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Evaluation and Optimization of Dense Wireless Networks

Abstract: The main objective of this thesis is to analyze the performance of wireless networks
under various scenarios: stationary, mobile, single-hop and multi-hop networks.
Our main focus in the first two parts of this thesis is on the geometric placement of simultane-
ous transmitters in the network.
In the first part, we study the impact of the placement of transmitters, by the medium access
control scheme, on the performance of single-hop wireless network. We establish a general
framework and study the optimal placement of transmitters in the network. Later we compare
this optimal placement with placements obtained by random point processes such as Poisson
point process, ALOHA, node coloring and CSMA. Our analysis allows us to evaluate the per-
formance gains of a highly managed medium access control that would be required to imple-
ment the optimal placement of transmitters. For instance, we show that the capacity of this
highly managed medium access control cannot be more than twice the capacity of a low man-
aged medium access control such as ALOHA.
Later, we use analytical methods to evaluate the heuristics for optimizing the capacity and cov-
erage in an existing cellular network by optimally locating additional base stations.
In the second part, we extend our analysis to multi-hop wireless network where we evalu-
ate the optimum transmission range and network throughput capacity with various medium
access control schemes. Our analyses in the first two parts of this thesis allow us to gain per-
spectives into the theoretical limits on the performance of an optimized medium access control
in single-hop and multi-hop wireless network.
In the last part, we shift our focus to capacity-delay tradeoff in mobile wireless network. We
propose a georouting scheme and study its scaling properties. Using a realistic mobility model
and the information available at mobile nodes, our scheme achieves a delay which is bounded
by a constant with network capacity that increases quasi-linearly when the number of nodes in
the network increases and approaches infinity.
Keywords: wireless networks, mobile networks, cellular networks, medium access, ALOHA,
node coloring, CSMA, routing, capacity, throughput, delay
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Chapter 1

Introduction

With increasing computing power and lowering costs of hardware, there has been an explosive
growth in the number of devices that are equipped with wireless radios. Examples of these
devices are mobile phones, laptops, computers, sensors, home appliances, consumer electron-
ics, etc. Wireless radios allow these devices or nodes, as they are called in the terminology of
computer networking, to form networks and communicate using electromagnetic waves, on
the shared medium called channel, without the need of cables.

1.1 Types of Wireless Networks

Depending on the type of communication between nodes, wireless networks can be divided
into two categories:

– single-hop wireless networks and

– multi-hop wireless networks.

In single-hop networks, nodes communicate with each other directly over one hop or, in other
words, nodes only communicate with other nodes which are located within their respective
neighborhoods. Examples of such networks are wireless networks which only allow nodes
to send data to their destination nodes directly, e.g., IEEE 802.11 wireless LANs where nodes
communicate with Access Point (AP) or smart home networks or networks which consist of
wired infrastructure as their backbone except the last hop which is wireless, e.g., cellular data
and voice networks and mobile IP. Figure 1.1 is an illustration of such networks.

Nodes in a network maybe spread in a large area and radio range of wireless nodes is
limited which may not allow them to transmit data directly to their destinations. Therefore,
nodes must use intermediate relays to deliver their data. Such networks are called multi-hop
wireless networks where nodes not only transmit their own data but also serve as relay for
other nodes. Examples are ad hoc and mesh networks. The ad hoc networking of wireless
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Figure 1.1: An illustration of the basic scheme of cellular (single-hop) networks. Base stations
are connected via wired infrastructure and mobile phones connect with their respective base
stations via wireless links.

Figure 1.2: An illustration of ad hoc (multi-hop) networks.

devices lacks any wired infrastructure or a centralized coordinator to harmonize the access to
the shared medium. Moreover, nodes can be mobile and therefore update their links to other
nodes frequently and the network is self-configuring. In contrast, nodes in mesh networks are
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usually fixed or immobile and are usually a part of a networking infrastructure. However, they
also use multi-hop communication to transmit or relay data to their destination nodes. Figure
1.2 shows an example of multi-hop wireless ad hoc networks.

1.2 The Problem

The goal of designing medium access control (MAC) schemes or protocols for wireless net-
works is to allow nodes to efficiently share the channel. Simultaneous transmitters should be
selected in such a way that improves the spatial reuse in the network, i.e., the shared medium
should be used simultaneously by transmitters which are spatially separated in such a way
that they do not interfere with each other’s transmissions. In other words, permanent spatial
clustering of simultaneous transmitters should never occur in the wireless network. In order
to achieve this goal, MAC schemes generally use an exclusion rule to prevent nodes which are
located near to each other from transmitting simultaneously.

The task of designing MAC schemes can be a challenging problem because of the difficulties
posed by various types of wireless networks. To name a few: dynamic network topology, lack
of any centralized control, energy constraints, channel characteristics, mobility of nodes, radio
hardware limits, etc. are some of the issues faced by network and protocol designers. These
challenges influence the design and protocol overhead of MAC schemes in various ways, e.g.:

– protocol overhead to implement MAC schemes in various types of wireless networks,
e.g., intercommunication required between nodes for the distributed implementation of
the protocol,

– scaling properties of the MAC scheme when the number of nodes in the network in-
creases,

– energy efficiency, e.g., minimizing the number of transmissions required for the function-
ing of the protocol, etc.

Therefore, the performance improvement by achieving higher degree of spatial reusability in
wireless networks may come at a significantly higher design complexity, e.g., additional proto-
col overhead, etc. or inefficient energy usage by nodes.

The choice of a MAC scheme also requires a deeper understanding of its performance. For
example, frequency division multiple access (FDMA) achieves spectral separation of transmis-
sions. However, scarcity of available wireless spectrum coupled with an insatiable desire of
higher bandwidth makes the use of spectral separation techniques in large and dynamic wire-
less networks almost impractical because of the lack of any centralized control, limited avail-
able spectrum or inadequate achievable performance (e.g., low capacity and/or high latency).
Time division multiple access (TDMA) can improve the spatial reuse, resulting in better perfor-
mance while sharing the same spectrum, but they are also complex to implement in networks
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without centralized control. Code division multiple access (CDMA) assigns a code to each
transmitter and allows multiple nodes to transmit simultaneously. However, its implementa-
tion in large networks maybe difficult because of the large number of required codes. In CDMA
networks, the signal-to-noise plus interference ratio (SINR) is artificially augmented thanks to
the rejection (of unwanted signals) properties of CDMA. Indeed this would be equivalent to
considering a lower SINR threshold parameter than required. But since we consider general
SINR threshold parameter, this is covered by the general framework of our thesis. Random
access schemes like ALOHA and carrier sense multiple access (CSMA) may not require signif-
icant overhead but they may have their own drawbacks. For example, simple ALOHA may
degrade the performance because a node transmits without any coordination with other trans-
mitters. In order to minimize collisions, CSMA requires that a node senses the medium before
transmission. This can result in higher performance but it is also more demanding on the phys-
ical layer. Moreover, a simple CSMA based scheme may suffer from problems like hidden node
and exposed node problems.

In this thesis, the terminologies of MAC scheme and spatial distribution of simultaneous
transmitters are strongly interlinked as we will use realistic models of various above men-
tioned MAC schemes to derive the accurate models of spatial distributions of simultaneous
transmitters. These models should precisely capture how their corresponding MAC schemes
allow nodes in the network to transmit on the channel. We will investigate the performance of
various types of wireless networks with these models of spatial distributions of simultaneous
transmitters and draw our conclusions for the design of efficient schemes and protocols for
large and dynamic networks.

1.2.1 Single-hop Wireless Networks

Now the first question arises, what is the most optimal MAC scheme or the most optimal
spatial distribution of simultaneous transmitters for single-hop wireless networks? This ques-
tion needs to be answered to have a quantitative measure of the performance of various MAC
schemes. We discussed in §1.2 that, in addition to performance, there are other issues as well
to consider for the design and implementation of MAC schemes in wireless networks. Hope-
fully, our analyses will provide us with new insights into the performance of various MAC
schemes and compliment the efforts of network or protocol designers in their investigation of
the trade-offs involving these factors for designing new schemes for single-hop networks.

Cellular networks are also a type of single-hop networks where network area is divided into
cells and each cell is served by a base station which is also responsible for the resource manage-
ment, like bandwidth allocation, etc., among the mobile phone users in that cell. Depending
on the demographic distribution or non-uniform geographic distribution of users, base sta-
tions are positioned to avoid congestion at the locations of high density of users. However, the
density of users may also change over time, e.g., because of the development of a new com-
mercial area etc. which may lead to congestion and insufficient available bandwidth. In other
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words, the current bandwidth resources may not be able to sustain the increasing number of
users anymore and this may require installation of new base stations in these areas. Therefore,
we need to find where should be the most optimal positions for the additional base stations?
This requires capacity and coverage dimensioning of the area of interest where additional base
stations shall be placed.

1.2.2 Multi-hop Wireless Networks

Determining the end-to-end throughput capacity in multi-hop wireless networks with randomly
distributed nodes is a challenging problem as nodes have to transmit their own data as well
as act as a relay for the data of other nodes. If each node sends data to a randomly selected
destination node, the article [Gupta & Kumar 2000] has already shown that, for a MAC scheme
which allows spatial and temporal scheduling of simultaneous transmissions, the throughput
capacity is O(

√

n/ log n)1 where n is the number of nodes in the network. However, here
we are also interested in quantifying the throughput capacity with various MAC schemes to
find the most optimal MAC scheme for multi-hop networks. We expect that by analyzing
the relationship between the spatial distributions of simultaneous transmitters and multi-hop
throughput capacity, our results will also provide deeper insights for the designers of protocols
for multi-hop networks.

1.2.3 Mobile Multi-hop Wireless Networks

So far, we have not discussed the packet delivery delay as it is almost negligible because, in
networks with fixed nodes, packets are transmitted or relayed immediately like hot potatoes,
i.e., without delay between store and forward. The article [Grossglauser & Tse 2002] has shown
that, by exploiting the mobility of nodes in the network, capacity can be increased to O(n).
However, this improvement in capacity comes with a significantly higher delay which scales
as O(

√
n). There has been other studies to improve this capacity-delay tradeoff in wireless

networks with mobile nodes but mostly with the models for the mobility of nodes which are
not very realistic. We will discuss these works in detail in Chapter 2. In this work, we will see if
we can benefit from a realistic model of the mobility of nodes and their geographic information
to improve the capacity-delay tradeoff in mobile wireless networks.

1.3 Organization of this Thesis and Our Contributions

In this section, we will present the organization of thesis and our contributions.

1We recall the following notation: (i) f (n) = O(g(n)) means that there exists a constant c and an integer N such
that f (n) ≤ cg(n) for n > N. (ii) f (n) = Θ(g(n)) means that there exists two constants c1 and c2 and an integer N
such that c1g(n) ≤ f (n) ≤ c2g(n) for n > N.
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We will discuss some of the related works on performance analysis of MAC schemes in
wireless networks in Chapter 2. In Chapter 3, we will discuss the network models that we
will use in our analyses throughout this work. We will also discuss the models of various
MAC schemes that we will use to derive the models of spatial distributions of simultaneous
transmitters.

Rest of the thesis is divided into the following three parts.

1.3.1 Part 1: Single-hop Wireless Networks

In the first part, we will address the capacity in single-hop wireless networks.
In Chapter 4, we will introduce the concept of local capacity in single-hop wireless networks

and evaluate it for various MAC schemes. We will also construct models of spatial distributions
of simultaneous transmitters under various MAC schemes and our goal is to identify the most
optimal scheme and also to see how does it compare with other, more practical MAC schemes
like ALOHA, node coloring and CSMA based schemes.

In Chapter 5, we will develop an algorithm to find the locations of K additional base stations
in the area of interest to optimize capacity and coverage of an existing cellular network.

1.3.2 Part 2: Multi-hop Wireless Networks

In this part, we will extend our analysis to multi-hop wireless networks.
In Chapter 6, we will analyze the optimum normalized transmission range of various MAC

schemes. Transmission range has an impact on the number of hops required to relay a packet
to its destination and therefore its analysis is important to investigate the throughput capacity
of multi-hop networks.

In Chapter 7, we will evaluate the throughput capacity of multi-hop wireless networks with
various MAC schemes.

1.3.3 Part 3: Mobile Multi-hop Wireless Networks

In this part of the thesis, we will extend our analysis to networks with mobile nodes.
In Chapter 8, we will present a scheme where nodes exploit the knowledge of their own

location and the location of the final destination and a realistic mobility model to achieve a
capacity-delay tradeoff where average packet delivery delay is bounded and capacity scales
quasi-linearly with increasing number of nodes in the network.
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Capacity of Wireless Networks

The assessment of the capacity of wireless networks is a challenging task and significant re-
search efforts have been made to study this problem. The difficulty posed by this problem
comes from the fact that it has to take into account the following three main aspects:

– propagation of electromagnetic waves through medium,

– geometry of wireless network, i.e., the positioning of nodes in the network and

– extraction of information from received signals.

In this chapter, we will discuss some of the important related works and find out how they
address the above mentioned aspects of this problem.

2.1 Capacity of Single-hop Wireless Networks

In one of the first analyses, the article [Nelson & Kleinrock 1984] studied the capacity of wire-
less network with slotted ALOHA and despite using a very simple geometric model for the
reception of signals, the result is very similar to what can be obtained under a realistic SINR
based interference model where a signal is received only if its SINR is above a desired thresh-
old. Under a similar geometric model and assuming that all nodes are within range of each
other, the article [Kleinrock & Tobagi 1975] evaluated CSMA scheme and compared it with
slotted ALOHA in terms of throughput (bit-rate). The article [Blaszczyszyn et al. 2010] used
simulations to analyze CSMA and compared it with ALOHA, both slotted and un-slotted. For
simulations, the authors of this article assumed Poisson distributed transmitters with density
λ. Each transmitter sends packets to its assigned receiver located at a fixed distance of a

√
λ, for

some a > 0.
The articles [Weber et al. 2005, Weber et al. 2010] introduced the concept of transmission ca-

pacity which is defined as the maximum number of successful transmissions per unit area at
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a specified outage probability, i.e., the probability that the SINR at the receiver is below a cer-
tain threshold. The authors of these articles studied the transmission capacity of ALOHA and
CDMA schemes under the assumption that simultaneous transmitters form a homogeneous
Poisson point process and, as in the article [Blaszczyszyn et al. 2010], they also assumed that the
receivers are located at fixed distance from their transmitters. The fact that the receivers are not
a part of the network or node distribution model and are located at a fixed distance from their
transmitters is a simplification. An accurate model of wireless network should consider that
the transmitters, transmit to receivers which are randomly located within their neighborhood.
Although, the article [Weber et al. 2005] also analyzed the case where receivers are located at a
random distance but it was assumed that the transmitters employ transmit power control such
that the signal power at their intended receivers is some fixed value.

Poisson point process can only accurately model an ALOHA based scheme where transmit-
ters are independently and uniformly distributed in the network area. However, with MAC
schemes based on exclusion rules, like node coloring or CSMA, modeling simultaneous trans-
mitters as Poisson point process leads to an inaccurate representation of the distribution of
signal level of interference. On the other hand, correlation between the location of simultane-
ous transmitters makes it extremely difficult to develop a tractable analytical model and derive
the closed-form expression for the distribution of interference and probability of successful re-
ception. Some of the proposed approaches are as follows. In Chapter 18 of the book [Baccelli &
Blaszczyszyn 2009], the authors used a Matérn point process for CSMA scheme whereas the ar-
ticle [Busson & Chelius 2009] proposed to use Simple Sequential Inhibition (SSI) or an extension
of SSI called SSIk point process. In articles [Hasan & Andrews 2007, Kaynia & Jindal 2008], si-
multaneous interferers are modeled as Poisson point process and outage probability is obtained
by excluding or suppressing some of the interferers in the guard zone around a receiver. The
article [Ganti et al. 2011] analyzed transmission capacity in networks with general node distribu-
tions under a restrictive hypothesis that density of interferers is very low and, asymptotically,
approaches zero. The authors of this article derived bounds of high-SINR transmission capac-
ity with ALOHA using Poisson point process and CSMA using Matérn point process. Other
related works include the analysis of single-hop throughput and capacity with slotted ALOHA,
in networks with random and deterministic node placement, and TDMA, in one-dimensional
line-networks only, in the article [Haenggi 2009].

2.2 Capacity of Multi-hop Wireless Networks

Most of the works we have discussed so far, analyze the capacity of wireless network by taking
into account only the simultaneous single-hop transmissions. However, when source and des-
tination nodes are randomly distributed in the network area, packets are usually transported
through multiple relays towards their respective destinations. Therefore, these analyses may
not give an accurate assessment of the performance of wireless network using multi-hop com-
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munication.

Though computing the end-to-end capacity of wireless network is an extremely challenging
task because of the possible impact of routing protocol on the hop length and spatial distribu-
tion of simultaneous transmitters, there have been significant attempts to overcome the above
mentioned limitations. In the seminal work of the article [Gupta & Kumar 2000], the authors
used a spatial and temporal scheme for scheduling transmissions in the network and derived
the scaling laws on the capacity when the number of nodes increases and approaches infinity.
They showed that if nodes in the network transmit at constant rate, the effective radius of suc-
cessful transmission scales as O(1/

√
n). Therefore, if nodes transmit to their nearest neighbors

only, there can be O(n) simultaneous transmissions in the network with bit rate per source-
destination pair of O(1) which is independent of n and the network capacity scales as O(n).

In case of multi-hop communication, Gupta & Kumar also introduced the concept of trans-

port capacity which measures the sum of the end-to-end throughput of the network multiplied
by the end-to-end distance and showed that if nodes are optimally located and traffic patterns
are also optimally assigned, the network transport capacity scales as O(

√
n) or, in other words,

bit-rate per source destination pair in multi-hop networks is upper bounded by O(1/
√

n).
However, if nodes are randomly distributed, they showed that the throughput obtainable by
each node for a randomly chosen destination drops to O(1/

√

n log n) where the log n factor
comes from the fact that the network must be connected or, in other words, at least one route or
path must exist between all pairs of nodes with high probability (w.h.p.) which approaches one
as n approaches infinity. We can also obtain this result as follows. Let us assume that pn is the
transmission rate of each node, i.e., the proportion of time each node is active and transmitting.
Therefore, the effective radius of transmission is given by

rn =

√

κ

npn
, (2.1)

when n increases and approaches infinity, for some constant κ > 0 which depends on the pro-
tocol and physical layer parameters, interference model, etc. Therefore, the average number of
relays a packet has to traverse to reach its destination will be hn = O(1/rn). Consequently, npn

must be divided by hn to get the useful network throughput capacity

npn

hn
= O(

√
pnn) .

From the article [Gupta & Kumar 1998], we know that in order to ensure connectivity in a
network, so that every source is able to communicate with its randomly chosen destination, pn

must satisfy the limit

pn ≤ O

(

1
log n

)

,

and this leads to Gupta & Kumar’s throughput capacity of O(
√

n/ log n).
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The articles [Xue & Kumar 2006, Franceschetti et al. 2007] have shown that, even in case
of randomly distributed nodes, the throughput capacity in wireless network can be increased
to an upper bound of O(

√
n) and the log n factor can be overcome by constructing a complex

system of highways of nodes to transport data and using different transmission ranges for dif-
ferent transmissions. The authors of these articles used techniques from percolation theory to
show that a system of horizontal and vertical highways can be formed in a network of ran-
domly distributed nodes. Each highway is accessed by an O(

√
n) number of nodes and these

highways can then use time sharing scheme to carry data over short hops (of length bounded
by a constant) at constant bit-rate which gives the O(1/

√
n) rate of communication per node.

Other nodes use single-hops of longer length of O(log
√

n) when data is to be pushed on these
highways or delivered from these highways to destination nodes. In other related works, the
article [Baccelli et al. 2006] gave a detailed analysis on the optimal probability of transmission
for ALOHA which optimizes the spatial density of progress, i.e., the product of simultaneously
successful transmissions per unit of space by the average range of each transmission. Instead
of considering the average range of transmission, the authors of the article [Weber et al. 2008]
proposed a variant where each transmitter selects its longest feasible edge and then identifies
a packet in its buffer whose next hop is the associated receiver. Similarly, the article [Andrews
et al. 2010] evaluated the random transport capacity of wireless network without taking into
account any particular routing protocol and under the strong assumptions that simultaneous
interferers form a Poisson point process and relays are equally spaced on a straight line be-
tween a source and its destination.

An important aspect of the multi-hop communication is the transmission range of a trans-
mitter as it has an impact on the hop-length as well as the probability of successful transmis-
sion: both factors have critical impact on the capacity of multi-hop wireless network. There
have been many studies on the transmission range under various constraints. For example,
the article [Deng et al. 2007] studied the transmission range that achieves the most economi-
cal energy usage in an ad hoc network of uniformly distributed nodes. The works [Santi &
Blough 2003, Santi 2005] analyzed the critical transmission range required for connectivity in
stationary and mobile wireless ad hoc networks. The article [Takagi & Kleinrock 1984] de-
termined the optimal transmission range of slotted ALOHA and CSMA schemes which max-
imizes the expected one-hop progress of a packet while considering the tradeoff between the
probability of successful transmission and the progress of the packet. The authors assumed that
all nodes use same transmit power and the range of transmission is controlled by tuning the
density of simultaneous transmitters via parameters like probability of transmission (in case
of ALOHA) and carrier sense threshold (in case of CSMA). The article [Zorzi & Pupolin 1995]
determined the normalized optimum transmission range under the assumption that simulta-
neous interferers form a Poisson point process. In an important analysis in the article [Gomez &
Campbell 2004], the authors studied the impact of variable transmission range, by controlling
the transmit power, on network connectivity, capacity and energy efficiency. They showed that
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routing in networks where transmitters have same transmission range can only achieve half of
the traffic carrying capacity of networks where transmitters have variable transmission range.

2.3 Capacity of Wireless Networks with Multiple-Input-Multiple-
Output Technology

The results we have discussed so far evaluate the capacity of wireless network by assuming
that nodes are equipped with only one antenna and, at a time, a receiver can only receive data
from one transmitter and signal from all other transmitters is considered as interference.

The communication performance in wireless network can be significantly improved by us-
ing multiple-input-multiple-output (MIMO) technology. The earliest ideas in this field were in-
troduced in articles [Kaye & George 1970, Brandenburg & Wyner 1974] and further developed
in works of [Paulraj & Kailath 1993, Foschini 1996, Telatar 1999]. Following these pioneering
works, there have been many articles which improved on these ideas progressively and eval-
uated the performance of MIMO systems under various scenarios. Some of these analyses can
also be found in articles like [Zheng & Tse 2003, Choi & Murch 2004, Chiani et al. 2010].

There can be two flavors of MIMO: classical MIMO and cooperative MIMO. In classical
MIMO, nodes are equipped with multiple antennas and each transmitter uses spatial multi-

plexing to transmit multiple streams of data in parallel. This technology has been in use in
standards like fourth generation (4G) Long Term Evolution (LTE) which are presented in detail
in specifications [3GPP 2005, 3GPP2 2007], Worldwide Interoperability for Microwave Access
(WiMAX) based on IEEE 802.16e in the specification [802.16e 2009] and IEEE 802.11 wireless
LANs based on the specification [802.11n 2009]. The capacity of wireless network consisting
of nodes using classical MIMO has been studied in articles like [Bölcskei et al. 2006, Chen &
Gans 2006, Jiang et al. 2011], where the latest work extended the result of Gupta & Kumar and
showed that the capacity scales as O

(

m
√

n
log n

)

, where each node is equipped with m antennas.

In the framework of pure information theoretic capacity, i.e. the Shannon capacity, informa-
tion can be extracted from all parallel flows of data from simultaneous transmitters. The arti-
cle [Jacquet 2009] evaluated the capacity in terms of information rate received by a randomly
located node in a wireless network consisting of nodes distributed according to two dimen-
sional (2D) Poisson point process. In this article, the author assumed that the receivers are
equipped with MIMO-like technology and, from the received signal, extract information of all
parallel flows, generated (transmitted) by simultaneous transmitters in the network, at a rate
depending on the SINR of each information flow. Under this assumption, the author showed
that the received information rate depends only on the attenuation coefficient α > 2 and is
equal to α

2 (log 2)−1 bits per Hertz. Starting with the works of [Gupta & Kumar 2003, Xie &
Kumar 2004], there has also been an interest in the information theoretic capacity scaling laws
of wireless network and a steady stream of articles have been addressing this topic. Some
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of these works can be found in articles like [Jovicic et al. 2004, Leveque & Telatar 2005, Ah-
mad et al. 2006]. In networks employing cooperative MIMO, nodes cooperate, by allowing to
transmit (or receive) signal to (or from) multiple nodes, to deliver data to their destinations.
Examples of various schemes using cooperative MIMO can be found in articles like [Aeron &
Saligrama 2007, Ozgur et al. 2007, Niesen et al. 2009]. Using pathloss model for propagation of
electromagnetic waves through medium and statistical fading models, all these articles present
various bounds or scaling laws on information theoretic capacity of wireless network: some of
these results show bit-rate per source-destination pair which decays to zero as the number of
nodes in the network approaches infinity, others show slower decay and some are even able to
show an almost constant bit-rate using schemes based on cooperative MIMO.

2.4 Capacity-Delay Tradeoff in Mobile Multi-hop Wireless Net-
works

In case of networks with immobile nodes, the packets are relayed immediately like hot potatoes

and the packet delivery delay can be assumed negligible. So the question arises, what happens
if nodes are allowed to move and how the mobility of nodes in the network has an impact on the
capacity and delay? In the article [Grossglauser & Tse 2002], the authors showed that if nodes
are mobile and follow independent and identically distributed (i.i.d.) ergodic motions in a square
area, the throughput capacity can rise to O(n) by using the mobility of nodes. Under their
proposed postman routing scheme, a source node relays its packet to a random mobile relay
node which transmits this packet to its destination node only when they come close together,
i.e., at a distance of O(1/

√
n). Therefore, the time it takes to deliver a packet to its destination

would be O(
√

n/v) where v is the average speed of nodes. In contrast, in the analysis of
Gupta & Kumar, where nodes are considered to be immobile, the packet delivery delay tends
to be negligible because the packets are relayed toward their respective final destinations like
hot potatoes but the network throughput capacity is also lower by a factor of

√

n log n. It is
also interesting to note that the article [Diggavi et al. 2005] showed that a constant throughput
capacity per source-destination pair is also feasible even with a more restricted mobility model,
i.e., when nodes are allowed to move along line segments only.

The main difference between the proposed models in the works of Gupta & Kumar and
Grossglauser & Tse is that, in the former case, nodes are immobile or static and packets are
transmitted between nodes like hot potatoes while, in the latter case, nodes are mobile and relays
are allowed to carry buffered packets while they move. Earlier, in this chapter, we discussed
the result of Gupta & Kumar and also discussed their result on throughput capacity in multi-
hop networks under the condition that the network must remain connected. In contrast, in the
context of Grossglauser & Tse, the network does not need to be connected as the packets are
mostly carried in the buffer of a mobile relay. Therefore, there is no limit on pn other than the
requirement that it must be smaller than some ε < 1 that depends on the protocol and some
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other physical parameters. Thus, in this case, rn is O(1/
√

n). In the first step of Grossglauser
& Tse’s postman routing scheme, the source transmits its packet to the closest mobile relay or
keeps it until it finds one. In the second step, this mobile relay delivers the packet to its des-
tination when it comes within range of the destination node. Such a packet delivery requires
a transmission phase which also includes retries and acknowledgements so that the packet
delivery can be eventually guaranteed. The proposed model of Grossglauser & Tse should
require a positing system like global positioning system (GPS) and the knowledge of the effec-
tive transmission range rn. The estimate of rn could be achieved via a periodic beaconing from
each node. Each beacon also contains the position coordinates of its transmitter and any other
node, on receiving this beacon, knows the typical distance for a successful reception. How-
ever, a relay cannot rely on beaconing in order to detect when it is in the reception range of the
destination. The reason is that a node stays in the reception range of another node for a short
time period of order rn/v = 1/

√
n and this cannot be detected via a periodic beaconing with

bounded frequency since pn = O(1). In fact, the frequency of periodic beaconing should be
of O(

√
n). We may also assume that the destination node is fixed and its cartesian coordinates

are known by the mobile relays. Otherwise, if the destination node is mobile, there would be a
requirement for this node to track its own coordinates and disseminate this information in the
network. Some of these ideas are also proposed in articles like [Stojmenovic 1999,Li et al. 2000].

In our work, we will propose a georouting scheme and study the scaling properties of its
capacity and delay characteristics. We will show that the packet delivery delay of our scheme
is bounded by O(1/v) and throughput per source-destination pair is O

( 1
log n log log n

)

. The au-
thors of the article [Gamal et al. 2004] also studied the throughput-delay tradeoff in wireless
networks. If we take the notation of

√

a(n) in their work to measure the average distance trav-
eled toward the destination between two consecutive transmissions of the same packet, we
will show that our scheme yields

√

a(n) = Θ(1/ log n). If we compare this with their result,
we should have a throughput of Θ

( 1
log n

√
n

)

but our scheme delivers a higher throughput by

a factor of
√

n log log n. In fact, if ℓ is the average free space distance of the random walk,
then our scheme yields

√

a(n) = Θ
( 1

1/ℓ+log n

)

. The apparent contradiction comes from the fact
that they consider a mobility model based on brownian motion. This corresponds to having
ℓ = 0 and, in this case, our scheme would be equivalent to the hot potatoes routing of Gupta
& Kumar with

√

a(n) = Θ(rn). Let us point out that the brownian motion mobility is an im-
portant yet worst case model and it is not realistic for mobility in real world situations such
as urban area mobile networks. Throughput and delay trade-offs have also appeared in other
articles as well. However, to improve delay at the expense of capacity, most of these works
propose schemes that use redundancy where a packet is relayed to more than one node before
a copy arrives at the destination. The article [Toumpis & Goldsmith 2004] assumes that nodes
move according to an i.i.d. ergodic mobility model and proposed two schemes that also use
redundancy. In the first scheme, the authors showed that, for a bounded delay, capacity of

O(n− 1
2 (log n)−

3
2 ) per source-destination pair is achievable and, in the second scheme, for de-
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lay bounded by O(nε), it can rise to O(n
(ε−1)

2 (log n)−
5
2 ) where 0 < ε < 1. The article [Neely

& Modiano 2005] also proposed redundancy schemes in cell partitioned network setting with
nodes moving according to i.i.d. mobility model and showed a throughput and delay trade-
off of: delay/throughput ≥ O(n). The authors of this article proposed three schemes that can
achieve throughput per source-destination pair of O(1), O(1/

√
n) and O(n−1(log n)−1), for

delays of O(n), O(
√

n) and O(log n) respectively. Under a less restrictive network setting and
similar mobility model, the article [Lin & Sharrof 2004] achieved better tradeoff and showed
that for bounded delay, throughput per source-destination pair can be O(n−1(log n)−3).

Note that, on the practical side, many protocols have been proposed for multi-hop wire-
less networks. These protocols may be classified into topology-based and position-based pro-
tocols. In topology-based protocols, some of which are discussed in articles like [Perkins &
Belding-Royer 1999, Haas et al. 2002, Clausen & Jacquet 2003], there is a need to maintain in-
formation on routing tables and these protocols may not work efficiently in environments with
high frequency of topology changes. For this reason, there has been an increasing interest in
position-based geographic routing protocols. In these protocols, a node needs to know its own
position as well as the positions of its one-hop neighbors and its destination node. These pro-
tocols do not need control or management packets to exchange information about link statuses
or to update routing tables. Examples of such protocols can be found in articles like [Hou &
Li 1986,Navas & Imielinski 1997,Ko & Vaidya 1998,Basagni et al. 1998,Kranakis et al. 1999,Karp
& Kung 2000]. However, in contrast to our work, these works do not study the scaling prop-
erties of capacity and packet delivery delay in the network and their trade-off under these
protocols.



Chapter 3

Medium Access Control Schemes in
Wireless Networks

Modeling of wireless channel interference is the most crucial step required for the performance
analysis of wireless networks. An important factor that influences the statistics of interference
is the geometry of simultaneously transmitting nodes, i.e., the spatial distribution of simulta-
neous transmitters which in turn depends on the MAC scheme employed by nodes in the net-
work. In other words, in order to accurately model interference with various MAC schemes,
it is important to derive accurate models of the distributions of simultaneous transmitters that
precisely capture how various MAC schemes allow nodes in the network to transmit on the
channel.

In this chapter, first we will present our models and assumptions we have used throughout
this thesis. Later, we will also discuss various MAC schemes and use their sufficiently accurate
models to arrive at the spatial distributions of simultaneous transmitters with these schemes.

3.1 Models and Assumptions

In this section, we will discuss the models that we will use throughout this thesis.

3.1.1 Timing Model

MAC schemes in wireless networks can be divided into two categories: continuous time access
and slotted access. In order to simplify our analysis and cope with the difficulties introduced by
the continuous time medium access, our main focus in this work will be on the slotted medium
access although many of our results can be applied to continuous time medium access as well.

In slotted medium access, time is divided into slots of equal duration and we consider an
ideal timing model, operating with the following assumptions:
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– nodes are synchronized,

– transmissions begin at the start of the slot,

– packets are of equal length and

– packet transmission time is equal to one slot.

Note that, in our timing model, we have assumed that the propagation delays, i.e., the time it
takes for the signals to travel from the transmitters to the receivers are negligible.

Within slotted medium access category, we distinguish slotted ALOHA, node coloring,
CSMA and grid pattern based MAC schemes.

3.1.2 Network Model

Unless otherwise specified, we will consider a wireless network where nodes are uniformly
distributed with density ν in a two-dimensional (2D) area A with center at origin (0, 0). We
denote the set of all nodes in the network by N and n is the number of elements in this set.
Note that, in practical scenarios and for simulation purposes, the network area A and the set
N are finite but for theoretical analysis, the set N can be infinite but distributed with a uniform
density ν in an infinite plane R

2, i.e., A = R
2.

In slotted medium access, at any given slot, simultaneous transmitters in the network are
distributed like a set of points

S = {z1, z2, . . . , zk, . . .} ,

where zi ∈ A is the location of transmitter i and zi = (xi, yi). The spatial distribution of simulta-
neous transmitters, i.e., the set S depends on the MAC scheme employed by nodes. Therefore,
we will not adopt any universal model for the locations of simultaneous transmitters and only
assume that, in all slots, the set S has a spatially homogeneous density equal to λ.

3.1.3 Propagation Model

The channel gain between an arbitrary transmitter i and a receiver located at point z ∈ A is
denoted by γi(z), such that the received power at the receiver is Piγi(z).

We have the following expression for the channel gain γi(z)

γi(z) =
Fi(z)

‖z − zi‖α
, (3.1)

where Fi(z) is the fading factor which is a random variable that represents the variation in chan-
nel gain between transmitter i and the receiver located at point z, ‖z − zi‖ is the Euclidean
distance between the transmitter and the receiver and α > 2 is the attenuation coefficient.

The variation in channel gain Fi(z) has two components:
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– fast fading and

– slow fading or shadowing effects.

We assume that the value of Fi(z) remains constant over the duration of a slot. However, it
varies from slot to slot and, for the signal from transmitter i to the receiver located at point
z, there will be correlation between these varying values because of the shadowing effects
and, in this case, the mean value of Fi(z) will be less than one. In this thesis, we will ignore
the shadowing effects and we will consider that Fi(z) is an i.i.d. random variable which is
independent of the position of the transmitter and the receiver. We will also assume that it is
independent of the distance between them which is a simplification. Therefore, we can drop
the subscript and the argument z and denote F ≡ Fi(z). For the probability distribution of F,
we will consider the following two cases:

1. no fading: F is constant and equal to one,

2. Rayleigh fading: F is an i.i.d. random variable with an exponential distribution of mean
equal to one.

3.1.4 Transmission Model

We consider that all nodes are equipped with only one antenna and the transmission from
transmitter i to a receiver located at point z is successful if and only if the following condition
is satisfied

Piγi(z)
N0 + ∑

j 6=i,zj∈S
Pjγj(z)

≥ β , (3.2)

where N0 is the background noise (ambient/thermal) power which is assumed equal to zero
and β is the minimum SIR threshold required for successfully decoding the packet.

We consider that all transmitters transmit at the same unit nominal transmit power, i.e.,

Pi = 1 ,

for i = 0, 1, 2, . . . , k, . . ..
Note that, here we have ignored the inter-symbol interference (ISI) caused by echoes which

may allow the above condition to be satisfied but the packet may still be non-decodable at the
receiver.

The ISI can be mitigated using guard periods and/or adaptive equalization at the receivers
however, this is beyond the scope of this thesis and we will ignore its impact on whether the
transmission can be received successfully or not.
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Therefore, the SIR of transmitter i at any point z is given by

Si(z) =
γi(z)

∑
j 6=i,zj∈S

γj(z)
, (3.3)

where γi(z) is given by (3.1).

3.1.5 Node Model

We consider that each node has a buffer which contains packets and a node transmits a packet
from its buffer when it is allowed by its MAC layer to transmit on the channel. However, if no
packet is available in the buffer, the node transmits a HELLO packet or a junk packet of length
such that its transmission time is equal to the duration of a slot.

In case of single-hop networks, we will discuss further details of our model in §4.1.
Note that, in case of multi-hop networks, each node generates packets in its buffer which are

to be transmitted to a randomly selected destination node and packets may have to be routed
through multiple relays to reach their destinations. Therefore, the buffers may also carry the
routed packets. The details of our model for multi-hop networks can be found in §7.1.

3.2 Slotted ALOHA Scheme

In slotted ALOHA based MAC scheme, nodes do not use any complicated managed transmis-
sion scheduling and transmit their packets independently of each other with a certain medium
access probability. In this section, we will describe the model of slotted ALOHA and later we
will also discuss our strategy to evaluate it.

3.2.1 High-Level Specification of the Scheme

Note that, for the purpose of evaluation and simulations of the MAC schemes, we will only
describe a high-level specification of the protocols where we will omit the packet management
and other issues related to synchronization and distributed implementation of protocols.

In case of slotted ALOHA scheme, we denote the probability of medium access by p and for
the construction of the set of simultaneous transmitters S in each slot, we will use the following
model.

1. We denote the set of all nodes, which have a packet to transmit, by M. Under our as-
sumption that each node has a packet in its buffer ready to be transmitted or, otherwise,
it transmits a HELLO or junk packet, we can initialize M = N and S = ∅.
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2. Randomly select a node i from M and toss a coin independently with bias p. If the
outcome is heads, add the node i to the set S , i.e.,

S = S ∪ {zi} .

3. Remove node i from the set M.

4. If set M is non-empty, repeat from step 2.

3.2.2 Model for Analytical Evaluation

In case of slotted ALOHA scheme, the set of simultaneous transmitters S in each slot can be
given by a uniform Poisson distribution of mean equal to λ transmitters per unit square area
as is also the case in articles [Baccelli et al. 2006, Jacquet 2009, Weber et al. 2010].

Note that the evaluation of slotted ALOHA will be discussed in detail in §4.2, for single-hop
networks, and in §6.3 and §7.2.1, for multi-hop networks.

3.3 MAC Schemes Based on Exclusion Rules

In this section, first we will discuss the models of MAC schemes based on exclusions rules and
later we will discuss our strategy to evaluate these schemes.

3.3.1 High-Level Specification of the Schemes

Here we will discuss the models of the following MAC schemes:

– node coloring scheme where the exclusion rule is based on distance and

– CSMA based scheme where the exclusion rule is based on signal levels.

3.3.1.1 Node Coloring Schemes

Node coloring schemes use a managed transmission scheme based on TDMA approach. The
aim is to minimize the interference between transmissions that cause packet loss. These MAC
schemes assign colors to nodes that correspond to periodic slots, i.e., nodes that satisfy a spa-
tial condition, either based on physical distance or distance in terms of number of hops, will
be assigned different colors. This condition is usually derived from the interference models
of wireless networks such as unit disk graph (UDG) models. For example, in order to avoid
collisions at receivers, all nodes within k hops are assigned unique colors where the typical
value of k is 2. A few practical implementations of node coloring schemes are as follows. In
the article [Ramanathan 1997], authors proposed coloring based on RAND, MNF and PMNF
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algorithms. In RAND, nodes are colored in a random order whereas MNF and PMNF prioritize
nodes according to the number of their neighbors. NAMA protocol in the article [Bao & Garcia-
Luna-Aceves 2001] colors nodes, in 2-hop neighborhood, randomly using a hash number. In
SEEDEX, proposed in the article [Rozovsky & Kumar 2001], nodes use random seed number
in 2-hop neighborhood to randomly elect the transmitter. FPRP protocol in the article [Zhu &
Corson 2001] is a five-phase protocol where nodes contend to allocate slots in 2-hop neighbor-
hood. DRAND is the distributed version of RAND and the article [Rhee et al. 2009] showed
its better performance as compared to SEEDEX and FPRP. The article [Vergados et al. 2010]
proposed a joint TDMA scheduling/load balancing algorithm for wireless multi-hop networks
and shows that it can improve the performance in terms of multi-hop throughput and fairness.
Most of these MAC schemes use unit disk graph based interference model. However, success
of a transmission depends on whether the signal-to-interference plus noise ratio SINR at the
receiver is above a certain threshold. Recently proposed, the protocol in the article [Derbel
& Talbi 2010] is an example of a node coloring scheme which uses SINR based interference
model. Note that extremely managed transmission scheduling in node coloring schemes has
significant overhead, e.g., because of the control traffic or message passing required to achieve
the distributed algorithms that resolve color assignment conflicts.

In this work, instead of considering any particular scheme, we will present a model which
ensures that transmitters use an exclusion distance in order to avoid the use of the same slot
within a certain distance. This exclusion distance is defined in terms of euclidean distance d

which may be derived from the distance parameter of a typical TDMA-based protocol. There-
fore, a slot cannot be shared within a distance of d or, in other words, nodes transmitting in the
same slot shall be located at a distance greater or equal to d from each other.

Following is a model of node coloring schemes which constructs the set of simultaneous
transmitters S in each slot. This is supposed to be done off-line so that transmission patterns
periodically recur in each slot.

1. Initialize M = N and S = ∅.

2. Randomly select a node i from M and add it to the set S , i.e,

S = S ∪ {zi} .

3. Remove node i from the set M.

4. Remove all nodes from the set M which are at distance less than d from i.

5. If set M is non-empty, repeat from step 2.

Above described steps model a node coloring scheme that may have a centralized or dis-
tributed implementation and randomly selects nodes for coloring while satisfying the con-
straints of Euclidean distance. Under given constraints, this model selects all possible nodes
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that can transmit simultaneously in each slot and should give the maximum capacity achiev-
able with any node coloring scheme which may not prioritize nodes for coloring, e.g., the
DRAND protocol in the article [Rhee et al. 2009].

3.3.1.2 CSMA Based Schemes

As compared to managed transmission schemes like node coloring, CSMA based schemes are
simpler but are more demanding on the physical layer because, before transmitting on the
channel, a node verifies if the medium is idle by sensing the signal level. If the detected signal
level is below a certain threshold, medium is assumed idle and the node transmits its packet.
Otherwise, it may invoke a random back-off mechanism and wait before attempting a retrans-
mission. CSMA/CD (CSMA with collision detection) and CSMA/CA (CSMA with collision
avoidance), which is also used in IEEE 802.11, are the modifications of CSMA for performance
improvement. This is discussed in more detail in the book [Tanenbaum 2002].

We will adopt a model of CSMA based scheme where nodes contend to access medium at
the beginning of each slot. In other words, nodes transmit only after detecting that medium is
idle. We assume that nodes defer their transmission by a tiny back-off time, from the beginning
of a slot, and abort their transmission if they detect that medium is not idle. We also suppose
that detection time and receive to transmit transition times are negligible and, in order to avoid
collisions, nodes use randomly selected (but different) back-off times. Therefore, the main effect
of back-off times is in the production of a random order of nodes in competition.

For the evaluation of the performance of wireless networks with CSMA based scheme, we
will use the following simplified construction of the set of simultaneous transmitters S .

1. Initialize M = N and S = ∅.

2. Randomly select a node i from M and add it to the set S , i.e.,

S = S ∪ {zi} .

3. Remove node i from the set M.

4. Remove all nodes from the set M which can detect a combined interference signal of
power higher than the carrier sense threshold θcs from all transmitters already added to
the set S . For example, in the propagation model described in §3.1.3, if

∑
zi∈S

Fi(zj)

‖zi − zj‖α
≥ θcs , (3.4)

then remove node j from M.

5. If set M is non-empty, repeat from step 2.
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These steps model a CSMA based scheme which requires that transmitters do not detect an
interference of signal level equal to or higher than θcs, during their back-off periods, before
transmitting on the medium. At the end of the construction of set S , some transmitters may
experience interference of signal level higher than θcs. However, this behavior is in compliance
with a realistic CSMA based scheme where nodes, which started their transmissions, or, in
other words, are already added to the set S do not consider the increase in signal level of
interference resulting from later transmitters.

3.3.2 Model for Analytical Evaluation

We discussed in Chapter 2 that an accurate model of interference distribution, in case of exclu-
sion schemes, is very hard to derive because of the correlation in the locations of simultaneous
transmitters, e.g., simultaneous transmitters separated by a certain minimum distance. We also
mentioned a few approaches to model distribution of transmitters in exclusion schemes in-
cluding Matérn point process in articles [Baccelli & Blaszczyszyn 2009, Ganti et al. 2011] or SSI

point process in the article [Busson & Chelius 2009]. Classical Matérn point process is a loca-
tion dependent thinning of Poisson point process such that the remaining points are at least at
a certain distance b > 0 from each other. Instead of using distance, the approaches of Baccelli
& Blaszczyszyn and Ganti et al. used received power level, a function of distance, in order to
model CSMA based schemes. However, Busson & Chelius showed that Matérn point process
may lead to an underestimation of the density of simultaneous transmitters and proposed an
SSI point process in which a node can transmit or, in other words, can be added to the set of si-
multaneous transmitters S if it is at least at a certain distance b > 0 from all active transmitters
(i.e., the transmitters already in the set S). SSI point process can be used to study node coloring
schemes but may result in a flawed representation of the distribution of simultaneous transmit-
ters with CSMA based schemes. In case of CSMA based schemes, a node senses the medium
to detect if the signal level of interference is below a certain threshold and only transmits if
it remains below that threshold during the randomly selected back-off period. Therefore, the
decision of transmission depends on all nodes which are already active and transmitting on the
medium. In order to address this inaccuracy of SSI point process model, Busson & Chelius also
proposed an SSIk point process which ensures that a node, before transmitting on the medium,
takes into account the interference from k nearest active transmitters. In contrast, our model
of CSMA takes into account the interference from all active transmitters. It is also relevant to
mention that very few analytical results are available on SSI and SSIk point processes and most
of the results are obtained via simulations.

In this work, we will evaluate the exclusion rules based MAC schemes by using a combi-
nation of analytical methods, described in Chapter 4 and 7, with Monte Carlo simulations of
the models described in §3.3.1. We will chose the density of nodes or the set of nodes in the
network, i.e. the set N , such that no more active transmitters can be added to the set S after
saturation. In other words, the point process of set S is independent of the point process of set
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N .
We will discuss in detail the evaluation of these schemes in §4.3, for single-hop networks,

and in §7.2.2, for multi-hop networks.

3.4 Grid Pattern Based Schemes

It can be argued intuitively that a good MAC scheme should optimize the spatial reuse by po-
sitioning the simultaneous transmitters in a regular grid pattern. Evaluation of grid pattern
based MAC schemes is interesting as they can provide an ideal upper-bound on the perfor-
mance, e.g., under no fading channel model. However, their implementation is difficult because
of the following reasons:

– limitations introduced by wave propagation characteristics like shadowing effects and

– irregular distribution of nodes (however, simultaneous transmitters can be base stations
in cellular networks and their placement can be optimized).

In wireless networks, location aware nodes may be useful and if the node density is high,
simultaneous transmitters can be selected in such a way that they closely resemble an ideal grid
pattern. However, specification of a distributed MAC scheme that would allow grid pattern
based positioning of simultaneous transmitters is beyond the scope of this thesis.

3.4.1 High-Level Specification of the Schemes

We consider the following model for the grid pattern based schemes. The set of nodes N
is divided into k partitions such that each partition is a grid (or closely resembles a grid) with
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parameter d. The transmission process is a round robin scheduling on the k partitions, i.e., in each
slot, a partition is randomly selected and all nodes in that partition transmit simultaneously.
Note that the parameter d defines the minimum distance between neighboring transmitters
and it can be derived from the hop-distance parameter of a typical TDMA protocol. In our
analyses, we have covered grid layouts of square, rectangle, hexagonal and triangle which are
shown in Fig. 3.1.

Instead of handling the complication of the above described pattern fitting process that
converges very slowly, we have devised the following strategy to evaluate grid pattern based
schemes. We consider that the set S is a set of points arranged in a regular grid pattern. The
basic mechanism for the construction of the set of simultaneous transmitters S under a grid
pattern based scheme, in a network with randomly distributed nodes, is outlined in the follow-
ing steps.

1. Initialize M = N and S = ∅.

2. Randomly select a node i from M and add it to the set S , i.e.,

S = S ∪ {zi} .

3. Remove node i from the set M.

4. From the position of node i, construct a virtual grid pattern with parameter d. This vir-
tual grid pattern should be one of the patterns we have mentioned above and it is also
randomly rotated about the location of node i.

5. All nodes which overlap the points of the virtual grid, constructed in the above step, shall
be added to the set S .

For the theoretical analyses, we can assume that the density of nodes in the network is high and
the points of the virtual grid always overlap existing nodes. However, for practical purposes
and simulations, this may not be the case. Therefore, we will devise a scheme to distribute
nodes uniformly in the network in such a way that the points of the virtual grid always overlap
existing nodes. We will describe this model for the distribution of nodes, in case of simulations
of grid pattern based schemes, in detail in §7.1. Note that the above steps are repeated in each
slot to construct the set of simultaneous transmitters S and, in each slot, the virtual grid pattern
is the same modulo a translation and/or rotation.

We will also discuss the evaluation strategy of grid pattern based schemes in more detail in
§4.4, for single-hop wireless networks, and in §6.4 and §7.2.3, for multi-hop networks.

3.4.2 Model for Analytical Evaluation

We will discuss all analytical aspects of grid pattern based schemes in Chapter 4 where we
will discuss the concept of reception areas and compute these areas using a numerical method
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based on the demarcation of their boundaries. We will also introduce the model to compare
these reception areas when the set of simultaneous transmitters are arranged in a grid pattern
to when they are arbitrarily distributed and when continuous transformations are applied to
the grid pattern.



Part I

Single-hop Wireless Networks



Chapter 4

Local Capacity in Wireless Networks

In this chapter, we will introduce a metric for the performance evaluation of wireless networks
known as local capacity. Under the framework of local capacity, we quantify the average infor-
mation rate received by a receiver node randomly located in the network. We will first discuss
the mathematical model and the analytical tools and then apply these techniques to a wireless
network to derive the local capacity of various MAC schemes discussed in Chapter 3 under no

fading channel model. Our goal is to identify the most optimal scheme and also to see how does
it compare with other schemes. Later, we will also discuss the impact of channel fading on the
local capacity of various MAC schemes.

4.1 Model and Assumptions

In this chapter, we will consider a wireless network where nodes are uniformly spread in the
network area A.

We call the reception area of transmitter i at location zi ∈ A, the area of the plane Ai(S , β, α)

where this transmitter is received with SIR at least equal to β.

Under no fading channel model, Ai(S , β, α) can be defined as

Ai(S , β, α) = {z : γi(z) ≥ β ∑
j 6=i,zj∈S

γj(z)} . (4.1)

We recall from §3.1.3 that the background noise (ambient/thermal) power N0 is assumed neg-
ligible and equal to zero and the channel gain γi(z) under no fading channel model is given
by

γi(z) =
1

‖z − zi‖α
.

In case of fading, one cannot define Ai(S , β, α) deterministically. Therefore, we will define
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it as
|Ai(S , β, α)| =

∫

Pr(γi(z) ≥ β ∑
j 6=i,zj∈S

γj(z))dz2 ,

where the integration is over the network area A.

Note that |Ai| is the size of the surface area of Ai, Pr(γi(z) ≥ β ∑j 6=i,zj∈S γj(z)) is the prob-
ability that the signal from transmitter i is received successfully at point z and we recall from
(3.1) that under fading

γi(z) =
Fi(z)

‖z − zi‖α
,

where Fi(z) is an i.i.d. random variable which represents the fading of signal from transmitter
i to receiver located at point z.

Note that the area Ai(S , β, α) also contains the point zi since here the SIR is infinite.

We define the average surface area σ(λ, β, α) of Ai(S , β, α) as

σ(λ, β, α) = E[|Ai(S , β, α)|] .

Our principal performance metric is local capacity which is defined as the average informa-
tion rate received by a receiver which is randomly located in the network.

Consider a receiver at a random location z ∈ A in the network. Let N(z, β, α) denote the
number of reception areas it belongs to and we can write

∫

N(z, β, α)dz2 = ∑
i∈N

|Ai(S , β, α)| . 1i∈S .

Therefore, we have the following identity

E[N(z, β, α)]|A| = E[|Ai(S , β, α)|] ∑
i∈N

Ωi(n) ,

where Ωi(n) is the average slot occupancy rate of node i, i.e., the proportion of slots it is active to
transmit on the medium. Note that, in case of slotted ALOHA, Ωi(n) is equal to the probability
of medium access p. We get

E[N(z, β, α)]|A| = σ(λ, β, α) ∑
i∈N

Ωi(n) ,

we also know that ∑i∈N Ωi(n) = λ|A|, which gives

E[N(z, β, α)]|A| = λσ(λ, β, α)|A|
E[N(z, β, α)] = λσ(λ, β, α) . (4.2)



4.2. Slotted ALOHA Scheme 29

This identity has also been proved in articles [Baccelli & Blaszczyszyn 2000, Jacquet 2009].
E[N(z, β, α)] represents the average number of transmitters from which a receiver, randomly
located in the network, can receive with SIR at least equal to β. Under the hypothesis that
a node can only receive at most one packet at a time, e.g., when β > 1, then N(z, β, α) ≤ 1.
The average information rate received by the receiver c(β, α) is therefore equal to E[N(z, β, α)]

multiplied by the nominal capacity. Without loss of generality (w.l.o.g.), we assume unit nominal
capacity and we will derive

c(β, α) = E[N(z, β, α)] = λσ(λ, β, α) . (4.3)

Note that the local capacity is averaged on time and on any receiver which is randomly
located in the network. It is also independent of λ as it is invariant for any homothetic trans-
formation of the set of transmitters. We will derive the local capacity of wireless network with
slotted ALOHA, node coloring, CSMA and grid pattern based MAC schemes. We will also
show that maximum local capacity can be achieved with grid pattern based schemes. Wireless
networks of grid topologies are studied in literature, e.g., the articles [Liu & Haenggi 2005,Hong
& Hua 2007] compared these networks with network consisting of randomly distributed nodes.
In contrast to these works, we assume that wireless network consists of randomly distributed
nodes and only the simultaneous transmitters form a regular grid pattern. In our model, we
have abstracted out the multi-hop aspect of communication and this allows us to focus on the
localized capacity. Our model also captures a realistic scenario of nearby-neighbor communica-
tion in wireless networks where each transmitter can transmit to a receiver which is randomly
located in its neighborhood or reception area.

Note that, in our model, we will consider the asymptotic case where A = R
2 in order to

ignore the border effects. However, we will need to come back to finite (but large) A when we
will discuss the multi-hop and mobile networks in Chapter 7 and Chapter 8.

4.2 Slotted ALOHA Scheme

In case of slotted ALOHA scheme, as discussed in §3.2, the set of simultaneous transmitters, in
each slot, can be given by a uniform Poisson distribution of mean equal to λ transmitters per
unit square area.

Using (3.2) with N0 = 0 and Pi = 1 (for i = 0, 1, . . . , k, . . .), we can write

Fi(z)‖z − zi‖−α ≥ β ∑
j 6=i,zj∈S

Fj(z)‖z − zj‖−α ,

or
W(z, {zi}) ≥ βW(z,S − {zi}) ,
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Figure 4.1: Signal Levels (in dB’s) for a random network with attenuation coefficient α = 2.5.

where
W(z,S) = ∑

zj∈S
Fj(z)‖z − zj‖−α = ∑

zj∈S
F‖z − zj‖−α .

We recall that, in case of no fading, F is constant and equal to one and, in case of Rayleigh fading,
F is an i.i.d. random variable with an exponential distribution of mean equal to one.

In this section, we will use some of the results from the article [Jacquet 2009], to derive the
local capacity of slotted ALOHA.

4.2.1 Reception Areas

Figure 4.1 shows the function W(z,S) for z varying in the plane with S , an arbitrary set of
Poisson distributed transmitters. Figure 4.1 uses α = 2.5. It is clear that closer the receiver is
to the transmitter, larger is the SIR. For each value of β we can draw an area, around each
transmitter, where its signal can be received with SIR greater or equal to β. Figure 4.2 shows
reception areas for the same set S , as in Fig. 4.1, for various values of β. As can be seen, the
reception areas do not overlap for β > 1 since there is only one dominant signal. For each value
of β we can draw, around each transmitter, the area where its signal is received with SIR greater
or equal to β. Our aim is to find the average size of this area and how it is a function of λ, β

and α.

W(z,S) depends on S and hence is also a random variable. The random variable W(z,S)
has a distribution which is invariant by translation and therefore does not depend on z. There-
fore, we denote W(λ) ≡ W(z, λ). Let w(S) be its density function. The set S is given by a 2D

Poisson process process with intensity λ transmitters per slot per unit square area and Laplace
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Figure 4.2: Distribution of reception areas for various value of SIR. β = 1, 4, 10 for situation of
Fig. 4.1.

transform of w(S), denoted by w̃(θ, λ), can be computed exactly. The Laplace transform

w̃(θ, λ) = E[exp(−θW(λ))] ,

satisfies the identity

w̃(θ, λ) = exp
(

−πλE[F
2
α ]Γ(1 − 2

α
)θ

2
α

)

, (4.4)

where Γ(.) is the Gamma function.

In case of Rayleigh fading

E[F
2
α ] = Γ(1 +

2
α
) ,

otherwise, under no fading, E[F
2
α ] = 1. Note that in all cases, w̃(θ, λ) is of the form exp(−λCθγ)

where γ = 2
α , and the expression of C in case of 2D map is C = πE[F

2
α ]Γ(1 − γ).

From the above formula and by applying the inverse Laplace transformation, we get

P(W(λ) < x) =
1

2iπ

+i∞
∫

−i∞

w̃(θ, λ)

θ
eθxdθ ,
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Expanding w̃(θ, λ) = ∑
n≥0

(−Cλ)n

n! θnγ, we get

P(W(λ) < x) =
1

2iπ ∑
n≥0

(−Cλ)n

n!

+i∞
∫

−i∞

θnγ−1eθxdθ ,

By bending the integration path towards negative axis

1
2iπ

+i∞
∫

−i∞

θnγ−1eθxdθ =
eiπnγ − e−iπnγ

2iπ

∞
∫

0

θnγ−1e−θxdθ =
sin(πnγ)

π
Γ(nγ)x−nγ ,

we get,

P(W(λ) < x) = ∑
n≥0

(−Cλ)n

n!
sin(πnγ)

π
Γ(nγ)x−nγ , (4.5)

with the convention that sin(πnγ)
π Γ(nγ) = 1 for n = 0.

Let p(λ, r, β, α) be the probability to receive a signal at distance r with SIR at least equal to
β. Therefore, we have

p(λ, r, β, α) =
∫

ψ(u)P

(

W(λ) <
r−α

β
eu

)

du ,

where ψ(u) is the probability density function of the fading factor F ≡ eu. The average size of
the reception area around an arbitrary transmitter with SIR at least equal to β is

σ(λ, β, α) = 2π
∫

p(λ, r, β, α)rdr .

Using integration by parts, the article [Jacquet 2009] has shown that the average size of the
reception area around an arbitrary transmitter i with SIR at least equal to β satisfies the identity

σ(λ, β, α) =
1
λ

sin( 2
α π)

2
α π

β− 2
α . (4.6)

Note that the average reception area σ(λ, β, α) is independent of the fading factor F.

σ(λ, β, α) is inversely proportional to the density of transmitters λ and the product
λσ(λ, β, α) is a function of β and α. We notice that when α approaches infinity, σ(λ, β, ∞)

approaches 1/λ. This is due to the fact that when α is very large, all nodes other than the
closest transmitter tend to contribute as a negligible source of interference and consequently
the reception areas turn to be the Voronoi cells around every transmitter. This holds for all
values of β. The average size of Voronoi cell being equal to the inverse density of the trans-
mitters 1/λ we get the asymptotic result. Note that when β grows as exp(O(α)), we have
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dz = J ∇Si(z)
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Ci(S , β, α)

Ai(S , β, α)

Figure 4.3: Computation of the reception area of transmitter i.

σ(λ, β, α) ≈ 1
λ exp(− 2

α log(β)), which suggests that the typical SIR as α approaches infinity
is of the order of exp(O(α)). Secondly, as α approaches 2, σ(λ, β, 2) approaches zero because
sin( 2

α π) approaches zero. Indeed, in this case, the contribution of remote nodes tends to di-
verge and makes the SIR approach to zero. This explains why σ(λ, β, 2) approaches to zero for
any fixed value of β.

4.2.2 Local Capacity

In this case, the analytical expressions (4.3) and (4.6) lead to

c(β, α) = E[N(z, β, λ)] = σ(1, β, α) . (4.7)

4.3 MAC Schemes Based on Exclusion Rules

In order to evaluate the local capacity of node coloring and CSMA based schemes, we will use
our models, which we discussed in §3.3.1.1 and §3.3.1.2, in our Monte Carlo simulations along
with the analytical method we will develop in the following section.

4.3.1 Reception Areas

Deriving an accurate analytical closed-form expression for the probability distribution of signal
level with node coloring or CSMA based schemes does not seem tractable. Consequently, we
also do not have a closed form expression for the average size of the reception area of an arbi-
trary transmitter. In this section, we will develop an analytical method to compute the average
reception area of an arbitrary transmitter with node coloring or CSMA based schemes. Note
that the value of d, in case of node coloring scheme, or θcs, in case of CSMA based scheme, can
be tuned to obtain an average transmitter density of λ.

Figure 4.3 is the figurative representation of the reception area Ai(S , β, α) of an arbitrary
transmitter i. Our aim is to compute its size |Ai(S , β, α)|. If Ci(S , β, α) is the closed curve that



34 Chapter 4. Local Capacity in Wireless Networks

forms the boundary of Ai(S , β, α) and z is a point on Ci(S , β, α), we have

|Ai(S , β, α)| = 1
2

∫

Ci(S ,β,α)

det(z − zi, dz) , (4.8)

where det(a, b) is the determinant of vectors a and b and dz is the vector tangent to Ci(S , β, α)

at point z. det(z − zi, dz) is the cross product of vectors (z − zi) and dz and gives the area of
the parallelogram formed by these two vectors.

Note that (4.8) remains true if zi is replaced by any interior point of Ai(S , β, α).
The SIR of transmitter i at point z is given by (3.3). We assume that at point z

Si(z) = β .

On point z we can also define the gradient of Si(z), denoted by ∇Si(z), as

∇Si(z) =

[

∂
∂x Si(z)
∂

∂y Si(z)

]

.

The vector dz is co-linear with J ∇Si(z)
|∇Si(z)| where J is the anti-clockwise rotation of 3π/2 (or clock-

wise rotation of π/2) given by

J =

[

0 1
−1 0

]

.

Therefore, we can fix dz = J ∇Si(z)
|∇Si(z)|δt and in (4.8)

det(z − zi, dz) = (z − zi)× J
∇Si(z)
|∇Si(z)|

δt = −(z − zi).
∇Si(z)
|∇Si(z)|

δt ,

where δt is assumed to be infinitesimally small. The sequence of points z(k) computed as

z(0) = z

z(k + 1) = z(k) + J
∇Si(z(k))
|∇Si(z(k))|

δt , (4.9)

gives a discretized and numerically convergent parametric representation of Ci(S , β, α) by finite
elements.

Therefore, 4.8 reduces to

|Ai(S , β, α)| ≈ −1
2 ∑

k

(z(k)− zi).
∇Si(z(k))
|∇Si(z(k))|

δt , (4.10)

assuming that we stop the sequence z(k) when it loops back on or close to the point z.
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The initial point
z(0) = z ,

can be found using Newton’s method. First approximate value of z, required by Newton’s
method, can be computed assuming only one interferer nearest to the transmitter i as discussed
in the Appendix A.1.

The negative sign in (4.10) is automatically negated by the dot product of vectors (z(k)− zi)

and ∇Si(t, z(k)).

4.3.2 Local Capacity

The value of
σ(λ, β, α) = E[|Ai(S , β, α)|] ,

is computed using the Monte Carlo simulations and, therefore,

c(β, α) = E[N(z, β, α)] = λσ(λ, β, α) .

The local capacity c(β, α) is invariant for any homothetic transformation of λ and, therefore, it
is also independent of the values of MAC schemes parameters θcs or d.

4.4 Grid Pattern Based Schemes

In this section, we will discuss the optimality of grid patterns based schemes under no fading

channel model. Later, we will also analyze the local capacity of such schemes.

4.4.1 Optimality of Grid Pattern Based Schemes

We consider a set of transmitters S and we will compare the reception areas when S is arbitrar-
ily distributed in the network area A versus when S forms a regular grid pattern.

In order to simplify our analysis in this section, we define a function si(z) as

si(z) =
‖z − zi‖−α

∑
j
‖z − zj‖−α

.

The function si(z) is similar to the SIR function Si(z), defined in (3.3), under no fading channel
model except that the summation in the denominator factor also includes the numerator factor.

We also define a function f (x) which can be continuous or integrable. For instance, here we
will define it with the Heaviside step function as

f (x) = H[x − β′] ,
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for some given β′. Note that, in this case, the function is not continuous but we will not bother
with this. For the following discussion, we can consider w.l.o.g. that the value of β′ is related to
β by

β′ =
β

β + 1
.

Therefore, if transmitter i is received successfully at location z or, in other words, with SIR
greater or equal to β, then si(z) is greater or equal to β′ and f (si(z)) is equal to one.

We assume a virtual disk in the plane centered at (0, 0) and of radius R. This allows us to
express the density of set S , denoted by ν(S), in terms of the number of transmitters covered
by the disk of radius R or area πR2, when R approaches infinity, and it is given by a limit as

ν(S) = lim
R→∞

1
πR2 ∑

i

1‖zi‖≤R .

We define
h(z) = ∑

i

f (si(z)) ,

so that h(z) is equal to the number of transmitters that can be received successfully at z and its
maximum value shall be one if β > 1. We define E[h(z)] by the limit

E[h(z)] = lim
R→∞

1
πR2

∫

‖z‖≤R

h(z)dz2 .

Note that the integration is network area A or, in other words, over the disk of radius R where
R approaches infinity. We denote the reception area of an arbitrary transmitter i as

σi = |Ai(S , β, α)| =
∫

f (si(z))dz2 ,

and we have
E[h(z)] = lim

R→∞

1
πR2 ∑

i

1‖zi‖≤Rσi = ν(S)σ ,

with
σ = lim

k→∞

1
k ∑

i≤n

σi .

As R approaches infinity, k, i.e., the number of transmitters in the set S covered by the disk of
radius R also approaches infinity.

Our objective is to optimize E[h(z)] whose definition is equivalent to the definition of
E[N(z, β, α)] and therefore local capacity c(β, α) as well in expressions (4.2) and (4.3) respec-
tively.
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4.4.1.1 First Order Differentiation

We denote the operator of differentiation w.r.t. zi by ∇i. For i 6= j, we have

∇isj = αsisj
z − zi

‖z − zi‖2 ,

and
∇isi = α(s2

i − si)
z − zi

‖z − zi‖2 .

Therefore,

∇ih(z) = ∇i ∑
i

f (si(z))

= f ′(si(z))∇isi + ∑
j 6=i

f ′(sj(z))∇isj

= αsi
z − zi

‖z − zi‖2

(

− f ′(si(z)) + ∑
j

sj f ′(sj(z))
)

.

Although, we know that
∫

h(z)dz2 = ∞ , we nevertheless have a finite ∇i

∫

h(z)dz2. In other
words, the sum ∑j ∇iσj converges for all i.

Lemma 4.4.1. For all j ∈ S ,

∑
i

∇iσj = 0 .

Indeed this would be the differentiation of σj when all points in S are translated by the same vector.

Similarly,

∑
i

∇i

∫

h(z)dz2 = 0 .

Theorem 4.4.1. If the points in the set S are arranged in a grid pattern then

∇i

∫

h(z)dz2 = ∑
j

∇iσj = 0 ,

and grids patterns are locally optimal.

Proof. If S is a set of points arranged in a grid pattern, then

∇i

∫

h(z)dz2 = ∑
j

∇iσj ,

would be identical for all i and, therefore, would be null since

∑
i

∇i

∫

h(z)dz2 = 0 .



38 Chapter 4. Local Capacity in Wireless Networks

We could erroneously conclude that:

– all grid sets are optimal and

– all grid sets give the same E[h(z)].

In fact this is wrong. We could also conclude that σ does not vary but this will contradict that
ν(S) must vary. The reason of this error is that a grid set cannot be modified into another grid
set with a uniformly bounded transformation, unless the two grid sets are just simply translated
by a simple vector.

However, we have proved that the grid sets are locally optimal within sets that can be uni-
formly transformed between each other. In order to cope with uniform transformation and to
be able to transform a grid set to another grid set, we will introduce the linear group transfor-
mation.

4.4.1.2 Linear Group Transformation

Here, we assume that the points in the plane are modified according to a continuous linear
transform M(t) where M(t) is a matrix with M(0) = I, e.g., M(t) = I + tA where A is a matrix.

Without loss of generality, we only consider σ0, i.e., the reception area of the transmitter at
z0 which is located at the origin. Under these assumptions, we have

∂

∂t
σ0 = ∑

i

(Azi.∇iσ0) = tr
(

∑
i

ATzi ⊗∇iσ0

)

,

where “.” indicates the scalar product.
In other words, using the identity

∂tr(ATB)
∂A

= B ,

the derivative of σ0 w.r.t. matrix A is exactly equal to

D = ∑
i

zi ⊗∇iσ0 ,

such that

D =

[

Dxx Dxy

Dyx Dyy

]

.

Therefore, we can write the following identity

tr
(

AT ∂

∂A
σ0

)

=
∂

∂t
σ0(t, A)

∣

∣

∣

t=0
,
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where σ0(t, A) is the transformation of σ0 under M(t), i.e.,

σ0(t, A) = det(I + tA)σ0 .

We assume that M(t) = (1 + t)I with A = I, i.e., the linear transform is homothetic.

Theorem 4.4.2. D is symmetric and tr(D) = 2σ0.

Proof. Under the given transform,

σ0(t, A) = σ0(t, I) = (1 + t)2σ0 .

As a first property, we have
tr(D) = 2σ0 ,

since the derivative of σ0 w.r.t. identity matrix I is exactly 2σ0, i.e.,

tr(ATD) = tr(D) = σ′
0(0, I) = 2σ0 .

The second property that D is a symmetric matrix is not obvious. The easiest proof of this
property is to consider the derivative of σ0 w.r.t. the rotation matrix J given by

J =

[

0 −1
1 0

]

,

which is zero since J is the initial derivative for a rotation and reception area is invariant by
rotation. Therefore,

tr(JTD) = Dyx − Dxy = 0 ,

which implies that D is symmetric.

Note that D can also be written in the following form

D = ∑
i

zi ⊗∇iσ0 =
∫

dz2 ∑
i

zi ⊗∇i f (s0(z)) .

Let T be defined as

T =
∫

dz2 ∑
i

(z − zi)⊗∇i f (s0(z)) ,

such that

D =
∫

∑
i

z ⊗∇i f (s0(z))dz2 − T .
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The purpose of these definitions will become evident from theorems 4.4.3 and 4.4.4.

Theorem 4.4.3. We will show that
∫

∑i z ⊗∇i f (s0)dz2 is equal to σ0I and, therefore,

D = σ0I − T .

We will also prove that T is symmetric.

Proof. From the definition of T, we can see that the sum ∑i(z − zi)⊗∇i f (s0(z)) leads to a
symmetric matrix since

T = α
∫

f ′(s0(z))
( s2

0 − s0

‖z − z0‖2 (z − z0)⊗ (z − z0) + ∑
i 6=0

s0si

‖z − zi‖2 (z − zi)⊗ (z − zi)
)

dz2 ,

and the left hand side is made of (z − zi)⊗ (z − zi) which are symmetric matrices. This implies
that T is also symmetric.

We can see that

∑
i

∇i f (s0(z)) = −∇ f (s0(z)) ,

and using integration by parts we have

∫

∑
i

z ⊗∇i f (s0(z))dz2 = −1 ×
[
∫

x ∂
∂x f (s0(z))dxdy

∫

x ∂
∂y f (s0(z))dxdy

∫

y ∂
∂x f (s0(z))dxdy

∫

y ∂
∂y f (s0(z))dxdy

]

=

[

σ0 0
0 σ0

]

,

which is symmetric and equal to σ0I. The sum/difference of symmetric matrices is also a sym-
metric matrix and, therefore, D is a symmetric matrix and D = σ0I − T.

Now, we will only consider grid patterns and, by virtue of a grid pattern, we can have

σ = σ0 =
∫

f (s0(z))dz2 ,

and
E[h(z)] = ν(S)σ0 .

Under homothetic transformation, ν(S) and σ0 are transformed but ν(S)σ0 remains invariant.

Theorem 4.4.4. If the pattern of the points in set S is optimal w.r.t. linear transformation of the set,

D = σ0I and T = 0.

Proof. The derivative of σ0 w.r.t. matrix A is exactly equal to D. Similarly, under the same
transformation

∂

∂t
ν(S) = 1

det(I + At)
ν(S) ,
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and for A = I, it can be written as

ν′(S)(t, I) =
ν(S)

(1 + t)2 .

In any case, the derivative of ν(S) w.r.t. matrix A is exactly equal to −Iν(S). We also know
that if the pattern is optimal w.r.t. linear transformation, the derivative of ν(S)σ0 w.r.t. to matrix
A shall be null. This implies that

ν(S)D − Iν(S)σ0 = 0 ,

which leads to D = σ0I and T = 0.

We know that T is symmetric and T = 0. Thus, tr(T) = 0, i.e., eigenvalues are invariant
by rotation. When a grid is optimal, we must have T = 0. In any case, the matrix T must be
invariant w.r.t. isometric symmetries of the grid. On 2D plane, the grid patterns which satisfy
this condition are square, hexagonal and triangular grids. The square grid is symmetric w.r.t.

any horizontal or vertical axes of the grid and, in particular, with rotation of π/2 represented
by J. Therefore, the eigen system must be invariant by rotation of π/2. This implies that the
eigenvalues are the same and therefore null since tr(T) = 0. Same argument also applies for
the hexagonal grid with the invariance for π/3 rotation and for the triangular pattern with
invariance for 2π/3 rotation.

4.4.2 Reception Areas

In grid pattern based schemes, the simultaneous transmitters, i.e., the set S is a set of points
arranged in a grid pattern. We consider that, for every slot, the grid pattern is the same modulo a
translation and/or rotation. Based on our discussion in previous section, we will only cover the
grid layouts of square, hexagonal and triangle as shown in Fig. 3.1. Grids are constructed from
d which defines the minimum distance between neighboring transmitters and can be derived
from the hop-distance parameter of a typical TDMA-based protocol. The density of grid points
λ depends on d. However, the local capacity c(β, α) is independent of the value of d or, for that
matter, λ as it is invariant for any homothetic transformation of the set of transmitters.

In this case also, we will compute the average reception area σ(λ, β, α) using the analytical
method described in §4.3.1.

4.4.3 Local Capacity

The expression to derive the local capacity is

c(β, α) = E[N(z, β, α)] = λσ(λ, β, α) ,
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where σ(λ, β, α) is the average of the surface size of the reception area of a transmitter with
grid pattern based scheme. In case of no fading, reception areas of all transmitters are the same
modulo a translation and/or rotation, and their surface area size is the same. However, in case
of Rayleigh fading, σ(λ, β, α) can be computed using Monte Carlo simulations. We will also
compute simple upper bounds on the local capacity of grid pattern based schemes in §4.6.

4.5 Evaluation and Results

In this section, we will perform detailed analysis of MAC schemes, we have discussed in this
chapter, under no fading channel model. The values of SIR threshold β and attenuation coef-
ficient α depend on the underlying physical layer or system parameters and are usually fixed
and beyond the control of network or protocol designers. However, to give the reader an un-
derstanding of the influence of these parameters on the local capacity c(β, α) of various MAC
schemes, we assume that these parameters are variable.

4.5.1 Slotted ALOHA Scheme

In case of slotted ALOHA, the local capacity c(β, α) is computed from analytic expressions (4.6)
and (4.7).

4.5.2 MAC Schemes Based on Exclusion Rules

In order to approach an infinite map, we will perform numerical simulations in a very large
network spread over 2D square map with length of each side equal to 10000 meters.

We will use the following methodology to compute the local capacity of exclusion rules
based MAC schemes:

– simulate the placement of nodes on the network area,

– with each placement, select the set of simultaneous transmitters S by using the model
specified in §3.3.1.1, for node coloring schemes, and the model specified in §3.3.1.2, for
CSMA based schemes, and

– analytically calculate the reception area of the transmitter, which is located nearest to the
center of the network area, using the method described in §4.3.1.

We will describe the computation of the local capacity of these schemes in detail, in the follow-
ing section.
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4.5.2.1 Simulations

For the evaluation of node coloring scheme, we set d equal to 25 meters and, in case of CSMA
based schemes, the value of carrier sense threshold θcs is set equal to 1 × 10−5. Considering
the practical limitations introduced by the bounded network area, we use the following Monte
Carlo method to evaluate σ(λ, β, α). We only compute the size of the reception area of a trans-
mitter located nearest to the center of the network area and σ(λ, β, α) is the average of results
obtained with 1000 samples of node distributions. Similarly, λ is also the average of the density
of simultaneous transmitters obtained with these 1000 samples of node distributions. Note that
the models of MAC schemes select simultaneous transmitters randomly and transmitters are
uniformly distributed in the network area. Therefore, using Monte Carlo method, i.e., a large
number of samples of node distributions and, with each sample, only measuring the recep-
tion area of a transmitter located nearest to the center of the network area gives an accurate
approximation of σ(λ, β, α) in an infinite map.

It can be argued that the density of simultaneous transmitters maybe higher on the bound-
aries of the network area. However, the network area is very large and we observed that the
difference, in spatial density of simultaneous transmitters, on the boundaries and central region
is negligible. We also know that the local capacity c(β, α) is independent of λ which depends
on d or θcs. If the node density is very low, it will also have an impact on the packing (density)
of simultaneous transmitters in the network. Therefore, λ should be maximized to the point
where no additional transmitter can be added to the network under given values of d or θcs.
This can be achieved by keeping the node density very high, e.g., we observed that the node
density of one node per square meter is sufficient and further increasing the node density does
not increase λ. In order to keep away the border effects, values of d or θcs are chosen such that λ

is sufficiently high and border effects have minimal effect on the central region of the network.

4.5.3 Grid Pattern Based Schemes

For the evaluation of grid pattern based schemes, transmitters are spread in the network area
in square, hexagonal or triangular grid pattern.

4.5.3.1 Simulations

For all grid patterns, we set d equal to 25 meters although it will have no effect on the validity of
our conclusions as the local capacity c(β, α) is independent of λ. To keep away border effects,
we will compute the size of the reception area of transmitter i, located in the center of the
network area: zi = (xi, yi) = (0, 0). The network area is large enough so that the reception
area of transmitter i is close to its reception area in an infinite map. The value of λ depends
on the type of grid pattern and it is computed using the Voronoi tessellation, discussed in the
book [Aurenhammer & Klein 2000], of the network map such that each transmitter is located in
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Figure 4.4: Local capacity c(β, α) of slotted ALOHA, node coloring, CSMA and grid pattern
(triangular, square and hexagonal) based schemes under no fading.

a convex polygon whose area depends on the type of the grid. For example, in case of square
grid pattern, Voronoi tessellation of the network map shows that each transmitter is located in
a square region of area d2 and we can derive the value of λ to be equal to 1

d2 . Similarly, in case
of hexagonal and triangular grid pattern, the value of λ is equal to 4

3
√

3d2 and 2√
3d2 respectively.

4.5.4 Summary of Results

Figure 4.4(a) shows the comparison of local capacity c(β, α) with slotted ALOHA, node color-
ing, CSMA and grid pattern based schemes with β varying and α = 4.0. Similarly, Fig. 4.4(b)
shows the comparison of these MAC schemes with β = 10.0 and α varying. We know that as
α approaches infinity, reception area around each transmitter turns to be a Voronoi cell with
an average size equal to 1/λ. Therefore, as α approaches infinity, c(β, α) approaches one. For
slotted ALOHA scheme, (4.6) and (4.7) also arrive at the same result. For other MAC schemes,
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we computed c(β, α) with α increasing up to 100 and from the results, we can observe that
asymptotically, as α approaches infinity, c(β, α) approaching 1 is true for all schemes.

4.5.4.1 Optimality of Grid Pattern Based Schemes

From the results, we can see that the maximum local capacity in wireless networks can be ob-
tained with triangular grid pattern based scheme. In order to quantify the improvement in
local capacity by triangular grid pattern based scheme over other more practical schemes, we
perform a scaled comparison of slotted ALOHA, node coloring, CSMA and triangular grid pat-
tern based schemes which is obtained by dividing the local capacity c(β, α) of all these schemes
with the local capacity c(β, α) of triangular grid pattern based scheme. Figure 4.5 shows the
scaled comparison with β and α varying. It can be observed that triangular grid pattern based
scheme can achieve, at most, double the local capacity of slotted ALOHA scheme. However,
node coloring and CSMA based schemes can achieve almost 85 ∼ 90% of the optimal local
capacity obtained with triangular grid pattern based scheme.

4.5.4.2 Observations on Node Coloring Schemes

Triangular grid pattern based scheme can be visualized as an optimal node coloring which
ensures that transmitters are exactly at distance d from each other whereas, in case of random
node coloring, transmitters are selected randomly and only condition is that they must be at a
distance greater or equal to d from each other. The exclusion region around each transmitter is
a circular disk of radius d/2 with transmitter at the center. Note that the disks of simultaneous
transmitters shall not overlap. The triangular grid pattern can achieve a packing density of
π/

√
12 ≈ 0.9069. The packing density is defined as the proportion of network area covered by

the disks of simultaneous transmitters. On the other hand, random packing of disks, which
is the case in random node coloring, can achieve a packing density in the range of 0.54 ∼ 0.56
only as also pointed out in articles [Tanemura 1979, Busson & Chelius 2009]. We have seen in
the results that even this sub-optimal packing of simultaneous transmitters by random node
coloring scheme can achieve almost similar local capacity as obtained with optimal packing by
triangular grid pattern based scheme.

4.5.4.3 Observations on CSMA Based Schemes

We observe that the local capacity with CSMA based scheme is slightly lower (by approxi-
mately 3%) as compared to node coloring scheme and this is irrespective of the value of carrier
sense threshold. The reason of slightly lower local capacity with CSMA based scheme is that
the exclusion rule is based on carrier sense threshold, rather than the distance in-between si-
multaneous transmitters. With carrier sense based exclusion rule, CSMA based scheme may
not allow to pack more transmitters, in each slot, that would have been possible with node col-
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Figure 4.5: Scaled comparison of slotted ALOHA, node coloring, CSMA and triangular grid
pattern based schemes under no fading.

oring scheme. In other words, CSMA may result in a lower packing density of simultaneous
transmitters as compared to node coloring scheme. This can also be observed by comparing
the densities of SSI and SSIk point processes in the article [Busson & Chelius 2009] and also
explains the slightly lower local capacity of CSMA based scheme as compared to node coloring
scheme. As α approaches infinity, λ with CSMA based scheme approaches the node density
and reception area around each transmitter also becomes a Voronoi cell with an average size
equal to the inverse of node density. In fact, asymptotically, as α approaches infinity, local
capacity c(β, α) approaches one.

4.6 Impact of Fading on Local Capacity

In our evaluation in §4.5, we assumed the no fading channel model. However, in case of slotted
ALOHA scheme, our results in (4.6) and (4.7) also show that fading has no impact on the local
capacity. In this section, we will discuss the impact of fading on the MAC schemes, other than
slotted ALOHA scheme, and we will show that when compared with the results under no fading

channel model, fading will degrade the local capacity of these schemes.
For a receiver randomly located at point z, variations in the signal level received from trans-

mitters because of fading can be modeled as variations in their transmit power levels. First, we
will show that under high fading, the transmitters with highest transmit power (or, in other
words, the transmitters experiencing the highest fading) will form a sparse ALOHA pattern.

In this section, let X be an i.i.d. random variable which models the fading on the channel
and let us denote the cumulative distribution function of X by g(x), i.e.,

g(x) = Pr(X ≤ x) .
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We denote the inverse of this cumulative distribution function by g−1(y).

Theorem 4.6.1. For a given value t and an arbitrary small value ε < t, if the probability distribution

of the fading satisfies the identity
g−1(t)

g−1(t − ε)
→ ∞ , (4.11)

we will have a network where the transmitters with highest transmit power will suppress other trans-

mitters and will be sparsely distributed or, in other words, simultaneously active transmitters will form

a sparse ALOHA pattern.

Proof. Now at any point z, the variations in the signal level of all transmitters zi (for i =

0, 1, 2, . . .,k,. . . ) because of fading can be viewed as i.i.d. variations in their respective trans-
mit power levels which follow the distribution of the random variable X.

For our discussion, we have the following properties for the distribution of the random
variable X.

For a certain value a, we have

Pr(X > a) = 1 − g(X ≤ a) → 0 ,

and we relate a and t by
a = g−1(t) .

Similarly, for a certain value b we have

g−1(t − ε) = b ,

and from (4.11), we have
a

b
→ ∞ .

Therefore, we can write the following identity

Pr(X > a).
g−1(t)

g−1(t − ε)
= Pr(X > a).

a

b
→ ∞ . (4.12)

The identity (4.12) shows that the transmitters which appear to have very high transmit power
(greater or equal to a), because of high fading, will be sparsely located because Pr(X > a) → 0
but, at a receiver at any point z in the plane, they will be received as if they are transmit-
ting with unit power and their distances to the receiver have shrunk by at least the factor
1/(a)1/α. Therefore, these sparsely located transmitters will appear to have a local density
that approaches infinity at the point of the receiver. In other words, the reception areas of all
transmitters with lower transmit power (equal or less than b) will shrink to the point of their
own locations. Therefore, we will have a network where the active transmitters with very high
transmit power, because of fading, will be uniformly and sparsely distributed in the network
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and as they become sparser and sparser, the pattern of simultaneous transmitters converge to a
sparse ALOHA pattern. Note that in case of grid pattern based scheme, they will form a sparse
ALOHA pattern on the grid.

However, note that this holds only for fading which satisfies the property of (4.11).

Now we will evaluate simple upper bounds on the local capacity of grid pattern based
schemes under no fading and Rayleigh fading channel models.

Theorem 4.6.2. The local capacity of grid pattern schemes is upper bounded by

ĉ(β, α) = λσ̂(λ, β, α) , (4.13)

where

σ̂(λ, β, α) ≤ πE[X
2
α ]β− 2

α Γ

(

1 − 2
α

)

d2
max , (4.14)

where the value of dmax depends on the grid pattern. In case of square grid pattern based scheme,

dmax = d/
√

2 , where d is the dimension of the grid. Similarly, in case of case of hexagonal and trian-

gular grid pattern based schemes, dmax = d and dmax = d/
√

3 respectively.

Proof. In order to simplify our proof, we define the following function

Wi(z) =

∑
j 6=i,zj∈S

Xj‖z − zj‖−α

‖z − zi‖−α
,

As Xj is an i.i.d. random variable which is independent of the location of the transmitters and
the receivers, we can drop the subscript and we will have

Wi(z) =

∑
j 6=i,zj∈S

‖z − zj‖−α

‖z − zi‖−α
X .

If we take into account the interference from the nearest interferer only, we have a simple lower
bound as

Wi(z) ≥
‖z − µ(z)‖−α

‖z − zi‖−α
X ,

where µ(z) is the closest interferer zj (j 6= i) to the point z. Therefore, the upper bound on the
probability to successfully receive the signal from transmitter i at point z is

P(Wi(z) < β′) ≤ Pr
(‖z − µ(z)‖−α

‖z − zi‖−α
X < β′

)

,
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where β′ is the inverse variation of SIR threshold β, i.e., β′ = 1
β . We get

P(Wi(z) < β′) ≤ Pr
(

X < β′dα
max‖z − zi‖−α

)

,

where
dmax = max ‖z − µ(z)‖ ,

which depends on the grid pattern.

Therefore, we have

P(Wi(z) ≥ β′) ≤ 1 − exp(−β′dα
max‖z − zi‖−α) .

Changing to the polar coordinates by using r = ‖z − zi‖, the upper bound on the average re-
ception area σ̂(λ, β, α) can be obtained as

σ̂(λ, β, α) ≤ 2π

∞
∫

0

(1 − exp(−β′dα
maxr−α))rdr .

Again, changing the variable r−α = x which leads to dx
x = −α dr

r , we get

σ̂(λ, β, α) ≤ −2π

α

∞
∫

0

(1 − exp(−β′dα
maxx))x−

2
α

dx

x

≤ −2π

α

∞
∫

0

(1 − exp(−x))x−
2
α−1dx

1

(β′dα
max)

− 2
α

≤ −2π

α
Γ

(

−2
α

)

β′ 2
α d2

max

≤ πΓ

(

1 − 2
α

)

β′ 2
α d2

max .

Replacing β′ = X
β and averaging over the probability density function of fading, we get

σ̂(λ, β, α) ≤ πE

[

(

X

β

) 2
α

]

Γ

(

1 − 2
α

)

d2
max

≤ πE[X
2
α ]β− 2

α Γ

(

1 − 2
α

)

d2
max ,

which completes the proof.



50 Chapter 4. Local Capacity in Wireless Networks

We recall that in case of Rayleigh fading

E[X
2
α ] = Γ

(

1 +
2
α

)

,

whereas, in case of no fading, E[X
2
α ] = 1.

Note that the value of λ in case of square, hexagonal and triangular grid pattern based
schemes is 1

d2 , 4
3
√

3d2 and 2√
3d2 respectively. Therefore, using the respective values of λ and

dmax of all grid pattern based schemes and (4.13) and (4.14), simple upper bounds on their
local capacity can be derived. Note that, for α > 2, the factor Γ(1 + 2

α ) is less than one which
means that, as compared to the results under no fading channel model, Rayleigh fading degrades
the local capacity of grid pattern based schemes. However, as α approaches infinity, Γ(1 + 2

α )

approaches one and the local capacity under Rayleigh fading approaches the local capacity under
no fading channel model. Moreover, computations also show that, as compared to square and
hexagonal grid pattern based schemes, the triangular grid pattern based scheme can achieve
the highest local capacity under Rayleigh fading as it has the highest upper bound.

4.7 Conclusions

Our analysis shows that maximum local capacity in wireless networks can be achieved with
grid pattern based schemes and our results show that triangular grid pattern outperforms
square and hexagonal grids. Moreover, compared to simple slotted ALOHA, which does not
use any protocol overhead, triangular grid pattern based scheme can only increase the local
capacity by a factor of 2 or less whereas node coloring and CSMA based schemes can achieve
almost similar local capacity as the triangular grid pattern based scheme.

The framework of local capacity assumes that nodes communicate with their nearby neigh-
bors only and do not take into account the multi-hop communication in wireless networks.
However, a MAC scheme which achieves higher local capacity should also be able to achieve
higher end-to-end capacity in multi-hop networks. For example, consider that λ is normal-
ized across all schemes to one. Therefore, higher local capacity means higher σ(1, β, α) which
has an impact on the average range of transmission and the number of hops required to reach
the destination. In Chapter 6, we will evaluate the normalized maximum transmission range.
It is important to mention that the analysis to establish exact bounds on end-to-end capacity
with different schemes in multi-hop networks will be challenging as we will have to take into
account the impact of various parameters like routing protocol, hop length and spatial distri-
bution of simultaneous transmitters: all these factors can be interrelated. We will extend our
capacity analysis to multi-hop wireless networks in Chapters 6, 7 and 8.



Chapter 5

Local Capacity and Coverage in
Cellular Networks

In this chapter, we will study the problem of increasing the capacity and coverage of an existing
cellular network by adding new base stations. We will consider a sub-region of an existing
cellular network where the service provider wants to increase the bandwidth resources for the
users as well as the coverage of the network and our goal is to find the optimal locations of K

additional base stations in this region. The addition of K new base stations to the network may
also impact the capacity and coverage of existing base stations which makes the problem very
difficult to solve. In fact, we will show that this is an NP-Hard problem. In our approach, we
will reduce this NP-hard problem to finding the points of minimum interference in an existing
cellular network and we will propose heuristics that will select the locations for K additional
base stations from these points.

The article [Plastria 2001] gives an overview of the research about optimization approaches
to the problem of locating one or more new facilities in an environment where other com-
peting facilities already exist. Several other surveys on research in this area also appear in
articles like [Gabszewicz & Thisse 1992, Eiselt et al. 1993, Drezner 1995, Eiselt & Laporte 1997].
In another article [Aboolian et al. 2007], the authors proposed greedy heuristics to optimize the
locations of additional facilities that will compete, for customer demand, with each other and
pre-existing facilities. The authors of this article also take into account the tradeoff issues like
facility location and design, customer demand and profitability. The article [Buttazzo & San-
tambrogio 2005] studied the problem of locating services to optimize the transportation cost
for the efficient planning of a city but their work does not consider pre-existing services or
facilities. Our optimization criteria are the performance metrics of wireless cellular networks,
i.e., the optimization of capacity and coverage of an existing cellular network by locating a
given number of additional base stations. In related works, the authors of the article [Kelif &
Coupechoux 2009] analyzed the capacity and coverage of cellular networks where base sta-
tions are arranged in hexagonal cells. In the article [Altman et al. 2009], the authors assumed
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that there are two competing service providers and they studied the uplink scenario of a cel-
lular network where the users are placed on a line segment. The article [Prommak et al. 2004]
formulated the problem of locating APs in IEEE 802.11 wireless LANs as constraint satisfaction
problem where they considered the transmit power, frequency bands and location constraints.
The authors of the article [Keung et al. 2010] introduced a simulated annealing algorithm for the
optimal placement of base stations with the objective of maximizing the information collection
within a constrained time. However, this objective may seem more suitable for wireless sensor
networks.

5.1 The Context

Let us consider an existing cellular data network. In particular, let us put ourselves in the
context of an LTE system, e.g., an orthogonal frequency-division multiple access (OFDMA)
system supporting fractional frequency reuse (FFR) for interference mitigation similar to the
one used in articles [Stolyar & Viswanathan 2008, Stolyar & Viswanathan 2009]. This type of
interference mitigation divides frequency and time resources into several resource sets. FFR in
the context of OFDMA systems has been discussed in cellular networks standardization such
as Third Generation Partnership Project (3GPP) and Third Generation Partnership Project 2
(3GPP2) which are presented in detail in specifications [3GPP 2005, 3GPP2 2007].

As we will consider the downlink case only, we can use the notation of the set of simulta-
neous transmitters S for the set of existing base stations in the cellular network, i.e.,

S = {z1, z2, . . . , zk, . . .} ,

where zi is the location of base station i. The density of set S is λ. Also, let us assume that the
frequency band is divided into B sub-bands

b ∈ F = {1, . . . , B} ,

and we denote the bandwidth of each sub-band by W. We consider that each sub-band consists
of a fixed number c of sub-carriers. Furthermore, time is divided into slots consisting of a
number of OFDMA symbols and transmissions are scheduled to users by assigning a set of
sub-carriers on specific slots. The time is slotted so that transmissions within each cell are
synchronized and do not interfere with each other. To simplify the exposition, we assume
that the resource sets span the entire time period however, extension to more general resource
sets as discussed in articles [Stolyar & Viswanathan 2008, Stolyar & Viswanathan 2009] is also
straightforward. We assume that there is no inter-carrier interference. Therefore a transmission
in a cell, assigned to a sub-carrier of a sub-band, causes interference to only those users in other
cells that are assigned to the same sub-carrier on the corresponding sub-band.

We denote the fraction of time an assignment algorithm allocates to the user located at



5.2. Model and Assumptions 53

Base Stations

Figure 5.1: Area of interest AR is bounded by a square. β = 1 and α = 4.0.

position z in sub-carrier c of sub-band b by τ(cb)(z) ∈ [0, 1]. Similarly, the nominal trans-
mission rate, for the user located at position z, in sub-carrier c of sub-band b is denoted by
R(cb)(z) ∈ [0, B], B < ∞. Therefore, the average rate a user located at position z actually re-
ceives is

c(z) = ∑
b

∑
c

τ(cb)(z)R(cb)(z) .

Note that each base station i, zi ∈ S , may need to allocate a set of sub-carriers and average
transmission power P

(cb)
i (z) if the user located at position z is to be assigned to sub-carrier c of

sub-band b. Let us denote the channel gain from the base station i to a user located at position
z on sub-carrier c of sub-band b by γ

(cb)
i (z). Therefore, we can write the SINR of base station i,

zi ∈ S , as equal to
γ
(cb)
i (z)P

(cb)
i (z)

N0 + ∑
j 6=i,zj∈S

γ
(cb)
j (z)P

(cb)
j (z)

. (5.1)

5.2 Model and Assumptions

In order to simplify our analysis, we can ignore w.l.o.g. the subscripts i, j and b, c in (5.1) and
make the following assumptions:

– the thermal/ambient noise power N0 is negligible and equal to zero,
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– P
(cb)
i is constant and equal to one for all i, b, c and

– we will ignore the fading and shadowing effects and assume that channel gain depends
solely on the Euclidean distance and the attenuation coefficient α.

Therefore, (5.1) reduces to the form

Si(z) =
‖z − zi‖−α

∑
j 6=i,zj∈S

‖z − zj‖−α
,

which is the same expression as can be obtained under no fading channel model in §3.1.4. Note
that, here Si(z) is the SIR of base station i at a user located at point z in the network.

The available rate at the user becomes equal to the Shannon capacity given by

c(z) = ∑
zi∈S

W log2(1 + Si(z)) .

The coverage of a base station is defined as the set of all points in the network where basic

service is provided with SIR at least equal to a certain threshold. In other words, the β-coverage
area of a base station i at location zi ∈ S is Ai(S , β, α) which represents the area where the
transmission from this base station is received with SIR threshold greater or equal to β and it is
given by (4.1).

The coverage of the network is given by the union of the β-coverage areas of all base stations

Coverage(λ, β, α) =
⋃

zi∈S
Ai(S , β, α) .

Note that we can compute the surface area of the β-coverage area of the base station i

σi = |Ai(S , β, α)| ,

using the analytical method described in §4.3.1.

5.3 Scheme to Incorporate K Additional Base Stations

In this section, we will discuss our scheme to incorporate K additional base stations to the
cellular network such that the capacity and coverage of the network is maximized with all base
stations including the additional base stations as well.
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5.3.1 Points of Maximum Capacity

Let us consider the case where we want to incorporate a new base station l, zl /∈ S . Then the
new set of base stations will be given by

S ′ = S ∪ {zl} .

Our goal is to find the location of l, zl .
The SIR at a user located at z and being served by a base station i with zi ∈ S ′ is

Si(z) =
‖z − zi‖−α

∑
j 6=i,zj∈S ′

‖z − zj‖−α
. (5.2)

We want to compute the maximum of the capacity function obtained by adding a new base
station which also depends on the locations of already existing base stations. We assume that
the coordinates of existing base stations in the network are given and the distribution of users
is uniform.

Therefore, the average capacity by adding the new base station is given by

E[c(z)] =
1

σ2
R

∫

AR

c(z) dz , (5.3)

with units bits per second per hertz per unit square kilometers (km) where σR is the surface
area of the area of interest AR and

c(z) = ∑
zi∈S ′

W log2(1 + Si(z)) . (5.4)

The optima of this maximization problem are found at stationary points where the first
derivative or the gradient of the objective function (5.3) is zero. An equation stating that the
first derivative equals zero at an interior optimum is also called a “first-order condition”. In
other words, we want to study the behavior of the gradient of (5.3)

∇E[c(z)] =
1

σ2
R
∇




∫

AR

c(z) dz



 . (5.5)

We can rewrite (5.4) as

c(z) = ∑
zi∈S ′

W log2(1 + Si(z)) = ∑
i 6=l,zi∈S ′

W log2(1 + Si(z)) + W log2(1 + Sl(z)) .

In case of large cellular networks, when the number of base stations in the set S is very
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large

∇
∫

AR

∑
i 6=l,zi∈S ′

W log2(1 + Si(z)) dz → 0 ,

and the relevant term in (5.5) is then given by

∇
∫

AR

W log2(1 + Sl(z)) dz . (5.6)

Using Taylor series expansion, we know that

log2(1 + x) = x − x2

2
+

x3

3
− . . . ,

and for small values of x, we can ignore the higher order terms. Therefore, in the low SIR
regime, the problem of maximizing the existing capacity becomes equivalent to the problem
of maximizing the SIR. In the high SIR regime, both quantities are also obviously related but
we do not show a theoretical result here. However, simulation results suggest that even in
this scenario we obtain a good approximation, i.e., maximizing the capacity is equivalent to
maximizing the SIR. Therefore, in this case, (5.6) reduces to

∇
∫

AR

Sl(z) dz ,

and we know that

Sl(z) =
‖z − zl‖−α

∑
j 6=l,zj∈S ′

‖z − zj‖−α
=

u(z)
g(z)

, (5.7)

where u(z) = ‖z − zl‖−α and g(z) = ∑j 6=l,zj∈S ′ ‖z − zj‖−α.
Therefore

∇Sl(z) = ∇
(

u(z)
g(z)

)

=
g(z)∇u(z)− u(z)∇g(z)

g2(z)
.

The problem of maximizing coverage in wireless data networks with K additional base
stations can be reduced to the classical maximum coverage problem in computer science which
is also discussed in the book [Hochbaum 1997].

In maximum coverage problem, the inputs are several given sets and a number K. Note
that these sets may have some elements in common. The goal is to select at most K of these sets
such that the maximum number of elements are covered, i.e., the union of the selected sets has
maximal size. Formally, the maximum coverage problem can be defined as follows.

Inputs: A number K and a collection of sets

S = S1, S2, ..., Sm
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Objective: Find a subset S′ ⊆ S of sets, such that |S′| ≤ K and the number of covered

elements
∣

∣

∣

∣

⋃

Si∈S
Si

∣

∣

∣

∣

is maximized.

The problem of maximum coverage with N given base stations and K additional base sta-
tions can be reduced to the above described maximum coverage problem. In case of cellular
networks, the set Si represents the base station i and the elements of this set represents the users
that this base station may cover with given SIR threshold β. Note that these sets may overlap
for β ≤ 1 but for β > 1, the coverage areas of the base stations do not overlap. The location
of K additional base stations shall be chosen so that the coverage of users, in the network, by
N + K base stations is maximum. This is analogous to selecting K sets in maximum coverage
problem which is an NP-hard problem.

Now returning back to the problem of maximizing capacity in the area of interest AR, this
problem is also NP-Hard as it can be considered as an extension of the maximum coverage
problem to the case of users distributed in a network according to a continuous probability
distribution.

If AR is large enough, we can consider
∫

AR
u(z)dz to be constant and therefore, in (5.7), we

will only be interested in the behavior of ∇g(z).

5.3.2 Points of Minimum Interference

The signal level of the interference received at any location z on the two-dimensional plane is
represented by the function

g(z) = ∑
j 6=l,zj∈S ′

‖z − zj‖−α = ∑
zj∈S

‖z − zj‖−α .

Note that l is the additional base station whose location zl has to be determined. There can
be many local minima and to identify those points, we have used the following two-step ap-
proach:

1. subdivide the area of interest AR in the network by using the Delaunay triangulation
scheme with the location of the base stations and

2. use the gradient descent method to locate the point of minimum interference in each
triangle.

5.3.3 Delaunay Triangulation

A Delaunay triangulation for a set of points S in the two-dimensional plane, denoted by DT(S)
is the triangulation or subdivision of the two-dimensional plane into triangles such that no
point in S is inside the circumference of any triangle in DT(S). The Delaunay triangulation of
a discrete set of points S corresponds to the dual graph of the Voronoi tessellation for S .
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We chose the Delaunay triangulation because we have the following properties.

Proposition 5.3.1. Any local minimum interference over the region enclosed by the triangle T \
{p1, p2, p3} is also a global minimum interference over this triangle.

Proof. Consider the following function

g′(z, zj) :=
1

‖z − zj‖α
,

which is defined in the network except at point zj. Therefore, the total interference at point z is
given by

g(z) = ∑
zj∈S

g(z, zj) .

Let us consider the triangle of vertices p1, p2, p3 where the three vertices are the positions of
three base stations

T = {z : z =
3

∑
j=1

λj pj ; 0 ≤ λj ≤ 1, j ∈ {1, 2, 3},
3

∑
j=1

λj = 1} .

Proposition 5.3.2. The function g′(z, zi) and g(z) is convex in z over the triangular region

T \ {p1, p2, p3}.

Proof. We first need to prove that d2g′

dz2 is positive.
Let rj = ‖z − zj‖. The gradient of g(z, zj) is

dg′

dz
= −α‖z − zj‖−α−1 z − zj

‖z − zj‖
= −α

z − zj

‖z − zj‖α+2 .

This means that
dg′

dx
= −α

x − xi

rα+2
i

and
dg′

dy
= −α

y − yi

rα+2
i

,

and

d2g′

dz2 = −α

(

1
‖z − zj‖α+2 + (−α − 2)‖z − zj‖−α−3 (z − zj)

2

‖z − zj‖

)

= −α

(

1
‖z − zj‖α+2 − (α + 2)

(z − zj)
2

‖z − zj‖α+4

)

= α(α + 1)
1

‖z − zj‖α+2 .
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Since there is no element of the set S which is included in the region T \ {p1, p2, p3}, the
function g′(z, zj) is convex on T \ {p1, p2, p3}. Note that the sum of convex functions is also
convex. Therefore, the function

g(z) = ∑
zj∈S

g′(z, zj) ,

is also convex over the domain T \ {p1, p2, p3} and any local minimum of a convex function
is also its global minimum. Note that the fact that we are restricting our domain to be inside
the triangular region helps us to determine that there is only one global minimum since the
domain is a convex subset.

5.3.4 Gradient Descent Method

Gradient descent method, discussed in Chapter 1 of the book [Bertsekas 1999], is based on the
observation that if the real-valued function is defined and differentiable in a neighborhood of
a point z0, then the function g(z) decreases fastest if one goes from z0 in the direction of the
negative gradient of g at z0, i.e., in the direction of −∇g(z0). Since our objective is to find the
minimum of g, we will use the gradient descent method. It follows that, if

z1 = z0 − δt
∇g(z0)

|∇g(z0)| ,

and therefore

zk+1 = zk − δt
∇g(zk)

|∇g(zk)| ,

where δt > 0 is the step size. Note that g(zk+1) < g(zk). First approximate location of mini-
mum interference point z0 is the centroid of the triangle:

z0 = (x0, y0) =

(

xp1 + xp2 + xp2

3
,

yp1 + yp2 + yp3

3

)

,

where p1, p2 and p3 are the vertices of the triangle. In order to ensure that the points zk (k ≥ 0)
lie inside the triangle, we have used the method described in the article [Weisstein 2008].

5.3.5 Heuristics

Here we propose two heuristics to add K additional base stations at the points of minimum
interference identified by the gradient descent method.

Let M be the set of the location of these points of minimum interference.

1. Heuristic 1: The optimal position of an additional base station is found as follows.
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Base Stations

Figure 5.2: Finding points of local minimum interference in the area of interest AR.

(a) Rank points in set M in the ascending order of interference or signal level received
from all base stations in the set S .

(b) Select the lowest ranked element m from the set M. The location of point m shall
become the position of an additional base station.

(c) Remove m from the set M, i.e., M := M− m.

(d) For additional base stations, repeat from step (b).

2. Heuristic 2: Steps (a)-(c) of Heuristic 2 are the same as in Heuristic 1. However, the ad-
dition of a base station at a point of minimum interference in set M may increase the
interference at the remaining points in set M, represented by {M− m}. Therefore, after
addition of a base station, we propose that the area of interest is re-triangulated to iden-
tify a new set M of points of minimum interference. In other words, in Heuristic 2, the
points of minimum interference in the area of interest shall be identified before finding
the location for the addition of each new base station.

Note that the Delaunay triangulation in this case will be provided by the Bowyer-Watson
algorithm, described in articles [Bowyer 1981, Watson 1981], which gives another ap-
proach for incremental construction. This also gives an alternative to edge flipping for
computing the Delaunay triangles containing a newly inserted vertex.
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1
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4 5

Base Stations

Figure 5.3: 5 base stations are added to the area of interest AR using Heuristic 1. The number
indicates the order of addition to the network. β = 1.0 and α = 4.0.

5.4 Evaluation and Results

We consider a cellular data network spread in an area of 10000 × 10000 square km and base
stations are distributed in this area according to Poisson point process of intensity λ = 1 base
stations per unit square km. We consider the attenuation coefficient α = 4.0 and the coverage
area of a base station is the area around this base station where it can be received with SIR at
least equal to the SIR threshold β = 1.0. We assume that our area of interest AR lies in the
center of this network and is a square area with each side of length 500 km.

5.4.1 Summary of Results

Figure 5.1 shows the β-coverage areas of the base stations distributed according to Poisson
point process of intensity λ = 1. It also shows the area of interest AR.

Figure 5.2 shows the process of the identification of the points of minimum interference
in the area of interest AR. Locations marked with a cross (x) show the first approximation
of the points of minimum interference. Gradient descent method uses these first approximate
positions to arrive at the final locations, marked with a circle (o), which is the true point of
minimum interference in the region formed by the Delaunay triangle. Note that, in cases where
a triangular region lies partially within the area of interest AR, we are interested in identifying
the point of minimum interference lying within the area of interest AR.

Figures 5.3 and 5.4 shows the positioning of K = 5 additional base stations in the network
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Figure 5.4: 5 base stations are added to the area of interest AR using Heuristic 2. The number
indicates the order of addition to the network. β = 1.0 and α = 4.0.

by using the approaches of Heuristic 1 and Heuristic 2 respectively. In order to show the im-
provement achieved by the two heuristics, we have computed the total area in the area of
interest AR which lies within the coverage of any of the base stations in the newly formed set
of base stations S ′. Note that the set S ′ also includes the additional base stations whose location
is found using Heuristic 1 and Heuristic 2.

In order to compute the capacity, we will numerically integrate (5.3) over the area of interest
AR. We will sub-divide AR into small sub-rectangles of size ∆x×∆y and in each sub-rectangle,
we will compute the capacity as

c(zk) = ∑
i∈S ′

W log2(1 + Si(zk)) ,

where zk = (xk, yk) is the center of the sub-rectangle k. Therefore, the average capacity can be
numerically computed as

E[c(z)] =
1

σ2
R

∫

AR

c(z) dz =
1

σ2
R

∑
k

c(zk)∆x∆y .

Table 5.1 and 5.2 summarize the results obtained with both heuristics.
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Existing Network Heuristic 1 Heuristic 2

Capacity 1.3559 1.5614 1.7007

Percentage Increase 15.15% 25.42%

Table 5.1: Average capacity (bits/sec/Hetz/km2) over the area of interest AR.

Existing Network Heuristic 1 Heuristic 2

Total coverage area 168776 190501 204628

Coverage percentage 67,51% 76,20% 81,85%

Percentage Increase 12.87% 21.25%

Table 5.2: Coverage in the area of interest AR.
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5.5 Conclusions

We have studied the problem of optimally locating K additional base stations in an existing cel-
lular network. We showed that the problem of finding the optimal location of a set of new base
stations is an NP-Hard problem. In our analysis, we considered a sub-region of an existing cel-
lular data network where the service provider wants to increase the coverage and throughput
of the users. We used interference gradient method to locate the points of minimum interfer-
ence in the area of interest and proposed two heuristics to find the positions of additional based
stations. Later, we evaluated the performance of these heuristics. In Chapter 9, we will discuss
some extensions to this work.



Part II

Multi-hop Wireless Networks



Chapter 6

Transmission Range in Wireless
Networks

In the first part of this thesis, we analyzed the local capacity of wireless networks with various
MAC schemes and we only considered single-hop simultaneous transmissions. This abstrac-
tion of the multi-hop aspect of communication between nodes allowed us to concentrate on the
localized capacity of wireless networks. However, the final destination of a packet may not be
located within the transmission range of its source and the packet may have to be transported
through multiple relays before delivery. Let us assume that L is the mean distance between a
source and its destination node and rλ is the average transmission range of a transmitter in the
network. Therefore, the average number of relays required to deliver a packet to its destination
is L/rλ.

The framework of local capacity may not give a complete insight into the end-to-end
throughput capacity of different MAC schemes in multi-hop wireless networks and this re-
quires us to extend our analysis to take into account the multi-hop aspect of communication
between nodes. In this chapter, we will evaluate the following parameters in multi-hop wire-
less networks consisting of randomly distributed nodes:

– normalized optimum transmission range and

– the minimized number of retransmissions required to transport a packet through multi-
ple relays before delivery to its final destination.

We will measure these parameters for ALOHA based scheme where simultaneous transmitters
are dispatched according to a uniform Poisson distribution and compare these results with
various grid pattern based schemes where simultaneous transmitters are positioned in specific
regular grid patterns. Note that, in this chapter, we will perform our analysis under no fading

channel model only. However, in the next chapter, we will quantify throughput capacity which
is inversely proportional to the average number of retransmissions required to deliver packets
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in the network for various MAC schemes under no fading as well as Rayleigh fading channel
models.

6.1 Model and Assumptions

For our analysis in this chapter, we consider a network which consists of nodes which are uni-
formly distributed in an infinite plane, i.e., A = R

2. As we consider the no fading channel model
only, the channel gain between a transmitter and a receiver depends only on the Euclidean dis-
tance between these two nodes and the attenuation coefficient α.

We recall that these models are already described in detail in §3.1.

6.2 Normalized Optimum Transmission Range

The probability of successfully receiving a packet at distance r from the transmitter is denoted
by p(λ, r, β, α). Our aim is to find the value of r which maximizes the quantity rp(λ, r, β, α).
Therefore, the minimum number of retransmissions required to deliver a packet to its destina-
tion located at mean distance L is proportional to L

rp(λ,r,β,α) . This optimum transmission range
of an arbitrary transmitter under a given density λ of the set of simultaneous transmitters, i.e.

the set S , is denoted by rλ. Because of an obvious homothetic invariance, we can also write

r1 =
√

λrλ .

In this chapter, we will determine the optimum values of r1 and 1
rp(λ,r,β,α) with λ = 1, for slotted

ALOHA and various grid pattern based schemes.

6.3 Slotted ALOHA Scheme

In this section, we will evaluate the optimum average transmission range of slotted ALOHA
scheme.

6.3.1 Evaluation of Transmission Range

Using (4.5), the probability of successfully transmitting a packet at distance r, in case of slotted
ALOHA scheme, can be written as

p(λ, r, β, α) = P

(

W(λ) <
r−α

β

)

= ∑
n≥0

(−Cλ)n

n!
sin(πnγ)

π
Γ(nγ)

(

r−α

β

)−nγ

, (6.1)

where, in case of no fading,
C = πΓ(1 − γ) ,
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W(λ) < r−α

β

)

versus r−α

β for λ = 1 and various values of α.

and γ = 2
α . Figure 6.1 shows the plot of P

(

W(λ) < r−α

β

)

versus r−α

β for λ = 1 and various
values of α.

Here, we will use simple algebra to show the homothetic invariance of r1 which has also
been proved in the article [Adjih et al. 2004].

Theorem 6.3.1. r1 =
√

λrλ, where rλ is the radius under the given density λ of the set of simultaneous

transmitters S such that

P

(

W(λ) <
rλ

−α

β

)

=
∫

rλ
−α

β

0
w(x, λ)dx = p0 ,

where p0 is a constant under given values of α and β.

Proof. The signal level at any point in the plane with Poisson distributed transmitters is a ran-
dom variable and the Laplace transform of its probability density is given by (4.4). Using the
reverse Laplace transform we have

w(x, λ) =
1

2iπ

∫ +i∞

−i∞
w̃(θ, λ)eθxdθ .

Inserting the expression from (4.4) in the above equation and commuting the integral signs
because

∫

rλ
−α

β

0
eθxdx =

e
θ

rλ
−α

β − 1
θ

,

yields

1
2iπ

∫ +i∞

−i∞

e
θ

rλ
−α

β − 1
θ

w̃(θ, λ)dθ = p0 .
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The change of variable λ
α
2 θ = θ′, makes λ disappear from the w̃(θ, λ) expression

1
2iπ

∫ +i∞

−i∞

e
θ′ rλ

√
λ
−α

β − 1
θ′

w̃(λ
−α
2 θ′, 1)dθ′ = p0 .

Since w̃(λ
−α
2 θ′, 1) is independent of λ and rλ is multiplied by

√
λ, we get that rλ is simply

proportional to 1/
√

λ, i.e., rλ = r1/
√

λ.

Our objective is to derive the optimum value of r1 which maximizes the function
rp(λ, r, β, α) for λ = 1.0.

6.4 Grid Pattern Based Schemes

When activated by a grid pattern based scheme under no fading channel model, the reception
areas of all transmitters remain the same, in every slot, modulo a translation and/or rotation.
Therefore, by virtue of a grid pattern, we can consider w.l.o.g. the transmitter i located at origin,
i.e.,

zi = z0 = (x0, y0) = (0, 0) .

Let r by the distance of point z from origin and the probability to receive a signal at distance r,
from the transmitter i at origin, with SIR at least equal to β is

p(λ, r, β, α) = 1, if z = (x, y) lies within the reception area of transmitter i;

p(λ, r, β, α) = 0, otherwise .

Therefore, in case of grid pattern based schemes, we can define the optimum transmission
range of a transmitter as equal to its maximum transmission range, i.e., the maximum distance
within its reception area at which it can transmit successfully and the minimum average num-
ber of retransmissions required to deliver a packet to its final destination at mean distance L

becomes equal to L/r.
As we discussed earlier, the purpose of our analyses of grid pattern based schemes is to

establish bounds on the capacity in wireless networks. In this chapter also, we are interested in
establishing an upper bound on the normalized transmission range and a lower bound on the
number of retransmissions required to deliver a packet in wireless networks. That is why, we
are interested in determining the maximum transmission range of a transmitter with various
grid pattern based schemes. As we have introduced the notion of maximum transmission
range, we will first briefly discuss the progression of a packet, towards its destination, in multi-
hop wireless networks with grid pattern based schemes. Later we will present the numerical
method we have used to determine the maximum transmission range in wireless networks
with grid pattern based schemes.



70 Chapter 6. Transmission Range in Wireless Networks

s

r1

d1

r2

d2

r3

d3

Figure 6.2: An example: node s carries packets for destination nodes d1, d2 and d3 and transmits
the packet for the destination d1 towards the relay r1. Nodes in the network employ square grid
pattern based scheme.

We define the progress of a packet as the distance between the transmitter and the receiver
relay projected onto the line joining the transmitter and the final destination node of the trans-
mitted packet. A node j is said to be in transmitter i’s forward direction if the progress is non-
negative when transmitter i transmits packet to the receiver node j successfully. Otherwise,
node j is said to be in the backward direction of transmitter i.

We assume that a transmitter in the network is also aware of the following parameters:

– its own cartesian coordinates,

– the cartesian coordinates of all destination nodes for which it is carrying a packet (this
information can be contained in the packet itself) and

– the cartesian coordinates of all receiver nodes located within its reception area. In order
to obtain this information, we may assume that a slot is sub-divided into management
and data sub-slots and this information is collected during the management sub-slot and
the packet is later transmitted during the data sub-slot. However, this specification is
beyond the scope of this thesis and we only assume that this information is available at
all transmitters.

Using this information, a transmitter can determine to transmit the packet with the largest
forward progress (this condition maybe relaxed for the packets that can be delivered to their
destination nodes immediately). This ensures that the number of hops required to reach the
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s

d

(a) 1st hop progress.

s

d

(b) 2nd hop progress.

s

d

(c) 3rd hop progress.

s

d

(d) 4th hop progress (packet delivered).

Figure 6.3: An example: progress of a packet from the source node s towards the destination
node d with square grid pattern based scheme.

destination are minimized. Note that, we assume that a transmitter, when activated for trans-
mission by the grid pattern based scheme, always has a packet to transmit. Consider the ex-
ample in Fig. 6.2 where nodes in the network employ square grid pattern based scheme. This
figure shows a set of simultaneous transmitters where the transmitter s is carrying packets for
the destination nodes d1, d2 and d3. Note that, the closed curve bounding the node s is the
boundary of its reception area. As observed in the figure, the packet for destination d1 has the
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largest forward progress and, therefore, node s transmits this packet to the relay node r1.
Figure 6.3 is the figurative representation of the progress of a packet from node s towards

node d in a network with randomly distributed nodes. In this case, nodes employ square grid
pattern based scheme. Under this scheme, simultaneous transmitters, in each slot, are selected
according to the rules specified in §3.4 and they form a regular square grid pattern which is
modulo a translation and/or rotation. In the figure, the set of simultaneous transmitters are
represented by the red color and the inactive nodes (potential receivers) are represented by the
gray color. The source, destination and successful relay nodes are represented by green, blue
and black colors respectively. When the source node s is activated for transmission by the MAC
scheme, it transmits the packet to the next relay. Similarly, Figures 6.3(b)-(d) show the progress
of the packet from the successive relay nodes towards the final destination of the packet. The
maximum forward progress of a packet is equal to the maximum transmission range achiev-
able with the MAC scheme employed by nodes. As the density of nodes in the network in-
creases and under the assumption that simultaneous transmitters always have packets to be
transmitted in the direction of their maximum transmission range, the forward progress of the
packets approach the maximum transmission range and packets travel in straight lines from
their source nodes towards their destination nodes. If L is the mean distance between source
and its destination node, we can see that the minimum number of hops required to reach the
destination node is exactly equal to L

rλ
, where rλ is the maximum transmission range under

the given density of the set S . In this chapter, we will evaluate the maximum transmission
range of a transmitter with various grid pattern based schemes. We will cover the grid patterns
of square, rectangular, hexagonal and triangle as shown in Fig. 3.1. For grid pattern based
schemes, we are interested in the maximum transmission range and it is intuitive to assume
that the rectangular grid pattern maybe able to achieve higher transmission range as compared
to other grid patterns because transmitters along one dimension are far apart as compared to
the other dimension. Therefore, under certain conditions, we maybe able to achieve better
bounds on the network throughput capacity in multi-hop wireless networks with rectangular
grid pattern based scheme. Our discussion in the following sections will help us in identifying
those conditions. Note that, the density of the set of simultaneous transmitters λ depends on
parameter d. However, r1 =

√
λrλ is independent of the value of d or, for that matter, λ as it is

invariant for any homothetic transformation of the set of simultaneous transmitters S .

6.4.1 Evaluation of Transmission Range

The correlation between the location of simultaneous transmitters, in case of grid pattern based
MAC schemes, makes it extremely difficult to develop a tractable analytical model and derive
the closed-form expression for the distribution of signal levels and the maximum transmission
range. Therefore, we will propose a numerical method to compute the maximum transmission
range in wireless networks with grid pattern based schemes. The set of simultaneous trans-
mitters, i.e. the set S , is arranged in a grid pattern. We will cover grids of square, rectangular,
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hexagonal and triangle patterns and, by consequence of the grid pattern, all transmitters have
the same maximum transmission range modulo a translation and/or rotation. We will use the
method of Lagrange multipliers, described in Chapter 17 of the book [Arfken 1985], to find the
maximum transmission range of transmitter i located at the origin while fulfilling the constraint
of SIR threshold.

We can formulate our problem as follows.

Maximize: Di(z) = ‖z − zi‖ = ‖z‖,

subject to: Si(z) = β , (6.2)

where Di(z) represents the Euclidean distance of point z from zi. The contour line of the func-
tion

Di(z) = ‖z‖ = κ ,

where κ is a constant, is a circle in the plane with point z on its boundary at a given distance κ

from the origin. Similarly, the contour line of the SIR function

Si(z) =
‖z − zi‖−α

∑
j 6=i,zj∈S

‖z − zj‖−α
=

‖z‖−α

∑
j 6=i,zj∈S

‖z − zj‖−α
= β , (6.3)

is the closed curve Ci(β, α) that forms the boundary of the reception area Ai(λ, β, α) of trans-
mitter i. Our goal is to locate a point on the curve Ci(β, α) which is furthest from the location
of the transmitter i and to determine its Euclidean distance from zi. Figure 4.3 is the figurative
representation of these parameters. The contour lines of the functions Di(z) and Si(z) may
be distinct but they will intersect or meet each other. In other words, while moving along the
contour line of the function Si(z) = β, i.e., along the curve Ci(β, α), the value of Di(z) may vary.
Only when the contour lines of functions Di(z) and Si(z) meet tangentially, i.e., when the con-
tour lines meet but do not cross each other that we do not increase or decrease the value of
Di(z). The contour lines meet at the critical point where the tangent vectors of these contour
lines are parallel and that point in the plane is the point of our interest. Note that, as the gradi-
ent of a function is perpendicular to the contour lines, the gradients of the functions Di(z) and
Si(z) are also parallel at our point of interest.

We define the gradient of the function Di(z), ∇Di(z), as

∇Di(z) =





∂
∂x Di(z)

∂
∂y Di(z)



 .
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Figure 6.4: Optimizing rp(λ, r, β, α) with λ = 1 for slotted ALOHA scheme.

Similarly, the gradient of Si(z), ∇Si(z), at point z on the curve Ci(β, α), is

∇Si(z) =





∂
∂x Si(z)

∂
∂y Si(z)



 .

As it is extremely hard to derive close form expressions for the SIR function Si(z) and its gra-
dient function when simultaneous transmitters are positioned in a specific grid pattern in the
plane, we have to rely on the numerical method, described in §4.3.1, to obtain a discretized
and numerically convergent representation of Ci(β, α) by finite elements. We will use this dis-
cretized representation of Ci(β, α) and compute the gradients of the functions Di(z) and Si(z)
to determine the maximum transmission range. Equation (4.9) is a discretized representation
of Ci(β, α) and we will compute the gradients of the functions Di(z) and Si(z) at the sequence
of points z(k) in (4.9) to determine the point where the gradients are parallel. This point will
give the maximum transmission range of the transmitter i.

6.5 Evaluation and Results

In this section, we will perform detailed analysis of the MAC schemes, we have discussed in
this chapter, under no fading channel model only.

6.5.1 Slotted ALOHA Scheme

In case of slotted ALOHA scheme, our goal is to identify the optimal value of r which maxi-
mizes the value of rp(λ, r, β, α), which is computed from (6.1) with varying values of the pa-
rameters β and α and λ = 1.
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Figure 6.4 shows the plots of rp(λ, r, β, α) versus r, β and α with λ = 1. In Fig. 6.4(a), r and
β are varying and α is fixed at 4.0. Similarly, in Fig. 6.4(b), r and α are varying and β is fixed at
10.0. Note that, as we are only interested in the optimal value of r which maximizes the value
of rp(λ, r, β, α) at given β and α and λ = 1, we only refer to this value by r1 in our discussion.

6.5.2 Grid Pattern Based Schemes

In case of grid pattern based schemes, we will use the numerical method described in §6.4.1
to compute the maximum transmission range. For our numerical simulations, we will use the
same network map as was described in §4.5 and the transmitters are spread in this network
area in square, rectangular, hexagonal or triangular grid pattern. Here also, we set the param-
eter d, for all grid patterns, equal to 25 meters although it will have no effect on the validity of
our conclusions as normalized maximum transmission range r1 is independent of λ. We will
only compute the maximum transmission range of the transmitter i, located in the center of the
network area, i.e., zi = (xi, yi) = (0, 0). The network area is large enough so that the reception
area of transmitter i, and hence its maximum transmission range, is close to its reception area
and maximum transmission range in an infinite map. In case of rectangular grid pattern, we
vary the values of the factors k1 and k2 in the ratio of 1

2 and 1
4 . Note that the factors k1 and k2

are associated with the construction of the rectangular grid pattern as shown in Fig. 3.1. This
allows us to derive the conclusions on the impact of these factors on the maximum transmis-
sion range of rectangular grid pattern based schemes. We can determine the value of λ using
the Voronoi tessellation of the network map and we derive its value for square, rectangular,
hexagonal and triangular grid pattern to be equal to 1

d2 , 1
k1k2d2 , 4

3
√

3d2 and 2√
3d2 respectively.

6.5.3 Summary of Results

Figure 6.5 shows the plots of the normalized optimal transmission range r1 with varying β and
α for all MAC schemes. In Fig. 6.5(a) and 6.5(b), β is varying and α is fixed at 4.0. Similarly, in
Fig. 6.5(c) and 6.5(d), β is fixed at 10.0 and α is varying. These results show that under typical
values of β, in the range of 1 to 20, and α, in the range of 3 to 6, the normalized maximum
transmission range of all grid pattern based schemes are almost similar and at most double
the normalized optimal average transmission range of slotted ALOHA scheme. However, as
the values of β and α approach their extremities, certain grid pattern based schemes seem to
outperform the others.

For example, as β approaches zero, the maximum transmission range is influenced most
by the closest source of interference and the most optimal scheme which maximizes the trans-
mission range, in this case, is based on rectangular grid pattern with k2 ≫ k1. However, as β

increases and approaches the value of 100, influence from more distant transmitters increase
and the shape of the reception area approaches the shape of a small circular disk with transmit-
ter at the center. Therefore, in this case, the most optimal scheme to maximize the transmission
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Figure 6.5: Optimal r1 =
√

λrλ with λ = 1 of slotted ALOHA and grid pattern based schemes.

range is based on triangular grid pattern.
On the other hand, as α increases, the reception area is influenced most by the interference

from the nearest interferer as compared to any other interferer and the area of correct reception
tends to be the Voronoi cell. Therefore, in this case, the most optimal scheme should also be
based on rectangular grid pattern with k2 ≫ k1. We will discuss the asymptotic behavior of
normalized maximum transmission ranges of grid pattern based schemes in detail in §6.6.

Figure 6.6 shows the plots of the optimized (minimized) number of retransmissions
1

rp(λ,r,β,α) required to transport a packet through multiple relays from its source node to its
destination node located at unit distance with λ = 1 and varying β and α. In Fig. 6.6(a) and
6.6(b), β is varying and α is fixed at 4.0 whereas in Fig. 6.6(c) and 6.6(d), β is fixed at 10.0 and α

is varying.
Note that, in case of grid pattern based schemes, p(λ, r, β, α) is equal to one as, under
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Figure 6.6: Optimal (minimized) 1
rp(λ,r,β,α) with λ = 1 of slotted ALOHA and grid pattern based

schemes.

no fading channel model, the reception area of a transmitter remains the same modulo a ro-
tation. Therefore, in case of grid pattern based schemes, 1

rp(λ,r,β,α) =
1
r . In order to quantify

the improvement in the quantity 1
rp(λ,r,β,α) by grid pattern based schemes over slotted ALOHA

scheme, we perform a scaled comparison of slotted ALOHA and all grid pattern based schemes
which is obtained by dividing the optimized quantity 1

rp(λ,r,β,α) of all these schemes with the

minimized quantity 1
rp(λ,r,β,α) of triangular grid pattern based scheme. The reason of choosing

triangular grid pattern based scheme as the reference here is twofold. First is that, under typ-
ical values of β and α, it can achieve the most optimal normalized transmission range in the
wireless network although it is almost similar to other grid pattern based schemes. Second
reason is that, triangular grid pattern based scheme can be visualized as the most optimal node



78 Chapter 6. Transmission Range in Wireless Networks

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70  80  90  100

SIR threshold (β)

Slotted ALOHA
Triangular grid

Square grid
Hexagonal grid

(a) β is varying and α = 4.0.

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70  80  90  100

SIR threshold (β)

Triangular grid
Rectangular grid (1:2)
Rectangular grid (1:4)

(b) β is varying and α = 4.0. Rectangular grid with
given (k1 : k2) ratio.

 0.5

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70  80  90  100

Attenuation coefficient (α)

Slotted ALOHA
Triangular grid

Square grid
Hexagonal grid
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Figure 6.7: Optimal (minimized) 1
rp(λ,r,β,α) with λ = 1 of slotted ALOHA and grid pattern based

schemes normalized w.r.t. triangular grid pattern based scheme.

coloring scheme which ensures that neighboring transmitters are located at exactly the dis-
tance d from each other. Figure 6.7 shows the scaled comparison with β and α varying. It can
be observed that the grid pattern based schemes can reduce the number of transmissions re-
quired to deliver a packet to its destination to at most one-third of the optimal average number
of transmissions required with slotted ALOHA scheme. In other words, end-to-end network
throughput in wireless networks with grid pattern based schemes can at most be three times
the throughput with slotted ALOHA scheme. It is also interesting to note that when we only
consider the single-hop simultaneous transmissions as in Chapter 4, the most optimal node col-
oring scheme, i.e., the scheme based on triangular grid pattern may achieve the most optimal
local capacity. However, it may not achieve the most optimal end-to-end network throughput
in multi-hop wireless networks as the values of β and α approach their extremities.
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6.6 Asymptotic Analysis of Grid Pattern Based Schemes

In this section, we will analyze the asymptotic behavior of the normalized maximum transmis-
sion range of grid pattern based schemes as β and α approach extreme values.

The unexpected result is that when β approaches zero or α approaches infinity, the most
optimal grid pattern to maximize the normalized transmission range is the linear pattern, i.e.,
transmitters are equidistantly spaced on a line.

6.6.1 With Respect to SIR Threshold

In this section, we will again assume that the transmitter i is located at origin and our aim is to
find its maximum transmission range as β approaches infinity.

From (6.3), we can write

‖z − zi‖−α

∑
j 6=i,zj∈S

‖z − zj‖−α
=

‖z−α‖
∑

j 6=i,zj∈S
‖z − zj‖−α

=
r−α

z

I(x, y)
= β ,

where rz is the distance of point z from the location of the transmitter i and I(x, y) is the signal
level of the interference at point z. As β approaches infinity, the reception area of a transmitter
shrinks to a circular disk of an infinitesimally small radius with the transmitter at its center, i.e.,
the transmission radius of transmitter i also shrinks to an infinitesimally small value.

Therefore, we can write the above equation as

r0(0, 0)−α

β
= I(0, 0) ,

where r0(0, 0) is the transmission range of transmitter i at origin when β approaches infinity
and I(0, 0) is the received signal level, at the location of transmitter i, from all transmitters
except i, i.e.,

I(0, 0) = ∑
j 6=i,zj∈S

‖zi − zj‖−α = ∑
j 6=i,zj∈S

‖zj‖−α .

Our goal is to determine the normalized maximum transmission range r′1 which is defined
as

r′1 = β
1
α r0(0, 0) = (I(0, 0))−

1
α .

Note that, in the above expression, we also normalize the transmission range with respect to
(w.r.t.) β as, when β approaches infinity, the transmission range r0(0, 0) will also approach zero.
Therefore, we will compute β

1
α r0(0, 0) for various grid pattern based schemes in the same net-

work setting, as described in §6.5.2, and identity the scheme which maximizes the normalized
maximum transmission range in the wireless network under the asymptotic condition when
β approaches infinity. Table 6.1 shows the values of the normalized maximum transmission
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r′1 = β
1
α r0(0, 0) c′(∞, 4.0) = π(r′1)

2 = πβ
2
α r2

0(0, 0)

Square 0.638232 1.279696

Rectangular

k1
k2

= 1
2 0.554905 0.967357

k1
k2

= 1
4 0.409452 0.526690

Hexagonal 0.609856 1.168434

Triangular 0.644845 1.306352

Table 6.1: Normalized maximum transmission range r′1 and local capacity c′(β, α) of various
grid pattern based schemes as β approaches infinity. α = 4.0 and λ = 1.0.

range of various grid pattern based schemes as β approaches infinity with α = 4.0 and λ = 1.0.
It is evident that as β approaches infinity, the most optimal maximum transmission range is ob-
tained with triangular grid pattern based scheme. In Chapter 4, we evaluated the local capacity
c(β, α) of single-hop wireless networks with various MAC schemes. It will also be interesting
to compute its value for grid pattern based schemes when β approaches infinity. In this case,
σ(λ, β, α) will be equal to the surface area of the reception area of a transmitter which is a cir-
cular disk. We know that the normalized area of this circular disk is equal to π(r′1)

2 and the
results in Table 6.1 prove that, as β approaches infinity, the most optimal scheme to maximize
local capacity is also based on triangular grid pattern.

It is also interesting to see what happens when β approaches zero.
We know that for β equal or greater than one, the reception areas of the transmitters do not

overlap as there is only one transmitter that can be received successfully at any location in the
plane. Figure 4.2 shows such an example where the reception areas of randomly distributed
transmitters are shown for β greater or equal to one. However, as the value of β decreases and
approaches an infinitesimally small value, the reception areas of transmitters start to overlap.

In Fig. 6.8, nodes in the network use square grid pattern based scheme and this figure
shows the transformation of the reception area of a transmitter (marked in red) in the same
network setting, as described in §6.5.2, as the value of β approaches an infinitesimally small
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(d) β = 10−5.

Figure 6.8: Reception area of a transmitter with square grid pattern based scheme as β ap-
proaches an infinitesimally small value. α = 4.0, d =

√
1000 and λ = 1

d2 = 1
1000 .

value. Note that, as β approaches an infinitesimally small value, reception area of the transmit-
ter becomes non-contiguous and also excludes the locations of the interferers where the signal
level of interference is infinite. We can see that as β approaches zero, the reception area tends
to an infinite plane though excluding the points of the locations of the interferers.

Our results in Fig. 6.5(b) and 6.6(b) also hint that as β decreases, the most optimal trans-
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Figure 6.9: Reception area of a transmitter with rectangular grid pattern based scheme as k1
k2

approaches an infinitesimally small value. β = 10−5, α = 4.0, d = 1 and λ = 1
k1k2d2 = 1

1000 is
kept constant.

mission scheme to maximize the transmission range is based on rectangular grid pattern with
k2 > k1. Figure 6.9 shows the transformation of the reception area of a transmitter when nodes,
in the network setting of §6.5.2, use rectangular grid pattern based scheme and the value of
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k1/k2 approaches an infinitesimally small value. Note that because of a very small k1, the
transmitters in this figure appear to be densely packed on lines. It can be noticed that as the
value of k1/k2 decreases, the reception area of the transmitter becomes contiguous and its maxi-
mum transmission range also increases. For example, at β = 10−5, the results in Fig. 6.8(d) and
6.9(d) show that, as compared to square grid pattern, rectangular grid pattern based scheme
can achieve longer transmission range. Note that, in Fig. 6.9, values of the factors k1 and k2

are varied such that λ remains constant and we observed their impact on the maximum trans-
mission range. From our results, we conjecture that as β approaches zero, the most optimal
MAC scheme to maximize the normalized transmission range in multi-hop wireless networks,
such that the reception area of a transmitter also remains connected, is based on rectangular
grid pattern with k2 approaching infinity or, in other words, linear pattern with transmitters
equidistantly placed on a straight line and, as the density of nodes in the network approach
infinity, k1 (i.e. the distance in-between simultaneous transmitters on the line) approaching an
infinitesimally small value.

6.6.2 With Respect to Attenuation Coefficient

As α approaches infinity, the reception area of a transmitter tends to be the Voronoi cell around
this transmitter. This is true for all values of β. This is because the reception area is influenced
most by the interference from the nearest transmitter as compared to any other transmitter. The
average area of the Voronoi cell is equal to the inverse of the density of the set of simultaneous
transmitters, i.e., 1/λ. Figure 6.10 shows the reception area of a transmitter in the network set-
ting of §6.5.2 where nodes employ square, rectangular, hexagonal and triangular grid pattern
based schemes with β = 1.0 and α = 100.0. In this figure, the arrows represent the directions of
the maximum transmission range of a transmitter with each scheme. We have used the numer-
ical method described in §4.3.1 to plot these reception areas and we can see that at very high
value of α, the reception areas tend to be the Voronoi cell of a specific shape which depends on
the positioning of simultaneous transmitters by the grid pattern based schemes.

As α approaches infinity, reception area of a transmitter in square grid pattern based scheme
approaches the shape of a square with area d2 and this is irrespective of the value of β. This
can also be observed in Fig. 6.10(a). From Voronoi tessellation of the network map, we can see
that the density of the set of simultaneous transmitters λ is equal to 1/d2 and the maximum
transmission range is along the diagonals of the square reception area, given by rλ = d/

√
2.

Therefore, as α approaches infinity, the normalized maximum transmission range of a trans-
mitter in square grid pattern based scheme approaches the value of

r1 =
√

λrλ =
1√
2
≈ 0.707 .

This result can also be verified by the plot in Fig. 6.5(c) when α = 100.0.
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(a) Square grid. (b) Rectangular grid with k1
k2

= 0.5.

(c) Hexagonal grid. (d) Triangular grid.

Figure 6.10: Reception area of a transmitter with various grid pattern based schemes. Grids are
constructed with parameter d. β = 1.0 and α = 100.0.

In case of rectangular grid pattern based scheme, as α approaches infinity, the reception
area approaches the shape of a rectangle with area equal to k1k2d2 and λ = 1/k1k2d2 where k1

and k2 are the factors associated with the dimensions of the rectangular grid pattern as shown
in Fig. 3.1. In this case also, the maximum transmission range is along the diagonals of the
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rectangular reception area and is given by

rλ =
d

2

√

k2
1 + k2

2

=
d

2

√

k1k2

√

√

√

√

√

√

(

k1
k2

)2
+ 1

(

k1
k2

) ,

and therefore,

r1 =
√

λrλ =
1
2

√

√

√

√

√

√

(

k1
k2

)2
+ 1

(

k1
k2

) .

It is interesting to note that in case of rectangular grid pattern based scheme, the maximum
transmission range depends on the factors k1 and k2. Note that, in case of square grid pattern,
k1/k2 = 1. However, in case of rectangular grid pattern, k1/k2 can be any value less than one
and as k2 approaches infinity, k1/k2 approaches zero and r1 approaches infinity. Our results in
Fig. 6.5(d) also verify that, with α approaching 100, as k1/k2 decreases, r1 increases.

Similarly, we can also repeat the calculations and derive the maximum transmission ranges
with hexagonal and triangular grid pattern based schemes under asymptotic conditions.

Table 6.2 shows the normalized maximum transmission range of all grid pattern based
schemes as α approaches infinity. The asymptotic behavior of maximum transmission range
of various grid pattern based schemes shows that as α increases, the normalized maximum
transmission range in the wireless network can be achieved when simultaneous transmitters
are positioned in a rectangular grid pattern with k2 ≫ k1. This also allows us to conjecture that
asymptotically, as α approaches infinity, the most optimal positioning of simultaneous trans-
mitters, to maximize the normalized transmission range in multi-hop wireless networks, is in
a rectangular grid pattern with k2 approaching infinity or, in other words, linear pattern with
transmitters equidistantly spaced on a straight line. Moreover, as the density of nodes in the
network approaches infinity, k1 (the distance in-between simultaneous transmitters on the line)
approaches an infinitesimally small number.

6.7 Conclusions

We evaluated the performance of multi-hop wireless networks under the framework of nor-
malized optimum transmission range and computed the optimized number of retransmissions
required to transport a packet over multi-hop path to its final destination. We used analytical
tools, based on realistic interference model, to evaluate the performance of slotted ALOHA and
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λ rλ r1 =
√

λrλ

Square 1
d2

d√
2

1√
2
≈ 0.707

Rectangular 1
k1k2d2

d
2

√
k1k2

√

√

√

√

(

k1
k2

)2
+1

(

k1
k2

)

1
2

√

√

√

√

(

k1
k2

)2
+1

(

k1
k2

)

(

k1
k2

< 1
)

Hexagonal 4
3
√

3d2 d 2√
3
√

3
≈ 0.877

Triangular 2√
3d2

d√
3

√

2
3
√

3
≈ 0.620

Table 6.2: Maximum transmission range of a transmitter with various grid pattern based
schemes as α approaches infinity.
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grid pattern based schemes. Our results show that designing of the MAC scheme to optimize
these quantities shall take into account the system parameters like SIR threshold and attenua-
tion coefficient. Our results also show that at typical values of SIR threshold equal to 10.0 and
attenuation coefficient equal to 4.0, most optimal scheme is based on triangular grid pattern
and compared to slotted ALOHA, which does not use any significant protocol overhead, tri-
angular grid pattern based scheme can only improve the normalized optimum transmission
range and network throughput by the factors of at most 2 and 3 respectively. However, we still
need to quantify the network throughput capacity of these MAC schemes in multi-hop wireless
networks.



Chapter 7

Throughput Capacity in Wireless
Network

In the previous chapter, we used analytical methods to lay the ground work for the analysis of
the throughput capacity in multi-hop wireless networks. We derived the optimal normalized
transmission range and compared slotted ALOHA with grid pattern based schemes. We also
studied the optimized number of retransmissions required to deliver a packet to its final desti-
nation with these schemes. However, we have not yet evaluated the actual throughput capacity
of various MAC schemes in a realistic wireless network under various channel fading models.
In this chapter, we will quantify the throughput capacity of multi-hop wireless networks with
various MAC schemes under no fading and Rayleigh fading channel models.

7.1 Model and Assumptions

In this chapter, we will consider a wireless network consisting of n nodes which are distributed
in a planar disk of radius r and centered at origin (0, 0). We have used the following models
for uniformly distributing nodes on the planar disk:

– uniform distribution model and

– random grid distribution model.

The uniform distribution model takes n as an argument and uniformly distributes n nodes in the
planar disk.

Note that uniformly distributed nodes may not give the maximum throughput capacity
with grid pattern based schemes especially at low density of nodes because many points of the
virtual grid, formed during the construction of the set of simultaneous transmitters S (see §3.4),
may not overlap any node and hence the number of active transmitters in the network, in any
given slot, maybe lower than the optimal number possible with grid pattern based schemes.
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(a) Uniform distribution. (b) Random grid distribution.

Figure 7.1: Types of node distributions we have used in our Monte Carlo simulations.

As we are interested in finding the optimal throughput capacity, we have devised the ran-

dom grid distribution model. The random grid distribution model takes two arguments, n and d.
Here is how this model uniformly distributes n nodes on the planar disk. Consider a triangular
grid pattern1 of nodes spread in an infinite area also containing the planar disk. Depending
on the parameter d, let us say that at least m number of nodes lie within the planar disk. Here
d is the distance between neighboring nodes in the triangular grid pattern. We may call this
triangular grid pattern, with m nodes in the planar disk, a grid frame. There shall be at least
n/m such grid frames with each frame contributing a maximum of m nodes to the network.
All these grid frames shall be superimposed over each other such that each frame is randomly
rotated about the origin (0, 0) and also randomly displaced along x-axis and y-axis. The ran-
dom rotation is uniformly selected from the interval [0, π

6 ] and the random displacement along
x-axis and y-axis is uniformly selected from the interval [0, d]. Now using the model in §3.4
which describes the construction of the set of simultaneous transmitters S under grid pattern
based scheme and considering that the virtual triangular grid formed from the position of a
randomly selected node also overlaps the grid frame to which this node belongs, the set S
will consist of all nodes in this frame which lie within the planar disk. Figure 7.1 shows the
distribution of 1000 nodes on the planar disk with both types of node distribution models.

Our main parameter of interest is the end-to-end throughput capacity, denoted by ζ(n, β, α),
which is defined as the average maximum rate of successful end-to-end transmissions in a
multi-hop wireless network. We will develop an analytical model which we will use with

1Because, the only grid pattern based scheme with which we will evaluate the throughput capacity in this chap-
ter is the triangular grid pattern based scheme.
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Monte Carlo simulations to compute the achievable throughput capacity.
The throughput capacity depends on the number of nodes n, SIR threshold β, attenuation

coefficient α as well as the following factors:

– the MAC scheme employed by nodes in the network and

– the average slot occupancy rate of node i, Ωi(n).

In §7.2, we will identify the parameters of various MAC schemes to tune their respective
throughput capacity. Note that Ωi(n) also depends on the tuning parameters of the MAC
schemes.

We have not yet spoken about the routing protocol as it may also impact the slot occupancy
rate Ωi(n). As nodes are uniformly distributed in a planar disk and if each node sends data
to a randomly selected destination node, it can be argued that routing hot spots may form at
the center of the disk. We assume that routing will not be impacted by the throughput capacity
because we assume that Ωi(n) are given and do not depend on the actual node throughput. We
also recall from §3.1.5 that nodes always transmit on the medium when allowed by the MAC
layer. For example, with slotted ALOHA scheme, each node transmits with a slot occupancy
rate of pn, irrespective of whether it has packets in its buffer or not. In other words, rout-
ing will have no impact on the slot occupancy rate of nodes and packets travel approximately
along the straight lines from source to destination nodes. Therefore, we can ignore any routing
protocol and it is considered beyond the scope of this thesis. Note that some works, e.g., the ar-
ticles [Georgiadis et al. 2006, Stamatiou et al. 2009] have investigated delay minimizing routing
and optimal throughput back-pressure routing respectively. In this chapter, we will only mea-
sure the average maximum rate of successful end-to-end transmissions in a multi-hop wireless
network with various MAC schemes. Therefore, our results should compliment the protocol
design, e.g., designing protocols based on the results of articles [Georgiadis et al. 2006,Stamatiou
et al. 2009].

The allowed number of retransmissions per packet are also unlimited and we do not take
into account any constraints on the packet delivery delay. Therefore, if the multi-hop wireless
network is connected, end-to-end delivery is guaranteed. Note that a multi-hop wireless net-
work is connected if there are no isolated nodes in the network, or in other words, at least one
path (route) exists between any pair of nodes as discussed in the article [Gupta & Kumar 2000].

If pij is the probability of successful transmission from node i to node j, the average number
of transmissions required to deliver a packet from node i to node j is

tij =
1
pij

.

Note that the value of tij is an approximation as in case of no fading, interference may be cor-
related from one slot to another slot, e.g., in case of a typical node coloring scheme. However,
in our models of MAC schemes, the state information of medium access layer is independent
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from one slot to another slot, i.e., the set of simultaneous transmitters S is constructed indepen-
dently in each slot. In order to further minimize the correlation of interference from one slot to
another, we will also compute the throughput capacity under Rayleigh fading.

Consequently, the average minimum number of transmissions required to deliver a packet
from node i to node j, either directly (single-hop) or over a multi-hop path, is given by

mij = min
k

{

mik + tkj

}

, ∀ (i, j) , (7.1)

such that mii = 0.
In our model, we will consider that all nodes send equal traffic to every other node. Note

that this model may not be realistic as nodes have in general a favorite destination but, if these
destinations are randomly distributed in the network, this model is equivalent since the traffic
will be continuous in the network.

Theorem 7.1.1. The throughput capacity ζ(n, β, α) of multi-hop wireless networks consisting of n

randomly distributed nodes, where each node sends data to a randomly selected node, is bounded by

ζ(n, β, α) ≤
(n − 1)n ∑

i
Ωi(n)

∑
ij

mij
. (7.2)

Proof. During T slots, there are on average T ∑i Ωi(n) packet transmission attempts in the net-
work. By the definition of the throughput capacity, the number of successfully delivered pack-
ets is ζ(n, β, α)T. Since each node sends equal traffic to every other node and there are n(n − 1)
source-destination pairs, the number of packets delivered from a source node i to a destination
node j during T slots is ζ(n,β,α)

n(n−1) T. We know that the average minimum number of transmissions
required to deliver a packet from node i to node j is mij. Therefore

ζ(n, β, α)

∑
ij

mij

n(n − 1)
T ,

is less than or equal to the average number of transmission attempts in the network during T

slots and should be equal to T ∑ Ωi(n). This completes the proof of (7.2).

The challenge here is to compute pij and mij for all pairs of nodes and a satisfactory ana-
lytical formulation, with all MAC schemes discussed in §7.2, is not feasible. Therefore, we will
use Monte Carlo simulation method to compute pij and mij. If node i is isolated, mij for all
j is equal to infinity and ζ(n, β, α) collapses to zero. Therefore, wireless network of n nodes
must be connected and it is a necessary condition for the feasibility of the throughput capacity
as discussed in the article [Gupta & Kumar 2000]. A wireless network consisting of n randomly
distributed nodes is connected w.h.p., that approaches one as n approaches infinity, if Ωi(n)
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scales as c1/ log n and, consequently, throughput capacity ζ(n, β, α) scales as c2
√

n/ log n, for
some c1 > 0 and c2 > 0 depending on the MAC scheme, interference model, physical layer
parameters etc. Equation (7.2) incorporates c1 and c2 and, therefore, their values can also be
determined.

Theorem 7.1.2. The throughput capacity ζ(n, β, α) has a refined bound, given by

ζ(n, β, α) ≤ n(n − 1)min
i

(

Ωi(n)

Θi(n)

)

, (7.3)

where Θi(n) is the traffic load at node i and it is computed as the sum of the average minimum number

of transmissions by node i, for each packet of a route (flow) passing through i.

Proof. During T slots, the number of packets successfully delivered to their destinations are
ζ(n, β, α)T. As every node sends data to every other node, there are n(n − 1) routes in the
network and the traffic load (share) of each route during T slots is ζ(n,β,α)

n(n−1) T.
Therefore, the slot occupancy of node i during T slots for routing purposes is equal to

Θi
ζ(n,β,α)
n(n−1) T and its value should be less than or equal to Ωi(n)T, i.e.,

Θi
ζ(n, β, α)

n(n − 1)
T ≤ Ωi(n)T .

Thus, we arrive at

ζ(n, β, α) ≤ n(n − 1)min
i

(

Ωi(n)

Θi(n)

)

.

The values of Ωi(n) are almost the same for all i except the slightly higher slot occupancy
rate of nodes on the border of the network area because of the border effects, e.g., in case of
CSMA and node coloring schemes. However, asymptotically, the difference is negligible.

Therefore, the nodes with minimum average Ωi(n)/Θi(n) or, in other words, maximum
average Θi(n) lie in the neighborhood of the center of the network area. The bound given
by (7.3) is lower than the bound given by (7.2) because the average of Θi(n) in the center is
approximately equal to

c3

∑
i

Ωi(n)

n
= c3

∑
ij

mij(n)

n
,

where c3 is a constant and it depends on the shape of the network area. Note that, in this
chapter, we will only compute the throughput capacity ζ(n, β, α) given by (7.2) as the refined
bound ζ(n, β, α) in (7.3) is within the factor 1/c3 of ζ(n, β, α) and the constant multiplicative
factor 1/c3 can be derived from the results on traffic density in ad hoc networks, using node
distribution of random waypoint mobility model, as discussed in the article [Hyytiä et al. 2006].
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For example, in case of rectangular network area, we can compute the value of c3 from the
article [Bettstetter et al. 2003] to be c3 = 2 + 1

4 .

7.2 Optimization Parameters of MAC Schemes

In this section, we will identify the parameters of various MAC schemes which can be tuned to
optimize the throughput capacity with these schemes.

7.2.1 Slotted ALOHA Scheme

In case of slotted ALOHA scheme, the throughput capacity ζ(n, β, α) at given values of n, β

and α can be optimized by tuning the medium access probability p. We recall that the set
of simultaneous transmitters S with slotted ALOHA scheme is elected using the evaluation
model described in §3.2 and the value of p has an impact on the density λ of the set S . We
will determine its optimized value p∗(n, β, α) by using the Monte Carlo simulations we will
perform in §7.3, where we will employ the evaluation model of §3.2, and feeding these results
into our analytical model, described in §7.1, to compute the throughput capacity ζ(n, β, α).

7.2.2 MAC Schemes Based on Exclusion Rules

In this section, we will discuss the tuning of the throughput capacity ζ(n, β, α) of exclusion
rules based MAC schemes, i.e., node coloring and CSMA based schemes.

We discussed the evaluation model of node coloring scheme in §3.3.1.1. In that model, the
value of d, i.e., the minimum Euclidean distance in between simultaneous transmitters controls
the selection of the set of simultaneous transmitters S and its density λ. Therefore, d can be
tuned at its optimized value d∗(n, β, α) such that the throughput capacity of node coloring
scheme in wireless network consisting of n nodes is maximized under given values of β and α.
Here also, we would like to mention that the throughput capacity ζ(n, β, α) can be computed
using the results of Monte Carlo simulations in our analytical model developed in §7.1.

Similarly, we can tune the value of the carrier sense threshold parameter θcs of CSMA based
scheme using the Monte Carlo simulations with the evaluation model discussed in §3.3.1.2. In
other words, the value of θcs can be tuned at θ∗cs(n, β, α) to optimize the throughput capacity
ζ(n, β, α) of CSMA based scheme under given values of n, β and α.

7.2.3 Grid Pattern Based Schemes

The model of grid pattern based schemes is discussed in §3.4. In this chapter, we will only
consider the triangular grid pattern based scheme for two reasons. First, it can be visualized
as the most optimal packing of simultaneous transmitters with exclusion rules based MAC



94 Chapter 7. Throughput Capacity in Wireless Network

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09  0.1

Probability of Transmission (p)

n=500
n=1000
n=2000

Figure 7.2: Optimization of the throughput capacity ζ(n, 20.0, 4.0) (packets per slot) with slotted
ALOHA scheme in network with uniform distribution of nodes under no fading. β = 20.0 and
α = 4.0.

schemes like node coloring or CSMA and second, under typical values of β and α, it can achieve
the maximum normalized transmission range as shown in Chapter 6.

As described with other MAC schemes, for given values of n, β and α, the value of the pa-
rameter d of triangular grid pattern based scheme is varied to find the most optimal d∗(n, β, α)

which maximizes the throughput capacity ζ(n, β, α) with this scheme. Note that here we will
use random grid distribution model to distribute n nodes on the planar disk with parameter d of
the triangular grid pattern based scheme as the second argument of the model. We will also
recompute the optimum throughput capacity of slotted ALOHA, node coloring and CSMA
based schemes with random grid distribution of nodes.

7.3 Evaluation and Results

It does not appear feasible to build a satisfactory and tractable analytical formulation to derive
the accurate values of the tuned parameters p∗(n, β, α), d∗(n, β, α) and θ∗cs(n, β, α) that maximize
the throughput capacity ζ(n, β, α) with slotted ALOHA, node coloring, CSMA and triangular
grid pattern based schemes. Therefore, we determine these values using the hybrid of ana-
lytical model and Monte Carlo simulations. With all MAC schemes, the set of simultaneous
transmitters S , in each slot, is constructed using the models described in Chapter 3. In or-
der to compute the probability of successful transmission from each node to every other node,
we consider that nodes employ broadcast transmissions and probability of successful trans-
mission is obtained from the number of received and transmitted packets obtained over 25000
slots. With this information, the throughput capacity ζ(n, β, α) can be computed using (7.1) and
(7.2).
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Figure 7.4: Optimization of the throughput capacity ζ(n, 20.0, 4.0) (packets per slot) with CSMA
based scheme in network with uniform distribution of nodes under no fading. β = 20.0 and
α = 4.0.

7.3.1 Optimization of the Throughput Capacity

In case of slotted ALOHA, we vary the value of probability of transmission p to determine
the optimal p∗(n, β, α) which maximizes the throughput capacity ζ(n, β, α) with given values
of n, SIR threshold β and attenuation coefficient α. Figure 7.2 shows the throughput capacity
ζ(n, 20.0, 4.0) with slotted ALOHA, in network with uniform distribution of nodes, averaged
over 100 samples of node distributions. The value of n is varied whereas β = 20.0 and α = 4.0.
It can be observed that as p increases, the throughput capacity ζ(n, β, α) increases with rate in
O(

√
n) and a maximum occurs at

p = p∗(n, 20.0, 4.0) ≈ c1

log n
≈ 0.25

log n
.
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angular grid pattern based scheme in network with random grid distribution of nodes under no
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In other words, setting the average slot occupancy rate of each node Ωi(n) equal to p∗(n, β, α)

gives the approximate value of the optimal throughput capacity ζ(n, β, α) with slotted ALOHA
under given values of n, β and α. Similarly, Fig. 7.3 and 7.4 show the tuning of node coloring
and CSMA based schemes respectively in network with uniform distribution of nodes under
given values of n, β = 20.0 and α = 4.0. The optimal values of d∗(n, β, α) and θ∗cs(n, β, α) can
be determined to obtain the approximate values of the optimal throughput capacity ζ(n, β, α)

with these schemes respectively. Note that, in these cases, Ωi(n) is the proportion of slots that
each node is expected to be active and transmitting under the given values of d and θcs.

Figure 7.5 shows the optimization of triangular grid pattern based scheme under given val-
ues of n, β = 20.0 and α = 4.0. The parameter d of the triangular grid pattern based scheme is
optimized by varying the argument d of the random grid distribution model to distribute n nodes
on the planar disk (described in §7.1). This allows the construction of the set of simultaneous
transmitters S which are arranged in a triangular grid pattern with parameter d, as shown in
Fig. 3.1, which is varied to find the optimal d∗(n, β, α).

7.3.2 Summary of Results

Figure 7.6 shows the throughput capacity ζ(n, 20.0, 4.0) versus n at optimized values of tuning
parameters p∗(n, 20.0, 4.0), d∗(n, 20.0, 4.0) and θ∗cs(n, 20.0, 4.0), depending on the MAC scheme,
and we can observe that as n increases, the throughput capacity ζ(n, β, α) appears to scale
as c2

√

n/ log n. For example, in case of slotted ALOHA, under no fading channel model and
β = 20.0 and α = 4.0, c2 ≈ 0.0715. Similarly, the approximate values of constants c1 and c2

can also be determined for node coloring, CSMA and triangular grid pattern based schemes.
Figure 7.7 shows the throughput capacity ζ(1000, β, 4.0) for all MAC schemes with α = 4.0 and
β varying and Fig. 7.8 shows the comparison of the throughput capacity ζ(1000, 20.0, α) for all
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(b) No fading with random grid distribution.
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Figure 7.6: Optimal throughput capacity ζ(n, 20.0, 4.0) (packets per slot) of slotted ALOHA,
node coloring, CSMA and triangular grid pattern based schemes. n is varied, β = 20.0 and
α = 4.0.

MAC schemes with β = 20.0 and α varying. Note that we computed the throughput capacity
ζ(n, β, α) of triangular grid pattern based scheme with random grid distribution of nodes only
whereas, we computed the throughput capacity ζ(n, β, α) of slotted ALOHA, node coloring
and CSMA based schemes with uniform distribution as well as random grid distribution of nodes.
From the results, we can see that the optimal throughput capacities of these schemes (slotted
ALOHA, node coloring and CSMA) are almost similar with both models of nodes distributions,
i.e., the difference is within the margin of 2 ∼ 3% of each other.

7.3.2.1 Results under No Fading and Rayleigh Fading

The optimal tuning of all MAC schemes appears to remain insensitive to the fading on the
channel. As the values of n, β and α are varied, the optimized values of the tuning parameters
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Figure 7.7: Optimal throughput capacity ζ(1000, β, 4.0) (packets per slot) of slotted ALOHA,
node coloring, CSMA and triangular grid pattern based schemes. n = 1000, β is varied and
α = 4.0.

p∗(n, β, α), d∗(n, β, α) and θ∗cs(n, β, α) are similar under no fading and Rayleigh fading of mean
one. However, under Rayleigh fading and with low values of n, we observed that the parameters
of node coloring (and grid pattern based schemes) and CSMA, d and θcs respectively, should
be tuned at values such that only one transmitter is active in each slot and therefore achieve
higher throughput capacity ζ(n, β, α) = 1 in this case (see Fig. 7.6(c-d), n < 500). As n becomes
greater than 500, d∗(n, β, α) and θ∗cs(n, β, α) of node coloring (and grid pattern based schemes)
and CSMA appear to be similar under no fading and Rayleigh fading channel models.

Figures 7.7(a-b) and 7.8(a-b) show that under no fading channel model, slotted ALOHA can
achieve at least one-third or more of the throughput capacity of triangular grid pattern based
scheme. However, under Rayleigh fading of mean one, i.e. Fig. 7.7(c-d) and 7.8(c-d), this factor
improves to almost one-half. From Fig. 7.7 and 7.8, we can see that Rayleigh fading of mean one
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Figure 7.8: Optimal throughput capacity ζ(1000, 20.0, α) (packets per slot) of slotted ALOHA,
node coloring, CSMA and triangular grid pattern based schemes. n = 1000, β = 20.0 and α is
varied.

reduces the throughput capacity ζ(1000, β, α) with slotted ALOHA by 10 ∼ 25% when com-
pared with no fading case. In contrast, fading reduces the throughput capacity ζ(1000, β, α) of
node coloring, CSMA and triangular grid pattern based schemes by approximately 35%.

7.3.2.2 Optimality of Grid Pattern Based Schemes

Figures 7.6, 7.7 and 7.8 show that the optimal throughput capacity in multi-hop wireless net-
works can be achieved with triangular grid pattern based scheme and, under no fading channel
model, this optimal throughput capacity is almost three times the throughput capacity of slot-
ted ALOHA. This factor is slightly higher as compared to the result we obtained in §6.5.3 where
we compared the optimized minimum number of transmissions required to deliver a packet,
with various MAC schemes, along the straight line from its source to its destination node. In
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contrast, here we used realistic distribution of nodes on the network area and therefore routes
of packets are only an approximation of straight lines. Also note that, in case of Rayleigh fad-

ing channel model, the optimal throughput capacity is only twice the throughput capacity of
slotted ALOHA.

7.3.2.3 Observations on Node Coloring Schemes

As mentioned earlier, triangular grid pattern based scheme can be visualized as an optimal
node coloring scheme because neighboring simultaneous transmitters are exactly at distance d

from each other. The comparison of the results of both schemes in Fig. 7.6, 7.7 and 7.8 show
that the optimal packing of simultaneous transmitters in triangular grid pattern based scheme
can only increase the throughput capacity in the range of 10 ∼ 20% depending on the value
of β and α. For example, as β increases from 2.5 to 50, the improvement factor increases from
10% to 18%. Similarly, as α increases from 2.5 to 6.0, the improvement factor of triangular grid
pattern based scheme as compared to node coloring scheme drops from 15% to 8%.

7.3.2.4 Observations on CSMA Based Schemes

Figures 7.6, 7.7 and 7.8 show that the throughput capacity of CSMA based scheme is slightly
lower than node coloring scheme. The reason is that CSMA uses exclusion rule base on carrier
sense and this results in lower density (packing) of simultaneous transmitters as compared to
node coloring scheme. We also pointed out this observation during our discussion on the eval-
uation of local capacity in §4.5.4.3 and this can also be observed from the comparison of results
on packing densities with SSI and SSIk point processes in the article [Busson & Chelius 2009].
Moreover, under Rayleigh fading of mean one, this difference is exacerbated but by a very small
margin.

7.4 Conclusions

In this chapter, we evaluated the throughput capacity of multi-hop wireless networks with var-
ious MAC schemes. Because of the lack of any satisfactory analytical model, we used a hybrid
of an analytical model and Monte Carlo simulations to evaluate the throughput capacity of
slotted ALOHA, node coloring, CSMA and triangular grid pattern based schemes. Our results
show that compared to slotted ALOHA, triangular grid pattern based scheme can increase
throughput capacity by a factor of 3 (or less). However, this factor reduces to only 2 (or less)
under more realistic channel model with Rayleigh fading. Moreover, node coloring and CSMA
can achieve almost similar throughput capacity as obtained with the triangular grid pattern
based scheme.
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Mobile Multi-hop Wireless Networks



Chapter 8

Capacity-Delay Tradeoff in Wireless
Networks

So far, we have only analyzed the capacity of fixed wireless network with various MAC
schemes. First, we took into account only single-hop simultaneous transmissions in the net-
work and evaluated local capacity. Later, we extended our analysis to take into account the
multi-hop communication between nodes and evaluated the transmission range and network
throughput capacity with various MAC protocols. In this case, nodes relay packets toward
their respective destinations like hot potatoes (and, therefore, packet delivery delay is negligi-
ble) which is the basis of Gupta & Kumar protocol framework.

We also discussed in Chapter 2 that if nodes are allowed to move in the network, we can
improve the network capacity by designing a scheme that relay packets toward their final des-
tinations by exploiting the mobility of nodes. The main idea is to allow mobile nodes to carry
packets in their buffer while moving, before forwarding them. However, this improved net-
work capacity comes at the expense of increased packet delivery delay. Indeed Grossglauser
& Tse designed a postman routing scheme that achieves a total network capacity of O(n) with
packet delivery delay of O(

√
nL/v) where L is the length of network area and v is the average

speed of nodes. In this chapter, we aim to maximize the capacity of mobile networks while
keeping the mean packet delivery delay bounded with increasing number of nodes. For re-
laying packets towards their destinations, mobile nodes use our proposed georouting strategy
called the Constrained Relative Bearing (CRB) scheme. We will show that, in a random walk
mobility model, this scheme achieves a network throughput capacity of O( n

log n log log n ) packets
per slot with a time to delivery of O(L/v). Note that, in random walk mobility models, nodes
have free space motion and move in straight lines with constant speed. This mobility model is
a subclass of the free space motion mobility model. Therefore, we can also extend our result to
mobility models where average free space distance is non zero.

Our main contribution is summarized in Table 8.1.
Consider an example of an urban area network in a fixed square area of length L with
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Network Capacity Delivery Delay

Gupta & Kumar O

(

√

n
log n

)

negligible

[Gupta & Kumar 2000]

Grossglauser & Tse O(n) O
(√

n
v

)

[Grossglauser & Tse 2002]

Our work O
(

n
log n log log n

)

O
( 1

v

)

Table 8.1: Network Capacity vs. Delivery Delay Trade-off.

number of nodes n = 106, nominal bandwidth of 100 kbps and delay per store-and-forward
operation of one ms. The average packet delivery delay for Gupta & Kumar’s case would be
around one second but with a network capacity of 10 Mbps. In case of Grossglauser & Tse, the
network capacity would increase to about 100 Gbps but if the straight line crossing time L/v

is about one hour, e.g. with cars as mobile nodes, the time to delivery would be around one
month. However, our model of using mobility of nodes along with the proposed CRB scheme,
to relay packets to their destinations, would lead to a network capacity of 10 Gbps with time to
delivery of about one hour.

8.1 Model and Assumptions

We consider a network of n mobile nodes with their initial positions uniformly distributed in
a square area. Each mobile node transmits packets to a randomly chosen fixed node, called
its destination node, which is also randomly located in the network area. We assume that
mobile nodes are aware of their own cartesian coordinates, e.g., by using GPS or from the initial
position, a mobile node could use the knowledge of its motion vector to compute its cartesian
coordinates at any given time.

Initially we consider that only mobile nodes participate in the relay process to deliver packet
to its destination node. The case where the fixed nodes may also participate in the relay process
is discussed in §8.5. A mobile node should be aware of the cartesian coordinates of the desti-
nation node of a packet it carries. Indeed it can be assumed that this information is included in
all packets or is relayed with the packets. Hence our model only requires that a source or relay
node is aware of the cartesian coordinates of the destination node which is assumed fixed. Note
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that if the destination node is mobile, a mechanism to disseminate its updated cartesian coor-
dinates in the network can be used, e.g., mechanisms proposed in articles [Stojmenovic 1999,Li
et al. 2000]. However, this is beyond the scope of this thesis as we particularly focus on the
capacity-delay tradeoff.

With the available information, a mobile relay can determine:

– its heading vector which is the motion vector when its speed is non zero,

– its bearing vector which is the vector between its position and the position of a packet’s
destination; and,

– the relative bearing angle, i.e., the absolute angle between its heading and bearing vectors.

In the example of Fig. 8.1, node A is carrying a packet for node D. This figure also shows the
heading vector of mobile node A and its bearing vector and relative bearing angle for desti-
nation node D. Note that a mobile relay may carry packets for multiple destinations but can
easily determine the bearing vector and relative bearing angle for each destination node.

8.2 The Constrained Relative Bearing Georouting Scheme

In this section, we will present the parameters and specifications of the model of our georouting
scheme. We will specify our scheme in the following two cases:

– the simplified case where the radio range is known at the node level and

– the realistic case where the radio range is unknown.

8.2.1 Parameters

We define the parameters θc, called the carry angle, and θe, called the emission angle. Each
mobile node carries a packet to its destination node as long as its relative bearing angle θ is
smaller than θc which is strictly smaller than π/2. When this condition is not satisfied, the
packet is transmitted to the next relay.

8.2.2 High-Level Specification With Radio Range Awareness

In the following description, we initially assume that each node is aware of the effective range
of transmission rn. This means that there is a periodic beaconing that allows this estimate to
be made. In §8.2.3, we will investigate how to specify our model without an estimate of the
effective range rn.

Assume that node A is carrying a packet for node D. The velocity of node A is denoted by
v(A).
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Figure 8.1: Figurative representation of our model. Unfilled circles represent the potential
mobile relays for packet transmitted by node A for node D.

– If node A is within range of node D, it transmits the packet to D; otherwise,

– if the relative bearing angle is smaller than θc, node A continues to carry the packet;
otherwise,

– node A transmits the packet to a random neighbor mobile node inside the cone of angle
θe, with bearing vector as the axis, and then forgets the packet.

In order to better understand the model of our georouting scheme, consider the example
in Fig. 8.1. Assume that node A is out of range of node D and, because of that, it cannot
deliver the packet directly. Now, if θ < θc, node A will continue to carry the packet for node D.
Otherwise, it transmits the packet to one of the random mobile relays, represented by unfilled
circles in the figure, within its effective range of transmission rn.

8.2.2.1 Transmission Procedure

To transmit the packet towards another mobile node, node A shall proceed as follows:

– it first transmits a Call-to-Receive packet containing the positions of nodes A and D;

– a random mobile node B which receives this Call-to-Receive packet can compute the an-
gle (AB, AD). If this angle is smaller than θe, it replies with an Accept-to-Receive packet
containing an identifier of node B;

– node A sends the packet to the first mobile node which replied with an Accept-to-Receive

packet.



106 Chapter 8. Capacity-Delay Tradeoff in Wireless Networks

The first node which sends its Accept-to-Receive packet notifies the other receivers of the Call-

to-Receive packet, to cancel their transmissions of Accept-to-Receive packets. There may be more
than one (but finite) transmissions of Accept-to-Receive packets in case two or more receivers are
at a distance greater than rn from each other.

Note that this transmission procedure does not need any beaconing or periodic transmis-
sion of hello packets. The back-off time of nodes, transmitting their Accept-to-Receive packet,
can also be tuned in order to favor the distance or displacement towards D, depending on any
additional optional specifications.

8.2.3 High-Level Specification Without Radio Range Awareness

The estimation of rn would require that nodes employ a periodic beaconing mechanism. If
such a mechanism is not available or desirable, the CRB scheme relies on SINR for transmitting
packets to their destinations or random mobile relays. In other words, a mobile node can relay
a packet to its destination node or another mobile node only if the SINR at the receiver is above
a given threshold.

8.2.3.1 Transmission Procedure

In this case, the specification of the transmission procedure is also modified so that it terminates
when the final destination receives the packet. To transmit the packet towards its destination
node or another mobile node, node A shall proceed as follows:

– it first transmits a Call-to-Receive packet containing the positions of nodes A and D;

– if node D receives this packet, it responds immediately with an Accept-to-Receive packet
with highest priority. Node A, on receiving this packet, relays the packet to node D;
otherwise,

– the procedure of selecting a random mobile node, as the next relay, is similar to the pro-
cedure described in §8.2.2.1. A random mobile node B, which receives the Call-to-Receive

packet, computes the angle (AB, AD). If this angle is smaller than θe, it responds with an
Accept-to-Receive packet;

– node A relays the packet to the first mobile node which sent its Accept-to-Receive packet
successfully. The first node which transmits its Accept-to-Receive packet also makes the
other receivers to cancel their transmissions of Accept-to-Receive packets.

8.3 Performance Analysis

We assume that the network area is a square area and w.l.o.g. we assume that it is a square unit
area. The mobile nodes move according to i.i.d. random walk: from a uniformly distributed
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initial position, nodes move in a straight line with a certain speed and randomly change direc-
tion. The speed is randomly distributed in an interval [vmin, vmax] with vmin > 0. To simplify
the analysis, we assume that vmin = vmax = v. We also assume that each node changes its direc-
tion with a Poisson point process of rate τ. When a mobile node hits the border of the network,
it simply bounces like a billiard ball. This leads to the isotropic property, discussed in the arti-
cle [Jacquet et al. 2010], i.e., at any given time the mobile nodes are uniformly distributed in the
square and move in uniformly selected direction independently of their position.

In our georouting scheme, the average number of transmissions per slot is supposed to be
the same for all mobile nodes and equal to

pn =
1

log log n
.

Therefore, the radius of efficient transmission rn can be derived from the value of pn using (2.1)
and is given by

rn =

√

κ
log log n

πn
,

for some κ > 0 when n approaches infinity. The average number of neighbors of an arbitrary
node at an arbitrary time is κ log log n. Note that the value of pn is such that the average cumu-
lated load is finite and the actual density of simultaneous transmitters is n

κ log log n .
In the following analysis, we will show that the number of transmissions per packet is of

O(log n) and this would lead to a useful network capacity of O( n
log n log log n ). Note that, our

scheme could lead to packet loss because of transmission failure, e.g., because of no relay in the
emission cone but we will show that the probability of this packet loss is inverse power of log n

and it tends to zero as n approaches infinity.

8.3.1 Methodology

Our parameters of interest are the following:

– the delay Dn(r) of delivering a packet to the destination when the packet is generated in
a mobile node at distance r from its destination node and

– the average number of times Fn(r) the packet changes relay before reaching its destination
when it has been generated in a mobile node at distance r from its destination node.

In order to exhibit the actual performance of our proposed CRB scheme, we aim to derive an
upper-bound on the parameters Dn(r) and Fn(r). In the next two sub-sections, we assume
w.l.o.g. that there is always a relay node, to receive the packet, in the emission cone (as the node
density and angle θe are sufficiently large) when a relay change must occur.



108 Chapter 8. Capacity-Delay Tradeoff in Wireless Networks

8.3.2 Delivery Delay

We ignore the queueing delays which can become apparent when several packets could be in
competition in the same relay to be transmitted at the same time.

Theorem 8.3.1.

Dn(r) ≤
r

v cos(θc)
+

Fn(r)

v

(

t f v − rn

cos(θc)

)

, (8.1)

where t f is the packet processing time (including receive and transmit) in a node.

Proof. We can write Dn(r) as

Dn(r) ≤ Fn(r)t f +
r − Fn(r)rn

v cos(θc)
,

where Fn(r)t f is the average total delay of store and forward operations and r−Fn(r)rn

v cos(θc)
is an

upper bound of the delay when mobile relays carry a packet at constant speed v with a relative
bearing angle always smaller than θc. Rearranging this equation leads to (8.1).

Remark 8.3.1. If rn is greater than t f v, second factor in (8.1) becomes negative which gives the upper

bound of

Dn(r) ≤
r

v cos(θc)
.

However, if rn is less than t f v, Dn(r) will also include an O(log n) factor because of Fn(r).

8.3.3 Number of Relay Changes

There are two events that trigger relay changes.

1. Relay change due to turn, i.e., the mobile node, carrying the packet, changes its heading
vector such that the relative bearing angle becomes greater than θc.

2. Relay change due to pass over, i.e., the mobile node keeps its trajectory and the relative
bearing angle becomes greater than θc.

Consider a packet generated at distance r from its destination. Let Ft
n(r) be the average

number of relay changes due to turn. Equivalently, let F
p
n (r) be the average number of relay

changes due to pass over. Therefore, we have

Fn(r) = Ft
n(r) + F

p
n (r) ,

and we expect that the main contribution of O(log n) in Fn(r) will come from F
p
n (r).
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Destination node ‘D’

at position 1

Mobile node ‘A’

Mobile node ‘A’

at position 2

θ < θc

θ′ > θc

r

Figure 8.2: Figurative description of relay change due to turn. At position 1, θ < θc and node
A carries the packet for node D. At position 2, node A changes its heading vector and must
transmit the packet.

8.3.3.1 Number of Relay Changes Due to Turn

We prove the following theorem:

Theorem 8.3.2. We have the bound

Ft
n(r) ≤

π − θc

θc

τ

v cos(θc)
r .

Proof. We consider the case in Fig. 8.2 and assume that a mobile node is carrying a packet to
its destination located at distance r. The node changes its direction with Poisson rate τ. When
the node changes its direction, it may keep a direction that stays within angle θc of the bearing
vector and this will not trigger a relay change. This occurs with probability θc

π . Otherwise, the
packet must change relay. But the new relay may have relative bearing angle greater than θc

which would result in an immediate new relay change. The probability that the relative bearing
angle of a relay is equal or less than θc is p = θc

π . If k is the number of times a packet is relayed
because the relative bearing angles of intermediate relays are greater than θc, we have

Pr(Y = k) = (1 − p)k p ,

for k = 0, 1, 2, . . ..

At each direction change, the average number of relay changes can be computed as

E[Y] =
∞

∑
k=0

(1 − p)k p.k =
1 − p

p
.



110 Chapter 8. Capacity-Delay Tradeoff in Wireless Networks

Destination node ‘D’

Mobile node ‘A’

Mobile node ‘A’

at position 1

at position 2

θ < θc

θ′ = θc

r
ρ(θ, r)

Figure 8.3: Figurative description of relay change due to pass over. At position 1, θ < θc and
node A carries the packet for node D. At position 2, node A has the same heading vector but
θ′ = θc and it must transmit the packet.

Therefore, at each direction change, there is an average number of π−θc
θc

relay changes. For a
packet generated at distance r from its destination, the product of Dn(r) and τ gives us the
average maximum number of turns (which trigger possible change of relay) by the relays car-
rying it and multiplying this product with the average number of relays at each turn gives the
upper-bound of Ft

n(r).

Note that we have not considered the turn due to bounces on the borders of square map. But
it is easy to see via straightforward geometric considerations that they cannot actually generate
a relay change.

8.3.3.2 Number of Relay Changes Due to Pass Over

We prove the following theorem:

Theorem 8.3.3. We have the bound

F
p
n (r) ≤

π tan(θc)

θ2
c

log
(

r

rn

)

.

Proof. Here we consider the case of Fig. 8.3. We assume that a mobile node at distance r from its
destination has a relative bearing angle equal to θ. If it keeps its trajectory (i.e., does not turn),
it will need to transmit to a new relay when it passes over the destination, i.e., when it arrives
at a distance of ρ(θ, r) = sin(θ)

sin(θc)
r from the destination. The function of θ ρ(θ, r) is bijective from

[0, θc] to [0, r]. For x ∈ [0, r], let ρ−1(x, r) be its inverse.

Assume that r is the distance to the destination when the relay receives the packet or just
after a turn. Thus the angle θ is uniformly distributed on [0, θc], i.e., with a constant probability
density 1

θc
. The probability density of the pass over event at x < r (assuming no direction
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change) is therefore

1
θc

∂

∂x
ρ−1(x, r) =

sin(θc)

θc cos(ρ−1(x, r))r
=

tan(ρ−1(x, r))

θc

1
x

.

Since ρ−1(x, r) ≤ θc, the point process where the packet would need a relay change due to
pass over is upper bounded by a Poisson point process on the interval [rn, r] and of intensity
equal to tan(θc)

θc

1
x for x ∈ [rn, r].

Here also, the probability that the relative bearing angle of a new relay is equal or less than
θc is p = θc

π and if k is the number of times a packet is relayed, we have

Pr(Y = k) = (1 − p)k−1 p ,

for k = 1, 2, . . .. Note that k ≥ 1, as a packet must always be relayed at least once due to pass
over. Therefore, at each pass over, the average number of relay changes is equal to

E[Y] =
∞

∑
k=1

(1 − p)k−1 p.k =
1
p

,

or, in other words, equal to π
θc

which is higher than the average number of relays in case of
relay change due to turn. The reason of this higher number is the fact that, in case of relay
change due to turn, a mobile relay may still move in a direction that stays within the angle θc

and continue to carry the packet.
Neglecting the decrement of distance during each transmission phase, we can write

F
p
n (r) =

∫ r

rn

π tan(θc)

θ2
c

dx

x
=

π tan(θc)

θ2
c

log
(

r

rn

)

.

We have thus

Fn(r) ≤
π − θc

θc

τ

cos(θc)v
r +

π tan(θc)

θ2
c

log
(

r

rn

)

.

Therefore, we have a main contribution of O(log n) relay changes that comes from
log(1/rn). The result holds because we assume that there is always a receiver in each relay
change. In the next sub-section we remove will this condition to establish a result with high
probability.

8.3.4 Number of Relay Changes With High Probability of Success

In the previous subsection we assumed that there is always a receiving relay in the emission
cone at each relay change and we said that the relay change is always successful. The case
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with failed relay change would introduce additional complications. For example one could use
the fixed relays if the packet cannot be delivered to a mobile relay. Anyhow, to simplify the
present contribution, we will show that w.h.p., i.e. with probability approaching one when n

approaches infinity, every relay change succeeds.

Theorem 8.3.4. W.h.p. on arbitrary packets, all relay changes succeed for this packet and are in average

number Fn(r) and the delay is Dn(r).

Proof. We use a modified stochastic system to cope with failed relay changes. The modification
is the following: when there is no relay in the emission cone during a relay change a decoy

mobile relay is created in the emission cone that will receive the packet. Each decoy relay is
used only for one packet and disappear after use. Notice that the modified system is not a
practical scheme in a practical network.

With this modified system, the analysis in the previous section still holds and in particular
Fn(r) is now the average unconditional number of relay changes (including those via decoy
relays) for any packet starting at distance r from destination.

Let Pn(r) be the probability that a packet starting at distance r has a failed relay change. The
probability that a relay change fails is equal to

(1 − θer
2
n)

n−1 ∼ e−nθ2
e r2

n = (log n)−β θe
π .

Therefore the average number of failed relay changes is

En(r) ≤ Fn(r)(log n)−β θe
π ,

which tends to zero when β θe
π > 1, since Fn(r) is of O(log n). The final result comes since

Pn(r) ≤ En(r).

8.4 Evaluation and Results

We performed simulations with the CRB georouting scheme under two contexts:

1. a simplified context where communication between nodes in the network is modeled
using UDG model such that transmissions are collision free when the transmitters and
the receivers are within radio range of each other and

2. a realistic context where the network employs slotted ALOHA scheme and a realistic SIR
based communication model is considered.

Note that the simulations of the CRB scheme are stressed to the point that the motion timings
are not so large compared to the duration of the slots.
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8.4.1 Under UDG Model

In this section, we consider a network of n mobile nodes. We assume that all nodes have the
same radio range given by

rn =

√

κ log log n

πn
.

Each mobile node moves according to an i.i.d. random walk mobility model, i.e., it starts from a
uniformly distributed initial position, moves in straight line with constant speed and uniformly
selected direction and reflects on the borders of the square area (like billiard balls).

In §8.4.2, we will further explore the effect of interference on the simulations, but for the
moment we only consider a source mobile node and its randomly located destination node
which is fixed. We adopt the UDG model of interference, i.e., two nodes are connected or
they can exchange information if the distance between them is smaller than a certain threshold
called radio range, otherwise, they are disconnected. A mobile node relays the packet only if
the relative bearing angle, i.e., the absolute angle made by the heading vector and the bearing
vector, becomes greater than θc. Otherwise, it continues to carry the packet.

8.4.1.1 Parameters and Assumptions

The purpose of our simulations is to verify the scaling behavior of average delay and number
of hops per packet with increasing number of nodes in the network. Therefore, the number
of mobile nodes n in the network is varied from 10000 to two million nodes. The values of
other parameters, which remain constant, and do not impact the scaling behavior are listed as
follows:

1. the parameters of the CRB scheme, θc and θe, are taken to be π/6,

2. the speed of all mobile nodes is constant, i.e., 0.005 unit distance per slot,

3. all mobile nodes change their direction according to a Poisson point process with mean
equal to 10 slots and

4. the value of the constant factor κ is assumed to be equal to 40.

8.4.1.2 Summary of Results

We have evaluated the following parameters:

1. average delay per packet and

2. average number of hops per packet.
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Figure 8.4: Average delay per packet.
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Figure 8.5: Average number of hops per packet.

We considered the Monte Carlo Method with 100 simulations. The delay of a packet is
computed from the time when its processing started at its source mobile node until it reaches
its destination node. Figure 8.4 shows the average delay per packet with an increasing number
of nodes. We notice that as n increases, the average delay per packet appears to approach a
constant upper bound which can be computed from (8.1). Figure 8.5 shows the average number
of hops per packet with increasing values of n.

8.4.2 Under SIR Model

In this section, we will present the simulations of the CRB georouting scheme with a transmis-
sion model which does not rely on the estimate of rn and is based on the required minimal SIR
threshold. For our simulations, we will use the no fading channel model which is described in
§3.1.4.

We assume that the nodes use slotted ALOHA scheme with medium access probability
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equal to

pn =
1

κ log log n
.

With this value of pn, the effective range of successful transmission can be derived by using
(2.1) as

rn =

√

κ
log log n

πn
,

for some κ > 0 which depends on the protocol and physical layer parameters. We assume
that mobile nodes determine their relative bearing angles at the beginning of a slot and si-
multaneous transmitters in each slot emit a Call-to-Receive packet at the beginning of the slot.
Moreover, we also assume that fixed nodes do not emit any packet except, maybe, an Accept-to-

Receive packet in response to a transmission by a mobile node. In our simulation environment,
n mobile nodes start from a uniformly distributed initial position and move independently in
straight lines and in randomly selected directions. They also change their direction randomly
at a rate which is a Poisson point process. Each mobile node sends packets towards a unique
destination (fixed) node, and all destinations nodes are also uniformly distributed in the net-
work area. In order to keep load in the network finite, the packet generation rate at a node
ρ(n,β,α)

n should be equal to pn/Xn where Xn is the average number of transmissions per packet.
From our theoretical analysis, we know that

Xn ≤ κ log (n) + c ,

where c is a constant if θc is non-varying. Note that we have included β and α as parameters
of ρ(n, β, α) because, in our simulations, we have considered that it depends on the average
number of hops required to reach the destination which in turn also depends on rn and con-
sequently on β and α. However, we will keep β and α constant as we are only interested in
the scaling order of the throughput capacity when n increases. In our simulations under SIR
interference model, we assume that the knowledge of rn is not available and mobile nodes use
the SIR threshold for successfully receiving a packet. We also assume that each mobile node
generate packets, destined for its unique fixed destination node, at a uniform rate ρ(n,β,α)

n given
by

ρ(n, β, α)

n
≥ 1

κ log(n) log log n
. (8.2)

Note that we ignored the value of constant c and have observed that the simulation results are
asymptotically correct because when n increases, the value of c should become insignificant as
compared to the factor κ log(n).
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8.4.2.1 Parameters and Assumptions

The purpose of our simulations is to verify the scaling properties of network capacity, delay
and number of transmissions per packet with increasing number of nodes in the network. The
number of mobile nodes n in the network is varied from 250 nodes to 100,000 nodes. The values
of simulation parameters are listed as follows:

1. the parameters of the CRB scheme θc and θe are taken to be π/6,

2. the speed of all mobile nodes is constant, i.e., 0.01 unit distance per slot,

3. all mobile nodes change their direction independently and randomly according to a
Poisson point process with mean equal to 10 slots,

4. the value of the constant factor κ is assumed equal to 500,

5. the SIR threshold β is assumed equal to 1 and

6. the attenuation coefficient α is assumed equal to 2.5.

In our simulations, we make the following assumptions.

1. Each mobile node generates an infinite number of packets, at rate ρ(n,β,α)
n , for its respective

destination node.

2. A mobile node may carry, in its buffer, its own packets as well as the packets relayed from
other mobile nodes. Therefore, it may have more than one packet in its buffer which it
must transmit because their respective relative bearing angles become greater than θc. In
such a case, it first transmits the packet which is furthest from its destination.

8.4.2.2 Summary of Results

We have examined the following parameters:

1. the throughput capacity per node ζ(n,β,α)
n ,

2. average number of hops h(n) and transmission attempts t(n) per packet and

3. average delay per packet.

The throughput capacity per node ζ(n,β,α)
n is the average number of packets arriving at their

destinations per slot per mobile node. With n increasing, throughput capacity per node should
follow the following relation

ζ(n, β, α)

n
=

η

κlog(n) log log n
, (8.3)
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Figure 8.6: Verification of network throughput capacity with plots of mζ and mρ.

for some 0 < η < 1 which depends on the protocol, physical layer and simulation parameters.
Note that the values of these constants do not affect the scaling behavior of ζ(n, β, α) w.r.t. n

which is also observed in our simulation results.

In order to verify the scaling behavior of simulated packet generation rate and throughput
capacity, we have analyzed the parameters mρ and mζ which are given by

mρ =
ρ(n, β, α)

n
(κ log(n) log log(n)) ,

mζ =
ζ(n, β, α)

n
(κ log(n) log log(n)) .

From the definition of ρ(n, β, α) in (8.2), the value of mρ should be constant at one whereas,
when n increases, value of mζ should converge to a constant η. Note that we ran our simula-
tions for a finite time and a proportion of packets may not have arrived at their destinations,
i.e., packets may have been flying when the simulation ended. The reason is that there is a
delay between the time when packets are generated and when they are delivered to their des-
tinations and the average of this delay appears to be a constant. As we ran simulations for a
fixed time which is an order to this delay, the throughput capacity also appears to approach the
packet generation rate but within the factor η which approaches a constant value. From Fig.
8.6, value of η is found to be approximately equal to 0.45. Figure 8.7 shows the simulated and
theoretical packet generation rate ρ(n, β, α) and throughput capacity ζ(n, β, α) in the network.
The theoretical values of ρ(n, β, α) and ζ(n, β, α) are computed from (8.2) and (8.3).

Figure 8.8 shows the average number of hops h(n) and transmission attempts t(n) per
packet. The value of t(n) is slightly higher than the value of h(n) because of the possibility
that a successful receiver may not be found in each transmission phase, i.e., in the emission
cone formed with θe. With n increasing, h(n) and t(n) are expected to grow in O(log(n)). To
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Figure 8.7: Simulated (solid lines) and theoretical (dotted lines) network throughput capacity
ζ(n, β, α) and network packet generation rate ρ(n, β, α).
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Figure 8.8: Average number of hops h(n) and transmission attempts t(n) per packet.
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Figure 8.10: Average delay per packet.

verify this character in simulation results, we examine the parameters mh and mt given by

mh = h(n)
1

log(n)
,

mt = t(n)
1

log(n)
.

If the values of h(n) and t(n) are in O(log(n)), the values of mh and mt should approach a
constant value which is the case in Fig. 8.9.

The delay of a packet is computed from the time when its processing started at its source
mobile node until the time it arrives at its destination node. Figure 8.10 shows the average delay
per packet. As the number of mobile nodes increase, the average delay appears to approach a
constant value.

It can be observed that when n is small, the average number of hops per packet is almost of
O(1) which also means that the average delay per packet is of O(1) and the network through-
put capacity is of O(ηn): although, in simulation results, it is bounded by the network packet
generation rate which is of O( n

log n log log n ). This can be observed in Fig. 8.7, 8.8 and 8.10. The
reason is that when n is small, the number of simultaneous transmissions in the network is also
small and packets can be delivered by the mobile nodes, directly to their destination nodes, in
O(1) hops. As n increases, number of simultaneous transmitters increase and consequently the
effective transmission range of each transmitter shrinks. Therefore, the dominant factor in the
number of transmissions per packet comes from the fact that a mobile relay has to be close to
the destination, to deliver a packet which has to be relayed O(log n) times. According to the-
oretical analysis, hn and tn grow in O(log n) which is also observed in the simulation results.
Simulations also show that, asymptotically, network throughput capacity is of O( n

log n log log n )

and average delay per packet is of O(1/v) which complies with our theoretical analysis.
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Figure 8.11: Illustration of self-similar trajectories in urban areas.

8.5 Extensions and General Mobility Models

In our discussion, we primarily focussed on the capacity-delay tradeoff and thus for the initial
sake of clarity assumed that the fixed nodes can only receive packets destined for them. We
could also consider a slight variation in the specification of the model of the CRB scheme such
that the fixed nodes also participate in the routing of packets to their destination nodes. For
example, during a transmission phase, if a packet cannot be transmitted to its destination node
or relayed to a random mobile neighbor in the cone of transmission, it can be relayed to a fixed
node. This fixed node must emit this packet immediately to its destination node or to any
mobile relay in the neighborhood. Note that this will also help increase the connectivity of the
network.

The condition about i.i.d. random walks can be relaxed and the result about the expected
number of relay changes will still be valid. In other words, the i.i.d. random walk model can be
seen as a worst case compared to realistic mobility models. If the mobile relays move like cars
in an urban area, then we can expect that their mobility model will significantly depart from
the random walk. Indeed cars move toward physical destinations and in their journey on the
streets toward their destination, their heading after each turn is positively correlated with the
heading before the turn. This implies that the probability that a relay change is needed after
a turn is smaller than it would be under a random walk model where headings before and
after turn are not correlated. Furthermore on a street, the headings are positively correlated
(consider Manhattan one-way streets) and in this case a relay change due to a pass over will
have more chances to arrive on a relay with good heading (one half instead of θc/π). Again
this would lead to less relay changes due to pass over.

The result still holds if we assume that the turn rate τ depends on n and is equal to
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τ = τn = O(log n). In this case, the mobility model would fit even better for the realistic mo-
bility of an urban area. Indeed the trajectories of cars should be fractal or self-similar, showing
more frequent turns when cars are close to their physical destination (different than packet
destination) or when leaving their parking lot. In this case, the overall turn rate tends to be
in O(log n) with a coefficient depending on the Hurst parameter of the trajectory. This would
lead to the same estimate of O(log n) relay change per packet.

Figure 8.11 illustrates a self-similar trajectory in an urban area. It shows a two-dimensional
trajectory (upper half) and its traveled distance (lower half). The successive turns are indicated
by T1, . . . , T7. The trajectory after any turn Ti looks like a reduced copy of the original trajectory.
The CRB scheme may need some adaptation to cope with some unusual street configurations,
e.g., to replace the cartesian distance with the Manhattan distance in the street map.

8.6 Conclusions

We study the scaling properties of a georouting scheme in a wireless network of n mobile nodes.
Our aim is to increase the network capacity quasi-linearly with n while keeping the average
delay bounded. In our model, mobile nodes move according to an i.i.d. random walk with
velocity v and transmit packets to randomly chosen destinations. The average packet delivery
delay of our scheme is of O(1/v) and it achieves the network capacity of O( n

log n log log n ). This
shows a practical throughput-delay trade-off, in particular when compared with the seminal
result of Gupta & Kumar which shows network capacity of O(

√

n/ log n) and negligible delay
and the groundbreaking result of Grossglauser & Tse which achieves network capacity of O(n)

but with an average delay of O(
√

n/v). The foundation of our improved capacity and delay
trade-off relies on the fact that we use a mobility model that contains free space motion, a model
that we consider more realistic than classic brownian motions. We confirm the generality of our
analytical results using simulations under various interference models.

We have examined asymptotic capacity and delay in mobile networks with a georouting
scheme, called the CRB, for communication between source and destination nodes. Our results
show that the CRB allows to achieve the network capacity of O( n

log n log log n ) with packet deliv-
ery delay of O(1) and transmissions per packet of O(log n). It is noticeable that this scheme
does not need any sophisticated overhead for implementation. However, in this case, the mo-
bile nodes must be aware of their position via a GPS system. We have shown the asymptotic
performance via analytical analysis under a UDG model with random i.i.d. walks. The ana-
lytical results have been confirmed by simulations and in particular under ALOHA with SIR
interference model. We have seen that the performance of the CRB can be maintained even
with non i.i.d. random walks, the latter being a worst case scenario. However, this latter result
would require that the mobile nodes stay within same heading for O(1/ log n) time. A next
step would be to analyze the performance of this scheme on real traffic traces in urban areas.
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Conclusions

This thesis has addressed the evaluation of various types of wireless networks via geometri-
cal analyses. The main focus of our work is to study the impact of optimized medium access
control on the performance of these networks. First, we laid the groundwork by discussing
the models (network, propagation, transmission, node models, etc.) in Chapter 3. We also dis-
cussed the models of various MAC schemes that we used throughout our work. These models
allowed us to capture the spatial distributions of simultaneous transmitters in the network with
these schemes. In this chapter, we will summarize our results and contributions and later we
will also discuss some of the future directions for research.

9.1 Summary of Contributions

In the first part of this thesis, we introduced the common framework of local capacity which
is defined as the information rate received by a receiver which is randomly located in the
network. Our results showed the limits of improvement in local capacity by a highly man-
aged MAC scheme like grid pattern based schemes, which may require complicated protocol
overhead, over a low managed MAC scheme like ALOHA which requires minimal protocol
overhead. We first showed that the most optimal scheme in single-hop networks is based on
triangular grid pattern and it can at most double the local capacity of slotted ALOHA. We also
showed that node coloring and CSMA can achieve almost the same local capacity as triangular
grid pattern based scheme. Under Rayleigh fading channel model, we established bounds on
the local capacity with grid pattern based schemes and our results showed that though fad-
ing degrades the performance of these schemes, triangular grid pattern has the highest upper
bounds under fading as well.

We also studied the problem of locating additional base stations to optimize the capacity
and coverage of an existing cellular network. We showed that this is an NP-Hard problem.
For our analysis, we considered a realistic model of cellular network and took into account the
SIR and attenuation coefficient. We evaluated heuristics to locate a given number of additional
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base stations, to optimize the Shannon capacity and coverage, in a given area of the cellular
network defined by the service provider.

In the second part, we shifted our focus to multi-hop wireless networks. Evaluating
throughput capacity of multi-hop networks is an extremely challenging task because of the
inter-related factors like transmission range, spatial distribution of simultaneous transmitters
and the impact of routing. Therefore, we divided our analysis into two chapters. In Chapter
6, we studied the normalized transmission range of slotted ALOHA and grid pattern based
schemes. We showed that under typical values of β and α, the most optimal scheme for op-
timizing maximum transmission range is also based on triangular grid pattern. However, we
also showed an unexpected result under asymptotic conditions, i.e., when β is very low and ap-
proaches zero or when α is very high and approaches infinity, the most optimal MAC scheme is
based on linear pattern. In Chapter 7, we extended our analysis and evaluated throughput ca-
pacity. In our analysis, we considered that routing has no impact on the slot occupancy rate of
nodes and our results confirmed that performance improvements above ALOHA are limited.

The last part of this thesis dealt with mobile wireless networks. In this case, we presented
a georouting scheme, called the Constrained Relative Bearing (CRB) scheme, and studies its
scaling properties when the number of nodes in the network increases. We showed that it
is possible to achieve a bounded packet delivery delay while still having a network capacity
which increases almost linearly when the number of nodes in the network increases. For our
analysis of the CRB scheme, we used a realistic mobility model with free space portions and
also showed that the performance holds on fractal trajectories. In future, we can also extend
this analysis to the case where destinations are also mobile and to network maps with holes,
e.g., lake, parks, etc.

9.2 Perspectives and Future Directions

An important question in the design and implementation of protocols is to understand the
tradeoff between performance and protocol overhead costs. The schemes we evaluated in this
thesis represent particular points on this tradeoff curve and provide useful insights for net-
work and protocol designers. In case of multi-hop networks, we have ignored the impact of
routing as the focus of this work is on the medium access control and its impact on the geom-
etry of simultaneous transmitters. However, these results can also provide useful insights for
designing scheduling mechanisms such as back pressure routing or delay minimizing routing
techniques, etc. as they may also impact the spatial distribution of simultaneous transmitters
in the network.

Many of the MAC schemes presented in this thesis are based on high-level description
and do not take into account the packet management or issues related to synchronization and
distributed implementation of these protocols. Therefore, it would be interesting to devise
realistic specifications where actual distribution of nodes in the network and shadowing effects
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also have to be taken into consideration for the placement of simultaneous transmitters. For
instance, under shadowing effects, the most optimal placement of simultaneous transmitters
may not be a regular pattern. An idea to cope with the impact of actual node distribution and
shadowing effects on the optimal placement of transmitters in the network is to introduce a
fast training period which would enable the nodes to perform channel measurements. The
information gained during this fast training period can serve two purposes:

– nodes can use a distributed algorithm to derive a scheduling scheme that approaches the
optimal placement under the restrictions imposed by given network settings and channel
conditions and

– utilize the information, gained in the fast training period, during the routing process.

This thesis discussed the limits on the performance of an optimized MAC scheme and,
therefore, promotes the idea of cross-layer optimization between MAC and routing layers and
perhaps application layer as well, e.g., in case of content centric networks. Our results show that
focus of designing new schemes and protocols for wireless networks requires renewed focus
on the optimization of existing schemes and design of new routing protocols. For example,
design of an intelligent routing protocol that can control the transmission range depending on
the network settings or a routing protocol that uses the knowledge of the fast training period,
discussed above, that is available at the MAC layer to route packets on optimal paths.

In case of cellular networks, we discussed heuristics to locate additional base stations in an
existing network while considering the criteria of optimizing the capacity and coverage only.
In our work, we presented heuristics which essentially locate additional base stations sequen-
tially. For example, if the service provider decides to add multiple base stations in the network,
these heuristics will add these base stations sequentially where the addition of one base station
does not take into account the potential performance improvement by the addition of another
base station. The performance of our heuristics can be further improved if we cooperatively
locate additional base stations in the network. An important extension in this line of work
would be to take into account the costs incurred for locating additional base stations in a cel-
lular network. For simplifying our analysis, we also assumed that the users (customers) are
uniformly distributed in the network area. Therefore, it would be interesting to devise a trade-
off mechanism which takes into account competing factors like installation and maintenance
costs, customer demands and improvements in performance, etc. for locating additional base
stations.
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Appendix

A.1 Locating the Starting Point z on the Closed Curve Bounding the
Reception Area

The SIR Si(z) at point z should be greater or at least equal to β. We assume that it is equal to β.
Therefore, we have the following identity under no fading channel model

‖z − zi‖−α

∑
j 6=i,zj∈S

‖z − zj‖−α
= β .

Our aim is to find the coordinates of point z which satisfy the above relation. To simplify
computation of point z on the closed curve, bounding reception area of transmitter i located at
zi, its y coordinate can be fixed such that z = (x, y) = (x, yi). This reduces the above equation
to

‖x − xi‖−α

∑
j 6=i,zj∈S

‖z − zj‖−α
− β = 0 . (A.1)

Equation (A.1) is a function of variable x and can be solved using Newton’s Method.

Remark: Newton’s Method: Given a function f (x) and its derivative f ′(x), begin with a

first guess x0. Provided the function is reasonably well-behaved, a better approximation x1

is := x0 − f (x0)
f ′(x0)

. The process is repeated until a sufficiently accurate value is reached:

xn+1 = xn −
f (xn)

f ′(xn)
. (A.2)

From (A.1)

f (x) =
‖x − xi‖−α

∑
j 6=i,zj∈S

‖z − zj‖−α
− β ,
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Figure A.1: Geometric representation of finding the first approximation of point z = (x0, yi).

We assume that u = r−α
i and g = ∑j 6=i,zj∈S r−α

j where ri = ‖x − xi‖ and rj = ‖z − zj‖.

Newton’s Method requires the derivative of f (x) which is computed as below.

d

dx
u = −α

x − xi

rα+2
i

.

d

dx
g = ∑

j 6=i,zj∈S
−α

z − zj

rα+2
j

.

The first derivative of the function f (x) is

f ′(x) =
1
g2 (g

d

dx
u − u

d

dx
g)

=

(

( ∑
j 6=i,zj∈S

r−α
j )(−α x−xi

rα+2
i

)− (r−α
i )(−α

z−zj

rα+2
j

)

)

1


 ∑
j 6=i,zj∈S

r−α
j





.

Newton’s Method also requires first approximation of the root, x0. An approximate value,
closer to the actual root, can significantly reduce the number of iterations in Newton’s Method.

In all three types of grid networks, the transmitter closest to i, hereafter referred to as j, lies
at distance d and hence can give the best estimate x0. For first approximation x0, we can ignore
all other transmitters in the network. In this case

‖z − zi‖−α

‖z − zj‖−α
≥ β

r−α
i

r−α
j

≥ β : i 6= j ,
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where ri = ‖z − zi‖ and rj = ‖z − zj‖ and we get

rj

ri
≤ (β)

1
α .

The location of transmitters i and j and point z in the plane form three corners of a triangle
with angle θ equal to 0 in case of square and triangular grid and π/6 radians in case of hexag-
onal grid layout. Figure A.1 shows the location of transmitters zi and zj, point z and distances
ri, rj and d. Using above relation between ri and rj and the Law of Cosines, we get the solution
of ri as

ri =
−B ±

√
B2 − 4AC

2A
,

where A = 1 − β
2
α , B = −2.d. cos(θ) and C = d2 where d is the distance between transmit-

ters i and j and is a known parameter of the grid layout.

Remark: Select positive value of ri as the solution of the above quadratic equation. Using

x0 = xi + ri as the first approximate solution in Newton’s Method (A.2), and after a few

iterations, we can get a sufficiently accurate value xn+1 which will be the x coordinate of the

point z.

The coordinates of point z will be: (xn+1, yi).



List of Notations

α Attenuation coefficient

β Minimum signal-to-interference ratio threshold required for successfully receiving
a packet

γi(z) Channel gain between transmitter i and a receiver at point z on the 2D plane

Ωi(n) Slot occupancy rate of node i

σ(λ, β, α) Average surface area of the reception area of an arbitrary transmitter in the network

θcs Carrier sense threshold for carrier sense medium access control schemes

ζ(n, β, α) Throughput capacity (packets delivered per slot) of multi-hop wireless network

c(β, α) Local capacity of single-hop wireless network

d Minimum Euclidean distance between simultaneous transmitters for node coloring
and grid pattern based medium access control schemes

n Number of nodes in the network

Pi Transmit power of node i

r1 Normalized optimum transmission range in the network

rn/rλ Optimum transmission range in the network

Si(z) Signal-to-interference ratio of transmitter i at point z on the 2D plane

zi Location of transmitter i on the 2D plane: zi = (xi, yi)

Ai(S , β, α) Reception area of transmitter i

N Set of nodes in the network

S Set of simultaneous transmitters in each slot

λ Spatial density of the set S
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