
HAL Id: tel-00718917
https://theses.hal.science/tel-00718917

Submitted on 18 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic situation monitoring and Context-Aware BI
recommendations

Raphaël Thollot

To cite this version:
Raphaël Thollot. Dynamic situation monitoring and Context-Aware BI recommendations. Other.
Ecole Centrale Paris, 2012. English. �NNT : 2012ECAP0020�. �tel-00718917�

https://theses.hal.science/tel-00718917
https://hal.archives-ouvertes.fr


Ecole Centrale Paris

DOCTORAL SCHOOL

SCIENCES FOR THE ENGINEER

PhD Thesis

to obtain the title of

Doctor of Ecole Centrale Paris

Defended by

Raphaël Thollot

Dynamic Situation

Monitoring and

Context-Aware

BI Recommendations

prepared at Ecole Centrale Paris, MAS Laboratory, and SAP

Research, Business Intelligence Practice

defended on 2012, April 3rd

Jury:

Advisor: Marie-Aude Aufaure - Professor at Ecole Centrale Paris

President: Jacky Akoka - Professor at CNAM
Reviewers: Franck Ravat - Professor at Université Toulouse 1 Capitole

Stefano Rizzi - Professor at University of Bologna
Examinators: Yannick Cras - PhD, chief architect at SAP

Patrick Marcel - Associate professor at Université François
Rabelais Tours



2



Abstract

The amount of information generated and maintained by information sys-
tems and their users leads to the increasingly important concern of informa-
tion overload. Personalized systems have thus emerged to help provide more
relevant information and services to the user. In particular, recommender
systems appeared in the mid 1990’s and have since then generated a grow-
ing interest in both industry and academia. Besides, context-aware systems
have been developed to model, capture and interpret information about the
user’s situation, generally in dynamic and heterogeneous environments.

Decision support systems like Business Intelligence (BI) platforms also
face usability challenges as the amount of information available to knowledge
workers grows. Remarkably, we observe that only a small part of person-
alization and recommendation techniques have been used in the context of
data warehouses and analysis tools. Therefore, our work aims at exploring
synergies of recommender systems and context-aware systems to develop
personalization and recommendation scenarios suited in a BI environment.

In response to this, we develop in our work an open and modular situ-
ation management platform using a graph-based situation model. Besides,
dynamic aspects are crucial to deal with context data which is inherently
time-dependent. We thus define two types of active components to enable
dynamic maintenance of situation graphs, activation rules and operators.
In response to events which can describe users’ interactions, activation rules
defined using the event-condition-action framework are evaluated thanks to
queries on underlying graphs, to eventually trigger appropriate operators.

These platform and framework allow us to develop and support vari-
ous recommendation and personalization scenarios. Importantly, we design
a re-usable personalized query expansion component, using semantics of
multi-dimensional models and usage statistics from repositories of BI docu-
ments like reports or dashboards. This component is an important part of
another experimentation we realized, Text-To-Query. This system dynam-
ically generates multi-dimensional queries to illustrate a text and support
the knowledge worker in the analysis or enrichment of documents she is ma-
nipulating. Besides, we also illustrate the integration and usage of our graph
repository and situation management frameworks in an open and extensi-
ble federated search project, to provide background knowledge management
and personalization.

Résumé

Le volume des données créées et gérées par les systèmes d’information et
leurs utilisateurs augmente régulièrement, conduisant à la problématique
croissante de la surinformation. Pour répondre aux défis posés par l’accès à



ii

l’information dans de grands volumes de données, les systèmes personnalisés
visent à proposer des données et des services plus adaptés à l’utilisateur.
Les systèmes de recommandation (SR), apparus au milieu des années 1990,
sont un cas particulier de ces systèmes personnalisés. Depuis, les SR ont
suscité un intérêt croissant tant dans la communauté académique que du
cté des industriels. Par ailleurs, des systèmes contextuels ont été développés
dans le but de modéliser, capturer et interpréter l’information relative à
l’environnement de l’utilisateur. Systèmes contextuels et SR partagent donc
un même but, celui de fournir les données et les services les plus adaptés à la
situation de l’utilisateur, généralement dans un environnement dynamique
et hétérogène.

Les systèmes d’aide à la décision tels que les outils de Business Intel-
ligence (BI) présentent eux aussi des difficultés relatives à leur utilisation,
en particulier du fait de la quantité et de la complexité des données acces-
sibles aux utilisateurs. Il est cependant notable que seules quelques rares
techniques héritées de systèmes de recommandation ont à ce jour été ap-
pliquées dans le domaine des entrepts de données et des outils d’analyse.
Notre travail consiste donc à explorer des synergies pouvant résulter de la
combinaison de SR et de systèmes contextuels, à des fins de personnalisation
dynamique dans les outils de BI.

En réponse à ces challenges, nous développons dans notre travail une
plateforme ouverte et modulaire permettant la gestion des situations ou con-
textes utilisateurs. Cette plateforme repose principalement sur un modèle
de situation à base de graphes. Par ailleurs, la dynamique des interactions
implique une dépendance inhérente au temps des informations contextuelles.
Nous définissons donc deux types de composants actifs, règles d’activation
et opérateurs, responsables de la gestion de l’évolution des graphes de con-
naissances. Les règles sont construites selon le modèle évènement-condition-
action (ECA) et sont évaluées en réponse aux divers évènements reus par la
plateforme. L’évaluation d’une règle consiste à valider ses conditions grâce
à l’exécution d’un certain nombre de requêtes sur les graphes de données,
afin de déclencher l’exécution d’opérateurs appropriés.

La plateforme modulaire proposée avec un framework de développement
nous a permis de démontrer divers scénarios de personnalisation et de
recommandations. Nous présentons en particulier un composant person-
nalisé d’expansion de requêtes multidimensionnelles. Ce composant exploite
d’une part la sémantique des modèles multidimensionnels et d’autre part des
statistiques d’usage dérivées de collections de rapports et tableaux de bords
existants. Le composant d’expansion de requêtes est utilisé par exemple
dans Text-To-Query (T2Q), un SR suggérant des requêtes et visualisations
adaptées, générées dynamiquement afin d’illustrer un document texte (non
structuré). T2Q a pour objectif d’aider l’utilisateur à analyser et enrichir
les documents sur lesquels il travaille. Enfin, nous décrivons l’intégration
de notre plateforme dans un projet de recherche fédérée d’information. La



iii

plateforme est en particulier utilisée comme support pour la gestion de la
connaissance relative aux utilisateurs. Celle-ci nous permet d’élaborer une
stratégie de personnalisation de la recherche via la définition de préférences
appliquées aux sources d’information.



iv

Acknowledgements

I first thank SAP Research for supporting this work and providing me with
a rich industrial environment to experiment. More personally, I thank the
many people who contributed to make this PhD a great experience for me.

I wish to express my deepest gratitude to my advisors at Ecole Centrale
Paris and SAP.

I would really like to thank Marie-Aude Aufaure for her gentle and com-
prehensive guidance throughout these years. Her continuous support and
academic advices on research directions were precious to go forward with
my work.

I am also grateful to Yannick Cras for his kind management and the
many inspiring discussions we had and, I hope, we will keep having. It was
a great opportunity for me to benefit from the computer science expertise
he delivers with passion.

In the SAP-sphere, I had the chance to work with various people that
all contributed to make work days instructive and enjoyable. I would like
to thank Chahab Nastar for taking me on board in the BI practice, for
the open discussions we had and, in particular, for shedding some light on
the paradox of choice. Thank you to the cross-prototyping and BI practice
teams, to the whole search task force of the Business Web project and to
coffee-break-colleagues.

I am also thankful to the whole BI team of the MAS laboratory, in Ecole
Centrale Paris, for its good atmoshpere and those numerous lunches at the
irreplaceable Chinese restaurant.

I am particularly thankful to Franck Ravat and Stefano Rizzi for accept-
ing to review my PhD thesis. I would also like to thank Yannick Cras and
Patrick Marcel who both accepted to be jury examinators. And thank you
to Jacky Akoka for the honor he made me by accepting to be president of
the jury.

I am lucky enough to have met amazing friends and they have always
been a great help. It proved true once again and it is fortunate for my
mental health that they were here.

The permanent support of my family was extremely precious to me.
Thank you to my parents and sisters to whom I owe so much. I am excited
to welcome three recent or soon-to-be nephews.

Last but not least, Anäıs already has more than my gratitude for the
many little things, and the big ones, that she brings in our lives. Thank you
for being there, yourself, genuinely adorable.



Contents

I Introduction 1

1 General introduction . . . . . . . . . . . . . . . . . . . . . . . 1

2 Context and proposed approach . . . . . . . . . . . . . . . . . 1

3 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . 3

II Recommendations, context and BI 5

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Recommender systems . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The recommendation problem . . . . . . . . . . . . . . 7

2.2 Recommendation methods . . . . . . . . . . . . . . . . 8

2.2.1 Content-based filtering . . . . . . . . . . . . 8

2.2.2 Collaborative filtering . . . . . . . . . . . . . 10

2.2.3 Hybrid methods . . . . . . . . . . . . . . . . 14

2.3 Extensions and perspectives . . . . . . . . . . . . . . . 14

2.3.1 Trust networks . . . . . . . . . . . . . . . . . 15

2.3.2 Semantic-based recommendations . . . . . . 15

2.3.3 Introducing context in recommender systems 16

3 Context-awareness . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Definition, characteristics and usage of context . . . . 19

3.1.1 Preliminary definitions . . . . . . . . . . . . 19

3.1.2 Characteristics of context information . . . . 20

3.1.3 Acquisition of context information . . . . . . 22

3.2 Context and situation modeling . . . . . . . . . . . . . 23

3.2.1 Different formalisms . . . . . . . . . . . . . . 23

3.2.2 Categories or dimensions of context informa-
tion . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Context management . . . . . . . . . . . . . . . . . . 26

3.3.1 Architecture . . . . . . . . . . . . . . . . . . 26

3.3.2 Dynamic management . . . . . . . . . . . . . 28

4 Data warehouses and recommendations . . . . . . . . . . . . 30

4.1 Data warehouses and OLAP . . . . . . . . . . . . . . 30

4.1.1 Data warehouses and the multi-dimensional
model . . . . . . . . . . . . . . . . . . . . . . 30

v



vi CONTENTS

4.1.2 OLAP - On-Line Analytical Processing . . . 32

4.2 Personalization of data warehouses . . . . . . . . . . . 33

4.2.1 Personalization approaches . . . . . . . . . . 33

4.2.2 User profiles and preferences . . . . . . . . . 34

4.3 Query recommendations . . . . . . . . . . . . . . . . . 36

4.3.1 Recommendation types . . . . . . . . . . . . 36

4.3.2 Query recommendation . . . . . . . . . . . . 36

5 Summary and discussion . . . . . . . . . . . . . . . . . . . . . 39

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

IIIGraph-based Situation Modeling 43

1 Introduction and requirements . . . . . . . . . . . . . . . . . 43

2 A graph-based situation model . . . . . . . . . . . . . . . . . 45

2.1 Situation statements . . . . . . . . . . . . . . . . . . . 45

2.1.1 Definition and notations . . . . . . . . . . . . 45

2.1.2 Situation graphs . . . . . . . . . . . . . . . . 47

2.2 Graph Repository . . . . . . . . . . . . . . . . . . . . 47

2.2.1 Source systems and personalized providers . 47

2.2.2 Definitions . . . . . . . . . . . . . . . . . . . 48

2.2.3 Graphs schema and the GR ontology . . . . 49

2.2.4 Graphs factories . . . . . . . . . . . . . . . . 51

3 Situation model characteristics . . . . . . . . . . . . . . . . . 52

3.1 Situation model overview . . . . . . . . . . . . . . . . 52

3.1.1 Current view . . . . . . . . . . . . . . . . . . 53

3.1.2 History management . . . . . . . . . . . . . . 54

3.2 Agent profile and core dimensions . . . . . . . . . . . 54

3.2.1 User profile . . . . . . . . . . . . . . . . . . . 55

3.2.2 Social dimension . . . . . . . . . . . . . . . . 55

3.2.3 Geography dimension . . . . . . . . . . . . . 57

3.3 Personalization-related dimensions . . . . . . . . . . . 57

3.3.1 Preference dimension . . . . . . . . . . . . . 57

3.3.2 Recommendation dimension . . . . . . . . . 58

4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . 59

4.1 Modeled aspects . . . . . . . . . . . . . . . . . . . . . 59

4.2 Representation features . . . . . . . . . . . . . . . . . 59

4.3 Context management and usage . . . . . . . . . . . . 60

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

IVDynamic Situation Management 63

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.1 Buisness events and situation dynamics . . . . . . . . 64

1.2 The ECA framework . . . . . . . . . . . . . . . . . . . 65

2 Activation rules and operators . . . . . . . . . . . . . . . . . 66

2.1 Rules expression . . . . . . . . . . . . . . . . . . . . . 66



CONTENTS vii

2.1.1 E - Filtering events . . . . . . . . . . . . . . 66
2.1.2 C - Condition expression . . . . . . . . . . . 67
2.1.3 A - Taking action . . . . . . . . . . . . . . . 68

2.2 Rules evaluation . . . . . . . . . . . . . . . . . . . . . 69
2.3 Operators . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.3.1 Definition . . . . . . . . . . . . . . . . . . . . 71
2.3.2 Examples of operators . . . . . . . . . . . . . 72

3 Situation framework and services . . . . . . . . . . . . . . . . 73
3.1 Graph repository framework . . . . . . . . . . . . . . . 73

3.1.1 Platform and plugins modularity . . . . . . . 73
3.1.2 Personalized and secure graph repositories . 75
3.1.3 Providers and graphs factories . . . . . . . . 76

3.2 Situation management framework . . . . . . . . . . . 77
3.2.1 Situation provider . . . . . . . . . . . . . . . 77
3.2.2 Operators and activation rules . . . . . . . . 79
3.2.3 Events management and rules evaluation . . 80

3.3 Client situation services . . . . . . . . . . . . . . . . . 82
4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . 83
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

V BI Semantics and Usage Statistics 87
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

1.1 Situation modeling for BI personalization and recom-
mendations . . . . . . . . . . . . . . . . . . . . . . . . 88

1.2 Application to the query design problem . . . . . . . . 88
2 Semantics of multi-dimensional domain models . . . . . . . . 89

2.1 Measures and dimensions . . . . . . . . . . . . . . . . 90
2.2 Functional dependencies and hierarchies . . . . . . . . 90
2.3 Reasoning about dependencies and hierarchies . . . . 92

2.3.1 Transitivity and custom rules . . . . . . . . . 92
2.3.2 Reasoning in the Graph Repository framework 93

3 Users’ preferences and similarity . . . . . . . . . . . . . . . . 94
3.1 User preferences and feedback . . . . . . . . . . . . . . 94

3.1.1 Explicit preferences . . . . . . . . . . . . . . 95
3.1.2 Implicit preferences . . . . . . . . . . . . . . 95

3.2 Users similarity . . . . . . . . . . . . . . . . . . . . . . 97
4 Usage statistics in BI documents . . . . . . . . . . . . . . . . 98

4.1 Structure of BI documents and co-occurrence . . . . . 98
4.2 Security and personal co-occurrence measure . . . . . 100
4.3 Collaborative co-occurrence measure . . . . . . . . . . 102

4.3.1 Cold-start users and coverage . . . . . . . . . 102
4.3.2 Using the social/trust network . . . . . . . . 103
4.3.3 Similarity-based and hybrid approaches . . . 103

5 Personalized query expansion . . . . . . . . . . . . . . . . . . 104



viii CONTENTS

5.1 Query expansion . . . . . . . . . . . . . . . . . . . . . 104
5.1.1 Ranking candidate entities . . . . . . . . . . 104
5.1.2 Candidates filtering and parameters . . . . . 105

5.2 Architecture overview . . . . . . . . . . . . . . . . . . 106
5.2.1 Multi-dimensional models provider . . . . . . 106
5.2.2 BI documents provider . . . . . . . . . . . . 108
5.2.3 Preferences provider . . . . . . . . . . . . . . 109

6 Summary and discussion . . . . . . . . . . . . . . . . . . . . . 109
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

VIExperimentation: BI Recommendations 113
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

1.1 Exploratory recommendation scenarios . . . . . . . . . 114
1.2 Search-related recommendations and personalization . 115

2 Text-to-query . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
2.1 Dictionary generation for entity extraction . . . . . . . 116

2.1.1 Dictionaries for data warehouses metadata . 116
2.1.2 Relaxing dictionaries for entity extraction . . 117

2.2 Query generation from a text . . . . . . . . . . . . . . 118
2.2.1 Standard analysis categories . . . . . . . . . 118
2.2.2 Entities analysis and query completion . . . 120
2.2.3 Text-To-Query algorithm . . . . . . . . . . . 122

2.3 Experimental results . . . . . . . . . . . . . . . . . . . 123
2.3.1 Architecture overview . . . . . . . . . . . . . 124
2.3.2 Clients for supported data acquisition . . . . 125

3 Personalization in search . . . . . . . . . . . . . . . . . . . . . 127
3.1 An open architecture for search . . . . . . . . . . . . . 127

3.1.1 Architecture overview . . . . . . . . . . . . . 127
3.1.2 Query parsing and annotations . . . . . . . . 129

3.2 BI queries and charts search . . . . . . . . . . . . . . . 129
3.2.1 BI query auto-completion . . . . . . . . . . . 130
3.2.2 Related charts search in dashboards and re-

ports . . . . . . . . . . . . . . . . . . . . . . 130
3.3 Plugins personalization . . . . . . . . . . . . . . . . . 132

3.3.1 Authorizations and ranking . . . . . . . . . . 133
3.3.2 Other forms of personalization . . . . . . . . 134

4 Summary and discussion . . . . . . . . . . . . . . . . . . . . . 135
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

VIIConclusion and perspectives 137
1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
2 Discussion and perspectives . . . . . . . . . . . . . . . . . . . 140



Chapter I

Introduction

Contents

1 General introduction . . . . . . . . . . . . . . . . 1

2 Context and proposed approach . . . . . . . . . 1

3 Thesis organization . . . . . . . . . . . . . . . . . 3

1 General introduction

The amount of information generated and maintained by information sys-
tems and their users leads to the increasingly important concern of informa-
tion overload. Personalized systems have thus emerged to help provide more
relevant information and services to the user. In particular, recommender
systems appeared in the mid 1990’s and have since then generated a grow-
ing interest in both industry and academia. Besides, context-aware systems
have been developed to model, capture and interpret information about the
user’s situation, generally in dynamic and heterogeneous environments.

Decision support systems like Business Intelligence (BI) platforms also
face usability challenges as the amount of information available to knowledge
workers grows. Remarkably, we observe that only a small part of person-
alization and recommendation techniques have been used in the context of
data warehouses and analysis tools.

Therefore, our work aims at exploring synergies of recommender systems
and context-aware systems to develop personalization and recommendation
scenarios suited in a BI environment.

2 Context and proposed approach

Our work has been significantly influenced by the industrial environment
that supported and fostered it, that is the BI practice of SAP Research.

1



2 CHAPTER I. INTRODUCTION

Figure I.1: Overview of the proposed situation management platform which
aggregates information from different sources and exposes consolidated sit-
uation models.

SAP is a software editor providing important enterprise tools including, for
instance, enterprise resource planning (ERP), customer relationship man-
agement (CRM) and BI systems.

In this context, we explore capabilities offered by recommender systems
and context-aware systems to assist knowledge workers as they interact in
varied ways with several communicating applications. Our aim is to propose
a shared personalization platform enabling dynamic adaptation across mul-
tiple clients or business applications, based on various information systems
(or sources).

Dynamic adaptation bases on a context model to capture and interpret
users’ interactions with their environments. However, context being a broad
notion (as will be discussed in Chapter II, Section 3), we consider the user’s
situation as a filtered and thus more easily interpretable view of such in-
teractions. One of our goals is to ensure that user modeling efforts can
be shared between different applications. We thus propose a graph-based
situation model, leveraging semantic technologies to ease inter-operability
and handle the diversity of available resources. Besides, we define active
components for our situation management platform, to deal with dynamic
aspects of situation monitoring and more generally graphs maintenance.

If personalization can be observed from a very generic angle, we focus
more specifically on BI platforms dedicated to multi-dimensional data anal-
ysis. We explore, for instance, the application of our platform to provide
personalized assistance in ad-hoc query and reporting workflows. To con-
clude, Figure I.1 illustrates the high level overview of the proposed situation
management platform which aggregates various sources and exposes situa-
tion models to client applications.



3. THESIS ORGANIZATION 3

3 Thesis organization

Let us briefly present the organization of this manuscript.

We first review related work in Chapter II. The review is structured so
as to reflect the three main fields of research related to our work. First,
we introduce recommender systems and the most common techniques devel-
oped in this area. Besides, we present more recent work that attempted to
introduce contextual parameters into the recommendation process. Then,
we describe contributions related to more generic context-aware systems.
These systems base on important efforts to generalize the notions of con-
text and situation and aim at being shareable and reusable across different
applications. The last area that we discuss concerns data warehouses and
multi-dimensional analysis. We present in particular some approaches that
were adopted to provide a certain degree of personalization and recommen-
dations in the context of data warehouses.

Next, we introduce in Chapter III the requirements imposed on the situa-
tion management platform that we envision. These requirements lead to the
definition of our graph-based situation model, meant to enable a high level
of expressiveness and deal with the heterogeneity of possible information
sources. To ensure data privacy and users’ data isolation, our work relies on
a graph repository framework that we describe in details. Furthermore, our
situation model exposes dimensions that help categorize situation-related
information and expose more structured information to consuming applica-
tions.

Chapter IV deals with situation dynamics or more precisely mechanics
used to maintain graphs in response to events, using operators and activation
rules described in the event-condition-action framework. This chapter also
describes the architecture of the proposed framework, from the underlying
graph repository to dynamic components.

With a focus on data warehouses and multi-dimensional analysis, Chap-
ter V introduces multi-dimensional models and their semantics. On top of
these, we exploit usage statistics that can be derived from repositories of
existing BI documents. This includes the definition of users’ preferences and
similarity as well as a measure of co-occurrences between BI entities (mea-
sures and dimensions). Eventually, semantics and statistics are combined to
propose a personalized component for multi-dimensional query expansion.

To illustrate our generic framework and BI-specific notions previously
discussed, Chapter VI describes a certain number of experimentations that
were realized. We first introduce Text-To-Query, a system dynamically gen-
erating structured analytics related to a text document the user is reading.
Besides, we further discuss the use of our framework to enable personaliza-
tion at different levels, in a federated search project.

To conclude, we briefly summarize our work and contributions in Chap-
ter VII. The discussion includes hints and suggestions for future work related



4 CHAPTER I. INTRODUCTION

to our situation management platform and its applications.



Chapter II

Recommender systems,

context-awareness and BI

recommendations

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 5

2 Recommender systems . . . . . . . . . . . . . . . 7

2.1 The recommendation problem . . . . . . . . . . . . 7

2.2 Recommendation methods . . . . . . . . . . . . . . 8

2.3 Extensions and perspectives . . . . . . . . . . . . . 14

3 Context-awareness . . . . . . . . . . . . . . . . . . 18

3.1 Definition, characteristics and usage of context . . 19

3.2 Context and situation modeling . . . . . . . . . . . 23

3.3 Context management . . . . . . . . . . . . . . . . 26

4 Data warehouses and recommendations . . . . . 30

4.1 Data warehouses and OLAP . . . . . . . . . . . . 30

4.2 Personalization of data warehouses . . . . . . . . . 33

4.3 Query recommendations . . . . . . . . . . . . . . . 36

5 Summary and discussion . . . . . . . . . . . . . . 39

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . 41

1 Introduction

As information systems contain and generate ever increasing amounts of
data, users face the tedious task of choosing among many possibly huge
sources of information those likely to satisfy their needs. This problem,
called information overload, led to the active development of personalized

5



6 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

Figure II.1: Classification of personalization techniques proposed by Ben-
tayeb et al. [BBF+09], according to user involvement and system functions.

systems which aim at adapting information and services to the user, at
content or design levels. Content-tailoring may be considered to filter or
adapt content to present more relevant and adapted information to the user.
Besides, different users may have distinct design preferences, e.g., in terms
of layout and colors, or more generally theming options.

Bentayeb et al. classify personalization or personalized systems along
two axis, user involvment and system functions [BBF+09], as depicted in
Figure II.1. Personalization fundamentally relies on user models which rep-
resent key characteristics of the user like her hobbies, interests, goals, etc.
User models are meant to identify the active user and collect various pieces
of information about her, ideally so they can be understood and exploited
by both humans and machines. Previous work on user modeling led to
the development of Generic User Modeling Systems (GUMS), first meant to
isolate user modeling efforts from application-specific logic. These systems
have been thoroughly reviewed by Kobsa in [Kob07].

A particular approach of personalization has been adopted with recom-
mender systems (RS). These systems aim at providing suggestions of dif-
ferent content, somehow related to the user’s current interests. RS present
a remarkable personalization technique as they are designed to introduce
a sense of novelty and serendipity so as to encourage exploration and dis-
covery [HKTR04]. RS can be found in many systems nowadays but their
popularity emerged in particular from collaborative or social Web sites.

However, most RS have relied on heavy pre-computations which reduced
their ability to dynamically adapt to changing user needs. On the other
hand, context-aware systems have mainly focused on context modeling and
acquisition, that is to leverage knowledge about the user’s environment and



2. RECOMMENDER SYSTEMS 7

dynamic behaviours to provide timely information and services. Research
in this area has mainly been driven by mobile or ubiquitous systems, for
instance with intelligent environments like a meeting room [CFJ03].

It can be observed that the two research areas of RS and context-aware
systems fundamentally share the same goal of providing personalized infor-
mation and services to end-users. As a result, RS and context-aware systems
can be mutually beneficial, leading to present improved and more contex-
tual suggestions [CGF07]. Our work thus aims at exploring the synergies
of these different personalization techniques, in particular in the context of
large data warehouses and multi-dimensional data analysis.

The rest fo this chapter is structured as follows. Section 2 presents the
recommendation problem and the main techniques that were developed to
implement RS. Then, Section 3 defines the notions of context and situa-
tion to introduce context-aware systems, their architecture and dynamic
capabilities. Section 4 introduces multi-dimensional data analysis with data
warehouses and different forms of personalization and recommendations.
Eventually, we summarize this discussion with a particular focus on connec-
tions between these three research areas.

2 Recommender systems

Information systems and their users generate ever increasing amounts of
data which leads to the infamous information overload problem. RS were
born in this context to help users find and discover interesting items in vasts
spaces of available resources [MMN02].

2.1 The recommendation problem

RS have grown increasingly popular in both industry and academia to be-
come an important research area. These systems aim at helping the explo-
ration of vast collections of resources by users. In an e-commerce context,
suggestions can be used to encourage additional sales, e.g., in the form of
sale bundles or related items. The major focus in this field has been the use
of ratings assigned by users to items so as to suggest other items of interest
and thus encourage exploration.

Given a set of users U and a set of items I, the recommendation problem
is commonly formulated as the maximization of a utility function f : U×I 7→
R, where R is a totally ordered set of recommendations [AT05]. The core
problem addressed by a RS is the coverage of the utility function f . Indeed,
a user only rates some of the items. Estimating missing ratings then allows
to determine and recommend those with the highest scores.

An item i ∈ I may be represented with a certain number of features or
characteristics. Characteristics of a song may be the artist, the year, the
album, the genre, etc. Other types of items may obviously be described



8 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

using different features, for instance a selection of important keywords in a
Web page. Similarly, a user u ∈ U is commonly described by the means of
a profile to enable further personalization.

In the rest of this section, we present the main techniques that were
developed to enable personalized recommendations of varied items.

2.2 Recommendation methods

The research area of RS has been very active and many techniques were
developed to provide users with recommendations. Major techniques have
been thoroughly reviewed by Adomavicius et al. [AT05]. These techniques
are commonly classified into content-based, collaborative filtering (CF) and
hybrid approaches. Let us first introduce CB methods which originate from
Information Retrieval (IR) and Information Filtering (IR) areas.

2.2.1 Content-based filtering

Originating from IR and IF fields, content-based (CB) filtering methods base
on the representation of items features and user preferences in a vector space
model [MRS08]. Initially considered for search in text documents, these
techniques can be used for a broad range of applications.

The vector space model. The adopted representation of documents or
items is a vector of weighted keywords. This representation is common in
the IR field, and an item (or document) can be noted as an array of weighted
keywords: d = {wk1,1, . . . , wkn,n}. Weights denote the importance of a given
keyword in a document. A commonly used weighting scheme is that of term
frequency (TF ) - invert document frequency (IDF ) [Sal88]:

wk,d = TF (k, d)× IDF (k) (II.1)

=
fk,d

maxk′ fk′,d
× log

(

N

nk

)

Where N is the total number of docs and nk is the number of documents
where the keyword k appears. The IDF contribution aims at reducing the
importance of keywords that appear in many documents. Such keywords do
not help much in the filtering process since they are less discriminatory. It
may also be noted that a normalized frequency is used for keywords in the
scope of one document. This is meant to give equal chances to short and
long documents.

Given two vectors −→wu and −→wi representing respectively the user prefer-
ences and the item. The utility function f can then be defined using a
distance metric between these two vectors. For instance, the cosine similar-
ity measure (or variants) is commonly used:



2. RECOMMENDER SYSTEMS 9

f(u, i) = cos (−→wu,
−→wi) =

−→wu ·
−→wi

‖−→wu‖ × ‖
−→wi‖

(II.2)

=

∑

k

wk,uwk,i

√

∑

k

w2
k,u

√

∑

k

w2
k,i

Other techniques. Previously described techniques and heuristics are
directly derived from IR, but other methods have also been considered. For
instance, statistical and machine learning methods can be used to learn
models and predict items’ utility based on them.

In particular, the näıve Bayes classifier is a common probabilistic ap-
proach which can be used to associate a page to a certain category. A
simple and binary example of such categories is to classify pages as rele-
vant or irrelevant for the user [PBMW97]. Let C denote a category, and
k1, . . . , kn the keywords of the page to classify. The problem is to evalu-
ate the probability P (C | k1, . . . , kn). Under the keywords independance
assumption, this probability is proportional to:

P (C | k1, . . . , kn) ∝ P (C)

n
∏

i=1

P (ki | C) (II.3)

Remarkably, all individual probabilities P (ki | C) in the above formula
can be evaluated with learning on a training set. Eventually, the method
consists in computing the probability for each category C and assigning the
page (or item) to the one with the highest value. It has been shown that
even though the keyword independence assumption cannot be used in many
scenarios, the näıve Bayes classifier gives good accuracy results [PBMW97].

The näıve Bayes classifier is a simple example but other techniques have
been developed in the active field of IR and may also be considerd for use
in CB recommender systems.

Feature extraction and user preferences. CB methods adopt the same
keyword-based representation for both users’ interests and items’ content.
The feature extraction phase consists in analyzing an item’s content when
it is added to the system. A text document can be parsed to determine its
keywords and associated weights. However, a broad range of other items
may be considered by using various feature identifiers as keywords.

On the other hand, a simple model of user preferences can be material-
ized with weighted keywords. These keywords and their associated weights
can be elicited using a variety of methods which correspond to explicit and
implicit data collection. Implicit methods include web usage mining, for



10 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

instance using click-through data or the user’s browsing history. Explicit
preferences can also be employed to help determine more accuretely key-
words weights, e.g., through forms asking users to rank keywords. Ranking
keywords is not possible in practice though as it introduces an important
work load for the user. More commonly, users can be asked to order their fa-
vorite categories, should items be categorized. This approach is for instance
adopted in the personalized news service proposed by Google1.

Benefits and limitations. Analyzing items’ content presents the great
interest of making it possible to recommend items as soon as they are added
to the RS. Contrary to collaborative methods (discussed in the next section)
CB methods do not suffer from the new item problem. Besides, CB sugges-
tions are valuable in situations where users’ requests need to be served, e.g.,
in the form of keyword-based queries.

By nature, CB methods rely on a representation of features or charac-
teristics describing an items’ content. The feature extraction phase is key
but depends highly on the type of resource being processed. IR techniques
are well adapted to process text documents. However, automatic features
extraction may be much more difficult with multimedia content like images
or videos.

Another issue presented by CB recommender systems is the lack of nov-
elty and surprise introduced in recommendations. Indeed, such systems
recommend items similar to those the user has liked in the past.

Finally, if CB methods do not suffer from the new item problem, they
face issues with cold-start users. These users are those new to the system
and they have no associated profile or preferences. Therefore, the system
cannot offer personalized recommendations to a new user, as long as col-
lected data are not sufficient. Recommendations may be bootstrapped with
less personalized results though, e.g., simply with the most popular items
(see for instance Youtube2).

2.2.2 Collaborative filtering

Collaborative recommender systems rely on the assumption that a user is
bound to be interested by what other users with similar tastes or interests
liked. CF methods have been developed to ease information extraction using
the collective intelligence [Ala08]. This is an important aspect of CF tech-
niques since they do not rely on deep content analysis and feature extrac-
tion, but primarily on ratings which remain superficial and are contributed
by users themselves.

1http://news.google.com
2http://www.youtube.com



2. RECOMMENDER SYSTEMS 11

User-based filtering. So called memory-based methods use the whole
set of ratings given by users to predict missing ratings. The base structure
for these methods is the user-item ratings matrix R = U ×I. The cell ru,i of
this matrix is the rating assigned by user u to the item i. Then, various tech-
niques are employed to extrapolate missing ratings and recommend items
with the highest ratings. A rather general example of aggregation function
which uses ratings given by other users can be, with K a normalization
constant:

ru,i = ru +K
∑

u′∈U

sim(u, u′)× (ru′,i − ru′) (II.4)

In this aggregated rating, each contibution is weighted using a similarity
metric between users. In a first approximation, the sim(u, u′) factor can
be omitted but this leads to take into account users that may have very
little in common with the active user u, and may thus produce less relevant
recommendations. To compute similarity between users, most popular ap-
proaches use the set of items co-rated by two users u and u′, and noted Iu,u′ .
The cosine similarity introduced in equation II.2 can also be used in this

context: sim(u, u′) = cos(−→ru,
−→
r′u). Contrary to CB methods which compute

the cosine of the angle formed by two vectors of weighted keywords, the
approach of CF methods is to use vectors of ratings, i.e., the vector space
is not the same. Another important metric is the Pearson correlation, most
common to determine users’ similarity [SK09]:

sim(u, u′) =

∑

i∈Iu,u′

(ru,i − ru)(ru′,i − r′u)

√

∑

i∈Iu,u′

(ru,i − ru)
2

∑

i∈Iu,u′

(ru′,i − r′u)
2

(II.5)

In particular, this correlation coefficient does not only integrate absolute
ratings but takes into account deviation from average user ratings. This
addresses the fact that different users may use the ratings scale differently.

Item-based filtering. The user-item approach to CF was to consider sim-
ilarity between users. However, it has been shown that focusing on corre-
lations between items was also important [SKKR01]. The rationale behind
this is for instance that the consultation of an item can trigger further ex-
ploration by the user. Amazon3 is a popular example of the item-based
approach, and focuses on the fact that an item can be co-purchased by two
users (see Figure II.2).

A simple approach is to build a matrix M where cell mi,j contains the
number of times items i and j have both been bought by a same user. Then,

3http://www.amazon.com



12 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

Figure II.2: When a user adds an item in her shopping cart, Ama-
zon.com proposes recommendations of the form “users who bought this also
bought. . . ”.

from this matrix, it is possible to filter a given row Mi (or a column) to
determine the top-N items that are most often bought with item i. However,
this first simple method presents two main issues. First, recommendations
made using this process correspond to most popular items, not necessarily
the most relevant ones. Moreover, this method does not define a continuous
numerical prediction to rank recommendations between them.

Consequently, Sarwar et al. proposed to build the item × item matrix
using explicit user-item ratings instead of co-consulted items. The problem
then becomes the transformation of the U × I ratings to derive items sim-
ilarity. As opposed to user-item methods which base on users’ similarity,
missing ratings are this time estimated using ratings attributed to similar
items:

ru,i = ri +K
∑

i′∈I

sim(i, i′)× (ru,i′ − ri′) (II.6)

Eventually, the Pearson correlation or cosine similarity may be used to
compute items’ similarity. However, in the case of item-based CF, the dif-
ference of ratings scales between users is not taken into account by the
simple cosine similarity. The adjusted cosine similarity is therefore pre-
ferred and derived from the Pearson correlation to integrate ratings devia-
tion [SKKR01].

User-item and item-item approaches are very similar, but one or the
other can be better, depending on the application context [CB07]. The
item-item method was presented by Sarwar et al. as a solution to cope with



2. RECOMMENDER SYSTEMS 13

the fact that the set of users may be less stable (more rapidly changing)
than the catalogue of items. Besides, it is particularly adapted for cases
where the number of users is much greater than the number of items: |U | ≫
|I| [SKKR01].

Other model-based approaches. Previously presented methods are
called memory-based methods, in that they rely on the whole set of rat-
ings to make their predictions. Another direction in research work has been
to build and learn models from collections of ratings to predict missing ones.

First, various probabilistic models have been proposed. Here again, the
popular Bayesian model can be used to evaluate conditional probabilities,
e.g., if the rating prediction bases on the expected value:

ru,i = E(ru,i) =
n
∑

r=0

P (ru,i = r | ru,i′ , i
′ ∈ I) (II.7)

Clustering techniques can also be used to improve CF algorithms. These
methods may be exploited in varied ways but they are most of the time
considered as a preliminary step to apply, e.g., memory-based techniques on
smaller sets of similar users or items. This can help address computational
complexity and thus scalability issues. For instance, the RecTree system
proposed by Chee et al. uses k-means clustering (with k = 2) to recursively
building a tree structure, and recommendations are made within the leaf
where the active user belongs [CHW01].

Model-based techniques are regarded as having a better combinatory
complexity [PHG00]. On the other hand, memory-based approaches present
good accuracy results and are reactive to changes in the data. Therefore,
these two approaches have been combined in hybrid methods [AT05].

Benefits and limitations. CF techniques present a certain number of
important advantages. First, they provide a sense of novelty and diversity
in their recommendations, in particular with the user-item approach which
focuses on users’ similarity, not items’. Besides, they do not require in-depth
analysis of items’ content and can therefore be employed to recommend any
kind of item.

However, it is pointed out that CF techniques present various important
challenges [SK09]. The first one and most important being the extreme spar-
sity of the user×item matrix. Indeed, in many commercial applications, the
RS has to work with very large datasets, and users only rate a small number
of items. In particular, this sparsity leads to significant cold-start and chal-
lenges, be it for new items or new users. Indeed, new items that have not
been rated by enough users cannot be recommended. Moreover, recommen-
dations presented to new users are not likely to be relevant, as the browsing
and rating history of these users is initially empty. The sparsity problem



14 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

has been addressed using a variety of methods, including dimensionality re-
duction techniques (e.g., Singular Value Decomposition, SVD) [SKKR00] to
obtain an approximate ratings matrix of lower rank.

2.2.3 Hybrid methods

Numerous optimizations or variants have been proposed for CB and CF

methods independently. Beyond isolated improvements, CB and CF meth-
ods are often combined to overcome some of the shortcomings of both types
of systems, resulting in hybrid methods. In this section, we briefly intro-
duce these methods but we do not give much emphasize as they are in
essence combinations of previously described techniques. Adomavicius et
al. proposed the following classification of hybrid methods based on possi-
ble combinations [AT05]:

• Methods that combine results obtained from separate CB and CF sys-
tems.

• Methods that incorporate CB techniques in a CF method.

• Methods that incorporate CF techniques in a CB method.

• Methods that develop a unified model integrating some characteristics
of both approaches.

As an example of the third approach above, let us consider a CB system
representing items (e.g., news articles) and users’ profiles using vectors of
weighted keywords. The system could also exploit ratings given by users to
articles and form a hybrid recommendation strategy. For instance, items’
similarity may be measured using the cosine similarity on keyword vec-
tors, hence eliminating the new item problem thanks to preliminary content
analysis. On the other hand, users’ similarity may base on the Pearson cor-
relation of rating vectors, the cosine similarity of keyword-based profiles or
eventually a (linear) combination of both.

2.3 Extensions and perspectives

In this section, we present a certain number of approaches that have been
considered to improve existing RS. First, an important trend is to leverage
trust networks to improve the selection of similar or close users. Then,
semantic-based systems help broaden the flexibility and expressiveness of
recommendation queries. Finally, modeling and exploiting the user’s context
has been an important research direction to provide further personalized
recommendations.



2. RECOMMENDER SYSTEMS 15

2.3.1 Trust networks

As we presented the main CB and CF recommendation approaches, the
importance of selecting users similar to the current one was highlighted.
Remarkably, recent work have focused on the use of trust networks to re-
fine this selection and narrow down the collaborative contribution to users
more trustworthy for the current one. In particular, it can be argued that
trust networks help deal with critical sparsity and cold-start issues. Indeed,
trust data can be exploited to augment the overlap between information on
users’ in the system, which in turn helps increase its coverage. Jamali et
al. indicate that trust-based approaches use ratings provided by direct or
indirect neighbors and may lead to lower precision, as the distance between
users increases [JE09]. For this purpose, the authors propose a random-
walk model which allows them to propose a confidence indicator for their
recommendations.

Massa et al. proposed the use of a trust network using data from the
epinions.com service [MB04, MA04]. With this service, users are invited
to review items but also to rate reviewers and indicate how helpful they
judged their reviews. Using this already established trust network, Massa
et al. compare two users using their distance, that is the number of edges
separating them in the graph. In this approach, users explicitly build their
“webs of trust”, which can in the end be aggregated to build a global trust
network. Massa et al. use this trust network, in conjunction with traditional
CF techniques to provide a final trust-based CF ranking.

Beyond this, O’Donovan et al. focused on the automatic inferrence of
trust data from ratings [OS05]. The authors argue that the collaborative
contribution in items’ scoring should also depend on the item itself. The
reason for this is that a given user may be more or less relevant to rate
different items. The computational model they propose for trust scores dis-
tinguishes the consumer user, producer users and items, which leads to a
3-dimensional scoring. The consumer is the active user, the one recommen-
dations are destined to. On the other hand, producers are users selected
to contribute to items ratings. Finally, the last dimension of their model
stands for the items to recommend.

2.3.2 Semantic-based recommendations

Another important area of research for RS is that of knowledge-based meth-
ods, which pursue the use of reasoning to maximize the match between an
item’s features and the user’s interests.

Initially, logic- an case-based reasoning were considered [Bur00] but
knowledge-based RS have mainly been enabled by the emergence of Se-
mantic Web technologies. These technologies aim at easing the represen-
tation and exchange of knowledge in distributed and heterogeneous envi-



16 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

ronments [EGCB09]. The common ground of these semantic technologies
is a rich typed graph model (RDF). On top of this, schemas can defined
using RDF-S and OWL frameworks and complex queries can be expressed
using the SPARQL query language [DKDA07]. Most commonly, knowledge
bases are defined as ontologies within these frameworks but other methods
may be used [Gha02]. Ontologies in RS are particularly well suited to help
inter-operability in heterogeneous environments, that is with distributed re-
sources of varied types [PdCDL08]. Ziegler et al. presented a RS for such
distributed environments. In their approach, agents interact and share par-
tial trust and rating functions over a set of common products [Zie05]. In
particular, this system considers all user and rating data distributed but
eventually, recommendations are computed locally.

Aside from distributed environments which represent a particular con-
figuration, ontologies may be used in CB or hybrid approaches to improve
the representation and understanding of users’ interests and items’ con-
tent [CFV07, ZStL04]. Besides, logic rules can be defined (in the schema
itself) to use inferencing capabilities and derive additional (and potentially
missing) information [BFPAGS+08]. As an example, this may help deal with
partial user preferences and reduce the cold-start issue. In order to address
the issue of changing users’ interests, Loizou et al. present a system that
dynamically chooses input and output spaces for recommendation based on
the query, recommendation and rating history [LD06]. The work presented
in this paper focuses on the use of an ontology to incorporate contextual el-
ements about items’ content and the recommendation process. Integrating
contextual aspects in RS has also been an active research area, which we
now discuss separately.

2.3.3 Introducing context in recommender systems

RS still need to base on a deeper understanding of the user and his context to
offer varied and adapted recommendations [AT05]. So called context-aware
RS aim at improving the information filtering process by taking into account
some elements about the user’s context, like her location, agenda, social
environment and preferences. However, actually used context attributes are
largely dependent on the application [WS07]. It is worth noting that RS

and context-aware systems fundamentally share the same goal, that is to
offer relevant personalized information and services [CGF07]. It is common
to distinguish between information about the user profile and the context.
While profiles describe users themselves, context knowledge describes the
environment they interact with and may bear more dynamic changes.

An example of context-aware RS is the CARS system proposed by Abbar
et al., defining a personalized access model to information, with various
personalization concepts and services [ABL09]. In particular, the following
context attributes are considered: date, time (of the day), device, IP address



2. RECOMMENDER SYSTEMS 17

(for geo-location), browser and operating system. Values of these parameters
are organized into hierarchies, so authors then use agglomerative hierarchical
clustering and k-means to cluster log records into separate contexts.

Beyond custom systems and models, the remaining of this section
presents two important approaches to introduce some degree of context-
awareness, respectively in CF and CB systems.

Multi-criteria ratings and multi-dimensional methods. In CF sys-
tems, simple ratings do not carry rich semantics which limits their exploita-
tion for fine-tuned recommendations. One approach in this regard is called
multi-criteria ratings and enables the association of multiple ratings to a
given item in different categories. A restaurant could be rated according to
the service, the atmosphere, the food, etc. Similarly, books, hotels and many
other items can be rated with regards to various aspects. Recommendations
with multi-criteria ratings may simply be broken down and use (linear) com-
binations of the techniques previously described, for single-criterion ratings.

More generally, Adomavicius et al. proposed to extend the usual U × I

recommendation space with a multi-dimensional model [AT01]. The idea
is to associate a snapshot of the user’s context at the time the rating is
made. In particular, the authors argue that recommendations should base
on additional contextual information to better adapt, e.g., to different user
tasks. Let D1, . . . , Dn denote a set of dimensions, the utility function is
then re-defined as: f : D1, . . . , Dn 7→ R, with R the ordered set of recom-
mendations. This model bases on the OLAP paradigm (see Section 4), so
“recommendation cubes” are built and the authors defined a Recommen-
dation Query Language (RQL) to query them [ATZ05], as a subset of the
OLAP algebra. An example of RQL query can be:

RECOMMEND Movie TO User

FROM MovieRecommender

BASED ON PerosnalRating

Multi-criteria ratings or multi-dimensional models can help with a finer
prediction of missing ratings based on various aspects (or dimensions). How-
ever, it can be argued that most RS still lack the ability to adapt dynamically
and respond to users’ interests shifting over time [LD06]. Ontology-based ap-
proaches intend to leverage the expressiveness of Semantic Web technologies
to incorporate relevant contextual elements in the recommendation process.

Ontology-based approaches. Closer to CB approaches, ontologies are
considered as a way to reconciliate heterogeneous background information
and reason over similarity between entities [LD06]. This suits particularly
context information which is broad and lies in varied sources [Dey01] (see
Section 3).



18 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

Kim et al. propose a layered ontology which describes different aspects:
(a) products, (b) records or shopping history, (c) the location and (d) the
consumer [KK07]. In particular, the authors define preference scores for
elements of the ontology – at instance and class levels – to select prod-
ucts of interest. Instances are simply scored using shopping records and an
aggregated score is computed for classes, taking into account the concepts
hierarchy.

With their COReS system, Costa et al. argue for the inclusion of domain-
specific preferences [CGF07]. Traditional CF techniques rely on the whole
set of ratings to determine users’ similarity and thus recommend items. This
has significant implications and reduces the ability of the system to react to
different tastes in different domains. For instance, if two users liked the same
movies, they would likely get recommendations for the same restaurants,
even though they may have different culinary preferences. In response to
this, COReS uses domain ontologies to augment context information and
perform suitable reasoning.

The News@hand system presented by Cantador et al. bases on a con-
trolled and structured vocabulary – defined in an ontology – to represent
both items’ features and users interests [CBC08]. The hybrid recommenda-
tion process integrates these representations, along with semantic relations
described in the ontology. Moreover, News@hand proposes recommenda-
tions of news items using two different models: one for long term user’s
interests and one for short term adaptation to the user’s context. News
articles are automatically retrieved and annotated with weighted concepts,
using TF-IDF-like weights. Then, inside a session, the user’s reading ac-
tivity is analyzed to determine what the authors call the semantic runtime
context. Similarly, this structure is represented as a set of concepts, with
weights decreasing as time passes.

To conclude, we reckon RS could greatly benefit from an increased
context-awareness, for instance to enable further personalization and dy-
namic adaptation. However, context modeling and management is a com-
plex domain in itself. In the next section, we thus review related work in
the area of context-aware systems.

3 Context-awareness

In the previous section we presented work related to RS and in particular a
trend which pushes for the integration of some context sensitivity. Context
is a very general term that led to the active development of a corresponding
research area. In this section, we define context and context-aware comput-
ing and we review related work in this area.



3. CONTEXT-AWARENESS 19

3.1 Definition, characteristics and usage of context

The notion of context appeared in different disciplines like artificial intel-
ligence, databases, natural language processing [AS97], etc. However, this
research area has been mainly driven by work on context-aware computing
and underlying modeling issues.

3.1.1 Preliminary definitions

Let us first introduce definitions of important terms which stand for rather
abstract concepts and have thus led to varying definitions.

Context. Dey and Abowd present the context as a key element to enrich
and increase human interactions using an implicit common understanding,
e.g., of everyday situations [DA99]. One can easily imagine that the notion
of context is thus extremely broad and complex, in particular when applied
to human-computer interaction. As a result, authors have provided varying
definitions in previous work, trying to balance between the generality of the
notion and concrete operational needs [ZL07].

Definitions by examples are the most simple and operational since they
just enumerate attributes that can be used and considered as context.
Among possible attributes, location has been the most exploited in previous
context-aware systems [KPVOGM05]. For instance, Schilit et al. presented
in 1994 the ParcTab system using as context information the user’s current
location (or room) and the device [SAW94]. Therefore, the type of device
and its underlying capabilities are also commonly used attributes. Mobile
computing is indeed an important use case of context-aware systems [CK00].

However, context cannot be limited to device and location [SBG99] and
it is important for application designers to understand what context is and
how it can be used. Dey gave the following definition of context which is
now commonly accepted:

“Context is any information that can be used to characterize the
situation of an entity. An entity is a person, place, or object
that is considered relevant to the interaction between a user and
an application, including the user and applications themselves.”
(Anind K. Dey) [Dey01]

Context-aware computing. Schilit and Theimer first coined the phrase
context-aware to denote applications that react to the user’s location, objects
nearby and changes to these properties over time [SAW94]. In their vision,
an application is said context-aware if it uses or reacts to knowledge about
who you are, where you are or what/who is around you. The definition
by Dey appears to be more general and thus more operational in varied
application scenarios:



20 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

“A system is context-aware if it uses context to provide relevant
information and/or services to the user, where relevancy depends
on the user’s task.” (Anind K. Dey) [Dey01]

Situation. The complexity and broadness of context led to the introduc-
tion of a higher-level abstraction, called situation and sketched by Dey as a
description of the states of relevant entities [DA99]. A simple but remarkable
definition of the situation was later formulated by Yau et al. as follows:

“A situation is a set of context (information) in the application
over a period of time that affects future system behavior.” (Yau
et al.) [YL06]

In particular, this definition indicates that designers of context-aware
systems should identify and focus on subsets of context information that
influence a given behavior of their system. Besides and most importantly,
the time aspect is crucial and the definition highlights the fact that context
knowledge is inherently time-dependent [Sch06a], among other characteris-
tics that we now present.

3.1.2 Characteristics of context information

Context information or knowledge presents characteristics which need to be
carefuly analyzed as they push requirements on representation formalisms
and context models [HIR02, BBH+10].

Sources and heterogeneity. Previous definitions of both context and
situation reveal the important variety of resources and facts which may
contribute to the description of a user’s environment. This is in particular
true since context information often originates from heterogeneous sources in
distributed environments. Among many possible examples, we can mention
private corporate information systems (CRM, ERP, BI platform, etc.), web
services, publicly accessible ontologies, etc.

Henricksen et al. recognize three main sources of context information
based on how and where it is produced, be it from sensors, human users or
derived through further computation [HI04]. User-provided information may
be rather static or dynamic. Static facts are rarely changing and explicitly
provided by the user or obtained from (controlled) background knowledge.
Therefore, they are regarded as highly accurate which differs from dynamic
information, more often out-of-date or incomplete. Besides, derived infor-
mation can also introduce errors or imprecisions. Sensors of context infor-
mation will be further discussed along with context data acquisition (see
Section 3.1.3).



3. CONTEXT-AWARENESS 21

Incompleteness and uncertainty. Context data has often been pre-
sented as imperfect by nature, be it unknown, ambiguous, imprecise or
errorneous [HI04]. In their extensive survey on context modelling and rea-
soning techniques, Bettini et al. state that “one of the key requirements of
context-awareness is capturing and making sense of imprecise, and some-
times conflicting data, about the physical world” [BBH+10].

We argue that the caution paid to uncertainty has mainly been moti-
vated by the mere origin of most context-aware systems. Indeed, systems
that aim at modeling context to provide adapted information and services
mostly emerged from ubiquitous computing and so-called intelligent envi-
ronments. Systems in this area primarily made use of networks of sensors to
obtain information about the physical world, which is particularly prone to
incompleteness or inaccuracy. Although uncertainty is an interesting topic,
we do not consider this is so important when dealing with dedicated software
sensors.

Time variability. The above mention of static and dynamic facts is a
more general and common issue in context modeling. We previously men-
tioned that context knowledge is inherently time-dependent [Sch06a] and
the aim of context-aware applications is to timely react and adapt to possi-
ble environment changes. Bettini et al. therefore insisted on the important
timeliness of context information and argued that it should natively be cap-
tured by context models [BBH+10].

The problem of context information validity evolving over time is referred
to as the aging. It can be noted that the aging is not uniform accross
different aspects of the context [Sch06a]. That is, the validity of different
facts evolves at different paces over time, from static to rapidly changing.
For instance, the user’s hobbies and her employer are rather static facts
whereas her location or current task are highly volatile.

Resulting from the evolution of information validity over time, context
history management is also another valuable feature to consider. In particu-
lar, storage or persistence of the context composes a history, a rich resource
which can be used to enable reasoning over time [SLP04]. For instance,
the user’s interaction history may be mined to detect common patterns and
provide predictive capabilities [Sch06a]. If history sounds like simple persis-
tence, it brings considerable value to systems willing to adapt and opens an
important door to apply reasoning and machine learning techniques.

Eventually, Schmidt mentioned that imperfection and dynamics are two
aspects of context information that have been poorly explored by research
so far [Sch06a].

Security and privacy. Context information is by nature often personal
and thus particularly sensitive. Consequently, models, architectures and



22 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

frameworks need to integrate security and privacy as a core requirement of
their design [CK00].

Tatli suggested three main requirements and proposed a context data
model to handle privacy-related issues [Tat06]. An interesting particularity
of this model is the use of blurring techniques, e.g., to return range values
rather than exact ones.

Even if “technology in itself is rarely inherently bad (. . . ) it can be used
for good or bad purposes” [WFG92]. Therefore, varying regulations in differ-
ent countries control storing and usage of users’ personal data. These legal
aspects often impose important limitations and should also be considered in
the design of context-aware systems.

3.1.3 Acquisition of context information

As mentioned previously, context information originates from different
sources and can be acquired in a variety of ways at different levels. This
results in distinct acquisition approaches described below [BDR07]:

Direct sensor access. In this approach, the application has direct access
to a sensor (in the hardware sense of the term). Examples of these
sensors include but are not limited to a GPS, a motion detector, a
luminosity sensor, etc. For instance, most modern smartphones inte-
grate a GPS which proves extremely useful for many location-based
applications.

Middleware infrastructure. Robust software design and development
methods push for encapsulation and componentization, which leads
to layered approaches for context-aware applications. This is in par-
ticular interesting to build components responsible for hiding the un-
necessary complexity of context details, often very granular (e.g., GPS

coordinates). The layered architecture of context-aware middlewares
and applications will be further discussed in Section 3.3.1.

Context server. Pushing the approaches above further, context data man-
agement is significantly improved using a client-server architecture.
The context server consolidates partial context information and en-
ables sharing with multiple clients or devices. Moreover, the server
can relieve clients from resource-intensive processing and perform con-
solidated consistency checking.

Context information is either explicit – that is provided by the user – or
implicit [SBG99]. Information is said implicit when it is derived or collected
from a range of sources called sensors [HIR02]. Indulska et al. proposed
to classify sensors as physical, virtual and logical [IS03]. The authors ini-
tially considered location-related sensors but this classification holds more
generally and can be described as follows [BDR07]:



3. CONTEXT-AWARENESS 23

Physical sensors. Many physical sensors are rather commonly available
nowadays. This includes hardware sensors like cameras, microphones,
GPS, touch-sensitive screens, etc. These sensors prove useful in sce-
narios which require to capture information about the user’s physical
environment.

Virtual sensors. A sensor is said virtual if it is an application or software
source of context information. For instance, observation plugins are
used in [Sch06b] to obtain information on users’ actions and manipu-
lated content in an unobtrusive manner.

Logical sensors. Logical sensors provide an additional layer of abstraction
and may combine information from other sensors. Logical sensors can
provide information consolidated at a higher-level, or inferred using
reasoning techniques.

3.2 Context and situation modeling

In the previous section, we introduced the notions of context and situation
and presented, in particular, characteristics of context information which
push requirements on models. For these notions, this section discusses
models which are required from machine-representation and computational
perspectives. It should be noted that an interesting survey and analysis
framework for context models was published by Strang et al. [SLP04], later
extended and structured by Bolchini et al. [BCQ+07].

3.2.1 Different formalisms

Research on context modeling produced different types of models. Some
used simple key-value pairs which lack semantics, others relied on object
models which may be hard to share between client applications. Finally,
more recent works have proposed ontology-based models that enable a uni-
form representation (e.g., using RDF) and improve reasoning[LCCH10].
This section describes the main types of formalisms that have been con-
sidered to model context.

Key-value models. The most simple context models are based on key-
value pairs to represent named attributes [SLP04]. These attributes capture
various characteristics of interest, for instance the most common one, the
user’s location.

Key-value pairs are often used as they are particularly easy to manage.
However, they often lack semantics and are most of the time used to perform
some exact matching.



24 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

Markup scheme models. Markup scheme models rely on a markup-
text representation of context data, for instance as XML. The aim of this
approach was to encourage a richer representation of facts and enable more
sophisticated querying and reasoning.

For this purpose, most markup-based approaches rely on a hierarchical
data structure. Even though tree structures convey more semantics than
simple key-value attributes, we reckon that choosing between markup-based
and other models is more of a serialization problem and may/should be de-
correlated from the core expressiveness of the model. For instance, RDF

graphs that describe ontology-based models (described later) may also be
serialized as XML. To conclude, markup approaches often lead to custom or
proprietary definitions and models which discourage sharing and re-usability.

Object models. Key-value pairs and markup text are rather common ap-
proaches, easily shared between platforms, operating systems, etc. Object
models present the advantatage of being pragmatic and commonly under-
stood by application developers. However, this formalism for models lacks
a common representation suitable for sharing and re-use in distributed en-
vironments using, e.g., different programming languages [CFJ03].

The particularity of object-oriented models is to easily enable encapsu-
lation. This allows to hide some of the complexity of low-level context in-
formation, for instance by providing convenience methods to access filtered
data. More generally, object-oriented formalisms only enable the exploita-
tion of context knowledge through pre-defined interfaces.

Semantic models. Context aims at representing users, their environ-
ments and interactions between all concerned entities. More generally,
Kofod-Petersen et al. argue that context is knowledge, not a special type
of information [KPC06]. Therefore, context modeling should greatly ben-
efit from research in the area of knowledge representation. For instance,
description logics enable symbolic knowledge representation and reasoning.
In particular, the OWL-DL subset of the OWL language – used to define
ontologies – is a description logic [BBH+10].

The first approaches to model context using ontologies introduced this as
a necessity to better normalize and formalize context information [OA97].
More precisely, Strang et al. indicate that ontologies provide a uniform
representation formalism for the core concepts of the model, plus any kind
of subconcepts or facts [SLP04].

There are varied examples of context model using ontologies. Again,
context is a broad notion and authors do not seem to converge towards
a commonly accepted context ontology. As an example of ontology-based
model, the CoBrA-ONT ontology presented by Chen et al. in [CFJ03] de-
scribes entities and relations of interest in the domain of an intelligent meet-



3. CONTEXT-AWARENESS 25

ing room. Gu et al. also presented an ontology-based model for intelligent
environments, focusing on the following classes of entities: person, location,
activity and computational entity [GWPZ04]. Sieg et al. use background
knowledge ontologies and model the context with scores assigned to con-
cepts of these ontologies [SMB07]. These scores are dynamically adjusted
using spreading activation, in response to the user’s dynamic behaviour.

Heckmann et al. reconciliated user, context and resources models into
the notions of situation [Hec05b] and situated interaction [Hec05a]. Situ-
ation statements were introduced by Heckmann et al. as a homogeneous
data structure to represent the unit of information in situation modeling.
These statements extend simple subject-predicate-object triples with addi-
tional metadata and reference entities described in ontologies like the general
user modeling ontology (GUMO) [Hec05b].

Strang et al. summarized their analysis of different model formalisms,
placing more hope in ontology-based approaches [SLP04]. The authors argue
that ontologies are best suited to handle characteristics of context informa-
tion previously presented.

3.2.2 Categories or dimensions of context information

Since context information is broad, structuring it is key to enable an easier
interpretation – in particular by client applications [DA99] – with, for in-
stance, general pre-defined categories. Various model dimensions have been
proposed in the literature. The most simple categorizations distinguished
between personal and environmental context knowledge [GS01]. Schmidt
proposed a context model structured according to three categories: self,
activity and environment [Sch02].

With a more operational focus, Zimmermann et al. propose the follow-
ing five fundamental categories of information to extend the context defini-
tion [ZL07]:

1. Individuality : this category contains knowledge about the entity of
interest, be it a real user, an applicative agent, etc.

2. Time: time-variability of context information is a key aspect (see Sec-
tion 3.1.2) and this category represents time-related information, for
instance the user’s time zone or the current time would stand in this
category. Besides, the time dimension may be further structured, e.g.,
exposing work hours, holidays, etc.

3. Location: location has often been regarded as a key parameter of con-
text. Location can be physical (e.g., GPS coordinates) or virtual (e.g.,
the IP address in a network), absolute or relative.

4. Activity : the user’s needs are significantly determined by her current
activity, which may be represented with goals, tasks and actions. Ac-



26 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

tivity theory has also been used to model activities in [KPC06], but
little has been done to indicate how this information can be captured.

5. Relations: the relations category provides structure to entities by
representing their interactions or dependencies. Zimmermann distin-
guishes social, functional and compositional relations [ZL07].

In their data-oriented survey of context models [BCQ+07], Bolchini et
al. propose to categorize aspects captured by existing models around space,
time and related history, subject of the model and the user profile.

To conclude, it is commonly acknowledged that structuring context in-
formation using dimensions make the model more operational. If such
general dimensions have a real interest, we reckon that pragmatic context-
adaptation will most of the time involve application-specific categorization
in more sophisticated models.

3.3 Context management

The previous sections presented characteristics of context information and
models that are designed to represent, interpret and reason on this knowl-
edge. This section presents context-aware systems and discusses their ar-
chitecture, common context management tasks performed and eventually
dynamic aspects.

3.3.1 Architecture

Architecture applies at different levels for context-aware systems. First, the
internal perspective focuses on the core architecture of systems managing
users’ context data, often described in a layered manner. Then, frameworks
and services can be proposed to help consume context information and build
context-aware clients in heterogeneous environments.

Proposed context-aware systems may be either centralized or dis-
tributed [HIMB05]. However, centralized architectures have the great ad-
vantage of facilitating information completeness and consistency manage-
ment. For instance, the Context Broker Architecture CoBrA bases on
a central broker which collects and aggregates data from heterogeneous
sources [CFJ03]. Reconciliation can be helped by using ontologies and rea-
soning, as in [LCCH10].

Context management layers. More generally, architectures developed
for context-aware systems usually base on a layered approach, even though
naming of layers and functional ranges may vary [BDR07]. In particular,
decoupling context acquisition from its usage is key to handle data diversity
and encourage reusability accross context-aware applications.



3. CONTEXT-AWARENESS 27

Figure II.3: The five layers of context-aware systems high-level architecture.

Ailisto et al. presented the following five layers in [AAH+02]: physi-
cal, data, semantic, inference, application. More recently, Baldauf et al.
proposed in [BDR07] the five layers depicted in Figure II.3:

Sensors. This first layer represents sensors, physical, virtual or logical (see
Section 3.1.3).

Raw data retrieval. This layer stands for components taking care of ac-
cess to raw data from sensors. Most of the time, drivers will be neces-
sary when dealing with physical sensors.

Preprocessing. Preprocessing components are responsible for the data
transformation that may, in some cases, be necessary to obtain a uni-
form representation (or formalism).

Storage/management. In particular, the homogeneous representation
helps with storage of context knowledge and may enable reasoning.
This layer involves various management tasks that will be further de-
scribed in the next section.

Application. The context model and some system services can be con-
sumed by client applications using controlled interfaces, be they pro-
grammatic or Web services.

Middleware, frameworks and services. At the application level in the
layers previously described, clients may consume context-related informa-
tion thanks to middlewares/frameworks or services. This is interesting for
instance to hide details about raw context information like GPS coordinates
and ease context consumption and adaptation.

The Context Toolkit proposed by Dey is an example of such frame-
work [DAS01]. This toolkit exposes three main types of components to
build context-aware systems: widgets, interpreters, and aggregators.



28 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

CASS is an example of server-based context management framework that
was presented by Fahy et al. [FC04]. The authors argue that serparating
context-based inferences and behaviours from application code paves the
way to context-aware services configurable by users. About CASS, Bolchini
mentions that it “manages both time and space, taking into account the
context history, and provides context reasoning; it does not contain user
profiling capabilities.” [BCQ+07].

It is undoubtedly true that frameworks facilitate the development of
context-aware applications, e.g., by providing re-usable and extensible code.
However, this approach often lacks the flexibility (client-wise) of Web ser-
vices. For instance, two different devices in heterogeneous environments may
not allow the same programming language but they would likely both be able
to consume Web services via HTTP requests. For instance, SOCAM – for
Service-Oriented Context-Aware Middleware – aims at enabling the rapid
prototyping and development of context-aware mobile services [GPZ05]. SO-

CAM defines context providers and interpreters to handle data acquisition
and processing.

These examples of context-aware systems and middlewares are far from
an exhaustive list, but more complete surveys have already been presented,
for instance in [BCQ+07, BDR07].

3.3.2 Dynamic management

Time-variability is a key characteristic of context information (see Sec-
tion 3.1.2). A complete context-aware system approach thus needs to handle
context construction but also dynamic maintenance aspects. In this section,
we review work related to context usage at runtime and dynamic manage-
ment aspects in particular.

Context usage and management. Context information acquisition has
been thoroughly investigated by previous research (see Section 3.1.3). The
goal of data acquisition is first to build and initialize the context model
so the system can benefit from its dimensions. However, Zimmermann et
al. mention that “something is context because of the way it is used in
interpretation, not due to its inherent properties” [ZL07]. Therefore, context
usage probably matters more than its acquisition.

Application developped using context-aware systems – in particular via
defined frameworks – generally consume information in either synchronous
or asynchronous manner [BDR07]. Synchronous context consumption in-
volves frequent polling which may be particularly resource intensive and
leaves to the client the task of determining differences. On the other hand,
the asynchronous consumption mode bases on the publish-subscribe pattern
for event management. Subscribers or clients register so they can be notified
by the system when a specific event occurs, as in [DSP09].



3. CONTEXT-AWARENESS 29

Dynamic evolution. Context-aware systems target dynamic adaptation
of information and services. Such systems therefore need a strategy to handle
active components and knowledge evolution. However, dynamic context
management has rather poorly been addressed by previous research [Sch06a].

Euzenat et al. approach the problem of dynamics with a focus on active
components. They argue in [EPR08] that context-aware systems in dis-
tributed environments require the ability to dynamically integrate new and
sometimes unexpected entities, be they real users and objects or computa-
tional entities. In particular, the discussion adopts a data representation
point of view. It highlights the fact that ontologies provide a homogeneous
knowledge representation and ease the dynamic definition and integration
of new types of data. On the other hand, the definition of dynamic compu-
tational entities responsible for actual data management and manipulation
is almost ignored.

As discussed in Section 3.1.2, the validity of context information evoles
over time. History management is thus an important component of context
management systems. In particular, the history is composed of persisted
context knowledge, which thus needs to integrate time-related metadata,
e.g., a timestamp and a lifetime. If history sounds like simple persistence, it
brings considerable value to systems willing to adapt and opens an impor-
tant door to perform reasoning over time or apply machine learning tech-
niques [SLP04].

In event-driven systems and for instance active databases, the ECA

framework has been used to define active rules with clear declarative se-
mantics: ON event IF condition DO action. In case a certain event occurs
and a specified condition is satisfied, the desired action is eventually per-
formed [TSM01]. This framework seems particularly well adapted to ap-
proach the issue of context knowledge maintenance. In the ECA framework,
Laitaki presents the use of SPARQL-based rules to perform reasoning on
context data represented in RDF graphs [Lai07]. Interestingly, the ECA

framework has also been considered to introduce dynamics in data ware-
houses and multi-dimensional analysis [TSM01]. In a more recent work,
Ravat et al. make use of the ECA framework to perform dynamic query
personalization, in response to OLAP operations (events) performed by the
user to move from one analysis context to another. Query personalization
and recommendations will be further discussed in the next section.

To conclude, beyond pragmatic concerns related to actual context man-
agement, Zimmermann introduces two interesting notions about context
dynamics: transition and sharing [ZL07]. First, capturing and modeling
context transitions would be extremely valuable, for instance to determine
a change of focus from the user. Second, sharing is defined as what happens
when two contexts, e.g., from different entities, base on the same informa-
tion or knowledge. In their discussion, Zimmermann et al. focus on the
value brought by additional knowledge or inferred relations but they do not



30 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

address privacy and security issues. Even though this discussion on context
transition and sharing is interesting, concepts introduced still lack a proper
formalization and tangible implementations.

4 Data warehouses and recommendations

In this section we present previous work related to multi-dimensional data
warehouses (DW), for personalization and recommendations in particular.
First, Section 4.1 introduces DWs and On-Line Analytical Processing (or
OLAP) approaches. Then, we review in Section 4.2 methods that have been
considered to integrate personalization in warehouses. Last, Section 4.3 dis-
cusses different kinds of recommendations proposed for DW-related content.

4.1 Data warehouses and OLAP

In this section, we introduce the basics of the multi-dimensional model sup-
ported by DWs. Due to its important interest in both academia and industry,
research on data warehousing produced many in-depth studies, so our aim
here is not to be exhaustive but rather to introduce the key concepts used
in the area.

4.1.1 Data warehouses and the multi-dimensional model

Let us first present DWs and the switch from relational to multi-dimensional
storage and modeling of data.

From relational to multi-dimensional databases. Relational
database management systems (RDBMS) are extensively used in produc-
tion systems. The design of relational schemas is often optimized for
On-Line Transaction Processing (OLTP) thanks, e.g., to a high degree
of normalization. The requirements of OLTP applications (consistency,
recoverability and concurrency) are quite different from those of OLAP

applications [CD97]. In particular, OLAP systems aim at supporting the
decision making process of knowledge workers thanks to sophisticated
analysis that aggregate large amounts of data [CT98]. Chaudhuri mentions
that for this purpose, “historical, summarized and consolidated data is
more important than detailed, individual records” [CD97]. OLAP analysis
and operations will be further described in the next section.

At the heart of the OLAP approach is the DW, a large repository contain-
ing historical data from several sources of an organization, for analysis pur-
poses [PJ01]. Data are usually extracted from various production systems
to be transformed and eventually loaded in the DW; this extract-transfrom-
load (ETL) process and related technologies have been reviewed in [Vas09].
To conclude on the materialization of DWs, Rizzi argues that if centralized



4. DATA WAREHOUSES AND RECOMMENDATIONS 31

Figure II.4: Simple example of a Sales fact table defining two measures
Revenue and Quantity sold. These measures can be analyzed against 3
dimensions (at the finest level): Product, Date and Shop.

architectures are well adapted for warehouses of isolated organizations, they
no longer fit the needs of collaborative BI networks [Riz11].

The multi-dimensional model. DWs and OLAP approaches are sup-
ported by the multi-dimensional model which was introduced to provide
improved analytical capabilities and to enable the interactive analysis of
large amounts of data. Multi-dimensional modeling methodologies have
been thoroughly reviewed by Romero et al. in [RA09]. A certain number of
formal definitions and models were proposed for the multi-dimensional space
and the OLAP algebra [GRB11, PMT08, NNT01, Vas98, CT98], which oper-
ations will be introduced in the next section. In short, the multi-dimensional
data model organizes data in cubes and a DW can be seen as a collection
of related cubes [PJ01]. Cells of these cubes contain numerical facts called
measures. These measures are defined in fact tables and can be analyzed
against any number of dimensions. Let us briefly describe these key ele-
ments:

Dimensions are core concepts of multi-dimensional models and aim at pro-
viding different observation angles around facts of interest. Dimensions
are used to select and aggregate data at the desired level. Dimensions
are indeed organized into hierarchies and each instance (or value) of a
dimension belongs to a particular level [PJ01].

Facts or fact tables contain tuples which may for instance describe unit
sales transactions. Each tuple is defined by a certain number of point-
ers to dimensions and numerical indicators [CDG01], and is thus rep-
resented as a point in the multi-dimensional space.



32 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

Measures are numerical values represented in fact tables and are com-
monly associated with an aggregation function [PJ01], like sum, aver-
age, etc. To conclude, Figure II.4 illustrates a fact table, Sales, defin-
ing two measures (Revenue and Quantity sold) attached to various
dimensions like Country, Date, etc. The right hand side of the picture
illustrates a 3-dimensional cube aggregating the Revenue measure.

To conclude about the multi-dimensional model, it should be noted that
issues may arise regarding the aggregation of measures on different dimen-
sions. These are called additivity or more generally summarizability issues
and may result in erroneous aggregations, for which a taxonomy is pro-
posed by Horner et al. [HS05]. Our aim is not to be exhaustive regarding
summarizability issues here but rather to introduce and mention them, as
they have been thoroughly reviewed by Mazón et al. in [MLT09]. Briefly
though, Pedersen et al. present three classes of measures based on how they
aggregate, additive, semi-additive and non-additive measures [PJ01]. Addi-
tive measures can be aggregated along any dimension whereas semi-additive
measures can only be aggregated against certain dimensions. Eventually,
there are also non-additive measures which cannot be aggregated at higher
level. In particular, Mazón et al. discuss the fact that summarizability
issues have to be taken into account at modeling time and compatibility
of measures and dimensions may be addressed using functional dependen-
cies [MLT09, RA09].

4.1.2 OLAP - On-Line Analytical Processing

OLAP tools and applications aim at enabling interactive yet powerful data
analysis. Analaysis can be performed thanks to a set of core operations that
are exposed by OLAP servers, resulting in actual queries over the material-
ized DW.

OLAP servers and querying. Chaudhuri presents in detail the two
main server approaches that have been adopted to provide BI clients with an-
alytical capabilities [CDG01]. First, ROLAP – for relational OLAP – servers
exploit relational databases as storage backends. This support is important
since relational databases are common in the industry and already handle
large amounts of data. If relational databases may be used for storage pur-
poses in some DW implementations, Pedersen et al. argue that “the only
robust solution is to use database technology that offers inherent support
for the full range of multidimensional data modeling” [PJ01]. MOLAP –
for multi-dimensional OLAP – have thus been proposed and offer native op-
timized multi-dimensional storage. Eventually, these two types are often
combined into hybrid OLAP (HOLAP) servers. Indeed, ROLAP servers often



4. DATA WAREHOUSES AND RECOMMENDATIONS 33

perform better when data is relatively sparse, whereas MOLAP servers are
more efficient with dense data [CDG01].

BI applications need to query the warehouse for actual data, and queries
on the DW have to be expressed and evaluated in accordance to the un-
derlying storage engine. Should a relational backend be used, queries may
be expressed in SQL [Gor03]. On the other hand, OLAP cubes and na-
tive multi-dimensional storage may be queried using the Multi-Dimensional
eXpressions (MDX) language.

OLAP operations. An important aspect of OLAP is to allow the interac-
tive exploration of vast amounts of aggregated data, thanks to the following
core operations [PJ01]:

Slice and dice consists in the selection and aggregation of information to
summarize numerical measures along the different levels of dimensions
hierarchies [Vas98]. Selection involves in particular the application of
filters on both measures and dimensions values.

Drill down and roll up denote a way to navigate in and explore data
cubes. In particular, hierarchies of dimensions can be navigated up
and down to obtain respectively higher- or lower-level aggregates. This
navigation is enabled by hierarchies which represent partial orders be-
tween dimensions [CT98].

Drill across is the operation combining two cubes that share a common
dimension. This operation is implemented by a join in the relational
agebra.

Ranking in queries allows to retrieve for instance the top/bottom n cells.
Numerous queries may involve this operation, for instance to retrieve
the 5 shops that best sell a given product.

Rotate. The rotation of a cube results in the observation of given facts
under different dimensions.

4.2 Personalization of data warehouses

In this section we review methods used to personalize data warehouses at
different levels. In particular, we focus on those based on user profiles and
the definition of user preferences.

4.2.1 Personalization approaches

Bentayeb et al. present personalization in rather general terms and clas-
sify some OLAP-related techniques according to the matrix illustrated in
Figure II.1 [BBF+09]. The authors define configuration and adaptation as



34 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

the main ways to address personalization. Configuration allows the user to
explicitly modify her profile whereas adaptation consists in implicit learning
of the user profile by the system. Both configuration and adaptation help
perform some transformation of content or layout and provide personalized
recommendations.

More specifically, the different approaches considered to provide a cer-
tain degree of personalization in DWs have been reviewed by Kozmina et
al. [KN10]. In particular, the authors propose a classification of OLAP per-
sonalization techniques into five categories. First, methods using prefer-
ences allow query personalization at the schema level. Most importantly,
users can express their preferences on measures, dimensions and hierarchies.
These preferences may be expressed either quantitatively or qualitatively,
thus conveying more or less semantics (see Section 4.2.2). Then, static and
dynamic personalization are distinguished, function of the moment person-
alization is actually achieved, at design or at run-time. Personalization
at design time is usually less reactive to dynamic changes. Another per-
sonalization aspect lies in visualizations proposed to the user. Kozmani
places in this category visual query editors which relieve users from complex
SQL/MDX generation using, e.g., simple drag-and-drop of measures and di-
mensions. Bellatreche also proposed to integrate visualization constraints
into their user profile [BGM+05]. Eventually, Kozmina highlights two tech-
niques to provide recommendations of multi-dimensional queries, based on
users’ sessions or preferences. Query recommendation will be more thor-
oughly discussed in Section 4.3.

4.2.2 User profiles and preferences

We introduced the main types of personalization approaches considered to
enable user-adaptive OLAP exploration of a DW. Let us now focus on user
profiles that are commonly used to achieve this, and in particular preferences
which may be defined with quantitative or qualitative approaches.

User profile. User profiling or modeling for personalization has been ex-
tensively studied, in particular in the fields of information filtering and re-
trieval [RT09]. Methods aim at maximizing the matching between returned
data and some characteristics of the user model.

Kozmina et al. present in [KN10] a composite user profile, aggregating
various types of profile about spatial and temporal aspects, the user, her
interactions, preferences and recommendations. Each profile type contains
a certain number of attributes collected from different information sources.
Examples of considered attributes include the user’s roles (from system and
organizational perspectives), her location, the device being used, etc. User
profile data is obtained either explicitly from the user, or implicitly by learn-
ing from various sources (context, static, activity and analysis data).



4. DATA WAREHOUSES AND RECOMMENDATIONS 35

The user profile proposed by Bellatreche et al. in [BGM+05] is defined
as the combination of preferences and visualization constraints. Preferences
will be described later in this section. From the visualization perspective,
the device being used is part of what the authors call context data. This pa-
rameter is important, e.g., to determine the screen size and thus the amount
of information which can be displayed.

OLAP preferences. Golfarelli and other authors argue that if a lot of
work has been done on database preferences, preferences for data warehouses
and OLAP analysis have not attracted so much attention [GR09, KN10].
However, there are some exisinting approaches, often classified in quantitive
and qualitative preferences [BBF+09].

Ravat et al. propose a quantitative model of preferences to ease the
user’s navigation in multi-dimensional data [RT09]. The user can express
her preferences by associating weights to objects of the multi-dimensional
model. The authors then propose a rule-based system – using the event-
condition-action (ECA) framework – on top of these numerical preferences
to assign priority weights to schema elements, based on the current OLAP

operation being performed. As a result, personalized visualizations and
OLAP manipulations can be proposed to the user.

Kozmina et al. also presented a quantitative model for OLAP preferences
in [KN10]. Besides, it may be noted that the proposed model distinguishes
between schema-specific and report-specific preferences. Indeed, a user may
have a certain preference for a schema element in a given report and another
more general for other documents and tools. Preferences on schema elements
are qualified using two attributes, the degree of interest and a weight. The
degree of interest is a categorical attribute and ranges from very low to very
high while the weight is a real in [0; 1].

On top of the visualization constraint previously mentioned, the user
profile proposed by Bellatreche et al. in [BGM+05] includes the definition
of preferences. Preferences are simply defined as a total pre-ordering of
dimensions’ values. This approach can still be regarded as quantitative but
adopts a relative perspective using ordering rather than absolute weights.
The authors then derive a total order between sub-cubes of the warehouse.
Eventually, their PersoVisu algorithm provides personalized visualizations
that (a) maximize the user’s preferences w.r.t. the represented cube and (b)
satisfy the visualization constaint.

MyOLAP is a significative example of qualitative approach, introduced by
Golfarelli et al. in [GRB11]. In particular, the authors present the following
specificities of OLAP preferences:

• they can be expressed on numerical domains as well as categories,

• they can address the desired level of aggregation in hierarchies and



36 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

• they can refer to atomic as well as aggregated data.

Taking these into account, Golfarelli et al. introduce MyOLAP as an
algebra to express preferences as soft constraints. Preference-specific opera-
tors and keywords are used to extend MDX queries, for instance to mention
the user prefers data such that the aggregated value of a given measure falls
in a certain window.

Jerbi et al. also introduced a qualitative model for preferences in multi-
dimensional databases [JRTZ08, JRTZ09a]. These preferences only address
dimensions but base on strict partial orders (s.p.o.) at two levels. The first
s.p.o. is used to compare two dimensions whereas the second one compares,
inside a given dimension, two attributes or values. Remarkably, the authors
also model the analysis context in order to define context-aware preferences.
This specific notion of context will be further discussed in the next section.

4.3 Query recommendations

As a particular use case of personalization, we review in this section tech-
niques for query recommendation. Such techniques can be used to ease
user-adaptive exploration of a DW and reduce the time taken by analysts to
get to data of interest.

4.3.1 Recommendation types

Various types of OLAP recommendations can be considered and have been
classified by Jerbi et al. as follows [JRTZ09b]:

Anticipatory recommendations. These recommendations aim at deter-
mining, given the current state of an OLAP analyis, what is most likely
the next step or operation to perform.

Alternative results. Alternative results can be provided to the user to
suggest other related data. These results may or may not be related
to the last operations performed by the user. Concretely, these results
help explore areas of cubes that had not necessarily been visited before.

Interactive assistance for query design. Last, interactive assistance
aims at helping the user in the query design process with suggestions,
for instance to build queries and ad-hoc reports. Jerbi et al. mention
that this recommendation scenario has attracted little attention from
the research community, compared to the first two [JRTZ09b].

4.3.2 Query recommendation

Stefanidis et al. proposed a taxonomy to categorize database recommen-
dation techniques in (a) current-state, (b) history-based and (c) external



4. DATA WAREHOUSES AND RECOMMENDATIONS 37

sources approaches [SDP09]. Methods (a) exploit data as well as metadata
(schema), be it from the current query being performed or the database
itself. Methods (b) leverage the history of users’ queries contained in logs,
which may be structured in analysis sessions. Eventually, methods (c) may
exploit data from sources other than the database to perform further per-
sonalization, e.g., by building more complete profiles.

More precisely focused on data warehouses, techniques employed
for query recommendations have been recently reviewed by Marcel et
al. [MN11]. In particular, the authors provide a formal framework to repre-
sent query recommendation techniques as a function of various parameters,
Recommend(L, cs, I, P, f). L is a log or set of sessions, cs is the current
state of the current session, I the data warehouse instance, P the user pro-
file and f an expectation function. The expectation is a function associating
a real number to (or scoring) data of the warehouse. Marcel et al. divided
methods for query recommendations in those (a) based on user profiles, (b)
using query logs, (c) based on expectations and (d) hybrid ones.

Methods based on user profiles. Marcel et al. define this category for
methods that take the user profile (e.g., preferences) into account, on top
of the common current analysis session. Such techniques can be formally
represented as Recommend(∅, cs, I, P, ∅). They include the user profile (e.g.,
preferences) in the recommendation process to maximize the user’s interest
for suggested queries [GRB11, KN10]. User profiles and preferences have
been presented in more details in Section 4.2.2. It may be noted though
that preferences or the profile may define visualization-related constraints,
which prove valuable since queried data eventually aims at being displayed
to the user [BGM+05].

Methods based on query logs. Methods in this category are repre-
sented as Recommend(L, cs, I, ∅, ∅). Techniques involved build on logs of
queries in various analysis sessions and mainly address predictive recom-
mendations of forthcoming queries. Logs are composed of queries posed by
users of the system (through different clients) and are stored by the server.

Analysis sessions are positioned as first-class citizens of these rec-
ommendation approaches. Jerbi et al. used the definition of OLAP

analysis as a sequence of contexts which represent successive states or
queries [JRTZ09b, JRTZ09a]. More precisely, the analysis is modeled as
a graph where nodes denote contexts and edges represent OLAP operations
performed to go from one to the other. A context stands for a query and
is represented using a tree structure. Root nodes are measures and dimen-
sions used in the analysis, while leaves of the tree represent their values, be
they numerical or categorical. The authors apply these notions in particu-
lar to provide query recommendations leveraging the user’s preferences, as



38 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

previously discussed.

Sapia et al. proposed to model query logs using a probabilistic Markov
model [Sap99]. The authors then exploit this to determine probabilities of
forthcoming queries. Clearly, query recommendations consist in selecting
those that maximize the probability in the chain model.

Another approach is to use a distance metric between sessions to ex-
tract recommended queries from past sessions similar to the current one.
Giacometti et al. mention that the log can be extremely large and
“sparse”, in the sense that many queries may not be posed several times
by users [GMN08]. Therefore, the authors propose to first group queries
into clusters called partitions of the log. Each query is associated to a given
class or cluster, and generalized sessions are determined by replacing queries
in sessions with their attached classes. The current and former sessions are
matched using an adaptation of approximate string matching principles.
Candidate query recommendations are selected and ranked among queries
of past sessions.

Methods based on expectations. Methods for query recommendation
that fall in this category are represented as Recommend(∅, cs, I, ∅, f). They
base on discovery-driven analysis and rely on two models, one for data the
user has already visited in the past and another one for unseen data [MN11].
The major assumption of these techniques is that the user will be interested
by parts of data where the two models most significantly differ. The last
parameter f of the Recommend function, is the expectation function and
may represent this deviation.

Sarawagi et al. introduced the discovery-driven analysis of multi-
dimensional data [SAM98] and proposed two different types of operators
to guide users toward zones of a cube that present unexpected data. The
first type tries to find either higher-level data that confirms an observed
trend or lower-level data to explain differences. Sathe et al. further discuss
these aspects in [SS01]. Second, techniques based on an adaptation of the
maximum entropy principle present the user with most unexpected data
compared to what she has already seen [Sar00].

More recently and to renew with the discovery-driven approach of OLAP

analysis, Giacometti et al. propose in [GMNS09] to model current and
past analysis sessions using pairs of cells (i.e. at the data level) containing
significant and unexpected differences. If the current session leads the user
to observe the same difference as a former session, the latter is used to
recomend other significant and related differences.

Hybrid methods. To conclude on query recommendation techniques,
previously described approaches may be combined in various ways with
hybrid methods [GMNS09]. Methods in this category are represented as



5. SUMMARY AND DISCUSSION 39

the complete recommendation function Recommend(L, cs, I, P, f). To the
best of our knowledge and according to Marcel et al., the only really hy-
brid method described in previous work was proposed by Giacometti et
al. in [GMNS09]. Indeed, the presented technique processes query logs to
determine analysis sessions and associate a goal to them. Eventually, rec-
ommended queries are those that pertain to past sessions sharing the same
goal with the current one.

5 Summary and discussion

In this chapter we presented our review of previous work in three different
but somehow connected areas: recommender systems (RS), context-aware
systems and multi-dimensional data analysis. We want to highlight the fact
that our aim was not to be exhaustive in any of these directions, but rather
to identify zones for possible synergies.

RS are designed to provide users with suggestions of items bound to be
interesting to them. The two major recommendation techniques are content-
based (CB) and collaborative filtering (CF). CB methods rely on the vector
space model and represent both items and users with vectors of weighted
keywords. They thus present the great advantage of being easily config-
urable with queries. However, a CB approach requires content analysis on
items which implies to develop potentially sophisticated feature extraction
techniques. On the other hand, collaborative techniques have mainly based
on superficial information (like ratings) gathered from a large number of
users, thus reducing the need for feature extraction. CF methods usually
build on ratings matrices to determine various distance or similarity met-
rics. For instance, the user-based approach first determines users similarity
based on users’ ratings pattern. Then, a rating is computed for items the
active user has not yet seen, aggregated from ratings given by similar users.
CF methods are extremely interesting since, at minima, they require no
knowledge of items content. This makes them easily re-usable with varied
types of resources. However, collaborative techniques suffer from so called
cold-start issues, be it new item or new user problems. On the other hand,
CB methods avoid the new item case using content extraction. Eventually,
recent work have addressed the need to integrate more context sensitivity
in recommendation algorithms. In particular, semantic-based approaches
are promising in this regard but do not seem to have reached the maturity,
scalability and stability levels of CB or CF techniques.

A lot of work has also been done on context-aware systems which are
designed to adapt to various characteristics of the user and her environ-
ment, physical as well as virtual. Context-aware systems have often focused
on more dynamic aspects of personalization and aim at taking more than
the user herself into accout. Researchers in this field commonly agree on



40 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

a definition of the context provided by Dey et al., which considers it as
“any information the can characterize the situation of an entity” [DA99].
This definition – which is arguably said operational – reveals how broad
the notion is. Therefore, it is no surprise that researchers did not seem
to converge towards a commonly accepted model of context. Many differ-
ent models have thus emerged, using formalisms with more or less flexibil-
ity and expressivity, mainly key-value pairs, object models and ontologies.
In particular, it has been argued that semantic technologies are the most
appropriate to meet heterogeneity and reasoning requirements imposed by
context-aware systems [SLP04]. Remarkably, this is also a promising di-
rection for future recommender systems integrating more and more context
knowledge [CGF07, CBC08].

The important influence of mobile and more generally ubiquitous com-
puting in research on context-aware systems brought interesting challenges.
In particular, ubiquitous systems often involve hardware elements like de-
vices or physical sensors, e.g., in so called intelligent environments [CFJ03].
Unfortunately, this proves rarely useful when designing adaptive applica-
tions in a pure software environment for knowledge workers or business
users. Besides, several proposed context models intend to go extremely
far in personalization, e.g., by representing the user’s psychological state.
Again, this kind of settings raises serious doubts as to their applicability
in business environments since information (a) needs to be captured and
(b) needs to be interpreted in a useful and meaningful way, not to mention
obvious security and privacy issues.

In Section 4.1 we presented the multi-dimensional model used in data
warehouses (DW) and OLAP analysis tools. In particular, we presented the
core concepts of dimensions, facts and measures which compose the com-
mon star schema of the warehouse. Measures are numerical indicators of
a fact table and they can be analyzed against a certain number of dimen-
sions. Queries can be built to query for actual of the DW and usually
depend on the underlying storage engine, be it relational or purely multi-
dimensional. Modern DW solutions propose query design tools which enable
the formulation of queries by non-expert users and hide the complexity of
SQL/MDX generation [PMT08]. A way to ease the query design process is
to simply let the user select measures and dimensions from a list to com-
pose his queries, and eventually add some sort/filtering criteria. However,
many real-life production systems define complex multi-dimensional models
which may involve up to thousands of obejcts, measures and dimensions.
Consequently, it is thus difficult for users to navigate this data and find the
appropriate information. Therefore, query designers could be significantly
improved by using personalization and recommendation techniques. This
most likely generalizes to other analysis tools.

Different disciplines and areas produced varying definitions of context.
multi-dimensional data analysis in BI is no exception. The notion of analysis



6. CONCLUSION 41

context is considered in the field of multi-dimensional modeling and OLAP

analysis. An analysis session is defined as a sequence of contexts, where
OLAP operations (drill-down, etc.) are used to go from one to the other.
This leads to a graph representation of sessions. Nodes of this graph are con-
texts or queries, and edges denote OLAP operations. This notion of context
is interesting and allows for instance to recommend the most likely forth-
coming query given the current session. However, this definition is obviously
much more limited than generic context models presented in Section 3.

Eventually, it is worth noting that recommendation techniques for multi-
dimensional queries presented in Section 4.3 only poorly leverage generic
methods developed in the field of RS. To the best of our knowledge, there
has been no previous work using content-based or collaborative filtering. We
thus consider that query recommendation and more generally access to BI

tools and data could significantly benefit from RS techniques. Besides, most
work have proposed language-specific approaches, e.g., using MDX opera-
tors to express preferences in queries [GRB11]. On the other hand and from
a commercial standpoint, BusinessObjects (now SAP) has from its origin
adopted a source-agnostic approach, based on so called universes or seman-
tic layer. This layer stands for the multi-dimensional model and isolates
clients from underlying storage and connection issues. We thus consider it
is important to provide techniques for personalization and recommendation
that are platform-independant.

6 Conclusion

In this chapter we reviewed work related to three research areas: (a) RS,
(b) context-aware systems and (c) data warehouses and OLAP analysis. We
identified interesting connections between RS and context-aware systems, in
particular at the modeling point of view since both types of system rely on
user modeling. Context-aware systems are more generic from the knowl-
edge representation perspective and encompass broader sets of information,
about the user and her environment. Besides, context-aware systems adopt a
more dynamic position which makes them interesting in scenarios involving
interactive personalization. However, traditional RS techniques have proved
highly scalable and can provide valuable results, in particular in situations of
exploration or discovery. Last but not least, we presented data warehouses
and the multi-dimensional model, which organizes data in cubes. Facts are
represented as points in the multi-dimensional space and refer to numerical
measures and dimensions. Dimensions can be organized into hierarchies to
define navigation paths and are used, e.g., in roll-up/drill-down OLAP opera-
tions. We observed that only recently techniques for query recommendations
emerged and that most approaches are platform- or language-specific. To
conclude and to the best of our knowledge, techniques considered so far for



42 CHAPTER II. RECOMMENDATIONS, CONTEXT AND BI

query recommendations have not explored the use of traditional RSmethods,
namely content-based and collaborative filtering.



Chapter III

Graph-based Situation

Modeling

Contents

1 Introduction and requirements . . . . . . . . . . 43

2 A graph-based situation model . . . . . . . . . . 45

2.1 Situation statements . . . . . . . . . . . . . . . . . 45

2.2 Graph Repository . . . . . . . . . . . . . . . . . . 47

3 Situation model characteristics . . . . . . . . . . 52

3.1 Situation model overview . . . . . . . . . . . . . . 52

3.2 Agent profile and core dimensions . . . . . . . . . 54

3.3 Personalization-related dimensions . . . . . . . . . 57

4 Summary and discussion . . . . . . . . . . . . . . 59

4.1 Modeled aspects . . . . . . . . . . . . . . . . . . . 59

4.2 Representation features . . . . . . . . . . . . . . . 59

4.3 Context management and usage . . . . . . . . . . 60

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 61

1 Introduction and requirements

We underlined in the review of related work (see Chapter II) that person-
alization commonly bases on some – more or less dynamic – user modeling.
Modeling the user and her context or situation is key in many applications
to serve timely and personalized recommendations of data or services.

This section presents our graph-based situation model leveraging a se-
cure and modular Graph Repository (GR) of heterogeneous resources. Be-
fore going in any further detail, we first describe requirements imposed on
such system, in the context of corporate deployments regarded as our main
application scenario.

43



44 CHAPTER III. GRAPH-BASED SITUATION MODELING

Applications inter-operability. As opposed to the experience of a user
limited to Web sites inside a browser, a business user evolving inside a
company’s network may interact in varied ways with several commu-
nicating applications. Ideally, these applications would share the same
knowledge and representation of the user’s interests and intentions to
better assist her and ease inter-operability. Such user-centric applica-
tions are called situational applications and they emphasize the need
to inter-operate on the basis of a shared situation model.

Information heterogeneity. Several modeling approaches have been con-
sidered to address the context representation issue and were discussed
in more details in Chapter II, Section 3. Definitions of both context
and situation reveal the important variety of resources and facts which
may contribute to the description of a user’s environment. The need
to handle heterogeneous resources and relations between them leads
to graphs as a natural representation.

Security and privacy. Situation modeling and monitoring is about cap-
turing and interpreting users’ personal characteristics and interactions,
which means the underlying data is particularly sensitive. Users’ pri-
vacy thus needs to be respected and enforced by the system. If user
data has to be protected, security also has to be observed from a differ-
ent angle. Indeed, a given user may not be allowed to see all resources
available in her corporate network. This is the case, for instance, with
critical HR or financial information.

Dynamic adaptation. Eventually, our aim with situation modeling is dy-
namic adaptation to serve timely and personalized recommendations
of resources to end-users. Therefore, we need to take into considera-
tion the fact that users’ interests or goals may evolve rapidly as they
interact with various applications. Time-dependency thus has to be
integrated at the heart of the representation of situation-related knol-
wedge.

To conclude, various requirements push for an expressive model for sit-
uation knowledge, allowing a homogeneous representation of heterogeneous
resources. Therefore, a graph-based model seems particularly adapted, in
particular to represent and operate on semantics of such information. Dif-
ferent formalisms – from simple key-value pairs to ontology-based models –
have been introduced for context modeling and were discussed in Section 3.2
of Chapter II. Strang et al. summarized their analysis of these formalisms
and placed more hope in ontology-based approaches [SLP04], arguing that
they are best suited to handle characteristics of context information.

The rest of this chapter is organized as follows. Section 2 presents the
graph-based situation model and the underlying graph repository framework



2. A GRAPH-BASED SITUATION MODEL 45

that we propose. Further characteristics of our model are then introduced
in Section 3, in particular situation dimensions. Last, we discuss in Sec-
tion 4 the proposed model according to the analysis framework presented
by Bolchini et al. [BCQ+07].

2 A graph-based situation model

The requirements previously introduced impose constraints on our system,
which lead to graphs as a natural and homogeneous representation. Graphs
are indeed very well suited to handle information diversity and represent
a variety of resources and relations between them. For instance, this was
a major argument in favor of the rich typed graph model RDF, to handle
distributed sources of heterogeneous resources. In this section, we first in-
troduce situation statements which are a major component of our graph
model.

2.1 Situation statements

Sitting on top of raw context data, situation models aim at characterizing
the user and her environment, or interactions between her and the “rest of
the world”. For this purpose, Heckmann introduced situation statements as
a homogeneous data structure used to represent the unit of information in
situation modeling [Hec05b], based on Semantic Web technologies. State-
ments offer an appropriate answer to handle the heterogeneity of resources
and interactions as well as time-dependency and privacy aspects.

2.1.1 Definition and notations

Our work bases on the statement structure proposed by Heckmann to elabo-
rate on an aggregated and dynamically maintained view of users’ situations.
Situation statements are extended triples representing assertions formed of
a subject S, a predicate P and an object O, like Marge read document1.
Table III.1 presents other examples of such statements.

Basic triples are augmented with additional metadata M to take into
account temporal constraints, privacy settings, origin (or source) and con-
fidence of the information. A statement can then be noted as a tuple
(S, P,O,M), with M = (origin, t, l, sowner, s, c). We describe below these
metadata:

Timestamp t and lifetime l. The timestamp t and the expected lifetime
l are used to handle time-related validity constraints. In a first approx-
imation, the timestamp can be seen as the date and time the statement
was created. The lifetime indicates during how much time the state-
ment holds valid. Statements may be flagged with an infinite lifetime
to indicate they are always true, regardless of time constraints.



46 CHAPTER III. GRAPH-BASED SITUATION MODELING

♯ Subject Predicate Object Origin

S1 Marge read document1 EmailClient

S2 document1 mention Country EntityExtractor

S3 document1 mention Q3 EntityExtractor

S4 Q3 instanceOf Quarter EntityExtractor

. . .
Sk Marge hasLocation Paris MobileApp

Sk+1 Marge reportsTo Bruno SocialNetwork

. . .

Table III.1: Examples of (partial) statements, some of which constitute
Marge’s situation as represented by the graph in Figure III.1.

Figure III.1: Example of situation graph for the user Marge.

Privacy and ownership. The privacy setting s in combination with the
ownership sowner indicates whether this statement is public, private or
has custom access authorizations. By default, all situation statements
are owned by the concerned user/agent and are strictly private. Shar-
ing some information with other users has to be, here again, the result
of the user opting in explicitly.

Origin and confidence. We define agents as resources of the system
which can create statements (providers, users, operators, client ap-
plications, etc.). The origin refers to the agent that created the state-
ment. Finally, the confidence attribute c allows agents to qualify the
reliability level of the statement, which is key in distributed environ-
ments involving situational applications inside a corporate network.



2. A GRAPH-BASED SITUATION MODEL 47

2.1.2 Situation graphs

At a certain point in time, the situation model can be seen as a collection
of valid facts or statements which takes the form of a graph. Such a graph
is illustrated in Figure III.1, it can be centered on the concerned user or
agent to reflect its particular importance. In this figure, the agent Marge is
represented by the green node in the top left corner. This graph is formed
thanks to a certain number of statements, some of which are enumerated as
examples in Table III.1. These statements reveal for instance that Marge is
reading document1, an unstructured document mentionning a certain num-
ber of entities. This example is going to be discussed in depth in Chapter VI,
Section 2 with the description of the Text-To-Query system. Text-To-

Query analyzes text documents the user is to suggest related queries on
multi-dimensional data warehouses.

In the definition proposed by Heckmannn, statements reference resources
generally available and described in shared ontologies. Even if statements
introduce ownership and visibility attributes, it is unclear how security is go-
ing to be ensured by the system. Indeed, a situation management platform
may require the definition and development of various components. Heck-
mann et al. do not propose a mechanism to let users control what data can
be consumed by these components. However, ontology-based models and
semantic technologies are well suited to offer a shared representation and
understanding of heterogeneous resources. We thus present our approach to
base statements – and more generally graph data – on a secure and modular
graph repository (GR). The GR is a user-centric framework for personalized
graph data management, enabling in particular the isolation of users’ data
for security and privacy purposes.

2.2 Graph Repository

We introduced situation statements that we use as a data structure to rep-
resent the unit of information in situation modeling. As said before, state-
ments can be seen as qualified relations (or edges) in graphs where nodes
describes various available resources. These resources may come from a great
variety of source systems, which leads us to define a modular and extensible
Graph Repository.

2.2.1 Source systems and personalized providers

Various information systems available inside a corporate network may con-
tribute to general knowledge about available resources, and users in partic-
ular. For instance, an LDAP directory can describe employees and relations
between them. Although other popular online social networks may also
be used, this wasn’t the focus of our work as they seem less appropriate
when dealing with private resources of an organization and users that are



48 CHAPTER III. GRAPH-BASED SITUATION MODELING

employees of the same organization. Other classic examples of enterprise
applications include ERP, CRM and BI platforms. A CRM system could be
used to extract relations between account managers and customers. Such in-
formation may be useful in various scenarios, for instance with an automatic
message redirection system in a support center. Moreover, BI platforms are
an important kind of system that we leverage in several personalization and
recommendation scenarios, as described in Chapters V and VI.

As many applications and systems may contribute to background knowl-
edge about users and available resources, our aim is to define an modular
graph repository (GR), enabling progressive using modules called providers,
e.g., by connecting to source systems. The modularity of providers – and
more generally the GR – will be further discussed from an architecture stand-
point, later in Chapter IV, Section 3.1.

Most source systems impose their own security constraints like access-
control rules. Duplicating their data and maintaining security policies over
duplicated data would be particularly complex and costly. This leads us to
opt for a delegated security enforcement policy. Users of our platform can
thus choose (or refuse) to give their credentials to leverage connections to
existing systems through dedicated providers. This opt-in approach is key
to minimize privacy issues and ensure users control what data is collected
and manipulated in their situation model. By construction, the GR is an
inherently personalized structure and may contain private data. Security
is therefore a key aspect and the access to the GR requires agents to be
authenticated.

2.2.2 Definitions

Being a personalized structure, the GR is dedicated to one user u and should
be noted GRu. For the sake of clarity, the user indication is omitted in the
following definition. The GR can be defined as an aggregation of several
graphs Gi = (Ni, Si, Pi), defining sets of nodes Ni and statements (or edges)
Si identified by URIs. Each graph Gi is populated and maintained by a
provider Pi, and a provider may manage any number of graphs.

Available types of nodes and statements are defined in the GR schema.
The GR initially provides a core schema Tbase, defining basic types of nodes
and statements. A provider Pi has the ability to declare a custom schema
Ti when registering to the repository. The provider-specific schema Ti has
to extend Tbase to define new types of nodes and statements. To enable
schema-level reasoning, the complete type schema T is obtained by merging
core and provider-specific schemas: T = Tbase ∪ (

⋃m
i=1 Ti). Eventually, with

G =
⋃m

i=1Gi, the graph repository can be noted GR = (G, T ).

The base type schema Tbase initially describes core types of nodes and
relations (or edges) but may be enriched by providers. The three main types
defined in Tbase are Node, Statement and Agent. The Agent type is used



2. A GRAPH-BASED SITUATION MODEL 49

Figure III.2: Class diagram - Overview of the graph model used and exposed
by the Graph Repository.

to denote any entity interacting with our system, be it a UserAgent or an
ApplicationAgent. Beyond providers and client applications, we will later
introduce another kind of ApplicationAgent, operators (see Chapter IV,
Section 2.3). Briefly, operators are used in our dynamic management plat-
form to maintain situations’ current views or graphs.

2.2.3 Graphs schema and the GR ontology

We introduced the extensible GR to expose homogeneous graphs of resources
and statements for our situation model. We now describe more precisely the
actual graph model.

From an internal object model perspective, graphs are exposed as de-
picted in the class diagram of Figure III.2. This diagram is only showing
main attributes and does not reflect all implementation-related methods
such as getters, setters, etc. Most importantly, every node is identified by
a URI , a type and ownership/visibility attributes. Besides, other attributes
can be considered, in the form of typed name-value pairs. Statements ex-
tend nodes so they inherit the same attributes. We presented in Section 2.1
statements as semantically qualified relations between a subject and an ob-
ject. In the internal object model of Figure III.2, statements are represented
as a n-ary association between four nodes: a subject, a predicate, an object
and an origin.



50 CHAPTER III. GRAPH-BASED SITUATION MODELING

The graph model previously introduced is meant to be source agnostic.
Therefore, it does not require a specific storage facility, be it a relational
database or a triple store. However, for serialization and exchange purposes,
an RDF representation proves useful and well adapted. We thus defined a
simple ontology for the GR schema. An RDF-S ontology enables schema
merging and simple hierarchical reasoning on types, for instance to infer
sub-classes and sub-properties chains. It is also possible to consider OWL

ontologies to define schema with, for instance, transitive properties or rela-
tions. An example of transitive relations will be discussed with functional
dependencies in multi-dimensional modeling, in Chapter V, Section 2.2. We
present below an example of an individual document1 in the Email node
class:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:grepo="http://www.sap.com/situation/grepo/0.97#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Description rdf:about="http://.../document1">

<rdf:type rdf:resource="http://...#Email"/>

<rdfs:label>Meeting this afternoon</rdfs:label>

<grepo:timestamp>12345</grepo:timestamp>

</rdf:Description>

</rdf:RDF>

In RDF, statements are simple triples (subject-predicate-object) but they
can be further qualified using reified statements. A reified statements is itself
a resource (thus identified by a URI) of type rdf:Statement. It has three
main properties, a subject, a predicate and an object. The statement meta-
data can be represented using additional properties. We illustrate below a
statement of the assertion “Marge read document1”, e.g., originating from
a plugin in an EmailClient:

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:grepo="http://www.sap.com/situation/grepo/0.97#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdf:Description rdf:about="http://.../statement123">

<rdf:type rdf:resource="http://...#Statement"/>

<rdf:subject rdf:resource="http://.../users/marge"/>

<rdf:predicate rdf:resource="http://.../read"/>

<rdf:object rdf:resource="http://.../document1"/>

<grepo:origin rdf:resource="http://.../EmailClient"/>

<grepo:ownership rdf:resource="http://.../users/marge"/>

<grepo:visibility>private</grepo:visibility>



2. A GRAPH-BASED SITUATION MODEL 51

<grepo:timestamp>12345</grepo:timestamp>

<grepo:lifetime>5</grepo:lifetime>

</rdf:Description>

</rdf:RDF>

The use of reified statements is not mandatory since another custom type
of node could have been defined to denote statements. However, it happens
to be particularly useful to deal with implementation- and performance-
related concerns. For instance, the Jena API for Semantic Web technologies
makes use of reified statements to limit the important overhead introduced
by additional statements properties.

For extensibility purposes, the schema ontology can be enriched by regis-
tered providers. For instance, providers can define additional types of nodes
and statements. These types may integrate specific attributes. In the ex-
ample above, an Email type could be defined as a sub-class of Document,
defining in particular “from”, “to” and “body” attributes (or properties in
the RDF terminology). Below is the previous description of document1 with
these additional attributes:

<rdf:RDF ...

xmlns:gr-mail="http://www.sap.com/situation/grepo/mail#">

<rdf:Description rdf:about="http://.../document1">

...

<gr-mail:from>nick@email.com</gr-mail:from>

<gr-mail:to>marge@email.com</gr-mail:to>

<gr-mail:body>Hi, I’m not going to be available this

afternoon, can we re-schedule later?</gr-mail:body>

</rdf:Description>

</rdf:RDF>

Already existing ontologies may be used under the condition of a small
data transformation, in particular for statements which will have to be ex-
tended with appropriate metadata. Besides, individuals defined in these
ontologies will also have to correspond to types defined in the aggregated
schema.

2.2.4 Graphs factories

The actual architecture and implementation of the graph repository will be
more precisely discussed in Chapter IV, Section 3.1. Briefly though, graphs
are populated thanks to specific modules which can be used to connect
to various source systems. These modules, called providers, may re-use
or define new graph factories for actual graph creation and more generally
graph data management. Our aim is to isolate graph capabilities from actual



52 CHAPTER III. GRAPH-BASED SITUATION MODELING

data storage. Examples of possible implementations of graph factories are
briefly presented below:

RDF database. The graph is originally represented as RDF triples and
these triples are stored either in a dedicated triple store or in a rela-
tional databse.

RDF in-memory. The graph is originally represented as RDF triples and
a priori only held in-memory.

XML/RDF file. The graph is originally represented as RDF triples and
triples are stored in a file.

Custom. Graph data are stored in a custom format (for instance in a re-
lational database) and transposed in the GR model by the provider.

Clearly, it is possible to form hybrid strategies to connect and adapt to
various remote systems. As an example, a provider may use Web services
to query a remote system, convert data to the GR model on the fly and
populate RDF graphs held in-memory, e.g., for caching purposes.

3 Situation model characteristics

We introduced the graph foundations of our situation model with the per-
sonal and extensible GR. In this section, we present our approach to structure
this information and present (a) comprehensible dimensions to applications
consuming the exposed model and (b) utility methods for components con-
suming the internal model.

3.1 Situation model overview

At a given point in time, the user’s situation is represented by a collection
of statements. These statements represent raw facts or assertions, possibly
at different granularity levels. Therefore, it is important to also enable ex-
ploitation of the situation model at a higher level of abstraction and expose,
e.g., information structured in categories of specific interest.

A situation is a graph centered on the concerned agent, augmented with
a simple profile and a certain number of dimensions. Figure III.3 illus-
trates these main components of the internal object model, hiding lower
level graphs, nodes and statements. We present below a short description
of these different elements:

Agent. A situation concerns a specific user or agent and is centered on this
particular node. Most times, the agent is going to be a user. However,
it may be interesting in some scenarios to monitor and automate tasks
for applicative agents.



3. SITUATION MODEL CHARACTERISTICS 53

Figure III.3: Class diagram - Overview of the internal object-based situation
model, including core dimensions and personalization-related dimensions.

Profile. The AgentProfile class associated to a situation is a simple con-
tainer for typed key-value attributes. It may be used to store and
retrieve simple literal values like the user’s organization name, her job
title, phone number, email addresses, etc.

Dimensions. A SituationDimension defines a group of selected situ-
ation statements, and aims at representing coherent sets or cate-
gories. The following categories will be defined in more details in
Section 3.2: core dimensions of our model (social and geographical
aspects) and personalization-related dimensions (preferences and rec-
ommendations).

3.1.1 Current view

The time aspect is an inherent part of our model thanks to statements meta-
data which express time-dependant validity (timestamp and lifetime). From
a dynamic point of view, situation graphs evolve to reflect users’ interactions
and changes in their environment.



54 CHAPTER III. GRAPH-BASED SITUATION MODELING

At a given time tnow, the situation graph exposes statements that are
currently valid and part of the user’s situation. However, deprecated state-
ments may still reside in the underlying data as they can be kept for his-
tory purposes. To cope with the separation between currently valid and
outdated statments and ease data querying, Situation objects expose the
getCurrentView() method on top of usual graph operations. This method
filters out deprecated statements.

Dynamic aspects of our system are further discussed in Chapter IV.
In particular, so called operators are components responsible for ongoing
situation maintenance. We now describe how our homogeneous model can
be used to reconciliate current and history data.

3.1.2 History management

Statements generated by the system are managed and stored using GR fac-
tories previously described and can be regarded as “knowledge of the past”.
Metadata related to time allow to query for statements that were valid at
a certain time in the past tpast ≤ tnow. On top of this core functionality to
query raw data, our situation structure may also expose specific history ele-
ments which may be helpful to various applications. Clearly, such elements
are largely dependant on the use case being considered. An example of
application will be presented (along with other experimentations) in Chap-
ter VI, Section 3. Among possible history elements, the presented federated
search system could use previous queries or questions posed by the user with
learning approaches.

To sum up, history of past context information can be fully exploited
with queries on the GR. On the other hand, from a more dynamic per-
spective, the platform continuously maintains a view of currently relevant
context information.

3.2 Agent profile and core dimensions

Predicates play a central role in determining the semantics of characteris-
tics and interactions reflected by statements. Based on this observation, a
simple categorization of statements enables us to expose consolidated and
structured dimensions in the situation model. This structure may be useful
at two levels. First, internal modules of our dynamic situation monitoring
platform can leverage utility methods exposed by dimension objects of our
model. Second, from an external client perspective, this allows for situa-
tion data to be queried in a more fine-grained manner. For instance, client
applications may query for situation data present in one given dimension.



3. SITUATION MODEL CHARACTERISTICS 55

3.2.1 User profile

Although it is not precisely a dimension in the sense of the internal object
model previously presented (i.e. a collection of statements), the user profile
is an important component of an agent’s situation.

An AgentProfile instance is associated to each Situation object cre-
ated and monitored by the system. This profile can be used to store and
retrieve typed key-value attributes meant to describe various characteristics
of the agent with literal values. Examples of such attributes can be any-
thing like the user’s birth date, her first and last names, her job title and
company name, etc. Besides, additonal contact information like the user’s
email addresses or phone numbers may be of interest.

In the RDF terminology, attributes values are denoted as literals and can
be of different types (int, date, etc.). Each resource can have any number
of attributes, represented by data properties, as opposed to object properties
which stand for relations between two resources.

3.2.2 Social dimension

Knowledge about the user’s social environment is key to further person-
alize information and services. Therefore, the SocialDimension is among
major dimensions of our model. It has been briefly presented in previous
sections that relations making up the user’s social network may be obtained
from various sources. First, popular online social networks may be used. In
our case, focused on corporate deployment scenarios, users are employees
of a same organization and they may share private resources of this orga-
nization. Therefore, a minimal view of the user’s social network is derived
from an LDAP directory or, more generally, any enterprise directory. For
instance, such directories may contain information about hierarchical rela-
tions between employees. The construction and maintenance of the user’s
social network is not really the focus of our work and will not be further dis-
cussed. We leverage an existing prototype called Social Network Analyzer1.
This prototype enables the exploration of multiple relations between people
which can be represented using various predicates like reportsTo, hasBusi-
nessContact, worksWith, etc. To sum up, any kind of statement between
two UserAgent nodes is a potential candidate for the social dimension, a
priori independant of the precise predicate. As an example, Figure III.4
illustrates Marge’s social network, including different relations with users at
a maximum distance of 2.

In this particular dimension, the following commodity functions can be
defined:

• getNetwork(depth, relations) is the most generic method. It gets

1http://sna-demo.ondemand.com/



56 CHAPTER III. GRAPH-BASED SITUATION MODELING

Figure III.4: Relations constituting the social network for the user Marge.
Only users at a maximum depth of 2 are displayed.

relations to entities that are not further than depth from the current
user. Only allowed types of relations are returned.

• getDistance(userB) returns the distance between the current user
and userB, i.e., the number of edges between the two.

• getManagers() returns the user’s managers, i.e., people she reports
to. This method is a simple shortuct to extract relations starting from
the current user, of type reportsTo.

• getReports() returns people that report to the current user. Again,
this is a simple commodity method to return relations of type reportsTo
and ending on the current user.

These last two methods are simple examples but other types may clearly
be considered, e.g., to exploit worksWith and hasBusinessContact predi-
cates.



3. SITUATION MODEL CHARACTERISTICS 57

3.2.3 Geography dimension

The GeographyDimension is another key dimension exposed in our model.
We define the hasLocation predicate to handle geographical context infor-
mation. It can be used to describe the user’s location in statements like
Marge hasLocation (45.194, 5.733) or Marge hasLocation India. The ob-
ject (or target) of such statements are nodes of the Geography type which
can be subclassed to define different granularity levels (Country, Region,
City, etc.). In the GeographyDimension, two simple commodity methods
may be used to retrieve – among all possible geography statements – those
that describe the user’s location:

• getLocation(granularity) can be used to get the agent’s current
location at the desired level of granularity, should it be available.

• getFinestLocation() is a shortcut to directly retrieve information
about the user’s location, at the finest granularity level available.

This dimension ensures consistency at different levels. Consider for in-
stance a new statement that informs the system about the current user’s
city. If previous knowledge is conflicting with the new information, then
other more fine-grained statements will be re-evaluated. Besides, in the
next chapter, we will introduce operators responsible for dynamic situation
management. In particular, a ReverseGeocoding operator may be used
to determine the country, state, region, city and address from GPS coor-
dinates. Such precise position is now very commonly available on modern
mobile devices.

3.3 Personalization-related dimensions

Our aim with this model is to enable personalization in various situational
applications and eventually provide recommendations of potentially heterog-
neous resources.

3.3.1 Preference dimension

First, different applications may be willing to exploit personal user prefer-
ences in order to adapt their content and/or design. It is worth noting,
here again, that so called preferences are often dependant on the applica-
tion scenario considered. For instance, a news reader aggregating RSS feeds
may store preference scores associated to various sources of information. A
music delivery platform may be interested by the user’s favorite artists and
albums, etc.

Concretely, users’ preferences may be described using specific prefer-
ence statements, that is a relation between the current user and a specific



58 CHAPTER III. GRAPH-BASED SITUATION MODELING

resource, based on predicates like prefers, rates, likes, dislikes, etc. For in-
stance, the user’s favorite language for proposed content could be defined us-
ing a statement like Marge prefers Locale-EN, indicating that Marge prefers
to read English RSS feeds. The origin of the statement can be used to
distinguish preferences expressed by and for different applications.

The PreferenceDimension presents the main method
getPreferences(node), which returns all statements indicating (pos-
itive or negative) preferences regarding a given node. An additional weight
attribute can be used with these statements to weigh or simply order
preferences. Like all context information, preference statements can be
either explicitly given by the user or implicit, e.g., derived from the analysis
of the user’s history.

Explicit preferences. Forms may be used, e.g., to let the user express her
preference for different data sources. Users’ feedback can be captured
with statements like userA rates item123 (weight = 0.8) or Marge

likes item123.

Implicit preferences. Preferences of the user regarding certain resources
may also be obtained implicitly, for instance derived from the anal-
ysis of the user’s interactions (browsing history, click-through data,
etc.). Derived preference statements usually have a lower confidence
attribute than explicit ones. In Chapter V, Section 3, we define im-
plicit preferences for OLAP entities like measures and dimensions. In
this scenario, implicit preferences are determined using occurrences of
these entities in charts or tables the user commonly uses.

3.3.2 Recommendation dimension

In the situation management framework which we will present in the next
chapter, operators are components responsible for dynamic maintenance of
situation graphs (see Chapter IV, Section 2.3). In particular, operators ben-
efit from an access to the user’s situation model to provide personalized and
dynamically adapted recommendations, in response to events. The situation
model we propose thus integrates recommendations as a core dimension.

Recommendation statements may be used by dynamic components like
operators to present varied suggestions to the user. Recommendations
can, for instance, be described thanks to recommends or hasRecomenda-
tion predicates, in statements like operator1 recommends item123 (ori-
gin = operator1) or userA hasRecommendation GoToSleep (origin =
operatorHealthCare). Operators may use (or not) the confidence attribute
to assign a score to the recommendation statement. Other simple descriptive
statements may be added by operators to provide explanations or further
information on the item being recommended, be it a document, an action,
etc. For instance, in the previous example, operator1 could have mentioned



4. SUMMARY AND DISCUSSION 59

the fact that item123 hasAuthor userB, and userB happens to be a frequent
collaborator.

The RecommendationDimension mainly exposes the method
getRecommendations(types, n). This method returns the n best
ranked recommendation statements, suggesting resources of desired types.

4 Summary and discussion

We have seen how the aggregated situation model can be built out of atomic
statements thanks to generic statement and graph structures. Statements
may be grouped for convenience purposes in different dimensions. In this
section, we discuss our graph-based situation model against the analysis
framework proposed by Bolchini et al. [BCQ+07].

4.1 Modeled aspects

Key aspects of our model have been described in Section 3.2. In this section,
we discuss these with the categorization proposed in the analysis framework
previously mentionned.

Geography and time. These two aspects are often considered of partic-
ular importance. The hasLocation predicate can be used with various
Geography nodes to describe the user’s location at different granular-
ity levels. The time aspect in an inherent part of our model through
statements metadata which express time-dependent validity (times-
tamp and lifetime).

Subject and user profile. The subject of the model is the point of view
adopted to represent information which, in our case, is user-centric.
The user’s profile is built from statements which describe her charac-
teristics (personal features and preferences) and interactions. Bolchini
et al. also mention the possibility for the model to expose user classes.
As of today, we do not expose such classes in the proposed model.

Context history. Generated statements are managed by the Graph
Repository, which acts as a memory and vehicle for context knowledge.
Statements have time-related attributes and enable the reconstruction
of a user’s situation graph at any given point in time. Therefore,
the current user’s situation may depend on past context information,
based on the application needs.

4.2 Representation features

Representation features are general characteristics of the model itself.



60 CHAPTER III. GRAPH-BASED SITUATION MODELING

Type for formalism. The proposed model relies on a graph-based formal-
ism. The choice of representation formalism is driven by its appropri-
ateness to serve the application needs. Our main application is data
tailoring with recommendations. Recommendations are meant to help
information exploration and we consider graphs are not only applica-
ble but also very well suited to back this scenario with semantics and
high level of expressiveness.

Flexibility and formality. Our model flexibility lies in the possibility to
define custom types of nodes and statements. Besides, predicates pre-
side statements semantics and new ones can be created, e.g., to de-
scribe application-specific knowledge. However, non-formally defined
predicates will be difficult to interpret and discourage information
sharing.

Context granularity and constraints. Our model allows the represen-
tation of context information at different levels of granularity. This
was in particular illustrated on the example of the hasLocation pred-
icate used with different geographical nodes like Country, City, etc.
Finally, context constraints can be expressed and continuously evalu-
ated at runtime. For this purpose, activation rules will be presented
with dynamic aspects in Chapter IV, Section 2.

4.3 Context management and usage

This section discusses the way the model is built, managed and exploited.
However, these aspects are mostly addressed in our work thanks to com-
ponents responsible for the dynamic maintenance of the platform. These
aspects will be covered in more details in chapter IV.

Construction. The situation model is centrally maintained in the situ-
ation platform, by aggregating relevant knowledge from potentially
distributed source systems (through providers).

Reasoning. Reasoning is considered by Bolchini et al. as the ability to
“infer properties or more abstract context information” [BCQ+07]. In
our framework, custom operators can be developed to interpret the
semantics of specific entities and statements. These operators may
produce additional knowledge by creating new statements. In that
sense, the proposed framework allows reasoning on context data. As an
example, an operator could determine the city from GPS coordinates
with reverse geo-coding techniques or services.

Information quality, ambiguity and incompleteness. Quality moni-
toring is particularly critical when context information is acquired
from physical sensors. However, it is not as crucial in our application



5. CONCLUSION 61

scenario (recommendations for business users in situational applica-
tions). This is why our framework delegates various tasks of quality
monitoring to operators. For instance, an operator could be activated
in case two ambiguous statements are detected, e.g., Marge hasLocation
position1 and Marge hasLocation position2, such that position1
and position2 are distant.

Automatic learning features. Machine learning techniques could be em-
ployed on history data, e.g., to detect interaction patterns and help
perform an automatic categorization of situations. However, our work
does not fully addres this possibility and could be considered in future
research.

Multi-context modeling. Bolchini et al. define it as the representa-
tion“in a single instance of the model all the possible contexts of the
target application”. Our situation model exposes a single homoge-
neous graph of currently valid statements, categorized in major dimen-
sions. Applications consuming this model (e.g., operators or platform
client applications) are free to query and filter data to keep only facts
of interest and adapt accordingly.

5 Conclusion

In this chapter, we introduced the requirements imposed on context or situ-
ation modeling systems, in particular in our use case dedicated to corporate
deployment scenarios. These major requirements are meant to handle (a)
applications inter-operability, (b) resources heterogeneity, (c) security and
privacy and (d) dynamic adaptation. They impose conditions on the kind
of system we are considering and led us to propose a graph-based situation
model.

The unit of information in this model is represented by a homogeneous
data structure called situation statements and first introduced by Heckmann
et al. [Hec05b]. Situation statements extend simple subject-predicate-object
triples – common with Semantic Web technologies like RDF – with additional
metadata to capture time dependency, security and privacy, etc. We pre-
sented the graph repository (GR) framework to handle and manage graph
data for different users, taking into account security aspects with actual user
data isolation. The GR is populated thanks to an extensible set of providers
which can connect and adapt to various remote systems.

Besides, we presented a higher level and more structured situation model.
On top of the GR structure which represents a personalized knowledge con-
tainer, an agent situation is composed of a graph of interactions, a profile
and a certain number of dimensions. Various dimensions are exposed by
our model and present categories of situation knowledge. Core dimensions



62 CHAPTER III. GRAPH-BASED SITUATION MODELING

describe social and geographical aspects, whereas personalization-related di-
mensions capture the user’s preferences and recommendations provided to
the user.

In the next chapter, we will focus in particular on dynamic aspects of
situation modeling and management. In particular, we will introduce ex-
tensions to the GR framework to define active components like activation
rules and operators. Activation rules can be used to trigger appropriate
operations in response to certain types of business events, under varying
conditions.



Chapter IV

Dynamic Situation

Management Framework

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 63

1.1 Buisness events and situation dynamics . . . . . . 64

1.2 The ECA framework . . . . . . . . . . . . . . . . . 65

2 Activation rules and operators . . . . . . . . . . 66

2.1 Rules expression . . . . . . . . . . . . . . . . . . . 66

2.2 Rules evaluation . . . . . . . . . . . . . . . . . . . 69

2.3 Operators . . . . . . . . . . . . . . . . . . . . . . . 71

3 Situation framework and services . . . . . . . . . 73

3.1 Graph repository framework . . . . . . . . . . . . . 73

3.2 Situation management framework . . . . . . . . . 77

3.3 Client situation services . . . . . . . . . . . . . . . 82

4 Summary and discussion . . . . . . . . . . . . . . 83

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 84

1 Introduction

In the previous chapter we introduced our graph-based situation model,
relying on the homogeneous statement structure of the Graph Repository
(GR). Besides, we defined situation dimensions to expose aggregated and
structured sets of statements. We presented in particular social, geography,
preferences and recommendations dimensions but others may be considered
for specific use cases.

In this chapter, we focus on dynamic situation management, that is how
to continuously monitor agents’ interactions and help maintain situation

63



64 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

Figure IV.1: Architecture overview of the situation management platform
and its major components: events, activation rules and operators.

graphs as events occur in their environments. For this purpose, we propose
a modular and extensible framework based on the following key notions:
business events, activation rules and operators. These components are rep-
resented in the general architecture diagram of Figure IV.1.

This section presents business events and the event-condition-action
(ECA) model, used to define active rules in event-driven architectures. Sec-
tion 2 discusses our implementation of this model, in particular the expres-
sion and evaluation of activation rules to trigger operators. Then, we review
in Section 3 the modular architecture of our framework, from the underlying
GR to more dynamic components.

1.1 Buisness events and situation dynamics

Business events are at the core of dynamic situation management. Events
may describe characteristics of the user’s environment – for instance the
user’s location in a statement like Marge hasLocation India – or interactions
with existing resources – like Marge read document1. Events can be raised
by internal components of the platform or sent by client applications to
contribute to the aggregated view of a user’s situation. Figure IV.7 shows
examples of client applications. As an example, an add-in for a commonly
used email client could be designed to submit events similar to Marge read



1. INTRODUCTION 65

document1. In the end, the situation management component needs to react
to these events to take appropriate actions in impacted situation graphs.

The examples above seem to indicate that an event is fairly similar to a
statement, that is a qualified interaction between resources. In some cases
though, an event may need to convey more semantics to be meaningful, e.g.,
in the form of background knowledge. For instance, the statement Marge

read document1 could be completed with additional information about the
author of the document, as with the statement document1 hasAuthor Nick.

Therefore, we can distinguish between atomic (or simple) events and
complex events. An atomic business event is composed of a single statement.
On the other hand, we define a complex business event as the graph formed
by a collection of statements which represent an interaction plus additional
information. The RDF listing below presents a sample business event which
actually contains two statements, Marge read document1 and document1

hasAuthor Nick:

<rdf:RDF xmlns...>

<rdf:Description rdf:about="http://.../statement123">

<rdf:type rdf:resource="http://...#Statement"/>

<rdf:subject rdf:resource="http://.../marge"/>

<rdf:predicate rdf:resource="http://.../read"/>

<rdf:object rdf:resource="http://.../document1"/>

<grepo:origin rdf:resource="http://.../EmailClient"/>

<grepo:timestamp>12345</grepo:timestamp>

<grepo:lifetime>5</grepo:lifetime>

</rdf:Description>

...

<rdf:Description rdf:about="http://.../statement127">

<rdf:type rdf:resource="http://...#Statement"/>

<rdf:subject rdf:resource="http://.../document1"/>

<rdf:predicate rdf:resource="http://.../hasAuthor"/>

<rdf:object rdf:resource="http://.../Nick"/>

<grepo:origin rdf:resource="http://.../EmailClient"/>

<grepo:timestamp>12346</grepo:timestamp>

<grepo:lifetime>500</grepo:lifetime>

</rdf:Description>

</rdf:RDF>

1.2 The ECA framework

In event-driven architectures, the event-condition-action (ECA) struc-
ture can be used to define active rules, with clear declarative seman-
tics [BFMS06]:

ON event IF condition DO action.



66 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

Rules are used to react to specific events and trigger additional process-
ing (action), assuming some other conditions are met. We use this ECA

framework to define active rules in our system. Let us briefly introduce the
three components of such rules:

Event. The event part is used to filter events the activation rule will react
to. For instance, a given rule could react to events which match the
interaction pattern “a user is reading an unstructured document”.

Condition. The condition part allows to express additional conditions
which can be evaluated thanks to queries on the GR. The GR thus
serves as a vehicle for contextual information. Various conditions may
be expressed, for instance dependencies between agents as in “agentB
applies if agentA hasProcessed document1”.

Action. Eventually, the action part is used to determine which operations
or modifications should be applied to situations (and more generally
graphs), in response to the event being interpreted.

We define in our framework two important components to react to busi-
ness events, activation rules and operators. The actual expression of rules
and their evaluation is further discussed in Section 2. A rule positively
evaluated triggers the execution of an operator (see Section 2.3).

2 Activation rules and operators

In this section, we present activation rules which are the application of the
ECA framework previously presented to define rules in our dynamic situation
situation management framework.

2.1 Rules expression

We introduce the semantics and expressiveness of activation rules based
on the ECA framework, meant to help define active rules in event-driven
systems.

2.1.1 E - Filtering events

In an ECA rule, the event part enables a first level of filtering on events
the rule may react to. Events may represent very different types of inter-
actions plus potential background knowledge, and it is likely that only few
rules are concerned by a given business event. Event filtering is thus an
important aspect during the rule evaluation process as it helps dismiss some
rules in an efficient way, by reducing actual evaluations to the minimum
necessary. Rules evaluation may indeed become costly when the number of



2. ACTIVATION RULES AND OPERATORS 67

rules increases or complex querying is involved. The rule evaluation process
is further described in Section 2.2.

Therefore, the first part of an activation rule is an event filtering pattern.
An event filtering pattern is defined as a combination of four conditions im-
posed on the subject, the predicate, the object and the origin of statements,
noted CsubjectCpredicateCobject, Corigin. Let us consider a first event filtering
pattern, which keeps only those that introduce the geographic location of a
entity, for instance in a statement like Marge hasLocation India:

ANY hasLocation #GeographyNode, ANY

In this example, the reserved keyword ANY is used to denote an absence
of condition imposed on the subject and the origin. The only accepted
predicate will be hasLocation. It may be noted that we leave out full URIs in
examples for the sake of clarity. The object condition filters out nodes which
type is not GeographyNode. This type is one of those accessible through the
global Graph Repository schema, introduced in Chapter III, Section 2.2.3.
In particular, this schema may be augmented by providers of the GR and
enables the definition of hierarchies of types. Country and City are two
examples of types defined as children of the GeographyNode type.

Let us now consider a more precise event filtering pattern to only react
to events that describe the location of the current user. For this purpose,
we introduce the USER keyword which refers to the current for whom a rule
is being evaluated:

USER hasLocation #GeographyNode

In this example and because there is no specific constraint on the origin,
the corresponding condition can be omitted. When the condition on the
origin is not omitted, it is possible to restrict, e.g., to information emerging
from mobile application agents:

USER hasLocation #GeographyNode, #MobileApp

2.1.2 C - Condition expression

On top of conditions imposed on the event itself, an activation rule may
define additional constraints for the execution of a given operator. Let
us present briefly examples of conditions that may be used to define such
constraints in our framework.

An execution guard is a simple condition preventing the execution of
the operator. Execution guards can be manifold, from simple authorization
to more complex dynamic operationalconstraint. Below is a first condition
example that enables the execution of an operator if and only if the current
user explicitly authorized it:



68 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

USER authorizes operatorA, USER

This example is particular since rules do not have to make it explicit. The
authorization control is indeed taken care of by the dynamic management
framework before the operator is executed. Another example of condition
may be used to avoid an operator being executed twice in a situation, in
response to a single event.

NOT(operatorA hasProcessed EVENT.object, operatorA)

The EVENT keyword is used to denote the event being evaluated or in-
terpreted. The four parts of the corresponding statement are obtained
through the following accessors: EVENT.subject, .predicate, .object and
.origin. It is also worth noting that using this kind of condition to express
a dependency is inherently dependant on the assumption that operatorA

will create such a statement when it has finished its processing.
Similarly, activation rules may also be used to define constraints in the

sense of operators dependencies. For instance, if an operatorB requires the
execution of a previous operatorA to first perform some operations on the
event target (or object):

operatorA hasProcessed EVENT.object

2.1.3 A - Taking action

In the ECA framework, the action part of a rule is meant to determine
actions to be taken in response to the initial triggering event. These actions
can be manifold but often, in the fields of active databases or Semantic Web
technologies, the action consists in data insertion, modification or deletion.
In our framework, activation rules are meant to trigger the execution of
operators which will be presented in further details in Section 2.3

As we previously presented, activation rules are continuously evaluated
in response to events thanks to queries executed on the GR. An activation
rule triggers the execution of a given operator with additional parameters.

To define the action part of our rules, we introduce two reserved key-
words, CALL and WITH, used with the following syntax:

CALL operator WITH parameters. . .

Should a rule be positively evaluated, the specified operator is executed
with the following parameters. Parameters of this list (separated by com-
mas) result from the event filtering and condition evaluation process, using
bound variables. Rules evaluation is discussed in the next section.

Considering the previous ongoing rule example, we now illustrate the
call to a stemming operator, taking as single parameter the unstructured
document mentioned by the event (in the corresponding statement object):



2. ACTIVATION RULES AND OPERATORS 69

CALL stemming WITH EVENT.object

Stemming is a text analysis operation which consists in reducing words
to their roots. Other operators may be developed to perform other text
analysis operations like named entity recognition (NER). To conclude, below
is a complete example of rule used to activate a stemming operator when
the current user is reading an unstructured document (e.g., an email).

<rule>

<event>

USER "http://.../read" "http://.../#UnstructuredDocument", ANY

</event>

<condition>

NOT("http://.../stemming" "http://.../hasProcessed" EVENT.object)

</condition>

<action>

CALL "http://.../stemming" WITH EVENT.object

</action>

<description>

Stems an ‘unstructured document’ the user is reading

</description>

</rule>

It is worth noting that new rules can be added like modules or plugins,
most commonly by developers providing new components to the situation
platform. Rules are created to define a sequence of operations to perform
during the interpretation of a given type of event. Thanks to their loosely
coupled integration with operators, rules may also be defined later on, e.g.,
as new use cases emerge for a certain operator.

2.2 Rules evaluation

In the previous section, we presented the simple expression language we use
to define activation rules and trigger appropriate operators in response to
various events. We now describe how rules are actually being evaluated in
our dynamic system.

Events occur and are submitted in the scope of the user’s GR. Rules
are thus evaluated for one given user. The evaluation process is divided in
two phases for performance reasons, the event filtering and the evaluation
of additional conditions:

Event filtering. Events can be filtered without the cost of a query on
the GR, by simply validating conditions on the event object being
processed (or interpreted).



70 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

Condition evaluation. On the other hand, the evaluation and validation
of additional conditions requires to query the GR. As previously dis-
cussed, the evaluation cost increases with the number of rules and the
complexity of resulting queries.

During the rule evaluation process, USER and EVENT markers of the lan-
guage are dynamically replaced by the system with URIs of the current
user and the event being processed. Similarly, markers of event components
(EVENT.subject, EVENT.predicate, etc.) are determined by the system
before evaluation.

Additional conditions of a rule are evaluated thanks to queries on the GR,
which serves as a vehicle for context information or background knowledge.
Concretely, the type of query and the way it is being executed depends on
the underlying graphs factories (see Chapter III, Section 2.2.4). Indeed, a
graph backed by a relational database will eventually be queried using the
SQL language. On the other hand, an RDF triple store can be queried using
the SPARQL query language.

Therefore, in our framework, a special component is responsible for
the transformation of an activation rule, from the custom format (de-
scribed in this section) to a SPARQL or SQL query. This component is the
ActivationRuleEvaluator and its use in the event interpretation workflow
will be further discussed along with other components in Section 3.2.3.

Let us consider a rule triggering the named entity extraction (NER) op-
erator in reaction to events of the type “the user is reading a document
authored by a person she manages, and the stemming operator has pro-
cessed this document first”:

<rule>

<event>

USER "http://.../read" "http://.../#UnstructuredDocument"

</event>

<condition>

EVENT.object "http://.../hasAuthor" ?author

AND ?author "http://.../reportsTo" USER

AND "http://.../stemming" "http://.../hasProcessed" EVENT.object

</condition>

<action>

CALL "http://.../ner" WITH EVENT.object, ?author

</action>

<description>

Applies NER operator if the user is reading a document

authored by a person she manages, and the document

has been stemmed first.

</description>



2. ACTIVATION RULES AND OPERATORS 71

</rule>

In the example above, the event filter assumes that the event itself does
not contain information regarding the author of the document. The event
filter can thus simply be validated without the cost of a query to the GR.
However, the condition validation imposes to query the GR and the example
illustrates the use of a bound variable ?author to form a complex pattern,
in an approach similar to SPARQL queries. We illustrate below the SPARQL

query which can be obtained by transforming the condition of the previous
activation rule:

PREFIX rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX grepo : <http://www.sap.com/graphrepo#>

SELECT ?author

WHERE {

EVENT.object grepo:hasAuthor ?author

?author grepo:reportsTo USER

grepo:operatorA grepo:hasProcessed EVENT.object

}

The result of the evaluation for this query is a value (or set of values)
for the ?author variable. The evaluation fails if there is the result set is
empty. Otherwise, the NER operator is invoked with parameters resulting
from both event filtering and condition validation phases.

2.3 Operators

We presented in details the language used to express rules and how they
are evaluated on the GR in reaction to events, with actual queries. In this
section, we define and discuss operators, which execution is triggered by
activation rules with parameters resulting the rule evaluation process.

2.3.1 Definition

Operators are key components which maintain situations graphs (and more
generally graphs of the GR) by adding, updating or deleting statements.
These operations represent either explicitly declared facts (e.g., Maggie read-
ing document1) or knowledge resulting of additional processing (for instance
a NER result, like document1 mentions entity1).

An operator op takes as input a situation graph Gsit, an event e and
parameters params to return the updated situation G′sit:

op : (Gsit, e, params) −→ G′sit



72 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

Table IV.1: Examples of operators. This include system operators and
specific ones related to some of our experimentations (see Chapter VI).
Operator Description

Expiry checker (sys-
tem)

Checks statements of a given situation to determine
and remove those that are outdated. Outdated state-
ments are simply removed from the current view but
persisted to constitute historical data.

Geolocalize Determines the approximate GPS coordinates (lat-
itude and longitude) of a given geographic entity,
which can be a precise address, a city, a country, etc.

GeoIP Determines the city from an IP address. Various ex-
ternal web services can easily be used for this purpose.

ReverseGeocoder Reverses GPS coordinates to determine the closest
address or more simply the city, department, state,
etc.

Stemmer Applies stemming to unstructured resources. Stem-
ming consists in text normalization and reduces
words to their roots. For instance, the sentence “it
is raining cats and dogs” would be reduced to “it be
rain cat and dog”.

NER Performs Named Entity Recognition on text re-
sources, extracting entities with various dictionaries.
Extracted entities are mapped to objects of the data
warehouse the user can see.

Query recommen-
dation

Combines results of entity extraction with the se-
mantics of a business domain to suggest meaningful
queries. These last 3 operators will be further dis-
cussed with the Text-To-Query system, in Chap-
ter VI, Section 2.

From the framework standpoint, similar to providers for the GR, op-
erators are defined in a modular way. The situation platform manages a
pool of registered operators which can be developed to interpret the specific
semantics of various providers and/or events. Implementation wise, new op-
erators can easily be developed and registered as plugins, according to the
architecture presented in Section 3.2.2.

2.3.2 Examples of operators

Many operators can be considered to perform a broad range of tasks. Ta-
ble IV.1 lists examples of operators implemented throughout our various
experimentations, further described in Chapter VI. Operators can be com-
bined and reused so that more complex operations can be divided and im-



3. SITUATION FRAMEWORK AND SERVICES 73

plemented in a modular way. Operators can be developped and added to
the platform like other types of modules or plugins, as will be discussed with
the architecture of the small GR in Section 3.1.

In this table, operator 1 (ExpiryChecker) is a system operator and is
triggered by internal events to perform graph cleaning, removing outdated
statements from situation graphs. Operators 2-4 are operators meant to han-
dle various types of geographic information processing. In particular, they
are used to gain more information about the location of particular entities.
Operators 5-7 are related to text processing and the query recommendation
engine Text-To-Query presented in Chapter VI, Section 2.

3 Situation framework and services

In the previous chapter we introduced our graph-based situation model, the
requirements imposed on our system and the foundations of our framework,
with the GR. In this chapter we developed dynamic aspects of the system, re-
acting to business events thanks to dynamic components, namely activation
rules and operators.

The overall architecture of the complete system was illustrated in Fig-
ure IV.1. Beyond this overview, this section describes in further details the
actual architecture of our framework. This proves particularly important
since the framework we are providing aims at being consumed and enriched
by further developments.

3.1 Graph repository framework

The graph repository is a major component upon which the situation man-
agement platform is built, as represented in Figure IV.1. From an internal
framework perspective, the architecture of the GR and its most important
components are depicted in the class diagram of Figure IV.2.

3.1.1 Platform and plugins modularity

At the highest level of our architecture is the Platform. The most important
role of the platform is to enable the desired level of modularity, in particu-
lar for the following components that have been introduced in our system:
providers, graphs factories and later with dynamic aspects, operators and
activation rules.

Implementation wise, our platform is embodied as a set of bundles (or
plugins) running in an OSGi environment. OSGi – or Open Services Gate-
way initiative framework – is a powerful dynamic component management
system. Applicative components are described in the form of bundles and
can be remotely installed, started, stopped, updated and uninstalled dy-



74 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

Figure IV.2: Class diagram - Core components of the modular Graph Repos-
itory architecture. Providers and graphs factories are modules which can
easily be extended.



3. SITUATION FRAMEWORK AND SERVICES 75

namically without interruptions1. Besides, the OSGi specifications define a
shared service registry which allows bundles to publish and access services.
Our framework bases on the Eclipse Equinox2 reference implementation of
OSGi R4 specifications.

Concretely, in line with the class diagram of Figure IV.2, our Platform
is the OSGi runtime. In such a runtime, the PlatformPluginRegistry may
easily be implemented using the OSGi bundle context which gives access to
the services registry. Besides, it may be noted that all elements pushed in
our system architecture are actual instances of PlatformPlugin. We now
introduce the higher level implementation of the GR based on capabilities
of the Platform.

3.1.2 Personalized and secure graph repositories

First and foremost, the GraphRepoFactory is the entry point to the GR

framework deployed in the platform previously described. All plugins in-
stalled and registered in the platform may access the GR factory service to
retrieve personal graph repositories, through an authentication process.

Authentication. The GraphRepoFactory component handles agents’ au-
thentication. However, this responsibility may be delegated to another ded-
icated authentication component, e.g., higher at the Platform level. The
result of a favorable authentication is a token used to create and manage
personal GraphRepo instances for different users – or more generally agents
– logged in the system.

For each authenticated user, the GraphRepoFactory creates a dedicated
GraphRepo, initialized with registered providers and graphs factories. These
providers are meant to populate graphs of specific resources accessible to
the user and may connect to remote source systems (see Chapter III, Sec-
tion 2.2.1). It is important to note that a GraphRepo is initialized with
providers, instantiated by the factory according to a security model that we
now present.

Authorizations and credentials. Providers are meant to feed graphs
of data which may be of interest to personalize services and information
for the current user. For the sake of security and privacy, users need to be
able to allow or reject the use of some providers, according to an explicit
opt-in approach. As an example, a user may accept a provider connect-
ing to her account in a BI platform but may on the other hand reject the
CRM provider. These authorizations are represented by the relation User

authorizes ApplicationAgent in Figure IV.3.

1http://en.wikipedia.org/wiki/OSGi
2http://www.eclipse.org/equinox/



76 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

Figure IV.3: Security model of the GraphRepoFactory, managing creden-
tials for different applicative agents authorized by users.

More generally, this figure illustrates the security model adopted by the
platform to enable or not the instantiation of various application agents
(plugins). Including dynamic components described in this chapter, we
have introduced the following types of plugins: providers, graphs facto-
ries, operators and activation rules. Thanks to authorizations, users can
control the composition of their own personalized GraphRepo. In case an
application require the user’s credentials to connect to a remote system,
Figure IV.3 indicates that credentials are given by users and managed by
the GraphRepoFactory. Another important aspect described in the model
is that an application agent may leverage data provided by other agents.
In such case, the provider must declare its dependencies, represented by
the relation accesses in the model. The GraphRepoFactory determines the
applicability based on the user’s authorizations and available credentials. Fi-
nally, it may be noted that some providers could expose generally accessible
(or public) data and would therefore not require credentials.

3.1.3 Providers and graphs factories

The GR architecture presented in Figure IV.2 introduces Provider and
GraphFactory components. As previously discussed, providers are instan-
tiated by the graph repository factory according to users’ authorizations.
A provider is instantiated in the scope of a personalized GraphRepo and is
meant to represent personal user data or any other background knowledge.

The GraphFactory is an important component which handles the ac-
tual creation and management of graphs. This interface and our containing
framework are meant to expose source-agnostic graphs. This provides an
abstraction above the actual data storage, be it a relational database, a ded-
icated RDF triple store, etc. As a storage facility, the GraphRepoFactory is
responsible for usual create, read, update and delete (CRUD) operations on



3. SITUATION FRAMEWORK AND SERVICES 77

graphs.

In particular, we provide an RDF-based implementation which enables
the creation of graphs managed in-memory, in files or by a relational
database. Besides, data can be queried using the SPARQL language but
we also expose a certain number of convenience methods to iterate over fil-
tered nodes or statements. This implementation is enabled by the popular
library for the Semantic Web, Jena3.

3.2 Situation management framework

In Section 2 of Chapter III, we defined the user’s situation as a collection
of currently valid statements. The time aspect is an important aspect and
therefore, situation graphs are meant to evolve at a possibly rapid pace, in
response to events.

We previously discussed the foundations of the GR framework. Let us
now elaborate more on dynamic components of our situation management
framework. Figure IV.1 illustrates the three building blocks of the archi-
tecture of our situation platform: situations, operators with activation rules
and events. In this section, we describe these aspects, with respect to the
class diagram of the framework depicted in Figure IV.4.

Let us briefly remind the roles of components responsible for dynamic
maintenance of the situation model described in Chapter III:

Events. An Event is a statement (or collection of statements) raised in
a given situation, representing interactions plus additional knowl-
edge. Events are queued to be processed asynchronously by an
EventProcessor.

Activation rules. An activation rule triggers an operator in response to an
event, assuming some other conditions are met. Rules can be defined
in any plugin and are mainly evaluated thanks to queries on the GR.

Operators. As a result of rules evaluation, an operator may be executed
with certain parameters. The operator is then able to update the
situation graph in response to the triggering event.

3.2.1 Situation provider

We defined situations as specific graphs centered on the concerned agent.
As all graphs in the GR framework, a Situation is therefore created and
managed by a particular provider, the SituationProvider. This provider
creates situation graphs using the RDF-based factory, backed by a relational
database for data storage or simply by a pure in-memory model. These

3http://jena.sourceforge.net/



78 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

Figure IV.4: Class diagram - Overview of the situation framework. The
main dynamic components are events, activation rules and operators.



3. SITUATION FRAMEWORK AND SERVICES 79

graphs contain all nodes and statements that contribute to define the dy-
namic view of situations, obtained through the getCurrentView() method
exposed in our object model (see Chapter III, Section 3).

The current view is dynamically mainted by operators which add, ud-
pate or remove statements from situations. The term remove matters here
as statements are not actually deleted. Instead, the situation provider man-
ages statements lifetime accordingly and old statements are stored for his-
tory purposes. In our homogeneous model, it is possible to query for both
currently valid and historical data. Concretely, it is possible to evaluate a
certain query at any time (now or in the past) using dedicated timestamp
and lifetime attributes.

Among operators that dynamically maintain situation graphs, the
ExpiryChecker introduced in Table IV.1 scans statements of the current
view to determine and remove outdated ones. The SituationProvider is
responsible to trigger this operator by raising internal events at a determined
frequency, e.g., every minute. An example of such event could be expressed
as follows:

SituationProvider requires ExpiryChecker

For the sake of completeness, we illustrate below the complete rule that
triggers the ExpiryChecker operator in response to this event. The operator
does not require any parameter so WITH parameters is omitted in the action
part of the rule:

<rule>

<event>

"http://.../situation-provider" "http://.../requires"

"http://.../expiry-checker", "http://.../situation-provider"

</event>

<condition/>

<action>

CALL "http://.../expiry-checker"

</action>

<description>

Calls expiry checker upon request by situation provider

</description>

</rule>

3.2.2 Operators and activation rules

Operators are very similar to providers in that their instantiation is handled
by the GraphRepoFactory according to the previously discussed security
model, illustrated in Figure IV.3. Operators are implemented as modules
or plugins and they are instantiated in the scope of a given GraphRepo, so



80 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

Figure IV.5: Three levels of authorizations and personalization for users.
Providers, operators and activation rules may be enabled (or disabled) to
compose personalized and dynamic GR.

they apply to the concerned user’s situation. Users can authorize or reject
an operator and give credentials, should the operator require some. Indeed,
just like providers, operators may also connect to remote systems on behalf
of the user, for instance to use external services.

Operators instantiated by the GraphRepoFactory are managed by the
OperatorsProvider along with other ActivationRule plugins. Plugins
defining activation rules are more simple since they are instantiated only
once, not for each user or agent. The rule evaluation process in response to
business events is further discussed in the next section. A rule is supposed
to trigger an operator and thus requires that the user has authorized this
operator. Besides, we add another level of security and privacy by enabling
the same authorization pattern at the rule level. To sum up, the three
levels of authorizations – providers, operators and activation rules – are
summarized in Figure IV.5 and enable a full customization of the user’s GR.

3.2.3 Events management and rules evaluation

Finally, we present components of Figure IV.4 responsible for events man-
agement and the actual rules evaluation process. Figure IV.6 illustrates in a
sequence diagram how major components of our system interact to proceed
to asynchronous events interpretation.

An Event can be posted by any agent in a given situation. This event
is then added to the EventQueue – attached to the situation – so it can
be processed later on. The queue is regularly polled and events are pro-
cessed by a variable number of EventProcessor in an asynchronous man-
ner. Processors access the pool of ActivationRules available through the
OperatorsProvider.

The actual rule evaluation process is handled by the
ActivationRuleEvaluator which uses transformations to obtain, e.g.,
SPARQL queries. Rules evaluation and their translation into SPARQL (or



3. SITUATION FRAMEWORK AND SERVICES 81

Figure IV.6: Sequence diagram for rules evaluation in reaction to an event
posted in a given situation. The EventsProcessor polls the queue until it
is empty to evaluate rules thanks to queries on the GR.



82 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

Figure IV.7: Examples of client applications interacting with the situation
management platform to provide personalized and dynamic adapatation.

SQL) queries have been discussed in more details in Section 2.2. Assuming
a given rule is positively evaluated, the targeted Operator is executed to
update the Situation in response to the initial triggering event.

3.3 Client situation services

Previous sections described our GR and situation management frameworks
from an internal perspective. In this section, we briefly present services
exposed to client applications. Figure IV.7 illustrates examples of client
applications which interact with the three main services or methods exposed:
authentication, events posting and situation retrieval.

Implementation wise, the situation management bundle embeds a sim-
ple web application. This application exposes REST services which can be
consumed as JSON or XML and bridges with selected capabilities of the
underlying framework and situation model. Functionalities exposed by the
client API are clearly limited compared to the full situation model which
can be retrieved in-proc within the OSGi runtime.

Authentication. The /auth method (GET) is used to let users authen-
ticate. It takes as parameters the user’s credentials and it returns a
token, required by other methods to access and query the personalized
GR.

Situation retrieval. The /situation method (GET) returns the list of
statements which constitute the user’s current situation graph. Ad-
ditional parameters may be used to filter returned statements and
retrieve only facts of interest (e.g., in a certain dimension).

Events posting. The /event method (POST) lets clients contribute to the
description of users’ interactions by sending events. The body of the
request describes the event itself, in the RDF format for improved
inter-operability.



4. SUMMARY AND DISCUSSION 83

4 Summary and discussion

In the previous chapter we introduced a graph-based situation model to en-
able a homogeneous representation and exploitation of varied resources and
interactions. We presented the foundations of the GR framework to meet
our requirements, in particular in terms of security and modularity. In this
chapter, we first introduced dynamic components that compose our situation
management framework, implemented as extensions of the GR framework.
Most importantly, activation rules and operators are active components used
to react to business events, be they submitted by client applications (e.g.,
using REST services) or raised internally. Moreover, we discussed the ex-
pression and evaluation of activation rules in Section 2. These rules are
described in a specific format and are used to trigger various operators. Op-
erators can be developed to perform a broad range of operations in order
to maintain situations (or more generally graphs). Then, we described in
more details the actual architecture of our GR and situation management
frameworks. In particular, we implemented the GR foundations in an OSGi

runtime to enable a high level of modularity, with plugins that can be dy-
namically installed, started and stopped.

In Section 2.1, we described the expression of activation rules, using a
specific format then translated into queries for the GR. This custom format
structures rules using the ECA approach. In particular and beyond the ini-
tial event filtering, the condition part of a rule defines additional constraints
that need to be verified to perform the action, implemented as an operator.
Our aim was to maintain the storage independance and define an interme-
diary format for rules, in particular the condition part. However, it rapidly
appeared that rules would greatly benefit from an expressive graph query
language, for instance using bound variables, very briefly introduced in the
last example of Section 2.2. Should the graph storage be implemented as a
triple store, the SPARQL query language is particularly well adapted. Our
initial attempt to define an intermediary language appeared to be an imped-
iment for rapid and iterative improvements, as our reference implementation
of the GR was RDF-based. It would have been more productive and less re-
dundant to leverage to SPARQL queries and use the full expressivity of this
language from the very beginning.

The continuous rules evaluation process described in Section 3.2.3 en-
ables both linear (or deterministic) and non-linear evolution scenarios. Lin-
ear evolution scenarios are those which produce a determined sequence of
operations in response to a given event. As a simple example, a linear
evaluation scenario will be illustrated by the combination of several oper-
ators in Chapter VI, Section 2. In this example, three operators are ac-
tivated in a pre-determined order in response to events of the type Marge

read document1. The mentioned document is first stemmed before entity
extraction techniques can be applied and these results are eventually com-



84 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT

bined to recommend queries related to document1. In non-linear evolution
scenarios, operations performed may not be determined in advance as con-
tinuous rules evluation may not give the same result twice, assuming some
conditions changed during the evaluation. Although non-linear evolution
scenarios would be extremely interesting to consider, it appeared difficult to
showcase interesting real-life scenarios. Indeed, such a scenario would most
likely involve an important degree of integration with a variety of source
systems, and thus lead to important development and demonstration costs.

Even though it was not precisely discussed in this chapter, reasoning is
an important feature enabled and exposed by the GR framework. Compo-
nents developed in the context of this framework may use various capabili-
ties like transitive closure or custom rule-based reasoning. Reasoning can be
helpful in some case, e.g., to infer additional knowledge from existing state-
ments which may be incomplete. However, we do not enable systematic
reasoning on generated graphs since it can be extremely costly and repre-
sent an important burden for scalability. Therefore, the framework allows
the construction of graphs extending existing ones in order to control thor-
oughly the reasoning process, for instance using volatile (purely in-memory)
graphs. As an example, in Section 2.3 of Chapter V, we will present the
use of minimal OWL and rule-based reasoning techniques in the context of
multi-dimensional domain models (OLAP). Besides, we will discuss the rea-
soning performance with regards to two different implementations to insist
on the importance of performance-related considerations.

5 Conclusion

In conclusion, we presented in this chapter extensions of the GR framework
introduced in Chapter III. These extensions provide a set of extensible
components to enrich the GR with dynamic behavior in an event-driven ap-
proach. Activation rules are used to react to varied business events and
trigger appropriate operators. Business events are composed of one or more
statements (in a graph) and may describe an interaction plus related knowl-
edge. Activation rules are expressed according to the ECA framework and
defined using a specific format. These rules are interpreted at runtime dur-
ing the evaluation process and translated into queries on the GR. Should the
GR reference implementation base on RDF graphs, queries may be expressed
using the SPARQL graph query language. Positively evaluated rules trigger
with resulting parameters the execution of appropriate operators. Operators
are components responsible for the dynamic maintenance and adapation of
situations (and more generally graphs). Like providers, the exploitation of
activation rules and operators is controlled by the security model of the GR

framework. Users’ authorizations apply at these three different levels to
eventually allow the definition of personalized and active graph repositories.



5. CONCLUSION 85

We reckon that the combination of the core GR framework with dynamic
components brings a very interesting perspective, for personalization and dy-
namic adaptation in heterogeneous environments. As part of future work, we
consider the following two directions are of particular interest and should be
investigated. First, if linear evolution scenarios are already valuable, non-
linear ones would more extensively demonstrate the range of capabilities
offered by our dynamic situation management framework. We thus consider
an important focus of future research should be on the definition and valida-
tion of such scenarios. Secondly, as a result of more complex scenarios being
considered, the language used to express activation rules should be enriched
and simplified, for instance by basing on regular SPARQL syntax. Besides,
given the aggregagted nature of the GR, conditions of rules may have to be
verified thanks to queries on multiple graphs. We did not investigate more
closely on this issue as it is already a feature of SPARQL specifications4 with
named graphs (the FROM NAMED syntax).

4http://www.w3.org/TR/rdf-sparql-query/



86 CHAPTER IV. DYNAMIC SITUATION MANAGEMENT



Chapter V

Semantics and Usage

Statistics for BI

Recommendations

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 88

1.1 Situation modeling for BI personalization and rec-
ommendations . . . . . . . . . . . . . . . . . . . . 88

1.2 Application to the query design problem . . . . . . 88

2 Semantics of multi-dimensional domain models 89

2.1 Measures and dimensions . . . . . . . . . . . . . . 90

2.2 Functional dependencies and hierarchies . . . . . . 90

2.3 Reasoning about dependencies and hierarchies . . 92

3 Users’ preferences and similarity . . . . . . . . . 94

3.1 User preferences and feedback . . . . . . . . . . . . 94

3.2 Users similarity . . . . . . . . . . . . . . . . . . . . 97

4 Usage statistics in BI documents . . . . . . . . . 98

4.1 Structure of BI documents and co-occurrence . . . 98

4.2 Security and personal co-occurrence measure . . . 100

4.3 Collaborative co-occurrence measure . . . . . . . . 102

5 Personalized query expansion . . . . . . . . . . . 104

5.1 Query expansion . . . . . . . . . . . . . . . . . . . 104

5.2 Architecture overview . . . . . . . . . . . . . . . . 106

6 Summary and discussion . . . . . . . . . . . . . . 109

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . 111

87



88 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

1 Introduction

Data warehouses are designed to integrate and prepare data from production
systems - the Extract Transform and Load (ETL) process - to be analyzed
with Business Intelligence (BI) tools. These tools now enable users to navi-
gate through and analyze large amounts of data thanks to a significant effort
from IT and domain experts to first model domains of interests. However,
exploiting these multi-dimensional models may become challenging in im-
portant deployments of production systems. Indeed, domain models can
grow extremely complex with thousands of BI entities, measures and dimen-
sions used, e.g., to build OLAP cubes.

1.1 Situation modeling for BI personalization and recom-

mendations

In Chapters III and IV we introduced our graph-based situation model and
components for continuous monitoring and maintenance in response to busi-
ness events, which may be used to describe users’ interactions or more gen-
erally dynamic behaviors.

This chapter aims at presenting the application of our graph repository
(GR) and situation management frameworks to BI concepts, to facilitate
personalized data access. This personalization comes in various forms but
we focus in particular on the assistance that can be given to users during the
query design process, which is key to help them reach data they are looking
for.

Personalization and recommendations involve a broad range of tech-
niques, some of which were discussed in the review of related work, in par-
ticular in Chapter II, Section 2. In this chapter, we elaborate for instance on
occurrences of BI entities and matrices of co-occurrences, users’ preferences
and users’ similarity.

1.2 Application to the query design problem

In common reporting and analysis tools, users can design data queries using
some kind of query panel. For instance, a user may drag and drop measures
and dimensions she wants to use to create a new visualization or report,
e.g., showing the Sales revenue aggregated by City. Given the number of
available measures and dimensions, this selection can be tedious and helping
the user to build her query rapidly becomes crucial. Therefore, our aim is
to address the problem of query construction, through iterative suggestions
and selection of measures and dimensions.

We define the query expansion problem as a function QE taking as input
a user u, the current query q and additional parameters params. This
function returns a collection of scored queries (qi, si) such that, for i from 1



2. SEMANTICS OF MULTI-DIMENSIONAL DOMAIN MODELS 89

Figure V.1: Architecture overview of the proposed personalized query ex-
pansion system for multi-dimensional models.

to n, |qi| = |q|+ 1 and q ⊂ qi:

QE : (u, q, params) 7→ {(q1, s1), . . . , (qn, sn)}

In response to this problem, this chapter presents various concepts in-
volved in the design of an interactive and personalized query expansion
system. Our method leverages semantics of multi-dimensional models, col-
laborative usage statistics derived from repositories of BI documents and
user preferences to iteratively suggest relevant measures and dimensions.

Figure V.1 illustrates the main components involved in the architecture
of our system, further discussed in this chapter. The remainder of the chap-
ter is organized as follows: Section 2 introduces multi-dimensional domain
models and their semantics. Section 3 introduces preferences and the def-
inition of a similarity measure between users. Then, Section 4 presents
a collaborative measure of co-occurrence between entities of these models,
from a repository of BI documents. Eventually, Section 5 presents our per-
sonalized query expansion component and its architecture, according to an
implementation based on the GR and situation managements frameworks.

2 Semantics of multi-dimensional domain models

Domain models can be designed on data warehouses, e.g., to enable an easier
querying system for non-expert users. The modeling phase aims at defining



90 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

concepts of the business domain with key indicators (measures) and axis of
analysis (dimensions) [JM06, chap. 1].

2.1 Measures and dimensions

Domain models are defined and used to query the warehouse for actual data
and perform calculations. A warehouse may be materialized as a relational
database, and queries thus have to be expressed accordingly, for instance
as SQL. From a calculation point of view, it is also possible to build multi-
dimensional OLAP cubes on top of a business domain model. Dimensions are
represented as axis of a cube and measures are aggregated inside the different
cells. It may be noted that the term “cube” refers to a convenient image
but these structures are not limited to three dimensions. Queries can be
expressed on these cubes, e.g., with Multi-Dimensional eXpressions (MDX).
In modern warehouses, business domain models provide a predefined space
of aggregates that reflects the organizational structure, key performance
indicators, and other important information for a company’s line of business.
Furthermore, they provide SQL/MDX generation algorithms to enable non-
expert users to formulate ad-hoc queries. End users can manipulate objects
of these models (measures and dimensions) using common business terms
(such as “customer” or “revenue”), rather than technical query languages.

Measures are numerical facts that can be aggregated against various
dimensions ([BCG+08]). For instance, the measure Sales revenue could
be aggregated (e.g., from unit sales) on the dimension Country to get the
revenue in different countries. When analyzing data, e.g., for reporting,
users can go deeper in a hierarchy of dimensions or aggregate at a higher
level dimension to summarize data. These two operations are respectively
called drill down and roll up. Data can also be filtered on some specific values
of a dimension (keep only or selection) to restrict the scope of analysis.

To sum up, multi-dimensional domain models define measures and di-
mensions which are key business entities used to explore and query a data
warehouse. Additionally, these domain models may also define hierarchies of
dimensions and functional dependencies between measures and dimensions.

2.2 Functional dependencies and hierarchies

A functional dependency between two objects A and B (measures or dimen-
sions) of a multi-dimensional model is a structural – and thus schema-related
– relation, noted A determines B. As a simple example, a given instance of
City determines a related instance at the higher State level. Another ex-
ample that involves a measure and a dimension is to say that knowing a
Customer, the Sales revenue he generates can be determined (e.g., aggre-
gated from unit sales in a fact table). Functional dependencies are transitive:
if City determines State which determines Country, then City determines



2. SEMANTICS OF MULTI-DIMENSIONAL DOMAIN MODELS 91

Figure V.2: Hierarchies and functional dependencies between some measures
(purple nodes) and dimensions (yellow), described in an Island Resorts Mar-
keting domain model (red) of a data warehouse.

Country.

Figure V.2 illustrates various hierarchies and dependency chains between
objects of a multi-dimensional domain model. The most simple case of
dependencies is when all measures are determined by all dimensions. This
happens for instance when using a minimal dataset, e.g., reduced to one flat
fact table like a spreadsheet. In such a case though, there is no dependency
known before hand between dimensions, because of the lack of structuring
schema.

The knowledge of functional dependencies is important when designing
queries. For instance, they can be used to ensure queries do not contain
incompatible objects, which would eventually prevent their execution. Let
us consider an example of tourism-related domain model which defines a
Reservation year dimension. This dimension may be used to query for the
number of upcoming reservations in different places. On the other hand, it
cannot determine the Sales revenue since this measure depends on billing
rather than reservation dates. As an illustrating use case, the query ex-
pansion system presented later in this chapter (see Section 5) makes use of
functional dependencies during the construction of its iterative suggestions.



92 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

In particular, objects incompatibility is used to filter the set of candidate
entities before scoring.

Even though functional dependencies are important, multi-dimensional
domain models do not necessarily capture and expose this metadata. Hierar-
chies of dimensions are more common though, usually exploited in reporting
and analysis tools to enable drill down and roll up operations. For instance,
if a Year - Quarter hierarchy is defined, the result of a user drilling down
on Year 2010 is a similar query with the Quarter dimension, filtered on
Year = 2010.

2.3 Reasoning about dependencies and hierarchies

If hierarchies of dimensions can be used to determine minimal dependency
chains, techniques are required to help with automatic detection of func-
tional dependencies. We now present our semi-automatic approach to ease
a partly manual definition of functional dependencies, enriching existing do-
main models.

2.3.1 Transitivity and custom rules

The approach presented by [RCARM09] is to create domain-specific con-
ceptual schemas in the form of ontologies and use DL-Lite inferencing ca-
pabilities. However, the definition of multi-dimensional business domain
models is a costly process in which many BI users have already invested.
Therefore, our method is different and meant to sit on top of already ex-
isting multi-dimensional models, in particular using defined measures and
dimensions. We assume hierarchies are already represented in these models.
Besides, our aim is to minimize as much as possible the manual definition of
some functional dependencies, and infer additional relations using reasoning
capabilities.

For this purpose, we mainly exploit the fact that functional dependencies
are transitive plus two additional rules, noted R1 and R2. Figure V.3 illus-
trates derived knowledge resulting from the application of these two rules,
described as follows:

R1. Hierarchies imply functional dependencies. As an example, knowing
that Week hasParent Quarter, it can easily be deduced that Week

determines Quarter.

R2. If a dimension D1 determines a measure M1 and another dimension
D2, then D2 determines M1. For instance, in Figure V.3, Store de-
termines both the measure Quantity Sold and the dimension City.
As a result, it can be inferred that City determines Quantity Sold.



2. SEMANTICS OF MULTI-DIMENSIONAL DOMAIN MODELS 93

Figure V.3: Reasoning rules applied on an example with various measures
(purple) and dimensions (gray). Dashed relations are statements resulting
from rule-based reasoning (rules R1 and R2).

2.3.2 Reasoning in the Graph Repository framework

Let us come back to our graph repository (GR) framework which was intro-
duced in Chapter III and further discussed in Chapter IV. Briefly, every user
has its own GR composed of various graphs. These graphs are populated
by providers and maintained by operators, two different kinds of plugins or
modules. Graphs can be created and backed by different graphs factories.

In particular, our default implementation is an RDF-based graph factory.
On top of this specific factory, reasoning is enabled in different ways thanks
to a framework for Semantic Web technologies (the Jena API1). First, usual
OWL reasoning may be applied. Taking the example of functional depen-
dencies previously discussed, the transitivity of these relations is natively
represented in an OWL ontology using the corresponding attribute on the
object property (or predicate) determines. This information is represented
and available in our framework through schemas of the GR (see Chapter III,
Section 2.2.3).

Another interesting reasoning aspect comes with rules which can be de-
fined using a SPARQL-like syntax. The simple rule R1 and the more complex
one R2 presented above would be expressed as follows:

[R1: (?a <urn:grepo/slayer#hasParent> ?b)

-> (?a <urn:grepo/slayer#determines> ?b) ]

1http://incubator.apache.org/jena/



94 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

[R2: (?a <urn:grepo/slayer#determines> ?m)

(?m rdf:type <urn:grepo/slayer#Measure>)

(?a <urn:grepo/slayer#determines> ?c)

(?c rdf:type <urn:grepo/slayer#Dimension>)

-> (?c <urn:grepo/slayer#determines> ?m) ]

To sum up, full-flavored OWL and rule-based reasoning capabilities are
exposed through the GR framework, assuming the underlying RDF graph
factory is used. It is important to highlight the fact that the complexity and
cost of reasoning can in some cases make it inapplicable, even with rather
small underlying datasets. However, well selected reasoning rules may be
used with controlled datasets to obtain very valuable results or inferences
in reasonable time. Section 5.2.1 further discusses these performance issues
that need to be taken into consideration. In particular, the discussion bases
on a comparison of two possible implementations for the set of reasoning
techniques previously described.

We present in Section 5 our personalized query expansion component.
For this purpose, we need to ensure suggested queries contain compatible
objects so as to allow their execution. Functional dependencies allow us
to determine compatible measures and dimensions. From the consumption
point of view, hierarchies and dependencies that result from the reasoning
process can be queried like any other graph of the GR.

3 Users’ preferences and similarity

Preferences are more and more common to help personalize information
and services for users. However, the problem of expressing preferences for
multi-dimensional query entities has only recently been approached. In this
section we discuss the possibility to express user preferences at the level of
multi-dimensional models. This approach differs from the previous work by
Golfarelli et al. [GRB11] since we do not go down to the underlying query
language, be it SQL (on top of a relational database) or MDX (on top of
OLAP cubes). Besides, our discussion focuses on simple numerical values
which are applied to BI entities but could easily be considered with other
scenarios and datasets. On top of these preferences, we use the Pearson
correlation to define a similarity measure between users. This metric was
presented with other usual techniques for recommender systems (RS), in
Chapter II, Section 2.

3.1 User preferences and feedback

We call general preferences simple numeric values that indicate the user’s
preference for a given resource or entity. Even though this approach could



3. USERS’ PREFERENCES AND SIMILARITY 95

be extremely general, the definition of these indicators is illustrated here in
a BI context.

We distinguish explicit and implicit preferences, respectively noted
prefu,expl and prefu,impl. For a given entity e, we define the user’s pref-
erence function prefu as a linear combination of both preferences, where γ

and δ are coefficients such that γ + δ = 1:

prefu(e) = γ · prefu,impl(e) + δ · prefu,expl(e) (V.1)

3.1.1 Explicit preferences

Explicit preferences are feedback received from the user, e.g., in the form of
ratings (in [0, 1]) assigned to measures and dimensions in different models.

Entity level. Let us note ru,e the rating given by u to e (or null if e has
not been rated yet) and ru the average rating given by u to all entities. We
simply define the user’s explicit preference of an entity e as:

prefu,expl(e) =

{

ru,e if ru,e 6= null

ru otherwise

Domain/model level. It is common in real life scenarios that users ac-
tually manipulate several multi-dimensional models. Two models may refer
to the same underlying data source with a different view on it, or simply to
two distinct sources. Given this fact, it is of importance to let users express
their preference for a certain model M compared to others. We thus extend
the previous definition with ratings given by a user to a multi-dimensional
model M :

prefu,expl(M) =

{

ru,M if ru,M 6= null
1
|M |

∑

e∈M prefu,expl(e) otherwise

In this definition, we see that in case there is no explicit vote for the
model M , the default value is derived from explicit votes at the lower entity
level. Some could argue that this definition is no longer very explicit, since
the rating is already aggregated from other explicit values.

3.1.2 Implicit preferences

Implicit preferences can be derived from a variety of sources, for instance by
analyzing logs of queries executed in users’ sessions [GMN08]. In this section
we present another approach using occurrences of entities in a repository of
BI documents.



96 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

If hierarchies and functional dependencies are structural or navigational
relations, they are not specific to a given user and they do not convey any
information regarding the way users actually explore available data. On
the contrary, repositories of documents mainly bring usage statistics. Our
aim is thus to leverage these statistics – combined with semantics of multi-
dimensional models – to provide personalized assistance and recommenda-
tions. The structure of BI documents will be more precisely discussed in
Section 4. Briefly though, reports and dashboards may contain chart or
tables and BI entities may be referenced by these charts.

Entity level. From this perspecitve, we consider that occurrences of BI

entities in documents manipulated by the user can be an interesting and
simple indicator of her preferences. Let us note occu(e) the set of charts and
tables which reference an entity e, in u’s personal collection of documents.
We define implicit preferences of the user u for the entity e as the normalized
frequency of e in documents:

prefu,impl(e) =
|occu(e)|

maxe′ |occu(e′)|

The notions of entities occurrences and frequency in documents can
clearly be linked to content-based recommender systems and at its root to
information retrieval techniques. A more sophisticated formula may thus use
TF-IDF-like weights for entities. In particular, as discussed in Section 2.2.1
of Chapter II, the inverse document frequency (IDF) part of a TF-IDF weight
is meant to reduce the importance of entities that appear very often. Such
entities are indeed less discriminatory in the filtering process. However,
we do not adopt this approach since we prefer to keep simple normalized
scores which can more easily be interpreted and linearly combined (aggre-
gated). Besides, we do not consider occurrences (and co-cooccurrences) at
the document level (e.g., dashboard) but rather at the chart/table level,
which represents more fine-grained units of sense. This point will be further
discussed in the next section.

Domain/model level. Similar to what we did with explicit preferences,
we now define implicit preferences at the model level. First, it should be
noted that the formula above is computed for each entity inside a given
model, noted M . In particular, the term maxe′ |occu(e

′)| refers to the max-
imum number of occurrences among all entities of M . In the following two
equations, we extend the definitions of implicit and then general preferences
at the model level:



3. USERS’ PREFERENCES AND SIMILARITY 97

prefu,impl(M) =
1

|M |

∑

e∈M

prefu,impl(e)

prefu(M) = γ · prefu,impl(M) + δ · prefu,expl(M)

3.2 Users similarity

We previously defined numerical preferences which take into account explicit
feedback from the user as well as implicit indicators derived from usage
analysis. Based on this, we now introduce users’ similarity in terms of BI

data consumption.

In Chapter II, Section 2.2.2, we presented various definitions of sim-
ilarity measures between users for recommender systems. In particular,
the most commonly used with collaborative filtering systems is the Pear-
son correlation. Usually, this metric is used with a matrix of ratings
R = User × Item. To minimize cold-start issues and increase the cover-
age of our measure, we use the matrix of numeric preferences (Pi,j), such
that Pi,j = prefui

(ej). Given the set of users U = {u1, . . . , um} and the set
of entities E = {e1, . . . , en}:

(Pi,j) =











prefu1
(e1) prefu1

(e2) · · · prefu1
(en)

prefu2
(e1) prefu2

(e2) · · · prefu2
(en)

...
...

. . .
...

prefum
(e1) prefum

(e2) · · · prefum
(en)











Let us consider two users u and u′ and let Eu,u′ denote the set of entities
accessible to both u and u′. We define the similarity measure between these
two users, sim(u, u′), using the Pearson correlation as follows:

sim(u, u′) =

∑

e∈Eu,u′

(prefu(e)− prefu)(prefu′(e)− prefu′)

√

∑

e∈Eu,u′

(prefu(e)− prefu)
2

∑

e∈Eu,u′

(prefu′(e)− prefu′)2

(V.2)

Table V.1 illustrates a sample of 5 users with their (randomly generated)
preferences regarding a partial set of the measures and dimensions. Based on
these preferences, Figure V.4 represents the computation of users similarity
matrices using the Pearson correlation and the cosine similarity.

The Pearson correlation takes values in [−1; 1] and thus brings a sense
of polarity. Positive values indicate users that tend to rate the same items
in the same way, relative to their average rating. Conversely, negative val-
ues show users that often react in opposite directions. For instance, the



98 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

Preference C
a
te
g
o
ry

C
it
y

L
in
es

Q
u
a
n
ti
ty

so
ld

Q
u
a
rt
er

S
al
es

re
v
en
u
e

S
ta
te

S
to
re

n
a
m
e

Y
ea
r

A
v
g

User 1 0,29 0,2 0,24 0,87 0,84 0,74 0,5 0,48 0,92 0,56
User 2 0,74 0,12 0,86 0,53 0,01 0,76 0,03 0,51 0,83 0,49
User 3 0,35 0,98 0,92 0,47 0,54 0,62 0,15 0,9 0,73 0,63
User 4 0,35 0,81 0,53 0,29 0,44 0,27 0,76 0,12 0,12 0,41
User 5 0,91 0,88 0,3 0,13 0,46 0,01 0,34 0,1 0,76 0,43

Table V.1: Matrix of numeric users preferences regarding certain dimensions
and measures. These values include explicit and implicit contributions to
preferences.

cosine similarity indicates that users U1 and U3 are very similar whereas
the Pearson correlation says the contrary. It can be observed from the data
in Table V.1 that U1 and U3 tend to rate entities in opposite ways.

The Pearson correlation is invariant to linear combinations of the in-
put vectors. Given two vectors u and v and any real numbers α, β, γ, δ,
pearson(u, v) = pearson(α · u + β, γ · v + δ). This proves important to de-
termine vectors that vary in the same way rather than comparing vectors
in absolute values. To conclude, it may be noted that the cosine similarity
could be refined using the so called adjusted cosine similarity, which takes
into account deviations from users’ average preferences (or ratings).

4 Usage statistics in BI documents

In Section 2, we presented multi-dimensional domain models and their se-
mantics. In particular, functional dependencies and hierarchies provide very
structural knowledge regarding associations between BI entities. Beyond
this, some BI platforms propose repositories of documents (such as reports
and dashboards) which can be used to compute actual usage statistics for
measures and dimensions. This kind of information is extremely valuable
in our use case, since the query expansion problem (as formulated in Sec-
tion 1) implies to find the best candidate to associate to a given set of
measures and dimensions. Therefore, we describe in this section a measure
of co-occurrence between BI entities.

4.1 Structure of BI documents and co-occurrence

We use the structure of BI documents to define co-occurrences between mea-
sures and dimensions. For instance, BI reports are roughly composed of sec-



4. USAGE STATISTICS IN BI DOCUMENTS 99

Figure V.4: Comparison of users similarity matrices obtained with Pear-
son correlation and cosine similarity. Computation is based on users and
preferences described in Table V.1.

tions which may contain charts, tables, text areas for comments, etc. Charts
and tables define important units of sense. Measures and dimensions associ-
ated in a same table/chart are likely to be strongly related and represent an
analysis of specific interest to the user, which she may have created herself.

Similarly, dashboards can be composed of different pages or views. These
views can also contain charts and tables. Figure V.5 illustrates an example
of dashboard presenting three charts in a view:

1. Sales Revenue, Quantity Sold by Quarter,

2. Sales Revenue by Category and

3. Sales Revenue by City, Lines.

Reports and dashboards are examples but, more generally, any BI doc-
ument with visualizations referencing measures and dimensions could be
used to derive consolidated co-occurrences or usage statistics. The graph
model introduced in Chapter III enables a homogeneous representation of
these documents’ structure. For instance, Figure V.6 illustrates the graph
representation of the dashboard USA Sales View and its associated charts.
A chart can be used in one or more dashboards and these relations are
represented by the hasDashboard predicate. Besides, hasDimension and
hasMeasure predicates are used to indicate BI entities a chart relates to.



100 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

Figure V.5: A sample dashboard view, USA Sales View. This view defines 3
charts presenting analysis of sales revenue according to various dimensions.

4.2 Security and personal co-occurrence measure

Security is an important aspect to take into consideration since BI platforms
provide access control rules to business domain models and documents built
on top of them. Consequently, different users may not have access to the
same models and at a more fine-grained level to the same measures and
dimensions. Besides, repositories contain reports or dashboards generated
by and shared (or not) between different users of the system. As a result,
the measure of co-occurrence that we define in this section is inherently
personalized.

Let us consider a user u and let occu(e) denote the set of charts and tables
– in documents visible to the user u – referencing a BI entity e (measure
or dimension). We define the co-occurrence of two entities ei and ej as the
Jaccard index of the sets occu(ei) and occu(ej). The Jaccard index is a
simple but commonly used measure of the similarity between two sample
sets:

coocu(ei, ej) = J(occu(ei), occu(ej)) =
|occu(ei) ∩ occu(ej)|

|occu(ei) ∪ occu(ej)|
(V.3)

Table V.2 presents a matrix of co-occurrences that can be computed
with measures and dimensions appearing in charts, in a collection of dash-
boards. This matrix (Ci,j)(u) is symetric and defined as follows for all



4. USAGE STATISTICS IN BI DOCUMENTS 101

Figure V.6: Graph describing a dashboard (orange), USA Sales View, its
associated charts (blue) and referenced measures (purple) and dimensions
(yellow).

entities {e1, . . . , en}:

(Ci,j)(u) =











1 coocu(e1, e2) · · · coocu(e1, en)
coocu(e2, e1) 1 · · · coocu(e2, en)

...
...

. . .
...

coocu(en, e1) coocu(en, e2) · · · 1











The k-th line (or column) of this matrix can be used to determine other
entities (measures or dimensions) that most co-occur with ek. For instance,
according to Table V.2, the 4 dimensions most often associated to the mea-
sure Sales Revenue are Quarter, Category, State and Year.

Additionally, a weighted average of vectors formed by any two lines k and
l can be considered to determine entities that most co-occur with entities ek
and el. However, when considering vectors sums, one needs to keep in mind
entities compatibility. Indeed, the entity ek may co-occur with two entities
el and ep, mutually incompatible.



102 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

Cooccurrence C
a
te
g
o
ry

C
it
y

L
in
es

Q
u
a
n
ti
ty

so
ld

Q
u
a
rt
er

S
al
es

re
v
en
u
e

S
ta
te

S
to
re

n
a
m
e

Y
ea
r

Category 1 0 0 0 0 0,25 0 0 0
City 0 1 0,33 0 0 0,13 0 0 0
Lines 0 0,33 1 0,2 0 0,22 0 0 0

Quantity sold 0 0 0,2 1 0,5 0,22 0 0 0,67
Quarter 0 0 0 0,5 1 0,38 0,25 0 0,67

Sales revenue 0,25 0,13 0,22 0,22 0,38 1 0,25 0 0,25
State 0 0 0 0 0,25 0,25 1 0 0

Store name 0 0 0 0 0 0 0 1 0
Year 0 0 0 0,67 0,67 0,25 0 0 1

Average 0,03 0,06 0,09 0,20 0,22 0,21 0,06 0 0,20

Table V.2: Symetric matrix of co-occurrences (in a personal collection
of dashboards) between various dimensions and measures of a multi-
dimensional domain model.

4.3 Collaborative co-occurrence measure

4.3.1 Cold-start users and coverage

In recommender systems, the coverage is similar to the recall in information
retrieval and represents the share of items that can actually be compared
(and thus recommended). This metric is thus commonly used to evalu-
ate collaborative RS, introduced in Chapter II, Section 2.2.2. Formula V.3
presents a problem for cold-start users, i.e. those new to the system. In-
deed, these users do not have stored documents from which co-occurrences
can be computed. Recommender systems address this issue by introducing
a collaborative contribution in items’ ratings, e.g., in collaborative filtering
methods.

A collaborative contribution in the final item ranking is key to improve
the system’s coverage and enable the exploration of resources previously
unknowned (or unused) by the user. A simple approach could consist in
using the average of the previous co-occurrence measure for the set of all
users, noted cooc(ei, ej), as follows:

coocsimple(u, ei, ej) = α · coocu(ei, ej) + β · cooc(ei, ej) (V.4)

This definition is a simple weighted average of the personal and the
global co-occurrence scores, where α and β are coefficients to be adjusted
such that α+ β = 1.



4. USAGE STATISTICS IN BI DOCUMENTS 103

4.3.2 Using the social/trust network

Formula V.4 broadens the collaborative contribution to “the whole world”.
In this case, all users have an equal contribution, even though some may
not relate at all to the current user. Jamali et al. suggest that this could
be significantly improved by considering the user’s social network and, e.g.,
favoring users close to her [JE09]. The benefits of narrowing the collab-
orative contribution down to close users reside at two levels: (a) results
are more precisely personalized (b) potential pre-computation can be made
more resource-efficient (memory, CPU, etc.).

Let us note SN(u) the set of users in u’s social network, which can
be filtered, e.g., to keep only users up to a given maximum distance. We
propose the following refined co-occurrence measure:

cooc(u, ei, ej) = α · coocu(ei, ej)

+
β

|SN(u)|
·

∑

u′∈SN(u)

1

d(u, u′)
coocu′(ei, ej) (V.5)

This measure cooc(u, ei, ej) is only defined for entities ei and ej exposed
to the user u by access control rules. However, it may be extended for
convenience to all entities, e.g., by considering a default value of 0. In this
co-occurrence measure, the contribution of each user u′ is weighted by the
inverse of the distance d(u, u′).

The knowledge of relations between users can be obtained from a variety
of sources, including popular social networks on the Web. However, this does
not necessarily match corporate requirements since users of the system are
actual employees of a same company. Therefore, we consider the use of
enterprise directories (LDAP, Active Directory, etc.) to extract relations
between users. For instance, such directories usually contain information
regarding the company’s hierarchical organization, that is relations of the
type “A reports to B”. If the social network and its actual construction
are not the main focus of our work, it was discussed along with the social
dimension of our situation model, in Chapter III, Section 3.

4.3.3 Similarity-based and hybrid approaches

We now investigate the usage of the users’ similarity measure defined in
the previous section to propose an alternative collaborative approach. In
Formula V.5, the collaborative contribution is weighted function of the dis-
tance between users. However, it could be argued that close users (in terms
of their distance in the social graph) are not necessarily those with the most
common habits when it comes to data consumption. Two sales managers in
different countries under different hierarchical chains may be distant of, say,
5 degrees. Even if their interests were similar, the inverse distance factor



104 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

would considerably reduce the importance of the second user in the final
scoring function of the first.

In line with traditional techniques used in user-based collaborative RS

(described in Chapter II, Section 2.2.2), we thus propose the following al-
ternative co-occurrence measure:

cooc(u, ei, ej) = α · coocu(ei, ej)

+
β

|U ′|
·
∑

u′∈U ′

sim(u, u′) · coocu′(ei, ej) (V.6)

In Formula V.6, U ′ denotes the set of users most similar to the current
user u, determined using the similarity function as follows: U ′ = {u′ ∈
U, sim(u, u′) ≥ K}, where K is a constant threshold. This step filtering the
nearest users may be used to reduce the computation cost and improve its
precision. However, in a first approximation it is possible to simply consider
U ′ = U . To conclude, it would also be possible to consider hybrid approaches
– using a similarity function combining users’ distance and their preferences
– but we did not investigate this aspect further due to lack of time.

5 Personalized query expansion

So far we presented in this chapter particular semantics of multi-dimensional
models and examples of usage statistics that can be derived from existing
repositories of BI documents.

In this section, we describe our approach to design a personalized query
expansion component leveraging models semantics, co-occurrences and user
preferences previously defined. Besides, we discuss the architecture of our
system using the GR and situation management frameworks described in
Chapters III and IV.

5.1 Query expansion

The aim of our system is to assist the user in the query design phase by of-
fering suggestions of measures and dimensions she could use to explore data.
When she selects a measure or a dimension, it is added to the query being
designed and suggestions are refreshed to form new consistently augmented
queries. For instance, if the user selects the measure Sales revenue, the
system proposes to add dimensions to form queries like Sales revenue by
Year, Sales revenue by Category, etc.

5.1.1 Ranking candidate entities

To complete a given a query q = {e1, . . . , en} with an additional measure
or dimension, we need to find candidate entities and rank them. In a first



5. PERSONALIZED QUERY EXPANSION 105

Algorithm 1 Query expansion: expands an initial query q for a given user
u with additional parameters params.

1: QueryExpansion(q, u, params)
2: candidates← getCandidates(q, params)
3: rankedQueries← initialize list
{Rank each candidate entity}

4: for j = 1 to |candidates| do
5: q′ ← q ∪ {candidates[j]}
6: rank ← ranku(candidates[j], q)

{Append generated query}
7: rankedQueries.add(q′)
8: end for
9: return sort(rankedQueries)

approximation, candidate entities, cj , j = 1..p, are those defined in the same
domain and compatible with every ei, determined using functional depen-
dencies (see Section 2.2).

We then use the following personalized function to rank each candidate
cj , using one of the co-occurrence measures defined in Section 4 and noted
cooc:

ranku(cj , q) =

{

prefu(cj) if q = ∅

prefu(cj) ·
1
n

∑n
i=1 cooc(u, cj , ei) otherwise

(V.7)

To conclude with the notation of the query expansion problem introduced
in Section 1, we define our component QE as:

QE : (u, q, params) 7→ {(q1, ranku(c1, q)), . . . , (qp, ranku(cp, q))}

The complete query expansion process is summarized in Algorithm 1.
This algorithm is pretty straightforward and mainly meant to present more
formally the steps required towards final suggestions. In particular, the
whole method begins line 2 with the selection of candidate entities. This
selection depends on the inital query q to deal with compatibility issues and
also additional parameters.

5.1.2 Candidates filtering and parameters

Beyond ranking, suggestions of the query expansion component can be fine-
tuned using various parameters. In particular, the following parameters may
be used to filter the set of entities which are candidates to expand the initial
query:



106 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

• The maximum number of results can be configured to limit the num-
ber of variant queries that will be generated as recommendations or
suggestions. Assuming this number is set to 3, the output of the ex-
pansion component will be the list of the 3 best-ranked queries.

• The type of suggested entities can be limited to measures and/or di-
mensions. This aspect is interesting to drastically filter the set of en-
tities in some cases. For instance, it seems reasonable to assume that
once the user has selected a measure, she is going to expect dimensions
to be suggested rather than other measures.

• The domain can be restricted to a given list of dimensional models.
The initial selection or configuration of this parameter should not be
imposed on the user since it requires one more manual step before
suggestions can take place. However, it is possible to determine it
automatically when the initial query q is not empty, using the fact
that queries can be executed in the scope of one given model.

• Suggested dimensions can be grouped by and limited to certain hier-
archies. This may be used to reduce the number of suggestions and
encourage the user explore varied axis of analysis.

5.2 Architecture overview

In Section 1, Figure V.1 gave an overview of the architecture of our query
expansion component. In this section, we present this architecture more
specifically with the integration of the GR and situation frameworks pre-
sented in Chapters III and IV.

Figure V.7 illustrates this framework-based implementation of the con-
cepts described in this chapter. Providers are important components in this
framework which allow the creation of graphs with user-related data. For
instance, the social provider was presented with the definition of the social
dimension in our situation model, in Chapter III, Section 3.3. Let us now
describe other providers involved.

5.2.1 Multi-dimensional models provider

First and foremost, the multi-dimensional models provider is responsible for
the creation of graphs which describe models available to the current user.
Entities represented in these graphs are measures and dimensions, linked by
relations (or statements) of two types: hasParent and determines.

Hierarchies and functional dependencies represent structural relations
which semantics were introduced in Section 2. Among other points, we
discussed the use of two reasoning techniques to augment existing models in
a semi-automatic approach and help complete these graphs. At this point,



5. PERSONALIZED QUERY EXPANSION 107

Figure V.7: Proposed integration of the personalized query expansion com-
ponent with graph repository and situation management frameworks.

it could have been noted that the transitivity of functional dependencies –
represented with the determines predicate – could also be integrated using
a third custom rule R3:

[R3: (?a <urn:grepo/slayer#determines> ?b)

(?b <urn:grepo/slayer#determines> ?c)

-> (?a <urn:grepo/slayer#determines> ?c) ]

The reason not to use this solution (with an additional rule) lies in
practical implementation performance. We compared the time taken by the
reasoning processs using two solutions: (1) rules R1 and R2 with OWL-MINI

reasoning for transitivity and (2) rules R1, R2 and R3.

Figure V.8 illustrates the comparison of these two solutions, in terms
of reasoning execution time function of the number of nodes. For this test,
we randomly generated graphs with the given number of nodes and twice
as many relations. The implementation of underlying RDF graphs, SPARQL

querying and reasoning is enabled by the popular Jena framework for Se-
mantic Web technologies2.

2http://jena.sourceforge.net/



108 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

Figure V.8: Comparison of two proposed reasoning solutions to determine
full dependencies in graphs populated from multi-dimensional models.

To conclude we evaluated the cost of reasoning using the first solution
(which happens to be the most efficient) when the number of dimensions and
measures grows. The result of this evaluation is presented in Figure V.9.
In particular, we observe that the reasoning time augments almost linearly
(below the second) for up to 13000 entities. This cost is easily acceptable
and covers most real-life scenarios with large models.

5.2.2 BI documents provider

Next comes the BI documents provider. This component connects to existing
repositories of the BI platform in order to describe dashboards, reports and
their content in graphs. Documents may reference table or charts, which
themselves reference measures and dimensions as discussed in Section 4.1.
Figure V.6 illustrates the graph representation of a dashboard with refer-
enced charts, measures and dimensions.

One thing we did not discuss previously with the provider for multi-
dimensional models is the security aspect. Indeed, the BI platform requires
user credentials to allow authentication. For this purpose, the graph reposi-
tory framework allows users to enter required credentials, should they decide
to enable the corresponding provider. In this context, the BI documents
provider leverages this feature and exploits the user’s credentials to log in a
(remote) BI platform. Credentials – and more generally the security model
applied to components of the GR – have been described more thoroughly in
Chapter IV, Section 3.1.

To conclude, we leveraged in our experimentations the connection to



6. SUMMARY AND DISCUSSION 109

Figure V.9: Evaluation of the reasoning time function of the size of the
multi-dimensional model (number of nodes, measures or dimensions).

Exploration Views, a dashboarding solution which used to be a prototype
and is now included with SAP Business Objects Explorer. A demonstration
version of this solution is available online3.

5.2.3 Preferences provider

The last provider that needs to be presented in the architecture diagram of
Figure V.1 is the preferences provider. This provider manages users’ prefer-
ences which come with explicit and implicit contributions (see Section 3.1).

At least, this provider includes dependencies on the multi-dimensional
models provider, to enumerate available measures and dimensions. On top
of this, a dependency on the BI documents provider allows implicit prefer-
ences to be computed using occurrences of these measures and dimensions
in documents.

Finally, the user’s feedback (or explicit preferences) is maintained thanks
to a graph, created and persisted using the appropriate graph factory (see
Chapter III, Section 2.2.4).

6 Summary and discussion

In Section 2, we presented multi-dimensional domain models defined in data
warehouses to enable the exploration of large amounts of data thanks to ded-
icated BI analysis tools. These models introduce in particular measures and

3http://exploration-views.ondemand.com



110 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS

dimensions which inter-relations – hierarchies and functional dependencies –
carry specific semantics. These dependencies are key in a query generation
process and help for instance to determine objects compatibility. Besides,
we described the use of BI documents repositories to derive valuable us-
age statistics for entities of these models. This allowed us to define several
personalization-related indicators like users’ preferences and users’ similar-
ity (in Section 3) and co-occurrences between entities (in Section 4). Several
variants of the co-occurrence measure were proposed, from the most simple
and personal to more elaborate ones, introducing for instance a collaborative
contribution. Eventually, Section 5 discussed the utilization of these con-
cepts, applied for the design of a personalized query expansion component.
Such a component proves useful in various BI experimentation scenarios, as
will be discussed in Chapter VI.

Repositories of BI documents are at the root of a certain number of indi-
cators presented in this chapter. In our approach, we leverage the structure
of these documents to define occurrences (and co-occurrences) in the scope
of a table or a chart. We illustrated the exploitation of repositories of BI

documents as one source of usage statistics. Besides, other sources of usage
data could clearly be used, the most common example being logs of users’
sessions and queries. More generally, personalization and recommendations
for multi-dimensional queries have been discussed in the review of related
work, in Chapter II, Section 4.

Golfarelli et al. described MyOLAP to express BI-specific preferences, in
a qualitative approach. The authors define these preferences as soft con-
straints used to improve the scoring of most similar data. Interestingly,
preferences can be expressed on both numerical and categorical domains,
that is on measures and dimensions. For instance, it is possible with My-

OLAP to define preferred aggregation levels (in a hierarchy of dimensions)
and intervals (for values of a measure). These preferences are defined as
MDX operators which enable the expression of soft constraints in potentially
complex queries. The reverse side of the coin is the increased complexity of
the query design process which assumes a certain know-how from end-users,
in particular the ability to write MDX queries.

To sum up, we reckon that our quantitative approach presented here
offers an interesting trade-off between the generality of the model and the
expressivity of recommended queries. Simple numerical indicators allow us
to easily integrate social contributions and rely on efficient and scalable
methods, emerging from traditional recommendation techniques. On the
other hand, our approach does not leverage the full expressivity of query
languages, be it SQL or MDX. This introduces limitations to the complex-
ity of queries that can be recommended by our system but presents the
significant advantage of being source agnostic.



7. CONCLUSION 111

7 Conclusion

In conclusion, we presented in this chapter a personalized query expansion
system that leverages (a) semantics of multi-dimensional domain models, (b)
usage statistics derived from (co-)occurrences of measures and dimensions
in repositories of BI documents and (c) users’ preferences and similarity.
This system and its experimentation with a prototype of interactive query
designer will be presented in further details in Chapter VI, Section 3.

This chapter introduced a certain number of concepts for personalization
and recommendations in a BI context. It would be interesting and particu-
larly valuable to concentrate future work on the evaluation of the proposed
query expanson system. In particular, an extensive study and comparison
of the measures presented in Sections 3 and 4 would help determine and
refine the most appropriate ones. To do so, the first step would consist
in the acquisition (or generation) of an appropriate dataset. This dataset
should at least include the definition of multiple users and a sufficient num-
ber of documents (reports or dashboards), to ensure that occurrences and
co-occurrences defined are meaningful. Ideally, these users would also be
described in a social graph so the collaborative contribution can be evalu-
ated based on distances in the graph. This would for instance enable the
comparison of the two co-occurrence measures propsoed in Formulas V.5
and V.6.

Importantly, our approach bases on statistical indicators derived from
occurrences of entities in BI documents. On one hand, such indicators prove
valuable and offer a rather generic model – in particular because they are
source agnostic – but on the other hand, this limits the expressivity of
queries that can actually be personalized or recommended. We illustrated
the use of these concepts with a query expansion component. However, it is
worth noting that users’ preferences and their similarity (in terms of BI data
consumption) could be employed in diversified scenarios. Therefore, as part
of future work, we would like to investigate other promising applications
like, for instance, a question answering system allowing the expression of
business queries in natural language [KBA11]. This system could exploit
users’ preferences to help with the entity disambiguation process or query
reformulation. Besides, the users’ similarity measure would be valuable to
introduce a social scoring function for answers brought by the system.

Finally, we reckon that recommendations in the context of data ware-
houses and BI platforms could benefit much further from techniques devel-
oped in the area of recommender systems. However, taking into account
the specific semantics of multi-dimensional models is key to provide relevant
structured analytics.



112 CHAPTER V. BI SEMANTICS AND USAGE STATISTICS



Chapter VI

Experimentations with BI

Recommendations and

Personalization

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . 113

1.1 Exploratory recommendation scenarios . . . . . . . 114

1.2 Search-related recommendations and personaliza-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . 115

2 Text-to-query . . . . . . . . . . . . . . . . . . . . . 115

2.1 Dictionary generation for entity extraction . . . . . 116

2.2 Query generation from a text . . . . . . . . . . . . 118

2.3 Experimental results . . . . . . . . . . . . . . . . . 123

3 Personalization in search . . . . . . . . . . . . . . 127

3.1 An open architecture for search . . . . . . . . . . . 127

3.2 BI queries and charts search . . . . . . . . . . . . . 129

3.3 Plugins personalization . . . . . . . . . . . . . . . 132

4 Summary and discussion . . . . . . . . . . . . . . 135

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . 135

1 Introduction

The work that we presented in Chapters III to V aims at defining a frame-
work – or set of re-usable and extensible components – to help build per-
sonalized and context-sensitive applications.

We introduced our graph-based situation model in Chapter III, in par-
ticular the underlying graph repository (GR). The GR serves as a container

113



114 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

for personal background knowledge and a vehicle for context-related infor-
mation. Besides, dimensions are built on top of the situation, represented
as a graph centered on the current user. Dimensions help expose categorized
and aggregated information with additional convenience methods. For in-
stance, social and geography dimensions can be used to retrieve respectively
the user’s social network and her current location.

The situation management framework presented in Chapter IV described
active components for continuous monitoring and dynamic adaptation of
situation graphs. In short, business events can be sent to the situation
platform (or raised internally), which queues them to perform asynchronous
processing. In response to these events, activation rules are used tro trigger
specific operators, responsible for graphs adaptation.

Then, Chapter V presented semantics of multi-dimensional models com-
monly used in data warehouses and BI tools. Besides, we defined usage
metrics or statistics that can be derived from repositories of documents like
dashboards and reports. These indicators represent (a) occurrences and co-
occurrences of measures and dimensions, (b) users’ preferences according to
these entities and (c) users’ similarity.

To conclude, the aim of this chapter is to show case and evaluate our
approach using different BI-related experimentation scenarios. These sce-
narios were implemented as proof-of-concepts to evaluate the applicability
of our GR and situation management frameworks, and its effectiveness for
personalization and recommendations. We distinguish two types of experi-
mentations, exploratory and search-related scenarios.

1.1 Exploratory recommendation scenarios

The first kind of scenario we consider is said exploratory in that it is meant
to suggest to the user resources which are related to what she is currently
reading, writing, etc. The aim is to enable a certain form of exploration of
resources available to the user and likely of interest.

In line with this approach, we will present Text-To-Query (T2Q), a sys-
tem suggesting structured analytics that are dynamically generated to illus-
trate a textual content. For instance, the user might get charts and tables
built from data in her corporate warehouse to illustrate an email she is
reading or enrich a presentation she is working on.

In the T2Q example, the entry point for the user to get suggestions
of analytics is a text (an unstructured document). On the other hand,
assuming a user is currently interested in a given analysis, we will present
a method leveraging our framework to suggest related visualizations among
those already defined in a collection (or repository) of BI documents like
dashboards and reports.

To conclude with exploratory recommendation scenarios, we will illus-
trate our approach with simple examples of recommendations exploiting the



2. TEXT-TO-QUERY 115

user’s location. This information is obtained through a mobile application.

1.2 Search-related recommendations and personalization

We described exploratory recommendation scenarios which contribute to
broaden the user’s vision on a given topic and help her discover resources.
We now introduce search-related scenarios meant to assist the user to for-
mulate her queries and to respond to them.

We will present a case study around an ongoing federated search project
and describe the use of our GR and situation management frameworks to
enable personalization and recommendations at different levels. In particu-
lar, techniques developed in Chapter V led to the definition of personalized
query expansion component, which we use to enable auto-completion in an
interactive query designer. Besides, federated search involves the aggrega-
tion of multiple sources of information which may introduce confusion for
end-users. We present how our framework contributes to the personalization
of search results thanks to simple user preferences.

The rest of this chapter is organized as follows: Section 2 presents the
T2Q system and a set of clients in the form of add-ins for office applications.
Finally, Section 3 presents personalization in the federated search project
mentioned above.

2 Text-to-query

The description of the knowledge worker’s environment by Schwarz high-
lights the fact that most of the information generated within companies is
unstructured data [Sch05]. The amount of knowledge available in a company
in unstructured form has been estimated to 80-85% by business analysts.
Moreover, the Internet has become a fundamental source of information for
business users, mostly unstructured as well.

An important share of unstructured data is not going to change inside
companies and on the Web, because it is a natural communication means.
Therefore, it can often be helpful to bring relevant structured data to a
user, based on unstructured content she’s manipulating, like emails, reports,
presentations, web pages, etc. Next-generation Business Intelligence (BI)
platforms should allow a smooth transition in both directions: unstructured
- structured and structured - unstructured data. Given that most users are
not database or BI experts, we focus on bringing structured data based on
an unstructured users’ input. This can serve to broaden the user’s view on
a given topic, or provide more insight on mentioned concepts.

The T2Q system we present in this section is a step to tackle this chal-
lenge in the context of large data warehouses. Our aim is to provide users
with relevant aggregated content from a data warehouse based on unstruc-
tured textual content. In particular we investigate how to generate multi-



116 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

Figure VI.1: Text-To-Query exposed to the end-user as an add-in for Pow-
erPoint. Charts suggestions appear in the right panel and can be dragged
and dropped in the slide.

dimensional queries related to a text and how to automatically choose the
best visualization for their results. Figure VI.1 illustrates a sample client
surfacing T2Q recommendations as an add-in for an office application.

2.1 Dictionary generation for entity extraction

In Chapter V we introduced the semantics of multi-dimensional domain
models defined in data warehouses. In order to map textual contents to
these models and automatically generate structured queries, our systems
exploits periodically re-generated dictionaries, which are applied to a text
using the standard named entity recognition (NER) framework described
by [Hul99] (SAP BusinessObjects Text Analysis). In this section, we briefly
introduce how we generate, enrich and leverage these dictionaries.

2.1.1 Dictionaries for data warehouses metadata

In general our dictionaries represent the core concepts of a data warehouse
and some auxiliary information:

Measures such as Revenue are usually the expected result of a query. Our
system generates one dictionary for measures of each domain model of
the data warehouse.



2. TEXT-TO-QUERY 117

Dimensions such as Country are the core primitives that are used in tech-
nical queries. They specify the level of granularity that measures can
be aggregated on (e.g., Revenue per Country). Again, we generate
one dictionary with dimensions for each domain model.

Dimension values are used to filter the output of a query (e.g., Revenue
in Germany). For each dimension, our system maintains a separate
dictionary with its values (or instances). Therefore, when analyzing
textual contents, we can also infer from the occurrence of a value the
corresponding dimension.

Standard analysis categories define fixed terms that are used frequently
in certain contexts and provide hints on the intention of the query. In
particular, this dictionary contains weak time and geographic mentions
such as “here”, “there”, “before”, “year”. Standard analysis categories
and their usage are presented in detail in Section 2.2.

2.1.2 Relaxing dictionaries for entity extraction

Previous work has stressed the fact that entities in a text are very often refer-
enced in a form that is not exactly the one present in the dictionary [ACK09].
This is a well known issue for entity extraction but also an important con-
cern in the duplicate detection and record matching research areas, surveyed
by [EIV07]. For this reason, [CGX09] presents a developed method to facil-
itate approximate entity matching by automatically generating variants for
a reference entity from a collection of documents.

The issue of syntactical heterogeneity is an important challenge but not
the main focus of our work. However, we facilitate two techniques for relax-
ing the dictionaries. First, our system leverages synonyms and orthographic
variants, which are maintained in resources like WordNet and EuroWord-
Net. Therefore, we can identify dimension values such as United States of
America (in a Country dimension) by terms like “US”. Second, we apply
stemming on the dictionary tokens, such that we can identify the dimension
Country in a text like “the revenue in countries that...”. Both, synonyms
and stems are compiled into dictionaries.

We exploit metadata generated in the pre-processing phase – data ware-
house dictionaries and trigger words associated to standard analysis cate-
gories – to analyze incoming texts, and return potential technical queries.
Therefore, the text is passed to the NER framework which applies all neces-
sary pre-processing such as stemming and dictionary matching. As result,
we derive per sentence a set of identified measures, dimensions, dimension
values and trigger words for standard analysis categories.

We introduced the use of NER techniques in conjunction with data and
metadata from warehouses to recognize business entities mentioned in text



118 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

documents. In the next section, we describe our algorithm to dynamically
build and recommend meaningful queries out of extracted entities.

2.2 Query generation from a text

In this section, we introduce the notions of standard analysis categories and
entity analysis context. These are used in the dynamic query generation
algorithm that we eventually present.

2.2.1 Standard analysis categories

Definition. On top of automatically generated categories (see Sec-
tion 2.1), we define standard analysis categories (SAC) to extract analysis
intentions from a text. These categories are those that are frequently used in
querying, reporting and analysis. We associate to each category terms and
expressions that relate to it. This kind of dictionary describing key aspects
of analysis intentions is not part of common data warehouses and had to be
defined manually. Among standard categories, we distinguish:

Dimension types. Analyzing data and reporting on it often involves
classic dimension types, such as Geography, Time or Organization. It is for
instance very common to query for the distribution of a given indicator per
country. Terms associated to the Geography category can be very specific
like “country” or “city”, or more vague like “where”, “here”, etc.

Analysis types. Analysis type categories describe general analysis in-
tentions such as Trending, Comparison, Contribution and Ranking. These
analysis types can be used to help refine the suggested visualization by se-
lecting the most adapted chart, as discussed later in Section 2.2.3.

Subject types. Subject types define broad common business topics,
such as Sales, Finance, Performance, etc. They belong to standard cat-
egories as they are bound to be reusable in most businesses or industries.
“Customer”, “client”, “sell”, “revenue”, “buy”, “product” are some of the
general terms related to the Sales subject type. Subject types are the most
costly to define among standard categories and the most tightly bound to
the business domain.

Mapping domain entities to SACs. Our aim with SACs is to enable
rather abstract requests like “Sales analysis / Geography / Time”, which
could result in the actual query Revenue per Country per Year. Doing so
requires a mapping between objects of the domain model and SACs. For in-
stance, dimensions like Country, City are mapped to Geography and Year,
Quarter and Month are mapped to the Time. The last operation performed
after the dictionary creation process discussed previously is thus the cat-
egorization of measures and dimensions of the domain model in available
SACs.



2. TEXT-TO-QUERY 119

Figure VI.2: Mapping of some measures (purple) and dimensions (yellow)
to Standard Analysis Categories (blue).

We use the dictionary of SACs to extract entities in the names of mea-
sures and dimensions (using previously discussed text normalization tech-
niques). As an example, dimensions like Reservation year, Quarter or
Event month are associated to the standard dimension type Time. Objects
are associated to all SACs that could be extracted and, as a result, the associ-
ation domain object – SAC is a one-to-many relation. Figure VI.2 illustrates
the results of this mapping applied to some dimensions and measures of the
warehouse we used for test and demonstration purposes.

The method presented here is extremely simple and poses two main is-
sues. First, the dictionary of SACs is key but enriching it to cover new
standard subjects and dimension types requires some domain knowledge.
The second difficulty regarding this process is that it is error-prone. In par-
ticular, polysemous words may result in incorrect associations [BHH+10].
To deal with such erroneous associations, administrators have the ability to
manually validate results using, e.g., Protégé1 since graphs of associations
are serialized as a simple RDF file. Even though this appears as an ex-
tremely simple method, we reckon this mapping does not necessarily induce
an excessive knowledge-design phase since we operate in the context of the
controlled (thus limited) vocabulary defined in models of a data warehouse.

1http://protege.stanford.edu/



120 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

Figure VI.3: Graph view of entities extracted in document1 (left part),
which corresponds to the presentation slide illustrated in VI.1.

2.2.2 Entities analysis and query completion

In previous sections, we presented our approach to create dictionaries from
multi-dimensional models. Then, we introduced SACs which are artifacts
used to help infer analysis intentions thanks to a pre-defined dictionary. In
this section, we describe the actual query generation process which starts
by performing entity extraction on the input text.

The entity analysis context. In Section 2.1 we indicated that the output
of the NER phase is a collection of entities which can be grouped by sentence
(and by paragraph). Let E = NER(text) = {e1, . . . , ep} denote the set of
entities – domain models’ entities as well as SACs – extracted in the input
text, containing n sentences. In the graph of Figure VI.3, extracted entities
are represented by edges starting from the node document1 (on the left
hand side). This document stands for the presentation page depicted in
Figure VI.1.

We define the entity analysis context (EAC) at document and sentence
levels. At the document level, we simply have EAC(text) = E, that is the
set of all entities. Then, at the sentence level, we consider the following
subsets:

• entities explicitly mentioned in sentence j and

• entities mentioned in previous sentences, filtered and flagged as propa-
gated by the propagate method which we discuss later in this section.

Eventually, with Ej = {e ∈ E, sentence(e) = j} ⊆ E, we define succes-
sive EACs as follows:



2. TEXT-TO-QUERY 121

EACj(text) =

{

Ej ∪ propagate(EACj−1(text)) if j > 1
Ej if j = 1

(VI.1)

Entity propagation. Let us first consider the sample sentence “our rev-
enue is decreasing in some countries”. The measure Revenue and the dimen-
sion Country are explicitly mentioned in this sentence. The simple query
Revenue per Country can then easily be recommended. However, on top
of these entities, the verb “decrease” belongs to the standard dimension type
Time. We thus have EAC0 = {Revenue, Country, Time}. We interpret the
weak time mention as an indication that the query could be completed by
using a dimension mapped to the Time SAC. We generalize this and con-
sider that all extracted SACs should be represented by at least one object of
the data warehouse. This allows for instance to serve abstract requests like
“Sales analysis / Geography / Time”.

Let us complete our previous example with a second sentence to illus-
trate entities propagation: “Our revenue is decreasing in some countries. It
is increasing in France though.”. Assume that, for the first sentence, the
Time SAC has been represented by the dimension Year during SACs repre-
sentation. The second sentence also mentions the Time SAC via the verb
“increase”. Therefore, we will favor the use of the same dimension to in-
crease consistency across suggested queries. More formally, the propagate

method of formula VI.1 adds to EACj+1 entities from EACj that were used
to represent a SAC. To distinguish between entities explicitly mentioned and
those propagated, entities are flagged with the initial sentence and inclusion
cause (explicit mention, SAC representation, query extension, etc.).

Query completion. During the iterative construction of EACs for differ-
ent sentences, we need to be able to complete them with required measures
and dimensions. In the previous example, we need to be able to complete
EAC0 by choosing the most appropriate dimension to represent the standard
dimension type Time.

In Chapter V we introduced semantics of multi-dimensional models plus
aditional usage statistics which can be derived from repositories of BI doc-
uments such as dashboards and reports. Using these concepts, Secion 5 of
the latter chapter then presented a personalized query expansion component
which we leverage here. This component QE takes as input the concerned
user u, a query q to be completed and parameters params whih can be used
to filter candidate entities:

QE : (u, q, params) 7→ {(q1, s1), . . . , (qn, sn)}

Using these notations with our example, the initial query q is the set of
measures and dimensions in EAC0 and parameters simply indicate that we



122 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

require a dimension mapped to the Time SAC. In short, this adds up to find
the dimension that:

• is mapped to the standard dimension type Time,

• is compatible with all business entities of EAC0, as determined using
functional dependencies (see Chapter V, Section 2.2),

• is preferred by the user (see preferences in Chapter V, Section 3),

• maximizes the co-occurrence with business entities of EAC0 (see Chap-
ter V, Section 4).

The query expansion component may also be used to return the top k

candidates, which leads to offer suggestions of aternative queries. An imme-
date way to do so is to clone the current EAC for each of the k candidates.
This technique may be paricularly useful in the case of limited entity ex-
traction results. For instance, assume only the Revenue measure could be
detected, leading to the simple query for the total aggregated value of this
measure. It is interesting to consider the suggestion of related queries to help
the user explore related analytics, like Revenue per Country, Revenue per

Year, etc.

2.2.3 Text-To-Query algorithm

We introduced the notions of standard analysis categories and entity analysis
context, which we use in conjunction with our query expansion component
to compose queries related to a text document. In this section we present
the final Text-To-Query (T2Q) algorithm.

In Algorithm 2, lines 1-12 correspond to query generation and completion
techniques previously discussed. Beyond this, lines 13-17 provide additional
optimizations to queries and associated visualizations. First, extracted busi-
ness entities can relate to a measure, a dimension or a value of a dimension.
Values of dimensions are particularly interesting for building more meaning-
ful queries, with filters for instance. In the sample sentence “our revenue
is increasing in France”, “France” is recognized as a value of the dimension
Country. We can use this to propose the filtered query Revenue per Year

[Country = France]. The application of filters is realized at line 14.
Lines 15 and 16 perform further visualization-related optimizations

thanks to standard analysis types (Comparison, Contribution, Ranking
and Trending, see Section 2.2.1). Line 15 uses extracted analysis types
to determine the most significant and influence the selection of an adapted
chart. In the previous sample sentence, the verb “increasing” refers to the
dimension type Trending, which indicates that a trend line would probably
be more appropriate than a pie chart. However, we do not elaborate more on
the complete chart selection algorithm as we rely on a proprietary technology



2. TEXT-TO-QUERY 123

Algorithm 2 Text-To-Query: recommendations of dynamically generated
structured queries to illustrate a text document.

1: Text-To-Query(text)
2: queries← initialize list
3: sentenceQueries← null
4: eacSentence← null
{Text normalization and entity extraction}

5: entities← extractEntities(text)
6: eac← buildEAC(text, entities)
{Queries are generated in different domain models}

7: for all domain in eac.domains do
8: for j = 1 to numberOfSentences(text) do
9: eacSentence← eac.getSentenceEAC(domain, j)

10: sentenceQueries← eacSentence.initQueries()
{Split into groups of compatible objects}

11: sentenceQueries← splitCompatible(sentenceQueries)
{Query completion and optimization}

12: sentenceQueries← eacSentence.representSACs(sentenceQueries)
{Queries filters and visual optimization}

13: for all query in sentenceQueries do
14: eacSentence.setFilters(query)
15: eacSentence.setAnalysisType(query)
16: optimizeDimensions(query)
17: end for

{Append generated queries}
18: queries.add(sentenceQueries)
19: end for
20: end for
21: return queries

called Best Chart Recommendation. Finally, in the optimizeDimensions

method of line 16, we use hierarchies and functional dependencies (when
available) to re-order dimensions. For instance, in the query Revenue per

Quarter per Year, dimensions Quarter and Year should be swapped. Oth-
erwise, the resulting chart would have axis values ordered by Quarter (Q1
/ 2009, Q1 / 2010, Q1 / 2011, etc.) rather than Year (2009 / Q1, 2009 /
Q2, 2009 / Q3, etc.), which may be misleading.

2.3 Experimental results

In the previous section, we described operations performed at runtime to
generate analytical queries related to a text. In the following we describe the
architecture of our system, using the Graph Repository (GR) and situation



124 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

Figure VI.4: Architecture overview for Text-To-Query integrated with the
graph repository and situation management frameworks.

management frameworks (see Chapters III and IV).

2.3.1 Architecture overview

Architecture wise, T2Q includes pre-processing and runtime components.
Pre-processing ones are responsible for long offline treatments, in particular
the generation of dictionaries from available multi-dimensional models of a
data warehouse. These dictionaries are refreshed regularly to include data
newly loaded in the warehouse. These operations are handled by the compo-
nent called T2Q pre-processor in the architecture overview of Figure VI.4.
The mapping between entities of the warehouse and SACs previously de-
scribed is also performed and controlled offline. In the architecture diagram,
the SACs mapping provider exposes in the GR this mapping, with gaphs
like the one in Figure VI.2.

Then, in order to benefit from personalized components exposed by the
GR and provide dynamic recommendations at runtime, we implemented the
following operators, some of which were also briefly described in Table IV.1
(page 72):



2. TEXT-TO-QUERY 125

Stemming. Applies stemming to unstructured resources. Stemming con-
sists in text normalization and reduces words to their roots. For in-
stance, the sentence “it is raining cats and dogs” would be reduced to
“it be rain cat and dog”.

NER. Performs named entity recognition on text resources, extracting en-
tities with various dictionaries. Should they be accessible to the user,
extracted entities are mapped to objects of the data warehouse.

T2Q. Combines results of entity extraction with the semantics of a multi-
dimensional domain models and usage statistics (through the query
expansion component as described in Section 2.2.2) to suggest mean-
ingful queries.

The question remains as to the activation of these operators. In Chap-
ter IV, Section 2, we presented activation rules which can be defined to react
to events and trigger operators. Our aim is to react to events of the type
user reads document, where user is the current user and document the text
document being read. We illustrate below the rule which can be expressed
to trigger the T2Q operator:

<rule>

<event>

USER "http://.../read" "http://.../#UnstructuredDocument", ANY

</event>

<condition>

"http://.../ner" "http://.../hasProcessed" EVENT.object

AND NOT("http://.../t2q" "http://.../hasProcessed" EVENT.object)

</condition>

<action>

CALL "http://.../t2q" WITH EVENT.object

</action>

</rule>

2.3.2 Clients for supported data acquisition

We reckon that common office applications are a good place to expose rec-
ommendations offered by T2Q, as it can uphold a use-case scenario that we
call supported data acquisition. Let us consider a user, sales manager in a
company of the tourism industry, managing resorts around the world. She
is working on a presentation to report on her performance in terms of sales.
In this situation, T2Q can help her analyze the document she is working on
to get immediate and natural access to her corporate data. A video presen-
tation of this scenario is available online2, but based on an older version of

2https://www.sdn.sap.com/irj/boc/index?rid=/webcontent/uuid/10971dfd-2ff1-2b10-
6aa6-d58f939d76d9



126 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

Figure VI.5: Excel add-in for the situation platform, exposing Text-To-
Query recommendations. Suggested queries appear in the right panel.
Charts and data tables and can be inserted in the spreadsheet.

T2Q.

Figure VI.1 illustrates the PowerPoint integration, letting the user an-
alyze slides she is reading. Similarly, the Excel integration is illustrated in
Figure VI.5. Charts and data tables associated to recommended queries can
be inserted (by drag and drop) in the spreadsheet to perform further calcu-
lations or create more personalized charts. These add-ins are also available
for Outlook and Word to further assist the user during document creation
and analysis processes.

Add-ins were developed on top of basic REST services exposed by the sit-
uation management platform. These services enable authentication, events
posting and situation retrieval (see Chapter IV, Section 3.3). In particular,
recommendations of T2Q may be retrieved via the corresponding situation
dimension.

Similarly, we designed a mobile client application using situation services.
Figure VI.6 illustrates this client which allows a user to keep consuming the
system’s recommendations on the go. The user can select one of these rec-
ommendations to get the chart representation and the underlying data table.
This first sketch of application is clearly limited but further extensions and
improvements could benefit greatly, for instance, from speech recognition
capabilities. Using this, the user could refine interactively her analysis until
she reaches what she is looking for to eventually share or save it for later.



3. PERSONALIZATION IN SEARCH 127

Figure VI.6: Mobile client for the situation platform, exposing Text-To-
Query recommendations. The user can select suggested queries in a list to
look at the generated chart and underlying data.

3 Personalization in search

In this section, we present another important experimentation for the con-
cepts that we developed in our work. In particular, we illustrate how the
graph repository (GR) and situation management frameworks can be used
to enable various levels of personalization in a federated search project.

3.1 An open architecture for search

This project for a federated search engine has been initiated in 2011 as part of
a broader project inside SAP, called Business Web3. We now briefly present
the open modular architecture that was defined to allow contributions at
different levels in the search platform.

3.1.1 Architecture overview

Figure VI.7 depicts the overall architecture that was set-up. In particular,
the search platform handles four main types of extension points or plugins:

3http://www.sap.com/corporate-en/our-company/innovation/research/business-
web/index.epx



128 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

Figure VI.7: Architecture overview for the open search platform, using our
graph repository and situation management frameworks.

Query auto-completion plugins. As users type in their search query, the
system suggests possible annotations to complete the request. Anno-
tations describe key entities that could be recognized and anticipated
by the system. This process is called auto-completion and is imple-
mented by different plugins, as proposed annotations may originate
from different sources.

Query annotation plugins. Annotation plugins are meant to mark users’
queries thanks to a certain number of annotations, of possibly varied
types. For instance, an annotator is responsible for the capture of
measures and dimensions, with techniques similar to those described
in Section 2. The output of these plugins is combined to build a
complete query tree.

Search plugins. Search plugins are responsible for performing the actual
search on different source systems, taking as input the user’s query and
the query tree representing extracted annotations. Search plugins may
target corporate as well as Web content, structured or not. Numerous
examples may be considered from the simple one wrapping an existing
search engine like Google to more complex corporate search systems.

Answer plugins. Answer plugins are meant to enable multiple represen-



3. PERSONALIZATION IN SEARCH 129

tations of a single result. For instance, this is useful when dealing with
results in the form of BI queries, which can be represented either as a
data table or as a chart. Answer plugins will not be further discussed
here though.

It is worth noting that an OSGi4 runtime is used to enable a high level of
flexibility and real modularity. The GR and situation management frame-
works were implemented in this runtime as well (see Chapter IV, which
enabled a loosely coupled and progressive integration.

In particular, the OSGi runtime offers a service registry which enables
bundles to dynamically declare and consume services. The four types of plu-
gins previously described for the search architecture are dynamically regis-
tered to the search platform using this registry. Similarly, the GR is exposed
as an OSGi service so that search-related plugins can consume users’ repos-
itories and situation graphs to personalize their results. For this purpose,
user authentication is performed in the search application thanks to the cor-
responding situation service and the token is passed through as a parameter
of the search request. In the context of the search Web application, session
cookies may also be used.

3.1.2 Query parsing and annotations

User queries are parsed and annotated to build query trees. A query tree
represents annotations in a hierarchical manner and is produced by aggregat-
ing results of the different query annotation plugins available in the search
platform.

Briefly, annotations are simple metadata indicating chunks of the user
query that correspond to identified entities. Simple annotations usually
indicate the entity ID, its name, type, offset (in the query) and length.
These entities can be extremely varied and are meant to help with the query
analysis process. For instance, in the query “revenue 2008”, “revenue” may
be used to recognize the measure Sales revenue and the term “2008” may
be recognized as a value of the dimension Year. Entity extraction techniques
have been discussed in more details in Section 2 with the Text-To-Query
system.

3.2 BI queries and charts search

In Section 5 of Chapter V, we presented a personalized query expansion com-
ponent, based on semantics of multi-dimensional models and usage statistics
of BI entities derived from repositories of reports and dashboards. In this
section, we illustrate results obtained with this component to implement an

4http://www.osgi.org



130 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

auto-completion plugin. This plugin iteratively suggests multi-dimensional
queries to complete the user’s textual query.

3.2.1 BI query auto-completion

As the user types in the search text box, candidate measures and dimensions
are proposed to her as auto-completion suggestions. The user can iteratively
build queries and trigger their execution to obtain various visualizations
(chart or table) of the data. We use the query expansion method described in
Section 5.1 of Chapter V with a filtered set of candidate entities, containing
only those which names start with characters entered by the user.

First suggestion case. The user starts typing and selects a completed
prediction, e.g., the measure Sales revenue. Measures and dimensions
are suggested based on their occurrences in users’ graphs and the user’s
preferences. Figure VI.8.a) shows measures (from distinct domain mod-
els) suggested when the user starts typing “sa”: Sales revenue, Avg of

savegoal and Keeper save goal. The auto-completion initialization re-
quires that the user roughly knows the names of objects she wants to ma-
nipulate, which may be a barrier to adoption. To help her get started and
explore available data, suggestions can be surfaced to the user before she
even starts typing. For instance, the most commonly used measures and
dimensions of various domain models could be suggested to start with.

Iterative query completion. Further suggestions are adapted to mea-
sures and dimensions previously selected. In Figure VI.8.b), the user has
selected the first suggestion Sales revenue and keeps typing “c”. The sys-
tem suggests the two dimensions City and Category. These two dimensions
are compatible and often co-occur with the selected measure.

The personalized query design assistant we discussed was integrated in
the search application illustrated in Figure VI.8. Besides, this component
could be used more generally in other BI tools to help users build their
queries, for instance in a dashboard or report designer.

3.2.2 Related charts search in dashboards and reports

Let us now describe another use case for the GR framework which is used to
handle user-specific and global background knowledge. Charts in dashboards
and reports usually present very little associated textual metadata. For
instance, charts mainly have a title and a description, the latter being often
left empty by users.

In this context, the GR framework can serve to develop custom providers
and enable semantic-based charts search. In particular, in Chapter V, Fig-
ure V.6 illustrates the graph that can be built thanks to a dedicated provider



3. PERSONALIZATION IN SEARCH 131

Figure VI.8: Screenshot of auto-completion in the search text box. (a) First
suggestions after characters “sa” and (b) suggestions following the selection
of measure Sales revenue and character “c”.

for the dashboarding solution SAP Exploration Views. This provider requires
appropriate user credentials and the resulting graph is thus user-specific.

Using this graph, it is for instance possible to issue SPARQL queries
and retrieve charts relating to measures and dimensions of the user query.
These measures and dimensions can be retrieved as an output of the query
tree building process, as previously described. Assuming the user query was
annotated with the Sales revenue measure, the following SPARQL query
selects graphs referencing this entity:

SELECT ?chart

WHERE {

?chart rdf:type <http://...#Chart> .

?chart grepo:references <http://.../SalesRevenue> .

}

This example is pretty simple and illustrates the mention of a single
measure. More complex queries can be built to enable multiple mentions,
for instance with the user query “sales revenue per year per country”:

SELECT ?chart

WHERE {



132 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

Figure VI.9: Charts search results for the query “Sales revenue” annotated
with the measure of the same name, from dashboards available in the user
account.

?chart rdf:type <http://...#Chart> .

{

{ ?chart <http://...#references> <http://.../SalesRevenue> }

UNION

{ ?chart <http://...#references> <http://.../Year> }

UNION

{ ?chart <http://...#references> <http://.../Country> }

}

These SPARQL queries do not provide ranking for returned charts. How-
ever, it is possible to score them with the user’s preferences (see Chapter V,
Section 3). Let c denote one of the chart results, and ref(c) the set of
entities referenced by c. Let q denote the user query and ann(q) its set of
annotations. The chart ranking function may simply be defined as follows:

ranku(c, q) =
|ref(c) ∩ ann(q)|

|ref(c)|
×Avge∈ref(c) (prefu(e))

3.3 Plugins personalization

The federated search system that we described presents interesting usability
challenges for users. In particular, all different types of plugins provide
additional information and may influence the interactive behavior of the
search application. Consequently, users might get confused as they are not
all interested in the same information sources. In this section, we briefly



3. PERSONALIZATION IN SEARCH 133

Figure VI.10: Graph of plugins available in the search platform, of different
types: search, answer and auto-completion plugins.

introduce custom user preferences to personalize the system’s behavior and
thus the user’s search experience.

3.3.1 Authorizations and ranking

Figure VI.10 illustrates the graph of plugins available in the search platform.
On top of these plugins, we define simple preferences in the form of state-
ments like user prefers BIQueryAutoCompletionPlugin. Since statements
are defined as extended nodes (see Chapter III, Section 2.1) they enable the
definition of custom attributes. From the RDF perspective, this implies to
work with reified statements.

We use this capability to add a score attribute to preference statements.
This allows users to rank their plugins by defining numerical preferences
between 0 and 1. Plugins with a preference of 0 could be disabled for this
user. This approach can help improve performance for users who require very



134 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

specific information, for instance from a single source. Scores determined
by the user’s preferences can also be used in the results scoring process, for
instance by weighting a plugin’s contribution in search results.

3.3.2 Other forms of personalization

Let us conclude with other possible illustrations of personalization capabil-
ities enabled by our frameworks.

Personal filters and self-references. We want to be enable the resolu-
tion by some query processing plugins of self-references in users’ queries. As
an example, in the query “revenue of my store”, the pronoun “my” refers to
the user herself (a sales manager responsible for a given store). This illustra-
tion is a simple example but more generally, advanced query interpretation
techniques may be developed, e.g., using linguistic patterns [KBA11].

We now simply introduce user preferences that can be defined to indicate
that users have personal filters for particular dimensions. In the example
above, the user can have a personal filter on the dimension Store for the
value New York. The query processing plugin could access the user’s situ-
ation model – through the situation provider in the GR framework – and
determine if and how the query Sales revenue by Store needs to be fil-
tered. Such a personal filter can very simply be represented with statements
like user hasPersonalFilter New York and New York isValueOf Store.

User’s location and social network. Similarly, search plugins can ex-
ploit the geography dimension of our situation model to enable location-
aware search results. Location is a simple yet extremely valuable context
information and is therefore frequently used by various services, in particular
with the advent of pervasive computing and GPS-enabled smartphones. A
simple experimentation was made using the API provided by TellMeWhere5.
We developed a minimal operator using these services, triggered by an ac-
tivation rule that reacts to events of the type user asks Restaurant (or
petrol station, etc.). Practically, the user’s location can be retrieved either
from the mobile application of Figure VI.6 (GPS coordinates) or through
the Web application of Figures VI.8 and VI.9 (IP address).

Eventually, the user’s social network – accessible through the correspond-
ing dimension of the situation model – can be used to simply implement an
auto-completion plugin for the user’s contacts. For instance, when the user
starts typing “ni”, she receives suggestions of users like Nick Cox .

5http://www.tellmewhere.com/



4. SUMMARY AND DISCUSSION 135

4 Summary and discussion

In this chapter, we illustrated the use of our GR and situation management
frameworks in two projects, to enable recommendations and personalization
at different levels. First, the Text-To-Query system was presented to rec-
ommend structured analytics, dynamically generated to illustrate a textual
content. This system was mainly show-cased using add-ins integrated in
common office applications, to back a scenario that we call supported data
acquisition. Then, we described the open and modular architecture of a fed-
erated search project which enabled us to bring a significant contribution in
terms of personalization and more generally background knowledge manage-
ment. In particular, we introduced a plugin for BI query auto-completion to
ease the user querying process and another one to search for related charts
in the user’s collection of dashboards (or reports).

First, we would like to discuss the fact that we did not come up with a
proper evaluation for recommendations made, be it with Text-To-Query or
the auto-completion plugin. The point is that we have been relying on two
prototypes, SAP Exploration Views for the dashboarding solution and Social
Network Analyzer for users’ social network management. Therefore, we did
not have access at this time to important repositories of dashboards with
enough different users and created dashboards. Second, users of the first
solution were not yet tied to users of the second which make it complicated
to design a joint dataset for evaluation.

To conclude, we reckon that the GR and situation management frame-
works are particularly valuable and proved effective to enable multiple con-
tributions in a distributed project. For instance, preferences can be freely
expressed with rich semantics which allow precise, application-specific and
adaptive personalization scenarios. Beyond rather static preferences, dy-
namic aspects enabled by the situation management framework have only
partially been exploited and experimented, due to lack of time and resources.
However, business events should be further leveraged to enable, for instance,
dynamic scoring. This may be achieved by assigning dynamic “boost” fac-
tors to nodes of the situation graph, depending on the user’s interactions
with close resources.

5 Conclusion

In this chapter we elaborated on various experimentations realized thanks to
GR and situation management frameworks, previously introduced in Chap-
ters III and IV.

We first presented T2Q, a dedicated RS dynamically generating multi-
dimensional queries related to a text document. Measures, dimensions and
their values are extracted from the text thanks to a NER phase. Recognized



136 CHAPTER VI. EXPERIMENTATION: BI RECOMMENDATIONS

entities are combined to form meaningful queries using in particular the
query expansion component introduced in Chapter V.

Then, further experimentations were proposed in the context of an open
federated search platform. The search platform enables the definition of
various plugins to cover tasks as varied as auto-completion, query pars-
ing and search. We presented a certain number of providers and operators
implemented in these frameworks, in this chapter as well as Chapter V, Sec-
tion 5.2.1. Besides, our work could be integrated to the search platform to
provide various capabilities. Most importantly, the GR framework is used
for global and user-specific data or knowledge management. Examples of
such data include (but are not limited to) users’ preferences, which usage
for plugins personalization was briefly illustrated in Section 3.3.

T2Q proved extremely interesting to help users reach specific information
in a data warehouse, using a first level of content analysis. However, it
cannot be denied that text analysis operations performed by T2Q remain
quite superficial and as a result, only simple queries can be suggested to the
user. There is an ongoing research effort – in the context of the federated
search project previously mentioned – to further encourage natural language
processing and improve the interpretation of users’ queries. This effort is
based, among other things, on the pattern-based question answering system
proposed by Kuchmann-Beauger et al. [KBA11]. The user’s question can
be expressed using natural language. Patterns are then used to determine
combinations of entities recognized in the question. Patterns that match the
question can then be translated into a query expressed in the appropriate
language.

To conclude, we reckon that GR and situation management frameworks
described in our work present a significant potential to enable diverse per-
sonalization scenarios. Spontaneous recommendations and dynamic aspects
of these frameworks proved more difficult to illustrate though. Therefore, we
reckon that future efforts should first focus on a first phase of re-engineering,
meant to take the GR framework to a more stable state. Then, users’ global-
and application-specific preferences should be more formally defined so they
benefit in a more general way, for instance to search plugins. Further, generic
techniques inherited from RS could be exposed through the framework,
encouraging GR plugins to define or re-use personalization-related indica-
tors. Important examples of recommendation techniques were introduced in
Chapter II, Section 2 and a proposed application to BI entities was presented
in Chapter V, Sections 3 and 4.



Chapter VII

Conclusion and perspectives

Contents

1 Summary . . . . . . . . . . . . . . . . . . . . . . . 137

2 Discussion and perspectives . . . . . . . . . . . . 140

1 Summary

As the amount and complexity of data generated and maintained by informa-
tion systems and their users keep increasing, information overload becomes
a problem of utmost importance. In response to this issue, personalized
systems have emerged and aim at proposing more relevant information and
services to their users.

Recommender systems (RS) are an interesting kind of personalized sys-
tems, designed to help users explore vasts spaces of available information.
If RS have grown extremely popular in a Web context, we believe such sys-
tems could also be valuable in corporate environments, dealing with privates
resources of an organization. Numerous techniques were developed and are
often combined to form hybrid recommendation strategies, as discussed in
Chapter II, Section 2. We presented for instance the two most common rec-
ommendation techniques, with content-based (CB) and collaborative RS. CB
systems stem from information retrieval and information filtering fields, re-
lying on a keyword representation of items and users’ preferences in a vector
space model. Collaborative filtering (CF) systems do not perform content
analysis on items to recommend but rather exploit the so called collective
intelligence, e.g., with ratings. CF systems assume that a user is bound to
be interested by items that other users with similar tastes liked.

Perosnalized systems usually rely on some model of the user and her
preferences to serve better selected and more adapted information. RS are
no exception and involve a certain amount of user modeling, centered around

137



138 CHAPTER VII. CONCLUSION AND PERSPECTIVES

users’ interactions with the collection of resources (or items) being consid-
ered for recommendation. However, RS often involve an important pre-
computation phase which may limit their ability to dynamically adapt to a
changing user environment. Context-aware (CA) systems represent another
important area related to personalization. Remarkably, the approach of
CA systems is mainly targeting dynamic adaptation in heterogeneous envi-
ronments, encouraging model sharing and re-usability accross applications.
Context modeling is a key issue in this area and most recent work argue
that graph-based systems are better suited for knowledge representation.
In particular, Semantic Web technologies like RDF and SPARQL seem well
adapted to handle information heterogeneity and enable a high level of ex-
pressiveness. Besides, reasoning on context knowledge may also be useful to
deal with incomplete information.

Our work focuses on personalization and recommendations related to BI

tools. BI analytics rely on an important phase of multi-dimensional modeling
to enable an easier exploration of data warehouses by non-expert users.
Multi-dimensional models mainly define measures and dimensions to query
for available data. Measures are numerical facts that can be aggregated
against a certain number of dimensions, e.g., to get the Revenue generated
by a given Product in some Countries. In real-life production deployments
of BI platforms, multi-dimensional models can grow extremely complex with
thousands of measures and dimensions, leaving users with the difficult task
of finding the information they are looking for. However, we observe that
very few techniques of RS and CA systems have been employed so far to
develop personalized BI solutions. Our work thus targets the exploration of
syneriges between RS and CA systems to develop personalized data access
solutions, suited for users of BI platforms and data warehouses (DW).

Chapter III first introduced the requirements imposed on the user situ-
ation monitoring platform that we consider. Model sharing and re-usability
across different applications seems particularly important in our case. In-
deed, modern BI platforms provide different tools and model sharing could
greatly benefit to all these applications, e.g., by reducing the amount of re-
dundant user modeling. Besides, security and privacy are two key aspects
to enforce in a user monitoring system, in particular in corporate settings.
Privacy is crucial and the system must ensure that user data is not going to
be accessible by others. Security on the other hand must also be observed
from a system perspective. Indeed, most corporate systems impose access
control rules and users may not have access to the same data, leading for
instance to different views of the DW. In response to these challenges, we
presented a graph-based situation model relying on situation statements,
the unit of information in situation modeling. These statements are triples
(subject-predicate-object) extended with additional metadata to capture for
instance the fact that context knowledge is inherently time dependent. The
situation is defined as a collection of statements and takes the form of a



1. SUMMARY 139

graph centered on the concerned user. On top of this graph view, we de-
fined a certain number of situation dimensions meant to offer a structured
and categorized view of lower level information. Examples of such dimen-
sions include (but are not limited to) social and geographical aspects as well
as preferences and recommendations.

Graphs involved in the description of a user’s situation are managed in
our system thanks to a framework called graph repository (GR). This modu-
lar framework gives developers the ability to define new information sources
with an extensible set of providers. Providers may connect to remote sys-
tems thanks to users’ credentials, assuming users authorized it in the first
place. The security model of the GR thus makes it possible for users to de-
fine and customize their own GR. Moreover, Chapter IV further elaborated
on dynamic aspects of situation monitoring. Situations are indeed evolving
as users interact with various applications and systems. The GR framework
is extended with active components like activation rules and operators. In
response to business events sent to the platform (or raised internally), acti-
vation rules are evaluated and may trigger appropriate operators to update
graphs according to the event being interpreted. Rules are defined in the
event-condition-action (ECA) framework and can be evaluated thanks to
queries on the user’s GR. Should graphs be managed using a RDF factory,
rules evaluation is performed with a translation to SPARQL queries. Chap-
ter IV introduced these active components and discussed more extensively
the GR framework, which proves important to enable a certain adoption and
encourage additional developments.

We introduced the GR and situation management frameworks to form
a rather generic personalization platform. Later, Chapter V focused on the
definition of BI-related components. This chapter presented in particular the
semantics of multi-dimensional models which we expose in our framework
thanks to a specific provider. Besides, we discussed the use of reposito-
ries of BI documents like dashboards and reports to derive additional usage
statistics. For instance, measures and dimensions occur in these documents
and we exploit this fact to define implicit preferences and a measure of co-
occurrence. We defined user preferences related to BI entities according to
a quantitative approach, combining explicit and implicit scores. Numeric
preferences then allowed us to exploit the traditional Pearon correlation
and define users’ similarity. In application of these indicators, we discussed
a personalized query expansion component, meant to help users iteratively
build more complete data queries.

Eventually, we presented in Chapter VI various experimentations real-
ized with our situation management platform. First, we introduced Text-
To-Query (T2Q), a system dynamically generating and recommending ana-
lytics to illustrate an unstructured text document. T2Q combines semantics
of multi-dimensional models and usage statistics – thanks to the query ex-
pansion component previously described – to offer meaningful queries and



140 CHAPTER VII. CONCLUSION AND PERSPECTIVES

visualizations. T2Q was show-cased using add-ins for popular office appli-
cations. This scenario demonstrated the ability for users to further analyze
and enrich documents they are working on, thanks to recommendations of
related structured analytics. This supported data acquisition scenario re-
sponds to the need for modern BI platforms to enable a smooth transition
between structured and unstructured content. To conclude, Chapter VI in-
troduced a federated search project which leverages the GR and situation
management frameworks to propose various forms of personalization. The
query expansion component was for instance used to offer an interactive
query designer through the usual search text box, using an auto-completion
approach. Besides, we discussed other possible personalization strategies for
various plugins of this federated search project. Federated search involves
multiple information sources may lead to confusion for end-users. Thanks to
our situation management platform, users may express their preferences for
some sources compared to others, leading to less noisy and more personalized
results.

2 Discussion and perspectives

First and foremost, we would like to discuss the importance of the GR frame-
work in our contribution. The GR is indeed a key component of our platform,
meant to provide graph management capabilities ranging from simple rep-
resentation to complex querying and reasoning. However, the GR is much
more than a simple storage system for graph data since it can also define ac-
tive components, developed in the form of plugins. The personalization and
security model for these plugins enables users to fully customize their own
graph repositories, defining what is accessible and how it can be used. This
aspect proves crucial to ensure users keep control of what data is collected
from various systems by providers. Besides, plugins are more generic than
providers and may implement extremely varied capabilites. To sum up, we
like to see the GR as a container for both data and applicative components,
all of them being fully dedicated to a given user. We reckon this aspect is
extremely interesting and presents a drastic change compared to traditional
applications which are designed to serve multiple users. On the contrary,
every piece of data and every action performed inside a GR instance are
entirely focused on the assistance to provide to the concerned user. As a
consequence, we believe that the GR framework deserves further efforts to
push its development and take it to a more stable state. The industrializa-
tion of the GR could for instance base on an important refactoring of the
existing code and lean towards a cleaner and simpler architecture. In partic-
ular, we argued in Chapter III for the abstraction of the graph storage and
querying engine, leading to the definition of specific graphs factories. Facto-
ries are used to back graphs data using dedicated triple stores or traditional



2. DISCUSSION AND PERSPECTIVES 141

relational databases. Even if this abstraction has its interest, it provided
little value since even reasonably complex queries require to go down to the
appropriate language, be it SPARQL or SQL. The graph storage abstraction
thus induced too much complexity in the development and provided limited
added value. As a result, we consider that future developments related to
the GR should base on a single reference implementation, ideally using a
dedicated triple store and SPARQL querying.

Among points that we developed in our work are the dynamic compo-
nents described in Chapter IV, more specifically activation rules and opera-
tors. As previously discussed, activation rules are used to react to business
events and trigger appropriate operations and update situation graphs in
response. A rule defines conditions that need to be validated before trigger-
ing the execution of an operator. Rule validation therefore requires queries
to be executed and evaluated on the GR. Assuming a high number of events
could have to be processed, this may lead to significant performance prob-
lems. For this reason, rules contain a first event filtering part which is used
to limit the amount of queries that will actually have to be evaluated and
thus limit performance issues. However, we have to admit that we were
not able to perform an extensive evaluation regarding this aspect. Besides,
the continuous rule evaluation process that we described in Section 1.1 of
Chapter IV enables the definition of linear and non-linear evolution scenar-
ios. If linear scenarios are simple to set up and demonstrate, non linear
ones induce undeterministic behaviors and are thus more complex to show
case in a reproducible way. To conclude on dynamic components, we reckon
that they bring a significant contribution to make our frameworks suited for
dynamic adaptation. However, to further validate their usage, one would
have to conduct an extensive study of performance-related issues and prob-
ably optimize rules evaluation in the mean time. On top of that, non linear
scenarios should be the focus of future work in this area since they would
likely bring more value than simple pre-determined linear scenarios.

The last point that we would like to discuss lies in the balance between
the genericity of methods employed and application-specific optimizations.
In Chapter V, we introduced a certain number of indicators useful for per-
sonalization and recommendations in the context of BI tools. Our work
in this regard bases on multi-dimensional models designed for data ware-
houses, enabling non-expert users to perform ad-hoc query and reporting
with key business entities (measures and dimensions). We remain at the
business entity level and do not go down to the specific query language.
This differs from other work related to query personalization since we do
not intend to extend and enrich queries by providing language-specific op-
erators. As a result, our approach undeniably brings less expressivity but
it is usable regardless of the actual data warehouse materialization. At the
entity level, we defined users’ preferences and similarity as numerical indica-
tors which can be used to determine items of interest in various conditions.



142 CHAPTER VII. CONCLUSION AND PERSPECTIVES

The user similarity measure helps define a social contribution in collabora-
tive systems, for instance using other ratings given by users that are similar
enough. Although metrics defined in Chapter V aim at being generic and
reusable with varied domain models, they are still specific to BI and data
warehouses. More generally, this poses the problem of recommendations
relying on heavy pre-computations and often made application specific due
to advanced optimizations. As part of future work, we would like to ex-
tend the work we did to define our collaborative metrics and expose more
general computing capabilities through our situation management frame-
work, for instance using the popular Apache Mahout API. However, doing
so presents a certain number of challenges, in particular around scalability
and data management. Indeed, should developers using our framework de-
fine their own metrics, this could lead to important hurdles and impact the
performance of the whole platform.

To conclude on perspectives for our work, we would like to see further
improvements brought to BI platforms and we reckon that they offer an
important potential for personalization and recommendations. Doing so
could for instance base on the industrialization and extension of techniques
like those described in Chapter V.



Bibliography

[AAH+02] Heikki Ailisto, Petteri Alahuhta, Ville Haataja, V. Kyllönen,
and Mikko Lindholm. Structuring context aware applica-
tions: Five-layer model and example case. In Proceedings of
the Workshop on Concepts and Models for Ubiquitous Com-
puting, pages 1–5. Citeseer, 2002.

[ABL09] Sofiane Abbar, M. Bouzeghoub, and S. Lopez. Context-
Aware Recommender Systems: A Service Oriented Ap-
proach. In VLDB PersDB Workshop, pages 1–6, 2009.

[ACK09] Arvind Arasu, Surajit Chaudhuri, and Raghav Kaushik.
Learning string transformations from examples. PVLDB,
2(1):514–525, 2009.

[Ala08] Satnam Alag. Collective Intelligence in Action. Manning
Publications, 2008.

[AS97] Varol Akman and Mehmet Surav. The Use of Situation
Theory in Context Modeling. Computational Intelligence,
13(3):427–438, August 1997.

[AT01] Gediminas Adomavicius and Alexander Tuzhilin. Multidi-
mensional recommender systems: A data warehousing ap-
proach. In Ludger Fiege, Gero Mhl, and Uwe Wilhelm, edi-
tors, Electronic Commerce, volume 2232 of Lecture Notes in
Computer Science, pages 180–192. Springer Berlin / Heidel-
berg, 2001.

[AT05] Gediminas Adomavicius and Alexander Tuzhilin. Toward
the next generation of recommender systems: A survey of
the state-of-the-art and possible extensions. IEEE Trans.
Knowl. Data Eng., 17(6):734–749, 2005.

[ATZ05] Gediminas Adomavicius, Alexander Tuzhilin, and Rong
Zheng. Rql: A query language for recommender systems.
Information Systems Working Papers Series, 2005.

143



144 BIBLIOGRAPHY

[BBF+09] Fadila Bentayeb, Omar Boussaid, Cécile Favre, Franck Ra-
vat, and Olivier Teste. Personnalisation dans les entrepôts
de données: bilan et perspectives. In Entrepôts de Données
et l’Analyse en ligne (EDA 09), Montpellier, France, pages
7–22, 2009.

[BBH+10] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jad-
wiga Indulska, Daniela Nicklas, Anand Ranganathan, and
Daniele Riboni. A survey of context modelling and reason-
ing techniques. Pervasive Mob. Comput., 6:161–180, April
2010.

[BCG+08] Manish Bhide, V. Chakravarthy, Ajay Gupta, Himanshu
Gupta, Mukesh K. Mohania, Kriti Puniyani, Prasan Roy,
Sourashis Roy, and Vibhuti S. Sengar. Enhanced business
intelligence using erocs. In ICDE, pages 1616–1619. IEEE,
2008.

[BCQ+07] Cristiana Bolchini, Carlo Curino, Elisa Quintarelli, Fabio A.
Schreiber, and Letizia Tanca. A data-oriented survey of con-
text models. SIGMOD Record, 36(4):19–26, 2007.

[BDR07] Matthias Baldauf, Schahram Dustdar, and Florian Rosen-
berg. A survey on context-aware systems. IJAHUC,
2(4):263–277, 2007.

[BFMS06] Erik Behrends, Oliver Fritzen, Wolfgang May, and Franz
Schenk. Combining eca rules with process algebras for the
semantic web. In Thomas Eiter, Enrico Franconi, Ralph
Hodgson, and Susie Stephens, editors, RuleML, pages 29–
38. IEEE Computer Society, 2006.

[BFPAGS+08] Yolanda Blanco-Fernndez, Jos J. Pazos-Arias, Alberto Gil-
Solla, Manuel Ramos-Cabrer, Martn Lpez-Nores, Jorge
Garca-Duque, Ana Fernndez-Vilas, Rebeca P. Daz-Redondo,
and Jess Bermejo-Muoz. A flexible semantic inference
methodology to reason about user preferences in knowledge-
based recommender systems. Knowledge-Based Systems,
21(4):305 – 320, 2008.

[BGM+05] Ladjel Bellatreche, Arnaud Giacometti, Patrick Marcel, Has-
sina Mouloudi, and Dominique Laurent. A personalization
framework for olap queries. In Proceedings of the 8th ACM
international workshop on Data warehousing and OLAP,
DOLAP ’05, pages 9–18, New York, NY, USA, 2005. ACM.



BIBLIOGRAPHY 145

[BHH+10] Falk Brauer, Michael Huber, Gregor Hackenbroich, Ulf
Leser, Felix Naumann, and Wojciech M. Barczynski. Graph-
based concept identification and disambiguation for enter-
prise search. In Proceedings of the 19th international con-
ference on World wide web, WWW ’10, pages 171–180, New
York, NY, USA, 2010. ACM.

[Bur00] Robin Burke. Knowledge-based recommender systems. In
Encyclopedia of Library and Information Systems, page
2000. Marcel Dekker, 2000.

[CB07] Sylvain Castagnos and Anne Boyer. Personalized commu-
nities in a distributed recommender system. In Proceedings
of the 29th European conference on IR research, ECIR’07,
pages 343–355, Berlin, Heidelberg, 2007. Springer-Verlag.

[CBC08] Iván Cantador, Alejandro Belloǵın, and Pablo Castells.
Ontology-Based Personalised and Context-Aware Recom-
mendations of News Items. IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Tech-
nology, pages 562–565, December 2008.

[CD97] Surajit Chaudhuri and Umeshwar Dayal. An overview of
data warehousing and OLAP technology. ACM SIGMOD
Record, 26(1):65–74, March 1997.

[CDG01] S. Chaudhuri, U. Dayal, and V. Ganti. Database technology
for decision support systems. Computer, 34(12):48–55, 2001.

[CFJ03] Harry Chen, Tim Finin, and Anupam Joshi. An ontology
for context-aware pervasive computing environments. The
Knowledge Engineering Review, 18(3):197–207, September
2003.

[CFV07] Pablo Castells, Miriam Fernandez, and David Vallet. An
adaptation of the vector-space model for ontology-based in-
formation retrieval. IEEE Transactions on Knowledge and
Data Engineering, 19:261–272, 2007.

[CGF07] A.C.M. Costa, R.S.S.G.G. Guizzardi, and J.G.P. Filho.
COReS: Context-aware, Ontology-based Recommender sys-
tem for Service recommendation. In Proceedings of the 19th
International Conference on Advanced Information Systems
Engineering, CAiSE’07, 2007.

[CGX09] Surajit Chaudhuri, Venkatesh Ganti, and Dong Xin. Min-
ing document collections to facilitate accurate approximate
entity matching. PVLDB, 2(1):395–406, 2009.



146 BIBLIOGRAPHY

[CHW01] Sonny Chee, Jiawei Han, and Ke Wang. Rectree: An effi-
cient collaborative filtering method. In Yahiko Kambayashi,
Werner Winiwarter, and Masatoshi Arikawa, editors, Data
Warehousing and Knowledge Discovery, volume 2114 of Lec-
ture Notes in Computer Science, pages 141–151. Springer
Berlin / Heidelberg, 2001.

[CK00] Guanling Chen and David Kotz. A survey of context-aware
mobile computing research. Technical report, Hanover, NH,
USA, 2000.

[CT98] Luca Cabibbo and Riccardo Torlone. Querying multidi-
mensional databases. In Database Programming Languages,
pages 319–335. Springer, 1998.

[DA99] Anind K. Dey and Gregory D. Abowd. Towards a better
understanding of context and context-awareness. In In HUC
99: Proceedings of the 1st international symposium on Hand-
held and Ubiquitous Computing, pages 304–307. Springer-
Verlag, 1999.

[DAS01] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. A
conceptual framework and a toolkit for supporting the rapid
prototyping of context-aware applications. Hum.-Comput.
Interact., 16:97–166, December 2001.

[Dey01] Anind K. Dey. Understanding and using context. Personal
and Ubiquitous Computing, 5(1):4–7, 2001.

[DKDA07] Li Ding, Pranam Kolari, Zhongli Ding, and Sasikanth Avan-
cha. Using ontologies in the semantic web: A survey. In Raj
Sharman, Rajiv Kishore, and Ram Ramesh, editors, Ontolo-
gies, volume 14 of Integrated Series in Information Systems,
pages 79–113. Springer US, 2007. 10.1007/978-0-387-37022-
4 4.

[DSP09] Marina Drosou, Kostas Stefanidis, and Evaggelia Pitoura.
Preference-aware publish/subscribe delivery with diversity.
Proceedings of the Third ACM International Conference on
Distributed Event-Based Systems - DEBS ’09, page 1, 2009.

[EGCB09] Guillaume Erétéo, Fabien Gandon, Olivier Corby, and
Michel Buffa. Semantic Social Network Analysis. In Web
Science, Athènes, Grèce, 2009.

[EIV07] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassil-
ios S. Verykios. Duplicate record detection: A survey. IEEE
Trans. Knowl. Data Eng., 19(1):1–16, 2007.



BIBLIOGRAPHY 147

[EPR08] J.É.Ô. Euzenat, J.É.Ô. Pierson, and Fano Ramparany. Dy-
namic context management for pervasive applications. The
Knowledge Engineering Review, 23(1):21–49, 2008.

[FC04] Patrick Fahy and Siobhan Clarke. CASS - Middleware for
Mobile Context-Aware Applications. Workshop on Context
Awareness, MobiSys, 2004.

[Gha02] Rayid Ghani. Building recommender systems using a knowl-
edge base of product semantics. Hypermedia and Adaptive
Web based Systems, 2002.

[GMN08] Arnaud Giacometti, Patrick Marcel, and Elsa Negre. A
framework for recommending olap queries. In Proceeding of
the ACM 11th international workshop on Data warehousing
and OLAP, DOLAP ’08, pages 73–80, New York, NY, USA,
2008. ACM.

[GMNS09] Arnaud Giacometti, Patrick Marcel, Elsa Negre, and Ar-
naud Soulet. Query recommendations for olap discovery
driven analysis. In Proceeding of the ACM twelfth interna-
tional workshop on Data warehousing and OLAP, DOLAP
’09, pages 81–88, New York, NY, USA, 2009. ACM.

[Gor03] Narasimhaiah Gorla. Features to consider in a data ware-
housing system. Communications of the ACM, 46(11):111–
115, November 2003.

[GPZ05] Tao Gu, Hung Keng Pung, and Daqing Zhang. A service-
oriented middleware for building context-aware services.
Journal of Network and Computer Applications, 28(1):1–18,
2005.

[GR09] Matteo Golfarelli and Stefano Rizzi. Expressing OLAP Pref-
erences. Scientific and Statistical Database Management,
5566/2009:83–91, 2009.

[GRB11] Matteo Golfarelli, Stefano Rizzi, and Paolo Biondi. myolap:
An approach to express and evaluate olap preferences. IEEE
Transactions on Knowledge and Data Engineering, 23:1050–
1064, 2011.

[GS01] Tom Gross and Marcus Specht. Awareness in context-aware
information systems. In Mensch & Computer, volume 1,
pages 173–182, 2001.



148 BIBLIOGRAPHY

[GWPZ04] Tao Gu, Xiao Hang Wang, Hung Keng Pung, and Da Qing
Zhang. An ontology-based context model in intelligent en-
vironments. In In Proceedings of Communication Networks
and Distributed Systems, Modeling and Simulation confer-
ence, pages 270–275, 2004.

[Hec05a] Dominik Heckmann. Distributed user modeling for situated
interaction. In Armin B. Cremers, Rainer Manthey, Peter
Martini, and Volker Steinhage, editors, GI Jahrestagung (1),
volume 67 of LNI, pages 266–270. GI, 2005.

[Hec05b] Dominik Heckmann. Situation modeling and smart context
retrieval with semantic web technology and conflict resolu-
tion. In Roth-Berghofer et al. [RBSL06], pages 34–47.

[HI04] Karen Henricksen and Jadwiga Indulska. Modelling and us-
ing imperfect context information. pages 33–37, 2004.

[HIMB05] Karen Henricksen, Jadwiga Indulska, T. McFadden, and
S. Balasubramaniam. Middleware for distributed context-
aware systems. On the Move to Meaningful Internet Systems
2005: CoopIS, DOA, and ODBASE, pages 846–863, 2005.

[HIR02] Karen Henricksen, Jadwiga Indulska, and Andry Rakotoni-
rainy. Modeling context information in pervasive computing
systems. In Proceedings of the First International Confer-
ence on Pervasive Computing, Pervasive ’02, pages 167–180,
London, UK, 2002. Springer-Verlag.

[HKTR04] Jonathan L. Herlocker, Joseph a. Konstan, Loren G. Ter-
veen, and John T. Riedl. Evaluating collaborative filtering
recommender systems. ACM Transactions on Information
Systems, 22(1):5–53, January 2004.

[HS05] John Horner and Il-Yeol Song. A taxonomy of inaccurate
summaries and their management in olap systems. In Lois
M. L. Delcambre, Christian Kop, Heinrich C. Mayr, John
Mylopoulos, and Oscar Pastor, editors, ER, volume 3716 of
Lecture Notes in Computer Science, pages 433–448. Springer,
2005.

[Hul99] David A. Hull. Xerox trec-8 question answering track report.
In TREC, 1999.

[IS03] Jadwiga Indulska and Peter Sutton. Location management
in pervasive systems. In Proceedings of the Australasian in-
formation security workshop conference on ACSW frontiers



BIBLIOGRAPHY 149

2003 - Volume 21, ACSW Frontiers ’03, pages 143–151, Dar-
linghurst, Australia, Australia, 2003. Australian Computer
Society, Inc.

[JE09] Mohsen Jamali and Martin Ester. TrustWalker: a random
walk model for combining trust-based and item-based recom-
mendation. In John F. Elder IV, Françoise Fogelman-Soulié,
Peter A. Flach, and Mohammed Javeed Zaki, editors, KDD,
pages 397–406. ACM, 2009.

[JM06] Reed Jacobson and Stacia Misner. Microsoft SQL
Server(TM) 2005 Analysis Services Step by Step. Microsoft
Press, Redmond, WA, USA, 2006.

[JRTZ08] Houssem Jerbi, Franck Ravat, Olivier Teste, and Gilles Zur-
fluh. Management of context-aware preferences in multidi-
mensional databases. 2008 Third International Conference
on Digital Information Management, pages 669–675, Novem-
ber 2008.

[JRTZ09a] Houssem Jerbi, Franck Ravat, Olivier Teste, and Gilles Zur-
fluh. Applying recommendation technology in OLAP sys-
tems. Enterprise Information Systems, pages 220–233, 2009.

[JRTZ09b] Houssem Jerbi, Franck Ravat, Olivier Teste, and Gilles Zur-
fluh. Preference-based recommendations for olap analysis.
In Torben Pedersen, Mukesh Mohania, and A Tjoa, editors,
Data Warehousing and Knowledge Discovery, volume 5691 of
Lecture Notes in Computer Science, pages 467–478. Springer
Berlin / Heidelberg, 2009.

[KBA11] Nicolas Kuchmann-Beauger and Marie-Aude Aufaure. A
natural language interface for data warehouse question an-
swering. In Proceedings to the 16th International Confer-
ence on Applications of Natural Language to Information
Systems, 2011. to be published.

[KK07] Sungrim Kim and Joonhee Kwon. Effective Context-aware
Recommendation on the Semantic Web. Journal of Com-
puter Science and Network Security, 7(8):154–159, 2007.

[KN10] Natalija Kozmina and Laila Niedrite. Olap personalization
with user-describing profiles. In Peter Forbrig, Horst Gnther,
Will Aalst, John Mylopoulos, Norman M. Sadeh, Michael J.
Shaw, and Clemens Szyperski, editors, Perspectives in Busi-
ness Informatics Research, volume 64 of Lecture Notes in



150 BIBLIOGRAPHY

Business Information Processing, pages 188–202. Springer
Berlin Heidelberg, 2010.

[Kob07] Alfred Kobsa. Generic user modeling systems. In Peter
Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The
Adaptive Web, volume 4321 of Lecture Notes in Computer
Science, pages 136–154. Springer, 2007.

[KPC06] Anders Kofod-Petersen and Jor̈g Cassens. Using activity the-
ory to model context awareness. In Thomas Roth-Berghofer,
Stefan Schulz, and David Leake, editors, Modeling and Re-
trieval of Context, volume 3946 of Lecture Notes in Computer
Science, pages 1–17. Springer Berlin / Heidelberg, 2006.
10.1007/11740674 1.

[KPVOGM05] Manuele Kirsch-Pinheiro, Marlène Villanova-Oliver, Jérôme
Gensel, and Hervé Martin. Context-aware filtering for collab-
orative web systems: adapting the awareness information to
the user’s context. In Hisham Haddad, Lorie M. Liebrock,
Andrea Omicini, and Roger L. Wainwright, editors, SAC,
pages 1668–1673. ACM, 2005.

[Lai07] Juhani Laitakari. Dynamic context monitoring for adaptive
and context-aware applications. PhD thesis, 2007.

[LCCH10] C.-H. Liu, K.-L. Chang, Jason J.-Y. Chen, and S.-C. Hung.
Ontology-based context representation and reasoning using
owl and swrl. In CNSR, pages 215–220. IEEE Computer
Society, 2010.

[LD06] Antonis Loizou and Srinandan Dasmahapatra. Recom-
mender systems for the semantic web. In ECAI 2006 Rec-
ommender Systems Workshop, 2006.

[MA04] Paolo Massa and Paolo Avesani. Trust-aware collaborative
filtering for recommender systems. In Robert Meersman and
Zahir Tari, editors, On the Move to Meaningful Internet Sys-
tems 2004: CoopIS, DOA, and ODBASE, volume 3290 of
Lecture Notes in Computer Science, pages 492–508. Springer
Berlin / Heidelberg, 2004.

[MB04] Paolo Massa and Bobby Bhattacharjee. Using trust in rec-
ommender systems: An experimental analysis. In Chris-
tian Jensen, Stefan Poslad, and Theo Dimitrakos, editors,
Trust Management, volume 2995 of Lecture Notes in Com-
puter Science, pages 221–235. Springer Berlin / Heidelberg,
2004.



BIBLIOGRAPHY 151

[MLT09] Jose-Norberto Mazón, Jens Lechtenbörger, and Juan Tru-
jillo. A survey on summarizability issues in multidimensional
modeling. Data Knowl. Eng., 68(12):1452–1469, 2009.

[MMN02] Prem Melville, Raymond J. Mooney, and Ramadass Nagara-
jan. Content-boosted collaborative filtering for improved rec-
ommendations. In in Eighteenth National Conference on Ar-
tificial Intelligence, pages 187–192, 2002.

[MN11] Patrick Marcel and Elsa Negre. A survey of query recommen-
dation techniques for datawarehouse exploration. In Proceed-
ings of 7th Conference on Data Warehousing and On-Line
Analysis (Entrepts de Donnes et Analyse), EDA’11, 2011.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge
University Press, July 2008.

[NNT01] Tapio Niemi, Jyrki Nummenmaa, and Peter Thanisch. Con-
structing OLAP cubes based on queries. In Proceedings of
the 4th ACM international workshop on Data warehousing
and OLAP, pages 9–15, New York, New York, USA, 2001.
ACM.

[OA97] P. Öztürk and Agnar Aamodt. Towards a model of context
for case-based diagnostic problem solving. In Context-97;
Proceedings of the interdisciplinary conference on modeling
and using context, pages 198–208. Citeseer, 1997.

[OS05] John O’Donovan and Barry Smyth. Trust in recommender
systems. In Proceedings of the 10th international conference
on Intelligent user interfaces, IUI ’05, pages 167–174, New
York, NY, USA, 2005. ACM.

[PBMW97] Michael Pazzani, Daniel Billsus, S. Michalski, and Janusz
Wnek. Learning and revising user profiles: The identification
of interesting web sites. InMachine Learning, pages 313–331,
1997.

[PdCDL08] E Peis, JMM del Castillo, and JA Delgado-Lopez. Seman-
tic recommender systems. analysis of the state of the topic.
Hipertext, pages 1–9, 2008.

[PHG00] David M. Pennock, Eric Horvitz, and C. Lee Giles. Social
choice theory and recommender systems: Analysis of the ax-
iomatic foundations of collaborative filtering. In Proceedings



152 BIBLIOGRAPHY

of the Seventeenth National Conference on Artificial Intelli-
gence and Twelfth Conference on Innovative Applications of
Artificial Intelligence, pages 729–734. AAAI Press, 2000.

[PJ01] Torben Bach Pedersen and Christian S. Jensen. Multidimen-
sional database technology. Computer, 34:40–46, 2001.

[PMT08] Jesus Pardillo, Jose-Norberto Mazón, and Juan Trujillo.
Bridging the semantic gap in OLAP models: platform-
independent queries. In Proceeding of the ACM 11th inter-
national workshop on Data warehousing and OLAP, pages
89–96. ACM, 2008.

[RA09] Oscar Romero and Alberto Abelló. A survey of multidimen-
sional modeling methodologies. IJDWM, 5(2):1–23, 2009.

[RBSL06] Thomas Roth-Berghofer, Stefan Schulz, and David B. Leake,
editors. Modeling and Retrieval of Context, Second Interna-
tional Workshop, MRC 2005, Edinburgh, UK, July 31 - Au-
gust 1, 2005, Revised Selected Papers, volume 3946 of Lecture
Notes in Computer Science. Springer, 2006.

[RCARM09] Oscar Romero, Diego Calvanese, Alberto Abelló, and Mari-
ano Rodŕıguez-Muro. Discovering functional dependencies
for multidimensional design. In Proceeding of the ACM
twelfth international workshop on Data warehousing and
OLAP, DOLAP ’09, pages 1–8, New York, NY, USA, 2009.
ACM.

[Riz11] Stefano Rizzi. New Frontiers in business intelligence: distri-
bution and personalization. In Advances in Databases and
Information Systems, pages 23–30. Springer, 2011.

[RT09] Franck Ravat and Olivier Teste. Personalization and olap
databases. In Stanislaw Kozielski and Robert Wrembel, ed-
itors, New Trends in Data Warehousing and Data Analy-
sis, volume 3 of Annals of Information Systems, pages 1–22.
Springer US, 2009. 10.1007/978-0-387-87431-9 4.

[Sal88] Gerald Salton, editor. Automatic text processing. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1988.

[SAM98] Sunita Sarawagi, Rakesh Agrawal, and Nimrod Megiddo.
Discovery-driven Exploration of OLAP Data Cubes. Tech-
nical report, IBM, 1998.



BIBLIOGRAPHY 153

[Sap99] Carsten Sapia. On modeling and predicting query behav-
ior in olap systems. In Stella Gatziu, Manfred A. Jeusfeld,
Martin Staudt, and Yannis Vassiliou, editors, DMDW, vol-
ume 19 of CEUR Workshop Proceedings, page 2. CEUR-
WS.org, 1999.

[Sar00] Sunita Sarawagi. User-adaptive exploration of multidimen-
sional data. In Proceedings of the 26th Conference on Very
Large DataBases (VLDB), Cairo, Egypt, 2000., 2000.

[SAW94] Bill Schilit, Norman Adams, and Roy Want. Context-aware
computing applications. In In Proceedings of the Workshop
on Mobile Computing Systems and Applications, pages 85–
90. IEEE Computer Society, 1994.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W Gellersen.
There is more to context than location. Computers & Graph-
ics, 23(6):893 – 901, 1999.

[Sch02] Albrecht Schmidt. Ubiquitous computingcomputing in con-
text. PhD thesis, 2002.

[Sch05] Sven Schwarz. A context model for personal knowledge man-
agement applications. In Roth-Berghofer et al. [RBSL06],
pages 18–33.

[Sch06a] Andreas Schmidt. A layered model for user context man-
agement with controlled aging and imperfection handling.
Modeling and Retrieval of Context, pages 86–100, 2006.

[Sch06b] Sven Schwarz. A context model for personal knowledge man-
agement applications. In Thomas Roth-Berghofer, Stefan
Schulz, and David Leake, editors, Modeling and Retrieval of
Context, volume 3946 of Lecture Notes in Computer Science,
pages 18–33. Springer Berlin / Heidelberg, 2006.

[SDP09] Kostas Stefanidis, Marina Drosou, and E. Pitoura. You May
Also Like Results in Relational Databases. Proc. PersDB,
Lyon, France, 2009.

[SK09] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of col-
laborative filtering techniques. Advances in Artificial Intel-
ligence, 2009:4:2–4:2, January 2009.

[SKKR00] Badrul M. Sarwar, George Karypis, Joseph A. Konstan, and
John T. Riedl. Application of dimensionality reduction in
recommender systemsa case study. In In ACM WebKDD
Workshop, 2000.



154 BIBLIOGRAPHY

[SKKR01] Badrul Sarwar, George Karypis, Joseph Konstan, and John
Reidl. Item-based collaborative filtering recommendation al-
gorithms. In Proceedings of the 10th international conference
on World Wide Web, WWW ’01, pages 285–295, New York,
NY, USA, 2001. ACM.

[SLP04] Thomas Strang and C. Linnhoff-Popien. A context model-
ing survey. In Workshop on Advanced Context Modelling,
Reasoning and Management as part of UbiComp, pages 1–8.
Citeseer, 2004.

[SMB07] Ahu Sieg, Bamshad Mobasher, and Robin Burke. Ontologi-
cal User Profiles as the Context Model in Web Search, 2007.

[SS01] Gayatri Sathe and Sunita Sarawagi. Intelligent Rollups in
Multidimensional OLAP Data. In Proceedings of the 27th
VLDB Conference, Rome, Italy, 2001.

[Tat06] E I Tatli. Context data model for privacy. Department of
Computer Science University of Mannheim, page 0607, 2006.

[TSM01] Thomas Thalhammer, Michael Schrefl, and Mukesh Moha-
nia. Active data warehouses: complementing olap with anal-
ysis rules. Data amp; Knowledge Engineering, 39(3):241 –
269, 2001. ¡ce:title¿Data warehousing¡/ce:title¿.

[Vas98] Panos Vassiliadis. Modeling multidimensional databases,
cubes and cube operations. In Scientific and Statistical
Database Management, 1998. Proceedings. Tenth Interna-
tional Conference on, pages 53–62. IEEE, 1998.

[Vas09] Panos Vassiliadis. A survey of ExtracttransformLoad tech-
nology. IJDWM, 5(3):1–27, 2009.

[WFG92] Roy Want, Veronica Falcao, and Jon Gibbons. The active
badge location system. ACM Transactions on Information
Systems, 10:91–102, 1992.

[WS07] Wolfgang Woerndl and Johann Schlichter. Introducing con-
text into recommender systems. In Short Paper, Proc. AAAI
2007 Workshop on Recommender Systems in e-Commerce,
pages 138–140, 2007.

[YL06] S.S. Yau and Junwei Liu. Hierarchical situation model-
ing and reasoning for pervasive computing. In Software
Technologies for Future Embedded and Ubiquitous Systems,
2006 and the 2006 Second International Workshop on Col-
laborative Computing, Integration, and Assurance. SEUS



BIBLIOGRAPHY 155

2006/WCCIA 2006. The Fourth IEEE Workshop on, page 6
pp., april 2006.

[Zie05] Cai-Nicolas Ziegler. Semantic web recommender systems.
In Wolfgang Lindner, Marco Mesiti, Can Trker, Yannis
Tzitzikas, and Athena Vakali, editors, Current Trends in
Database Technology - EDBT 2004 Workshops, volume
3268 of Lecture Notes in Computer Science, pages 521–
521. Springer Berlin / Heidelberg, 2005. 10.1007/978-3-540-
30192-9 8.

[ZL07] Andreas Zimmermann and Andreas Lorenz. A.: An opera-
tional definition of context. In: CONTEXT, 2007.

[ZStL04] Cai-nicolas Ziegler, Lars Schmidt-thieme, and Georg Lausen.
Exploiting Semantic Product Descriptions for Recommender
Systems Categories and Subject Descriptors. In Proceedings
of the ACM SIGIR Semantic Web and Information Retrieval
Workshop, SWIR’04, 2004.



156 BIBLIOGRAPHY



List of Figures

I.1 Overview of the proposed situation management platform
which aggregates information from different sources and ex-
poses consolidated situation models. . . . . . . . . . . . . . . 2

II.1 Classification of personalization techniques proposed by Ben-
tayeb et al. [BBF+09], according to user involvement and sys-
tem functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

II.2 When a user adds an item in her shopping cart, Amazon.com
proposes recommendations of the form “users who bought
this also bought. . . ”. . . . . . . . . . . . . . . . . . . . . . . . 12

II.3 The five layers of context-aware systems high-level architecture. 27

II.4 Simple example of a Sales fact table defining two measures
Revenue and Quantity sold. These measures can be analyzed
against 3 dimensions (at the finest level): Product, Date and
Shop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

III.1 Example of situation graph for the user Marge. . . . . . . . . 46

III.2 Class diagram - Overview of the graph model used and ex-
posed by the Graph Repository. . . . . . . . . . . . . . . . . . 49

III.3 Class diagram - Overview of the internal object-based situ-
ation model, including core dimensions and personalization-
related dimensions. . . . . . . . . . . . . . . . . . . . . . . . . 53

III.4 Relations constituting the social network for the user Marge.
Only users at a maximum depth of 2 are displayed. . . . . . . 56

IV.1 Architecture overview of the situation management platform
and its major components: events, activation rules and oper-
ators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

IV.2 Class diagram - Core components of the modular Graph
Repository architecture. Providers and graphs factories are
modules which can easily be extended. . . . . . . . . . . . . . 74

IV.3 Security model of the GraphRepoFactory, managing creden-
tials for different applicative agents authorized by users. . . . 76

157



158 LIST OF FIGURES

IV.4 Class diagram - Overview of the situation framework. The
main dynamic components are events, activation rules and
operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

IV.5 Three levels of authorizations and personalization for users.
Providers, operators and activation rules may be enabled (or
disabled) to compose personalized and dynamic GR. . . . . . 80

IV.6 Sequence diagram for rules evaluation in reaction to an event
posted in a given situation. The EventsProcessor polls the
queue until it is empty to evaluate rules thanks to queries on
the GR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

IV.7 Examples of client applications interacting with the situation
management platform to provide personalized and dynamic
adapatation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

V.1 Architecture overview of the proposed personalized query ex-
pansion system for multi-dimensional models. . . . . . . . . . 89

V.2 Hierarchies and functional dependencies between some mea-
sures (purple nodes) and dimensions (yellow), described in
an Island Resorts Marketing domain model (red) of a data
warehouse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

V.3 Reasoning rules applied on an example with various measures
(purple) and dimensions (gray). Dashed relations are state-
ments resulting from rule-based reasoning (rules R1 and R2). 93

V.4 Comparison of users similarity matrices obtained with Pear-
son correlation and cosine similarity. Computation is based
on users and preferences described in Table V.1. . . . . . . . 99

V.5 A sample dashboard view, USA Sales View. This view de-
fines 3 charts presenting analysis of sales revenue according
to various dimensions. . . . . . . . . . . . . . . . . . . . . . . 100

V.6 Graph describing a dashboard (orange), USA Sales View, its
associated charts (blue) and referenced measures (purple) and
dimensions (yellow). . . . . . . . . . . . . . . . . . . . . . . . 101

V.7 Proposed integration of the personalized query expansion
component with graph repository and situation management
frameworks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

V.8 Comparison of two proposed reasoning solutions to determine
full dependencies in graphs populated from multi-dimensional
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

V.9 Evaluation of the reasoning time function of the size of the
multi-dimensional model (number of nodes, measures or di-
mensions). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109



LIST OF FIGURES 159

VI.1 Text-To-Query exposed to the end-user as an add-in for Pow-
erPoint. Charts suggestions appear in the right panel and can
be dragged and dropped in the slide. . . . . . . . . . . . . . . 116

VI.2 Mapping of some measures (purple) and dimensions (yellow)
to Standard Analysis Categories (blue). . . . . . . . . . . . . 119

VI.3 Graph view of entities extracted in document1 (left part),
which corresponds to the presentation slide illustrated in VI.1. 120

VI.4 Architecture overview for Text-To-Query integrated with the
graph repository and situation management frameworks. . . . 124

VI.5 Excel add-in for the situation platform, exposing Text-To-
Query recommendations. Suggested queries appear in the
right panel. Charts and data tables and can be inserted in
the spreadsheet. . . . . . . . . . . . . . . . . . . . . . . . . . . 126

VI.6 Mobile client for the situation platform, exposing Text-To-
Query recommendations. The user can select suggested
queries in a list to look at the generated chart and under-
lying data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

VI.7 Architecture overview for the open search platform, using our
graph repository and situation management frameworks. . . . 128

VI.8 Screenshot of auto-completion in the search text box. (a)
First suggestions after characters “sa” and (b) suggestions
following the selection of measure Sales revenue and character
“c”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

VI.9 Charts search results for the query “Sales revenue” annotated
with the measure of the same name, from dashboards avail-
able in the user account. . . . . . . . . . . . . . . . . . . . . . 132

VI.10Graph of plugins available in the search platform, of different
types: search, answer and auto-completion plugins. . . . . . . 133



160 LIST OF FIGURES



List of Tables

III.1 Examples of (partial) statements, some of which constitute
Marge’s situation as represented by the graph in Figure III.1. 46

IV.1 Examples of operators. This include system operators and
specific ones related to some of our experimentations (see
Chapter VI). . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

V.1 Matrix of numeric users preferences regarding certain dimen-
sions and measures. These values include explicit and implicit
contributions to preferences. . . . . . . . . . . . . . . . . . . . 98

V.2 Symetric matrix of co-occurrences (in a personal collection of
dashboards) between various dimensions and measures of a
multi-dimensional domain model. . . . . . . . . . . . . . . . . 102

161


