an explanation ei is built and the new assignment is notified to

the lower priority agents of Ai through ok? messages (line 60). Otherwise, every value of

Ai is forbidden by the NogoodStore and Ai has to backtrack (Backtrack call, line 61).

In procedure Backtrack(), Ai resolves its nogoods, deriving a new nogood

(newNogood). If newNogood is empty, the problem has no solution. Ai terminates ex-

ecution after sending a stp message (lines 74-75). Otherwise, one of the agents included in

newNogood must change its value. The function ChooseVariableOrder selects the variable

to be changed (xk) and a new order (O�) such that the new termination value TV � is as

Algorithm 5.5: The Agile-ABT algorithm executed by an agent Ai (Part 2).
procedure Backtrack()

72. newNogood ← solve(NogoodStore) ;
73. if (newNogood = empty) then
74. end ← true;
75. sendMsg : stp() to system agent ;
76. �xk ,O�, TV�, E �� ← ChooseVariableOrder(Ei , newNogood) ;
77. if (TV� is smaller than TVi) then
78. TVi ← TV� ;
79. Oi ← O� ;
80. Ei ← E � ;
81. SetRhs(newNogood, xk) ;
82. sendMsg : ngd(newNogood,Oi , TVi) to Ak ;
83. remove ek from Ei ;
84. broadcastMsg : order(Oi , TVi) ;
85. else
86. SetRhs(newNogood, xk) ; /* xk is the lower agent in newNogood */
87. sendMsg : ngd(newNogood,Oi , TVi) to Ak ;
88. UpdateAgentView (xk ← unknown) ;
89. CheckAgentView() ;
function ChooseValue()

90. foreach (v ∈ D(xi)) do
91. if (isConsistent(v, AgentView)) then return v;
92. else store the best nogood for v ;
93. return empty;

98 Chapter 5. Agile Asynchronous BackTracking (Agile-ABT)

small as possible. If TV � is smaller than that stored by Ai, the current order and the

current termination value are replaced by O� and TV � and Ai updates its explanations by

that returned by ChooseVariableOrder (lines 78-80). Then, a ngd message is sent to the

agent Ak owner of xk (line 82). ek is removed from Ei since Ak will probably change its

explanation after receiving the nogood (line 83). Afterwards, Ai sends an order message to

all other agents (line 84). When TV � is not smaller than the current termination value, Ai

cannot propose a new order and the variable to be changed (xk) is the variable that has the

lowest priority according to the current order of Ai (lines 86 and 87). Next, the assignment

of xk (the target of the backtrack) is removed from the AgentView of Ai (line 88). Finally,

the search is continued by calling the procedure CheckAgentView (line 89).

5.4 Correctness and complexity

In this section we demonstrate that Agile-ABT is sound, complete and terminates, and

that its space complexity is polynomially bounded.

Theorem 5.1. The spatial complexity of Agile-ABT is polynomial.

Proof. The size of nogoods, explanations, termination values, and orderings, is bounded by

n, the total number of variables. Now, on each agent, Agile-ABT only stores one nogood

per value, one explanation per agent, one termination value and one ordering. Thus, the

space complexity of Agile-ABT is in O(nd + n2 + n + n) = O(nd + n2) on each agent.

Theorem 5.2. The algorithm Agile-ABT is sound.

Proof. Let us assume that the state of quiescence is reached. The order (say O) known by

all agents is the same because when an agent proposes a new order, it sends it to all other

agents. Obviously, O is the strongest order that has ever been calculated by agents. Also,

the state of quiescence implies that every pair of constrained agents satisfies the constraint

between them. To prove this, assume that there exist some constraints that are not satisfied.

This implies that there are at least two agents Ai and Ak that do not satisfy the constraint

between them (i.e., cik). Let Ai be the agent which has the highest priority between the two

agents according to O. Let vi be the current value of Ai when the state of quiescence is

reached (i.e., vi is the most up to date assignment of Ai) and let M be the last ok? message

sent by Ai before the state of quiescence is reached. Clearly, M contains vi, otherwise, Ai

would have sent another ok? message when it chose vi. Moreover, when M was sent,

Ai already knew the order O, otherwise Ai would have sent another ok? message when

it received (or generated) O. Ai sent M to all its successors according to O (including

Ak). The only case where Ak can forget vi after receiving it is the case where Ak derives a

nogood proving that vi is not feasible. In this case, Ak should send a nogood message to Ai.

If the nogood message is accepted by Ai, Ai must send an ok? message to its successors

(and therefore M is not the last one). Similarly, if the nogood message is discarded, Ai

have to re-send an ok? message to Ak (and therefore M is not the last one). So the state of

quiescence implies that Ak knows both O and vi. Thus, the state of quiescence implies that

5.4. Correctness and complexity 99

the current value of Ak is consistent with vi, otherwise Ak would send at least a message

and our quiescence assumption would be broken.

Theorem 5.3. The algorithm Agile-ABT is complete.

Proof. All nogoods are generated by logical inferences from existing constraints. Therefore,

an empty nogood cannot be inferred if a solution exists.

The proof of termination is built on Lemma 5.1 and 5.2.

Lemma 5.1. For any agent Ai, while a solution is not found and the inconsistency of the

problem is not proved, the termination value stored by Ai decreases after a finite amount

of time.

Proof. Let TVi = [tv1, . . . , tvn] be the current termination value of Ai. Assume that Ai

reaches a state where it cannot improve its termination value. If another agent succeeds in

generating a termination value smaller than TVi, Lemma 5.1 holds since Ai will receive the

new termination value. Now assume that Agile-ABT reaches a state σ where no agent can

generate a termination value smaller than TVi. We show that Agile-ABT will exit σ after a

finite amount of time. Let t be the time when Agile-ABT reaches the state σ. After a finite

time δt, the termination value of each agent Aj∈{1,...,n} will be equal to TVi, either because

Aj has generated itself a termination value equal to TVi or because Aj has received TVi in

an order message. Let O be the lexicographically smallest order among the current orders

of all agents at time t + δt. The termination value associated with O is equal to TVi. While

Agile-ABT is getting stuck in σ, no agent will be able to propose an order stronger than O

because no agent is allowed to generate a new order with the same termination value as

the one stored (line 77, Algorithm 5.5). Thus, after a finite time δ�t, all agents will receive

O. They will take it as their current order and Agile-ABT will behave as ABT, which is

known to be complete and to terminate.

We know that d0
O(1) − tv1 values have been removed once and for all from the domain

of the variable xO(1) (i.e., d0
O(1) − tv1 nogoods with empty lhs have been sent to AO(1)).

Otherwise, the generator of O could not have put AO(1) in the first position. Thus, the

domain size of xO(1) cannot be greater than tv1 (dO(1) ≤ tv1). After a finite amount

of time, if a solution is not found and the inconsistency of the problem is not proved,

a nogood–with an empty left hand side – will be sent to AO(1) which will cause it to

replace its assignment and to reduce its current domain size (d�O(1) = dO(1) − 1). The new

assignment and the new current domain size of AO(1) will be sent to the (n − 1) lower

priority agents. After receiving this message, we are sure that any generator of a new

nogood (say Ak) will improve the termination value. Indeed, when Ak resolves its nogoods,

it computes a new order such that its termination value is minimal. At worst, Ak can

propose a new order where AO(1) keeps its position. Even in this case the new termination

value TV �
k = [d�O(1), . . .] is lexicographically smaller than TVi = [tv1, . . .] because d�O(1) =

dO(1)− 1 ≤ tv1 − 1. After a finite amount of time, all agents (Ai included) will receive TV �
k .

This will cause Ai to update its termination value and to exit the state σ. This completes

the proof.

100 Chapter 5. Agile Asynchronous BackTracking (Agile-ABT)

Lemma 5.2. Let TV = [tv1, . . . , tvn] be the termination value associated with the current

order of any agent. We have tvj ≥ 0, ∀j ∈ 1..n

Proof. Let Ai be the agent that generated TV. We first prove that Ai never stores an expla-

nation with a rhs smaller than 1. An explanation ek stored by Ai was either sent by Ak or

generated when calling ChooseVariableOrder. If ek was sent by Ak, we have rhs(ek) ≥ 1

because the size of the current domain of any agent is always greater than or equal to

1. If ek was computed by ChooseVariableOrder, the only case where rhs(ek) is made

smaller than the right hand side of the previous explanation stored for Ak by Ai is in

(line 7 of UpdateExplanations. This happens when xk is selected to be the backtrack-

ing target (lines 21 and 28 of ChooseVariableOrder) and in such a case, the explanation

ek is removed just after sending the nogood message to Ak (line 83, Algorithm 5.5, of

Backtrack()). Hence, Ai never stores an explanation with a rhs equal to zero.

We now prove that it is impossible that Ai generated TV with tvj
< 0 for some j. From

the point of view of Ai, tvj is the size of the current domain of AO(j). If Ai does not

store any explanation for AO(j) at the time it computes TV, Ai assumes that tvj is equal to

d0
O(j) ≥ 1. Otherwise, tvj is equal to rhs(eO(j)), where eO(j) was either already stored by

Ai or generated when calling ChooseVariableOrder. Now, we know that every explanation

ek stored by Ai has rhs(ek) ≥ 1 and we know that ChooseVariableOrder cannot generate

an explanation e�k with rhs(e�k) < rhs(ek)− 1, where ek was the explanation stored by

Ai (line 7 of UpdateExplanations). Therefore, we are guaranteed that TV is such that

tvj ≥ 0, ∀j ∈ 1..n.

Theorem 5.4. The algorithm Agile-ABT terminates.

Proof. The termination value of any agent decreases lexicographically and does not stay

infinitely unchanged (Lemma 5.1). A termination value [tv1, . . . , tvn] cannot decrease in-

finitely because ∀i ∈ {1, . . . , n}, we have tvi ≥ 0 (Lemma 5.2). Hence the theorem.

5.5 Experimental Results

We compared Agile-ABT to ABT, ABT_DO, and ABT_DO-Retro (ABT_DO with retroac-

tive heuristics). All experiments were performed on the DisChoco 2.0 [Wahbi et al., 2011]

platform 1, in which agents are simulated by Java threads that communicate only through

message passing. We evaluate the performance of the algorithms by communication load

and computation effort. Communication load is measured by the total number of messages

exchanged among agents during algorithm execution (#msg), including termination detec-

tion (system messages). Computation effort is measured by an adaptation of the number

of non-concurrent constraint checks (generic number of non-concurrent constraint checks

#gncccs [Zivan and Meisels, 2006b]).

For ABT, we implemented the standard version where we use counters for tagging

assignments. For ABT_DO [Zivan and Meisels, 2006a], we implemented the best version,

using the nogood-triggered heuristic where the receiver of a nogood moves the sender to be

1. http://www.lirmm.fr/coconut/dischoco/

http://www.lirmm.fr/coconut/dischoco/

5.5. Experimental Results 101

in front of all other lower priority agents (denoted by ABT_DO-ng). For ABT_DO with

retroactive heuristics [Zivan et al., 2009], we implemented the best version, in which a

nogood generator moves itself to be in a higher position between the last and the second

last agents in the generated nogood 2. However, it moves before an agent only if its current

domain is smaller than the domain of that agent (denoted by ABT_DO-Retro-MinDom).

5.5.1 Uniform binary random DisCSPs

The algorithms are tested on uniform binary random DisCSPs characterized by

�n, d, p1, p2�, where n is the number of agents/variables, d the number of values per

variable, p1 the network connectivity defined as the ratio of existing binary constraints,

and p2 the constraint tightness defined as the ratio of forbidden value pairs. We solved

instances of two classes of problems: sparse problems �20, 10, 0.2, p2� and dense problems

�20, 10, 0.7, p2�. We vary the tightness p2 from 0.1 to 0.9 by steps of 0.1. For each pair

of fixed density and tightness (p1, p2) we generated 25 instances, solved 4 times each. We

report average over the 100 runs.

0.0⋅10
0

5.0⋅10
4

1.0⋅10
5

1.5⋅10
5

2.0⋅10
5

2.5⋅10
5

3.0⋅10
5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
g
n
c
c
c
s

p2

ABT

ABT_DO-ng

ABT_DO-Retro-MinDom

Agile-ABT

Figure 5.1 – The generic number of non-concurrent constraint checks (#gncccs) performed
for solving dense problems (p1=0.2).

Figures 3.5 and 3.6 present the performance of the algorithms on the sparse instances

(p1=0.2). In term of computational effort, #gncccs (Figure 3.5), ABT is the less efficient

algorithm. ABT_DO-ng improves ABT by a large scale and ABT_DO-Retro-MinDom is

more efficient than ABT_DO-ng. These findings are similar to those reported in [Zivan et

al., 2009]. Agile-ABT outperforms all these algorithms, suggesting that on sparse problems,

the more sophisticated the algorithm is, the better it is.

Regarding the number of exchanged messages, #msg (Figure 5.2), the picture is a bit

different. ABT_DO-ng and ABT_DO-Retro-MinDom require a number of messages sub-

2. There are some discrepancies between the results reported in [Zivan et al., 2009] and our version. This
is due to a bug that we fixed to ensure that ABT_DO-ng and ABT_DO-Retro-MinDom actually terminate
[Mechqrane et al., 2012], see Chapter 6.

102 Chapter 5. Agile Asynchronous BackTracking (Agile-ABT)

0.0⋅10
0

5.0⋅10
4

1.0⋅10
5

1.5⋅10
5

2.0⋅10
5

2.5⋅10
5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

p2

ABT

ABT_DO-ng

ABT_DO-Retro-MinDom

Agile-ABT

Figure 5.2 – The total number of messages sent for solving dense problems (p1=0.2).

stantially larger than ABT algorithm. Agile-ABT is the algorithm that requires the smallest

number of messages. This is not only because Agile-ABT terminates faster than the other

algorithms (see #gncccs). Agile-ABT is more parsimonious than ABT_DO algorithms in

proposing new orders. Termination values seem to focus changes on those which will pay

off.

Figures 5.3 and 5.4 illustrate the performance of the algorithms on the dense instances

(p1=0.7). Some differences appear compared to sparse problems. Concerning #gncccs

(Figure 5.3), ABT_DO algorithms deteriorate compared to ABT. However, Agile-ABT still

outperforms all these algorithms. Regarding communication load, #msg (Figure 5.4),

0.0⋅10
0

5.0⋅10
6

1.0⋅10
7

1.5⋅10
7

2.0⋅10
7

2.5⋅10
7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
g
n
c
c
c
s

p2

ABT

ABT_DO-ng

ABT_DO-Retro-MinDom

Agile-ABT

Figure 5.3 – The generic number of non-concurrent constraint checks (#gncccs) performed
for solving dense problems (p1=0.7).

5.5. Experimental Results 103

0.0⋅10
0

5.0⋅10
6

1.0⋅10
7

1.5⋅10
7

2.0⋅10
7

2.5⋅10
7

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

p2

ABT

ABT_DO-ng

ABT_DO-Retro-MinDom

Agile-ABT

Figure 5.4 – The total number of messages sent for solving dense problems (p1=0.7).

ABT_DO-ng and ABT_DO-Retro-MinDom show the same bad performance as in sparse

problems. Agile-ABT shows similar communication load as ABT. This confirms its good

behavior observed on sparse problems.

5.5.2 Distributed Sensor Target Problems

The Distributed Sensor-Target Problem (SensorDisCSP) [Béjar et al., 2005] is a benchmark

based on a real distributed problem (see Section 1.3.2.2). It consists of n sensors that track m

targets. Each target must be tracked by 3 sensors. Each sensor can track at most one target.

A solution must satisfy visibility and compatibility constraints. The visibility constraint

defines the set of sensors to which a target is visible. The compatibility constraint defines

the compatibility among sensors. In our implementation of the DisCSP algorithms, the

encoding of the SensorDisCSP presented in Section 1.3.2.2 is translated to an equivalent

formulation where we have three virtual agents for every real agent, each virtual agent

handling a single variable.

Problems are characterized by �n, m, pc, pv�, where n is the number of sensors, m is the

number of targets, each sensor can communicate with a fraction pc of the sensors that are

in its sensing range, and each target can be tracked by a fraction pv of the sensors having

the target in their sensing range. We present results for the class � 25, 5, 0.4, pv�, where we

vary pv from 0.1 to 0.9 by steps of 0.1. Again, for each pv we generated 25 instances, solved

4 times each and averaged over the 100 runs. The results are shown in Figures 5.5 and 5.6.

When comparing the speed-up of algorithms (Figure 5.5), Agile-ABT is slightly dom-

inated by ABT and ABT_DO-ng in the interval [0.3 0.5], while outside of this interval,

Agile-ABT outperforms all the algorithms. Nonetheless, the performance of ABT and

ABT_DO-ng dramatically deteriorate in the interval [0.1 0.3]. Concerning communication

load (Figure 5.6), as opposed to other dynamic ordering algorithm, Agile-ABT is always

better than or as good as standard ABT.

104 Chapter 5. Agile Asynchronous BackTracking (Agile-ABT)

0.0⋅10
0

5.0⋅10
5

1.0⋅10
6

1.5⋅10
6

2.0⋅10
6

2.5⋅10
6

3.0⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
g
n
c
c
c
s

pv

ABT

ABT_DO-ng

ABT_DO-Retro-MinDom

Agile-ABT

Figure 5.5 – The generic number non-concurrent constraint checks performed on instances
where pc=0.4.

0.0⋅10
0

5.0⋅10
5

1.0⋅10
6

1.5⋅10
6

2.0⋅10
6

2.5⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

pv

ABT

ABT_DO-ng

ABT_DO-Retro-MinDom

Agile-ABT

Figure 5.6 – Total number of exchanged messages on instances where pc=0.4.

5.5.3 Discussion

From the experiments above we can conclude that Agile-ABT outperforms other al-

gorithms in term of computation effort (#gncccs) when solving random DisCSP problem.

On structured problems (SensorDCSP), our results suggest that Agile-ABT is more robust

than other algorithms whose performance is sensitive to the type of problems solved. Con-

cerning communication load (#msg), Agile-ABT is more robust than other versions of ABT

with dynamic agent ordering. As opposed to them, it is always better than or as good as

standard ABT on difficult problems.

At first sight, Agile-ABT seems to need less messages than other algorithms but these

messages are longer than messages sent by other algorithms. One could object that for

5.5. Experimental Results 105

 0

 50

 100

 150

 200

 250

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

lo
n
g
es

t
m

es
sa

g
e

si
ze

p2

ABT

ABT_DO-ng

ABT_DO-Retro-MinDom

Agile-ABT

(a) sparse random problems (p1=0.2)

 0

 50

 100

 150

 200

 250

 300

 350

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

lo
n
g
es

t
m

es
sa

g
e

si
ze

p2

ABT

ABT_DO-ng

ABT_DO-Retro-MinDom

Agile-ABT

(b) dense random problems (p1=0.7)

 0

 50

 100

 150

 200

 250

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

lo
n
g
es

t
m

es
sa

g
e

si
ze

pv

ABT

ABT_DO-ng

ABT_DO-Retro-MinDom

Agile-ABT

(c) Sensor Target problems where pc = 0.4

Figure 5.7 – Maximum message size in bytes.

Agile-ABT, counting the number of exchanged messages is biased. However, counting

the number of exchanged messages would be biased only if #msg was smaller than the

number of physically exchanged messages (going out from the network card). Now, in our

experiments, they are the same.

The International Organization for Standardization (ISO) has designed the Open

Systems Interconnection (OSI) model to standardize networking. TCP and UDP are

the principal Transport Layer protocols using OSI model. The internet protocols IPv4

(http://tools.ietf.org/html/rfc791) and IPv6 (http://tools.ietf.org/html/rfc2460) specify

the minimum datagram size that we are guaranteed to send without fragmentation of

a message (in one physical message). This is 568 bytes for IPv4 and 1,272 bytes for

IPv6 when using either TCP or UDP (UDP is 8 bytes less than TCP, see RFC-768 –

http://tools.ietf.org/html/rfc768).

Figure 5.7 shows the size of the longest message sent by each algorithm on our random

and sensor problems. It is clear that Agile-ABT requires lengthy messages compared to

106 Chapter 5. Agile Asynchronous BackTracking (Agile-ABT)

other algorithms. However, the longest message sent is always less than 568 bytes (in the

worst case it is less than 350, see Figure 5.7(b)).

5.6 Related Works

In [Ginsberg and McAllester, 1994], Ginsberg and McAllester proposed Partial Or-

der Dynamic Backtracking (PODB), a polynomial space algorithm for centralized CSP that

attempted to address the rigidity of dynamic backtracking. The Generalized Partial Order

Dynamic Backtracking (GPODB), an algorithm that generalizes both PODB [Ginsberg and

McAllester, 1994] and the Dynamic Backtracking DBT [Ginsberg, 1993] was proposed in
[Bliek, 1998]. GPODB maintains a set of ordering constraints (aka. safety conditions) on

the variables. These ordering constraints imply only a partial order on the variables. This

provides flexibility in the reordering of variables in a nogood. Agile-ABT has some simi-

larities with GPODB because Agile-ABT also maintains a set of safety conditions (induced

by explanations). However, the set of safety conditions maintained by Agile-ABT allows

more total orderings than the set of safety conditions maintained by GPODB. In addition,

whenever a new nogood is generated by GPODB, the target of this nogood must be se-

lected such that the safety conditions induced by the new nogood satisfy all existing safety

conditions. On the contrary, Agile-ABT allows discarding explanations, and thus, relaxing

some of the safety conditions. These two points give Agile-ABT more flexibility in choosing

the backtracking target.

5.7 Summary

We have proposed Agile-ABT, an algorithm that is able to change the ordering of agents

more agilely than all previous approaches. Thanks to the original concept of termination

value, Agile-ABT is able to choose a backtracking target that is not necessarily the agent

with the current lowest priority within the conflicting agents. Furthermore, the ordering of

agents appearing before the backtracking target can be changed. These interesting features

are unusual for an algorithm with polynomial space complexity. Our experiments confirm

the significance of these features.

6Corrigendum to “Min-domain

retroactive ordering for

Asynchronous Backtracking”

The asynchronous backtracking algorithm with dynamic ordering, ABT_DO, have been

proposed in [Zivan and Meisels, 2006a]. ABT_DO allows changing the order of agents

during distributed asynchronous search. In ABT_DO, when an agent assigns a value to its

variable, it can reorder lower priority agents. Retroactive heuristics called ABT_DO-Retro

which allow more flexibility in the selection of new orders were introduced in [Zivan et

al., 2009]. Unfortunately, the description of the time-stamping protocol used to compare

orders in ABT_DO-Retro may lead to an implementation in which ABT_DO-Retro may not

terminate. In this chapter, we give an example that shows how ABT_DO-Retro can enter

in an infinite loop if it uses this protocol and we propose a new correct way for comparing

time-stamps.

This chapter is organized as follows. Section 6.1 introduces the retroactive heuristics

of the asynchronous backtracking algorithm with dynamic ordering (ABT_DO-Retro). We

describe in Section 6.2 the natural understanding of the protocol used for comparing time-

stamps in ABT_DO with retroactive heuristics (ABT_DO-Retro). Section 6.3 illustrates an

example that shows, if ABT_DO-Retro uses that protocol, how it can fall into an infinite

loop. We describe the correct method for comparing time-stamps and give the proof that

our method for comparing orders is correct in Section 6.4.

6.1 Introduction

Zivan and Meisels (2006a) proposed the asynchronous backtracking algorithm with

dynamic ordering, ABT_DO, in [Zivan and Meisels, 2006a]. In ABT_DO, when an agent

assigns a value to its variable, it can reorder lower priority agents. Each agent in ABT_DO

holds a current order (that is, a vector of agent IDs) and a vector of counters (one counter

attached to each agent ID). The vector of counters attached to agent IDs forms a time-

stamp. Initially, all time-stamp counters are set to zero and all agents start with the same

107

108 Chapter 6. Corrigendum to “Min-domain retroactive ordering for Asynchronous Backtracking”

order. Each agent that proposes a new order increments its counter by one and sets to

zero counters of all lower priority agents (the counters of higher priority agents are not

modified). When comparing two orders, the strongest is the one with the lexicographically

larger time-stamp. In other words, the strongest order is the one for which the first different

counter is larger. The most successful ordering heuristic found in [Zivan and Meisels,

2006a] was the nogood-triggered heuristic in which an agent that receives a nogood moves

the nogood generator to be right after it in the order.

A new type of ordering heuristics for ABT_DO is presented in [Zivan et al., 2009].

These heuristics, called retroactive heuristics (ABT_DO-Retro), enable the generator of the

nogood to propose a new order in which it moves itself to a higher priority position than

that of the target of the backtrack. The degree of flexibility of these heuristics depends

on a parameter K. Agents that detect a dead end are moved to a higher priority position

in the order. If the length of the created nogood is larger than K, they can be moved up

to the place that is right after the second last agent in the nogood. If the length of the

created nogood is smaller than or equal to K, the sending agent can be moved to a position

before all the participants in the nogood and the nogood is sent and saved by all of the

participants in the nogood. Since agents must store nogoods that are smaller than or equal

to K, the space complexity of agents is exponential in K.

Recent attempts to implement the ABT_DO-Retro algorithm proposed in [Zivan et al.,

2009] have revealed a specific detail of the algorithm that concerns its time-stamping pro-

tocol. The natural understanding of the description given in [Zivan et al., 2009] of the

time-stamping protocol used to compare orders in ABT_DO-Retro can affect the correct-

ness of the algorithm. In this chapter we address this protocol by describing the undesired

outcome of this protocol and propose an alternative deterministic method that ensures the

outcome expected in [Zivan et al., 2009].

6.2 Background

The degree of flexibility of the retroactive heuristics mentioned above depends on a

parameter K. K defines the level of flexibility of the heuristic with respect to the amount

of information an agent can store in its memory. Agents that detect a dead end move

themselves to a higher priority position in the order. If the length of the nogood created is

not larger than K then the agent can move to any position it desires (even to the highest

priority position) and all agents that are included in the nogood are required to add the

nogood to their set of constraints and hold it until the algorithm terminates. If the size

of the created nogood is larger than K, the agent that created the nogood can move up to

the place that is right after the second last agent in the nogood. Since agents must store

nogoods that are smaller than or equal to K, the space complexity of agents is exponential

in K.

The best retroactive heuristic introduced in [Zivan et al., 2009] is called ABT_DO-Retro-

MinDom. This heuristic does not require any additional storage (i.e., K = 0). In this

heuristic, the agent that generates a nogood is placed in the new order between the last

6.2. Background 109

and the second last agents in the generated nogood. However, the generator of the nogood

moves to a higher priority position than the backtracking target (the agent the nogood

was sent to) only if its domain is smaller than that of the agents it passes on the way up.

Otherwise, the generator of the nogood is placed right after the last agent with a smaller

domain between the last and the second last agents in the nogood.

In asynchronous backtracking algorithms with dynamic ordering, agents propose new

orders asynchronously. Hence, one must enable agents to coherently decide which of

two different orders is the stronger. To this end, as it has been explained in [Zivan and

Meisels, 2006a] and recalled in [Zivan et al., 2009], each agent in ABT_DO holds a counter

vector (one counter attached to each position in the order). The counter vector and the

indexes of the agents currently in these positions form a time-stamp. Initially, all counters

are set to zero and all agents are aware of the initial order. Each agent that proposes a

new order increments the counter attached to its position in the current order and sets

to zero counters of all lower priority positions (the counters of higher priority positions

are not modified). The strongest order is determined by a lexicographic comparison of

counter vectors combined with the agent indexes. However, the rules for reordering agents

in ABT_DO imply that the strongest order is always the one for which the first different

counter is larger.

In ABT_DO-Retro agents can be moved to a position that is higher than that of the

target of the backtrack. This new feature makes it possible to generate two contradictory

orders that have the same time stamp. To address this additional issue, the description

given by the authors was limited to two sentences: “The most relevant order is determined

lexicographically. Ties which could not have been generated in standard ABT_DO, are broken using

the agents indexes” [quoted from [Zivan et al., 2009], page 190, Theorem 1].

The natural understanding of this description is that the strongest order is the one

associated with the lexicographically greater counter vector, and when the counter vec-

tors are equal the lexicographic order on the indexes of agents breaks the tie by pre-

ferring the one with smaller vector of indexes. We will refer to this natural interpre-

tation as method m1. Let us illustrate method m1 via an example. Consider two or-

ders O1=[A1, A3, A2, A4, A5] and O2=[A1, A2, A3, A4, A5] where the counter vector asso-

ciated with O1 equals V1 = [2, 4, 2, 2, 0] and the counter vector associated with O2 equals

V2 = [2, 4, 2, 1, 0]. Since in m1 the strongest order is determined by comparing lexicograph-

ically the counter vectors, in this example O1 is considered stronger than O2. In Section 6.3

of this chapter, we show that method m1 may lead ABT_DO-Retro to fall in an infinite loop

when K = 0.

The right way to compare orders is to compare their counter vectors, one position at

a time from left to right, until they differ on a position (preferring the order with greater

counter) or they are equal on that position but the indexes of the agents in that position

differ (preferring the smaller index). We will refer to this method as m2. Consider again

the two orders O1 and O2 and associated counter vectors defined above. The counter at

the first position equals 2 on both counter vectors and the index of the first agent in O1

(i.e., A1) is the same as in O2, the counter at the second position equals 4 on both counter

vectors,however the index of the second agent in O2 (i.e., A2) is smaller than the index of

110 Chapter 6. Corrigendum to “Min-domain retroactive ordering for Asynchronous Backtracking”

the second agent in O1 (i.e., A3). Hence, in this case O2 is considered stronger than O1.

(Note that according to m1, O1 is stronger than O2.) In Section 6.4 of this chapter, we give

the proof that method m2 for comparing orders is correct.

6.3 ABT_DO-Retro May Not Terminate

In this section we show that ABT_DO-Retro may not terminate when using m1 and

when K = 0. We illustrate this on ABT_DO-Retro-MinDom as described in [Zivan et al.,

2009] as it is an example of ABT_DO-Retro where K = 0. Consider a DisCSP with 5 agents

{A1, A2, A3, A4, A5} and domains D(x1)=D(x5)={1, 2, 3, 4, 5}, D(x2)=D(x3)=D(x4)={6, 7}.

We assume that, initially, all agents store the same order O1 = [A1, A5, A4, A2, A3] with

associated counter vector V1 = [0, 0, 0, 0, 0]. The constraints are:

c12 : (x1, x2) �∈ {(1, 6), (1, 7)};

c13 : (x1, x3) �∈ {(2, 6), (2, 7)};

c14 : (x1, x4) �∈ {(1, 6), (1, 7)};

c24 : (x2, x4) �∈ {(6, 6), (7, 7)}.

c35 : (x3, x5) �∈ {(7, 5)}.

In the following we give a possible execution of ABT_DO-Retro-MinDom (Figure 6.1).

O1 = [A1 , A5 , A4 , A2 , A3] V1 = [0 , 0 , 0 , 0 , 0]

O2 = [A4 , A1 , A5 , A2 , A3] V2 = [1 , 0 , 0 , 0 , 0]

O3 = [A2 , A1 , A5 , A4 , A3] V3 = [1 , 0 , 0 , 0 , 0]

O4 = [A4 , A3 , A1 , A5 , A2] V4 = [1 , 1 , 0 , 0 , 0]

t0

t1

t2

t3

t4

t5

t6

t7

t8

A1

O1

O2

O3

O4

A2

O1

O3

O2

O4

A3

O1

O2

O4

O3

A4

O1

O2

O3

A5

O1

O2

O3

O4

Figure 6.1 – The schema of exchanging order messages by ABT_DO-Retro

t0: All agents assign the first value in their domains to their variables and send ok? mes-

sages to their neighbors.

t1: A4 receives the first ok? (x1 = 1) message sent by A1 and generates a nogood ng1 :

¬(x1 = 1). Then, it proposes a new order O2 = [A4, A1, A5, A2, A3] with V2 =

6.3. ABT_DO-Retro May Not Terminate 111

[1, 0, 0, 0, 0]. Afterwards, it assigns the value 6 to its variable and sends ok? (x4 = 6)

message to all its neighbors (including A2).

t2: A3 receives O2 = [A4, A1, A5, A2, A3] and deletes O1 since O2 is stronger; A1 receives

the nogood sent by A4, it replaces its assignment to 2 and sends an ok? (x1 = 2)

message to all its neighbors.

t3: A2 has not yet received O2 and the new assignment of A1. A2 generates a new nogood

ng2 : ¬(x1 = 1) and proposes a new order O3 = [A2, A1, A5, A4, A3] with V3 =

[1, 0, 0, 0, 0]; Afterwards, it assigns the value 6 to its variable and sends ok? (x2 = 6)

message to all its neighbors (including A4).

t4: A4 receives the new assignment of A2 (i.e., x2 = 6) and O3 = [A2, A1, A5, A4, A3].

Afterwards, it discards O2 since O3 is stronger; Then, A4 tries to satisfy c24 because

A2 has a higher priority according to O3. Hence, A4 replaces its current assignment

(i.e., x4 = 6) by x4 = 7 and sends an ok? (x4 = 7) message to all its neighbors

(including A2).

t5: When receiving O2, A2 discards it because its current order is stronger;

t6: After receiving the new assignment of A1 (i.e., x1 = 2) and before receiving O3 =

[A2, A1, A5, A4, A3], A3 generates a nogood ng3 : ¬(x1 = 2) and proposes a new order

O4 = [A4, A3, A1, A5, A2] with V4 = [1, 1, 0, 0, 0]; The order O4 is stronger according

to m1 than O3. Since in ABT_DO, an agent sends the new order only to lower priority

agents, A3 will not send O4 to A4 because it is a higher priority agent.

t7: A3 receives O3 and then discards it because it is obsolete;

t8: A2 receives O4 but it has not yet received the new assignment of A4. Then, it tries to

satisfy c24 because A4 has a higher priority according to its current order O4. Hence,

A2 replaces its current assignment (i.e., x2 = 6) by x2 = 7 and sends an ok? (x2 = 7)

message to all its neighbors (including A4).

t9: A2 receives the ok? (x4 = 7) message sent by A4 in t4 and changes its current value

(i.e., x2 = 7) by x2 = 6. Then, A2 sends an ok? (x2 = 6) message to all its neighbors

(including A4). At the same time, A4 receives ok? (x2 = 7) sent by A2 in t8. A4

changes its current value (i.e., x4 = 7) by x4 = 6. Then, A4 sends an ok? (x4 = 6)

message to all its neighbors (including A2).

t10: A2 receives the ok? (x4 = 6) message sent by A4 in t9 and changes its current value

(i.e., x2 = 6) by x2 = 7. Then, A2 sends an ok? (x2 = 7) message to all its neighbors

(including A4). At the same moment, A4 receives ok? (x2 = 6) sent by A2 in t9. A4

changes its current value (i.e., x4 = 6) by x4 = 7. Then, A4 sends an ok? (x4 = 7)

message to all its neighbors (including A2).

t11: We come back to the situation we were facing at time t9, and therefore ABT_DO-Retro-

MinDom may fall in an infinite loop when using method m1.

112 Chapter 6. Corrigendum to “Min-domain retroactive ordering for Asynchronous Backtracking”

6.4 The Right Way to Compare Orders

Let us formally define the second method, m2, for comparing orders in which we com-

pare the indexes of agents as soon as the counters in a position are equal on both counter

vectors associated with the orders being compared. Given any order O, we denote by

O(i) the index of the agent located in the ith position in O and by V(i) the counter in

the ith position in the counter vector V associated to order O. An order O1 with counter

vector V1 is stronger than an order O2 with counter vector V2 if and only if there exists a

position i, 1 ≤ i ≤ n, such that for all 1 ≤ j < i, V1(j) = V2(j) and O1(j) = O2(j), and

V1(i) > V2(i) or V1(i) = V2(i) and O1(i) < O1(i).

In our correctness proof for the use of m2 in ABT_DO-Retro we use the following no-

tations. The initial order known by all agents is denoted by Oinit. Each agent, Ai, stores a

current order, Oi, with an associated counter vector, Vi. Each counter vector Vi consists of

n counters Vi(1), . . . , Vi(n) such that Vi = [Vi(1), . . . , Vi(n)]. When Vi is the counter

vector associated with an order Oi, we denote by Vi(k) the value of the kth counter in the

counter vector stored by the agent Ai. We define ρ to be equal to max{Vi(1) | i ∈ 1..n}.

The value of ρ evolves during the search so that it always corresponds to the value of the

largest counter among all the first counters stored by agents.

Let K be the parameter defining the degree of flexibility of the retroactive heuristics

(see Section 6.1). Next we show that the ABT_DO-Retro algorithm is correct when using

m2 and with K = 0. The proof that the algorithm is correct when K �= 0 can be found in
[Zivan et al., 2009].

To prove the correctness of ABT_DO-Retro we use induction on the number of agents.

For a single agent the order is static therefore the correctness of standard ABT implies the

correctness of ABT_DO-Retro. Assume ABT_DO-Retro is correct for every DisCSP with

n − 1 agents. We show in the following that ABT_DO-Retro is correct for every DisCSP

with n agents. To this end we first prove the following lemmas.

Lemma 6.1. Given enough time, if the value of ρ does not change, the highest priority agent

in all orders stored by all agents will be the same.

Proof. Assume the system reaches a state σ where the value of ρ no longer increases. Let Oi

be the order that, when generated, caused the system to enter state σ. Inevitably, we have

Vi(1) = ρ. Assume that Oi �= Oinit and let Ai be the agent that generated Oi. The agent Ai

is necessarily the highest priority agent in the new order Oi because, the only possibility for

the generator of a new order to change the position of the highest priority agent is to put

itself in the first position in the new order. Thus, Oi is sent by Ai to all other agents because

Ai must send Oi to all agents that have a lower priority than itself. So after a finite time all

agents will be aware of Oi. This is also true if Oi = Oinit. Now, by assumption the value of

ρ no longer increases. As a result, the only way for another agent to generate an order O�

such that the highest priority agents in Oi and O� are different (i.e., O�(1) �= Oi(1)) is to

put itself in first position in O� and to do that before it has received Oi (otherwise O� would

increase ρ). Therefore, the time passed from the moment the system entered state σ until a

new order O� was generated is finite. Let O j be the strongest such order (i.e., O�) and let

6.4. The Right Way to Compare Orders 113

Aj be the agent that generated O j. That is, Aj is the agent with smallest index among those

who generated such an order O�. The agent Aj will send O j to all other agents and O j will

be accepted by all other agents after a finite amount of time. Once an agent has accepted

O j, all orders that may be generated by this agent do not reorder the highest priority agent

otherwise ρ would increase.

Lemma 6.2. If the algorithm is correct for n − 1 agents then it terminates for n agents.

Proof. If during the search ρ continues to increase, this means that some of the agents

continue to send new orders in which they put themselves in first position. Hence, the

nogoods they generate when proposing the new orders are necessarily unary (i.e., they

have an empty left-hand side) because in ABT_DO-Retro, when the parameter K is zero

the nogood sender cannot put itself in a higher priority position than the second last in the

nogood. Suppose ng0 = ¬(xi = vi) is one of these nogoods, sent by an agent Aj. After a

finite amount of time, agent Ai, the owner of xi, will receive ng0. Three cases can occur.

First case, Ai still has value vi in its domain. So the value vi is pruned once and for all

from D(xi) thanks to ng0. Second case, Ai has already received a nogood equivalent to ng0

from another agent. Here, vi no longer belongs to D(xi). When changing its value, Ai has

sent an ok? message with its new value v�i. If Ai and Aj were neighbors, this ok? message

has been sent to Aj. If Ai and Aj were not neighbors when Ai changed its value to v�i, this

ok? message was sent by Ai to Aj after Aj requested to add a link between them at the

moment it generated ng0. Thanks to the assumption that messages are always delivered

in a finite amount of time, we know that Aj will receive the ok? message containing

v�i a finite amount of time after it sent ng0. Thus, Aj will not be able to send forever

nogoods about a value vi pruned once and for all from D(xi). Third case, Ai already

stores a nogood with a non empty left-hand side discarding vi. Notice that although Aj

moves to the highest priority position, Ai may be of lower priority, i.e., there can be agents

with higher priority than Ai according to the current order that are not included in ng0.

Thanks to the standard highest possible lowest variable involved [Hirayama and Yokoo, 2000;

Bessiere et al., 2005] heuristic for selecting nogoods in ABT algorithms, we are guaranteed

that the nogood with empty left-hand side ng0 will replace the other existing nogood and vi

will be permanently pruned from D(xi). Thus, in all three cases, every time ρ increases, we

know that an agent has moved to the first position in the order, and a value was definitively

pruned a finite amount of time before or after. There is a bounded number of values in

the network. Thus, ρ cannot increase forever. Now, if ρ stops increasing, then after a finite

amount of time the highest priority agent in all orders stored by all agents will be the same

(Lemma 6.1). Since the algorithm is correct for n − 1 agents, after each assignment of the

highest priority agent, the rest of the agents will either reach an idle state, 1 generate an

empty nogood indicating that there is no solution, or generate a unary nogood, which is

sent to the highest priority agent. Since the number of values in the system is finite, the

third option, which is the only one that does not imply immediate termination, cannot

occur forever.

1. As proved in Lemma 6.3, this indicates that a solution was found.

114 Chapter 6. Corrigendum to “Min-domain retroactive ordering for Asynchronous Backtracking”

Lemma 6.3. If the algorithm is correct for n − 1 agents then it is sound for n agents.

Proof. Let O� be the strongest order generated before reaching the state of quiescence and

let O be the strongest order generated such that V(1) = V �(1) (and such that O has

changed the position of the first agent –assuming O �= Oinit). Given the rules for reordering

agents, the agent that generated O has necessarily put himself first because it has modified

V(1) and thus also the position of the highest agent. So it has sent O to all other agents.

When reaching the state of quiescence, we know that no order Oj with Oj(1) �= O(1)

has been generated because this would break the assumption that O is the strongest order

where the position of the first agent has been changed. Hence, at the state of quiescence,

every agent Ai stores an order Oi such that Oi(1) = O(1). (This is also true if O = Oinit.)

Let us consider the DisCSP P composed of the n − 1 lower priority agents according to O.

Since the algorithm is correct for n − 1 agents, the state of quiescence means that a solution

was found for P. Also, since all agents in P are aware that O(1) is the agent with the

highest priority, the state of quiescence also implies that all constraints that involve O(1)

have been successfully tested by agents in P, otherwise at least one agent in P would try

to change its value and send an ok? or ngd message. Therefore, the state of quiescence

implies that a solution was found.

Lemma 6.4. The algorithm is complete

Proof. All nogoods are generated by logical inferences from existing constraints. Thus, an

empty nogood cannot be inferred if a solution exists.

Following Lemma 6.2, 6.3 and 6.4 we obtain the correctness of the main theorem in this

chapter.

Theorem 6.1. The ABT_DO-Retro algorithm with K = 0 is correct when using the m2 method for

selecting the strongest order.

6.5 Summary

We proposed in this chapter a corrigendum of the protocol designed for establishing

the priority between orders in the asynchronous backtracking algorithm with dynamic or-

dering using retroactive heuristics (ABT_DO-Retro). We presented an example that shows

how ABT_DO-Retro can enter an infinite loop following the natural understanding of the

description given by the authors of ABT_DO-Retro. We described the correct way for com-

paring time-stamps of orders. We gave the proof that our method for comparing orders is

correct.

7DisChoco 2.0

Distributed constraint reasoning is a powerful concept to model and solve naturally

distributed constraint satisfaction/optimization problems. However, there are very

few open-source tools dedicated to solve such problems: DisChoco, DCOPolis and FRODO.

A distributed constraint reasoning platform must have some important features: It should

be reliable and modular in order to be easy to personalize and extend, be independent

of the communication system, allow the simulation of agents on a single virtual machine,

make it easy for deployment on a real distributed framework, and allow agents with a local

complex problems. This paper presents DisChoco 2.0, a complete redesign of the DisChoco

platform that guarantees these features and that can deal both with distributed constraint

satisfaction problems and with distributed constraint optimization problems.

This chapter is organized as follows. Section 7.2 presents the global architecture of

DisChoco 2.0. In Section 7.3, we show how a user can define her problem and solve it

using the DisChoco 2.0 platform. Section 7.4 shows the different benchmarks available in

DisChoco and how researchers in the DCR field can use them for evaluating algorithms

performance. We conclude the paper in Section 7.5.

7.1 Introduction

Distributed Constraint Reasoning (DCR) is a framework for solving various problems

arising in Distributed Artificial Intelligence. In DCR, a problem is expressed as a Dis-

tributed Constraint Network (DCN). A DCN is composed of a group of autonomous agents

where each agent has control of some elements of information about the problem, that is,

variables and constraints. Each agent own its local constraint network. Variables in differ-

ent agents are connected by constraints. Agents try to find a local solution (locally consis-

tent assignment) and communicate it with other agents using a DCR protocol to check its

consistency against constraints with variables owned by other agents [Yokoo et al., 1998;

Yokoo, 2000a].

A DCN offers an elegant way for modeling many everyday combinatorial problems

that are distributed by nature (e.g., distributed resource allocation [Petcu and Faltings,

2004], distributed meeting scheduling [Wallace and Freuder, 2002], sensor networks [Bé-

jar et al., 2005]). Several algorithms for solving this kind of problems have been devel-

115

116 Chapter 7. DisChoco 2.0

oped. Asynchronous Backtracking (ABT [Yokoo et al., 1992], ABT-Family [Bessiere et al.,

2005]), Asynchronous Forward Checking (AFC) [Meisels and Zivan, 2007] and Nogood-

based Asynchronous Forward-Checking (AFC-ng) [Wahbi et al., 2012] were developed

to solve Distributed Constraint Satisfaction Problems (DisCSP). Asynchronous Distributed

constraints OPTimization (Adopt) [Modi et al., 2005], Asynchronous Forward-Bounding

(AFB) [Gershman et al., 2009], Asynchronous Branch-and-Bound (Adopt-BnB) [Yeoh et

al., 2008] and Dynamic backtracking for distributed constraint optimization (DyBop) [Ez-

zahir et al., 2008a] were developed to solve Distributed Constraint Optimization Problems

(DCOP).

Programming DCR algorithms is a difficult task because the programmer must ex-

plicitly juggle between many very different concerns, including centralized programming,

parallel programming, asynchronous and concurrent management of distributed structures

and others. In addition, there are very few open-source tools for solving DCR problems:

DisChoco, DCOPolis [Sultanik et al., 2008] and FRODO [Léauté et al., 2009]. Researchers

in DCR are concerned with developing new algorithms, and comparing their performance

with existing algorithms. Open-source platforms are essential tools to integrate and test

new ideas without having the burden to reimplement from scratch an ad-hoc solver. For

this reason a DCR platform should have the following features:

• be reliable and modular, so it is easy to personalize and extend;

• be independent from the communication system;

• allow the simulation of multi-agent systems on a single machine;

• make it easy to implement a real distributed framework;

• allow the design of agents with local constraint networks.

In this paper we present DisChoco 2.0, 1 a completely redesigned platform that guar-

antees the features above. DisChoco 2.0 allows to represent both DisCSPs and DCOPs, as

opposed to other platforms. DisChoco 2.0 is not a distributed version of the centralized

solver Choco, but it implements a model to solve DCN with local complex problems (i.e.,

several variables per agent) by using Choco 2 as local solver to each agent. DisChoco 2.0 is

an open source Java library which aims at implementing DCR algorithms from an abstract

model of agent (already implemented in DisChoco). A single implementation of a DCR

algorithm can run as simulation on a single machine, or on a network of machines that

are connected via the Internet or via a wireless ad-hoc network, or even on mobile phones

compatible with J2ME.

7.2 Architecture

In order to reduce the time of development and therefore the cost of the design we

choose a components approach allowing pre-developed components to be reused. This

components approach is based on two principles:

• Each component is developed independently;

• An application is an assemblage of particular components.

1. http://www.lirmm.fr/coconut/dischoco/
2. http://choco.emn.fr/

http://www.lirmm.fr/coconut/dischoco/
http://choco.emn.fr/

7.2. Architecture 117

Figure 7.1 shows the general structure of DisChoco kernel. It shows a modular archi-

tecture with a clear separation between the modules used, which makes the platform easily

maintainable and extensible.

!"#$%&'$!()*$

!"#$%&'#(

)*$+%,-'$+%.-$/0#,

)*112$'3-%*,

4#++-"#.-$/0#,+

+&#$)%

,-../*0'&$0-*
1*$)%2&')

30#,4-'-

Figure 7.1 – Architecture of DisChoco kernel.

The kernel of DisChoco consists of an abstract model of an agent and several compo-

nents namely the communicator, messages handlers, constraints handler, the Agent View

(AgentView), a Master who controls the global search (i.e., send messages to launch and to

stop the search, etc.) and a communication interface.

7.2.1 Communication System

Thanks to independence between the kernel of DisChoco and the communication sys-

tem that will be used (Figure 7.2), DisChoco enables both: the simulation on one machine

and the full deployment on a real network. This is done independently of the type of

network, which can be a traditional wired network or an ad-hoc wireless network.

Figure 7.2 – Independence between the kernel of DisChoco and the communication system.

Instead of rewriting a new system of communication between DisChoco agents we

adopted the component approach. Thus a communication component pre-developed can

be used as a communication system if it satisfies a criterion of tolerance to failure. This

allows us to use only the identifiers of agents (IDs) to achieve communication between

agents. Thus when agent Ai wants to send a message to the agent Aj, it only attaches its

ID (i) and the ID (j) of the recipient. It is the communication interface that will deal with

118 Chapter 7. DisChoco 2.0

mapping between the IDs and IP addresses of agents (we assume that an agent identifier

is unique).

In the case of a simulation on a single Java Virtual Machine agents are simulated by Java

threads. Communication among agents is done using an Asynchronous Message Delay

Simulator (MailerAMDS) [Zivan and Meisels, 2006b; Ezzahir et al., 2007]. MailerAMDS

is a simulator that models the asynchronous delays of messages. Then, agents IDs are

sufficient for communication. In the case of a network of Java Virtual Machines, we have

used SACI 3 (Simple Agent Communication Infrastructure) as communication system. The

validity of this choice has not yet been validated by an in depth analysis. Future work will

be devoted to testing a set of communication systems on different types of networks.

7.2.2 Event Management

DisChoco performs constraint propagation via events on variables and events on con-

straints, as in Choco. These events are generated by changes on variables, and managing

them is one of the main tasks of a constraint solver. In a distributed system there are some

other events that must be exploited. These events correspond to a reception of a message,

changing the state of an agent (wait, idle and stop) or to changes on the AgentView.

The AgentView of a DisChoco agent consists of external variables (copy of other agents

variables). Whenever an event occurs on one of these external variables, some external con-

straints can be awakened and so added to the queue of constraints that will be propagated.

Using a queue of constraints to be propagated allows to only process constraints concerned

by changes on the AgentView instead of browsing the list of all constraints. To this end,

the DisChoco user can use methods offered by the constraints handler (ConstraintsHandler).

Detecting the termination of a distributed algorithm is not a trivial task. It strongly

depends on statements of agents. To make the implementation of a termination detection

algorithm easy, we introduced in the DisChoco platform a mechanism that generates events

for changes on the statements of an agent during its execution. A module for detecting

termination is implemented under each agent as a listener of events on statements changes.

When the agent state changes, the termination detector receives the event, recognizes the

type of the new state and executes methods corresponding to termination detection.

The events corresponding to an incoming message are managed in DisChoco in a man-

ner different from the standard method. Each agent has a Boolean object that is set to

false as long as the inbox of the agent is empty. When a message has arrived to the in-

box, the agent is notified by the change of this Boolean object to true. The agent can use

methods available in the communicator module to dispatch the received message to its

corresponding handler.

7.2.3 Observers in layers

DisChoco provides a Java interface (AgentObserver) that allows the user to track opera-

tions of a DCR algorithm during its execution. This interface defines two main functions:

3. http://www.lti.pcs.usp.br/saci/

http://www.lti.pcs.usp.br/saci/

7.3. Using DisChoco 2.0 119

AbstractAgent

AgentObserver

(a) AgentObserver implemented as Layer

AbstractAgent

NCCCsObserver MSGsObserver

(b) Metrics implemented as observers

Figure 7.3 – Layer model for observers.

whenSendMessage and whenReceivedMessage. The class AbstractAgent provides a list of ob-

servers and functions to add one or several observers. Thus, when we want to implement

an application using DisChoco, we can use AgentObserver to develop a specific observer.

This model is shown in Figure 7.3(a).

When developing new algorithms, an important task is to compare their performance

to other existing algorithms. There are several metrics for measuring performance of DCR

algorithms: non-concurrent constraint checks (#ncccs [Meisels et al., 2002]), equivalent

non-concurrent constraint checks (#encccs [Chechetka and Sycara, 2006]), number of ex-

changed messages (#msg [Lynch, 1997]), degree of privacy loss[Brito et al., 2009], etc.

DisChoco simply uses AgentObserver to implement these metrics as shown in Figure 7.3(b).

The user can enable metrics when she needs them or disable some or all these metrics. The

user can develop her specific metric or her methods for collecting statistics by implement-

ing AgentObserver.

7.3 Using DisChoco 2.0

Figure 7.4 presents a definition of a distributed problem named (Hello DisChoco) using

the Java code. In this problem there are 3 agents A = {A1, A2, A3} where each agent

controls exactly one variable. The domain of A1 and A2 contains two values D1 = D2 =

{1, 2} and that of A3 contains one value D3 = {2}. There are two constraints of difference:

the first constraint is between A1 and A2 and the second one is between A2 and A3. After

defining our problem we can configure our solver. Thus, the problem can be solved using

a specified implemented protocol (ABT for example).

For DisChoco inputs we choose to use a XML format called XDisCSP derived from the

famous format XCSP 2.1. 4 Figure 7.5 shows an example of representation of the problem

defined above in the XDisCSP format. Each variable has a unique ID, which is the concate-

nation of the ID of it owner agent and index of the variable in the agent. This is necessary

when defining constraints (scope of constraints). For constraints, we used two types of con-

straints: TKC for Totally Known Constraint and PKC for Partially Known Constraint [Brito

et al., 2009]. Constraints can be defined in extension or as a Boolean function. Different

types of constraints are predefined: equal to eq(x, y), different from ne(x, y), greater than

or equal ge(x, y), greater than gt(x, y), less than or equal le(x, y), less than lt(x, y),etc.

According to this format we can model DisCSPs and DCOPs. Once a distributed con-

4. http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html

120 Chapter 7. DisChoco 2.0

1 AbstractMaster master = Protocols.getMaster(Protocols.ABT);

2 DisProblem disCSP = new DisProblem("Hello DisChoco", master);

3 SimpleAgent[] agents = new SimpleAgent[3];

4 IntVar[] variables = new IntVar[3];

5 // Make agents

6 agents[0] = (SimpleAgent) disCSP.makeAgent("A1", "");

7 agents[1] = (SimpleAgent) disCSP.makeAgent("A2", "");

8 agents[2] = (SimpleAgent) disCSP.makeAgent("A3", "");

9 // Make one single variable for each agent

10 variables[0] = agents[0].makeInternalVar(new int[] {1, 2}); // x1

11 variables[1] = agents[1].makeInternalVar(new int[] {1, 2}); // x2

12 variables[2] = agents[2].makeInternalVar(new int[] {2}); // x3

13 // Make two constraints, we must to create external var on each agent

14 // But each agent must known its constraints

15 // x1!=x2

16 agents[0].neqY(agents[0].makeExternalVar(variables[1]));

17 agents[1].neqY(agents[1].makeExternalVar(variables[0]));

18 // x2!=x3

19 agents[1].neqY(agents[1].makeExternalVar(variables[2]));

20 agents[2].neqY(agents[2].makeExternalVar(variables[1]));

21 // Make a simulator to resolve the problem

22 DisCPSolver solver = new DisSolverSimulator(disCSP);

23 solver.setCentralizedAO(new LexicographicAO());

24 solver.addNCCCMetric();

25 solver.addCommunicationMetric();

26 solver.solve();

27 System.o u t.println("Problem : " + disCSP.getProblemName());

28 System.o u t.println("Solution of the problem using " + disCSP.master.getClass());

29 System.o u t.println("---");

30 System.o u t.println(solver.getGlobalSolution());

31 System.o u t.println("---");

32 System.o u t.println("Statistics :");

33 System.o u t.println(solver.getStatistics());

Figure 7.4 – Definition of a distributed problem using Java code.

1 <instance>
2 <presentation name="Hello DisChoco" model="Simple" maxConstraintArity="2" format="XDisCSP 1.0" />

3 <agents nbAgents="3">
4 <agent name="A1" id="1" description="Agent 1" />
5 <agent name="A2" id="2" description="Agent 2" />

6 <agent name="A3" id="3" description="Agent 3" />
7 </agents>

8 <domains nbDomains="2">
9 <domain name="D1" nbValues="2">1 2</domain>

10 <domain name="D2" nbValues="1">2</domain>

11 </domains>
12 <variables nbVariables="3">

13 <variable agent="A1" name="X1.0" id="0" domain="D1" description="Variable x_1" />
14 <variable agent="A2" name="X2.0" id="0" domain="D1" description="Variable x_2" />

15 <variable agent="A3" name="X3.0" id="0" domain="D2" description="Variable x_3" />
16 </variables>
17 <predicates nbPredicates="1">

18 <predicate name="P0">
19 <parameters>int x int y</parameters>

20 <expression>
21 <functional>ne(x,y)</functional>
22 </expression>

23 </predicate>
24 </predicates>

25 <constraints nbConstraints="2">
26 <constraint name="C1" model="TKC" arity="2" scope="X1.0 X2.0" reference="P0">

27 <parameters>X1.0 X2.0</parameters>
28 </constraint>
29 <constraint name="C2" model="TKC" arity="2" scope="X2.0 X3.0" reference="P0">

30 <parameters>X2.0 X3.0</parameters>
31 </constraint>

32 </constraints>
33 </instance>

Figure 7.5 – Definition of the Hello DisChoco problem in XDisCSP 1.0 format.

7.4. Experimentations 121

straint network problem is expressed in the XDisCSP format, we can solve it using one

of the protocols developed on the platform. The algorithms currently implemented in

DisChoco 2.0 are: ABT [Yokoo et al., 1992; Bessiere et al., 2005], ABT-Hyb [Brito and

Meseguer, 2004], ABT-dac [Brito and Meseguer, 2008], AFC [Meisels and Zivan, 2007],

AFC-ng [Ezzahir et al., 2009], AFC-tree [Wahbi et al., 2012], DBA [Yokoo and Hirayama,

1995] and DisFC [Brito et al., 2009] in the class of DisCSPs with simple agents. In the

class of DisCSPs where agents have local complex problems, ABT-cf [Ezzahir et al., 2008b]

was implemented. For DCOPs, the algorithms that are implemented in DisChoco 2.0 are:

Adopt [Modi et al., 2005], BnB-Adopt [Yeoh et al., 2008] and AFB [Gershman et al., 2009].

For solving a problem, we can use a simple command line:

1 java -cp dischoco.jar dischoco.simulation.Run protocol problem.xml

The Graphical User Interface (GUI) of DisChoco allows to visualize the constraint

graph. Hence, the user can analyses the structure of the problem to be solved. This also

helps to debug the algorithms. An example of the visualization is shown in Figure 7.6.

Figure 7.6 – Visualization of the structure of the distributed constraint graph.

7.4 Experimentations

In addition to its good properties (reliable and modular), DisChoco provides several

other facilities, especially for performing experimentation. The first facility is in the gen-

eration of benchmark problems. DisChoco offers a library of generators for distributed

constraint satisfaction/optimization problems (e.g., random binary DisCSPs using model

B, random binary DisCSPs with complex local problems, distributed graph coloring, dis-

tributed meeting scheduling, sensor networks, distributed N-queens, etc. These generators

122 Chapter 7. DisChoco 2.0

allow the user to test her algorithms on various types of problems ranging from purely

random problems to real world problems.

Figure 7.7 – A screenshot of the graphical user interface showing generators in DisChoco.

DisChoco is equipped with a GUI for manipulating all above generators. A screenshot

of the GUI of DisChoco shows various generators implemented on DisChoco (Figure 7.7).

Once the instances have been generated, a XML configuration file is created to collect the

instances. The generated instances are organized in a specific manner for each kind of

problems generator in a directory indicated by the user. The configuration file can also

contain details related to the configuration of the communicator and the list of algorithms

to be compared. It will be used for launching experiments. After all these configurations

have been set, the user can launch the experiments either on the GUI mode or on the

command mode.

0.0⋅10
0

2.0⋅10
5

4.0⋅10
5

6.0⋅10
5

8.0⋅10
5

1.0⋅10
6

1.2⋅10
6

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

#
m

sg

p2

ABT

AFC

AFC-ng

AFC-tree

Figure 7.8 – Total number of exchanged messages on dense graph �n=20, d=10, p1=0.7, p2�.

7.5. Conclusion 123

DisChoco is also equipped with a complete manager of results. The user does not have

to worry about organizing and plotting results. All this is offered by DisChoco that auto-

matically generates gnuplot plots of the requested measures. The user can also handle all

results and compare algorithms using the GUI of DisChoco. Figure 7.8 shows an example

of plot generated from experimentations on some algorithms implemented in DisChoco.

7.5 Conclusion

In this chapter, we have presented the new version 2.0 of the DisChoco platform for

solving DCR problems. This version contains several interesting features: it is reliable and

modular, it is easy to personalize and to extend, it is independent from the communication

system and allows a deployment in a real distributed system as well as the simulation on

a single Java Virtual Machine.

Conclusions and perspectives

In this thesis, we have addressed the Distributed Constraint Satisfaction Problem

(DisCSP) framework. We proposed several complete distributed search algorithms and

reordering heuristics for DisCSPs. We have given a complete evaluation of the efficiency of

our contributions against the existing approaches in literature. Our results show that they

improve the current state-of-the-art.

Once we defined the constraint satisfaction problem formalism (CSP) and presented

some examples of academical and real combinatorial problems that can be modeled as

CSP, we reported the main existent algorithms and heuristics used for solving CSPs. Next,

we formally defined the distributed constraint satisfaction problem (DisCSP) paradigm.

We have illustrated how some instances of real world applications in multi-agent coordi-

nation can be encoded in DisCSP. We introduced the meeting scheduling problem in its

distributed form where agents may solve the problem, thanks to the DisCSP, without de-

livering their personal information to a centralized agent. We described a real distributed

resource allocation application, that is, the distributed sensor network problem, and for-

malize it as a distributed CSP. These two problems have been used as benchmarks when

comparing the algorithms proposed in this thesis. We have also described the state of the

art algorithms and heuristics for solving DisCSP.

Numerous contributions have been proposed in this thesis. Our first contribution is the

Nogood-Based Asynchronous Forward Checking (AFC-ng). AFC-ng is an algorithm based

on Asynchronous Forward Checking (AFC). AFC incorporates the idea of the forward-

checking in a synchronous search procedure. However, agents perform the forward check-

ing phase asynchronously. AFC-ng is the nogood-based version of the AFC. Hence, instead

of using the shortest inconsistent partial assignments, AFC-ng uses nogoods as justifica-

tions of value removals. Moreover, unlike AFC, AFC-ng allows concurrent backtracks to

be performed at the same time coming from different agents having an empty domain to

different destinations. AFC-ng tries to enhance the asynchronism of the forward checking

phase.

In order to enhance the asynchronism in our nogood-based Asynchronous Forward-

Checking (AFC-ng) algorithm, we extended it to the Asynchronous Forward-Checking Tree

(AFC-tree). The main feature of the AFC-tree algorithm is using different agents to search

non-intersecting parts of the search space concurrently. In AFC-tree, agents are prioritized

according to a pseudo-tree arrangement of the constraint graph. The pseudo-tree ordering

is built in a preprocessing step. Using this priority ordering, AFC-tree performs multi-

ple AFC-ng processes on the paths from the root to the leaves of the pseudo-tree. The

agents that are brothers are committed to concurrently find the partial solutions of their

125

126 Conclusions and perspectives

variables. Therefore, AFC-tree exploits the potential speed-up of a parallel exploration in

the processing of distributed problems.

Since our experiments show that our AFC-ng is one of the most efficient and robust

algorithm for solving DisCSP, we proposed two new algorithms based on the same mech-

anism as AFC-ng to maintain arc consistency in synchronous search procedure. Thereby,

instead of using forward checking as a filtering property, we maintain arc consistency asyn-

chronously (MACA). The first algorithm we proposed enforces arc consistency thanks to an

additional type of messages, deletion messages. This algorithm is called MACA-del. The

second algorithm, that we called MACA-not, achieves arc consistency without any new

type of message.

In our contributions mentioned above, the agents assign values to their variables in a

sequential way. These contributions can be classified under the category of synchronous

algorithms. The other category of algorithms for solving DisCSPs are algorithms in which

the process of proposing values to the variables and exchanging these proposals is per-

formed asynchronously between the agents. In the last category, we proposed Agile Asyn-

chronous Backtracking (Agile-ABT), an asynchronous dynamic ordering algorithm that is

able to change the ordering of agents more agilely than all previous approaches. Thanks

to the original concept of termination value, Agile-ABT is able to choose a backtracking

target that is not necessarily the agent with the current lowest priority within the conflict-

ing agents. Furthermore, the ordering of agents appearing before the backtracking target

can be changed. These interesting features are unusual for an algorithm with polynomial

space complexity.

In this thesis, we proposed a corrigendum of the protocol designed for establishing

the priority between orders in the asynchronous backtracking algorithm with dynamic or-

dering using retroactive heuristics (ABT_DO-Retro). We presented an example that shows

how ABT_DO-Retro can enter an infinite loop following the natural understanding of the

description given by the authors of ABT_DO-Retro. We described the correct way for com-

paring time-stamps of orders. We gave the proof that our method for comparing orders is

correct.

Finally, we have presented the new version of the DisChoco platform for solving DCR

problems, DisChoco 2.0. This version contains several interesting features: it is reliable and

modular, it is easy to personalize and to extend, it is independent from the communication

system and allows a deployment in a real distributed system as well as the simulation on

a single Java Virtual Machine. DisChoco 2.0 is an open source Java library which aims at

implementing distributed constraint reasoning algorithms from an abstract model of agent

(already implemented in DisChoco). A single implementation of a distributed constraint

reasoning algorithm can run as simulation on a single machine, or on a network of ma-

chines. All algorithms proposed in this thesis were implemented and tested using this

platform.

Conclusions

From the works presented in this thesis we can conclude that:

Conclusions and perspectives 127

• Using nogoods as justification of value removals is significant in distributed search

algorithms for solving DisCSPs.

• Allowing several concurrent backtracks in a synchronous search improves the effi-

ciency.

• Enhancing the asynchronism in the synchronous search that propagates only consis-

tent partial assignments is beneficial.

• The asynchronous algorithms performs bad in dense graphs compared to syn-

chronous algorithms.

• In synchronous algorithms, maintaining arc consistency is better than maintaining

forward checking in terms of computational effort when the network is sparse, and

is always better in terms of communication load.

• Maintaining arc consistency during synchronous search produces much larger bene-

fits than maintaining arc consistency in asynchronous algorithms like ABT.

• Our experiments confirm the significance of reordering the agents appearing before

the backtracking target.

Future Works

In future research, testing some reordering heuristics for the nogood-based Asyn-

chronous Forward-Checking (AFC-ng) and Maintaining Arc Consistency Asynchronously

(MACA) algorithms could be very interesting. For the Asynchronous Forward-Checking

Tree (AFC-tree), an intuitive improvement will be to maintain the arc consistency instead

of using forward checking as filtering property. In the AFC-tree the agents are prioritized

using a pseudo-tree arrangement of the constraint graph. There exist in literature various

heuristics to build the pseudo-trees from constraint graphs. These heuristics aim to pro-

duce shallow or deep pseudo-trees. We believe that testing AFC-tree on different kinds of

pseudo-trees will allow more understanding of its good performance.

In Agile Asynchronous Backtracking (Agile-ABT), we successfully combined the times-

tamps of orders with the dom heuristic in the termination value concept. We can test

other heuristics in the termination values. The dom/deg and the dom/wdeg could be very

promising heuristics to incorporate in the distributed search. Our goal is to integrate these

heuristics in the Agile-ABT.

In Agile-ABT, when updating the set of the stored explanations, some explanations can

be deleted. Unfortunately, this process lead to lose the information about the domain sizes

received from other agents. Thus, other data structures (i.e., nogoods) allowing more accu-

rate definition of domain sizes should be tested in Agile-ABT. However, sharing the whole

nogoods will increase the size of exchanged messages. Thereby, another improvement

could be to try to minimize the size of exchanged messages.

Minimizing the size of exchanged messages on MACA algorithms is also required in

order to use it for solving applications where the message size is limited. Testing different

kind of consistency maintenance in MACA algorithms may also help to improve their

efficiency.

128 Conclusions and perspectives

We aim also at enhancing the DisChoco platform by the implementation of other Dis-

tributed Constraint Reasoning (DCR) algorithms and to enrich the graphical user interface

to make it easier to use for researchers from the DCR field. Another direction of improve-

ment is to allow DisChoco to support other types of constraints that match as much as

possible the needs of real applications. The modularity of DisChoco will allow us to look

for other types of system communication. Finally, for a complete validation, it would be

interesting to test DisChoco on a real distributed system.

Bibliography

[Abu-Amara, 1988] Hosame H. Abu-Amara. Fault-tolerant distributed algorithm for elec-
tion in complete networks. IEEE Transactions on Computers, 37:449–453, April 1988. (Cited
on pages 33, 64, and 65.)

[Bacchus and Van Run, 1995] Fahiem Bacchus, and Paul Van Run. Dynamic variable
ordering in CSPs. In Proceeding of the First International Conference on Principles and Practice
of Constraint Programming, CP’95, pages 258–275, 1995. (Cited on page 25.)

[Beck et al., 2005] J. Christopher Beck, Patrick Prosser, and Richard J. Wallace. Trying
again to fail-first. In Proceedings of the 2004 joint ERCIM/CoLOGNET international confer-
ence on Recent Advances in Constraints, CSCLP’04, pages 41–55, Berlin, Heidelberg, 2005.
Springer-Verlag. (Cited on page 26.)

[Béjar et al., 2005] Ramón Béjar, Carmel Domshlak, Cèsar Fernández, Carla Gomes,
Bhaskar Krishnamachari, Bart Selman, and Magda Valls. Sensor networks and
distributed csp: communication, computation and complexity. Artificial Intelligence,
161:117–147, 2005. (Cited on pages 1, 28, 30, 32, 33, 55, 73, 103, and 115.)

[Bessiere and Cordier, 1993] Christian Bessiere, and Marie-Odile Cordier. Arc-
consistency and arc-consistency again. In Proceedings of the eleventh national conference
on Artificial intelligence, AAAI’93, pages 108–113. AAAI Press, 1993. (Cited on page 22.)

[Bessiere and Régin, 1996] Christian Bessiere, and Jean-Charles Régin. MAC and com-
bined heuristics: Two reasons to forsake FC (and CBJ?) on hard problems. In Proceedings
of the Second International Conference on Principles and Practice of Constraint Programming,
CP’96, pages 61–75, 1996. (Cited on pages 27, 52, 78, and 87.)

[Bessiere and Régin, 2001] Christian Bessiere, and Jean-Charles Régin. Refining the basic
constraint propagation algorithm. In Proceedings of the 17th international joint conference on
Artificial intelligence - Volume 1, IJCAI’01, pages 309–315, San Francisco, CA, USA, 2001.
Morgan Kaufmann Publishers Inc. (Cited on pages 22 and 82.)

[Bessiere et al., 1999] Christian Bessiere, Eugene C. Freuder, and Jean-Charles Régin.
Using constraint metaknowledge to reduce arc consistency computation. Artificial Intel-
ligence, 107(1):125–148, jan 1999. (Cited on page 22.)

[Bessiere et al., 2001a] Christian Bessiere, Assef Chmeiss, and Lakhdar Sais.
Neighborhood-based variable ordering heuristics for the constraint satisfaction
problem. In Proceedings of the 7th International Conference on Principles and Practice of
Constraint Programming, CP’01, pages 565–569, London, UK, UK, 2001. Springer-Verlag.
(Cited on page 27.)

[Bessiere et al., 2001b] Christian Bessiere, Arnold Maestre, and Pedro Meseguer. Dis-
tributed dynamic backtracking. In Proceeding of Workshop on Distributed Constraint Rea-
soning, IJCAI’01, Seattle, Washington, USA, August 4 2001. (Cited on page 33.)

[Bessiere et al., 2005] Christian Bessiere, Arnold Maestre, Ismel Brito, and Pedro
Meseguer. Asynchronous backtracking without adding links: a new member in the
ABT family. Artificial Intelligence, 161:7–24, 2005. (Cited on pages 33, 37, 38, 40, 47, 52,
90, 113, 116, and 121.)

129

130 Bibliography

[Bessiere, 1994] Christian Bessiere. Arc-consistency and arc-consistency again. Artificial
Intelligence, 65(1):179–190, January 1994. (Cited on page 22.)

[Bessiere, 2006] Christian Bessiere. Chapter 3 constraint propagation. In Rossi
Francesca, Peter van Beek, and Toby Walsh, editors, Handbook of Constraint Program-
ming, volume 2 of Foundations of Artificial Intelligence, pages 29–83. Elsevier, 2006. (Cited
on pages 21 and 79.)

[Bitner and Reingold, 1975] James R. Bitner, and Edward M. Reingold. Backtrack pro-
gramming techniques. Communications of the ACM, 18:651–656, nov 1975. (Cited on
page 15.)

[Bliek, 1998] Christian Bliek. Generalizing partial order and dynamic backtracking. In
Proceedings of the fifteenth national/tenth conference on Artificial intelligence/Innovative appli-
cations of artificial intelligence, AAAI’98/IAAI’98, pages 319–325, Menlo Park, CA, USA,
1998. American Association for Artificial Intelligence. (Cited on pages 19, 20, and 106.)

[Boussemart et al., 2004] Fréd’̀eric Boussemart, Fred Hemery, Christophe Lecoutre, and
Lakhdar Sais. Boosting Systematic Search by Weighting Constraints. In Proceedings of the
16th Eureopean Conference on Artificial Intelligence, ECAI’04, pages 146–150, 2004. (Cited
on page 27.)

[Brélaz, 1979] Daniel Brélaz. New methods to color the vertices of a graph. Communica-
tions of the ACM, 22(4):251–256, apr 1979. (Cited on page 26.)

[Brito and Meseguer, 2003] Ismel Brito, and Pedro Meseguer. Distributed forward
checking. In Proceeding of 9th International Conference on Principles and Practice of Con-
straint Programming, CP’03, pages 801–806, Ireland, 2003. (Cited on pages 33 and 78.)

[Brito and Meseguer, 2004] Ismel Brito, and Pedro Meseguer. Synchronous, asyn-
chronous and hybrid algorithms for DisCSP. In Proceeding of the fifth Workshop on Dis-
tributed Constraint Reasoning at the 10th International Conference on Principles and Practice of
Constraint Programming (CP’04), DCR’04, pages 80–94. Toronto, Canada, September 2004.
(Cited on pages 33, 59, and 121.)

[Brito and Meseguer, 2008] Ismel Brito, and Pedro Meseguer. Connecting abt with arc
consistency. In CP, pages 387–401, 2008. (Cited on pages 43, 78, 85, and 121.)

[Brito et al., 2009] Ismel Brito, Amnon Meisels, Pedro Meseguer, and Roie Zivan. Dis-
tributed constraint satisfaction with partially known constraints. Constraints, 14:199–234,
June 2009. (Cited on pages 119 and 121.)

[Chandy and Lamport, 1985] K. Mani Chandy, and Leslie Lamport. Distributed snap-
shots: determining global states of distributed systems. ACM Transactions on Computer
Systems, 3(1):63–75, February 1985. (Cited on pages 68 and 95.)

[Chechetka and Sycara, 2005] Anton Chechetka, and Katia Sycara. A decentralized vari-
able ordering method for distributed constraint optimization. Technical Report CMU-
RI-TR-05-18, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, May 2005.
(Cited on page 64.)

[Chechetka and Sycara, 2006] Anton Chechetka, and Katia Sycara. No-commitment
branch and bound search for distributed constraint optimization. In Proceedings of the
fifth international joint conference on Autonomous agents and multiagent systems, AAMAS’06,
pages 1427–1429, Hakodate, Japan, 2006. (Cited on page 119.)

[Cheung, 1983] To-Yat Cheung. Graph traversal techniques and the maximum flow prob-
lem in distributed computation. IEEE transaction on software engineering, 9(4):504–512,
1983. (Cited on page 65.)

Bibliography 131

[Chinn et al., 1982] P. Z. Chinn, J. Chvátalová, A. K. Dewdney, and N. E. Gibbs. The
bandwidth problem for graphs and matrices-a survey. Journal of Graph Theory, 6(3):223–
254, 1982. (Cited on page 24.)

[Chong and Hamadi, 2006] Yek Loong Chong, and Youssef Hamadi. Distributed log-
based reconciliation. In Proceedings of the 17th European Conference on Artificial Intelligence,
ECAI’06, pages 108–112, 2006. (Cited on pages 1, 28, and 30.)

[Collin et al., 1991] Zeev Collin, Rina Dechter, and Shmuel Katz. On the feasibility of
distributed constraint satisfaction. In IJCAI, pages 318–324, 1991. (Cited on page 76.)

[Davis et al., 1962] Martin Davis, George Logemann, and Donald Loveland. A machine
program for theorem-proving. Communications of the ACM, 5:394–397, jul 1962. (Cited on
page 15.)

[De Kleer and Sussman, 1980] Johan De Kleer, and Gerald Jay Sussman. Propagation of
constraints applied to circuit synthesis. International Journal of Circuit Theory and Applica-
tions, 8(2):127–144, 1980. (Cited on page 8.)

[Dechter and Frost, 2002] Rina Dechter, and Daniel Frost. Backjump-based backtracking
for constraint satisfaction problems. Artificial Intelligence, 136(2):147–188, apr 2002. (Cited
on page 17.)

[Dechter and Meiri, 1989] Rina Dechter, and Itay Meiri. Experimental evaluation of pre-
processing techniques in constraint satisfaction problems. In Proceedings of the 11th inter-
national joint conference on Artificial intelligence - Volume 1, IJCAI’89, pages 271–277, San
Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc. (Cited on pages 24 and 25.)

[Dechter and Pearl, 1988] Rina Dechter, and J. Pearl. Network-based heuristics for con-
straint satisfaction problems. Artificial Intelligence, 34:1–38, 1988. (Cited on pages 8

and 28.)

[Dechter, 1990] Rina Dechter. Enhancement schemes for constraint processing: Back-
jumping, learning, and cutset decomposition. Artificial Intelligence, 41(3):273–312, jan
1990. (Cited on pages 8 and 17.)

[Dechter, 1992] Rina Dechter. Constraint networks (survey). In S. C. Shapiro (Eds.), Ency-
clopedia of Artificial Intelligence, 1:276–285, 1992. (Cited on page 9.)

[Ezzahir et al., 2007] Redouane Ezzahir, Christian Bessiere, Mustapha Belaissaoui, and
El Houssine Bouyakhf. DisChoco: a platform for distributed constraint programming.
In Proceedings of the IJCAI’07 workshop on Distributed Constraint Reasoning, pages 16–21,
Hyderabad, India, January 8 2007. (Cited on page 118.)

[Ezzahir et al., 2008a] Redouane Ezzahir, Christian Bessiere, Imade Benelallam,
El Houssine Bouyakhf, and Mustapha Belaissaoui. Dynamic backtracking for dis-
tributed constraint optimization. In Proceeding of the 18th European Conference on Artifi-
cial Intelligence, ECAI’08, pages 901–902, Amsterdam, The Netherlands, 2008. IOS Press.
(Cited on page 116.)

[Ezzahir et al., 2008b] Redouane Ezzahir, Christian Bessiere, El Houssine Bouyakhf, and
Mustapha Belaissaoui. Asynchronous backtracking with compilation formulation for
handling complex local problems. ICGST International Journal on Artificial Intelligence and
Machine Learning, AIML, 8:45–53, 2008. (Cited on page 121.)

[Ezzahir et al., 2009] Redouane Ezzahir, Christian Bessiere, Mohamed Wahbi, Imade
Benelallam, and El-Houssine Bouyakhf. Asynchronous inter-level forward-checking
for discsps. In Proceedings of the 15th international conference on Principles and practice of
constraint programming, CP’09, pages 304–318, 2009. (Cited on pages 33, 78, and 121.)

132 Bibliography

[Fox et al., 1982] Mark S. Fox, Bradley P. Allen, and Gary Strohm. Job-shop scheduling:
An investigation in constraint-directed reasoning. In Proceedings of the National Conference
on Artificial Intelligence, AAAI’82, pages 155–158, 1982. (Cited on page 8.)

[Frayman and Mittal, 1987] Felix Frayman, and Sanjay Mittal. Cossack: A constraint-
based expert system for configuration tasks. In Knowledge-Based Expert Systems in Engi-
neering, Planning and Design, pages 144–166, 1987. (Cited on page 8.)

[Freuder and Quinn, 1985] Eugene C. Freuder, and Michael J. Quinn. Taking advantage
of stable sets of variables in constraint satisfaction problems. In In IJCAI 1985, pages
1076–1078, 1985. (Cited on pages 25, 62, and 63.)

[Freuder, 1982] Eugene C. Freuder. A Sufficient Condition for Backtrack-Free Search. Jour-
nal of The ACM, 29:24–32, 1982. (Cited on page 24.)

[Frost and Dechter, 1994] Daniel Frost, and Rina Dechter. In search of the best constraint
satisfaction search. In Proceeding of Twelfth National Conference of Artificial Intelligence,
AAAI’94, pages 301–306, 1994. (Cited on page 26.)

[Frost and Dechter, 1995] Daniel Frost, and Rina Dechter. Look-ahead value ordering
for constraint satisfaction problems. In Proceedings of the 14th international joint conference
on Artificial intelligence - Volume 1, IJCAI’95, pages 572–578, San Francisco, CA, USA,
1995. Morgan Kaufmann Publishers Inc. (Cited on page 28.)

[Garrido and Sycara, 1996] Leonardo Garrido, and Katia Sycara. Multiagent meeting
scheduling: Preliminary experimental results. In Proceedings of the Second International
Conference on Multiagent Systems, ICMAS’96, pages 95–102, 1996. (Cited on page 11.)

[Gaschnig, 1974] John Gaschnig. A constraint satisfaction method for inference making.
In Proceedings of the Twelfth Annual Allerton Conference on Circuit and System Theory, pages
866–874, 1974. (Cited on page 23.)

[Gaschnig, 1978] John Gaschnig. Experimental case studies of backtrack vs. Waltz-type
vs. new algorithms for satisficing assignment problems. In Proceedings of the Second
Canadian Conference on Artificial Intelligence,, pages 268–277, 1978. (Cited on pages 8, 16,
and 17.)

[Geelen, 1992] Pieter Andreas Geelen. Dual viewpoint heuristics for binary constraint
satisfaction problems. In Proceedings of the 10th European conference on Artificial intelligence,
ECAI’92, pages 31–35, New York, NY, USA, 1992. John Wiley & Sons, Inc. (Cited on
page 28.)

[Geffner and Pearl, 1987] Hector Geffner, and Judea Pearl. An improved constraint-
propagation algorithm for diagnosis. In Proceedings of the 10th international joint conference
on Artificial intelligence - Volume 2, IJCAI’87, pages 1105–1111, San Francisco, CA, USA,
1987. Morgan Kaufmann Publishers Inc. (Cited on page 8.)

[Gent et al., 1996] Ian P. Gent, Ewan MacIntyre, Patrick Presser, Barbara M. Smith, and
Toby Walsh. An empirical study of dynamic variable ordering heuristics for the con-
straint satisfaction problem. In Proceedings of the Second International Conference on Princi-
ples and Practice of Constraint Programming, CP’96, pages 179–193, 1996. (Cited on pages 25

and 27.)

[Gershman et al., 2009] A. Gershman, Amnon Meisels, and Roie Zivan. Asynchronous
forward bounding for distributed cops. Journal of Artificial Intelligence Research, 34:61–88,
2009. (Cited on pages 116 and 121.)

[Ginsberg and McAllester, 1994] Matthew L. Ginsberg, and David A. McAllester.
GSAT and dynamic backtracking. In KR, pages 226–237, 1994. (Cited on pages 19,
92, and 106.)

Bibliography 133

[Ginsberg et al., 1990] Matthew L. Ginsberg, Michael Frank, Michael P. Halpin, and
Mark C. Torrance. Search lessons learned from crossword puzzles. In Proceedings of
the eighth National conference on Artificial intelligence - Volume 1, AAAI’90, pages 210–215.
AAAI Press, 1990. (Cited on page 28.)

[Ginsberg, 1993] Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelli-
gence Research, 1:25–46, 1993. (Cited on pages 8, 18, 42, 90, and 106.)

[Golomb and Baumert, 1965] Solomon W. Golomb, and Leonard D. Baumert. Backtrack
programming. Journal of the ACM (JACM), 12:516–524, oct 1965. (Cited on pages 8, 15,
and 26.)

[Grant and Smith, 1996] Stuart A. Grant, and Barbara M. Smith. The phase transition
behaviour of maintaining arc consistency. In Proceedings of ECAI’96, pages 175–179, 1996.
(Cited on pages 78 and 87.)

[Hamadi et al., 1998] Youssef Hamadi, Christian Bessiere, and Joël Quinqueton. Back-
tracking in distributed constraint networks. In Proceedings of the European Conference on
Artificial Intelligence, ECAI’98, pages 219–223, Brighton, UK, 1998. (Cited on pages 33

and 40.)
[Hamadi, 2002] Youssef Hamadi. Interleaved backtracking in distributed constraint net-

works. International Journal of Artificial Intelligence Tools, 11:167–188, 2002. (Cited on
page 76.)

[Haralick and Elliott, 1979] Robert M. Haralick, and Gordon L. Elliott. Increasing tree
search efficiency for constraint satisfaction problems. In Proceedings of the 6th international
joint conference on Artificial intelligence, IJCAI’79, pages 356–364, San Francisco, CA, USA,
1979. Morgan Kaufmann Publishers Inc. (Cited on page 20.)

[Haralick and Elliott, 1980] Robert M. Haralick, and Gordon L. Elliott. Increasing tree
search efficiency for constraint satisfaction problems. Artificial Intelligence, 14(3):263–313,
1980. (Cited on pages 8, 20, 23, 25, 26, 28, 34, 46, 62, and 78.)

[Hirayama and Yokoo, 2000] Katsutoshi Hirayama, and Makoto Yokoo. The effect of no-
good learning in distributed constraint satisfaction. In Proceedings of the The 20th Interna-
tional Conference on Distributed Computing Systems, ICDCS’00, pages 169–177, Washington,
DC, USA, 2000. IEEE Computer Society. (Cited on pages 38, 47, 50, 52, 70, 81, 82, 85,
and 113.)

[Horsch and Havens, 2000] Michael C. Horsch, and William S. Havens. An empirical
study of probabilistic arc consistency as a variable ordering heuristic. In Proceedings of
the 6th International Conference on Principles and Practice of Constraint Programming, CP’00,
pages 525–530, London, UK, UK, 2000. Springer-Verlag. (Cited on page 27.)

[Jung et al., 2001] Hyuckchul Jung, Milind Tambe, and Shriniwas Kulkarni. Argumen-
tation as distributed constraint satisfaction: applications and results. In Proceedings of
the fifth international conference on Autonomous agents, AGENTS’01, pages 324–331, 2001.
(Cited on pages 1, 28, 30, and 32.)

[Kask et al., 2004] Kalev Kask, Rina Dechter, and Vibhav Gogate. Counting-based look-
ahead schemes for constraint satisfaction. In Proceedings of 10th International Conference
on Constraint Programming, CP’04, pages 317–331, 2004. (Cited on page 28.)

[Léauté and Faltings, 2011] Thomas Léauté, and Boi Faltings. Coordinating logistics op-
erations with privacy guarantees. In Proceedings of the Twenty-Second International Joint
Conference on Artificial Intelligence, IJCAI’11, pages 2482–2487, July 16–22 2011. (Cited on
pages 1 and 28.)

[Léauté et al., 2009] T. Léauté, B. Ottens, and R. Szymanek. FRODO 2.0: An Open-
Source Framework for Distributed Constraint Optimization. In Proceedings of the IJCAI’09

134 Bibliography

workshop on Distributed Constraint Reasoning, pages 160–164, Pasadena, California, USA,
2009. (Cited on page 116.)

[Lecoutre et al., 2004] Christophe Lecoutre, Frederic Boussemart, and Fred Hemery.
Backjump-based techniques versus conflict-directed heuristics. In Proceedings of the 16th
IEEE International Conference on Tools with Artificial Intelligence, ICTAI ’04, pages 549–557,
Washington, DC, USA, 2004. IEEE Computer Society. (Cited on page 27.)

[Lynch, 1997] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Series, 1997.
(Cited on pages 52, 70, 85, and 119.)

[Mackworth, 1977] Alan Mackworth. Consistency in networks of relations. Artificial In-
telligence, 8(1):99–118, 1977. (Cited on pages 21 and 22.)

[Mackworth, 1983] Alan K. Mackworth. On seeing things, again. In Proceedings of the
Eighth International Joint Conference on Artificial Intelligence, IJCAI’83, pages 1187–1191,
1983. (Cited on page 8.)

[Maheswaran et al., 2004] Rajiv T. Maheswaran, Milind Tambe, Emma Bowring,
Jonathan P. Pearce, and Pradeep Varakantham. Taking dcop to the real world: Ef-
ficient complete solutions for distributed multi-event scheduling. In Proceedings of Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS’04, 2004.
(Cited on pages 1, 28, and 30.)

[Mechqrane et al., 2012] Younes Mechqrane, Mohamed Wahbi, Christian Bessiere, El-
Houssine Bouyakhf, Amnon Meisels, and Roie Zivan. Corrigendum to “Min-Domain
Retroactive Ordering for Asynchronous Backtracking”. Constraints, 17:348–355, 2012.
(Cited on page 101.)

[Meisels and Lavee, 2004] Amnon Meisels, and Oz Lavee. Using additional information
in DisCSP search. In Proceeding of 5th workshop on distributed constraints reasoning, DCR’04,
2004. (Cited on pages 11, 12, 31, 56, and 74.)

[Meisels and Razgon, 2002] Amnon Meisels, and I. Razgon. Distributed forward-
checking with conflict-based backjumping and dynamic ordering. In Proceeding of CoSolv
workshop, CP02, Ithaca, NY, 2002. (Cited on page 33.)

[Meisels and Zivan, 2003] Amnon Meisels, and Roie Zivan. Asynchronous forward-
checking for distributed CSPs. In W. Zhang, editor, Frontiers in Artificial Intelligence
and Applications. IOS Press, 2003. (Cited on pages 33 and 46.)

[Meisels and Zivan, 2007] Amnon Meisels, and Roie Zivan. Asynchronous forward-
checking for DisCSPs. Constraints, 12(1):131–150, 2007. (Cited on pages 34, 46, 52, 54, 62,
78, 116, and 121.)

[Meisels et al., 1997] Amnon Meisels, Solomon Eyal Shimony, and Gadi Solotorevsky.
Bayes networks for estimating the number of solutions to a csp. In Proceedings of the
fourteenth national conference on artificial intelligence and ninth conference on Innovative appli-
cations of artificial intelligence, AAAI’97/IAAI’97, pages 179–184. AAAI Press, 1997. (Cited
on page 28.)

[Meisels et al., 2002] Amnon Meisels, I. Razgon, E. Kaplansky, and Roie Zivan. Com-
paring performance of distributed constraints processing algorithms. In Proceeding of
AAMAS-2002 Workshop on Distributed Constraint Reasoning DCR, pages 86–93, Bologna,
2002. (Cited on page 119.)

[Minton et al., 1992] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip
Laird. Minimizing conflicts: a heuristic repair method for constraint satisfaction and
scheduling problems. Artificial Intelligence, 58(1-3):161–205, December 1992. (Cited on
page 28.)

Bibliography 135

[Modi et al., 2005] Pragnesh Jay Modi, Wei-Min Shen, Milind Tambe, and Makoto Yokoo.
Adopt: asynchronous distributed constraint optimization with quality guarantees. Arti-
ficial Intelligence, 161:149–180, 2005. (Cited on pages 116 and 121.)

[Mohr and Henderson, 1986] Roger Mohr, and Thomas C. Henderson. Arc and path
consistency revisited. Artificial Intelligence, 28(2):225–233, Mar 1986. (Cited on page 22.)

[Montanari, 1974] Ugo Montanari. Networks of constraints: Fundamental properties
and applications to picture processing. Information Sciences, 7(0):95–132, 1974. (Cited on
pages 8, 9, and 21.)

[Nadel and Lin, 1991] Bernard A. Nadel, and Jiang Lin. Automobile transmission design
as a constraint satisfaction problem: modelling the kinematic level. Artificial Intelligence
for Engineering, Design, Analysis and Manufacturing, 5:137–171, 1991. (Cited on page 8.)

[Nadel, 1990] Bernard A. Nadel. Some Applications of the Constraint Satisfaction Problem.
Number 8 in CSC (Wayne State University, Department of Computer Science). Wayne
State University, Department of Computer Science, 1990. (Cited on page 8.)

[Nguyen et al., 2004] Viet Nguyen, Djamila Sam-Haroud, and Boi Faltings. Dynamic
distributed backjumping. In Proceeding of 5th workshop on DCR’04, Toronto, 2004. (Cited
on pages 52 and 59.)

[Nudel, 1983] Bernard Nudel. Consistent-labeling problems and their algorithms:
Expected-complexities and theory-based heuristics. Artificial Intelligence, 21(1-2):135–178,
mar 1983. (Cited on page 26.)

[Petcu and Faltings, 2004] Adrian Petcu, and Boi Faltings. A value ordering heuristic for
distributed resource allocation. In Proceeding of Joint Annual Workshop of ERCIM/CoLogNet
on Constraint Solving and Constraint Logic Programming, CSCLP’04, pages 86–97, Feb 2004.
(Cited on pages 1, 28, 30, and 115.)

[Prosser et al., 1992] Patrick Prosser, Chris Conway, and Claude Muller. A constraint
maintenance system for the distributed resource allocation problem. Intelligent Systems
Engineering, 1(1):76–83, oct 1992. (Cited on page 30.)

[Prosser, 1993] Patrick Prosser. Hybrid algorithms for the constraint satisfaction problem.
Computational Intelligence, 9:268–299, 1993. (Cited on pages 8, 17, and 34.)

[Purdom, 1983] Paul Walton Purdom. Search rearrangement backtracking and polynomial
average time. Artificial Intelligence, 21(1-2):117–133, mar 1983. (Cited on page 25.)

[Sabin and Freuder, 1994] Daniel Sabin, and Eugene Freuder. Contradicting conven-
tional wisdom in constraint satisfaction. In Proceedings of the Second International Workshop
on Principles and Practice of Constraint Programming, volume 874 of CP’94, pages 10–20,
1994. (Cited on pages 8, 23, 78, and 79.)

[Sen and Durfee, 1995] Sandip Sen, and Edmund H Durfee. Unsupervised surrogate
agents and search bias change in flexible distributed scheduling. In Proceedings of the First
International Conference on MultiAgent Systems, ICMAS’95, pages 336–343, 1995. (Cited on
pages 11 and 12.)

[Silaghi and Faltings, 2005] Marius-Calin Silaghi, and Boi Faltings. Asynchronous ag-
gregation and consistency in distributed constraint satisfaction. Artificial Intelligence,
161:25–53, 2005. (Cited on pages 33 and 68.)

[Silaghi et al., 2001a] Marius-Calin Silaghi, Djamila Sam-Haroud, M. Calisti, and Boi
Faltings. Generalized english auctions by relaxation in dynamic distributed CSPs with
private constraints. In Proceedings of the IJCAI’01 workshop on Distributed Constraint Rea-
soning, DCR’11, pages 45–54, 2001. (Cited on pages 89 and 90.)

136 Bibliography

[Silaghi et al., 2001b] Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings.
Consistency maintenance for abt. In Proceedings of the 7th International Conference on
Principles and Practice of Constraint Programming, CP’01, pages 271–285, Paphos, Cyprus,
2001. (Cited on pages 43 and 78.)

[Silaghi et al., 2001c] Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings. Hy-
bridizing ABT and AWC into a polynomial space, complete protocol with reordering.
Technical Report LIA-REPORT-2001-008, 2001. Technical report. (Cited on pages 42

and 90.)
[Silaghi et al., 2001d] Marius-Calin Silaghi, Djamila Sam-Haroud, and Boi Faltings.

Polynomial space and complete multiply asynchronous search with abstractions. In
Proceedings of the IJCAI’2001 Workshop on Distributed Constraint Reasoning, DCR’11, pages
17–32, 2001. (Cited on page 40.)

[Silaghi, 2006] Marius-Calin Silaghi. Generalized dynamic ordering for asynchronous
backtracking on DisCSPs. In DCR workshop, AAMAS-06, 2006. (Cited on pages 30, 42,
52, 85, and 90.)

[Smith and Grant, 1998] Barbara M. Smith, and Stuart A. Grant. Trying harder to fail
first. In ECAI, pages 249–253, 1998. (Cited on page 26.)

[Smith, 1999] Barbara M. Smith. The Brélaz heuristic and optimal static orderings. In
Proceedings of the 5th International Conference on Principles and Practice of Constraint Pro-
gramming, CP’99, pages 405–418, London, UK, UK, 1999. Springer-Verlag. (Cited on
page 26.)

[Stallman and Sussman, 1977] Richard M. Stallman, and Gerald J. Sussman. Forward
reasoning and dependency-directed backtracking in a system for computer-aided circuit
analysis. Artificial Intelligence, 9(2):135–196, 1977. (Cited on page 19.)

[Stefik, 1981] Mark Stefik. Planning with constraints (molgen: Part 1). Artificial Intelli-
gence, 16(2):111–139, 1981. (Cited on page 8.)

[Sultanik et al., 2008] Evan A. Sultanik, Robert N. Lass, and William C. Regli. Dcopolis:
a framework for simulating and deploying distributed constraint reasoning algorithms.
In Proceedings of the 7th international joint conference on Autonomous agents and multiagent
systems, AAMAS’08, pages 1667–1668, Estoril, Portugal, 2008. (Cited on page 116.)

[Van Hentenryck et al., 1992] Pascal Van Hentenryck, Yves Deville, and Choh-Man
Teng. A generic arc-consistency algorithm and its specializations. Artificial Intelligence,
57(2-3):291–321, oct 1992. (Cited on page 22.)

[Vernooy and Havens, 1999] Matt Vernooy, and William S. Havens. An examination of
probabilistic value-ordering heuristics. In Proceedings of the 12th Australian Joint Conference
on Artificial Intelligence: Advanced Topics in Artificial Intelligence, AI’99, pages 340–352,
London, UK, UK, 1999. Springer-Verlag. (Cited on page 28.)

[Wahbi et al., 2011] Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere, and El-
Houssine Bouyakhf. DisChoco 2: A platform for distributed constraint reasoning. In
Proceedings of the IJCAI’11 workshop on Distributed Constraint Reasoning, pages 112–121,
Barcelona, Catalonia, Spain, 2011. (Cited on pages 52, 70, 85, and 100.)

[Wahbi et al., 2012] Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere, and
El Houssine Bouyakhf. Nogood-Based Asynchronous Forward-Checking Algorithms.
Technical report, LIRMM, April 2012. (Cited on pages 116 and 121.)

[Wallace and Freuder, 2002] Richard J. Wallace, and Eugene C. Freuder. Constraint-
based multi-agent meeting scheduling: effects of agent heterogeneity on performance
and privacy loss. In Proceeding of the 3rd workshop on distributed constrait reasoning,
DCR’02, pages 176–182, 2002. (Cited on pages 1, 12, 28, 30, 31, 56, 74, and 115.)

Bibliography 137

[Yeoh et al., 2008] W. Yeoh, A. Felner, and S. Koenig. Bnb-adopt: an asynchronous
branch-and-bound dcop algorithm. In Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems, AAMAS’08, pages 591–598, Estoril, Portugal,
2008. (Cited on pages 116 and 121.)

[Yokoo and Hirayama, 1995] Makoto Yokoo, and Katsutoshi Hirayama. Distributed
breakout algorithm for solving distributed constraint satisfaction problems. In Victor
Lesser, editor, Proceedings of the First International Conference on Multi–Agent Systems.
MIT Press, 1995. (Cited on pages 33 and 121.)

[Yokoo et al., 1992] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro
Kuwabara. Distributed constraint satisfaction for formalizing distributed problem solv-
ing. In Proceedings of the 12th IEEE Int’l Conf. Distributed Computing Systems, pages 614–
621, 1992. (Cited on pages 33, 37, 116, and 121.)

[Yokoo et al., 1998] Makoto Yokoo, Edmund H. Durfee, Toru Ishida, and Kazuhiro
Kuwabara. The distributed constraint satisfaction problem: Formalization and algo-
rithms. IEEE Transactions on Knowledge and Data Engineering, 10:673–685, September 1998.
(Cited on pages 2, 29, 33, 40, 52, 90, and 115.)

[Yokoo, 1995] Makoto Yokoo. Asynchronous weak-commitment search for solving dis-
tributed constraint satisfaction problems. In Proceeding of CP, pages 88–102, 1995. (Cited
on pages 33, 42, and 90.)

[Yokoo, 2000a] Makoto Yokoo. Algorithms for distributed constraint satisfaction prob-
lems: A review. Autonomous Agents and Multi-Agent Systems, 3(2):185–207, 2000. (Cited
on pages 2, 29, 37, and 115.)

[Yokoo, 2000b] Makoto Yokoo. Distributed Constraint Satisfaction: Foundations of Cooperation
in Multi-Agent Systems. Springer-Verlag, London, UK, 2000. (Cited on pages 29, 34, 62,
and 76.)

[Zabih, 1990] Ramin Zabih. Some applications of graph bandwidth to constraint satis-
faction problems. In Proceedings of the eighth National conference on Artificial intelligence,
volume 1 of AAAI’90, pages 46–51. AAAI Press, 1990. (Cited on page 24.)

[Zivan and Meisels, 2003] Roie Zivan, and Amnon Meisels. Synchronous vs asyn-
chronous search on DisCSPs. In Proceedings of the First European Workshop on Multi-Agent
Systems, EUMAS’03, 2003. (Cited on pages 34, 59, and 62.)

[Zivan and Meisels, 2006a] Roie Zivan, and Amnon Meisels. Dynamic ordering for
asynchronous backtracking on DisCSPs. Constraints, 11(2-3):179–197, 2006. (Cited on
pages 42, 90, 100, 107, 108, and 109.)

[Zivan and Meisels, 2006b] Roie Zivan, and Amnon Meisels. Message delay and DisCSP
search algorithms. Annals of Mathematics and Artificial Intelligence, 46(4):415–439, 2006.
(Cited on pages 52, 70, 85, 100, and 118.)

[Zivan et al., 2009] Roie Zivan, Moshe Zazone, and Amnon Meisels. Min-domain
retroactive ordering for asynchronous backtracking. Constraints, 14(2):177–198, 2009.
(Cited on pages 42, 43, 90, 101, 107, 108, 109, 110, and 112.)

List of Figures

1.1 The 4-queens problem. 10

1.2 The solutions for the 4-queens problem. 11

1.3 An example of the graph-coloring problem. 12

1.4 A simple instance of the meeting scheduling problem. 13

1.5 The constraint graph of the meeting-scheduling problem. 14

1.6 The distributed meeting-scheduling problem modeled as DisCSP. 32

1.7 An instance of the distributed sensor network problem. 33

1.8 An example of Asynchronous Backtracking execution. 41

2.1 The number of non-concurrent constraint checks (#ncccs) performed on

sparse problems (p1 =0.2). 53

2.2 The total number of messages sent on sparse problems (p1 =0.2). 53

2.3 The number of non-concurrent constraint checks (#ncccs) performed on

dense problems (p1 =0.7). 54

2.4 The total number of messages sent on the dense problems (p1 =0.7). 54

2.5 The number non-concurrent constraint checks performed on sensor target

instances where pc =0.4. 55

2.6 The total number of exchanged messages on sensor target instances where

pc =0.4. 56

2.7 The number of non-concurrent constraint checks performed on meeting

scheduling benchmarks where the number of meeting per agent is 3. 57

2.8 The total number of exchanged messages on meeting scheduling bench-

marks where the number of meeting per agent is 3. 57

3.1 Example of a constraint graph G. 63

3.2 Example of a pseudo-tree arrangement T of the constraint graph illustrated

in Figure 3.1. 64

3.3 A DFS-tree arrangement of the constraint graph in Figure 3.1. 66

3.4 An example of the AFC-tree execution. 67

3.5 The number of non-concurrent constraint checks (#ncccs) performed on

sparse problems (p1 = 0.2). 71

3.6 The total number of messages sent on sparse problems (p1 = 0.2). 71

3.7 The number of non-concurrent constraint checks (#ncccs) performed on the

dense problems (p1 = 0.7). 72

3.8 The total number of messages sent on the dense problems (p1 = 0.7). 72

139

140 List of Figures

3.9 Total number non-concurrent constraint checks performed on instances

where pc = 0.4. 73

3.10 Total number of exchanged messages on instances where pc = 0.4. 74

3.11 Total number of non-concurrent constraint checks performed on meeting

scheduling benchmarks where the number of meeting per agent is 3 (i.e.,

k = 3). 75

3.12 Total number of exchanged messages on meeting scheduling benchmarks

where the number of meeting per agent is 3 (i.e., k = 3). 75

4.1 The number of non-concurrent constraint checks (#ncccs) performed for solv-

ing sparse problems (p1 = 0.25). 86

4.2 The total number of messages sent for solving sparse problems (p1 = 0.25). 86

4.3 The number of non-concurrent constraint checks (#ncccs) performed for solv-

ing dense problems (p1 = 0.7). 87

4.4 The total number of messages sent for solving dense problems (p1 = 0.7). . 88

5.1 The generic number of non-concurrent constraint checks (#gncccs) per-

formed for solving dense problems (p1=0.2). 101

5.2 The total number of messages sent for solving dense problems (p1=0.2). . . 102

5.3 The generic number of non-concurrent constraint checks (#gncccs) per-

formed for solving dense problems (p1=0.7). 102

5.4 The total number of messages sent for solving dense problems (p1=0.7). . . . 103

5.5 The generic number non-concurrent constraint checks performed on in-

stances where pc=0.4. 104

5.6 Total number of exchanged messages on instances where pc=0.4. 104

5.7 Maximum message size in bytes. 105

6.1 The schema of exchanging order messages by ABT_DO-Retro 110

7.1 Architecture of DisChoco kernel. 117

7.2 Independence between the kernel of DisChoco and the communication system.117

7.3 Layer model for observers. 119

7.4 Definition of a distributed problem using Java code. 120

7.5 Definition of the Hello DisChoco problem in XDisCSP 1.0 format. 120

7.6 Visualization of the structure of the distributed constraint graph. 121

7.7 A screenshot of the graphical user interface showing generators in DisChoco. 122

7.8 Total number of exchanged messages on dense graph �n=20, d=10, p1=0.7, p2�.

. 122

List of Tables

2.1 The percentage of messages per type exchanged by AFC to solve instances

of uniform random DisCSPs where p1=0.2. 58

2.2 The percentage of messages per type exchanged by AFC to solve instances

of uniform random DisCSPs where p1=0.7. 58

2.3 The percentage of messages per type exchanged by AFC to solve instances

of distributed sensor-target problem where pc=0.4. 58

2.4 The percentage of messages per type exchanged by AFC to solve instances

of distributed meeting scheduling problem where k=3. 58

141

List of algorithms

1.1 The chronological Backtracking algorithm. 15

1.2 The Conflict-Directed Backjumping algorithm. 17

1.3 The forward checking algorithm. 20

1.4 The AC-3 algorithm. 22

1.5 The AFC algorithm running by agent Ai. 36

1.6 The ABT algorithm running by agent Ai. 39

2.1 Nogood-based AFC (AFC-ng) algorithm running by agent Ai. 49

3.1 The distributed depth-first search construction algorithm. 65

3.2 New lines/procedures of AFC-tree with respect to AFC-ng. 69

4.1 MACA-del algorithm running by agent Ai. 81

4.2 New lines/procedures for MACA-not with respect to MACA-del. 83

5.1 Function Update Explanations. 93

5.2 Function Compute Order. 94

5.3 Function Choose Variable Ordering. 94

5.4 The Agile-ABT algorithm executed by an agent Ai (Part 1). 96

5.5 The Agile-ABT algorithm executed by an agent Ai (Part 2). 97

143

Algorithmes de résolution et heuristiques d’ordonnancement pour

les problèmes de satisfaction de contraintes distribués

Les problèmes de satisfaction de contraintes distribués (DisCSP) permettent de formaliser divers problèmes
qui se situent dans l’intelligence artificielle distribuée. Ces problèmes consistent à trouver une combinaison
cohérente des actions de plusieurs agents. Durant cette thèse nous avons apporté plusieurs contributions
dans le cadre des DisCSPs. Premièrement, nous avons proposé le Nogood-Based Asynchronous Forward-
Checking (AFC-ng). Dans AFC-ng, les agents utilisent les nogoods pour justifier chaque suppression d’une
valeur du domaine de chaque variable. Outre l’utilisation des nogoods, plusieurs backtracks simultanés venant
de différents agents vers différentes destinations sont autorisés. En deuxième lieu, nous exploitons les carac-
téristiques intrinsèques du réseau de contraintes pour exécuter plusieurs processus de recherche AFC-ng d’une
manière asynchrone à travers chaque branche du pseudo-arborescence obtenu à partir du graphe de contraintes
dans l’algorithme Asynchronous Forward-Checking Tree (AFC-tree). Puis, nous proposons deux nouveaux al-
gorithmes de recherche synchrones basés sur le même mécanisme que notre AFC-ng. Cependant, au lieu de
maintenir le forward checking sur les agents non encore instanciés, nous proposons de maintenir la consistance
d’arc. Ensuite, nous proposons Agile Asynchronous Backtracking (Agile-ABT), un algorithme de changement
d’ordre asynchrone qui s’affranchit des restrictions habituelles des algorithmes de backtracking asynchrone.
Puis, nous avons proposé une nouvelle méthode correcte pour comparer les ordres dans ABT_DO-Retro. Cette
méthode détermine l’ordre le plus pertinent en comparant les indices des agents dès que les compteurs d’une
position donnée dans le timestamp sont égaux. Finalement, nous présentons une nouvelle version entière-
ment restructurée de la plateforme DisChoco pour résoudre les problèmes de satisfaction et d’optimisation de
contraintes distribués.

Mots-clés L’intelligence artificielle distribuée, les problèmes de satisfaction de contraintes distribués (DisCSP), la

résolution distribuée, la maintenance de la consistance d’arc, les heuristiques ordonnancement, DisChoco.

Algorithms and Ordering Heuristics for

Distributed Constraint Satisfaction Problems

Distributed Constraint Satisfaction Problems (DisCSP) is a general framework for solving distributed prob-
lems. DisCSP have a wide range of applications in multi-agent coordination. In this thesis, we extend the
state of the art in solving the DisCSPs by proposing several algorithms. Firstly, we propose the Nogood-Based
Asynchronous Forward Checking (AFC-ng), an algorithm based on Asynchronous Forward Checking (AFC).
However, instead of using the shortest inconsistent partial assignments, AFC-ng uses nogoods as justifications
of value removals. Unlike AFC, AFC-ng allows concurrent backtracks to be performed at the same time coming
from different agents having an empty domain to different destinations. Then, we propose the Asynchronous
Forward-Checking Tree (AFC-tree). In AFC-tree, agents are prioritized according to a pseudo-tree arrange-
ment of the constraint graph. Using this priority ordering, AFC-tree performs multiple AFC-ng processes on
the paths from the root to the leaves of the pseudo-tree. Next, we propose to maintain arc consistency asyn-
chronously on the future agents instead of only maintaining forward checking. Two new synchronous search
algorithms that maintain arc consistency asynchronously (MACA) are presented. After that, we developed
the Agile Asynchronous Backtracking (Agile-ABT), an asynchronous dynamic ordering algorithm that does
not follow the standard restrictions in asynchronous backtracking algorithms. The order of agents appearing
before the agent receiving a backtrack message can be changed with a great freedom while ensuring polyno-
mial space complexity. Next, we present a corrigendum of the protocol designed for establishing the priority
between orders in the asynchronous backtracking algorithm with dynamic ordering using retroactive heuris-
tics (ABT_DO-Retro). Finally, the new version of the DisChoco open-source platform for solving distributed
constraint reasoning problems is described. The new version is a complete redesign of the DisChoco platform.
DisChoco 2.0 is an open source Java library which aims at implementing distributed constraint reasoning
algorithms.

Keywords Distributed Artificial Intelligence, Distributed Constraint Satisfaction (DisCSP), Distributed Solving,

Maintaining Arc Consistency, Reordering, DisChoco.

LIRMM — 161, rue Ada — 34095 Montpellier cedex 5 — France

	Acknowledgements
	Abstract (English/Français)
	Contents
	Introduction
	Background
	Centralized Constraint Satisfaction Problems (CSP)
	Preliminaries
	Examples of CSPs
	The n-queens problem
	The Graph Coloring Problem
	The Meeting Scheduling Problem

	Algorithms and Techniques for Solving Centralized CSPs
	Algorithms for solving centralized CSPs
	Chronological Backtracking (BT)
	Conflict-directed Backjumping (CBJ)
	Dynamic Backtracking (DBT)
	Partial Order Dynamic Backtracking (PODB)
	Forward Checking (FC)
	Arc-consistency (AC)
	Maintaining Arc-Consistency (MAC)

	Variable Ordering Heuristics for Centralized CSP
	Static Variable Ordering Heuristics (SVO)
	Dynamic Variable Ordering Heuristics (DVO)

	Distributed constraint satisfaction problems (DisCSP)
	Preliminaries
	Examples of DisCSPs
	Distributed Meeting Scheduling Problem (DisMSP)
	Distributed Sensor Network Problem (SensorDCSP)

	Methods for solving distributed CSPs
	Synchronous search algorithms on DisCSPs
	Asynchronous Forward-Checking (AFC)

	Asynchronous search algorithms on DisCSPs
	Asynchronous Backtracking (ABT)

	Dynamic Ordering Heuristics on DisCSPs
	Maintaining Arc Consistency on DisCSPs

	Summary

	Nogood based Asynchronous Forward Checking (AFC-ng)
	Introduction
	Nogood-based Asynchronous Forward Checking
	Description of the algorithm

	Correctness Proofs
	Experimental Evaluation
	Uniform binary random DisCSPs
	Distributed Sensor Target Problems
	Distributed Meeting Scheduling Problems
	Discussion

	Other Related Works
	Summary

	Asynchronous Forward Checking Tree (AFC-tree)
	Introduction
	Pseudo-tree ordering
	Distributed Depth-First Search trees construction
	The AFC-tree algorithm
	Description of the algorithm

	Correctness Proofs
	Experimental Evaluation
	Uniform binary random DisCSPs
	Distributed Sensor Target Problems
	Distributed Meeting Scheduling Problems
	Discussion

	Other Related Works
	Summary

	Maintaining Arc Consistency Asynchronously in Synchronous Distributed Search
	Introduction
	Maintaining Arc Consistency
	Maintaining Arc Consistency Asynchronously
	Enforcing AC using del messages (MACA-del)
	Enforcing AC without additional kind of message (MACA-not)

	Theoretical analysis
	Experimental Results
	Discussion

	Summary

	Agile Asynchronous BackTracking (Agile-ABT)
	Introduction
	Introductory Material
	Reordering details
	The Backtracking Target
	Decreasing termination values

	The Algorithm
	Correctness and complexity
	Experimental Results
	Uniform binary random DisCSPs
	Distributed Sensor Target Problems
	Discussion

	Related Works
	Summary

	Corrigendum to ``Min-domain retroactive ordering for Asynchronous Backtracking''
	Introduction
	Background
	ABT_DO-Retro May Not Terminate
	The Right Way to Compare Orders
	Summary

	DisChoco 2.0
	Introduction
	Architecture
	Communication System
	Event Management
	Observers in layers

	Using DisChoco 2.0
	Experimentations
	Conclusion

	Conclusions and perspectives
	Bibliography
	List of Figures
	List of Tables
	List of algorithms

