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Abstract

The use of multi-robot teams has gained a lot of attention in recent years. This is due to the

extended capabilities that the teams offer compared to the use of a single robot for the same

task. Moreover, as these platforms become more and more affordable and robust, the use of

teams of aerial vehicles is becoming a viable alternative. This thesis focuses on the prob-

lem of deploying a swarm of Micro Aerial Vehicles (MAV) to perform surveillance coverage

missions over an unknown terrain of arbitrary morphology. Since the terrain’s morphology is

unknown and it can be quite complex and non-convex, standard algorithms are not applicable

to the particular problem treated in this thesis. To overcome this, a new approach based on

the Cognitive-based Adaptive Optimization (CAO) algorithm is proposed and evaluated. A

fundamental property of this approach is that it shares the same convergence characteristics

as those of constrained gradient-descent algorithms, which require perfect knowledge of the

terrain’s morphology to optimize coverage. In addition, it is also proposed a different formu-

lation of the problem in order to obtain a distributed solution, which allows us to overcome

the drawbacks of a centralized approach and to consider also limited communication capabil-

ities. Rigorous mathematical arguments and extensive simulations establish that the proposed

approach provides a scalable and efficient methodology that incorporates any particular phys-

ical constraints and limitations able to navigate the robots to an arrangement that (locally)

optimizes the surveillance coverage. The proposed method is finally implemented in a real

swarm of MAVs to carry out surveillance coverage in an outdoor complex area.
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L’utilisation d’équipes de robots a pris de l’ampleur ces derniéres années. Cela est dû aux

avantages que peut offrir une équipe de robot par rapport à un robot seul pour la réalisation

d’une même tâche. Cela s’explique aussi par le fait que ce type de plates-formes deviennent de

plus en plus abordables et fiables. Ainsi, l’utilisation d’une équipe de véhicules aériens devient

une alternative viable. Cette thèse se concentre sur le problème du déploiement d’une équipe

de Micro-Véhicules Aériens (MAV) pour effectuer des missions de surveillance sur un terrain

inconnu de morphologie arbitraire. Puisque la morphologie du terrain est inconnue et peut

être complexe et non-convexe, les algorithmes standards ne sont pas applicables au problème

particulier traité dans cette thèse. Pour y remédier, une nouvelle approche basée sur un al-

gorithme d’optimisation cognitive et adaptatif (CAO) est proposée et évaluée. Une propriété

fondamentale de cette approche est qu’elle partage les mêmes caractéristiques de convergence

que les algorithmes de descente de gradient avec contraintes qui exigent une connaissance par-

faite de la morphologie du terrain pour optimiser la couverture. Il est également proposé une

formulation différente du problème afin d’obtenir une solution distribuée, ce qui nous per-

met de surmonter les inconvénients d’une approche centralisée et d’envisager également des

capacités de communication limitées. De rigoureux arguments mathématiques et des simu-

lations étendues établissent que l’approche proposée fournit une méthodologie évolutive et

efficace qui intègre toutes les contraintes physiques particulières et est capable de guider les

robots vers un arrangement qui optimise localement la surveillance. Finalement, la méthode

proposée est mise en œuvre sur une équipe de MAV réels pour réaliser la surveillance d’un

environnement extérieur complexe.
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A.2 Trois hexacopters utilisés pour le projet sFly. . . . . . . . . . . . . . . . . . 139

A.3 Surveillance coverage - projet sFly. . . . . . . . . . . . . . . . . . . . . . . . 141

A.4 Principales étapes de l’algorithme CAO. . . . . . . . . . . . . . . . . . . . . 144
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Chapter 1

Introduction

The use of Unmanned Aerial Vehicles (UAVs) teams has gained a lot of attention in recent

years. This is due to the extended capabilities that flying robots are able to offer comparing to

the use of ground robots for the same task. The ability to fly allows easily avoiding obstacles

on the ground and to have an excellent birds eye view. Moreover, it is possible to access to

environments where no human or other vehicles can access to. Therefore flying robots are the

logical heir of ground based mobile robots. If they are further realized in small scale, they can

also be used in narrow out- and indoor environment and they represent only a limited risk for

the environment and people living in it. Micro Aerial Vehicles (MAVs) teams can be used in

a variety of very important missions including:

• Surveillance of buildings and large in- and outdoor areas: instead of fix mounted se-

curity cameras the micro-helicopters would allow a re-configurable grid of surveillance

cameras and establish one when needed in places where security cameras do not exist.

• Rescue missions: aerial robots capable of flying in closed quarters and collapsed build-

ings could quickly and systematically search to locate victims of an accident or a natural

disaster.

• Surveillance of dangerous areas, chemical and nuclear plants: the micro helicopters

could explore areas that are dangerous to human personal, i.e. areas of chemical, bio-

logical or nuclear contamination.

• Environmental monitoring: the flying micro-robots would be an excellent tool for en-

vironmental monitoring (air quality, forest fire, ...) as individual unit, in a swarm or in

connection with a sensor network.

1
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Figure 1.1: Typical scenarios where the surveillance coverage is a fundamental task.

• Law enforcement in public area: a micro-helicopter could provide real time imagery to

aid police during surveillance missions or criminal search operations.

In all the aforementioned tasks the deployment of limited resources (robots) to optimize the

monitoring of the area of interest is the key issue. Moreover, as these platforms become more

and more affordable and robust, the use of teams of aerial vehicles that cooperatively and

autonomously search and cover an assigned area is becoming a viable alternative. In order to

exploit the advantages of robot mobility, active sensing strategies need to be determined for

coordinating the motion of groups of robots while optimizing the use of the available sensing,

communication, and processing resources.

Furthermore, in every multi-robot systems, a distributed approach is desirable for several

fundamental reasons. The most important are failure of the central station and limited commu-

nication capabilities. In a very common scenario each robot has no global knowledge about

the surrounding environment or about the group as whole. So, the global behavior of the team

can be seen as the sum of the local actions taken by its members, which sense their immediate

environment, communicate with their neighbors, process the information gathered and move

according to it.

1.1 Context of the thesis

The work of this thesis has been carried out in the framework of the European project sFly

(www.sfly.org). The objective of this project is to develop several small and safe helicopters

which can fly autonomously in city-like environments and which can be used to assist humans

in tasks like rescue and monitoring. The main motivations of this work are not only to achieve

tasks impossible for a human team, but also to be able to substitute the human intervention

in very dangerous scenarios. This means that the helicopters must be able to operate in com-

plex environments where GPS signals are often shadowed, cooperatively and in a complete
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Figure 1.2: ATG delivered the 3 new helicopters version 3 (hexacopters), each one equipped
with a Core2Duo computer board, camera mounts, and communication modules (WiseNodes)
by the industrial partner CSEM.

autonomous way. This involves a number of challenges on all levels of helicopter design,

perception, actuation, control, navigation and power supply that have yet to be solved. The

visual-based navigation problematics have been addressed by the Autonomous System Lab

(ASL) and the Computer Vision and Geometry Group (CVG) laboratories at ETH of Zurich,

Switzerland. The helicopters have been appropriately developed for the project by Ascending

Technologies GMBH (ATG), from Germany (see Fig. 1.2). The wireless communication and

range measurement issues are considered by CSEM, Neuchatel, Switzerland. Finally, INRIA

(Grenoble, France) and CERTH/TUC (Thessaloniki/Chania, Greece) have been the partners

responsible for the active navigation guidance for cooperative tasks, the topic of this thesis.

1.2 Cooperative coverage

The problem of deploying a team of flying robots to perform surveillance coverage missions

over an unknown terrain of complex and non-convex morphology is considered. This problem

can be expressed as an optimization problem: given an arbitrary initial team configuration

finding the final robots’ positions which maximize the degree of coverage and the way to

reach such a configuration. In this thesis we assume that the team surveillance capabilities

are enough to achieve a satisfactory level of monitoring from a static configuration. In other

words, we do not consider here the case of an environment too large to be monitored and

which requires dynamical surveillance strategies. To quantify the degree of coverage in a
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typical coverage mission two different main criteria may be identified:

(O1) the part of the terrain that is monitored (i.e., is visible) by the robot team has to be

maximized;

(O2) for every point in the terrain, the closest robot has to be as close as possible to that point.

The first objective is the most intuitive in a surveillance task: finding the positions from which

it is possible to see as more as possible, regarding the sensors capabilities of the team. In the

thesis, we will refer to this problem as the visibility problem.

The second objective might be necessary for two practical reasons: (a) firstly, in many

multi-robot coverage applications there is the necessity of being able to intervene as fast as

possible in any of the points of the terrain with at least one robot and (b) secondly, the closer

is the robot to a point in the terrain the better is, in general, its sensing ability to monitor this

point. We will refer to this problem as the intervention problem.

Of course, finding the optimal positions for the robots team is not the unique problem to

solve. Indeed, in many situations the optimization problem has to be solved on-line, starting

from completely arbitrary positions, with no, or partial, a priori knowledge about the environ-

ment to monitor. So in this case also creating in real time safe trajectories, respecting all the

physical and environmental constraints, is a further challenge.

Our goal is to develop an efficient and adaptive strategy to lead the robots to maximize

the part of the terrain that is visible while keeping the distance between each point in the

terrain and the closest team member as small as possible. A compromise between these two

objectives should be fulfilled given the physical constraints and limitations imposed at the

particular application. As the terrain morphology is unknown and it can be very complex

and non-convex, standard algorithms are not applicable to the particular problem treated in

this thesis. To overcome this, a new approach based on the Cognitive-based Adaptive Op-

timization (CAO) algorithm is proposed and evaluated. The CAO algorithm is a stochastic

adaptive optimization method recently proposed by Kosmatopoulos in [61], [63]. In its first

version, this method did not include the possibility to cope with constrained problems. A

contribution of this thesis is to extend the CAO algorithm to overcome this limitation. A

fundamental property of this approach is that it shares the same convergence characteristics

as those of constrained gradient-descent algorithms, which require perfect knowledge of the

terrain’s morphology. Rigorous mathematical arguments and extensive simulations establish

that the proposed approach provides a scalable and efficient methodology that incorporates

any particular physical constraints and limitations able to navigate the robots to an arrange-

ment that (locally) optimizes the surveillance coverage.
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Figure 1.3: The work developed in this thesis is in the framework of the European project
sFly.

1.2.1 Related Works

The coverage problem was defined in literature for the first time by Gage [31]. In this work,

where the main application is for defense in a military scenario, the author introduces three

different kinds of coverage: blanket coverage, barrier coverage and sweep coverage. In the

first one the objective is an optimal static deployment that maximizes the total detection area;

the barrier coverage has the objective to minimize the probability of undetected penetrations

through a barrier that the robots form in defense of a given region; the last one, the sweep

coverage, is a barrier coverage with a moving barrier. Following these definitions, the cover-

age considered in this thesis is a blanket coverage. As already said, we can divide the static

coverage into two main problems: the intervention and the visibility problems.

Intervention problem

The majority of approaches for multi-robot static surveillance coverage concentrate on objec-

tive (O2) previously described, the intervention problem. The first work on this problem is of

Cortés et al. [20]. Here the authors present a gradient-descent algorithm for the coverage of a

convex region, i.e., without obstacles, with a team of mobile robots. This solution is based on

the concept of centroidal Voronoi partition and adopts the Lloyd algorithm, [73], to lead the

robots to the final positions. After this work, a great number of similar solutions have been

proposed trying to adapt, extend or improve the original algorithm for a variety of different

scenarios. One of them, always for a convex environment, is proposed by Schwager et al. in

[105], where additionally the robots estimate a function indicating the relative importance of

different areas in the environment, using information from the sensors. A possible extension

of the previous work has been proposed in [74], where a solution for nonholonomic mobile
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sensors is provided. Poduri and Sukhatme used the artificial potential field method to obtain

a coverage of a convex region with the constraint that each robot has at least K neighbors

[86]. In [39] a different definition of the Voronoi partition is proposed in order to consider an

anisotropic sensor model, where the performance of the sensors depends not only on the dis-

tance but also on the orientation with respect to the target. Another variation on the classical

Voronoi coverage control, inspired by the hunting tactics of ladybugs, is presented in [103].

By using this controller the final positions are always the centroidal configuration, but there is

a greater degree of exploration carried out by the team during the task.

The same kind of coverage problem in a non-convex environment is more complex but

also more interesting for practical applications. A possible solution to this problem is pro-

posed by Pimenta et al. in [85]. Also in this case, the solution is based on Voronoi partition,

but it is obtained using the geodesic distance instead of the Euclidean one. This choice allows

taking into account the particular geometry of the environment. An extension of the previous

work to entropy-based metrics, in order to allow for coverage in unknown non-convex envi-

ronment, is presented in [10]. In [46], the same problem is approached by using the artificial

potential field method: each robot feels a repulsive force from the obstacle and from the other

robots. In this way the algorithm assures at the same time the spreading out of the team and

the collision avoidance during the mission. Another possible solution for environments which

include obstacles is proposed in [16]: the main idea is to combine the classical Voronoi cov-

erage with the Lloyd algorithm and the local path planning algorithm TangentBug [52]. In all

the aforementioned works the regions to cover are in 2D. In [17] the authors propose a solu-

tion for a particular class of non-convex regions based on diffeomorphic transformations to

map the non-convex region to a convex one and then to use the classical Voronoi-based con-

trol law. Durham et al. tackle this problem in [25], tacking into account also asynchronous

communication between each robot and a base station and with the rest of the team. In [15]

the authors approach also the problem of deploying a team of robots on a non-planar surface

in 3D space.

Visibility problem

As far as it concerns objective (O1) described in the previous section, the visibility prob-

lem, different solutions have been proposed in the literature. In [6], Batalin and Sukhatme

present two methods based on a local dispersive interaction between robots to achieve good

global coverage. In this case the problem is not approached defining an objective function to

optimize and the solution is based only on a mutually dispersive interaction between robots

when there is an overlapping of sensing region. In [32] the authors propose a gradient-based
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algorithm for the case of a single robot case and they prove that the visible area is almost

everywhere a locally Lipschitz function of the observer location. In [34], an approach for

the multi-robot problem is presented based on the assumption that the environment is simply

connected. The visibility problem is also related to the Art Gallery Problem where the goal is

to find the optimum number of guards in a non-convex environment so that each point of the

environment is visible by at least one guard, see [84], [117], [1], [106], [33] and references

therein. All the aforementioned solutions are based on the hypothesis that a given point can

be monitored regardless of its distance from the robot. An incremental algorithm which takes

into consideration also a maximum monitoring distance is presented in [45]. In [104], the

authors consider the coverage of a 2D region by using a team of hovering robots. In this case,

information per pixel is proposed as optimization criterion. Laventall and Cortés, in [70], pro-

pose a Voronoi-based solution for the problem of the coverage of a convex environment with

limited-range anisotropic sensors. Always using mobile anisotropic sensor networks, Hexsel

et al. propose in [43] a distributed gradient-ascent algorithm to maximize the probability of

detection of events in a 2D area with also polygonal obstacles.

Dynamic coverage

A different problem, always known as coverage (or complete coverage) and very studied in

literature, is the determination of the path that a robot must take in order to pass over each

point in an environment. This kind of coverage is more suitable for a searching, demining or

cleaning mission or for map generation than for surveillance of an area. A typical strategy

is to divide the region in non overlapping cells and then finding the sequence to cover all

the cells. Choset and Pignon propose in [19] a solution based on this idea, while Gabriely

and Rimon present in [30] a grid-based method to solve this problem. Also in [49], contrary

to the coverage considered in this thesis, the goal is not to find a static final configuration

but to dynamically cover a given region: once a predefined attained effective coverage is

achieved, the mission is accomplished regardless to the positions of the agents. A similar, but

cooperative, problem appears in [2], where the algorithm has been implemented on a team of

UAVs equipped with fixed cameras.

The dynamic patrolling problem is another problem related to the surveillance coverage.

The primary goal of many patrolling tasks is the capture of unknown entities within the en-

vironment. Usually, the difference with respect to the coverage problems is that instead of

deploying a team of mobile robots, the starting point is a set of fixed cameras with the possi-

bility to move their directions. Example in the literature can be found in [118], [5], [89]. A

very close problem has been approached by Michael et al. in [79]. In this work the objective
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is to monitor a building with discrete locations of interest by using a team of MAVs. Each

of the locations must be observed periodically and the solution take into account also robots’

power constraints.

To the best of our knowledge, the problem of considering the two objectives simultane-

ously to statically cover a completely arbitrary 3D region by using a team of flying robots

has never been investigated so far. To do that we propose to use a new stochastic optimiza-

tion method, the CAO algorithm. The many advantages of using stochastic gradient descent

algorithms, like the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm,

to approach a sensor-based deployment problem have already been highlighted in [80]. In

this work, the authors proposed applications such as: coverage with heterogeneous sensors

and source seeking with stochastic wireless connectivity constraints. The same deployment

problem but with additionally end-to-end communication constraint is considered in [81].

1.3 Organization and Contributions of the Thesis

According with the motivation of the project, the challenge of this thesis was to develop an

efficient and adaptive methodology to perform cooperative surveillance coverage in a generic,

complex terrain by using a swarm of Micro Aerial Vehicles. The difficulties of this chal-

lenge are not only in solving the complex mathematical problem but also related to the strong

constraints that the final real application requires: low computational complexity, lack of in-

formation about the area to cover, possible limited communication capabilities, and so on. To

address these challenges we adopted a new stochastic adaptive optimization algorithm. Firstly

we extended this approach to make it suitable for the particular considered problem. Then, all

the steps, from the simulations in simple 2D regions up to the implementation on a real swarm

of helicopters have been carried out. Additionally, also a distributed version of the algorithm,

for a particular coverage criterion, has been developed allowing us to include communication

constraints and to avoid all the problems that a centralized approach can generate. The rest of

this thesis is organized as follows.

Chapter 2: Stochastic Optimization

A large number of practical problems in mobile robotics can be expressed as optimization

problems and a good optimization strategy can be of crucial importance to achieve many

complex tasks. The aim of this chapter is to provide a quick introduction on stochastic opti-

mization and present a review of the most common and exploited algorithms in the literature.

This might be useful to the reader to clarify some fundamental issues about this topic before
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the presentation of the adopted algorithm, which represents the method of resolution of all the

problems formulated in this thesis. Furthermore, the presentation of other existing methods

allows the reader to better understand advantages, drawbacks and problematics which may

arise in this interesting and complex field of research.

Chapter 3: CAO Algorithm

The detailed description of the algorithm adopted and analyzed in this thesis, the Cognitive-

based Adaptive Optimization (CAO) algorithm, is presented in this chapter. In particular,

several aspects that in our opinion make this method very useful in many practical applications

in mobile and cooperative robotics are enumerate and discussed. After the algorithm strategy

description, a mathematically rigorous proof of convergence is provided. Firstly is discussed

the unconstrained case and the theorem of convergence, as presented in [63], is reported.

Then, this result has been extended for the constrained case and the same converge properties

are proven.

Chapter 4: Optimal Surveillance Coverage - 2D

As a first step toward the final implementation on the MAVs swarm, we firstly formulate the

surveillance coverage problem and test the CAO algorithm for a 2D both convex and non-

convex region [91], [90]. The motivation of this choice is that this is a simpler case and

it has been well studied in the literature. This allows us to better interpret the simulation

results and identify possible situations of stuck in local minima. Initially, two main coverage

criteria are identified and analyzed separately. For one of them, also a completely different

approach is proposed. It is based on the classical and well-known centroidal Voronoi solution

(see [20]) combined with the artificial potential field method [95]. Then, considering the

other coverage criterion, the adopted CAO algorithm is adapted and applied to find a solution.

Finally, as the last contribution of this chapter, a distributed version of the CAO algorithm

is proposed, allowing us to eliminate the drawbacks of a centralized approach and to include

communication constraints [92]. Many simulations results are shown to validate the proposed

methods.

Chapter 5: Optimal Surveillance Coverage - 3D

After the first tests on 2D areas, the problem is extended for a more realistic and of practical

interest 3D case [93], [94]. With respect to the previous analyzed case, more constraints are

present and a new, more complex, cost function is defined with the aim of taking into account
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both the coverage criteria identified in Chapter 4. To test this new objective function and to

set the parameters of the system, some preliminary simulations have been carried out by using

simulated environments. In order to be as general as possible, not only simple 3D regions have

been reproduced but also complex non-convex surfaces. Additionally, also some simulations

to prove the scalability of the algorithm with respect to the number of robots are shown. The

results of this validation process show the capability of the proposed method to provide a

solution for the cooperative surveillance coverage for a completely arbitrary 3D environment.

Chapter 6: Experimental Results

This chapter include the experimental results obtained by using a real swarm of MAVs for

surveillance coverage missions in both indoor and outdoor complex environments. This part

of the work is in collaboration with all the partners of the sFly project and especially with the

ETH of Zurich. In the first part several simulations are carried out by using real data provided

by a helicopter [23], [24]. These data have been collected in complex, outdoor regions near

Zurich. In particular, some incremental scenarios are provided where the coverage is achieved

simultaneously with the mapping. Finally, the results of a real implementation in an outdoor

area, performed during the final demonstration of the sFly project, are presented. The aim of

this experimentation is to accomplish a search and rescue mission by using three MAVs in a

GPS-denied complex environment. Once the region of interest is mapped by the helicopters,

the method presented in this thesis is used to obtain the optimal coverage positions, which

allow the team to localize a victim positioned in the environment.

Chapter 7: Navigating between People

Finally, in order to further validate the adopted optimization method, as a last contribution

of this thesis, it has been considered also a completely different problem: safely navigating a

robot in an unknown and complex environment where people are moving and interacting [97].

The robot has the objective to move and reach predefined goal locations respecting humans’

comfort. This problem has been formulated in terms of an optimization problem and the CAO

algorithm employed to find a solution. Since in this case the environment is assumed to be dy-

namic, with moving people, the algorithm has been also used to generate a sort of prediction

on the unknown people movement, in order to improve the results. This last test shows how,

within the robotic field, many different problems can be formulated as optimization prob-

lems and that in dynamical, uncertain and/or sensor-based scenarios a stochastic optimization

algorithm is very suitable to obtain a solution.



Chapter 2

Stochastic Optimization

Every problem treated in this thesis has been approached as an optimization problem. Opti-

mization might be defined as the science of determining the best solutions to certain mathe-

matically defined problems, which are often models of physical reality. In practice, this means

maximizing or minimizing a function by choosing input values among an allowed set. It in-

volves the study of optimality criteria for problems, the determination of algorithmic methods

of solution, the study of the structure of such methods and computer experimentation with

method both with trial conditions and on real life problems. There is an extremely diverse

range of practical applications. One approach is stochastic optimization, in which the search

for the optimal solution involves randomness in some constructive way. Stochastic optimiza-

tion plays a significant role in the analysis, design and operation of modern systems. Methods

for stochastic optimization provide a means of coping with case where only information af-

fected by noise is available and coping with models or systems that are highly nonlinear, high

dimensional, or otherwise inappropriate for classical deterministic methods of optimization.

Stochastic optimization algorithms have broad application to problems in statistics, computer

science, engineering, and business. By now algorithms that employ some form of stochas-

tic optimization have become widely available and exploited. Specific applications include

for example business (making short- and long-term investment decisions in order to increase

profit), aerospace engineering, medicine, and traffic engineering (setting the timing for the

signals in a traffic network) and, as in this thesis, mobile robotics.

The aim of this chapter is to present the general problem a stochastic optimization al-

gorithm is called to solve and to describe some of the most famous algorithms present in

literature. The proposed survey of existing algorithms follows [112] and [111]. For other

references that give general reviews of various aspects of stochastic optimization see for ex-

ample: [27], [29], [37] and references therein.

11
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2.1 Problem Formulation

Let us introduce some important concepts and notation. Suppose S is the domain of allowable

values for a vector x. The fundamental problem of interest is to find the value(s) of a vector

x ∈ S that optimizes a scalar-valued objective function J(x). Other equivalent names for

J , also used in this thesis, are optimization function, cost function, performance measure,

measure-of-effectiveness, fitness function, or simply criterion. For simplicity of exposition,

this chapter focuses on the problem of minimization. Note that a maximization problem can

be trivially converted to a minimization problem by changing the sign of the criterion.

The problem of minimizing an objective function J = J(x) can be formally represented

as finding the set:

x∗ ≡ argmin
x∈S

J(x) = x∗ ∈ S : J(x∗) ≤ J(x) ∀x ∈ S , (2.1)

where x is the p-dimensional vector of parameters that are being adjusted and S ⊆ Rp. The

“argmin” statement in (2.1) should be read as: S∗ is the set of values x = x∗ that minimize

J(x) subject to x∗ satisfying the constraints represented in the set S. The elements x∗ ∈ S∗ ⊆
S are equivalent solutions in the sense that they yield identical values of the cost function.

In some cases (i.e., differentiable J), the minimization problem can be converted to a root-

finding problem of finding x such that

g(x) =
∂J(x)

∂x
= 0 . (2.2)

Of course, as later discussed, this conversion must be done with care because such a root may

not correspond to a global minimum of J .

The solution set x∗ may be a unique point, a countable (finite or infinite) collection of

points, or a set containing an uncountable number of points. The tree examples below show

simple cases illustrating these types of solution sets.

1. x∗ contains unique solution: suppose that J(x) = xTx and S = Rp, the unique value

which minimizes J is x = 0. Then, x∗ is a single point.

2. x∗ has countable (finite or infinite) collection of points: let x be a scalar, J = sinx and

S = [0, 4π]. Then the minimum is at the points x∗ = {3π/2, 7π/2}, a countable set

with a finite number of elements. On the other hand, if S = R, x∗ is a countable set

with an infinite number of elements.

3. x∗ has uncountable number of points: suppose that J = (xTx − 1)2 and S = Rp, then
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J is minimized when xTx = 1, which is the set of points lying on the surface of a

p-dimensional sphere with radius 1. If p ≥ 2, x∗ is an uncountable (but bounded) set.

Unlike the simple illustrative examples here presented, the problems treated in this thesis are

sufficiently complex so that is impossible to obtain a closed-form analytical solution to (2.1).

For ease of exposition, this chapter generally focuses on continuous optimization prob-

lems, although some of the methods may also be used in discrete problems. In the continuous

case, it is often assumed that J is a “smooth“ (and also several times differentiable) function

of x. Continuous problems arise frequently in robotics applications as well as in many other

fields, such as model fitting (parameter estimation), adaptive control, neural network training,

signal processing, and experimental design. Discrete optimization (or combinatorial opti-

mization) can be considered as a large subject by itself (resource allocation, network routing,

policy planning, etc.).

Another fundamental issue which clearly separates in two categories the optimization al-

gorithms is the difference between global and local optimization. In other words, the capa-

bility of an optimization algorithm to distinguish between global and local optima. All other

factors being equal, it is obvious that one would always know a globally optimal solution to

the optimization problem. However, in practice, it may not be feasible to find a global solu-

tion and one must be satisfied with obtaining a local solution. For example, J may be shaped

such that there is a clearly defined minimum point over a broad region of the domain S, while

there is a very narrow spike at a distant point. If the value of this spike is lower than any point

in the broad region, the local optimal solution is better than any nearby x, but it is not the

best possible x. In this thesis we consider only local optimization methods. This important

distinction will be better explained in the follows.

Finally, as clear from the main topic of this chapter, we can separate optimization in deter-

ministic and stochastic algorithms. As previously stated, we focus on stochastic optimization

and to be more precise, in the framework of the optimization theory, we can talk of stochastic

optimization if:

• there is random noise on the available values of the optimization function J ;

• and/or there is a random choice in the search strategy as the algorithm iterates toward a

solution.

These two conditions are in contrast with the classical deterministic optimization where it is

assumed that the information about the function to optimize is perfect (noise-free) and this

information is used to decide, for each iteration step of the algorithm, a deterministic search

strategy. In many practical applications, especially in the robotics domain, like for the cases
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treated in this thesis, such information is not available and a deterministic method becomes

completely inappropriate.

2.1.1 Local Versus Global Optimization

As already mentioned, one of the main distinctions in optimization theory is between local

and global optimization. Usually, with a finite amount of resources, it is only possible to

ensure that an algorithm will approach a local minimum. It can be seen that it is easy to

construct functions that will fool most of the known algorithms, unless the algorithm is given

explicit a priori information about the location of the global solution, which is certainly not

a case of practical interest. However, since the local minimum may still yield a significantly

improved solution, the local minimum may be a completely acceptable solution for the re-

sources available (human time, computer time, sensors capabilities, etc.) to be employed on

the optimization.

The main drawbacks of local optimization algorithms can be expressed as follows:

• by definition, such algorithms terminate in a local optimum, and there is generally no

information about the amount by which this local optimum falls close to a global opti-

mum;

• the obtained local optimum depends on the initial configuration but, at the same time,

no guidelines are generally available for its choice.

To avoid some of these drawbacks, a number of possible improvements are possible, even if

they are not always feasible in real scenarios:

• execution of the algorithm for a large number of initial configurations, at the cost of an

increase of computation time;

• use of information gained from previous runs of the algorithm to improve the choice of

an initial configuration for the next run;

• introduction of complex move-generation rules, in order to be able to overcome local

optima; this can include the acceptance of moves which correspond to a decrease in the

objective function in a limited way, hoping that it will lead to a higher local maxima.

In Fig. 2.1 two examples of local minima are shown. It is possible to see how the dimension

and the distance between them is of crucial importance for the possibility of the algorithm to

find the global minimum. In Fig. 2.1 (a) three minima are present but the two local minima
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(a) (b)

Figure 2.1: Two different simple examples of local minima: in (a) two local minima are
present but their dimension is such that the global minimum is easy to find. In (b) there is
only one local minimum but a higher barrier, hard to overcome, divides it from the global
minimum. In this case the initial position is crucial for the final result.

are of small dimension and very close to the real global optimum, so their identification can

be easy regardless the initial configuration. In (b) two minima with a significant different

value and with a high barrier dividing them are present. In this case also with a good local

optimization algorithm it is very difficult identifying the global minima and the dependence

on different starting conditions becomes very strong (for an example see Section 2.3.3).

2.1.2 Some considerations

We enumerate here other key points and limits that can result of critical importance in many

practical applications of a stochastic optimization algorithm.

Constraints

The possibility to solve an optimization problem often depends on the presence or not of

constraints and a good strategy to deal with them is a critical point for an optimization algo-

rithm. Indeed, constraints on the allowable values of x are always present in every real-life

situation. In particular, in a robotic application they can represent, for example, limitations

on: environmental constraints (obstacles, limited region of interest, maximum height of flight,

etc.), constraints on the robot’s movement (maximum velocity, non-holonomic dynamic, etc.),
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communication constraints (limited communication capabilities), and so on. A possible clas-

sification of different kinds of constraints is between hard and soft. In hard constraints, no

value of x can ever be taken outside of the allowable set. With soft constraints, values of x

outside this set are allowed during the search process, but it is required that the final estimate

for x lie inside the constrained set. In a typical online implementation the previously listed

constraints have to be considered as hard constraints. Generally, the presence of constraints

increases significantly the hardness of an optimization problem and ad hoc strategies have to

be adopted.

Curse of dimensionality

A fundamental limit for a multivariate (N > 1) search is that the volume of search space

generally grows geometrically with the dimension. This implies that a naive search in a

high-dimensional problem will generally be hopeless. The famous control theorist and math-

ematician Richard Bellman coined the expression ”curse of dimensionality” to describe this

phenomenon. In [44], for example, the author gives an illustration in a discrete problem where

N = 10: if each of the 10 elements of x can take on 10 values, there are 1010 possible out-

comes. If we randomly sample 10000 values of J uniformly in the domain S, the probability

of finding one of the best 500 values for x (which is a much easier problem than finding the

unique optimum x∗) is 0,0005. With noisy measurements of J is even worse because it is

not known which x value corresponds to the lowest loss value from among the sampled x

points. In a robotic framework, this problematic may be translated in a problem of scalability

on the number of robots involved in the mission. This issue will be discussed more in details

in chapter 5.

Stopping criteria

In search and optimization problems an usual problem to tackle is to develop a good stopping

criterion, i.e. a means to decide when the algorithm is close enough to the solution that it can

be stopped. Unfortunately, in a general stochastic optimization problem it is almost impossible

to find an automatic means of stopping an algorithm with a guaranteed level of accuracy. The

fundamental reason is that there will always be a significant region within S that will remain

unexplored in any finite number of iterations. Without an a priori knowledge, there is always

the possibility that x∗ could lie in this unexplored space.
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Time-varying problems

In many practical applications, the environment changes over time. Hence, the best solution

to a problem in a given time may be very far to the best solution in another instant. Some

examples are environments with moving people or vehicles and/or a varying number of robots

within the team. In some cases, the algorithms can be explicitly designed to adapt to changing

conditions and automatically provide a new estimation of the optimal value. In other cases,

the only solution is to restart the optimization process and find a new optimum.

Obviously, these are only some of the several problematics that might emerge in a real

and complex problem. In the next sections we will give an overview on some of the most

common stochastic optimization algorithms. This should allow the reader to better understand

the problematics of the stochastic optimization and how such a problem can be approached,

starting from the simplest strategy toward more complicate and efficient algorithms. In the

following review we assume that the reader is familiar with the most common concepts of

deterministic optimization, such as gradient descent algorithms, the role of the Hessian matrix,

etc. In any case, we will provide the fundamental references whenever it could be useful.

2.2 Random Search

Probably the simplest methods of stochastic optimization are random search methods and

they have been known since at least the 1950s (see [71] for a historical review). Their relative

simplicity is an appealing feature to both practitioners and theoreticians but, at the same time,

they can be fairly effective in many problems. Indeed, these direct random search methods

have a number of advantages relative to most other search methods. The advantages include

relative ease of coding in software, the need to only require J measurements (no needs that

the gradient of J be computable or even that it exist), reasonable computational efficiency

(especially for those direct search algorithms that make use of some local information in their

search), broad applicability to non-trivial cost functions and/or to x that may be continuous,

discrete, or some hybrid form, and a strong theoretical foundation.

We present here two of the numerous algorithms based on this method: the blind random

search and the localized random search.

The first method we discuss is the blind random search. This is the simplest random search

method, where the current sampling for x does not take into account the previous samples.

That is, this blind search approach does not adapt the current sampling strategy to information

that has been stored in the search process. The approach can be implemented in non-recursive

form simply by laying down a number of points in S and taking the value of x corresponding
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to the lowest J value as our estimate of the optimum. The approach can be conveniently

implemented in recursive form as we illustrate below. The simplest setting for conducting the

random sampling of new candidate values of x is when x is a hypercube and we are using

uniformly generated values of x. The uniform distribution is continuous or discrete for the

elements of x depending on the definitions for these elements. In fact, the blind search form

of the algorithm is unique among all general stochastic optimization algorithms in that it is the

only one without any adjustable algorithm coefficients that need to be tuned to the problem at

hand. The steps for a recursive implementation of blind random search are given below.

2.2.1 Blind Random Search

1. (Initialization) Choose an initial value of x, say x̂0 ∈ S, either randomly or determinis-

tically. Calculate J(x̂0). Set k = 0.

2. Generate a new independent value xnew(k+1) ∈ S, according to the chosen probability

distribution. If

J(xnew(k + 1)) < J(x̂k)⇒ x̂k+1 = xnew(k + 1) .

Else, take x̂k+1 = x̂k.

3. Stop if the maximum number of J evaluations has been reached or the user is otherwise

satisfied with the current estimate for x via appropriate stopping criteria; else, return to

Step 1 with the new k set to the former k + 1.

The above algorithm converges almost surely to x∗ under very general conditions (see,

e.g., [111], pp. 40-41). Of course, not only the convergence is an indication of the perfor-

mance of the algorithm. Indeed, for an accurate analysis it is also of interest to examine the

rate of convergence. The rate is intended to tell the analyst how close xk is likely to be to x∗

for a given cost of search. While blind random search is a reasonable algorithm when x is low

dimensional, it can be shown that the method is generally a very slow algorithm even for state

vector x of moderate dimension. This is a direct consequence of the exponential increase in

the size of the search space as N increases.

Blind search is the simplest random search in that the sampling generating the new x value

does not take account of where the previous estimates of x have been. The random search

algorithm below is slightly more sophisticated because the random sampling is a function of

the position of the current best estimate for the optimization vector x. In this way, the search
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is more localized in the neighborhood of that estimate, allowing for a better exploitation of

information that has previously been obtained about the shape of the optimization function.

The localized random search algorithm is presented below. This algorithm was described

by Matyas in [78]. Note that the use of the term “localized“ here pertains to the sampling

strategy and does not imply that the algorithm is only useful for local (versus global) opti-

mization in the sense described previously. In fact, the algorithm has also global convergence

properties.

2.2.2 Localized Random Search

1. (Initialization) Pick an initial candidate x̂0 ∈ S , either randomly or with prior informa-

tion. Set k = 0.

2. Generate an independent random vector dk ∈ Rp and add it to the current x value, x̂k.

Check if x̂k + dk ∈ S . If x̂k + dk /∈ S , generate a new dk and repeat or, alternatively,

move x̂k + dk to the nearest valid point. Let x̂new(k + 1) equal x̂k + dk ∈ S or the

aforementioned nearest valid point in S.

3. If

J(xnew(k + 1)) < J(x̂k) ⇒ x̂k+1 = xnew(k + 1) .

Else, set x̂k+1 = x̂k.

4. Stop if the maximum number of J evaluations has been reached or the user is otherwise

satisfied with the current estimate for x via appropriate stopping criteria; else, return to

Step 1 with the new k set to the former k + 1.

For continuous problems, [78] and others have used the (multivariate) normal distribution

for generating dk. However, the user is free to set the distribution of the deviation vector dk.

The distribution should have mean zero and each component should have a variation (e.g.,

standard deviation) consistent with the magnitudes of the corresponding x elements. This

allows the algorithm to assign roughly equal weight to each of the components of x as it

moves through the search space. Although not formally allowed in the convergence theory, it

is often advantageous in practice if the variability in dk is reduced as k increases. This could

be a fundamental point for the success of the optimization process because it allows one to

focus the search more tightly in the surrounding of the estimated location of the solution (as

expressed by the location of our current estimate x̂k).
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2.3 Stochastic Approximation

Stochastic approximation (SA) is a very important topic in the framework of stochastic opti-

mization. Robbins and Monro introduced in [99] SA as a general root-finding method when

only noisy measurements of the underlying function are available. Let us now discuss some

aspects of SA as applied to the more specific problem of root-finding in the context of opti-

mization. With a differentiable cost function J(x), recall the familiar set of N equations and

N unknowns for use in finding a minimum x∗:

g(x) =
∂J(x)

∂x
= 0 . (2.3)

Of course, side conditions are required to guarantee that a root of (2.3) is a minimum, not

a maximum or saddle point. Note that (2.3) is nominally only directed at local optimization

problems. There are a number of approaches for solving the problem represented by (2.3)

when direct and usually noisy measurements of the gradient g are available. These typically go

by the name of stochastic gradient methods (e.g., [111], Chap. 5). In contrast to the stochastic

gradient approach but consistent with the emphasis in the random search let us focus on SA

when only measurements of J are available. However, we consider noisy measurements of J .

To motivate the general Stochastic Approximation approach, first recall the familiar form for

the unconstrained deterministic steepest descent algorithm for solving (2.3):

x̂k+1 = xk − akg(x̂k) , (2.4)

where the gain (or step size) satisfies ak > 0 (see, e.g., [7]). This algorithm requires exact

knowledge of g. Steepest descent will converge to x∗ under certain fairly general conditions.

A notable variation of steepest descent is the Newton-Raphson algorithm (sometimes called

Newton’s method; e.g., [7]), which has the form

x̂k+1 = xk − akH(x̂k)
−1g(x̂k) , (2.5)

where H(·) is the Hessian (second derivative) matrix of J . Under more restrictive conditions,

the Newton-Raphson algorithm has a much faster rate of convergence to x∗ than steepest

descent. However, with its requirement for a Hessian matrix, it is generally more challenging

to implement.

Unlike the case of steepest descent, it is assumed here that we have no direct knowledge
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of the gradient g. The recursive procedure of interest is in the general SA form:

x̂k+1 = xk − akĝ(x̂k) , (2.6)

where ĝ(x̂k) is the estimate of g based on measurements of the cost function. Under appropri-

ate conditions, the iteration in (2.6) converges to x∗ in some stochastic sense (usually almost

surely).

In the next sections we discuss two popular SA methods for carrying out the optimization

task using noisy measurements of the objective function. The first one is the traditional finite-

difference SA method (FDSA); then, we describe more in detail the well known simultaneous

perturbation SA method (SPSA).

2.3.1 Finite Difference Stochastic Approximation

The more relevant part of (2.6) is the gradient approximation ĝk(x̂k). One of the classical

methods to form the approximation is the finite-difference method. Expression (2.6) with

this approximation represents the finite-difference SA (FDSA) algorithm. One-sided gradi-

ent approximations involve measurements J(x̂k) and J(x̂k + perturbation), while two-sided

approximations involve measurements of the form J(x̂k ± perturbation). The two-sided FD

approximation for use with (2.6) has the following form:

ĝk(x̂k) =


J(x̂k+ckε1)−J(x̂k−ckε1)

2ck...
J(x̂k+ckεN )−J(x̂k−ckεN )

2ck

 (2.7)

where εi denotes a vector with a 1 in the ith place and 0’s elsewhere and ck > 0 defines the

differences magnitude. The pair {ak, ck} are the gains sequences for the FDSA algorithm.

The two-sided form in (2.7) is the obvious multivariate extension of the scalar two-sided form

in [55]. The initial multivariate method in [13] used a one-sided approximation.

It is of fundamental importance to determine conditions such that x̂k as shown in (2.7)

converge to x∗ in some appropriate stochastic sense. The convergence theory for the FDSA

algorithm is similar to standard convergence theory for the root-finding SA algorithm of Rob-

bins and Monro ([99]). Additional difficulties, however, arise due to a bias in ĝ(x̂k) as an

estimator of g(x̂k). That is, standard conditions for convergence of SA require unbiased esti-

mates of g at all k. On the other hand, ĝ(x̂k) as shown in (2.7), is a biased estimator, with the

bias having a magnitude of order c2
k. We will not present here the details of the convergence

theory (see for example [66], [111]). However, let us note that the standard conditions on the
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gain sequences are:

ak > 0, ck > 0, ak → 0, ck → 0,
∞∑
k=0

ak =∞,
∞∑
k=0

a2
k

c2
k

<∞ . (2.8)

The choice of this gain sequence is critical to the performance of the method. Commons forms

are:

ak =
a

(k + 1 + A)α
, ck =

c

(k + 1)γ
, (2.9)

where the coefficients a, c, α and γ are strictly positive and A ≥ 0. The user must choose

these coefficients, a process usually based on a combination of the theoretical restrictions

above, trial-and-error numerical experimentation, and basic problem knowledge.

2.3.2 SPSA Algorithm

The FDSA algorithm is a standard SA method for carrying out optimization with noisy mea-

surement of the objective function. However, as the dimension N grows large, the number

of optimization measurements required may become prohibitive. That is, each two-sided gra-

dient approximation requires 2N measurements. The simultaneous perturbation SA (SPSA)

method [108] requires only two measurements per iteration to form a gradient approximation

independent of the dimension N . This point, very important also later in this thesis, deserves

a further discussion. The relevance of reducing the number of measurements can be crucial

not only when the state dimension is huge, but also in other cases when the energy consump-

tion is a strong constraint to take into account. And this is a very common situation in mobile

robotics and in particular using micro aerial vehicles. The reason is that an extra measurement

means, when the objective function is known only by sensors, an extra unnecessary movement

for the system.

For the two-sided SP gradient approximation, this leads to:

ĝk(x̂k) =


J(x̂k+ck∆k)−J(x̂k−ck∆k)

2ck∆k1...
J(x̂k+ck∆k)−J(x̂k−ck∆k)

2ck∆kN


=

J(x̂k + ck∆k)− J(x̂k − ck∆k)

2ck

[
∆−1
k1 ,∆

−1
k2 , . . . ,∆

−1
kN

]T (2.10)

where the zero-mean N−dimensional random perturbation vector:

∆k = [∆−1
k1 ,∆

−1
k2 , . . . ,∆

−1
kN ]T ,
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has a user-specified distribution satisfying certain conditions and ck is a positive scalar (as with

the FDSA). Because the numerator is the same in all N components of ĝk(x̂k), the number

of function measurements needed to estimate the gradient in SPSA is two, regardless of the

dimension N .

The choice of the distribution for generating the ∆k is important to the performance of the

algorithm. The standard conditions for the elements ∆ki are that the {∆ki} are independent

for all k, i, identically distributed for all i at each k, symmetrically distributed about zero and

uniformly bounded in magnitude for all k. In addition, there is an important inverse moments

condition:

E

(∣∣∣ 1

∆ki

∣∣∣2+2τ
)
≤ C

for some τ > 0 andC > 0. The role of this condition is to control the variation of the elements

of ĝk(x̂k). One simple and popular distribution that satisfies the inverse moments condition is

the symmetric Bernoulli ±1 distribution.

It has been proved that, under reasonably general conditions (see [108],[111]), the SPSA

and FDSA algorithms achieve the same level of statistical accuracy for a given number of it-

erations even though SPSA uses only 1/N times the number of function evaluations of FDSA

(since each gradient approximation uses only 1/N the number of function evaluations). An

intuitive explanation of this remarkable performance advantage for the SPSA is that the al-

gorithm provides a sort of average (controlled by the ak term) of the gradient approximation

across iterations. Since the SPSA gradient approximation is an almost unbiased estimator of

the gradient [110], the errors in the approximation tend to average out over the long run of

iterations. This 1/N advantage for SPSA can result of fundamental importance in savings

for a complex (large N ) application when the objective function measurements are costly to

obtain (See Fig. 2.2).

An accelerated form of SPSA is reported in [109]. This approach extends the SPSA algo-

rithm to include second-order (Hessian) effects with the aim of accelerating convergence in a

stochastic analogue to the deterministic Newton-Raphson algorithm. Like the standard (first-

order) SPSA algorithm, this second-order algorithm is simple to implement and requires only

a small number - independent of N - of cost function measurements per iteration (no gradient

measurements, as in standard SPSA). In particular, only four measurements are required to es-

timate the objective function gradient and inverse Hessian at each iteration (and one additional

measurement is sometimes recommended as a check on algorithm behavior). The algorithm

is implemented with two simple parallel recursions: one for x and one for the Hessian matrix

of J(x). The recursion for x is a stochastic analogue of the well known Newton-Raphson

algorithm for deterministic optimization. The recursion for the Hessian matrix is simply a
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Figure 2.2: Example of search path for SPSA and FDSA in a N = 2 problem ([110]).

recursive calculation of the sample mean of per-iteration Hessian estimates formed using SP-

types ideas.

In conclusion, the SPSA algorithm has proven to be an efficient optimization tool in many

complex applications. In addition, a large number of works on the theory and practice of

SPSA has accumulated, generalizing the convergence form of the algorithm and proving their

properties, giving instruction on how to set up and run the algorithm and describing numerous

successful applications.

2.3.3 Global optimization using SPSA

As we already stated, this chapter focuses only on local optimization and we do not address

our attention to global optimization algorithms which often are very costly, or even impos-

sible, to be implemented in real applications. However, we show here how is possible to

modify a SA algorithm to cope with local minima problems and why this kind of approaches

can outperform a deterministic method in these cases.

In several works (e.g. see [64], [35], [113] and [122]) has been proposed a strategy to

overcome possible local minima injecting random noise in the right-hand side of the basic SA

updating step in (2.6), or also in the deterministic version (2.4). For example, in the latter

case, it has the following form:

x̂k+1 = x̂k − akg(x̂k) + dkωk , (2.11)
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where dk are appropriately selected and ωk are random (usually Gaussian) p-dimensional

vector satisfying certain conditions. This strategy is based on the intuitive idea that injecting

such a random noise might allow the algorithm to escape x neighborhoods that produce local

minima of J(x), especially in the first iterations of the algorithms. It has been proven that with

some conditions on this noise, the algorithm converge, in some sense, to the global minimum

[64], [26]. On the other hand, a similar approach requires more tuning of the extra terms dk
and ωk, and retards the convergence in proximity of the solution.

The use of SPSA for global minimization among multiple local minima is discussed by

Maryak and Chin in [76], [77]. Firstly, they propose this common way of converting SA al-

gorithms to global optimizers through the additional “bounce“ introduced into the algorithm.

Then, the authors also show that basic SPSA without injected noise may, under certain con-

ditions, be a global optimizer. Formal justification for this result follows because the random

error in the SP gradient approximation operates in a way that is statistically equivalent to the

injected noise mentioned above. In other words we can express the standard SPSA recursion

as follows

x̂k+1 = x̂k − ak(g(x̂k) + ω∗k) , (2.12)

where ω∗k ≡ ĝk(x̂k) − g(x̂k) is the effective noise. Even if some important properties are

not verified in this case (ω∗k is not a vector of independent, identically distributed standard

Gaussian noise), under certain conditions, the basic SPSA algorithm can achieve global con-

vergence without injecting noise.

2.3.4 Constrained SPSA

The SPSA algorithm as here presented does not include constraints on the optimization vari-

ables. As previously stated, the presence of constraints can complicate significantly an op-

timization problem, but on the other hand dealing with unconstrained problems is almost

impossible in usual practical applications. We illustrate now the constrained version of the

SPSA algorithm, as presented by Sadegh in [102], which can deal with inequality constraints.

Hence, the problem it is called to solve is:

min
x∈S

J(x) (2.13)

where S is the feasible space and J(x) is continuously differentiable on an open set containing

S. We assume that the set

G = {x : qi(x) ≤ 0 , i = 1 . . . s}
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is non-empty and bounded, and the constraint functions qi(x) are continuously differentiable

∀i. At each x ∈ ∂S, where ∂ denotes the boundary, the gradients of the active constraints are

linearly independent. Furthermore, there exists an ε < 0 such that the set

G = {x : qi(x) ≤ r , i = 1 . . . s} (2.14)

is non-empty for ε ≤ r < 0, i.e. the set S has a non-empty interior.

Let x̂k denote the estimate for x at the k-th iteration, and for all x ∈ Rp let Υ(x) be

the nearest point to x on S, where the norm is defined as the usual Euclidean norm. So the

projection algorithm, extending the expression in (2.6), has the general form:

x̂k+1 = Υ(x̂k − akĝ(x̂k)) . (2.15)

In the unconstrained problem, ĝ has the standard form gSP as in (2.10). Such an approximation

cannot be directly adopted here, since it may happen that xk ∈ S but x̂k ± ck∆k /∈ S.

Especially, in the case xk ∈ ∂S, there is always a random direction ∆k such that x̂k± ck∆k /∈
S, no matter how small is the selected gain ck. Note that the case xk ∈ ∂S is expected to occur

frequently in the relevant situation where the true optimum belongs to the boundary of the

feasible domain. Except for simulation-based optimization cases, function evaluations might

involve real measurements and it is usually not allowed taking measurements outside the

feasible space. To overcome this problem, we further project x̂k onto a closed set Sk contained

within S to obtain Υk(xk), which will be used to compute an SP gradient approximation at

the k-th iteration. If the distance dk between the nearest points on ∂S and ∂Sk is equal to or

larger than ckα0, where α0 is a bound of the perturbation ∆k, then Υ(x̂k)±ck∆k ∈ S, ensuring

that the SP approximation to the gradient at Υ(x̂k) requires no function measurement outside

S. The SP gradient approximation at Υ(x̂k) obviously introduces an extra error term relative

to the SP gradient approximation at xk. However, if Sk → S as k → ∞ then continuous

differentiability of J(x) yields that the extra error term tends to zero.

For this algorithm, the following convergence proprieties hold. Let the previous as-

sumptions and the conditions of Lemma 1 of [108] hold where all regularity conditions on

J hold on an open set containing S. Then, under the projection algorithm (2.15), where

ĝ(x̂k) = gSPk (Υ(x̂k)), as k →∞
x̂k → KT a.s., (2.16)

where KT is the set of Kuhn-Tucker points, i.e. the set of points x where there are λi ≥ 0
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such that

g(x) +
∑

i:qi(x)=0

λi
dqi(x)

dx
= 0 .

Proof. Decompose the error

ĝk(x̂k)− g(x̂k) = gSPk (Υk(x̂k))− g(x̂k)

into a sum of

b1
k = E(gSPk (Υk(x̂k))|x̂k)− g(Υk(x̂k)) , (2.17)

ek = gSPk (Υk(x̂k))− E(gSPk (Υk(x̂k))|x̂k) ,
b11
k = g(Υk(x̂k))− g(x̂k) .

Identically to the proof of Lemma 1 and Proposition 1 in [108], it can shown that:

1. supk |b1
k|,∞ and b1

k → 0 almost surely as k → 0 ;

2. limk→0 Pr
(
supm≥k |

∑m
i=k aiei| ≥ η

)
for any η > 0, where Pr(·) denotes probability;

moreover, since S is bounded, Sk → S, and J(x) is continuously differentiable at all

x ∈ S;

3. supk |b11
k | <∞ and b11

k → 0 as k →∞.

Then, the assumption of Theorem 5.3.1 of Kushner and Clark [65] are satisfied and the result

follows. This result is of fundamental importance also for our intents. Indeed, as explained

in the next section, we adopt a similar strategy to make our algorithm able to deal with con-

strained problems.

We finally mention that the same assumptions we have made also hold for the basic (two-

sided) FDSA algorithm. Adjusting the Sk to the component-wise perturbation of the param-

eters for gradient approximations, it then follows that the same convergence proof holds for

the projection FDSA.

2.4 Conclusions

In this chapter we have introduced the important concept of stochastic optimization. A math-

ematical formulation of the problem has been provided and many fundamental aspects, prob-

lematics and limitations of these kinds of optimization problems have been discussed. Then,

a short review of the most common algorithms has been presented, to allow the reader to
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better understand the possible existing strategies to find a solution. A further aim of this

chapter was to give more emphasis on the characteristics which mainly differentiate algo-

rithms, especially for real implementations: concepts like scalability, adaptivity, number of

measurements (or robots’ displacements) required are of fundamental importance in mobile

cooperative robotics. A particular attention has been given to the SPSA algorithm, an ap-

proach very close to the algorithm we propose, describing its proprieties and advantages. In

the next chapter we will present in detail the stochastic optimization algorithm we adopted in

this thesis, the motivations of this choice and its main properties of convergence.



Chapter 3

CAO Algorithm

In this chapter we describe in detail the algorithm we use to obtain the main results of this the-

sis: the cognitive-based, adaptive optimization algorithm (CAO). Then, we also show how this

approach can be appropriately adapted and extended so that it is applicable to the problem of

multi-robot coverage treated in this thesis. The CAO methodology, which was recently intro-

duced by Kosmatopoulos in [63], [60], is a stochastic optimization algorithm which possesses

the capability of being able to efficiently handle problems for which an analytical expression

of the function to optimize is not available, but the numerical values of this function are avail-

able at each iteration of the algorithm employed to optimize it. As a result, it perfectly suits for

multi-robot optimal coverage in non-convex environments, where the analytical form of the

function to be optimized is unknown but the function is available for measurement (through

the robots’ sensors) for each multi-robot configuration. In the last section we will also discuss

the convergence properties of the algorithm, providing rigorous proofs.

We start quickly defining the optimization problem associated with the practical mission

we want to accomplish to motivate our choice of using this algorithm. Let us consider the

problem where M robots are involved in a coverage task, attempting to optimize a given

coverage criterion. The coverage criterion can be expressed like a function of the robots’

positions or poses (positions and orientations), i.e.,

Jk = J
(
x

(1)
k , . . . , x

(M)
k

)
(3.1)

where k = 0, 1, 2, . . . denotes the time-index, Jk denotes the value of the coverage criterion at

the k-th time-step, x(1)
k , . . . , x

(M)
k denote the position/pose vectors of robots 1, . . . ,M , respec-

tively, and J is a nonlinear function which depends, apart from the robots’ positions/poses,

on the particular environment where the robots live; for instance, in the 2D case the function

J depends on the location of the various obstacles that are present, while in the more com-

29
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plex 3D case with flying robots monitoring a terrain, the function J depends on the particular

terrain morphology.

Due to the dependence of the function J on the particular environment characteristics,

the explicit expression of the function J is not known in most practical situations; as a result,

standard optimization algorithms (e.g., steepest descent) are not applicable to the problem in

hand. However, in most practical cases, like the one treated in this thesis, the current value of

the coverage criterion can be estimated from the robots’ sensor measurements. In other words,

at each time-step k, an estimate of Jk is available through robots’ sensor measurements,

Jnk = J
(
x

(1)
k , . . . , x

(M)
k

)
+ ξk (3.2)

where Jnk denotes the estimate of Jk and ξk denotes the noise introduced in the estimation of

Jk due to the presence of noise in the robots’ sensors. Note that, even though it is natural

to assume that the noise sequence ξk is a stochastic zero-mean signal, it is not realistic to

assume that it satisfies the typical Additive White Noise Gaussian (AWNG) property even if

the robots’ sensor noise is AWNG: as J is a nonlinear function of the robots’ positions/poses

(and thus of the robots’ sensor measurements), the AWNG property is typically lost.

Apart from the problem of dealing with a criterion for which an explicit form is not known

but only its noisy measurements are available at each time, efficient robot coverage algorithms

have additionally to deal with the problem of restricting the robots’ positions so that obstacle

avoidance as well as robot formation constraints are met. In other words, at each time-instant

k, the vectors x(i)
k , i = 1, . . . ,M should satisfy a set of constraints which, in general, can be

represented as follows:

C
(
x

(1)
k , . . . , x

(M)
k

)
≤ 0 (3.3)

where C is a set of nonlinear functions of the robots’ positions/poses. As in the case of

J , the function C depends on the particular environment characteristics (e.g., location of

obstacles, terrain morphology) and an explicit form of this function may be not known in

many practical situations; however, it is natural to assume that the coverage algorithm is

provided with information whether a particular selection of robots’ positions/poses satisfies

or violates the set of constraints (3.3).

Given the mathematical description presented above, the multi-robot coverage problem

can be mathematically described as the problem of moving x(1)
k , . . . , x

(M)
k to a set of posi-

tions/poses that solves the following constrained optimization problem:

minimize (3.1)

subject to (3.3) .
(3.4)



31

As already noticed, the difficulty in solving, in real-time and in real-life situations, the con-

strained optimization problem (3.4) lies in the fact that explicit expressions for the functions

J and C are not available. To circumvent this difficulty, the CAO approach, appropriately

modified to be applicable to the problem in hand, is adopted. Indeed this algorithm is capable

of efficiently dealing with optimization problems for which the explicit forms of the objective

function and constraints are not known, but noisy measurements/estimates of these functions

are available at each time-step. In the following, we describe the CAO approach as applied

to a completely general multi-robot problem which involves the optimization of an objective

function.

It has to be emphasized that the CAO algorithm presented here is an extension of the CAO

versions presented and analyzed in [63, 60]. The main difference is that, while in these works

the authors address the unconstrained version of the problem (3.4), in the present thesis the

CAO approach of [63, 60] has to be extended so that it efficiently takes care of the constraints

(3.3). In order to do so, the CAO approach of [63, 60] has been modified by a special, but yet

simple, projection mechanism. Theorem 1 establishes that the introduction of such a projec-

tion mechanism does not destroy the nice properties of the unconstrained version of the CAO

approach; as a matter of fact, according to Theorem 1 presented below, the CAO algorithm

used in this thesis is proven to be approximately a projected gradient-descent algorithm, while

the ones of [63, 60] have been established to be approximate unconstrained gradient-descent

algorithms.

We finally mention that the CAO approach extends the popular Simultaneous Perturbation

Stochastic Approximation (SPSA) algorithm, extensively described in the previous chapter.

The difference between the SPSA and the CAO approach is that SPSA employs an approxima-

tion of the gradient of an appropriate objective function using only the most recent available

data, while the CAO approach employs linear-in-the-parameters approximators that incorpo-

rate information of a user specified time window of the past experiments together with the

concept of candidate perturbations for efficiently optimizing the unknown function. Com-

parative evaluations that were performed on complicated optimization problems have shown

that CAO exhibits significantly better convergence properties than SPSA [61, 63, 60]. More-

over, CAO was shown to exhibit satisfactory (local) convergence characteristics in particular

problems where SPSA failed to provide convergent solutions for any choice of its design

parameters, [61, 60].

It is important to note that both the CAO and the SPSA do not create an approximation

or estimation of the environmental characteristics, like for example the obstacles location

and geometry; instead, they on-line produce a only local approximation of the unknown cost

function the robots are called to optimize. For this reason, they require simple, and scalable,
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approximation schemes to be employed.

3.1 Preliminaries

3.1.1 Notation

A function f is said to be Cm, where m is a positive integer, if it is uniformly continuous

and its first m derivatives are uniformly continuous. The notation vec (A,B, . . . , ), where

A,B, . . . are scalars, vectors or matrices, is used to denote a vector whose elements are the

entries of A,B,C, . . . (taken column-wise). Z+,<+ denote the set of nonnegative integers

and nonnegative real numbers, respectively. For a vector x ∈ <n, |x| denotes the Euclidean

norm of x (i.e. |x| =
√
xτx), while for a matrix A ∈ <n2 , |A| denotes the induced matrix

norm of A. ∇J(x, θ) denotes the gradient of J(x, θ) with respect to x. Also, if xk, k ∈ Z+ is

a vector sequence, then x{`,...,k} for ` < k is used to denote the vectors x`, x`+1, . . . , xk. The

notation O(·) is used to denote the standard “order of“ notation. Finally, we will say that, see

[28], a function χ : <+ 7→ <+ is of class K∞ (symbolically, χ ∈ K∞) when χ is continuous,

strictly increasing, χ(0) = 0 and χ(r)→∞ as r →∞.

3.1.2 P`UAs

In this chapter, we make use of a special family of function approximators, the Polynomial-

like Universal Approximators (P`UAs) for the approximation/estimation of unknown func-

tions. For this reason, some preliminaries are needed regarding P`UAs and their approxima-

tion capabilities. More precisely, let F : Rn1 → Rn2 be an unknown function to be approxi-

mated over a compact set Ξ ⊂ Rn1 and let ‖F‖Ξ denote one of the following norms

‖F‖Ξ =

√∫
Ξ

|F |2 dx or ‖F‖Ξ = sup
x∈Ξ
|F (x)| .

A P`UA used for the approximation of F takes the form:

F̂ (x) = ϑτφ(x) = ϑτ1φ1(x) + ϑτ2φ2(x) + . . .+ ϑτLφL(x) (3.5)

where F̂ denotes the approximation of F , ϑ denotes the matrix of parameter estimates, L de-

notes the size of the P`UA estimator (3.5) and, finally, φ is a non-linear smooth vector function

of P`UA’s regressor terms; the entries of the regressor vector φ are multi-linear functions of

the entries S(xi), where S may be any smooth monotone function. In other words, the entries
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φi(x) of the regressor vector are of the form

φi(x) = S(xi)
di,1S(x2)di,2 . . . S(xn1)

di,n1 (3.6)

where di,j are nonnegative integers.

Let us fix a P`UA of the form (3.5) with L regressor terms of the form (3.6) and the

compact subset Ξ. Then, the optimal parameter matrix θ∗ and the optimal modeling error ν

with respect to L, φ, F and Ξ are defined as follows:

ϑ∗
4
= W (L, φ, F,Ξ)

4
= argmin

ϑ
‖F (x)− ϑτφ(x)‖Ξ (3.7)

and

ν
4
= N (L, φ, F,Ξ)

4
= F (x)− ϑ∗τφ(x) . (3.8)

Standard results in theory of approximation using polynomial-like function (see e.g. [75] and

the references therein), can be used to establish that the following property holds:

• Consider a P`UA of the form (3.5) with L regressor terms of the form (3.6). Then, there

exists a non-decreasing scalar function η : R→ R+ with η(0) = 0 such that:

‖ν‖Ξ ≤ η

(
1

L

)
. (3.9)

For convenience of notation, we will use the notation ν = Ω
(

1
L

)
to indicate that there exists a

bound of the form (3.9) that relates the magnitude of the modeling error term with the number

of regressor terms used. In other words: to indicate that the P`UA modeling error term ν can

become arbitrarily small by increasing the size of the P`UA.

3.2 The Proposed Algorithm

To formally describe the proposed algorithm, let us consider a general optimization problem

expressed by the objective function J which is known by means of measurements:

Jk ≡ J(xk, θk) , (3.10)

where xk denotes the value of the control parameters vector at the k-th algorithm iteration and

the vector θk may correspond to signals that are not available for measurements (e.g. sensor

noise, un-measurable disturbances, etc.) as well as signals that are available for measurements
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but they are not controllable (e.g. system states, measurable disturbance, references signals,

etc.).

Before to discuss the algorithm in details, we firstly present a formal definition of the two

basic criteria that will be used in this thesis for the evaluation of Cognitive-based Adaptive

Optimization algorithms.

Consider the unknown function J defined in (3.10) and consider an iterative algorithm

which, at the k-th iteration, calculates the current vector xk as a function of (a) the past val-

ues of the parameter vectors x0, x1, . . . , xk−1, (b) the past values of the objective function

measurements J0, J1, . . . , Jk−1, (c) some estimates/measurements θ̄0, θ̄1, . . . , θ̄k−1 of the past

values of the exogenous vectors θ0, θ1, . . . , θk−1, respectively and (d) a prediction θ̄k of the

current exogenous vector θk. We will say that the aforementioned algorithm is a (σ, τk)-

Adaptive Optimization algorithm, where σ is a nonnegative scalar and τk is a nonnegative

scalar sequence, if

1. lim supk 7→∞ |∇J(xk, θk)| ≤ σ if θk is a bounded deterministic vector sequence or

lim supk 7→∞E[|∇J(xk, θk)| |Gk−1] ≤ σ if θk is a stochastic vector sequence, where

Gk−1 is an appropriately defined σ-field (see e.g. Theorem 3 in sec. 3.3), and

2. Jk < Jk−1 + τk, ∀k ∈ Z+.

The criterion (1) is used to evaluate the steady-state characteristics of adaptive optimization

algorithms (how close to a local minimum of J the algorithm converges), while criterion (2) is

used for the evaluation of the worst-case transient performance characteristics of the adaptive

optimization algorithms. Apparently, one wishes to make σ and τk equal to zero; however,

since J is an unknown function and, moreover, in most applications the vectors θk are not

exactly known (or even worse: in some applications these terms are totally unknown) it is

impossible, in general, to make σ and τk equal to zero. In most applications, the best that an

AO algorithm can do is to guarantee that the magnitude of the terms σ and τk is upper bounded

by some bounds that depend on θk and the estimation/prediction accuracy θk − θ̄k.

Remark 1 [Objective function J] Note that criteria (1) and (2) are used in order to evalu-

ate the performance of an adaptive optimization algorithm and do not impose any assumption

on the unknown objective function J . �
Two further remarks are in order, before we proceed to the presentation of the proposed

algorithm.

Remark 2 [Availability of θ̄k] We assumed that some estimates/predictions θ̄0, . . . , θ̄k of

the exogenous vectors θ0, . . . , θk are available. If such estimates/predictions are not available,

as it happens in many practical applications, all the results of this thesis are still valid by

setting θ̄k = 0,∀k and cθ̄ = cθ, where cθ̄, cθ are defined in Theorem 3. �
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Remark 3 [τk for Standard SA Algorithms] In order to evaluate the performance of

standard SA algorithms under criterion (2), let us consider a case where |∇J(xk−1, θk)| = Bk;

then, it can be seen that in the case of standard SA algorithms, such as the SPSA or the

Random Directions Kiefer-Wolfowitz [65] algorithms, the term τk is given by:

τk = αkBk + b1α
2
k + b2

with b1, b2 being two positive terms that depend on θk and θk − θk−1. In other words, in the

case where xk−1 is quite far from a local minimum of J , standard SA algorithms cannot avoid

large “spikes” of Jk. �

We are now ready to proceed to the presentation of the proposed algorithm. As a first step,

the CAO approach makes use of a linear in the parameters function approximator in order to

generate, at each algorithm step k, an estimate of the unknown function J as follows:

Ĵk

(
x

(1)
k , . . . , x

(M)
k , θ

)
= ϑτkφ

(
x

(1)
k , . . . , x

(M)
k , θ̄

)
. (3.11)

Here Ĵk
(
x

(1)
k , . . . , x

(M)
k , θ

)
denotes the approximation/estimation of J generated at the k-th

time-step, θ̄ denotes an estimate of the actual exogenous vector θ, φ denotes the nonlinear

vector of L regressor terms, ϑk denotes the vector of parameter estimates calculated at the

k-th time-instant and L is a positive user-defined integer denoting the size of the function

approximator (3.11). The vector φ of regressor terms must be chosen so that it satisfies the so-

called Universal Approximation Property [87], i.e. it must be chosen so that the approximation

accuracy of the approximator (3.11) is an increasing function of the approximator’s size L.

Polynomial approximators, radial basis functions, kernel-based approximators, etc, are known

to satisfy such a property (see [87] and the references therein).

The parameter estimation vector ϑk is calculated according to

ϑk = argmin
ϑ

1

2

k−1∑
`=`k

(
Jn` − ϑτφ

(
x

(1)
` , . . . , x

(M)
` , θ̄`

))2

(3.12)

where `k = max{0, k − L − Th} with Th being a user-defined nonnegative integer which

defines the memory of the system. Standard least-squares optimization algorithms can be

used to obtain a solution of (3.12).

To better understand the usage of the estimator (3.11) within the proposed algorithm, as-

sume for the time-being that the sequence θk is exactly known (i.e. θk ≡ θ̄k,∀k); then, as

previously discussed, if the regressor vector φ is chosen to belong to a family of Universal
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Approximators (e.g. polynomials, neural networks, etc) it can be seen using standard argu-

ments (see e.g. [62, 48, 47, 75] and the references therein) that the choice for ϑk according to

(3.12) guarantees that for any bounded x ∈ <nx ,

J(x, θk) = Ĵk(x, θ̄k) + νk(x, θ̄k) , (3.13)

where νk is a term that can be made arbitrarily small (for k large enough) provided that:

• the “size” L of the regressor vector φ is large enough,

• the vector sequence

φk ≡ φ(xk, θ̄k)

satisfies a Persistence of Excitation (PE) condition, see e.g. [50]. Long-standing results in

the theory of adaptive estimation and system identification (see e.g. [50] and the references

therein) have established that PE is sufficient as well as necessary for the convergence of

the parameter estimates ϑk to their optimal values; if a PE condition does not hold then the

term νk in (3.13) may be particularly large no matter what the choice for L is. We close this

parenthesis by noting that, since in the general case the exogenous vector θk is not exactly

known, equation (3.13) should be replaced by:

J(x, θk) = Ĵk(x, θ̄k) + νk(x, θ̄k) + χ1

(
θk − θ̄k

)
, (3.14)

where χ1 ∈ K∞. The proposed algorithm attempts to construct a sequence of system vectors

xk which guarantees, on the one hand, that the vector sequence φk satisfies a PE condition,

and, on the other hand, that at each algorithm iteration the new system vector xk leads to a non-

negligible decrease of the estimate Ĵk (with respect to Ĵk−1); if φk satisfies a PE condition then

Ĵk will be an effective approximation of Jk – see eq. (3.14) – and thus the choice of xk that

leads to a non-negligible decrease of the estimate Ĵk is most likely to lead to a non-negligible

decrease of Jk, too.

We are now ready to describe the procedure used by the proposed algorithm for choosing

xk: let αk be a user-defined scalar positive sequence and

∆x
(j)
k ∈ {−αk,+αk}nx , j ∈ {1, . . . , N}

denote a collection ofN ≥ nx vectors of candidate perturbations, satisfying ∀j ∈ {1, . . . , N}

rank
[
φmax{0,k−L+1}, . . . , φk−1, φ(xk−1 ±∆x

(j)
k , θ̄k)

]
= min{k − 1, L} (3.15)
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and ∣∣∣∣[∆x(1)
k , . . . ,∆x

(K)
k

]−1
∣∣∣∣ ≤ Ξ

αk
, (3.16)

where Ξ is a finite positive constant independent of αk. Let also (here ei is defined as eii = 1

and eij = 0, j 6= i)

∇̂Jk =
vec
(
Ĵk(xk−1 + ckei, θ̄k)− Ĵk(xk−1, θ̄k)

)
ck

, (3.17)

where ck is a user-defined positive scalar sequence. Then ∆xk ≡ xk− xk−1 is chosen accord-

ing to:

∆xk = arg min
±∆x

(j)
k ,j∈{1,...,N}

(
±∆x

(j)
k

)τ
∇̂Jk . (3.18)

The key idea of the proposed algorithm is to use the approximation Ĵk to estimate the effect

of the candidate perturbations ±∆x
(j)
k to the objective function and choose the perturbation

that leads to the maximum (estimated) decrease of the objective function. This is realized in

the proposed algorithm through the decision mechanism (3.18), which chooses one among the

candidate perturbations±∆x
(j)
k . The motivation behind using (3.18) is that, if Ĵk as calculated

in (3.11), (3.12) is an accurate estimate of J (i.e. Ĵk ≈ J), then ∇̂Jk ≈ ∇J in which case

it is straightforward for someone to see that ∆xk generated according to (3.18) leads to a

non-negligible decrease of the objective function.

Condition (3.15) is a standard Persistence of Excitation condition while condition (3.16)

is imposed to make sure that there exists at least one candidate perturbation±∆x
(j)
k that leads

to a non-negligible decrease of J . Note that condition (3.15) renders the problem of finding

∆x
(j)
k a computationally hard problem. Fortunately, as we will see in Proposition 1, under

appropriate selection of the regressor vector φ and the random generator for producing ∆x
(j)
k ,

there is no practical need to check the computationally “heavy” condition (3.15).

For clarity’s sake, let us come back to our particular coverage problem expressed by the

objective function (3.1) and we include now also the set of constraints (3.3). In this case, if we

assume that the optimization function is only dependent on the state vector x (i.e. the robots’

positions), we can express in a more compact form the fundamental steps of the proposed

algorithm. As soon as the estimator Ĵk is constructed according to (3.11), (3.12), the set

of new robots’ positions/poses is selected as follows: firstly, a set of N candidate robots’
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positions/poses is constructed according to1

xi,jk = x
(i)
k + αkζ

i,j
k , i ∈ {1, . . . ,M}, j ∈ {1, . . . , N} , (3.19)

where ζ i,jk is a zero-mean, unity-variance random vector with dimension equal to the dimen-

sion of x(i)
k and αk is a positive real sequence which satisfies the conditions:

lim
k→∞

αk = 0,
∞∑
k=1

αk =∞,
∞∑
k=1

α2
k <∞ . (3.20)

Among all N candidate new positions x1,j
k , . . . , xM,j

k , the ones that correspond to non-feasible

positions/poses, i.e., the ones that violate the constraints (3.3), are projected onto the feasible

space and then the new robots’ positions/poses are calculated as follows:[
x

(1)
k+1, . . . , x

(M)
k+1

]
= argmin

j ∈ {1, . . . , N}
xi,jk constrained

Ĵk

(
x1,j
k , . . . , xM,j

k

)
.

The idea behind the above logic is simple: at each time-instant a set of many candidate

new robots’ positions/poses is generated. The candidate, after the projection of those that do

not provide with a feasible solution, that corresponds to the best estimated value Ĵk of the

coverage criterion is selected as the new set of robots’ positions/poses. The main steps of the

CAO algorithm are summarized in Fig. 3.1. The random choice for the candidates is essential

and crucial for the efficiency of the algorithm, as such a choice guarantees that Ĵk is a reliable

and accurate estimate for the unknown function J (see [63, 60] for more details). On the

other hand, the choice of a slowly decaying sequence αk, a typical choice of adaptive gains

in stochastic optimization algorithms (see e.g., [8]) is essential for filtering out the effects

of the noise term ξk in eq. (3.2). The next theorem easily summarizes the properties of the

constrained CAO algorithm described above, as it is employed in this thesis; the rigorous

proof of this theorem is provided in the next section, after the proof of convergence for the

unconstrained version of the algorithm.

Theorem 1 Let x(1∗), . . . , x(M∗) denote any – local – minimum of the constrained optimiza-

tion problem (3.4). Let N ≥ 2M × dim
(
x

(i)
k

)
and, moreover, the vector φ satisfy the Uni-

versal Approximation Property. Assume also that the functions J , C are either continuous or

1According to [63, 60] it suffices to choose N to be any positive integer larger or equal to 2×[the num-
ber of variables being optimized by CAO]. In our case the variables optimized are the robot positions/poses
x
(1)
k , . . . , x

(M)
k and thus it suffices for N to satisfy N ≥ 2M × dim

(
x
(i)
k

)
.
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Numerical values of J available

Approximator
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Constraints

Candidate state vectors are tested

New state vector

CAO ALGORITHM

Figure 3.1: Main steps of the Cognitive-based Adaptive Optimization algorithm.

discontinuous with a finite number of2 discontinuities. Then, the CAO-based multi-robot cov-

erage algorithm as described above guarantees that the robots’ positions/poses x(1)
k , . . . , x

(M)
k

will converge to one of the local minima x(1∗), . . . , x(M∗) almost surely, provided that the size

L of the regressor vector φ is larger than a lower bound L̄.

Remark 4 [ζ i,jk vector] Strictly speaking, Theorem 1 is valid as long as the zero-mean,

unity variance vectors ζ i,jk satisfy some extra technical conditions (which are satisfied if e.g.,

ζ i,jk are Bernoulli random vectors). However, extensive simulation investigations have shown

that, in practice, Theorem 1 is still valid even if the random vectors ζ i,jk are Gaussian ran-

dom vectors, despite the fact that such a choice does not satisfy the aforementioned technical

conditions. �
Remark 5 [Lower bound for L] As already noticed, the CAO algorithm requires only a

2Note that the family of “discontinuous functions with a finite number discontinuities” corresponds to the
family of functions that can be approximated with arbitrary accuracy by continuous ones [51]. For instance,
terrains with discontinuities along e.g., a closed or open curve belong to this family of functions and so do the
corresponding functions J and C.
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local approximation of the unknown functionJ and as a result the lower bound L̄ has not to be

large (as opposed to methods that construct a global approximation of the unknown function

J ). Although, there exist no theoretical results for providing the lower bound L̄ for the size

of the regressor vector φ, practical investigations on many different problems indicate that for

the choice of the regressor vectors such a bound is 2×[number of variables being optimized

by CAO]; see [61, 63, 60] for more details. �

Remark 6 [SPSA algorithm] As an alternative to the CAO approach, the SPSA approach

[108] may be employed in multi-robot coverage applications. According to the SPSA ap-

proach, the robot positions/poses are updated according to x
(i)
k+1 = x

(i)
k + βkζ

i
k , if k is even

x
(i)
k+1 = x

(i)
k + γk

Jnk−J
n
k−1

ζ
(i)
k−1

, if k is odd
(3.21)

where ζ(i)
k are zero-mean, unity-variance random vectors and βk, γk are slowly decaying se-

quences (similar as the sequence αk). The SPSA algorithm is computationally simpler than the

CAO one, but it does not perform as efficient as the CAO approach as have been demonstrated

in a variety of approaches, see [61, 63, 60]. However, extensive simulation experiments have

demonstrated that a hybrid scheme which uses SPSA at the first 10-20 time-steps and then

switches to the CAO algorithm can have significant improvements over schemes that employ

only the CAO algorithm. This is due to the fact that CAO, at its initial steps, may preserve

a poor performance because it takes some iterations for the CAO estimator (3.11) in order to

come up with a reliable estimate Ĵk of the unknown optimization function J . �

Remark 7 [Global optimization algorithms] We close this section by mentioning that

similarly to the proposed approach, global optimization methods such as simulated annealing

and genetic algorithms do not require that the explicit form of the function J is known. How-

ever, simulated annealing, genetic algorithms and other similar global optimization methods

require that a large amount of different combinations of robots’ positions is being evaluated

all over the robots’ application area. Such a requirement renders these methods practically

infeasible as a huge amount of time and energy would have to be spent in order for the robots

to visit many different locations all over their application area. Nevertheless, attempting to

globally optimize surveillance coverage is practically infeasible as it is an NP-hard problem

whose solution requires dense discretization over the space of all possible team configurations

and evaluation of all points of the discretized space. �
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3.3 Convergence Properties

We present here the rigorous enunciation and proof of the convergence properties of the CAO

algorithm. The first main result establishes satisfactory transient performance and conver-

gence of the proposed algorithm in the case of (uniformly bounded) deterministic exogenous

signals for an unconstrained problem. The two following theorems, Theorems 2 and 3, have

been presented by Kosmatopoulos in [63]. As we explain at the end of this section, the proof

for constrained problem, i.e. the proof of Theorem 1, is an extension of the following results.

Theorem 2 Let

ϑ∗ = arg min
ϑ

sup
θ:|θ|≤cθ,x:|x|≤cx

|J(x, θ)− ϑτφ(x, θ)|

and ν(x, θ) = J(x, θ)− ϑ∗τφ(x, θ),

ν = sup
θ:|θ|≤cθ,x:|x|≤cx

|J(x, θ)− ϑτφ(x, θ)|

and suppose that there exist finite nonnegative constants cθ, cθ̄, c∆θ, cx such that, for each

k ∈ Z+, the following hold:

(A1) |θk| < cθ, |θk − θ̄k| < cθ̄, |θk − θk−1| < c∆θ.

(A2) The proposed algorithm admits a solution satisfying (3.15), (3.16).

(A3) The proposed algorithm guarantees that |x| ≤ cx.

(A4) The user-defined sequences αk, ck satisfy αk ≥ α > 0, c̄ > ck ≥ c > 0.

Then, the proposed algorithm is a (σ̄, τ̄k)-Adaptive Optimization algorithm with

σ̄ =
1

α
max {δ1, δ2} , τ̄k =

{
0 if |∇J(xk−1, θk)| > εk

δ3,k otherwise

where:

δ1 = c̄O(1) + χ2(ν) + χ3(cθ̄),

δ2 = α2O(1) + χ4(c∆θ),

εk =
1

αk
max{ckO(1) + χ2(ν) + χ5(ηk) + χ3(

∣∣θ{`k,...,k} − θ̄{`k,...,k}∣∣),
α2
kO(1) + χ4(|θk − θk−1|)},

δ3,k = αkεk + χ4(|θk − θk−1|) + χ3(|θ{`k,...,k} − θ̄{`k,...,k}|)α2
k,

χi, i = 2, . . . , 5 ∈ K∞

and ηk is a bounded term satisfying ηk = 0,∀k ≥ L.
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Proof. Let Πk ≡ ∇J(xk−1, θk) and note that

J(x, θ) = (ϑ∗)τ φ(x, θ̄) + ν̄(x, θ, θ̄) , (3.22)

where

ν̄(x, θ, θ̄) = (ϑ∗)τ
[
φ(x, θ)− φ(x, θ̄)

]
+ ν(x, θ) . (3.23)

Using condition (3.15) it can be seen that the solution Ĵk calculated according to (3.11), (3.12)

satisfies

J(x, θ) = Ĵk(x, θ̄) + µk(x, θ, θ̄) , (3.24)

where

µk(x, θ, θ̄) = ¯̄νkφ(x, θ̄) + ν̄(x, θ, θ̄) + ητkφ(x, θ̄)

with
¯̄νk = O

(
ν̄(θ{`k,...,k}, θ{`k,...,k}, θ̄{`k,...,k})

)
and ηk = 0,∀k ≥ L; using (3.24) we directly obtain that:

∂

∂xi
J(x, θ)− 1

ck
Ĵk(x+ ckei, θ̄) +

1

ck
Ĵk(x, θ̄)

=

∫ 1

0

(
∂

∂xi
J(x, θ)− ∂

∂xi
J(x+ sckei, θ)

)
ds

+
1

ck
(µk(x+ ckei, θ, θ̄)− µk(x, θ, θ̄)) ≡ εk,i(x, θ, θ̄) . (3.25)

Using this equality and (3.18), we readily obtain that:

∆xτkΠk = arg min
±∆x

(j)
k

[(±∆x
(j)
k )τ (Πk − εk)]τΠk ≡ Hk , (3.26)

where εk = vec(εk,i(xk−1, θk, θ̄k))), which implies that there exists a χ̄1 ∈ K∞ such that:

|Πk| > ε̄k ≡ χ̄1

(
max
i

∣∣vec
(
εk,i(xk−1, θk, θ̄k)

)∣∣)
⇒ Hk = min

±∆x
(j)
k

[(
±∆x

(j)
k

)τ
Πk

]
≡ H̄k ≤ −

αk
Ξnx
|Πk| , (3.27)
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where the last inequality was obtained by using (3.16). Therefore, using standard Taylor

expansion arguments (see e.g. Prop. 1, [8]) it can be seen that |Πk| > ε̄k

⇒ Jk ≤ Jk−1 + ∆xτkΠk + γ1(θk−1)nxα
2
k + γ2(|θk, θk−1|)

≤ Jk−1 −
αk

Ξnx
|Πk|+ γ1(θk−1)nxα

2
k + γ2(|θk − θk−1|) (3.28)

for some positive function γ1 and γ2 ∈ K∞, or, equivalently,

Jk ≤ Jk−1 − Ik
αk

Ξnθ
|Πk|+ (1− Ik) ε̄kαk

√
nx

+γ1(θk−1)nxα
2
k + γ2(|θk − θk−1|) (3.29)

where Ik is defined as Ik = 1 if |Πk| > ε̄k and Ik = 0, otherwise. Using the above inequality

together with (A1), the fact that J is at-least C2 and the definition of ε̄k, µk we can readily

establish the proof after some lengthy but quite straightforward calculations. 4
Roughly speaking, Theorem 2 states that, in the case of deterministic exogenous disturbances

and without constraints, the terms σ̄ and τ̄k are, in the worst case, proportional to:

(a) the approximation accuracy ν of the function approximator (3.11), which can be made

arbitrarily small (see Proposition 1),

(b) the estimation accuracy θk − θ̄k,

(c) the exogenous signals’ “velocity” θk − θk−1.

Additionally, the term τ̄k is also affected by an extra term (the term ηk) which becomes

negligible for k ≥ L; the presence of ηk is unavoidable since, initially, the function J is

totally unknown and it takes some iterations for the proposed algorithm to produce an effective

estimate of this function. Next we present some comments regarding assumptions (A1)-(A4).

Remark 8 [Assumptions (A1)-(A4)] Assumption (A1) requires that the exogenous signal

θk is uniformly bounded; note that the proposed algorithm does not require knowledge of the

bounds cθ, cθ̄, c∆θ. Assumption (A2) is quite difficult to verify for a general choice of the

regressor vector φk; however, as we establish in Proposition 1, if φk is chosen to be either

a polynomial or a neural network of a specific structure, then assumption (A2) is trivially

satisfied if the candidate perturbations ∆x
(j)
k are Bernoulli-like random terms. Assumption

(A3) is imposed in order to avoid lengthy technicalities in the presented proof. It is not difficult

for someone to see that all of the results of this chapter are valid if we remove assumption

(A3) and use a projection mechanism as in [65] for keeping xk bounded; similarly to [65] it

can be seen that the introduction of such mechanisms does not destroy the performance and

convergence properties of the proposed algorithm. Finally, assumption (A4) is a standard SA

assumption on updating schemes with fixed step-sizes (see e.g. [14]).
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The next Theorem establishes the properties of the proposed algorithm if we remove as-

sumption (A1) on boundedness of the exogenous signal θk and assume instead that θk and

θk− θ̄k are random vectors (not necessarily uniformly bounded) that are zero-mean with finite

variance (with respect to an appropriately defined σ-field). Note that in this case the sequences

αk, ck should be chosen to be slowly decaying to zero terms.

Theorem 3 Suppose that (A2)-(A3) hold and additionally that the following assumptions

hold:

(A1′) E
[
θk − θ̄k|Gk−1

]
= 0, E [θk|Gk−1] = 0, E

[
|θk|2 |Gk−1

]
< ∞, where Gk denotes the

σ-field generated by {θ0, . . . , θk, θ̄0, . . . , θ̄k,∆x
(j)
0 , . . . ,∆x

(j)
k }.

(A4′) The user-defined sequences αk, ck satisfy

lim
k→∞

αk = 0,
∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞,

∞∑
k=0

αkck <∞, lim
k→∞

αk/ck = 0 . (3.30)

Suppose moreover that Th is chosen according Th = k − L̄ where L̄ is3 any positive integer.

Finally, let ϑ̃∗k, ν̃k be defined according to

ϑ̃∗k = arg min
ϑ
E
[
|J(xk, θk)− ϑτφ(xk, θk)|2 |Gk−1

]
ν̃k(x, θ) = sup

`∈{`k,...,k}

∣∣∣J(x`, θ`)−
(
ϑ̃∗k

)τ
φ(x`, θ`)

∣∣∣
Then, the proposed algorithm is a (σ̃, τ̃k) - Adaptive Optimization algorithm with

σ̃ = E [χ6 (ν̃k) |Gk−1] , χ6 ∈ K∞ (3.31)

and τ̃k is defined as τ̄k in Theorem 2 by replacing αk by some positive constant α ∈ (0, α0)

and ν by ν̃k.

Proof. The analysis of the proof of Theorem 2 leading to inequality (3.29) is valid here as

well (by replacing ϑ∗, ν in the proof of Theorem 2 by ϑ̃∗k, ν̃k defined in Theorem 3, respec-

tively). Taking conditional expectations on (3.29) and using (A1′) and some lengthy, but quite

3Due the fact that αk 7→ 0, it is necessary to impose condition Th = k − L̄; if this condition does not hold
then (A2) will not hold as well since (3.15) will not admit a bounded solution for k 7→ ∞.
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straightforward calculations, we obtain that (here, for notational convenience we use the no-

tation Ek−1[ · ] ≡ E[ · |Gk−1])

Ek−1 [Jk]

≤ Jk−1 − Ek−1

[
Ik

αk
Ξnx
|Πk|

]
+ γ̄1α

2
k + Ek−1 [(1− Ik) ε̃kαk]

≤ Jk−1 −Xk + γ̄1α
2
k + Ek−1 [(1− Ik)]αkckO(1) (3.32)

+Ek−1

[
(1− Ik)αk

(
ψk(θ{`k,...k})− ψk(θ̄{`k,...k})

)]
where (note that the term γ̄1 is bounded since, from (A1′), Ek−1

[
|θk|2

]
<∞)

γ̄1 = nθEk−1 [γ1(θk)] ,

the term ε̃k is defined similar to the term ε̄k in the proof of Theorem 2, χ̄2 ∈ K∞, ψk(·) is an

appropriately defined function (that depends on φ(·, ·)) and Xk = Yk if Yk ≥ 0 and Xk = 0,

otherwise, with

Yk = Ek−1

[
Ik

αk
Ξnx
|Πk| − (1− Ik)αkχ̄2(ν̃k)

]
. (3.33)

Assumption (A4′) guarantees that
∑∞

k=0 γ̄1α
2
k and

∑∞
k=1Ek−1 [(1− Ik)] αkckO(1) converge;

moreover, using Ek−1[θk − θ̄k] = 0 (see assumption (A1′)), we have that:

Ek−1

[
(1− Ik)αk

(
ψk(θ{`k,...k})− ψk(θ̄{`k,...k})

)]
= 0 . (3.34)

Therefore, application of Robbins and Siegmud theorem [100] on nonnegative almost-super-

martingales to inequality (3.32), establishes that
∑∞

k=0Xk converges. Standard arguments

can be now applied (see e.g. proof of part (b) of Proposition 3.1 of [22]) to show that the

convergence of
∑

kXk together with the facts that
∑∞

k=0 αk =∞ and∇J is at least C1 imply

lim
k→∞

1

αk
Xk = 0 ,

or, equivalently that

lim
k→∞

1

αk
Yk ≤ 0 ;

the last inequality implies that

lim
k→∞

Ek−1 [(1− Ik)] < 1
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unless ν̃k → 0, and thus

lim
k→∞

Ek−1 [Ik] > 0 ,

which, in turn, implies that for

k 7→ ∞, Ek−1

[
1

Ξnx
|Πk|

]
≤ Ek−1 [χ̄2(ν̃k)]

which establishes (3.31). The rest of the proof is similar to that of Theorem 2. 4
Theorem 3 establishes that in the case θk is stochastic vector sequence satisfying (A1′)

then Jk preserves similar transient performance properties as in the case of deterministic se-

quences; moreover Theorem 3 establishes that the parameter vector sequence xk converges

(with probability 1) arbitrarily close to a local minimum of J (under appropriate selection of

the approximator (3.11) – see Proposition 1 below).

Remark 9 [Assumptions (A1′), (A2′)] Assumption (A1′) is also a quite standard assump-

tion in SA (see e.g. [8]). Assumption (A2′) is a standard assumption on SA algorithms with

vanishing gains.

Theorem 1 [Constrained optimization problem] - Proof. So far, we have proved the

convergence properties of the CAO algorithm only for its unconstrained version. This was

just for simplicity’s sake and the extension for the constrained algorithm, used in this thesis,

is now straight. Hence, the aim is to provide a proof of the Theorem 1, which is a contribution

of this thesis, presented in the previous section.

Let xk denotes the augmented vector of all robots’ positions/poses at time-instant k, i.e.,

the entries of xk are the entries of all vectors x(1)
k , . . . , x

(M)
k . Using similar arguments as those

of the previous theorems, it can be seen that at each iteration of the CAO-based algorithm

described above, the new vector xk+1 satisfies:

xk+1 = ΥC {xk − αk (c∇J(xk) + ek + bk)} , (3.35)

where c is a positive constant; ΥC{·} denotes the projection operator onto the set S =

{X : C (X) ≤ 0} defined as follows: for any x not satisfying the constraint C (X) ≤ 0, the

point x̃ = ΠC{x} is the nearest point to x on S, where the norm is defined in the usual Eu-

clidean norm; and ek, bk are two terms that are defined similarly to the respective terms in

section III of [108]. This extension is similar to that one for the constrained SPSA algorithm

presented by Sadegh in [102] (see section 2.3.4). By using the same arguments, as those in

the proof of Proposition 1 of [102], it can be established that the above equation converges

almost surely to one of the local minima of the constraint minimization problem (3.4).
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In the next proposition we show that if the estimator (3.11) is chosen to be either an

Incremental-Extreme Learning Machine (I-ELM) [48, 47] or a Polynomial-Like Universal

Approximator (PLUA) [62] and, moreover, the candidate perturbations ∆θ
(j)
k are Bernoulli-

like random terms, then there is no need to check the computationally heavy condition (3.15);

moreover, Proposition 1 establishes that the terms ν, E [χ6 (ν̃k) |Gk−1] defined in Theorems 2

and 3, respectively, can be made arbitrarily small by increasing the “size“ L of the estimator

(3.11).

Proposition 1 Suppose that the regressor vector φ is selected according to one of the follow-

ing:

(I-ELM) φi(x, θ) = S(Aτi vec(x, θ) + bi), i ∈ {1, . . . , L}, where S(·) is an invertible smooth

nonlinear function and the vectors Ai and the real parameters bi are randomly generated

(with Ai, bi being zero-mean), or

(PLUA) φi(x, θ) = S(x1)d
x
i,1 . . . S(xnx)

dxi,nx S̄(θ1)d
θ
i,1 . . . S̄(θnθ)

dθi,nθ , i ∈ {1, . . . , L}, where S

is any smooth monotone function and dxi,j, d
θ
i,j are nonnegative integers such that

S̄(θ̄k,1)d
θ
i,1 . . . S̄(θ̄k,nθ)

dθi,nθ 6= 0, ∀k, i

and moreover the integers dxi,j are such that

∃j ∈ {1, . . . , nx} : dxi,j > 0, ∀i ∈ {1, . . . , L} .

Moreover assume that ∆x
(j)
k are random zero-mean vectors in {−αk,+αk}nx satisfying4

(3.16). Then, condition (3.15) is satisfied with probability 1. Moreover, the terms ν(·) and

E [χ6 (ν̃k) |Gk−1] defined in Theorems 2 and 3, respectively, satisfy for χ7, χ8 ∈ K∞

ν = χ7 (1/L) , E [χ6 (ν̃k) |Gk−1] = χ8 (1/L) (3.36)

Proof. We provide with a sketch of the proof only for the I-ELM case; the proof for the

PLUA case is similar. Since S is invertible, if (3.15) does not hold then there exists a nonzero

vector b such that

bτ
(
A vec

(
∆x`, θ̄`

)
+ b
)

= 0, ` ∈ {k − Lk + 1, . . . , k − 1},

bτ
(
A vec

(
±∆x

(j)
k , θ̄k

)
+ b
)

= 0 ,

4A choice ∆x
(j)
k = αk∆

(j)
k where ∆

(j)
k are Bernoulli random vectors satisfies (3.16); see also [9] for con-

struction of zero-mean random or random-like sequences that satisfy condition (3.16).
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where A denotes the matrix whose rows are the vectors Aτi and b = vec(bi). Since Ai, bi and

∆x
(j)
k are randomly chosen, it is quite straightforward to show that the probability a nonzero

vector b to satisfy the above system of equations is zero. The proof of the first equation in

(3.36) is based on standard approximation results over compact spaces (see e.g. [48] for the

case of I-ELM and [62] for the case of PLUA), while the proof of the second equation in

(3.36) can be obtained using the approximation results over unbounded spaces developed in

[75]. 4
We close this section by introducing some further remarks regarding the choice of the pro-

posed algorithm’s design parameters:

• Contrary to other applications of function approximators where the size L of an approx-

imator of the form (3.11) should be significantly large to guarantee that it can approximate

nonlinear functions over the whole input space, this is not the case here: in the case of the

proposed algorithm it is sufficient that the approximator has enough regressor terms to come

up with an approximation of the unknown function J over a small neighborhood around the

most recent vector xk.

• Having the above in mind, a relatively small (as compared to other applications of func-

tion approximators) number L of regressor terms should suffice for efficient algorithm perfor-

mance; similarly, since the approximation required is over a small neighborhood of the current

value of xk a small time-window (determined by the parameter Th in (3.12)) should be chosen.

As a matter of fact, in all practical applications of algorithms using functions approximators

for optimization purposes, (see [61]) as well as in various applications where we tested the

proposed algorithm, a choice for L, Th according to L ≈ 1/2(nx +nθ), Th = 50 was found to

produce quite satisfactory results. Moreover, in the case where a polynomial approximator is

used, we found that it suffices to use a polynomial approximator of maximum order equal to 3

with randomly chosen polynomial terms at each algorithm iteration (i.e.
∑

j d
x
i,j+

∑
` d

θ
i,` = 3

with dxi,j, d
θ
i,j randomly chosen).

• Finally, for the choice of the step-sizes αk, ck similar rules as the ones apply in standard SA

algorithms can be used.

3.4 Conclusions

In this chapter the CAO algorithm has been presented. This new stochastic optimization

method will be used to solve all the main problems considered in this thesis. For this reason

an accurate description of all the steps and a mathematically rigorous proof of its convergence

properties has been provided. In the following chapters we will present and analyze the differ-
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ent possible coverage criteria, which are the objective functions the CAO algorithm is called

to optimize. In particular, in the next chapter we consider the easier case of a 2D region and

we show the first simulations results obtained by using the proposed method. We finally em-

phasized that this algorithm, as it has been possible to see from the description provided in

this chapter, can be applied to a very wide class of problems. The main problem tackled in this

thesis, the optimal surveillance coverage, is only one of the several possible applications and

in chapter 7 we will prove this statement approaching a completely different robotic problem

with the same method.
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Chapter 4

Optimal Surveillance Coverage - 2D

The goal of this chapter is to apply the stochastic optimization algorithm presented in the pre-

vious chapter to the main problem tackled in this thesis: the optimal cooperative surveillance

coverage. Even if the ultimate objective is to develop a strategy to deploy a swarm of micro

aerial vehicles in a real environment, we start our analysis from the simpler case of a 2D area.

This choice is essentially due to two reasons: the first one is that is easier starting our analysis

with a simpler case, well studied in literature; secondly, it important to notice that a solution

for 2D region can be convenient not only for a team of ground robots but also for a swarm of

MAVs, if the terrain is sufficiently flat to be approximated with a plane.

First of all, we have to define what it is the meaning of optimizing the cooperative surveil-

lance coverage in a given region. Two different criteria may be identified to answer to this

question:

(O1) the part of the terrain that is monitored (i.e., is visible) by the robots must be maximized;

(O2) for every point in the terrain, the closest robot must be as close as possible to that point.

The first objective is the most intuitive in a surveillance task: knowing the positions from

which it is possible to see as more as possible, regarding the sensors capabilities of the team.

The second objective is may be necessary for two practical reasons: (a) firstly, in many multi-

robot coverage applications there is the necessity of being able to intervene as fast as possible

in any of the points of the terrain with at least one robot and (b) secondly, the closer is the

robot to a point in the terrain the better is, in general, its sensing ability to monitor this point.

Of course, once the coverage criterion is well defined, the other consequent problem to

solve is: given the initial robots’ positions, finding feasible and safety trajectories to reach the

desired final configuration. Moreover, in many practical application, the two problems are not

separate but such trajectories should be designed in real-time, while the optimization problem

is still to solve.

51
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We firstly present the second criterion, which is the most studied in literature, showing

some existing solutions and proposing a simple strategy to deal with the complex case of a

non-convex area to cover. Then, we describe the first objective, more important for this thesis

and we show how it is possible to apply the proposed stochastic optimization algorithm to

find a solution of the problem. Additionally, as an important contribution of this chapter,

after presenting the standard centralized solution, we propose also a distributed version to

cooperatively achieve a maximum coverage. Finally we provide several numerical simulations

to evaluate the performance of the algorithms.

4.1 Voronoi Coverage Control

The second objective, which we can identify as the intervention problem, has been extensively

studied in literature and it leads, in the case of a non-convex 2D area, to the well known

solution of the Voronoi coverage control. This problem was presented for the first time by

Cortés et al. in [20]. This particular problem is not the main topic of this chapter but, for

completeness, we describe the problem and the solution available in literature. Additionally,

in section 4.2, we propose a simple and distributed solution for the more complex case of a

non-convex and unknown environment.

4.1.1 Voronoi tessellation

Given an open set Ω ⊆ RN and a set of points P{pi}ki=1 belonging to Ω, the Voronoi region

Vi corresponding to the point pi is defined by

Vi = {q ∈ Ω | ‖q − pi‖ ≤ ‖q − pj‖ ∀j 6= i} , (4.1)

where ‖ · ‖ denote the Euclidean norm on RN . The points {pi} are called generators and the

set {Vi}ki=1 is called the Voronoi tessellation (or partition) of Ω.

Given a region V and a density function φ(q), defined in V , the mass, the centroid (or

center of mass) and the polar moment of inertia are defined as:

MV =

∫
V

φ(q)dq , CV =
1

MV

∫
V

qφ(q)dq ,

JV,p =

∫
V

‖q − p‖2φ(q)dq . (4.2)

Additionally, we can write the relation between JV,p and the polar moment of inertia about the



4.1. Voronoi Coverage Control 53

center of mass, JV,CV :

JV,p = JV,CV +MV ‖p− CV ‖2 . (4.3)

When the generators coincide with the centers of mass of their respective regions, the tessella-

tion is known as centroidal tessellation. We address the reader to to [82] for a more extended

treatment on Voronoi diagrams.

4.1.2 Problem formulation

To express the problem as an optimization problem, the first step is to define a function that

quantifies the concept previously introduced and measures the degree of covering of the multi-

robot team. Let pi the position of the i− th robot andW a tessellation of the region to cover,

such that in each region Wi there is exactly one robot. Let us consider the function

J(P ,W) =
∑
i

∫
Wi

f(‖q − pi‖)φ(q)dq , (4.4)

where f is a monotonic differentiable function. The physical interpretation of this expression

is the following: each point in Wi is weighted by

• f , which is a function of the distance between the point and the robot belonging to that

region;

• φ, which gives information about the importance of the point.

Then, an integration over the whole region is made. The explicit dependence of f on the dis-

tance depends on the objective that we want to achieve. The final goal might be, for example,

an optimal placement in order to minimize the time of intervention of at least one robot in

some point of the space, or to maximize the information about the environment obtained by

the robots sensors. In the first case, f will be an increasing function of the distance, in the

second one it will depend on the specific characteristics of the sensor, but certainly decreasing

with the distance. Our aim is to find the optimal partition W and optimal location P that

extremize (minimize or maximize depending on the choice of the function f(‖ · ‖)) J(P ,W).

It is possible to prove that, at a fixed robots location, the optimal partition is the Voronoi

partition V [20]:

min
P,W

J(P ,W) = min
P
J(P ,V) . (4.5)

Hence, we have to solve the optimization problem with respect to the location only, solving

the equations:

∇JV = [· · · ∂JV
∂pi
· · · ]T = 0 (4.6)
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where, for simplicity’s sake, we have defined

JV ≡ J(P ,V) . (4.7)

The explicit expression of the components of (4.6) is:

∂JV
∂pi

=

∫
Vi

∂f(‖q − pi‖)
∂pi

φ(q) dq +
∑
j∈Ni

∫
∂Vj

f(‖q − pi‖)φ(q)
∂∂Vj
∂pi

nj dq (4.8)

+

∫
∂Vi

f(‖q − pi‖)φ(q)
∂∂Vi
∂pi

ni dq

where ∂Vi denotes the boundary of the Voronoi region Vi, ni denotes the outward facing

normal of ∂Vi and Ni is the set of indices of the neighbors of pi. It is possible to prove that

the last two terms in (4.8) sum to zero. Since only the part of ∂Vj which is shared with the

boundary of the region i gives contribution in (4.8), we can consider only these and thus we

can write: ⋃
j∈Ni

∂Vj = ∂Vi . (4.9)

An inward normal −ni for Vi is equal to an outward normal nj for any of its neighbors Vj , at

the boundary which they share. This leads to

∑
j∈Ni

∫
∂Vj

f(‖q − pi‖)φ(q)
∂∂Vj
∂pi

nj dq = −
∫
∂Vi

f(‖q − pi‖)φ(q)
∂∂Vi
∂pi

ni dq . (4.10)

Hence, we can write:

∂JV
∂pi

=

∫
Vi

∂f(‖q − pi‖)
∂pi

φ(q) dq = −
∫
Vi

df(x)

dx

∣∣∣
‖q−pi‖

q − pi
‖q − pi‖

φ(q) dq . (4.11)

Hereafter we consider only the unweighted problem, i.e. we fix φ(q) = 1 and we restrict our

attention to the case in which the region to cover is 2D.

We can obtain the explicit solution of the optimization problem for a particular choice of

the function f :

f(‖q − pi‖) = ‖q − pi‖2 . (4.12)

Indeed, in this case, the solution of the problem is very simple and the optimal location is

the centroidal one, i.e. the robots are on the centers of mass of the respective regions. This
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Figure 4.1: Voronoi partition generated by the robots, here in blue. The black points are the
center of mass of the regions.

statement can be proved by means of (4.11)

∂JV
∂pi

= 2

[∫
Vi

(pi − q) dq
]

= 2MVi(pi − CVi) .

The choice in (4.12) has been already used in [20].

Lloyd Algorithm

Starting from an arbitrary initial robots position, one of the ways to reach the centroidal con-

figuration is by the Lloyd algorithm [73]. The idea is the following: calculate the Voronoi

partition and the respecting centers of mass, or the equivalent points (Fig. 4.1). Hence, move

each robot on the center of mass of its region, or towards this one if its kinematic constraints

do not allow it. Repeat this procedure for each time step until the convergence of the algo-

rithm. We refer to [20] for more details and for the proof of the convergence. Later on, we

will refer to this algorithm with LA.

Some examples of centroidal Voronoi configuration in a square convex environment with

different number of robots are shown in Fig. 4.2.

4.2 Potential field approach

In this section we propose a simple modification of the classical solution discussed in Section

4.1.1 in order to cope with more complex environments. The results here presented have been

presented in [95]. Hence, the aim is to study the problem of optimal placement for a team of
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Figure 4.2: Examples of centroidal Voronoi solutions in a square area. In Fig. (a) and (b) the
teams are composed respectively by six and seven robots. The initial positions are in green,
in blue the final ones and in red the trajectories. In Fig. (c) and (d) the robots are respectively
18 and 25 and only the final positions are shown in blue.
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mobile robots with surveillance task in a non-convex environment with obstacles. As already

discussed, several papers try to tackle this more complicated problem by means of different

approaches: potential field method [46], Voronoi control with geodesic distances [85], by

using diffeomorphic transformations [17], or other path planning algorithm [16]. In such mis-

sions, a key factor is the a priori knowledge about the exact positions of the obstacles, their

dimension and/or shape. We propose a very simple possible solution, based on a combination

of the potential field method and the Voronoi partition, which can work even without this kind

of information. Furthermore, this method has the objective to be easy to implement, with a

low computational cost and it allows overcoming many of the problems of local minima, oth-

erwise present by using only the repulsive potential field method [46]. By using an extended

definition of the Voronoi regions, we also consider the case of a heterogeneous team, in which

the robots have different velocity constraints. The potential field method is well known in

motion planning for the obstacle avoidance problem [69], [41] and it was introduced for the

first time by Khatib [54]. In [96] we proposed also another potential field based algorithm

applied to a cooperative exploration problem. Regarding its applications in coverage prob-

lems, Poduri and Sukhatme adopted it in [86] to obtain a coverage of a convex region with

the constraint that each robot has at least K neighbors. In [46] the region to cover is unknown

and non-convex and the robots movement is due to a repulsive force generated by the other

robots and by the obstacles, to obtain a dispersion of the robots.

The importance of extending the previous approach to a non-convex region is not only to

describe a 2D region with obstacles but also try to develop a strategy for the 3D case, in which

the non-convexity is due to land reliefs (hills, mountains, buildings and so on). The goal is to

minimize the intervention time, i.e. the time necessary before that at least one robot reaches a

given point in the space. However, because of the obstacles, it is now impossible using a cost

function as in (4.4). A possible extension of (4.4) is:

J(P) =

∫
Ω

min
pi

d̃(q, pi) dq (4.13)

where d̃(q, pi) is the distance between q and pi, taking into account the presence of the obsta-

cles; in other words, it is the distance that the robot pi must cover in order to reach the point

q following a feasible trajectory. First of all, this distance function is strongly environment

dependent. Since in our case we assume to not know the position of the obstacles, it is neither

possible expliciting the cost function in an analytical way, nor computing it at each time step.

Hence, we can not use, for example, stochastic optimization methods, like SPSA [108]. In

some works, for example in [46] and [86], the authors have used a potential field method to

achieve the task: repulsive forces generated by all the robots and by the obstacles are consid-
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ered to obtain a dispersion of the robots. The drawback is that, especially when the number

of robots is small respect to the size of the environment, it is easy to find many local minima

which cause suboptimal solutions. Later on, we will refer to this method with RPF (Repulsive

Potential Field).

For the solution of the problem, we propose a similar approach where the robots and the

obstacles (including the external boundary) produce a short range repulsive force but each

robot is also attracted by the center of mass of its Voronoi region. Indeed, by adding also

an attractive potential, it is possible to eliminate some local minima and the result can be

improved. In other words, starting from a Voronoi-based approach, using the potential field is

a simple method to only avoid obstacles if the center of mass belongs to the feasible space, or

go as close as possible if it is into an obstacle. On the other hand, as in every potential filed

based approach, some other local minima cannot be eliminated. Let us note that to do the

Voronoi tessellation, the external boundary must be convex, but a non-convex boundary can

be always approximated by a convex one with obstacles inside it.

The repulsive potential used in the model is:

Urep(q,qi) =

 1
2
krep

(
1

ρ(q)
− 1

ρ0

)2

, ρ(q) ≤ ρ0

0 , ρ(q) > ρ0

(4.14)

where qi is the position of the robot/obstacle, ρ(q) = ‖q − qi‖ and ρ0 is the range of the

interaction. The artificial force induced by this potential field is F(q) = −∇U(q):

Frep(q,qi) =

{
krep

(
1

ρ(q)
− 1

ρ0

)
q−qi
ρ3(q)

, ρ(q) ≤ ρ0

0 , ρ(q) > ρ0

(4.15)

Then, each robot feels a total repulsive force equals to:

Frep(q) =
N∑
i=1

Frep(q,qi) (4.16)

where the sum is over the other N − 1 robots and the closest obstacle.

The attractive potential used is:

Uatt(q) =
1

4
katt ρ

4
goal (4.17)
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and the corresponding force

Fatt(q) = katt(qgoal − q) ρ2
goal (4.18)

where ρgoal = ‖q−qgoal‖ and qgoal is, in our case, the center of mass. Added to these forces,

we also consider a viscous term, νv, in order to have more regular trajectories. The equation

of motion is:

Ftot = Frep + Fatt = m q̈− ν q̇ (4.19)

where m is the virtual robot mass which, without any loss of generality, we assume unitary.

We will refer to our approach with RAPF (Repulsive and Attractive Potential Field).

4.2.1 Heterogeneous team

Since we try to achieve a static deployment that optimizes the intervention time problem, a

natural extension of the proposed algorithm is to take into account the case in which the team

includes robots with different velocity capabilities. A possible way to do it is changing the

definition of the Voronoi region in the following way. Let pi be the position of the i− th robot

and vi its maximum velocity, we define the new Voronoi regions

Vi = {q ∈ Ω | 1

vi
‖q − pi‖ ≤

1

vj
‖q − pj‖ ∀j 6= i} , (4.20)

which is the well-known expression of the weighted Voronoi partition (see [82]). To find the

analytical expression of the boundaries for these regions, without any loss of generality, we

put the robot i in the origin of the frame system and the other one in p = (px, py). In the

classical homogeneous case, the edge shared is given by

x2 + y2 = (x− px)2 + (y − py)2 ⇒ p2
x + p2

y − 2(xpx + ypy) = 0 (4.21)

which is the equation of a straight line. Indeed, the Voronoi regions are polygons. If we

consider different velocities we have:

k(x2 + y2) = (x− px)2 + (y − py)2

⇒ x2(k − 1) + y2(k − 1) + 2(xpx + ypy)− p2
x − p2

y = 0 (4.22)



60 Chapter 4. Optimal Surveillance Coverage - 2D

where k = v2
j/v

2
i , which defines an arc of circle. This is more evident if we rewrite the

equation (4.22) in the following way:

(
x+

px
k − 1

)2

+

(
y +

py
k − 1

)2

− k
[(

px
k − 1

)2

+

(
py

k − 1

)2
]

= 0 (4.23)

that is the equation of a circle of center

c =

(
− px
k − 1

,− py
k − 1

)
(4.24)

and radius

r =

√√√√k

[(
px

k − 1

)2

+

(
py

k − 1

)2
]

=
√
k dc =

vj
vi
dc (4.25)

where dc is the distance of the center from the robot i. We can interpret
√
k dc like the distance

traveled by the robot j in the time that i reaches the center c. It is possible to write r also in

terms of the distance between the two robots, dr:

r =

√
k

|k − 1| dr =
vi vj
|v2
i − v2

j |
dr . (4.26)

Let us note that if

vi � vj → r =
vi
vj
dr . (4.27)

We finally remark that when vi → vj we obtain the standard Voronoi tessellation. Indeed,

lim
vi→vj

r =∞ , (4.28)

which means that we have an arc of circle with infinite radius, i.e., a straight line.

An example of the difference between the classical definition of the Voronoi regions for a

homogeneous team and the weighted one is shown in Fig. 4.3.

To take into account the different speeds of the robots in the cost function, we can extend

the expression (4.4) as follows:

J(P) =

∫
Ω

min
i

1

vi
d̃(q, pi) dq . (4.29)

Finally, we note that with a simple repulsive potential field approach it is not possible to

take into account information about different robots velocities.

To better see the difference between homogeneous and heterogeneous teams, we apply
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Figure 4.3: The difference between the homogeneous case and the heterogeneous case. In (a)
all the robots have the same velocities, in (b) there are three faster robots and two slower. It is
evident the different shape of the regions.

the LA algorithm for the coverage of a convex environment using the different definitions for

the Voronoi regions. The simulations are shown in Fig. 4.4, where it is possible to see how

trajectories and final configurations change with varying robots speeds.

4.2.2 Simulation results

We propose some numerical simulations by using teams of different number of robots and in

different environments. To have a quantitative result, we have computed the cost functions

(4.13) and (4.29) by a discretization of the space to obtain the distance between each site of

the lattice and the closest sensor. We assume that the robots know exactly their position in a

common frame of reference. In this simulation we have considered only the center of mass

of the Voronoi regions as the optimal point to reach, i.e. making the choice (4.12), because it

is the most suitable for our intent. Furthermore, we compare the proposed algorithm with the

RPF to show that in a generic environment it is able to improve the result.

A first example of the algorithm is shown in Fig. 4.5. In this case the team is composed

by 15 robots, which have to cover a generic 2D non-convex environment. We can see from

the robots trajectories (Fig. 4.5 (a)) that there is a spreading out of the team from the initial

positions to a well-distributed final configuration.

Our intent is also to show that our algorithm outperforms the RPF method. In Fig. 4.7

there are the trajectories of 5 mobile robots. They are generated, starting from the same initial

robots configuration, by using the RPF method and the RAPF (for simplicity we consider here
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Figure 4.4: Differences between the homogeneous case and the heterogeneous case. In (a)
a homogeneous team (k = 1), the solution is the centroidal partition; in (b) and (c) a het-
erogeneous one with two faster robots and three slower (

√
k = 0.5); in (d) different k-factor

(
√
k = 0.6).
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a homogeneous team). It is possible to see from the figure that the robots are more spread out

by means of our algorithm. Indeed, this is a typical example where the robots are not able to

overcome a barrier of obstacles, and the environment is not well covered. To have a significant

feedback of the improvement, we have generated 100 different environments, with the number

of obstacles varying from 1 to 6. The obstacles are always of fixed size and their positions into

the space are randomly generated. The boundary of the region to cover is a square of fixed

size. Obviously, some constraints for the positioning of the obstacles have been considered:

for example they can not form barriers which forbid at all the motion of the robots from their

initial position. For each environment, we have calculated the final value of the cost functions

obtained by the RAPF and the RPF. In Fig. 4.6 the result is presented. It can be seen that

the cost function for the RAPF is always lower. Furthermore, the values of the RPF are more

scattered around a mean value compared to that obtained with the RAPF. The reason is that

the best choice of the potential parameters is environment dependent if we do not consider

the Voronoi attraction. On the other hand, by using the RAPF, it is almost independent: this

is a fundamental aspect if we do not have any a priori information about the obstacles. This

result allows us to state that the proposed algorithm is an improvement of the already existing

method.

Finally, we want to emphasize the importance of considering the weighted definition of

the Voronoi regions for the heterogeneous case. To prove it, we compare, for a heterogeneous

team, the cost function obtained considering the weighted Voronoi partition with that one

obtained by the same algorithm, but using the usual definition of the Voronoi regions. In other

words, we compare the cost functions relative to the simulation shown in Fig. 4.7 (a), but

consider the team as heterogeneous to calculate the cost function. Of course, the expression

of the cost function taken into account is the one in (4.29). The result in Fig. 4.8 shows that

with the new definition of the Voronoi regions the cost function is lower.

4.3 Visibility Coverage

We consider now the first objective described at the beginning of this chapter: the visibil-

ity problem. This problem is more important for our final propose of surveillance in a real

and complex environment. Indeed, an optimal solution obtained starting from the objective

function (4.4) might allow the team to see a very low part of the environment. On the other

hand, due to the non-convex nature of the problem, an analytical solution for this problem

cannot be obtained. To approach this problem, we propose a new solution that is based on

the previously described Cognitive-based Adaptive Optimization (CAO) algorithm. We recall
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Figure 4.5: Example of coverage of an environment with obstacles by using a team of 15
mobile robots. In (a) are shown the trajectories: the initial positions are in green, the final
ones in blue. In (b) the cost function.
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Figure 4.6: Final cost functions obtained by the RAPF method, in red, and by the RPF method,
in blue, for each environment randomly created.
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Figure 4.7: Simulation with an environment with obstacles. In (a) the coverage is obtained
with a homogeneous team by using the RAPF algorithm. In (b) the coverage obtained by
using the RPF algorithm.
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Figure 4.8: Cost functions for a heterogeneous team in the environment shown in Fig. 4.7
obtained by the RAPF. In blue the cost function obtained by using the weighted definition of
the Voronoi regions, in red by using the usual definition.
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here that the main advantage of CAO as compared to standard optimization tools is that it

does not require that the objective function to be optimized is explicitly known; CAO instead

requires that at each-time instant a value (measurement) of this objective function is avail-

able. Then, if it is possible to define an objective function which is available for measurement

for every given team configuration, the CAO methodology will be directly applicable to the

problem of surveillance coverage treated in this thesis. Rigorous arguments establish that,

despite the fact that the terrain’s morphology is unknown, the CAO methodology shares the

same convergence characteristics as those of constrained gradient-descent algorithms, which

require perfect knowledge of the terrain’s morphology to optimize the surveillance coverage,

subject to the constraints the robot team has to satisfy. As a result, CAO navigates the robots

to an arrangement that locally optimizes the surveillance coverage criterion while satisfying

physically-imposed constraints such as that the robots should not leave a prespecified area or

they should not hit the obstacles.

4.3.1 Centralized Algorithm

Mathematically, we can define the problem in the following way. Let us consider a planar

non-convex environment and let Ω be the region accessible by the robots. Let P = {x(i)
k }Mi=1

denote the position of theM robots at the time step k andC = {ri}Mi=1 the maximum distances

of monitoring for the i − th robot. In our approach, we consider the monitoring of a point

q ∈ Ω a binary function

f(q,P ;C) =

{
1 if q is monitored

0 otherwise
(4.30)

Let us assume that a robot can monitor the points which satisfy both the following conditions:

• are connected by a line-of-sight with it;

• are at a distance smaller than a given threshold value.

In Fig. 4.9 it is shown an example of the monitored area given the positions of two robots and

a maximum monitoring distance of 5m for both the robots.

Thus, we can define the cost function J as follows:

J (P ;C) =
1

V

∫
Ω

f(q,P ;C) dq (4.31)

where V =
∫

Ω
dq. Obviously, this is only an implicit expression of the cost function and it is

impossible to get an explicit form because of the dependency on the particular environment.
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Figure 4.9: Example of area monitored by two robots equipped with omnidirectional visual
sensor in a non-convex environment. The dots correspond to the robots’ locations, the rectan-
gles denote the obstacles.

However, as explained in chapter 3, we just need the numerical value of the cost function for

each time step and not its explicit expression. This is the key advantage of CAO which does

not require an a priori knowledge of the environment.

Having defined the optimization problem, a fundamental issue for a good behavior of the

CAO algorithm is an appropriate choice of the form of the regressor vector φ, introduced in

equation (3.11). As mentioned in chapter 3, several different choices for its explicit expression

are admissible. However, in all different tests for the particular application treated in this

thesis, it was found that it suffices to choose the regressor vector as follows:

1. choose the size of the function approximator L to be an odd number;

2. select the first term of the regressor vector φ to be the constant term;

3. select randomly the next (L − 1)/2 terms of φ to be any 2nd-order terms of the form

x
(i)
a · x(j)

b [with a, b ∈ {1, . . . , dim(x(i))}, i, j ∈ {1, . . . ,M} randomly-selected positive

integers];

4. select the last (L − 1)/2 terms of φ to be any 3rd-order terms of the form x
(i)
a · x(k)

b ·
x

(j)
c [with a, b, c ∈ {1, . . . , dim(x(i))}, i, k, j ∈ {1, . . . ,M} randomly-selected positive

integers].

Once the regressor vector φ has been set and once the values of the cost function (4.31)

are available for measurement at each time step, it is possible to find at each time step the



68 Chapter 4. Optimal Surveillance Coverage - 2D

vector of parameter estimates θk and thus the approximation of the cost function Ĵk. The

other important choice in order to assure the convergence of the algorithm is the expression of

the sequence αk, defined in equation (3.19). A typical choice for such a sequence is given by

αk =
α

(k + 1)η
, (4.32)

where α is a positive user-defined constant and η ∈ (0, 0.5).

4.3.2 Distributed Algorithm

In every multi-robot systems, a distributed approach is desirable for several fundamental rea-

sons. The most important are failure of the central station and limited communication capabil-

ities. In a very common scenario each robot has no global knowledge about the surrounding

environment or about the group as a whole. Hence, the global behavior of the team can be

seen as the sum of the local actions taken by its members, which sense their immediate en-

vironment, communicate with their neighbors, process the information gathered and move

according to it. Even if the optimization function (4.31), which we want to maximize, de-

pends on all the state vector’s variables, it is reasonable to think that the coverage problem

could be expressed in a decentralized way. Indeed, the aim of each robot is to deploy itself in

order to minimize the overlapping of its field of view with the obstacles in the environment

and with the fields of view of the other robots. In other words, for each robot the problem is

like maximizing the surface monitored while it is moving in an environment with both static

obstacles and dynamic obstacles, which are the fields of view of the other robots (see Fig.

4.10). In practice, we can write the new optimization function for the robot i as follows:

Ji(P) = Vi −
∑
j 6=i

Vi
⋂

Vj , (4.33)

where Vj is the total area monitored by the j − th robot.

In other words, instead of a single cost function, the problem is now characterized by N

cost functions, beingN the number of robots. The CAO approach is adopted to independently

maximize each optimization function. In particular, each function will be characterized by

a different approximator. Then, the CAO approach will perform the optimization by only

perturbing the position of the respecting robot.

It is important to note that at each time step this new single-robot optimization function

depends only on the position of the robots which have an overlapping field of view, which may

be identified as the neighbors. This means that, if we define with Ri the maximum monitoring
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Figure 4.10: Example of area monitored by three robots equipped with omnidirectional visual
sensor in a non-convex environment (the blue dots correspond to the robots’ locations, and
the rectangles denote the obstacles). The field of view in red is the effective monitored area
(optimization function) of the respective robot.

distance of the robot i, at a given time step its objective function depends on the position of a

robot j if and only of

‖pi − pj‖ < Ri +Rj

However, to obtain the approximator, the CAO algorithm uses a set of past stored data (see

eq. 3.12). It is thus necessary to consider also robots that have been neighbors in these past

time steps. On the other hand, information about robots which, during this time interval, have

always been more distant is completely useless and their positions are not taken into account

for the construction of the approximator.

For this reason, the proposed distributed method can also take into account communication

constraints. Indeed, each robot has to know only the real positions of the other robots when

they are neighbors. For robots which are not neighbors, i.e. for the robots whose monitored

area does not overlap with the area of the considered robot, knowing the actual positions is un-

necessary. Practically, if some of these unknown positions must be used for the approximator,

the considered robot generates for them fictitious regular trajectories. These false positions

do not influence the construction of the approximator because it does not depend on them.

Then, if one of these robots returns to being a neighbor it can transmit its real past positions

and the approximators is calculated with all the right values. Therefore, every robot has to

communicate only with its neighbors and even if there is a failure in this communication the

algorithm can continue to work.
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4.4 Simulation results

To evaluate the efficiency of the proposed algorithm, several simulations with varying number

of robots and different monitoring constraints, have been performed in a variety of environ-

ments. We show the results of the simulations comparing the performance of the centralized

approach (i.e. the one which maximizes (4.31) by simultaneously perturbing the whole state

vector) and the distributed approach introduced in section 4.3.2. The teams are considered

to be homogeneous since the maximum distance of monitoring for each robot is the same,

although it is not the same in all simulated scenarios. This assumption has been made for

simplification purposes and easier comprehension of the results. Different robots monitoring

capabilities within the team do not affect in any way the efficiency of the algorithm.

4.4.1 Visibility

We present now the results for the visibility problem in a non-convex environment. In the

first simulations we assume the robots are equipped with an omnidirectional camera. Then,

some simulations with a limited field of view of the robots are also provided. No assumption

on the topology of the environment has been taken, and the obstacles in the simulations here

presented are always polygonal only for simplicity’s sake.

Limited-range omnidirectional monitoring

As a first test, we consider the trivial case of a convex environment. Indeed, this case has

been extensively considered in the literature and the solution is known [20]. In Fig. 4.11,

we show that the proposed method is able to reproduce such solution, which corresponds to

the centroidal Voronoi partition where the robots’ positions are the generators of the partition.

This result is an important test for our method, although the main objective of our work is to

study the coverage problem in a more realistic scenario. We remark that for the simply visual-

based problem, with no restriction on the maximum monitoring distance, for the convex case

every different robots’ placements are completely equivalent.

In the second simulation presented in Fig. 4.12, the team is composed by three robots with

a maximum monitoring distance r = 5m. The cost function, in Fig. 4.12(b), indicates that

the algorithm is able to provide a very good solution. The efficiency of the proposed solution

can also be evaluated by observing the robot trajectories in Fig. 4.12(a). The robots move

in order to eliminate all the shadow regions generated by the obstacles and to minimize the

overlapping zones monitored by more than one sensor.

Fig. 4.13(a) shows a typical scenario in which four robots have to cover a nonconvex
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Figure 4.11: Four robots with a maximum monitoring distance r = 3.5m in a convex envi-
ronment. The green points show the initial positions of the robots, the final ones are in blue,
in red the trajectories. The solution reproduces the centroidal Voronoi solution, where the
robots’ positions are the generator of the partition.
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Figure 4.12: Three robots with a maximum monitoring distance r = 5m.
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Figure 4.13: Centralized approach. Four robots with a maximum monitoring distance r = 6m.
In Fig. (a) it is shown the robots’ motion: the green points show the initial positions of the
robots, the final ones are in blue, in red the trajectories. In Fig. (b) the cost function J (P).

environment. The behaviour of the cost function during the task is shown in Fig. 4.13(b). It

is possible to see that the final deployment is such that the team is able to monitor the whole

environment.

Limited-range anisotropic monitoring

Here we present results for the more complicated case in which each robot has a limited

visibility angle. Two factors make this case more complicated than the previous: first of

all each robot has now one degree of freedom more, which is its orientation; moreover, the

objective function becomes more irregular and consequently more complicated to optimize.

In order to have a simple comparison with the omnidirectional vision case, we have used the

same environments of the previous simulations. Since now it is important not only the robots’

positions but also their orientation, for clarity’s sake we have shown explicitly in the figures

the monitored area for each robot (Fig. 4.14(a), 4.15(a)).

By observing the cost function (Fig. 4.14(b), 4.15(b)) it is evident that in this case it is

less smooth. Because of this the proposed method may need more iterations to converge.

Another consequence of this fact is that the number of local maxima increases significantly

with respect to the omnidirectional case, and sometimes they can force the system to local

solutions very far from the optimal configuration. An example where it can be easily seen this

phenomenon is shown in Fig. 4.16. As always in presence of difficult local optima problems,
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Figure 4.14: Nine robots with a maximum monitoring distance r = 5m and 120 degree of
monitoring angle.
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Figure 4.15: Nine robots with a maximum monitoring distance r = 6m and 120 degree of
monitoring angle.
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Figure 4.16: Four robots in a convex square area. It is clear that, due to a local minimum, the
algorithm cannot find the best solution.

the final positions strongly depend on the initial ones.

Distributed algorithm

After the results for the standard centralized version of the proposed algorithm, we show now

that it is possible to obtain the same achieved results by using the distributed solution. In

Fig. 4.17(a) there is the result obtained starting from the same configuration than for the

centralized case previously presented (Fig. 4.13(a)). It is worth to note that, as it can be seen

in Fig. 4.17(b), the time of convergence is even lower than that one obtained by employing the

centralized approach. This unexpected behavior deserves a further explanation. Even though

a thorough analysis of these results is still to do, our interpretation is based on the fact that

with the same amount of calculation, in the distributed implementation a larger portion of

configuration space is explored and each robot can straightly optimize its own position.

In the last proposed simulation (Fig. 4.18) the team is composed by six robots with a

monitoring radius of r = 3m and the environment has different obstacles. Also in this case

the team is able to find a final configuration which allows monitoring almost all the free space

and the distributed algorithm is faster to converge (see Fig. 4.18(b)).

4.5 Conclusions

This chapter presented the formulation of the cooperative surveillance coverage for the case

of a 2D region. After beginning with the description of the well known local solution of the
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Figure 4.17: Distributed approach. Four robots with a maximum monitoring distance r = 6m.
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Figure 4.18: Six robots with a maximum monitoring distance r = 3m. In Fig. (b) the cost
functions obtained by using the two versions of the algorithm: in red the distributed method,
in blue the centralized one.
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Voronoi coverage control, as a first contribution we presented a simple possible extension,

based on the artificial potential field method, for the case of a non-convex region with un-

known obstacles. Then, we introduced the visibility problem in a complex 2D environment.

This topic is more important for the purpose of this thesis and we explained why the proposed

stochastic optimization algorithm is suitable for this problem. The 2D case is simpler than

the 3D, but it has several advantages for a first application and evaluation of the proposed

method. The most important is to try to better understand the problem and the behavior of the

algorithm in a case where the optimal solution is known or, at least, easier to figure out. We

consider the results here obtained as fully satisfying and they are the starting point to go on

with this work for a 3D application, presented in the next chapter.



Chapter 5

Optimal Surveillance Coverage - 3D

5.1 Problem Definition

In the previous chapter we introduced the concept of cooperative surveillance coverage and we

extensively described the case of using the CAO approach for maximizing the monitored area

in a given region by using a team of mobile robots in the 2D plane, without any assumption

on the topology of the environment. In this section we extend our approach to the more

interesting case of robots living in a 3D environment and having fixed orientation.

Let us consider a team of M flying robots that is deployed to monitor an unknown terrain

T . Let z denote the unknown height of the terrain at the point (x, y) and assume for simplicity

that the terrain T is rectangular along the (x, y)-axes, i.e., xmin ≤ x ≤ xmax, ymin ≤ y ≤
ymax. Let P = {x(i)}Mi=1 denote the configuration of the robot team, where x(i) denotes the

position of the i-th robot. We will say that a point q = (x, y, z) of the terrain is visible if there

exists at least one robot so that

• the robot and the point q are connected by a line-of-sight;

• the robot and the point q are at a distance smaller than a given threshold value (defined

as the maximum distance the robot’s sensor can ”see“).

Given a particular team configuration P , we denote with V the visible area of the terrain,

i.e., V consists of all points q ∈ T that are visible from the robots. We will assume that the

robots are equipped with visual sensors together with inertial sensors and/or range sensors; in

other words, for each visible point we will assume that the team is able to estimate the terrain’s

height at this point. A possible way to deploy a robot team satisfying the above, is by using

the down-looking-camera-equipped flying robots of [11, 119] which employ the monocular

SLAM algorithm of [58].

77



78 Chapter 5. Optimal Surveillance Coverage - 3D

5.2 Algorithm Implementation

An efficient trajectory generation algorithm for optimal coverage must make sure that the

physical constraints are also met throughout the whole multi-robot coverage application. Such

physical constraints include, but are not limited to, the following ones:

• The robots remain within the terrain’s limits, i.e., within [xmin, xmax] and [ymin, ymax]

in the x− and y-axes, respectively.

• The robots satisfy a maximum height requirement while they do not hit the terrain, i.e.,

they remain within [z + d, zmax] along the z-axis, where d denotes the minimum safety

distance (along the z-axis) the robots’ should be from the terrain and zmax denotes the

maximum allowable height for the robots.

• The robots do not come closer to the other ones than a minimum allowable safety dis-

tance dr.

It is not difficult to see that all the above constraints can be easily expressed in the form (3.3)

and thus can be handled by the CAO algorithm.

5.3 Distributed Algorithm

We present here the straight extension for a 3D region of the distributed version of the cov-

erage algorithm presented in section 4.3.2. The strategy to reduce the problem to several

single-robot objective functions to separately optimize is unchanged and the coverage crite-

rion is alway defined as the total percentage of surface seen by the team. For the 2D case we

could see the problem as if each robot is moving in a region with both static and dynamic

obstacles, which are the field of view of the other robots. In the same way, now we can re-

formulate this distributed version as follows: each robot tries to optimize the area he is able

to monitor on a surface which includes moving regions without interest, which are the por-

tions that the other robots of the team can monitor. This allows the robots to maximize the

total covered area avoiding unnecessary zones of overlapping. The same strategy adopted in

section 4.3.2 to incorporate limited communication capabilities is used also in this case.

5.3.1 Simulation results

We show here the results of the simulations, comparing the performance of the centralized

approach (i.e. the one which maximizes (4.31) by simultaneously perturbing the whole state
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Figure 5.1: Distributed approach. Four robots with a maximum monitoring distance r =
4m. Fig. (a) shows the initial and final positions, as circles and stars respectively, in the 3D
environment. Different colors correspond to different robots. In Fig. (b) the same result is
projected on the xy plane. The behavior of the objective function is in Fig. (c).

vector) and the distributed approach introduced in section 4.3.2. The teams are considered

to be homogeneous since the maximum distance of monitoring for each robot is the same,

although it is not the same in all simulated scenarios. This assumption has been made for

simplification purposes and easier comprehension of the results.

Fig. 5.1 (a) and (b) presents a typical scenario in which four robots have to cover a 3D re-

gion. In the figure are shown the initial, random, positions and the final configuration obtained

by the CAO algorithm. The environment has been constructed as a sum of four Gaussians of

same height. The behaviour of the cost function during the task is shown in Fig. 5.1(c). It

is possible to see that the final deployment is such that the team is able to monitor the whole
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Figure 5.2: Centralized versus distributed approach. Five robots with a maximum monitoring
distance r = 3m. In Fig. (a) and (b) is shown the result obtained using the distributed
algorithm. In (c) the same simulation with the same parameters has been carried out using the
centralized version. Fig. (d) compares the objective functions: in red the distributed algorithm
and in blue the centralized one.
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environment.

Then, we want to prove that it is possible to obtain the same results achieved with the

centralized algorithm by using the distributed solution. In Fig. 5.2(a) and (b) it is presented

the result obtained with a team of five robots with a maximum monitoring distance of 5m

in a region where three Gaussians are present. In Fig. 5.2(c), the same simulation with

the same starting positions has been done by employing the centralized version of the CAO

algorithm. First of all we can straight notice that the final positions are very similar in the two

cases. Then, by comparing the behavior of the objective functions, as shown in Fig. 5.2(d),

we have the demonstration that the two methods converge at the same value, i.e. almost the

entire area is covered. Contrary to the results obtained in section 4.3.2, where the distributed

algorithm was faster to converge, in this case the algorithms have almost the same time of

convergence. Anyway, these results are completely satisfactory since what we expected was

a slightly worse performance, which would be in any case acceptable due to the important

advantages of employing a distributed algorithm.

5.4 A different Approach

In section 4, we have seen as both the coverage criteria (O1) and (O2), i.e. the intervention

and the visibility problems, can be characterized by two distinct objective functions and so

far we have considered such functions only separately. However, in some cases it might be of

considerable importance to take into account them at the same time. In general, one cannot

simultaneously optimize both functions, unless the functions share common optima. Hence,

our idea is to optimize a combined objective function that strikes a compromise between max-

imizing visible area and minimizing the distance of the robots to points in the environment.

By introducing such objective function, we achieve to render the CAO algorithm applicable

to the particular problem of 3D multi-robot surveillance coverage treated in this section. Like

in the previous cases, this objective function depends on the unknown terrain’s characteristics

and thus its explicit form is not known. However, for any given team configuration the value

of this objective function can always be directly computed from the robots’ sensor measure-

ments, and thus the CAO algorithm can be applied to the problem at hand by using such an

objective function.

The motivation behind the choice to combine simultaneously both the coverage criteria

is that, even if they apparently seem very similar, in many practical situations they may end

up to be complementary. Indeed, in several simple conditions they can lead to solution very

close one to each other, but in some common cases the final configurations have proprieties
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completely different. To better understand this important point, we propose two simple ex-

amples. Firstly, let us consider the intervention time as the only criterion for our system and

let the region to cover be very complex, e.g. a planar region with many holes (obstacles). In

this case an optimal solution for this problem might be a configuration from which the team is

able to see only a minor percentage of the environment. On the other hand, let us imagine the

visibility problem in a circular region and a robot with a sensor able to monitor at distances

greater than the diameter of the circle. In this case every robot position is a solution of the

problem. However, we cannot state that all such solutions are equivalent for a surveillance

task: attempting to keep the robots as close as possible to the points in the area is necessary

for two practical reasons: (a) firstly, the closer is the robot to a point in the terrain the better

is, in general, its sensing ability to monitor this point and (b) secondly, in many multi-robot

coverage applications there is the necessity of being able to intervene as fast as possible in

any of the points of the terrain with at least one robot.

For these reasons, while maximizing the visible area is the primary goal of the mission,

the team members should be deployed so that for every point in the terrain, the closest robot

is as close as possible to that point. In other words, among all possible configurations that

maximize the visible area V , the robot team should converge to the one that keeps as small as

possible the average distance between each of the robots and the terrain subarea the particular

robot is responsible for, where the subarea of the terrain the i-th robot is responsible for is

defined as the part of the terrain that (a) is visible by the i-th robot and (b) each point in this

subarea is closer to the i-th robot than any other robot of the team.

Having the above reasoning in mind, we define the following combined objective function

the robot team has to minimize:

J(P) =

∫
q∈V

min
i∈{1,...,M}

‖x(i) − q‖2dq +K

∫
q∈T −V

dq (5.1)

where K is a user-defined positive constant and ‖ · ‖ denotes the Euclidean norm. The first

of the terms in the above equation is the usual cost function considered in many coverage

problems for known 2D environment related to the second objective (minimize the average

distance between the robots and the subarea they are responsible for, see [20]). The second

term is related to the invisible area in the terrain (
∫
q∈T −V dq is the total part of the terrain that

is not visible by any of the robots).

The positive constant K serves as a weight for giving less or more priority to one of the

objectives. For instance, in the case where K = 0, we will have that the robots, in their

attempt to minimize their average distance to the subarea they are responsible for, may also

seek to minimize the total visible area. It has to be emphasized that the positive constant K
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should be chosen sufficiently large so that the second term in (5.1) dominates the first term

unless no or a negligible part of the terrain remains invisible. In this way, minimization of

(5.1) is equivalent to firstly making sure that all, or almost all, of the terrain is visible and

then to locate the robots so that their average distance to the subarea they are responsible for

is minimized. However, choosing a value for K so that the second term in (5.1) dominates

the first term is not straightforward unless the terrain is known. Later in this section we will

comment further on how to choose the parameter K for the particular setup considered in this

thesis. Also note that whether the CAO-based algorithm employing a large K converges to

negligible or non-negligible invisible areas depends on the number, the sensing capabilities

and maximum height constraints of the robots as well as the terrain’s complexity.

The second term
∫
q∈T −V dq in (5.1) cannot be, in general, computed in practice; as this

term involves the part of the terrain that is not currently visible, its computation requires that

the geometry of this part is known or equivalently – as the invisible part changes with the

evolution of the team’s configuration – that the whole terrain is known. To overcome this

problem, instead of minimizing (5.1) the following performance index is actually minimized

by the CAO approach:

J̄(P) =

∫
q∈V

min
i∈{1,...,M}

‖x(i) − q‖2dq −K
∫
q∈V

dq (5.2)

To see that minimization of (5.2) and (5.1) is equivalent, note that∫
q∈T −V

dq =

∫
q∈T

dq −
∫
q∈V

dq

and the integral over the entire region is constant.

Throughout the above analysis, the assumption that K is “sufficiently large” was made. If

such an assumption does not hold, the arguments presented above do not hold either. There-

fore, the question that naturally arises is what is a value for K that is sufficiently large so that

these arguments hold. As a very large choice for K (e.g., K = 1010) can lead to numeri-

cal instability problems (switching-like performance for the algorithm when the numerically-

computed invisible area switches from small values to zero), a criterion on how to choose K

so that such instability problems do not occur should be provided. Extensive simulations with

all set-ups considered in the next section (sec. 5.5) and with different values for K indicate

that it suffices to choose K to be 3 − 50 times the parameter ~max in order to get an efficient
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performance, where the parameter ~max can be calculated as follows: let

f(P) =

∫
q∈V

min
i∈{1,...,M}

‖x(i) − q‖2dq,

ḡ(P) =

∫
q∈T −V

I(x, y)dxdy

where I(x, y) denotes the indicator function that is equal to 1 if the point q belongs to the

invisible area of the terrain and is zero, otherwise. In other words, the term ḡ(P) would

correspond to the total invisible area, if the unknown terrain points (x, y, z) were replaced

by (x, y, 1), i.e., if the whole invisible area were flat. Then the parameter ~max is calculated

according to

~max ≈
sup f(P)

sup ḡ(P)

i.e., ~max corresponds to the maximum possible value for f(P) (over all possible feasible

team configurations) divided by the maximum value the invisible-area-term ḡ(P) can take.

The sup ḡ(P) is equal to the terrain’s area along the (x, y)-axes, i.e. sup ḡ(P) = (xmax −
xmin)(ymax − ymin). On the other hand an estimate of the term sup f(P) can be produced

by running extensive simulations with randomly generated terrains and randomly generated

team’s configurations. Figure 5.3 shows the time-histories of the terms f(P) and ḡ(P) for

different choices forK and for one of the scenarios described in the simulations section (more

precisely, for the scenario described in section 5.5.2). For this particular scenario, we have

that sup f(P) ≈ 1000 and sup ḡ(P) = 100 and thus the parameter ~max can be estimated to

be around 10. As exhibited in Figure 5.3, the CAO-based algorithm converges to negligible

invisible areas for all values of K satisfying K ∈ [3~max, 50~max] ≡ [30, 500].

5.5 Simulation Results

To evaluate the efficiency of the proposed approach, several scenarios were considered with

the use of a simulated robot team which was able to move freely at the 3D plane. In all cases

studied, the team was homogeneous with exactly the same monitoring capabilities. This as-

sumption has been made for simplification purposes and easier comprehension of the results.

The main constraints imposed to the robots are that they remain within the terrain’s limits,

i.e., within [xmin, xmax] and [ymin, ymax] in the x− and y-axes, respectively. At the same time

they have to satisfy a maximum height requirement while they do not hit the terrain, i.e., they

remain within [z + d, zmax] along the z-axis. The scenarios considered are terrains with ob-

stacles with same or uneven heights, while for each scenario different values of the parameter
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ḡ
(P

)

Figure 5.3: Time-histories for the terms f(P) =
∫
q∈V mini∈{1,...,M} ‖x(i) − q‖2dq (upper plot)

and ḡ(P) =
∫
q∈T −V I(x, y)dxdy (lower plot) for different values of the parameter K: K = 5

(red), K = 30 (black), K = 100 (blue) and K = 500 (green).

α which is responsible for the convergence of the algorithm were tested.

In all the experiments here reported, the following choices were made for the algorithm’s

implementation:

• The CAO parameters N (number of next candidate robots’ positions) and L (size of

approximator φ) were set equal to 6M and 6M + 1, respectively, where M denotes the

robot team’s size, while the approximator φ was calculated as described in the previous

section. Note that the above choices for N,L and φ are in accordance to Theorem 1 and

Remark 5; moreover, L was set equal to 6M + 1 as it has to be an odd number.

• The parameter K in the cost criterion (5.2) was set equal to 30 which satisfies K ∈
[10~max, 50~max] for all terrains and team sizes considered in the simulations (see sec-

tion 5.4 for more details on the parameter ~max).

• The parameter d (minimum allowable distance from the terrain) was set equal to 0.1,

while the robot’s were assumed to have unlimited visibility.

• Different choices for the parameters zmax (maximum allowable height) and α (magni-

tude of next candidate robots’ positions) were made as these parameters are the most

crucial for the algorithm’s performance.
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Table 5.1: Coverage percentage in the case described in Section 5.5.1.
(% of Coverage)

α 0.3 0.5 1
Initial Configuration 34.58
Final Configuration 97.06 97.49 98.59

• Finally, with the exception of the experiments reported in section 5.5.4 that involve

teams of 10 and 20 robots, in all other cases the team comprised 4 robots.

5.5.1 Areas with equal-height obstacles

The first case considered, studies an area sizes 10 by 10 meters, which includes a surface with

seven equal-height randomly placed obstacles. For this area, several scenarios were tested

with the robot team starting from different initial positions and heights. In all the considered

cases the robots had to satisfy a maximum flight height requirement while they did not hit the

terrain.

Scenario 1

In the first studied scenario, all the team members were placed at starting points adjunct to

each other, with initial height 0.6 meters. The maximum allowed flight height was 1 meter for

all robots. Different values of the expression α were tested for the case of α = 0.3, 0.5, 1 and

the respective cost functions are presented in Fig. 5.4. The initial position for Robot 1 was

(0.18, 0.2, 0.6), of Robot 2 was (0.19, 0.2, 0.6), of Robot 3 was (0.2, 0.2, 0.6) and of Robot 4

was (0.21, 0.2, 0.6). In Fig. 5.5 successive snapshots of different positions of the robot team

for the case of α = 0.3 are presented (different color corresponds to different team member).

The final configuration in all three test cases is presented in Fig. 5.6. In Table 1 the percentage

of the initial and final coverage of the area monitored in all three cases, is presented. It’s worth

mentioning that the coverage percentage is depended on several factors apart the optimization

algorithm i.e. the sensors that might be used in a real implementation. It should be noted that

CAO does not converge always to the same swarm configuration, but it converges always to a

swarm configuration with similar coverage characteristics which corresponds to similar final

J value.

Scenario 2

In the second scenario, the initial positions of the robots were for Robot 1 (9.18, 0.2, 0.4), for

Robot 2 (9.19, 0.2, 0.4), for Robot 3 was (0.2, 0.2, 0.4) and for Robot 4 was (0.21, 0.2, 0.4),
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Figure 5.4: Cost Functions for α = 0.3, 0.5, 1, in the case described in Section 5.5.1.

while the maximum allowed flight height remained the same (1 meter). Different values of

the expression α were tested for the case of α = 0.3, 0.5 and the respective cost functions are

presented in Fig. 5.8. In table 2 the percentage of the initial and final coverage of the area

monitored in both cases is presented.

Table 5.2: Coverage percentage in the case described in Section 5.5.1.
(% of Coverage)

α 0.3 0.5
Initial Configuration 48.71
Final Configuration 98.56 97.04

5.5.2 Areas with uneven obstacle height

The second considered case, studies an area sizes 10 by 10 meters, which includes a surface

with seven randomly placed obstacles with uneven height, with maximum value 2 meters.

In this test case we have tested several scenarios with the robot team starting from different

initial positions and heights. In all the considered cases the robots had to satisfy a maximum

flight height requirement while they did not hit the terrain.

Scenario 1

In the first studied scenario for the case of areas with uneven obstacle heights, all the team

members were placed at starting points adjunct to each other, with initial height 0.2 meters.
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Figure 5.5: Successive snapshots of different positions of the robot team for α = 0.3, in the
case described in Section 5.5.1.

The maximum allowed flight height was 1 meter for all robots. The initial positions of Robot

1 was (0.18, 0.2, 0.2), of Robot 2 was (0.19, 0.2, 0.2), of Robot 3 was (0.2, 0.2, 0.2) and of

Robot 4 was (0.21, 0.2, 0.2). Different values of the expression α were tested for the case

of α = 0.3, 0.5, 1 and the respective cost functions are presented in Fig. 5.9. The final

configuration in all three test cases is presented in Fig. 5.10, while in Table 3 the percentage

of the initial and final coverage of the area monitored in all cases, is presented.

Table 5.3: Coverage percentage in the case described in Section 5.5.2.
(% of Coverage)

α 0.3 0.5 1
Initial Configuration 29.78
Final Configuration 98.29 97.76 96.35

Scenario 2

In the second studied scenario for uneven surfaces, the maximum allowed flight height was

5 meters for all robots. Different values of the expression α were tested for the case of
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Figure 5.6: Final positions of the robotic teams for α = 0.3 (blue markers), α = 0.5 (red
markers), α = 1 (green markers), in the case described in Section 5.5.1.
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Figure 5.7: Coverage percentage for α = 0.3, 0.5, 1, in the case described in Section 5.5.1.
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Figure 5.8: Cost Functions for α = 0.3, 0.5, in the case described in Section 5.5.1.
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Figure 5.9: Cost Functions for α = 0.3, 0.5, 1, in the case described in Section 5.5.2.
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Figure 5.10: Final positions of the robotic teams for α = 0.3 (blue markers), α = 0.5 (red
markers), α = 1 (green markers), in the case described in Section 5.5.2.

α = 0.3, 0.5, 1 and the respective cost functions are presented in Fig. 5.11. In Fig. 5.12

successive snapshots of different positions of the robot team for the case of α = 0.3 are pre-

sented (different color corresponds to different team member). The initial position of Robot

1 was (0.18, 0.2, 0.4), of Robot 2 was (0.19, 0.2, 0.4), of Robot 3 was (0.2, 0.2, 0.4) and of

Robot 4 was (0.21, 0.2, 0.4). In table 4 the percentage of the initial and final coverage of the

area monitored in all cases, is presented.

Table 5.4: Coverage percentage in the case described in Section 5.5.2.
(% of Coverage)

α 0.3 0.5 1
Initial Configuration 29.78
Final Configuration 99.14 98.69 98.36

5.5.3 Cave-like Surface

In the above described set-up and proposed simulations, for simplicity’s sake we assumed that

the unknown terrain is defined as a set of unique triplets (x, y, z), that is, for each (x, y) the

terrain is defined by a unique z-point, i.e. z = f(x, y). As already sentenced, the proposed

method is able to deal with any kind of terrain morphology and it is a crucial propriety since

in realistic applications there exist several cases where there may be more than one z-points

(e.g., cases of terrains with buildings, overhangs, ledges, caves, etc). Here we present a similar
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Figure 5.11: Cost Functions for α = 0.3, 0.5, 1, in the case described in Section 5.5.2.

Figure 5.12: Successive snapshots of different positions of the robot team for α = 0.5, in the
case described in Section 5.5.2.
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Figure 5.13: A different scenario: the environment is a gaussian with a cave.

scenario to show how our method can be applied also for these cases. The simulated environ-

ment is a gaussian with a cave (Fig. 5.13). The robots start their mission on the other side with

respect to the cave, so at the beginning it is not visible. Start and final robots’ positions are

shown in Fig. 5.14. In Fig. 5.15(a) the behavior of the cost function is presented and in Fig.

5.15(b) it is shown also the percentage of the invisible surface during the task. It is possible

to see that it is minimized until everything is visible.

5.5.4 Scalability Issues

To validate the efficiency in the case of bigger robot teams, we have performed experiments

with teams consisting of 10 and 20 members. Our experiments were performed in an area

sizes 20 by 20 meters, which includes a surface with fifteen uneven height randomly placed

obstacles. The maximum flight height was set to be 2. The basic difference as far as it

concerns the computational requirements in the experiments conducted with the teams of 10

and 20 robots, was that the parameters L and N increase linearly according to Theorem 1

and Remark 5; therefore L = 61 and N = 60 in the case of the team with 10 members and

L = 121 and N = 120 in the case of the team with 20 members. In the case of 4 robots the

best values of J are around 15 which is significantly larger than the values obtained with the

bigger teams. In Fig. 5.16 the cost functions for the case of 10 and 20 robots are presented,

while in Fig. 5.17 we present their final configuration. In table 5 the percentage of the initial

and final coverage of the area monitored for a team with 10 and 20 members is presented.
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(a) (b)

Figure 5.14: Coverage mission in an environment with a cave. The team is composed by four
robots. Red squares and black circles represent initial and final positions respectively. At the
beginning the robots cannot see the cave.
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Figure 5.15: Fig. (a) shows the behavior of the cost function during the task, Fig. (b) the
percentage of invisible surface. At the end everything is visible.
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Figure 5.16: Comparative cost functions for the case of a robot team with 10 and 20 members.

Figure 5.17: Final configuration of the team with 10 robots (blue circle markers) and the team
with 20 robots (red triangle markers).
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Table 5.5: Coverage percentage with teams of 10 and 20 members.
(% of Coverage)

Team size 10 Members 20 Members
Initial Configuration 39.62 42.93
Final Configuration 86.33 90.78

5.6 Conclusions

In this chapter we extended the results presented in Chapter 4 for the coverage of a surface

in a 3D environment. Firstly, we straightly extended the distributed solution provided in the

previous chapter, showing that it can be applied also in this case. We have also compared

these results with those obtained by using the centralized approach. The comparison was

completely satisfying since the two methods’ performances are very similar. Then, we intro-

duced a new possible objective function which tries to take into account both the coverage

criteria previously introduced: the intervention problem and the visibility problem. In gen-

eral, one cannot simultaneously optimize both functions, unless the functions share common

optima. Hence, the idea is to optimize a combined objective function that strikes a compro-

mise between maximizing visible area and minimizing the distance of the robots to points

in the environment. The application of our algorithm to this problem was presented and a

performance evaluation by means of several simulations, performed by using complex simu-

lated environments, was provided. Additionally, some results to prove the scalability of the

algorithm with respect to the number of robots are presented. The obtained results show that

the CAO algorithm is able to provide a solution for the cooperative surveillance coverage for

a completely arbitrary 3D environment. After the validation by using simulated environment,

in the next chapter we present the experimental results where the algorithm is tested using real

data provided by a swarm of MAVs for a real coverage mission.
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Experimental Results

In this chapter we present an important part of our work: the integration of our work with

the experimental results obtained by using a real swarm of MAVs. This part of work is in

collaboration also with the other partners of the sFly project and in particular with the ETH of

Zurich (see [23], [24]).

Firstly, we focus our study on the implementation of a two-step procedure which allows

us to align optimally a team of flying vehicles for a surveillance task. Initially, a single robot

constructs a map of the area of interest using a novel monocular-vision-based approach. A

state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simultaneously

and autonomously, building an incremental map of the surrounding environment. The gen-

erated map is processed and serves as an input for the CAO algorithm. The output of this

procedure is the optimal arrangement of the robot team, which maximizes the monitored area.

The efficiency of our approach is demonstrated using real data collected from aerial robots in

different outdoor areas.

A key issue for the successful implementation of the CAO proposed methodology in the

case of a team of MAVs, is the accuracy of the input, which in this case is an elevation map

of the environment. We consider an elevation map as a trade-off between complex environ-

mental mapping versus online availability of the environment shape for real-time coverage. A

more sophisticated, yet much more costly approach in terms of computational complexity, is

presented in [116]. There, the authors reconstruct the 3D environment with the aid of Multi

Level Surface maps on a ground robot. Since MAVs generally fly at a reasonable altitude,

the area is well approximated by a computationally much less expensive elevation map not

considering tunnels or cave-like structures.

Since we deal with MAVs, the choice of sensors to perceive the environment to be mon-

itored and therefore to construct the elevation maps is limited. For GPS-denied navigation

97
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and mapping, vision sensors and laser range finders might be the only options. In [67] the

authors combine range images with a digital elevation model for accurate environment mod-

eling. A computationally less complex approach was chosen by [115] using a multi-resolution

approach adopted from the computer graphics literature. This approach shows real-time ca-

pabilities on a ground robot. However, in aerial navigation, we have even more constraints in

the computation power budget. Furthermore, laser scanners are too heavy for MAVs and have

a limited field of view. Therefore, cameras and inertial sensors might be the only viable solu-

tions for such limited weight and calculation power budgets. For ground vehicles (cars), 3D

occupancy grids built from stereo vision and GPS data have been shown to be a valid solution

[18]. However, occupancy grids are not a good option for MAVs because of their limited cal-

culation power. Lacroix [101] presented an off-line method to map a large outdoor scenario

in fine resolution using low-altitude aerial stereo-vision images. However, stereo vision loses

its advantage when the baseline is too small compared to the scene depth. Considering the

limited weight, power and computation budget on MAVs, we rely on a monocular solution

in which the appropriate baseline is provided by a keyframe-based visual SLAM framework

[40].

6.1 Platform

For completeness, we provide here a description of the experimental platform used for the

final implementation considering both hardware and software aspects [24].

6.1.1 Hardware

The MAV we use is a so-called quadrocopter, a helicopter driven by for rotors, symmetric

to the center of mass. The control of the quadrocopter is performed solely by changing the

rotation speed of the propellers and is described in more details in [38]. For our experiments,

we use the “AscTec Pelican” quadrocopter [36], which is a further development of the one

described in [38]. The quadrocopter is equipped with rotors with 10” diameter which allow to

carry a payload of about 500g. Depending on battery size and payload, flight times between

10 and 20 minutes can be achieved. Further key features are the Flight Control Unit (FCU)

“AscTec Autopilot” as well as the flexible design enabling one to easily mount different pay-

loads like computer boards or cameras. The FCU features a complete Inertial Measurement

Unit (IMU) as well as two 32Bit, 60MHz ARM-7 microcontrollers used for data fusion and

flight control. One of these microcontrollers, the Low Level Processor (LLP) is responsible

for the hardware management and IMU sensor data fusion. An attitude and GPS-based po-
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Figure 6.1: Overview of the Pelican quadrocopter.

sition controller is implemented as well on this processor. The LLP is delivered as a black

box with defined interfaces to additional components and to the High Level Processor (HLP).

To operate the quadrocopter, only the LLP is necessary. Therefore, the HLP is dedicated for

custom code. All relevant and fused IMU data are provided at an update rate of 1kHz via

a highspeed serial interface. In particular, this comprises body accelerations, body angular

velocities, magnetic compass, height measured by an air pressure sensor and the estimated

attitude of the vehicle.

For the computationally more expensive onboard processing tasks, we outfitted the he-

licopter with a 1.6 GHz Intel Atom Based embedded computer, available from [36]. This

computer is equipped with 1 GB RAM, a MicroSD card slot for the operating system, a

802.11n based miniPCI Express WiFi card and a Compact Flash slot. The miniPCIE WiFi

card is preferred over USB to keep the USB bus free for devices like the cameras we use. We

furthermore use a high speed CF-card that allows us data logging with up to 40 MByte/s.

As camera, we use a Point-Grey USB Firefly camera with a resolution of 752 × 480px

and a global shutter. The camera faces the ground with a 150◦ field-of-view lens since we are

expecting the most stable features trackable over longer time in this configuration.

The configuration of our system is schematically depicted in Figure 6.2.

6.1.2 Software

To provide a maximum portability of our code and to avoid potential (binary) driver issues, we

installed Ubuntu Linux 10.04 on our onboard computer which makes tedious crosscompiling
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Figure 6.2: Overview of the onboard schematics and interfaces.

unnecessary. Since we are running a couple of different subsystems that need to communicate

one each other, we use the ROS (Robot Operating System from Willow Garage) [88] frame-

work as a middleware. This is also used to communicate to the ground station over the WiFi

data-link for monitoring and control purposes. The FCU is interfaced via a ROS node com-

municating over a serial link to the FCU’s Higlevel Controller with firmware we developed

for our purposes. Software development on the HLP is done based on a SDK available for the

AutoPilot FCU providing all communication routines to the LLP and a basic framework. The

HLP communicates with the ROS framework on the onboard computer over a serial datalink

and a ROS FCU-node handling the serial communication. This node subscribes to generic

ROS pose messages with covariance, in our case from the vision framework, and forwards

it to the HLP. Moreover, it allows to monitor the state of the fusion filter and the position

controller, and to adjust their parameters online via the “dynamic reconfigure“ functionality

of ROS.

For the implementation of the position control loop and data fusion onboard the HLP, a

Matlab/Simulink framework is used in combination with the Mathworks Real-Time Workshop

Embedded Coder. The framework provides all necessary tools to design the control structure

in Simulink, optimize it for fixed point computing, as well as compiling and flashing the HLP.
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Figure 6.3: The top-left picture depicts the onboard-mounted camera on our vehicle (the
Pelican) from Ascending Technologies. The top-right picture is a screenshot of our visual
SLAM algorithm. The tracking of features can be observed. This is used for the localization
of the camera. In the bottom picture, the 3D point cloud map built by the mapping thread
is shown. The 3-axis coordinate frames represent the location where new keyframes were
added.

6.1.3 Mono-Vision Framework

The approach here presented uses the keyframe based visual SLAM algorithm of Klein and

Murray [59] in order to localize the MAV and build a dense elevation map with a single

camera.

In summary, Klein and Murray split the simultaneous localization and mapping task into

two separately scheduled threads: the tracking thread and the mapping thread. The tracking

thread is first of all responsible for the tracking of salient features in the camera image, i.e., it

compares the extracted point features with the stored map and thereby attempts to determine

the position of the camera. This is done with the following steps: first, a simple motion model

is applied to predict the new pose of the camera. Then the stored map points are projected

into the camera frame and corresponding features (FAST corners in this case) are searched.
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This is also referred to as the data association procedure. When this is done, the algorithm

refines the orientation and position of the camera such that the total error between the observed

point features and the projection of the map points into the actual frame is minimized. The

Mapping thread uses a subset of all camera images - also called keyframes - to build a 3D

point map of the surroundings. The keyframes are selected using some heuristic criteria.

After adding a new keyframe, a batch optimization is applied to the joint state of map points

and keyframe poses. This attempts to minimize the total error between projected map points

and the corresponding observations in the keyframes. In the computer vision community, this

procedure is also referred to as bundle adjustment. It is alternately applied to the global or to

a local set of map points and keyframes

When moving the helicopter through a region, our camera is facing downwards. This

increases the overlapping image portion of neighboring keyframes, so that we can even further

loosen the heuristics for adding keyframes to the map. It also ensures, that we can assume

an elevation map later on in the meshing procedure. When exploring new areas the global

bundle adjustment can be very expensive, limiting the number of keyframes to a few hundred

on our platform. An intricate hurdle when using a monocular camera is the lack of any depth

information. Closely linked to this problem is the unknown map scale. We tackle this issue

with the approach presented in [121] using an inertial sensor. We are thus able to have all

distance in metric units.

Adaptations to the SLAM Algorithm

The most evident and crucial change is the importation of the SLAM algorithm to ROS. It fa-

cilitates the transport of information to different nodes and computers. From the performance

point of view, the most important change is the degeneration of the SLAM framework to a

visual odometry framework: We do not keep anymore all keyframes in the bundle adjustment

step, but only keep a constant number of them. This makes the algorithm scalable to large

environments while keeping the calculation complexity linear with the number of features. If

the number of keyframes exceeds a threshold, we only take the closest N keyframes to the

current MAV pose. The augmentation in drift is minimal, since keyframes far away from the

current MAV pose only contribute minimally in a global bundle adjustment step. Loop clo-

sure is handled passively equally to the original version of the algorithm. That is, if the loop

did not drift significantly, the keyframe which closes the loop is considered as neighbor of the

current MAV pose and is taken into account in the local bundle adjustment step.

Besides the fundamental changes mentioned above, we also adapt some parameters of

Klein and Murray’s visual SLAM algorithm to increase its performance within our frame-
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work for optimal coverage in unknown terrain. First, we use a more conservative keyframe

selecting heuristic in order to decrease the number of keyframes added during map expansion.

Additionally, we reduce the number of points being tracked by the tracking thread from 1000

to 300. This again increases the maximal map size and the frame rate, while keeping the

accurate tracking quality. This leads to a very sparse information for the elevation mesh map,

however, our tests show still very satisfying results underlining the strength of our approach

for dense elevation mesh maps.

These modifications led to a framerate of max 20Hz on an Intel ATOM 1.6GHz processor.

The demonstration of the pure navigation task (i.e. without mesh mapping the environment)

is in [120].

6.2 Online Elevation Mesh Map Generation

To perform optimal surveillance coverage over an arbitrary terrain, we need to reconstruct

the area in an elevation map. Note that most works on optimal coverage assume an existing

map. In this work, we use an approach to build an elevation map online and in real-time.

Thus, the MAV has to be able to fly autonomously in the yet-unknown and later-mapped

area. For the vision-based autonomous navigation, we use the approach described in section

6.1. We extended the meshing approach of [119] to meet the needs for optimal surveillance

coverage in an arbitrary terrain. In particular, we build the map iteratively while the MAVs are

exploring the environment. Since we degenerated the visual framework to a visual odometry

setup (c.f. section 6.1.3) only the features triangulated with the newest keyframe are added

to the meshing process. Notice that, thanks to this modification, the meshing process has

constant complexity, since the number of added features per keyframe does not grow with the

map size. Furthermore, the required rate of the mesh update is given by the rate of newly

added keyframes. That is, it is dependent on the speed/altitude ratio the MAV moves. I.e. the

rate of newly added keyframes is the same if the MAV moves fast at high altitude or slower

on low altitude. It is the pixel change in the image that triggers a new keyframe. During all

our experiments, we use a down-looking camera on the MAV. Thus, we can assume the the

point-cloud to be an elevation map.

6.2.1 Elevation Mesh Generation from a Point Cloud

We summarize here the idea presented in [119] for the mesh-map creation. For the sake of

simplicity and for better understanding we use a sample scene throughout this section. Figure

6.4 depicts this scene. Note that it is a small scale scene, however, due to our monocular
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(a) (b)

Figure 6.4: a) Sample image of the scene mapped for the following illustration of the algo-
rithm in this section. The sheets in front of the keyboard are flat and represent the main plane
H whereas the keyboard has a soft inclination in depth towards the upper part of the image.
b) Scene with 3D point features. This represents the data available in a keyframe of the visual
SLAM algorithm. Back projecting a 3D triangle of the meshed map allows getting the texture
for the triangle in question. Note that this is the distorted image while for texturing the mesh
we use the undistorted one.

approach, all techniques and algorithms applied to this scene are perfectly scalable. That

is, huge terrain captured from far away looks identical to a small terrain captured from very

close - i.e. the images and thus the map are scale invariant. At the end of this section we

show our algorithm performing in a large scale outdoor environment. Figure 6.4(b) shows the

information available in a keyframe of the SLAM algorithm.

Assume the point cloud {~pi} with M 3D points ~pi representing the initial map constructed

by the visual SLAM algorithm in the start phase. Without any restrictions to the terrain to

explore later on we assume the start area to be relatively flat and the aerial vehicle in hover

mode. The main map plane H is found using a least square method on {~pi} or a RANSAC

algorithm. In our case the latter one is used to be more robust against outliers. This is done

in the given SLAM framework. All current and future map points are projected to this main

plane to reduce the dimensionality:

~ri = P ∗ ~pi (6.1)

where ~pi is a three dimensional point of the current map and ~ri is its two dimensional coun-

terpart projected to the main map plane H using the 2x3 projection matrix P . Note that H

usually corresponds to a physical plane in the scene (i.e. table or floor). Furthermore, as the

camera is down looking on a helicopter this plane usually is only slightly inclined to the xy-
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plane in the camera frame. Thus the two dimensional positions of the features ~ri are accurate

while the third (eliminated by the projection) is very noisy due to the depth triangulation of

the visual SLAM algorithm. After the projection a Delaunay Triangulation is run in 2D space

to generate a 2D mesh. We use a Sweep algorithm for the triangulation to keep calculation

power low. For the Sweep triangulation, calculation is in the order of O(n log n) compared

to the standard algorithm with O(n2). The 3D point cloud of the scene is depicted in Fig.

6.5. One can note the difficulty even a trained eye has to interpret the scene. Standard path

planning and obstacle avoidance algorithms cannot be used. In Figure 6.6 the generated mesh

is shown. After the Delaunay Triangulation in 2D space we add again the third dimension. As

equation (6.1) is not invertible (P is not a square matrix and we therefore have ambiguities in

the back projection) we only use the edge information of the Delaunay Triangulation. That is

if an edge in the 2D Delaunay Triangulation is defined by

d2d = ~ri~rj (6.2)

we map it to an edge in 3D space according to

d3d = ~pi ~pj (6.3)

with ~rk = P ∗ ~pk and k ∈ map. This initial elevation mesh is then median filtered in the third

coordinate to remove outliers and noise. The median value is calculated using all adjacent

vertices to the center vertex. That is

pzk = median(pzi∀pzi ∈ d3d = ~pk~pi) , (6.4)

where pzi denotes the third coordinate of the 3D point ~pi previously eliminated for the Delau-

nay Triangulation.

At this point standard path planning and obstacle avoidance algorithms could be applied

for enhanced autonomous navigation. The most simple rule for obstacle avoidance is to not

traverse the mesh. That is, if the airborne vehicle always stays on the same side of the mesh

it will not crash against an obstacle. Note that thanks to the sparseness of the point features

this rule is highly robust, however, may be too restrictive in some particular cases. In the task

of optimal coverage, we are more interested in the general shape of the landscape, rather than

detailed 3D reconstruction. Thus, for the use of optimal coverage, the level of details of these

elevation mesh maps is largely sufficient. Note that we can recover the absolute scale factor

of the monocular SLAM by using an inertial sensor as we described in [121]. This way, we

can reconstruct a metric mesh-map of an arbitrary terrain. Figure 6.7 shows the initialization
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Figure 6.5: The 3D point cloud of the sample scene. A trained eye can spot the papers and
the keyboard. However, usually neither human users nor standard path planning and obstacle
avoidance algorithms understand the point cloud

Figure 6.6: Applying Delaunay Triangulation to the point cloud reveals the real topology of
the scene. The ’hill’ represents the keyboard in the sample scene. Note that we applied a
median filter to the mesh vertices in order to eliminate outliers. Thus the 3D points may not
always lie on the grid. This grid is already sufficient for path planning and obstacle avoidance.
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of the visual SLAM algorithm and the reconstruction of our outdoor test terrain. For better

visibility we added texture to the mesh map as described in [119]. With the above described

procedure, we are able to reconstruct metrically any environment autonomously given that

sufficient (arbitrary) visual features are available. In unprepared outdoor environments, this

requirement is generally fulfilled. The reconstructed mesh map of the environment can then

be used by any coverage algorithm.

6.2.2 Birmensdorf and Hospital area

To validate our approach in a realistic environment, we used the data which were collected

with the use of the quadrotor previously described. The tested scenarios consider a team of

four MAVs and correspond to two different areas. The first area is Birmensdorf in Switzerland

and it’s presented in Fig. 6.8, while the second area corresponds to the ETHZ’s hospital area

and it’s presented in Fig. 6.9. More details about the data and the methodology used to extract

them, are presented in [12] and [119].

In the simulations, the main constraints imposed to the robots are that they remain within

the terrain’s limits, i.e. within [xmin, xmax] and [ymin, ymax] in the x− and y− axes, respec-

tively. At the same time they have to satisfy a maximum height requirement while they do not

“hit” the terrain, i.e. they remain within [Φ(x, y) + d, zmax] along the z-axis. Several initial

configurations for each scenario were tested. The values of the cost function for three different

configurations, in the case of the Birmensdorf area are presented in Fig. 6.10. Sample trajec-

tories for a robot team with initial coordinates for Robot 1 (1.34, 121.29, 22.91), for Robot 2

(2.69, 121.29, 22.91), for Robot 3 (4.04, 121.39, 22.91) and for Robot 4 (5.39, 121.29, 22.91)

(all units are in meters) are presented in Fig. 6.11, while in Fig. 6.12 the final positions of

3 robot teams starting from different initial positions are presented in a 3D view. Different

marker type corresponds to different robots, while different color corresponds to a different

team. In table 6.2.2 the final coverage percentage for different initial configurations in the Bir-

mensdorf area, is presented. The values of the cost function for three initial configurations in

the case ETHZ’s hospital area are presented in Fig. 6.13. Sample trajectories for a robot team

with initial coordinates for Robot 1 (2.33, 95.57, 41.95), for Robot 2 (25.64, 97.90, 41.95), for

Robot 3 (48.95, 100.23, 41.95) and for Robot 4 (72.26, 102.56, 41.95) (all units are in meters)

are presented in Fig. 6.14. In Fig. 6.15 the final positions of 3 robot teams starting from

different initial positions are presented in a 3D view.

To further validate the efficiency of the proposed methodology, an incremental scenario

is also presented. A single aerial robot is flying over an unknown area and incrementally is

producing maps which are used as an input to the proposed CAO algorithm. Each increment
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(a)

(b)

(c)

(d)

Figure 6.7: Initialization of the visual SLAM algorithm and reconstruction of our outdoor test
terrain. (a) Initialization of the visual SLAM algorithm (on the left the tracked features used
to initialize the map, on the right the reference frame). (b) The reference frame is displayed
as a grid on the image (left). On the right, a few reconstructed camera poses are displayed
as faint tripods. The bold tripod is the actual camera pose. This pose is used for the MAV
position controller and yields the metric map scale by fusing it with the IMU measurements.
(c) Generation of the textured map. (d) Sample of a meshed and also textured (snowy) outdoor
environment. For the CAO approach the generated mesh is sufficient, however, the texture
gives the user intuitive information of where the MAV is positioned at the given time instance.
Even with the texturing, this approach runs in real-time. Note that the reconstruction precision
is not very high. It is, however, largely sufficient for our optimal coverage tasks. With the aid
of the IMU we have a metric map and estimate here the urban canyon width to be about 10m
(error is <10% ). The map reconstruction runs online while flying.
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Figure 6.8: Outdoor flight path through the Birmensdorf area. The boundary of the region of
interest is in black.

Figure 6.9: Outdoor flight path through the ETHZ’s hospital area.

is a subset of the following map. The result of the optimization procedure for each map is

the position which assures optimal coverage of the area with the given team. This optimal

positions are used as an input to the new map which is produced by the aerial robot which

performs the mapping procedure. An aerial robot has flew over the Birmensdorf area and

based on this flight eight successive maps of different sizes were produced and used as an

input to the CAO algorithm. In Table 6.2.2 we present the performance of a team of four

robots for the eight successive maps, in term of coverage percentage. The final map is similar

to the one presented in Fig. 6.12. In all cases the proposed framework provides satisfactory

results in terms of coverage percentage.



110 Chapter 6. Experimental Results

Table 6.1: Coverage percentage for different initial configurations in the Birmensdorf area.
(% of Coverage)

Test Case 1 2 3
Initial Configuration 44.49 40.49 56.81
Final Configuration 98.55 99.52 99.56
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Figure 6.10: Comparative cost functions for different initial robot team configurations in Bir-
mensdorf area.

6.2.3 Indoor area

Some simulations have been carried out also for indoor environments. ETHZ-CVG provided

3D maps which were produced by real flight data recorded by the prototype flying robots.

These maps were processed and modified based on feedback from CERTH and INRIA in

order to be compatible with the proposed methodologies. CERTH updated the software in

which the optimization framework is implemented based on feedback from the sFly partners.

The graphical user interface of the optimization framework is presented in Fig. 6.16.

6.3 Experimental results

We present here the results obtained during the final demonstration of the project. For the

definition of the final scenario, we went back to the original vision of the sFly project and

Table 6.2: Incremental scenario in the Birmensdorf area.
Test Case 1 2 3 4 5 6 7 8

Initial % of coverage 69.83 85.37 63.82 65.57 49.94 75.32 74.2 81.21
Final % of coverage 94.5 98.01 95.44 95.32 72.56 79.56 76.72 90.5
% of the final map 5.46 6.55 9.63 16.86 59.98 70.23 81.8 100
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Figure 6.11: 3D Path followed by a robot team in a coverage scenario in Birmensdorf area.

the potential fields of application described therein. The biggest fundamental challenges thus

consist of:

• robust monocular vision and inertial based autonomous hovering, navigation, and map-

ping with micro aerial vehicles in an unstructured environment,

• optimal surveillance coverage, and

• target localization with Received Signal Strength Indicator (RSSI) measurements.

The idea is to merge the solutions of all these challenging research problems in a single, com-

bined search and surveillance mission. The underlying story is the support for the searching

of a victim in a large scale environment. The victim is equipped with a transmitter badge for

its identification and localization. The mission consists of first creating a common global map

of the working area with three helicopters, then engaging positions for an optimal surveillance

coverage of the area, and finally detecting the transmitter position. For safety and logistical

reasons, the intended demonstration site must be a realistic and unpopulated outdoor area.

The firefighter training area in Zurich has been selected as a perfect site for our purposes (see

Fig. 6.17).

In this case, the helicopters used for the mission are hexacopters with a dual core processor,

always developed by Ascending Technologies (Fig. 6.18). The localization process by RSSI

measurements has been developed by CSEM.
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Figure 6.12: Final configurations of three robot teams starting from different initial positions
for the Birmensdorf area.

6.3.1 Demonstration Scenario

The outline of the mission is the following:

• Preparation: place a transmitter node at an arbitrary position in the area.

• Take off with three MAVs from the same spot and explore the area in a manually set

pattern with potential overlap in the scenes viewed by each helicopter. Stabilization and

navigation is based on local visual mapping/visual odometry.

• Images are streamed to the ground station for off-line mapping after landing. The

ground station merges the three local maps and generates a consistent global map, which

is uploaded on each helicopter.

• Compute optimal coverage positions.

• Command the helicopters to anchor positions for transmitter node detection.

• Locate the transmitter node in the area by combining the RSSI measurements made by

the MAVs.

• Hover at optimal coverage positions for live surveillance of the hypothetical rescue

operation.

• Return to safe landing spots.
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Figure 6.13: Comparative cost functions for different initial robot team configurations in
ETHZ’s hospital area.
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Figure 6.14: 3D Path followed by a robot team in a coverage scenario in the ETHZ’s hospital
area.
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Figure 6.15: Final configurations of three robot teams starting from different initial positions
for the ETHZ’s hospital area.

Figure 6.16: Graphical user interface of the CAO algorithm for a simulation in an indoor
environment.
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Figure 6.17: The firefighter training area in Zurich: the selected site for the final demo of the
sFly project.

The node represent a victim in a workplace or factory scenario. Having the team of helicopters

surveying the mission and tracking the victim from above allows for an efficient command ex-

ecution of the entire operation from a centralized position. The absolute position as well as

the close environment of the workers is known without any additional effort from the individ-

ual ground team members. The decision to perform take-off with the three helicopters from

the same spot guarantees immediate overlap of the local maps, and thus eases the initializa-

tion of the global map. It leads to immediate mutual knowledge of the absolute as well as

the relative positions of the vehicles, and practically enables the coordinated flight following

the exploration pattern without making the demonstration less impressive or any of the sub-

tasks simpler. This demonstration integrates the output of all the partners, and finally show

the cooperative execution of a challenging multi-robot mission incorporating the major vision

behind the sFly project.

During the demonstration, for practical reasons, after the exploration and mapping step,

the three helicopters landed. Then, the map was reconstructed and the optimal coverage po-
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Figure 6.18: During the final project demonstration three helicopters are called to map and
cover an outdoor environment.

sitions calculated but only one helicopter took off again and autonomously flied through the

optimal positions for the victim localization. At each of these positions it hovered for eight

second. In Fig. 6.20, a screen-shot of the interface developed by CERTH is shown. This

interface allows the user to easily set all the parameters of the system and visualize at the

same moment a 2D view of the environment with the robots positions, the behavior of the

cost function, the height of flight of the helicopters and the total covered surface. Finally, Fig.

6.21 shows a 3D view of the map of the environment with the final optimal positions.

6.4 Conclusions

In this chapter we presented the main application of our work, which was possible fusing the

contributions of all the partners of the sFly project. Initially, a two-step procedure to align a

swarm of flying vehicles to perform surveillance coverage has been presented and formally an-

alyzed. A state-of-the-art visual-SLAM algorithm tracks the pose of the camera while, simul-

taneously, building an incremental map of the surrounding environment, autonomously, given

that sufficient (arbitrary) visual features are available. In unprepared outdoor environments,

such a requirement of having sufficient features is generally fulfilled. The reconstructed mesh

map of the environment is used as the input to the second part of the procedure where the

CAO methodology is used to maximize the area monitored by a team of aerial robots. Using

this procedure, several simulations both in outdoor regions near Zurich and indoor areas has

been carried out. Finally, during the final project demonstration, a real experimentation using
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(a) (b)

Figure 6.19: The three helicopters flying during the final demonstration.

three micro helicopters has been accomplished. The goal of the task was to localize a victim

in a complex outdoor environment, reproducing a typical search and rescue mission. After

a first step of exploration and mapping following manually defined trajectories, but with a

vision-based flight, the map has been used as the input of the CAO algorithm to calculate the

final optimal coverage positions. Then, a helicopter hovered on these positions and localized

a victim, positioned at the beginning of the task in an arbitrary point of the environment. This

demonstration had the goal to combine the work of all the partners of the project and simulate

a realistic rescue mission in a GPS-denied environment.
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Figure 6.20: Screen-shot of the interface for the calculation of the optimal coverage positions.

Figure 6.21: The map obtained by the three helicopters and the final optimal positions in a 3D
view.
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Figure 6.22: The localization of the victim is the final goal of the task.
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Chapter 7

Navigating between People

As already sentenced, the CAO algorithm may be very useful for many different guidance

problems in complex and dynamic environments, where an adaptive, fast, sensor-based ap-

proach is of crucial importance. To demonstrate that, in this chapter we consider a problem

completely different from the cooperative surveillance coverage and we show how the same

algorithm can be used to obtain a solution also in this case. The problem chosen for this

purpose is: safely moving a robot in an unknown and complex environment where people

are moving and interacting. The robot must navigate respecting humans’ comfort. A typical

scenario with a wheel chair moving between humans is shown in Fig. 7. To obtain good

results in such environments, a prediction on humans’ movement is also crucial. To solve all

the aforementioned problems we introduce a suitable cost function. The results of this chapter

have been presented in [97].

7.1 Introduction

Robots navigating close to humans or involved in interaction tasks with humans must assure

not only safe but understandable behavior in order to prevent discomfort in people. Recently,

several possible solutions to this problem have been proposed [107, 56, 68, 98]. Our work is

placed in this framework: we are interested in safely lead a robot in an unknown and complex

environment, where people are moving and interacting, respecting the humans’ comfort. The

first step is to understand how humans manage the space around them while navigating and

how their decisions affect the comfort of others. Many psychological theories have been

proposed to explain the relation between distance, visual behaviors and comfort in humans

(see [3] and references therein). Intuitively people will become uncomfortable if they are

approached at a distance that is judged to be too close: the greater invasion/intrusion the

121
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Figure 7.1: A typical scenario of navigation between humans. A wheelchair is moving in an
area where people are chatting and interacting.

more discomfort or arousal is experienced by the person. This simple idea was formalized

introducing the concept of personal space, firstly proposed by Hall [42], which characterizes

the space around a human being in terms of comfort to social activity. In casual conversations,

people claim an amount of space related to that activity. This space is respected by other

people and only participants have permitted access to it, therefore the intrusion of a stranger

causes discomfort [53]. It can be assumed that people will engage in proxemic behavior with

robots in much the same way that they interact with other people [114]. For example in [21],

participants evaluated the direct frontal approach as least comfortable for a bring object task

by finding robots motion threatening and aggressive.

In this chapter we formulate the problem of social robot navigation as an optimization

problem where the objective function includes, in addition to the distance to goal, information

about comfort of present humans. Using the CAO algorithm to generate the trajectory, we can

also obtain an indirect prediction on the people movement, which is a very crucial point to get

good results for a similar task.

7.1.1 Related Work

A proposal of human aware navigation was presented in [107], where it is implemented a

motion planner which takes explicitly into account its human partners. The authors introduced

criteria based both on the control of the distance between the robot and the human, and on

the control of the position of the robot within the human’s field of view. The criterion of
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visibility was simply based on the idea that when the robot is in the field of view of a person,

the comfort increases. Our assumption is in some way the opposite of the last criterion: the

field of view shows the point of interest of a person then, if the robot enters it, the activity of

the person will be interrupted decreasing the comfort function. The work presented in [68]

proposed six harmonious rules that a single robot should obey in order to achieve not only a

safe but also a least disturbance motion in a human-robot environment. Based on these rules,

a practical reactive navigation algorithm was developed. It is considered the fact that both

humans and robots have their sensitive zones, depending either on their security regions or

on psychological feeling of humans. Personal space, o-space and their relation to comfort

were addressed in [98], where a risk based navigation was extended to include risk due to

discomfort. The method is based on a probabilistic version of Rapidly-exploring Random

Trees. Human’s movement is supposed to be known by learning of typical trajectories in a

particular environment. Distance to goal, risk of collision and risk due to comfort are used

as heuristics to take decisions but optimality of chosen paths is not guaranteed. The work

presented in [72] investigates the notion of comfort and proposes some ways to use it in

robotics domain. The goal is to identify the salient features in the environment that affect

the comfort level. In [56] a generalized framework for representing social conventions as

components of a constrained optimization problem was presented and it was used for path

planning and navigation. Social conventions were modeled as costs for the A* planner with

constraints like shortest distance, personal space and pass on the right. In contrast with the

previous works, we can take advantage of information about past people positions to obtain

a humans’ movement prediction. This fundamental advantage is based on the possibility to

work with an unknown objective function.

7.2 Proposed Solution

In this section we formulate the particular problem we want to solve and we show how the

proposed optimization algorithm can be applied in practice to the problem studied in this

chapter. Furthermore, we discuss how it is possible to include a prediction of humans’ motion

by using the CAO algorithm.

Our intent is to safely move a robot in a complex and unknown environment respecting

the comfort of the people moving in. Let x(R)
0 be the robot start position and let x(G) be the

goal position. Our intent is to move the robot from x
(R)
0 to x(G) minimizing the discomfort of

humans located at positions {p(i)}. The discomfort function has two components, one for the

invasion of Personal Space (dis(PS)) and the other for invasion of Information Process Space
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(dis(IPS)), both of them explained later in this section. To fulfill both the tasks of reaching

the goal and respecting the people, we define the optimization function in the following way:

J = λ ∗ (dis(PS) + dis(IPS)) +D(x(G)) (7.1)

where λ is a constant parameter and D(x(G)) is a function depending on the distance to the

goal. In our case it is the Euclidean distance.

The difference with respect to the application of the algorithm, provided in previous chap-

ters, is that now the cost function depends on both active variables (the robot’s position x(R))

and passive variables (humans’ positions {p(i)}). This means that now the cost function can

be expressed in the form:

J = J(x(R); {p(i)}) (7.2)

and only the controllable components x(R) are perturbed to generate the candidate new posi-

tions.

7.2.1 Discomfort model

Figure 7.2: We consider as discomfort the invasion made to humans’ space by the robot,
specifically, a) Personal Space b) Information Process Space or c) o-space.

Since comfort is a subjective notion it is clear that it cannot be measured directly by any

sensor, however some studies have been developed to explain how distance and visual behav-

ior affect comfort in humans (see [4, 3]). Some other works have studied the visual behavior

of pedestrians when navigating: for example in [57] authors explored the size and the shape of

Information Process Space (IPS), in which a pedestrian takes account of other pedestrians and

obstacles for calculating next moves and where psychological comfort is evaluated (this space
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can be related to visual field). We built our comfort model based on these works. We consider

as discomfort the invasion made to humans’ space, specifically personal space [42], o-space

[53] and Information Process Space [3], by the robot. A representation of these spaces can be

observed in Fig. 7.2. We assume that the discomfort will be higher in the spaces previously

mentioned and we propose a function that approximates them. The function to represent IPS

is inspired on the representation of the Doppler effect which establishes that the perception

in the frequency of a sound varies with the movement of source and observer. The source of

sound is a pedestrian that moves with a constant velocity and all the other points are observers

which do not move. Then the equation is:

f ′ =
c

c− vs cos θs
f , (7.3)

where f is the frequency emitted by the source, f ′ is the frequency perceived by the observer,

c is the velocity of sound, vs is the velocity of the source and θs is the angle between the

direction of the source and the direction of the vector linking observer and source. Numerical

values for the parameters in eq. (7.3) have been determined empirically to best adjust to the

results for IPS in [57], and they are c = 3.43, vs = 3.0; f is determined in function of distance

as stated in next equation:

f =


1 if d < de

1−
(
d−de
dl

)
if de ≤ d ≤ de + dl

0 if d > de + dl

(7.4)

where d is the distance from the human’s position, de is the main ratio of effect of the IPS

and dl is the ratio where the IPS loses its effect. In our current implementation de = 4.5 and

dl = 4.5.

When two people are interacting the o-space is created by the intersection of the two IPS,

as we can see in the case presented in Fig. 7.3 (c). Finally, we use a Gaussian function

centered on the pedestrian position to represent the Personal Space; the front is wider than the

back as presented in [56].

Using these equations we can get the next graphics for the models: the first one is the Personal

Space for a pedestrian walking in the direction of y-axis, the second one the IPS for the same

case and the third one shows the resulting o-space for two pedestrians in conversation. The

robot must avoid the red regions while navigating.
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(a) (b)

(c)

Figure 7.3: Models implemented to represent discomfort in humans’ spaces: (a) Personal
Space of a human in (0,0) and orientation of 90 degrees. (b) IPS for a human in (0,-4.5) and
orientation of 90 degrees. (c) O-space for two humans in positions (-0.85,-4.5) and (0.85,-4.5)
and orientations of 30 and 150 degrees, respectively. Higher discomfort in darker red, lower
in lighter blue.

7.2.2 Movement Prediction

As already stated, our intent is to consider a dynamic environment where the people {p(i)} are

moving. The objective function is then time-dependent and in general it will be different for

each time step:

Jt = J(x(R); {p(i)
t }) . (7.5)

In this case, in order to solve the optimization problem, i.e. finding the optimal next robot

position, the result can be considerably improved if we consider the function Jt+1 instead of

Jt, where:

Jt+1 = J(x(R); {p(i)
t+1}) . (7.6)

This function is obviously unknown at time t but it could be approximated if a prediction

model is available. Indeed, we can express the positions {p(i)
t+1} by means of a limited set of q
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Figure 7.4: An example of prediction: the robot anticipates humans’ movements and avoids
them.

past configurations

{p(i)
t+1} = g({p(i)

t }, ..., {p(i)
t−q}) (7.7)

where the new function g represents the prediction model. In our case we do not assume

any particular model and the function g is to consider completely unknown. Hence also the

function

Jt+1 = J(x(R); g({p(i)
t }, ..., {p(i)

t−q})) (7.8)

is now unknown. The strategy to approach the problem is not to explicitly predict the humans’

movement but try to directly approximate the cost function (7.8) using its available past values.

To do this in practice, we construct at each time step an approximator Ĵt, like in (3.11), of the

unknown function Jt+1 using the last m > q numerical values of Jt such that:

Ĵt(x
(R)
t ; {p(i)

t−1}, ..., {p(i)
t−q−1}) ≈ J(x

(R)
t ; {p(i)

t }) . (7.9)

In this way, using the last available set of humans’ positions, we have an indirect approxima-

tion of the humans’ movement prediction and we obtain

Ĵt(x
(R); {p(i)

t }, ..., {p(i)
t−q}) ≈ Jt+1 (7.10)

i.e., the function we want to optimize.



128 Chapter 7. Navigating between People

7.3 Performance Evaluation

In this section several scenarios are presented to show the execution of our algorithm in sim-

ulation. The first scenario is shown in Fig. 7.5: in this case five humans are present, three

of them are moving and two interacting. The robot starts at (1,1) and reaches its goal while

avoiding people and o-space of interaction. In Fig. 7.6 four different and more complex

scenarios are presented. In (a) a robot has to pass through a corridor while two humans are

chatting in the middle. It is possible to see how the robot is able to understand the interaction

and to avoid them without disturbing. We can notice how the method evaluates many points

that fall in the shortest path but finally can found a more comfortable way. In Fig. 7.6(b),

the robot start position is aligned with the goal position but as one people is looking to the

walls the chosen path guides the robot toward the middle of the corridor and then to the goal.

We can remark that in this case, since the two people are not interacting, the robot can pass

between them without trouble. A representation of a room with people inside is exhibited in

Fig. 7.6(c). Here the chosen path does not interrupt any human. Last example is shown in Fig.

7.6(d), where the robot respects o-space of the group and p-space of humans. Note that in ev-

ery simulation the presence of obstacles does not create any problem to the robot navigation.

Additionally the proposed algorithm, due to the random generation of next state configuration,

is able to overcome many of typical local minima generated by obstacle avoidance problems.

(a) (b) (c)

Figure 7.5: Simulation of the robot navigating in an environment populated by people at three
different times. Three humans walking and two in conversation. The discomfort function is
shown on the top. People are represented by circles, robot’s positions by small triangles, in
green and red initial and goal position respectively.
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(a) (b)

(c) (d)

Figure 7.6: More simulations with different scenarios. Start positions are in green, goal po-
sitions in red. In (a) the robot decides to take a path that minimizes discomfort of interacting
humans. In (b) a similar configuration but now humans are not interacting. In (c) and (d), a
pair of different complex scenarios where the robot’s trajectories respect people comfort.

7.3.1 Experimental platform

Due to the promising results achieved by simulations, the proposed approach is being imple-

mented on our experimental platform, an automated wheelchair (Fig. 7.7(a)) equipped with

two Sick lasers and a Microsoft Kinect, running ROS (Robotic Operating System) for achiev-

ing semi-autonomously mobility actions commanded by the wheelchair’s user. Laser permits

us to build a map of the environment, like shown on the bottom of Fig. 7.7(b). Data coming

from the Kinect will allow us to have position and orientation of pedestrians in the scene.
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(a) (b)

Figure 7.7: Experimental platform: in (a) the wheelchair, on the top of (b) the data provided
by the kinect, on the bottom the final map.

7.4 Conclusions

In this chapter we wanted to show how the stochastic optimization algorithm exploited in

this thesis can be applied for many and very different robotic problems. Indeed, as already

stated, the many advantages of this approach make it very suitable for applications in mobile

robotics. Particularly in presence of complex, dynamically and uncertain environments. The

task considered in this chapter was to navigate a robot, from an initial position to a predefined

goal, respecting the people comfort and avoiding the obstacles. We assumed the robot has

not an a priori knowledge about the environment, so the obstacles are detected during the

navigation. The results obtained in this chapter are a strong motivation to continue the research

and to implement the method in a real dynamic environment using the wheelchair previously

described.

As new sensors are becoming available to measure social signals we can take advantage of

them in our framework. In particular, Sociometric Badges ([83]) will be directly used by our

method to get high level descriptions of human behavior, mainly in the case of face-to-face

interaction and physical proximity.
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In this thesis, developed in the framework of the European project sFly, we have presented

a new approach based on an adaptive and stochastic algorithm, to achieve cooperative tasks.

The cooperative coverage problem has been studied with a final application for surveillance of

a complex outdoor region by using a swarm of Micro Aerial Vehicles (MAVs). The adopted

optimization algorithm (the CAO algorithm), recently proposed by Kosmatopoulos in [63, 60],

has been suitably modified to be applied to the considered problem. In particular this algo-

rithm, applied to a robotic problem for the first time in this thesis, has been extended to include

a strategy to take into account constraints and it has been proven that this new capability does

not affect the convergence properties. This method is able to deal with optimization problems

where the objective function is unknown in its analytical expression but numerical values are

available for measurements given a state configuration. As a results, it is very useful for the

problem we approached, where the terrain to cover can be unknown and/or too complex to be

described in an analytical way. More precisely, the proposed algorithm has the following key

advantages:

• it does not require any a priori knowledge on the environment;

• it works in any given environment, without the necessity to make any kind of assump-

tion about its topology;

• it can incorporate any kind of constraints;

• its complexity is low allowing real time implementations;

• it requires low weight and low cost sensors, which makes it ideal for aerial robot appli-

cations;

• it builds autonomously the metric map required for the optimization procedure.

Furthermore, we have proposed a distributed version of this algorithm for a particular cover-

age criterion: maximizing the surface of the terrain that the team is able to see. This approach
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is closer to real world applications since it does not suffer from the well known disadvan-

tages of a centralized method. In addition, a decentralized approach will allow us to include

communications constraints.

The first step to validate our method was to perform simulations in 2D area, where the

problem is easier to solve and the results are more understandable. For this first case, we

also proposed a completely different approach, based on the artificial potential field method

and the Lloyd algorithm, to solve the Voronoi coverage problem in an unknown non-convex

region. Then, we continued our investigation by extending the algorithm to make it able to

deal with 3D environments. The first simulations were carried out using complex simulated

environments and considering two different possible coverage criteria. Motivated by the good

results obtained in this phase, we have used real data provided by a helicopter. These data

have been collected in complex, outdoor regions near Zurich and we used them to reconstruct

a map of the environment, which served as an input for our algorithm. Particular incremental

scenarios are also tested, where the coverage is achieved simultaneously with the mapping.

The final step of our work has been the implementation of the algorithm on a real swarm of

MAVs to perform a surveillance coverage mission. A coverage mission in an outdoor area in

Zurich has been carried out with the aim of localize a victim positioned in an arbitrary point

of the environment.

Finally, we have approached also a different problem of navigation. In this case the goal

was safely navigating a robot in an unknown and complex environment where people are

moving and interacting. The aim of the robot was respecting the comfort of the people. Also

for this application the results were completely satisfactory and an implementation on an

experimental platform is expected.

We expect that many important tasks in mobile robotics can be approached by CAO-

based algorithms, for example: coordinated exploration, optimal target tracking, multi-robot

localization, and so on. This is basically due to the fact that the CAO approach does not require

an a priori knowledge of the environment and it demands low computational resources. Both

these issues are fundamental in mobile robotics.

Future work

A first future work we are carrying out is a detailed comparison between the proposed method

and other stochastic optimization method. In particular, we are testing the SPSA algorithm on

the coverage problem studied in this thesis. The SPSA algorithm has been described in chapter

2 and it is one of the most studied and exploited stochastic optimization algorithms. Prelimi-
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nary results seem to show that the CAO algorithm, despite it requires less robots movements,

can converge faster to a local optimum.

All the results of this thesis proved that the advantages of the proposed stochastic method-

ology make it suitable for real implementations and the results obtained give us the motivation

to adopt the CAO also in other frameworks. We are now extending the method to approach

problems of active target tracking and simultaneous localization and mapping (SLAM). Pre-

liminary results have already obtained. We believe they are promising and justify to continue

the research on this topic.

Furthermore, we are interested in enhancing the proposed methodology in order to be able

to deal with cases where the team converges to a configuration that fails to cover the entire

terrain. In other words, we are trying to improve the ability of the algorithm to overcome local

minima. It is worth noticing, that although in the 3D case treated here we have never encoun-

tered very evident local minima, there is always the possibility (due to the local convergence

properties of the algorithm) for the methodology to fail to cover the overall area. As a matter

of fact, such cases have been encountered in the 2D version of the algorithm and an exten-

sion/enhancement of the proposed methodology is required to deal with such cases. Another

important example is when the team capabilities are not sufficient to assure the surveillance

of the entire environment. In this case a static deployment is not appropriate and a dynamical

coverage strategy is necessary.

We are also interested into formulating the new 3D coverage proposed criterion, intro-

duced in Section 5.4, in a distributed manner by using different cost functions for the robots

in the team. Moreover, the results we obtained with the distributed algorithm for the visibility

problem were more satisfactory than we expected and they deserve a deeper analysis.

Finally, about the last application of the CAO approach presented in Chapter 7, in addition

to the implementation the algorithm on the wheelchair for a real experimentation, we want to

compare our results with other obtained with already existing methods. Moreover, an accurate

statistical analysis to validate the expected movement prediction is an important step.
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Appendix A

Resumé en Français

A.1 Introduction

L’utilisation déquipes de véhicules aériens sans pilote (UAVs) a pris de l’ampleur dans les

dernières années. Cela est dû aux avantages que les robots volants peuvent offrir par rapport

à l’utilisation de robots terrestres pour la même tâche. La capacité de voler permet facilement

d’éviter les obstacles sur le terrain et d’avoir une excellente vue d’oiseau. En outre, il est

possible d’accéder à des environnements où des humains ou d’autres véhicules ne peuvent

pas accéder. Par conséquent, les robots volants sont les héritiers logiques des robots mobiles

terrestres. Si en plus, ils sont réalisé à petite échelle, ils peuvent aussi être utilisés dans des

environnements étroits extérieurs et intérieurs et le risque pour l’environnement et les gens

qui y vivent n’est que limité. Des équipes de Micro-Véhicules Aériens (MAV) peuvent être

utilisés dans une variété de missions très importantes, y compris:

• Surveillance de bâtiments et de grandes espaces extérieurs et intérieurs: au lieu de

caméras fixes de sécurité, les micro-hélicoptères permettraient une grille re-configurable

de caméras de surveillance et en cas de besoin ils peuvent établir une dans des endroits

où les caméras de sécurité n’existent pas.

• Missions de sauvetage: des robots aériens capables de voler dans des quartiers fermés et

des bâtiments effondrés pourraient rapidement et systématiquement chercher à localiser

les victimes d’un accident ou d’une catastrophe naturelle.

• La surveillance des zones dangereuses, des centrales chimiques et nucléaires: les micro-

hélicoptères pourraient explorer des domaines dangereux pour l’homme, comme des

zones de contamination chimique, biologique ou nucléaire.
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Figure A.1: Scénarios typiques où la surveillance est une tâche fondamentale.

• Surveillance de l’environnement: les micro-robots volants sont un excellent outil pour

la surveillance de l’environnement (qualité de l’air, feux de forêt, ...) comme unité

individuelle, dans une équipe ou en relation avec un réseau de capteurs.

• Application de la loi dans la zone publique: un micro-hélicoptère pourrait fournir des

images en temps réel pour aider la police au cours des missions de surveillance ou des

opérations de recherche criminelle.

Dans toutes les tâches mentionnées ci-dessus le déploiement de ressources limitées (robots)

pour optimiser la surveillance de la zone d’intérêt est la question clé. En outre, comme ces

plates-formes deviennent de plus en plus abordables et robustes, l’utilisation d’équipes de

véhicules aériens que, de manière coopérative et autonome explorent et couvrent une super-

ficie affectée, devient une alternative viable. Afin d’exploiter les avantages de la mobilité

des robots, des stratégies de détection actives doivent être déterminées pour coordonner le

mouvement de groupes de robots.

Dans tous les systèmes multi-robots, une approche distribuée est souhaitable pour plusieurs

raisons fondamentales. Les plus importantes sont l’échec de la gare centrale et des capacités

de communication limitées. Dans un scénario très fréquent, chaque robot n’a pas de connais-

sances globales sur l’environnement ou sur le groupe dans son ensemble. Ainsi, le comporte-

ment global de l’équipe peut être considérée comme la somme des actions locales menées par

ses membres, qui détectent leur environnement immédiat, communiquent avec leurs voisins,

traitent l’information recueillie et se déplacent selon elle.

A.1.1 Contexte de la thèse

Le travail de cette thèse a été réalisé dans le cadre du projet européen sFly (www.sfly.org).

L’objectif de ce projet est de développer plusieurs petits hélicoptères qui peuvent voler de

façon autonome dans des environnements urbains et qui peuvent être utilisés pour aider les

humains dans des tâches telles que le sauvetage et la surveillance. Les principales motivations
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Figure A.2: Trois hexacopters utilisés pour le projet sFly.

de ce travail sont non seulement de réaliser des tâches impossibles pour une équipe humaine,

mais aussi pour être en mesure de remplacer l’intervention humaine dans des scénarios très

dangereux. Cela signifie que les hélicoptères doivent être en mesure de fonctionner dans

des environnements complexes où les signaux GPS sont souvent ombragés, en collaboration

et en complète autonomie. Cela implique un certain nombre de défis à tous les niveaux de la

conception d’hélicoptères, de la perception, de l’actionnement, du contrôle, de la navigation et

de l’alimentation qui n’ont pas encore été résolus. Les problématiques de la navigation basée

sur la vision ont été abordées par l’Autonomous System Lab (ASL) et le Computer Vision and

Geometry Group (CVG) à l’ETH de Zurich, en Suisse. Les hélicoptères ont été mis au point

pour le projet par Ascending Technologies GMBH (ATG), Allemagne (voir Fig. A.2). Les

questions de communication sans fil et de mesures de distance sont considérés par le CSEM,

Neuchâtel, Suisse. Enfin, l’INRIA (Grenoble, France) et CERTH/TUC (Thessalonique/ La

Canée, Gréce) ont été les partenaires chargés de la direction de navigation active pour les

tâches de coopération, le sujet de cette thèse.

A.1.2 Couverture Coopérative

Le problème du déploiement d’une équipe de robots volants pour effectuer des missions de

couverture de surveillance sur un terrain inconnu de morphologie complexe et non-convexe est

considéré. Ce problème peut être exprimé comme un problème d’optimisation: étant donné

une configuration d’équipe initiale arbitraire, trouver les positions finales des robots qui max-

imisent le degré de couverture et la façon de parvenir à une telle configuration. Dans cette

thèse, nous supposons que les capacités de surveillance de l’équipe sont suffisantes pour at-

teindre un niveau satisfaisant de surveillance à partir d’une configuration statique. En d’autres
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termes, nous ne considérons pas ici le cas d’un environnement trop grand pour être surveillé

et qui nécessite des stratégies de surveillance dynamiques. Afin de quantifier le degré de cou-

verture pour une mission de typique couverture deux différents critères principaux peuvent

être identifiés:

(O1) la partie de surface qui est surveillée par l’équipe de robots doit être maximisée;

(O2) pour chaque point dans le terrain, le robot le plus proche doit être le plus proche possible

de ce point.

Le premier objectif est le plus intuitif dans une tâche de surveillance: trouver les positions

à partir desquelles il est possible de voir le plus possible, en ce qui concerne les capacités

des capteurs de l’équipe. Dans la thèse, nous allons nous référer à ce problème comme le

problème de visibilité.

Le deuxième objectif pourrait être nécessaire pour deux raisons pratiques: (a) d’une part,

dans nombreuses applications de couverture, il y a la nécessité d’être en mesure d’intervenir

aussi vite que possible dans l’un des points du terrain avec au moins un robot et (b) d’autre

part, plus proche est le robot à un point sur le terrain mieux est, en général, sa capacité de

détection de surveiller ce point. Nous nous référerons à ce problème comme le problème

d’intervention.

Trouver les positions optimales pour l’équipe de robots n’est pas l’unique problème à

résoudre. En effet, dans de nombreuses situations le problème d’optimisation doit être résolu

en ligne, à partir de positions complètement arbitraires, sans, ou avec une partielle connais-

sance a priori sur l’environnement à surveiller. Donc dans ce cas, également la création des

trajectoires en temps réel, respectant toutes les contraintes dynamiques et de l’environnement,

constitue un autre défi.

Notre objectif est de développer une stratégie efficace et adaptative pour diriger les robots

afin de maximiser la partie du terrain qui est visible, en gardant la distance entre chaque point

sur le terrain et le membre le plus proche de l’équipe, le minimum possible. Un compromis

entre ces deux objectifs doit être rempli, en prenant en compte des contraintes physiques et

des limitations imposées par l’application particulière. Comme la morphologie du terrain est

inconnue et peut être très complexe et non-convexe, des algorithmes standards ne sont pas ap-

plicables au problème particulier traité dans cette thèse. Pour surmonter cette difficulté, une

nouvelle approche basée sur l’algorithme Cognitive-based Adaptive Optimization (CAO) est

proposée et évaluée. L’algorithme CAO est une méthode d’optimisation stochastique adap-

tative, récemment proposé par Kosmatopoulos dans [61], [63]. Une propriété fondamentale

de cette approche réside dans le partage des caractéristiques de convergence des algorithmes
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Figure A.3: Le travail développé dans cette thèse s’inscrit dans le cadre du projet européen
sFly.

de descente de gradient avec contraintes, qui exigent une connaissance parfaite de la mor-

phologie du terrain. Des arguments mathématiques rigoureux et des simulations étendues

prouvent que l’approche proposée fournit une méthodologie évolutive et efficace qui intègre

toutes les particulières limites et contraintes physiques et est capable de diriger les robots à un

configuration qui (localement) optimise la couverture du terrain.

A.1.3 Organisation et Contributions de la thèse

Le défi de cette thèse était de développer une méthodologie efficace et adaptative pour ef-

fectuer une surveillance coopérative d’un terrain très générique et complexe en utilisant une

équipe de micro-véhicules aériens. Les difficultés de ce défi ne sont pas seulement de résoudre

le complexe problème mathématique, mais elle sont aussi liées à des contraintes fortes que

l’application finale réelle exige: une faible complexité de calcul, le manque d’informations

sur la surface à couvrir, des éventuelles capacités limitées de communication, et ainsi de suite.

Pour aborder ces défis, nous avons adopté un nouvel algorithme d’optimisation stochastique et

adaptatif. Toutes les étapes, des les simulations dans des régions 2D jusqu’à la mise en œuvre

sur une équipe d’hélicoptères réels ont été effectuées. En outre, pour un critère particulier de

couverture, a été mis au point aussi une version distribuée de l’algorithme, ce qui nous permet

d’inclure des contraintes de communication et d’éviter tous les problèmes qu’une approche

centralisée peut générer.

Le reste de cette thèse est organisé comme suit. Dans le prochain chapitre, nous intro-

duisons le concept d’optimisation stochastique et nous présentons les approches les plus pop-

ulaires dans la littérature. Ceci permettra au lecteur de mieux comprendre les problématiques

principales d’une telle approche. Dans le Chapitre 3, l’algorithme CAO est introduit et ex-
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pliqué en détail. En particulier, nous allons fournir une preuve de la convergence vers un

minimum local. Les Chapitres 4 et 5 présentent les principaux résultats pour le problème de

couverture pour le cas 2D et 3D, respectivement. En suit, dans le Chapitre 6, les résultats

expérimentaux obtenus en utilisant des données réelles fournies par des hélicoptères sont

présentés et discutés. Le dernier chapitre contient les résultats qui correspondent à un problème

différent de navigation dans un environnement avec des personnes. Le but de ce travail final

est de montrer la généralité de l’approche proposée. Conclusions et travaux futurs concluent

cette thése.

A.2 Optimisation Stochastique

Chaque problème traité dans cette thèse a été abordé comme un problème d’optimisation.

L’optimisation pourrait être définie comme la science de déterminer les meilleures solutions

à certains problèmes mathématiquement définis, qui sont souvent des modèles de la réalité

physique. Dans la pratique, cela signifie maximiser ou minimiser une fonction en choisissant

des valeurs d’entrée parmi un ensemble autorisé. Formellement, nous pouvons exprimer ce

concept comme suit:

x∗ ≡ argmin
x∈S

J(x) = x∗ ∈ S : J(x∗) ≤ J(x) ∀x ∈ S , (A.1)

où x est un vecteur à p-dimensions de paramètres et S ⊆ Rp. Ce problème implique l’étude

des critères d’optimalité pour les problèmes traités, la détermination des méthodes algorith-

miques por obtenir une solution, l’étude de la structure de ces méthodes et l’expérimentation

informatique de cette méthode à la fois avec des conditions d’essai et avec des problèmes

de la vie réelle. Il y a une gamme extrêmement variée d’applications pratiques. On parle

d’optimisation stochastique, quand dans la recherche de la solution optimale il y a, d’une

certaine façon constructive, un caractère aléatoire. L’optimisation stochastique joue un rôle

important dans l’analyse, la conception et l’exploitation de systèmes modernes. Les méthodes

pour l’optimisation stochastique fournissent un moyen de faire face à des cas où que de

l’information affectée par le bruit est disponible et aussi de faire face à des modèles ou des

systèmes qui sont fortement non linéaires, de haute dimension, ou autrement inappropriés

pour les méthodes d’optimisation déterministe. Les algorithmes d’optimisation stochastique

ont une large application à des problèmes de statistique, d’informatique, d’ingénierie, et de

business. Aujourd’hui, les algorithmes employant une certaine forme d’optimisation stochas-

tique sont devenus largement disponibles et exploitées. Les applications spécifiques com-

prennent par exemple les finances (prise de décisions d’investissement à court et à long terme
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afin d’augmenter les profits), l’ingénierie aérospatiale, la médecine, et le trafic (réglage de la

synchronisation des signaux dans un réseau de trafic) et, comme dans cette thèse, la robotique

mobile.

Le but de ce chapitre est de présenter le problème général qu’un algorithme d’optimisation

stochastique est appelé à résoudre et de décrire les algorithmes entre les plus célèbres présents

dans la littérature.

En particulier, nous avons fourni une formulation mathématique du problème et de nom-

breux aspects fondamentaux, et sont discutés les problématiques et les limites de ces types

de problèmes d’optimisation. En suite, une brève revue des algorithmes les plus courants

est présentée, pour permettre au lecteur de mieux comprendre les possibles stratégies ex-

istantes pour trouver une solution. Un autre objectif de ce chapitre est de mettre l’accent

sur les caractéristiques qui différencient principalement les algorithmes, en particulier pour

les implémentations réelles: les concepts tels que l’évolutivité, l’adaptabilité, le nombre de

mesures (ou déplacements des robots) sont d’une importance fondamentale dans la robotique

mobile coopérative. Une attention particulière est accordée à l’algorithme SPSA, une ap-

proche très proche à l’algorithme que nous proposons, décrivant ses propriétés et ses avan-

tages. Dans le prochain chapitre, nous présenterons en détail l’algorithme d’optimisation

stochastique que nous avons adopté dans cette thèse, les motivations de ce choix et ses prin-

cipales propriétés de convergence.

A.3 L’Algorithme CAO

Dans ce chapitre, nous décrivons en détail l’algorithme que nous utilisons pour obtenir les

principaux résultats de cette thèse: l’algorithme d’optimisation cognitive et adaptative (CAO).

Nous montrons aussi comment cette approche peut être adaptée et étendue de manière appro-

priée afin qu’elle soit applicable au problème de couverture traitées dans cette thèse avec une

équipe de robots. La méthodologie CAO, qui a été récemment introduite par Kosmatopou-

los dans [63], [60], est un algorithme d’optimisation stochastique qui possède la capacité de

gérer efficacement des problèmes d’optimisation pour lesquels une expression analytique de

la fonction à optimiser n’est pas disponible, mais les valeurs numériques de cette fonction

sont disponibles à chaque itération de l’algorithme. En conséquence, il convient parfaite-

ment pour le problème de surveillance optimale dans des environnements non-convexes, où

la forme analytique de la fonction à optimiser est inconnue, mais la fonction est disponible

pour la mesure (grâce aux capteurs des robots) pour chaque configuration des robots. Dans

ce chapitre, nous discutons également les propriétés de convergence de l’algorithme, en four-
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Figure A.4: Principales étapes de l’algorithme CAO.

nissant des démonstrations rigoureuses. Les principales étapes de l’algorithme CAO sont

résumées dans la Fig. A.4.

Il doit être souligné que l’algorithme CAO présenté ici est une extension des versions

présentées et analysées dans [63, 60]. La principale différence est que, alors que dans ces œu-

vres les auteurs se penchent sur la version sans contrainte du problème (3.4), dans la présente

thèse l’approche CAO [63, 60] doit être étendue afin qu’elle prenne efficacement en compte

les contraintes (3.3). Pour ce faire, l’approche en [63, 60] a été modifié avec l’addition

d’un mécanisme de projection spéciale, mais pourtant simple. Le théorème 1 établit que

l’introduction d’un tel mécanisme de projection ne détruit pas les intéressantes propriétés de

la version sans contrainte. Ce résultat est basé sur le fait que l’algorithme CAO utilisé dans

cette thèse est avérée être un algorithme de descente de gradient projeté, tandis que les algo-

rithmes en [63, 60] ont été créés pour être approximativement des algorithmes de descente de

gradient sans contraintes.

Nous avons finalement mentionné que l’approche CAO étend le populaire Simoultaneous

Perturbation Stochastic Approximation (SPSA) algorithme, largement décrit dans le chapitre
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précédent. La différence entre le SPSA et l’approche CAO est que le SPSA emploie une ap-

proximation du gradient d’une fonction objectif approprié en utilisant uniquement les données

les plus récentes disponibles, tandis que l’approche CAO emploie un approximateur linéaire

dans les paramètres qui intègre des informations obtenues dans une fenêtre de temps passées,

spécifiée par l’utilisateur. En suite il utilise le concept de perturbations random pour opti-

miser efficacement la fonction inconnue. Les évaluations comparatives qui ont été effectuées

sur les problèmes d’optimisation complexes ont montré que le CAO présente des propriétés

de convergence meilleurs que SPSA [61, 63, 60]. Par ailleurs, il a été demontré que le CAO

a des caractéristiques de convergence (locale) satisfaisantes dans des problèmes particuliers

lorsque le SPSA omis de fournir des solutions convergentes pour tout choix de ses paramètres,

[61, 60].

Il est important de noter que tant la CAO et la SPSA ne créent pas une approximation ou

une estimation des caractéristiques environnementales, comme par exemple l’emplacement

des obstacles et sa géométrie, mais plutôt, ils produisent en ligne uniquement une approxi-

mation locale de la fonction coût inconnu que les robots sont appelés à optimiser. Pour cette

raison, ils ont besoin de schémas d’approximation simples.

Cette nouvelle méthode stochastique d’optimisation est utilisée pour résoudre tous les

principaux problèmes considérés dans cette thèse. Pour cette raison, une description précise

de toutes les étapes et une preuve mathématique rigoureuse de ses propriétés de convergence

ont été fournies. Dans les chapitres suivants, nous allons présenter et analyser les différents

critères de couverture possibles, qui sont les fonctions objectives que l’algorithme CAO est

appelé à optimiser. En particulier, dans le chapitre suivant, nous considérons le cas le plus

facile: nous considérons une région 2D et nous montrons les premiers résultats des simulations

obtenus en utilisant la méthode proposée. Nous avons finalement souligné que cet algorithme,

comme il est possible de le voir dans la description fournie dans le présent chapitre, peut

être appliqué à une gamme très large de problèmes. Le principal problème abordé dans cette

thèse, la couverture optimale d’un terrain, est seulement une des applications possibles et dans

le chapitre 7 nous allons prouver cette affirmation en abordant un problème complètement

différent de robotique avec la même méthode.

A.4 Couverture Optimale - 2D

Le but de ce chapitre est d’appliquer l’algorithme d’optimisation stochastique présenté dans le

chapitre précédent pour le principal problème abordé dans cette thèse: la surveillance optimale

coopérative. Même si l’objectif ultime consiste à développer une stratégie visant à déployer
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Figure A.5: Exemple de domaine surveillé par deux robots équipés de capteurs visuels om-
nidirectionnel dans un environnement non-convexe. Les points correspondent à les emplace-
ments des robots, les rectangles représentent les obstacles.

un équipe de micro véhicules aériens dans un environnement réel, nous commençons notre

analyse du cas d’une zone 2D. Ce choix est essentiellement dû à deux raisons: la première est

que c’est plus facile de commencer notre analyse avec un cas plus simple, bien étudié dans la

littérature; d’autre part, il est important de noter qu’une solution pour la région 2D peut être

pratique, non seulement pour une équipe de robots terrestres, mais aussi pour une équipe de

MAVs, si le terrain est suffisamment plat pour être approximé avec un plan.

Entre les deux critères de couverture énumérés dans l’introduction, ce chapitre se concen-

tre principalement sur le premier: maximiser la partie de la zone que l’équipe est capable de

surveiller. Et nous supposons qu’un robot est capable de surveiller tous les points qui sont au

sein de son champ de vision (voir Fig. A.5).

Un premier exemple est présenté dans la Fig. A.6(a). Elle montre un scénario typique

dans lequel quatre robots doivent couvrir un environnement non convexe. Le comportement

de la fonction coût au cours de la tâche est indiqué dans la Fig. A.6(b). Il est possible de voir

que le déploiement final est tel que l’équipe est capable de surveiller l’environnement dans

son ensemble.

L’algorithme proposé, totalement centralisé dans sa première version, a été en suite dis-

tribué. Pour ce faire, nous avons introduit une formulation différente de la fonction objectif

qui nous permet de décentraliser l’optimisation. Grâce à cette nouvelle formulation chaque
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Figure A.6: Approche centralisée. Quatre robots avec une distance maximale de surveillance
r = 6m. Dans la Fig. (a) il est montré le mouvement des robots: les points verts indiquent les
positions initiales des robots, les finales sont en bleu, en rouge les trajectoires. En Fig. (b) la
fonction objectif J (P).

robot doit optimiser une fonction différente que l’on peut exprimer comme suit:

Ji(P) = Vi −
∑
j 6=i

Vi
⋂

Vj , (A.2)

où Vj est la région de surveillance du j-ième robot (voir Fig. A.7).

Maintenant, au lieu d’une fonction de coût unique, le problème est caractérisé par N

fonctions coût, étant N le nombre de robots. L’algorithme CAO est adopté pour maximiser

chaque fonction de façon indépendante. Il est important de noter que, à chaque itération,

ces nouvelles fonctions d’optimisation ne dépendent que de la position des robots qui ont

un champ de vision en intersection avec des autres. Pour cette raison, la méthode distribuée

proposée peut également prendre en compte des contraintes de communication.

A.5 Couverture Optimale - 3D

Dans ce chapitre, nous avons étendu les résultats présentés dans le chapitre 4 pour la couver-

ture d’une surface dans un environnement 3D. Tout d’abord, nous avons étendu la solution

distribuée fournie dans le chapitre précédent, en montrant qu’elle peut être appliquée aussi

dans ce cas. Nous avons également comparé ces résultats avec ceux obtenus en utilisant

l’approche centralisée. La comparaison a été complètement satisfaisante puisque les perfor-
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Figure A.7: Algorithme distribué. Exemple de zone surveillée par trois robots équipés de
capteur visuel omnidirectionnel dans un environnement non-convexe. Le champ de vision en
rouge est l’aire efficace (fonction d’optimisation) surveillée par le robot respectif.

mances des deux méthodes sont très semblables.

Puis, nous avons introduit une nouvelle fonction objective possible, qui essaie de pren-

dre en compte à la fois les critères de couverture précédemment introduits: le problème

d’intervention et le problème de visibilité:

J(P) =

∫
q∈V

min
i∈{1,...,M}

‖x(i) − q‖2dq +K

∫
q∈T −V

dq (A.3)

oùK est une constante positive et ‖·‖ désigne la norme euclidienne. Le premier de ces termes

dans l’équation ci-dessus est la fonction de coût pris en compte d’habitude dans de nombreux

problèmes de couverture en matière d’environnement 2D connus, liée à la deuxième objectif

(réduire au minimum la distance moyenne entre les robots et la sous-zone dont ils sont re-

sponsables, voir [20]). Le deuxième terme est lié à la zone invisible sur le terrain (
∫
q∈T −V dq

est la partie totale du terrain qui n’est pas visible par l’un des robots).

En général, on ne peut pas optimiser simultanément les deux fonctions, à moins que les

fonctions partagent un optimum commun. Par conséquent, l’idée est d’optimiser une fonction

objective combinée qui cherche un compromis entre la maximisation de la zone visible et en

minimisant la distance des robots vers des points dans l’environnement. L’application de notre

algorithme pour ce problème a été présentée et une évaluation du rendement avec plusieurs

simulations, réalisées avec complexes environnements simulés, a été remise. Les résultats

obtenus montrent que l’algorithme de CAO est en mesure de fournir une solution pour la
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Figure A.8: Instantanés successifs de différentes positions des robots de l’équipe pour α =
0.3, dans le cas décrit dans la Section 5.5.1.

couverture de surveillance coopérative pour un environnement 3D totalement arbitraire.

Un exemple de couverture d’un terrain arbitraire en utilisant cette nouvelle formulation du

problème est montré dans la Fig. A.8.

Après la validation en utilisant des environnements simulés, dans le chapitre suivant nous

présentons les résultats expérimentaux où l’algorithme est testé avec des données réelles

fournies par une équipe de MAVs pour une mission de couverture réelle.

A.6 Résultats Expérimentaux

Dans ce chapitre, nous présentons une partie importante de notre travail: l’intégration de notre

travail avec les résultats expérimentaux obtenus en utilisant une équipe réel de MAVs. Cette

partie du travail est en collaboration également avec les autres partenaires du projet sFly et en

particulier avec l’ETH de Zurich (voir [23], [24]).

Initialement, a été présenté et formellement analysé une procédure en deux étapes pour

aligner une équipe de véhicules volants pour effectuer une couverture de surveillance. Un

algorithme de visual-SLAM suivi les poses d’une caméra tandis que, simultanément, il con-

struit de façon autonome une carte incrémentielle de l’environnement, étant donné que des

éléments visuels suffisantes (arbitraires) sont disponibles. Dans les environnements extérieurs
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Figure A.9: Trajectoire de vol à travers de la zone de Birmensdorf. La limite de la région
d’intérêt est en noir.

Table A.1: Pourcentage de couverture pour des différentes configurations initiales dans le
domaine de Birmensdorf.

(% of Coverage)
Test Case 1 2 3

Initial Configuration 44.49 40.49 56.81
Final Configuration 98.55 99.52 99.56

non préparés, une telle exigence d’avoir des caractéristiques suffisantes est généralement sat-

isfaite. La carte reconstruite de l’environnement est utilisée comme l’entrée pour la deuxième

partie de la procédure lorsque la méthodologie CAO est utilisée pour maximiser la zone

surveillée par l’équipe de robots aériens. En utilisant cette procédure, plusieurs simulations à

la fois dans des régions extérieurs près de Zurich et des espaces intérieurs ont été réalisées.

Un de ces domaines est la région militaire de Birmensdorf à Zurich (see Fig. A.9). Dans

le tableau A.6 sont présentés les pourcentages de couverture finale pour des différentes con-

figurations initiales.

Enfin, lors de la démonstration finale du projet, une expérimentation réel avec une équipe

de trois micro hélicoptères a été accomplie. L’objectif de la tâche consistait à localiser une

victime dans un environnement complexe en plein air, la reproduction d’une recherche typique

et la mission de sauvetage. Après une première étape de l’exploration et la cartographie suiv-

ant des trajectoires définies manuellement, mais avec un vol basée uniquement sur la vision,

la carte a été utilisée comme l’entrée de l’algorithme de CAO pour le calcul des positions

finales de couverture optimales. Puis, un hélicoptère survolait sur ces positions et locali-

sait la victime, placée au début de la tâche dans un point quelconque de l’environnement.

Cette démonstration avait pour but de combiner le travail de tous les partenaires du projet

et de simuler une mission de sauvetage réaliste dans un environnement GPS-nié. La zone
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Figure A.10: La zone d’entraı̂nement des pompiers à Zurich: le site choisi pour la
démonstration finale du projet sFly.

d’entraı̂nement des pompiers à Zurich a été choisi comme un site idéal pour nos fins (voir Fig.

A.10).

Dans la Fig. A.11 il est possible de voir la carte obtenue après l’exploration et le positions

finales.

A.7 Navigation entre les Personnes

Comme il a été déjà dit, l’algorithme CAO peut être très utile pour de nombreux problèmes

de navigation différents dans des environnements complexes et dynamiques, où un approche

adaptative, rapide, à base de capteurs est d’une importance cruciale. Pour le démontrer, dans

ce chapitre, nous examinons un problème complètement différent de la couverture de surveil-

lance coopérative et nous montrons comment le même algorithme peut être utilisé pour obtenir

une solution dans ce cas aussi. Le problème choisi à cet effet est le suivant: le déplacement

d’un robot dans un environnement inconnu et complexe où les personnes se déplacent et in-

teragissent. Le robot doit naviguer en respectant le confort des humains. Nous avons supposé

que le robot n’a pas une connaissance a priori sur l’environnement, de sorte que les obstacles
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Figure A.11: La carte obtenue par les trois hélicoptères et les positions finales optimales dans
une vue 3D.

sont détectés pendant la navigation. Un scénario typique d’un fauteuil roulant se déplaçant

entre les humains est représenté en Fig. A.7. Pour obtenir des bons résultats dans de tels

environnements, une prédiction sur le mouvement des humains est également cruciale. Pour

résoudre tous les problèmes mentionnés ci-dessus, nous introduisons une fonction coût ap-

propriée. Les résultats de ce chapitre ont été présentées dans [97].

Les robots naviguant à proximité de l’homme ou impliqués dans des tâches d’interaction

avec les humains, afin d’éviter l’inconfort des personnes, doivent assurer un comportement

non seulement sûr, mais aussi compréhensible. Récemment, plusieurs solutions possibles à

ce problème ont été proposées [107, 56, 68, 98]. Notre travail est placé dans ce cadre: nous

sommes intéressés à guider en toute sécurité un robot dans un environnement inconnu et com-

plexe, où les gens se déplacent et interagissent, et avec l’objectif de respecter le confort des

humains. La première étape est de comprendre comment les êtres humains gérent l’espace au-

tour d’eux lors de la navigation et comment leurs décisions affectent le confort des autres. De

nombreuses théories psychologiques ont été proposées pour expliquer la relation entre la dis-

tance, les comportements visuels et le confort des humains (voir [3] et références incluses). In-

tuitivement les personnes ne seront plus à l’aise si elles sont approchées à une distance qui est

jugée trop étroite: plus grande est l’invasion/intrusion de la zone de l’inconfort et plus la per-

sonne ressent de l’excitation. Cette idée simple a été formalisée par l’introduction du concept

d’espace personnel, tout d’abord proposé par Hall [42], qui caractérise l’espace autour d’un

être humain en termes de confort à l’activité sociale. Dans des conversations informelles, les

gens demander un montant de l’espace lié à cette activité. Cet espace est respecté par d’autres

personnes et seuls les participants ont permis l’accès à elle, par conséquent, l’intrusion d’un

étranger provoque une gêne [53]. On peut supposer que les gens vont s’engager dans un
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Figure A.12: Un scénario typique de la navigation entre les humains. Un fauteuil roulant est
en mouvement dans une zone où les gens discutent et interagissent.

comportement proxémique avec des robots dans une grande partie de la même façon qu’ils

interagissent avec d’autres personnes [114].

Nous formulons le problème de la navigation du robot comme un problème d’optimisation

où la fonction objectif comprend, en plus de la distance au but, des informations sur le confort

des humains. La fonction que nous voulons minimiser est:

J = λ ∗ (dis(PS) + dis(IPS)) +D(x(G)) (A.4)

où λ est un paramètre constant, dis(PS)+dis(IPS) contient l’information sur le confort des

personnes et D(x(G)) est une fonction de la distance de l’objectif. Dans notre cas, il est tout

simplement la distance euclidienne. En utilisant l’algorithme CAO pour générer la trajectoire,

nous pouvons aussi obtenir une prédiction indirecte sur le mouvement des personnes, qui est

un point très important pour obtenir de bons résultats pour une tâche similaire.

Avec cette application, nous avons voulu montrer comment l’algorithme d’optimisation

stochastique exploité dans cette thèse peut être appliqué à des nombreux et très différents

problèmes de robotique. En effet, comme nous l’avons déjà dit, grâce à ses nombreux avan-

tages, cette approche est très approprié pour des applications en robotique mobile. Partic-

ulièrement en présence d’environnements complexes, dynamiques et incertains. Les résultats

obtenus dans ce chapitre sont une forte motivation pour continuer la recherche et pour mettre

en œuvre la méthode dans un environnement réel dynamique à l’aide du fauteuil roulant (voir

Fig. A.13).
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(a) (b)

Figure A.13: Plate-forme expérimentale: en (a) le fauteuil roulant, sur le haut de (b) les
données fournies par le kinect, sur le fond la carte finale.

A.8 Conclusions et Travaux à venir

Dans cette thèse, développée dans le cadre du projet européen sFly, nous avons présenté

une nouvelle approche basée sur un algorithme d’optimisation adaptatif et stochastique. Le

problème de la surveillance coopérative a été étudié avec comme objectif final la surveil-

lance d’une région extérieur en utilisant une équipe de micro-véhicules aériens (MAVs).

L’algorithme d’optimisation adopté (CAO), récemment proposée par Kosmatopoulos dans

[63, 60], a été convenablement modifié pour être appliqué au problème considéré. En partic-

ulier cet algorithme, appliqué à un problème robotique pour la première fois dans cette thèse,

a été étendu pour inclure une stratégie pour tenir compte des contraintes, et il a été prouvé

que cette nouvelle capacité n’affecte pas les propriétés de convergence. Cette méthode est

en mesure de faire face à des problèmes d’optimisation où la fonction objectif est incon-

nue dans son expression analytique, mais les valeurs numériques sont disponibles pour les

mesures, donné une configuration de l’état. Ainsi, il est très utile pour le problème que nous

approchions, où le terrain à couvrir peut être inconnu et/ou trop complexe pour être décrit

de manière analytique. Plus précisément, l’algorithme proposé présente les avantages clés

suivants:

• il ne nécessite aucune connaissance a priori sur l’environnement;

• il fonctionne dans un environnement donné, sans qu’il soit nécessaire de faire une hy-
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pothèse concernant sa morphologie;

• il peut intégrer tout type de contraintes;

• sa complexité est faible permettant des implémentations en temps réel;

• il nécessite un faible poids et capteurs à faible coût, ce qui le rend idéal pour des appli-

cations en robotique aérienne.

En outre, nous avons proposé une version distribuée de cet algorithme pour un critère de

couverture particulière: la maximisation de la surface du terrain que l’équipe est capable

de voir. Cette approche est plus proche des applications du monde réel, car il ne souffre

pas des inconvénients bien connus d’une méthode centralisée. Per exemple, une approche

décentralisée va nous permettre d’inclure des contraintes de communication.

La première étape pour la validation de notre méthode consistait à effectuer des simu-

lations dans des zones 2D, où le problème est plus facile à résoudre et les résultats sont

plus compréhensibles. Pour ce premier cas, nous avons également proposé une approche

complètement différente, basée sur la méthode du champ de potentiel artificiel et l’algorithme

de Lloyd, pour résoudre le problème de couverture de Voronoi d’une région inconnue et non-

convexe. Puis, nous avons continué notre enquête en étendant l’algorithme pour le rendre

capable de faire face à des environnements 3D. Les premières simulations ont été effectuées

en utilisant des environnements complexes simulés et compte tenu de deux différents critères

de couverture possibles. Motivés par les bons résultats obtenus dans cette phase, nous avons

utilisé des données réelles fournies par un hélicoptère. Ces données ont été recueillies dans

des régions extérieures complexes près de Zurich et nous les avons utilisées pour reconstru-

ire une carte de l’environnement, qui a servi comme une entrée pour notre algorithme. Des

scénarios incrémentiels sont également testées, où la couverture est réalisée simultanément

avec la cartographie. La dernière étape de notre travail a été la mise en œuvre de l’algorithme

sur une équipe réel de MAV pour effectuer une mission de couverture. Cette mission de cou-

verture a été réalisée dans une zone extérieure à Zurich dans le but de localiser une victime

placée dans un point quelconque de l’environnement.

Enfin, nous avons abordé aussi un autre problème de navigation. Dans ce cas, l’objectif

a été la navigation en toute sécurité d’un robot dans un environnement inconnu et complexe

où les personnes se déplacent et interagissent. L’objectif du robot a été de respecter le confort

des personnes. Aussi pour cette application, les résultats étaient tout à fait satisfaisants et une

mise en œuvre sur une plate-forme expérimentale est attendue.

Nous nous attendons à ce que de nombreuses tâches importantes de la robotique mo-

bile pourront être approchées par les algorithmes basés sur l’algorithme CAO. Par exemple:
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l’exploration coordonnée, le suivi optimal de cible, etc. Cela est essentiellement dû au fait que

l’approche CAO ne nécessite pas une connaissance a priori de l’environnement et elle exige

de faibles ressources de calcul. Ces deux questions sont fondamentales en robotique mobile.
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