
HAL Id: tel-00718605
https://theses.hal.science/tel-00718605v1

Submitted on 17 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reasoning on words and trees with data
Diego Figueira

To cite this version:
Diego Figueira. Reasoning on words and trees with data. Other [cs.OH]. École normale supérieure de
Cachan - ENS Cachan, 2010. English. �NNT : 2010DENS0041�. �tel-00718605�

https://theses.hal.science/tel-00718605v1
https://hal.archives-ouvertes.fr

École Normale Supérieure de Cachan

Laboratoire Spécification et Vérification

Reasoning on Words
and Trees with Data

On decidable automata on data words and data trees
in relation to satisfiability of LTL and XPath.

Diego Federico Figueira

Advisors: Luc Segoufin, Stéphane Demri

Cachan, 2010

CONTENTS

Summary . v

Résumé . vii

1. Introduction . 1

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Related work . 6

1.3.1 Data logics . 6

1.3.2 Well-structured transition systems 7

1.4 Organization . 8

2. Preliminaries . 9

2.1 Notation . 9

2.2 Languages . 9

2.3 Regular languages . 10

2.4 Well-structured transition systems 10

2.4.1 Basic definitions and results 10

2.4.2 Reflexive compatibility . 11

2.4.3 N -compatibility . 11

2.4.4 Powerset orderings . 13

2.4.5 An application: Incrementing Counter Automata 15

Part I Words 17

3. Data words . 19

3.1 Introduction . 19

3.1.1 Contributions . 20

3.1.2 Organization . 21

3.1.3 Data words . 21

3.2 Related work . 21

3.3 Alternating Register Automata . 25

3.3.1 Properties . 27

3.3.2 Emptiness problem . 30

3.3.3 Ordered data . 32

i

ii Contents

3.3.4 Timed automata . 36

3.3.5 A note on complexity . 37

3.4 LTL with register . 38

3.5 LTL: Upper bounds . 39

3.5.1 Satisfiability problem . 40

3.5.2 Ordered data . 42

3.6 LTL: Lower bounds . 43

3.6.1 The case of simple-LTL . 44

3.6.2 The case of LTL . 49

3.7 Discussion . 54

Part II Trees 55

4. Trees with data . 57

4.1 Preliminaries . 57

4.1.1 Unranked ordered finite trees 57

4.1.2 XML . 58

4.1.3 Types and dependencies . 59

4.2 XPath on data trees . 60

4.2.1 Introduction . 60

4.2.2 Definition . 60

4.2.3 Fragments . 61

4.2.4 Decision problems . 62

4.3 XPath on XML documents . 63

4.4 Related work . 64

4.4.1 Automata . 64

4.4.2 Logics . 65

4.4.3 Other formalisms . 66

4.5 Lower bounds of XPath . 67

4.5.1 Summary of results . 68

5. Downward navigation . 69

5.1 Introduction . 69

5.1.1 Related work . 70

5.2 Running NFA over branches . 71

5.3 Automata model . 72

5.4 The emptiness problem . 79

5.4.1 Decorations of the tree . 80

5.4.2 Correct certificates and disjoint values 84

5.4.3 Horizontal pumping . 89

5.4.4 The emptiness algorithm 91

5.5 Satisfiability of downward XPath 99

5.5.1 Regular-downward XPath 99

Contents iii

5.5.2 PSpace fragments . 105
5.5.3 XML versus data trees . 110
5.5.4 In the presence of regular languages 111

5.6 Discussion . 112

6. Downward and rightward navigation . 115
6.1 Introduction . 115
6.2 Automata model . 115
6.3 The emptiness problem . 118
6.4 Satisfiability of forward XPath . 119

6.4.1 Satisfiability problem . 120
6.4.2 Decidability of forward XPath 121
6.4.3 Allowing upward axes . 127
6.4.4 XML versus data trees . 128
6.4.5 Allowing stronger data tests 128

6.5 Discussion . 129

7. Downward and upward navigation . 131
7.1 Introduction . 131

7.1.1 Related work . 132
7.2 The automata model . 132
7.3 The emptiness problem . 137

7.3.1 Abstract configurations . 138
7.3.2 Well-quasi-orders . 138
7.3.3 Transition system . 140
7.3.4 Compatibility . 141
7.3.5 From BUDA to its abstract configurations 150

7.4 Satisfiability of vertical XPath . 154
7.4.1 XML versus data trees . 158

7.5 Discussion . 158

8. Concluding remarks . 161

Bibliography . 165

Index . 173

REASONING ON WORDS AND TREES WITH DATA

Summary A data word (resp. a data tree) is a finite word (resp. tree) whose
every position carries a letter from a finite alphabet and a datum form an infinite
domain. In this thesis we investigate automata and logics for data words and data
trees with decidable reasoning problems: we focus on the emptiness problem in the
case of automata, and the satisfiability problem in the case of logics.

On data words, we present a decidable extension of the model of alternating
register automata studied by Demri and Lazić. Further, we show the decidabil-
ity of the satisfiability problem for the linear-time temporal logic on data words
LTL↓(X,F,U) (studied by Demri and Lazić) extended with quantification over data
values. We also prove that the lower bounds of non-primitive recursiveness shown
by Demri and Lazić for LTL↓(X,F) carry over to LTL↓(F).

On data trees, we consider three decidable automata models with different char-
acteristics. We first introduce the Downward Data automaton (DD automata). Its
execution consists in a transduction of the finite labeling of the tree, and a ver-
ification of data properties for every subtree of the transduced tree. This model
is closed under boolean operations, but the tests it can make on the order of the
siblings is very limited. Its emptiness problem is in 2ExpTime. On the contrary,
the other two automata models we introduce have an emptiness problem with a
non-primitive recursive complexity, and are closed under intersection and union,
but not complementation. They are both alternating automata with one register
to store and compare data values. The automata class ATRA(guess, spread) extends
the top-down automata ATRA of Jurdziński and Lazić. We exhibit similar decid-
able extensions as the one showed in the case of data words. This class can test
for any regular tree language—in contrast to DD automata. Finally, we consider a
bottom-up alternating tree automaton with one register (called BUDA). Although
BUDA are one-way, they can test data properties by navigating the tree in both
directions: upward and downward. In opposition to ATRA(guess, spread), this au-
tomaton cannot test for properties on the sequence of siblings (like, for example,
the order in which labels appear).

All these three models have connections with the logic XPath—a logic conceived
for xml documents, which can be seen as data trees. Through the aforementioned
automata we show that the satisfiability of three natural fragments of XPath are
decidable. These fragments are: downward XPath, where navigation can only be
done by child and descendant axes; forward XPath, where navigation also contains
the next sibling axis and its transitive closure; and vertical XPath, whose navigation
consists in the child, descendant, parent and ancestor axes. Whereas downward

v

vi Summary

XPath is ExpTime-complete, forward and vertical XPath have non-primitive re-
cursive lower bounds.

Key words data word, data tree, data value, infinite alphabet, XML, LTL, XPath (down-

ward, forward, vertical), alternating register automata, satisfiability, emptiness, decidable,

non-primitive recursive, WSTS

RAISONNEMENT SUR MOTS ET ARBRES AVEC DONNÉES

Résumé Un mot de données (resp. un arbre de données) est un mot (resp.
arbre) fini, dont chaque position est étiquetée avec une lettre d’un alphabet fini et
une donnée d’un domaine infini. Dans cette thèse, nous étudions des automates et
des logiques sur des mots et des arbres de données ayant des propriétés décidables:
nous nous concentrons sur le problème du test du vide dans le cas des automates,
et sur le problème de la satisfaisabilité dans le cas des logiques.

Sur les mots de données, nous présentons une extension décidable du modèle
d’automate alternant avec registre étudié par Demri and Lazić. En outre, nous
montrons la décidabilité du problème de satisfaisabilité pour la logique du temps
linéaire sur les mots de données LTL↓(X,F,U) (étudié par Demri and Lazić) étendue
avec une quantification sur des données. Nous montrons aussi que la borne inférieure
de non-récursivité primitive montré par Demri and Lazić pour LTL↓(X,F) est déjà
valable pour LTL↓(F).

Sur les arbres de données, nous considérons trois modèles décidables d’automates
avec des caractéristiques différentes. Nous commençons par introduire l’automate
avec donnée “downward” (automates DD). Son exécution consiste en une trans-
duction ré-étiquetant la partie finie de l’étiquetage de l’arbre, et une vérification
des propriétés des données de chaque sous-arbre de l’arbre résultant de la trans-
duction. Ce modèle est clos par les opérations booléennes, mais les tests autorisés
sur l’ordre des noeuds ayant le même père sont très limités. Son problème du
vide est dans 2ExpTime. Au contraire, les deux autres modèles d’automates que
nous introduisons ont un problème du vide avec une complexité non récursive
primitive, et sont clos par intersection et union, mais par par complémentation.
Ils ont tous les deux un contrôle alternant ainsi qu’un registre pour stocker et
comparer les données. La classe des automates ATRA(guess, spread) généralise le
modèle d’automate top-down ATRA de Jurdziński and Lazić. Nous introduisons
des extensions décidables similaires à celles que nous avons étudiées dans le cas
de mots de données. Cette classe d’automates généralise la notion de langage ra-
tionnel d’arbre, —contrairement aux automates DD. Enfin, nous considérons un
modèle d’automate bottom-up avec un contrôle alternant et un registre (appelé
BUDA). Bien que les BUDA soient bottom-up, ils peuvent tester des propriétés sur
les données en navigant dans l’arbre dans les deux directions: vers le haut et vers
le bas. Au contraire de ATRA(guess, spread), ce modèle d’automate ne peut pas
tester de propriétés sur la séquence des noeuds ayant le même père (comme, par
exemple, l’ordre dans lequel apparaissent leurs étiquettes).

Ces trois modèles d’automates ont des liens avec la logique XPath—une logique

vii

viii Résumé

conçue pour les documents xml, qui peuvent être vus comme des arbres de données.
En utilisant les automates que nous avons mentionnés ci-dessus, nous montrons
que la satisfaisabilité de trois fragments naturels de XPath sont décidables. Ces
fragments sont: downward XPath, où la navigation ne peut se faire que via les axes
child et descendant; forward XPath, où la navigation permet également les axes
next sibling ainsi que sa clôture transitive, et vertical XPath, dont la navigation
est limitée aux axes child, descendant, parent et ancestor. Alors que downward
XPath est ExpTime-complet, les fragments forward et vertical de XPath ont une
borne inférieure de non-récursivité primitive.

Mots clés mot de données, arbre de données, valeur des données, alphabet infini, XML,

LTL, XPath (downward, forward, vertical), automate alternant avec registre, satisfais-

abilité, test du vide, décidabilité, non-récursivité primitive, WSTS

1. INTRODUCTION

1.1 Motivation

Words and trees are amongst the most studied structures in computer science.
In this thesis, we focus on words and trees that can contain elements from some
infinite alphabet, like for example the set of integers, or the set of words over the
alphabet {a, b}. These kind of structures are relevant to many areas.

In software verification, one may need to decide statically whether a program
satisfies some given specification; and the necessity of dealing with infinite alpha-
bets can arise from different angles. For example, in the presence of concurrency,
we have an unbounded number of processes running, each one with its process
identification, and we must verify properties specifying the interplay between these
processes. Further, procedures may take parameters as input, and they can hence
exchange data from some unbounded domain. Infinite alphabets can also emerge
as a consequence of the use of recursive procedure calls, communication through
FIFO channels, etc.

On the other hand, in a database context, infinite alphabets are a common
occurrence. Let us dwell on static analysis tasks on xml documents and its query
languages. In this context there are several pertinent problems serving static anal-
ysis. For example, there is the problem of coherence: is there a document in which
a given query returns a non-empty result? The problem of inclusion: is it true
that for any document, the result answered by one given query is contained in the
result of another? And the problem of equivalence: do two given queries always
return the same answers? In the database context, these questions are at the core
of many static analysis tasks. For example, by answering the coherence problem
one can decide whether the computation of a query on a database can be avoided
because the query contains a contradiction; and by the equivalence problem if one
query can be safely replaced by a simpler one. All these queries recurrently need to
specify properties concerning not only the labels of the nodes, but also the actual
data contained in the attributes.

Still in the context of databases, we can also regard logics that express data
properties as specification languages. In verification of database-driven systems, we
are provided with the specification of a system that interacts with a database, and
we need to check whether it is possible to reach a state in which the database has
some undesired property. In order to model the specification of the system as well
as the property of the database—for example through an automaton or a logical
formula—we typically need to take into account values from infinite domains.

1

2 1. Introduction

Therefore, the study of formalisms to reason with words and trees that can
carry elements from some infinite domain is relevant to all the aforementioned
areas, and possibly more. To begin our study, first we need to fix once and for all
the structure over which we intend to reason.

Data words and data trees are simple models that extend words and trees over
finite alphabets. A data word is a word (i.e., a finite sequence) where every position
has a symbol from a finite alphabet (a label), and an element from some infinite
domain (a data value). Similarly, a data tree is an unranked ordered finite tree,
whose every node carries a label and a data value. By unranked we mean that
every node has unboundedly many children, and by ordered that the children of
a node are seen as an ordered list of subtrees, instead of a set or multiset. This
model is in close relation to an xml document. Indeed, we will see that all the
results we obtain on data trees can be translated into the xml setting.

To get familiar with these models, let us give some examples with possible data
properties (i.e., properties whose satisfaction rely on the model’s data values) that
one may be interested in verifying in a data word or a data tree.

Example 1.1. We have several processes (or execution threads of a process) running
concurrently.1 Each one of these has a process identifier (a number), and we model
the history of execution of these processes. In the history, we record when the
process i begins a task with an element (b, i), when it ended a task with (e, i), and
when it reads (r, i) and writes (w, i) to the hard disk, during the task. To make
things interesting, suppose that once in a while there is a maintenance shutdown
of the disk (performed by a process with letter s). A possible history may be one
like this one.

(b, 1)(b, 2)(r, 1)(r, 2)(w, 1)(e, 1)(b, 1)(e, 2)(e, 1)(s, 3)(b, 4)(w, 4)(e, 4)(s, 3)

In this example we see that process 1 performs two tasks, in the first one it reads
and then writes, and in the second one it does not read nor write. Interleaved with
these tasks process 2 also performs a reading task. Then the maintenance process
3 shutdowns the disk, etc.

Let us describe some possible properties one could want to verify over a history
like this.

(W1) For every b there is a future e with the same data value.

(W2) Further, we can ask that for every data value, the data word restricted to
that data value belongs to {s, (b · {r,w}∗ · e)}∗.

(W3) Every time a task starts, it will end before the shutdown. That is, for every
b there exists an e with the same data value, that occurs before the next s.

(W4) There exists a process whose first operation is a write.

1 This example is inspired on an example recurrently used by Thomas Schwentick.

1.1. Motivation 3

root→ category stock

stock→ (id)∗

category→ (category)∗ (product)∗ featured?

product→ name id

Fig. 1.1: A simple specification modeling the data trees of interest for our problem.

root

-

category
all

category
electronics

category
music

category
phones

category
notebooks

product
-

name
android

id
381

product
-

name
iPad

id
104

product
-

name
Air - Moon Safari

id
257

stock
-

id
257

id
381

featured
-

Fig. 1.2: An example of a data tree with information about the products sold by a web
site.

(W5) Each time a s appears, all the processes occurred so far do not reappear in
the future.

Example 1.2. Suppose we have a data tree containing all the products that are sold
by a web site. Suppose that the tree is organized following the rules of the kind
“if a node has label x, then the children have certain label” of Figure 1.1. These
set of rules are read in the expected manner. For example, the root has two nodes,
one with label category and one labeled stock. Each node labeled category has a
child node labeled name, then a sequence of nodes labeled category, a sequence of
nodes labeled product, and finally perhaps a node labeled featured. The idea is that
the products are organized in a hierarchy of categories (described by the category

child of the root), and also we have under stock a set of product identifiers that
are on stock. Further, some categories may be “featured categories” of products,
obtaining some special visibility in the site for all the products in the category
and recursively in all subcategories. An example of a possible tree is shown in
Figure 1.2.

Given a data tree that models such scenario, there might be a number of
properties that we want to verify. In the spirit of depicting different sorts of

4 1. Introduction

properties, consider the following.

(T1) It cannot happen that a category has the same name as a product.

(T2) All the product id under the category subtree are different. Also, all the
product id under the stock node are different.

(T3) The name of a product allows to identify a product inside a category. In
other words, all the product name in a category are different.

(T4) Every product in stock is categorized under some category.

(T5) All the categories have different names.

(T6) There is at least one product in stock that is in some descendant category of
a featured category.

(T7) The same product cannot be in two categories in the ancestor-descendant
relation.

These examples intend to show the variety of properties we may need to verify
in an environment with data. They will become useful hereafter when comparing
the expressiveness of formalisms. We consider two sorts of formalisms for specify-
ing these properties: either by means of logics, or by means of accepting runs of
automata. However, there is no decidable logic or class of automata that is able to
express all these desirable properties and is closed under conjunction or intersec-
tion, neither in the case of trees nor in the case of words. At the same time, most
of these independent properties can be expressed by some decidable formalism in
the literature closed under intersection. The general outlook is that there are not
many expressive formalisms that are decidable, and there is also a need for more
general techniques to allow to treat data values to prove decidability results.

This thesis explores expressive logics and automata with decidable reasoning
tasks. We give several new results on decidable logics on these data models, and
we introduce new decidable automata models. The intention of this work is to
devise new approaches and techniques to work with data values, and to give new
insights on the limits of what is decidable on these models.

1.2 Contributions

The contribution of this thesis can be divided into two parts: data words and data
trees.

1.2. Contributions 5

Data words On data words, we focus on automata with one register and alter-
nating control called ARA. This automata class is known to have a decidable
emptiness problem (Demri and Lazić, 2009). We extend these automata with op-
erators that add expressive power, while preserving decidability. These operators
will be useful later to prove the decidability of the satisfiability problem for a logic.
This extended class of automata is called ARA(guess, spread).

On the logical side, we center our attention on an extension of the linear-time
temporal logic LTL(X,F,U) (with the next X, future F and until U modalities) on
data words. This extension consists in having one register that allows to express
data properties, and it is denoted by LTL↓(U,F,X). It contains a ‘freeze’ operator
(↓) to store the current datum in the register and a ‘test’ operator (↑) to test—at
any later position—that the current datum is equal to the stored one.

Demri and Lazić (2009) showed that LTL↓(U,F,X) is decidable, that LTL↓(F,X)
has non-primitive recursive complexity, and that LTL↓(F,F−1,X) is undecidable
(where F−1 is the past modality). This thesis shows that the lower bounds are
preserved for weak fragments, and that the decidability is also preserved for more
expressive extensions. More precisely, we show that the fragment LTL↓(F) is non-
primitive recursive and that LTL↓(F,F−1) is undecidable. On the other hand, we
extend the decidability results by proving that LTL↓(U,F,X) can be equipped with
restricted universal and existential quantification over data values, by a reduction
to the ARA(guess, spread) emptiness problem.

Data trees We consider three decidable automata models with different charac-
teristics that allow to express different sets of data properties.

We introduce an automata model that can make rich tests between distant
positions of the subtree, but can only perform some limited tests over the order of
the siblings. This model has a 2ExpTime emptiness problem, or a “modest” Ex-

pTime complexity for some restricted subclass. We call this model the Downward
Data automata (or DD automata for short).

As a second contribution, we extend the results of Jurdziński and Lazić (2008)
on alternating top-down tree one register automata (ATRA), showing that similar
extensions as the one showed in the case of data words can be decided. We call
this class of automata ATRA(guess, spread).

Finally, we consider a bottom-up alternating tree automata with one register.
Although the automaton is one way, it has features that allow to test data proper-
ties that can navigate the tree in both directions: upward and downward. We call
this automaton model BUDA.

All these three models of automata have a decidable emptiness problem, and
they all have connections with the logic XPath.

XPath is a logic for xml documents (which are essentially data trees). Expres-
sions of this logic can navigate the tree by composing binary relations from a set of
basic relations, that can contain the parent relation (noted ↑), child (↓), ancestor
(↑∗), descendant (↓∗), next sibling to the right (→) or to the left (←), and their

6 1. Introduction

transitive closures (→∗, ∗←). For example “↑[a]↑↓[b]” defines the relation between
two nodes x, y such that y is an uncle of x labeled b and x has a parent labeled
a. Boolean tests are build by using these compound relations. An expression like
〈α〉 (for α a relation) tests that there exists a node accessible with the relation α
from the current node. Most importantly, a data test like 〈α = β〉 (resp. 〈α 6= β〉)
tests that there are two nodes reachable from the current node with the relations
α and β that have the same (resp. different) data value. We consider three natural
fragments of XPath, according to which set of basic relations (usually called axes)
we use: downward ↓, ↓∗; forward ↓, ↓∗,→,→

∗; or vertical ↓, ↓∗, ↑, ↑
∗. We call these

fragments respectively the downward, forward and vertical fragments.

We prove that all three fragments—downward, forward and vertical XPath—
have a decidable satisfiability problem. The first one is in ExpTime and the
others have non-primitive recursive complexity. These bounds are optimal. The
decidability proofs are in each case based in a reduction to the emptiness problem
for one of the automata models we introduce here.

Finally, we mention that this work gives alternative, arguably simpler, decid-
ability proofs for the known results from (Demri and Lazić, 2009; Jurdziński and
Lazić, 2008). This simplification allows us to extend the decidability results with
operators that add expressive power.

1.3 Related work

There are many works related with the investigation of this thesis. In this section
we only mention some works that are very generally related to the general tech-
niques and problems that we treat. We leave more precise comparisons with other
works for future chapters, once we have better explained each of our formalism.

1.3.1 Data logics

There are many logics that can ‘freeze’ an element from some infinite domain to
be able to compare it with other positions. These logics provide an operator that
binds a variable with a part or feature of the model. In this sense, the freeze-
logic most relevant to this thesis is the already mentioned LTL↓ (Demri and Lazić,
2009) in which we can explicitly bind the current data value to a variable for later
comparison.

This variable-binding mechanism is ubiquitous in many logical languages. For
example, real-time logics study properties that are related to time. An instant of
time t in this approach is a real number that can be bound to a variable x either
implicitly (see e.g. Alur and Henzinger, 1994) or explicitly through clock variables
(see e.g. Harel et al., 1990).

Also, other logics like Hybrid Logics (Goranko, 1996; Areces et al., 1999;
Franceschet et al., 2003) contain a variable-binding mechanism similar to the freeze
quantifier. The binding modality in these logics records the value of the current
state.

1.3. Related work 7

In the area of artificial intelligence, there have also been works on logics over in-
finite alphabets, known as Description Logics with concrete domains. Paraphrasing
Lutz (2003), Description Logics (DLs) are a family of logics designed for the repre-
sentation of conceptual knowledge in artificial intelligence, and are closely related
to Modal Logics (Blackburn et al., 2001). In some applications, it is important
to equip DLs with expressive means that allow to describe “concrete qualities” of
real-world objects such as their weight, temperature, and spatial extension. The
standard approach is to augment DLs with so-called concrete domains, which con-
sist of an infinite domain of data values, and a set of predicates over the domain.

1.3.2 Well-structured transition systems

In several chapters we make use of well-structured transition systems, that we
tailor to our problems to obtain effective decision procedures.

The theory of well-structured transition systems (wsts) is a development born
in the field of verification of infinite state systems. Quoting Finkel and Schnoebelen
(2001):

“These are transition systems where the existence of a well-quasi-order-
ing over the infinite set of states ensures the termination of several
algorithmic methods. wsts’s are an abstract generalization of several
specific structures and they allow general decidability results [for many
models.]”

These general techniques as we will use them in our work are the result of
works by Finkel (1987, 1990); Abdulla, Čerāns, Jonsson, and Tsay (1996, 2000);
Kouchnarenko and Schnoebelen (1997) and Finkel and Schnoebelen (2001).

wsts serve to obtain decidability results in many fields (cf. Finkel and Sch-
noebelen, 2001, Part II) as in Petri nets, lossy and gainy systems—a prominent
example will be shown in Section 2.4.5—, timed automata, string rewriting, process
algebras, and possibly many more.

In this thesis we make use of some results on wsts that will be explained in
detail in Section 2.4. The notations and results that we use are based on (Finkel
and Schnoebelen, 2001, § 5). We remark that these techniques have already been
applied—in an indirect way—in the context of logics and automata on data words
and data trees, in (Demri and Lazić, 2009) and (Jurdziński and Lazić, 2008). These
works base their decidability results on a reduction to a restricted class of counter
automata (cf. § 2.4.5), whose emptiness is shown to be decidable by wsts ar-
guments. In this thesis we use the same kind of arguments, the main difference
is that in our strategy, we define an ad-hoc transition system that corresponds
precisely to the run of our automaton, and we show that the transition system is
well-structured. In short, we avoid making reductions to an intermediate formal-
ism. This approach allows us to easily see what can be added to the automata
without loosing the well-structuredness, and therefore the decidability. Also, wsts

have been used in a similar way to ours to show decidability of timed automata

8 1. Introduction

(introduced by Alur and Dill, 1994) in (Lasota and Walukiewicz, 2008; Ouaknine
and Worrell, 2004).

The chapters in which we make use of wsts are: Chapters 3, 6, and 7.

1.4 Organization

This thesis has two parts. The first one dealing with data words, and the second one
with data trees. In the opening Chapter 2 we introduce some necessary definitions
and we explicit the results and techniques we will use from wsts.

Part I: data words Chapter 3 presents all the results on data words. Section 3.3
contains the decidability of the ARA(guess, spread) register automaton. Section 3.4
defines the logic LTL↓(U,F,X) on data words. Section 3.5 contains the decidability
proof for a more expressive extension of LTL↓(U,F,X), and Section 3.6 shows the
non-primitive recursiveness of LTL↓(F) and the undecidability of LTL↓(F,F−1).

Part II: data trees Chapter 4 is introductory to our results on data trees. It
contains the main definitions of data tree, xml and XPath, and already contains
some results that can be transferred from Part I.

The remaining chapters are identical in their organization. Each of them defines
a novel model of automata, shows its decidability, and relates the automata with
a fragment of XPath.

The DD automata are introduced in Chapter 5. This class of automata is
shown to be decidable in Section 5.4. The decidability of the satisfiability problem
for downward XPath is shown through a translation into this automata class in
Section 5.5.

Chapter 6 introduces the automata class ATRA(guess, spread). Decidability will
follow from similar results from Chapter 3 in Section 6.3. Finally, we show that
satisfiability of forward XPath is decidable by a reduction to the emptiness problem
for these automata (Section 6.4.2).

Finally, in Chapter 7 we introduce the automata class BUDA. We show decid-
ability through the theory of wsts in Section 7.3. This automaton model is used
to show decidability of vertical XPath in Section 7.4.

Chapter 8 concludes this thesis with some final comments and open questions.

2. PRELIMINARIES

In this chapter we introduce some basic notation and notions of languages, and in
Section 2.4 we introduce some elements of the field of Well-structured transition
systems that we will use throughout this thesis.

2.1 Notation

We first fix some basic notation. Let ℘(C) denote the set of subsets of C, and
℘<∞(C) be the set of finite subsets of C. LetN = {0, 1, 2, . . . },N+ = {1, 2, 3, . . . },
and let [n] := {1, . . . , n} for any n ∈ N+. We fix once and for all D to be any infinite
domain of data values; for simplicity in our examples we will consider D = N. In
general we use letters A, B for finite alphabets, the letter D for an infinite alphabet
and the letters E and F for any kind of alphabet. By E∗ we denote the set of finite
sequences over E, by E+ the set of finite sequences with at least one element over
E, and by Eω the set of infinite sequences over E. We use ‘·’ as the concatenation
operator between sequences. We write |S| to denote the length of S (if S is a
sequence), or the quantity of elements of S (if S is a set). We write f : A ⇀ B to
denote a partial function from A to B. Given a function f : A → B, and a ∈ A,
b ∈ B, we define the function f [a 7→ b] : A → B as f [a 7→ b](a′) = f(a′) for every
a′ ∈ A, a′ 6= a and f [a 7→ b](a) = b. We use the symbol ◦ for the composition of
functions, (f ◦ g)(x) = g(f(x)).

2.2 Languages

We use the standard definition of language. Given an automaton M over data
words (resp. over data trees), let L(M) denote the set of data words (resp. data
trees) that have an accepting run of M . We say that L(M) is the language of words
(resp. trees) recognized by M . We extend this definition to a class of automata
A : L(A) = {L(M) | M ∈ A }, obtaining a class of languages.

Equivalently, given a formula ϕ of a logic L over data words (resp. data trees)
we denote by L(ϕ) the set of words (resp. trees) satisfying ϕ. This is also extended
to a logic L(L) = {L(ϕ) | ϕ ∈ L }.

We say that a class of automata (resp. a logic) A is at least as expressive

as another class (resp. logic) B iff L(B) ⊆ L(A). If additionally L(B) 6= L(A)
we say that A is more expressive than B.

We say that a class of automata A captures a logic L iff there exists a

9

10 2. Preliminaries

translation t : L → A such that for every ϕ ∈ L and model (i.e., a data tree or
a data word) m, we have that m |= ϕ if and only if m ∈ L(t(ϕ)).

2.3 Regular languages

In this thesis we make use of the several characterizations of regular languages over
a finite alphabet A. In particular, we use that a word language L ⊆ A∗ is regular
iff it satisfies the following equivalent properties:

• there is a deterministic (or nondeterministic) finite automaton A such that
L(A) = L ,

• it is described by a regular expression,

• there is a finite monoid (M, ·) with a distinguished subset S ⊆ M , and a
morphism h : A∗ →M such that w ∈ L iff h(w) ∈ S.

2.4 Well-structured transition systems

As already mentioned (§ 1.3.2), several decidability results included in this thesis,
rely on techniques methods from the theory of well-quasi-orderings. The main
results of Chapters 6 and 7 stem from interpreting the automaton’s execution as
an infinite state system with some good properties allowing to obtain an effective
procedure for the emptiness problem. The decidability results rely on the existence
of a well-quasi-ordering between states that is compatible with the transitions.
These are examples of what is known in the literature as well-structured transition
systems, or wsts for short (see Finkel and Schnoebelen, 2001).

2.4.1 Basic definitions and results

We reproduce some standard definitions and known results of the theory of well-
quasi-orderings that we make use of.

Definition 2.1. For a set S, we define (S,≤) to be a well-quasi-order (wqo) iff
‘≤’ ⊆ S×S is a relation that is reflexive, transitive and for every infinite sequence
w1, w2, . . . ∈ S

ω there are two indices i < j such that wi ≤ wj .

Dickson’s Lemma. (Dickson, 1913) Let ≤k ⊆ N
k×N

k such that (x1, . . . , xk) ≤k
(y1, . . . , yk) iff xi ≤ yi for all i ∈ [k]. For all k ∈ N, (Nk,≤k) is a well-quasi-order.

Definition 2.2. Given a quasi-order (S,≤) we define the embedding order as
a relation ⊑ ⊆ S∗×S∗ such that x1 · · ·xn ⊑ y1 · · · ym iff there exist 1 ≤ i1 < · · · <
in ≤ m with xj ≤ yij for all j ∈ [n].

Higman’s Lemma. (Higman, 1952) Let (S,≤) be a well-quasi-order. Let ⊑ ⊆
S∗ × S∗ be the embedding order over (S,≤). Then, (S∗,⊑) is a well-quasi-order.

2.4. Well-structured transition systems 11

Corollary 2.3. (of Higman’s Lemma) Let S be a finite alphabet. Let ⊑ be the
subword relation over S∗ × S∗ (i.e., x ⊑ y if x is the result of removing some
(possibly none) positions from y). Then, (S∗,⊑) is a well-quasi-order.

Proof. It suffices to realize that ⊑ is indeed the embedding order over (S,=), which
is trivially a wqo since S is finite.

Definition 2.4. Given a transition system (S,→), and T ⊆ S we define Succ(T) :=
{a′ ∈ S | ∃ a ∈ T with a→ a′}, and Succ∗ to its reflexive-transitive closure. Given
a wqo (S,≤) and T ⊆ S, we define the upward closure of T as ↑T := {a | ∃ a′ ∈
T, a′ ≤ a}, and the downward closure as ↓ T := {a | ∃ a′ ∈ T, a ≤ a′}. We say
that T is downward-closed (resp. upward-closed) iff ↓T = T (resp. ↑T = T).

Definition 2.5. We say that a transition system (S,→) is finitely branching iff
Succ({a}) is finite for all a ∈ S. If Succ({a}) is also effectively computable for all
a, we say that (S,→) is effective.

2.4.2 Reflexive compatibility

Definition 2.6 (rdc). A transition system (S,→) is reflexive downward com-

patible (or rdc for short) with respect to a wqo (S,≤) iff for every a1, a2, a
′
1 ∈ S

such that a′1 ≤ a1 and a1 → a2, there exists a
′
2 ∈ S such that a′2 ≤ a2 and either

a′1 → a′2 or a
′
1 = a′2.

Decidability will be shown as a consequence of the following propositions.

Proposition 2.7. (Finkel and Schnoebelen, 2001, Proposition 5.4) If (S,≤) is a
wqo and (S,→) a transition system such that (1) it is rdc , (2) it is effective, and
(3) ≤ is decidable ; then for any finite T ⊆ S it is possible to compute a finite set
U ⊆ S such that ↑U = ↑Succ∗(T).

Lemma 2.8. Given (S,≤,→) as in Proposition 2.7, a recursive downward-closed
set V ⊆ S, and a finite set T ⊆ S. The problem of whether there exists a ∈ T and
b ∈ V such that a→∗ b is decidable.

Proof. Applying Proposition 2.7, let U ⊆ S finite, with ↑U = ↑Succ∗(T). Since T
is finite and V is recursive, we can test for every element of b ∈ U if b ∈ V . On
the one hand, if there is one such b, then by definition b ∈ ↑Succ∗(T), or in other
words a→∗ a′ ≤ b for some a ∈ T , a′ ∈ Succ∗(a). But since V is downward-closed,
a′ ∈ V and hence the property is true. On the other hand, if there is no such b in
U , it means that there is no such b in ↑U either, as V is downward-closed. This
means that there is no such b in Succ∗(T) and hence that the property is false.

2.4.3 N -compatibility

The results and definitions just shown for reflexive compatibility (i.e., compatibility
in zero or one steps), can be easily extended to N -compatibility (i.e., compatibility
in at most N steps).

12 2. Preliminaries

Given a binary relation R ⊆ S × S and K ⊆ S, let us write R≤n(K) for
K ∪R(K) ∪R2(K) ∪ · · · ∪Rn(K).

Definition 2.9. Given N ∈ N+, a transition system (S,→) is N-downward

compatible with respect to a wqo (S,≤) iff for every a1, a2, a
′
1 ∈ S such that

a′1 ≤ a1 and a1 → a2, there exists a
′
2 ∈ S such that a′2 ≤ a2 and a

′
1 (→)

≤N a′2.

Notice that rdc implies N -downwards-compatible for every N . We adapt the
results contained in (Finkel and Schnoebelen, 2001, § 5) to extend the results of
the previous section to the case of N -downwards-compatibility.

Suppose that (S,→) is aN -downwards-compatible with respect to a wqo (S,≤).

Lemma 2.10. ↑K ⊆ ↑K ′ implies ↑Succ≤1(K) ⊆ ↑Succ≤N (K ′).

Proof. Assume s ∈ ↑Succ≤1(K). Then there exist s1 ∈ K and t1 with s1 (→)
≤1

t1 ≤ s. Because ↑K ⊆ ↑K ′, there is a s2 ∈ K
′ with s2 ≤ s1. Because (S,→,≤) is

N -downwards compatible, there exists a s2 (→)
≤N t2 with t2 ≤ t1. Hence t2 ≤ s.

Now t2 ∈ Succ
≤N (K ′) entails s ∈ ↑Succ≤N (K ′).

Now assume K0 ⊆ S and define a sequence K0,K1, . . . of sets with Kn+1 :=
Kn ∪ Succ(Kn). Let m be the first index such that ↑Km = ↑Km+N . Such an m
must exist by (Finkel and Schnoebelen, 2001, Lemma 2.4).

Lemma 2.11. ↑Km = ↑
⋃

i∈NKi = ↑Succ
∗(K0)

Proof. The first equality is a consequence of Lemma 2.10. The ⊆ is immediate
and for the ⊇, if there is an element in (↑

⋃

i∈NKi) \ ↑Km, then there must be an
element in Succ(↑Km) but not in ↑Km. Since ↑↑Km ⊆ ↑Km, by Lemma 2.10,
↑Succ≤1(↑Km) ⊆ ↑Succ

≤N (Km) = ↑Km. Hence, there is no such element. The
second equality follows from the definition of the Ki’s.

We then have the following proposition.

Proposition 2.12. If (S,≤) is a wqo and (S,→) a transition system such that
(1) it is N -downwards compatible for some fixed N , (2) it is effective, and (3) ≤
is decidable; then for any finite T ⊆ S it is possible to compute a finite set U ⊆ S
such that ↑U = ↑Succ∗(T).

Proof. We take K0 = T . The sequence K0,K1, . . . can be constructed effectively
(each Ki is finite and Succ is effective). The index m can be computed by com-
putability of ≤. Finally, Km is a computable finite basis of ↑Succ∗(T).

We then obtain the following Lemma, whose proof is immediate by following
the same lines as the proof of Lemma 2.8.

Lemma 2.13. Given (S,≤,→) as in Proposition 2.12, a recursive downward-
closed set V ⊆ S, and a finite set T ⊆ S. The problem of whether there exists
a ∈ T and b ∈ V such that a→∗ b is decidable.

2.4. Well-structured transition systems 13

2.4.4 Powerset orderings

In Chapters 6 and 7 we will make use of orderings on sets. In this section we
present some results that will become useful for showing that certain orders over
sets are indeed wqo’s.

Majoring ordering

Definition 2.14 (≤℘). Given an ordering (S,≤), we define the majoring order-

ing over ≤ as (℘<∞(S),≤℘), where S ≤℘ S
′ iff for every a ∈ S there is b ∈ S ′ such

that a ≤ b.

Proposition 2.15. If (S,≤) is a wqo, then the majoring order over (S,≤) is a
wqo.

Proof. The fact that this order is reflexive and transitive is immediate from the
fact that ≤ is a wqo. The fact of being a well -quasi-order is a simple consequence of
Higman’s Lemma. Each finite set {a1, . . . , an} can be seen as a sequence of elements
a1, . . . , an, in any order. In this context, the embedding order is stricter than the
majoring order. In other words, if a1, . . . , an ⊑ a′1, . . . , a

′
m, then {a1, . . . , an} ≤℘

{a′1, . . . , a
′
m}. By Higman’s Lemma the embedding order over (S,≤) is a wqo,

implying that the majoring order is as well.

Proposition 2.16. Let ≤,→1 ⊆ S×S, ≤℘,→2 ⊆ ℘<∞(S)×℘<∞(S) where ≤℘ is
the majoring order over (S,≤) and →2 is such that if S →2 S

′ then: S = {a}∪ Ŝ,
S ′ = {b1, . . . , bm} ∪ Ŝ with a→1 bi for every i ∈ [m]. Suppose that (S,≤) is a wqo

which is rdc with respect to →1. Then, (℘<∞(S),≤℘) is a wqo which is rdc with
respect to →2.

Proof. The fact that (℘<∞(S),≤℘) is a wqo is given by Proposition 2.15. The rdc
property with respect to →2 is straightforward. Suppose

{a′} ∪ S ′ ≤℘ {a} ∪ S →2 {b1, . . . , bm} ∪ S

with S ′ ≤℘ S, a
′ ≤ a, and a →1 bi for all i ∈ [m]. Since a

′ ≤ a and ≤ is rdc with
→1, one possibility is that for each a →1 bi we can apply a a

′ →1 b
′
i with b

′
i ≤ bi.

In this case we obtain {a}∪S ′ →2 {b
′
1, . . . , b

′
m}∪S

′ ≤℘ {b1, . . . , bm}∪S. The only
case left to analyze is when, for some a →1 bi the compatibility is reflexive, that
is, a′ ≤ bi. But then we take a reflexive compatibility as well, since {a

′} ∪ S ′ ≤℘
{b1, . . . , bm} ∪ S.

Finally, the case where a has no pre-image, S ′ ≤℘ {a} ∪ S with S ′ ≤℘ S, is
reflexive compatible since in this case S ′ ≤℘ {b1, . . . , bm} ∪ S.

Minoring ordering

In Chapter 7 we use a finer grained notion of quasi-ordering, to be able to use the
following result due to Jančar (1999).

14 2. Preliminaries

Definition 2.17. The Rado structure is (Srado,≤rado) with Srado = {(i, j) ∈
N×N | i < j} and (i1, j1) ≤rado (i2, j2) iff

• i1 = i2 and j1 ≤ j2, or

• j1 < i2.

Definition 2.18. A relation is a ω2-wqo iff it is a wqo and does not contain an
isomorphic copy of the Rado structure as an induced substurcture.

Definition 2.19 (≤min). Given an ordering (S,≤), we define the minoring or-

dering over ≤ as (℘<∞(S),≤min), where S ≤min S
′ iff for every b ∈ S ′ there is

a ∈ S such that a ≤ b.

Proposition 2.20. (Jančar, 1999, Theorem 1) Given a quasi-order (S,≤), and
≤min the minoring ordering over (S,≤), then (℘<∞(S),≤min) is a wqo iff (S,≤)
is a ω2-wqo.

Proposition 2.21. (Marcone, 1994, Lemma 1.6) If (S,≤1) and (S,≤2) are ω2-
wqo, then (S,≤1 ∩ ≤2) is a ω2-wqo.

Proof. In fact Marcone proves a more general lemma that immediately implies this
one.

Proposition 2.22. If (S1,≤1) and (S2,≤2) are ω2-wqo, then (S1×S2,≤) is a
ω2-wqo, where (a1, a2) ≤ (b1, b2) iff a1 ≤1 b1 and a2 ≤2 b2.

Proof. Let (S1 × S2,≤
†
1) be defined as (a, b) ≤†1 (a

′, b′) iff a ≤1 a
′. Similarly, let

(S1 × S2,≤
†
2) be defined as (a, b) ≤

†
2 (a

′, b′) iff b ≤2 b
′. By means of contradiction,

if (S1 × S2,≤
†
1) contains the Rado structure, then projecting on S1 we obtain

that (S1,≤1) contains the Rado structure, which cannot be since it is a ω2-wqo.

Thus, (S1 × S2,≤
†
1) and (S1 × S2,≤

†
2) are ω

2-wqo. In light of Proposition 2.21,

(S1 × S2,≤
†
1 ∩ ≤

†
2) is a ω

2-wqo. Since ≤†1 ∩ ≤
†
2 and ≤ are the same relation, we

obtain that (S1 × S2,≤) is a ω
2-wqo.

Lemma 2.23. (N,≤) is a ω2-wqo.

Proof. (N,≤) is a wqo, and since there are no incomparable elements it cannot
contain the Rado structure. Indeed, every well-founded linear order is a ω2-wqo.

Corollary 2.24. For all k ≥ 1, (Nk,≤k) is a ω2-wqo.

Proof. A plain combination of Lemma 2.23 with k − 1 applications of Proposi-
tion 2.22.

2.4. Well-structured transition systems 15

2.4.5 An application: Incrementing Counter Automata

As a prominent example of a wsts we introduce the class of Incrementing Counter
Automata.

A counter automaton (CA) with zero testing is a tuple 〈A, Q, q0, n, δ, F 〉, where
A is a finite alphabet, Q is a finite set of states, q0 is the initial state, n ∈ N is the
number of counters, δ ⊆ Q×A×L×Q is the transition relation over the instruction
set L = {inc, dec, ifzero} × {1, . . . , n}, and F ⊆ Q is the set of accepting states.
A counter valuation is a function v : {1, . . . , n} → N. An error-free run over

w ∈ A∗ is a finite sequence 〈q0, v0〉
w0,ℓ0
→ 〈q1, v1〉

w1,ℓ1
→ · · · observing the standard

interpretation of the instructions ℓ0, ℓ1, · · · (〈dec, c〉 can only be performed if c is
nonzero), where v0, v1, . . . are counter valuations, v0 assigns 0 to each counter, and
w = w0w1 . . . such that wi ∈ A∪{ε} for every i. A run is accepting iff it ends with
an accepting state.

A Minsky CA has error-free runs. For these automata, already with only two
counters, finitary emptiness is undecidable (Minsky, 1967). An Incrementing CA
(from now on ICA) is defined as a Minsky CA except that its runs may contain
errors that increase one or more counters non-deterministically. We write that two
valuations are in the relation v ≤ v′ iff, for every counter c, v(c) ≤ v′(c). Runs of

Incrementing CA are defined by replacing the relation
a,ℓ
→ by

a,ℓ
 , where 〈p, u〉

a,ℓ

〈q, v〉 iff there exist valuations u′, v′ such that u ≤ u′, v′ ≤ v and 〈p, u′〉
a,ℓ
→ 〈q, v′〉.

Example 2.25. As an example of the application of the previous results, let us show
that the emptiness problem for ICA is decidable. By Dickson’s Lemma, the order
between valuations ≤ is a well-quasi-order. Further, if we extend the order over
pairs of state-valuation by (q, v) ≤ (q′, v′) iff q = q′ and v ≤ v′, we also obtain
a well-quasi-order. It is easy to check that is rdc with respect to ≤ and that
all the hypothesis of Proposition 2.7 are met. Further, since the set of accepting
configurations (q, v) with q a final state are trivially downwards closed, we obtain
by Lemma 2.8 that the emptiness problem is decidable.

To complete the picture, we mention that the emptiness problem for ICA cannot
be solved in primitive recursive time or space.

Proposition 2.26. The emptiness problem for ICA is decidable with non-primitive
recursive complexity.

Proof idea. A different faulty variant of a Minsky machine is to have faulty decre-
ments instead of faulty increments. This is known in the literature as the class
of Lossy Counter Automata (LCA) (Mayr, 2003). LCA and ICA are equivalent as
observed by Demri and Lazić (2009): for every ICA there is a LCA that accepts
the reverse of the language, and viceversa. This translation consists in swapping
the accepting states with the final states, and inverting the transition relation. If
there is a run of one automaton over a word w, there is also a run of the other
automaton over the reverse of w that preserves acceptance. Schnoebelen (2010)

16 2. Preliminaries

shows that LCA have non-primitive recursive complexity, giving the lower bound
of the proposition.

Part I

WORDS

3. DATA WORDS

3.1 Introduction

In this chapter we investigate alternating register automata on data words in rela-
tion to logics. We define a one-way alternating automata model over data words,
with one register for storing data and comparing them for equality, and two other
operators (which we define later) that add more expressive power, thus expanding
the results of Demri and Lazić (2009).

From the standpoint of register automata models, this chapter aims at two ob-
jectives: (1) simplifying the existent decidability proofs for the emptiness problem
for alternating register automata; and (2) exhibiting decidable extensions for these
models.

From the logical perspective, we work with the temporal logic LTL extended
with one register for storing and comparing data values. It is denoted by LTL↓

following the notation of Demri and Lazić. This logic contains a ‘freeze’ operator
to store the current datum and a ‘test’ operator to test the current datum against
the stored one. We show that (a) in the case of data words, satisfiability of LTL↓

with quantification over data values is decidable; and (b) the satisfiability problem
for very weak fragments of LTL↓ with one register are non primitive recursive—
markedly, these fragments have no ‘next element’ X modality.

Automata

The automata model we define is based on the ARAmodel (for Alternating Register
Automata) of Demri and Lazić on data words. ARA are one-way automata with
alternating control and one register to store data values for later comparison. This
model was shown to have a decidable emptiness problem, through a non-trivial
reduction to the emptiness problem for ICA.

In the present work, decidability of these models is shown by interpreting the
semantics of the automaton in the theory of wsts. The object of this alternative
proof is twofold. On the one hand, we propose a direct, unified and self-contained
proof of the main decidability results of Demri and Lazić. On the other hand,
we further generalize these results. Our proof can be easily extended to show
the decidability of the non-emptiness problem for two powerful extensions. These
extensions consist in the following abilities: (a) the automaton can nondetermin-
istically guess any data value of the domain and store it in the register; and (b)
it can make a certain kind of universal quantification over the data values seen

19

20 3. Data words

along the run of the automaton, in particular over the data values seen so far.
We name these extensions guess and spread respectively. These extensions can
be added to the ARA model preserving decidability, although losing closure under
complementation. We call the model of alternating tree register automata with
these extensions by ARA(guess, spread). We demonstrate that these extensions are
also decidable if the data domain is equipped with a linear order and the automata
model is extended accordingly.

Temporal logics

ARA(guess, spread) over data words yield new decidability results on the satisfi-
ability for some extensions of the temporal logic with one register denoted by
LTL↓(U,X) in (Demri and Lazić, 2009). Our automata model captures an exten-
sion of this logic with quantification over data values, where we can express “for all
data values in the past, ϕ holds”, or “there exists a data value in the future where
ϕ holds”. Indeed, none of these two types of properties can be expressed in the
formalism of Demri and Lazić. These quantifiers may be added to LTL↓(U,X) over
data words without losing decidability. What is more, decidability is preserved if
the data domain is equipped with a linear order that is accessible by the logic.
However, adding the dual of any of these operators results in an undecidable logic.

Our second contribution on these logics is on lower bounds. Thanks to Demri
and Lazić we know that LTL↓(F,X) is has a non-primitive recursive lower bound,
and that LTL↓(F,F−1,X) is undecidable. Here we show that these results carry
over even in the absence of X. In other words we show—through a non-trivial
encoding—that LTL↓(F) is non-primitive recursive and LTL↓(F,F−1) is undecidable.
Also, we identify a fragment, called simple, that has a very simple navigation,
and that has connections with the logic XPath, which will become useful in later
chapters.

3.1.1 Contributions

From the standpoint of register automata models, our contributions can be sum-
marized as follows.

• We exhibit a unified framework to show decidability for finitary emptiness
problem for alternating register automata. This proof has the advantage of
working both for data words and data trees practically unchanged. It is also
a simplification of the existent decidability proofs.

• We exhibit a decidable extension for this model of automata, that we call
ARA(guess, spread).

From the standpoint of logics, we show the following results.

• We prove that the temporal logic LTL↓(U,X) for data words extended with
quantification over data values is decidable. This result is shown via a trans-

3.2. Related work 21

lation from the logic to the class of alternating register automata over data
words ARA(guess, spread).

• We show that the temporal logic LTL↓(F) is non primitive recursive and that
LTL↓(F,F−1) is undecidable. This is also shown for another fragment that
contains a strict version of F but a more restrictive syntax.

3.1.2 Organization

In Section 3.3 we introduce our automata model ARA(guess, spread), and we show
that the emptiness problem for these automata is decidable. This extends the
results of Demri and Lazić (2009). To prove decidability, we adopt a different ap-
proach than the one taken by Demri and Lazić that enables us to show the decid-
ability of some extensions, and to simplify the decidability proofs of the Chapter 6
in Part II of this thesis, which can be seen as a corollary of this proof. In Sec-
tion 3.4 we introduce a temporal logic with registers. We show upper and lower
bounds for fragments and extensions of this logic. In Section 3.5 we show that
the extension of LTL↓(U,X) with quantification over data values has a decidable
satisfiability problem. This is done by a reduction to the emptiness problem of
ARA(guess, spread) automata. Finally, in Section 3.6 we prove that the restricted
fragment LTL↓(F) has non primitive recursive complexity, and we also investigate
the problem with past modalities or two registers.

3.1.3 Data words

We conclude this section by describing precisely the models we are going to work
with.

We consider a finite word over E as a function w : [n] → E for some n ∈
N+, and we define the set of words as Words(E) := {[n] → E | n ∈ N+}. We
write pos(w) = {1, . . . , n} to denote the set of positions (that is, the domain
of w). Given w ∈ Words(E) and w′ ∈ Words(F) with pos(w) = pos(w′) = P ,
we write w ⊗ w′ ∈ Words(E × F) for the word such that pos(w ⊗ w′) = P and
(w ⊗w′)(x) = (w(x),w′(x)). A data word is a word of Words(A× D), where A
is a finite alphabet of letters and D is an infinite domain. We define the word

type as a function typew : pos(w)→ {⊲, ⊲̄} that specifies whether a position has
a next element or not. That is, typet(i) = ⊲ iff (i+ 1) ∈ pos(t).

3.2 Related work

The main decidability results presented here first appeared in (Figueira, 2010).
Here we include the full proofs and the analysis for alternating register automata on
data words (something that is out of the scope of (Figueira, 2010), that focuses on
data trees) as well as its relation to temporal logics. Also, we show how to proceed

22 3. Data words

in the presence of a linear order, maintaining decidability. All the results on lower-
bounds contained in Section 3.6 are a joint work with Luc Segoufin (Figueira and
Segoufin, 2009).

Register Automata

The work of Kaminski and Francez (1994) was a precursor of numerous extensions
of automata theory to the case of infinite alphabets. The cited work introduces the
class of register automata1, an extension of finite automata with several registers
to store and compare data values. These automata have a decidable emptiness
problem. Neven, Schwentick, and Vianu (2004) make a thorough study of expres-
siveness between pebble automata, register automata (one- or two-way, alternating
or nondeterministic), and an extension of monadic second-order logic. The model
of one-way alternating register automata ARA studied by Demri and Lazić (2009),
can be seen as extensions of the register automata of Kaminski and Francez. The
ARA model is extended with alternation on the one hand, but on the other hand
restricted to use only one register. It then comes as no surprise that they have
incomparable expressive power. In contrast to classical automata, alternating reg-
ister automata are more expressive than nondeterministic, and two-way register
automata are more expressive than one-way (Kaminski and Francez, 1994; Neven
et al., 2004). As an example, the nonces property (stating that no two word
positions have the same data value) or the (W1) property is expressible by an
alternating automaton with one register, but not by a nondeterministic k register
automaton. In this chapter we study ARA(guess, spread) which is an extension of
ARA. This automata class will be able to express properties like (W4) or (W5),
that cannot be expressed by ARA (not even with a k register ARA).

Bouyer, Petit, and Thérien (2003) studied a decidable class of automata, in-
spired by the question of representation of timed languages, coining the term data
word. They propose a class of data word languages admitting a characterization in
terms of one-way register automata, an algebraic characterization and even a logi-
cal characterization. This is a decidable class of languages, although its expressive
power is limited, since it cannot express, for example, the nonces property.

In (Figueira, Hofman, and Lasota, 2010b) we investigate the relation between
timed automata and register automata. In particular, this work shows that most
problems in one model can be reduced into similar problems in the other. Hence,
works on timed automata are also relevant to the community working on data
words.

First-order logic

The satisfiability of first-order logic with two variables and data equality tests is
explored by Bojańczyk, Muscholl, Schwentick, Segoufin, and David (2006). The
logic FO2(∼, <,+1) is shown to have a decidable satisfiability problem. This is

1 Kaminski and Francez originally used the name Finite-memory Automata.

3.2. Related work 23

first-order logic where we have only two variables x and y (that we can however
reuse), and three binary relations: < is interpreted as the order of positions in the
word, +1 denotes the relation of consecutive positions, and ∼ relates two positions
that have the same data value. Further, any FO2(∼, <,+1) formula prefixed with
an existential monadic second order quantification (noted EMSO2(∼, <,+1)) is de-
cidable. This logic can equivalently be seen as a very elegant automaton called data
automaton. Björklund and Schwentick (2010) show that data automata capture
register automata, and they introduce an equivalent but quite different formalism
named class memory automata. Further, the decidability is extended to the logic
FO2(∼, <,+1, . . . ,+n), where each +k relation tests that the two positions are at
distance k. However, this logic is incomparable in terms of expressiveness with
respect to the automata and logics of this chapter. For example, in the context
of Example 1.1, the property (W2) can be easily expressed in FO2(∼, <,+1) but
not with the automata class ARA(guess, spread) we introduce here, nor with any of
the extensions of LTL↓(U,X) we show decidable. In turn, the property (W3) can
be expressed with the ARA class, or even with the weakest formalisms treated
here LTL↓(F) but it cannot be expressed with EMSO2(∼, <,+1). Concerning
the complexity of the satisfiability of FO2(∼, <,+1) (or EMSO2(∼, <,+1)), it is
equivalent—modulo an ExpTime reduction—to reachability of VASS (short for
Vector Addition System with States) which is ExpSpace-hard and not known to
have any primitive recursive upper-bound. On the other hand, the complexity of
the emptiness of ARA(guess, spread) and all the LTL↓ fragments treated here are
decidable in non primitive recursive time, and this is also a lower bound since they
can code the Ackermann function.

Adding order

In this context, we could consider that our domain is linearly-ordered (D,≺). While
the finite satisfiability of FO2(<,+1,∼,≺) is undecidable (Bojańczyk et al., 2006),
Schwentick and Zeume (2010) have recently shown that satisfiability of FO2(≤,-)
is in ExpSpace, where x - y iff the data value of x is less or equal than that
of y. This fragment cannot test for local properties as it does not contain the
+1 operator. Thus, in some sense this logic is related to LTL↓(F), although it
is incomparable since “for every a there is a b with the same data value” is not
expressible by LTL↓(F), and since (W3) still cannot be expressed by FO2(≤,-). In
a similar setting—but this time in the presence of a discrete linear order (D,≺)—,
Manuel (2010) shows decidability of FO2(+1, +̃1), where +̃1 (x, y) holds if y has
the successor data value of x. It is important to mention that in Sections 3.3.3
and 3.5.2 we will show decidable extensions of our results on register automata and
LTL↓ to formalisms that can access to a linear order over the data domain.

Manuel and Ramanujam (2009) study a model of automata over infinite al-
phabets called Class Counting Automata with an ExpSpace emptiness problem.2

2 However, for this ExpSpace bound to hold, integers must be coded in unary.

24 3. Data words

This model of automata allows to count the multiplicity of data values along a
word, where there is a counter for each data value seen that can count up to a
constant. It can express a property like “there are at least k positions with the
same data value” for some constant k, that cannot be expressed in the previous
formalisms. In contrast, from another perspective this model has a limited expres-
sive power, since the counters cannot be decremented. As in the previous work,
a property that uses a simple navigation to relate data values like property (W1)
cannot be expressed.

Multiple data values

Bouajjani, Habermehl, Jurski, and Sighireanu (2007) study a logic over models
that extend data words: each element has a vector of data values. The formalism
consists in a fragment of FO(<) to that allows to navigate the word on top of a
theory on data values. The most relevant result with respect to our work is that
given a decidable first order theory on data values, then, any Σ2 first order formula
using< for navigation has a decidable satisfiability problem. This result implies the
decidability of formalisms with powerful domain-specific operations. For example,
if data values are numbers, we may consider using Presburger arithmetic. It is then
immediate that in this setting we may express properties that cannot be expressed
in any of the formalisms mentioned so far. However, the navigation to interrelate
the data values among different positions of the words is severely limited. It can be
seen that a property which is simple to express with formalisms FO2(∼, <), ARA,
or even LTL↓(F) as (W1) cannot be captured with a Σ2 navigation.

Kara, Schwentick, and Zeume (2010) also investigated logics on a similar model
that they name multi-attributes data words, where every position of a word is
labeled with a finite set of pairs (a, d) where a is from some finite alphabet and d

from some infinite domain. This work investigates a logic based on LTL
↓
1, with a

special construct to access the different data values at a position. Markedly, this
fragment includes past modalities, but cannot test for inequality of a data value
with respect to the data value in the register. The novelty of this logic rests on
the fact that it handles multi-attributes data words, since when restricted to data
words it corresponds to the fragment “simple-LTL” (as defined by Demri and Lazić)
extended with Until and Since, but restricted in the data tests it can perform. The
satisfiability of simple-LTL is decidable since it can be effectively translated to
FO2(∼, <,+1, . . . ,+n)—in fact, it is equivalent.

Deutsch, Hull, Patrizi, and Vianu (2009) consider even a more general data
model where every position is labeled by a state of a relational database, i.e., by a
set of relations over a fixed signature. Navigation between positions is performed
through temporal operators, and first-order formulæ can be evaluated at states.
Properties depending on values at different states can be stated by a prefix of
universal quantification of data values. However, no property requiring a “∀∃”
data quantification, like (W1), can be expressed in this formalism.

3.3. Alternating Register Automata 25

3.3 Alternating Register Automata

An Alternating Register Automaton (ARA) consists in a one-way automaton
on data words with alternation and one register to store and test data. In (Demri
and Lazić, 2009) it was shown that the finitary emptiness problem is decidable and
non primitive recursive. Here, we consider an extension of ARA with two operators:
spread and guess. We call this model ARA(spread, guess).

Definition 3.1. An alternating register automaton of ARA(spread, guess) is a tuple
M = 〈A, Q, qI , δ〉 such that

• A is a finite alphabet;

• Q is a finite set of states;

• qI ∈ Q is the initial state; and

• δ : Q→ Φ is the transition function, where Φ is defined by the grammar

a | ā | ⊙? | store(q) | eq | eq |

q ∧ q′ | q ∨ q′ | ⊲q | guess(q) | spread(q, q′)

where a ∈ A, q, q′ ∈ Q, ⊙ ∈ {⊲, ⊲̄}.

This formalism without the guess and spread transitions is equivalent to the
automata model of (Demri and Lazić, 2009) on finite data words, where ⊲ is to
move to the next position to the right on the data word, store(q) stores the current
datum in the register and eq (resp. eq) tests that the current node’s value is (resp.
is not) equal to the stored. We call a state q ∈ Q moving if δ(q) = ⊲q′ for some
q′ ∈ Q.

As this automaton is one-way, we define its semantics as a set of ‘threads’
for each node that progress synchronously. That is, all threads at a node move
one step forward simultaneously and then perform some non-moving transitions
independently. This is done for the sake of simplicity of the formalism, which
simplifies both the presentation and the decidability proof.

Next we define a configuration and then we give a notion of a run over a data
word w. A configuration is a tuple 〈i, α, γ,∆〉 that describes the partial state
of the execution at position i. i ∈ pos(w) is the position in the data word w,
γ = w(i) ∈ A × D is the current position’s letter and datum, and α = typew(i) is
the word type of the position i. Finally, ∆ ∈ ℘<∞(Q × D) is a finite set of active
threads, each thread (q, d) consisting in a state q and the value d stored in the
register. We will always note the set of threads of a configuration with the symbol
∆, and we write ∆(d) = {q ∈ Q | (q, d) ∈ ∆} for d ∈ D, ∆(q) = {d ∈ D | (q, d) ∈ ∆}
for q ∈ Q. By Cara we denote the set of all configurations. Given a set of threads ∆
we write data(∆) := {d | (q, d) ∈ ∆}, and data(〈i, α, (a, d),∆〉) := {d} ∪ data(∆).
We say that a configuration is moving if for every (q, d) ∈ ∆, q is moving.

26 3. Data words

ρ→ε 〈i, α, (a, d), {(qj , d
′)} ∪∆〉 if δ(q) = q1 ∨ q2, j ∈ {1, 2} (3.1)

ρ→ε 〈i, α, (a, d), {(q1, d
′), (q2, d

′)} ∪∆〉 if δ(q) = q1 ∧ q2 (3.2)

ρ→ε 〈i, α, (a, d), {(q
′, d)} ∪∆〉 if δ(q) = store(q′) (3.3)

ρ→ε 〈i, α, (a, d),∆〉 if δ(q) = eq and d = d′ (3.4)

ρ→ε 〈i, α, (a, d),∆〉 if δ(q) = eq and d 6= d′ (3.5)

ρ→ε 〈i, α, (a, d),∆〉 if δ(q) = β? and β ∈ α (3.6)

ρ→ε 〈i, α, (a, d),∆〉 if δ(q) = b and b = a (3.7)

ρ→ε 〈i, α, (a, d),∆〉 if δ(q) = b̄ and b 6= a (3.8)

Fig. 3.1: Definition of the transition relation →ε ⊆ Cara × Cara, given a configuration
ρ = 〈i, α, (a, d), {(q, d′)} ∪∆〉.

To define a run we first introduce three transition relations over node config-
urations: the non-moving relation →ε and the moving relation →⊲. We start
with →ε. If the transition corresponding to a thread is a store(q), the automaton
sets the register with current data value and continues the execution of the thread
with state q; if it is eq, the thread accepts (and in this case disappears from the
configuration) if the current datum is equal to that of the register, otherwise the
computation for that thread cannot continue. The reader can check that the rest
of the cases defined in Figure 3.1 follow the intuition of an alternating automaton.

The cases that follow correspond to our extensions to the model of (Demri and
Lazić, 2009). The guess instruction extends the model with the ability of storing
any datum from the domain D. Whenever δ(q) = guess(q′) is executed, a data
value (nondeterministically chosen) is saved in the register.

ρ→ε 〈i, α, (a, d), {(q
′, e)} ∪∆〉 if δ(q) = guess(q′), e ∈ D (3.9)

Note that the store instruction may be simulated with the guess, eq and ∧ instruc-
tions, while guess cannot be expressed by the ARA model.

The ‘spread’ instruction is an unconventional operator in the sense that it de-
pends on the data of all threads in the current configuration with a certain state.
Whenever δ(q) = spread(q2, q1) is executed, a new thread with state q1 and da-
tum d is created for each thread 〈q2, d〉 present in the configuration. With this
operator we can code a universal quantification over all the ancestors’ data values.
We demand that this transition may only be applied if all other possible →ε kind
of transitions were already executed. In other words, only spread transitions or
moving transitions are present in the configuration.

ρ→ε 〈i, α, (a, d), {〈q1, d〉 | 〈q2, d〉 ∈ ∆} ∪∆〉 (3.10)

iff δ(q) = spread(q2, q1) and for all 〈q̃, d̃〉 ∈ ∆ either δ(q̃) is a spread or a moving
instruction.

3.3. Alternating Register Automata 27

The →⊲ transition advances all threads of the node simultaneously, and is
defined, for any type α′ ∈ {⊲, ⊲̄} and symbol and with data value γ′ ∈ A× D,

〈i,⊲, γ,∆〉 →⊲ 〈i+ 1, α′, γ′,∆⊲〉 (3.11)

iff

(i) for all (q, d) ∈ ∆, δ(q) is moving; and

(ii) ∆⊲ = {〈q
′, d〉 | (q, d) ∈ ∆, δ(q) = ⊲ q′}.

Finally, we define the transition between configurations as :=→⊲ ∪→ε.
A run over a data word w = a⊗d is a non-empty sequence C1 · · · Cn with

C1 = 〈1, α0, γ0,∆0〉 and ∆0 = {〈qI ,d(1)〉} (i.e., the thread consisting in the initial
state with the first datum), such that for every j ∈ [n] with Cj = 〈i, α, γ,∆〉: (1)
i ∈ pos(w); (2) γ = w(i); and (3) α = typew(i). We say that the run is accepting
iff Cn = 〈i, α, γ, ∅〉 contains an empty set of threads. If for an automaton M we
have that L(M) 6= ∅ we say that M is nonempty.

3.3.1 Properties

We show the following two statements, that are equivalent given the fact that the
ARA model is closed under complement.

• the ARA(guess, spread) class is more expressive than ARA.

• L(ARA(guess, spread)) is not closed under complementation.

Proposition 3.2 (Expressive power).

(a) the ARA(guess) class is more expressive than ARA;

(b) the ARA(spread) class is more expressive than ARA.

Proof. Let w = a⊗d be a data word. To prove (a), consider the property “There
exists a datum d and a position i with d(i) = d, a(i) = a, and there is no position
j with d(j) = d, a(j) = b.”. This property can be easily expressed by ARA(guess).
It suffices to guess the data value d and check two properties using alternation:
that we can reach an element (a, d), and that for every element (b, d′) we have
that d 6= d′. We argue that this property cannot be expressed by the ARA model.
Suppose ad absurdum that it is expressible. This means that its negation would
also be expressible by ARA (since they are closed under complement). The negation
of this property states

“For every data value d, if there is an element
(a, d) in the word, then there is an element (b, d).”

(P1)

With this kind of property one can code an accepting run of a Minsky machine,
whose emptiness problem is undecidable. This would prove that ARA(guess) have

28 3. Data words

an undecidable emptiness problem, which is in contradiction with the decidability
proof that we will give in Section 3.3.2. Let us see how the reduction works.

The emptiness problem for Minsky machine is known to be undecidable even
with an alphabet consisting of one symbol, so we disregard the letters read by
the automaton in the following description. Consider then a 2-counter alphabet-
blind Minsky machine whose instructions are of the form (q, ℓ, q′) with ℓ being the
operation over the counters

ℓ ∈ {inc, dec, ifzero} × {1, 2},

and q, q′ states from the automaton’s set of states Q. A run on this automaton is
a sequence of applications of transition rules, for example

(q1, inc1, q2) (q2, inc2, q3) (q3, inc1, q2) (q2, dec1, q1) (q1, dec1, q2) (q2, ifzero1, q3)

This run has an associated data word over the alphabet

Q× {inc, dec, ifzero} × {1, 2} ×Q,

where the corresponding data value of each instruction is used to match increments
with decrements, for example,

(q1, inc1, q2) (q2, inc2, q3) (q3, inc1, q2) (q2, dec1, q1) (q1, dec1, q2) (q2, ifzero1, q3).
1 2 3 2 1 4

Using the ARA model we can make sure that (i) all increments have differ-
ent data values and all decrements have different data values; and (ii) for every
(, inci,) element with data value d that occurs to the left of a (, ifzeroi,), there
must be a (, deci,) element with data value d that occurs in between. (Demri
and Lazić, 2009) shows how to express these properties using ARA. However, prop-
erties (i) and (ii) are not enough to make sure that every prefix of the run ending
in a ifzeroi instruction must have as many increments as decrements of counter
i. Indeed, there could be more decrements than increments—but not the opposite,
thanks to (ii).

The missing condition to verify that the run is correct is: (iii) for every decre-
ment there exists a previous increment with the same data value. In fact, we
can see that property (P1) can express condition (iii): we only need to change
a by a decrement transition in the coding, and b by an increment transition of
the same counter. But then, assuming that property (P1) can be expressed by
ARA(guess), the emptiness problem for ARA(guess) is undecidable. This is absurd,
as the emptiness problem is decidable, as we will show later on in Theorem 3.5.

Using a similar reasoning as before, we show (b): the ARA(spread) class is more
expressive than ARA. Consider the property “there exists a position i labeled b
such that d(i) 6= d(j) for all j < i with a(j) = a.” as depicted in Figure 3.2. Let
us see how this can be coded into ARA(spread). Assuming q0 is the initial state, the

3.3. Alternating Register Automata 29

a baaaa

≠

Fig. 3.2: A property not expressible in ARA.

transitions should reflect that every datum with label a seen along the run is saved
with a state qa, and that this state is in charge of propagating this datum. Then,
we guess a position labeled with b and check that all these stored values under
qa are different from the current one. For succinctness we write the transitions as
positive boolean combinations of the basic operations.

δ(q0) = (b ∧ spread(qa, q1)) ∨
(

(ā ∨ store(qa)) ∧⊲q0
)

,

δ(q1) = eq, δ(qa) = (⊲̄? ∨⊲qa).

This property cannot be expressed by the ARA model. Were it expressible, then
its negation

“for every element b there exists a previous one
labeled a with the same data value”

(P2)

would also be. Just as before we can use property (P2) to express condition (iii),
and force that for every decrement in a coding of a Minsky machine there exists a
corresponding previous increment. This leads to a contradiction by proving that
the emptiness problem for ARA(spread) is undecidable.

Corollary 3.3. ARA(guess), ARA(spread) and ARA(guess, spread) are not closed
under complementation.

Proof. If they were closed under complement, then we could express some of the
properties described in the proof of Proposition 3.2, resulting in an undecidable
model, which is in contradiction with Theorem 3.5.

We then have the following properties of the automata model.

Proposition 3.4 (Boolean operations). The class L(ARA(spread, guess)) has the
following properties:

(i) it is closed under union,

(ii) it is closed under intersection,

(iii) it is not closed under complement.

Proof sketch. Items (i) and (ii) are straightforward if we notice that the first ar-
gument of spread ensures that this transition is always relative to the states of
one of the automata being under intersection or union. Item (iii) follows from
Corollary 3.3.

30 3. Data words

3.3.2 Emptiness problem

This section is dedicated to show the following theorem.

Theorem 3.5. The emptiness problem for ARA(guess, spread) is decidable.

As already mentioned, decidability for ARA was proved in (Demri and Lazić,
2009). Here we propose an alternative approach that simplifies the proof of decid-
ability of the two extensions spread and guess.

The proof goes as follows. We will define a wqo - over Cara and show that
(Cara,-) is rdc with respect to (Lemma 3.10). Note that strictly speaking is
an infinite-branching transition system as→⊲ may take any value from the infinite
set D, and →ε can also guess any value. However, it can trivially be restricted to
an effective finitely branching one. Then, by Proposition 2.7, (Cara,) has an
effectively computable upward-closed reachability set, and this implies that the
emptiness problem of ARA(guess, spread) is decidable.

Since our model of automata only cares about equality or inequality of data
values, it is convenient to work modulo renaming of data values.

Definition 3.6 (∼). We say that two configurations ρ, ρ′ ∈ Cara are equivalent

(notation ρ ∼ ρ′) if there is a bijection f : data(ρ)→ data(ρ′) such that f(ρ) = ρ′,
where f(ρ) stands for the replacement of every data value d by f(d) in ρ.

Definition 3.7 (�). We first define the relation (Cara,�) such that

〈i, α, γ,∆〉 � 〈i′, α′, γ′,∆′〉

iff α = α′, γ = γ′, and ∆ ⊆ ∆′.

Notice that by the definition above we are ‘abstracting away’ the information
concerning the position i. We finally define - to be � modulo ∼.

Definition 3.8 (-). We define ρ - ρ′ iff there is ρ′′ ∼ ρ′ with ρ � ρ′.

The following lemma follows from the definitions.

Lemma 3.9. (Cara,-) is a well-quasi-order.

Proof. The fact that - is a quasi-order (i.e., reflexive and transitive) is immediate
from its definition. To show that it is a well -quasi-order, suppose we have an infinite
sequence of configurations ρ1ρ2ρ3 · · · . It is easy to see that it contains an infinite
subsequence τ1τ2τ3 · · · such that all its elements are of the form 〈i, α0, (a0, d),∆〉
with

• α0 and a0 fixed, and

• ∆(d) = C0 fixed,

3.3. Alternating Register Automata 31

This is because we can see each of these elements as a finite coloring, and apply
the pigeonhole principle on the infinite set {ρi}i.

Consider then the function g∆ : ℘(Q)→ N, such that g∆(S) = |{d | S = ∆(d)}|
(we can think of g∆ as a tuple of (N)|℘(Q)|). Assume the relation -† defined as
∆ -† ∆′ iff g∆(S) ≤ g∆′(S) for all S. By Dickson’s Lemma -

† is a wqo, and then
there are two τi = 〈i′, α0, (s0, di),∆i〉, τj = 〈j′, α0, (s0, dj),∆j〉, i < j such that
∆i -

† ∆j . For each S ⊆ Q, there exists an injective mapping fS : {d | g∆i
(d) =

S} → {d | g∆j
(d) = S}, as the latter set is bigger than the former by -†. We

define the injection f : data(τi)→ data(τj) as the (disjoint) union of all fS ’s. The
union is disjoint since for every data value d and set of threads ∆, there is a unique
set S such that d ∈ g∆(S). We then have that τi ∼ f(τi) � τj . Hence, τi - τj .

The core of this proof is centered in the following lemma.

Lemma 3.10. (Cara,) is rdc with respect to (Cara,-).

Proof. We shall show that for all ρ, τ, ρ′ ∈ Cara such that ρ τ and ρ′ - ρ, there
is τ ′ such that τ ′ - τ and either ρ′ τ ′ or τ ′ = ρ′. Since by definition of - we
work modulo ∼, we can further assume that ρ′ � ρ without any loss of generality.
The proof is a simple case analysis of the definitions for . All cases are treated
alike, here we present the most representative. Suppose first that ρ→ε τ , then one
of the definition conditions of →ε must apply.

If Eq. (3.4) of the definition of →ε (Fig. 3.1) applies, let

ρ = 〈i, α, (a, d), {(q, d)} ∪∆〉 →ε τ = 〈i, α, (a, d),∆〉

with δ(q) = eq. Let ρ′ = 〈i′, α, (a, d),∆′〉 � ρ. If (q, d) ∈ ∆′, we can then apply
the same →ε-transition obtaining ρ � ρ′ →ε τ

′ � τ . If there is no such (q, d), we
can safely take ρ′ = τ ′ and check that τ ′ � τ .

If Eq. (3.3) applies, let

ρ = 〈i, α, (a, d), {(q, d′)} ∪∆〉 →ε τ = 〈i, α, (a, d), {〈q
′, d〉} ∪∆〉

with ρ→ε τ and δ(q) = store(q′). Again let ρ′ � ρ containing (q, d′) ∈ ∆′. In this
case we can apply the same →ε-transition arriving to τ

′ where τ ′ � τ . Otherwise,
if (q, d′) 6∈ ∆′, we take ρ′ = τ ′ and then τ ′ � τ .

If a guess is performed (Eq. (3.9)), let

ρ = 〈i, α, (a, d), {(q, d′)} ∪∆〉 →ε τ = 〈i, α, (a, d), {(q
′, e)} ∪∆〉

with δ(q) = guess(q′). Let ρ′ = 〈i′, α, (a, d),∆′〉 � ρ. Suppose there is (q, d′) ∈ ∆′,
then we then take a guess transition from ρ′ obtaining some τ ′ by guessing e and
hence τ ′ � τ . Otherwise, if (q, d′) 6∈ ∆′, we take τ ′ = ρ′ and check that τ ′ � τ .

Finally, if a spread is performed (Eq. (3.10)), let

ρ = 〈i, α, γ, {(q, d′)} ∪∆〉 →ε τ = 〈i, α, γ, {(q1, d) | (q2, d) ∈ ∆} ∪∆〉

32 3. Data words

with δ(q) = spread(q2, q1). Let ρ
′ = 〈i′, α, γ,∆′〉 � ρ and suppose there is (q, d′) ∈

∆′ (otherwise τ ′ = ρ′ works). We then take a spread instruction ρ′ →ε τ
′ and see

that τ ′ � τ , because any (q1, d
′) in τ ′ generated by the spread must come from

(q2, d
′) of ρ′, and hence there is some (q2, d

′) in ρ; now by the spread applied on ρ,
(q1, d

′) is in τ .
The remaining cases of →ε are only easier.
Finally, there can be a ‘moving’ application of . Suppose that we have

ρ = 〈i,⊲, (a, d),∆〉 →⊲ τ = 〈i+ 1, α1, (a1, d1),∆1〉

where ρ→⊲ τ . Let ρ
′ = 〈i′,⊲, (a, d),∆′〉 � ρ. If ρ′ is such that ρ′ � τ , the relation

is trivially compatible. Otherwise, we shall prove that there is τ ′ such that ρ′ τ ′

and τ ′ - τ . Condition i of→⊲ (i.e., that all states are moving) holds for ρ
′, because

all the states present in ρ′ are also in ρ (by definition of �) where the condition
must hold. Then, we can apply the →⊲ transition to ρ′ and obtain τ ′ of the form
〈i′ + 1, α1, (a1, d1),∆

′
1〉. Notice that we are taking α1, a1 and d1 exactly as in τ ,

and that ∆′1 is completely determined by the→⊲ transition from ∆′. We only need
to check that τ ′ � τ . Take any (q, d′) ∈ ∆′1. There must be some (q

′, d′) ∈ ∆′ with
δ(q′) = ⊲q. Since ∆′ ⊆ ∆, we also have (q, d) ∈ ∆1. Hence, ∆

′
1 ⊆ ∆1 and then

τ ′ � τ .

We just showed that (Cara,) is rdc with respect to (Cara,-). The only
missing ingredient to have decidability is the following, which is trivial.

Lemma 3.11. The set of accepting configurations of Cara is downward closed with
respect to -.

We write Cara/∼ to the set of configurations modulo ∼, by keeping one repre-
sentative for every equivalence class. Note that the transition system (Cara/∼,)
is effective. This is just a consequence of the fact that the-image of any config-
uration has only a finite number of configurations modulo ∼, and representatives
for every class are effectively computable. Hence, we have that (Cara/∼,-,)
verify conditions (1) and (2) from Proposition 2.7. Finally, condition (3) holds as
(Cara/∼,-) is a is a wqo (by Lemma 3.10) that is computable. We can then apply
Lemma 2.8, obtaining that for a given M ∈ ARA(guess, spread), testing wether
there exists a final configuration τ and an element ρ in

{〈1, α, (a, d0), {(qI , d0)}〉 | α ∈ {⊲, ⊲̄}, a ∈ A}

—for any fixed d0—such that ρ ∼ ρ′ ∗ τ (for some ρ′) is decidable. Thus, we
can decide the emptiness problem and Theorem 3.5 follows.

3.3.3 Ordered data

We show here that the previous decidability result holds even if we add order to
the data domain. Let (D, <) be a linear order, like for example the reals or the

3.3. Alternating Register Automata 33

natural numbers with the standard ordering. Let us replace the instructions eq

and eq with

δ(q) := . . . | test(>) | test(<) | test(=) | test(6=)

and let us call this model of automata ARA(guess, spread, <). The semantics is
as expected. test(<) verifies that the data value of the current position is less
than the data value in the register, test(>) that is greater, and test(=) (resp.
test(6=)) that both are (resp. are not) equal. We modify accordingly →ε, for
ρ = 〈i, α, (a, d), {(q, d′)} ∪∆〉.

ρ→ε 〈i, α, (a, d),∆〉 if δ(q) = test(<) and d < d′ (3.12)

ρ→ε 〈i, α, (a, d),∆〉 if δ(q) = test(>) and d > d′ (3.13)

ρ→ε 〈i, α, (a, d),∆〉 if δ(q) = test(=) and d = d′ (3.14)

ρ→ε 〈i, α, (a, d),∆〉 if δ(q) = test(6=) and d 6= d′ (3.15)

All the remaining definitions are preserved. We can show that the emptiness
problem for this extended model of automata is still decidable.

Theorem 3.12. The finitary emptiness problem for ARA(guess, spread, <) is de-
cidable.

As in the proof in the previous Section 3.3.2, we show that there is a wqo

<< ⊆ Cara × Cara that is rdc with respect to, such that the set of final states is
<<-downward closed. However, we need to be be more careful when showing that
we can always work modulo an equivalence relation.

Definition 3.13. A function f is an order-preserving bijection on D ⊆ D

iff it is a bijection on D, and furthermore for every {d, d′} ⊆ D, if d < d′ then
f(d) < f(d′).

The following Lemma is plain from the definition just seen.

Lemma 3.14. Let D ⊆ D, |D| <∞. There exists an order-preserving bijection f
on D such that

• for every {d, d′} ⊆ D such that d < d′ then there exists d̃ such that f(d) <
d̃ < f(d′),

• for every d ∈ D there exists d̃ such that f(d) < d̃, and there exists d̃ such
that d̃ < f(d).

Definition 3.15 (∼ord). ρ ∼ord ρ
′ iff f(ρ) = ρ′ for some order-preserving bijection

f on data(ρ).

Remark 3.16. If ρ ρ′ then there exists d̂ ∈ D such that {d̂}∪data(ρ) ⊆ data(ρ′).
This is a simple consequence of the definition of .

34 3. Data words

Let us define a version of that works modulo ∼ord , and let us call it ord.

Definition 3.17. ρ1ord ρ2 iff ρ
′
1 ρ′2 for some ρ

′
1 ∼ord ρ1 and ρ

′
2 ∼ord ρ2.

In the previous section, when we had that ∼ was simply a bijection and we
could not test any linear order <, it was plain that we could work modulo ∼.
However, here we are working modulo a more complex relation ∼ord . In the next
lemma we show that working with or working with ord is equivalent.

Lemma 3.18. If ρ0 ord · · · ord ρn, then ρ′0 · · · ρ′n, with ρ
′
i ∼ord ρi for

every i.

Proof. The case n = 1 is trivial. If on the other hand we have ρ0 ord · · · ord

ρn−1 ord ρn, then by inductive hypothesis we obtain ρ′1 · · · ρ′n−1 and
ρ′′n−1 ρ′′n with ρ

′
i = ρi for every i, ρ

′′
n−1 ∼ord ρn−1 ∼ord ρ

′
n−1, and ρ

′′
n ∼ord ρn.

Let g be the witnessing bijection such that g(ρ′′n−1) = ρ′n−1, and let us assume that

{d̂} ∪ data(ρ′′n−1) ⊆ data(ρ′′n) by Remark 3.16.
Let f be an order-preserving bijection on

⋃

i≤n−1 data(ρ
′
i) as in Lemma 3.14.

We can then pick a data value d̃ such that

• for every d > d̂ with d ∈ data(ρ′′n−1), f(g(d)) > d̃, and

• for every d < d̂ with d ∈ data(ρ′′n−1), f(g(d)) < d̃.

Let h := (g ◦ f)[d̂ 7→ d̃]. We then have

• h(ρ′′n−1) h(ρ′′n),

• f(ρ′1) · · · f(ρ′n−1),

• f(ρ′n−1) = h(ρ′′n−1).

In other words there exist ρ′′′0 ρ′′′n with ρ′′′i ∼ord ρi for every i.

Now that we proved that we can work modulo ∼ord , we show that we can decide
if we can reach an accepting configuration by means oford, by introducing some
suitable ordering << and showing the following lemmas.

Lemma 3.19. (Cara, <<) is a well-quasi-order.

Lemma 3.20. (Cara, <<) is rdc with respect to ord.

Lemma 3.21. The set of accepting configurations of Cara is downward closed with
respect to <<.

We next define the order << and show that the aforementioned lemmas are
valid. In the same spirit as before, << is defined as � modulo ∼ord .

Definition 3.22 (<<). ρ1 << ρ2 iff ρ
′
1 � ρ′2 for some ρ

′
1 ∼ord ρ1 and ρ

′
2 ∼ord ρ2.

3.3. Alternating Register Automata 35

To prove Lemma 3.19, given a configuration ρ = 〈i, α, (a, d),∆〉, with data(ρ) =
{d1 < · · · < dn} we define

abs(di) = ∆(di) ∪ {⋆ | di = d} ⊆ Q ∪ {⋆}

abs(ρ) = abs(d1), . . . , abs(dn) ∈ (℘(Q ∪ {⋆}))
∗

where ⋆ 6∈ Q is to denote that the data value is the one of the current element.

Proof of Lemma 3.19. This is a consequence of Higman’s Lemma stated as in
Corollary 2.3. As stated above, we can see each configuration ρ = (i, α, (a, d),∆)
as a word over (℘(Q ∪ {⋆}))∗. As shown in Lemma 3.9 if there is an infinite se-
quence, there is an infinite subsequence ρ1, ρ2, . . . , with the same type α and letter
a. Then for the infinite sequence abs(ρ1), abs(ρ2), . . . , Corollary 2.3 tells us that
there are i < j such that abs(ρi) is a substring of abs(ρj). This implies that they
are in the << relation.

Proof of Lemma 3.20. Note that although << is a more restricted wqo, for all the
non-moving cases in which the register is not modified (that is, all except guess,
spread, and store), the →ε transition continues to be rdc. This is because for any
τ << ρ →ǫ ρ

′, ρ = 〈i, α, γ,∆〉 and ρ′ = 〈i′, α′, γ′,∆′〉 are similar in the following
sense. Firstly data(ρ) = data(ρ′), and moreover the only difference between ρ
and ρ′ is that ∆′ is the result of removing some thread (q, d) from ∆ and inserting
another one (q′, d) with the same data value d. This kind of operation is compatible,
since τ can perform the same operation τ →ε τ

′ on the data value d′, supposing
that d′ is the preimage of d given by the << ordering. In this case, τ ′ << ρ′.
Otherwise, if there is no preimage of d, then τ << ρ′. The compatibility of spread
is shown equivalently.

Regarding the store instruction, we see that the operation consists in removing
some (q, d) from ∆ and inserting some (q′, d0) with d0 the root’s datum. This is
downwards compatible since τ can perform the same operation on its root data
value, which is necessarily the preimage of d0.

For the remaining two cases (guess and ⊲) we rely on the premise that we we
work modulo ∼ord . The idea is that we can always assume that we have enough
data values to choose from in between the existing ones. That is, for every pair
of data values d < d′ in a configuration, there is always one in between. We can
always assume this since otherwise we can apply a bijection as the one described by
Lemma 3.14 to obtain this property. Thus, at each point where we need to guess
a data value (as a consequence of a guess(q) or a ⊲q instruction) we will have no
problem in performing a symmetric action, preserving the embedding relation.

More concretely, suppose the execution of a transition δ(q) = guess(q′) on
a thread (q, dj) of configuration ρ with data(ρ) = {d1 < · · · < dn} guesses a
data value d with di < d < di+1. Then, for any configuration τ << ρ with
data(τ) = {e1 < · · · < em} and the property just described, there must be an
order-preserving injection f : data(τ) → data(ρ) with f(τ) � ρ. If τ contains a
thread (q, ej′) with f(ej′) = dj the operation is simulated by guessing a data value

36 3. Data words

e such that e > eℓ for all eℓ such that f(eℓ) ≤ di and e < ek for all ek such that
f(ek) > di. Such data value e exists as explained before. The rdc compatibility of
a δ(q) = ⊲q′ instruction is shown in an analogous fashion.

Proof of Lemma 3.21. Given that << is a subset of -, and that by Lemma 3.11
the set of accepting configurations is --downward closed, it follows that this set is
also <<-downward closed.

Finally, we should note that (Cara/∼ord ,ord) is also finitely branching and
effective. As in the proof of Section 3.3.2, by Lemmas 3.19, 3.20 and 3.21 we have
that all the conditions of Proposition 2.7 are met and by Lemma 2.8 we conclude
that the finitary emptiness problem for ARA(guess, spread, <) is decidable.

Remark 3.23. Notice that this proof works independently of the particular ordering
of (D, <). It could be dense or discrete, contain accumulation points, be open or
closed, etc. In some sense, this automata model is blind to these kind of properties.
If there is an accepting run on (D, <) then there is an accepting run on (D, <′) for
any linear order <′.

Question 3.24. It is perhaps possible that these results can be extended to prove
decidability when (D, <) is a partial order, this time making use of Kruskal’s tree
theorem (Kruskal, 1960) instead of Higman’s Lemma. We leave this issue as an
open question.

Remark 3.25 (constants). One can also extend this model with a finite number
of constants {c1, . . . , cn} ⊆ D. In this case, we extend the transitions with the
possibility of testing that the data value stored in the register is (or is not) equal
to ci, for every i. In the proof, it suffices to modify ∼ord to take into account
every constant ci. In this case we define that ρ ∼ord τ iff f(ρ) = ρ′ for some
order-preserving bijection f on data(ρ)∪{c1, . . . , cn} such that f(ci) = ci for every
i. In this case Lemma 3.14 does not hold anymore, as there could be finitely
many elements in between two constants. This is however an easily surmountable
obstacle, by adapting Lemma 3.14 to work separately on the n+1 intervals defined
by c1, . . . , cn. For each interval, if it is infinite we will have a Lemma 3.14-like
statement, and if it is finite we simply state that we can make space between any
two data values of D contained in the interval as long as there is at least one
element of the which is not in D.

3.3.4 Timed automata

Our investigation on register automata also yields new results on the class of timed
automata. An alternating 1-clock timed automaton is an automaton that runs over
timed words. A timed word is a finite sequence of events. Each event carries a
symbol from a finite alphabet and a timestamp indicating the quantity of time
elapsed from the first event of the word. A timed word can hence be seen as a data
word over the rational numbers, whose data values are strictly increasing. The
automaton has alternating control and contains one clock to measure the lapse of

3.3. Alternating Register Automata 37

time between two events (that is, the difference between the data of two positions
of the data word). It can reset the clock, or test whether the clock contains a
number equal, less or greater than a constant, from some finite set of constants.
For more details on this automaton we refer the reader to (Alur and Dill, 1994).

Register automata over ordered domains have a strong connection with timed
automata. The work in (Figueira et al., 2010b) shows that the problems of
nonemptiness, language inclusion, language equivalence and universality are equi-
valent—modulo an ExpTime reduction—for timed automata and register au-
tomata over a linear order. That is, any of these problems for register automata
can be reduced to the same problem on timed automata, preserving the number
of registers equal to the number of clocks, and the mode of computation (nonde-
terministic, alternating). And in turn, any of these problems for timed automata
can also be reduced to a similar problem on register automata over a linear order.
We argue that this is also true when the automata are equipped with guess and
spread.

Consider an extension of 1-clock alternating timed automata, with spread and
guess, where

• the operator spread(q, q′) works in the same way as for register automata,
duplicating all threads with state q as threads with state q′, and

• the guess(q) operator resets the clock to any value, non deterministically
chosen, and continues the execution with state q.

The coding technique of (Figueira et al., 2010b) can be adapted to deal with
the guessing of a clock (the spread operator being trivially compatible), and one
can show the following statement.

Lemma 3.26. The emptiness problem for alternating 1-clock timed automata
extended with guess and spread reduces to the emptiness problem for the class
ARA(guess, spread, <).

Hence, by Lemma 3.26 cum Theorem 3.12 we obtain the following result.

Theorem 3.27. The emptiness problem for alternating 1-clock timed automata
extended with guess and spread is decidable.

3.3.5 A note on complexity

Although the ARA(guess, spread) and ARA(guess, spread, <) classes have both non-
primitive recursive complexity, we must remark nonetheless the latter have much
higher complexity. While the former can be roughly bounded by the Ackermann
function applied to the number of states, the complexity of ARA(guess, spread, <)
majorizes every multiply-recursive function (in particular, Ackermann’s). In some
sense this is a consequence of relying on Higman’s Lemma instead of Dickson’s
Lemma for the termination arguments of our algorithm.

38 3. Data words

More precisely, it can be seen that the emptiness problem for ARA(guess,
spread, <) sits in the class Fωω in the Fast Growing Hierarchy (Löb and Wainer,
1970)—an extension of the Grzegorczyk Hierarchy for non-primitive recursive func-
tions—by a reduction to timed one clock automata (Section 3.3.4). The emptiness
problem for timed one clock automata can be at the same time reduced to that of
Lossy Channel Machines (Abdulla et al., 2005), which are known to be ‘complete’
for this class, i.e. in Fωω \ F<ωω (Chambart and Schnoebelen, 2008). However,
the emptiness problem for ARA(guess, spread) belongs to Fω in the hierarchy. The
lower bound follows by a reduction from Incrementing Counter Automata (Demri
and Lazić, 2009), which are hard for Fω (Schnoebelen, 2010; Figueira et al., 2010a).
The upper bound is a consequence of using a saturation algorithm with a wqo that
is the component-wise order of the coordinates of a vector of natural numbers in a
controlled way. The proof that it belongs to Fω goes similarly as for Incrementing
Counter Automata (see Figueira et al., 2010a, §7.2).

3.4 LTL with register

The logic LTL↓n(O) is a logic for data words that corresponds to the extension of
the Linear Temporal Logic LTL(O) on data words, where O is a subset of the usual
navigation modalities, for example {F,U,X}. The logic is extended with the ability
to use n different registers for storing a data value for later comparisons, and it
was studied in (Demri and Lazić, 2009; Demri et al., 2005). The freeze operator
↓i ϕ permits to store the current datum in register i and continue the evaluation
of the formula ϕ. The operator ↑i tests whether the current data value is equal to
the one stored in register i. We use the usual navigation modalities: the next (X),
future (F) and until (U) temporal operators, together with its inverse counterparts
(X−1, F−1, U−1).

As it was shown by Demri and Lazić (2009), LTL↓1(U,X) has a decidable satisfia-
bility problem with non primitive recursive complexity. However, as soon as n ≥ 2,
satisfiability of LTL↓n(U,X) becomes undecidable. We write LTL↓(O) as short for

LTL
↓
1(O). In this section we focus on decidable upper bounds for extensions of

LTL↓(X,U), and on lower bounds for some fragments.

In Section 3.5, we show that LTL↓(U,X) can be extended with quantification
over data values, extending the previous decidability results. On the other hand,
in Section 3.6 we investigate the lower bounds for very weak fragments. By the
lower bounds given in (Demri and Lazić, 2009), the complexity of the satisfiability
problem for LTL↓(U,X) is non-primitive recursive. Here we show that LTL↓(F) has
non-primitive recursive complexity, and that LTL↓(F,F−1) is undecidable. Further,

if two registers are allowed, LTL↓2(F) is also undecidable.

For simplicity we define the semantics of the logic with only one register. For the
particular result of Section 3.6.2 that uses the two-register fragment, we will explain
how to extend this semantics. Fix a finite alphabet A. Sentences of LTL↓(O), where

3.5. LTL: Upper bounds 39

(w, i) |=d a iff a(i) = a

(w, i) |=d ↑ iff d = d(i)

(w, i) |=d ↓ ϕ iff (w, i) |=d(i) ϕ

(w, i) |=d U(ϕ, ψ) iff for some i ≤ j ∈ pos(w) and for all i ≤ k < j

we have (w, j) |=d ϕ and (w, k) |=d ψ

(w, i) |=d Xϕ iff i+ 1 ∈ pos(w) and (w, i+ 1) |=d ϕ

Fig. 3.3: Semantics of LTL↓(X,F,U,X−1,F−1,U−1) for a data word w = a ⊗ d and i ∈
pos(w). The interpretation of ∧, ∨ and ¬ is standard.

(w, i) |=d ∃↓≥ϕ iff there exists i ≤ j ∈ pos(w) such that (w, i) |=d(j) ϕ

(w, i) |=d ∀↓≤ϕ iff for all 1 ≤ j ≤ i we have (w, i) |=d(j) ϕ

Fig. 3.4: Semantics of LTL↓(O, ∃↓≥, ∀
↓
≤) for a data word w = a⊗ d and i ∈ pos(w).

O ⊆ {X,F,U,X−1,F−1,U−1} are defined as follows,

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ¬ϕ | a | ↑ | ↓ ϕ | oϕ (o ∈ O)

where a is a symbol from the finite alphabet A.

Figure 3.3 shows the definition of the satisfaction relation |=. As usual, we de-
fine the future modality as Fϕ := U(ϕ,⊤)∨ϕ, and U−1, F−1, X−1 as the symmetric
of U, F, X. For example, in this logic we can express properties like “for every a ele-
ment there is a future b element with the same data value” as G(¬a∨↓ (F(b ∧ ↑))).
We say that ϕ satisfies w = a⊗ d, written w |= ϕ, if w, 1 |=d(1) ϕ.

3.5 LTL: Upper bounds

We study an extension of this language with a restricted form of quantification
over data values. We will actually add two sorts of quantification. On the one
hand the ∀↓≤ and ∃↓≤ quantify universally or existentially over all the data values

occurred before the current point of evaluation. Similarly, ∀↓≥ and ∃
↓
≥ quantify over

the future elements on the data word. Hence, we can express “for all data values
in the past, ϕ holds”, or “there exists a data value in the future where ϕ holds”,
with ϕ a LTL↓(X,F,U) formula. Semantics are given in Figure 3.4.

For our convenience and without any loss of generality, we will work in Negated
Normal Form (nnf), using Ū to denote the dual operator of U, and similarly for X̄.

We write LTL
↓
nnf(O) for the fragment of LTL

↓(O) where the nnf of every formula

40 3. Data words

uses only operators from O. Let us write F := {U, Ū,X, X̄}, denoting that we have

all the forward modalities. Notice that LTL↓(U,X) is the same as LTL↓nnf(F). We

investigate the fragment LTL↓nnf(F, ∀
↓
≤, ∃

↓
≥), and show that it has a decidable satisfi-

ability problem. This fragment is not closed under negation and is hence different
from LTL↓(F, ∀↓≤, ∃

↓
≥). Indeed, the latter logic has an undecidable satisfiability

problem, as we will show.

3.5.1 Satisfiability problem

This section treats the satisfiability problem for LTL↓nnf(F, ∀
↓
≤, ∃

↓
≥). But first let us

show that ∃↓≤ and ∀↓≥ result in an undecidable logic.

Theorem 3.28. Let ∃↓< be the operator ∃↓≤ restricted only to the data values oc-
curring strictly before the current point of evaluation. Then, on finite data words:

(1) satisfiability of LTL↓
nnf
(F,G, ∃↓<) is undecidable; and

(2) satisfiability of LTL↓
nnf
(F,G, ∀↓≥) is undecidable.

Proof. We prove (1) and (2) by reduction of the halting problem for Minsky ma-
chines. We show that these logics can code an accepting run of a 2-counter Minsky
machine as in Proposition 3.2. Indeed, we show that the same kind of properties
are expressible in this logic. To prove this, we build upon the proof of Theo-
rem 3.38 showing that LTL↓nnf(F,G) can code conditions (i) and (ii) of the proof of

Proposition 3.2. Here we show that both LTL
↓
nnf(F,G, ∃

↓
<) and LTL

↓
nnf(F,G, ∀

↓
≥) can

express condition (iii), ensuring that for every decrement (deci) there is a previous
increment (inci) with the same data value. Let us see how to code this.

(1) The LTL↓nnf(F,G, ∃
↓
<) formula

G(deci → ∃↓< ↑)

states that the data value of every decrement must not be new, and in the
context of this coding this means that it must have been introduced by an
increment instruction.

(2) The LTL↓nnf(F,G, ∀
↓
≥) formula

∀↓≥(F(deci∧ ↑)→ F(inci∧ ↑))

evaluated at the first element of the data word expresses that for every data
value: if there is a decrement with value d, then there is an increment with
value d. It is then easy to ensure that they appear in the correct order (first
the increment, then the decrement).

The addition of any of these conditions to the coding of the proof of Theorem 3.38.
results in a coding of an n-counter Minsky machine, whose emptiness problem is
undecidable.

3.5. LTL: Upper bounds 41

Corollary 3.29. The satisfiability problem for LTL
↓
nnf
(F, ∃↓≤) and LTL

↓
nnf
(F, ∀↓≥)

are undecidable.

Proof. The property of item (1) in the proof of Theorem 3.28 can be equally coded

in LTL
↓
nnf(F, ∃

↓
≤) as G(X(deci) → ∃↓≤(X ↑)). The undecidability of LTL↓nnf(F, ∀

↓
≥)

follows directly from Theorem 3.28, item (2).

We now turn to our decidability result. We show that LTL↓nnf(F, ∀
↓
≤, ∃

↓
≥) has a

decidable satisfiability problem by a translation to ARA(guess, spread).

The translation to code LTL
↓
nnf(F, ∀

↓
≤, ∃

↓
≥) into ARA(guess, spread) is standard,

and follows same lines as Demri and Lazić (2009)3 (which at the same time follows
the translation from LTL↓ to alternating finite automata). We then obtain the
following result.

Proposition 3.30. ARA(guess, spread) captures LTL
↓
nnf
(F, ∃↓≥, ∀

↓
≤).

From Proposition 3.30 and Theorem 3.5 it will follow the main result, stated
next.

Theorem 3.31. The satisfiability problem for LTL
↓
nnf
(F, ∃↓≥, ∀

↓
≤) is decidable.

We now show how to make the translation to ARA(guess, spread) in order to
obtain our decidability result.

Proof of Proposition 3.30. We show that for every formula ϕ ∈ LTL
↓
nnf(F, ∀

↓
≤, ∃

↓
≥)

there exists an effectively computable ARA(spread, guess) M such that for every
data word w,

w satisfies ϕ iff M accepts w.

The translation for LTL
↓
nnf(F) is like the one described in (Demri and Lazić,

2009) and presents no complications whatsoever. For the coding of the ∀↓≤ operator,
we first make sure to maintain all the data values seen so far as threads of the
configuration. We can do this easily as follows.

δ(q1) := store(q2) δ(q2) := (⊲̄? ∨⊲q1) ∧ qsave δ(qsave) := ⊲̄? ∨⊲qsave

Now we can assume that at any point of the run, we maintain the data values of
all the previous elements of the data word as threads (qsave, d). Note that these
threads are maintained until the last element of the data word, at which point the
test ⊲̄? is satisfied and they are accepted. At the last element we cannot be sure
to have the qsave threads with the data needed, but this is not a problem. In fact, a
∀↓≤ operator evaluated at the last element of a word can be simulated without using

the ∀↓≤, as the last element is a distinguished one. That is, a formula ∀
↓
≤(X̄⊥ ∧ ϕ)

results in the same automaton as the translation of G(↓ F(X̄⊥∧ϕ)). Then, for the

3 Note that this logic already contains LTL↓(U,X).

42 3. Data words

inner nodes we translate a formula ∀↓≤(X⊤ ∧ ϕ) as δ(q) := ⊲? ∧ spread(qsave, qϕ),
where qϕ codes the formula ϕ.

On the other hand, a formula like ∃↓≥ϕ is simply translated as δ(q) = guess(q′)
with δ(q′) = qϕ∧qF↑, where δ(qϕ) is the translation of ϕ and δ(qF↑) is the translation
of F ↑.

Moreover, we argue that these extensions add expressive power.

Proposition 3.32. On finite data words:

(i) The logic LTL
↓
nnf
(F, ∀↓≤) is more expressive than LTL

↓
nnf
(F);

(ii) The logic LTL
↓
nnf
(F, ∃↓≥) is more expressive than LTL

↓
nnf
(F).

Proof. This is a consequence of LTL↓nnf(F) being closed under negation and Theo-

rem 3.28. Ad absurdum, if one of these logics were as expressive as LTL↓nnf(F), then
it would be closed under negation, and then we could express conditions (1) or (2)

of the proof of Theorem 3.28 and hence obtain that LTL↓nnf(F) is undecidable. But

this leads to a contradiction since by Theorem 3.31 LTL
↓
nnf(F) is decidable.

Remark 3.33. The translation of Proposition 3.30 is far from using all the expressive
power of spread. In fact, we can consider a binary operator ∀↓≤(ϕ, ψ) defined

w, i |=d ∀↓≤(ϕ, ψ) iff for all j ≤ i such that w, j |=d(j) ψ, we have w, i |=d(j) ϕ.

with ψ ∈ LTL
↓
nnf(F). This operator can be coded into ARA(guess, spread), using

the same technique as in Proposition 3.30. The only difference is that instead of
‘saving’ every data value in qsave, we use several states qsave(ψ). Intuitively, only
the data values that verify the test ↓ ψ are stored in qsave(ψ). Then, a formula

∀↓≤(ϕ, ψ) is translated as spread(qsave(ψ), qϕ).

3.5.2 Ordered data

If we consider a linear order over D as done in Section 3.3.3, we can consider
LTL

↓
nnf(F, ∃

↓
≥, ∀

↓
≤) with richer tests

ϕ ::= ↑> | ↑< | . . .

that access to the linear order and compare the data values for =, <,>. The
semantics are extended accordingly, as in Figure 3.5. Let us call this logic
ord -LTL↓nnf(F, ∃

↓
≥, ∀

↓
≤). The translation from ord -LTL↓nnf(F, ∃

↓
≥, ∀

↓
≤) into ARA(guess,

spread, <) as defined in Section 3.3.3 is straightforward. Thus we obtain the fol-
lowing result.

Proposition 3.34. Finitary satisfiability problem for ord-LTL↓
nnf
(F, ∃↓≥, ∀

↓
≤) is de-

cidable.

3.6. LTL: Lower bounds 43

(w, i) |=d ↑> iff d > d(i)

(w, i) |=d ↑< iff d < d(i)

Fig. 3.5: Semantics for the operators ↑>, ↑< for a data word w = a⊗ d and i ∈ pos(w).

3.6 LTL: Lower bounds

We consider fragments of LTL with registers, where we can only perform navigation
to a future or a past element (i.e., no X, X−1 modalities). In this section we make
an explicit distinction between the strict and non-strict future modalities. We write
Fs to denote the strict version of F, which is defined as XF. Notice that although
F can be defined in terms of Fs, the converse does not hold. The fragments treated
here are those whose operators are among F, F−1, Fs, Fs

−1.

We prove that the satisfiability problem for LTL↓(F) has non-primitive recur-
sive complexity, and that LTL↓(F,F−1) has an undecidable satisfiability problem.

Further, we also show that if we have two registers, then LTL
↓
2(F) is also undecid-

able. All these results are known to hold when we have the next modality X at
our disposal by (Demri and Lazić, 2009). Removing the X modality is not at all
trivial, and requires a coding trick that allows to weakly simulate the behavior of
X with the use of data values.

All the results of the present Section are a joint work with Luc Segoufin and
appeared in (Figueira and Segoufin, 2009). In Section 4.5 we will lift our results to
trees and XPath. In order to do this it is convenient to introduce now a restriction
of LTL↓ such that with this restriction LTL↓ corresponds to XPath.

Definition 3.35 (sLTL↓). A formula of LTL↓ is said to be simple if (i) there is
at most one occurrence of ↑ within the scope of each occurrence of ↓ and, (ii)
there is no negation between an occurrence of ↑ and its matching ↓, except maybe
immediately before ↑. We denote by sLTL↓ the fragment of LTL↓ containing only
simple formulæ.4

The correspondence between sLTL↓ and XPath will be made explicit in Propo-
sition 4.2 of Section 4.5. We show that the satisfiability problem for sLTL↓(Fs) has
non-primitive recursive complexity, while for sLTL↓(Fs,Fs

−1) is undecidable.

All non-primitive recursive lower bounds are shown by reduction from the
emptiness problem for the class of Incrementing Counter Automata introduced
in Section 2.4.5. The undecidability results are shown by reduction from Counter
Automata.

4 This fragment has no connection with the simple fragment defined by Demri and Lazić (2009).

44 3. Data words

3.6.1 The case of simple-LTL

In this section we show that satisfiability of sLTL↓(Fs) is non primitive recursive over
data words. We then prove that satisfiability is undecidable for sLTL↓(Fs,Fs

−1). In
the next section we will show that the logic LTL↓(F) is also non primitive recur-
sive and that LTL↓(F,F−1) is undecidable. Although this fragment appears to be
artificial, remember that it has a special interest since it will permit us to deduce
lower bounds for several XPath fragments (Section 4.5).

Lower bound for sLTL↓(Fs).

Theorem 3.36. Satisfiability of sLTL↓(Fs) on data words is non primitive recur-
sive.

Proof. We exhibit a PTime reduction from the non-emptiness of ICA to satisfia-
bility of sLTL↓(Fs). Let C = 〈A, Q, q0, n, δ, F 〉 be an ICA.
Let L = {(inci)1≤i≤n, (deci)1≤i≤n, (ifzeroi)1≤i≤n}, and Â = Q×(A∪{ε})×L×Q.
We construct a formula ϕC ∈ sLTL↓(Fs) that is satisfied by a data word iff C accepts
the word. We view a run of C of the form:

〈q0, v0〉
a,inci
 〈q1, v1〉

b,decj
 〈q2, v2〉

b,ifzeroi
 〈q3, v3〉 · · ·

as a string in Â:

〈q0, a, inci, q1〉 〈q1, b, decj , q2〉 〈q2, b, ifzeroi, q3〉 · · ·

The formula ϕC will force that any string that satisfies it codes a run of C. In
order to do this, ϕC must ensure that:

(begin) the string starts with q0,

(end) the string ends with a state of F ,

(tran) every symbol of Â in the string corresponds to a transition of C,

(chain) the last component of a symbol of Â is equal to the first component of
the next symbol,

(pair) for each i, every symbol that contains inci occurring in the string to the
left of a symbol containing ifzeroi, can be paired with a symbol containing
deci and occurring in between the inci and the ifzeroi.

Before continuing let us comment on the (pair) condition. If we were coding
runs of a perfect Minsky CA (ie, with no incremental errors), to the left of any
position containing a ifzeroi, we would require a perfect matching between inci
and deci operations in order to make sure that the value of the counter i is indeed
zero at the position of the test. But as we are dealing with ICA, we only need to
check that each inci has an associated deci to its right and before the test for zero,

3.6. LTL: Lower bounds 45

1

c0

2

N

1

#

2

c1

4

@

3

N

2

#

3

c2

4

N

3

#

4

c3

5

N

4

· · ·

b1 b2 b3 b4

Fig. 3.6: Coding of an ICA run.

but we do not enforce the converse, that all deci match an inci. This is fortunate
because this would require past navigational operators.

The first difficulty comes from the fact that (pair) is not a regular relation.
The pairing will be obtained using data values. The second difficulty is to enforce
(chain) without having access to the string successor relation. In order to sim-
ulate the successor relation we add extra symbols to the alphabet, with suitable
associated data values.

Let A′ = Â ∪ {N, #, @}. The coding of a run consists in a succession of blocks.
Each block is a sequence of 3 or 4 symbols, “c N #” or “c @ N #”, with c ∈ Â. The
data value associated to the c and # symbols of a block is the same and uniquely
determines the block: no two blocks may have the same data value. The data value
associated with the symbol N of a block is the data value of the next block. If a
block contains a symbol c that codes a inci operation that is later in the string
followed by a ifzeroi, then this block contains a symbol @ whose data value is the
that of the block containing deci that is paired with c.

For instance in the example of Figure 3.6 one can see four blocks b1, b2, b3, b4.
Each of them starts with a symbol from Â coding a transition of the ICA and ends
with a # with the same data value marking the end of the block. Inside the block,
the data value of N is the same as the data value of the next block. The data value
of @ corresponds to that of a future block. In this example c1 must correspond to
a inci while c3 to deci and there must be a ifzeroi somewhere to the remaining
part of the word (say, b5). Moreover c2 can’t be a ifzeroi as otherwise the data
value of the symbol @ would refer to a block to the left of c2.

We now show that the coding depicted above can be enforced in sLTL↓(Fs). By
π1, π2, π3, π4 we denote the projection of each symbol of Â into its corresponding
component. To simplify the presentation we use the following abbreviations:

σ̂ ≡
∨

c∈Â

c inc(i) ≡
∨

c∈Â,π3(c)=inci

c inc ≡
∨

i

inc(i)

dec(i) ≡
∨

c∈Â,π3(c)=deci

c last ≡ σ̂ ∧ ¬Fs σ̂ iz(i) ≡
∨

c∈Â,π3(c)=ifzeroi

c

The formula ϕC that we build is the conjunction of all the folowing formulæ.

Forcing the structure.

46 3. Data words

G(last⇒ ¬Fs⊤) : The string ends with the last transition,

∧

c∈{N,@,#} G(c⇒ ¬(↓ Fs(c∧ ↑))) : the data value associated to each N, # and @ uniquely
determines the occurrence of that symbol,

G
(

(σ̂ ∧ ¬last)⇒ (↓ Fs(N ∧ Fs(#∧ ↑)))
)

: each occurrence of Â (except the last one) is
in a block that contains a N and then a #,

∧

iG
(

(inc(i) ∧ Fs(iz(i)))⇒ ↓ Fs(@ ∧ Fs(N ∧ Fs(#∧ ↑)))
)

: every inci block to the left of
a ifzeroi must have a @ before the N,

G((σ̂ ∧ ¬inc)⇒ ¬ ↓ Fs(@ ∧ Fs(#∧ ↑))) : only blocks inc are allowed to have a @,

∧

s∈{N,@} G
(

σ̂ ⇒ ¬(↓ Fs(s ∧ Fs(s ∧ Fs(#∧ ↑))))
)

: there is at most one occurrence of N

and @ in each block,

∧

s∈Â∪{#} G(σ̂ ⇒ ¬ ↓ Fs(s ∧ Fs(#∧ ↑)) : there is exactly one symbol # and one symbol

of Â per block,

G
(

N⇒↓ Fs(# ∧ Fs(σ̂∧ ↑))
)

: each symbol N’s datum points to a block to its right,

G(N⇒ ¬ ↓ Fs(# ∧ Fs(# ∧ Fs(σ̂∧ ↑)))) : in fact N has has to point be the next block.

Once the structure has the expected shape, we can enforce the run as follows.
All the formulæ below are based on the following trick. In a test of the form
↓ Fs(N ∧ Fs(#∧ ↑)) which is typically performed at a position of symbol Â, the last
symbol # must have the same data value as the initial position. Hence, because of
the structure above, both must be in the same block. Thus the middle symbol N
must also be inside that block. From the structure we know that the data value
of this N points to the next block. Therefore by replacing the test N by one of
the form N∧ (↓ Fs(↑ ∧ s)) we can transfer some finite information from the current
block to the next one. This gives the desired successor relation.

Forcing a run.

(begin)
∨

c∈Â,π1(c)=q0

c

(end)

Fs

(

last ∧
∨

c∈Â,π4(c)∈F

c
)

(tran) All elements used from Â correspond to valid transitions. Let ÂC be that
set of transitions of C,

G
(

∧

c∈Â\ÂC

¬c
)

3.6. LTL: Lower bounds 47

(chain) For every c ∈ Â,

G
(

c⇒
(

↓ Fs
(

N ∧ Fs(#∧ ↑) ∧
∨

d∈Â,
π4(c)=π1(d)

(↓ Fs(d∧ ↑))
))

)

(pair) We first make sure that the block of the @ of an inck is matched with a
block of a deck:

∧

k

G
(

inc(k)⇒

(

¬ ↓ Fs(@ ∧ Fs(#∧ ↑))∨ ↓ Fs
(

@∧ ↓ Fs(dec(k)∧ ↑) ∧ Fs(#∧ ↑)
)

))

Now, every inck block to the left of a ifzerok block:

1. The block must contain an @ element:
∧

k

G
(

inc(k)⇒
(

↓ Fs(@ ∧ Fs(#∧ ↑)) ∨ ¬Fs(iz(k))
))

2. The data value of that @ element must point to a future block before
any occurrence of ifzerok:

∧

k

G
(

inc(k)⇒ ¬
(

↓ Fs
(

@∧ ↓ Fs(iz(k) ∧ Fs ↑) ∧ Fs(#∧ ↑)
)))

This concludes the construction of ϕC .

Correctness. Given an ICA C, the proof exhibited a formula ϕC ∈ sLTL↓(Fs)
that is satisfied by a data word iff C accepts the word. We show here that the
construction is correct.

From data word to an accepting ICA run. Let w be a data word satisfying ϕC .
Let B1B2 · · ·Bm be the decomposition of w into blocks as described above. Let
ci = 〈qi, ai, ℓi, qi+1〉 be the element of Bi in Σ̂. We show that w′ = a1a2 · · · am is
accepted by C. We construct a run of C on w′ such that C is in state qi before
reading letter ai of w

′ and execute the transitions ci. By (tran) each one of
these are valid transitions of the ICA, and (chain) ensures that the sequence is
consistent. (begin) takes care of the initialization condition and (end) of the
accepting condition. It remains to construct the valuation v1, . . . , vm+1 of the

counter at each step such that we have 〈qi, vi〉
ai,ℓi
 〈qi+1, vi+1〉 as desired.

As expected v1 is the zero valuation. We construct the rest of the valuations
by induction, simulating a perfect counter machine and introducing incrementing
errors in a lazy way, whenever necessary. At step i, given a transition 〈qi, ai, ℓi, qi+1〉

and the current valuation vi we set vi+1 such that 〈qi, vi〉
ai,ℓi
 〈qi+1, vi+1〉.

48 3. Data words

• If ℓi is inck, then vi+1 := vi[k 7→ vi(k)+1] and clearly 〈qi, vi〉
ai,ℓi→ 〈qi+1, vi+1〉.

• If ℓi is deck then:

– If vi(k) > 0 then vi+1 := vi[k 7→ vi(k)− 1].

– If vi(k) = 0, then vi+1 := vi.

In both cases one can verify that 〈qi, vi〉
ai,ℓi
 〈qi+1, vi+1〉, the transition being

with an incrementing error of 1 in the second case.

• If ℓi is ifzerok, we set vi+1 := vi. To ensure that 〈qi, vi〉
ai,ℓi
 〈qi+1, vi+1〉

we must show that necessarily vi(k) = 0. This is a consequence of condition
pair. This condition enforces that each inck must be paired with a unique
deck to its right and before the ifzerok test. Hence the lazy strategy above
ensures that each increment is decremented later on and before the zero test.

From an accepting ICA run to a data word. Given an accepting run of the ICA

〈q1, v1〉
a1,ℓ1
 〈q2, v2〉

a2,ℓ2
 . . .

am,ℓm
 〈qm+1, vm+1〉 we construct a data word w veri-

fying ϕC as follows. Let ci be 〈qi, ai, ℓi, qi+1〉. w consists of a concatenation of m
blocks B1B2 · · ·Bm each one defined:

• If i = m, Bi is the word ci with data value m.

• If i < m, and ℓi ∈ {deck, ifzerok}, then set Bi to ciN# with respective data
values i, i+ 1, i.

〈ci, i〉〈N, i+ 1〉〈#, i〉

• If i < m and ℓi is inck. Consider the minimal d > i such that vd+1(k) = vi(k)
and set Bi to

– ci @ N # with respective data values i, d, i+ 1, i if d exists

– ci N # with respective data values i, i+ 1, i if not.

This construction assigns the unique data value i to each block Bi, and set the
data value of each symbol N to the data value of the next block Bi+1. The con-
straints (begin), (end), (tran), (chain) are obviously true. It remains to verify
the constraints on @: they must have a unique data value, must point to a cor-
responding dec instruction that occur before any corresponding zero test, and no
two @ may point to the same dec instruction. Consider a position i such that ℓi is
inck with a subsequent zero test ifzerok at position j > i. Because the zero test
is correct, the increment of counter k made at step i must be decremented at some
position between i and j. Hence there is a i < d < j such that vd+1(k) = vi(k).
By construction the data value of the @ symbol of Bi is the minimal such d. By
minimality, cd must be a deck instruction. Assume now that at position i′ < i
there is also a inck instruction. The data value of the @ symbol of Bi′ cannot be

3.6. LTL: Lower bounds 49

d. Because if this would be the case then vi′(k) = vd+1(k) = vi(k) and d would not
be minimal for the position i′. Hence (pair) is also satisfied and w |= ϕC .

This concludes the proof that the finitary satisfiability problem for sLTL↓(Fs)
has non-primitive recursive complexity.

Undecidability of sLTL↓(Fs,Fs
−1)

We now consider sLTL↓(Fs,Fs
−1). The extra modality can be used to code the run

of a (non faulty) Minsky CA.

Theorem 3.37. Satisfiability of sLTL↓(Fs,Fs
−1) is undecidable.

Proof. Consider a Minsky CA C. We revisit the proof of Theorem 3.36. It is easy
to see that we can enforce the absence of faulty increments during the run by asking
that every deci element is referenced by some previous inci block:

∧

i G(dec(i)⇒
↓ Fs

−(@∧ ↑)). We thus make sure that every dec is related to a corresponding inc.
Hence, the coding is that of a perfect (non faulty) run.

3.6.2 The case of LTL

In this section we lift the lower bounds of the previous section by considering the
temporal operator F instead of Fs. We can only do so by removing at the same
time the restriction to simple formulæ. Hence the results of this section cannot be
applied to XPath. Notice that LTL↓(F) and sLTL↓(Fs) are incomparable in terms of
expressive power. Indeed, properties like ↓ F(a∧↑̄∧F(b∧ ↑)) cannot be expressed in
sLTL↓(Fs), while LTL

↓(F) cannot express that the model has at least two elements.
We do not know whether sLTL↓(F), which is weaker than the two above mentioned
logics, is already non primitive recursive. The results of this section improve the
results of Demri and Lazić (2009) which show that satisfiability is non primitive
recursive for LTL↓(X,F) and undecidable for LTL↓(X,F,F−1).

Theorem 3.38. Over data words,

(1) Satisfiability of LTL↓(F) is decidable and non primitive recursive.

(2) Satisfiability of LTL↓(F,F−1) is undecidable.

Proof. We concentrate first on Item (1), the proof of Item (2) being similar.

Item (1). Consider an ICA C and recall the coding of runs of C used in the
proof of Theorem 3.36. In the construction of the formula ϕC , whenever we have
“s∧Fs(s

′ ∧ϕ)” for some ϕ and s 6= s′ two different symbols, Fs can be equivalently
replaced by the F temporal operator. This is the case in all formulæ except in
three places:

(i) The formula saying that N should point to the next block contains #∧Fs(#∧ϕ).
But from the structure that is enforced, this can equivalently be replaced by
∧ F(N ∧ F(# ∧ ϕ)).

50 3. Data words

1

c0

1

c0

2

N

1

#

1

#

2

c1

4

@

4

@

7

@

3

N

2

#

8

#

3

c2

4

N

4

N

3

#

4

c3

4

c3

5

N

4

#

4

· · ·

b1 b2 b3 b4

Fig. 3.7: LTL↓(F) cannot avoid having repeated consecutive symbols.

(ii) To enforce that each block contains at most one occurrence of symbols in
Â ∪ {N, #, @}.

(iii) To enforce that no two symbols in Â ∪ {N, #, @} have the same data value.

In order to cope with (ii) and (iii), we use a slightly different coding for runs of
C. This coding is the same as the one for the proof of Theorem 3.36 except that
we allow succession of equal symbols, denoted as group in the sequel. Note that in
a group two different occurrences of the same symbol in general may have different
data values, as we can no longer enforce their distinctness. However, as we will
see, we can enforce that the Â group of elements of a block have all the same data
value.

Hence a block is now either a group of c ∈ Â followed by a group of N followed
by a group of # or the same with a group of @ in between. A coding of a run is
depicted in Figure 3.7.

This structure is enforced by modifying the formulæ of the proof of Theo-
rem 3.36 as follows.

(a) The formulæ that limit the number of occurrences of symbols in a block are
replaced by formulæ limiting the number of groups in a block.

(b) The formulæ requiring that no two occurrences of a same symbol may have the
same data values are replaced by formulæ requiring that no two occurrences
of a same symbol in different groups have the same data value.

(c) In all other formulæ, Fs is replaced by F.

(d) Finally, we ensure that although we may have repeated symbols inside a block,
all symbols from Â have the same data value.

G(σ̂ ⇒ ¬ ↓ F((σ̂ ∨ #) ∧ ¬ ↑ ∧F(#∧ ↑)))

Note that this implies that each N of a group must have the same data values
as they all point to the next block. However there could still be @ symbols
with different data values as depicted in Figure 3.7.

The new sentences now imply, for instance, that:

3.6. LTL: Lower bounds 51

• Every position from a group of c ∈ Â have the same data value which is later
matched by an element of a group of #.

• Every position from a group of N has the same data value as a position c ∈ Â

of the next block (and then, it has only one possible data value).

• Every position from a group @ has the same data value as a position c ∈ Â

of a block to its right. Note that the data values of two @ of the same group
may correspond to the data values of symbols in different blocks. This is
basically the main conceptual difference with the previous proof.

The proof of correctness of the construction is left to the reader.

Item (2). Consider a Minsky Counter Automaton C. We revisit the previous
proof. We modify the coding of a run of C by also inserting a group of symbols @
in each dec block. Using F−1, we add formulæ ensuring that every block containing
a dec instruction also contains a group of @ symbols such that their data values
refer to previous blocks containing a matching inc instruction. We also make sure
that two @ from different blocks have different data values. All this can be done
by taking the F−1 counterpart of the formulæ we constructed with F.

We show that the new formula ϕC is satisfied by a data word iff C accept the
word. Constructing a data word that satisfies ϕC from a word accepted by C is
done as in the proof of Theorem 3.36.

For the other direction one needs to show that from a word that satisfies ϕC ,
the corresponding word with the obvious run and obvious valuations of the counter
is accepting for C. One can verify that the new extra conditions do imply that no
null counter is ever decreased and each zero test is correct, based on the fact that
for every deci there must be at least one inci to its left, and for every inci there
must have a related deci before any ifzeroi test.

Note that in the previous proof we used the fact that LTL↓(F), although it has
only one register, can make (in)equality tests several times throughout a path (as
used in the formula of item (d) in the proof), something that sLTL↓(Fs) and XPath

cannot do.

Two registers. When 2 registers are available the previous result can be adapted
to code a (non faulty) Minsky CA with a strategy similar to (Demri and Lazić,

2009, Theorem 5.4). The semantics of LTL↓2(F) extend those of LTL
↓(F), by having

two registers instead of just one. There are two store operators: ↓1 and ↓2, one
for storing a data value in the first register, and the other in the second register.
Similarly there are two test operators ↑1 and ↑2 for testing whether the current
data value is equal to the first register, or to the second register. The semantics
are extended in the obvious way. We then have the following statement.

Theorem 3.39. Satisfiability of LTL↓2(F) is undecidable over data words.

52 3. Data words

c
I

0

1

h

1

l N # c
I

1

2

h

1

l N #c
D

2

3

h

1

l N # c
I

3

3

h

2

l N # c
I

4

4

h

2

l N #c
D

5

5

h

2

l N #c
D

6

5

h

3

l N #c
D

7

5

h

4

l N # c
Z

8

5

h

5

l N # · · ·

inc inc dec inc inc dec dec dec ifzero

Fig. 3.8: Coding of a 1-counter machine run. Only data values of the h and l symbols are
represented for the sake of clarity. Only one symbol per group is also represented.
Elements depicted as cIi , c

D
i and cZi correspond, respectively, to increment, decre-

ment and zero testing symbols of Σ̂.

Proof. We adapt the proof of part 1. of Theorem 3.38 using ideas already present
in (Demri and Lazić, 2009; Lisitsa and Potapov, 2005) for coding Minsky CA with
only forward temporal operators. Fix a two counter machine C = 〈Σ, Q, q0, 2, δ, F 〉.
The main idea is to modify the coding of Theorem 3.38 by adding in each block
a symbol h1 whose data value is supposed to be the one of the last inc1 that has
previously occurred, a symbol l1 whose data value is supposed to be the one of
the last inc1 that has not been decreased yet and similarly with h2 and l2 for the
second counter. A zero test of counter 1 can then only occur in a block where the
data values of h1 and l1 match. The coding is depicted in Figure 3.8.

Based on these ideas, the formula ϕC that we construct makes sure that:

(i) The structure. We enforce a structure that is a sequence of blocks of the form
“〈q, w, l, q′〉h1l1h2l2N#”, with the possibility that there are repeated consecu-
tive symbols. This can be done in the same way we did before.

As for the previous codings, we demand that in each block, for every element
in the first group of Σ̂ symbols there is an element in the last group of symbols
with the same data value. This is enforce with a formula of LTL↓(F) as
before.

With the help of the second register we can now enforce that each group of
symbols has the same data value, for all symbol s we have the formula:

G
(

σ̂ ⇒↓1 ¬F
(

s∧ ↓2 F (s ∧ ¬ ↑2 ∧F(#∧ ↑1))
))

(ii) Each 〈q, w, l, q′〉 occurring in the string is in δ. For the first one q = q0, and
for the last one q′ ∈ F . For any 〈q, w, l, q′〉 and 〈q′′, w′, l′, q′′′〉 in consecutive
blocks, q′ = q′′. This can be checked just as in the previous codings.

(iii) In the initial block, the data values of h1 and l1 are the same and the data
values of h2 and l2 are the same (we only show the formula for h1 and l1):

↓1 ¬F
(

h1∧ ↓2 F(l1 ∧ ¬ ↑2 ∧F(#∧ ↑1))
)

(iv) In any block immediately after a ifzero instruction, the data values of h1,
l1, h2, l2 are identical to those of the ifzero instruction. We only give the
formula for ifzero1 instruction with the h1 symbol.

3.6. LTL: Lower bounds 53

¬F
(

iz(1)∧ ↓1 F
(

h1∧ ↓2 F(ψ ∧ F(#∧ ↑1))
))

where ψ ≡ N∧ ↓1 F(h1 ∧ ¬ ↑2 ∧F(#∧ ↑1))

(v) In any block immediately after an inc1 instruction, h1 is not in the same class
as any preceding h1 (stated in the formula below) and l1, h2, l2 are in the
same class as in the previous block (this can be stated using a formula similar
to the one for for item (iv)).

¬F
(

h1∧ ↓1 F
(

inc(1)∧ ↓2 ∧F(ϕ ∧ F(#∧ ↑2))
))

where ϕ ≡ N∧ ↓2 F
(

↑2 ∧F(h1∧ ↑1 ∧F(#∧ ↑2))
)

We have of course corresponding formulæ for blocks with inc2 instructions.

(vi) In any dec1 block, h1 and l1 have different data values.

¬F
(

dec(1)∧ ↓1 F
(

h1∧ ↓2 F(l1∧ ↑2 ∧F(#∧ ↑1))
))

We have a corresponding formula for blocks with a dec2 instruction.

(vii) In any ifzero1 block, h1 and l1 have the same data value. This can be
expressed with a formula as above. We have a corresponding formula for
ifzero2 blocks.

(viii) In any block immediately after a dec1 block B,

h1 is in the same class as the previous h1, and

l1 is in the same class as the h1 occurring in a block immediately after
the rightmost block (occurring before B) with a h1 that is in the same class
as the l1 of B.

h2 and l2 are in the same class as their corresponding symbol of B.

The first and third conditions can be expressed using formulæ similar to
those above. The difficult part is to enforce the second condition. For this
we introduce some macros:

InBlocki(ϕ) ≡↓i F(ϕ ∧ F(#∧ ↑i))

NextBlocki(ϕ) ≡↓i F(N ∧ F(#∧ ↑i)∧

↓i F(σ̂ ∧ ϕ ∧ F(#∧ ↑i)))

InNextBlocki(ϕ) ≡ NextBlocki(InBlocki(ϕ))

The second condition can then be stated:

¬F
(

σ̂∧ ↓2 F
(

h1∧ ↓1 F
(

N ∧ F(#∧ ↑2)∧

↓2 F(σ̂∧ ↑2 ∧F(h1 ∧ ¬ ↑1 ∧ ↓2 ϕ))
)

))

where ϕ ≡ F
(

dec(i) ∧ InBlock2(l1∧ ↑1) ∧ InNextBlock1(l1 ∧ ¬ ↑2)
)

We have a corresponding formula for blocks following a dec2 instruction.

54 3. Data words

Logic Complexity Details

LTL↓(F) NPR, decidable Thm. 3.38 & (Demri and Lazić, 2009)

LTL↓(F,F−1) undecidable Thm. 3.38

LTL
↓
2(F) undecidable Thm. 3.39

sLTL↓(Fs) NPR, decidable Thm. 3.36 & (Demri and Lazić, 2009)

sLTL↓(Fs,Fs
−1) undecidable Thm. 3.37

Fig. 3.9: Summary of results. NPR stands for a non-primitive recursive lower bound.

By (Demri and Lazić, 2009) it is known that satisfiability of LTL↓(X,F) with
infinite data words is undecidable. The proof of Theorem 3.38 can be extended to
code runs of ICA over infinite data words, which is known to be undecidable, to
show that this result already holds in the absence of X.

Theorem 3.40. On infinite data words, the satisfiability problem of LTL↓(F) is
undecidable.

Proof. Consider an ICA C that runs over infinite words and has a Büchi accepting
condition, and let us call it ICAω. It is known that emptiness of ICAωover infinite
words is undecidable (see Demri and Lazić, 2009, Theorem 2.9). We then modify
the proof of Theorem 3.38 in order to code runs of C over infinite data words.
The only thing that needs to be changed in the original coding of the proof of
Theorem 3.38 is (end) in order to reflect the accepting conditions of ICAω. This
can be done by the following formula:

(end’)

G

(

Fs

(

∨

c∈Σ̂,
π1(c)∈F

c

))

3.7 Discussion

It would be interesting to know whether the strictness of the axis Fs is necessary
to obtain the non primitive recursiveness of sLTL↓(F). Note that the proof of
Theorem 3.36 uses in an essential way the possibility to make (in)equality tests
several times throughout a path. This is exactly what cannot be expressed in
sLTL↓(F).

Question 3.41. Is satisfiability of sLTL↓(F) on data words primitive recursive?

In Figure 3.9 we summarize the main results and some of the consequences we
have mentioned.

Part II

TREES

4. TREES WITH DATA

This chapter is introductory to our results on data trees of future chapters.
In this chapter we introduce the basic definitions for data trees, and the query

language XPath. Along this thesis we will work on XPath over data trees, although
it is originally a language for xml documents. We take this decision because
data trees are a simpler formalism to work with. Notably, all the results we will
present on XPath over data trees imply similar results over xml documents. How
to transfer these results into similar results on xml documents will be included in
each individual chapter.

Finally, Section 4.5 contains some lower bounds and undecidability results of
XPath fragments, which are a consequence of the lower bound results on LTL↓

obtained in Part I.

4.1 Preliminaries

We formally define what is a data tree and an xml document. Later in Section 4.2
we define XPath over these models.

4.1.1 Unranked ordered finite trees

We define Trees(E), the set of finite, ordered and unranked trees over an alphabet
E. A position in the context of a tree is an element of (N+)

∗. The root’s position
is the empty string and we note it ‘ǫ’. The position of any other node in the tree is
the concatenation of the position of its parent and the node’s index in the ordered
list of siblings. Along this work we write ‘·’ for the concatenation operator, and
we use x, y, z, w, v as variables for positions, while i, j, k, l,m, n as variables for
numbers. Thus, for example x·i is a position which is not the root, and that has x
as parent position, and there are i− 1 siblings to the left of x·i.

Formally, we define POS ⊆ ℘<∞((N+)
∗) as the set of sets of finite tree positions,

such that: X ∈ POS iff (a) X ⊆ (N+)
∗, |X| <∞; (b) it is prefix-closed; and (c) if

n·(i+1) ∈ X for i ∈ N+, then n·i ∈ X. A tree is a mapping from a set of positions
to letters of the alphabet

Trees(E) := {t : P → E | P ∈ POS} .

Given a tree t ∈ Trees(E), pos(t) denotes the domain of t, which consists of the
set of positions of the tree, and alph(t) = E denotes the alphabet of the tree. From
now on, we informally refer by ‘node’ to a position x together with the value t(x).

57

58 4. Trees with data

a, 2

a, 2 b, 2

b, 9 b, 5 b, 3

a, 2 b, 1 b, 2

Fig. 4.1: A data tree.

We define the ancestor partial order � as the prefix relation x � x·y for every x·y,
and the strict version ≺ as the strict prefix relation x ≺ x·y for |y| > 0. Given
a tree t and x ∈ pos(t), ‘t|x’ denotes the subtree of t at position x. That is,
t|x : {y | x·y ∈ pos(t)} → alph(t) where t|x(y) = t(x·y). In the context of a tree t,
a siblinghood is a maximal sequence of siblings. That is, a sequence of positions
x·1, . . . , x·l ∈ pos(t) such that x·(l + 1) 6∈ pos(t).

Given two trees t1 ∈ Trees(E), t2 ∈ Trees(F) such that pos(t1) = pos(t2) = P ,
we define t1 ⊗ t2 : P → (E×F) as (t1 ⊗ t2)(x) = (t1(x), t2(x)).

The set of data trees over a finite alphabet A and an infinite domain D is
defined as Trees(A×D). Note that every tree t ∈ Trees(A×D) can be decomposed
into two trees a ∈ Trees(A) and d ∈ Trees(D) such that t = a⊗d. Figure 4.1 shows
an example of a data tree. We define the tree type as a function typet : pos(t)→
{▽, ▽̄} × {⊲, ⊲̄} that specifies whether a node has children and/or siblings to the
right. That is, typet(x) := (a, b) where a = ▽ iff x·1 ∈ pos(t), and where b = ⊲ iff
x = x′·i and x′·(i+ 1) ∈ pos(t). The notation for the set of data values used in a
data tree is

data(a⊗ d) := {d(x) | x ∈ pos(d)} .

With an abuse of notation we write data(X) to denote all the elements of D con-
tained in X, for whatever object X may be.

4.1.2 XML

An xml document can be seen as a tree whose every element has one label from a
finite alphabet A and a set of data values indexed by some finite alphabet B. This
is called the set of attributes of the node. In other words, we consider that an xml

document is an element of

Trees(A× ℘<∞(B× D))

for A and B finite alphabets, and D some infinite domain.
Note that this model is more general than the class of data trees, since a

data tree can be seen as an xml with a singleton set of attributes at each node.
But at the same time, an xml document can also be coded as a data tree from
Trees((A ∪ B) × D), by coding the attributes of a node x labeled by A, as leaves
x·i labeled by B. We will come back to this discussion in later chapters, verifying

4.1. Preliminaries 59

in every case that all the results obtained on data trees can be transferred to the
class of xml documents.

4.1.3 Types and dependencies

In the context of xml research, it is sometimes important to restrict the static
analysis tasks to a subclass of ‘valid’ (in the context of the problem) xml docu-
ments. We next define some concepts in terms of data trees, since this is the model
we will mostly work on along this thesis, but all these notions apply also to xml

documents.

The subclasses of trees are generically called document types, and they define
a subclass of data trees of particular interest. For example, in the context of a
data tree modeling a library, we would be interested in documents where all nodes
labeled book have exactly one child labeled ISBN and at least one child labeled
author.

Given a document type T and a query Q defined in some language, we want
to answer the question “Is there a document satisfying T such that Q answers a
nonempty result?”. Let us briefly examine some of the possibilities to define a
type.

DTDs. A widely spread language for defining document types is the DTD (for
Document Type Definition). DTDs allow to define a class of data trees, by taking
into account the finite labeling of the tree. For the purpose of this thesis, it suffices
to know that any DTD defines a regular language, although the converse is not
true.

Functional dependencies. In addition to restrictions on the finite labeling of the
tree, we can also demand restrictions on the data values.

• Primary key: In the example above, we could also ask that all the nodes
labeled ISBN have different data value. The primary key constraint pk(a) can
be stated as follows: “Every pair of different elements labeled by a contain
different data values”. Here, a is an attribute value.

• Restricted primary key: It is also sensible to ask that inside the subtree
rooted at a book-node, all the authors have different data value, as it would
make no sense to have two authors with the same name in the same book.
The restricted primary key constraint pk(a, b) states “Every subtree with a
root labeled by b verifies pk(a)”.

• Inclusion dependency: In the example just seen, suppose we have somewhere
in the tree structure a list of recommended authors to show in the web page
of the library. We could want as a rule, that there is at least one book of
each of the featured authors. The inclusion dependency constraint dep(a, b)

60 4. Trees with data

states “For every node labeled a there exists a node labeled b with the same
data value”.

4.2 XPath on data trees

In this section we define XPath over data trees. Although all our results will be
over data trees, in the next section we also define XPath over xml documents. This
is done because in future chapters we will explain how all our results on XPath on
data trees can be translated into similar results over xml documents.

4.2.1 Introduction

XPath is arguably the most widely used xml query language. It is implemented in
XSLT and XQuery and it is used as a constituent part of several specification and
update languages. XPath is fundamentally a general purpose language for address-
ing, searching, and matching pieces of an xml document. It is an open standard
and constitutes a World Wide Web Consortium (W3C) Recommendation (Clark
and DeRose, 1999), implemented in most languages and xml packages.

An important static analysis problem of a query language is that of optimiza-
tion, which can reduce to the problem of query containment and query equivalence.
In logics closed under boolean operators, these problems reduce to satisfiability
checking: does a given query express some property? That is, is there a docu-
ment where this query has a non-empty result? By answering this question we can
decide at compile time whether the query contains a contradiction and thus the
computation of the query on the document can be avoided, or if one query can be
safely replaced by another one. Moreover, this problem becomes crucial for many
applications on security, type checking transformations, and consistency of xml

specifications.

Core-XPath (introduced by Gottlob et al. (2005)) is the fragment of XPath that
captures all the navigational behavior of XPath. It has been well studied and its
satisfiability problem is known to be decidable even in the presence of DTDs. The
extension of this language with the possibility to make equality and inequality tests
between attributes of elements in the xml document is named Core-Data-XPath in
(Bojańczyk et al., 2009). The satisfiability problem for this logic is undecidable,
as shown by Geerts and Fan (2005). It is then reasonable to study the interaction
between different navigational fragments of XPath with equality tests to be able
to find decidable and computationally well-behaved fragments.

4.2.2 Definition

We work with a simplification of XPath, stripped of its syntactic sugar. We consider
fragments of XPath that correspond to the navigational part of XPath 1.0 with
data equality and inequality. Let us give the formal definition of this logic. XPath
is a two-sorted language, with path expressions (that we write α, β, γ) and node

4.2. XPath on data trees 61

expressions (ϕ, ψ, η). The fragment XPath(O,=), with

O ⊆ {↓, ↓∗, ↓+, ↑, ↑
∗, ↑+,→,→∗,→+,←, ∗←,+←}

is defined by mutual recursion as follows:

α, β ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β o ∈ O ∪ {ε} ,

ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉 a ∈ A .

A formula of XPath(O,=) is either a node expression or a path expression of the
logic. XPath(O) is the fragment XPath(O,=) without the node expressions of the
form 〈α = β〉 or 〈α 6= β〉.

There have been efforts to extend this navigational core of XPath in order
to have the full expressivity of MSO—for example by adding a least fix-point
operator (cf. ten Cate, 2006, § 4.2)—but these logics generally lack clarity and
simplicity. However, a form of recursion can be added by means of the Kleene
star, which allows to take the transitive closure of any path expression. Although
in general this is not enough to already have MSO—as shown by ten Cate and
Segoufin (2008)—, it does give an intuitive language with counting ability. By
regXPath(O,=) we refer to the language where path expressions are extended

α, β ::= o | α[ϕ] | [ϕ]α | αβ | α ∪ β | α∗ o ∈ O

by allowing the Kleene star on any path expression. Also, by XPathε(O,=) (resp.
regXPathε(O,=)) we denote the fragment of XPath(O,=) (resp. of regXPath(O,=))
where node expressions are defined by

ϕ, ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈ε = α〉 | 〈ε 6= α〉 a ∈ A .

That is, the data tests are performed between the data value of the current node
and some other one accessed by α.

We formally define the semantics of XPath in Figure 4.2. As an example, if t
is the data tree defined by Figure 4.1 on page 58,

[[〈↓∗[b ∧ 〈↓[b] 6= ↓[b]〉]〉]]
t = {ε, 1, 12}.

Henceforward, we write t |= ϕ to denote [[ϕ]]t 6= ∅. In this case we say that t
‘satisfies’ ϕ. We say that two formulæ ϕ, ψ of XPath are equivalent iff [[ϕ]]t = [[ψ]]t

for all data tree t.

4.2.3 Fragments

We define several fragments of XPath. Each fragment is defined by the set of axes
that the path expressions can use.

62 4. Trees with data

[[→]]t = {(x·i, x·(i+ 1)) | x·(i+ 1) ∈ pos(t)} [[←]]t = {(x·(i+ 1), x·i) | x·(i+ 1) ∈ pos(t)}

[[↓]]t = {(x, x·i) | x·i ∈ pos(t)} [[↑]]t = {(x·i, x) | x·i ∈ pos(t)}

[[α+]]t = the transitive closure of [[α]]t [[α∗]]t = the reflexive transitive closure of [[α]]t

[[ε]]t = {(x, x) | x ∈ pos(t)} [[αβ]]t = {(x, z) | there exists y such that

[[α ∪ β]]t = [[α]]t ∪ [[β]]t (x, y) ∈ [[α]]t, (y, z) ∈ [[β]]t}

[[α[ϕ]]]t = {(x, y) ∈ [[α]]t | y ∈ [[ϕ]]t} [[[ϕ]α]]t = {(x, y) ∈ [[α]]t | x ∈ [[ϕ]]t}

[[a]]t = {x ∈ pos(t) | a(x) = a} [[〈α〉]]t = {x ∈ pos(t) | ∃y.(x, y) ∈ [[α]]t}

[[¬ϕ]]t = pos(t) \ [[ϕ]]t [[ϕ ∧ ψ]]t = [[ϕ]]t ∩ [[ψ]]t

[[〈α=β〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t, [[〈α 6=β〉]]t = {x ∈ pos(t) | ∃y,z (x, y) ∈ [[α]]t,

(x, z) ∈ [[β]]t,d(y) = d(z)} (x, z) ∈ [[β]]t,d(y) 6= d(z)}

Fig. 4.2: Semantics of XPath for a data tree t = a⊗ d.

Downward fragment We call the downward fragment of XPath to XPath(↓∗, ↓,=).
In fact, all our results will apply also to regXPath(↓∗, ↓,=). In terms of expressivity,
we see that XPath(↓∗,=) (XPath(↓∗, ↓,=) (regXPath(↓,=) = regXPath(↓∗, ↓,=).
In Chapter 5 we will show the decidability of the satisfiability problem for this
logic and its fragments.

Forward fragment The forward fragment is an extension of the downward frag-
ments with some horizontal navigation. In our notation, forward XPath is then
XPath(↓∗, ↓,→

∗,→,=). We write F for the forward operators {↓∗, ↓,→
∗,→} and

we hence refer to this fragment by XPath(F,=). In Chapter 6 we will prove decid-
ability of the satisfiability problem for XPath(F,=) and regXPath(F,=).

Vertical fragment The vertical fragment XPath(V,=) is another extension of the
downward fragment with upward axes, that is V = {↓∗, ↓, ↑

∗, ↑}. This fragment
will be shown decidable in Chapter 7.

Horizontal fragment Later on in Section 4.5 we will show some lower bounds for
several fragments of XPath running on data words. These lower bounds will then
be transfered to fragments that contains horizontal or upwards axes, or that can
force a model to be linear (e.g. XPath(↓∗, ↓,→,=)).

4.2.4 Decision problems

We state the problems we will address, given a fragment P of XPath.

EQ-P Equivalence problem for P

Input: ϕ, ψ ∈ P.
Output: Is [[ϕ]]t = [[ψ]]t for every data tree t ?

4.3. XPath on XML documents 63

INC-P Inclusion problem for P

Input: ϕ, ψ ∈ P.
Output: Is [[ϕ]]t ⊆ [[ψ]]t for every data tree t ?

SAT-P Satisfiability problem for P

Input: ϕ ∈ P.
Output: Is there a tree t such that t |= ϕ ?

Remark 4.1. All the logics we deal with are closed under boolean operations.
Hence, the inclusion problem reduces to that of satisfiability. The inclusion prob-
lem for ϕ, ψ yields a ‘yes’ iff the satisfiability problem for ϕ ∧ ¬ψ yields ‘no’.
Similarly, the equivalence problem reduces to that of satisfiability. Hence, since all
the logics we deal with are closed under boolean operations, we will only focus in
the satisfiability problem.

We are also interested in the following problem for L a class of tree regular lan-
guages and P a fragment of XPath.

SAT-P +L Satisfiability problem for P under L

Input: ϕ ∈ P and L ∈ L .
Output: Is there a tree t ∈ L such that t |= ϕ ?

For the fragments treated in this thesis, these problems are equivalent to testing
if there is a tree where the formula ϕ is satisfied at the root, since otherwise we
can test ↓∗[ϕ]. Moreover, we can restrict ourselves to the case where ϕ is a node
expression, as [[α]] 6= ∅ iff [[〈α〉]] 6= ∅. We remind the reader that although we state
the problem in terms of data trees, all our results hold on the class of all xml
documents. Indeed, this is a consequence of considering an xml document as a
data tree where the attributes are at leaf positions.

4.3 XPath on XML documents

As outlined before, xml documents may have multiple attributes with data values
on each element, while data trees can only have one. Here we will show that
every result we have stated in terms of data trees, also holds on the class of xml
documents. Let us consider that the finite set of symbols is partitioned between
the names for attributes and the symbols of the xml elements, Aattr ∪ Aelem.

An xml document is hence a tree a⊗ d where every position carries one label
from Aelem and many data values indexed by Aattr that we call ‘attributes’, a :
P → Aelem, d : P → ℘<∞(Aattr×D) for some P ∈ POS.

We define XPath on xml documents as the extension where different attributes
may be compared for (in)equality. Node expressions are defined

ϕ ::= a | ¬ϕ | ϕ ∧ ψ | 〈α〉 | 〈α@attr1⊙ β@attr2〉

where ⊙ ∈ {=, 6=}, a ∈ Aelem and attr1, attr2 ∈ Aattr. Let us call this logic
attrXPath.

64 4. Trees with data

Although all the results of future chapters are stated in terms of data trees, we
will show, for each of the fragments treated, that the same upper/lower bounds
also hold for the corresponding fragments of attrXPath on xml documents.

4.4 Related work

4.4.1 Automata

Data automata Björklund and Bojańczyk (2007) extend the model of class mem-
ory automata (Björklund and Schwentick, 2010) over data words (equivalent to the
data automata of Bojańczyk et al. (2006) mentioned in § 3.2) to work on bounded-
depth data trees. That is, over unranked data trees whose every leaf is at a distance
bounded by a constant. They show decidability of the emptiness problem through
a reduction to priority multicounter automata, shown to be decidable by Reinhardt
(2005).

Bojańczyk and Lasota (2010) introduce a powerful (and undecidable) automata
model called class automata on data trees that captures data automata, XPath
with the full set of axes, ATRA, and some other models. In fact, data automata
and ATRA can be seen as simple restrictions on the semantics of class automata.
Bojańczyk and Lasota also propose considering restrictions on the data tree model
to obtain decidability results on class automata. Indeed this is an interesting line
for future work.

Register Automata Extensions of (non)deterministic register automata on data
trees (either bottom-up or top-down) have been studied by Kaminski and Tan
(2008). Like in the data word setting, these automata can basically code existential
data properties, like “there are two a’s with the same data value” or “there exists
a data value such that it is contained in all the a’s” but not universal, like “all a’s
have different data value”, or any of the properties of Example 1.2.

An alternating top-down extension but with only one register was introduced
by Jurdziński and Lazić (2008), named ATRA. This model is decidable as soon as
there is only one register, extending then the results on the similar automaton on
words from Demri and Lazić (2009). It has a forward navigation over unranked
trees: it walks the tree by moving either to the leftmost child or to the next sibling
to the right. In future chapters we will introduce two automata that are also
alternating and have one register. Since this class of automata is the most relevant
to our work, we briefly discuss how this work relates to ours.

Firstly, the DD automaton of Chapter 5 is in some sense weaker than ATRA1,
but allows to have a decision procedure of 2ExpTime (or ExpTime for a restricted
yet powerful fragment) instead of the non-primitive recursive lower bound of ATRA.
On the other hand, the class of automata ATRA(guess, spread) of Chapter 6 is also
top-down as the ATRA class, but contains some extra features that allow to make

1 Strictly speaking, it is incomparable in expressive power, but a decidable extension of ARA

can capture its behavior. Part of the necessary extension will be discussed in Section 6.4.5.

4.4. Related work 65

richer tests. Finally, while ATRA(guess, spread) can be seen as an extension of
ATRA, the automata class BUDA introduced in Chapter 7 is certainly incomparable
in expressive power with respect to all the previously discussed classes. Indeed
the BUDA class is bottom-up instead of top-down, but still allows to test data
properties of the subtrees achieving—in some sense—a two-way behavior. More
precise comparisons with this work will be given in the chapters that follow.

4.4.2 Logics

XPath

Benedikt, Fan, and Geerts (2008) studied the satisfiability problem for many XPath

fragments containing downwards and upwards axes, but no horizontal axes. Chap-
ters 5 and 7 also contribute to this study, since we show decidability of XPath

fragments with no horizontal axes. In our work we investigate two decidable frag-
ments that were not studied by Benedikt et al. (2008): the downward fragment
and the vertical fragment. Further, in Chapter 5 we improve some of the bounds
on other downward fragments (with and without data values).

In (Geerts and Fan, 2005), several XPath fragments with horizontal axes are
treated. However, this work does not have a direct relation to the forward fragment
treated in Chapter 6. The only fragment with data tests and negation studied by
Geerts and Fan (that is shown to be undecidable) is incomparable with the forward
fragment.

Bojańczyk et al. (2009) shows the decidability of XPathε(↑, ↓,←,→,=) with
sibling and upward axes but restricted to local elements accessible by a ‘one step’
relation, and to data formulæ of the kind 〈ε = α〉 (or 6=). However, most of the
fragments we treat here disallow upward and sibling axes but allow the descendant
↓∗ axis and arbitrary 〈α = α′〉 data test expressions.

Finally, Jurdziński and Lazić (2008) showed that XPathε(F,=) is decidable, by
translating formulæ of this fragment into ATRA automata. In Chapter 6 we will
show that in fact the full forward fragment XPath(F,=) is decidable.

Two-variable logics

First-order logic with two variables and data equality tests is investigated by
Bojańczyk et al. (2009). By FO2(<,+1,∼) we refer to first order logic with two
variables. The symbol < refers to two binary predicates: one for comparing the
descendant/ancestor relationship of two nodes and one for the preceding/following
relationship of two siblings. Similarly, +1 also refers to two binary predicates: one
for comparing the parent/child relationship of two nodes and one for comparing
the next/previous sibling relationship of two siblings. Finally, ∼ is for testing for
data equality. Although in the absence of data values FO2(<,+1) is expressive-
equivalent to Core-XPath (cf. Marx, 2005), FO2(<,+1,∼) with data equality tests
becomes incomparable with respect to all the data aware fragments treated here.
Although the decidability of FO2(<,+1,∼) is hitherto unknown, it is shown that

66 4. Trees with data

FO2(+1,∼) is decidable, its complexity lying somewhere between NExpTime and
3NExpTime.

4.4.3 Other formalisms

Patterns

David (2008) studied tree patterns with data test. A data tree pattern in essentially
an unranked tree with two kind of edges: descendant or child. It also allows to
test for labels of nodes and, more importantly, contains constraints of equality and
inequality between any pair of nodes of the pattern. When such a pattern can (or
cannot) be injected into a data tree while preserving these relations we say that it is
satisfied (or not satisfied) by the data tree. The cited work studies the satisfiability
of boolean combinations of such patterns. This formalism, although incomparable
with the aforementioned logics and automata, provides another means to test for
properties. This problem can also be seen from a perspective of conjunctive con-
junctive queries, and as such was treated by Björklund, Martens, and Schwentick
(2008). Although in general the satisfiability problem for boolean combinations of
tree patterns is undecidable (proved independently by Björklund et al. and David),
some decidable fragments are identified in the cited works.

Tests for isomorphism

Consider automata that can perform isomorphism tests over an infinite set of
structures. This is some sort of infinite alphabet with equality tests. Indeed, data
values can be coded for example as subtrees with a distinct label. We mention
some models of automata on trees with this special flavor of tests.

There have been studies on tree automata, where transitions can perform iso-
morphism tests. Either in the ranked case (Bogaert and Tison, 1992), unordered
unranked case (Lugiez, 2003), or ordered unranked case (Löding and Wong, 2009).
In the data tree setting, these results can be seen as automata that can make rich
tests on the data values of the siblings of a tree, but that cannot relate the data
values between parent and child.

On the other hand, isomorphism tests can be performed in a global manner.
That is, we ask whether there exists an execution of an automaton over a tree,
such that every pair of nodes labeled with a states q and p by the run verify
that their induced subtrees are isomorphic (or non-isomorphic). Several variants
of automata based on these kinds of tests are shown to be decidable in (Filiot
et al., 2007, 2008; Barguñó et al., 2010). By coding data values as subtrees, it
is possible to obtain some decidability results in the data trees setup. However,
notice that the tests performed correspond to a quantification “exists... for all...”
(indeed these automata are not closed under complementation). In some sense, it
approximately corresponds to having a restricted EMSO2(+1,∼) formula which is

4.5. Lower bounds of XPath 67

a conjunction of formulæ of the kind

∃X1, . . . , Xn.(ψ ∧ ∀x, y.ξ(x, y)→η(x, y)),

where ψ does not contain ∼; ξ is a boolean combination of test for labels; and η is
either x ∼ y or ¬(x ∼ y).

4.5 Lower bounds of XPath

We can transfer lower-bound results from Section 3.6.1.2 In order to do this, we
have to show a key property: simple formulæ can be translated to XPath and back.
The proof of this result is straightforward by induction on the formula.

Proposition 4.2. Over data words, sLTL↓(Fs) and XPath(→+,=) have the same
expressive power. The same holds for sLTL↓(Fs,Fs

−1) and XPath(+←,→+,=).
Moreover, in both cases, the transformation from sLTL↓ to XPath takes polyno-
mial time while it takes exponential time in the other direction.

Proof sketch. The translation from sLTL↓ to XPath is straightforward by induction.
One then naturally obtains equality tests of the form 〈ε = α〉 or 〈ε 6= α〉 depending
on whether the unique possible negation is present or not.

The other translation is also by induction. The non trivial part concerns the
translation of node expressions of the form 〈α = β〉. Over data words, one of the
path expressions α or β must end first, say α. In this case the node expression can
be decomposed into a disjunction of (exponentially many) expressions that first
start with a path expression that merge α with the part β1 of β that is common
to with α, followed by a test of the form 〈ε = β2〉, where β = β1β2. Tests of the
form 〈ε = β2〉 are the immediate to translate into sLTL↓.

The restriction on negations in the definition of sLTL↓ corresponds to the fact
that XPath path expressions are always positive: any path α is essentially a nesting
of operators F with intermediate tests. We remark that there is a big difference
between XPath(→+,=) over data words and XPath(↓+,=) over data trees. Indeed
XPath(↓+,=) is closed under bisimulation and hence it cannot assume that the
tree is a vertical path. As the string structure was essential in the proof of Theo-
rem 3.36, the non primitive recursiveness of XPath(→+,=) over data words does
not lift to XPath(↓+,=) over data trees. Actually, satisfiability of XPath(↓+,=)
is ExpTime-complete as we will see in Chapter 5. However, if one considers the
logic XPath(↓+,→,=) then the axis → can be used to enforce a vertical path
¬〈→〉 ∧ ¬〈↓+→〉 and therefore it follows from Theorem 3.36 and Proposition 4.2
that:

Corollary 4.3. Satisfiability of XPath(↓+,→,=) on data trees is at least non prim-
itive recursive.

2 These results are included in (Figueira and Segoufin, 2009).

68 4. Trees with data

Corollary 4.4. Satisfiability of XPath(↓+,=) in the presence of DTDs is at least
non primitive recursive.

In Chapter 6 we will show that these two fragments are indeed decidable.
Similarly, in XPath(↓+, ↑

+,=) one can simulate a string by going down to a leaf
using ↓+ and then use the path from that leaf to the root as a string using ↑+.

Corollary 4.5. Satisfiability of XPath(↑+,=) on data trees is decidable and non-
primitive recursive.

Proof. The decidability from the fact that any XPath(↑+) formula can be easily
translated into an ARA automaton, since the formula essentially reads a data word.

It would be interesting to know whether the strictness of the axis →+ is nec-
essary in the above two results. This boils down to know whether sLTL↓(F) is
already not primitive recursive over data words. Note that the proof of Theo-
rem 3.38 uses in an essential way the possibility to make (in)equality tests several
times throughout a path. This is exactly what cannot be expressed in sLTL↓(F).

Question 4.6. Is satisfiability of sLTL↓(F) primitive recursive over data words?

We conclude with some simple consequences of Theorem 3.38 and Proposition 4.2:

Corollary 4.7. Satisfiability of XPath(+←,→+,=) and of XPath(↓+, ↑
+,→,=)

over data trees is undecidable.

Corollary 4.8. Satisfiability of XPath(→+, ↓, ↑,=) is undecidable.

Proof. This is similar to the proof of Theorem 3.37 with a slight difference. Con-
sider that the coding of the run of the counter machine is done at the first level
of the tree (i.e., at distance 1 from the root). Then, the property to ensure that
every decrement has a corresponding increment is now:

∧

i

¬〈↓[dec(i) ∧ ¬〈ε = ↑↓[@]〉]〉 .

4.5.1 Summary of results

In the table below we summarize the results and some of the consequences we have
mentioned.

Logic Complexity Details

XPath(↓+,→,=) non primitive recursive
(decidability shown in Chapter 6)

Corollary 4.3

XPath(↓+, ↑
+,=) non primitive recursive

(decidability shown in Chapter 7)
Corollary 4.5

XPath(↓+, ↑
+,→,=) undecidable Corollary 4.7

XPath(→+, ↓, ↑,=) undecidable Corollary 4.8

5. DOWNWARD NAVIGATION

We introduce a decidable automaton model for data trees and we investigate the
satisfiability problem for downward-XPath. We prove that this problem is decid-
able, precisely ExpTime-complete. These bounds also hold when path expressions
allow closure under the Kleene star operator. To obtain these results, we introduce
a Downward Data automata model (DD automata) over trees with data, which has
a decidable emptiness problem. Satisfiability of downward-XPath can be reduced
to the emptiness problem of DD automata and hence its decidability follows. Al-
though downward-XPath does not include any horizontal axis, DD automata are
more expressive and can perform certain (restricted) horizontal tests. Thus, we
show that the satisfiability remains in ExpTime even in the presence of the reg-
ular constraints expressible by DD automata. However, the same problem in the
presence of any regular constraint is known to have a non-primitive recursive com-
plexity (Corollary 4.4). Finally, we give the exact complexity of the satisfiability
problem for several fragments of downward-XPath.

5.1 Introduction

One of the main contributions of this chapter is that the satisfiability problem for
XPath(↓∗, ↓,=) is decidable. That is, the fragment with equality and inequality
tests of attributes’ values, the ↓∗ axis that can access descendant nodes at any
depth and the ↓ axis to access child elements. Actually, we prove a stronger re-
sult, showing the decidability of the satisfiability of regXPath(↓,=), which is the
extension with the Kleene star operator. We nail down the precise complexity
showing an ExpTime decision procedure, as XPath(↓, ↓∗) is already ExpTime-
hard as shown by Benedikt, Fan, and Geerts (2008). In order to do this, we
introduce the class of Downward Data automata (DD automata). We show that
any regXPath(↓,=) formula can be effectively translated to an equivalent DD au-
tomata. This automata model has a 2ExpTime emptiness problem, but can be
shown to be decidable in ExpTime when restricted to the sub-class of automata
needed to capture regXPath(↓,=). In this way we obtain an ExpTime procedure
for the satisfiability of regXPath(↓,=).

In fact, DD automata are more expressive than regXPath(↓,=). For example,
although regXPath(↓,=) does not include any horizontal axis, DD automata can
test for certain horizontal properties. This model can express, for instance, that the
sequence of children of the root is recognized by the regular expression (a b c)∗. It
will then follow that the satisfiability problem for regXPath(↓,=) under the regular

69

70 5. Downward navigation

constraints that can be expressed by DD automata remains decidable in ExpTime.
These regular constraints are a especially well behaved class of regular properties,
since the satisfiability problem for regXPath(↓,=) under any regular language is
known to have non-primitive recursive complexity (Corollary 4.4), even when only
transitive axes are allowed.

On the other hand, we prove that the fragment XPath(↓∗,=) without the ↓
axis is ExpTime-hard, even for a restricted fragment of XPath(↓∗,=) without
unions of path expressions. This reduction can only be done by using data equality
tests, as the corresponding fragment XPath(↓∗) without unions is shown to be
PSpace-complete. We thus prove that the satisfiability problem for XPath(↓∗,=),
XPath(↓∗, ↓,=) and regXPath(↓,=) are all ExpTime-complete. Additionally, we
present a natural fragment of XPath(↓∗,=) that is PSpace-complete. We complete
the picture showing that satisfiability for XPath(↓,=) is also PSpace-complete.
Altogether, we establish the precise complexity for all downward fragments of
XPath with and without data tests (cf. Fig. 5.14 on page 114).

5.1.1 Related work

The main results of this chapter first appeared in the conference paper (Figueira,
2009). The cited work does not contain a full proof of this result, but only the
main ideas due to a space limitation. Here we give a detailed proof by a reduction
to a powerful class of automata, and to extend some results. Although the main
XPath results of (Figueira, 2009) are the same as of the present work, the underlying
automata model is completely different. Here we adopt a different strategy to show
the decidability. There are basically two reasons to do this. Firstly, the automaton
introduced here is simpler than the one of (Figueira, 2009): it does not require a
nested definition between two different kind of automata as the one introduced in
(Figueira, 2009). And secondly, it is more general: it can express data properties
that cannot be expressed in the model of (Figueira, 2009), and it can test the data
tree to have some (weak) regular properties on the sequence of children of a node.
This last reason enables us to have a decidability procedure for the satisfiability of
downward-XPath under a subclass of regular properties, something that was out
of the scope of the work (Figueira, 2009).

Benedikt et al. (2008) studied the satisfiability problem for many XPath log-
ics, mostly fragments without negation or without data equality tests. Also, the
fragment XPath(↓,=) is proved to be in NExpTime. We improve this result by
providing an optimal PSpace upper bound. It is also known that XPath(↓) is
already PSpace-hard1, and in this work we give a matching upper bound show-
ing PSpace-completeness. Furthermore, Marx (2004) proves that XPath(↓, ↓∗) is
ExpTime-complete. In this work we prove that this complexity is preserved in the
presence of data values and even under closure with Kleene star. We also consider

1 This is a consequence of XPath(↓) being able to code any formula from the normal modal logic
K, which enjoys the finite- and tree-model properties (Blackburn et al., 2001), and is PSpace-
complete (Ladner, 1977).

5.2. Running NFA over branches 71

a fragment that is not mentioned in (Benedikt et al., 2008): XPath(↓∗,=) and show
that XPath(↓∗) is PSpace-complete while XPath(↓∗,=) is ExpTime-complete. In
this case, data tests make a real difference in complexity.

In Chapter 6 the fragment XPath(F,=) (i.e., forward XPath) is studied. In the
cited chapter, the full set of downward and rightward axes are allowed, while the
fragments treated here only allow the downward axis. It can hence express proper-
ties like (T3), or (T2) that cannot be expressed with the downward fragment. The
forward fragment is shown to have a decidable satisfiability problem at the expense
of a huge rise in complexity: from ExpTime to non-primitive recursive. However,
in the present chapter all the fragments considered are below ExpTime, and meet-
ing these elementary upper bounds requires an altogether different approach from
the one taken in Chapter 6.

5.2 Running NFA over branches

One important object of a data tree is that of a ‘branch’: a succession of nodes that
starts at the root and goes downward, ending at any node of the tree. Note that
we consider the possibility that a branch may end at an inner node and not neces-
sarily at a leaf. All the power of the automata models we will define is centered in
the ability to test data properties at distant positions of the tree. These positions
are selected by reading branches that must belong to some regular language spec-
ified by the automaton. We next define the execution of a nondeterministic finite
automaton over a branch of a data tree.

By NFA we denote a classical nondeterministic finite-state automaton, defined
as usual as a tuple made of a set of states, an initial state, a set of final states
and a transition relation, recognizing a regular language. We write (q, a, q′) ∈ A
to denote that there is a transition from q to q′ in A by reading a.

Let t = a⊗b be a data tree in Trees(A×D). Given a NFA A over the alphabet
A, we consider the execution of A on the string comprised between a position
x ∈ pos(t) and a descendant position y, that is, x ≺ y ∈ pos(t).

We note a ‘one-step’ of the execution as

q
A
−→
x
q′

if (q,a(x), q′) is a transition from A , the data tree being implicit in the notation.
And we write

q
A

−−−→
x,x·y

q′ iff

q
A
−→
x
q′ if y = ǫ;

q
A
−→
x
q1

A
−−→
x·i1

q2
A

−−−−→
x·i1·i2

· · ·
A

−−−−−→
x·i1····in

qn+1 = q′ if y = i1· · · · in.

That is, if we can reach the configuration by reading the letters between x and
x·y in a descending way. Note that the automaton’s run includes the starting and
ending labels. Hence, all runs execute at least one transition.

72 5. Downward navigation

We define a notation for the data values of those positions selected by some
run of A . Let q be a state of A , we write [[A , q]]t to denote the set of data values
of all positions x that are reached starting at the root with state q and ending at
x with a final state from the automaton’s set of final states QA

F ,

[[A , q]]t = {d(x) | x ∈ pos(t), q
A
−−→
ǫ,x

q′, q′ ∈ QA
F } .

We denote the set of data values of the nodes that are reached by a word accepted
by A with [[A]],

[[A]]t = [[A , q1]]
t

where q1 is the initial state of A .

5.3 Automata model

In this section we define an automata model that runs over data trees. We show
that this model has a decidable emptiness problem in Section 5.4. In Section 5.5.1
we will show that XPath(↓∗, ↓,=) formulæ can be effectively translated into this
model, thus obtaining a decidability procedure for its satisfiability problem.

Our model of automata, called Downward Data automaton (or simply DD
automaton), has an execution that consists in two steps: (1) the execution of a
transducer, and (2) the verification of data properties of the transduced tree.

For a data tree t = a ⊗ d, the first step consists in the translation of a into
another tree b. This is done using a nondeterministic letter-to-letter transducer
over unranked trees. We adopt a more detailed definition, where the transducer
explicitly has as a parameter the class C of regular properties that it can test over
a siblinghood at each transition. If we take this parameter to be the set of all
regular properties, this automaton is a standard transducer over unranked trees.
However, the emptiness problem of the Downward Data automata has a very high
complexity unless we restrict C to be a suitable subclass of regular languages. This
class, defined as the set of extensible languages, will be introduced in the sequel
(Definition 5.7).

In the second step, for every subtree of the transduced tree b ⊗ d, a property
on the data values of the tree is verified. The letter at the root of the subtree
under inspection determines the property to verify. The properties are boolean
combinations of tests verifying the existence of data values shared by nodes in the
subtree, hanging from branches satisfying some regular expression.

A brief comment on notation. In the definition of these automata there will be
two sorts of sets of states, namely the states corresponding to the run of the trans-
ducer, and the states corresponding to the run of the verifier. To avoid confusion
we consistently write Q̇, q̇, q̇′, . . . as symbols for the states of the transducer, and
Q, q, q′, . . . for the states of the verifier.

5.3. Automata model 73

Transducer

Let C be a subclass of regular languages C ⊆ REG . We define a bottom-up
unranked tree transducer. This definition is parametrized by C in the following
sense: At every transition, the automaton can test the siblinghood for membership
in some regular language that must be in the class C .

Definition 5.1. A C -transducer defines a relation between trees that does not
modify the structure. For one such automaton R , we note R ⊆ Trees(A×B). The
idea is that a ∈ Trees(A) and b ∈ Trees(B) are in R -relation if a⊗b ∈ R . Thus, in
order to be in R -relation, the trees a and b need to have the same set of positions.
This relation is defined as the set of accepted trees of a nondeterministic bottom-up
unranked transducer represented as a tuple 〈C ,A,B, Q̇, Q̇F , δ〉 where

• A and B are finite alphabets of letters,

• Q̇ is a finite set of states,

• Q̇F ⊆ Q̇ is the set of final states,

• C ⊆ REG(Q̇) is a class of regular languages over the alphabet Q̇,

• δ ⊆ Q̇× A× B× C is a finite set of transitions.

We define a ⊗ b ∈ R iff a ∈ Trees(A), b ∈ Trees(B) with pos(a) = pos(b) = P ,
and there exists a states assignment ρ : P → Q̇, such that

• for every leaf x, there exists L ∈ C with ǫ ∈ L and (ρ(x),a(x),b(x),L) ∈ δ,

• for every siblinghood x·1, . . . , x·l, there is a language L ∈ C such that
(ρ(x),a(x),b(x),L) ∈ δ and ρ(x·1)· · · · ·ρ(x·l) ∈ L.

We call ρ a run of R on a⊗ b. We say that the run is accepting iff ρ(ǫ) ∈ Q̇F .

We now turn to the second step.

Verifier

Definition 5.2. A verifier V ⊆ Trees(B×D) defines a set of data trees that are
valid with respect to some data properties. It is a tuple 〈A1, . . . ,AK, v〉 of K NFA
over the alphabet B, namely A1, . . . ,AK, and a function v : B→ Φ mapping letters
of the alphabet to formulæ expressing data properties. The idea is that every
subtree t|x of the original tree t must verify a property expressed by the formula
v(x). A typical property that we can test at a subtree is the existence of two
positions with the same data value, such that one is reachable by going downward
through a branch whose labeling is in some regular language L1, and the other by
some other branch with labeling in L2.

74 5. Downward navigation

∈ L1
L2 ∋

=

∈ L1

L2 ∋

=

Fig. 5.1: If L1,L2 are the languages recognized by A1,A2, and the marked positions have
an a letter, then v(a) is verified in both subtrees.

The properties of Φ are a subset of first-order closed formulæ with no quantifier
alternation (that is, no ∀∃ or ∃∀ patterns allowed), and K unary relations, one for
every automaton Ai, namely

D1, . . . , DK .

Given a set of variables Vars , Φ contains all the formulæ φ defined by the grammar

φ ::= ¬φ | φ ∧ φ | φ ∨ φ | ∃v̄.ψ

ψ ::= ψ ∧ ψ | ψ ∨ ψ | v = v′ | v 6= v′ | Di(v)

where v̄ stands for a set of variables of Vars , v, v′ ∈ Vars , i ∈ [K], and we restrict φ
to have no free variables. The variables are interpreted over the set of data values,
and the Di’s as sets of values reachable by the automata Ai’s.

A verifier 〈A1, . . . ,AK, v〉 accepts a data tree t = a⊗d ∈ Trees(B×D) iff for every
position x ∈ pos(t) the formula v(a(x)) is verified in the subtree t|x. Formally, if
for all x ∈ pos(t), v(a(x)) is true with the interpretation of the domain as D, the
= and 6= operators as equality and disequality over D, and where every relation
Di is interpreted as [[Ai]]t|x .

Example 5.3. Suppose v(a) = ∃x1, x2 . D1(x1) ∧D2(x2) ∧ x1 6= x2, for a letter a.
This means that for every a-rooted subtree we can find two branches in the regular
languages recognized by A1 and A2 respectively leading to two nodes whose data
values are different as depicted in Figure 5.1.

Definition 5.4. ADownward Data automaton (DD for short) is a pair (R ,V)
made of a C -transducer R ⊆ Trees(A×B) and a verifier V ⊆ Trees(B×D). A data
tree a⊗ d is accepted by (R ,V) iff there exists b ∈ Trees(B) such that a⊗ b ∈ R
and b ⊗ d ∈ V , as depicted in Figure 5.2. When we want to make explicit that
the witnessing tree for the acceptance of a⊗ d is b, we will say equivalently that
a⊗ b⊗ d is accepted by (R ,V). Also, we say that a⊗ b⊗ d has a run if there is
a R run on a⊗ b where b⊗ d ∈ V .

We now give some closure properties of DD automata.

Proposition 5.5. Given C a class of languages closed under intersection and
union, the DD automata model over C is also closed under intersection and union.

5.3. Automata model 75

a⊗ d a⊗ b b⊗ d

⇐⇒

R V(R ,V)

∈ ∈ ∈

Fig. 5.2: Acceptance condition of a DD automaton (R ,V).

Proof. First observe that the set of properties Φ of any verifier is closed under
conjunction and disjunction, since it is closed under the operators ∧, ∨.

Suppose we have two DD automata (R 1,V 1) and (R 2,V 2), R i ⊆ Trees(A×Bi),
V i ⊆ Trees(Bi×D). We build the intersection automaton (R ,V) where R ⊆
Trees(A×(B1×B2)) is a transducer that tags each position with a pair of letters,
such that a⊗b1⊗b2 ∈ R iff a⊗b1 ∈ R 1 and a⊗b2 ∈ R 2. This can be done since C

is closed under intersection. On the other hand we build V ⊆ Trees((B1×B2)×D)
such that b1 ⊗ b2 ⊗ d ∈ V iff b1 ⊗ d ∈ V 1 and b2 ⊗ d ∈ V 2. This can be done
since Φ is closed under conjunction. The case of union is analogous.

To obtain closure under complementation we need some extra hypothesis.
Given an alphabet A and a letter a ∈ A, we call the membership language

of a to the language {w·a·w′ | w,w′ ∈ A∗}. We say that a class C ⊆ REG is
closed under inverse homomorphisms iff for every language L ∈ C over an
alphabet A and for every homomorphism h : B → A there is a language L′ ∈ C

over B such that L′ = {w ∈ B∗ | h(w) ∈ L}.

Proposition 5.6. Let C a class of languages closed under all boolean operations,
inverse homomorphisms and containing all membership languages. The DD au-
tomata model over C is closed under complementation.

Proof. Let (R ,V) with R ⊆ Trees(A×B), V ⊆ Trees(B×D), where Q̇ is the set
of states of R . We build (R c,V c) the complement of (R ,V). We define R c ⊆
Trees(A×B′) with B′ = ℘(Z) where Z = Q̇×B×{below ,notyet , here}. Every node
x of the tree t is labeled by a set of tuples (q̇, b, i) ∈ Z describing, for each of the
possible partial runs of R on t|x, whether there is a node that does not verify a
property demanded by V . More precisely, q̇ is the state of the run at the root,
b refers to the output letter of the root, and i ∈ {below ,notyet , here} is to keep
track of whether in the currently described run there is a node falsifying a property
demanded by V . The value notyet denotes that all the nodes in the subtree t|x
for this run verify the properties of V ; below that there is a node different from x
that does not verify the property of V , and here that in the current run x does
not verify the property of V . Formally, R c tags every node x of the tree t with
the set of tuples (q̇, b, i) ∈ Z such that there is a partial run of R on t|x where

• the state of the root is q̇,

76 5. Downward navigation

• the output label of the root is b, and

• i = below iff there is a node of t|x different from the root with output label
(q̇′, b′, i′) such that i′ = here.

Further, R c checks that the output label of the root contains only tuples of the
form (q̇, b, i) where either i = below , i = here or q̇ is not final in R . This ensures
that all possible accepting runs of R lead to trees that falsify some demand of V
at some node.

Notice that if there is a node different from the root with i′ = here then
i = below , and if there is no node different to the root with i′ = here, then i
may be here or notyet . Also, notice that the state at the leaves has i = here or
i = notyet (i.e., no below).

Assuming we can build R c with the described behavior, we define V c ⊆
Trees(B′×D) with vc : B′ → Φ its formulæ assignment, as

vc(q̇, b, i) =

{

true if i ∈ {below ,notyet}

¬ v(b) if i = here.

It follows that if a data tree t is accepted by (R c,V c), then any run of R on t

produces an output such that falsifies V at some node, and then t is not accepted
by (R ,V). In turn, if t is accepted by (R ,V), there must be an accepting run
of R whose output verifies V . In other words, there must be a tuple (q̇, b,notyet)
with q̇ an accepting state in the root of every output of R applied to t, but this
cannot be since R c does not accept such trees.

Now let us describe with more care how R c is built from R . Let L1, . . . ,Ls
be all the languages from C used in the transitions of R . For every subset S of
these languages consider a language LS that tests that a word belongs to all the
languages of S, and does not belong to any other language. It follows that LS ∈ C ,
by closure under intersection and complementation.

Let us define the state space of R c as B′. Given language L over Q̇ (the state
space of R), we can build a similar language L′ over B′ that tests that we can pick
one tuple for each element of the word in such a way that when we project the
first component, the word belongs to L. If L is represented as a regular expression,
this boils down to replacing every atomic expression q̇ by a big disjunction of
all the elements of B′ containing a tuple with state q̇. It follows that L′ ∈ C

since it is closed under inverse homomorphisms. Note that we can further check
that witnessing word of tuples contains an element (q̇, b, i) with i = notyet (or
i = below). This is a consequence of having the membership languages for each
tuple with notyet and below .

Then, for every A ⊆ {L1, . . . ,Ls,notyet , below} consider a language LA that
tests

• that there is a word over B′ and a tuple for every element such that the
projection on Q̇ is accepted by all languages of S and rejected by all others;

5.3. Automata model 77

• if notyet ∈ A that there is an element of the word containing a tuple with
notyet ;

• and if below ∈ A that there is an element of the word containing a tuple with
below .

Now, R c is built with a set of rules of the form (B, a,B,LA) where A ⊆
{L1, . . . ,Ls, here, below}, a ∈ A, and B ∈ B′ is such that

for every q̇ ∈ Q̇, b ∈ B and L ∈ A such that (q̇, a, b,L) ∈ δ then either

– below 6∈ S and there is i ∈ {here,notyet} where (q̇, b, i) ∈ B, or

– below ∈ S and (q̇, b, below) ∈ B.

Thus, below means that there was a here in the subtree, and here means that it is
in that precise point that a formula is falsified.

Finally, the accepting states are those whose every tuple with an accepting
state contains no notyet flag.

The emptiness problem for the downward data automaton has, in general, a
non-primitive recursive complexity. The non-primitive recursive lower bound can
be seen as the fact that DD automata can capture any downward XPath formula,
as we will see in Section 5.5.1, and force the model to be linear (i.e., that all nodes
have at most one child). By Section 4.5 we know that any fragment of XPath with
some recursive axis on a non-branching data tree (or data-word) is non-primitive
recursive. Although the decidability for the general case is not discussed here, it
can be proved via the theory of well-quasi-orderings, by a similar technique as the
one used in Chapter 6 in the context of downward alternating register automata.

Nevertheless, when C is restricted to have some good properties, emptiness of
DD automata can be tested in 2ExpTime. Further, if the formulæ of the verifier
are bounded in the quantity ofDi relations used in every quantified subformula

2, we
achieve an ExpTime decision procedure. These restrictions are enough to capture
any downward-XPath formula, and hence the decidability of its satisfiability follows.
In the next section we define which is the necessary property that C must have in
order to obtain the aforementioned upper bounds.

Extensibility of languages

To have a low complexity in the testing for emptiness of DD automata, we need
to weaken the kind of regular properties that the transducer can verify. The idea
is that if a language accepts a word, then it must also accept an extension of the
word where more occurrences of each letter may occur. Let us formally define this
notion.

Let A = {a1, . . . , an} be an alphabet and p be the Parikh image function. That
is, the function p : A∗ → N

n that associates each word with a vector that counts

2 For example, (∃v.D1(v) ∧D2(v)) ∧ ¬(∃v.D2(v) ∧D3(v)) uses at most 2 relations.

78 5. Downward navigation

the number of appearances of each letter, p(w)(i) = |{j | w(j) = ai}|, where w(j)
denotes the jth letter of the string w, starting in 1.

Definition 5.7. We say that a regular language L is extensible if for everym ∈ N

and word w ∈ L there exists another one w′ ∈ L such that

for any coordinate i ∈ [n], p(w′)(i) ≥ m iff p(w)(i) 6= 0 .

In this case we say that w′ is an m-extension of w. We write E for the class
of all extensible regular languages. Likewise we define that a tree language is
extensible if it can be defined by an unranked tree automaton whose transitions
only use languages from E to test properties on the siblinghoods. Note that this is
a restriction of the horizontal tests, and that an extensible tree language can still
test for any regular property along a branch. We note Etree to denote the set of
extensible tree languages.

Let us give some examples of extensible classes of languages. As a first example,
consider the following class of languages.

ZeroOne := {LA1,...,An,B | A1, . . . ,An and B are a finite alphabets, n ∈ N}, where

LA1,...,An,B := {w ∈ (∪iAi ∪ B)∗ | w contains at least one letter from each Ai}

Note that ZeroOne is a class of extensible languages, it is closed under all boolean
operations, inverse homomorphisms and contains all membership languages. Also
note that the class of ZeroOne-transducers are those that can only test for the
existence or non existence of children with a certain label, but they do not test any
condition on the horizontal ordering or on the number of appearances of elements
in the siblinghoods. In fact, they can mostly test for vertical properties along
branches.

As another example, we define REG∗ the class of star -regular languages.

REG∗ := {L ∈ REG | L is defined by a regular expression whose every

symbol is under the appearance of at least one ∗}

Thus, for example ‘((a | b) c∗d)∗’ is in REG∗ while ‘a
∗b’ is not. The class REG∗ is

trivially extensible.
The property of extensibility is trivially closed under union, but not necessarily

under intersection or complementation.

Proposition 5.8. Given two extensible languages L1,L2, L1∪L2 is also extensible.

As a counter-example for the intersection, note that (ab)∗∩a∗b∗ = {ǫ, ab} which
is not extensible, and for the complementation note also that under the singleton
alphabet A = {a}, (a+a)c = {ǫ, a}, which is not extensible.

In the sequel, we will show decidability of DD automata, assuming that we are
working with E -transducers.

5.4. The emptiness problem 79

5.4 The emptiness problem

Throughout this section, we fix the transducer to be an E -transducer. The main
object of this section is to prove the following theorem.

Theorem 5.9. The emptiness problem for Downward Data automata can be de-
cided in 2ExpTime.

Sketch of the proof

The proof of the main theorem is divided into four parts. In the first part (Sec-
tion 5.4.1) we define some necessary summarization of information contained in
the tree, with respect to the run of a DD automaton. The structures defined there
will be the main tool with which we are going to work along the proof.

The second part (Section 5.4.2) is dedicated to prove two properties. The first
property states that if a DD is nonempty, it accepts a tree decorated with some
guidance system that marks the paths needed to travel in order to verify the prop-
erties imposed by the verifier. In some sense, it decorates the tree as in Figure 5.1,
avoiding having two paths going through the same node. The guidance system is
called certificate and this property is called admissibility of correct certificates. The
second property states that if a DD is nonempty, then it accepts a tree where its
data values are in a certain normal form, where any two subtrees of a node have a
disjoint set of data values, with the exception of some polynomially bounded many
(this is called the disjoint values property).

The third part (Section 5.4.3) is centered in proving that DD automata have the
exponential width model property. That is, if a DD is nonempty, then it accepts
a tree whose width is exponentially bounded by the automaton.

In the fourth part (Section 5.4.4) we give the algorithm for testing emptiness of
DD automata, which is based on the bound on the width and two other properties:
the disjoint values property and the admissibility of correct certificates.

Parameters

We first fix some parameters that we will need to use in the complexity analysis.
We fix, now and for all, that the verifier V contains K NFA that we write Aut =
{A1, . . . ,AK}, and we assume without any loss of generality that all A1, . . . ,AK

share the same set of states Q := {q1, . . . , qN}, and have q1 as initial state. Also,
for each i we write QAi

F as the set of final states of Ai. By |A | we denote the
number of transitions of A , and Aut stands for |A1| + · · · + |AK|. Let Vars be
the set of variables used by the formulæ of the verifier, where |Vars | = V. We
write R for the maximum number of relations admitted under a quantification. In
other words, for any formula of the verifier and for any quantified subformula ∃x̄.ψ,
there are at most R different relations used in ψ from the K available. The worst
case would be when R = K as a consequence of, for example, having the formula
v(b) = ∃x.D1(x)∧· · ·∧DK(x) for some b ∈ B. This is an important parameter, since

80 5. Downward navigation

we will later see that the subclass of DD automata with R fixed has an ExpTime

emptiness problem, while the general class has a 2ExpTime emptiness problem.
In a future section we will argue that downward XPath can be coded with R = 2,
and from this fact it will follow that its satisfiability is in ExpTime.

Finally, let us fix that the transducer has a set of states Q̇. In addition, we use
NFA to represent the regular language L for every transition (q̇, a, b,L) ∈ δ. We
will usually use the symbol B to note these automata. We will assume without any
loss of generality that all automata used in the transitions of the transducer share
the same set of states Q̃ = {q̃0, q̃1, . . . } and that all automata have the same initial
state q̃0. |R | stands for the number of transitions of R , and we assume that |Q̇| is
bounded by |R |. By |V | we denote K+N+R+V+Aut. Summing up, our complexity
analysis will be based on the parameters: K,N,R,V, |Q̇|, |Q̃|, |R |,Aut, |V |.

5.4.1 Decorations of the tree

In order to bound the width of the tree, we need a more fine grained notion of the
run of a transducer. We label the nodes of the tree with the run of the automa-
ton recognizing the regular language on the siblinghood used at the transition of
the transducer’s run. This will enable us to state a pumping argument on any
siblinghood of the data tree.

Detailed run

Consider, for any extensible language L ∈ E over Q̇, a NFA BL with a set of states
Q̃ and an initial state q̃0. Remember that every BL used in the transducer uses
the same set of states Q̃.

Definition 5.10. A detailed run of a transducer R on a tree a⊗b : P → A×B
consists in a 3-tuple (τ, ρ, ρh). ρ is a run, that in this context we call a vertical
run. τ is a transition assignment

τ : P → δ

specifying which choice of transitions are needed for the run ρ. It verifies that
τ(x) = (ρ(x),a(x),b(x),L) with ρ(x·1) · · · ρ(x·l) ∈ L for a position x with l chil-
dren. We abbreviate Bx to denote the NFA BL of the regular language L defined in
the transition τ(x) of the transducer’s run. Finally, we also have an assignment ρh
from the set of positions P to the set of states of the automaton B that corresponds
to the regular language that needs to be checked in order to apply the transition.
We call this the horizontal run

ρh : P → Q̃ .

It verifies the following conditions (in short, that it is a run of a NFA on the
siblinghood).

• For every leftmost sibling x·1 ∈ P , (q̃0, ρ(x·1), ρh(x·1)) is a transition of Bx.

5.4. The emptiness problem 81

• For every pair of consecutive siblings x·i, x·(i+ 1) ∈ P ,

(ρh(x·i), ρ(x·(i+ 1)), ρh(x·(i+ 1)))

is a transition of Bx.

• Finally, for every rightmost sibling x·l, ρh(x·l) is a final state of Bx.

We also need to be able to precisely describe the behavior of the data values
at a position of a data tree.

Description of data

Next we introduce sets of data simultaneously accessible by R automata (remember
that this is an upper bound on the number of simultaneous data tests of V). Over
these sets we are interested in preserving those with at most V elements (this is a
bound on the maximum number of variables used by V).

The verifier can only test properties of the set of data values denoted by the
automata [[Ai]], or a boolean combination of them. More precisely, we can only
verify the (in)existence of data values that are in the intersection of some (at most
R) [[Ai]]’s out of all the possible K automata. The tests boil down to checking
whether

• the intersection contains at least 1, 2, . . . ,V different elements, or

• the intersection contains at most 0, 1, . . . ,V − 1 different elements.

Note that we cannot test, for example, that the set contains exactly V elements.
We annotate the tree with this information. Since later we will need to check
that this information is consistent between a parent position and its children, we
need to also consider the states of the automata Ai. Next, we define the set of
intersections of at most R relations of the kind [[Ai1 , qj1]] ∩ · · · ∩ [[AiR , qjR]].

Inters := ℘≤R(Aut ×Q) ,

where ℘≤R denotes the set of subsets of at most R elements. This set is bounded.

|Inters| ≤ (K.N)R (5.1)

Given a data tree t and an intersection we extend the [[]]t notation by taking the
intersection of the R sets. That is,

[[I]]t =
⋂

{[[A , q]]t | (A , q) ∈ I} , for I ∈ Inters.

Definition 5.11. The data profile of a data tree t consists in the number of
elements present at each I ∈ Inters. Since the formulæ of Φ can only have V

variables, it is enough to count up to V. For any set A, we define |A|≤k :=
min(k, |A|).

d-profile : Trees(A× D)→ (Inters → [0..V])

d-profile(t) = {I 7→ |[[I]]t|≤V | I ∈ Inters}

82 5. Downward navigation

f |= ψ ∧ ψ′ iff f |= ψ and f |= ψ′

f |= ¬ψ iff f 6|= ψ

f |= ∃v1, . . . , vt.ψ iff I, g, h |= ψ for some I ∈ Inters, g : {v1, . . . , vt} → {1, . . . , t}

and h : {1, . . . , t} → ℘(I) s.t. |h−1(I ′)| ≤ f(I ′) for all I ′ ⊆ I

I, g, h |= ψ ∧ ψ′ iff I, g, h |= ψ and I, g, h |= ψ′ I, g, h |= v = v′ iff g(v) = g(v′)

I, g, h |= ψ ∨ ψ′ iff I, g, h |= ψ or I, g, h |= ψ′ I, g, h |= v 6= v′ iff g(v) 6= g(v′)

I, g, h |= Di(v) iff (Ai, q1) ∈ h(g(v))

Fig. 5.3: The relation f |= ϕ given f : Inters → [0..V].

Note that a tree’s profile carries sufficient information to evaluate at the root
any formula ϕ ∈ Φ used by the verifier. We write f |= ϕ if f is a function
f : Inters → [0..V] and ϕ is a formula of the verifier v(b) = ϕ such that ϕ is
satisfied given the information of f . We formally define this relation in Figure 5.3.
Suppose t = b⊗ d is a data tree and x ∈ pos(t). Then, for any ϕ ∈ Φ (respecting
the conditions imposed by R and V), d-profile(t|x) |= ϕ iff ϕ holds at t|x.

In addition to the above summarized information of a position in terms of its
data values, we also define the description of a data value in terms of the different
ways by which it can be obtained.

Definition 5.12. The description of a data value is the set of states of the
automata that can access the data value and it is defined as

Descriptions := ℘(Aut ×Q)

desct(d) := {(A , q) ∈ Aut ×Q | d ∈ [[A , q]]t} ∈ Descriptions .

Certificates

For any intersection I, we want to keep track of which data values are in [[I]], and
how to access them in the subtree in order to verify that they belong to every
[[A , q]] in I. How do we decorate the tree in order to have this information at all
times? Suppose t is a data tree and x a position in it. We will develop some branch
marking system. For d ∈ [[I]]t, we mark several downward paths starting in x and
ending at a lower positions y � x with d(y) = d. We do this in such a way that
for every (A , q) ∈ I there is a marked path between x and y such that d(y) = d

and q
A
−−→
x,y

qf with qf a final state. We will mark every element of this path with

the data value ‘d’ to which it leads. We call this marking a certificate. What
is more, no marking of paths shall never overlap. The fact that we can always
have such non-overlapping certificates is not obvious, and it will be the matter of
Section 5.4.2.

5.4. The emptiness problem 83

A certificate of a data tree t = a ⊗ d is a partial assignment κ : pos(t) ⇀
data(t). For those undefined positions we write κ(x) = ⊥, and for simplicity we
assume that desct(⊥) = ∅. A certificate κ is said to be correct if it verifies the
property of being valid and inductive that we will define next.

Definition 5.13. A certificate κ is correct if for every position x ∈ pos(t) there
exists a subset of children Cx ⊆ {x·i | x·i ∈ pos(t)} such that

inductive(desct|x(κ(x)), (b(x),d(x), κ(x)), Ĉx)

holds, where Ĉx = {(κ(y), desct|y(κ(y))) | y ∈ Cx}; and for every intersection
I ∈ Inters the valid property holds,

valid([[I]]t|x , I, (b(x),d(x), κ(x)), Ĉx) .

The validity property for a position x ensures that the certificate takes into
account all the necessary data values to witness every intersection. That is, that
for every intersection I the data values of [[I]]t|x are contained either at κ(x) or
at some κ(x·i) for a child position of x. Since the verifier has only V variables, it
is actually sufficient to verify the existence of certificates for up to V data values
from [[I]]t|x . This property, when put together with the inductive property results
in each of these data values having a path of certificates that witness each of the
elements of I.

Definition 5.14. Given I ∈ Inters, D ⊆ D, C ⊆ D×Descriptions, and given
dcert, bcurr, dcurr ∈ D, then

valid(D, I, (bcurr, dcurr, dcert), C)

holds iff there are k = min(V, |D|) different data values d1, . . . , dk ∈ D such that
for every variable i ∈ [k] and (A , q) ∈ I, there exists (q, bcurr, q′) ∈ A and

• q′ ∈ QA
F and dcurr = dcert = di, or

• there is (di, Desc) ∈ C, with (A , q′) ∈ Desc.

The inductivity property states that for every position x such that⊥ 6= κ(x) =
d, if d is in some [[A , q]], then there must exist a child position x·i with certificate
d such that d is in [[A , q′]]t|x·i for some q′ in the transition relation of A .

Definition 5.15. Given Desccert ∈ Descriptions, then

inductive(Desccert, (bcurr, dcurr, dcert), C)

holds iff for every (A , q) ∈ Desccert, there is (q, bcurr, q′) ∈ A such that

• q′ ∈ QA
F and dcert = dcurr, or

• there is (dcurr, Desc) ∈ C with (A , q′) ∈ Desc.

84 5. Downward navigation

Take any x and (A , q) ∈ I ∈ Inters with k = min(V, [[I]]t|x). The correctness
condition implies that there are d1, . . . , dk different data values and x1, . . . , xn ∈
pos(t) below x such that for all i: d(xi) = di; for all x ≺ y � xi, κ(y) = di; and

q
A
−−→
x,xi

qf for some qf ∈ Q
A
F . Note that not every data tree accepted by a DD

has a correct certificate. (Think for instance in a tree with branching width 1, in
which in order to verify the root’s property, two different data values are needed.)
Indeed, admissibility of correct certificates is a property shared only by some of
the trees recognized by a DD. However, in Section 5.4.2 we will show that every
nonempty DD accepts a tree which admits a correct certificate. What is more, we
show that it accepts a tree where additionally the data values have a particular
property, that we define as the disjoint values property.

5.4.2 Correct certificates and disjoint values

This section is dedicated to prove two central properties that are essential to obtain
a decidability procedure for the DD automata emptiness problem. These properties
state that every nonempty DD automaton accepts a tree that (1) admits a correct
certificate, and (2) has the disjoint values property —a property that we will define
in Section 5.4.2.

Firstly, in Section 5.4.2 we attack the question of wether we can always assume
that we have a correct certificate, which is a property that is not shared by all runs.
Next section is devoted to show that for any tree t accepted by a DD automaton
there exists a transformation of this tree t′ obtained by duplicating some subtrees,
such that is also accepted.

Secondly, Section 5.4.2 treats the question of wether we can always assume that
the run and certificate verify the disjoint values property. We will show that given
a correctly certified data tree, we can always rearrange the data values in order to
meet this property, while preserving the run and certificate.

Let us define κ̂ to denote, given a position x, the set of data values of the
certificates of the children of x, as well as of x.

κ̂(x) := {κ(x·i) | x·i ∈ pos(t)} ∪ {κ(x)}

We devote the next two sections to show that for any nonempty DD automaton
there is a data tree with a correct certificates and the disjoint values property that
is accepted, and hence that the following theorem holds.

Theorem 5.16. For every nonempty DD automaton (R ,V) there is a tree t and
a correct certificate of t with the disjoint values property such that t is accepted by
(R ,V).

Correct certificates

In this section we exploit the particular property that we imposed to the regu-
lar languages used by the E -transducer. This is the property of extensibility

(Definition 5.7).

5.4. The emptiness problem 85

Fig. 5.4: Subtree replication.

As in previous sections, we assume that every verifier we consider has a maxi-
mum number of relations inside a quantified subformula bounded by R, maximum
number of variables bounded by V, the number of automata is K, and the number
of states in any automaton is bounded by N.

Our first observation is that if we duplicate a subtree of a data tree as in
Figure 5.4, the values of the certificates do not change, and either both trees are
accepted or both rejected by any verifier. The following easy proposition is given
without a proof.

Proposition 5.17. Given a data tree t, and given a position x·i ∈ pos(t) consider
the last index l such that x·l ∈ pos(t). Let t′ := (fx ◦ t), for fx as follows.

fx : pos(t) ∪ {x·(l + 1)·y | x·i·y ∈ pos(t)} → pos(t)

fx(y) =

{

y if x 6� x·(l + 1)

x·i·y if y = x·(l + 1)·y

Then, for every y ∈ pos(t′), and d ∈ D, desct′|y(d) = desct|fx(y)
(d).

This can be also extended to an R -transducer run, always by replicating sub-
trees. Here, the extensibility of the regular languages of R will be of utmost
importance.

Proposition 5.18. Consider a DD automaton (R ,V), a data tree t = a⊗ b⊗ d

with run ρ, and a position x ∈ pos(t) with l the last index such that x·l ∈ pos(t). Let
L be a regular language such that (ρ(x),a(x),b(x),L) ∈ δ and ρ(x·1) · · · ρ(x·l) ∈ L.
Since L is extensible there exist (infinitely many) extensions of ρ(x·1) · · · ρ(x·l).
Take an arbitrary one q̇1 · · · q̇n ∈ L, where of course n > l. Let hx : [n] → [l] be
any surjective function such that q̇i = ρ(x·hx(i)) for every i ∈ [n]. We define the
new set of positions P and the mapping function fx relating any element of P to
a position of t.

P = {x·j·y | x·hx(j)·y ∈ pos(t)} ∪ {z | z ∈ pos(t), x 6≺ z}

fx : P → pos(t)

fx(y) =

{

y if x 6≺ y

x·hx(j)·y if y = x·j·y

Let t′ := (fx ◦ t). Then, for every position y ∈ pos(t′) and data value d, we have
that desct′|y(d) = desct|fx(y)

(d). Besides, t′ that has a R -run fx ◦ ρ.

86 5. Downward navigation

Proof. The fact that t′ preserves the descriptions of the data values at every po-
sition is a consequence of Proposition 5.17, plus a fairly obvious observation that
desct is invariant under a sibling reordering of t.

The fact that fx ◦ ρ is a valid R -run is because we changed one accepting
sequence of sibling trees by another one which is also recognized by the same
language L.

Remark 5.19. Note that Proposition 5.18 implies that if t is accepted by a verifier,
then t′ is also accepted, and idem for the transducer.

Now we can show that we can always restrict to correct certificates.

Proposition 5.20. Every nonempty DD automaton accepts a data tree with a
correct certificate.

Proof. Let us fix a DD automaton (R ,V). We prove the following statement by
induction on the height of the tree: Given a data tree t = a ⊗ b ⊗ d, a run ρ on
t, and a data value e ∈ data(t) ∪ {⊥} such that t is accepted by V , there exists
another tree t′ with the same height as t, with run ρ′ and a correct certificate κ′

such that κ′(ǫ) = e, ρ′(ǫ) = ρ(ǫ) and t′ is accepted by V according to ρ′. Further,
for every d ∈ D, desct(d) = desct′(d). Note that this property implies the statement
of Proposition 5.20, simply taking e = ⊥ and ρ as the accepting witnessing run of
(R ,V).

The base case consists in showing that the property holds for a tree t of height
0 consisting in only one position: ǫ. In this case it suffices to define t′ = t, ρ′(ǫ) = e
and ρ′ = ρ, and all the properties are trivially met.

For the inductive case, suppose that all trees of height at most h satisfy the
above property. Let t be of height h+ 1 with a run ρ and let e ∈ data(t) ∪ {⊥}.

We first define posWitness(d,A , q) for a data value d either undefined if d 6∈
[[A , q]]t, or a witnessing position below.

posWitness(d,A , q) ∈ {y | q
A
−→
ǫ,y

q′, q′ ∈ QA
F , d(y) = d}

posWitness(d,A , q) = ⊥ otherwise

We collect every witness position for the data value e. This will be necessary
to verify the inductivity condition for e at the root.

A = {(e, j) | j � posWitness(e,A , q),A ∈ Aut , q ∈ Q}

In order to build a valid certificate at the root, we also must take into account the
necessary children to verify the formulæ for every intersection I.

CI = {(d, j) | d ∈ [[I]]
t, j � posWitness(d,A , q), (A , q) ∈ I}

We must then witness all the elements of E = A ∪
⋃

{CI | I ∈ Inters}. The data
tree t′′ consists in duplicating some of the subtrees of t so as to have enough space

5.4. The emptiness problem 87

to fit all the necessary witness certificates required by E. We will then need at most
|E| replications of trees. This will by achieved by the extensibility of the language
corresponding to the transition of ρ. Let us consider q̇1, . . . , q̇n to be an |E|-
extension of ρi(1)· · · · ·ρi(l) ∈ L for a language L such that (ρ(ǫ),a(ǫ),b(ǫ),L) ∈ δ.
We define fǫ as in Proposition 5.18, and we define t

′′ = fǫ ◦t, ρ
′′ = fǫ ◦ρ. It follows

that ρ′′ is a run on t′′ and by Remark 5.19 t′′ is accepted by V .

We must make sure that each one of the witnesses of E is placed in a different
subtree of t′′. Let g be a function that chooses, for each element of E, which subtree
to use, g : E → {j | j ∈ pos(t′′)} such that g is injective and fǫ(g(d, j·y)) = j for
every (d, j·y) ∈ E. For every subtree t′′|i of t

′′ we apply the inductive hypothesis
with the data value d0 such that g

−1(i) = (d0, y) for some y, or with ⊥ otherwise.
We obtain thus a tree t′i with a correct certificate κ

′
i and run ρ

′
i. Finally we build

the following tree t′, certificate κ′, and run ρ′ verifying all the properties.

t′(x) =

{

t(x) if x = ǫ

t′i(y) if x = i·y, i ∈ pos(t′′), y ∈ pos(t′i)

κ′(x) =

{

e if x = ǫ

κ′i(y) if x = i·y, i ∈ pos(t′′), y ∈ pos(t′i)

ρ′(x) =

{

ρ(x) if x = ǫ

ρ′i(y) if x = i·y, i ∈ pos(t′′), y ∈ pos(t′i)

ρ′ is a run on t′ since it is composed of runs ρ′i from the subtrees and at the root
it verifies the transition (ρ′(ǫ),a(ǫ),b(ǫ),L) ∈ δ. κ′ is a correct certificate, since
the κi’s are correct certificates for all the subtrees, and κ verifies the inductive and
valid conditions at the root. The description of any data value d at the root was
not altered since we only applied Proposition 5.18 and the inductive hypothesis
that preserve the descriptions. Finally, we can see that V accepts t′ since it accepts
each of its subtrees, and also verifies the property of the root, since no descriptions
of data values were modified.

Disjoint values

We introduce a property concerning the data values of the tree. The idea is that
given two disjoint subtrees t|x, t|y with x 6� y, y 6� x, the only data values they
can share, if any, are those of the certificates of their roots κ(x), κ(y), or those
of some of their children κ(x·i), κ(y·j). Remember that these last ones constitute
all the witness data that are necessary to verify the profile at x and y. All other
data values can be assumed to be partitioned between the two subtrees. Here we
show that for every nonempty DD automaton there is always a tree that can be
certified in such a way that this property holds. Next we formalize the disjoint
values property, which will be an essential property in order to prove our main
decidability result of Theorem 5.9.

88 5. Downward navigation

Definition 5.21. Let t = a ⊗ d be a data tree recognized by a DD automaton
(R ,V). Let κ be a correct certificate. We say that it has the disjoint values

property if, for any pair of incomparable positions x, y ∈ pos(a⊗ d), x 6� y, y 6� x,

data(t|x) ∩ data(t|y) ⊆ κ̂(x) ∩ κ̂(y) .

We show here that we can always assume the model to have a disjoint values
property. The idea is that once we have a correct certificate κ over a data tree t,
we know that at any inner node x ∈ pos(t), all the important data values to verify
d-profile(t|x) shared between subtrees {t|x·i | x·i ∈ pos}, are those contained in the
certificates of the children κ(x·i) or κ(x). That is, for every x, the only necessary
data values to verify its profile (or an ancestor’s profile) is in κ̂(x). We can then
consider that these are the only data values that may be shared by any two t|x·i,
t|x·j .

We now state the important proposition of this section.

Proposition 5.22 (Disjointness). Given t a data tree with κ a correct certificate,
and x ∈ pos(t). Let dx ∈ data(t|x) \ κ̂(x), d

′
x 6∈ data(t), and consider a bijective

function f : D → D such that f(d) = d for all d ∈ data(t) \ {dx} and f(dx) = d′x.
Then define t′ with pos(t′) = pos(t) and κ′ as

t′(y) =

{

(a(y), (f ◦ d)(y)) if y � x

t(y) otherwise
κ′(y) =

{

(f ◦ κ)(y) if y � x

κ(y) otherwise

Then for every position y ∈ pos(t), d-profile(t|y) = d-profile(t′|y), and κ
′ = f ◦ κ

is a correct certificate for t′.

The following trivial lemma will be useful in the sequel

Lemma 5.23. Given a data tree t, I, I ′ ∈ Inters, and x, y ∈ pos(t), x � y,

such that for every (A , q) ∈ I there is (A , q′) ∈ I ′ such that q
A
−−→
x,y

q′. Then,

[[I ′]]t|y·i ⊆ [[I]]t|x for any y·i ∈ pos(t).

of Proposition 5.22. It is immediate that for any y such that either y � x or
x 6� y 6� x, κ′|y is a correct certificate for t

′|y, since for that position t|y and t′|y
are isomorphic. Suppose then that y ≺ x. We show that for any k ≤ V,

(a) if |[[I]]t|y | ≥ k, then there are d1, . . . , dk ∈ [[I]]
t|y ∩ [[I]]t

′|y , and

(b) if |[[I]]t
′|y | ≥ k, then there are d1, . . . , dk ∈ [[I]]

t|y ∩ [[I]]t
′|y .

Note that (a) and (b) imply that the profiles are the same. For (a), suppose
|[[I]]t|y | ≥ k. By correctness of κ there are d1, . . . , dk ∈ [[I]]

t|y such that there are k
downward paths starting at y with each data value di as certificate. By choice of
dx, if dx ∈ {d1, . . . , dk}, it cannot be that any witness position of dx ∈ [[I]]t|y lies
within t|x, as it would mean that dx ∈ κ̂(x). Thus, d1, . . . , dk ∈ [[I]]

t
′|y .

5.4. The emptiness problem 89

For (b), assume there are d1, . . . , dk ∈ [[I]]t
′|y . If none of these is d′x, then

the certificate κ (which is the same as κ′ for these values) shows the paths to
witness these data values in t|y and then d1, . . . , dk ∈ [[I]]t|y . If d′x ∈ [[I]]t

′|y , as
d′x only appears in t|x, there must be an intersection I ′ such that d′x ∈ [[I ′]]t

′|x ,

and for every (A , q) ∈ I there is (A , q′) ∈ I ′ with q
A
−−→
y,x′

q′, for x = x′·i. Hence,

f−1(d′x) = dx ∈ [[I
′]]t|x . Since dx 6∈ κ̂(x) by hypothesis, this means (by correctness

of κ) that dx is not in any ‘small’ intersection, and thus |[[I ′]]t|x | > V, which, by
Lemma 5.23, implies that |[[I]]t|y | > V. Since for all other data values d′x 6= d ∈ [[I]]t

′
y

we have that d ∈ [[I]]t|y , there must be k data values d1, . . . , dk ∈ [[I]]
t|y ∩ [[I]]t

′|y .
It follows that the certificate κ′ is also correct for all positions y of t′, since all

the intersections I with |[[I]]t|y | ≤ V coincide in t and t′.

By applying repeatedly Proposition 5.22 we obtain the following result.

Corollary 5.24. For any data tree t = b ⊗ d with correct certificate κ, there
exists another one t′ = b⊗d′ with correct certificate κ′ such that for every position
x ∈ pos(t), d-profile(t|x) = d-profile(t′|x) and t′ has the disjoint values property.

Putting together Proposition 5.20 with Corollary 5.24 we hence verify Theo-
rem 5.16 which was the objective of the current Section 5.4.2.

Now we have all the main ingredients to state the horizontal pumping argument.
In the next section we show that, given a run and a correct certificate, the width
of the tree can be bounded effectively.

5.4.3 Horizontal pumping

We first bound for any x the size of the set of children Cx necessary for any correct
certificate.

Lemma 5.25. For every correct certificate on a data tree t and every position
x ∈ pos(t) there exists a subset of children Cx that is valid and inductive, and
|Cx| ≤ L, with L = (K.N)R.p(V,R,K,N) for some fixed polynomial p.

Proof. We show that L := (K.N)R.(V.R) + K.N is a good upper-bound. This is a
direct consequence of the cardinality of Inters and the number of possible pairs
(A , q). To verify the validity condition as in Definition 5.14, for every I ∈ Inters
out of at most (K.N)R, we might need to add up to V.R certificates in the children
to witness I: one for each of the V data values and each (A , q) ∈ I. On the other
hand, to verify the inductivity condition on κ(x), we need at most one extra child
witness for each automata and state in desct|x(κ(x)), which can have no more than
K.N elements.

Lemma 5.26 (Horizontal pumping). Let t be a data tree recognized by a DD
automaton (R ,V). Let (τ, ρ, ρh) be a detailed R -run and κ a correct certificate.
Let x ∈ pos(t) and Cx a valid and inductive subset of children positions. Let
x·i, x·(i+1), . . . , x·(i+j) be a set of consecutive siblings with the following properties

90 5. Downward navigation

• ρh(x·i) = ρh(x·j),

• none of the positions x·(i+ 1), . . . , x·(i+ j) is in Cx.

Then the data tree resulting from the deletion of the subtrees t|x·(i+1), . . . , t|x·(i+j)
is also recognized, with the same detailed run and correct certificate.

Proof. Let t = a⊗ b⊗ d and l be the last index such that x·l ∈ pos(t). The run

ρh(x·1) · · · ρh(x·i)ρh(i+ j + 1) · · · ρh(l)

continues to be an accepting run for the NFA Bx corresponding to τ(x) on the
string ρ(x·1) · · · ρ(x·i)ρ(i+j+1) · · · ρ(l), and hence τ(x) correctly labels the position
with a valid transition. On the other hand, κ continues to be correct since all the
necessary elements of Cx are preserved after the pruning.

Corollary 5.27. If there exists a data tree recognized by a DD (R ,V) with a correct
certificate, then there also exists a tree with bounded width which is also recognized
by (R ,V) with a correct certificate. The bound is (K.N)R.p(V,R,K,N, |Q̃|) for some
polynomial p.

Proof. We show that it can be bounded by

W := (|Q̃| − 1).(L+ 1) which by definition of L

= (|Q̃| − 1).((K.N)R.p′(V,R,K,N) + 1)

= (K.N)R.p(V,R,K,N, |Q̃|)

(5.2)

for some polynomials p, p′. Given a maximal sequence of siblings x·1, . . . , x·l, we
already established in Lemma 5.25 that a valid and inductive subset Cx needs no
more than L elements to preserve the correctness of the certificate. Hence, there
can be at most L+1 zones of consecutive positions not in Cx, and each one of them
must have at most |Q̃| − 1 elements. Should it have more, then there are at least
two repeating elements with the same horizontal configuration by the pigeonhole
principle, and we can then apply Lemma 5.26 and remove some of the siblings.

Remark 5.28. The bound of Corollary 5.27 also holds for trees with the disjoint
values property, since this property is preserved when a subtree is removed.

We just showed how we can bound the width of a tree with a correct certificate.
Unfortunately, bounding the height of the tree is not as simple. Here we will need
to make use of the properties showed in Section 5.4.2.

If a run is such that it can be decorated with a correct certificate that has the
disjoint values property, we can show that the acceptance or not of the tree can
be decided only by inspecting some local conditions between every inner node and
its children. This will be the object of the next section, where we will prove that
there is a 2ExpTime upper bound to test these kinds of local properties.

5.4. The emptiness problem 91

5.4.4 The emptiness algorithm

In this section we show how to label each node of the tree with some finite infor-
mation (that we call tree configuration). We do this in such a way that testing
whether a data tree is accepted or not by a DD automaton amounts to verifying
a local property between a node’s configuration and the configurations of its chil-
dren, for every node of the tree. The configuration depends only on the certificate
of the root and its children, and on the state on the run of the transducer. There
is a doubly exponential number of such configurations. This fact, together with
the bounded width of the tree we showed in Corollary 5.27, leads to a decision
procedure to test for emptiness. The algorithm runs in 2ExpTime considering R

as a parameter, or ExpTime if R is taken as a constant.

By Theorem 5.16, we assume for the rest of this section that we are always
working with a data tree t equipped with: an accepting run ρ of R on t, and a
correct certificate κ on t, under the disjoint values property.

Configurations

We describe what a configuration looks like for a data tree t = a⊗ b⊗ d. A tree

configuration contains the state of the transducer’s run, the data value of the
root, the root’s certificate, the children’s certificates, and the description of all the
data values of the certificates it contains. In the following definition remember
that κ̂(x) denotes the set consisting of κ(x) and all κ(x′) for x′ a children of x, and
that ⇀ defines partial functions.

TConfigs = Q̇× D× D× ℘≤W(D)× (D⇀ ℘(Aut×Q))

tconfig(t, ρ, κ) =
(

ρ(ǫ), d(ǫ), κ(ǫ), κ̂(ǫ), {d 7→ desct(d) | d ∈ κ̂(ǫ)}
)

Although the configurations contain data values, it is not important to know
the concrete data values. We are only interested in the classes of equivalence
modulo equality contained in the configuration. This is sensible, since the model
of automata presented can only test for data equality or disequality. Later on, we
will see that this means that we can substitute D with a finite alphabet.

The objective is to prove that if we are given a tree with a run and certificate,
we can deduce the configuration of the root only by inspecting the configurations
of the immediate subtrees. And viceversa, if we are given a forest of trees with
their respective runs and configurations, and a configuration that is compatible
with them (for some notion of compatibility), we can then build a witness data
tree with the configuration in question.

Given a DD automaton (R ,V), what conditions on the configurations do we
need to check? For this purpose we define an entailment relation that checks
whether the root configuration can be entailed from the configurations of the chil-
dren

⊢ ⊆ (TConfigs)∗ × TConfigs .

92 5. Downward navigation

Let us give the conditions forM ⊢ (q̇0, d0, c0, C0, α0) to hold, with (q̇0, d0, c0, C0, α0)
the configuration of the root and M = (q̇1, d1, c1, C1, α1) · · · (q̇m, dm, cm, Cm, αm)
the configurations of the immediate subtrees.

We define that M ⊢ (q̇0, d0, c0, C0, α0) holds if the following conditions are
verified. The conditions, although lengthy, are straightforward. They are necessary
and sufficient to have a forest of subtrees with configurations M and a root with
the entailed configuration. They can be informally described as follows: (i) ⊢ is
consistent with the run of the transducer; (ii) c0 is a fresh data value, or a data
value equal to some ci; (iii) C0 contains all ci’s data values; (iv) the ci’s have
the validity property for every intersection; (v) c0 and the ci’s have the inductive
property; (vi) α0 is obtained from the description at the children configuration
αi’s, by applying all possible transitions from any of the automata; (vii) the root
satisfies the verifier’s formula. In the next definition, we use a function

f : (TConfigs)∗ → (B×D)→ D→ ℘(Aut×Q)

such that f (M)(b, d0)(d) = A if A is the data description of d, deduced from the
root’s letter and datum (b, d0), and the configurations of the children positions M .

f (M)(b, d0)(d) = {(A , q) | i ∈ [m], d ∈ Ci, (A , q
′) ∈ αi(d), (q, b, q

′) ∈ A} ∪

{(A , q) | d = d0, (q, b, q
′) ∈ A , q′ ∈ QA

F }

We also use

h : (TConfigs)∗ → (B×D)→ Inters → ℘(D)

where h(M)(b, d0)(d) is the set of all data values in M that satisfy the intersection
I at the root.

h(M)(b, d0)(I) = {d | d ∈ {d0} ∪ C1 ∪ · · · ∪ Cm, I ⊆ f (M)(b, d0)(d)}

The conditions are as follows.

(i) There exists (q̇0, a, b,L) ∈ δ with q̇1 · · · q̇m ∈ L. For the remaining conditions
let us fix f ′ = f (M)(b, d0) and h ′ = h(M)(b, d0).

(ii) Either c0 = d0 or c0 = ci for some i ∈ [m].

(iii) C0 = {c1, . . . , cm}.

(iv) For every I ∈ Inters, the validity condition (Definition 5.14) holds,

valid(h ′(I), I, (b, d0, c0),∪i∈[m]{(ci, αi(ci))}) .

(v) The inductive condition (Definition 5.15) holds,

inductive(α0(c0), (b, d0, c0),∪i∈[m]{(ci, αi(ci))}) .

5.4. The emptiness problem 93

(vi) α0 = {d 7→ f ′(d) | d ∈ C0}.

(vii) {I 7→ |h ′(I)|≤V} |= v(b), where v is the verifier’s mapping, and |= is as defined
in Figure 5.3 on page 82.

We remark that in the above definition we do not exclude the case where M = ǫ.
In fact, this case corresponds to the configurations of the leaves.

Correctness of ⊢

We verify that this is indeed enough to have a decision procedure. Below, the
soundness Proposition 5.29 states that, given a sequence of trees with their re-
spective configurations, for any configuration entailed from these we can find a
tree that witnesses this configuration. On the other hand, the completeness Propo-
sition 5.32 states that for any tree, the configurations of the immediate subtrees
entail the configuration of the tree.

Proposition 5.29 (soundness). Given m data trees with R -runs, correct certifi-
cates and the disjoint values property

t1, ρ1, κ1, . . . , tm, ρm, κm

with ti = ai⊗bi⊗di ∈ Trees(A×B×D) such that ρi is a run for ai⊗bi, V accepts
bi ⊗ di, and

∀i 6= j data(ti) ∩ data(tj) ⊆ κ̂i(ǫ) ∩ κ̂j(ǫ) . (5.3)

If
M = (q̇1, d1, c1, C1, α1) · · · (q̇m, dm, cm, Cm, αm) ⊢ T

with (q̇i, di, ci, Ci, αi) = tconfig(ti, ρi, κi) for every i, then there exists a tree t0 ∈
Trees(A×B×D) with run ρ0 and correct certificate κ0 with the disjoint values prop-
erty, such that it is accepted by V , and

tconfig(t0, ρ0, κ0) = T.

Before going into the details of the proof, we need to state some necessary
lemmas (5.30, 5.31). Take any tree t0 with root (a, b, d0) and subtrees t1, . . . , tm,
such that

either d0 ∈ C1 ∪ · · · ∪ Cm or d0 6∈ ∪i∈[m]data(ti) . (5.4)

Let us fix f ′ = f (M)(b, d0) and h ′ = h(M)(b, d0).

Lemma 5.30. For any d ∈ C1 ∪ · · · ∪ Cm, f ′(d) = desct0(d).

Proof. The fact that d ∈ C1 ∪ · · · ∪ Cm implies that d ∈ κ̂i(ǫ) for some i. Then,
by hypothesis (5.3), if d ∈ data(tj) for any j ∈ [m], then d ∈ κ̂j(ǫ). This means
that we have a complete description of d at every element of M : for every j ∈ [m]
either αj(d) = desctj (d), or αj(d) = ⊥ and desctj (d) = ∅. Hence, by definition of
f ′ we have: f ′(d) = desct0(d).

94 5. Downward navigation

Lemma 5.31. For any intersection I and k ≤ V, |[[I]]t0 | ≥ k iff |h ′(I)| ≥ k.

Proof. The right-to-left implication is a direct consequence of the definition of
h ′(I). For the left-to-right implication, suppose that |[[I]]t0 | ≥ k. Take d ∈ [[I]]t0 .
We argue that if d appears in some κ̂i(ǫ), then it is in h ′(I). This is because
all the subtrees ti with d ∈ data(ti) must have d ∈ Ci, as a consequence of the
hypothesis (5.3). Hence we have a ‘complete’ description of d at every subtree,
and f ′ yields the correct description of d at the root by Lemma 5.30, which implies
that d ∈ h ′(I) by definition of h .

Suppose on the other hand that d is not in κ̂i(ǫ) for any i. Since every κi is
correct, this means that d does not appear in any small intersection [[I ′]] of less
than V data. Hence, in particular |[[I]]t0 | ≥ V. By hypothesis (5.3), we know that
d can appear in at most one tree ti, or at the root. We consider both cases.

If d appears only at the root, it means that d = d0, and for every (A , q) ∈ I
there is q′ ∈ QA

F with (q, b, q′) ∈ A and this is taken into account by the definition
of h ′(I). Hence, d ∈ h ′(I).

If d appears only in ti, this means that there is an intersection I ′ such that
d ∈ [[I ′]]ti and for every (A , q) ∈ I there is (A , q′) ∈ I ′ with (q, b, q′) ∈ A . We
had assumed that d 6∈ κi(ǫ), and this implies that |[[I ′]]ti | ≥ V. Then, there are
V data values d1, . . . , dV ∈ κ̂i(ǫ) ∩ [[I

′]]ti . By Lemma 5.23, [[I ′]]ti ⊆ [[I]]t0 and thus
d1, . . . , dV ∈ [[I]]t. This means that d1, . . . , dV are described in M and hence that
d1, . . . , dV ∈ h ′(I) and |h ′(I)| ≥ V. Finally, note that d cannot appear in some ti
and at the root by hypothesis (5.4).

Proof of Proposition 5.29. We show that there exists (a, b, dcert) ∈ A×B×D such
that the tree with (a, b, dcert) at the root and t1, . . . , tm as children has a correct
certificate κ0 defined at the root by T , with the disjoint values property, and an
R -run ρ0 defined at the root by T .

We first define the run. Let T = (q̇0, d0, dcert, C0, α0). As we remarked before,
we are only interested in the classes of equivalence of T with respect to T1, . . . , Tm.
So that we can always assume that d0 is such that hypothesis (5.4) holds: if
d0 6∈ C1 ∪ · · · ∪ Cm, we simply assume that d0 is any value not contained in
data(t1) ∪ · · · ∪ data(tm).

By condition (i) of the entailment definition, there is some transition (q̇0, a, b,L)
of R such that ρ1(ǫ) · · · ρm(ǫ) ∈ L. Let t0 ∈ Trees(A×B×D), defined by t0(ǫ) =
(a, b, d0) and t0(i·x) = ti(x) for i ∈ [m]. Hence the run ρ0 defined as ρ0(ǫ) = q̇0,
ρ0(i·x) = ρi(x) is a valid R -run on t0.

We now show that T is indeed a configuration that corresponds to t0. By
condition (ii) either dcert = d0 for some fresh data value (i.e., not appearing in any
subtree, by hypothesis (5.4)), or dcert = κi(ǫ) for some i ∈ [m]. In the first case we
trivially have

desct0(d) = {(A , q) | (q, b, q
′) ∈ A , q′ ∈ QA

F } = α0(d)

by definition of α0 (condition (vi)) and definition of f ′(dcert). In the second case,
we have by Lemma 5.30 that f ′(dcert) correctly yields the description of dcert at the

5.4. The emptiness problem 95

root and we verify desct0(dcert) = α0(dcert). By condition (iii) and using the same
reasoning as before, κ1(ǫ)∪ · · · ∪ κm(ǫ) = C0 and for all d ∈ C0, α0(d) = desct0(d).
Then, we have that dconfig(t0, ρ0, κ0) = T .

We define the certificate κ0 as κ0(ǫ) = dcert and κ0(i·x) = κi(x). From hy-
pothesis (5.3) and the fact that ti, κi have the disjoint values property for every
i ∈ [m], we deduce that t0, κ0 also verifies the disjoint values property.

We show that κ0 is a correct certificate for t0. For the validity condition we first
have by Lemma 5.31 that the sets h ′(I) are good approximations3 of [[I]]t0 . This,
together with condition (iv) and Definition 5.14 gives us that κ0 must be valid,
while the inductivity property is a consequence of Definition 5.15 and condition
(v).

Finally, since h ′(I) has the same cardinality up to V elements as [[I]]t0 , {I 7→
|h ′|≤V} |= ϕ iff ϕ holds at t0 for any ϕ ∈ Φ used in V . Then, by condition (vii),
t0 is accepted by V .

Proposition 5.32 (completeness). Given a data tree t ∈ Trees(A×B×D) with
correct certificate κ, run ρ and the disjoint values property accepted by V , then

tconfig(t|1, ρ|1, κ|1) · · · tconfig(t|m, ρ|m, κ|m) ⊢ tconfig(t, ρ, κ)

for m the maximum index such that m ∈ pos(t).

Proof. Let t = a⊗ b⊗ d. We verify conditions (i) through (vii). Condition (i) is
trivially true as ρ is a run on t. Condition (ii) holds, since the κ(ǫ) can be either
equal to d(ǫ) or equal to some child certificate κ(i) as a consequence of κ being a
correct certificate. Condition (iii) holds because we have all the certificates from
the child configurations. The correctness of the descriptions of condition (vi) for the
data values {κ(1), . . . , κ(m)} is based on the fact that we are under the disjoint
values property. This property entails that for every data value κ(i) and every
j ∈ [m]: if κ(i) ∈ data(t|j), then κ(i) ∈ κ̂(j). This means that we have a complete
description of κ(i) for every subtree t|j . For the case of the root’s certificate κ(ǫ)
we have two cases. If κ(ǫ) equals some κ(i), then we use the same argument as
before. Otherwise, we use the inductivity of the certificate κ, knowing that by
Definition 5.15 if κ(ǫ) is in some [[A , q]]t, there must be a path of certificates with
value κ(ǫ). So, the fact that there are no κ(i) = κ(ǫ) means that desct(κ(ǫ)) can
be completely witnessed locally by inspecting only the root. Then, the description
obtained by f ’ contained in tconfig(t, ρ, κ) is correct. Since condition (vi) holds and
b⊗d verifies v(b(ǫ)), then it verifies condition (vii). Finally, conditions (iv) and (v)
are consequences of the validity and inductivity properties of κ respectively.

Remark 5.33. Observe that Corollary 5.27 with Remark 5.28 gives us a bound on
the width of a recognized tree with a correct run and the disjoint values property.
We can thus restrict ourselves to relations T1 · · ·Tt ⊢ T with t ≤W from now on.

3 They coincide in min([[I]]t0 ,V) elements.

96 5. Downward navigation

Also, note that the concrete data values of the configuration are not important
and can be abstracted away, as soon as they allow to test the conditions of the
entailment ⊢. For T, T ′ ∈ TConfigs, let us write T ∼ T ′ if there is a bijection of
data values f : D→ D such that f(T) = T ′, where f(T) stands for the replacement
of every datum d by f(d) in T . In every configuration there are at mostW+2 data
values (the root’s data value, the root’s certificate, and at most W corresponding
to the certificates of the children). Then, by Remark 5.33, a ‘⊢’ test involves not
more than W+ 1 configurations and hence we only need at most (W+ 1).(W+ 2)
different data values. Let us define TConfigs′ to be TConfigs where instead of
having D as data domain, we have {1, . . . , (W + 1).(W + 2)}. Let

D′ := {1, . . . , (W + 1).(W + 2)} (5.5)

and then let TConfigs′ be defined in terms of the restricted set of data values D′,

TConfigs′ = Q̇× D′ × D′ × ℘≤W(D
′)× (D′ ⇀ ℘(Aut×Q)) . (5.6)

We then have the following obvious lemma.

Lemma 5.34. For every T, T1, . . . , Tn ∈ TConfigs such that T1 · · ·Tn ⊢ T , there
exist T ′, T ′1, . . . , T

′
n ∈ TConfigs′ with T ∼ T ′ and Ti ∼ T ′i for all i, such that

T ′1 · · ·T
′
n ⊢ T

′.

This means that, since we are only interested in the tree configurations that
can be reached by ⊢ modulo isomorphism of data values, we can simply use those
tree configurations of TConfigs′. These are doubly exponential in R, or singly
exponential otherwise.

Lemma 5.35. The number of elements in TConfigs′ is exponential in |R | and |V |
if R is a constant, or doubly exponential otherwise.

Proof. Now we have at most |D′| data values, and the function of each configuration
is restricted to the data values (at most W) of the configuration. We then have
the following bounds by definition of TConfigs′ (5.6).

|TConfigs′| ≤ |Q̇|.|D′|.2K.N.(|D′|.2K.N)W

|D′| is polynomial in W, and we then have

|TConfigs′| ≤ |Q̇|.(p(W))q(W).2K.N.r(W) (5.7)

for some polynomials p, q, r. W is exponential only in R, and if R is constant, W is
polynomial in |R | and |V | by definition (5.2). Thus, the lemma follows.

As the first step towards an upper bound, we observe that the ⊢ relation on
TConfigs′ can be checked in polynomial time in Aut,W, |R |.

Lemma 5.36. Given T, T1, . . . , Tn ∈ TConfigs′ with n ≤ W, T1 · · ·Tn ⊢ T can be
tested in time p(Aut,W, |R |) for some polynomial p.

5.4. The emptiness problem 97

Proof. Condition (i) can be tested in polynomial time in |R |, |Q̃| and n, where
|Q̃| is polynomial in W. The function f (T1 · · ·Tn)(b, d0)(d) can be computed in
polynomial time in Aut and |T1|+ · · ·+ |Tn| (which is polynomial in W). It follows
that the description function α of condition (vi) can be checked in polynomial time
in W, since it consists in at most W+1 applications of f (M)(b, d0)(d). Conditions
(ii) and (iii) are easily checked in polynomial time in |T |, |T1|, . . . , |Tn|. Condition
(v) can be tested in polynomial time in W and Aut by the above reasons. For
condition (iv), we see that h(M)(b, d0)(I) can be built in time polynomial, and that
for every possible intersection I and value of h(M)(b, d0)(I) a polynomial condition
must be checked, hence, since |Inters| is polynomial in W, testing condition (iv)
remains polynomial.

We now show an algorithm to test whether a tree configuration can be reached
by the entailment relation ⊢.

Theorem 5.37. The emptiness problem for DD automata is in 2ExpTime. It
can be tested in time

(Aut, |R |.V.R.K.N)p(|Q̃|,V,R).r(K.N)s(R)

for p, r and s polynomials.

Proof. We consider a standard reachability algorithm by saturation. We start with
an initial empty set of configurations C0 = ∅, and we iterate to make it grow to
entailed configurations until, after at most |TConfigs′| iterations, the set stabilizes.
We then test if some of the reachable tree configurations contains a final state.

The set of initial configurations is C0 = ∅. At iteration i+1, for every possible
T0 ∈ TConfigs′ we test the following conditions

• T0 6∈ Ci

• There exists a (possibly empty) sequence T1, . . . , Tt with t ≤W such that

– T1, . . . , Tt ∈ Ci

– T1, . . . , Tt ⊢ T0

and we define Ci+1 := Ci ∪C
′, for C ′ the set of all configurations T0 satisfying the

above conditions. If C ′ is empty, we stop and return Ci the subset of TConfigs
′ of

(⊢)-reachable configurations.
This algorithm clearly gives as a result the set of configurations of all the

accepted trees. For every iteration we might need to perform |TConfigs′|W+1 tests
for the ⊢ conditions, each one demanding p(Aut,W, |R |) for a polynomial p by
Lemma 5.36. Finally, the loop can only be executed |TConfigs′| times. We then
have that the total time consumed is

|TConfigs′|W+2.p(Aut,W, |R |) .

98 5. Downward navigation

By the inequation (5.7) of Lemma 5.35, and since W is exponential only in R by
(5.2), we have that the emptiness problem is bounded by

(Aut.|R |.V.R.K.N)p(|Q̃|,V,R).r(K.N)s(R)

for p, r, s polynomials, and we hence have a 2ExpTime decision procedure. We
just proved that the problem of whether a DD automaton accepts a tree t with a
correct certificate with the disjoint values properties, can be tested in 2ExpTime.
Then, by Theorem 5.16 the result follows.

Note that the theorem above implies the Main Theorem 5.9. From the previous
proof, we have that the complexity is doubly exponential only in R.

Corollary 5.38. If R is fixed, emptiness of DD automata is in ExpTime. It can
be tested in time bounded by

(Aut.|R |.V.K.N)p(|Q̃|,V,K,N)

for some polynomial p.

Note that the height of a ⊢ derivation is directly related to the height of the
tree. Hence, for trees with a fixed height, we can take advantage of this fact by
performing an on-the-fly algorithm.

Definition 5.39. We define the height-h emptiness problem to the decision
problem of testing whether there exists a tree of height at most h that is accepted
by a DD automaton.

For the next theorem let us assume that h is coded in unary.

Theorem 5.40. If R is fixed, the height-h emptiness problem of DD automata is
in PSpace.

Proof. Given the previous algorithm of Theorem 5.37, note that all the configura-
tions corresponding to derivations of height i are present once the ith iteration has
been executed. Also, note that the height of the derivation and the height of the
tree are related in this sense: any tree of height h can be witnessed by a derivation
of height h. We can then build a top-down NPSpace algorithm as follows.

Let us denote by g(T, l) the following procedure for T ∈ TConfigs′, l ∈ [0..h].
First, g(T, 0) yields ‘ok’ iff ǫ ⊢ T , otherwise it fails. g(T, l + 1) performs the
following tasks. Guesses the tree configurations T1, . . . , Tn with 0 ≤ n ≤W. Checks
T1 · · ·Tn ⊢ T in PSpace, and recursively tests that g(T1, l), . . . , g(Tn, l) succeed.
Consider now the main algorithm that guesses a root configuration T ∈ TConfigs′

and checks both that it contains a final state q̇ ∈ Q̇F and that g(T, h) succeeds.
This algorithm correctly answers whether there exists a derivation of height at
most h that has T at the root.

5.5. Satisfiability of downward XPath 99

Notice that the space needed to store the data description function α of a
configuration T is bounded by sp(α) = (W + 1). log(|D′|).K.N, for D′ as defined
in (5.5). Then the space needed to store a tree configuration is

sp(T) = log(|Q̇|) + log(|D′|) + sp(α)

≤ log(|Q̇|) + p(|Q̃|,K,N,V)

for some polynomial p. This is a consequence of (5.5) and (5.2), and the fact that
R is fixed. If we perform a DFS evaluation strategy of g we only need to store
simultaneously at most (W + 1).h configurations and hence the algorithm takes a
space polynomial in the size of the automata R ,V considering R is fixed. It is then
immediate that this is a NPSpace procedure for any configuration and l.

Thus, as NPSpace = PSpace the theorem follows.

Remark 5.41. If sp(⊢) is the space needed to check T1 · · ·Tn ⊢ T , n ≤W, then the
algorithm of Theorem 5.40 uses an amount of space bounded by

sp(⊢) + p(h, log(|Q̇|), |Q̃|,K,N,V)

for some polynomial p.

The purpose of the remark above for discriminating the space needed to perform
the entailment condition sp(⊢) will become clear in Section 5.5.2.

5.5 Satisfiability of downward XPath

The first part of this section is consecrated to the proof of decidability of the sat-
isfiability problem for regXPath(↓,=), the language with the child relation and the
Kleene star over path expressions. In later subsections we consider the satisfiability
problem of several fragments of this logic, with or without data tests.

5.5.1 Regular-downward XPath

The proof of satisfiability for regXPath(↓,=) goes by reduction to the emptiness
problem of DD automata. Before embarking in the reduction, we need to fix some
standard terminology.

Definition 5.42. We say that a set of formulæ S is closed under subformulæ

if, for every ϕ ∈ S, and ψ a subformula of ϕ, then ψ ∈ S. S is closed under

simple negations if, for every ϕ ∈ S either it is of the form ¬ψ, or ¬ϕ ∈ S.
We note S¬ to the minimal superset of S closed under subformulæ and simple
negations.

A locally consistent set over S is a maximal subset of H ⊆ S that satisfies
the following conditions:

• For all ¬ϕ ∈ S: ¬ϕ ∈ H iff ϕ 6∈ H.

100 5. Downward navigation

• For all ϕ ∧ ψ ∈ S: ϕ ∈ H and ψ ∈ H iff ϕ ∧ ψ ∈ H.

• For all ϕ ∨ ψ ∈ S: ϕ ∈ H or ψ ∈ H iff ϕ ∨ ψ ∈ H.

For the rest of the section, we consider the parameters of the DD automata (K,
N, R, V, |Q̇|, |Q̃|, |R |, Aut, |V |) as defined in Section 5.4.

Theorem 5.43. Given a formula η ∈ regXPath(↓,=), a DD automaton (R ,V)
can be effectively built, such that for any data tree t: t |= η iff (R ,V) accepts t.

Proof. Let η be a formula of regXPath(↓,=). We build the DD automaton (R ,V),
where R tags each node with those sub-node expressions of η that hold at each
node, and V checks that all the data and path expressions are verified.

Let us call nsub(η) = {γ | γ a node expression in sub(η)}, where sub(η) is the
set of subformulæ of η, defined as the substrings of η that are formulæ. Let B be
the set of all locally consistent sets over {η}¬. Let us build R in such a way that at
each step it chooses nondeterministically one element from B consistent with the
current label and outputs it. That is, if a ∈ A is the letter of the current position
then it outputs any element b ∈ B such that ¬a 6∈ b. Hence, the transducer only
needs one (final) state.

For every path expression α in sub(η), consider a NFA Aα over the alphabet
B that recognizes α. For example, if α = [ϕ]↓[ψ], then Aα recognizes {b b′ | b, b′ ∈
B, ϕ ∈ b, ψ ∈ b′}. It can be built in polynomial time in |α| and |B|. We define the
verifier V to contain the automata Aut = {Aα | α path expression of sub(η)}. The
mapping v is defined by testing the path formulæ described in the alphabet.

v(b) =
∧

(¬)〈α⊙β〉∈b
⊙∈{=, 6=}

(¬) ∃v, v′ .
(

v ⊙ v′ ∧Dα(v) ∧Dβ(v
′)
)

∧
∧

(¬)〈α〉∈b

(¬) ∃v . Dα(v)

This concludes the translation. Intuitively, the only purpose of the transducer
R is to guess which subformulæ of η are true and which are false. The real work
is done by the verifier V , checking that every formula was correctly guessed.

The result above already gives us a decidability procedure for the satisfiability
problem. Let us analyze its upper bound.

Corollary 5.44. The translation of Theorem 5.43 yields an automaton that uses
at most R = 2 relations per existential clause and at most V = 2 variables. It can
be built in exponential time in η such that K + N ≤ p(|η|) for some polynomial p,
and |Q̇|, |Q̃| are constantly bounded.

Proof. Notice that the transducer only uses one state, |Q̇| = 1, and that it only
needs to use transitions (q̇, a, b,L) with L = (Q̇)∗. Then, we can consider |Q̃| to
be a constant as well.

The translation we presented is not polynomial. Indeed there is an exponential
number of transitions both in R and in the automata Aα of V , but it contains

5.5. Satisfiability of downward XPath 101

a polynomial number of automata Aα. Further, each Aα has a number of states
polynomial in |α|, and a number of transitions polynomial in |α| and |B|. This last
one is singly exponential in |ϕ|.

From Theorem 5.43 and Corollary 5.44 we conclude that the satisfiability prob-
lem is in ExpTime. The fact that |R | is exponential in η is not a problem, since
the DD emptiness algorithm of Theorem 5.37 is polynomial in |R |. On the other
hand, the fact of V being of exponential size could lead to a doubly exponential
satisfiability checking problem. But by the upper bounds given in Corollary 5.38,
we see that if K and N are polynomially bounded and R, V and |Q̃| are fixed and
Aut is singly exponential in |η|, we obtain an ExpTime algorithm, and the next
theorem follows.

Theorem 5.45 (main result). SAT-regXPath(↓,=) is in ExpTime.

Lower bound

We next prove the ExpTime-hardness of satisfiability for XPath(↓∗,=). Remark-
ably, this logic cannot express a one step down in the tree as it does not possess
the ↓ axis, and this will be the major obstacle in the coding.

Theorem 5.46. SAT-XPath(↓∗,=) is ExpTime-hard.

Proof. The proof is by reduction from the two-player corridor tiling game. An
instance of this game consists in a size of the corridor n (encoded in unary), a set
of tiles T = {T1, . . . , Ts}, a special winning tile Ts, the set of initial tiles {T

0
1 . . . T

0
n},

and the horizontal and vertical tiling relations H,V ⊆ T×T . The game is played in
an n×N board where the initial configuration of the first row is given by T 0

1 . . . T
0
n .

At any moment during the game any pair of horizontal consecutive tiles must be
in the relation H and every pair of vertical consecutive tiles in the relation V .
The game is played by two players: Abelard and Eloise. Each player takes turn
in placing a tile of his choice, filling the board from left to right, from bottom to
top, always respecting the horizontal and vertical constraints H and V . Eloise is
the first to play, and she wins iff during the game the winning tile Ts is placed on
the board. If the game ends without this configuration being reached, or if it runs
infinitely, the game is won by Abelard . It is known that deciding whether Eloise
has a winning strategy is ExpTime-complete. For more details on this game we
refer the reader to (Chlebus, 1986).

Representation of a winning strategy It is easy to see that in this game Eloise
has a winning strategy iff she has a strategy to win before the row sn of the board
is reached (where s is the number of tiles). Then each game between Eloise and
Abelard can be coded as a succession of at most sn rows of n tiles each. Without
any loss of generality, we assume that n is an even number, and hence all odd
positions are played by Eloise, while even ones by Abelard . We can then represent

102 5. Downward navigation

Fig. 5.5: Repeated elements in the coding.

a winning strategy as a tree, where at each even position there exists one branch
for every possible play of Abelard and where all branches of the tree contain the
winning tile Ts.

We must now come up with a way to encode all possible games for all possible
choices of Abelard in XPath(↓∗,=), and verify that all of them are won by Eloise
and hence that they consist in a winning strategy for Eloise.

Our alphabet consists in the symbols I1 . . . In that indicate the current column
of the corridor, the symbols b0 . . . bm where m = ⌈(n + 1).log(s)⌉ that act as bits
to count from 0 to sn (it is enough that they count at least up to sn), and the
symbols T1 . . . Ts to code the tile placed at each move. The coding makes use of
a symbol # to separate rows, and an extra symbol $ whose role will be explained
later.

Each block of nodes between two consecutive # codes the evolution of the
game for a particular row. Each node labeled Ii has a tile associated, coded as a
descendant node Tj with the same data value. In Figure 5.6 the first column I1
of the current row is associated to the tile T3, because 〈T3, 1〉 is a descendant of
〈I1, 1〉 with the same data value. Similarly, each occurrence of # is associated to a
number, coded by the bi elements. In the example, 〈#, 0〉 is associated to the bits
b0 and b2 that give the binary number 101.

Finally, the symbol $ is used to delimit the region where the next element of the
coding must appear, this will be our way of thinking the next step of the coding.
Intuitively, between Ii and the $ with the same data value, only a Ii+1 may appear.
This mechanism of coding a very relaxed ‘one step’ is the building block of our
coding. As the logic lacks the ↓ axis, we need to restrict the appearance of the next
move of the game to a limited fragment of the model. By means of this element
$, we can state, for example, that whenever we are in a I2 element, then in this
restricted portion I3 must be true by stating 〈ε = ↓∗[I3]↓∗[$]〉. In a similar way we
can demand that all elements verify I3 (except, perhaps, a prefix of I2 elements).

However, we cannot avoid having more than one element before the $ as shown
in Figure 5.5. We may have ‘repeated’ elements or extra branches, but this does
not spoil the coding. We are actually able to force properties for all branches
and all possible extra elements that the tree may contain. Intuitively, any extra
element or branching induces more copies of winning strategies for Eloise.

In Figure 5.6 we show an example of a possible extract of the tree between the
associated to the counting of 5 until the next # of counting 6. The coding forces
a branching as it contains all possible answers of Abelard at even positions.

5.5. Satisfiability of downward XPath 103

Fig. 5.6: Part of the model coding all the plays of row 5, which is between the #-element
associated to 5 (101 in binary), and the element # with number 6 (110).

Building up the coding Let us define some useful predicates. skσ(ϕ) evaluates ϕ at
a node at k-steps (with our way of coding a step as we have seen before) from the
current point of evaluation, given that the current symbol is σ. For this purpose we
first define next(Ii) := Ii+1 (if i < n), next(In) := # and next(#) := I1. Hence,
for a ∈ {#, I1, . . . , In},

s0a(ϕ) := a ∧ ϕ sk+1
a (ϕ) := a ∧ 〈ε = ↓∗[s

k
next(a)(ϕ)]↓∗[$]〉

Similarly, tj checks that the tile of the current node I corresponds to Tj , biti checks
that the i-bit of the counter’s binary encoding of a #-node is one (1), and G forces
a property to hold at all nodes of the tree.

ti := 〈ε = ↓∗[Ti]〉 G(ϕ) := ¬〈↓∗[¬ϕ]〉 biti := 〈ε = ↓∗[bi]〉

We now describe all the conditions to force the aforementioned encoding. We
also exhibit the XPath formula counterparts of the non-trivial conditions.

1. Every Ii, Ti, and # along the tree has different data value. As we have only
the transitive closure axis, we actually express that whenever there are two
elements with the same symbol a such that there is a third element in the
middle with another symbol different from a (and then they can be effectively
distinguished), they must have different data value. Actually, the fact that
there could be a sequence of elements with equal label does not cause any
problem. Let us see the case for Ii: ¬↓∗[Ii ∧ 〈ε = ↓∗[¬Ii]↓∗[Ii]〉].

2. $ are leaves, in the sense that no other symbol may appear as descendant:
¬〈↓∗[$ ∧ 〈↓∗[¬$]〉]〉.

3. Every Ii has a next element, unless it contains the winning tile, G(Ii∧¬ts →
s1Ii(⊤)) ∧ G(#→ s1#(⊤)).

4. Every Ii has its corresponding $: G(Ii → 〈ε = ↓∗[$]〉).

104 5. Downward navigation

Fig. 5.7: Abelard plays every legal Tk move.

Fig. 5.8: A bitwise increment of the counter.

5. Each Ii has a unique tile: G(¬(tℓ ∧ tj)) for ℓ 6= j.

6. All Ii+1 inside a step along a branch must have the same tile. (And a similar
condition for I1.) That is, for every i < n and j 6= k, G(Ii → ¬〈ε =
↓∗[Ii+1 ∧ tj]↓∗[Ii+1 ∧ tk]↓∗[$]〉).

7. Between Ii, i < n and its corresponding $ only Ii+1 may appear. (And also
for In and #, and for # and I1.) That is, for any i < n and j 6∈ {i, i + 1},
G(Ii → ¬〈ε = ↓∗[Ij]↓∗[$]〉), and G(Ii → ¬〈ε = ↓∗[Ii+1]↓∗[Ii]↓∗[$]〉).

8. The tiles match horizontally: for every k and Ti, Tj such that ¬H(Ti, Tj),
¬〈↓∗[Ik ∧ ti ∧ s1Ik(tj)]〉. Moreover, the tiles match vertically, for every k and

Ti, Tj such that ¬V (Ti, Tj), ¬〈↓∗[Ik ∧ ti ∧ sn+1
Ik

(tj)]〉.

9. All the elements corresponding to the first row match with T 0
1 . . . T

0
n . That

is, for all i ∈ [1..n] and tile Tj such that ¬V (T
0
i , Tj), then ¬s

i
#(tj) must hold

at the root.

10. All possible moves of Abelard are taken into account. For every triple of tiles
Ti, Tj , Tk such that H(Tj , Tk), V (Ti, Tk) as in Figure 5.7, each time Abelard
can play Tk, he must play it.

¬
〈

↓∗
[

I2ℓ ∧ ti ∧ snI2ℓ

(

I2ℓ−1 ∧ tj ∧ ¬s
1
I2ℓ−1

(tk)
)〉

11. There is no # element that has all the bi bits in 1. Because that would mean
that Eloise was not able to put a Ts tile in less than s

n rounds.

12. The data value of a # element is associated to a counter, as shown in Fig-
ure 5.8. It is easy to code that the first # is all-zero. The increment of the
counter between two # is coded as G(#∧ flip(i)→ zero<i∧ turni∧ copy>i),

5.5. Satisfiability of downward XPath 105

where

flip(i) := ¬biti ∧
∧

j<i

bitj zero<i :=
∧

j<i

¬sn+1
(bitj) turni := ¬s

n+1
(¬biti)

copy>i :=
∧

j>i

(bitj ∧ ¬s
n+1
(¬bitj)) ∨ (¬bitj ∧ ¬s

n+1
(bitj))

This completes the coding. It is easy to see that each one of the formulæ
described has a polynomial length on s and n. It can be shown then that Eloise
has a winning strategy in the two-player corridor tiling game iff the conjunction of
the formulæ just described is satisfiable. Notice that the above reduction does not
use path unions, and this means that even when XPath(↓∗,=) is stripped of path
unions it is still ExpTime-hard.

5.5.2 PSpace fragments

We now turn to some other downward fragments of XPath. We complete the
picture analyzing the complexity for all possible combinations of downward axes
in the presence or absence of data values tests. We first introduce a basic definition
that we use throughout the section.

Definition 5.47. We say that the logic P has the poly-depth model property

if there exists a polynomial p such that for every formula ϕ ∈ P, ϕ is satisfiable
iff ϕ is satisfied by a data tree of height at most p(|ϕ|).

We can now prove the following statement that we will later use to show
PSpace-completeness for XPath(↓,=).

Proposition 5.48. Every fragment P of regXPath(↓,=) that verifies the poly-
depth model property is in PSpace.

Proof. Suppose that if a formula η ∈ P is satisfiable in a data tree, then it is
satisfiable in a tree of height h ≤ p(|η|), where p is a polynomial.

We make use of the translation of Theorem 5.43, but we avoid storing explicitly
the transition relations of R and of the automata Aut of V . Instead, we use
two facts. First, that testing whether a set S of subformulæ of η is a locally
consistent set uses polynomial space in |η|, and these sets can then be enumerated
in polynomial space. And second, that v(b) can be built in PSpace, given a
locally consistent set b. Thus, the space sp(⊢) needed for checking T1 · · ·Tn ⊢ T is
polynomial.

Hence, by Theorem 5.40 with Remark 5.41 we have an emptiness algorithm
that uses space p(h,K,N) + sp(⊢) for p a polynomial. This is a consequence of
|Q̇|, V, R and |Q̃| being constantly bounded, and h,K,N being polynomial in |η|
by Corollary 5.44.

We use the result above to prove the following proposition.

106 5. Downward navigation

p1

p̄2

p̄3p3

p2

p1

p3 p̄3

X X X X

p3 p1p̄3p2 p2 p3 p̄3

Fig. 5.9: A coding of the satisfiability of a formula ∃p1∀p2, p3.(p1 ∨ p2)∧ (p3 ∨¬p3 ∨¬p2).

Proposition 5.49. SAT-XPath(↓,=) is PSpace-complete.

Proof. Benedikt et al. (2008) show that XPath(↓,=) is PSpace-hard (by Ladner,
1977) and NExpTime-easy. Here we show a matching upper bound of PSpace by
proving the poly-depth model property. Note that if η is satisfiable in t, then it is
satisfiable in t ↾ n where n is the maximum number of nested ↓ in η, and t ↾ n is
the submodel of t consisting of all the nodes that are at distance at most n from
the root: t ↾ n = {x 7→ t(x) | x ∈ pos(t), |x| ≤ n}. Hence, by Proposition 5.48,
XPath(↓,=) is in PSpace.

This concludes our analysis for downward fragments of XPath with data tests.
Summing up, we obtained that the satisfiability problem is ExpTime-complete
for regXPath(↓,=), XPath(↓, ↓∗,=) and XPath(↓∗,=), while it is PSpace-complete
for XPath(↓,=). For the sake of completion, we now turn to downward fragments
where no data tests are available.

Corollary 5.50. SAT-XPath(↓) is PSpace-complete.

Proof. The lower bound by (Benedikt et al., 2008, Theorem 5.1) and the upper
bound by Proposition 5.49.

Proposition 5.51. XPath(↓∗) is hard for PSpace.

Proof. The proof goes by reduction from an instance of the QBF (Quantified
Boolean Formula (Börger et al., 1997)) validity problem into SAT-XPath(↓∗).

Let ϕ = Q1p1 . . . Qnpn.ψ where pi are propositional variables (pairwise dis-
tinct), Qi ∈ {∀, ∃} and ψ is a formula of the propositional calculus in CNF.

The idea is to force a model in which every branch contains a full valuation for
the variables p1, . . . , pn. The tree’s alphabet is A = {p1, . . . , pn, p̄1, . . . , p̄n, X}, and
every branch lists a valuation in order, that is, first there is a node with a label
in {p1, p̄1}, then another in {p2, p̄2}, etc. The label X simply marks the ending of
a valuation in a branch. After this marking we build the tree that satisfies ψ by
choosing a witness atom for every disjunctive clause. Finally, we check that there
are no inconsistencies with respect to its valuation. For example, in Figure 5.9 we
depict a possible tree that is forced by a formula.

Let vi be the formula that specifies that the node is a valuation for the propo-
sitional variable pi, vi := pi ∨ p̄i. We specify formulæ f1, . . . , fn depending on
Q1, . . . , Qn, where Gϕ is defined as in the proof of Theorem 5.46.

5.5. Satisfiability of downward XPath 107

• If Q1 = ∀, then f1 = 〈↓∗[p1]〉 ∧ 〈↓∗[p̄1]〉.
If Q1 = ∃, then f1 = 〈↓∗[p1]〉 ∨ 〈↓∗[p̄1]〉.

• If Qi = ∀ for i > 1, then fi = G(vi−1 → 〈↓∗[pi]〉 ∧ 〈↓∗[p̄i]〉).
If Qi = ∃, then fi = G(vi−1 → 〈↓∗[pi]〉 ∨ 〈↓∗[p̄i]〉).

• ϕX forces that the label X always appears once the valuation for all propo-
sitions has been defined.

ϕX = ¬〈↓∗[v1]↓∗[v2] · · · ↓∗[vn−1]↓∗[vn ∧ ¬〈↓∗[X]〉]〉

• For all X we build a formula for ψ = C1 ∧ . . . ∧ Cl where Ci = t1 ∨ . . . ∨ tm
and each tj is either pk or p̄k for some k. That is,

τ =
∧

Ci

∨

t∈Ci

〈↓∗[t]〉

and this must hold for all X-valued node,

ϕψ = G(X → τ) .

• Finally, we must check that no inconsistencies are to be found between the
pi along a branch.

ϕinc =
n
∧

i=1

¬〈↓∗[pi]↓∗[p̄i]〉 ∧ ¬〈↓∗[p̄i]↓∗[pi]〉

The final formula is then

ϕF =
n
∧

i=1

fi ∧ ϕX ∧ ϕψ ∧ ϕinc .

Then we have that ϕ is QBF-valid iff ϕF is satisfiable in XPath(↓∗). Note that
this reduction does not use path unions. Then, this lower bound holds even in the
absence of path unions.

Now we focus in finding an upper bound for SAT-XPath(↓∗). We prove that it
is in PSpace by the poly-depth model property. But before doing that, we need
to introduce an important property of this logic. The subtree copy property
states that we can copy any subtree at any higher position of the tree (as depicted
in Figure 5.10) without modifying the valuation of the XPath(↓∗) formulæ at the
root.

108 5. Downward navigation

Fig. 5.10: The subtree copy property.

Lemma 5.52 (subtree copy). Given a tree t, and given two positions x, y ∈ pos(t)
with x ≺ y, consider the last index l such that x·l ∈ pos(t). Let t′ be defined as
follows.

pos(t′) = pos(t) ∪ {x·(l + 1)·z | y·z ∈ pos(t)}

t′(z) =

{

t(z) if z ∈ pos(t)

t(y·w) if z = x·(l + 1)·w

Then, for every z ∈ pos(t) and ϕ ∈ XPath(↓∗), t|z |= ϕ iff t′|z |= ϕ. The shapes of
t and t′ are illustrated in Figure 5.10.

Proof. All path formulæ that hold at the root of t, hold also in t′ as it is an
extension of the tree. On the other hand, any path formula that is satisfied at the
root by a succession of nodes in a branch in t′, can also be found in t′, as we only
count with the ↓∗ axis. This is true not only for the root but for any position of t.
In other words, the logic XPath(↓∗) is closed under subtree copy.

Note that the preceding Lemma 5.52 is a stronger property than that of Propo-
sition 5.17, but this one holds only for XPath(↓∗), a logic with no data tests nor
↓ axis. Having stated the subtree copy property, we can now show the following
proposition.

Proposition 5.53. SAT-XPath(↓∗) is in PSpace.

Proof. We prove that ϕ ∈ XPath(↓∗) is satisfiable iff it is satisfied by a tree of
height bounded by |ϕ|2.

For the proof of this statement we first define, for a path expression, the set
of possible sequences of node tests that it must satisfy, that we note with ‘nseq ’
(Fig. 5.11). The idea is that if for instance {ψ,ϕ}·{ϕ}·{ψ, η} ∈ nseq(α), then
t |= 〈α〉 if there are ǫ � x � y such that t |= ψ, t |= ϕ, t|x |= ϕ, t|y |= ψ and
t|y |= η. Let witt : pos(t)×XPath(↓∗)→ ℘(pos(t)) be a witness function such that
for any x ∈ pos(t) and α ∈ XPath(↓∗) such that t|x |= 〈α〉 there is S ∈ nseq(α)
where

• all elements in witt(x, α) = {x1, . . . , xn} belong to the same branch, x1 ≺
x2 ≺ · · · ≺ xn;

• there are i1 ≤ · · · ≤ i|S| such that {i1, . . . , i|S|} = {1, . . . , n}, and t|xij |=
∧

S(j) for every j.

5.5. Satisfiability of downward XPath 109

nseq : XPath(↓∗)→ ℘
((

℘(XPath(↓∗))
)∗)

nseq(α ∪ β) = nseq(α) ∪ nseq(β) nseq([ψ]) = {{ψ}}

nseq(αβ) = {S1·(A1 ∪A2)·S2 | nseq(ε) = {∅}

S1·A1 ∈ nseq(α), A2·S2 ∈ nseq(β)} nseq(↓∗) = {∅·∅}

Fig. 5.11: Given a path expression α, nseq(α) is the set of possible sequence of node tests
that a witnessing branch must satisfy.

Note that in particular |witt(x, α)| ≤ |S| for some S ∈ nseq(α), and we hence have

|witt(x, α)| ≤ |α| . (5.8)

In the sequel, given ϕ ∈ XPath(↓∗) we write nesting(ϕ) for the maximum depth
of nested node tests (that is, of nested ‘[]’) that are in the formula ϕ.

We can make use of Lemma 5.52 to make sure that we can always assume witt
to be in a normal form where all its elements are chained with the parent/child
relation. That is, that given witt(x, α) = {x1 ≺ · · · ≺ xn}, then for all i

xi+1 = xi·j for some j . (5.9)

We are now in conditions to explain the main argument. Let ϕ ∈ XPath(↓∗) and
n = nesting(ϕ), and suppose we have a tree t that satisfies ϕ. Next, we describe
a procedure to ‘mark’ the important nodes in the tree. We start by marking the
root with the label ‘n’. Then, for every position x marked with t ≥ 0 and for every
path expression β ∈ sub(ϕ) such that nesting(β) ≤ t and t|x |= β, we mark all
positions y ∈ witt(x, β) with ‘t− 1’.

Note that all the positions marked with {−1, 0, . . . , n} form one connected
component by (5.9), and that they are all at a distance from the root of at most
nesting(ϕ).|ϕ| by (5.8). Let t′ be the tree resulting from eliminating all the po-
sitions with no marking. We then have that t |= ϕ iff t′ |= ϕ, and hence that
XPath(↓∗) has the poly-depth model property. We conclude by Proposition 5.48
that XPath(↓∗) is in PSpace.

We then have as a corollary from Proposition 5.53 and Proposition 5.51 that
XPath(↓∗) is complete for PSpace.

Theorem 5.54. SAT-XPath(↓∗) is PSpace-complete.

So far we have that, in the presence of data values, the ability to have the
descendant axis ↓∗ produces an increase

4 in the complexity from PSpace to Ex-

pTime. However, we argue that it is not the ability to test for data equality of
distant elements what produces this raise in complexity. It is, as a matter of fact,

4 In the case PSpace 6= ExpTime.

110 5. Downward navigation

in the ability to test data values against that of the root in formulæ like 〈ε = ↓∗[a]〉.
We show that if we remove this kind of data tests, the resulting logic is in PSpace,
even though the fragment contains the ↓∗ axis.

Definition 5.55. We denote by XPath6ε(↓∗,=) the fragment of XPath(↓∗,=) where
ε path formulæ are forbidden, and in general where there are no ε-testing in a path
(like in [ϕ]↓∗), that is, such that path formulæ are defined

α ::= ↓∗ | α[ϕ] | αβ | α ∪ β .

Proposition 5.56. SAT-XPath6ε(↓∗,=) is PSpace-complete.

Proof. The proof of the upper-bound goes by showing the poly-depth model prop-
erty. Let t = a⊗ d be a data tree. The key observation is that any XPath6ε(↓∗,=)
expression of the form 〈α〉, 〈α = β〉 or 〈α 6= β〉 that is satisfied at a node x of
a tree, is also satisfied in any ancestor of x. This is basically because all path
expressions start with a ↓∗ axis. In other words, for any pair of positions x, x

′ such
that x � x′, the set of formulæ of the aforementioned type are satisfied in x′ is a
subset of those that are satisfied in x. Given a branch ǫ = x0 ≺ · · · ≺ xn of t where
xi+1 is a child of xi for all i, and given a formula ϕ, consider for every i ∈ [n]

Ci = {ψ | ψ ∈ sub(ϕ), ψ of the form 〈α〉, 〈α = β〉 or 〈α 6= β〉 s.t. t|xi |= ψ}.

We then have C0 ⊆ · · · ⊆ Cn, and there are only a polynomial number of different
sets. Take any two Ci = Cj such that a(xi) = a(xj). Then, the tree which results
from replacing the subtree at xi by the subtree at xj preserves the satisfaction
of ϕ at the root. Hence, the logic has the poly-depth model property and by
Proposition 5.48 its satisfiability problem is in PSpace.

The lower-bound comes from the proof of Proposition 5.51, whose encoding is
in XPath6ε(↓∗,=).

5.5.3 XML versus data trees

Here we show that all the results on satisfiability of XPath on data trees can be
transferred to equivalent results on satisfiability of attrXPath on xml documents.

SAT-attrXPath(↓, ↓∗,=) is ExpTime-easy. As already mentioned, each xml doc-
ument can be coded in a data tree by adding one child for each attribute with
its corresponding value as in Figure 5.12. We can force this kind of model using
XPath(↓∗, ↓,=) by stating that all the nodes with a symbol from Aattr are leaves,

ϕstruct = ¬〈 ↓∗[
∨

s∈Aattr

s ∧ 〈↓〉] 〉 .

We can interpret any attrXPath formula as an XPath formula by considering an
extended alphabet A = Aelem ∪ Aattr and replacing every appearance of ‘@attr1’
by ‘↓[attr1]’. Let us call tr to this translation.

5.5. Satisfiability of downward XPath 111

b

a

attr1: 9

attr2: 4

a

0

b

0

attr1

9

attr2

4

Fig. 5.12: Transformation from an xml to a data tree.

We can then decide the satisfiability of a formula ψ of attrXPath(↓, ↓∗,=) on
attributes data trees by testing the satisfiability of ‘tr(ψ) ∧ ϕstruct’ on data trees.
Since we have that XPath(↓, ↓∗,=) is in ExpTime, we also have an ExpTime de-
cidability procedure for the full downward fragment of attrXPath (as the translation
tr is clearly performed in PTime) even with the Kleene star operator.

SAT-attrXPath(↓∗,=) is ExpTime-hard. On the other hand, any XPath formula
on data trees can be thought of an attrXPath formula that uses at most one at-
tribute. We can then deduce the ExpTime-hardness result of attrXPath(↓∗,=)
from that of XPath(↓∗,=).

SAT-attrXPath(↓,=) is PSpace-complete. For the case of attrXPath(↓,=) we
can do the same translation the only difference being that for a formula ψ ∈
attrXPath(↓,=) the structure can be forced by

ϕstruct =
∧

0≤n≤d+1

¬〈↓n[
∨

s∈Aattr

s ∧ 〈↓〉]〉

where d is the maximum quantity of nested occurrences of ↓ in ψ. It is easy to
see that this forces the requested property for all the portion of the data tree that
we are interested in. That is, for the whole region that tr(ψ) can access. This is
associated with the poly-depth model property of the logic. We then have that
attrXPath(↓,=) is PSpace-complete.

5.5.4 In the presence of regular languages

In this section we make some observations on the problem of satisfiability of down-
ward XPath in the presence of some regular language.

In Chapter 6 we will show that satisfiability of downward XPath under a regular
language is decidable. However, the problem has a very big complexity. Even for
the fragment containing only the descendant axis, it can be shown that there is
no algorithm that solves the satisfiability problem under a regular language in
primitive recursive time or space by Corollary 4.4 of Section 4.5. However, if the
language to be tested at the siblinghoods is restricted to be extensible, we can
translate this problem to the emptiness problem for DD automata obtaining the
following result.

112 5. Downward navigation

<!ELEMENT book_list (book*)>

<!ELEMENT book ((author, birthdate?)+, chapter+)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT birthdate (#PCDATA)>

<!ELEMENT chapter (#PCDATA)>

Fig. 5.13: Example of a DTD under which regXPath(↓,=) is decidable in ExpTime.

Theorem 5.57. SAT-regXPath(↓,=) + Etree , that is, the satisfiability problem
for regXPath(↓,=) under the class Etree of extensible tree regular languages, is in
ExpTime.

Proof. Let ϕ ∈ regXPath(↓,=) and L ∈ Etree , represented as an E -transducer RL
such that RL(t⊗ t) iff t ∈ L.

We first build the DD automaton (R ,V) resulting from the translation of ϕ
by Theorem 5.43. We compute the composition R ′ = RL ◦ R such that R (t ⊗
t′) iff RL(t ⊗ t) and R (t ⊗ t′) in polynomial time in R and RL. We then test
the emptiness of (R ′,V) in exponential time in the number of states |Q̃| of the
automata corresponding to the (extensible) languages from the transitions of R ′.
The resulting reduction is in ExpTime because the same arguments used to show
5.45 can be applied.

The above Theorem 5.57 implies that the satisfiability of regXPath(↓,=) under
certain kind of restrictions is decidable in ExpTime. Note that these restrictions
may be specified as DTD, XML Schema, Relax NG, etc. For example, it would
mean that this logic is decidable under DTD whose every type is defined under
some transitive operator + or ∗. That is, that the definition of every type is in
REG∗ (as defined in Definition 5.7), like in the example of Figure 5.13.

5.6 Discussion

In Section 5.3 we introduced an automata model over data trees. Here we explore
very briefly two natural extensions that could be added to this automaton. Firstly,
the possibility of allowing any alternation free first order formula in the set Φ
of properties that the verifier can test, instead of the restricted kind where no
negation of a relation may occur. Secondly, what happens if we allow constants in
Φ.

Negation of relations

The reader may have noticed in Definition 5.2 that the DD automata model does
not allow to have negated appearances of a relationDi under a (positive) existential
quantification. This is not by chance, and in effect we can see that if we allow to
have arbitrary boolean combinations of Di relations we fall into a much harder
emptiness problem. Although the decidability of the resulting model is not clear,

5.6. Discussion 113

it is possible to show that in the case it is decidable, the emptiness problem cannot
be solved in primitive recursive time.

Consider the simple formula ¬(∃x.¬D1(x) ∧ D2(x)), such that A1 recognizes
{b b′ | b, b′ ∈ B} and A2 recognizes {b b

′ b′′ | b, b′, b′′ ∈ B}. In other words, A1 simply
goes to any child of the root, and A2 goes to any grandchild of the root. This kind
of property intuitively tests that all the data values appearing at depth l + 1 also
appear at depth l. Although we will not enter into detail, it is possible to code a
run of a weak version of a n-counters ICA (cf. Section 2.4.5) by using this kind
of property. Thus, by Proposition 2.26, the emptiness problem for this extended
automaton cannot be primitive recursive.

Constants

Another simple extension that DD automata may allow to have is the fact of having
a set of constant data values. This does not change the complexity results. The
results and definitions of Sections 5.4.1, 5.4.3, 5.4.2 remain valid. In Section 5.4.4
we modify the tree configurations by keeping explicit track of these constants, by
adding the description of these constants to the data description mapping α at all
configurations, and modifying the conditions of ⊢ accordingly. This implies that
we can verify the satisfiability of regXPath(↓,=) with constants also in ExpTime.

Final comments

We have shown the complexity of various downward fragments of XPath, as sum-
marized in Figure 5.14. The highest complexity class we obtained is ExpTime. In
the presence of data equality tests, is a well-behaved fragment considering that in
the presence of all the axes XPath is undecidable. One important reason for this
is the absence of any sibling axis. Indeed, as soon as any horizontal navigation
is allowed in the logic, the problem becomes non-primitive recursive. However,
we have shown that we can evaluate some restricted fragment of XML Schema or
DTD that cannot limit the quantity of occurrences of nodes of a certain type, but
that can verify that there is a certain structure in the siblings of the tree. For
example, we can express that the children of every node with label book form a
sequence of labels in the language (author (chapter)∗)+ (since it is an extensible
language). Also, by solving the satisfiability problem we are also able to solve
the containment and equivalence problems of node expressions for free, since we
work with logics closed under boolean operators. We leave open the question of
whether the inclusion of path expressions (as binary relations) is also decidable in
ExpTime.

We introduced the new class of Downward Data automata that capture all
the expressivity of regXPath(↓,=). This automata model is more expressive than
XPath. It can test properties like, for example, that there are exactly 7 data values
with label book; or that every node labeled book has between 1 and 4 children
author with different data value; or that there is a data value that can be si-

114 5. Downward navigation

↓ ↓∗ = Complexity Details

• PSpace-complete Cor. 5.50

• PSpace-complete Thm. 5.54

• • ExpTime-complete (Marx, 2004)

• • PSpace-complete Prop. 5.49

• • ExpTime-complete Thm. 5.45, Thm. 5.46

• • • ExpTime-complete Thm. 5.45, Thm. 5.46

regXPath(↓,=) ExpTime-complete Thm. 5.45, Thm. 5.46

XPath6ε(↓∗,=) PSpace-complete Prop. 5.56

regXPath(↓,=) + Etree ExpTime-complete Thm. 5.57, Thm. 5.46

Fig. 5.14: Summary of results. All the bounds also hold in the absence of path unions.

multaneously accessed by three different branches, satisfying “↓∗[article]↓[author]”,
“↓∗[conference]↓[chair]”, and “↓∗[scientist∧ 〈 (↓[advisor])

∗↓[sex]↓[female] 〉]↓[name]”.
By the proof of decidability of the DD automata, we conclude that there is a

normal form of the model for downward XPath. If a formula η ∈ regXPath(↓,=) is
satisfiable, then it is satisfiable in a model of exponential height and polynomial
branching width, whose data values are such that only a polynomial number of
data values can be shared between any two disjoint subtrees. This property is
reflected by the fact that the emptiness of the automaton that results from the
translation of a downward XPath formula only depends on a polynomial number
of data values at every position. However, there is no syntactic restriction in the
automaton, it can retrieve and compare any number of data values between them
and the root’s data value at each step of its execution.

If we extend the downward fragment with horizontal axes →, →∗ we obtain
the forward fragment. This fragment is decidable with non-primitive recursive
complexity. In the next chapter we will show how to prove this result.

6. DOWNWARD AND RIGHTWARD NAVIGATION

6.1 Introduction

This chapter deals with logics and automata for data trees with a forward behavior,
in the sense that we can not only move downwards in the tree, but we can also
navigate (in only one sense) the sequence of siblings. In Section 6.2, we extend
the model ARA(guess, spread) to the new model ATRA(guess, spread) that runs over
data trees (instead of data words). The decidability of the emptiness follows easily
from the decidability result shown for ARA(guess, spread). As in the case of data
trees, this model allows to show the decidability of a logic.

In Section 6.4 we investigate the satisfiability of forward XPath. The satisfia-
bility problem for this logic will follow by a reduction to the emptiness problem
of ATRA(guess, spread). This reduction is not trivial, since XPath is closed under
negation and our automata model is not closed under complementation. Indeed,
ATRA(guess, spread) and forward XPath have incomparable expressive power.

Related work

This work is an extension of the work of Jurdziński and Lazić (2008), in the same
way as the automaton of Chapter 3 is an extension of the work of Demri and
Lazić (2009). In the same way as in Part I, we will show that our extensions add
expressive power to the ATRA model.

6.2 Automata model

We introduce the class of Alternating Tree Register Automata by slightly adapting
the definition for alternating (word) register automata. This model is essentially
the same automaton presented in Part I, that works on a (unranked, ordered) data
tree instead of a data word. The only difference is that instead of having one
instruction ⊲ that means ‘move to the next position’, we have two instructions ⊲
and ▽ meaning ‘move to the next sibling to the right’ and ‘move to the leftmost
child’. This class of automata is known as ATRA(guess, spread). This model of
computation will enable us to show decidability of a large fragment of XPath.

An Alternating Tree Register Automaton (ATRA) consists in a top-down
tree walking automaton with alternating control and one register to store and test
data. Jurdziński and Lazić (2008) showed that its finitary emptiness problem is

115

116 6. Downward and rightward navigation

decidable and non primitive recursive. Here, as in the Part I, we consider an exten-
sion with the operators spread and guess. We call this model ATRA(spread, guess).

Definition 6.1. An alternating tree register automaton of ATRA(spread, guess) is
a tuple M = 〈A, Q, qI , δ〉 such that A is a finite alphabet; Q is a finite set of states;
qI ∈ Q is the initial state; and δ : Q → Φ is the transition function, where Φ is
defined by the grammar

a | ā | ⊙? | store(q) | eq | eq | q ∧ q′ | q ∨ q′ |

▽q | ⊲q | guess(q) | spread(q, q′)

where a ∈ A, q, q′ ∈ Q, ⊙ ∈ {▽, ▽̄, ⊲, ⊲̄}.

We only focus on the differences with respect to the ARA class. ▽ and ⊲ are to
move to the leftmost child or to the next sibling to the right of the current position,
and as before ‘⊙?’ tests the current type of the position of the tree. For example,
using ▽̄? we test that we are in a leaf node, and by ⊲? that the node has a sibling
to its right. store(q), eq and eq work in the same way as in the ARA model. We
say that a state q ∈ Q is moving if δ(q) = ⊲q′ or δ(q) = ▽q′ for some q′ ∈ Q.

We define two sorts of configurations: node configurations and tree configura-
tions. In this context a node configuration is a tuple 〈x, α, γ,∆〉 that describes
the partial state of the execution at a position x of the tree. x ∈ pos(t) is the
current position in the tree t, γ = t(x) ∈ A × D is the current node’s symbol
and datum, and α = typet(x) is the tree type of x. As before, ∆ ∈ ℘<∞(Q × D)
is a finite collection of execution threads. Natra is the set of all node configu-
rations. A tree configuration is just a finite set of node configurations, like
{〈ǫ, α, γ,∆〉, 〈1211, α′, γ′,∆′〉, . . . }. The run will be defined in such a way that a
tree configuration never contains two node configurations in a descendant/ancestor
relation. We call Tatra = ℘<∞(Natra) the set of all tree configurations.

We define the non-moving relation →ε over node configurations just as before.
As a difference with the ARA mode, we have two types of moving relations. The
first-child relation →▽, to move to the leftmost child, and the next-sibling relation
→⊲ to move to the next sibling to the right.

The →▽ and →⊲ are defined, for any α1 ∈ {▽, ▽̄,⊲, ⊲̄}, γ, γ1 ∈ A × D, h ∈
{⊲, ⊲̄}, v ∈ {▽, ▽̄}, as follows

〈x, (▽, h), γ,∆〉 →▽ 〈x·1, α1, γ1,∆▽〉, (6.1)

〈x·i, (v,⊲), γ,∆〉 →⊲ 〈x·(i+ 1), α1, γ1,∆⊲〉 (6.2)

iff (i) the configuration is ‘moving’ (i.e., all the threads (q, d) contained in ∆ are
of the form δ(q) = ▽q′ or δ(q) = ⊲q′); and (ii) for ⊙ ∈ {▽,⊲}, ∆⊙ = {(q′, d) |
(q, d) ∈ ∆, δ(q) = ⊙ q′}.

Let → := →ε ∪ →▽ ∪ →⊲ ⊆ Natra ×Natra. Note that through → we
obtain a run over a branch of the tree (if we think about the underlying binary
tree according to the first-child and next-sibling relation). In order to maintain all

6.2. Automata model 117

information about the run over all branches we need to lift this relation to tree
configurations. We define the transition between tree configurations that we write
։. This corresponds to applying a ‘non-moving’→ε to a node configuration, or to
apply a ‘moving’ →▽, →⊲, or both to a node configuration according to its type.
That is, we define S1 ։ S2 iff one of the following conditions holds:

1. S1 = {ρ} ∪ S ′, S2 = {τ} ∪ S ′, ρ→ε τ ;

2. S1 = {ρ} ∪ S ′, S2 = {τ} ∪ S ′, ρ = 〈x, (▽, ⊲̄), γ,∆〉, ρ→▽ τ ;

3. S1 = {ρ} ∪ S ′, S2 = {τ} ∪ S ′, ρ = 〈x, (▽̄,⊲), γ,∆〉, ρ→⊲ τ ;

4. S1 = {ρ}∪S ′, S2 = {τ1, τ2}∪S ′, ρ = 〈x, (▽,⊲), γ,∆〉, ρ→▽ τ1, ρ→⊲ τ2.

A run over a data tree t = a ⊗ d is a non-empty sequence S1 ։ · · · ։ Sn
with S1 = {〈ǫ, α0, γ0,∆0〉} and ∆0 = {(qI ,d(ǫ))} (i.e., the thread consisting in the
initial state with the root’s datum), such that for every i ∈ [n] and 〈x, α, γ,∆〉 ∈ Si:
(1) x ∈ pos(t); (2) γ = t(x); and (3) α = typet(x). As before, we say that the run
is accepting if

Sn ⊆ {〈x, α, γ, ∅〉 | 〈x, α, γ, ∅〉 ∈ Natra}.

The ATRA model is closed under all boolean operations (Jurdziński and Lazić,
2008). However, the extensions introduced guess and spread, while adding expres-
sive power, are not closed under complementation as a trade-off for decidability. It
is not surprising that the same properties as for the case of data words apply here.

Proposition 6.2. ATRA(spread, guess) models have the following properties:

(i) they are closed under union,

(ii) they are closed under intersection,

(iii) they are not closed under complement.

Example 6.3. We show an example of the expressiveness that guess adds to ATRA.
Although as a corollary of Proposition 3.2 we have that the ATRA(guess, spread)
class is more expressive than ATRA, we give an example that inherently uses the
tree structure of the model. We force that the node at position 2 and the node
at position 1·1 of a data tree to have the same data value without any further
data constraints. Note that this datum does not necessarily has to appear at some
common ancestor of these nodes. Consider the ATRA(guess) defined over A = {a}
with

δ(q0) = guess(q1), δ(q1) = ▽q2, δ(q2) = q3 ∧ q4,

δ(q3) = ▽q5, δ(q4) = ⊲q5, δ(q5) = eq.

For the data trees of Figure 6.1, any ATRA either accepts both, or rejects both.
This is because when a thread is at position 1, and performs a moving operation

118 6. Downward and rightward navigation

a, 1

a, 1 a, 2

a, 2

a, 1

a, 1 a, 3

a, 2

Fig. 6.1: Two indistinguishable data trees for ATRA.

splitting into two threads, one at position 1·1, the other at position 2, none of
these configurations contain the data value 2. Otherwise, the automaton should
have read the data value 2, which is not the case. But then, we see that the
continuation of the run from the node configuration at position 2 and at position 1
are isomorphic independently of which data values we choose (either the data 2 and
3, or the data 2 and 2). Hence, both trees are accepted or rejected. However, the
ATRA(guess) we just built distinguishes them, as it can introduce the data value
2 in the configuration, without the need of reading it from the tree. Equivalently,
the property of “there are two leaves with the same data values” is expressible in
ARA(guess) and not in ARA.

6.3 The emptiness problem

We show that the emptiness problem for this model is decidable, reusing the results
of Part I. We remind the reader that the decidability of the emptiness of ATRA
was proved by Jurdziński and Lazić. Here we extend the approach used for ARA
and show the decidability of the two extensions spread and guess.

Theorem 6.4. The finitary emptiness problem of ATRA(guess, spread) is decidable.

Proof. The proof goes as follows. We will reuse the wqo - used in Section 3.3.2,
which here is defined over the node configurations. The only difference being that
to use - over Natra we work with tree types instead of word types. Since →⊲ and
→▽ are analogous, by the same proof as in Lemma 3.10 we obtain the following.

Lemma 6.5. (Natra,→) is rdc with respect to (Natra,-).

We now lift this result to tree configurations. We instantiate Proposition 2.16
by taking →1 as →, ≤ as -, and taking ≤℘ the dominance order over (Natra,-).
We take →2 to be ։ as it verifies the hypothesis demanded in the Lemma. As a
result we obtain the following.

Lemma 6.6. (Tatra,։) is rdc with respect to (Tatra,≤℘).

Hence, condition (1) of Proposition 2.7 is met. Let us write ≡ for the equiva-
lence relation over Tatra such that S ≡ S

′ iff S ≤℘ S
′ and S ′ ≤℘ S. Similarly as

for Part I, we have that (Tatra/≡,։) is finitely branching and effective. That is,
the ։-image of any configuration has only a finite number of configurations up to
isomorphism of the data values contained (remember that only equality between

6.4. Satisfiability of forward XPath 119

data values matters), and representatives for every class are effectively computable.
Hence, we have that (Tatra/≡,։,≤℘) verifies condition (2) of Proposition 2.7. Fi-
nally, condition (3) holds as (Tatra/≡,≤℘) is a wqo (by Proposition 2.15) that is
a computable relation. We conclude the proof by the following obvious statement.

Lemma 6.7. The set of accepting tree configurations is downwards closed with
respect to ≤℘.

Hence, by Lemma 2.8, we conclude as before that the emptiness problem for
ATRA(guess, spread) is decidable.

6.4 Satisfiability of forward XPath

We consider a navigational fragment of XPath 1.0 with data equality and inequality.
In particular this logic is here defined over data trees. However, an xml document
may typically have not one data value per node, but a set of attributes, each
carrying a data value. This is not a problem since every attribute of an xml

element can be encoded as a child node in a data tree labeled by the attribute’s
name. Thus, all the decidability results hold also for XPath with attributes over
xml documents.

We define sub(ϕ) to denote the set of all substrings of ϕ which are formulæ,
psub(ϕ) := {α | α ∈ sub(ϕ), α is a path expression}, and nsub(ϕ) := {ψ | ψ ∈
sub(ϕ), ψ is a node expression}.

Primary key It is worth noting that XPath(F,=), contrary to XPathε(F,=), can
express unary primary key constraints. That is, whether for some symbol a, all
the a-elements in the tree have different data values.

Lemma 6.8. For every a ∈ A let pk(a) be the property over a data tree t = a⊗d:
“For every two different positions x, x′ ∈ pos(t) of the tree, if a(x) = a(x′) = a,
then d(x) 6= d(x′)”. Then, pk(a) is expressible in XPath(F,=) for any a.

Proof. It is easy to see that the negation of this property can be tested by first
guessing the closest common ancestor of two different a-elements with equal datum
in the underlying ‘first child’-‘next sibling’ binary tree coding. At this node, we
verify the presence of two a-nodes with equal datum, one accessible with a “↓∗ ”
relation and the other with a compound “→+ ↓∗ ” relation (hence the nodes are
different). The expressibility of the property then follows from the logic being
closed under negation. The reader can check that the following formula expresses
the property.

pk(a) ≡ ¬〈 ↓∗[〈ε[a] = ↓+[a]〉 ∨ 〈↓∗[a] =→
+↓∗[a]〉] 〉

120 6. Downward and rightward navigation

6.4.1 Satisfiability problem

This section is mainly dedicated to the decidability of XPath(F,=), known as
‘forward-XPath’. This is proved by a reduction to the emptiness problem of the
automata model ATRA(guess, spread) introduced in Section 6.2.

Jurdziński and Lazić show that ATRA captures the fragment XPathε(F,=).
It is immediate to see that ATRA can easily capture the Kleene star operator
on any path formula, obtaining decidability of regXPathε(F,=). However, these
decidability results cannot be generalized to the full unrestricted forward fragment
XPath(F,=) as ATRA is not powerful enough to capture the full expressivity of
the logic. It cannot express, for instance, that there are two different leaves with
the same data value. On the other hand, ATRA(guess, spread) can express this
property. But it cannot express the negation of the property!

Indeed, the ATRA(guess, spread) model cannot capture XPath(F,=). Indeed,
data tests of the form ¬〈α = β〉 are impossible to perform for ATRA(guess, spread)
as this would require—in some sense—the ability to guess two disjoint sets of data
values S1, S2 such that all α-paths lead to a data value of S1, and all β-paths lead
to a data value of S2. Still, in the sequel we show that there exists a reduction
from the satisfiability of regXPath(F,=) to the emptiness of ATRA(guess, spread),
and hence that the former problem is decidable. This result settles an open ques-
tion regarding the decidability of the satisfiability problem for the forward-XPath
fragment: XPath(F,=). The main results that will be shown in Section 6.4.2 are
the following.

Theorem 6.9. Satisfiability of regXPath(F,=) in the presence of DTDs (or any
regular language) and unary primary key constraints is decidable, non primitive
recursive.

And hence the next corollary follows from the logic being closed under boolean
operations.

Corollary 6.10. The query containment and the query equivalence problems are
decidable for XPath(F,=).

Moreover, these decidability results hold for regXPath(F,=) and even for two
extensions:

• a navigational extension with upward axes (in Section 6.4.3), and

• a generalization of the data tests that can be performed (in Section 6.4.5).

Data trees or XML documents?

Although our main motivation for working with trees is related to static analysis
of logics for xml documents, we work with data trees, being a simpler formalism to
work with, from where results can be transferred to the class of xml documents.

6.4. Satisfiability of forward XPath 121

a, 0

b, 0

c, 0

<a>

 <b @att1="4" @att2="6">

 <c @att1="2"/>

att1, 4

att1, 2

att2, 6

XML data-tree

Fig. 6.2: From XML documents to data-trees.

We discuss briefly how all the results we give on XPath over data trees, also hold
for the class of xml documents.

While a data tree has one data value for each node, an xml document may
have several attributes at a node, each with a data value. However, every attribute
of an xml element can be encoded as a child node in a data tree labeled by the
attribute’s name, as in Figure 6.2. This coding can be enforced by the formalisms
we present below, and we can thus transfer all the decidability results to the class
of xml documents. In fact, it suffices to demand that all the attribute symbols
can only occur at the leaves of the data tree and to interpret attribute expressions
like ‘@attrib1 ’ of XPath formulæ as child path expressions ‘↓[attrib1]’.

6.4.2 Decidability of forward XPath

This section is devoted to the proof of the following statement.

Proposition 6.11. For every η ∈ regXPath(F,=) there exists an effectively com-
putable ATRA(guess, spread) automaton M such that M is non-empty iff η is sat-
isfiable.

Markedly, the ATRA(guess, spread) class does not capture regXPath(F,=). How-
ever, given formula η, it is possible to construct an automaton that tests a property
that guarantees the existence of a data tree verifying η.

Disjoint values property

To show the above proposition, we need to work with runs with the disjoint values
property as stated next.

Definition 6.12. A run S1 ։ · · ·։ Sn on a data tree t has the disjoint values

property if for every x·i ∈ pos(t) and ρ a moving node configuration of the run
with position x·i, then

data(t|x·i) ∩
⋃

x·j∈pos(t)
j>i

data(t|x·j) ⊆ data(ρ) .

Figure 6.3 illustrates this property.

The proof of Proposition 6.11 can be sketched as follows:

122 6. Downward and rightward navigation

x·i

Fig. 6.3: The disjoint values property states that for every position x·i, the intersection of
the grey zones is present in the last configuration for x·i appearing in the run.

1. We show that for every nonempty automaton M ∈ ATRA(guess, spread) there
is an accepting run on a data tree with the disjoint values property.

2. We give an effective translation from an arbitrary forward XPath formula η
to an ATRA(guess, spread) automaton M such that

• any tree accepted by a run of the automaton M with the disjoint values
property verifies the XPath formula η, and

• any tree verified by the formula η is accepted by a run of the automaton
M with the disjoint values property.

We start by proving the disjoint values property normal form.

Proposition 6.13. For any nonempty automaton M ∈ ATRA(guess, spread) there
exists a run over a data tree with the disjoint values property.

Proof. Given any accepting run S1 ։ · · ·։ Sn on a data tree t = a⊗ d, we show
how to modify the run and the tree in order to satisfy the disjoint values property.
We only need to replace some of the data values, so that the resulting tree and
accepting run will be essentially the same. For any two positions x, y ∈ pos(t) let
us write x �† y if x is an ancestor of y in the first-child and next-sibling underlying
binary tree. That is, if from x we can access y by traversing the tree through the
operations ‘go to the leftmost child’ and ‘go to the next sibling to the right’.

Take any x·k ∈ pos(t), and let ρx·k ∈ Si for some i be such that ρx·k is a moving
node configuration with position x·k. Consider any injective function

f : data(t|x·k) \ data(ρx·k) → D \ data(t)

and let f̂ : data(t|x·k) → D such that f̂(d) = d if d ∈ data(ρx·k), or f̂(d) = f(d)
otherwise. Note that f̂ is injective. Let us consider then S ′1, . . . , S

′
n where S ′j

consists in replacing every ρ ∈ Sj with ρ′ = h(ρ), where1

h(ρ) =

{

f̂(ρ) if ρ has a position y � x·k

ρ otherwise.

1 By h(ρ) we denote the replacement of every data value d by h(d) in ρ.

6.4. Satisfiability of forward XPath 123

Let us also consider the data tree t′ that results from the replacement in t of every
data value of a position y � x·k by f̂(d(y)). We show that S ′1 ։ · · ·։ S ′n is still an
accepting run of M over t′. Take any leaf y which is rightmost (i.e., with no siblings
to its right) and consider the sequence of node configurations ρ1 ∈ S1, . . . , ρn ∈ Sn
that are ancestors of y in the first-child next-sibling underlying tree structure.
That is, every ρi carries a position z such that z �

† y. This is the ‘sub-run’ that
leads to y: for every ρi, ρi+1 either ρi = ρi+1 or ρi → ρi+1. If y � x·k, take ℓ
to be the first index such that ρ′ℓ has position x·y. Note that the new sequence

ρ′ℓ ∈ S ′ℓ, . . . , ρ
′
n ∈ S ′n where ρ

′
j = f̂(ρj) = h(ρj) is isomorphic, modulo renaming of

data values, to ρℓ, . . . , ρn since f̂ is injective. We have that ρ′1, . . . , ρ
′
ℓ, . . . ρ

′
n is a

correct run on node configurations, since

• ρ′1, . . . , ρ
′
ℓ−1 is equal to ρ1, . . . , ρℓ−1 (it is not modified by h),

• ρ′ℓ, . . . , ρ
′
n is isomorphic to ρℓ, . . . , ρn (we applied an injection f̂ to every data

value), and

• ρ′ℓ−1, ρ
′
ℓ are isomorphic to ρℓ−1, ρℓ, as h does not modifies any shared value.

On the other hand, if y 6� x·k, then nothing was modified: ρ′1 = ρ1 ∈ S1, . . . , ρ′n =
ρn ∈ Sn. In any case, we have that ρ′1, . . . , ρ

′
n is a correct (sub-)run on node

configurations.

This means that the modified data values are innocuous for the run. As the
structure of the run is not changed, this implies that S ′1 ։ · · ·։ S ′n is an accepting
run that verifies the disjoint values property for x·k. If we perform the same
argument for every position of the tree, we end up with an accepting run and tree
with the disjoint values property.

Using the disjoint values property, we define a translation from regXPath(F,=)
formulæ to ATRA(guess, spread). Let η be a regXPath(F,=) formula and let M be
the corresponding ATRA(guess, spread) automaton defined by the translation. We
show that (i) if a data tree t is accepted by M by a run verifying the disjoint values
property, then t |= η, and in turn (ii) if t |= η, then t is accepted by M . Thus,
by the disjoint values normal form (Proposition 6.13) we obtain our main result
of Proposition 6.11, which by decidability of ATRA(guess, spread) (Theorem 6.4)
implies that the satisfiability problem for regXPath(F,=) is decidable.

The translation

Let η be a regXPath(F,=) node expression in negation normal form (nnf for short).
For succinctness and simplicity of the translation, we assume that η is in a nor-
mal form such that the ↓-axis is interpreted as the leftmost child. To obtain this
normal form, it suffices to replace every appearance of ‘↓’ by ‘↓ →∗’. For every
path expression α ∈ psub(η), consider a deterministic complete finite automa-
ton Hα over the alphabet Aη = {ϕ | ϕ ∈ nsub(η)} ∪ {↓,→} which corresponds

124 6. Downward and rightward navigation

nnf(ϕ ∧ ψ) := nnf(ϕ) ∧ nnf(ψ) nnf(ϕ ∨ ψ) := nnf(ϕ) ∨ nnf(ψ)

nnf(¬(ϕ ∧ ψ)) := nnf(¬ϕ) ∨ nnf(¬ψ) nnf(¬(ϕ ∨ ψ)) := nnf(¬ϕ) ∧ nnf(¬ψ)

nnf(αβ) := nnf(α) nnf(β) nnf([ϕ]) := [nnf(ϕ)]

nnf(α∗) := (nnf(α))∗ nnf(o) := o o ∈ F

nnf(〈α⊛ β〉) := 〈nnf(α)⊛ nnf(β)〉 nnf(¬〈α⊛ β〉) := ¬〈nnf(α)⊛ nnf(β)〉

nnf(a) := a nnf(¬a) := ¬a

nnf(¬¬ϕ) := nnf(ϕ) nnf(〈α〉) := 〈nnf(α)〉

Fig. 6.4: Definition of the Negation Normal Form for XPath.

to that regular expression. We assume the following names of its components:
Hα = 〈Aη, δα, Qα, 0, Fα〉, where Qα ⊆ N is the finite set of states and 0 ∈ Qα is
the initial state. We next show how to translate η into an ATRA(guess, spread)
automaton M . For the sake of readability we define the transitions as positive
boolean combinations of ∨ and ∧ over the set of basic tests and states. Any of
these —take for instance δ(q) = (store(q1) ∧ ▽q2) ∨ (q3 ∧ ā)— can be rewritten
into an equivalent ATRA with at most one boolean connector per transition (as in
Definition 6.1) in polynomial time. The most important cases are those relative to
the following data tests:

(1) 〈α = β〉 (2) 〈α 6= β〉 (3) ¬〈α = β〉 (4) ¬〈α 6= β〉

We define the ATRA(guess, spread) automaton

M := 〈A, Q, (|η|), δ〉

with

Q := {(|ϕ|), (|α|)⊛C,i, (|α|)
⊛
F , (|α, β|)

⊛
C,i,E,j | ϕ ∈ nsub¬(η),

α, β ∈ psub¬(η),⊛ ∈ {=, 6=,¬=,¬6=},

i ∈ Qα, C ⊆ Qα, j ∈ Qβ , E ⊆ Qβ}

where op¬ is the smallest superset of op closed under negation under nnf, i.e., if
ϕ ∈ op¬(η) then nnf(¬ϕ) ∈ op¬(η) (where nnf is defined as shown in Figure 6.4).

The idea is that a state (|ϕ|) verifies the formula ϕ. A state (|α|)=C,i (resp. (|α|)
6=
C,i)

verifies that there is a forward path in the tree ending at a node with the same
(resp. different) data value as the one in the register, such that there exists a run
of Hα over such path that starts in state i and ends in a final state. Similarly,
a state (|α, β|)=C,i,E,j (resp. (|α, β|)

6=
C,i,E,j) verifies that there are two paths ending in

two nodes with the same (resp. one equal, the other different) data value as that
of the register; such that one path has a partial accepting run of Hα starting in

6.4. Satisfiability of forward XPath 125

state i, and the other has a partial accepting run of Hβ starting in state j. The
sets C, E are not essential to understand the general construction, and they have as
only purpose to disallow non-moving loops in the definition of δ. A state like (|α|)=F
is simply to mark that the run of Hα on a path has ended, and the only remaining
task is to test for equality of the data value with respect to the register. Finally,
a state of the sort (| · · · |)¬=··· (resp. (| · · · |)¬6=···) has a similar meaning, but it verifies
that all the data of the nodes along the path(s) are different (resp. equal) to the
datum stored in the register. We first take care of the boolean connectors and the
simplest tests.

δ((|a|)) := a δ((|ϕ ∨ ψ|)) := (|ϕ|) ∨ (|ψ|) δ((|¬a|)) := ā δ((|ϕ ∧ ψ|)) := (|ϕ|) ∧ (|ψ|)

The tests 〈α〉 and ¬〈α〉 are coded in a standard way (cf. Jurdziński and Lazić,
2008). Here we focus on the data-aware cases. Using the guess operator, we can
easily define the cases corresponding to the data test cases (1) and (2) as follows.
Here, (|α|)F holds at the endpoint of a path matching α.

δ((|α = β|)) := guess((|α, β|)=) δ((|α, β|)=) := (|α|)=∅,0 ∧ (|β|)
=
∅,0 δ((|α|)=F) := eq

δ((|α 6= β|)) := guess((|α, β|) 6=) δ((|α, β|) 6=) := (|α|)=∅,0 ∧ (|β|)
6=
∅,0 δ((|α|) 6=F) := eq

We define the transitions associated to each Hα, for i ∈ Qα, C ⊆ Qα,⊛ ∈ {=, 6=}.

δ((|α|)⊛C,i) :=
∨

ϕ∈nsub(α),
i′:=δα(ϕ,i), i′ 6∈C

(

(|ϕ|) ∧ (|α|)⊛C∪{i′},i′
)

∨ ▽(|α|)⊛∅,δα(↓,i) ∨⊲(|α|)
⊛
∅,δα(→,i)

∨
∨

i∈Fα

(|α|)⊛F

The test case (4) involves also an existential quantification over data values.
In fact, ¬(α 6= β) means that either (1) there are no nodes reachable by α, or (2)
there are no nodes reachable by β, or (3) there exists a data value d such that both
(a) all elements reachable by α have datum d, and (b) all elements reachable by β
have datum d.

δ((|¬α 6= β|)) := (|¬〈α〉|) ∨ (|¬〈β〉|) ∨ guess((|α, β|)¬6=)

δ((|α, β|)¬6=) := (|α|)¬6=∅,0 ∧ (|β|)
¬6=
∅,0 δ((|α|)¬6=F) := eq δ((|α|)¬=F) := eq

δ((|α|)¬⊛C,i) :=
∧

ϕ∈nsub(α),
i′:=δα(ϕ,i), i′ 6∈C

((|ϕ̄|) ∨ (|α|)¬⊛C∪{i′},i′)

∧ (▽̄? ∨ ▽(|α|)¬⊛∅,δα(↓,i)) ∧ (⊲̄? ∨⊲(|α|)
¬⊛
∅,δα(→,i)

)

∧
∧

i∈Fα

(|α|)¬⊛F where ϕ̄ stands for nnf(¬ϕ).

126 6. Downward and rightward navigation

The difficult part is the translation of the data test case (3). The main reason
for this difficulty is the fact that ATRA(guess, spread) automata do not have the
expressivity to make these kinds of tests. An expression ¬〈α = β〉 forces the set
of data values reachable by an α-path and the set of those reachable by a β-path
to be disjoint. We show that nonetheless the automaton can test for a condition
that is equivalent to ¬〈α = β〉 if we assume that the run and tree have the disjoint
values property. For the coding of this property we use a weaker version of spread,
and we define spread(q) :=

∧

q′∈Q spread(q′, q).

Example 6.14. As an example, suppose that η = ¬〈↓α =→β〉 is to be checked for
satisfiability. One obvious answer would be to test separately α and β. If both tests
succeed, one can then build a model satisfying η out of the two witnessing trees by
making sure they have disjoint sets of values. Otherwise, η is clearly unsatisfiable.
Suppose now that we have η = ϕ ∧ ¬〈↓α = →β〉, where ϕ is any formula with
no data tests of type (3). One could build the automaton for ϕ and then ask for
“spread((|↓α|)¬=0 ∨ (|→β|)¬=0)” in the automaton. This corresponds to the property
“for every data value d taken into account by the automaton (as a result of the
translation of ϕ), either all elements reachable by α do not have datum d, or all
elements reachable by β do not have datum d”. If ϕ contains a 〈α′ = β′〉 formula,
this translates to a guessing of a witnessing data value d. Then, the use of spread
takes care of this particular data value, and indeed of all other data values that
were guessed to satisfy similar demands. In other words, it is not because of d that
¬〈↓α = →β〉 will be falsified. But then, the disjoint values property ensures that
no pair of nodes accessible by α and β share the same datum. This is the main
idea we encode next.

We define δ((|¬〈α = β〉|)) := (|α, β|)¬=∅,0,∅,0. Given ¬〈α = β〉, the automaton
systematically looks for the closest common ancestor of every pair (x, y) of nodes
accessible by α and β respectively, and tests, for every data value d present in the
node configuration, that either (1) all data values accessible by the remaining path
of α are different from d, or (2) all data values accessible by the remaining path of
β are different from d.

δ((|α, β|)¬=C1,i,C2,j) := spread
(

(|α|)¬=∅,i ∨ (|β|)
¬=
∅,j

)

∧
∧

i∈Fα

(|β|)¬=∅,j ∧
∧

j∈Fα

(|α|)¬=∅,i

∧ ▽(|α, β|)¬=∅,δα(↓,i),∅,δβ(↓,j) ∧ ⊲(|α, β|)¬=∅,δα(→,i),∅,δβ(→,j)

∧
∧

ϕ∈nsub(α),
i′:=δα(ϕ,i), i′ 6∈C1

((|ϕ̄|) ∨ (|α, β|)¬=C1∪{i′},i′,C2,j)

∧
∧

ϕ∈nsub(β),
j′:=δβ(ϕ,j), j

′ 6∈C2

((|ϕ̄|) ∨ (|α, β|)¬=C1,i,C2∪{j′},j′)

The following lemmas then follow from the discussion above.

Lemma 6.15. For any data tree t, if t |= η, then M accepts t.

6.4. Satisfiability of forward XPath 127

Lemma 6.16. For any data tree t, if M accepts t with a run that has the disjoint
values property, then t |= η.

Lemmas 6.15 and 6.16 together with Proposition 6.13 conclude the proof of
Proposition 6.11. We then have that Theorem 6.9 holds.

Proof of Theorem 6.9. By Proposition 6.11, satisfiability of regXPath(F,=) is re-
ducible to the nonemptiness problem for ATRA(guess, spread). On the other hand,
we remark that ATRA(guess, spread) automata can encode any regular tree lan-
guage —in particular a DTD, the core of XML Schema, or Relax NG— and are
closed under intersection by Proposition 6.2. Also, the logic can express any unary
primary key constraint as stated in Lemma 6.8. Hence, by Theorem 6.4 the decid-
ability follows.

Extensions

We consider some operators that can be added to regXPath(F,=) preserving the
decidability of the satisfiability problem. For each of these operators, we will see
that they can be coded as a ATRA(guess, spread) automaton, following the same
lines of the translation in Section 6.4.2.

6.4.3 Allowing upward axes

Here we explore one possible decidable extension to the logic regXPath(F,=), whose
decidability can be reduced to that of ATRA(guess, spread).

Let regXPathB(F,=) be the fragment of regXPath(F∪B,=) whereB := {↑, ↑∗,←
, ∗←} defined by the grammar

ϕ, ψ ::= ¬a | a | ϕ ∧ ψ | ϕ ∨ ψ | 〈αf〉 | 〈αb〉 |

〈αf ⊛ βf〉 | ¬〈αf ⊛ βf〉 | ¬〈αb = βf〉 | ¬〈αb 6= βf〉

with ⊛ ∈ {=, 6=}, a ∈ A, and

αf, βf ::= [ϕ] | αfβf | oαf | (αf)
∗ o ∈ {↓,→, ε},

αb, βb ::= [ϕ] | αbβb | oαb | (αb)
∗ o ∈ {↑,←, ε}.

We must note that regXPathB(F,=) contains regXPath(F,B), that is, the full data-
unaware fragment of XPath. We also remark that it is not closed under negation.
Indeed, we cannot express the negation of “there exists an a such that all its
ancestors labeled b have different data value” which is expressed by ↓∗[a∧¬〈↑

∗[b] =
ε〉]. As shown in Proposition 3.2, if the negation of this property were expressible,
then its satisfiability would be undecidable. It is not hard to see that we can decide
the satisfiability problem for this fragment.

Consider first the data test expressions of the types

¬〈αb = βf〉 and ¬〈αb 6= βf〉

128 6. Downward and rightward navigation

where βf ∈ regXPath(F,=) and αb ∈ regXPath(B). We can decide the satisfaction
of these kinds of expressions by means of spread(,), using carefully its first pa-
rameter to select the desired threads from which to collect the data values we are
interested in. Intuitively, along the run we throw threads that save current data
value and try out all possible ways to verify αrb ∈ regXPath(F,=), where ()r stands
for the reverse of the regular expression. Let the automaton arrive with a thread
((|αb|), d) whenever α

r
b is verified. This signals that there is a backwards path from

the current node in the relation αb that arrives at a node with data value d. Hence,
at any given position, the instruction spread((|αb|), (|αf|)

¬⊛) translates correctly the
expression ¬〈αb⊛βf〉. Furthermore, αb need not be necessarily in regXPath(B), as
its intermediate node tests can be formulæ from regXPath(F,=). We then obtain
the following result.

Theorem 6.17. Satisfiability for regXPathB(F,=) under primary key constraints
and DTDs is decidable.

6.4.4 XML versus data trees

The decidability of SAT-XPath(F,=) on data trees entails the decidability of SAT-
attrXPath(F,=) on xml documents. The way to transfer this results is by the same
coding as shown in Section 5.5.3 for downward XPath, and can obviously be done
in forward XPath since it is an extension of the downward fragment.

6.4.5 Allowing stronger data tests

Consider the property “there are three descendant nodes labeled a, b and c with
the same data value”. That is, there exists some data value d such that there are
three nodes accessible by ↓∗[a], ↓∗[b] and ↓∗[c] respectively, all carrying the datum
d. Let us denote the fact that they have the same or different datum by introducing
the symbols ‘∼’ and ‘ 6∼’, and appending it at the end of the path. Then in this
case we write that the elements must satisfy ↓∗[a]∼, ↓∗[b]∼, and ↓∗[c]∼. We then
introduce the node expression {{α1s1, . . . , αnsn}} where αi is a path expression and
si ∈ {∼, 6∼} for all i ∈ [1..n]. Semantically, it is a node expression that denotes
all the tree positions x from which we can access n positions x1, . . . , xn such that
there exists d ∈ D where for all i ∈ [n] the following holds: (x, xi) ∈ [[αi]]; if si = ∼
then d(xi) = d; and if si = 6∼ then d(xi) 6= d. Note that now we can express
〈α = β〉 as {{α∼, β∼}} and 〈α 6= β〉 as {{α∼, β 6∼}}. Let us call regXPath+(F,=)
to regXPath(F,=) extended with the construction just explained. This is a more
expressive formalism since the first mentioned property —or, to give another ex-
ample, {{↓∗[a]∼, ↓∗[b]∼, ↓∗[a] 6∼, ↓∗[b] 6∼}}— is not expressible in regXPath(F,=).

We argue that satisfiability for this extension can be decided in the same way as
for regXPath(F,=). It is straightforward to see that positive appearances can easily
be translated with the help of the guess operator. On the other hand, for negative
appearances, like ¬{{α1s1, . . . , αnsn}}, we proceed in the same way as we did for
regXPath(F,=). The only difference being that in this case the automaton will

6.5. Discussion 129

simulate the simultaneous evaluation of the n expressions and calculate all possible
configurations of the closest common ancestors of the endpoints, performing a
spread at each of these intermediate points.

Theorem 6.18. Satisfiability of regXPath+(F,=) under primary key constraints
and DTDs is decidable.

6.5 Discussion

Remark 6.19. In Section 3.5 we showed that LTL↓(U,X) extended with quantifiers

over data values ∀↓≤ and ∃↓≥ is decidable (Theorem 3.31), even in the presence of
a linear order. Indeed, by an analogous reduction to ATRA(guess, spread), these
operators can be added to a CTL version of this logic over data trees, or to the
µ-calculus treated by Jurdziński and Lazić (2007)2. However, adding the dual of
any of these operators results in an undecidable logic.

We presented a simplified framework to work with one-way alternating register
automata on data words and trees, enabling the possibility to easily show decid-
ability of new operators by proving that they preserve the downward compatibility
of a well-structured transition system. It would be interesting to hence investigate
more decidable extensions, to study the expressiveness limits of decidable logics
and automata for data trees.

Also, this work argues in favor of exploring computational models that al-
though they might be not closed under all boolean operations, can serve to show
decidability of logics closed under negation such as forward-XPath.

Another natural fragment of XPath is the case of vertical XPath: the fragment
XPath(↓, ↓∗, ↑, ↑

∗,=) containing both downward and upwards navigation. This
fragment will be shown to be decidable in our next chapter.

2 This is the conference version of (Jurdziński and Lazić, 2008).

7. DOWNWARD AND UPWARD NAVIGATION

Two-way automata on data words and trees have frequently an undecidable empti-
ness problem. We introduce a decidable automata model that, being bottom-up,
presents several features that allows to make tests by navigating the tree in both
directions: upwards and downwards. This two-way flavor is witnessed by the fact
that these automata can decide vertical XPath.

7.1 Introduction

In this chapter we introduce a novel decidable class of automata over unranked
data tree, that we denote BUDA, for Bottom-Up alternating 1-register Data tree
Automata. The BUDA are essentially alternating bottom-up tree automata with
one register, without the ability of testing for “horizontal” properties on the siblings
of the tree, such as for example bounding the rank of the tree. However, an
automaton of this class has the ability to test rich data properties on the subtrees,
which in some sense corresponds to a downward behavior.

The decidability of this automaton is proven in Section 7.3 using a wsts, with
somewhat similar techniques as in Chapters 6 and 3. However, finding the correct
wqo that is compatible with the automaton is non-trivial. Since the automaton
can faithfully simulate an ARA when going up to the root, the complexity of the
emptiness problem is necessarily non-primitive recursive. The absence of horizontal
tests is essential to obtain our decidability results. In fact, one can see that the
model would become undecidable could it force a bound on the tree’s rank.

As a result of the “two-wayness” flavor of the automata model, it can capture
the vertical fragment of XPath. The vertical fragment XPath(V,=) is the one
containing downward axes ↓, ↓∗ and upward axes ↑, ↑

∗. Our main result on XPath

is then the following.

Theorem 7.1. The satisfiability problem for regXPath(V,=) is decidable.

In this way we answer positively to the open question raised by Benedikt and
Koch (2008, Question 5.10) and Benedikt et al. (2008), regarding the decidability
of the satisfiability for vertical XPath.

All the results contained in this chapter are joint work with Luc Segoufin.

131

132 7. Downward and upward navigation

7.1.1 Related work

The automata ATRA of Jurdziński and Lazić (2008) and ATRA(guess, spread) of
Chapter 6 are the closest to the automata model we present. However, the cited
automata are top-down instead of bottom-up, and they can test for horizontal
properties. For example, they can express that every node has at most one child,
something that cannot be tested by BUDA. On the other hand, BUDA can test
properties like (T7) from Example 1.2, that cannot be expressed by any decid-
able formalism we have mentioned so far. Also, they can express the inclusion
dependency constraint (cf. § 4.1.3) as (T4). However, the BUDA automata are
bottom-up, and cannot test for a property on the siblings.

EMSO2(+1,∼) (Bojańczyk et al., 2009) over data trees is also a logic which is
close to XPath(V,=) and BUDA automata since in some sense it is also two-way.
This logic can express horizontal properties, like the property that restricts the tree
to be linear which cannot be expressed by BUDA, but cannot test any property
that requires a non-local test, like (T7), or that requires testing some label along
the path, like (T6).

7.2 The automata model

In this section we introduce the BUDA model. It is essentially a bottom-up tree
automata with one register and an alternating control. We show that these au-
tomata are at least as expressive as vertical XPath. In Section 7.3 we will show
that their emptiness problem is decidable. Theorem 7.1 then follows immediately.

Recall that the ATRA model of Jurdziński and Lazić (2008), is essentially a
top-down tree automata with one register and alternating control. An extension of
this model can decide forward XPath as shown in Chapter 6. We aim at defining
a decidable class of automata that can express data properties both in the down-
wards and the upwards directions. To obtain such a model of automata, the switch
from top-down to bottom-up is essential. As a result, this class can capture ver-
tical XPath, and in particular is expressively incomparable with respect to ATRA

or ATRA(guess, spread). It also makes the decidability of its emptiness problem
significantly more difficult.

An automaton A ∈ BUDA that runs over data trees of Trees(A×D) is defined
as a tuple A = (A,B, Q, q0, δǫ, δup,S, h) where A is the finite alphabet of the tree, B
is an internal finite alphabet of the automaton (whose purpose will be clear later),
Q is a finite set of states, q0 is the initial state, S is a finite semigroup, h is a
semigroup homomorphism from (A × B)+ to S, δǫ is the ǫ-transition function of
A , and δup is the up-transition function of A .

δup is a partial function that associates to some q ∈ Q a formula consisting in a
disjunction of conjunctions of states. δǫ is also a partial function that associates to

7.2. The automata model 133

some q ∈ Q a disjunction of conjunctions of ‘atoms’ of one of the following forms:

p | guess(p) | store(p) | eq | eq | 〈µ〉= | 〈µ〉 6= | 〈µ〉 | 〈µ〉 | unique(µ) |

spread(p, p′) | disjoint(p, p′) | root | root | leaf | leaf | a | ā | b | b̄

where µ ∈ S, p, p′ ∈ Q, a ∈ A, b ∈ B, and moreover q 6∈ {p, p′} in the case of
disjoint(p, p′).

Before we present the precise semantics of our automata model, here is the in-
tuition. The automaton’s control is nondeterministic and alternating, as reflected
by the disjunctions and conjunctions in the formulæ specifying the transition func-
tions. Hence, at any node several threads of the automata run in parallel. Each
thread consists in a state and a data value stored in the register. At every node
of the tree, the automaton guesses a finite internal label of B and all threads can
share access to this finite information. At any node of the tree, the automaton
can decide to either move up in the tree according to is up-transition function, or
to perform an ǫ-transition modifying its state and register according to some local
tests.

We describe what are the actions that these automata can perform. Firstly,
they can test whether the current node has a label a ∈ A or an internal label
b ∈ B (or not, using ā and b̄). They can store the current data value in the register
(store(p)), or store an arbitrary data value nondeterministically chosen (guess(p)).
The automata can test (in)equality of the current data value with the one stored
in the register (eq and eq). They can also test whether this node is a root or a leaf
(root, root, leaf and leaf). Moreover, they can test the existence of some downward
path, starting from the current node and leading to a node whose data value is
(not) equal to the one currently stored in the register. These paths are specified
using the finite semigroup S and the morphism h : (A× B)+ → S over the words
made of the label of the tree and the internal label, based on the duality between
regular expressions and recognition using finite semigroup. For example, 〈µ〉= tests
for the existence of a path that evaluates to µ via h, which starts at the current
node and leads to a node whose data value matches the one currently stored in
the register. Similarly, 〈µ〉 6= demands a data value different from the one currently
in the register. Also, 〈µ〉 and 〈µ〉 test the existence or inexistence of such paths
but do not enforce anything on the data value. This class of automata can also
perform some other rich set of tests. On the one hand, it can test whether there
is a unique data value that can be reached from the current node via a downward
path that evaluates to µ via h with the test unique(µ). On the other hand, it can
check that it is not the case that there is currently one thread in state p, another
one in state q such that both have the same data value in their respective registers
(disjoint(p, p′)). Finally, a transition can demand to start a new thread in state p′

for any thread currently in state p. That is, the threads in state p are not removed
and continue to run (spread(p, p′)).

We now turn to the formal definition. A data tree a⊗d ∈ Trees(A × D) is
accepted by A iff there exists an internal labeling b ∈ Trees(B) with pos(b) =

134 7. Downward and upward navigation

pos(a⊗d) such that there is an accepting run on a⊗b⊗d. We focus now on
defining an (accepting) run.

A configuration of a BUDA A is a set C of threads, viewed as a finite subset
of Q × D. A configuration C is said to be initial iff it is of the form {(q0, e)} for
some e ∈ D. A configuration C is accepting iff it is empty.

ǫ-transitions. Let t = a⊗b⊗d and x ∈ pos(t). Given two configurations C
and C′ of A , we say that there is an ǫ-transition of A at x between C and C′,
denoted (x, C) ǫ (x, C

′) (assuming A and t are understood from the context) if
the following holds: there is (q, d) ∈ C with δǫ(q) =

∨

i∈I γi where the γi’s are
conjunctions of atoms, there is one i ∈ I with γi =

∧

j∈J αj , with C
′ = (C \

{(q, d)}) ∪ Ĉ and such that the following holds for all j ∈ J :

• If αj is a with a ∈ A then a(x) = a, if αj is ā with a ∈ A then a(x) 6= a,

• if αj is b with b ∈ B then b(x) = b, if αj is b̄ with b ∈ B then b(x) 6= b,

• if αj is root then x = ǫ, that is, x is the root of t, if αj is root then x 6= ǫ,

• if αj is leaf then x is a leaf of t, if αj is leaf then x is not a leaf of t,

• if αj is p for some p ∈ Q, then (p, d) ∈ Ĉ,

• if αj is guess(p) then (p, d
′) ∈ Ĉ for some d′ ∈ D,

• if αj is store(p) then (p,d(x)) ∈ Ĉ,

• if αj is eq then d = d(x), if αj is eq then d 6= d(x),

• if αj is 〈µ〉
= (resp. 〈µ〉 6=), then there is a downward path in t starting at x

and ending at some descendant position y such that the sequence of labels
in A × B read while going from x to y along this path evaluates to µ via h,
and such that d(y) = d (resp. d(y) 6= d),

• if αj is 〈µ〉, then there is a downward path in t starting at x evaluating to µ
via h,

• if αj is 〈µ〉, then all downward paths in t starting at x do not evaluate to µ
via h,

• if αj is unique(µ), then for some d′ ∈ D there is no downward path in t

starting at x and ending at some descendant position y that evaluates to
µ via h, and such that d(y) 6= d′; and there is at least one path such that
d(y) = d′.

• if αj is spread(p, p
′), then for all d′ ∈ D, if (p, d′) ∈ C then (p′, d′) ∈ Ĉ,

• if αj is disjoint(p, p′), then there is no d′ ∈ D such that (p, d′) ∈ C and
(p′, d′) ∈ C,

7.2. The automata model 135

• nothing else is in Ĉ.

The ǫ-closure of a pair (x, C) is defined as the reflexive transitive closure of
ǫ, i.e. the set of configurations reachable from (x, C) by a finite sequence of
ǫ-transitions.

up-transitions. We say that a configuration C is moving iff for all (q, d) ∈ C,
δup(q) is defined. Given two configurations C and C

′ of A , we say that there is an
up-transition of A between C and C′, denoted C up C

′ (assuming A is understood
from the context) if the following conditions hold:

• C is moving,

• for all (q, d) ∈ C, if δup(q) =
∨

i∈I

∧

j∈J pi,j then there is i ∈ I such that for
all j ∈ J , (pi,j , d) ∈ C

′,

• nothing else is in C′.

Runs. We are now ready to define a run ρ of A on t = a⊗b⊗d. It is a function
associating a configuration to any node x of t such that

1. for any leaf x of t, ρ(x) = {(q0,d(x))},

2. for any inner position x of t whose children are x·1, . . . , x·n, then there are
configurations C′1, · · · , C

′
n and C

′′
1 , · · · , C

′′
n such that for all i ∈ [n], (x·i, C

′′
i) is

in the ǫ-closure of (x·i, ρ(x·i)), C′′i up C
′
i, and ρ(x) =

⋃

i∈[n] C
′
i.

The run ρ is accepting if moreover at the root (i.e., for the position ǫ), the
ǫ-closure of ρ(ǫ) contains an accepting configuration.

We have the following properties.

Proposition 7.2. The class of languages L(BUDA) definable by the BUDA class
is:

(i) closed under union,

(ii) closed under intersection, and

(iii) not closed under complementation.

Proof. Closure under union and intersection is due to the fact that ǫ-transitions
have disjunction and conjunction.

The fact that it is not closed under complementation, is immediate from the
fact that BUDA can simulate a ARA(guess) when going up along a branch, and that
if we can test the negation of a property expressible by an ARA(guess) automaton,
the emptiness problem becomes undecidable. This would imply that the emptiness
problem for BUDA is undecidable, which contradicts our main result (stated in
Theorem 7.4), that its emptiness problem is decidable.

136 7. Downward and upward navigation

Automata normal form

We now present a normal form of BUDA, removing all the redundancy in its def-
inition. This normal form will simplify the technical details during the proof of
decidability presented in the next section.

We first assume that the semigroup S and morphism h have the following
properties.

For all w ∈ (A× B)+ and c ∈ A× B, h(w) = h(c) iff w = c. (NF1)

Moreover, we assume that in the definition of δup of A , there is exactly one disjunct
that contains exactly one conjunct. That is,

for all q ∈ Q : δup(q) is undefined or δup(q) = p for some p ∈ Q .
(NF2)

Equivalently, we assume the following normal form of δǫ. For all q ∈ Q:

δǫ(q) is defined as an atom, p ∧ p
′ or p ∨ p′ for some p, p′ ∈ Q, and (NF3)

δǫ(q) does not contain tests for labels (a, ā, b, b̄), eq, eq, 〈µ〉, store, leaf or leaf.
(NF4)

An automaton A ∈ BUDA is said to be in normal form if it satisfies (NF1), (NF2),
(NF3) and (NF4). Notice that once (NF1) holds, then any test concerning a label
(a, ā, b, or b̄) can be simulated using tests of the form 〈µ〉 for some appropriate
µ. In fact, we will show here that our automata model can be assumed to be in
normal form without any loss of generality. In the following we will write C for
A×B, where A is the finite alphabet for labeling the data trees and B the internal
alphabet of BUDA.

Proposition 7.3. For any A ∈ BUDA, there is an equivalent A ′ ∈ BUDA in
normal form that can be effectively obtained.

Proof. First, given a finite semigroup we can easily compute another one that
satisfies (NF1), only by adding some extra elements to the domain in order to tell
apart all the one letter words for each symbol of the finite alphabet.

Second, notice that (NF2) is without any loss of generality, since any positive
boolean combination of δup can be simulated using ǫ-transitions right after the
up-transition is done.

On the other hand, we can simulate the fact that δǫ(q) is undefined by defining
δǫ(q) = q. Also, δǫ(q) =

∨

i∈I

∧

j∈J ϕi,j —where the ϕi,j ’s are atoms— can be
decomposed into binary disjunctions and conjunctions, adding a suitable set of
extra states. We can then assume without any loss of generality that the automaton
verifies (NF3).

7.3. The emptiness problem 137

Fig. 7.1: The root and merge operations.

To show that (NF4) can always be assumed, note that any test for label can
be simulated using 〈µ〉. Indeed, a test a with a ∈ A can be simulated with
∨

b∈B〈h(a, b)〉, ā with
∧

b∈B 〈h(a, b)〉, and similar tests can simulate b and b̄ for b ∈ B.
What is more, the ǫ-transition 〈µ〉 of a BUDA can be simulated using 〈µ〉= ∨ 〈µ〉 6=.
The ǫ-transition eq can be simulated using

∨

a∈C〈h(a)〉
=. Similarly eq can be sim-

ulated using 〈µ〉 6=. Also, store can be simulated using guess ∧ eq. Lastly, leaf and
leaf can be tested with 〈µ〉 and 〈µ〉 using some

∨

µ 6∈{h(a)|a∈C}〈µ〉
=∨〈µ〉 6=. Thus, we

can suppose that the automaton A does not contain any transition that uses tests
for labels, eq, eq, 〈µ〉, store, leaf and leaf without any loss of generality.

7.3 The emptiness problem

The goal of this section is to show the following.

Theorem 7.4. The emptiness problem for BUDA is decidable.

In order to achieve this, we associate to each BUDA a wsts that simulates its
runs. The transition system works on sets of abstract configurations. Given an
automaton, an abstract configuration is meant to contain all the information that
is necessary to collect at the root of a given subtree in order to continue the sim-
ulation of the automaton from there. The aforesaid transition system works with
sets of such abstract configurations in order to capture the bottom-up behavior of
the automaton on unranked trees. The transition relation of the wsts essentially
corresponds to the transitions of the automaton except for the up-transition. An
up-transition of the automaton is simulated by a succession of two types of tran-
sitions of the wsts, called root and merge. The object of doing this is to avoid
having transitions that take an unbounded number of arguments. The root tran-
sition adds a node on top of the current root, and the merge transition identifies
the roots of two abstract configurations. Intuitively, these transitions correspond
to the operations on trees contained in Figure 7.1. This is necessary because we
do not know in advance the arity of the tree and therefore the transition system
has to build one subtree at a time.

We then exhibit a wqo on abstract configurations and show that the transi-
tion system is N -downward compatible with respect to this wqo for some N that
depends on the automaton. Decidability will then follow from Lemma 2.13.

In the sequel we implicitly assume that all our BUDA are in normal form.

138 7. Downward and upward navigation

7.3.1 Abstract configurations

Given a BUDA A = (A,B, Q, q0, δǫ, δup,S, h), we start the definition of its associated
wsts by defining its universe: finite sets of abstract configurations of A .

An abstract configuration of A is a tuple (∆,Γ, r,m) where r and m are
either true or false, ∆ is a finite subset of Q× D and Γ is a finite subset of S × D

such that

Γ contains exactly one pair of the form (h(c), d) with c ∈ A× B. (⋆)

This unique element of A×B is denoted as the label of the abstract configuration
and the unique associated data value is denoted as the data value of the abstract
configuration.

Intuitively r says whether the current node should be treated as the root or
not, m says whether we are in a phase of merging configurations or not (a notion
that will become clear when we introduce our transition system later on), ∆ is the
set of ongoing threads (corresponding to the configuration of the automaton) and
a pair (µ, d) ∈ Γ simulates the existence of a downward path evaluating to µ and
whose last element carry the datum d.

In the sequel we will use the following notation: ∆(d) = {q | (q, d) ∈ ∆},
Γ(d) = {µ | (µ, d) ∈ Γ}, ∆(q) = {d | (q, d) ∈ ∆}, Γ(µ) = {d | (µ, d) ∈ Γ}. We also
use the notation ∆⊗Γ : D→ ℘(Q)× ℘(S) with (∆⊗Γ)(d) = (∆(d),Γ(d)). Given
a data value d and an abstract configuration θ, (∆⊗Γ)(d) is also denoted as the
type of d in θ. We use the letter θ to denote an abstract configuration and we
write AC to denote the set of all abstract configurations. Similarly, we use Θ to
denote a finite set of abstract configurations and ℘<∞(AC) for the set of finite sets
of abstract configurations.

An abstract configuration θ = (∆,Γ, r,m) is said to be initial if it corresponds
to a leaf node, i.e., is such that ∆ = {(q0, d)} and Γ = {(h(a), d)} for some d ∈ D

and a ∈ A× B. It is said to be accepting if ∆ is empty and r is true.
Two configurations θ1 and θ2 are said to be equivalent if there is a bijection

f : D → D such that f(θ1) = θ2 (with some abuse of notation). In this case we
note θ1 ∼ θ2.

Finally, we write ΘI to denote the set of all initial abstract configurations
modulo ∼ (i.e., a set containing at most one element for each ∼ equivalence class).
Note that ΘI is finite and effective. A set of abstract configurations is said to be
accepting iff it contains an accepting abstract configuration.

7.3.2 Well-quasi-orders

We now equip ℘<∞(AC) with a well-quasi-order (℘<∞(AC),≤min). The order
≤min builds upon a wqo (AC,-) over abstract configurations. Let us define these
orderings precisely.

The profile of an abstract configuration θ = (∆,Γ, r,m), denoted by
profile(θ), is profile(θ) = (A0, A1, r, m) with Ai = {(S, χ) ∈ ℘(Q) × ℘(S) :
|(∆⊗Γ)−1(S, χ)| = i}.

7.3. The emptiness problem 139

We first define the quasi-order � over abstract configurations, and then we
define the order (AC,-) as (AC,�) modulo ∼.

Definition 7.5 (�). Given two abstract configurations θ1 = (∆1,Γ1, r1,m1) and
θ2 = (∆2,Γ2, r2,m2), we denote by θ1 � θ2 the fact that

• profile(θ1) = profile(θ2), and

• (∆1⊗Γ1) ⊆ (∆2⊗Γ2)

Remark 7.6. Notice that due to condition (⋆), θ1 � θ2 implies that θ1 and θ2 have
the same label and same data value.

We now define - as follows.

Definition 7.7 (-). θ1 - θ2 iff θ
′
1 � θ2 for some θ

′
1 ∼ θ1.

We are now ready to define our wqo over ℘<∞(AC).

Definition 7.8 (≤min). Given Θ1 and Θ2 in ℘<∞(AC) we define Θ1 ≤min Θ2 iff
for all θ2 ∈ Θ2 there is θ1 ∈ Θ1 such that θ1 - θ2.

We are now ready to show that the order we use in our proof is a wqo. Recall
the definitions of - and ≤min in Section 7.3.2.

Lemma 7.9. (AC,-) is a ω2-wqo.

Proof. Given an abstract configuration θ = (∆,Γ, r,m), let us define x̄(θ) as func-
tion from ℘(Q) × ℘(S) to N. We define x̄(θ)(S, χ) = |(∆⊗Γ)−1(S, χ)|. Notice
that x̄(θ) can be seen as a vector of natural numbers. Let ≤x̄ be the componen-
twise order of vector of natural numbers. It then follows that for every θ1, θ2,
profile(θ1) = profile(θ2) and x̄(θ1) ≤x̄ x̄(θ2) iff θ1 - θ2. By Corollary 2.24 we know
that (AC,≤x̄) is a ω

2-wqo.
Let us define ≈prof as the relation between abstract configurations that corre-

sponds to equality of profiles. Since there are only finitely many different profiles,
it follows that there are finitely many equivalence classes of ≈prof. Then, it cannot
contain an isomorphic copy of the Rado structure (Definition 2.17), and (AC,≈prof)
is then a ω2-wqo.

By Proposition 2.21, ω2-wqo are closed under intersection, and we then obtain
that (AC, (≤x̄ ∩ ≈prof)) is a ω

2-wqo. In other words, (AC,-) is a ω2-wqo.

And finally:

Lemma 7.10. (℘<∞(AC),≤min) is a wqo.

Proof. This is a direct consequence of Proposition 2.20 and Lemma 7.9.

Finally, the following obvious lemma will be necessary to apply Lemma 2.13.

Lemma 7.11. {Θ ∈ ℘<∞(AC) | Θ is accepting} is downward closed for (℘<∞(AC),≤min

).

140 7. Downward and upward navigation

7.3.3 Transition system

We now equip ℘<∞(AC) with a transition relation ⇒. This transition relation is
built upon a transition relation → over AC. It is specified so that it reflects the
transitions of A : The ǫ-transitions of the wsts make their tests using the Γ-part
of the abstract configuration while A is using the data tree; similarly we have
transitions of the wsts that reflects an up-transition of A (decomposed in

merge
−−−→

and
root
−−→ transitions as already mentioned) and moreover modify the Γ-part of the

abstract configuration in order to maintain consistency of the tests.

We now turn to the definition of → over AC.

We start with ǫ-transitions. Given two abstract configurations θ1 = (∆1,Γ1, r1,
m1) and θ2 = (∆2,Γ2, r2,m2), we say that θ1 →ǫ θ2 if m1 = m2 = false (the merge
information is used for simulating an up-transition as will be explained later),
r2 = r1 (whether the current node is the root or not should not change), θ1 and
θ2 have the same label and data value, Γ2 = Γ1 (the tree is not affected by an
ǫ-transition) and, furthermore, one of the following conditions holds:

1. θ1
spread
−−−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δǫ(q) =

spread(p, p′) for some p, p′, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \
{(q, d)}) ∪ {(p′, e) : (p, e) ∈ ∆1}.

2. θ1
disjoint
−−−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δǫ(q) =

disjoint(p, p′) for some p, p′, q ∈ Q, and ∆1(p) ∩ ∆1(p
′) = ∅. In this case θ2 is

such that ∆2 = (∆1 \ {(q, d)}).

3. θ1
unique
−−−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δǫ(q) =

unique(µ) for some q ∈ Q, µ ∈ S, and |Γ1(µ)| = 1. In this case θ2 is such that
∆2 = (∆1 \ {(q, d)}).

4. θ1
guess
−−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δǫ(q) =

guess(p) for some p, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \ {(q, d)}) ∪
{(p, d′)} for some d′ ∈ D.

5. θ1
〈µ〉
−−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δǫ(q) = 〈µ〉

for some q ∈ Q, µ ∈ S, and |Γ1(µ)| = 0. In this case θ2 is such that ∆2 =
(∆1 \ {(q, d)}).

6. θ1
〈µ〉=

−−→ θ2 (resp. θ1
〈µ〉 6=

−−→ θ2). This transition can happen if there is (q, d) ∈ ∆1

with δǫ(q) = 〈µ〉
= (resp. δǫ(q) = 〈µ〉

6=) for some q ∈ Q, µ ∈ S, and µ ∈ Γ1(d)
(resp. there exists e ∈ D, e 6= d such that µ ∈ Γ1(e)). In this case θ2 is such
that ∆2 = (∆1 \ {(q, d)}).

7. θ1
root
−−→ θ2 (resp. θ1

root
−−→ θ2). This transition can happen if there is (q, d) ∈ ∆

with δǫ(q) = root and r1 = true (resp. δǫ(q) = root and r1 = false). In this case
θ2 is such that ∆2 = (∆1 \ {(q, d)}).

7.3. The emptiness problem 141

8. θ1
∧
−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δǫ(q) = p∧p′ for

some p, p′, q ∈ Q. In this case θ2 is such that ∆2 = (∆1\{(q, d)})∪{(p, d), (p
′, d)}.

9. θ1
∨
−→ θ2. This transition can happen if there is (q, d) ∈ ∆1 with δǫ(q) = p ∨ p′

for some p, p′, q ∈ Q. In this case θ2 is such that ∆2 = (∆1 \ {(q, d)}) ∪ A, for
A = {(p, d)} or A = {(p′, d)}.

Notice that by (NF3) and (NF4) for every possible definition of δǫ(q) there is
one transition that simulates it. To simulate δup, it turns out that we will need
one extra ǫ-transition that makes our trees more fat. This transition assumes the
same constraints as for →ǫ except that we no longer have Γ2 = Γ1. We say that

θ1
inc(S, χ)
−−−−→ θ2 for some pair (S, χ) ∈ ℘(Q) × ℘(S) if |(∆1⊗Γ1)

−1(S, χ)| ≥ 1 and,
either χ = ∅ or |(Γ1)

−1(χ)| ≥ 2. Then θ2 is such that data(θ2) = data(θ1) ∪ {e}
for some e 6∈ data(θ1), (∆2⊗Γ2)(e) = (S, χ), and for all d 6= e, (∆2⊗Γ2)(d) =
(∆1⊗Γ1)(d).

We now turn to the transitions of the wsts that correspond to up-transitions
in the automaton. We split them into two phases: adding a new root symbol and
merging the roots.

1. θ1
root
−−→ θ2. Given two abstract configurations θ1 and θ2 as above, we say θ1

root
−−→

θ2 if r1 = m1 = false, and for all (q, d) ∈ ∆1, δup(q) is defined and θ2 is such
that m2 = true, ∆1 up ∆2, and Γ2 = {(µ′, e) : (µ, e) ∈ Γ1, µ

′ = h(c)·µ} ∪
{(h(c), d)}, for some c ∈ A×B and d ∈ D. As a consequence of the normal form
(NF1) of the semigroup, this operation preserves property (⋆). Notice that c
and d are then the label and data value of θ2.

2. θ1, θ2
merge
−−−→ θ0. Given 3 abstract configurations θ1 = (∆1,Γ1, r1,m1), θ2 =

(∆2,Γ2, r2,m2), θ0 = (∆0,Γ0, r0,m0) we define θ1, θ2
merge
−−−→ θ0 if they all have

the same label and data value, m1 = m2 = true, r1 = r2 = r0, ∆0 = ∆1 ∪∆2,
and Γ0 = Γ1 ∪ Γ2. Notice that this operation preserves property (⋆).

Definition 7.12. We define that Θ1 ⇒ Θ0 if one the following conditions holds:

• There is θ1 ∈ Θ1 and θ
′
1 ∼ θ1 such that θ

′
1 →ǫ θ0 or θ

′
1

inc(S, χ)
−−−−→ θ0 or θ

′
1

root
−−→ θ0,

for some θ0, χ, and Θ0 = Θ1 ∪ {θ0}.

• There are θ1, θ2 ∈ Θ1 and θ
′
1 ∼ θ1, θ

′
2 ∼ θ2 such that θ

′
1, θ

′
2

merge
−−−→ θ0 for some

θ0, and Θ0 = Θ1 ∪ {θ0}.

7.3.4 Compatibility

We now show that all the previous definitions were chosen appropriately and that
the transition system defined in Section 7.3.3 is compatible with the wqo defined
in Section 7.3.2. The proof of this result is very technical and consists in a case
analysis over each possible kind of transition.

We start with some technical comments.

142 7. Downward and upward navigation

Definition 7.13. We write A ≅ℓ B iff A = B or |A ∩B| ≥ ℓ.

Definition 7.14. We define the relation �l as follows. θ
′
1 �l θ1 iff

1. θ′1 � θ1, and

2. for every (S, χ) we have that (∆1⊗Γ1)
−1(S, χ) ≅l (∆

′
1⊗Γ

′
1)
−1(S, χ), for

l := max(3, 2.|S|.|Q|).

As before, we define -l as �l modulo ∼.

The following lemma illustrates the use of transitions
inc(S, χ)
−−−−→ by showing that,

in a sense, -l can be assumed from - without loss of generality.

Lemma 7.15. Let Θ1,Θ
′
1 ∈ ℘<∞(AC) such that Θ1 ≤min Θ

′
1. Given θ1 ∈ Θ1 and

θ′1 ∈ Θ
′
1 such that θ1 - θ

′
1, there exists Θ̃ and θ̃ ∈ Θ̃ such that

1. Θ1 ⇒
n Θ̃ for n ≤ (|S|.|Q|).l,

2. θ1 - θ̃ -l θ
′
1,

3. Θ1 ≤min Θ̃ ≤min Θ
′
1.

Proof. Let θ1 = (∆1,Γ1, r1,m1) and θ′1 = (∆′1,Γ
′
1, r

′
1,m

′
1). Given S ⊆ Q, and

χ ⊆ S, let

n = min(l , |(∆′1⊗Γ
′
1)
−1(S, χ)| − |(∆1⊗Γ1)

−1(S, χ)|) .

Since θ1 - θ′1, it follows that n ≥ 0. Notice that if |(∆1⊗Γ1)
−1(S, χ)| = 1

then by definition of - we also have |(∆′1⊗Γ
′
1)
−1(S, χ)| = 1 and n = 0. On

the other hand, if |(∆1⊗Γ1)
−1(S, χ)| > 1 we can apply a transition

inc(S, χ)
−−−−→ to

θ1 resulting in an abstract configuration θ2. By definition of
inc(S, χ)
−−−−→, we have

n − 1 = |(∆′1⊗Γ
′
1)
−1(S, χ)| − |(∆2⊗Γ2)

−1(S, χ)| and θ1 - θ2 - θ′1. Then, if we

apply n transitions
inc(S, χ)
−−−−→ successively to θ1 we end up with an abstract con-

figuration θn+1 such that θ1 (
inc(S, χ)
−−−−→)n θn+1, and such that (∆′1⊗Γ

′
1)
−1(S, χ) ≅l

(∆n+1⊗Γn+1)
−1(S, χ), θ1 � θn+1 - θ′1. Then, for Θi+1 = Θi ∪ {θi+1}, we have

that Θi ⇒ Θi+1 and Θi ≤min Θi+1.
We can repeat this for every (S, χ), ending up with Θ̃ containing some θ̃ with

the desired properties.

We are now ready to prove the main technical lemma of this section proving
that the transitions on AC are compatible with the order on AC.

Lemma 7.16. Let θ1, θ2, θ0 be abstract configurations such that θ1 →ǫ θ0 (or
θ1, θ2

merge
−−−→ θ0).

Given θ′1 -l θ1 (and θ′2 -l θ2), then there is θ′0 such that θ′0 - θ0 and θ′1 →ǫ θ
′
0

(or θ′1, θ
′
2

merge
−−−→ θ′0).

7.3. The emptiness problem 143

Proof. This is done by a case analysis depending on where→ comes from. Through-
out the proof we use the following notation: θi = (∆i,Γi, ri,mi), similarly for θ

′
i.

Moreover ci and di denote the label and data value associated to θi (similarly for
θ′i). As we work modulo equivalence we can further assume that θ′1 �l θ1 (and
θ′2 �l θ2). In particular we have c1 = c′1 and d1 = d′1.

1.
root
−−→. Suppose θ′1 �l θ1

root
−−→ θ0.

We first show that a root transition can be applied to θ′1. Consider e ∈ D and
q ∈ Q such that (∆′1⊗Γ

′
1)(e) = (S, χ) and q ∈ S. Then from θ′1 �l θ1 we have

by definition that (∆1⊗Γ1)(e) = (S, χ). Therefore, as we already know that a
root
−−→ transition can be applied from θ1, we have δup(q) = p for some p ∈ Q as
desired.

Let θ′0 be a configuration such that θ′1
root
−−→ θ′0 with r′0 = r0. Note that by

definition of
root
−−→ we have the freedom to choose the label and the data value in

θ′0. We show that θ′0 can be chosen such that θ
′
0 � θ0 concluding this case.

For the label of θ′0 we choose c
′
0 = c0, and for the data value of θ′0 we choose

d′0 = d0. In the sequel, we make use of the following claim.

Claim 7.16.1. There exists θ′′1 ∼ θ′1 such that θ′′1 �l θ1 and d0 ∈ data(θ1) iff
d0 ∈ data(θ′′1).

Proof. If d0 ∈ data(θ′1), then by θ′1 � θ1 we have that d0 ∈ data(θ1) and
we take θ′′1 = θ′1. Otherwise, suppose d0 6∈ data(θ′1) and d0 ∈ data(θ1). Let
(S1, χ1) = (∆1⊗Γ1)(d0). Because θ′1 �l θ1, θ1 and θ

′
1 have the same profile,

and there exists a data value e such that (∆′1⊗Γ
′
1)(e) = (S1, χ1). In this case,

let f be a bijection on D that sends e to d0 and is the identity on all other data
values of data(θ′1). Hence, since f preserves the profiles and the types of data
values, we have that if θ′1 �l θ1 then f(θ′1) �l θ1 and d0 ∈ data(f(θ′1)), and
moreover f(θ′1) ∼ θ′1 since f is a bijection. Thus, we can take θ

′′
1 = f(θ′1).

By the previous claim we will assume, without any loss of generality, that d0 ∈
data(θ1) iff d0 ∈ data(θ′1) (otherwise we can pick θ

′′
1 as described in the claim).

Now that θ′0 is completely defined, we show that θ′0 � θ0, that is, that (a)
(∆′0⊗Γ

′
0) ⊆ (∆0⊗Γ0), and (b) profile(θ

′
0) = profile(θ0).

(a) (∆′0⊗Γ
′
0) ⊆ (∆0⊗Γ0). Assume e ∈ data(θ′0), and let us show that

(∆′0⊗Γ
′
0)(e) = (∆0⊗Γ0)(e).

If e ∈ data(θ′1), then by θ
′
1 � θ1, e ∈ data(θ1). Let (S, χ) = (∆1⊗Γ1)(e) =

(∆′1⊗Γ
′
1)(e). Notice that (∆

′
0⊗Γ

′
0)(e) is completely determined from (S, χ),

a′0 and the fact that e is equal to d
′
0 or not, according to the rules of

root
−−→.

Similarly, (∆′0⊗Γ
′
0)(e) is determined by (S, χ), c0 and the fact that e is

144 7. Downward and upward navigation

equal to d′0 or not, according to the rules of
root
−−→. Thus, since c0 = c′0 and

d0 = d′0 we have that (∆0⊗Γ0)(e) = (∆′0⊗Γ
′
0)(e).

If e 6∈ data(θ′1), we have two cases. If e 6= d′0, this leads to a contradiction,
since there is a data value in θ′0 which is not in θ′1 and it is not the root,

which is in opposition with the rules of the
root
−−→ transition. Otherwise, we

have e = d′0 = d0, and by Claim 7.16.1, e 6∈ data(θ1). But in this case we
have that (∆0⊗Γ0)(e) = (∆′0⊗Γ

′
0)(e) = (∅, {h(c0)}) according to the rules

of
root
−−→, since c0 = c′0 and e is neither in θ1 nor in θ

′
1.

(b) profile(θ′0) = profile(θ0). We already have by construction r′0 = r0 andm
′
0 =

m0 = true. From Item (a) for all (S, χ) we have that |(∆′0⊗Γ
′
0)
−1(S, χ)| > 0

implies |(∆0⊗Γ0)
−1(S, χ)| > 0 and that |(∆′0⊗Γ

′
0)
−1(S, χ)| > 1 implies

|(∆0⊗Γ0)
−1(S, χ)| > 1. It remains to show the converse of these implica-

tions. We only show the second one as the first one is similar and simpler.

Assume we have two distinct data values e1 6= e2 such that (∆0⊗Γ0)(e1) =
(∆0⊗Γ0)(e2) = (S0, χ0). Let (S1, χ1) = (∆1⊗Γ1)(e1) and (S2, χ2) =
(∆1⊗Γ1)(e2). From profile(θ′1) = profile(θ1) we know that there exist
data values e′1 and e′2 such that (S1, χ1) = (∆′1⊗Γ

′
1)(e

′
1) and (S2, χ2) =

(∆′1⊗Γ
′
1)(e

′
2). Even in the case where (S1, χ1) = (S2, χ2) we get from

profile(θ′1) = profile(θ1) that e
′
1 and e′2 can be chosen distinct. More-

over, by Claim 7.16.1 we can also assume that e′1 = d0 iff e1 = d0 and

e′2 = d0 iff e2 = d0. Hence, since c0 = c′0, by definition of
root
−−→ we have

(∆′0⊗Γ
′
0)(e

′
1) = (∆′0⊗Γ

′
0)(e

′
2) = (S0, χ0).

2.
merge
−−−→. Suppose θ1, θ2

merge
−−−→ θ0, with θ

′
1 �l θ1 and θ

′
2 �l θ2.

In this case it will be important that we work with �l instead of just �. We
make use of the following claim.

Claim 7.16.2. There exist θ̂′1 ∼ θ′1 and θ̂
′
2 ∼ θ′2 such that for every S1, S2 and

χ1, χ2,

(∆1⊗Γ1)
−1(S1, χ1) ∩ (∆2⊗Γ2)

−1(S2, χ2)

≅2 (∩)

(∆̂′1⊗ Γ̂
′
1)
−1(S1, χ1) ∩ (∆̂

′
2⊗ Γ̂

′
2)
−1(S2, χ2)

Proof. By the definition of l and the fact that θ′1 -l θ1 and θ′2 -l θ2 there
are enough data values available so that we can assume without any loss of
generality that (∩) holds, by using a suitable bijection on D. We need at most
2 data values for every possible (S1, χ1), (S2, χ2), which is exactly what is given
by our definition of l .

Hence, using Claim 7.16.2 we can assume without any loss of generality that
θ′1, θ

′
2 verify property (∩). From θ′i � θi and θ1, θ2

merge
−−−→ θ0 we have c0 =

c1 = c2 = c′1 = c′2, d0 = d1 = d2 = d′1 = d′2, r0 = r1 = r2 = r′1 = r′2 and

7.3. The emptiness problem 145

m1 = m2 = m′2 = m′1 = true. This shows that amerge transition can be applied
to θ′1, θ

′
2. Let θ

′
0 be such that θ′1, θ

′
2

merge
−−−→ θ′0, where we choose m

′
0 = m0. We

show that θ′0 � θ0 concluding this case. That is, that (a) (∆
′
0⊗Γ

′
0) ⊆ (∆0⊗Γ0),

and (b) profile(θ′0) = profile(θ0).

(a) First, we show that (∆′0⊗Γ
′
0) ⊆ (∆0⊗Γ0). Let d ∈ data(θ′0). By definition

of
merge
−−−→, we have that ∆′0(d) = ∆′1(d) ∪∆

′
2(d) and Γ

′
0(d) = Γ′1(d) ∪ Γ

′
2(d).

Since θ′1 � θ1 and θ
′
2 � θ2, we have ∆i(d) = ∆′i(d) and Γi(d) = Γ′i(d) for

i ∈ {1, 2}, and hence by definition of
merge
−−−→, ∆0(d) = ∆′1(d)∪∆

′
2(d) = ∆′0(d),

and Γ0(d) = Γ′1(d) ∪ Γ
′
2(d) = Γ′0(d) as desired.

(b) Finally, we show profile(θ′0) = profile(θ0). We have already seen that m′0 =
m0 and r

′
0 = r0. As before, from Item (a) it remains to show that for all

(S, χ) we have: |(∆0⊗Γ0)
−1(S, χ)| > 0 implies |(∆′0⊗Γ

′
0)
−1(S, χ)| > 0 and

|(∆0⊗Γ0)
−1(S, χ)| > 1 implies |(∆′0⊗Γ

′
0)
−1(S, χ)| > 1. We only show the

second one as the first one is similar and simpler.

Assume we have two distinct data values e 6= e′ such that (∆0⊗Γ0)(e) =
(∆0⊗Γ0)(e

′) = (S0, χ0). Let

(S1, χ1) = (∆1⊗Γ1)(e), (S′1, χ
′
1) = (∆1⊗Γ1)(e

′),

(S2, χ2) = (∆2⊗Γ2)(e), and (S′2, χ
′
2) = (∆2⊗Γ2)(e

′).

By definition of
merge
−−−→ we have S0 = S1 ∪ S2 = S′1 ∪ S

′
2 and χ0 = χ1 ∪ χ2 =

χ′1 ∪ χ
′
2.

We then necessarily have |(∆1⊗Γ1)
−1(S1, χ1) ∩ (∆2⊗Γ2)

−1(S2, χ2)| ≥ 1
and |(∆1⊗Γ1)

−1(S′1, χ
′
1)∩ (∆2⊗Γ2)

−1(S′2, χ
′
2)| ≥ 1. Hence by Claim 7.16.2

there are two data values d, d′ such that (S1, χ1) = (∆′1⊗Γ
′
1)(d), (S2, χ2) =

(∆′2⊗Γ
′
2)(d), (S

′
1, χ

′
1) = (∆′1⊗Γ

′
1)(d

′) and (S′2, χ
′
2) = (∆′2⊗Γ

′
2)(d

′). More-
over, even in the case where S1 = S′1, S2 = S′2, χ1 = χ′1 and χ2 = χ′2, we
can assume that d 6= d′. By definition of

merge
−−−→ we immediately get that

(∆′0⊗Γ
′
0)(d) = (∆′0⊗Γ

′
0)(d

′) = (S0, χ0).

3.
inc(S, χ)
−−−−→. Suppose θ′1 �l θ1

inc(S, χ)
−−−−→ θ0.

By definition of
inc(S, χ)
−−−−→, this implies that |(∆1⊗Γ1)

−1(S, χ)| ≥ 1 and |Γ−11 (χ)| ≥
2 (or χ = ∅). We treat only the case where χ = ∅, the other one being actually
simpler.

As profile(θ′1) = profile(θ1) we know that if |(∆′1⊗Γ
′
1)
−1(S, χ)| is 0 (or 1) then

|(∆1⊗Γ1)
−1(S, χ)| is 0 (or 1). Hence |(∆′1⊗Γ

′
1)
−1(S, χ)| ≥ 1 and |Γ−11 (χ)| ≥ 2.

Therefore a transition
inc(S, χ)
−−−−→ can be applied to θ′1 resulting in an abstract

configuration θ′0. Let e0 be the only data value in data(θ0)\data(θ1) given by the

definition of
inc(S, χ)
−−−−→. Similarly let e′0 be the only data value in data(θ

′
0)\data(θ

′
1).

Using a claim similar to Claim 7.16.1 we can assume without loss of generality
that e′0 = e0.

146 7. Downward and upward navigation

We show that θ′0 � θ0 concluding this case. That is, that (a) (∆′0⊗Γ
′
0) ⊆

(∆0⊗Γ0), and (b) profile(θ
′
0) = profile(θ0).

(a) First, we show that (∆′0⊗Γ
′
0) ⊆ (∆0⊗Γ0). Let d ∈ data(θ′0) and let

(S0, χ0) = (∆′0⊗Γ
′
0)(d). If d 6= e′0, by definition of

inc(S, χ)
−−−−→, we have that

(∆′1⊗Γ
′
1)(d) = (S0, χ0). As θ

′
1 �l θ1, we have (∆1⊗Γ1)(d) = (S0, χ0). And

as e0 = e′0, d 6= e0 and by definition of
inc(S, χ)
−−−−→, (∆0⊗Γ0)(d) = (S0, χ0)

as desired. If d = e′0, by definition of
inc(S, χ)
−−−−→, (∆′0⊗Γ

′
0)(e

′
0) = (S, χ) =

(∆0⊗Γ0)(e0) and we are done as e
′
0 = e0.

(b) Finally, we show profile(θ′0) = profile(θ0). By definition of
inc(S, χ)
−−−−→ and the

fact that θ′1 �l θ1 we have m′0 = m′1 = m1 = m0 and r′0 = r′1 = r1 =
r0. As before, from Item (a) it remains to show that for all (S, χ) we
have that |(∆0⊗Γ0)

−1(S, χ)| > 0 implies |(∆′0⊗Γ
′
0)
−1(S, χ)| > 0 and that

|(∆0⊗Γ0)
−1(S, χ)| > 1 implies |(∆′0⊗Γ

′
0)
−1(S, χ)| > 1. We only show the

second one as the first one is similar and simpler.

Assume we have two distinct data values e 6= e′ such that (∆0⊗Γ0)(e) =
(∆0⊗Γ0)(e

′) = (S0, χ0). If (S0, χ0) 6= (S, χ) then we have (∆1⊗Γ1)(e) =
(∆1⊗Γ1)(e

′) = (S0, χ0). By the fact that profile(θ
′
1) = profile(θ1), we have

|(∆′1⊗Γ
′
1)
−1(S0, χ0)| ≥ 2 and we get the two desired data values d and d′ as

by definition of
inc(S, χ)
−−−−→ we will have (∆′0⊗Γ

′
0)(d) = (∆′0⊗Γ

′
0)(d) = (S0, χ0).

If (S0, χ0) = (S, χ) then we consider two cases, either |(∆1⊗Γ1)
−1(S, χ)| ≥

2 and we reason as above, or |(∆1⊗Γ1)
−1(S, χ)| = 1 and in this case

|(∆′1⊗Γ
′
1)
−1(S, χ)| = 1 and

inc(S, χ)
−−−−→ provides the second data value we are

looking for in θ′0. Notice that |(∆1⊗Γ1)
−1(S, χ)| cannot be 0 as

inc(S, χ)
−−−−→

introduces only one data value.

4.
spread
−−−→. Suppose θ′1 �l θ1

spread
−−−→ θ0.

By definition of
spread
−−−→ there is (q, d) ∈ ∆1 with δ(q) = spread(p, r), c0 = c1,

d0 = d1, Γ0 = Γ1 and ∆0 = (∆1 \ {(q, d)}) ∪ {(r, e) : (p, e) ∈ ∆1}. We first

check that
spread
−−−→ can be applied to θ′1. Let (S, χ) = (∆1⊗Γ1)(d). Since θ1 and

θ′1 have the same profile, there must be a data value in (∆
′
1⊗Γ

′
1)
−1(S, χ). As

in Claim 7.16.1 we can assume without loss of generality that this data value

is d. Hence (q, d) ∈ ∆′1 and we can apply the transition
spread
−−−→ to θ′1 resulting in

θ′0 be such that d
′
0 = d′1, c

′
0 = c′1, Γ

′
0 = Γ′1 and ∆

′
0 = (∆′1 \ {(q, d)}) ∪ {(r, e) :

(p, e) ∈ ∆′1}.

We now show that θ′0 � θ0, that is, that (a) (∆
′
0⊗Γ

′
0) ⊆ (∆0⊗Γ0), and (b)

profile(θ′0) = profile(θ0).

(a) First, we show that (∆′0⊗Γ
′
0) ⊆ (∆0⊗Γ0). Let e ∈ data(θ′0) and let (S, χ) =

(∆′0⊗Γ
′
0)(e). We remark that for e = d, the data value that triggers the

7.3. The emptiness problem 147

transition,

(∆′0⊗Γ
′
0)(d) = (∆0⊗Γ0)(d), (7.1)

since (∆′1⊗Γ
′
1)(d) = (∆1⊗Γ1)(d) by �l . Assume that e 6= d. By definition

of ∆′0, we have (S
′, χ) = (∆′1⊗Γ

′
1)(e) for either S

′ = S or S′ = S \ {r}.

By θ′1 �l θ1, we have (S
′, χ) = (∆1⊗Γ1)(e) and by definition of

spread
−−−→,

(S, χ) = (∆0⊗Γ0)(e).

(b) We now show that profile(θ0) = profile(θ′0). Notice that r0 = r1 = r′1 = r′0
and m0 = m1 = m′1 = m′0. Hence by Item (a) it remains to prove that
for all (S, χ): |(∆0⊗Γ0)

−1(S, χ)| > 0 implies |(∆′0⊗Γ
′
0)
−1(S, χ)| > 0 and

|(∆0⊗Γ0)
−1(S, χ)| > 1 implies |(∆′0⊗Γ

′
0)
−1(S, χ)| > 1. We only show the

second one as the first one is similar and simpler.

Assume we have two distinct data values e 6= e′ such that (∆0⊗Γ0)(e) =
(∆0⊗Γ0)(e

′) = (S0, χ0). Let

(S1, χ1) = (∆1⊗Γ1)(e), (S′1, χ
′
1) = (∆1⊗Γ1)(e

′).

By definition of
merge
−−−→ we have S1 = S0 or S1 = S0 \ {r}, similarly for S

′
1.

As profile(θ1) = profile(θ′1) we get two distinct data values d and d
′ such

that (S1, χ1) = (∆′1⊗Γ
′
1)(d), (S

′
1, χ

′
1) = (∆′1⊗Γ

′
1)(d

′). Notice now that
by definition of

merge
−−−→ we get (S0, χ0) = (∆′0⊗Γ

′
0)(d) = (∆′0⊗Γ

′
0)(d

′) as
desired.

5.
disjoint
−−−→. Suppose θ′1 �l θ1

disjoint
−−−→ θ0.

By definition of
disjoint
−−−→ there is (q, d) ∈ ∆1 with δ(q) = disjoint(p, r) and ∆1(p)∩

∆1(r) = ∅. Then, θ0 is defined as c0 = c1, d0 = d1, Γ0 = Γ1 and ∆0 =

(∆1 \ {(q, d)}). We first check that
disjoint
−−−→ can be applied to θ′1. Let (S, χ) =

(∆1⊗Γ1)(d). Since θ1 and θ
′
1 have the same profile, there must be an element

in (∆′1⊗Γ
′
1)
−1(S, χ). As in Claim 7.16.1 we can assume without any loss of

generality that (∆′1⊗Γ
′
1)(d) = (S, χ).

Suppose now by absurd that there is a data value e such that {p, r} ⊆ ∆′1(e).
By θ′1 �l θ1 we have that ∆1(e) = ∆′1(e) and hence that {p, r} ⊆ ∆1(e), which
contradicts our hypothesis ∆1(p)∩∆1(r) = ∅. Then, ∆

′
1(p)∩∆

′
1(r) = ∅ and we

can apply
disjoint
−−−→ to θ′1.

Let θ′0 be such that d
′
0 = d′1, c

′
0 = c′1, Γ

′
0 = Γ′1 and ∆

′
0 = (∆′1 \ {(d, q)}). Then

we have by definition θ′1
disjoint
−−−→ θ′0.

We show that θ′0 � θ0, that is, that (a) (∆
′
0⊗Γ

′
0) ⊆ (∆0⊗Γ0), and (b)

profile(θ′0) = profile(θ0).

(a) We first show (∆′0⊗Γ
′
0) ⊆ (∆0⊗Γ0). Let e ∈ data(θ′0) and let (S, χ) =

(∆′0⊗Γ
′
0)(e). If e 6= d, from the definition of

disjoint
−−−→ it follows (∆′1⊗Γ

′
1)(e) =

148 7. Downward and upward navigation

(S, χ). Because θ′1 �l θ1 we also have (∆1⊗Γ1)(e) = (S, χ). Hence, by

definition of
disjoint
−−−→, (∆0⊗Γ0)(e) = (S, χ) as desired.

On the other hand, we remark that for the data value d that triggers the
transition (∆′1⊗Γ

′
1)(d) = (S ∪ {q}, χ). As θ′1 �l θ1 we have (∆1⊗Γ1)(d) =

(S ∪ {q}, χ) and therefore (∆0⊗Γ0)(d) = (S, χ) by definition of
disjoint
−−−→.

(b) We now show profile(θ0) = profile(θ′0). Notice that r0 = r1 = r′1 = r′0
and m0 = m1 = m′1 = m′0. Hence by Item (a) it remains to prove that
for all (S, χ): |(∆0⊗Γ0)

−1(S, χ)| > 0 implies |(∆′0⊗Γ
′
0)
−1(S, χ)| > 0 and

|(∆0⊗Γ0)
−1(S, χ)| > 1 implies |(∆′0⊗Γ

′
0)
−1(S, χ)| > 1. We only show the

second one as the first one is similar and simpler.

Assume we have two distinct data values e1 6= e2 such that (∆0⊗Γ0)(e1) =
(∆0⊗Γ0)(e2) = (S0, χ0). Let

(S1, χ1) = (∆1⊗Γ1)(e1), (S′1, χ
′
1) = (∆1⊗Γ1)(e2).

As profile(θ1) = profile(θ′1) we get two distinct data values e
′
1 and e

′
2 such

that (S1, χ1) = (∆′1⊗Γ
′
1)(e

′
1), (S

′
1, χ

′
1) = (∆′1⊗Γ

′
1)(e

′
2). As θ1 �l θ

′
1 and

l ≥ 3 we can further choose e′1 and e′2 such that e′1 = d iff e1 = d and

e′2 = d iff e2 = d. Hence, by definition of
disjoint
−−−→ we get (∆′0⊗Γ

′
0)(e

′
1) =

(∆′0⊗Γ
′
0)(e

′
2) = (S0, χ0) as desired.

6. For the cases
unique
−−−→,

〈µ〉
−−→,

〈µ〉=

−−→,
〈µ〉 6=

−−→,
root
−−→,

root
−−→, the action performed by the tran-

sition is exactly the same as in
disjoint
−−−→. That is, the transition is triggered by

the presence of (q, d) ∈ ∆1 and the fact that θ1 satisfies some property and the
transition result in removing q from ∆1(d). We can hence prove these cases in

the same way as
disjoint
−−−→: We only need to verify that whenever θ′1 �l θ1, if θ1 sat-

isfies the condition for any transition in {
unique
−−−→,

〈µ〉
−−→,

〈µ〉=

−−→,
〈µ〉 6=

−−→,
root
−−→,

root
−−→}, then

θ′1 also satisfies this condition. For all these cases this is a simple consequence
of θ1 and θ

′
1 having the same profile. Note that by Claim 7.16.1 we can assume

without loss of generality that (∆1⊗Γ1)(d) = (∆′1⊗Γ
′
1)(d).

In the case 〈µ〉=, if µ ∈ Γ1(d), then the same hold in θ
′
1.

For the case 〈µ〉 6=, if µ ∈ Γ1(d
′) for some d′ 6= d, then by equality of profiles

there is a data value e such that (∆′1⊗Γ
′
1)(e) = (∆1⊗Γ1)(d

′). Notice that even
in the case when (∆1⊗Γ1)(e) = (∆1⊗Γ1)(d) the definition of profile and the
fact that d 6= d′ guarantees that we can always choose e 6= d. Hence µ ∈ Γ1(e)
and e 6= d as required.

For the case 〈µ〉, if µ 6∈ Γ1(d
′) for all d′, it means that all the pairs (S, χ) with

µ ∈ χ are empty, and this property is also preserved in θ′1 by the definition of
profile.

The cases
root
−−→ and

root
−−→ are straightforward as the value of r is preserved by -.

Finally in the case of
unique
−−−→, if δ(q) = unique(µ) and Γ1(µ) = {d′} for some

d′. This means that there is a unique pair (S, χ) with µ ∈ χ such that

7.3. The emptiness problem 149

|(∆1⊗Γ1)
−1(S, χ)| > 0, and for that unique pair (S, χ), |(∆1⊗Γ1)

−1(S, χ)| = 1.
By equality of profiles this must also be the case for θ′1. Hence Γ

′
1(µ) = {d

′} as
desired.

7.
guess
−−→. Suppose we have θ′1 �l θ1

guess
−−→ θ0.

By definition of
guess
−−→ there is (q, d) ∈ ∆1 with δ(q) = guess(p). Then, θ0 is

defined as c0 = c1, d0 = d1, r0 = r1, m0 = m1, Γ0 = Γ1 and ∆0 = (∆1 \
{(q, d)}) ∪ {(p, e)} for some data value e. By Claim 7.16.1 we can assume
without loss of generality that e ∈ data(θ1) iff e ∈ data(θ′1).

Let (S, χ) = (∆1⊗Γ1)(d). From θ′1 �l θ1 we know that the set (∆′1⊗Γ
′
1)
−1(S, χ)

is not empty and, as in Claim 7.16.1 we can assume without loss of generality
that d is in this set. Hence (q, d) ∈ ∆′1.

Let θ′0 be such that θ
′
1

guess
−−→ θ′0 with ∆

′
0 = (∆′1\{(q, d)})∪{(p, e)}. It is immediate

to verify that θ′0 � θ0.

8. The cases
∧
−→ and

∨
−→ are treated similarly. Assume for instance that θ′1 �l θ1

∧
−→

θ0.

By definition of
∧
−→ there is (q, d) ∈ ∆1 with δ(q) = p ∧ p′. Then, θ0 is de-

fined as c0 = c1, d0 = d1, r0 = r1, m0 = m1, Γ0 = Γ1 and ∆0 = (∆1 \
{(q, d)}) ∪ {(p, d), (p′, d)}. Let (S, χ) = (∆1⊗Γ1)(d). From θ′1 �l θ1 the set
(∆′1⊗Γ

′
1)
−1(S, χ) is not empty and, by Claim 7.16.1 we can assume that d is in

this set. Hence (q, d) ∈ ∆′1.

Let θ′0 be such that θ′1
∧
−→ θ′0 with ∆′0 = (∆′1 \ {(q, d)}) ∪ {(p, d), (p

′, d)}. It is
immediate to verify that θ′0 � θ0.

We can now easily lift the compatibility result of Lemma 7.16 to ℘<∞(AC).

Theorem 7.17. (℘<∞(AC),⇒) is N-downward compatible with respect to the wqo
(℘<∞(AC),≤min), for N := (|S|.|Q|).l+ 1.

Proof. We prove that for every Θ′1 ≤min Θ1 ⇒ Θ2 there exists Θ′2 such that
Θ′1 ⇒

n Θ′2 for some n ≤ (|S|.|Q|).l + 1 and Θ′2 ≤min Θ2.

Given Θ′1 ≤min Θ1 ⇒ Θ2, suppose that the transition from Θ1 to Θ2 was
applied to θ1 ∈ Θ1. Then, by Θ

′
1 ≤min Θ1, there must exist some θ

′
1 ∈ Θ′1 with

θ′1 - θ1. By Lemma 7.15 there exists Θ̂′1 with Θ′1 ⇒
m Θ̂′1, m ≤ (|S|.|Q|).l and

some θ̂′1 ∈ Θ̂′1 such that θ
′
1 - θ̂′1 -l θ1 and Θ̂

′
1 ≤min Θ1. By Lemma 7.16 we can

then apply to θ̂′1 the same transition that was applied on θ1 resulting in an abstract
configuration θ′2 obtaining the desired Θ2 from Θ̂′1.

Let us write ≡ for the equivalence relation over ℘<∞(AC) such that Θ ≡ Θ′ iff
Θ ≤min Θ

′ and Θ′ ≤min Θ.

Given a BUDA A , the wsts (℘<∞(AC)/≡,⇒,≤min) as constructed in the pre-
vious sections is called the wsts associated to A , and we note it with the letter
W .

150 7. Downward and upward navigation

Proposition 7.18. Given a BUDA A, it is decidable whether the wsts associ-
ated to A can reach an accepting abstract configuration from its initial abstract
configuration.

Proof. By Theorem 7.17, condition (1) of Proposition 2.12 is met. Similarly as
in Chapter 6, we have that (℘<∞(AC)/≡,⇒) is finitely branching and effective.
That is, the⇒-image of any configuration has only a finite number of configurations
modulo ≡, and representatives for every class are effectively computable. Hence,
we have that (℘<∞(AC)/≡,⇒,≤min) verifies condition (2) of Proposition 2.12.
Finally, condition (3) holds as (℘<∞(AC)/≡,≤min) is a wqo (by Lemma 7.10)
and a computable relation. Finally, by Lemma 7.11 we have the set of accepting
configurations is downwards closed. Then, by Lemma 2.13 we can decide if there are
accepting configurations that can be reached from the initial set of configurations
by performing ⇒ transitions.

In the next section, we will show that this implies the decidability for the
emptiness problem for BUDA automata.

7.3.5 From BUDA to its abstract configurations

We finally show that the wsts associated to a BUDA A reflects its behavior.
That is, reachability of one corresponds exactly to accessibility of the other. One
direction is easy as the transition system essentially simulates A .

In the sequel, we say that Γ ⊆ (S × D) is consistent with a data tree t =
a⊗b⊗d ∈ Trees(A × B × D) when for every possible (µ, d), Γ contains (µ, d) iff
there is a downward path in t that starts at the root and ends at some position x
such that d(x) = d and evaluates to µ via h.

We first show that the associated wsts of a BUDA simulates at least its be-
havior.

Lemma 7.19. Given A ∈ BUDA and its associated wsts WA . If A has an
accepting run then WA can reach an accepting abstract configuration from its initial
abstract configuration.

Proof. We show that from every accepting run ρ of A on t = a⊗b⊗d there
exists a finite sequence of transitions in ℘<∞(AC) starting in ΘI and ending in an
accepting configuration.

As ρ is accepting, we can assign to any node x ∈ pos(t), a configuration (x, Cx)
in the ǫ-closure of (x, ρ(x)) such that

1. Cx is moving,

2. if x = ǫ then Cx = ∅, and

3. if x = y·i, then ρ(y) =
⋃

j∈[n] C
′
y·j , with Cx·j up C

′
y·j for every j, where

Cy·1, . . . , Cy·n are the associated configurations of the siblings of x.

7.3. The emptiness problem 151

Notice that such configurations Cx must exist by definition of an accepting run.
Given a position x ∈ pos(t), an abstract configuration of t|x, is a configuration

of the form θx = (∆x,Γx, rx,mx) such that rx = false (unless x is the root position),
mx = false, a⊗b(x) is the label of θx, d(x) is the data value of θx and Γx is
consistent with t|x. An abstract configuration of x is the first abstract configuration
of x if moreover ∆x = ρ(x), and the last abstract configuration of x if ∆x = Cx.

The set of abstract configurations Θ that we derive from ΘI correspond to sets
of abstract configurations of subtrees of t, computed from bottom to top. More
precisely, for each subtree t|x we

1. first derive the last abstract configurations θx·1, . . . , θx·n of the children posi-
tions x·1, . . . , x·n of x, obtaining a set of abstract configurations Θ containing
{θx·1, . . . , θx·n} (modulo ∼),

2. then we derive the first abstract configuration of x by n applications of
root
−−→

using a⊗b(x) for the label of the new abstract configuration, and (n − 1)
applications of

merge
−−−→, and

3. finally, we derive the last abstract configuration of x by simulating the dis-
junction of conjunctions using

∧
−→,

∨
−→, and each ǫ-operation of A using its

corresponding transition on WA . Thus, we arrive at a set of abstract config-
urations Θ′ containing Θ and also (modulo ∼) the last abstract configuration
θx.

when x is a leaf, the process is initiated with ΘI and we only apply Item (3).
Repeating this simulation we finally arrive at a configuration ΘAcc containing

the last abstract configurations θx (modulo ∼) of all the nodes of t. Since θǫ is
accepting, ΘAcc is accepting, and we then built an accepting derivation ΘI ⇒

∗

ΘAcc.

The other direction requires more care as a wsts may perform a “merge”
transition anytime while a BUDA can only simulate a “merge” in combination
with a “root” when moving up in the tree. This issue is solved by first showing
that all other transitions commute with “merge”. First, we need to prove the
following lemma.

Lemma 7.20. If we have θ1 →ǫ θ
inc(S, χ)
−−−−→ θ2 then either

• θ1
inc(S′, χ)
−−−−−→ θ′ →ǫ θ2, or

• θ1
inc(S′, χ)
−−−−−→ θ′ →ǫ θ

′′ →ǫ θ2

for some θ′, θ′′ and S′.

Proof. Suppose that θ
inc(S, χ)
−−−−→ θ2. By definition we have |(∆⊗Γ)

−1(S, χ)| ≥ 1 and
|Γ−1(χ)| ≥ 2 (or χ = ∅) and a new data value e of type (S, χ) has been introduced.
We then have that e 6∈ data(θ1).

152 7. Downward and upward navigation

An important observation is that if θ1 →ǫ θ then for any data value d ∈ data(θ)
occurring in data(θ1) we have Γ1(d) = Γ(d). The only case where d ∈ data(θ) \
data(θ1) is when d is generated as a fresh new data value by

guess
−−→. In this latter

case, Γ(d) = ∅. We therefore consider two cases depending on whether χ = ∅ or
not. Fix a data value e′ such that (∆⊗Γ)(e′) = (S, χ).

Assume that θ1
X
−→ θ for some ǫ-transition

X
−→.

1. χ 6= ∅. Then from the observation above |Γ−1(χ)| ≥ 2 implies that |Γ−11 (χ)| ≥ 2.

Let (q, d) be the thread of θ1 where
X
−→ acts on to obtain θ and let (S1, χ) =

(∆1⊗Γ1)(e
′).

If e′ 6= d, notice that θ1
inc(S1, χ)
−−−−−→ θ′

X
−→ θ2, where

inc(S1, χ)
−−−−−→ introduces a copy e of

e′ and
X
−→ applies on the thread (q, d), just as before.

If e′ = d, notice that θ1
inc(S1, χ)
−−−−−→ θ′

X
−→ θ′′

X
−→ θ2, where

inc(S1, χ)
−−−−−→ introduces a

copy e of e′ while the first occurrence of
X
−→ applies on the thread (q, e′) and the

second on the thread (q, e). Notice that by construction we have profile(θ1) =

profile(θ) = profile(θ′) = profile(θ′′) hence both occurrences of
X
−→ can be applied

as the test they perform rely only on the profile.

2. χ = ∅. If |Γ−11 (∅)| ≥ 2 we reason as in the previous case. Otherwise, as

|Γ−1(∅)| ≥ 2 we know that |Γ−11 (∅)| = 1 and
X
−→ is

guess
−−→, applying on a thread

(q, d) and introducing a fresh new data value d′ of type ({p}, ∅) if δǫ(q) =
guess(p). We distinguish several cases.

If e′ ∈ data(θ1) and d 6= e′ then (S, χ) = (∆1⊗Γ1)(e
′) and notice that θ1

inc(S, χ)
−−−−→

θ′
guess
−−→ θ2 where

inc(S, χ)
−−−−→ introduces the appropriate copy e of e′ while

guess
−−→

introduces d′.

If e′ ∈ data(θ1) and d = e′ then let (S1, χ) = (∆1⊗Γ1)(e
′) and notice that

θ1
inc(S, χ)
−−−−→ θ′

guess
−−→ θ′′

guess
−−→ θ2 where

inc(S, χ)
−−−−→ introduces a copy e of e′ while

both
guess
−−→ introduces the same data value d′ but apply successively on (q, e) and

(q, e′).

The remaining case is when e′ 6∈ data(θ1). Hence e
′ = d′ and S = {p} where

δ(q) = guess(p). Then notice that θ1
inc(S, χ)
−−−−→ θ′

guess
−−→ θ2 where

inc(S, χ)
−−−−→ introduces

the appropriate data value e with the right type.

Finally we show:

Lemma 7.21. Given a BUDA A and its associated wsts WA . If WA can reach
an accepting abstract configuration from its initial abstract configuration then A
has an accepting run.

Proof. We show that for every finite sequence of transitions Θ0 ⇒ · · · ⇒ Θn where
Θ0 = ΘI is the initial set of configurations and Θn a final configuration over WA ,
for an automaton A ∈ BUDA, there exists a data tree t = a⊗d accepted by A .

7.3. The emptiness problem 153

The general idea is simple. We construct by induction a set Ti for each set of
abstract configuration Θi containing a triplet (tθ, ρθ, fθ) per abstract configuration
θ ∈ Θi. This triplet consists in a data tree tθ ∈ Trees(A × B × D), a run over tθ,
and a function that associates a configuration to each node of tθ, such that:

(i) ρθ is a valid run of A on tθ,

(ii) fθ(ǫ) = ∆θ is in the ǫ-closure of ρθ(x),

(iii) if x·1, . . . , x·k are the children of x then ρ(x) =
⋃

i Ci where fθ(x·i)up Ci,
and

(iv) Γθ is consistent with tθ.

By Lemma 7.20 and because of the flag m of each abstract configuration, we
can assume without loss of generality that the derivation ΘI ⇒ Θn is a repetition of

the following pattern: a sequence of ǫ-transitions not involving
inc(S, χ)
−−−−→, a transition

root
−−→, a sequence of transitions

merge
−−−→, a sequence of transition

inc(S, χ)
−−−−→.

The induction step is straightforward for all ǫ-transitions: the data tree and
the run remain unchanged while fθ′ is constructed by modifying, for the position
x of tθ, fθ(x) using the appropriate ǫ-transition (that can be applied by Item (iv))
yielding ∆θ′ as desired.

For a transition of the form θ
root
−−→ θ′, the data tree tθ′ is constructed from tθ

by adding a new root node that has the same label and data value as θ′.
The run ρθ′ is the extension of ρθ setting ρθ′ |1 = ρθ′ and ρθ′(ǫ) = ∆θ′ . The

function fθ′ is the extension of fθ setting fθ′ |1 = fθ and fθ′(ǫ) = ∆θ′ . The reader
can verify that we do have fθ′(1)up ∆θ′ , as desired for our inductive hypothesis.

For a transition of the form θ1θ2
merge
−−−→ θ′, the data tree tθ′ is constructed from

tθ1 and tθ2 by identifying their root nodes (notice that by definition of
merge
−−−→ the two

roots have the same label and data value). That is, we set tθ′(ǫ) = tθ1(ǫ) = tθ2(ǫ);
tθ′ |i = tθ1 |i for all i ∈ [k] where k is the number of children of the root of tθ1 ;
and tθ′ |k+i = tθ2 |i for all children i of the root of tθ2 . The run ρθ′ and (resp. the
function fθ′) are constructed in a similar fashion by setting ρθ′(ǫ) = ρθ1(ǫ)∪ ρθ2(ǫ)
(resp. fθ′(ǫ) = fθ1(ǫ) ∪ fθ2(ǫ)) and for all other position i·x setting ρθ1(i·x) or
ρθ2((i − k)·x) (resp. fθ1(i·x) or fθ2((i − k)·x)) depending whether i ≤ k or not
(i.e., whether it comes from tθ1 or tθ2). It remains to verify that these definitions
have the desired properties by induction on the length of the sequence of

merge
−−−→

that ρθ′(ǫ) = fθ′(ǫ) = ∆θ′ =
⋃

i Ci such that fθ′(i) up Ci were i ranges over all
the children of the root. Notice that it is important here that no ǫ-transition occur
between a

root
−−→ and a

merge
−−−→.

The transitions
inc(S, χ)
−−−−→ are treated as a special case of

merge
−−−→ where θ2 is a copy

of θ1 except for one of the data values of type (S, χ). As we work modulo equiva-
lence we can always assume that such a θ2 is in our set of abstract configurations
whenever θ1 is.

This concludes the proof. The set Tn must contain a tuple (tθ, ρθ, fθ) for θ a
final abstract configuration. For this configuration we will have by Item (i) that ρθ

154 7. Downward and upward navigation

is a valid run of A for tθ, and by Item (ii) that fθ(ǫ) = ∆θ = ∅ is in the ǫ-closure
of ρθ(x). Hence, ρθ is an accepting run of A for tθ.

By combining the previous Lemmas we immediately obtain:

Proposition 7.22. Let A be a BUDA. Let W be the wsts associated to A. Then
A has an accepting run iff W can reach an accepting set of abstract configurations
from the initial set of abstract configurations.

Proof. Immediate from Lemmas 7.19 and 7.21.

Combining Proposition 7.22 and Proposition 7.18, we prove Theorem 7.4.

7.4 Satisfiability of vertical XPath

The goal of this section is to prove the following proposition:

Proposition 7.23. For every η ∈ regXPath(V,=) there exists an equivalent A ∈
BUDA computable from η.

Proof. We denote by nsub(η) the node subformulas of η, by psub(η) the path
subformulas of η and by nsub¬(η) the closure of nsub(η) under simple negations,
i.e. nsub(η) ⊆ nsub¬(η) and for ϕ ∈ nsub(η) then either it is of the form ϕ = ¬ψ
or ¬ϕ is in nsub¬(η) as well.

Given a node expression η ∈ regXPath(V,=) we construct a BUDA A that tests
whether for all the leaves of a tree, η holds. Note that this is without any loss of
generality, since it is then easy to test any formula at the root by computing the
vertical normal form of a formula like 〈↑∗[¬〈↑〉 ∧ η]〉.

Let us consider the alphabet

Aη = {↑, ↓, [ϕ] | ϕ ∈ nsub(η)}

Every path expression α ∈ psub(η) can then be interpreted as a regular expression
over Aη, and every word w ∈ A∗η either is satisfied or not at a node x of a data tree
t with the expected semantics. We call w ∈ A∗η ‘looping’ iff it contains as many
↓ as ↑ letters. Therefore there exists a monoid M and a morphism g such that
for every α ∈ psub(η) there is a Sα ⊆ M where for w ∈ A∗η is recognized by α
iff g(w) ∈ Sα. Let us call ε to the identity of M, and let us write ν, ν ′ to denote
elements ofM.

We define A ∈ BUDA as the tuple

A := 〈A,B, Q, (|η|), δǫ, δup,S, h〉.

The internal alphabet of A is B = ℘<∞(M). Intuitively, a node x is labeled with
b ∈ B if it verifies the following property:

ν ∈ b iff there is a looping w ∈ A∗η verified at the root of t|x with g(w) = ν.

7.4. Satisfiability of vertical XPath 155

The set of states Q contains the following symbols:

Q := {(|ϕ|), (|α|)⊛ν , (|α, β|)
⊙
ν,ν′ , (|µ|) | ϕ ∈ nsub¬(η), α, β ∈ psub(η)

ν, ν ′ ∈M, µ ∈ S,⊛ ∈ {=, 6=,¬=,¬6=},⊙ ∈ {¬=,¬6=}} .

The idea is that a state (|ϕ|) verifies that the formula ϕ ∈ nsub¬(η) holds at

the current node. A state (|α|)=ν (resp. (|α|) 6=ν) verifies that there is a traversal
w ∈ A+

η starting at the current node and ending at some node with the same
(resp. different) data value as the one in the register. Moreover, w must verify
that ν·g(w) ∈ Sα. The meaning of the remaining states will become clear later.

We now describe the semigroup and morphism of the automaton S and h :
(A×B)+ → S. We will constantly need to be able to test whether a child or some
specific descendant of the current node contains a certain internal label b for some
b ∈ B. This will be taken care of by S and h.

(1) For every ν ∈ M and α ∈ psub(η) the set of words (a1, b1), . . . , (an, bn) of
(A× B)+ such that there are ν1 ∈ b1, . . . , ν

n ∈ bn with

ν·(ν1·g(↓)·ν2·g(↓)· · · · ·νn−1·g(↓)·νn) ∈ Sα.

is a regular language.

(2) For every ν ∈ M the set of words (a1, b1)(a2, b2) with ν ∈ b2 is also a regular
language.

Hence there is a semigroup S and a morphism h such that its elements distinguishes
between the properties above: For every ν ∈M and α ∈ psub(η) there is a subset
down(ν, α) ⊆ S recognizing (1) and for every ν ∈M there is a subset next(ν) ⊆ S
recognizing (2).

It now remains to set the transition functions in order to ensure all the prop-
erties stated above.

We first show how to ensure that the internal labels are set in the appropriate
way.

First we need to ensure that everywhere in the tree, if b ∈ B holds in the node
and ν ∈ b then there is a loop in the corresponding subtree evaluating to ν. For
this the automata checks whether one of the following case holds:

• ν = ε,

• ν = g([ϕ])·ν ′ for ϕ ∈ nsub(η) and ν ′ ∈ b and ϕ holds at the current node.
The last condition is checked by starting a new thread in state (|ϕ|),

• ν = ν ′·g([ϕ]) for ϕ ∈ nsub(η) and ν ′ ∈ b and ϕ holds at the current node.
The last condition is checked by starting a new thread in state (|ϕ|),

• ν = g(↓)·ν ′·g(↑) and there is a child containing ν ′ in its B-label. The last
condition is checked using the test 〈µ〉 for some µ ∈ next(ν ′).

156 7. Downward and upward navigation

We also need to enforce the complement: whenever there is a loop in the
corresponding subtree evaluating to ν then ν ∈ b. For this the automata checks
whether one of the following case holds:

• ν 6= ε,

• for every ν ′ ∈ M and ϕ ∈ nsub(η) such that ν = g([ϕ])·ν ′ then either ν ′ 6∈ b
or ϕ does not hold at the current node. The last condition is checked by
starting a new thread in state (|ϕ|), where ϕ is the negation of ϕ,

• for every ν ′ ∈ M and ϕ ∈ nsub(η) such that ν = ν ′·g([ϕ]) then either ν ′ 6∈ b
or ϕ does not hold at the current node. The last condition is checked by
starting a new thread in state (|ϕ|), where ϕ is the negation of ϕ,

• for every ν ′ ∈ M such that ν = g(↓)·ν ′·g(↑) we test that there is no child
that contains ν ′ in its B-label. The last condition is checked using the tests
〈µ〉 for the appropriate µ ∈ S.

We now explain how the automata can enforce that the states have the intended
meanings. In this description we assume that α and β are in psub(η).

Positive tests.

• Any positive boolean test is immediate to translate using ∧ and ∨ in the
transition formulæ.

• If the automaton is in a state (|〈α = β〉|). This means that it has to perform
a test 〈α = β〉. In this case A guesses a data value, stores it in its register
using guess and continues the execution with both states (|α|)=ε and (|β|)=ε ,
that will test if there exist two nodes accessible by α and β respectively such
that both carry the data value of the register.

• Equivalently, if A is in a state (|〈α 6= β〉|), it guesses a data value, stores it

in its register and continues the execution with both states (|α|)=ε and (|β|) 6=ε ,
which are responsible of testing that there is a α path leading to a node with
the same data value as the one in the register and a β path leading to a node
with a different data value.

• If A is in state (|α|)=ν (resp. (|β|) 6=ν), it chooses nondeterministically to perform
one of the following actions.

– It checks that there is ν ′ ∈ b(x) such that ν·ν ′ ∈ Sα and that the current
node has the appropriate data value using eq (resp. eq).

– It checks that for some µ ∈ down(ν, α) the required data value is already
in the making the test 〈µ〉= (resp 〈µ〉 6=).

– It moves up and switches state to (|α|)=
ν·g(↑) (resp. (|α|)

6=
ν·g(↑)).

7.4. Satisfiability of vertical XPath 157

Negative tests. Finally, the states (| , |)¬=µ,µ′ , (| , |)
¬6=
µ,µ′ , (| |)

¬=
µ and (| |)¬6=µ are used

to test the negation of the conditions just described. However, it is not immediate
that this can be achieved from the previous tests, since the BUDA class is not
closed under complementation. To perform the necessary tests, we make use of
intermediate states: (|µ|) for each µ ∈ S.

We design the automaton such that at every moment, there is a thread with
state (|µ|) and data value d exactly for those d that can be reached from the current
node with a downward path that evaluates to µ.

This can be easily enforced using alternation: At every node (except of course
for the root), the automaton creates a new thread (|h(a, b)|) with the current data
value, where (a, b) ∈ A×B is the current label and for every thread in state (|µ|), the
automaton propagates the state up in the tree, but changing its state to (|h(a, b)·µ|)
for (a, b) the label of the current node.

First, let us see how to code a test of the form ¬〈α = β〉.

• If A is in a state (|¬〈α = β〉|), it continues the execution with state (|α, β|)¬=ε ,
where ε is the identity ofM.

• The state (|α, β|)¬=ν tests that it is not true that there are two nodes with
the same data value reachable by α and β by some traversals w,w′ ∈ A∗η
such that ν·g(w) ∈ Sα and ν·g(w

′) ∈ Sβ . To attain this, it performs all the
following actions using alternation:

– If the test root succeeds, then it moves up, and updates its state to
(|α, β|)¬=

ν·g(↑).

– For every µ ∈ down(ν, α) it performs a test spread((|µ|), (|β|)¬=ν).

– For every µ ∈ down(ν, β) it performs a test spread((|µ|), (|α|)¬=ν).

• A state (|α|)¬=ν just moves up (if the test root succeeds), and updates its state
to (|α|)¬=

ν·g(↑).

• Finally, A tests everywhere in the tree that disjoint((|µ|), (|α|)¬=ν) for every
µ ∈ down(ν, α). That is, intuitively every time (|α|)¬=ν is at a node that can
end in a downward path verifying µ, all the data values reachable by µ are
different from that of the register.

There is a small technical problem in the description above. In order to simulate
correctly the test ¬〈α = β〉, it is important that the run of the automata is done
using the appropriate sequencing: All the updates of the states of the form (|µ|)
must be done before the spread operations. Otherwise these tests are not accurate.
Notice that because all threads runs independently, this is not a priori guaranteed.
But this can be enforced using extra states, that we did not mention above in order
to clarify the presentation, making sure that the workflow is correct.

Now let us turn to the case of ¬〈α 6= β〉.

158 7. Downward and upward navigation

• At state (|¬〈α 6= β〉|), A continues with state (|α, β|)¬6=ε , which behaves as
described next.

• The state (|α, β|)¬6=ν performs all the following actions using alternation:

– If the test root succeeds, then it moves up, and updates it state to
(|α, β|)¬6=

ν·g(↑).

– For every µ ∈ down(ν, α) it performs a spread((|µ|), (|β|)¬6=ν).

– For every µ ∈ down(ν, β) it performs a spread((|µ|), (|α|)¬6=ν).

• Finally, a state (|α|)¬6=ν performs all the following actions.

– Moves up (if the test root succeeds), updating its state to (|α|)¬6=
g(↑)·ν .

– For every µ ∈ down(ν, β) it checks 〈µ〉 or tests that both 〈µ〉= and
unique(µ) hold.

Again, in order to simulate correctly the test ¬〈α 6= β〉, it is important that
the run of the automata is done using the appropriate sequencing: All the spread

operations must occur before any of the unique ones. This is enforced as for the
case of ¬〈α = β〉.

We then have that if the state (|η|) is verified at every leaf then η holds, and
that every tree satisfying η must have an accepting run of A . We conclude that
the BUDA class effectively captures all formulæ of regXPath(V,=).

Hence, by Proposition 7.23 together with the fact that satisfiability of BUDA
is decidable (Theorem 7.4), we obtain that Theorem 7.1 holds: satisfiability of
vertical XPath is decidable.

7.4.1 XML versus data trees

As we have seen in previous chapters, the decidability of SAT-XPath(V,=) on data
trees entails the decidability of SAT-attrXPath(V,=) on xml documents. The way
to transfer this result is by the same coding as shown in Section 5.5.3 for downward
XPath, and can obviously be done in vertical XPath since it is an extension of the
downward fragment.

7.5 Discussion

Our automata model BUDA is a decidable class of automata that allows to make
complex data tests that navigate the tree in both upward or downward direc-
tions. This automata model is powerful enough to code node expressions of
regXPath(V,=). Therefore, as node expressions of regXPath(V,=) are closed under
negation, we have shown decidability of the emptiness, inclusion and equivalence
problems for node expressions of regXPath(V,=).

7.5. Discussion 159

Our automata model BUDA allows to make complex data tests that navigate the
tree in both upward or downward directions. However, it cannot capture vertical
XPath in all generality. This is because it cannot make nested tests. However, we
could extend or modify the automaton to be able to label an element each time
it performs an up transition, and we can extend the monoid to also access this
guessed letters. This would be a decidable extension that can effectively capture
any formula of vertical XPath.

Finally, let us remark that this automata model relies heavily on the fact that
the data tree is unranked. By the coding techniques already used in Chapter 3 we
can code the run of an incrementing counter automaton along a branch, and it is
hence not difficult to see that we can force the tree to have a node with many (like
the Ackermann function applied to the size of the formula) children.

8. CONCLUDING REMARKS

This work had as objective the development of techniques and decidable formalisms
to work with data values. We have seen several automata models that are decidable
over data trees, and one over data words. We introduced formalisms that can
express different kind of properties, and are on the limit of decidability. We make
some comments concerning the relation between these models of automata and the
logics we have treated.

Automata Notice that DD automata and ATRA(guess, spread) are incomparable
in expressive power. Indeed, DD automata can capture downward XPath formulæ
like ¬〈↓∗[a] = ↓∗[b]〉, that cannot be expressed by ATRA(guess, spread), as already
argued. Moreover, DD automata can express, e.g., that there are three different
data values that can be accessed by ↓+[a]—something that cannot be expressed
by ATRA(guess, spread). In turn, ATRA(guess, spread) can express unary primary
key constraints, or any regular tree language on the finite labeling, whereas DD
automata cannot express primary key constraints and the properties that can ex-
press on the siblinghoods is very limited. In effect, DD automata cannot express
that the tree is ranked: i.e., given k, that all nodes have not more than k children.

The BUDA and ATRA(guess, spread) automata are also incomparable, it suffices
to note that the former can express a unary inclusion dependency constraint but
not a unary primary key constraint, while the latter can express a unary primary
key constraint but not a unary inclusion dependency constraint.

Unfortunately, if we add the possibility to test for unary primary key constraints
to the BUDA automata it becomes undecidable. Likewise, if we add the possibility
of testing unary inclusion dependency constraints to ATRA(guess, spread) (or to
ARA(guess, spread) for the matter) it becomes undecidable. There is hence no
hope of having a decidable automata model containing the behavior of BUDA and
ATRA(guess, spread) which is closed under intersection. It can further be shown
that even DD automata with (unary) primary keys and inclusion dependencies is
undecidable.

Finally, BUDA and DD automata are also incomparable. DD automata can-
not express unary inclusion dependency constraints, and BUDA automata cannot
express that there are three different data values that can be accessed ↓+[a]. How-
ever, we argue that it is possible to extend the BUDA class to allow this kind of
tests—or any test that can be performed by DD automata—while preserving the
decidability of the emptiness problem.

161

162 8. Concluding remarks

↓ ↓+ ↑ ↑+ → →+ ← +← Complexity Details

• PSpace-complete 5.49

• ExpTime-complete 5.45, 5.46

• • ExpTime-complete 5.45, 5.46

• • • • Decidable, NPR 6.9

• • • • Decidable, NPR 7.1

• Decidable, NPR 4.5

• • Decidable, NPR 4.5, 7.1

• • • Undecidable 4.7

• • Undecidable 4.7

• • • Undecidable 4.8

Fig. 8.1: Summary of main results on XPath with data values. NPR stands for a non-
primitive recursive lower bound.

Logics On XPath, we showed decidability of the downward, forward, and vertical
fragments, thus settling some open questions. We have now a clearer landscape
of the decidability status of XPath according to the set of axes that it uses. The
main results are summarized in Figure 8.1. Compared with the fragments treated
by Benedikt et al. (2008) and Geerts and Fan (2005), our work addresses the
satisfiability problem of XPath in the presence of recursive axes, data tests, and
negation (in contrast to positive fragments), in the absence of DTDs. Also, in the
presence of DTDs (or regular languages) we obtain that the forward and downward
XPath fragments are decidable with a non-primitive recursive lower bound, and that
vertical XPath is undecidable.

We remark that although we showed that each of the aforesaid fragments is
decidable, this does not mean that we can combine these results. Our results
do not yield the possibility to test the satisfiability of a boolean combination of
formulæ where each of them belong to one of these fragments. Indeed, consider
the following problem:

Given ηv ∈ XPath(V,=) and ηf ∈ XPath(F,=), is ηv ∧ ηf satisfiable?

This is an undecidable problem, since ηf can test that the tree is word-like, and ηv
can easily code an accepting run of a Minsky automaton over linear trees.

Future work

All our investigation on XPath focuses on the satisfiability problem. As we have
seen in Section 4.2, the problem of query equivalence and inclusion reduce to
this problem. But this concerns only queries of node expressions. Whether the
techniques we developed can be adapted to show similar decidability results on

163

the problems of query equivalence and query containment of path expressions is a
moot point.

Question 8.1. What is the decidability status of the inclusion and equivalence
problems of path expressions of downward, forward and vertical XPath?

The fragments treated here are all navigational fragments of XPath 1.0. How-
ever XPath 2.0 has many rich features that we do not consider. We leave open the
question of whether the results of this thesis can be extended to incorporate some
of the distinctive features of XPath 2.0.

Another relevant issue is to try to add more domain specific relations to our
models of automata. In that direction, we discussed that a linear order can
be added to ARA(guess, spread)—or LTL

↓
nnf(F, ∃

↓
≥, ∀

↓
≤)—without losing decidabil-

ity. Moreover, with the same kind of analysis it can be further extended to
ATRA(guess, spread). It would be interesting to explore other relations. For ex-
ample if the data domain is the set of strings D = A∗, we may want to have the
substring, prefix, and suffix relations; and if it is numerical D = N we may want
to use some arithmetic. A possible future work would be hence to extend the
automata treated here with some relations or functions of this kind.

BIBLIOGRAPHY

Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. General
decidability theorems for infinite-state systems. In Annual IEEE Symposium on
Logic in Computer Science (LICS’96), pages 313–321, 1996. (Cited on page 7.)

Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay. Algo-
rithmic analysis of programs with well quasi-ordered domains. Inf. Comput., 160
(1–2):109–127, 2000. (Cited on page 7.)

Parosh Aziz Abdulla, Johann Deneux, Joël Ouaknine, and James Worrell. De-
cidability and complexity results for timed automata via channel machines. In
ICALP, pages 1089–1101, 2005. doi:10.1007/11523468_88. (Cited on page 38.)

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183–235, 1994. doi:10.1016/0304-3975(94)90010-8. (Cited on
pages 8 and 37.)

Rajeev Alur and Thomas A. Henzinger. A really temporal logic. Journal of the
ACM, 41(1):181–204, 1994. doi:10.1145/174644.174651. (Cited on page 6.)

Carlos Areces, Patrick Blackburn, and Maarten Marx. A road-map on complexity
for hybrid logics. In EACSL Annual Conference on Computer Science Logic
(CSL’99), number 1683 in Lecture Notes in Computer Science, pages 307–321.
Springer, 1999. (Cited on page 6.)

Tamarah Arons, Amir Pnueli, Sitvanit Ruah, Jiazhao Xu, and Lenore D. Zuck.
Parameterized verification with automatically computed inductive assertions.
In International Conference on Computer Aided Verification (CAV’01), pages
221–234. Springer, 2001.

Luis Barguñó, Carles Creus, Guillem Godoy, Florent Jacquemard, and Camille
Vacher. The emptiness problem for tree automata with global constraints. In
Annual IEEE Symposium on Logic in Computer Science (LICS’10). IEEE Com-
puter Society Press, 2010. http://www.lsv.ens-cachan.fr/Publis/PAPERS/

PDF/BCGJV-lics10.pdf. (Cited on page 66.)

Michael Benedikt, Wenfei Fan, and Floris Geerts. XPath satisfiability in the pres-
ence of DTDs. Journal of the ACM, 55(2):1–79, 2008. doi:10.1145/1346330.
1346333. (Cited on pages 65, 69, 70, 71, 106, 131, and 162.)

165

166 BIBLIOGRAPHY

Michael Benedikt and Christoph Koch. XPath leashed. ACM Computing Surveys,
41(1), 2008. doi:10.1145/1456650.1456653. (Cited on page 131.)

Henrik Björklund and Miko laj Bojańczyk. Bounded depth data trees. In Inter-
national Colloquium on Automata, Languages and Programming (ICALP’07),
volume 4596 of Lecture Notes in Computer Science, pages 862–874. Springer,
2007. doi:10.1007/978-3-540-73420-8_74. (Cited on page 64.)

Henrik Björklund, Wim Martens, and Thomas Schwentick. Optimizing conjunctive
queries over trees using schema information. In International Symposium on
Mathematical Foundations of Computer Science (MFCS’08), volume 5162 of
Lecture Notes in Computer Science, pages 132–143. Springer, 2008. doi:10.

1007/978-3-540-85238-4_10. (Cited on page 66.)

Henrik Björklund and Thomas Schwentick. On notions of regularity for data lan-
guages. Theoretical Computer Science, 411(4-5):702–715, 2010. doi:10.1016/

j.tcs.2009.10.009. (Cited on pages 23 and 64.)

Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal logic. Cambridge
University Press, 2001. ISBN 0-521-80200-8. (Cited on pages 7 and 70.)

Bruno Bogaert and Sophie Tison. Equality and disequality constraints on direct
subterms in tree automata. In International Symposium on Theoretical Aspects
of Computer Science (STACS’92), pages 161–171. Springer, 1992. ISBN 3-540-
55210-3. (Cited on page 66.)

Miko laj Bojańczyk and S lawomir Lasota. An extension of data automata that
captures XPath. In Annual IEEE Symposium on Logic in Computer Science
(LICS ’10), 2010. (Cited on page 64.)

Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-
variable logic on data trees and XML reasoning. Journal of the ACM, 56(3):
1–48, 2009. doi:10.1145/1516512.1516515. (Cited on pages 60, 65, and 132.)

Miko laj Bojańczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire
David. Two-variable logic on words with data. In Annual IEEE Symposium
on Logic in Computer Science (LICS’06), pages 7–16. IEEE Computer Society
Press, 2006. doi:10.1109/LICS.2006.51. (Cited on pages 22, 23, and 64.)

Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem.
Perspectives in Mathematical Logic. Springer, 1997. ISBN 3-540-57073-X. (Cited
on page 106.)

Ahmed Bouajjani, Peter Habermehl, Yan Jurski, and Mihaela Sighireanu. Rewrit-
ing systems with data. In International Symposium on Fundamentals of Compu-
tation Theory (FCT’07), pages 1–22, 2007. doi:10.1007/978-3-540-74240-1_
1. (Cited on page 24.)

BIBLIOGRAPHY 167

Patricia Bouyer, Antoine Petit, and Denis Thérien. An algebraic approach to
data languages and timed languages. Inf. Comput., 182(2):137–162, 2003. doi:
10.1016/S0890-5401(03)00038-5. (Cited on page 22.)

Balder ten Cate. The expressivity of XPath with transitive closure. In ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’06), pages 328–337. ACM Press, 2006. doi:10.1145/1142351.1142398.
(Cited on page 61.)

Balder ten Cate and Luc Segoufin. XPath, transitive closure logic, and nested
tree walking automata. In ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’08), pages 251–260. ACM Press, 2008.
doi:10.1145/1376916.1376952. (Cited on page 61.)

Pierre Chambart and Philippe Schnoebelen. The ordinal recursive complexity
of lossy channel systems. In Annual IEEE Symposium on Logic in Computer
Science (LICS’08), pages 205–216. IEEE Computer Society Press, 2008. doi:

10.1109/LICS.2008.47. (Cited on page 38.)

Bogdan S. Chlebus. Domino-tiling games. J. Comput. Syst. Sci., 32(3):374–392,
1986. (Cited on page 101.)

James Clark and Steve DeRose. XML path language (XPath). Website, 1999.
W3C Recommendation. http://www.w3.org/TR/xpath. (Cited on page 60.)

Claire David. Complexity of data tree patterns over XML documents. In
International Symposium on Mathematical Foundations of Computer Science
(MFCS’08), volume 5162 of Lecture Notes in Computer Science, pages 278–289.
Springer, 2008. doi:10.1007/978-3-540-85238-4_22. (Cited on page 66.)

Claire David, Leonid Libkin, and Tony Tan. Data trees with set and linear con-
straints. Unpublished manuscript, 2010.

Stéphane Demri and Ranko Lazić. LTL with the freeze quantifier and register
automata. ACM Transactions on Computational Logic, 10(3), 2009. doi:10.

1145/1507244.1507246. (Cited on pages v, vii, 5, 6, 7, 15, 19, 20, 21, 22, 24,
25, 26, 28, 30, 38, 41, 43, 49, 51, 52, 54, 64, and 115.)

Stéphane Demri, Ranko Lazić, and David Nowak. On the freeze quantifier in con-
straint LTL: Decidability and complexity. In International Symposium on Tem-
poral Representation and Reasoning (TIME’05), pages 113–121. IEEE Computer
Society Press, 2005. doi:10.1016/j.ic.2006.08.003. (Cited on page 38.)

Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic verifica-
tion of data-centric business processes. In International Conference on Database
Theory (ICDT ’09), pages 252–267. ACM Press, 2009. doi:10.1145/1514894.
1514924. (Cited on page 24.)

168 BIBLIOGRAPHY

Leonard E. Dickson. Finiteness of the odd perfect and primitive abundant numbers
with n distinct prime factors. The American Journal of Mathematics, 35(4):413–
422, 1913. doi:10.2307/2370405. (Cited on page 10.)

Diego Figueira. Satisfiability of downward XPath with data equality tests. In ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems
(PODS’09), pages 197–206. ACM Press, 2009. doi:10.1145/1559795.1559827.
(Cited on page 70.)

Diego Figueira. Forward-XPath and extended register automata on data-trees.
In International Conference on Database Theory (ICDT’10). ACM Press, 2010.
doi:10.1145/1804669.1804699. (Cited on page 21.)

Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen.
Ackermann and primitive-recursive bounds with Dickson’s lemma. ArXiv e-
prints, 2010a. http://arxiv.org/abs/1007.2989. (Cited on page 38.)

Diego Figueira, Piotr Hofman, and S lawomir Lasota. Relating timed and reg-
ister automata. In International Workshop on Expressiveness in Concurrency
(EXPRESS’10), 2010b. (Cited on pages 22 and 37.)

Diego Figueira and Luc Segoufin. Future-looking logics on data words and trees.
In International Symposium on Mathematical Foundations of Computer Science
(MFCS’09), volume 5734 of LNCS, pages 331–343. Springer, 2009. doi:10.

1007/978-3-642-03816-7_29. (Cited on pages 22, 43, and 67.)

Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Satisfiability of a spatial
logic with tree variables. In Jacques Duparc and Thomas A. Henzinger, edi-
tors, CSL, volume 4646 of Lecture Notes in Computer Science, pages 130–145.
Springer, 2007. doi:10.1007/978-3-540-74915-8_13. (Cited on page 66.)

Emmanuel Filiot, Jean-Marc Talbot, and Sophie Tison. Tree automata with global
constraints. In Masami Ito and Masafumi Toyama, editors, Developments in
Language Theory, volume 5257 of Lecture Notes in Computer Science, pages 314–
326. Springer, 2008. doi:10.1007/978-3-540-85780-8_25. (Cited on page 66.)

Alain Finkel. A generalization of the procedure of Karp and Miller to well
structured transition system. In Thomas Ottmann, editor, Proceedings of
the 14th International Colloquium on Automata, Languages and Programming
(ICALP’87), volume 267 of Lecture Notes in Computer Science, pages 499–508.
Springer-Verlag, 1987. http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/
F-icalp87.pdf. (Cited on page 7.)

Alain Finkel. Reduction and covering of infinite reachability trees. Information
and Computation, 89(2):144–179, 1990. (Cited on page 7.)

BIBLIOGRAPHY 169

Alain Finkel and Philippe Schnoebelen. Well-structured transition systems ev-
erywhere! Theoretical Computer Science, 256(1-2):63–92, 2001. doi:10.1016/

S0304-3975(00)00102-X. (Cited on pages 7, 10, 11, and 12.)

Massimo Franceschet, Maarten de Rijke, and Bernd-Holger Schlingloff. Hybrid
logics on linear structures: Expressivity and complexity. In International Sym-
posium on Temporal Representation and Reasoning (TIME’03), pages 166–173.
IEEE Computer Society Press, 2003. doi:10.1.1.125.8491. (Cited on page 6.)

Floris Geerts and Wenfei Fan. Satisfiability of XPath queries with sibling axes.
In International Symposium on Database Programming Languages (DBPL’05),
volume 3774 of Lecture Notes in Computer Science, pages 122–137. Springer,
2005. doi:10.1007/11601524_8. (Cited on pages 60, 65, and 162.)

Valentin Goranko. Hierarchies of modal and temporal logics with reference point-
ers. Journal of Logic, Language and Information, 5(1):1–24, 1996. doi:

10.1.1.36.4479. (Cited on page 6.)

Georg Gottlob, Christoph Koch, and Reinhard Pichler. Efficient algorithms for
processing XPath queries. ACM Transactions on Database Systems, 30(2):444–
491, 2005. doi:10.1145/1071610.1071614. (Cited on page 60.)

Eyal Harel, Orna Lichtenstein, and Amir Pnueli. Explicit clock temporal logic. In
Annual IEEE Symposium on Logic in Computer Science (LICS’90), pages 400–
413. IEEE Computer Society Press, 1990. doi:10.1109/LICS.1990.113765.
(Cited on page 6.)

Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of
the London Mathematical Society (3), 2(7):326–336, 1952. doi:10.1112/plms/

s3-2.1.326. (Cited on page 10.)

Petr Jančar. A note on well quasi-orderings for powersets. Information Processing
Letters, 72(5-6):155–160, 1999. doi:10.1016/S0020-0190(99)00149-0. (Cited
on pages 13 and 14.)

Marcin Jurdziński and Ranko Lazić. Alternation-free modal mu-calculus for data
trees. In Annual IEEE Symposium on Logic in Computer Science (LICS’07),
pages 131–140. IEEE Computer Society Press, 2007. doi:10.1109/LICS.2007.
11. (Cited on page 129.)

Marcin Jurdziński and Ranko Lazić. Alternating automata on data trees and
XPath satisfiability. Computing Research Repository (CoRR), 2008. arXiv:

0805.0330. (Cited on pages v, vii, 5, 6, 7, 64, 65, 115, 117, 118, 120, 125, 129,
and 132.)

Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Com-
puter Science, 134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.
(Cited on page 22.)

170 BIBLIOGRAPHY

Michael Kaminski and Tony Tan. Tree automata over infinite alphabets. In Pil-
lars of Computer Science, volume 4800 of Lecture Notes in Computer Science,
pages 386–423. Springer, 2008. doi:10.1007/978-3-540-78127-1_21. (Cited
on page 64.)

Ahmet Kara, Thomas Schwentick, and Thomas Zeume. Temporal logics on words
with multiple data values, 2010. Unpublished manuscript. (Cited on page 24.)

Olga Kouchnarenko and Philippe Schnoebelen. A model for recursive-parallel pro-
grams. In B. Steffen and Didier Caucal, editors, Proceedings of the 1st Inter-
national Workshop on Verification of Infinite State Systems (INFINITY’96),
volume 5 of Electronic Notes in Theoretical Computer Science, page 30. Elsevier
Science Publishers, 1997. doi:10.1016/S1571-0661(05)82512-5. (Cited on
page 7.)

Joseph B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjec-
ture. Transactions of the American Mathematical Society, 95(2):210–225, 1960.
doi:10.2307/F1993287. (Cited on page 36.)

Richard E. Ladner. The computational complexity of provability in systems of
modal propositional logic. SIAM Journal on computing, 6(3):467–480, 1977.
(Cited on pages 70 and 106.)

S lawomir Lasota and Igor Walukiewicz. Alternating timed automata. ACM Trans-
actions on Computational Logic, 9(2), 2008. doi:10.1145/1342991.1342994.
(Cited on page 8.)

Alexei Lisitsa and Igor Potapov. Temporal logic with predicate lambda-
abstraction. In International Symposium on Temporal Representation and Rea-
soning (TIME’05), pages 147–155, 2005. doi:10.1.1.59.6646. (Cited on
page 52.)

M.H. Löb and S.S. Wainer. Hierarchies of number theoretic functions, I. Archiv für
Mathematische Logik und Grundlagenforschung, 13:39–51, 1970. doi:10.1007/
BF01967649. (Cited on page 38.)

Christof Löding and Karianto Wong. On nondeterministic unranked tree automata
with sibling constraints. In IARCS Annual Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS’09), volume 4 of
LIPIcs, pages 311–322, 2009. doi:10.4230/LIPIcs.FSTTCS.2009.2328. (Cited
on page 66.)

Denis Lugiez. Counting and equality constraints for multitree automata. In FOS-
SACS’03/ETAPS’03: Proceedings of the 6th International conference on Foun-
dations of Software Science and Computation Structures and joint European
conference on Theory and practice of software, pages 328–342. Springer-Verlag,
2003. ISBN 3-540-00897-7. (Cited on page 66.)

BIBLIOGRAPHY 171

Carsten Lutz. Description logics with concrete domains—a survey. In Advances in
Modal Logics Volume 4. King’s College Publications, 2003. (Cited on page 7.)

Amaldev Manuel. Two orders and two variables. In International Symposium on
Mathematical Foundations of Computer Science (MFCS’10), Lecture Notes in
Computer Science. Springer, 2010. (Cited on page 23.)

Amaldev Manuel and R. Ramanujam. Counting multiplicity over infinite alpha-
bets. In International Workshop on Reachability Problems (RP’09), pages 141–
153. Springer, 2009. doi:10.1007/978-3-642-04420-5_14. (Cited on page 23.)

Alberto Marcone. Foundations of bqo theory. Transactions of the
American Mathematical Society, 345:641–660, 1994. doi:10.1090/

S0002-9947-1994-1219735-8. (Cited on page 14.)

Maarten Marx. XPath with conditional axis relations. In International Conference
on Extending Database Technology (EDBT’04), volume 2992 of Lecture Notes in
Computer Science, pages 477–494. Springer, 2004. doi:10.1007/b95855. (Cited
on pages 70 and 114.)

Maarten Marx. First order paths in ordered trees. In International Conference on
Database Theory (ICDT’05), pages 114–128. Springer, 2005. doi:10.1.1.96.

6923. (Cited on page 65.)

Richard Mayr. Undecidable problems in unreliable computations. Theoretical Com-
puter Science, 297(1-3):337–354, 2003. doi:10.1016/S0304-3975(02)00646-1.
(Cited on page 15.)

Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,
1967. ISBN 0-13-165563-9. (Cited on page 15.)

Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for
strings over infinite alphabets. ACM Transactions on Computational Logic, 5
(3):403–435, 2004. doi:10.1145/1013560.1013562. (Cited on page 22.)

Joël Ouaknine and James Worrell. On the language inclusion problem for timed
automata: Closing a decidability gap. In Annual IEEE Symposium on Logic in
Computer Science (LICS’04), pages 54–63. IEEE Computer Society Press, 2004.
doi:10.1.1.66.2375. (Cited on page 8.)

Klaus Reinhardt. Counting as Method, Model and Task in Theoretical Com-
puter Science. Habilitation thesis, University of Tübingen, 2005. URL http:

//www2-fs.informatik.uni-tuebingen.de/~reinhard/Habil.pdf. (Cited on
page 64.)

Philippe Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines
and reset Petri nets. In International Symposium on Mathematical Foundations
of Computer Science (MFCS’10), volume 6281 of Lecture Notes in Computer

172 BIBLIOGRAPHY

Science, pages 616–628. Springer, 2010. doi:10.1007/978-3-642-15155-2_54.
(Cited on pages 15 and 38.)

Thomas Schwentick and Thomas Zeume. Two-variable logic with two order re-
lations. In EACSL Annual Conference on Computer Science Logic (CSL’10),
2010. (Cited on page 23.)

INDEX

∀↓≥, 39

↑S, ↓S, 11

∃↓≤, 39

Φ, 74

�, ≺, 57

→, 116

[[I]]t, 81

[[A , q]]t, [[A]]t, 72

f ◦ g, 9

x·y, 9, 57

⊑, 10

ρh, 80

[n], 9

≤℘, 13

f [7→], 9

≤min, 14

ω2-wqo, 14

⇀, 9

|S|, 9

|A |, 79

|V |, 80

|A|≤k, 81

℘≤R, 81

∆⊗Γ, 138
w ⊗w′, 21

t⊗ t′, 58

()∗, ()+, ()ω, 9

t|x, 58
→▽, 116
→⊲, 116

q
A
−→
x
q′, q

A
−−−→
x,x·y

q′, 71

▽, ▽̄, ⊲, ⊲̄ (tree), 58

⊲, ⊲̄ (word), 21

abstract configuration, 138

Alternating Register Automata, 25

Alternating Tree Register Automata,
115

ancestor relation (�, ≺), 57
ARA, 25
ARA(guess, spread), 25
ARA(guess, spread, <), 32
ATRA, 115
ATRA(guess, spread), 115
attrXPath, 63
Aut, 79
Aut , 79

BUDA, 132

C -transducer, 73
certificate, 82

inductive(), 83
valid(), 83
correct, 83
inductive, 83
valid, 83

closure under simple negations, 99
closure under subformulæ, 99
Counter automata, 15

d-profile, 81
D, 9
data(), 58
data tree, 57
data word, 21
desct, 82
Descriptions, 82
detailed run, 80
Dickson’s Lemma, 10
disjoint values, 88, 121
downward XPath, 61
Downward Data automata, 74
Downward-closed, 11

173

174 Index

DTD, 59

E , 78
Etree , 78
Embedding order, 10
EQ-P, 62
extensible languages, 78

m-extension, 78

F, F−1, 38
F (LTL), 39
forward XPath, 62
Fs,Fs

−1, 43

G, G−1, 38
guess, 26

Higman’s Lemma, 10
horizontal XPath, 62

ICA, 15
INC-P, 63
inclusion dependency, 59
Incrementing counter automata, 15
Inters, 81

K, 79
κ̂(), 84
κ(), 83

L(), 9
LCA, 15
locally consistent set, 99
Lossy counter automata, 15
LTL↓(O), 38

LTL
↓
nnf(O), 39

LTL↓n(O), 38

Majoring ordering, 13
Minoring ordering, 14
Minsky counter automata, 15
moving configuration, 25

N, 9
N+, 9
Natra, 116

N -downward compatible, 12
NFA, 71
nnf, 124
nseq , 109

ord -LTL↓nnf(F, ∃
↓
≥, ∀

↓
≤), 42

℘, 9
℘<∞, 9
poly-depth model property, 105
POS, 57
positions of a data tree, 57
positions of a data word, 21
pos, 57
primary key, 59

Q, 79
Q̃, q̃0, q̃1, . . . , 80
Q̇, q̇, q̇′, . . . , 72

R, 79
rdc, 11
Reflexive downward compatibility, 11
Regular language, 10
regXPath+(F,=), 128
regXPathB(F,=), 127
regXPath, 61
regXPathε, 61
restricted primary key, 59

SAT-P, 63
siblinghood, 57
sLTL↓(O), 43
spread, 26
subtree copy property, 108
Succ, Succ∗, 11

(T1)–(T7), 4
Tatra, 116
thread, 25
Timed automata, 36
Transition system

effective, 11
finitely branching, 11

tree type, 58

Index 175

Trees(E), 57
two-player corridor tiling game, 101
type, 58

U, U−1, 38
Upward-closed, 11

V, 79
Vars , 79
verifier, 73
vertical XPath, 62

(W1)–(W5), 2
Well-quasi-order, 10
Well-structured transition system, 10
word type, 21
Words(E), 21
wqo, 10
wsts, 10

X, X−1, 38
xml, 58
XPathε, 61
XPath6ε(↓∗,=), 110
XPath, 60

node expression, 60
path expression, 60

