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Thèse présentée et soutenue à Cachan le 15 mars 2011
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Abstract

This thesis investigates the removal of spatially-variant blur from photographs degraded

by camera shake, and the removal of large occluding objects from photographs of popular

places. We examine these problems in the case where the photographs are taken with

standard consumer cameras, and we have no particular information about the scene

being photographed.

Most existing deblurring methods model the observed blurry image as the convolution

of a sharp image with a uniform blur kernel. However, we show that blur from camera

shake is in general mostly due to the 3D rotation of the camera, resulting in a blur that

can be significantly non-uniform across the image. We model this blur using a weighted

set of camera poses, which induce homographies on the image being captured. The blur

in a particular image is parameterised by the set of weights, which provides a compact

global descriptor for the blur, analogous to a convolution kernel. This descriptor fully

captures the spatially-variant blur at all pixels, and is able to model camera shake more

accurately than previous methods.

We demonstrate direct estimation of the blur weights from single and multiple blurry

images captured by conventional cameras. This permits a sharp image to be recov-

ered from a blurry “shaken” image without any user interaction or additional infor-

mation about the camera motion. For single image deblurring, we adapt an existing

marginalisation-based algorithm and a maximum a posteriori-based algorithm, which

are both compatible with our model of spatially-variant blur.

In order to reduce the computational cost of our homography-based model, we in-
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troduce an efficient approximation based on local-uniformity of the blur. By grouping

pixels into local regions which share a single PSF, we are able to take advantage of

fast, frequency domain convolutions to perform the blur computation. We apply this

approximation to single image deblurring, obtaining an order of magnitude reduction in

computation time with no visible reduction in quality.

For deblurring images with saturated pixels, we propose a modification of the forward

model to include this non-linearity, and re-derive the Richardson-Lucy algorithm with

this new model. To prevent ringing artefacts from propagating in the deblurred image, we

propose separate updates for those pixels affected by saturation, and those not affected.

This prevents the loss of information caused by clipping from propagating to the rest of

the image.

In order to remove large occluders from photos, we automatically retrieve a set of

exemplar images of the same scene from the Internet, using a visual search engine. We

extract multiple homographies between each of these images and the target image to

provide pixel correspondences. Finally we combine pixels from several exemplars in

a seamless manner to replace the occluded pixels, by solving an energy minimisation

problem on a conditional random field.

Experimental results are shown on both synthetic images and real photographs cap-

tured by consumer cameras or downloaded from the Internet.
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Chapter 1

Introduction

With the explosion of digital photography in recent years, many of us take large numbers

of digital photos with cameras or camera-phones. When we review our photos later

however, there is sometimes a divergence between what we remember seeing at the time,

and what our cameras recorded. This disparity can perhaps be explained by the old

adage that we see with our brains, not with our eyes. Whether our photos contain a

luridly-dressed tourist that our brain had filtered out at the time, or our photos appear

blurry due to camera shake in low light, it is not uncommon that the photos we find

ourselves with do not capture what we wanted to record.

In this thesis, we develop models and methods aimed at “restoring” photographs

to bring them closer to the images we hoped to record at the time of their taking.

For many people, existing photos capture important and fleeting moments that it may

be impossible to recapture. As opposed to proposing new hardware or methods for

taking future photographs, we are predominantly concerned with handling images that

have already been captured. By using accurate models of the image formation process,

and incorporating strong prior information on the images we would like to recover,

we endeavour to make software post-processing the “brain” to the digital “eyes” of our

cameras. Specifically, our objective in this thesis is to automatically restore photographs,

when these photographs contains unwanted occluders as shown in Figure 1.2, or when

1



1 Introduction

(a) Blurry input image (b) Deblurred output image
using spatially-invariant blur

model

(c) Deblurred output image
using our blur model

Figure 1.1. Removing camera shake blur from photos. The blur caused by camera shake,
such as in the blurry image shown here (a), is typically spatially-variant. Most previous work
on removing camera shake has assumed a spatially-invariant blur model, leading to deblurred
images such as that shown in (b). Using the model for spatially-variant camera shake blur
proposed in Chapter 3 and the blind deblurring algorithms described in Chapter 4, we are able
to model the spatially-variant blur correctly and obtain superior deblurred results (c). Despite
the large blur (around 30 pixels), much of the text that is illegible in the input image, and which
is not restored sufficiently with the spatially-invariant blur model, can be read clearly in our
deblurred image.

they are blurry due to camera shake, as shown in Figure 1.1. Besides the emotional

motivation for improving peoples’ photos, more concrete motivations for these tasks

might be the need to recover visual information (e.g. vehicle license plate numbers) from

blurry photos, to reduce the cost of obtaining high-quality sharp images (by using cheap

computational power instead of expensive camera hardware), or to remove trademarked

or otherwise sensitive objects from photos before publishing them.

2



1.1 Problem Statement

(a) Query Image (b) Target Regions

(c) Our Result (d) A reference view of the same scene

Figure 1.2. Removing occluders from photos. This figure shows an example result produced
by the system described in Chapter 7. The tourists are removed and replaced with a faithful
rendition of the underlying scene, as can be seen by comparison with another image of the scene,
shown in (d).

1.1 Problem Statement

The types of image degradation considered in this work lead to inherently ill-posed

image restoration problems. Starting from only a degraded image, we wish to recover

a good image of the same scene. If there is a loss of information, or we have more

unknowns than observations, there may be a large family of valid solutions, which we

must somehow choose amongst when producing the “restored” image. This is the case in

both the problems discussed here. For deblurring images, where the blur is unknown, we

3



1 Introduction

must estimate both the parameters describing the blur and the sharp image. Since the

sharp image has the same number of pixels as the blurry image, we evidently have more

unknowns than observations. When we wish to remove occluders from photographs,

the recorded image contains no information about what is behind the occluder; it could

be concealing a building, a tree, a patch of grass, or a group of people. Making the

right choice and producing visually-pleasing results requires good models of the image

formation process, and equally importantly, good prior information about the unknowns.

1.2 Contributions

The main contributions of this thesis can be divided broadly into deblurring of camera

shake, and removing large occluders from photographs.

1.2.1 Restoring Photographs Blurred Due to Camera Shake

The main contributions with respect to deblurring camera shake are first to demonstrate

that camera shake is mainly caused by 3D rotation, as opposed to 3D translation of the

camera, causing spatially-variant blur, and second to derive a geometric model for the

blur process based on this. We propose a formulation of this model which is directly

applicable in existing blind deblurring algorithms, and consequently demonstrate the

ability to remove spatially-variant camera shake blur from photographs. Figure 1.1

demonstrates an example result on a real image blurred by camera shake, and shows

that the spatially-variant blur model allows us to recover a significantly better result

than only modelling spatially-invariant blur.

We propose an efficient approximation for this model which significantly reduces

the computational burden associated with using it, and makes spatially-variant blind

deblurring of camera shake practical for real images. Finally we address deblurring of

images containing clipped, or saturated pixels. We propose a forward model that includes

sensor saturation, and propose a non-blind deblurring algorithm that incorporates this

model while preventing artefacts from appearing in the deblurred results. Figure 1.3

4
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(a) Original blurry image (b) Our deblurred result (c) Canon’s “Second Shot”

Figure 1.3. Deblurring a real saturated image. Taken from Canon’s “Your Second Shot”
advertising campaign. The original image (a) is very blurry, however using blind PSF estimation
(Chapter 4) to estimate how the image was blurred, followed by non-blind deblurring, handling
the saturated pixels (Chapter 6) we are able to obtain a much better image (b). For the adver-
tising campaign, Canon flew the couple back to Barcelona to take the photo again (c) with a
new camera.

shows a result deblurring a real image, with saturated highlights in the background.

The image is taken from Canon’s “Second Shot” advertising campaign1, in which the

owners of badly blurred or degraded images were given the chance to go back and retake

their photographs with a new camera. Our result is of course not as good as Canon’s

retaken photo, but is a little more achievable for those without the means or desire to

return to the scene of every blurry photo they ever took.

1.2.2 Removing Occluders from Photographs

Our contribution with respect to removing large occluders from photographs is to propose

an automatic system for replacing occluded regions of photographs using photographs of

the same scene, retrieved from the Internet. Our system is able to take an input image

with the occluders marked by a user, and return a restored image, where the occluded

region has been seamlessly replaced with realistic image content that corresponds to

the true underlying scene. Figure 1.2 demonstrates an example result produced by our

system. Note that the underlying scene is realistically rendered, without any knowledge

of the 3D structure of the scene or of the environmental conditions.

1http://yoursecondshot.usa.canon.com/
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1.3 Thesis Outline

We begin in Chapter 2 with some background on image restoration and a discussion of

relevant work from the literature.

In Chapter 3 we examine blur caused by camera shake. We begin by considering

the geometric relationship between motion of the camera and the apparent motion of

the image. Following this, we propose and discuss a novel formulation for camera shake

blur, which handles spatially-variant blur naturally. We present the discrete equivalent

of our model, and provide a comparison to other models for camera shake blur. Finally

we discuss some practical implementation considerations.

In Chapter 4 we demonstrate blind deblurring of shaken images, demonstrating that

our model is easily applicable within existing deblurring paradigms. We first apply our

model within two algorithms for single-image deblurring, using two different approaches

to estimating the parameters of the blur. We present results of these algorithms and

discuss some of the advantages and disadvantages of using our model instead of the

classical spatially-invariant blur model. Secondly we demonstrate deblurring of images

when there is a additional noisy image available of the scene. We conclude with some

implementation issues relevant to all the algorithms presented.

In Chapter 5 we introduce an efficient approximation scheme for our spatially-variant

blur model. We begin by examining the bottlenecks in the deblurring process, before pre-

senting our approximation scheme and showing how our approximation greatly reduces

the computational burden of these steps. We present results using the approximation,

and compare to those produced using the exact model.

In Chapter 6 we approach deblurring of images containing clipped / saturated pixels.

We discuss possible ways of handling such pixels in the deblurring process, and propose

a modification to the image formation model which incorporates the saturation process.

Further to this, we examine how saturated pixels cause artefacts in the deblurred results,

and propose an algorithm which handles these clipped pixels explicitly to prevent visible

artefacts being introduced. Finally we present results of our method and compare to
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other methods.

In Chapter 7, we approach the removal of large occluders from photographs of fa-

mous landmarks. We discuss the visual search engine which we use to retrieve a set of

example images of the same scene, and how we register these images geometrically and

photometrically to an input image. Following this we present our algorithm for replac-

ing the occluders, by combining pixels from several of the example images. We present

results of our system on a range of input images.

Finally in Chapter 8 we summarise the contributions of this thesis and discuss po-

tential directions for future work.

1.4 Publications

Parts of the work in this thesis have appeared in the following publications:

O. Whyte, J. Sivic, and A. Zisserman. Get out of my picture! Internet-based inpainting.

In Proceedings of the 20th British Machine Vision Conference. London, 2009

O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform deblurring for shaken

images. In Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern

Recognition. San Francisco, CA, 2010

O. Whyte, J. Sivic, and A. Zisserman. Deblurring shaken and partially saturated images.

In Proceedings of the IEEE Workshop on Color and Photometry in Computer Vision

(CPCV 2011), with ICCV 2011. Barcelona, Spain, 2011a

O. Whyte, J. Sivic, A. Zisserman, and J. Ponce. Non-uniform deblurring for shaken

images. International Journal of Computer Vision. Accepted, 2011b
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Chapter 2

Background and Related Work

Image restoration is a vast field of research, having been studied for many decades

since the advent of digital imagery. No such thing as a perfect camera exists, and all

images are, to some extent, affected by noise and blur. Classical work on digital image

restoration tackled these problems, and are covered in depth by Gonzalez and Woods

(1992). Recently, the field has expanded to include more diverse sources of degradation

such as chromatic aberrations or missing pixels. Without doubt, the use of a priori

information has been crucial in many recent advances, often allowing surprising amounts

of of information to be recovered (or perhaps, hallucinated) from images degraded by

noise, blur, or other sources of corruption. This information may concern the statistics

of undegraded images, the properties of the underlying scene, or other factors such as

idiosyncrasies of human perception. In this chapter we recap some of the most relevant

work to the subjects covered in this thesis: deblurring and inpainting.

The problem of restoring images can be broken down into several components. First,

a model is needed to relate the undegraded, “ideal” image to the observed image pro-

duced by the camera. Second, the parameters of this model must be estimated, and

finally the sharp image can be estimated, given the model and the estimated parame-

ters.

We begin by introducing a general forward model for image degradation in Sec-
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tion 2.1, and discuss the concepts which underpin successful image restoration algo-

rithms. Following from a probabilistic model, which relates the unknown (latent) ideal

image with the observations and our prior knowledge, we discuss the two general ap-

proaches to image restoration by maximising or marginalising this probability. In Sec-

tion 2.2 we discuss existing algorithms for deblurring images when the blur is known.

Following this, in Section 2.3 we recap some of the existing work for deblurring images

when the blur is unknown. In Section 2.4 we introduce the problem of parameterising

spatially-variant blur, and discuss some recent work on this problem. Finally in Sec-

tion 2.5 we address the relevant work and background to the problem of “inpainting”.

Notation

In this thesis we will use some notation consistently, which we introduce here for ref-

erence. We use bold lower-case letters to denote vectors, e.g. f , and bold upper-case

letters to denote matrices, e.g. A. We use subscripts on non-bold letters to index into

vectors and matrices, e.g. fj indicates the j
th element of the vector f , while Aij indicates

element (i, j) of matrix A.

Calligraphic letters such as U denote sets or domains, depending on the context. We

denote functions with lower-case letters, i.e. f : R→ R+.

To denote 2D discrete images we use 1D vectors, e.g. f ∈ R
N for an image of height

H and widthW , where N = H×W . In this context we denote 2D convolutions between

two images as operating directly on the 1D vectors, i.e. u ∗ v, and likewise we denote

the 2D discrete Fourier transform simply as a function mapping a vector to a vector

F : RN → C
N . We denote the Hadamard (element-wise) product between two vectors

by u ◦ v. We abuse standard notation somewhat and write the element-wise division of

two vectors simply using a fraction u
v
.

When several objects of the same type are collected into a set, we use numeric

superscripts in parentheses to index into this set, e.g. d(q) ∈ {d(q)}. When objects

of the same type are identified by a symbolic property, we use superscripts without

parentheses, e.g. dx, dy to indicate derivative filters in the x and y directions.
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2.1 Image Degradation and Restoration

2.1 Image Degradation and Restoration

To frame the problems discussed in this thesis, we begin with a general forward model

of image degradation. There are four important components in the image degradation

process:

• The (observed) degraded image g : Ω → R+, which is the image output by the

camera’s sensor. The domain Ω ⊂ R
2 is the 2D plane of the camera’s sensor.

• The (latent) sharp image f : Ω′ → R+. This is the underlying, ideal, sharp image

of the scene, which we would like to recover. In most cases, the domain Ω′ ⊂ R
2

is chosen to be the same as Ω.

• The degradation operatorH that acts on f , and which describes how light from the

sharp image f is distributed in the observed image g. Depending on the situation,

H may be known in advance (e.g. from optical properties of the camera) or may

be unknown (e.g. arbitrary camera motion during camera shake).

• The random noise N that perturbs the recorded image after the sharp image has

been degraded by H.

These components are combined in the generic image degradation model

g(x) = N
(

(Hf)(x)
)

, (2.1)

where x is a point (x, y) ∈ Ω. We will denote the “noiseless” degraded image Hf by g∗,

and also assume that the degradation operator H is linear, allowing us to write

g∗(x) = (Hf)(x) =

∫

Ω′

h(x,x′)f(x′) dx′, (2.2)

where x′ is a point (x′, y′) ∈ Ω′, and h : Ω×Ω′ → R+ is referred to as the impulse response

of H, or the point-spread function (PSF). For a point light source with magnitude 1 at

a particular point x′0 ∈ Ω′, the 2D function h( · ,x′0) is the response produced by H, and
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2 Background and Related Work

describes how the light from this point is spread over the observed image (Gonzalez and

Woods, 1992). In Section 2.1.2 we discuss possible forms for the PSF, and in Section 2.1.4

we discuss several noise models that are useful in practice.

It is important to note that in general, for a given degraded image g, both the sharp

image f and the PSF h may be unknown. This makes the image restoration problem

particularly difficult. The forward model plays an important role in solving this problem,

but some additional information is typically needed to recover a good estimate of the

latent image. This additional information can come in the form of statistical priors,

which encourage the latent image to look realistic, and improve the conditioning of the

problem. In Section 2.1.5 we discuss priors for the latent image and for the PSF.

Spatially-invariant Blur

A common assumption when modelling image blur is that the PSF is spatially-invariant,

which is to say that there exists a function a : R2 → R+ such that h(x,x′) = a(x− x′).

The function a is typically referred to as a convolution kernel, and in this case the

dimensionality of the PSF is reduced from four to two, and Equation (2.2) reduces to a

2D convolution of f with a:

g∗(x) = (a ∗ f)(x) =
∫

Ω′

a(x− x′)f(x′) dx′. (2.3)

In general, blur may be spatially-variant, and we will return to this issue in Section 2.4,

and again in Chapter 3.

2.1.1 The Discrete Setting

Real cameras are equipped with a discrete set of pixels, and output a discrete set of

samples of the degraded image, denoted by the vector g ∈ R
N
+ , where N = H × W

pixels for an image with H rows and W columns. We consider the sharp image also

to be discrete: f ∈ R
N
+ . We use i to index into the degraded image g, i.e. gi = g(xi),

where xi ∈ Ω is the coordinate of the ith pixel. Likewise, we use j to index into the
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2.1 Image Degradation and Restoration

sharp image f , such that fj = f(x′j) for a coordinate x′j ∈ Ω′. Finally, we note that to

evaluate an image at arbitrary (sub-pixel) locations, we interpolate from nearby pixels.

In this work, we use linear interpolation schemes, whereby sub-pixel values of an image,

say g(x) are interpolated as a linear combination of nearby pixels:

g(x) =
∑

i

b(x,xi)gi, (2.4)

where the coefficients b(x,xi) are calculated using a standard method such as bilinear

or bicubic interpolation.

In this discrete setting, we can write Equation (2.2) as

g∗i =
∑

j

Aijfj , (2.5)

or in matrix-vector notation, g∗ = Af , (2.6)

where the N × N matrix A captures the discrete PSF. Each column of the matrix A

contains the PSF for the corresponding pixel in the latent image f . In most cases of blur,

the light from each pixel in f is spread over a relatively small number of nearby pixels

in g. As a result, the PSF matrix A for an image is usually sparse (contain a relatively

small number of non-zero values). When the PSF is spatially-invariant, we denote the

discrete convolution kernel by a, and write

g∗ = a ∗ f . (2.7)

2.1.2 Types of Degradation

In this thesis we are concerned with two types of PSF: those arising from camera shake,

which causes image blur, and those arising when some pixels from the observed image

are missing or deleted.

• Image Blur. When an image is degraded by blur, light from a single point in f

is spread across a region in g. In this case, the PSF A will have many non-zeros in
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2 Background and Related Work

each column. When the PSF is unknown, the problem is typically referred to as

“blind” deblurring. If the PSF is known a priori , or has already been estimated,

the problem of recovering the sharp image is, by contrast, referred to as “non-blind”

deblurring.

• Missing or Deleted Pixels. When the image has been corrupted in certain

regions, or contains occluders that we wish to remove, the PSF is simply the

identity, i.e. A = I, since we assume that no blurring has occurred. We model

the missing pixels as noise with very high uncertainty, such that their observed

intensity is unrelated to their latent intensity.

2.1.3 Probabilistic Formulation

Given the general model of image degradation discussed above, a natural starting point

for image restoration algorithms is to write down a probabilistic generative model for the

observed image. If we know the type of noise affecting the observed image, we can write

down the likelihood of the observed image p(g|f ,A), which is the probability density of
g, conditioned on f and A. If we then wish to find the latent image and PSF which

best match the observed image g, an obvious choice would be to find the f and A which

maximise this likelihood. Due to the loss of information that occurs in the degradation

process, however, image restoration algorithms which simply maximise this likelihood

are known to be ill-conditioned. Algorithms of this sort are prone to producing results

containing artefacts, and in which noise is amplified.

If we have some prior knowledge about the latent variables being recovered, then us-

ing Bayes’ rule, we can formulate the posterior distribution for the unknowns (the sharp

image f and also, if unknown, the PSF A). The posterior incorporates the likelihood,

which arises from the random noise in the observed image, and also prior knowledge

about the unknowns, and in our case is given by

p(f ,A|g) ∝ p(g|f ,A)p(f)p(A) for an unknown PSF (2.8)

p(f |g,A) ∝ p(g|f ,A)p(f) for a known PSF. (2.9)
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The priors p(f) and p(A) can either be manually defined, or learnt from example data.

By incorporating this prior knowledge about the unknown variables, the posterior ame-

liorates the instability of estimating f or A from the likelihood alone. We will discuss

several popular choices for these terms in the following sections.

Given the posterior distribution, it is the task of image restoration algorithms to find

the “most probable” sharp image f . The idea of what is “most probable” however is

not clear: is it the image f that maximises the posterior probability over all possible f

and A, or is it the expected value of f under the distribution? In subsequent sections

we will describe different approaches to the image restoration problem, based on differ-

ent answers to this question. Finally we note that although not all image restoration

algorithms have a probabilistic interpretation, this formulation can nevertheless provide

some useful intuition into why they succeed.

Maximim A Posteriori

One popular method of finding the “most probable” values of the unknown variables

in a system is to find those values which maximise the posterior probability. In this

approach, for a known PSF, the estimated latent image f̂ is found as

f̂ = argmax
f

p(f |g,A), (2.10)

while for unknown PSF, the latent image and PSF are estimated simultaneously

{f̂ , Â} = argmax
f ,A

p(f ,A|g). (2.11)

This maximisation is typically addressed by first transforming the the probability

maximisation problem into an energy minimisation problem. The forms of the likelihood

and priors in Equation (2.8) are generally chosen such that the posterior can be written
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as a Gibbs distribution, with the form

p(f ,A|g) = 1

Z
exp

(

− 1
T
U(f ,A)

)

, (2.12)

where U is an energy function which depends on g, and Z is a normalising constant. For

this distribution, the sharp image f and PSFA which maximise the posterior probability

are those which minimise the energy function U . Given that U(f ,A) ∝ − log p(f ,A|g)+
const., we can write the MAP problem for the posterior in Equation (2.8) as

min
f ,A

F
(

g,Af
)

+ αρf (f) + βρA(A), , (2.13)

where the function F is derived as the negative log-likelihood, and penalises latent images

or PSFs which do not agree with the observed data, while the functions ρf and ρA are

derived as the negative log-priors, and penalise latent images or PSFs which are unlikely

under those priors. The function F is referred to as the data fidelity term, while ρf and

ρA are referred to as the regularisation terms.

The difficulty in the MAP approach is that the search space is very large, with

potentially millions of unknowns. Furthermore the energy function may not be convex,

in which case it is not generally possible to reach the globally optimal solution.

Marginalisation

An alternative approach to maximising the posterior probability is to attempt to find

the expected (mean) values of the unknowns under the posterior distribution. In this

approach, for a known PSF the estimated latent image is calculated as

f̂ =

∫

f p(f |g,A) df . (2.14)

while for unknown PSF, the latent image and PSF would be estimated as

f̂ =

∫ ∫

f p(f ,A|g) df dA (2.15)
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Â =

∫ ∫

A p(f ,A|g) df dA. (2.16)

This approach sometimes has advantages over maximising the posterior, since the MAP

solution may find a peak which has high probability density but has very little prob-

ability mass below it. Marginalising will find a solution which is a combination of all

posssible solutions, weighted by their probability density, and so a wide peak with a

lower maximum density may have more influence than a narrow but higher one.

The difficulty in estimating the unknowns by marginalisation is that the expectations

in Equations (2.14) to (2.16) are analytically intractable. To evaluate these integrals

some approximation strategy must be used, of which there are in general two types:

stochastic approximations and parametric approximations. Stochastic approximation

methods, such as a Markov Chain Monte Carlo (Neal, 1993), attempt to evaluate the

integrals stochastically by drawing samples from the true posterior distribution. Such

algorithms expend most of their effort on drawing samples in a way that ensures con-

vergence to the true distribution. Parametric approximation methods, such as ensemble

learning (Lappalainen and Miskin, 2000), attempt to find a parametric approximation of

the posterior for which the integrals become tractable. These algorithms spend most of

their computational effort estimating the parameters of the approximating distribution,

while the final marginalisation under the parametric distribution is often trivial or easy

to compute.

2.1.4 Noise Models

The likelihood term p(g|f ,A) in the posterior distribution is defined by the type of noise
that is present in the observed image. Here we recap three noise models which are used

in this work: Gaussian noise, Poisson noise, and uniform noise. In all cases we assume

that all pixels gi in the observed image are independent, conditioned on the sharp image

f and the PSF A, i.e. p(g|f ,A) = ∏

i p(gi|f ,A). In deblurring, Gaussian and Poisson

noise are two widely applicable models (Boncelet, 2005). Uniform noise on the other

hand, is useful for modelling corrupted or deleted pixels, such as in inpainting.
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Poisson Noise

Poisson noise is a realistic noise model to use for images, since the arrival of photons at

the sensor is naturally modelled as a Poisson process. Indeed, in low light, “quantum

noise” (noise caused by the random arrival times of individual photons) dominates over

other types of noise in a digital camera. For a Poisson random variable z with mean λ,

we write z ∼ Pois(λ), and z has the probability density function (PDF)

p(z) =
λze−λ

z!
. (2.17)

Applying this in our degradation model, we have gi ∼ Pois
(

g∗i
)

:

p(gi|g∗i ) ∝
g∗i

gie−g
∗

i

gi!
, (2.18)

and − log p(gi|g∗i ) = −gi log g∗i − g∗i − log gi! + const. (2.19)

Figure 2.1 plots the likelihood p(gi|g∗i ) as a function of the unknown g∗i , and the

corresponding negative log-likelihood, which is used as the data fidelity term in the

MAP problem in Equation (2.13). As can be seen, the peaks of p(gi|g∗i ) become wider
at higher gi, indicating greater uncertainty in g∗i . In image restoration tasks, where we

wish to estimate g∗i , this corresponds to penalising errors less at bright pixels than at

dark ones. Also, as g∗i → 0, − log p(gi|g∗i ) → ∞, implicitly enforcing positivity on g∗i .

Finally, we note that the negative log-likelihood (Equation (2.19) and Figure 2.1 (b)) is

convex, allowing a global minimum to be found if we use this noise model in a MAP

approach.

Gaussian Noise

Gaussian noise is perhaps the most common noise model used in image processing, due

to its tractability and wide applicability. For a Gaussian random variable z with mean
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Figure 2.1. The Poisson noise distribution. The likelihood (a) and negative log-likelihood
(b) of different observed pixel values gi, as a function of the noiseless value g

∗

i .

µ and variance σ2, we write z ∼ N (µ, σ2), and z has the PDF

p(z) =
1√
2πσ

exp

(

(z − µ)2

2σ2

)

. (2.20)

Applying this in our degradation model, we have gi ∼ N
(

g∗i , σ
2
)

:

p(gi|g∗i ) =
1√
2πσ

exp

(

(

gi − g∗i
)2

2σ2

)

(2.21)

and − log p(gi|g∗i ) =
1

2σ2
(gi − g∗i )

2 + const. (2.22)

Figure 2.2 plots the likelihood p(gi|g∗i ) for several values of gi and the corresponding
negative log-likelihoods. In contrast to Poisson noise, the variance remains constant at

all brightnesses, and the likelihood does not enforce positivity on g∗i . Minimisation of the

negative log-likelihood is a linear least-squares problem, which is typically easier to solve

than that in Equation (2.19), and for which many good algorithms exist. Furthermore
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(a) Likelihood of a blurry pixel gi as a
function of g∗i under a Gaussian noise model
with variance σ2 = 5, for several different

values gi
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Figure 2.2. The Gaussian noise distribution. The likelihood (a) and negative log-likelihood
(b) of different observed pixel values gi, as a function of the noiseless value g

∗

i .

it is convex, making it a good candidate for MAP approaches.

Uniform Noise

As well as the random fluctuations in the light arriving at the sensor, we can also model

corrupted or deleted pixels in the image as noise with a uniform distribution. For a

uniform random variable z, we write z ∼ Unif(a, b), with a < b, and z has the PDF

p(z) =



























0 z < a

1
b−a a ≤ z ≤ b

0 b < z

(2.23)
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Applying this in our degradation model, we have gi ∼ Unif(0, 256), and

− log p(gi|g∗i ) =



























∞ gi < 0

const. 0 ≤ gi ≤ 256

∞ 256 < gi

. (2.24)

Under this noise model, an observed pixel gi is independent of the noiseless pixel g
∗
i , and

is thus decoupled from the latent image f . This noise model is thus applicable when the

degraded image contains pixels that we would like to replace, since we would like the

recovered image to be independent of the replaced pixels. Recently, Cho et al. (2011)

have used the uniform noise model in deblurring, to handle outlier pixels in the blurry

image, e.g. due to “hot pixels”, or salt and pepper noise.

2.1.5 Priors

As mentioned earlier, image restoration problems are frequently ill-posed, such that

methods which use the data fidelity term alone may amplify noise in the solutions,

or fail completely to find a good solution. As a result, some prior knowledge of the

unknowns is often included in the restoration problem to improve the conditioning and

stabilise the solution. In this section we discuss several such priors for the latent image

and the PSF.

Priors for the Sharp Image

An important aspect of image restoration is the prior on the latent image p(f). Many dif-

ferent image priors have been proposed for image reconstruction tasks such as deblurring,

denoising, and super-resolution, often based on the statistics of natural images. Early

work on the statistics of natural images observed that the amplitude spectrum, when

radially averaged over orientation, approximately follows a power law (Field, 1987), or

that the entropy of sharp images is higher than that of blurred images (Gull and Skilling,

1984).
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Recent work has focused particularly on the distribution of the responses to dic-

tionaries of filters. For a set of filters {d(q)}, these priors model the statistics of the
image responses {f (q)}, where f (q) = d(q) ∗ f . The simplest variant of these considers the
response of the image to horizontal and vertical derivative filters {dx,dy}, essentially
modelling the strength of the correlation between neighbouring pixel values. This use

of spatial correlations has a long history (Molina and Ripley, 1989), however early work

used Gaussian distributions to model these correlations, which leads to overly-smoothed

results when applied to image restoration. It has been observed that the derivatives

of natural images in fact generally follow heavy-tailed sparse distributions, rather than

a Gaussian distribution. These distributions have a large probability mass near zero,

reflecting the fact that most pixels are strongly correlated with their neighbours. How-

ever, the heavy tail is also necessary to model sharp edges, which have large gradient

magnitudes, and which are not adequately captured by a Gaussian distribution. Begin-

ning with the use of total variation and related norms (Rudin et al., 1992), priors of

this nature have been used extensively in image restoration tasks (Fergus et al., 2006;

Krishnan and Fergus, 2009; Krishnan et al., 2011; Levin et al., 2007; Shan et al., 2008;

Tappen et al., 2003). Priors of this type have proven to be effective at suppressing noise

in restored images while encouraging sharp edges to appear. The disadvantage of these

priors is that the corresponding regularisers ρf in the MAP problem (Equation (2.13))

are generally non-convex. This implies that we cannot find the globally optimal latent

image. However, in practice this does not generally cause visible degradation in the

restored image.

Fergus et al. (2006) proposed a prior on the sharp image which assumes that the

derivatives for all pixels are independent and follow a mixture of C zero-mean Gaussians

with mixture weights πc and variances vc (also known as a Gaussian scale mixture):

p(f (q)) =
∏

j

C
∑

c=1

πc exp



−
f
(q)
j

2

2vc



 . (2.25)

Fergus et al. learn the parameters πc and vc from real images; for example, the parameters
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2.1 Image Degradation and Restoration

(a) A street scene
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(b) Logarithm of gradient histogram
and of various priors

Figure 2.3. Statistics of, and priors for image gradients in photographs. (a) shows a
photograph of a street scene, from Fergus et al. (2006). In (b), the logarithm of the histogram
of gradients is plotted, along with several sparse-derivatives priors.

of the prior shown in Figure 2.3 (b) have been learnt on the image shown in Figure 2.3 (a).

Other authors have used priors with the form

p(f (q)) ∝
∏

j

exp
(

−φ(f (q)
j )

)

(2.26)

Krishnan and Fergus (2009); Levin et al. (2007); Tappen et al. (2003) explore the use

of the hyper-Laplacian distribution where φ(x) = |x|p, for some exponent p, typically

chosen to be 0.5 ≤ p ≤ 0.8. Shan et al. (2008) use a piecewise prior where φ(x) =

min(k |x| , ax2 + b), where the parameters k, a, and b are set manually. Figure 2.3 plots

the derivatives of a natural image, and various distributions which have been used to

fit this empirical distribution. The histogram is characterised by a sharp peak at zero,

with a slow fall-off.

While priors on the derivatives of images concern pairs of neighbouring pixels, other

authors have focussed on the statistics of small image patches. Some authors have

proposed to use simple sparse distributions with large dictionaries of filters to model

this distribution, such as wavelets (Mallat, 1999) or learnt dictionaries (Aharon et al.,

2006; Mairal et al., 2008; Olshausen and Field, 1996). Others have proposed to use more
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2 Background and Related Work

(a) Some typical camera shake blur kernels
from Levin et al. (2009)
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(b) Logarithm of kernel histograms
and of two priors

Figure 2.4. Statistics of, and priors for camera shake blur kernels. Levin et al. (2009)
estimated a set of “true” camera shake convolution kernels (a) using sharp / blurry pairs of
images. In (b), the logarithm of the histogram of all the kernel values in (a) is plotted, along
with two sparsity-inducing priors.

complex distributions and learn their parameters (Roth and Black, 2005; Zoran and

Weiss, 2011).

Priors for the PSF

When we wish to estimate the PSF for a blurry image, we also need priors for the param-

eters of the PSF. For example, when the blur is spatially-invariant and parameterised

by a convolution kernel a, we use the prior p(a). Since in this work we are primarily

concerned with blur caused by camera shake, we will discuss priors related to this type

of PSF here.

Successful algorithms for estimating camera shake PSFs generally share the same

two pieces of prior information about the blur kernel being estimated. First, all its

elements are non-negative, since the image formation process is additive, with sensor

elements accumulating photons, i.e. ak ≥ 0 for k = 1, . . . ,K. The second, and arguably

more important fact to observe about a blur kernel for camera shake is that it should

be sparse, i.e. contain relatively few non-zero elements. Figure 2.4 shows some typical

camera shake kernels, which clearly exhibit these properties.
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2.2 Algorithms for Non-Blind Image Deblurring

The nonnegative sparsity prior has been a prominent feature of previous camera shake

removal algorithms, and has also been leveraged for the alignment of blurred image with

non-blurred images (Yuan et al., 2007a). Fergus et al. (2006) encourage sparsity by

placing a mixture of exponentials prior on the kernel values, such that

p(a) =
∏

k

D
∑

d=1

πd exp(−λdak), (2.27)

where πd is the mixture weight for the dth exponential, with rate parameter λd. Fergus

et al. (2006) learn the parameters {πd} and {λd} from a set of real blur kernels. Shan

et al. (2008) use a single exponential distribution for each of the kernel elements, such

that

p(a) =
∏

k

λ exp(−λak). (2.28)

Figure 2.4 (b) plots these priors along with a histogram of values from some real camera

shake blur kernels.

In a contrasting approach, Cai et al. (2009) choose to construct the blur kernel as a

linear combination of a predefined set of “curvelets”, i.e. a = Φb where Φ is the matrix

of curvelets, and place an exponential prior on the coefficients b of the curvelets, rather

than on the kernel elements directly. By forcing the kernel to be constructed from a

set short curves, this approach encourages the kernel to contain thin linear structures,

which intuitively correspond to the camera’s motion path.

Cho and Lee (2009) and Yuan et al. (2007b) use simple Gaussian priors to regularise

the kernel values, followed by thresholding such that most of the kernel elements are set

to zero.

2.2 Algorithms for Non-Blind Image Deblurring

When the PSF for a blurry image is known, the problem of estimating the sharp im-

age f is typically referred to as “non-blind” image restoration. This problem has also
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2 Background and Related Work

been studied for a long time, e.g. (Wiener, 1949). Many algorithms exist for non-blind

deblurring, perhaps most famously the Richardson-Lucy algorithm (Lucy, 1974; Richard-

son, 1972), which recovers the maximum-likelihood estimate of the sharp image under

a Poisson noise model. For a Gaussian noise model, the maximum-likelihood solu-

tion can be found using standard least-squares methods such as conjugate gradient de-

scent (Shewchuk, 1994), and for this reason, Gaussian noise has been favoured in the

recent literature. Much work has revolved around the incorporation of strong priors,

such as those described in Section 2.1.5, to suppress noise in the output while encourag-

ing realistic image features to appear. In theory, the image priors are independent of the

noise model used, so we can mix and match. In practice, particular authors have consid-

ered certain combinations. In general, maximum likelihood and maximum a posteriori

algorithms are used to estimate the latent image, as opposed to marginalisation algo-

rithms, and in this section we do not consider marginalisation approaches to non-blind

deblurring, although this is feasible, as mentioned later in Section 4.3.3.

2.2.1 Non-Blind Deblurring With Poisson Noise

One very popular algorithm for non-blind deblurring under a Poisson noise model is the

Richardson-Lucy algorithm (Lucy, 1974; Richardson, 1972). This algorithm has been

shown to converge to the maximum-likelihood solution under this noise model (Shepp

and Vardi, 1982). Variants of this algorithm have also appeared for general inversion and

matrix-factorisation problems (Lee and Seung, 2001). We can write the likelihood of the

blurry image g as a function of f as follows:

p(g|f) =
∏

i

g∗i
gie−g

∗

i

gi!
, where (2.29)

g∗i =
∑

j

Aijfj . (2.30)
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2.2 Algorithms for Non-Blind Image Deblurring

The negative log-likelihood is then:

Lpois =
∑

i

g∗i − gi log g
∗
i + log(gi!). (2.31)

As a maximum-likelihood algorithm, the Richardson-Lucy algorithm minimises Lpois

over f . The Karush-Kuhn-Tucker conditions for the minimum are, for all fj :

fj
∂

∂fj
Lpois = 0, (2.32)

and
∂

∂fj
Lpois ≥ 0 if fj = 0. (2.33)

The Richardson-Lucy update rule can be derived as a fixed-point iteration from the

condition in Equation (2.32):

fj
∑

i

∂

∂fj
(g∗i − gi log g

∗
i + log(gi!)) = 0 (2.34)

fj
∑

i

(

∂g∗i
∂fj

− gi
g∗i

∂g∗i
∂fj

)

= 0 (2.35)

fj
∑

i

Aij = fj
∑

i

Aij
gi
g∗i

, (2.36)

Assuming that the blur is conservative, i.e.
∑

iAij = 1, we obtain the update rule by

replacing the unknowns fj and g∗i with our estimates f̂j and (Af̂)i =
∑

j′ Aij′ f̂j′ , and

adding iteration indices:

f̂ t+1
j = f̂ t

j

∑

i

Aij
gi

(Af̂ t)i
, (2.37)

where t indexes the iteration. In matrix-vector form, this update equation is

f̂ t+1 = f̂ t ◦A⊤
( g

Af̂ t

)

, (2.38)
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where ◦ represents the Hadamard (element-wise) product and the fraction represents

element-wise division of two vectors. Note that the convergence of the Richardson-Lucy

algorithm can be improved significantly with acceleration schemes, such as that of Biggs

and Andrews (1997), however for simplicity we do not discuss these here.

Incorporating Image Priors

In the form in Equation (2.38), the Richardson-Lucy algorithm corresponds to a maximum-

likelihood algorithm, and as such noise is amplified in the deblurred result. The most

popular way of mitigating this problem is to stop the algorithm before it has converged,

typically after 20-50 iterations. This “early-stopping” technique is a form of regular-

isation, although it does not correspond to a probabilistic prior that can be written

down (Bishop, 2006). Probabilistic priors however can also be incorporated in the al-

gorithm by starting from the posterior p(f |g,A) = p(g|f ,A)p(f), which leads to the

following regularised update rule:

f̂ t+1 =
f̂ t

1− α∇ρf (f̂ t)
◦A⊤

( g

Af̂ t

)

, (2.39)

where α is the regularisation weight, and ∇ρf (f̂
t) is the vector of partial derivatives of

the regulariser ρf with respect to each latent pixel, evaluated at the current estimate f̂
t,

i.e.
(

∇ρf (f̂
t)
)

j
= ∂ρf

∂fj

∣

∣

∣

f=f̂ t
. Using this formulation, Tai et al. (2011) have investigated

the use of various types of regularisation with the Richardson-Lucy algorithm in detail.

Figure 2.5 shows a synthetic example of an image blurred and corrupted by Poisson

noise, along with the non-blind deblurring results using both the standard and regu-

larised Richardson-Lucy algorithm. Note that this method limits the magnitude of the

regularisation weight α, as the update vector may become negative if α is too large.

Welk (2010) avoids this limitation by splitting the regularisation gradient into positive

and negative contributions:

f̂ t+1 =
f̂ t

1− α[∇ρf (f̂ t)]−
◦
(

A⊤
( g

Af̂ t

)

+ α[∇ρf (f̂
t)]+

)

, (2.40)
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2.2 Algorithms for Non-Blind Image Deblurring

(a) Original image (b) Blurred with
shown kernel, and
Poisson noise added

(c) Deblurred with
Richardson-Lucy

(d) Deblurred with
regularised RL
(using prior from

(2.26) with

φ(x) = |x|0.8)

Figure 2.5. Non-blind deblurring with Poisson noise. In this synthetic example, the
original sharp image (a) is blurred and corrupted with Poisson noise to produce the degraded
image (b). The deblurred result (c) is produced using the Richardson-Lucy algorithm. Since no
regularisation is used, noise is amplified and artefacts appear in the deblurred result (e.g. the
vertical stripes to the right of the table). In the regularised Richardson-Lucy result (d), the noise
and artefacts are reduced, although some image features are also suppressed.

where [z]± =
1
2(z ± |z|). This update rule ensures that the non-negativity constraint on

f̂ is not violated, regardless of the value of α.

The Richarson-Lucy is an iterative algorithm and may require a large number of

iterations to converge. As an alternative method for quickly finding the MAP estimate

of the latent image with total-variation (TV) regularisation, Getreuer (2010) propose a

fast algorithm using a “split Bregman” method.

Yuan et al. (2008) propose a method for suppressing ringing artefacts in non-blind

deblurring.

2.2.2 Non-Blind Deblurring With Gaussian Noise

Many approaches to non-bind deblurring are based on an additive uniform Gaussian noise

model, rather than a Poisson noise model, since it is very amenable to optimization, and

is a realistic model in practice. For Gaussian noise, the likelihood is

p(g|f) = 1√
2πσ

∏

i

exp

(

(gi − g∗i )
2

2σ2

)

. (2.41)
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The negative log-likelihood is then

Lgauss = log
√
2πσ +

∑

i

(gi − g∗i )
2

2σ2
. (2.42)

Since ĝ is linear in the sharp image f , minimising Lgauss is a linear least-squares minimisa-

tion problem, which is convex and can be solved with almost any standard least-squares

algorithm, e.g. conjugate gradient descent. The solution to this problem, which is the

maximum-likelihood sharp image, can be written using the pseudo-inverse of A as

f̂ = (A⊤A)−1A⊤g (2.43)

One particular case of interest under a Gaussian noise model is that of spatially-

invariant blur, i.e. g∗ = a ∗ f . In this case, using Parseval’s theorem, Lgauss can be

transformed into N independent 1D quadratic minimisations in the frequency domain,

allowing the maximum-likelihood solution to be obtained directly by pixel-wise division

in the frequency domain (Gamelin, 2001):

f̂ = F−1
(F (a)∗ ◦ F (g)

F (a)∗ ◦ F (a)

)

. (2.44)

Incorporating Image Priors

The maximum-likelihood solution for Gaussian noise in non-blind deblurring is typically

very ill-conditioned. This is most clearly seen in Equation (2.44), where the denominator

is the power spectrum of the blur kernel a. If this power spectrum has some small or zero

values, those frequencies will be unstable and may be amplified in the solution. If the

observed image were noise-free and we had infinite computational precision available,

this would not be a problem, however in practice this solution is ill-conditioned. To

avoid this, most non-blind deblurring uses some form of regularisation to smooth the
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2.2 Algorithms for Non-Blind Image Deblurring

solution. The resulting regularised least-squares problem is

min
f
‖Af − g‖22 + αρf (f), (2.45)

where α is a weight that balances the data-fidelity term and the regularisation term.

The simplest form of regularisation to add to a Gaussian noise model is ℓ2 (Tykhonov)

regularisation directly on the elements of f , such that ρf (f) = ‖f‖22. This produces a cost
function which remains quadratic, and is thus straightforward to solve. Unfortunately,

in the case of image restoration, such a regulariser does not correspond to a realistic

prior for natural images.

Many authors have proposed algorithms to exploit the priors discussed in Sec-

tion 2.1.5 to regularise least-squares solutions, which amounts to adding a smoothness

penalty to the negative log likelihood. One of the most popular regularisers is derived

from the sparse gradient prior of Equation (2.26), which penalises the derivatives of the

deblurred image, which we write as the set of convolutions {d(q) ∗ f}. In this notation,
the set of filters {d(q)} = {dx,dy} are 1st order horizontal and vertical finite-difference
derivative filters. While it is possible to extend the regularisation to higher-order deriva-

tives dxx, dxy, dyy, etc. this is not generally done in practice. This kind of regularisation

can be written as ρf (f) = Φ
(

{d(q) ∗ f}
)

, where the function Φ penalises the derivatives

of the deblurred image. Using priors of the form in Equation (2.26), Φ has the form of a

sum of 1D functions of each derivative at each pixel: Φ({v(q)}) = ∑

q

∑

j φ(v
(q)
j ). Levin

et al. (2007) use φ(x) = |x|p with p = 0.8, and use iteratively-reweighted least squares

(IRLS) to minimise Equation (2.45) with this regulariser. This method involves solving

a series of weighted least-squares problems, e.g. using conjugate gradient descent (CG).

Although the minimisation problem is non-convex for p < 1, the algorithm typically

produces good results.

One problem with the IRLS method is that it typically takes a long time to run,

sometimes tens of minutes for a megapixel image, as the conjugate gradient descent must

be performed multiple times. To mitigate this, several authors have proposed to use so
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called “half-quadratic” optimisation schemes, whereby auxiliary variables are introduced

to represent the derivatives of the deblurred image, and an alternating minimisation

can be performed to obtain the deblurred result quickly (Geman and Yang, 1995). For

the sparse gradient prior, a pair of auxiliary images {v(q)} = {vx,vy} is introduced,
corresponding to the derivatives of f , and Equation (2.45) (where f is regularised directly)

is replaced with the following problem, wherein f is indirectly regularised via the auxiliary

variables:

min
f ,{v(q)}

‖Af − g‖22 + λ
∑

q

∥

∥d(q) ∗ f − v(q)
∥

∥

2

2
+ αΦ

(

{v(q)}
)

. (2.46)

For sufficiently large λ, this problem is approximately equal to the standard regularised

least squares problem in Equation (2.45) with ρf (f) = Φ
(

{d(q) ∗ f}
)

. The optimisation

alternates between solving for f while holding {v(q)} fixed, and vice versa, gradually

increasing λ. For fixed {v(q)}, the problem is quadratic in f (hence the name “half-

quadratic”), and for spatially-invariant blur can be solved directly in the frequency

domain:

f̂ = F−1
(

F (a)∗ ◦ F (g) + λ
∑

q F
(

d(q)
)∗ ◦ F

(

v(q)
)

F (a)∗ ◦ F (a) + λ
∑

q F
(

d(q)
)∗ ◦ F

(

d(q)
)

)

. (2.47)

Holding f fixed, each optimal v(q) can be found by 2N independent 1D minimisations

(1 for each pixel of each auxiliary image), of the form

min
v
(q)
j

λ
(

(d(q) ∗ f)j − v
(q)
j

)2
+ αφ

(

v
(q)
j

)

. (2.48)

For the hyper-Laplacian prior, where φ(x) = |x|p, Krishnan and Fergus (2009) demon-
strated analytic solutions to these minimisations for particular exponents p = 1

2 and

p = 2
3 , and showed how to use a lookup table to solve this problem quickly for arbitrary

exponents. Shan et al. (2008) also use the half-quadratic method for their piecewise prior

φ(x) = min(k |x| , ax2 + b). Using this choice for φ, Equation (2.48) can be minimised

separately for each piece of φ, before taking the minimum amongst them.
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2.2 Algorithms for Non-Blind Image Deblurring

(a) Original image (b) Blurred with
shown kernel, and
Gaussian noise with
σ = 2.5/256 added

(c) Levin et al.
(2007)

(d) Krishnan and
Fergus (2009)

Figure 2.6. Non-blind deblurring with Gaussian noise. In this synthetic example, the
original sharp image (a) is blurred and corrupted with Gaussian noise to produce the degraded
image (b). The deblurred results are produced using the algorithms of (c) Levin et al. (2007),
and (d) Krishnan and Fergus (2009).

In a related approach, Wang et al. (2008) use the half-quadratic method to apply to-

tal variation regularisation to the deblurring problem, where Φ({v(q)}) does not penalise
each derivative independently but couples them such that Φ({v(q)}) = ∑

j

√

vxj
2 + vyj

2
.

In this case, the optimal {v(q)} are found as the solutions of N independent 2D min-

imisations, and can still be found in closed-form. Recently, Zoran and Weiss (2011)

have applied the half-quadratic method with a regulariser that models the statistics of

small patches of the image rather than the derivatives. Several authors have investi-

gated variants of these split-variable approaches, and accelerated algorithms for solving

them (Afonso et al., 2010; Osher et al., 2011).

2.2.3 Non-Blind Deblurring With Other Noise Models

As seen in previous sections, the data fidelity term used for non-blind deblurring can

be derived as the negative log-likelihood for a particular noise distribution. However,

when the appropriate noise model is not known a priori , or there are outliers to the

real noise distribution in the blurry image, artefacts can appear in the deblurred image.

In pursuit of deblurring algorithms that are robust against such problems other authors

have proposed algorithms using robust data terms. These data fidelity terms reduce

the risk of over-penalising a large data fidelity error. For examples, Xu and Jia (2010)
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use an ℓ1 data term in non-blind deblurring to be robust to non-Gaussian noise, with

TV regularisation, while Welk (2010) proposes a robust version of the Richardson-Lucy

algorithm.

2.3 Algorithms for Blind PSF Estimation

In general, the PSF for a blurry image may not be known. For some causes of blur,

e.g. optical aberrations, the parameters may be estimated once per camera, however for

others such as camera shake, the PSF is unique to each image and must be estimated

on a per-image basis. “Blind” estimation of the PSF parameters directly from images

has a long history, including methods based on entropy maximisation (Gull and Skilling,

1984), iterative projection on convex sets (Ayers and Dainty, 1988), and modification

of the Richardson-Lucy algorithm (Fish et al., 1995). The particular task of deblur-

ring “shaken” images has received considerable attention recently. Fergus et al. (2006)

proposed the first robust algorithm for blind estimation of a camera shake blur kernel di-

rectly from a single blurry image, using an approximate marginalisation approach based

on the method of Miskin and MacKay (2000) (also closely related to the more general

blind deblurring algorithm of Molina et al. (2006)). Shan et al. (2008) and Cho and Lee

(2009) subsequently proposed maximum a posteriori (MAP) type algorithms capable

of tackling this difficult problem in a much shorter amount of time. Several authors

have also proposed similar MAP-type algorithms (Cai et al., 2009; Gupta et al., 2010;

Krishnan et al., 2011; Xu and Jia, 2010), while most recently Levin et al. (2011) propose

a more efficient formulation of the marginalisation approach.

While non-blind deblurring may be posed as a convex problem, or at least a well-

conditioned one, the problem of finding the sharp image and PSF that best reconstruct

the observed image is in general ill-posed, since we have more unknowns than equations.

In fact, for a given blurry image g, there are an infinite number of sharp image / PSF

pairs that can reconstruct g equally well, as demonstrated in Figure 2.7. To obtain a

useful solution, it is necessary to add some regularisation and/or constraints on both the
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2.3 Algorithms for Blind PSF Estimation

(a) A blurry image (b) A feasible PSF &
sharp image for (a)

(c) A feasible PSF &
sharp image for (a)

(d) The true PSF &
sharp image for (a)

Figure 2.7. Infinite solutions to the blind deblurring problem. Given a blurry image (a),
there are an infinite number of possible PSFs and sharp images (b), (c), (d) that could have
produced the blurry image. It is particularly challenging to find the correct solution amongst all
these possible solutions, and strong priors on both the sharp image and PSF are required.

sharp image and the PSF.

For now, we will assume that the blur is spatially-invariant, such that the PSF A is

parameterised by the single convolution kernel a.

2.3.1 Single-Image PSF Estimation

As discussed in Section 2.1.5, good priors for f and a are necessary for blind deblurring to

be successful, so approaches to single-image PSF estimation generally take the posterior

distribution for f and a as their starting point:

p(f ,a|g) ∝ p(g|f ,a)p(f)p(a), (2.49)

where the likelihood is derived from an assumption of uniform Gaussian noise, as dis-

cussed in Section 2.1.4:

p(g|f ,a) ∝
∏

i

exp

(

−((a ∗ f)i − gi)
2

2σ2

)

, (2.50)

where σ is the standard deviation of the noise, and the priors p(f) and p(a) may be taken

from those discussed in Figure 2.3. Given this posterior, two options for estimating a are

to (a) marginalise out f and find the expected value of a under p(a|g), or (b) attempt
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(a) Blurry image (b) Marginalisation
algorithm of Fergus et al.

(2006)

(c) MAP algorithm of Cho
and Lee (2009)

Figure 2.8. An example of blind deblurring by marginalisation or MAP algorithms.
For the blurry image (a), the single-image deblurring algorithms of Fergus et al. (2006) and Cho
and Lee (2009) estimate a convolution kernel, and subsequently deblur the image using a non-
blind deconvolution algorithm, such as Richardson-Lucy. For this image the results produced by
the marginalisation approach of Fergus et al. and the MAP approach of Cho and Lee produce
similar results.

to find the values of f and a that jointly maximise p(f ,a|g). In this section we will

review two popular approaches to blind PSF estimation, which follow these two broad

directions. Figure 2.8 demonstrates an example result deblurring an image with these

two algorithms.

2.3.2 The Marginalisation Approach

Fergus et al. (2006) proposed a marginalisation-based algorithm for blind deconvolution

of a single image, blurred by camera shake. The algorithm is based on the variational

inference approach of Miskin and MacKay (2000), originally designed for simultaneous

deblurring and source separation of cartoon images.

The algorithm proposed by Miskin and MacKay (2000) attempts to approximate the

posterior distribution for both the kernel and the sharp image p(f ,a|g) by a simpler,

factorised distribution. The factorised form of this distribution means that it is straight-

forward to marginalise out the sharp image f and find the expected value of a. Fergus

et al. (2006) successfully adapted this algorithm to the removal of camera shake blur

from photographs by applying it in the gradient domain, within a multiscale framework.

36



2.3 Algorithms for Blind PSF Estimation

By working in the gradient domain, the latent variable fj for the intensity of a pixel

is replaced by the x and y derivatives fx
j and fy

j at that pixel, which are treated as

separate variables. They use the mixture of exponentials prior on the kernel described

in Equation (2.27), and the mixture of Gaussians prior from Equation (2.25) on the

sharp image. For simplicity, within the context of this algorithm, we use f∂ to denote

the concatenation of the derivative images fx and fy, and use j to index over this, i.e.

j ∈ {1, . . . , 2N}. Finally, to free the user from manually tuning the noise variance σ2,

the inverse variance βσ = σ−2 is also considered as a latent variable.

Following Miskin and MacKay (2000), we denote the set of latent variables f∂ , a,

and βσ as the “ensemble” Θ. The aim is to find the factorised distribution

q(Θ) = q(βσ)
∏

j

q(f∂
j )

∏

k

q(ak) (2.51)

that best approximates the true posterior p(Θ|g). Note that in this context, the latent
image pixels f∂

j , kernel elements ak, and noise precision βσ are random variables. Since

the distribution is factorised, the posterior for a, p(a|g) is approximated simply by

q(a). Thus, having found the optimal q(Θ), the expected value of a under q(a) is

taken to be the optimal blur kernel, i.e., â = 〈a〉q(a). Since q(a) is itself factorised,

i.e. q(a) =
∏

k q(ak), this expectation is generally trivial to compute. Fergus et al.

discard the latent image distribution q(f) and estimate the sharp image using a non-

blind deblurring algorithm (although as shown in Figure 4.2 (d), 〈f〉q(f) does in fact

provide a useful estimate of the sharp image).

To find the optimal q(Θ), Miskin and MacKay minimise the following functional

(Miskin and MacKay, 2000, Eqn. (10)) over both the form and the parameters of q(Θ):

CKL =

∫

q(Θ)

[

ln
q(Θ)

p(Θ)
− ln p(g|Θ)

]

dΘ. (2.52)

Minimising this functional is equivalent to minimising the Kullback-Leibler divergence

between the posterior and the approximating distribution (Bishop, 2006), and this is
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tackled by first using the calculus of variations to derive the optimal forms of q(f∂
j ),

q(ak) and q(βσ), then iteratively optimising their parameters. We omit a complete

explanation of the details of the optimisation, however the main feature of the iterative

process is as follows: Each distribution, for example q(ak), is parameterised by two

sufficient statistics, which we will denote a
(1)
k and a

(2)
k , essentially a mean and variance

for ak. Miskin and MacKay (2000) first derive equations for the optimal values of every

unknown (i.e. a
(1)
k , a

(2)
k , f

(1)
k , f

(2)
k , etc.) in terms of the other unknowns. By applying

these optimality conditions as fixed-point update rules, Miskin and MacKay (2000) aim

to decrease the Kullback-Leibler divergence between the true and approximate posterior.

2.3.3 The Maximum a Posteriori Approach

In contrast to the marginalisation approach of the previous section, several authors have

proposed algorithms which estimate a convolution kernel a by maximising the posterior

p(f ,a|g) (Cai et al., 2009; Cho and Lee, 2009; Shan et al., 2008; Xu and Jia, 2010). These
maximum a posteriori (MAP) approaches vary in the priors they use, but generally follow

the same structure, alternating between estimating a and f and proceeding from coarse

to fine in a multi-scale framework.

Updating the blur kernel

Cho and Lee (2009) propose a method of kernel estimation which uses simple Gaussian

priors on the kernel elements. Simply optimising a using this simple prior would almost

certainly fail to produce a reasonable result, since it is not realistic. However, the

introduction of non-linear filtering and thresholding steps into the process encourages

the algorithm to find a latent image with sparse gradients and a blur kernel with sparse

non-zero elements, such as discussed in Section 2.1.5.

To update the kernel, Cho and Lee (2009) first filter the current estimate f̂ of the

sharp image to predict step edges. A bilateral filter (Tomasi and Manduchi, 1998) is

applied to denoise the image, followed by a shock filter (Osher and Rudin, 1990) to

enhance sharp edges, producing an image f̂ ′. The derivatives dx ∗ f̂ ′ and dy ∗ f̂ ′ of this
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filtered image are then computed. Finally, these derivatives are thresholded to produce

sparse derivatives maps px and py. The threshold is chosen so as to retain only a small

number of non-zero entries, while ensuring that sufficient non-zeros are retained from all

edge orientations.

Having predicted and retained salient sharp edges from the latent image, the set

of sparse derivatives maps is augmented with higher order derivatives to form the set

{p(q)} = {px,py,dx ∗ px, 12(d
x ∗ py + dy ∗ px),dy ∗ py}, and used to estimate the blur

kernel by solving

min
a

∑

q

ωq‖a ∗ p(q) − d(q) ∗ g‖22 + β‖a‖22, (2.53)

where d(q) ∈ {dx,dy,dxx,dxy,dyy}, β is a weight for the Tykhonov regularisation, and

the weights ωq weight each partial derivative. This is simply a linear least squares

problem, which can be solved directly in the frequency domain, analogously to Equa-

tion (2.47):

â = F−1
(

∑

q wqF
(

p(q)
)∗ ◦ F

(

g(q)
)

∑

q wqF
(

p(q)
)∗ ◦ F

(

p(q)
)

+ β

)

. (2.54)

Having found the kernel â which minimises Equation (2.53), the values are thresholded,

such that any element whose value is smaller than 1
20 the largest element’s value is set

to zero. This encourages sparsity in the kernel, and ensures that all the elements are

positive.

Xu and Jia (2010) take essentially the same approach to kernel estimation as Cho and

Lee (2009), with the addition of an extra filtering step aimed at suppressing unhelpful

non-zeros in the sparse derivative maps {px,py}. Xu and Jia show that non-zeros in px

and py that arise from narrow peaks in the image (as opposed to step edges) actually

reduce the quality of the estimated kernel, and as such should be removed before solving

Equation (2.53).

In a contrasting approach, Shan et al. (2008) do not perform any image filtering, and
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replace the Tykhonov regularisation in Equation (2.53) with ℓ1 regularisation, solving

min
a

∑

q

ωq‖a ∗ d(q) ∗ f̂ − d(q) ∗ g‖22 + β ‖a‖1 . (2.55)

Here, instead of the Tykhonov regularisation used by Cho and Lee, ℓ1 regularisation is

used, corresponding to an exponential prior and encouraging sparsity directly. Using

this regulariser however, precludes direct minimisation in the frequency domain, and

Shan et al. use an interior point method (Kim et al., 2007) to solve Equation (2.55).

Updating the latent image

In order to update the latent image, the current estimate of the blur kernel â is used to

deconvolve the blurry image and obtain an improved estimate of the sharp image. Cho

and Lee (2009) do this by solving

min
f

∑

q

ωq‖â ∗ d(q) ∗ f − d(q) ∗ g‖22 + α‖dx ∗ f‖22 + α‖dy ∗ f‖22, (2.56)

where α is a regularisation weight, and now, the partial derivatives include the zeroth

order: d(q) ∈ {1,dx,dy,dxx,dxy,dyy}. Note that in this problem, the data term involves

higher-order derivatives of the image, although the regularisation does not. This is solved

in closed-form by pixel-wise division in the frequency domain. Shan et al. (2008) update

the latent image using their non-blind deblurring algorithm mentioned in Section 2.2.2,

which uses a sparsity prior on the image gradients. Xu and Jia (2010) choose to add

ℓ2 regularisation that encourages the latent image gradients to be close to the sparse

derivative maps {p(q)} predicted from the previous iteration:

min
f

∑

q

ωq‖â ∗ d(q) ∗ f − d(q) ∗ g‖22 + α‖dx ∗ f − px‖22 + α‖dy ∗ f − py‖22. (2.57)

This reduces the problem of over-smoothing caused by the ℓ2 regularisation, since sharp

edges are encouraged to appear where they exist in {p(q)}, while still permitting closed-
form minimisation in the frequency domain.
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As shown by Shan et al. (2008), the appropriate values for the relative weights of the

different orders of partial derivatives are ωq =
1

2κ(q)
ω0, where κ(q) denotes the order of

derivative dq.

These steps are applied iteratively, working from coarse to fine in a multi-scale frame-

work. The iterative process generally converges quickly at each scale, and 5-7 iterations

are typically sufficient.

Clearly the effectiveness of the MAP approach is not dependent on the exact priors

used to regularise the least-squares estimation steps, since Cho and Lee (2009) use very

weak Gaussian priors. However, what is important is that sharp edges are encouraged to

appear in the latent image, and that the kernel is encouraged to be sparse. While Shan

et al. (2008) do indeed achieve this using regularisation, Cho and Lee (2009) avoid the

costly optimisation problems and achieve the same aim instead with simple non-linear

filtering and thresholding steps.

Recently, Levin et al. (2009) have analysed the differences between the marginalisa-

tion and MAP approaches to blind deblurring, and conclude that in order to estimate

the PSF, it is advantageous to marginalise over the sharp image f , while maximising over

the kernel a. In a subsequent work, Levin et al. (2011) propose an algorithm which does

this explicitly, maximising the posterior for the kernel alone p(a|g), which is obtained

by marginalising over the unknown sharp image f , i.e. p(a|g) =
∫

p(a, f |g) df . To do

this, Levin et al. (2011) adopt a strategy that is similar in spirit to the marginalisation

algorithm of Fergus et al. (2006), described in the previous section.

2.3.4 Deblurring With Noisy / Blurry Image Pairs

Yuan et al. (2007b) proposed a method for blind deblurring where, in addition to a blurry

image g, a sharp but noisy image fN of the same scene is also available. The motivation

for this is that in low light, blurry images occur at long shutter speeds, however it is

often also possible to use a short exposure at a high ISO setting to obtain a sharp but

noisy image of the same scene. While the noisy image may be degraded too badly to

allow the direct recovery of a good sharp image by denoising, it can initially be used as a
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proxy for the sharp image, allowing us to estimate the PSF. Following this, with the PSF

fixed, the noisy image can also be used to improve the final non-blind deconvolution step,

using a modified version of the Richardson-Lucy algorithm, which uses fN to suppress

ringing artefacts in the result.

In order to estimate the blur kernel, Yuan et al. (2007b) solve

min
a
‖a ∗ fN − g‖22 + β ‖a‖22 . (2.58)

Having estimated the PSF, Yuan et al. propose several modifications to the Richardson-

Lucy (RL) algorithm to perform the non-blind deblurring, which take advantage of the

fact that it is possible to recover much of the low-frequency content of f from a denoised

version of fN . Images deblurred with the standard RL algorithm often exhibit “ringing”

artefacts – low-frequency ripples spreading across the image, such as in Figure 2.9 (c)

– but using the denoised image it is possible to disambiguate the true low frequencies

from these artefacts, and largely remove them from the result. Doing this significantly

improves the deblurred results compared to the standard RL algorithm. We refer the

reader to (Yuan et al., 2007b) for full details of the augmented RL algorithm. Figure 2.9

shows an example result deblurred using this approach.

2.4 Modelling Spatially-Variant Blur

Until this point, we have only considered spatially-invariant blur, where the image for-

mation model in Equation (3.13) can be written as a 2D convolution. In most of the

work mentioned above, and in general through the deblurring literature, convolution is

used as a simple model for image blur. In general however, the blur in an image may

be spatially-variant, and the matrix A will contain a different PSF for each pixel of the

image. Figure 2.10 shows an example of spatially-variant blur due to camera shake.

For real images of more than a few hundred pixels across, it is not practical to

compute and store every element of the large matrix A explicitly, and instead a more

compact parameterisation of the matrix is required. For spatially-invariant blur, such a
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(a) Blurry image (b) Noisy image (c) Deblurred using
Richardson-Lucy

algorithm

(d) Estimated blur
kernel and
Yuan et al.’s

deblurred result

Figure 2.9. An example result of the algorithm of Yuan et al. (2007b). Using a blurry
image (a) and a noisy image (b) as inputs, Yuan et al. (2007b) estimate a spatially-invariant
blur kernel (shown in (d)). Performing non-blind deconvolution using the standard Richardson-
Lucy algorithm produces a deblurred image (c) containing visible ringing artefacts. Yuan et al.
(2007b) propose several modifications to the Richardson-Lucy algorithm, using the noisy image
as a guide to produce a deblurred image (d) free from ringing.

parameterisation comes in the form of a convolution kernel. For spatially-variant blur,

recent work has investigated analogous parameterisations of the matrix A (a notable ex-

ception is the work of Seitz and Baker (2009), who attempt to estimate the elements of

A itself, with no underlying parameterisation). The first distinction to draw is between

spatially-variant blur caused by moving objects in the scene, and that caused by the

image capture process. When the blur is caused by moving objects, the spatial-variance

is largely due to the fact that different objects move differently, and the blur changes

abruptly at object boundaries. Within each object, simple linear blurs are often as-

sumed (Chakrabarti et al., 2010; Cho et al., 2007; Levin, 2006), such that the matrix A

is parameterised by a line segment representing the blur, and a segmentation delineating

the object.

When the blur is caused by the image capture process, rather than scene motion, the

blur is more likely to vary smoothly across the image. Previous approaches to modelling

this kind of blur can largely be divided into two categories: global models, which use a
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(a) An image blurred by camera shake (b) Details from
the blurry image

Figure 2.10. An example of spatially-variant blur due to camera shake. This real hand-
held image exhibits a blur due to camera shake which is spatially-variant. This can be seen in
the close-ups (b).

single set of parameters to describe the blur at all points in the image, and local models,

which divide the image into a set of regions and use a separate set of blur parameters

for each region. Although in this thesis we are concerned with blur caused by camera

motion, we note that models for spatially-variant blur caused by optical aberrations of

the camera have also recently been proposed by (Kee et al., 2011; Schuler et al., 2011).

2.4.1 Global Models

On of the contributions of this thesis (see Chapter 3) is to propose a model for spatailly-

varying camera shake blur. Concurrently with this work, several models have been

proposed to parameterise spatially-variant blur caused by unconstrained camera mo-

tion (Gupta et al., 2010; Joshi et al., 2010; Tai et al., 2011). These approaches are

derived from the relationship between motion of the camera and transformations of the

sharp image. The general form of these models is

g∗ =

K
∑

k=1

wkT
(k)f , (2.59)
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where each matrix T(k) applies some transformation to the sharp image, which then

contributes to the blurry image with a weight wk. In this case, the weights (which we

concatenate into the K element vector w) provide the compact parameterisation of the

PSF.

The models proposed by various authors vary in their choice of the set of image

transformations {T(k)}. Joshi et al. (2010) model the image motion using homographies
which correspond to a planar scene. These homographies are parameterised by the pose

of the camera, which is recorded using inertial measurement sensors attached to the

camera. Tai et al. (2011) also model the image motion using homographies, although

without constraining them to correspond to scene planes or camera rotations. In this

case, the homographies are estimated by applying optical flow to the output of a second,

high-speed camera attached to the main camera. Both Joshi et al. (2010) and Tai et

al. (2011) apply their models only to non-blind deblurring, where the parameters w

are estimated using additional hardware attached to the camera. Gupta et al. (2010)

propose to use the set of image-plane translations and rotations, and estimate the weights

w directly from the blurry image, i.e. in a blind deblurring setting.

While the models described above are largely agnostic of the scene content, Šorel

and Flusser (2008) tackled simultaneous blind deblurring and depth map estimation

from multiple blurry images. Global models of spatially-variant blur have been also

applied under various constrained motion models (Klein and Drummond, 2005; Sawchuk,

1974; Shan et al., 2007; Tai et al., 2010a), and although global descriptors are used to

parameterise these continuously-varying blurs, the constraints are often restrictive.

In Chapter 3 we propose a global model for camera shake blur with the form in

Equation (2.59). Our method is distinguished from previous approaches by its foundation

in the geometry of camera rotations, which provides a minimal parameterisation of the

blur while remaining accurate at all possible camera settings.
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2.4.2 Local Models

An alternative method for parameterising a spatially-variant blur matrix A is to assume

that instead of each pixel having a unique PSF, nearby pixels can (approximately) share

a single PSF. In this way, a spatially-variant blur can be parameterised using only a

small number of convolution kernels, each assigned to a different region of the image. In

contrast to “global” models such as those mentioned above, which use a complex motion

model and a single set of parameters to describe the blur at every point in the image,

these approaches are local, using a simple motion model but separate sets of parameters

for each region in the image. Much previous work has relied on this idea, modelling the

blur as being locally uniform (Hirsch et al., 2010; Nagy and O’Leary, 1998; Tai et al.,

2010b; Vio et al., 2005).

The two general forms for these local models are

g∗ =
P
∑

r=1

m(r) ◦ (a(r) ∗ f) (2.60)

g∗ =
P
∑

r=1

a(r) ∗ (m(r) ◦ f), (2.61)

where the blur within each region r is modelled using the convolution filter a(r) and a

windowing function m(r). The windowing functions m(r) are usually fixed manually in

advance, and the set of kernels {a(r)} parameterises the PSF. In the first form, m(r)

controls the region of influence of the filter a(r) (i.e. which parts of the blurry image are

affected by the filter a(r)), while in the second form,m(r) controls its region of dependence

(i.e. which parts of the sharp image are blurred with the filter a(r)). This locally-uniform

method has proven to be powerful enough to model complex spatially-variant blur with

reasonable accuracy, while enjoying computational advantages over global models, since

the FFT can be used to compute the convolutions efficiently. In both cases, the windows

m(r) are typically chosen to sum to unity everywhere, i.e.
∑

r m
(r) = 1, to ensure that

the blur is conservative.

Nagy and O’Leary (1998) consider local blur models of the form in Equation (2.60),
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using either rectangular or triangular regions, for both the case where the regions are

disjoint, and where they overlap. Tai et al. (2010b) also adopt a spatially-variant blur

model of the form in Equation (2.60). However, instead of fixing the regions of influence

m(r) and estimating the local kernels a(r) which best fit the observed blur, they fix the

kernels a(r) using a pre-determined basis, and estimate the regions of influence m(r)

which best reconstruct the observed blur.

Hirsch et al. (2010) propose a model of the form in Equation (2.61), using a coarse

grid of overlapping rectangular regions to cover the image. They propose to use the

Bartlett-Hann window as m(r) for each region r. This gives a smooth fall-off from one

region to the next, allowing the blur to vary smoothly across the image, instead of

changing abruptly at region boundaries. The fact that each rectangular region is small

and has a spatially-invariant blur allows the forward mode to be computed using P small

convolutions. To take advantage of the small support of each region, it is possible to

define a matrix C(r) to crop out the rth rectangular region, and re-write the forward

model in (2.61) as

g∗ =
P
∑

r=1

C(r)⊤
(

a(r) ∗ (m ◦C(r)f)
)

. (2.62)

Here, all regions use the same Bartlett-Hann windowing function m, and we note that

the matrix C(r)⊤ re-inserts the rth region at its correct location. This model can be

computed efficiently in the frequency domain:

g∗ =

P
∑

r=1

C(r)⊤F−1
(

F
(

a(r)
)

◦ F
(

m ◦C(r)f
)

)

, (2.63)

where F ( · ) takes the 2D discrete Fourier transform (computed using the fast Fourier

transform), and F−1 ( · ) the inverse Fourier transform.

This region-based approach to convolution was originally proposed by Stockham, Jr.

(1966), as a means of computing spatially-invariant convolutions and correlations more

efficiently. When the filters are all identical, i.e. a(r) = a for all r and have small support,
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then the following equality holds exactly:

P
∑

r=1

C(r)⊤
(

a ∗ (m ◦C(r)f)
)

= a ∗ f . (2.64)

The two main advantages of computing a spatially-invariant convolution in sections is

that the entire input signal f does not all need to be stored in memory at once, and that it

is cheaper to compute several small FFTs than to compute one large FFT. The FFT has

computational complexity O
(

N logN
)

for a signal of length N , and thus computing two

FFTs of size N/2 has complexity O
(

2N/2 logN/2
)

= O
(

N logN/2
)

. This advantage in

speed also holds true for the spatially-variant case, allowing spatially-variant blur to be

computed in a similar amount of time as spatially-invariant blur.

Say how the priors used on spatially-invariant kernels a can sometimes apply to the

spatially-variant parameterisation.

2.5 Inpainting

The task of replacing missing or undesirable pixels in an image is known as “inpainting”

(Bertalmı́o et al., 2000), or sometimes “image completion” or “scene completion”. When

we are concerned with replacing missing or deleted pixels in an image, the restoration

problem is quite different from deblurring, where all of the latent pixels are, in some

sense, observed. Here, the missing latent pixels are completely decoupled from the

observed image, and so cannot be recovered at all using maximum-likelihood techniques

which estimate the latent image from the data alone. Instead, we require informative

priors on the latent image.

In the problem of inpainting, we are generally not concerned with blur, so the PSF

is simpyl the identity, i.e. A = I. The occlusion / corruption that we wish to replace is

modelled as noise with a uniform distribution, and the other observed pixels are assumed

to be noiseless, i.e. exactly equal to their counterparts in the latent image. We refer to

the unknown / corrupted region to be filled as the target region, and denote this by the
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Figure 2.11. The inpainting problem. This image shows the notation for the inpainting
problem. The known region of the images is denoted byM, while the unknown target region is
denoted by Ψ. The pixels in Ψ that lie along the boundary withM are denote by δΨ.

set Ψ, such that gi ∼ Unif(0, 256) for i ∈ Ψ. The known / good region is denoted by the
setM, and with no noise, we have fM = gM, as shown in Figure 2.11. The pixels in Ψ

which lie along the boundary withM are denoted by δΨ. In a probabilistic formulation,

the likelihood here provides no information about the unknown pixels fΨ, as they are

decoupled from the known pixels inM. Thus we require some prior information about

the latent image before we can begin to replace the missing pixels.

Previous work on the problem of inpainting is diverse, varying significantly according

to the size of the region to be filled, the content of the image surrounding it, and the

amount of user interaction required.

Early work on the problem relied on the notion that the latent image should be-

long to certain convex sets. If projection operators P for these sets are available, then

identities of the form f = Pf can be used to derive inpainting algorithms which find a
solution which lies in the intersection of all the sets. Ferreira and Pinho (1994) used

this approach to solve the inpainting problem as interpolation of a band-limited sig-

nal, and proposed an algorithm of this type capable of filling small holes, while (Hirani

and Totsuka, 1996) proposed a projection-based method capable of filling a textured

region containing straight-line edge structures, by constraining the power spectrum of

the region to match a manually-selected reference region.

The problem of filling small regions has generally been approached using local models
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of images, i.e. models which account for the behaviour of images in areas a few pixels

across. Bertalmı́o et al. (2000) approached the problem using the equations of fluid

dynamics, following the intuition that lines of constant colour (isophotes) should continue

into the region to be filled and connect smoothly within it. Their algorithm iteratively

propagates colour into the target region from around the boundary, leading to a smooth

continuation of colours.Recent work has focussed on the use of learnt priors on the

statistics of local patches (Mairal et al., 2008; Roth and Black, 2005; Zoran and Weiss,

2011). The strength of these approaches is that the local structure in natural images

is reasonably predictable, such that a pixels’ value is closely related to its neighbours’

values. The general form for these approaches is essentially a MAP problem with no

data fidelity term (since the observed pixels contain no information about the missing

pixels):

min
f

− log p(f) (2.65)

In this formulation the unknown pixels are decoupled from the observed pixels in the

PSF. The priors provide this coupling, and essentially provide a way of producing statis-

tically probable (and thus hopefully convincing) hallucinations for the filled pixels. By

looking at the pixels around the missing region, the priors are able to “suggest” likely

content in the region.

Except in some cases, these local approaches fail when the region is larger than a

few pixels across. When the pixels in the middle of the region are remote from those

at the edge, it is no longer possible to infer their likely content from the surrounding

pixels. One exception is when filling a region with homogeneous texture, for which a

local texture synthesis algorithm can be applied (Efros and Leung, 1999).

When filling a region with large-scale structures however, purely-local methods fail

to capture both the structure and the fine-scale texture. To cope with this, subsequent

work has considered combining texture synthesis methods with higher-level structural

information about strong edges inside the region. This structural information is either
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inferred from the surrounding image (Bertalmı́o et al., 2003; Criminisi et al., 2003; Jia

and Tang, 2003), or manually provided by the user (Sun et al., 2005). In all these works,

the texture synthesis algorithm replaces individual pixels or patches one at a time,

selecting a pixel (or patch) from δΨ using some criteria, then replacing it. By combining

texture synthesis with information about the large-scale content of the region, more

complex image content can be produced. However, these algorithms are still constrained

to draw their information from the image itself, or from simple manually-input guides.

Thus there is a limit to the kind of regions they can reconstruct.

While methods of texture-synthesis and edge-continuation aim to hallucinate realistic

low-level details of an image and simple structures, a separate line of work has inves-

tigated synthesising images from multiple input images of the same scene. (Agarwala

et al., 2004; Rasmussen and Korah, 2005; Wilczkowiak et al., 2005) propose methods for

combining multiple images, captured in quick succession by the same camera. An inte-

gral component of these methods is “Poisson blending” (Pérez et al., 2003), a method for

seamlessly stitching together regions from different images without introducing visible

boundaries.

On the other hand, there has been significant interest recently in organising, visu-

alising, and searching the growing number of images available in online photo collec-

tions (Chum et al., 2007; Jégou et al., 2008; Philbin et al., 2007; Snavely et al., 2006).

For popular locations, several authors have demonstrated that there exist sufficient im-

ages to perform accurate 3D reconstructions (Furukawa et al., 2010; Goesele et al., 2007)

and 3D scene visualisations (Shahrokni et al., 2008). Hays and Efros (2007) first pro-

posed to exploit this abundance of information to perform inpainting, using a large photo

collection retrieved from the Internet to remove large objects from photographs. Their

algorithm finds images with similar semantic content to that being restored, and directly

copies the contents into the target image using Poisson blending. While the results are

often convincing, they do not necessarily correspond to the true underlying scene, since

the source images may depict an entirely different part of the world. Garg et al. (2009)

also demonstrated the use of online photo collections for inpainting, by performing a
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dense 3D reconstruction of the scene and learning an appearance model for its surface.

These approaches to inpainting can be distinguished from the approaches discussed

above by their use of direct exemplars, as opposed to statistical priors on the local

behaviour of natural images. This idea goes back at least to Hirani and Totsuka (1996),

who require the user to select a “reference” patch, which is then used as a constraint to

ensure that the filled region of the latent image to has a similar spectrum to the reference

region.

In Chapter 7 we propose a system which builds on this work, by retrieving reference

images of the same scene as the image to be restored. We replace the occluded region us-

ing these exemplars, without an explicit 3D reconstruction of the scene or any knowledge

of the camera positions. As opposed to filling the missing region with content synthe-

sised from statistical information or semantically similar scenes, we use these reference

images to produce a realistic output that corresponds to the true occluded scene.
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Chapter 3

Modelling Spatially-Variant Camera Shake

Blur

3.1 Introduction

Everybody is familiar with camera shake, since the resulting blur spoils many photos

taken in low-light conditions. Often in such conditions, the shutter speed selected by the

camera is slow, and unless the photographer is able to hold the camera perfectly still,

the camera’s motion causes the photograph to be blurry. While significant progress has

been made recently towards removing such blur from images, most approaches to this

problem assume that the blurred image can be modelled as the 2D convolution of a sharp

image with a spatially-invariant filter (Chan and Wong, 1998; Fergus et al., 2006; Shan

et al., 2007; Yuan et al., 2007b), as discussed in Section 2.3. However, real camera shake

does not, in general, cause such spatially-invariant blur (Levin et al., 2009). Figure 3.1

shows an example of a typical spatially-variant blur caused by camera shake.

In this chapter we propose a geometrically motivated model of spatially-variant image

blur due to camera shake. We develop a global descriptor for such blur, analogous to

a convolution kernel, and demonstrate its ability to model a more general class of blurs

than previous approaches, including spatially-invariant blur as a special case. In this

53



3 Modelling Spatially-Variant Camera Shake Blur

chapter, we limit our scope to describing and discussing the model itself. We defer the

application of the model to the following and later chapters.

We begin by considering the relative blurring effect of different camera motions, and

deriving a geometric model for camera shake in Section 3.2. In Section 3.3 we develop

this into a practical model for deblurring real images, and provide a comparison to other

related models proposed recently. We conclude in Section 3.4.

3.2 A Geometric Model for Camera Shake

When we say that a photograph is blurry due to camera shake, it is generally understood

that the camera moved during the exposure, and that this motion is to blame for the

blur. More precisely, while the shutter is open the camera passes through a sequence of

different poses, each of which gives a different view of the scene. The sensor accumulates

all of these views, summing them up to form the recorded image. Intuitively, summing

up many different views of a scene will result in a blurry image, and the more the views

differ, the larger the blur will be. However, a camera may move in several different ways,

and it is not necessarily obvious which kinds of motion cause large changes in the view

(and hence a large blur), and which cause relatively small changes. Furthermore, even if

the camera’s motion is fully known for a given photograph, we need a model to translate

this physical 3D motion into image-domain motion before we can begin to deblur the

photograph.

In this section we address the challenges mentioned above. We examine the causes

of camera shake blur, and derive a geometric model for the process, which fits into the

linear degradation model presented in the previous chapter. In this work we limit our

scope to photographs of static scenes, i.e. the blur is solely due to the motion of the

camera.
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3.2 A Geometric Model for Camera Shake

3.2.1 Components of Camera Motion

To begin our discussion of camera motion, we note that the pose of a camera incorpo-

rates two components: position and orientation. Intuitively, the position tells us where

the camera is, while the orientation tells us which way it is pointing. Both of these

components may vary while the camera’s shutter is open. In this section, we discuss the

contribution of each component to the image blur, and conclude that in most cases of

camera shake, the changes in orientation (rotation) of the camera during exposure have

a significantly larger blurring effect than the changes in position (translation).

Consider the simplified case shown in Figure 3.2 of a scene point P , at a distance

D from the camera, being imaged at the centre of the camera’s retina / sensor. During

the exposure the image of the point is blurred through a distance δ pixels. In (a) the

camera translates through a distance X parallel to the image plane, while in (b) the

camera rotates through an angle θ about its optical centre. By simple trigonometry, we

can see that in (a) the camera must translate by

X =
δ

F
D, (3.1)

where F is the camera’s focal length, while in (b) the camera must rotate through an

angle

θ = tan−1
(

δ

F

)

. (3.2)

If we make the common assumption that the camera’s focal length F is approximately

equal to the width of the sensor, say 1000 pixels, then to cause a blur of δ = 10 pixels

by translating the camera, we can see from Equation (3.1) that X = 1
100D. Thus

the required translation grows with the subject’s distance from the camera, and for a

subject just 1metre away, we must move the camera by X = 1 cm to cause the blur.

When photographing a subject 30metres away, such as a large landmark, we would have

to move the camera by 30 cm!
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3 Modelling Spatially-Variant Camera Shake Blur

(a) An image blurred by camera shake (b) Deblurred using the estimated blur
descriptor

(c) Estimated global blur
descriptor

(d) Top: Details from blurry
image. Bottom:

corresponding local PSFs
generated by (c)

(e) Details from the blurry
(top) and deblurred
(bottom) images

Figure 3.1. Modelling non-uniform blur in a shaken image. The blurry image (a) clearly
exhibits blur which is non-uniform, as highlighted at different locations in the image. Using
the model proposed in this work, we can describe this blur using a single global descriptor (c),
which in this case has been estimated from the blurry image itself, simply by modifying existing
algorithms for blind deblurring (see Chapter 4 for details). Close-ups of different parts of the
image (d) show the variation in the shape of the blur, which can be accurately reproduced using
our model, as shown by the local point spread functions generated from it. As can be seen in the
deblurred image in (b) (see Chapter 6 for details on deblurring images like this with saturated
pixels) and the close-ups in (e), different parts of the image, blurred in different ways, can be
deblurred to recover a sharp image.

To cause the same amount of blur by rotating the camera, on the other hand, we can

see from Equation (3.2) that we would need to rotate the camera by θ = tan−1
(

1
100

)

≃
0.6◦, independent of the subject’s distance from the camera. To put this in terms of the

motion of the photographer’s hands, then for example if the camera body is 10 cm wide,

such a rotation could be caused by moving one hand just 1mm forwards or backwards

relative to the other. Provided the subject is more than 1metre from the camera, this
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P

δ

X

D

F

P

δ

θ

(a) Camera translation (b) Camera rotation

Figure 3.2. Blur due to translation or rotation of the camera. In this simplified example,
we consider capturing a blurry image by either (a) translating the camera through a distance X
parallel to the image plane, or (b) rotating the camera through an angle θ about its optical centre.
We consider the scene point P at a distance D from the camera, whose image is blurred by δ
pixels as a result of either of the two motions. In most cases, for a given blur size δ the rotation
θ constitutes a significantly smaller motion of the photographer’s hands than the translation X
(see text for details).

motion is at least an order of magnitude smaller than for a translation of the camera

causing an equivalent amount of blur.

In reality, both the position and orientation of the camera vary simultaneously dur-

ing the exposure. However, if the camera only undergoes small changes in position

(translations), then following the discussion above, we can assert that the variations in

the camera’s orientation (rotations) are the only significant cause of blur. Figure 3.3

supports this assumption, showing some shaken images captured by Joshi et al. (2010),

for which the motion of the camera during the exposure was recorded. As can be seen,

the camera translates by a few millimetres, while rotating by up to 0.5◦. For these

magnitudes of motion, the blur for subjects more than 1m away from the camera can

almost entirely be attributed to the rotation.

From now on, we assume that the translational component of camera motion does

not cause any blur. Furthermore, we assume that all rotations occur about the camera’s

optical centre. Note, however, that a camera rotation about a centre that is not the
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3 Modelling Spatially-Variant Camera Shake Blur

(a) Blurry image (b) Motion plots

Figure 3.3. Real measurements of camera motion during a long exposure. These
photographs, from (Joshi et al., 2010), are taken with a 1/3 second exposure, and show how
the pose of the camera varied during the exposure. The motion is recovered using an additional
high-speed camera attached to the main camera – by performing structure-from-motion on the
high-speed frames, the camera’s pose can be recovered. From the motion plots, we see that the
camera rotates between ±0.5◦, and translates between ±4mm while the shutter is open.

optical centre can be written as a rotation about the optical centre composed with a

translation; these translations should generally be small for rotation centres that are not

far from the optical centre.

3.2.2 Motion Blur and Homographies

It is well known that under a pinhole camera model, and assuming that the scene being

photographed is static, rotations of a camera about its optical centre induce projective

transformations of the image being observed. In other words, the image observed at one
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3.2 A Geometric Model for Camera Shake

Y

X

Z

(a) Orientation of camera axes (b) Y -axis rotation of the camera

(c) Z-axis rotation of the camera (d) Arbitrary sequence of rotations

Figure 3.4. Our coordinate frame with respect to initial camera orientation, and
the paths followed by image points under different camera rotations. We define our
coordinate frame (a) to have its origin at the camera’s optical centre, with the X and Y axes
aligned with those of the camera’s sensor, and the Z axis parallel to the camera’s optical axis.
Under single-axis rotations of the camera, for example about its Y -axis (b), or its Z-axis (c),
the paths traced by points in the image are visibly curved and non-uniform across the image.
This non-uniformity remains true for general camera shakes (d), which do not follow such simple
single-axis rotations, but rather take arbitrary paths through camera pose space. The focal
length of the camera in this simulation is equal to the width of the image, the principal point is
at the image’s centre, and the pixels are assumed to be square.

camera orientation is related to the image at any other by a 2D projective transformation,

or homography. For an uncalibrated camera, this is a general 8-parameter homography,

but for a camera with known internal parameters, the homography H is given by

H = KRK−1, (3.3)

where the 3× 3 matrix R is a rotation matrix describing the orientation of the camera,

and K is the camera’s internal calibration matrix (Hartley and Zisserman, 2004). In this

work, we assume that the calibration matrix K is known (see Section 3.2.3).

The rotation matrix R has only 3 parameters. We adopt here the “angle-axis”
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3 Modelling Spatially-Variant Camera Shake Blur

parameterisation, in which a rotation is described by the 3-vector θ = (θX , θY , θZ). R

is then given by the matrix exponential

Rθ = e[θ]× , where (3.4)

[θ]× =











0 −θZ θY

θZ 0 −θX
−θY θX 0











. (3.5)

We fix our 3D coordinate frame to have its origin at the camera’s optical centre. The

axes are aligned with the camera’s initial orientation, such that the XY -plane is aligned

with the camera sensor’s coordinate frame and the Z-axis is parallel to the camera’s

optical axis, as shown in Figure 3.4 (a). In this configuration, θX describes the “pitch”

of the camera, θY the “yaw”, and θZ the “roll”, or in-plane rotation, of the camera.

Having defined the type of image transformations we expect to occur while the shut-

ter is open, we can write out the image degradation model. Let T denote the exposure

time of the photograph. While the shutter is open, the camera passes through a se-

quence of orientations θt, t ∈ [0, T ]. As discussed above, at each pose θt, the sensor is

exposed to a projectively transformed version of the sharp image f , where the projective

transformation Ht is given by Equations (3.3) to (3.5). The noiseless blurry image g
∗ is

then modelled as the integral over the exposure time T of all the transformed versions

of f :

g∗(x) =

∫ T

0
f
(

Htx
)

dt, (3.6)

where, with a slight abuse of notation, we use g∗(x) to denote the value of g∗ at the 2D

image point represented by the homogeneous vector x, and similarly for f .

Under this model, the apparent motion of scene points may vary significantly across

the image. Figure 3.4 demonstrates this, showing the paths followed by points in an

image under a Y -axis rotation, a Z-axis rotation, or an arbitrary sequence of rotations

of the camera. Under the (in-plane) Z-axis rotation, the paths vary significantly across
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the image. Under the (out-of-plane) rotation about the Y -axis, the paths, while varying

considerably less, are still non-uniform. It should be noted that the degree of non-

uniformity of this out-of-plane motion is dependent on the focal length of the camera,

decreasing as the focal length increases. However, it is typical for consumer cameras to

have focal lengths of the same order as their sensor width, as is the case in Figure 3.4. In

addition, it is common for camera shake to include an in-plane rotational motion. From

this, it is clear that modelling camera shake as a convolution with a spatially-invariant

kernel is insufficient to fully describe its effects (see also Figure 3.1).

In general, a blurry image has no temporal information associated with it, so it is

convenient to replace the temporal integral in Equation (3.6) by a weighted integral over

a set of camera orientations:

g∗(x) =

∫

f
(

Hθx
)

w(θ) dθ, (3.7)

where the weight function w(θ) encodes the camera’s trajectory in a time-agnostic fash-

ion. The weight will be zero everywhere except along the camera’s trajectory, and the

value of the function at a point θ along the trajectory corresponds to the duration the

camera spent at the orientation θ.

3.2.3 Camera Calibration

In order to compute the homography in Equation (3.3) that is induced by a particular

rotation of the camera, we need to know the camera’s calibration matrix K. For the

results shown in this thesis, we assume that K takes the standard form

K =











F 0 x0

0 F y0

0 0 1











. (3.8)

This corresponds to a camera whose sensor has square pixels, and whose optical axis

intersects the sensor at (x0, y0), referred to as the principal point. To estimate K, we
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recover the pixel size and focal length of the camera from the image’s EXIF tags, and

assume that the principal point is at the centre of the image.

The radial distortion present in many consumer-grade digital cameras can represent

a significant deviation from the pinhole camera model. Rather than incorporating the

distortion explicitly into our model, we pre-process images with the commercially avail-

able PTLens software1, which uses a database of lens and camera parameters to correct

for the distortion.

A second distortion present in many digital images comes from the fact that the

pixel values stored in, for example, a jpeg file, do not correspond linearly to the scene

radiance. Most cameras apply a compression curve before storing the values, sometimes

referred to as “gamma correction”. Where possible we avoid this problem by using raw

camera output images, such that the pixel values correspond linearly to scene radiance.

In other cases, where the compression curve is known (e.g. having been calibrated), we

preprocess the blurry images with the inverse of this curve to recover the linear values,

and where it is unknown, we apply a generic sRGB curve.

In practice, there are several potential pitfalls in relying on the EXIF information

to recover the internal calibration of the camera. For example, if the image has been

cropped or resized, the focal length and pixel size recovered from the EXIF tags will no

longer be correct. In addition, many image editors delete or overwrite the EXIF tags,

and while almost all cameras include the focal length in the tags, some e.g. camera-

phones, do not include sufficient information to estimate the pixel size. In the case that

the EXIF tags are incorrect or incomplete, we set the focal length to the width of the

image, and the principal point to the center of the image. Although this is unlikely to

be an accurate estimate, it is typically sufficient for deblurring purposes.

3.2.4 Uniform Blur As a Special Case

One consequence of our model for camera shake is that it includes uniform blur as a spe-

cial case, and thus gives the conditions under which a uniform blur model is applicable.

1http://epaperpress.com/ptlens/

62



3.3 A Computational Model for Camera Shake

From the definition of the matrix exponential, eA = I +A+ 1
2!A

2 + . . ., we can see that

if θZ = 0 and θX , θY are small, Equation (3.4) can be approximated by discarding the

2nd and higher order terms:

Rθ ≈











1 0 θY

0 1 −θX
−θY θX 1











. (3.9)

Combining this with Equations (3.3) and (3.8), it can be shown that as F →∞,

Hθ →











1 0 FθY

0 1 −FθX

0 0 1











, (3.10)

which simply amounts to a translation in the image plane of (FθY ,−FθX)
⊤. Note that

for typical camera shakes, θX and θY will indeed be small. Thus we can see that if

the focal length of the camera is large (e.g. if the camera is zoomed-in) and there is no

in-plane rotation, a uniform blur model may be sufficient to describe the blur.

3.3 A Computational Model for Camera Shake

So far, our model has been defined in terms of the continuous functions f and g, and the

weight function w. We discretise the camera orientation space into a 3D volumetric grid

of size NX ×NY ×NZ , and assign each orientation θ(k) a weight wk, for k ∈ {1, . . . ,K},
where K = NXNY NZ . The set of weights w forms a global descriptor for the camera

shake blur in an image, and by analogy with convolutional blur, we refer to w as the

blur kernel.

Figure 3.1 (c) shows a visualisation of w, where the cuboidal volume of size NX ×
NY ×NZ is shown, with the yellow points inside representing the non-zero elements of

w in 3D. The kernel has also been projected onto the 3 back faces of the cuboid to

aid visualisation, with white corresponding to a large value, and black corresponding to
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zero.

Each element wk corresponds to a camera orientation θ(k), and consequently to a

homography Hk, so that in the discrete setting, the blurry image g∗ is modelled as a

weighted sum of a set of projectively-transformed versions of f :

g∗ =
∑

k

wkT
(k)f , (3.11)

where T(k) is the N × N matrix which applies homography Hk to the sharp image

f . The matrix T(k) is very sparse. For example, if bilinear interpolation is used when

transforming the image, each row has only 4 non-zero elements. Section 3.3.2 describes

how to calculate the matrix T(k). By writing out Equation (3.11) for a single pixel, we

obtain the discrete analog of Equation (3.7):

g∗i =
∑

k

wk

(

∑

j

T
(k)
ij fj

)

, (3.12)

where i and j index the pixels of the blurry image and the sharp image, respectively. For

a blurry pixel g∗i with coordinate vector xi, the sum
∑

j T
(k)
ij fj interpolates the value of

f(Hkxi). Figure 3.5 shows an example of this, where a blurry pixel with homogeneous

coordinate vector xi is mapped under a homography Hk to the point Hkxi in the sharp

image. The value of f at the point Hkxi is then interpolated as a weighted sum of the

nearby pixels of f . Section 3.3.2 gives further details of this interpolation.

Due to the bilinear form of Equation (3.12), note that when either the blur kernel or

the sharp image is known, the blurry image is linear in the remaining unknowns, i.e.

given w, g∗ = Af , where Aij =
∑

k

T
(k)
ij wk, (3.13)

given f , g∗ = Bw, where Bik =
∑

j

T
(k)
ij fj . (3.14)

In the first form, A ∈ R
N×N is a large sparse matrix, whose rows each contain a local
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gi

xi

Hk→ f1 f3

f2 f4

Hkxi

Blurry image g Sharp image f

Figure 3.5. Interpolation of sub-pixel locations in the sharp image. In general, a ho-
mography Hk will not map a pixel (e.g. xi) in the blurry image g to a single pixel in the sharp
image x. Instead, the value of f at the point Hkxi is interpolated as a weighted sum of nearby
pixels. Using bilinear interpolation, the value of f at Hkxi is computed as a linear combination
of f1, f2, f3, and f4.

blur filter acting on f to generate a blurry pixel. In the second form, when the sharp

image is known, each column of B ∈ R
N×K contains a projectively transformed copy of

the sharp image. We will use each of these forms in the following chapters.

3.3.1 Comparison to Other Non-Uniform Blur Models

Concurrently with our proposal of this model for camera shake blur, several other authors

have proposed global models of spatially-variant blur. In common with our approach,

they generally model the blurry image as a sum of transformed versions of the sharp

image. Tai et al. (2011) model the image motion using a temporally-ordered sequence of

unconstrained 8-parameter homographies, which is known in advance. Joshi et al. (2010)

also use a temporally-ordered sequence of 6-parameter homographies which correspond

to a fronto-parallel planar scene, parameterised by the camera’s pose. Gupta et al. (2010)

propose a model which is similar in spirit to our own, recovering a set of weights over a

3D parameter space which describes transformations of the sharp image. However, they

consider image plane translations and rotations, rather than the camera pose-induced

homographies used in this work.
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Gupta et al. (2010) provide some analysis of the accuracy of their model as the focal

length of the camera varies, and show that as the focal length decreases, their model

becomes less accurate. Starting from our model, this is not unexpected, as it is possible

to show that their model is a special case of ours, obtained by letting F → ∞. By

following essentially the same derivation as in Section 3.2.4, except with θZ 6= 0, it is

possible to show that for small θX and θY , as F →∞,

Hθ →











cos θZ − sin θZ FθY

sin θZ cos θZ −FθX

0 0 1











, (3.15)

which covers the set of 2D translations and rotations considered in their work. By

including the focal length in our model, we ensure accuracy even at short focal lengths.

Of course, the need to know the focal length for an image is an additional requirement,

compared to the model of Gupta et al. (2010). However, given that we recover their

model by setting F to a large number, and that it is often possible to extract the focal

length of a photo from the EXIF tags, we do not believe this is a significant disadvantage

of our model.

3.3.2 Computation of Interpolation Coefficients

Here we give details of how to calculate the matrix T(k) that applies a homography Hk

to an image, using bilinear interpolation. Note that these are standard interpolation

weights, and are not specific to this deblurring application.

Using bilinear interpolation, the value of an image f at a sub-pixel location (x′, y′)

is interpolated from the 4 pixels surrounding (x′, y′) as follows:

δx = x′ − ⌊x′⌋ (3.16)

δy = y′ − ⌊y′⌋ (3.17)

f(x′, y′) = (1− δx)(1− δy) f
(

⌊x′⌋, ⌊y′⌋
)
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+ (1− δx)δy f
(

⌊x′⌋, ⌊y′⌋+ 1
)

+ δx(1− δy) f
(

⌊x′⌋+ 1, ⌊y′⌋
)

+ δxδy f
(

⌊x′⌋+ 1, ⌊y′⌋+ 1
)

(3.18)

where ⌊ · ⌋ takes the integer part of a positive scalar.
In Equation (3.12), we write this interpolation operation as the sum

f(Hkxi) =
∑

j

T
(k)
ij fj . (3.19)

Using bilinear interpolation as described above, we can see that the elements T
(k)
ij take

the following values:

j T
(k)
ij

sub2ind(⌊x′⌋, ⌊y′⌋) (1− δx)(1− δy)

sub2ind(⌊x′⌋, ⌊y′⌋+ 1) (1− δx)δy

sub2ind(⌊x′⌋+ 1, ⌊y′⌋) δx(1− δy)

sub2ind(⌊x′⌋+ 1, ⌊y′⌋+ 1) δxδy

all others 0

where the Matlab function sub2ind provides the correspondence between the (x, y)

coordinates of a pixel and its index j.

3.3.3 Sampling the Set of Rotations

One important detail to consider is how finely to discretise the orientation parameter θ.

Undersampling the set of orientations will affect our ability to accurately reconstruct the

blurred image, but sampling it too finely will lead to unnecessary calculations. Since the

kernel is defined over the 3 parameters θX , θY and θZ , doubling the sampling resolution

increases the number of kernel elements by a factor of 8. In practice, we have found that

a good choice of grid spacing is that which corresponds to a maximum displacement of 1

pixel in the image. Since we are fundamentally limited by the resolution of our images,
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3 Modelling Spatially-Variant Camera Shake Blur

reducing the spacing further leads to redundant orientations, which are indistinguishable

from their neighbours. Setting the grid spacing in terms of pixels also has the advantage

that our 3D blur kernels are defined on a grid which allows direct comparison to the

pixel grid of the image. We set the size of our kernel along each dimension in terms of

the size of the blur we need to model, typically a few degrees along each dimension of

θ, e.g. [−5◦, 5◦].

3.4 Conclusion

In this chapter we have proposed a geometrically-derived model for blur caused by cam-

era shake. For a static scene and a camera with known focal length, we have shown

that the blur caused by camera rotation can be modelled using a weighted set of homo-

graphies, and have proposed a practical formulation of this model in which the blurry

image is bilinear in the sharp image and the weights. The model assumes that the mo-

tion of the camera during exposure is limited to rotations about its optical centre, and

is temporally-agnostic to the distribution over camera orientations. Our model is not

applicable for non-static scenes, or nearby scenes with large camera translations where

parallax effects may become significant.
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Chapter 4

Estimating and Removing Spatially-Variant

Camera Shake Blur

4.1 Introduction

In this chapter, we demonstrate the effectiveness of the spatially-variant blur model

presented in Chapter 3 by using it to replace the uniform blur model in three existing

approaches to camera shake removal. We show quantitative and qualitative improve-

ments in the deblurred results.

In Section 4.3 we consider single-image deblurring, where only a blurry image is

available, applying our model within the algorithms proposed by Fergus et al. (2006)

(Section 4.3.1) and Cho and Lee (2009) (Section 4.3.2). We compare our results to

those of the original algorithms (which handle only spatially-invariant blur), and discuss

the advantages and limitations of using our model. In Section 4.4 we apply our model

to the case where an additional sharp but noisy image of the same scene is available,

as proposed by Yuan et al. (2007b). In Section 4.5 we discuss some implementation

considerations of using our model in these algorithms, before concluding in Section 4.6.
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4 Estimating and Removing Spatially-Variant Camera Shake Blur

4.2 Application to Existing Deblurring Algorithms

The fact that Equation (3.12) is bilinear in the sharp image and blur kernel is the

key feature that allows our model to be applied within existing deblurring algorithms

previously applied only to uniform blur. Since convolution is also a bilinear operation on

the sharp image and the blur kernel, it can often be replaced with the general bilinear

form in Equation (3.12) without significant modification to the algorithm. Here we

discuss some of the general issues related to achieving this.

The constraint that all the PSF parameters be positive is intuitively applicable to

our model, since each kernel element wk corresponds directly to the length of time spent

at a camera orientation θk. If the camera passed through orientation θk during the

exposure, wk will be positive, and if not, wk = 0.

The sparsity prior is intuitively applicable to blur kernels for our model too, since

the camera follows a path θ(t) through the space of camera orientations, and thus will

only pass through a small subset of all possible orientations while the shutter is open.

It should be noted that an important case where our model cannot easily be substi-

tuted in place of convolution is when an algorithm relies on the ability to work in the

frequency domain, e.g. the Wiener filter (Wiener, 1949). When taking the Fourier trans-

form, convolution becomes an element-wise multiplication of the frequency components

of the image and kernel, however this is not the case for the more general bilinear form

in our model (see Chapter 5 for an efficient approximation to our model which benefits

from this frequency-domain property).

4.3 Single-Image Deblurring

In this section, we examine the case where we have only a single blurry input image g

from which to estimate f̂ . We substitute our model into two successful algorithms for

uniform blur, allowing them to handle non-uniform blur: those of Fergus et al. (2006)

(Section 4.3.1) and Cho and Lee (2009) (Section 4.3.2).
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4.3 Single-Image Deblurring

4.3.1 The Marginalisation Approach

In this section we adapt the algorithm proposed by Fergus et al. (2006) for blind deconvo-

lution of a single image, introduced in Section 2.3.2. We show that the convolutional blur

model in the original algorithm can be replaced with our non-uniform blur model, lead-

ing to new update equations for the optimisation process, and we show in Section 4.3.3

that doing so improves the deblurred results.

Recall from Section 2.3.2 that the aim is to find the factorised distribution

q(Θ) = q(βσ)
∏

j

q(f∂
j )
∏

k

q(wk) (4.1)

that best approximates the true posterior p(Θ|g). In Section 2.3.2, the “ensemble” Θ

incorporated the latent image gradients f∂ , a convolution kernel a and the noise precision

βσ. In our case we replace the convolution kernel with the blur kernel w for our model.

For our blur model, the optimal q(Θ) has the same form as in (Miskin and MacKay,

2000). However the equations for the optimal parameter values differ significantly and

we have calculated these afresh (the derivation is provided in Appendix A). For our

non-uniform blur model, we find the following optimal values for the parameters, cf .

(Miskin and MacKay, 2000, Eqns. (46)–(49)):

w
(2)
k = 〈βσ〉

∑

i

〈(

∑

j

T
(k)
ij f∂

j

)2〉

q(f∂)
(4.2)

w
(1)
k w

(2)
k = 〈βσ〉

∑

i

(

gi
∑

j

T
(k)
ij 〈f∂

j 〉q(f∂
j )
−
∑

k′ 6=k

〈(

∑

j

T
(k)
ij f∂

j

)(

∑

j

T
(k′)
ij f∂

j

)〉

q(f∂)
〈wk′〉q(wk′ )

)

(4.3)

f
(2)
j = 〈βσ〉

∑

i

〈(

∑

k

T
(k)
ij wk

)2〉

q(w)
(4.4)

f
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j f
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j = 〈βσ〉
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(

gi
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T
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∑
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)〉
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(4.5)
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4 Estimating and Removing Spatially-Variant Camera Shake Blur

where w
(1)
k and w

(2)
k are the parameters of q(wk), f

(1)
j and f

(2)
j are the parameters of

q(f∂
j ), q(f

∂) =
∏

j q(f
∂
j ), q(w) =

∏

k q(wk), and 〈 · 〉q represents the expectation with

respect to the distribution q. For spatially-invariant blur (i.e. when the matrices T(k)

apply 2D translations of the image), these equations reduce to those given by Miskin

and MacKay (2000). Note that these equations cannot be implemented directly in this

form, and must be re-written as computations involving only the parameters f
(1)
j , f

(2)
j ,

w
(1)
k , and w

(2)
k , as follows. These are exactly the parameter updates computed in our

implementation of the marginalisation algorithm described in Chapter 2. First, let

vwk =
〈

w2
k

〉

− 〈wk〉2 (4.6)

vfj =
〈

f∂
j

2
〉

−
〈

f∂
j

〉2
(4.7)

〈Aij〉 =
∑

k

T
(k)
ij 〈wk〉 (4.8)

〈Bik〉 =
∑

j

T
(k)
ij

〈

f∂
j

〉

(4.9)

〈g∗i 〉 =
∑

k

(

∑

j

T
(k)
ij

〈

f∂
j

〉

)

〈wk〉 . (4.10)

Then,

w
(2)
k = 〈βσ〉

∑

i,j

T
(k)
ij

2
vfj + 〈βσ〉

∑

i

〈Bik〉2 (4.11)
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f
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∑

i

〈Aij〉2 (4.13)

f
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j f
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i
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4.3 Single-Image Deblurring

Finally, in order to compute the expectation 〈βσ〉 of the noise variance, it is necessary
to evaluate the expected value of the squared reconstruction error (Miskin and MacKay,

2000, Eqn. (40)), which can be computed as follows:

〈

(gi − g∗i )
2
〉

= (gi − 〈g∗i 〉)2 +
∑

j,k

T
(k)
ij

2
vfj v

w
k +

∑

j

〈Aij〉2 vfj +
∑

k

〈Bik〉2 vwk . (4.15)

Section 4.3.3 shows results of the marginalisation algorithm using these modified up-

date equations and our spatially-variant blur model, compared to the original algorithm

of Fergus et al. (2006).

4.3.2 The Maximum a Posteriori Approach

In this section we adapt the single image PSF estimation algorithm of Cho and Lee

(2009), introduced in Section 2.3.3, to use our spatially-variant blur model. Like the

marginalisation algorithm of the previous section, this algorithm can be readily adapted

to handle non-uniform blur, substituting our model in place of convolution.

The main changes to the algorithm described in Chapter 2 are simply to replace

the convolution in Equation (2.53) with our blur model, so that instead of estimating a

convolution kernel â by solving Equation (2.53), we instead estimate the spatially-variant

blur descriptor ŵ by solving

min
w

∑

q

ωq

∥

∥

∑

k

wkT
(k)p(q) − d(q) ∗ g

∥

∥

2

2
+ β ‖w‖22 , (4.16)

where ωq are weights for the data fidelity term, p(q) are thresholded derivative maps

obtained by non-linear filtering of the current estimate of the sharp image, and d(q) are

derivative filters. Similarly, when updating the latent image, we modify Equation (2.56)

to be

min
f

∑

q

ωq

∥

∥

∑

k

ŵkT
(k)(d(q) ∗ f)− d(q) ∗ g

∥

∥

2

2
+ α‖dx ∗ f‖22 + α‖dy ∗ f‖22. (4.17)
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4 Estimating and Removing Spatially-Variant Camera Shake Blur

Since the spatially-variant blur model is linear in w and f , these are still linear least

squares problems. Although we are not able to take full advantage of the speed opti-

misations proposed by Cho and Lee (2009), due to their use of Fourier transforms to

compute convolutions, the algorithm is generally able to estimate a blur kernel in a much

shorter time than the marginalisation algorithm of Section 4.3.1.

Modification for Non-Uniform Blur

When applying our model within this algorithm, we must take into account some impor-

tant differences between our 3D kernels and 2D convolution kernels. First, we note that

the point spread function (PSF) of a single pixel does not uniquely determine the full

3D kernel. This can be seen by considering a vertical blur at the left or right-hand side

of the image. Such a blur could be explained either by a rotation of the camera about

its X axis, a rotation about its Z axis, or some combination of the two. Thus in order to

best constrain the kernel, we must ensure that the pixels used to estimate the kernel (the

non-zeroes in {px,py}) do not only come from a small region of the image, in order for

the kernel estimation step to be well-conditioned. To achieve this, we simply subdivide

the image into 3× 3 regions, and apply the gradient thresholding step independently on
each. This ensures that we retain a set of gradients that are well distributed over both

orientation and location.

A second observation is that our 3D kernels contain a certain degree of redundancy,

arising largely from the in-plane rotation of the camera. As can be seen in Figure 3.4,

a rotation of the camera about its Z axis causes a very small displacement for pixels

towards the centre of the image. Thus, in the kernel estimation step, the informa-

tion provided by these pixels will be ambiguous with respect to this component of the

camera’s motion. Only pixels near the edge of the image will be able to provide de-

tailed information concerning this motion. While the spatial binning mentioned above

goes some way to ensuring that these pixels from the edge of the image are present in

{px,py}, they may be greatly outnumbered by pixels from the interior. As a result, the

kernels recovered by minimising Equation (4.16) with our model generally contain many
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4.3 Single-Image Deblurring

non-zeros spread smoothly throughout, and do not produce good deblurred outputs (see

Figure 4.5).

If instead of the ℓ2 regularisation in Equation (4.16), we apply ℓ1 regularisation

combined with non-negativity constraints, the optimisation is encouraged to find a sparse

kernel and is more likely to choose between ambiguous camera orientations, as opposed

to spreading non-zero values across all of them. This is equivalent to an exponential

prior on the kernel values. In this case, the kernel estimation problem becomes

min
w

∑

q

ωq

∥

∥

∑

k

wkT
(k)p(q) − d(q) ∗ g

∥

∥

2

2
+ β

∑

k

wk s.t. ∀k = 1, . . . ,K, wk ≥ 0.

(4.18)

This is an instance of the lasso problem (Tibshirani, 1996), for which efficient optimi-

sation algorithms exist (Efron et al., 2004; Kim et al., 2007; Mairal et al., 2010). This

problem is convex, so that we can be sure of obtaining a global minimum. The different

results obtained using ℓ2 and ℓ1 regularisation are discussed in Section 4.3.3. With the

use of the ℓ1 regularisation, we found that the best results were obtained with a lower

value of β than that given by Cho and Lee, and for the results in this work using ℓ1

regularisation, we set β = 0.01. In the remainder of the thesis, we refer to the original

algorithm of Cho and Lee as MAP-ℓ2, and our ℓ1 regularised version as MAP-ℓ1.

4.3.3 Single-Image Deblurring Results

We show in this section results of single-image deblurring using the algorithms described

in Section 4.3 to estimate the spatially-variant PSF, with comparisons to results obtained

with the original algorithms of Fergus et al. (2006) and Cho and Lee (2009) on both

synthetic and real data. The estimated PSF is used with the non-blind deblurring

algorithm of Krishnan and Fergus (2009) to estimate the final deblurred image. This

algorithm is easily adapted to non-uniform blur since it involves repeated minimisations

of quadratic cost functions of the form (see Equation (2.46))

min
f
‖Af − g‖22 + α

∥

∥dx ∗ f − vx
∥

∥

2

2
+ α

∥

∥dy ∗ f − vy
∥

∥

2

2
, (4.19)
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4 Estimating and Removing Spatially-Variant Camera Shake Blur

where vx and vy are intermediate variables of the optimisation scheme. For our non-

uniform blur model, we use the conjugate gradient algorithm to minimise this cost

function.

Figure 3.1 in Chapter 3 shows a result on a real camera shake blur, using the MAP-ℓ1

algorithm to estimate the kernel, and the Richardson-Lucy algorithm to perform the final

deblurring. The blurry image has many saturated regions (e.g. the bright street lights),

and in such cases we found the Richardson-Lucy algorithm to produce significantly

better results than any least-squares based algorithms, such as that of Krishnan and

Fergus (2009). We examine non-blind deblurring for images containing saturated pixels

in Chapter 6.

Figures 4.1 and 4.2 show blind deblurring results on images blurred by real camera

shake. Our model, used in both the marginalisation and MAP algorithms, is able to

capture and remove the blur, while the original algorithms of Fergus et al. and Cho

and Lee, using a uniform blur model, fail to find meaningful kernels or good deblurred

results. This is explained by both the wide field of view, and the fact that the kernels

estimated using our algorithm exhibit significant in-plane rotation.

In Figure 4.2 (d), we also demonstrate the use of the variational marginalisation

algorithm of Fergus et al. to produce the deblurred output, as opposed to the algorithm

of Krishnan and Fergus (2009), used in Figure 4.2 (c). Although, for computational

simplicity, the kernel estimation step uses a grayscale image, at the convergence of this

process the distributions q(w) and q(βσ) for the kernel and noise variance can be fixed.

The variational algorithm can then be run again to estimate q(fc) for each color channel

c separately. In the final step, each color channel can be reconstructed from q(fc) using

Poisson reconstruction (Pérez et al., 2003), before matching the color histogram to that

of the blurry image. As can be seen, a good deblurred image is produced, underlining

the fact that our blur model is valid throughout the image, and that the kernel produced

provides a good description of the true non-uniform blur in the image.

Figure 4.3 shows a third result of single-image deblurring, using the MAP algorithm.

While the uniform blur kernel provides a reasonable estimate of the true blur, and allows
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4.3 Single-Image Deblurring

(a) Blurry image (b) Some of the local PSFs for (d)

(c) Marginalisation, uniform (d) Marginalisation, non-uniform

(e) MAP-ℓ2, uniform (f) MAP-ℓ1, non-uniform

Figure 4.1. Blind deblurring of real camera shake, example 1. The result of blind
deblurring on a real camera shake image (a), captured with a shutter speed of 1

2 second, using
both the marginalisation algorithm of Fergus et al. and the MAP approach of Cho and Lee
with both the uniform and non-uniform blur models. Also shown in (b) are some of the local
PSFs generated from the blur kernel in (d) at various points in the image. The marginalisation
approach, when using our model (d) recovers a useful kernel and a good deblurred image, but
when using the uniform model (c) does not. Using the MAP approach, the uniform model (e)
finds a reasonable approximation to the non-uniform blur, which is valid on the left side of the
image. However, on the right side, the error in the kernel leaves diagonal streaks on the deblurred
output. Using our non-uniform model (f), however, avoids this problem. The blur kernels for
our model in (d) and (f) cover ±1.3◦ along each dimension.
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(a) Blurry image (b) Marginalisation, uniform (c) Marginalisation,
non-uniform

(d) Variational algorithm
output for (c)

(e) MAP-ℓ2, uniform (f) MAP-ℓ1, non-uniform

(a) (b) (c) (d) (e) (f)

Figure 4.2. Blind deblurring of real camera shake, example 2. A hand-held image
with camera shake (a), captured with a shutter speed of 1 second, with the results of blind
deblurring using the marginalisation algorithm of Fergus et al. under both a uniform (b) and
non-uniform (c)–(d) blur model, and the MAP algorithm of Cho and Lee with a uniform (e) and
non-uniform (f) blur model. The estimated kernels for the two models are shown inset in the
deblurred results. The variational output (d) is estimated using the marginalisation algorithm
for the non-uniform case (calculated as 〈f〉q(f) then converted from gradients to intensities using

Poisson reconstruction (Pérez et al., 2003)). The results using our blur model show more detail
and fewer artefacts than those using the uniform blur model, as can be seen in the zoomed-in
portions shown in the last row. The rotational blur kernels in (c) and (f) cover ±0.7◦ in θX and
θY and ±1.4◦ in θZ .



4.3 Single-Image Deblurring

(a) Blurry image (b) Some local PSFs for (d), magnified

(c) MAP-ℓ2, uniform (d) MAP-ℓ1, non-uniform

Figure 4.3. Blind deblurring of real camera shake, example 3. The result of blind
deblurring on a real camera shake image (a), captured with a shutter speed of 1 second, using
the MAP approach of Cho and Lee with both the uniform and non-uniform blur models. Also
shown in (b) are some of the local PSFs generated from the blur kernel in (d) at various points
in the image. In the blurry image, most of the text on the book cover is too blurred to read.
Deblurring the image with the uniform blur model (c) allows some of the text on the cover of the
book to be read, however, after deblurring with our non-uniform model (d), all but the smallest
text becomes legible. The estimated kernels for the two models are shown inset in the deblurred
results. The blur kernel in (d) covers ±0.4◦ in θX and θY , and ±0.9◦ in θZ .
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Marginalisation MAP

10px 20px 10px 20px

Y-axis Non-Uni. Uni. Non-Uni. Uni. Non-Uni. Uni. Non-Uni. Uni.

σ = 0 23.1 (1.4) 23.2 (1.4) 27.2 (1.1) 58.1 (2.4) 18.3 (1.1) 19.2 (1.2) 25.6 (1.0) 27.4 (1.1)

σ = 5 24.9 (1.3) 25.8 (1.3) 29.0 (1.1) 56.8 (2.2) 22.4 (1.1) 25.9 (1.3) 30.9 (1.2) 31.4 (1.2)

σ = 10 27.0 (1.2) 30.1 (1.3) 30.7 (1.1) 48.7 (1.8) 37.3 (1.6) 37.0 (1.6) 38.3 (1.4) 46.9 (1.7)

Z-axis

σ = 0 14.4 (1.3) 21.8 (2.0) 18.1 (1.1) 26.1 (1.6) 12.0 (1.1) 27.7 (2.5) 16.9 (1.0) 44.1 (2.7)

σ = 5 17.4 (1.2) 24.8 (1.7) 23.2 (1.2) 54.5 (2.8) 17.5 (1.2) 29.9 (2.1) 24.0 (1.2) 48.9 (2.5)

σ = 10 22.0 (1.1) 50.9 (2.7) 26.5 (1.1) 55.8 (2.4) 24.0 (1.2) 35.5 (1.8) 32.1 (1.4) 52.7 (2.2)

RMS errors between deblurred results and true sharp image
(with ratios to the error obtained with ground-truth kernel in parentheses)

10px Y -axis blur
+ σ = 5/255

noise

10px Z-axis blur
+ σ = 5/255

noise

Deblurred with
ground-truth

kernel

Marginalisation,
non-uniform

Marginalisation,
uniform

MAP-ℓ1,
non-uniform

MAP-ℓ2,
uniform

Figure 4.4. Blind deblurring of synthetic single-axis blurs. A sharp image (top left) with
examples of synthetic blur by rotation of the camera about its Y and Z-axis, and the kernels
and deblurred results for different cases. We compare the results of blind deblurring for two sizes
of blur and three noise levels, and the reconstruction errors are summarised in the table at the
top. For each single-axis blur, the table contains the root-mean-square (RMS) errors between
the deblurred results and the ground-truth sharp image for blurs with a maximum size of 10
or 20 pixels in the image, using our non-uniform model and the uniform model. In each cell we
also show, in parentheses, the ratio between the RMS error and the corresponding error for that
blurry image deblurred with the ground-truth kernel. Note that to facilitate comparison without
the influence of image priors, the deblurred images were all produced using the Richardson-Lucy
algorithm.



4.3 Single-Image Deblurring

Figure 4.5. Poor performance of MAP-ℓ2 with non-uniform blur model. The corre-
sponding blurry image can be seen in Figure 4.2. Shown is the estimated kernel and deblurred
result when using our non-uniform blur model in the algorithm of Cho and Lee with ℓ2 regular-
isation on the kernel. As can be seen, the ℓ2 regularisation is not sufficient to produce a good
estimate of the kernel, and results in a deblurred output containing many artefacts.

us to resolve some of the text on the book’s cover, the use of our non-uniform blur model

provides a clear improvement, and permits almost all of the text to be read.

Figure 4.4 shows results for blind deblurring of synthetically blurred images using the

two methods (marginalisation and MAP), and demonstrates two important points: first,

small out-of-plane (e.g. Y -axis) components of a blur are sufficiently uniform that the two

models both perform well, although the rotational model performs better. Second, our

approach is the only one capable of removing in-plane (Z-axis) blurs, which cannot be

represented as convolutions. In this case, and also for the largest out-of-plane blurs, we

are able to recover a good sharp image, whereas the uniform approach breaks down due

to the blur’s non-uniformity. The MAP and marginalisation algorithms exhibit similar

performance across the different blur sizes and noise levels, although as demonstrated

by the displayed kernels, the MAP-ℓ1 approach tends to find sparser, less contiguous

kernels than the marginalisation approach.

Figure 4.5 shows the failure of the MAP algorithm to produce a good result (using

the blurry image from Figure 4.2 (a)) when using the original ℓ2 regularisation proposed

by Cho and Lee (2009) with our non-uniform blur model. As discussed in Section 4.3.2,

the kernel produced is highly non-sparse despite the thresholding step, and the decon-

volved output correspondingly exhibits many artefacts compared to the MAP-ℓ1 result

in Figure 4.2 (f).

In Figure 4.6, we compare our approach to that of Fergus et al. (2006) on a real,
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(a) Sharp image (b) Blurred image (c) Uniform

(d) Our model, with large
focal length and θZ = 0

(e) Our model, with large
focal length

(f) Ground-truth kernel

Figure 4.6. Blind deblurring of a real uniform blur. A real camera shake blur (a)–(b) from
the dataset of Levin et al. (2009), deblurred using kernels estimated with the marginalisation
algorithm. We show deblurred results and kernels for four cases; (c) uniform blur using original
algorithm of Fergus et al., (d) our model with a large focal length F and no in-plane rotation
(θZ = 0), (e) our approach with a large focal length F but with θZ unconstrained, and (f) the
ground-truth (uniform) kernel, provided with the dataset. Note that (d) is indistinguishable
from (c), apart from a translation, and that the kernel in (e), while not perfect, does have the
same diagonal shape as the true blur, with the non-zeros centered around a single value of θZ .

uniformly blurred image, taken from the dataset of Levin et al. (2009), where the true

blur is known, and also known to be uniform. This demonstrates the fact that our

model includes uniform blur as a special case; by setting the focal length to be large

and applying the constraint that θZ = 0, we obtain results indistinguishable from those

of Fergus et al. (2006). When we do not apply the constraint on θZ , our algorithm still

produces a good result, but unsurprisingly does not perform as well, since the number

of kernel elements to be estimated is much larger (K is increased by a factor of 8).

Figure 4.7 shows the result of the non-uniform MAP-ℓ1 approach on an image of
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4.3 Single-Image Deblurring

Joshi et al. (2010). Although the scene is close to the camera, we are able to obtain a

comparable result to that of Joshi et al. without considering the camera’s translational

motion. This suggests that ignoring the camera’s translation is reasonable in practice.

Note also that we estimate the kernel directly from the blurry image, whereas Joshi et al.

(2010) use additional hardware to record the camera’s motion.

4.3.4 Discussion

Besides comparing the results of a given algorithm with either a uniform or non-uniform

blur model, we can also compare the marginalisation and MAP approaches for a given

model. In our experiments, we have observed that the MAP algorithm is generally

more robust to the level of contrast in the input image. The parameters of the image

prior provided by Fergus et al. (2006) are learnt from a single daytime image of a street

scene, so the application of this prior to an image with a very different distribution of

intensities (e.g. a photo taken at night) is liable to produce poor results. The MAP

algorithm however only relies on the ability to predict step edges from a blurry image,

and adapts its threshold for predicting these edges depending on the contrast of the

image. On an image containing only low-contrast edges then, such as in Figure 3.1,

the marginalisation approach (using the street scene prior) fails to find a useful kernel,

while the MAP approach finds a good kernel, as demonstrated by the deblurred result

in Figure 3.1 (b).

On the other hand, as discussed by Cho and Lee (2009), the performance of the

MAP approach is sensitive to the values of the parameters α and β, which must be

manually specified, while the marginalisation approach has almost no parameters to

tune. The problem of setting these parameters automatically merits future study, as

it often requires some amount of manual tuning before a good result is achieved. A

principled way of setting α and β would link their values to the noise variance in the

image, however we defer this to future work. In this thesis, α and β were set manually,

although we have found that α = 0.0005 and β = 0.01 to be generally good values.
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(a) Blurry image (b) Result from Joshi et al. (2010)

(c) Our result with MAP-ℓ1 (d) Some local PSFs for our recovered kernel

(a) (b) (c) (d)

Figure 4.7. Comparison of MAP-ℓ1 method with that of Joshi et al. (2010). A hand-
held image with camera shake (a), from Joshi et al. (2010), with the deblurred results from the
original work (b) and using the MAP-ℓ1 method with our blur model (c). The blur in this image
is approximately 35 pixels long, and we obtain a comparable result without the use of additional
hardware and without considering the camera’s translation during the exposure, despite the scene
being close to the camera. To estimate the kernel for this image, we found that was necessary to
reduce the threshold on the kernel values (Section 2.3.3) to 1

100 the maximum value, instead of
1
20 , in order to capture the long thin structure of the non-zeros. Without this, the vertical line
of non-zeros was set to zero early in the MAP-ℓ1 algorithm and was not subsequently recovered
(see Section 4.5.1 for more details).



4.3 Single-Image Deblurring

Convergence. Since both algorithms (marginalisation and MAP) attempt to solve non-

convex minimisation problems, neither can guarantee the ability to arrive at a globally

optimal solution. However, in practice we have found them both to perform reliably.

This is due in large part to the multi-scale approach; by finding a sequence of solutions

at increasingly fine resolutions, the large scale structures in the blur kernel and sharp

image are resolved before the fine details. In the case of the MAP algorithm, each of the

individual minimisations over the sharp image f and the blur kernelw is convex, ensuring

convergence to a local minimum, even though the overall problem is not jointly convex

in both f and w. The edge prediction step helps direct the optimisation process towards

a desirable minimum, by encouraging the sharp image to contain step edges. In the

marginalisation algorithm, we have found that the algorithm converges equally reliably

for both the uniform model and our model, although a greater number of iterations are

typically required when using our model, due to the greater number of parameters to

estimate.

Running time. An important difference between the two approaches is that the MAP

algorithm typically takes a much shorter amount of time to run, since the parameter

updates for the marginalisation algorithm, in Equations (4.11) to (4.15), are computa-

tionally expensive. Due to this expense, and the larger number of iterations required

for our model compared to the uniform model, the marginalisation algorithm with our

non-uniform model can take several hours to deblur an image of several hundred pixels

across under Matlab on a Linux workstation with an Intel Xeon 2.93GHz CPU and

8GB of memory. Deblurring larger images with this method is not currently practical.

Our Matlab and C implementation of the MAP algorithm, on the other hand, can

deblur the same images in under an hour, and megapixel images in 1 – 3 hours, de-

pending on the size of the blur (see Chapter 5 for an approximation which allows us to

substantially decrease the blind deblurring time further).

Limitations. Both of these algorithms are capable of removing large blurs – the blurs

removed in this thesis are up to 35 pixels wide (e.g. Figures 1.1 and 6.1), for both uniform
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4 Estimating and Removing Spatially-Variant Camera Shake Blur

and non-uniform blur. For our model, this corresponds to around 3◦ – 5◦ of rotation

around each axis for a photograph whose width and focal length are both 1000 pixels.

Since we have assumed that camera translation has a negligible blurring effect, our model

(and in general the uniform model too) is unlikely to produce good results on images

for which this is not true, due to the depth-dependent blur produced. Another typical

failure case for the MAP algorithm comes from the fact that it relies on the ability to

predict sharp step edges from blurry ones, which may not be the case for images which

contain only fine-scale texture, or where the blur is too large to allow this.

4.4 Deblurring With Noisy / Blurry Image Pairs

As for the single-image deblurring algorithms discussed in the previous sections, we

directly substitute our blur model in place of convolution in the original kernel estimation

problem of Yuan et al. (2007b) in Equation (2.58). As discussed in Figure 2.3, some

prior knowledge must be applied to recover a good kernel estimate. In their algorithm,

Yuan et al. (2007b) constrain the kernel to have non-negative elements and unit ℓ1

norm, however they simultaneously penalise the ℓ2 norm of the kernel, reducing the

sparsity-inducing effect of the constraint. To help find a sparse kernel, they propose

a thresholding scheme with hysteresis which sets some kernel elements to zero at each

iteration. In our approach, we opt to use the ℓ1 and positivity constraints alone, since

they lead naturally to a sparse kernel (Tibshirani, 1996), a fact also exploited by Shan

et al. (2007) for blur kernel estimation.

In order to estimate the blur kernel, we solve the following problem

min
w

∥

∥

∥

∑

k

wkT
(k)fN − g

∥

∥

∥

2

2
s.t. ∀ k = 1, . . . ,K, wk ≥ 0 and

∑

k

wk = 1. (4.20)

Similar to Equation (4.18), this least-squares formulation with non-negative ℓ1 con-

straints can be solved efficiently (Kim et al., 2007; Mairal et al., 2010). Since the energy

function is convex with convex constraints, we can be sure of reaching the global mini-

mum.
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For comparison, we have also implemented this algorithm for uniform blurs, using

convolution in Equation (4.20).

To perform the non-blind deblurring using the estimated kernel, we apply the aug-

mented RL algorithm of Yuan et al. (2007b) directly, replacing convolution with our

spatially-variant blur model.

4.4.1 Geometric and Photometric Registration

For the case of noisy / blurry image pairs, the two images are simply taken one after the

other with a hand-held camera, so they may not be registered with each other. Thus,

we estimate an approximate registration θ0 between them at the coarsest scale, using an

exhaustive search over a large set of rotations, for example ±10◦ about all 3 axes using
the same step size as for the blur kernel, and we remove this mis-registration from the

noisy image. When applying the uniform blur model in this case, we manually estimate

the in-plane rotation to best register the two images, as in (Yuan et al., 2007b).

To compensate for the difference in exposure between the noisy and blurry images,

at each scale s, after computing ŵs for that scale, we estimate a linear rescaling a by

computing the linear least-squares fit between the pixels of gs and those of ĝs(ŵs, fN,s),

and apply this to the noisy image, i.e. fN ← afN .

4.4.2 Results and Discussion

In this section, we present results with noisy / blurry image pairs, and refer the reader to

Section 4.5 for implementation details. Figures 4.8 and 4.9 show a comparison between

the uniform model and ours, using the algorithm described above to estimate the blur

kernels. Having estimated the kernel, we deblur the blurred images using the augmented

RL algorithm of Yuan et al. (2007b). As can be seen from the deblurred images obtained

with the two models, our results exhibit more detail and fewer artefacts than those using

the uniform blur model.

Blind deblurring with the aid of a noisy image is significantly more robust than single

image deblurring. This is because it involves solving two convex optimisation problems,
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such that we can be sure that we have reached the globally-optimal deblurred image. The

solutions are also not particularly sensitive to the values of regularisation parameters,

since the problems are well-conditioned, with many more observations than unknowns.

However, this approach is only applicable when a noisy image fN is available, which

precludes most existing blurry images. As a method of capturing a good image with a

standard camera in low-light however, the noisy / blurry image pair is a good technique

for photographers to keep in mind.

4.5 Implementation

The implementation of the variational kernel estimation method presented in Section 4.3.1

is based on the code made available by Miskin and MacKay (2000) and by Fergus et al.

(2006)1. We have modified the algorithm to use our blur model and replaced the parame-

ter update equations with the corresponding versions derived for our bilinear blur model

in Equations (4.11) to (4.15). A package containing our code is available online2. The

implementation of the non-blind deblurring algorithm of Krishnan and Fergus (2009) is

also based on Matlab code made available online by the authors3. The implementa-

tions of the Richardson-Lucy algorithm, the algorithm of Cho and Lee (2009), and the

augmented RL algorithm of Yuan et al. (2007b) are our own, and we use these imple-

mentations for both uniform and non-uniform blur models when comparing results. A

binary executable for Cho and Lee’s algorithm is available, however we did not observe

an improvement in the results obtained, and thus use our own implementation to permit

a fairer comparison between the results from the uniform and non-uniform blur models.

4.5.1 Multiscale Implementation

All of the kernel estimation algorithms presented here are applied within a multiscale

framework, starting with a coarse representation of image and kernel, and repeatedly re-

1http://cs.nyu.edu/~fergus/research/deblur.html
2http://www.di.ens.fr/willow/research/deblurring/
3http://cs.nyu.edu/~dilip/research/fast-deconvolution/
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fining the estimated kernel at higher resolutions. In the case of single-image deblurring,

this is essential to avoid poor local minima, however it is also important for computa-

tional reasons in both the single-image and noisy / blurry image pair cases. The kernel

at the original image resolution may have thousands or tens of thousands of elements,

however very few of these should have non-zero values. For example to solve Equa-

tion (4.20) directly at full resolution would involve transforming fN for every possible

rotation under consideration and storing all the copies simultaneously in a matrix BN .

For a blur of size 10 pixels in an image 1000 pixels wide, this could be over 1000 copies of

fN . This represents a significant amount of redundant computation, since most of these

copies will correspond to zeros in the kernel, and furthermore BN may have too many

columns to fit in the computer’s memory. The effect on the computation and memory

requirements for single-image deblurring is comparable.

Thus, in all of the applications presented in this chapter, which estimate the kernel

iteratively, we use our current estimate of the kernel ŵs at a scale s to constrain our

estimate at the next iteration. To do this, we define an “active region” where ŵs is

non-zero, and constrain the non-zeros at the next iteration to lie within this region. By

fixing many kernel elements to zero, we eliminate a large amount of computation and

memory requirements associated with estimating those elements’ values. In the example

of the previous paragraph, this corresponds to discarding many columns of BN , clearly

reducing the size of the problem. We first build Gaussian pyramids for the blurred image

(and noisy image, if applicable), and at the coarsest scale s = 0, define the active region

to cover the full kernel. At each iteration, we find the non-zero elements of our current

estimate of the kernel ŵs, and dilate this region using a 3 × 3 × 3 cube to define the

active region for the next iteration. When moving from one scale s to the next scale

s + 1, we upsample ŵs using bilinear interpolation, find the non-zero elements of this

upsampled kernel, and as before, dilate this region using a 3×3×3 cube. This initialises
the active region for our next estimate ŵs+1. We repeat this process at each scale, until

we have found the optimal kernel at the finest scale.
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4 Estimating and Removing Spatially-Variant Camera Shake Blur

This approach is generally effective at reducing the computational burden of the

kernel estimation without reducing accuracy, however, problems may occur if the blur

kernel contains long faint structures, as it is possible for these to be clamped to zero at

a coarse scale and never to be recovered, as mentioned in Figure 4.7.

4.6 Conclusion

We have applied our new model for spatially-variant camera shake blur within the frame-

works of several existing camera shake removal algorithms. We have validated the model

with experiments on real and synthetic data, demonstrating superior results compared

to the uniform blur model.
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(a) Noisy image (b) Blurry image (c) Deblurred result,
uniform

(d) Deblurred result,
non-uniform

Figure 4.8. Deblurring real camera shake blur using a noisy / blurry image pair. A
noisy image (a) and a blurry image (b) captured with a hand-held camera, with the deblurred
results for the uniform (c) and non-uniform (d) blur models. As can be seen in the close-ups
(bottom two rows), our result contains more details and fewer artefacts than when using the
uniform blur model, and reveals features not visible in either the noisy or the blurry image. The
non-uniform kernel in (d) covers ±3◦ along each dimension.
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(a) Noisy image (b) Blurry image

(c) Uniform kernel (d) Non-uniform kernel

(e) Deblurred result, uniform (f) Deblurred result, non-uniform

(g) Noisy (h) Blurry (i) Uniform (j) Non-uniform

Figure 4.9. Deblurring real camera shake blur using a noisy / blurry image pair.
A noisy image (a) and blurry image (b) captured with a hand-held camera, shown with the
estimated kernels (c)–(d) and deblurred images (e)–(f) for the uniform and non-uniform blur
models. Note in the close-up that the result using our model (j) has sharper edges and fewer
artefacts than that using the uniform model (i). The non-uniform kernel in (d) covers ±3◦ along
each dimension .



Chapter 5

Efficient Computation of the

Spatially-Variant Blur Model

5.1 Introduction

Due to the additional computational expense incurred by using a spatially-variant blur

model instead of a spatially-invariant one, both blind and non-blind deblurring under

this model can be very time consuming. The number K of homographies {T(k)} in
the forward model in Equation (3.11) can be large, and we must compute hundreds, or

thousands of projective image transformations at each iteration of blind and non-blind

deblurring algorithms. To reduce the running time of the whole deblurring process, in

this chapter we propose an efficient approximation to the blur model in Equation (3.11),

based on the locally-uniform “Efficient Filter Flow” proposed by Hirsch et al. (2010),

introduced in Section 2.4.

In Section 5.2 we examine some of the bottlenecks in the spatially-variant blind

deblurring process, before introducing an efficient approximation in Section 5.3 to the

model proposed in Chapter 3. We compare results and deblurring times using the

approximation, to those using the exact model, and conclude in Section 5.4.
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5.2 Bottlenecks in Spatially-Variant Blind Deblurring

Although the model for a spatially-variant PSF introduced in Chapter 3 is parame-

terised by the vector w, which may have a similar number of elements to a traditional

convolution kernel, the computational cost of using this model in blind deblurring is

substantially higher. This is due to several factors, for example that the transformations

{T(k)} involve sub-pixel interpolations, that the set of matrices {T(k)} is too large to fit
in memory and must be re-computed on-the-fly frequently, and that there is no equivalent

to the frequency-domain convolution which allows spatially-invariant blur (2D convolu-

tion) to be computed in O
(

N logN
)

time instead of O
(

N2
)

, where N is the number of

pixels in the image. These factors mean that blind PSF estimation using this model is

significantly slower than for spatially-invariant blur. In this section we discuss the cost of

the most computationally-intensive steps in the MAP blind PSF estimation algorithm.

Recall from Chapter 4 that the MAP algorithm has two major steps: updating the blur

kernel and updating the sharp image; we discuss each of these in turn.

5.2.1 Updating the kernel

To update the kernel in the MAP-ℓ1 blind deblurring algorithm, recall from Chapter 4

that we solve Equation (4.18) (p. 75). For ease of exposition, we note that the problem

can be written in the general form

min
w

∥

∥Pw − g∂
∥

∥

2

2
+ β

∑

k

wk s.t. ∀k = 1, . . . ,K, wk ≥ 0, (5.1)

where K is the number of non-zero weights in the kernel, the vector g∂ is the concate-

nation of all the derivatives of g, and the matrix P incorporates all the transformed

versions of the predicted sparse derivative maps {p(q)} (as discussed in Section 2.3.3
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(p. 38)). The matrix P has the form

P =











T(1)p(1) T(2)p(1) · · · T(K−1)p(1) T(K)p(1)

T(1)p(2) T(2)p(2) · · · T(K−1)p(2) T(K)p(2)

...
...

...
...

...











, (5.2)

where in the algorithm of Cho and Lee (2009), p(1) = px, p(2) = py, and p(q) for

3 ≤ q ≤ 5 contain second-order derivatives.

In iterative minimisation algorithms used for solving such least-squares problems,

e.g. LARS-lasso (Efron et al., 2004) or conjugate-gradient descent (Shewchuk, 1994),

we must repeatedly compute matrix-vectors products such as Px, P⊤Px and P⊤y for

arbitrary vectors x and y. The 5N × K matrix P is generally too large to fit into

memory (e.g. for a megapixel image P could have size 5 · 106 × 103 elements, requiring
37GB of memory at double precision), so we must generate its elements on-the-fly when

computing these matrix-vector products. Computing each element of P is essentially

equivalent to performing a sub-pixel interpolation, which is computationally expensive.

As a result, these matrix-vector products are by far the biggest bottleneck in the kernel

estimation step, since they might involve computing a large number of image warps and

multiplications at each iteration.

To solve Equation (5.1), we use the LARS-lasso algorithm of Efron et al. (2004),

since it involves relatively few products of the type described above per iteration, and is

guaranteed to reach the global minimum in a finite number of steps. To perform a single

iteration of this algorithm, we have the choice of computing three Px-type products and

one P⊤y-type product, or computing one P⊤Px-type product. Here, note that since

K << N , it is generally feasible to store the K × K matrix P⊤P, referred to as the

Gram matrix, in memory. This matrix can be computed without requiring any element

of P more than once, using the fact that P⊤P =
∑

i pip
⊤
i , where p

⊤
i is the ith row of P.

Thus we can perform the entire LARS-lasso kernel estimation process while computing

each element of P only once. With P⊤P stored in memory, the P⊤Px product at

each iteration can be performed with optimised linear algebra libraries. We have found
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empirically that this approach (pre-computing P⊤P, as opposed to computing the Px

and P⊤y products on-the-fly) gives the shortest kernel estimation times. However, the

pre-computation of P⊤P may still by time-consuming. For megapixel images, or images

with many non-zeros in {p(q)}, the pre-computation may take minutes, or even hours.

5.2.2 Updating the sharp image

To update the sharp image in the MAP-ℓ1 blind deblurring algorithm, we use conjugate

gradient descent (CG) to solve the minimisation problem in Equation (4.17) (p. 73),

which essentially has the form

min
f
‖Af − g‖22 + α ‖dx ∗ f‖22 + α ‖dy ∗ f‖22 , (5.3)

where A =
∑

k wkTk. To compute the gradient of the cost function, we need to eval-

uate products of the type A⊤Af at each iteration. As in the kernel estimation step,

the image transformations T(k)f involved in computing these products are the most

computationally-expensive operations. Unlike for the kernel estimation step, the N ×N

Gram matrix A⊤A is too large to store, so cannot be pre-computed. However, we typi-

cally perform a small, fixed number of iterations of CG (e.g. 20 iterations), and as such

the time spent performing this optimisation is typically much less than the kernel update

step. Nevertheless, this CG minimisation may still take several minutes for a megapixel

image, as shown in Figure 5.3 (b).

5.3 Locally-Uniform Approximation

In this section we describe an approximation to the forward model described in Chapter 3

that provides a fast means of calculating the spatially-variant forward model. More

importantly however, we describe how this approximation can be used to (a) compute the

kernel Gram matrix P⊤P very quickly, allowing the kernel update step to be performed

in seconds rather than hours, and (b) approximately minimise Equation (5.3) directly

in two steps, allowing the sharp image to be updated in seconds rather than minutes.

96



5.3 Locally-Uniform Approximation

This approximation is based on the “Efficient Filter Flow” model for spatially-variant

blur proposed by Hirsch et al. (2010), discussed earlier in Section 2.4.2.

Hirsch et al. (2010) observe that in some cases of spatially-variant image blur, the

blur may vary slowly and smoothly across the image. As a result, the PSFs of nearby

pixels may be very similar, and it is reasonable to approximate spatially-variant blur

as being locally-uniform. Following this observation, they propose an approximation

of the forward model, whereby the sharp image f is covered with a coarse grid of P

overlapping patches, each of which is modelled as having a spatially-invariant blur. The

overlap between patches ensures that the blur varies smoothly across the image, rather

than changing abruptly at the boundary between two patches. The fact that each patch

has a spatially-invariant blur allows the forward model to be computed using P small

convolutions. Hirsch et al. (2010) assign each patch r a spatially-invariant blur filter

a(r), and the forward model is given by:

g∗ =
P
∑

r=1

C(r)⊤
(

a(r) ∗ (m ◦C(r)f)
)

, (5.4)

where C(r) is a matrix that crops out the rth patch from the image f (and thus C(r)⊤

reinserts it at its correct location). The vector m is a windowing function, e.g. the

Bartlett-Hann window, which produces the smooth transition between neighbouring

patches, and · ◦ · represents the Hadamard (element-wise) product between two vectors.
This model can be computed efficiently in the frequency domain:

g∗ =

P
∑

r=1

C(r)⊤F−1
(

F
(

a(r)
)

◦ F
(

m ◦C(r)f
)

)

, (5.5)

where F ( · ) takes the 2D discrete Fourier transform (computed using the fast Fourier

transform), and F−1 ( · ) the inverse Fourier transform. The windowing function m is

chosen such that the total weight at each pixel is 1, i.e.
∑

r C
(r)⊤m = 1.
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5.3.1 A Globally-Consistent Approximation for Camera Shake

In their original work, Hirsch et al. (2010) estimate a separate filter a(r) for each patch

r. Likewise Harmeling et al. (2010b), who apply this approximation in the context of

single-image camera shake removal, also estimate a separate filter per patch, using the

MAP algorithm of Cho and Lee (2009). One weakness of this approach is that in regions

with little texture or strong edges, it may not be possible to estimate a good kernel.

Since the purely-local model has no notion of global consistency between the different

regions’ kernels, heuristics are needed to encourage neighbouring filters to be similar,

and to detect failed regions and hypothesise kernels for those regions, based on their

neighbours. However, given the forward blur model for camera shake in Equation (3.11),

which is parameterised by a single set of weights w, we can in fact write each a(r) in

terms of w. For each patch r, we choose a(r) to be the point spread function for the

central pixel ir, which is given by the ithr row of A. Since A is linear in w, we can

construct a matrix J(r) such that a(r) = C(r)J(r)w. The elements of each matrix J(r) are

simply a re-arrangement of the elements of the matrices T(k): J
(r)
jk = T

(k)
irj
. Figure 5.1

shows how the quality of the approximation varies with the number of patches being

used, compared to the exact model. In all our experiments, we use a grid of 6×8 patches.
Having written each filter a(r) in terms of w, we can then substitute this into Equa-

tion (5.5) to obtain the following approximation of the forward model in Equation (3.11):

g∗ ≃
P
∑

r=1

C(r)⊤F−1
(

F
(

C(r)J(r)w
)

◦ F
(

m ◦C(r)f
)

)

. (5.6)

These equations allow the forward model to be computed quickly using only a handful

of frequency-domain convolutions. Furthermore, the derivatives of g∗ with respect to f

and w can also be computed using a small number of frequency-domain convolutions

and correlations. As discussed in the previous section, computing the forward model

and its derivatives are bottlenecks in both the blind PSF estimation algorithm of Cho

and Lee (2009).

Equation (5.6) provides us with a fast approximate way of computing the forward
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5.3 Locally-Uniform Approximation

model for g∗ = Af = Bw. By re-arranging this approximation, we can compute B⊤y

for arbitrary y and B⊤B using 3 FFTs per patch as follows:

P⊤y ≃
P
∑

r=1

J(r)⊤C(r)⊤F−1
(

F
(

m ◦C(r)f
)∗ ◦ F

(

C(r)y
)

)

(5.7)

P⊤P ≃
P
∑

r=1

J(r)⊤C(r)⊤XCorrMatrix
(

F−1
(

F
(

m ◦C(r)f
)∗ ◦ F

(

C(r)f
)

))

C(r)J(r).

(5.8)

The function XCorrMatrix constructs the full cross-correlation matrix from a cross-

correlation vector between two signals. To clarify, consider a pair of 1D signals u and v.

We can compute the cross-correlation vector c for all relative offsets between them as c =

F−1
(

F (u)∗ ◦ F (v)
)

. If we define the matrix Sk which shifts a signal by k elements, then

the element ck stores the cross-correlation between Sku and v, i.e. ck = (Sku)
⊤v. With

appropriate boundary conditions, we also have ck = (Sk−1u)
⊤(S1v) = (Sk−2u)

⊤(S2v),

and so on. Thus to compute the cross-correlation matrix C with elements Ck1k2 =

(Sk1u)
⊤(Sk2v), we need only re-arrange and duplicate the elements of the vector c. This

argument extends naturally to 2D, and this action is denoted by C = XCorrMatrix(c).

Using the approximation described above, computation ofP⊤P costsO
(

K+N log(N)
)

.

This is in comparison to the cost of O
(

NK2
)

to compute P⊤P using the exact model.

For camera shake, the blur kernel tends to consist of a line of non-zeros, so that the

number of kernel elements K grows (at best) linearly with the length of the blur. Since

the length of the blur will grow linearly with the image width W , we can assert that K

grows as than
√
N . Thus the cost of computing P⊤P with the exact model grows at

least as O
(

N2
)

, while the approximate model grows as O
(

N logN
)

.

Figure 5.2 plots the blind PSF estimation times for several images with different sizes

of blur, using both the exact forward model and the fast approximate forward model.
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5 Efficient Computation of the Spatially-Variant Blur Model

(a) Approx. 3× 4 patches (b) Approx. 6× 8 patches

(c) Approx. 12× 16 patches (d) Exact

Figure 5.1. Approximating spatially-variant blur by combining uniformly-blurred,
overlapping patches. Using the model described in Section 5.3.1, we can efficiently compute
approximations to the spatially-variant blur model in Equation (3.11). With a small number of
patches (a), the PSF at each pixel is visibly the sum of different blurs from overlapping patches.
As more patches are used (b–c), the approximation becomes increasingly close to the exact model
(d) – at 12× 16 patches it is almost indistinguishable.

5.3.2 Fast Independent Non-Blind Deconvolution of Patches

Although the use of a locally-uniform approximation allows the forward model to be

computed much faster using the FFT, we cannot immediately take full advantage of

working in the frequency domain when it comes to non-blind deconvolution. For example,

in the inner loop of the blind deblurring algorithm of Cho and Lee (2009), we must

repeatedly solve problems of the form in Equation (5.3). When the blur is spatially-

invariant, Af = a ∗ f , and Equation (5.3) can be minimised directly in a single-step

by pixel-wise division in the frequency domain, as discussed in Section 2.2.2. However,
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Figure 5.2. Blind deblurring time using the exact and approximate model. This log-log
plot shows the time taken to perform blind deblurring of several images at various different sizes,
using either the exact forward model (solid lines) or the approximate forward model (dashed
lines). The blind deblurring algorithm is implemented in Matlab, and the function to compute
the exact forward model is implemented in compiled C, while the approximate model is imple-
mented in Matlab. The blind deblurring time using the exact model grows significantly faster
with respect to the image size than using the approximate model, and for images 1024 pixels
wide already takes almost 2 orders of magnitude longer. The images for these times are from
the following figures: Istanbul – Figure 6.8 (p. 125), LivingRoom – Figure 5.3 (p. 104), Pantheon
– Figure 4.2 (p. 78), Book – Figure 4.3 (p. 79).

for spatially-variant blur, the locally-uniform approximation does not permit this. Even

though each patch has a spatially-invariant blur, the fact that the patches overlap means

that they cannot be deconvolved independently. This can be seen by expanding the non-

blind deblurring problem in Equation (5.3), where the sum over patches lies inside the

data fidelity term of the cost function:

min
f

∥

∥

P
∑

r=1

C(r)⊤
(

a(r) ∗ (m ◦C(r)f)
)

− g
∥

∥

2

2
+ α ‖dx ∗ f‖22 + α ‖dy ∗ f‖22 . (5.9)

If we note however that extracting and recombining the patches of an image has no
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5 Efficient Computation of the Spatially-Variant Blur Model

effect on an image, or on a filtering operation (Equation (2.64)), i.e.

g =

P
∑

r=1

C(r)⊤(m ◦C(r)g) (5.10)

dx ∗ f =
P
∑

r=1

C(r)⊤(dx ∗
(

m ◦C(r)f)
)

, (5.11)

we can rewrite Equation (5.9) as

min
f

∥

∥

P
∑

r=1

C(r)⊤
(

a(r) ∗ (m ◦C(r)f)−m ◦C(r)g
)∥

∥

2

2

+ α
∥

∥

P
∑

r=1

C(r)⊤
(

dx ∗ (m ◦C(r)f)
)∥

∥

2

2
+ α

∥

∥

P
∑

r=1

C(r)⊤
(

dy ∗ (m ◦C(r)f)
)∥

∥

2

2
. (5.12)

Although this cost function still does not permit a closed-form solution, we can obtain

the following upper bound (up to a constant scale factor of P ) using Jensen’s inequal-

ity (Bishop, 2006):

min
f

P
∑

r=1

∥

∥

∥C(r)⊤
(

a(r) ∗ (m ◦C(r)f)−m ◦C(r)g
)

∥

∥

∥

2

2

+ α

P
∑

r=1

∥

∥

∥C(r)⊤
(

dx ∗ (m ◦C(r)f)
)

∥

∥

∥

2

2
+ α

P
∑

r=1

∥

∥

∥C(r)⊤
(

dy ∗ (m ◦C(r)f)
)

∥

∥

∥

2

2
. (5.13)

This formulation penalises each patch independently, and can be minimised using a split-

variable approach, iterating between (a) estimating a deblurred patch f̂ (r) for each patch

r, and (b) estimating the complete deblurred image f̂ that best matches these patches.

In practice a single iteration is sufficient to obtain a good result. As we show in the

following, step (a) can be performed independently for each patch, and step (b) can be

performed independently for each pixel of the deblurred image.

Specifically, we define the set of blurry patches g(r) such that

g(r) =m ◦C(r)g, (5.14)
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5.3 Locally-Uniform Approximation

and note that the multiplication by C(r)⊤ at the beginning of each term in Equa-

tion (5.13) only zero-pads an image, so has no effect on the cost. We first estimate

a set of deblurred patches {f̂ (r)} by solving

min
f (r)

∥

∥a(r) ∗ f (r) − g(r)
∥

∥

2

2
+ α

∥

∥dx ∗ f (r)
∥

∥

2

2
+ α

∥

∥dy ∗ f (r)
∥

∥

2

2
(5.15)

for each patch. This can be done using the direct method of Equation (2.44). Secondly,

to estimate the full deblurred image that best matches the deblurred patches f̂ (r), we

solve

min
f

P
∑

r=1

∥

∥m ◦C(r)f − f̂ (r)
∥

∥

2

2
. (5.16)

To minimise this, we first note that we can multiply through by C(r)⊤ without alter-

ing the cost (since C(r)⊤ simply applies zero-padding), and that C(r)⊤(m ◦ C(r)f) =

(C(r)⊤m) ◦ f . Thus we obtain the following equivalent problem:

min
f

P
∑

r=1

∥

∥(C(r)⊤m) ◦ f −C(r)⊤f̂ (r)
∥

∥

2

2
. (5.17)

This problem can be solved independently for each pixel of f̂ , yielding the following

solution:

f̂ =

∑

r C
(r)⊤(m ◦ f̂ (r))

∑

r C
(r)⊤(m ◦m)

. (5.18)

Algorithm 1 summarizes the steps to performing this fast direct deconvolution, and in

Figure 5.3 we compare this method of non-blind deblurring to other possibilities for

solving Equation (5.3). The fast independent method produces results visually very

similar to the exact model, in a significantly shorter amount of time. We use this

direct deconvolution method to update the latent image in blind deblurring, as discussed

in Section 5.2.2. This provides an additional speed improvement in blind deblurring,

compared to the use of conjugate-gradient descent with the approximate forward model.
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5 Efficient Computation of the Spatially-Variant Blur Model

(a) Blurry image & estimated blur kernel (b) Conjugate gradient descent
(20 iterations), exact model, 442s

(c) Conjugate gradient descent
(20 iterations), approximate model, 137s

(d) Direct independent
deconvolution of patches, 4s

Figure 5.3. Least-squares non-blind deblurring using the exact and approximate for-
ward models. Given a blurry image of size 1024 × 768 and blur kernel (a), this figure shows
the results and computation times for least-squares deconvolution with ℓ2 gradient regularisation
(Equation (5.3)), using (b) conjugate gradient descent (CG) with the exact forward model, (c)
CG with the approximate forward model, and (d) direct deconvolution using the approach de-
scribed in Section 5.3.2. The results are visually similar using all three methods. Using CG with
the approximate forward model is much faster than with the exact model, however the direct
approach takes only a fraction of the time of either of these.



5.4 Conclusion

Algorithm 1: Fast non-blind deconvolution of spatially-varying blur.

Input: Blurry image g, blur descriptor w

Output: Deblurred image f̂

1 Decompose g into patches g(r) using (5.14)

2 Deconvolve each patch to estimate f̂ (r) by solving (5.15) in the frequency domain

3 Combine patches to estimate sharp image f̂ using (5.18)

5.4 Conclusion

We have described how an efficient approximation for spatially-variant blur can be used

to reduce the computational cost of computing the spatially-variant forward blur model

from Chapter 3. In addition, we have proposed an approximate direct method for

spatially-varying non-blind deblurring, which is able to perform least-squares non-blind

deblurring in a fraction of the time required for iterative methods such as conjugate

gradient descent. As a result of the approximations described, we are able to obtain

a substantial speed-up in both the blind PSF estimation and the non-blind deblurring

steps over the exact model, reducing the time required to completely deblur an image

from several hours to a few minutes, with no considerable reduction in quality.

For a 1024×768 image, our C implementation of the exact model in Equation (3.11)

takes approximately 5 seconds to compute, compared to 2 seconds for our Matlab

implementation of the approximate forward model in Equation (5.6), on an Intel Xeon

2.93GHz CPU.
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Chapter 6

Handling Saturation in Non-Blind

Deblurring

6.1 Introduction

When the PSF for a blurry image is known, it is the goal of “non-blind” deblurring

to recover an estimate of the sharp image. This problem has a long history, having

been studied since the 1940s (Wiener, 1949). However, one feature of blurry images,

and in particular “shaken” images, that is problematic for non-blind deblurring but that

has received very little attention is the presence of saturated pixels. These are caused

when the radiance of the scene exceeds the range of the camera’s sensor, leaving bright

highlights clipped at the maximum output value (e.g. 255 for an 8-bit image). To anyone

who has attempted to take hand-held photographs at night, this effect should be familiar

as the conspicuous bright streaks left by electric lights, such as in Figure 6.1 (a). These

bright pixels, with their clipped values, violate the assumption made by many algorithms

that the image formation process is linear, and as a result can cause obtrusive artefacts

in the deblurred images. This can be seen in the deblurred images in Figures 6.1 (b)

and 6.1 (c).

Saturation has not received wide attention in the literature, although it has been
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6 Handling Saturation in Non-Blind Deblurring

cited as the cause of artefacts in the deblurred outputs from deconvolution algorithms.

For example, Fergus et al. (2006), Cho and Lee (2009) and Tai et al. (2011) mention

the fact that saturated pixels cause problems, sometimes showing their effect on the

deblurred output, but leave the problem to be addressed in future work. An exception

is Harmeling et al. (2010a), who address the issue in the setting of multi-frame blind

deblurring by thresholding the blurry image to detect saturated pixels, and ignoring

these in the deblurring process. When many blurry images are available, these pixels

can be safely discarded, since there will generally remain unsaturated pixels covering the

same area in other images.

In this chapter we address the problem of non-blind deblurring for images that con-

tain saturated pixels. By handling such pixels explicitly, we are able to produce sig-

nificantly better results than existing methods. Figure 6.1 (d) shows the output of the

proposed algorithm, which contains far fewer artefacts than the two existing algorithms

shown for comparison. We begin in Section 6.2 by considering possible ways of explic-

itly handling saturated pixels, and propose modified versions of the Richardson-Lucy

algorithm for each. In Section 6.3 we augment the Richardson-Lucy algorithm with an

additional modification, which prevents the propagation of ringing artefacts. We discuss

the implementation of the algorithm in Section 6.4, and show results in Section 6.5.

In Section 6.6 we look at the different causes of ringing in non-blind deblurring. We

conclude in Section 6.7.

6.2 Explicitly Handling Saturated Pixels

We model sensor saturation as follows: the sensor outputs pixel values which are propor-

tional to the scene radiance, up to some limit, beyond which the pixel value is clipped

at the maximum output level. This model is supported by the data in Figure 6.2, which

shows the relationship between pixel intensities in three different exposures of a bright

light source. The pixel values in the short exposure (with no saturation) and the longer

exposures (with saturation) clearly exhibit this clipped linear relationship. As the length
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6.2 Explicitly Handling Saturated Pixels

(a) Blurry image (b) Deblurred with the Richardson-Lucy
algorithm

(c) Deblurred with the method of Krishnan
and Fergus (2009)

(d) Deblurred with the
proposed approach

(a) (b) (c) (d)

Figure 6.1. Deblurring in the presence of saturation. Existing deblurring methods, such
as those in (b) and (c), do not take account of saturated pixels. This leads to large and unsightly
artefacts in the results, such as the “ringing” around the bright lights in the zoomed section.
Using the proposed method (d), the ringing is greatly reduced and the quality of the deblurring
improved. The PSF for this image causes a blur about 35 pixels in width, and was estimated
using the MAP-ℓ1 algorithm from Chapter 4.



6 Handling Saturation in Non-Blind Deblurring

❤

(a) 0.05s (b) 0.2s (c) 0.8s

3 different exposures of a scene containing bright lights

0 0.5 1 1.5 2

0

0.5

1

(d) Scatter plot of 0.2s exposure against
0.05s exposure

0 0.5 1 1.5 2

0

0.5

1

(e) Scatter plot of 0.8s exposure against
0.05s exposure

Figure 6.2. Saturated and unsaturated photos of the same scene. (a)–(c) 3 different
exposure times for the same scene, with bright regions that saturate in the longer exposures. A
small window has been extracted which is unsaturated at the shortest exposure, and increasingly
saturated in the longer two. (d) Scatter plot of the intensities in the small window in (b) against
those in the window in (a), normalised by exposure time. (e) Scatter plot of the intensities in
the window in (c) against the window in (a), normalised by exposure time. The scatter plots in
(d) and (e) clearly show the clipped linear relationship expected.

of the exposure increases, more pixels saturate.

This suggests two possible ways of handling saturation when performing non-blind

deblurring: (a) discard the clipped pixels, so that we only use data which follows the

linear model, or (b) modify the forward model to take into account this non-linear

relationship. We describe both of these approaches in the following, by modifying the
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popular Richardson-Lucy algorithm, and demonstrate that the second approach is better,

as it does not discard any potentially-useful data.

6.2.1 Discarding Saturated Pixels

It is possible to estimate which blurry pixels are saturated by defining a threshold T ,

above which a blurry pixel is considered to be saturated, and therefore an outlier to the

linear model. If we discard these pixels, the problem of deblurring with saturated pixels

becomes deblurring with missing data.

Richardson-Lucy With Missing Data

We begin by defining the set of unsaturated (inlier) blurry pixels Z = {i|gi ≤ T}. We

also define the corresponding binary mask z, where each element zi = 1 if blurry pixel

gi ≤ T , and zi = 0 if gi > T . The image formation model for a single blurry pixel gi in

Z is

g∗i =
∑

j

Aijfj (6.1)

∂g∗i
∂fj

= Aij . (6.2)

Recall from Section 2.1.4 that for a Poisson noise model, the likelihood for the inlier

blurry pixels is

p(gZ |w, f) =
∏

i∈Z

g∗i
gie−g

∗

i

gi!
(6.3)

The negative log-likelihood is then:

LZ = −
∑

i∈Z

log
g∗i

gie−g
∗

i

gi!
(6.4)

=
∑

i∈Z

g∗i − gi log g
∗
i + log(gi!), (6.5)
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The Richardson-Lucy algorithm minimises LZ over the sharp image f . The Karush-

Kuhn-Tucker conditions for the optimum of this likelihood are, for all fj :

fj
∂

∂fj
LZ = 0, (6.6)

and
∂

∂fj
LZ ≥ 0 if fj = 0. (6.7)

The Richardson-Lucy update rule is a fixed-point iteration derived from Equation (6.6):

fj
∑

i∈Z

∂

∂fj
(gi log g

∗
i − g∗i − log(gi!)) = 0 (6.8)

fj
∑

i∈Z

(

gi
g∗i

∂g∗i
∂fj

− ∂g∗i
∂fj

)

= 0. (6.9)

Substituting in Equation (6.2) we get:

fj
∑

i∈Z

Aij = fj
∑

i∈Z

Aij
gi
g∗i

. (6.10)

We can replace the sum over Z with a weighted sum over all blurry pixels, using the

mask elements zi as the weights:

fj
∑

i

Aijzi = fj
∑

i

Aij
gi
g∗i

zi. (6.11)

Here, in order to obtain an expression for fj , we could divide both sides by
∑

iAijzi,

however this would be unstable in regions where zi ≃ 0. Thus we add fj(1−
∑

iAijzi)

to both sides:

fj = fj

(

∑

i

Aij
gi
g∗i

zi + 1−
∑

i

Aijzi

)

. (6.12)
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Assuming that the blur is conservative, i.e.
∑

iAij = 1, we can factorise this and obtain

the update rule by replacing the unknowns fj and g∗i with our estimates f̂j and (Af̂)i =
∑

j′ Aij′ f̂j′ , and adding iteration indices:

f̂ t+1
j = f̂ t

j

∑

i

Aij

(

gi

(Af̂ t)i
zi + 1− zi

)

, (6.13)

In matrix-vector form, this update equation is

f̂ t+1 = f̂ t ◦A⊤
(

g ◦ z
Af̂ t

+ 1− z

)

, (6.14)

where 1 is a vector of ones. For an unsaturated pixel gi, the mask zi = 1, and the

term in parentheses is the same as for the standard RL update. For a saturated (out-

lier/missing) pixel, zi = 0, so the term in parentheses is equal to unity. Since the update

is multiplicative, this means that the saturated observation gi has no influence on the

estimated latent image f̂ .

The choice of threshold T can be problematic however; there may not be a single

threshold that correctly separates the saturated pixels from the unsaturated ones. A low

threshold may discard large numbers of inlying pixels from g, causing some parts of f̂

to become decoupled from the data, and remain unchanged from their initialisation by

the algorithm. A high threshold, on the other hand, may treat some saturated pixels as

inliers, causing artefacts in the deblurred result. Figure 6.3 shows the result of deblurring

using Equation (6.14) for different values of threshold T . As is visible in the figure, no

particular threshold produces a result free of artefacts. At high values of T , the building

is deblurred well, but artefacts appear around the lights. At the lowest value of T , the

lights are deblurred reasonably well, but the face of the building is mistakenly discarded

and thus remains blurry in the output.
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(a) T = 0.7 (b) T = 0.5

(c) T = 0.3 (d) T = 0.1

Figure 6.3. Ignoring saturated pixels using a threshold. A simple way to handle saturation
is to threshold the blurry image at some level T , and discard the blurry pixels above this thresh-
old. Shown are the results of running the Richardson-Lucy algorithm for different thresholds.
As the threshold decreases, the artefacts around the bright lights are reduced compared to the
standard RL result in Figure 6.1 (b). At the lowest threshold (d) the fewest artefacts appear,
but parts of the church are also discarded, hence remain blurred.



6.2 Explicitly Handling Saturated Pixels

6.2.2 A Forward Model for Saturation

Instead of attempting to segment the blurry image into saturated and unsaturated re-

gions, we may instead modify our forward model to include the saturation process. This

avoids making a priori decisions about which data are inliers or outliers. To this end,

we modify the original image degradation model in Equation (2.1) by introducing a re-

sponse function R : R+ → R+, which models the non-linear response of the sensor. This

function is applied to the degraded image before it is output by the sensor, i.e.

g(x) = R
(

N
(

(Hf)(x)
))

, (6.15)

where, recalling the notation of Section 2.1, H is the blurring operator and N repre-

sents the perturbation by random noise. This formulation however, is not particularly

tractable, except for trivial response functions R. Since the noise lies inside R, the

likelihood is distorted and can generally no longer be written in closed-form.

Instead, we use the following, more tractable, formulation:

g(x) = N
(

R
(

(Hf)(x)
))

, (6.16)

which allows us to incorporate the response into the formation of the “noiseless” blurry

image

g∗(x) = R
(

(Hf)(x)
)

, (6.17)

g∗ = R (Af) , (6.18)

where the function R is applied element-wise to a vector. Figure 6.4 shows a diagram of

this model.
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Sharp

Image f
A

Blur

Af

Sensor Response

g∗

N

Noise

Recorded
Image g

Figure 6.4. Diagram of image formation process. We model the response function as acting
on the noiseless blurry image, before the noise is added.

Richardson-Lucy With a Non-Linear Response

We can incorporate this non-linear image formation model into the Richardson-Lucy

algorithm. From Equation (6.18) we have

∂g∗i
∂fj

= AijR
′
(

(Af)i
)

. (6.19)

Substituting this into Equation (6.9) and following a similar derivation as for the Richardson-

Lucy with missing data, we arrive at the update rule

f̂ t+1
j = f̂ t

j

∑

i

Aij

(

gi

R
(

(Af̂ t)i
)R′

(

(Af̂ t)i
)

+ 1−R′
(

(Af̂ t)i
)

)

. (6.20)

In matrix-vector form, this update equation is

f̂ t+1 = f̂ t ◦A⊤
(g ◦R′(Af̂ t)

R(Af̂ t)
+ 1−R′(Af̂ t)

)

. (6.21)

Choosing the Response Function

One choice for R would be simply to truncate the linear model at 1 (the maximum

pixel value), i.e. R(x) = min(x, 1). This choice is empirically justified, as can be seen in

Figure 6.2. However, this function is non-differentiable at x = 1, i.e. R′(1) is not defined.

We thus use a smooth approximation (Chen and Mangasarian, 1996), where

R(x) = x− 1

a
log
(

1 + exp
(

a(x− 1)
)

)

(6.22)
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R′(x) =
1

1 + exp
(

a(x− 1)
) , (6.23)

where R′ represents the first derivative of R. The parameter a controls the smoothness

of the approximation, and we have found a = 50 to be a suitable compromise between

smoothness and accuracy. Figure 6.5 shows the shape of R and R′ compared to the

simple truncated linear model. In all our experiments a = 50.

Given the shape of R, Equation (6.21) can easily be interpreted: in the linear portion

R(x) ≃ x and R′(x) ≃ 1, so that the term in parentheses is the same as for the standard

RL algorithm, while in the saturated portion R(x) ≃ 1 and R′(x) ≃ 0, so that the

term in parentheses is equal to unity and has no influence on f . Considering this shape

of R′, and by comparing the update equation in Equation (6.21) to the “masked RL”

update in Equation (6.14), we can see that R′(Af) play a role very similar to the mask

z, downweighting saturated observations. However, it is important to note that this

behaviour arises naturally from the forward model, and is not detected from the blurry

image. Given our current estimate of the latent image f , the forward model tells us

which blurry pixels are saturated, and automatically downweights those pixels in the

update equation. We refer to the algorithm using this update rule as “saturated RL”.

Figure 6.6 demonstrates the advantage of this method over the standard RL algorithm

on a synthetic 1D example.

6.3 Preventing the Propagation of Errors

It is important to note that even when we take account of saturation in our image

formation model, we are not necessarily able to estimate every pixel in f accurately. In

the blurring process, each latent pixel fj in the sharp image is blurred across multiple

pixels in the blurry image g. If some (or all) of these are saturated, we are left with an

incomplete set of data concerning fj , and our estimate of fj is likely to be less accurate

than if we had a full set of unsaturated observations available. This mis-estimation is

one source of “ringing” artefacts in the deblurred output. An over-estimate at one pixel
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(b) Smooth, differentiable saturation
function

Figure 6.5. Modelling the saturated sensor response. (a) Ideal clipped linear response
function (solid blue line) and its derivative (dashed red line). The derivative is not defined at
x = 1. (b) Smooth and differentiable approximation to (a) defined in Equation (6.22). The
derivative is also smooth and defined everywhere.

must be balanced out by an under-estimate at a neighbouring pixel, which must in turn

be balanced out by another over-estimate. In this way, an error at one pixel spreads

outwards in waves across the image. In order to mitigate this effect, we propose a second

modification to the Richardson-Lucy algorithm to stop the propagation of these errors.

Following the arguments above, we see that it is the brightest pixels in f , and their

neighbours, that we are likely to estimate poorly (since they cause saturation), and that

we would like to prevent the propagation of errors from these poorly estimated pixels to

their neighbours. To this end, we segment f into two disjoint regions: S, which includes
the bright pixels and their neighbours that we are unlikely to estimate accurately, and U ,
which covers the rest of the image and which we can estimate accurately. We decompose

the latent image correspondingly: f = fU + fS .

Our aim is then to prevent the propagation of errors from fS to fU . To achieve this,

we propose to estimate fU using only data which is not influenced by any pixels from

S. To this end, we first define the region (denoted by V) of the blurry image which is
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(a) No saturation (b) Partial saturation (c) Complete saturation

Figure 6.6. Synthetic example of blur and saturation. Each column shows a sharp “top-
hat” signal, blurred using the box filter shown at the top left. Gaussian noise is added and
the blurred signal is clipped, to model saturation. The kernel is also degraded with noise and
one large error to produce a “perturbed” kernel which is used for deconvolution, to simulate
errors in the kernel estimation step. The last three rows show the deblurred outputs for three
algorithms discussed in Section 6.2. (a) With no saturation, all three algorithms produce similar
results. (b) When some of the blurred signal is saturated (region B), the standard RL algorithm
produces an output with large ringing artifacts. Although region A is not itself saturated, the
ringing propagates outwards from B & C across the whole signal. The “saturated RL” algorithm
reduces the ringing and correctly estimates the height of the top-hat at its edges (region C),
where there are some unsaturated observations available. In region B all information about the
height of the sharp signal is lost, and the output takes a sensible value close to 1. (c) When
the blurred top-hat is completely saturated, it is no longer possible to estimate its true height
anywhere. The saturated RL result accurately locates the top-hat, but contains ringing. The
proposed method (combined RL) mitigates this by preventing the propagation of errors to the
non-saturated region (compare D to E).
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independent of fS , by eroding U using the non-zero elements of the PSF:

V =
⋂

k:wk>0

UT(k) , (6.24)

where UT(k) denotes the set U transformed by T(k). By taking the intersection of all

the transformed versions of U , we ensure that V contains only those blurry pixels that

are completely independent of S. We can then estimate fU using only the data in V, by
defining the binary mask v which corresponds to V and adapting the update equation

from Equation (6.14) for Richardson-Lucy with missing data (Section 6.2.1):

f̂ t+1
U = f̂ tU ◦A⊤

(

g ◦R′(Af̂ t) ◦ v
R(Af̂ t)

+ 1−R′(Af̂ t) ◦ v
)

. (6.25)

We estimate fS using the previously defined “saturated RL” algorithm:

f̂ t+1
S = f̂ tS ◦A⊤

(

g ◦R′(Af̂ t)

R(Af̂ t)
+ 1−R′(Af̂ t)

)

. (6.26)

Since the Richardson-Lucy algorithm is an iterative process, we do not know before-

hand which parts of f belong in U and which in S. We thus perform the segmentation

at each iteration t using a threshold on the latent image:

U =
{

j
∣

∣f̂ t
j ≤ ϕ

}

. (6.27)

We decompose f̂ t according to

f̂ tU = u ◦ f̂ t (6.28)

f̂ tS = f̂ t − f̂ tU , (6.29)

where u is the binary mask corresponding to U . We then compute V, update f̂U and

f̂S using Equations (6.25) and (6.26), and recombine them to form our new estimate

of the latent image f̂ t+1 = f̂ t+1
U + f̂ t+1

S . We refer to this algorithm as “combined RL”,
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and Figure 6.6 shows the results of applying it to a synthetic 1D example, demonstrat-

ing the advantage over the standard RL and “saturated RL” algorithms. Algorithm 2

summarises the method.

Algorithm 2: Combined Richardson-Lucy algorithm.

Input: Blurry image g, blur descriptor w

Output: Deblurred image f̂

1 f̂0 ← g

2 for t = 0 to nIters do

3 Decompose f̂ t into f̂ tU and f̂ tS using (6.27) to (6.29)

4 Compute set V of blurry pixels independent of S using (6.24)
5 Compute f̂ t+1

U using only data from V (6.25)
6 Compute f̂ t+1

S using all data (6.26)

7 f̂ t+1 = f̂ t+1
U + f̂ t+1

S

8 end

Although this combined RL algorithm involves the use of a threshold to segment the

image (Equation (6.27)), its effect is less dramatic than in Section 6.2.1. In this case,

the threshold only determines whether a given pixel fj should be updated using all the

available data, or a subset of it. This is in contrast to Section 6.2.1, where parts of the

data are discarded and never used again. Since our aim is to ensure that no large errors

are introduced in fU , we set the threshold low enough that most potentially-bright pixels

are assigned to S. Empirically, we choose ϕ = 0.9 for the results in this paper.

6.4 Implementation

In this section we describe some of the implementation details of the proposed algo-

rithm. When segmenting the current estimate of the latent image in the combined RL

algorithm, we take additional steps to ensure that we make a conservative estimate of

which pixels can be estimated accurately. First, after thresholding the latent image in

121



6 Handling Saturation in Non-Blind Deblurring

Equation (6.27), we perform a binary erosion on U , such that

U =
{

j
∣

∣fj ≤ ϕ
}

⊖M, (6.30)

where ⊖ denotes binary erosion, and the structural elementM used for erosion is a disk

of radius 3 pixels. This ensures that all poorly-estimated pixels are correctly assigned

to S (perhaps at the expense of wrongly including some well-estimated pixels too).

Performing this step improves the deblurred results, since it is not only the bright pixels

whose value is likely to be inaccurate due to saturation, but their neighbours too, and

fewer artefacts arise from wrongly assigning a well-estimated pixel into S than the other
way around. Second, in order to avoid introducing visible boundaries between the two

regions, we blur the mask u slightly using a Gaussian filter with standard deviation 3

pixels to produce a smoother set of weights when extracting f̂ tU and f̂ tS from the current

latent image f̂ t in Equations (6.28) and (6.29).

6.5 Results

Figures 6.1 and 6.7 to 6.9 show results of non-blind deblurring using the proposed

“combined RL” algorithm described in Section 6.3 on real hand-held photographs. The

(spatially-variant) PSFs for these images were estimated from the blurry images them-

selves using the MAP-ℓ1 algorithm described in Chapter 4. The only modification re-

quired to handle saturated images using this algorithm is to discard potentially saturated

regions of the blurry image using a threshold. Since in this case the aim is only to esti-

mate the PSF (and not a complete deblurred image), we can safely discard all of these

pixels, since the number of saturated pixels in an image is typically small compared to

the total number of pixels. There will typically remain sufficient unsaturated pixels from

which to estimate the PSF.

Note that the standard Richardson-Lucy algorithm and the approach of Krishnan

and Fergus (2009) produce large amounts of ringing around the saturated regions, while

the proposed “combined RL” algorithm avoids this with no loss of quality elsewhere. In
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all results in this paper we performed 50 iterations of all Richardson-Lucy variants.

6.5.1 Comparison to Cho et al. (2011)

Figure 6.11 shows the results of non-blind deblurring using our algorithm, alongside those

of the recently-proposed algorithm of Cho et al. (2011). The blurry images and their

spatially-invariant PSFs are provided by Cho et al., along with their deblurred results1.

The results of Cho et al. (2011) are smooth from heavy sparse-gradient regularisation.

Our results are produced without any regularisation, however, despite this, they exhibit

fewer visible artefacts in most cases than those of Cho et al. (2011).

6.6 Perspective: The Causes of Ringing

In this section we offer some analysis of the causes of “ringing” artefacts in deblurred

images – medium-frequency ripples spreading across the image. Ringing is common in de-

blurred images, and has been explained variously as due to the Gibbs phenomenon (Yuan

et al., 2007b) (arising from the inability of a finite Fourier basis to reconstruct perfect

step edges), or a combination of inaccurately-modelled image noise and errors in the

estimated PSF (Shan et al., 2008). We have found the latter to be accurate, and provide

some analysis of this here.

Ringing is caused by the interaction between zeros in the PSF and (a) outliers in

the data (e.g. caused by noise, non-linearities in the camera response, non-static scene)

and (b) errors in the estimated blur kernel. By zeros in the PSF, we are referring to

singular values of A that are zero or very small. Each singular value of A corresponds

approximately to particular spatial frequencies (they correspond exactly for spatially-

invariant blur, where the singular value decomposition (SVD) of A is equivalent to the

discrete Fourier transform of a). Thus small or zero singular values correspond to spatial

frequencies that are annihilated by the blur.

When we attempt to deblur the image, there is very little information about these

1http://cg.postech.ac.kr/research/deconv_outliers/ (accessed November 12, 2011).
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6 Handling Saturation in Non-Blind Deblurring

(a) Blurry image (b) Deblurred with
Richardson-Lucy

(c) Deblurred with algorithm of
Krishnan and Fergus (2009)

(d) Deblurred with proposed
method

Figure 6.7. Deblurring saturated images. Note that the ringing around saturated regions,
visible in columns (b)–(c) is removed by our method (d), without causing any loss in visual
quality elsewhere.
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(a) Blurry image (b) Deblurred with
Richardson-Lucy

(c) Deblurred with algorithm of
Krishnan and Fergus (2009)

(d) Deblurred with proposed
method

Figure 6.8. Deblurring saturated images. Note that the ringing around saturated regions,
visible in columns (b)–(c) is removed by our method (d), without causing any loss in visual
quality elsewhere.
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(a) Blurry image (b) Deblurred with
Richardson-Lucy

(c) Deblurred with algorithm of
Krishnan and Fergus (2009)

(d) Deblurred with proposed
method

Figure 6.9. Deblurring saturated images. Note that the ringing around saturated regions,
visible in columns (b)–(c) is removed by our method (d), without causing any loss in visual
quality elsewhere.
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(a) Real blurry images, with estimated kernels shown

(b) Results from Cho et al. (2011)

(c) Our deblurred results

(b) Cho et al. (c) Ours (b) Cho et al. (c) Ours

Figure 6.10. Comparison to the method of Cho et al. (2011). The blurry images, the
spatially-invariant PSFs and the results of their method were provided by the authors.
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(a) Blurry images, with estimated kernels shown

(b) Results from Cho et al. (2011)

(c) Our deblurred results

(b) Cho et al. (c) Ours (b) Cho et al. (c) Ours

Figure 6.11. Comparison to the method of Cho et al. (2011). The blurry images, the
spatially-invariant PSFs and the results of their method were provided by the authors.



6.6 Perspective: The Causes of Ringing

spatial frequencies, and numerical round-off and noise may dominate over the true sig-

nal. This immediately gives rise to ringing, however this kind of ringing can often be

suppressed with regularisation.

Regularisation in non-blind deblurring is able to alleviate ringing to some extent,

however since most regularisers only concerns image derivatives, they are only capable

of reducing ringing at high spatial frequencies. Yuan et al. (2008) observe this fact

and propose a multi-scale non-blind deblurring algorithm capable of preventing ringing

caused by noise and numerical inaccuracies. However their method does not handle

ringing caused by outliers in the data, shown in Figure 6.12.

The other factor to consider is that the zero singular values represent spatial frequen-

cies which are very poorly constrained by the data. Thus if the blurry image contains

outliers which do not fit the linear model, any disruption to the deblurred image will

happen in these spatial frequencies first, since they are the cheapest place to hide the

errors.

6.6.1 Ringing Due to Outliers

We can see how outliers in the data cause ringing by decomposing the observed image g

into an “ideal” noiseless component g∗, a noise component n, and an outlier component

e. For simplicity, we will consider spatially-invariant blur with a blur kernel a, such that

the noiseless blurry image g∗ is related to the true sharp image f by g∗ = a ∗ f . We

decompose the observed blurry image as

g = g∗ + n+ e. (6.31)

Using direct deconvolution in the frequency domain with an ℓ2 regularisation term φ

(e.g. φ = αF (dx)∗ ◦ F (dx) + αF (dy)∗ ◦ F (dy)), we can write Fourier transform of the

deblurred image f̂ as

F(f̂) = F (a)∗ ◦ F (g)
F (a)∗ ◦ F (a) + φ

(6.32)
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=
F (a)∗

F (a)∗ ◦ F (a) + φ
◦
(

F (g∗) + F (n) + F (e)
)

(6.33)

f̂ = f̂g∗ + f̂n + f̂e. (6.34)

The component f̂g∗ , which is deconvolved from g∗ will be close to the true sharp image,

apart from some smoothing due to the regularisation. The magnitude of the noise n is

typically small relative to the image, and so the component f̂n will also have a fairly small

amplitude in the deblurred image. The outliers e however, may have a large magnitude,

and are also likely to have a high bandwidth – e.g. will contain impulses or step edges

which have large frequency components at a wide range of frequencies. This is a signif-

icant source of ringing, since those spatial frequencies for which the power spectrum of

a is small (in the denominator of Equation (6.33)) may be amplified. Since the outliers

have such a large bandwidth, it is very likely that a large frequency component of the

outliers will coincide with a small frequency of the kernel. Figure 6.13 demonstrates this

visually with a synthetic example.

This also explains why ringing appears around sharp edges, since such features in

an image will have a broad frequency bandwidth, and even small errors may cause large

amplification of the zero frequencies of a.

6.6.2 Ringing Due to Kernel Errors

When the kernel contains errors, a second source of ringing is introduced. We denote

the estimated kernel as â, and the true kernel as a, and again write Fourier transform

of the deblurred image f̂ as

F(f̂) = F(â)∗
F(â)∗ ◦ F(â) + φ

◦
(

F (g∗) + F (n) + F (e)
)

(6.35)

f̂ = f̂g∗ + f̂n + f̂e. (6.36)

In this case, we need only examine f̂g∗ , since the effect of deconvolving n and e with the

incorrect kernel is essentially the same as deconvolving them with the correct kernel.
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(a) Blurry image (b) Cho et al. (2011) (c) Yuan et al. (2008) (d) Ours

Figure 6.12. Comparison to Cho et al. (2011) and Yuan et al. (2008). This figure
compares non-blind deblurring results, on saturated images, for (b) the algorithm of Cho et al.
(2011), (c) the Richardson-Lucy-based algorithm of Yuan et al. (2008), and (d) our proposed
“combined RL” algorithm. While both our algorithm and the algorithm of Yuan et al. are based
on the Richardson-Lucy algorithm, our results contain much less ringing, due to handling the
saturated pixels explicitly. Compared to the method of Cho et al., our results contain similar or
less ringing. Results in (b) and (c) provided by Cho et al.

Noting that g∗ = a ∗ f , and writing the estimated kernel as a perturbation of ∆a

from the true kernel: â = 1
1+

∑
∆ak

(a+∆a), we can write

F(f̂g∗) = F (f) ◦ F(â)∗ ◦ F(a)
F(â)∗ ◦ F(â) + φ

(6.37)

= F (f) ◦
(

(

1 +
∑

∆ak
) F(â)∗ ◦ F(â)
F(â)∗ ◦ F(â) + φ

− F(â)∗ ◦ F(∆a)

F(â)∗ ◦ F(â) + φ

)

. (6.38)

We can write the deconvolved image as the sum of two terms, from the two terms in the

parentheses, i.e.

F(f̂ (1)g∗ ) = F (f) ◦
(

1 +
∑

∆ak
) F(â)∗ ◦ F(â)
F(â)∗ ◦ F(â) + φ

(6.39)

F(f̂ (2)g∗ ) = −F (f) ◦ F(â)∗ ◦ F(∆a)

F(â)∗ ◦ F(â) + φ
(6.40)

f̂g∗ = f̂
(1)
g∗ + f̂

(2)
g∗ (6.41)
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(a) Original image f and
kernel a

(b) Observed image g (c) Deconvolved image f̂ ,
using (6.32)

The observed image g is corrupted by noise n and outliers e, such that g = g∗ + n+ e:

(d) Ideal blurry image g∗ (e) Noise n (f) Outliers e

Likewise, the deconvolved image f̂ can be decomposed such that f̂ = f̂g∗ + f̂n + f̂e:

(g) f̂g∗ (h) f̂n (i) f̂e

Clearly, the ringing is caused by the outliers e. From the spectra of the outliers e and the kernel a,
we see that the ringing in f̂e occurs where large values of |F (e)| coincide with small values of |F (a)|:

(j) |F (e)| (k) |F (a)| (l) |F(f̂e)|

Isolating the spurious peaks of |F(f̂e)|, we can verify they match the visible ringing in (i):

(m) A pair of peaks of |F(f̂e)|
and their inverse Fourier

transform

(n) A pair of peaks of |F(f̂e)|
and their inverse Fourier

transform

(o) A pair of peaks of |F(f̂e)|
and their inverse Fourier

transform

Figure 6.13. Synthetic example showing ringing due to outliers. By decomposing the deconvolved
image into the contributions from the “noiseless” blurry image g∗, the noise n, and outliers e, we can see
that the ringing is caused entirely by the outliers. By examining the spectra of the outliers and the blur
kernel, we can trace the causes of the ringing to places in the frequency domain where small components
of the kernel coincide with large components of the outliers.
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(a) Original image f (b) |F(f)| (c) True kernel a and
corrupted kernel â

Examining the spectra of the deconvolved image f̂g∗ , and the two components f̂
(1)
g∗ and f̂

(2)
g∗ , we can

see that f̂
(1)
g∗ is very similar to the original sharp image (slightly brighter due to the (1 +

∑
∆ak)

scale factor), while the ringing is caused by f̂
(2)
g∗ , which amplifies small frequency components of â:

(d) |F(f̂g∗)| (e) |F(f̂
(1)
g∗ )| (f) |F(f̂

(2)
g∗ )|

(g) Deconvolved image f̂g∗ (h) f̂
(1)
g∗ (i) f̂

(2)
g∗

Figure 6.14. Synthetic example showing ringing due to kernel errors. By decomposing the
deconvolved image as described in Equations (6.39) to (6.41), we can see that the ringing is caused when
the kernel error ∆a contains frequency components which are small in the estimated kernel â. .

The first component f̂
(1)
g∗ is close to the true sharp image scaled by (1 +

∑

∆ak), except

with some frequency components reduced due to the regularisation φ. The second

component f̂
(2)
g∗ is the source of the ringing, which arises when the error ∆a has a broad

spectrum (e.g. delta functions) which aligns with the small frequency components of

the corrupted kernel â. Figure 6.14 demonstrates ringing caused by kernel errors on a

synthetic example.

6.6.3 Implications for Blind and Non-Blind Deblurring

In the preceding sections we have examined ringing caused by outliers in the blurry

image, and errors in the kernel. What do these insights mean for deblurring in practice?
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In terms of errors in the kernel, the good news is that unless the errors are large (i.e.

the kernel is completely wrong) the ringing will have a small amplitude. If we want

to improve our estimate of the kernel, the deblurred image will typically contain the

correct edges and texture for us to do so. This can be seen in Figure 6.14 (g), where

the step edges and ridges that are used by the blind PSF estimation algorithm of Cho

and Lee (2009) are clearly visible, and the ringing does not interfere too much with this.

In an iterative PSF estimation algorithm, the next estimate of the kernel would almost

certainly be closer to the true kernel.

For ringing caused by outliers in the data, our conclusions must depend on the sources

of these outliers. When the true forward model is non-linear, and we assume a linear

forward model (as in this section and in most work on deblurring), then outliers will

occur anywhere the true forward model is non-linear. Since these outliers are caused by

an error in the model rather than a random noise process, the chances of the outliers

having structure, and thus potentially a wide bandwidth are much greater. In order

to reduce the ringing caused, we can either improve our models to take account of the

non-linearities, or attempt to find and discard the non-linear data. These approaches

are described in Section 6.2, and this is the approach to handling saturation proposed

by Cho et al. (2011). As shown in Section 6.3 however, this is typically insufficient,

since the loss of information will cause inaccuracies in the deblurred image, which then

propagate as ringing. Thus in our “combined RL” algorithm we take the additional step

of attempting to determine which pixels can be estimated accurately, and decoupling

their estimates from the poorly-estimated pixels.

When outliers in the data are caused by noise such as “hot pixels”, dirt or scratches,

or deleted pixels, a non-linear model will not help to prevent ringing. In these cases, the

outliers must be prevented from affecting our estimate of the sharp image, and this is the

approach taken by Cho et al. (2011). In this chapter we have not addressed deblurring

in the presence of such outliers, however we envision that our “combined RL” approach

could be extended to handle such phenomena.
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6.7 Conclusion

In this chapter we have developed an approach for the problem of blind deblurring for

images blurred with camera shake and suffering from saturation. We have proposed a

non-blind deblurring algorithm, based on the Richardson-Lucy algorithm, which is able

to deblur images containing saturated regions without introducing artifacts, without

sacrificing detail in the result.
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Chapter 7

Removing Occluders from Photos of

Famous Landmarks

7.1 Introduction

Often when we review our holiday photos, we notice things that we wish we could have

avoided, such as vehicles, construction work, or simply other tourists. To go back and

retake the photograph is impossible, so what can we do if we want to remove these

things from our photos? We wish to replace the offending pixels in as convincing a way

as possible, a problem often referred to as image completion or inpainting, which has

been widely studied recently. However, most existing methods are only applicable to

small image regions, or require significant user intervention. We would ideally like to

have no limit on the complexity of the image in the regions we are replacing, and would

like to be able to fill pixels with whatever would actually have been observed there had

the occlusions not occurred, with minimal user interaction. With the growth of online

photo sharing websites, we have millions of photos of the world available to us, probably

including many of the very same place as our own photo, so how can we use them to fix

up our snaps?

In the same way that strong priors are essential to successful blind deblurring algo-
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7 Removing Occluders from Photos of Famous Landmarks

(a) Original query image (b) Target region (c) Result

Figure 7.1. An example result from our algorithm. The replaced region is consistent
with the rest of the original image and the boundary between is effectively hidden, producing a
convincing result. Note the complexity of image structures on the inpainted facade.

rithms, it is not possible to replace a region of an image convincingly without some prior

knowledge of the replaced pixels’ appearance. While previous authors have focussed on

statistical approaches or intuition to model the local behaviour of images (as discussed

in Section 2.5), in general we may wish to replace a region of an image that contains

structures that are too complex to be reproduced using these approaches. In this chap-

ter we leverage recent advances in viewpoint invariant image search (Chum et al., 2007;

Philbin et al., 2007) to find other images of the same scene. Beginning with a query

image g containing a target region Ψ to be replaced, our aim is to replace the pixels in

the target region Ψ in a way that is convincing and corresponds to the true underlying

scene. We first use an online image search engine to retrieve images of the same scene,

which we refer to as a set of oracles. We use this set of oracles to propose a set of

solutions {p(q)} to the filling problem. Finally we solve a labelling problem to decide

how best to combine the proposals into a single output result f̂ . Figure 7.1 shows an

example result obtained from our system.

Image completion using images of the same scene from the Internet was indepen-

dently of our work approached by Amirshahi et al. (2007); Amirshahi et al. (2008), who
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obtain relevant images using a text-based image search, then combine unoccluded blocks

from them to replace the target region using a greedy algorithm. Our novel contribu-

tions are the following: (a) candidate images are obtained automatically using viewpoint

invariant image search, (b) geometric registration is performed using multiple homogra-

phies, which allows registering significantly more complex scenes captured from varying

camera viewpoints, and (c) occlusion reasoning and seamless combination of multiple

registered oracle images is formulated as a single labelling problem efficiently solved

using tree-reweighted belief propagation.

We begin by describing the viewpoint invariant image search used in Section 7.2, be-

fore describing our method of geometrically and photometrically registering each search

result to the query image in Section 7.3. In Section 7.4 we discuss how to combine the

proposals generated from all the retrieved images into a single output image. We present

some results and failure cases for our system in Section 7.5, and conclude in Section 7.6

7.2 Retrieving Oracle Images

Recent works (Chum et al., 2007; Jégou et al., 2008; Philbin et al., 2007) have demon-

strated the feasibility of large-scale image-based search engines, allowing the user to

input an image region as a search query, and be presented with other images depict-

ing the same object or scene. Such viewpoint invariant image search is now becoming

commercially available, e.g. Google goggles1. In this work we use the “Oxford Buildings

Search”2 online demonstration provided by Philbin et al. (2007). The system uses a set

of 100,000 images collected from Flickr3, for which an indexing structure has already

been computed. Both the query images and oracle images from which we construct the

solution come from this set. Figure 7.2 shows a typical query image and the top 30

results returned by the search engine. These search results are the oracles which are

used to replace the target region in the query image g.

1http://www.google.com/mobile/goggles
2http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/
3http://www.flickr.com
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Figure 7.2. Two example queries and the first 30 results returned by the viewpoint
invariant image search engine. For popular landmarks it is reasonable to expect the top
retrieved results to contain the building in the query image, and for some to have been taken
from a similar viewpoint. These search results will be used to replace the target region of our
query image.

7.3 Geometric and Photometric Registration

Having retrieved a set of oracle images depicting the same place as the query image,

we first need to deduce their geometrical and photometric relationship to the query

image. We would also like to reason jointly about their registration, in order to be able

to combine them into a single, coherent, occlusion-free image. In this section, we first

explain the use of homographies to register the oracle images to a query image, and the

extension to multiple homographies that is necessary to register scenes with multiple

planes. We then find regions which have been registered well by each homography, and

use these regions to estimate a global transformation on the colour channels of each

oracle. Finally, we group together homographies which are likely to have registered the

same scene plane, and for each group compute an unoccluded “median” image, which

will be used to guide the region selection process in Section 7.4. The output of this part
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of the system is a set of geometrically and photometrically registered oracles {o(q)},
and a set of unoccluded “median” images which are used as guides in the final part of

the system. Note that since we allow multiple homographies, each retrieved oracle may

appear multiple times in the set of registered oracles {o(q)}.

Registering two images with a homography (Hartley and Zisserman, 2004) is valid

when the optical centres of the two cameras coincide, or when the scene being imaged

is planar, as shown in Figure 7.3. In outdoor urban scenes, the second condition is

approximately satisfied very frequently. Additionally, when we have a large number of

photographs of a scene taken by many photographers, we find that the first condition

can also sometimes be approximately satisfied. Although we are unlikely to find a photo

taken from exactly the same location, we are likely to find many for which the effects of

parallax will be small.

7.3.1 Homography estimation

We use the standard method (Hartley and Zisserman, 2004) of determining putative

point matches between the two images (query and oracle) and estimating the inliers and

homography simultaneously using RANSAC (Fischler and Bolles, 1981). Here we use

Harris-Affine (Mikolajczyk and Schmid, 2004) and SIFT (Lowe, 2004) interest points

(typically 5000-15000 per image) and SIFT descriptors.4

Having estimated the homography using the inlying interest points, we check that

the number of inliers is sufficient for it to be reliable, discarding any homographies with

fewer than 50 inliers. We also check whether the line at infinity in the oracle becomes

visible under the homography, and discard it if so, since we deem the transformation to

be too extreme in this case. Finally, we retain the oracle only if it covers at least 25%

of the target region after warping, since an oracle covering less than this is unlikely to

be much use for replacing the region’s contents.

4Binaries for the Harris-Affine detector / SIFT descriptor obtained from
http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html, binaries for the SIFT de-
tector / descriptor obtained from http://www.cs.ubc.ca/~lowe/keypoints/, both accessed April
2008.
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(a) Query image (b) Matched image

(c) Image (b)
registered to (a)
with homography

(d) Images (a) and
(c) overlaid

(e)

(f) Query image (g) Matched image

(h) Image (g)
registered to (f)
with homography

(i) Images (f) and
(h) overlaid

(j)

Figure 7.3. Pairs of images related by homographies. In each column, the first row shows
a query photograph and another photograph of the same scene returned by the image search
engine. Below, we show the second image registered to the first using a homography, and the
two images overlaid. The last row shows a close-up of the overlaid images. Left column: A
pair of images with approximately the same camera centre – the transformation applies almost
equally well to all parts of the image. Right column: A pair of images of a piecewise planar scene
– the homography registers the dominant wall, where the variation in depth is small, but is no
longer valid for points not on that plane, such as the protruding wall on the right.
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7.3.2 Multiple homographies

For a scene containing multiple planes, a single homography will in general be insufficient

to register an oracle to the whole query image. Thus we allow multiple homographies

to be detected for each oracle. After estimating a homography between the two images,

we remove all the inlying interest points from consideration, and run RANSAC again

on the remaining putative matches. We repeat this process until the last estimated

homography is rejected by the criteria above.

7.3.3 Ground plane registration

While simply removing inliers to previous homographies is sufficient for RANSAC to

register the different planes of buildings, it often fails to register the ground plane,

where there are generally very few interest points, which can get lost amongst the large

number of putative matches. However, given that many occlusions are caused by people

or objects standing on the ground, it may be important for the ground plane to be

well registered. In the situation where the ground plane is not registered and causes

significant problems, we allow the user to interactively segment the ground region in the

query and oracle images, and run RANSAC again using only the interest points in that

region. This process is illustrated in Figure 7.4, where removing the putative matches

from other parts of the image enables RANSAC to find the homography which registers

the ground plane.

7.3.4 Photometric registration

Due to the diverse origins of the images retrieved from the Internet, they may have very

different lighting conditions from the query image. To reduce the effect of lighting varia-

tions when combining oracle images with the query, we work in the gradient domain, and

furthermore estimate a global linear correction on the gradients of each colour channel of

each oracle image. The correction is robustly estimated by first estimating which regions

are well-registered in each oracle, in a lighting-invariant way. To do this we compute
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the normalised cross-correlation (NCC) between the square (15× 15) patch around each
pixel in the query image with the corresponding square patch in the transformed oracle

image. To convert the resulting NCC scores into a mask of well-registered regions, we

use a binary Markov random field (MRF) with unary costs which are linear in the NCC

scores, and a Potts potential on adjacent pixels, and minimise the cost function using

graph-cuts. Figure 7.5 shows typical binary masks indicating the well-registered regions

for each oracle.

Given the mask of well-registered pixels, we estimate the linear photometric correc-

tion by taking the median ratio of gradient magnitudes between the query image g and

the registered oracle o, in the well-registered region, i.e. mediani (‖(∇g)i‖ / ‖(∇o)i‖),
where ‖(∇g)i‖ is the magnitude of the gradient of image g at pixel i. The correction is

performed separately in each colour channel.

7.3.5 Grouping homographies

The goal here is to group homographies corresponding to a particular scene plane, and

subsequently obtain an unoccluded “median” image for each group, which will be used to

guide selection of unoccluded and well-registered oracles for inpainting the target region

(Section 7.4).

In order to group together homographies which correspond to a particular scene

plane, we consider each oracle-homography combination as a node of a graph, and for

two homographies having as inliers the sets of interest points S and Q, place an edge

between the two nodes if the overlap of these sets is above a threshold: |S∩Q||S∪Q| > 0.1. We

consider each connected component of the graph as a group of homographies likely to

register the same scene plane.

To compute the median image for a homography group, we follow the approach pro-

posed by Weiss (2001) for computing occlusion-free “intrinsic images”. For a group of

homographies G, we first compute the x and y derivatives of all the registered oracles

in that group. At each pixel we take the median x derivative and the median y deriva-

tive over all the registered oracles, before using Poisson blending (Pérez et al., 2003)
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(a) Query image (b) Retrieved oracle (c) 1st homography (d) 2nd homography

Figure 7.4. Semi-automatic ground plane registration. This figure shows (a) a query image,
(b) an oracle image, (c) the first homography extracted with inliers shown, and (d) the second
homography extracted after the user manually indicates ground plane region (below horizontal
line). The first homography extracts the dominant plane, and by manually indicating the ground
plane region RANSAC is able to register the ground plane in the second homography.

Group 1:

Group 2:

Figure 7.5. Grouping homographies and finding well-registered regions. From left to
right on each row: The query image with each homography group’s inlying interest points marked,
some of the registered oracles from each group, with the regions considered to be well-registered
highlighted, and (far right) the “median” image for each group within the target region. Note
that for each group, the median image provides a sharp, unoccluded estimate of the relevant
plane, while it is blurry elsewhere. Thus, the difference between a registered oracle and this
image will be small where the oracle is well-registered and unoccluded, but large elsewhere .

to reconstruct the “median” proposal p
median(G)
i for that group. Figure 7.5 shows an

example of two homography groups extracted for a scene with two dominant planes, and

the median proposals for each.
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7.4 Generating and Combining Proposals

Once we have an oracle geometrically and photometrically registered, we would like to

use each registered oracle o(q) to generate a proposal p(q) for how the target region

should be filled. The most direct way of doing this would be to simply copy the pixels

from the oracle into the region, i.e. p(q) = m ◦ o(q) +m ◦ g, where m is a binary mask

corresponding to the target region Ψ. However in practice the variations in lighting mean

that this approach will produce poor quality results, with clear boundaries at the edge

of the region. The problem of how best to combine two images whose properties do not

necessarily match has been approached in many ways, from methods which aim to con-

ceal boundaries between regions, such as Burt and Adelson’s multiresolution spline (Burt

and Adelson, 1983) and Poisson blending (Pérez et al., 2003), to methods that try and

find the best place to locate the boundary itself, such as the dynamic programming of

Efros and Freeman (2001) and the graph-cut technique of Kwatra et al. (2003).

In this work we use Poisson blending to combine the images, whereby instead of

combining pixels from the two images, their gradient fields are combined to form a

composite gradient field ∇p(q) = m ◦ ∇o(q) + m ◦ ∇g. The composite gradient field

∇p(q) can then be reconstructed into an image p(q) by solving Poisson’s equation. The

query image provides Dirichlet boundary conditions (which constrain the colour of the

solution) for the equation around the target region. If the transformed oracle does not

span the entire target region, pixels bordering the remaining unfilled region (where we

have no colour information) take Neumann boundary conditions (which constrain the

gradient of the solution), in order to reduce colour artefacts. Figure 7.6 (f) shows some

of the individual proposals generated for a query image using Poisson blending.

7.4.1 Combining Multiple Proposals

Following the steps described in the previous sections, we have a set of proposals {p(q)},
where each proposal is generated using a single registered oracle. However, it may be

that individual oracles cannot provide the best solution when taken alone, but may be
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combined into a single result which could not have been achieved using any single oracle.

Reasons for this might be occlusions in the oracles themselves, or the fact that a single

homography may not be able to register the whole target region. Figure 7.6 shows the

advantage of combining multiple proposals; a single oracle provides most of the result

but requires other oracles to provide some small parts, partly due to the mis-registration

of the ground plane.

In order to decide which proposal should be used at which pixel, we want to design

and optimise an energy function which encourages each pixel to choose well, but to

regularise this with the idea that pixels should agree with their neighbours about what

their neighbourhood should look like. We can consider this a labelling problem, where

the label li for a pixel i corresponds to which proposal is used there. This can be

formulated as a multi-label conditional random field (CRF), where we wish to find the

optimal label configuration l by solving a problem of the form

min
l

∑

i∈Ψ

E1

(

i, li
)

+
∑

(i,i′)∈E

E2

(

i, i′, li, li′
)

, (7.1)

where Ψ indicates the set of pixels in the region being solved, (i, i′) indicates a pair of

neighbouring pixels (4-neighbours), with E being the set of all such pairs in the region
being solved. E1

(

i, l
)

is the “cost” of using the proposal p(l) at pixel i, encoding our

wishes for individual pixels, while E2

(

i, i′, li, li′
)

is the cost of using proposals p(li) and

p(li′ ) at neighbouring pixels i and i′, encoding the way we wish neighbouring pixels to

agree with each other.

Pixels outside the target region should look similar to the original query image, since

they lie outside the region originally specified for replacement. Pixels on the inside of

the target region however should be similar to some robust estimate of the unoccluded

scene, to avoid inserting new occlusions into the image. To achieve these two goals we

choose E1 to have the form

E1

(

i, li
)

= kquerymi‖p(li)i − gi‖+ kmedianmi‖p(li)i − p
median(G(li))
i ‖, (7.2)
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where m is a binary mask indicating the target region, and m is its logical negation.

Outside the target region, where mi = 0, the cost depends on the difference between

p
(li)
i (the colour of proposal li at pixel i) and gi (the colour of the query image g at

the pixel). This term penalises any differences between the result and the input query

image, while allowing the optimisation to choose the best location for the boundary

of the replaced region. Inside the target region, where mi = 1, the cost depends on

the difference between p
(li)
i and p

median(G(li))
i , which is the “median” image for that

oracle’s homography group G(li) as described in Section 7.3.5. This term serves a dual

purpose, helping both to avoid inserting new occlusions into the result, and avoid using

any proposals outside the region where they are registered, since in both these cases, the

deviation ‖p(li)i −p
median(G(li))
i ‖ should be large. Further to this we set E1

(

i, li
)

to a large

number if proposal li does not cover pixel i. This is effectively a hard constraint which

prevents a registered oracle being used for regions outside its bounds. The parameters

kquery and kmedian weight the terms according to their relative importance. The norm

‖pi − gi‖ is simply the Euclidean distance in RGB space.

The purpose of E2 is to encourage a few large regions to be combined instead of many

small ones, and to ensure that boundaries between regions from different proposals occur

at places where they will be least obvious. For this we use the “gradient” cost function

suggested by Agarwala et al. (2004), where E2 = 0 if li = li′ , and otherwise

E2

(

i, i′, li, li′
)

= kgrad

(

∥

∥(∇p(li))i − (∇p(li′ ))i
∥

∥+
∥

∥(∇p(li))i′ − (∇p(li′ ))i′
∥

∥

)

, (7.3)

where (∇p)i is the concatenation of the image gradients at pixel i in all colour channels,

i.e. a 6D vector. The first term penalises the difference between the two proposals’ gra-

dients at pixel i, and the second term penalises the difference between the two proposals’

gradients at pixel i′. This cost helps prevent boundaries between regions using different

proposals, if the two proposals’ image gradients differ at that location. By encouraging

these boundaries to fall in places where the image gradients in the two proposals match

well, the transitions between regions are hidden. For the results in this paper we used
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kquery = 1, kmedian = 1, and kgrad = 10, and for computational purposes we used at most

10 proposals from each homography group (obtained as in Section 7.3.5), ranked by the

number of homography inliers.

Finally, in order to achieve a good transition between the region that has been filled

and the query image surrounding it, the query image itself is included as a proposal, and

the CRF is solved over a larger region than the original target region. By generating

the proposals such that they extend outside the target region, the optimisation may

choose the best place in this boundary region at which to switch from the query image

to the proposals. To optimise the CRF described above, we use tree-reweighted belief

propagation (Kolmogorov, 2006; Szeliski et al., 2006; Wainwright et al., 2005), using the

software made available online5 by Szeliski et al. (2006).

7.5 Results and Discussion

In this section, we demonstrate our method on several query images from the Oxford

Buildings image set, with various difficulties which our method is able to overcome.

In Figure 7.1, the region to be replaced is spanned almost entirely by a single scene

plane. In this case, the image search returned 49 photos of the same scene, of which 15

were accurately geometrically registered to the query image using single homographies.

The result comes mostly from a single oracle, which was automatically selected by our

CRF formulation since it provided a consistent, occlusion free replacement for the target

region.

Figure 7.6 shows the advantage of our method’s ability to combine multiple proposals.

The search returned 48 photos of the same scene, of which 9 were registered to the query

image, providing 16 proposals due to multiple homographies. Most of the result comes

from a single proposal, but the other proposals are used to fill some regions where this

fails demonstrating the benefit of using multiple oracles. The final composite obtained

by our method is significantly better than results obtained by the approaches of Criminisi

5http://vision.middlebury.edu/MRF/code/
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(a) Query Image (b) Target Regions (c) Labels

(d) Oracles

(e) Registered Oracles

(f) Proposals

(g) Our Result (h) Criminisi et al. (2003) (i) Hays and Efros (2007)

Figure 7.6. Combining multiple proposals. The inputs to the system (a) & (b) and the
output labels (c) showing the combination of proposals in the final result (colours correspond to
the borders of the images below). (d) The top 5 original (unregistered) automatically retrieved
oracle images used in the result. (e) The geometrically registered oracles. (f) The proposals
generated by each oracle. Note that none of the individual proposals covers the entire target
region and provides a satisfactory result. Last row: (g) Our final result, (h) the result using
the algorithm of Criminisi et al. (2003) and (i) the result using the method of Hays and Efros
(2007). In our result, we obtain a much better image by combining regions from several proposals,
and choosing the boundaries to be as inconspicuous as possible. The result of Criminisi et al.
propagates strong edges into the target region, but cannot reason about where best to connect
them or insert details that are hidden (e.g. the grate at the base of the wall). The method of Hays
and Efros produces a result that fits well with the surrounding image, but does not correspond
to the actual underlying scene. We are grateful to Hays and Efros for running their system on
our input image to produce the result in (i).
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(a) Query Image (b) Target Regions (c) Our Result (d) Labels

(e) Oracles

(f) Registered Oracles

(g) Proposals

Figure 7.7. Example Result 1. An example query and the corresponding result from our
system. The CRF optimisation correctly chooses oracles registered to the ground plane where
relevant (red, blue), and combines other oracles registered to the wall (green, yellow, magenta)
in order to complete the result .

et al. (2003) and Hays and Efros (2007) (see the last row of Figure 7.6).

Figures 7.7 and 7.8 show two additional results. In the first example, the search

returned 36 results, of which 18 were registered automatically and 2 homographies reg-

istering the ground plane were obtained semi-automatically (see Section 7.3). Thanks to

the homography grouping combined with the CRF optimisation most of the occluders

were convincingly removed. In the second result, the search returned 47 images of the
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(a) Query Image (b) Target Region (c) Our Result (d) Labels

(e) Oracles

(f) Registered Oracles

(g) Proposals

Figure 7.8. Example Result 2. An example query and the corresponding result from our
system. Our method successfully completes the image with the unoccluded building facade,
however it cannot reproduce the environmental effects particular to the query image, such as the
snow and strong shadows.

same scene, 17 of which were accurately registered. Note the successful removal of the

occluding arch.

The result shown in Figure 7.9 demonstrates the effect of the unary term E1 defined

in Equation (7.2). When the weight kmedian is low, the pairwise smoothness term has a

greater effect, and the optimisation chooses to combine fewer proposals, while following

the median proposal less closely. When the weight kmedian is high, the optimisation finds
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a solution using more proposals, and avoiding introducing new occlusions into the result.

Figure 7.10 shows a typical failure case for our system, which tends to occur when

we have only a limited number of oracles available. In this case, there may not be

sufficient images to construct an occlusion-free result. Even if there are enough oracles,

the median image used to guide the final solution may be misleading, since it will have

been computed from relatively few samples, which may include new occlusions of mis-

registered planes.

7.6 Conclusion

We have demonstrated an inpainting method which is able to combine images taken

from different viewpoints and under different lighting conditions to convincingly replace

large regions of the query photograph containing complex image structures, thereby sig-

nificantly extending the capabilities of local patch-based inpainting methods (Criminisi

et al., 2003; Efros and Leung, 1999).

The approach is mainly applicable to tourist snapshots of frequently visited land-

marks, which have many pictures taken by other people available on the Internet. Al-

though results are visually pleasing, in some cases under a close inspection subtle arte-

facts remain in the final composites. These are mainly due to photometric and resolution

issues such as differences in the length of shadows and different image resolution/focus.
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(a) Query image (b) Target region (c) Median proposal

(d) Result, kmedian high (e) Labels, kmedian high (f) Close-ups, kmedian high

(g) Result, kmedian low (h) Labels, kmedian low (i) Close-ups, kmedian low

Figure 7.9. Example result demonstrating the effect of unary term. In this example,
it is possible to see the effect of the unary term, which encourages the solution to look similar
to the median proposal. With the unary term at its default value (d)–(f) many proposals are
combined and the alcove shown in the close-up is empty. When we lower the weight kmedian (g)–
(i), the pairwise smoothness term has a greater effect, and the optimisation prefers to use fewer
proposals, leading to a person appearing in the alcove, transferred from one of the proposals.
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(a) Query image (b) Target region (c) Optimal Labels (d) Result

(e) Oracle 1 (f) Oracle 2 (g) Oracle 3 (h) Oracle 4

Figure 7.10. A failure case of the system. In this example, there are only 4 oracles (e)–
(h) registered correctly in the target region. As a result, the solution cannot contain a good
unoccluded view of the region, and instead contains a combination of the scaffolding from (e)
and some mis-registered oracles (not shown).
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Chapter 8

Perspectives

In this chapter we review the contributions of this thesis, and discuss possible directions

for future research.

8.1 Contributions

In Chapter 3 we presented a new model for spatially-variant blur caused by camera shake.

We showed that camera shake blur is predominantly caused by rotations of the camera

during the exposure, as opposed to translations, and that such blur is generally spatially-

variant. Starting from the geometry of camera rotations, we modelled the blurry image

as a weighted combination of projectively-transformed versions of the sharp image. We

demonstrated a practical, discrete version of this model, which parameterises the point-

spread function (PSF) of a “shaken” image using a single set of weights.

In Chapter 4 we demonstrated that the model of spatially-variant blur proposed

in Chapter 3 can be applied within existing deblurring algorithms, originally designed

to estimate only spatially-invariant PSFs. We show that the resulting algorithms are

able to estimate spatially-variant PSFs, and that by applying our model in non-blind

deblurring algorithms, we can deblur a wider range of images than using a spatially-

invariant blur model. We successfully applied our model to both a marginalisation and
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a MAP algorithm for blind PSF estimation, as well as in the case where an additional

noisy (but sharp) image of the scene is available.

In Chapter 5 we discussed the increase in computational cost incurred by using

a spatially-variant blur model instead of a spatially-invariant one. While spatially-

invariant blur can be computed quickly in the frequency domain using the fast Fourier

transform (FFT), there is no equivalent for our proposed blur model. We proposed an

approximation scheme for our spatially-variant blur model that divides the blurry im-

age into a small number of overlapping sub-images, each of which is treated as having

spatially-invariant blur. Using this scheme we provide the equations for quickly approx-

imating the most intensive computations in the blind deblurring process. We demon-

strated an order of magnitude speed-up of blind deblurring compared to the exact model,

while retaining the accuracy and consistency of our global model from Chapter 3.

In Chapter 6 we extended our forward model for camera shake blur to include sen-

sor saturation, which introduces a non-linearity into the image formation process. We

derived a modified version of the Richardson-Lucy algorithm which incorporates this

non-linear forward model and is able to recover intensities that lie outside the camera’s

dynamic range. We proposed a second modification to the Richardson-Lucy algorithm

which explicitly handles saturated pixels separately from unsaturated ones, and prevents

ringing artefacts by decoupling the update equations for the two sets of pixels. Using

the proposed algorithm, we demonstrated non-blind deblurring of images with saturated

pixels without introducing large ringing artefacts.

Finally in Chapter 7 we tackled the problem of removing large occluders from pho-

tographs of popular landmarks. We proposed a system that for popular locations, is able

to realistically hallucinate the occluded scene content, without any user input and with-

out an explicit 3D representation of the scene. Our system processes “oracle” images

retrieved from a visual search engine by geometrically and photometrically registering

them to the target image, before collecting a set of proposals for how to fill the occluded

region. In the final step, the proposals are combined using a CRF formulation, which

encourages a result free from occlusions, and without any visible region boundaries.
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8.2 Future Work

One important avenue for future research is to improve the robustness and reliability of

blind deblurring algorithms. The automatic algorithms used in Chapter 4 for blind PSF

estimation sometimes fail, for example if the blurry image contains too much noise, or

if the sharp image does not match the prior that is used. One potential line of work

is to investigate the use of more powerful image priors, for example that proposed by

Zoran and Weiss (2011), which models the joint distributions of pixels in image patches,

rather than just pairs of pixels. Another interesting possibility is to consider the role of

user interaction in blind deblurring. For many people, it is natural to interact with an

image restoration process, and such a system would have the potential to be more robust

to difficult images. Sometimes in these images, the shape of the PSF or the location

of strong edges can be perceived visually, and it may be possible for a user to provide

some assistance, allowing the PSF to be estimated. The best way of integrating user

interaction is an open question, however some potentially-natural modes of interaction

might be to (a) draw the approximate shape of the PSF at one or more locations in

the image, (b) draw the locations of strong step edges, or (c) draw a rectangle around

locations where the shape of the PSF is visible (e.g. trails left by bright spots).

Another possibility for increasing the robustness of the blind deblurring process is

to take advantage of the trails left by bright lights in the image. Many images taken at

night include bright electric lights, and in Chapter 6 we addressed non-blind deblurring

of images that contain such saturated regions. However, the trails left by bright lights

in blurry images often give a clear outline of the PSF (although the intensity is lost due

to saturation), and could provide a powerful constraint for blind PSF estimation.

In this thesis, we have considered camera shake blur using a model with 3 degrees of

freedom, leading to 3-dimensional blur kernels. However, in some cases it may be useful

to consider additional degrees of freedom, such as camera translation (for example when

photographing from a fast-moving vehicle) or varying focal length (for example if the

photographer accidentally nudged a manual zoom lens while taking a photograph). In
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these cases the dimensionality of the kernel would grow, and it may not be practical

to estimate the high-dimensional kernel explicitly. Once the kernel dimension reaches a

certain level, it may no longer provide the most compact parameterisation of the PSF.

Instead, it might be easier to parameterise the PSF using a set of local filters, such as

in Chapter 5. The challenge to making such a parameterisation effective is the need to

enforce global consistency between the filters, without knowing the global kernel itself.

This would be done with pairwise constraints between all pairs of filters, and could

be approached in a purely numerical way, simply exploiting the fact that each filter is

related to the kernel as a(r) = Jrw. Alternatively, it may be possible to utilise the

underlying geometry, for example to find a sort of epipolar geometry between pairs of

filters.
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Appendix A

Parameter Update Derivation for

Marginalisation Algorithm

In this appendix we derive the optimal forms and parameters of the approximating

distributions q(f), q(w) and q(βσ), used in the marginalisation algorithm for spatially-

variant blind deblurring in Chapter 4. For our spatially-variant blur model, the optimal

distributions for the latent variables are the same as for spatially-invariant blur (cf .

Equations (42, 43, 17) of (Miskin and MacKay, 2000)):

q(wk) ∝ p(wk) exp

(

−1
2
w

(2)
k

(

wk − w
(1)
k

)2
)

(A.1)

q(fj) ∝ p(fj) exp

(

−1
2
f
(2)
j

(

fj − f
(1)
j

)2
)

(A.2)

q(βσ) = Γ

(

βσ;
1

2

∑

i

〈

(gi − g∗i )
2
〉

q(f ,w)
,
N

2

)

, (A.3)

where w
(1)
k , w

(2)
k , f

(1)
j , f

(2)
j are parameters of the distributions, g∗i is the “noiseless”

value of blurry pixel i, related to the unknown latent image f and kernel w through the

forward model in Equation (3.11) (p. 64). Note that f and w are random variables, so in

this context g∗i is also a random variable. N is the number of observed blurry pixels, and

〈·〉q represents the expectation with respect to the the distribution q. For each latent
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variable, the parameters of its distribution depend on the distributions of all the other

latent variables, e.g. w
(1)
k and w

(2)
k depend on q(βσ), q(fj) for all j and q(wk′) for all

k′ 6= k. For our non-uniform blur model, we find the following optimal values for the

parameters, as given earlier in Equations (4.2) to (4.5) (cf . Equations (46–49) of (Miskin

and MacKay, 2000)):

w
(2)
k = 〈βσ〉

∑

i

〈(

∑

j

T
(k)
ij fj

)2〉

q(f)
(A.4)

w
(1)
k w

(2)
k = 〈βσ〉

∑

i

(

gi
∑

j

T
(k)
ij 〈fj〉q(fj) −

∑

k′ 6=k

〈(

∑

j

T
(k)
ij fj

)(

∑

j

T
(k′)
ij fj

)〉

q(f)
〈wk′〉q(wk′ )

)

(A.5)

f
(2)
j = 〈βσ〉

∑

i

〈(

∑

k

T
(k)
ij wk

)2〉

q(w)
(A.6)

f
(1)
j f

(2)
j = 〈βσ〉

∑

i

(

gi
∑

k

T
(k)
ij 〈wk〉q(wk) −

∑

j′ 6=j

〈fj′〉q(fj′ )
〈(

∑

k

T
(k)
ij′ wk

)(

∑

k

T
(k)
ij wk

)〉

q(w)

)

.

(A.7)

The details of the derivation are given next.

A.1 Variational method

For convenience, we will collect the latent variables f , w, and βσ into the “ensemble”

Θ. The aim is to approximate the true posterior p(Θ|g) with a simpler factorized

distribution q(Θ|g), denoted for simplicity as q(Θ) = q(βσ)
∏

j q(fj)
∏

k q(wk). Our

model, from Equation (3.12), provides the likelihood p(g|Θ):

g∗i =
∑

j,k

wkT
(k)
ij fj , (A.8)

p(g|Θ) =
∏

i

G
(

gi; g
∗
i , β

−1
σ

)

, see Equation (7) of (Miskin and MacKay, 2000)

(A.9)
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where G( · ;µ, σ2) is a Gaussian with mean µ and variance σ2. In order to get to the

posterior, we also need a prior p(Θ) for our latent variables. The latent variables are

assumed to be independent, so that the prior factorizes:

p(Θ) = p(f)p(w)p(βσ), (A.10)

and furthermore the elements of both f and w are assumed to be independent and

identically-distributed, i.e.

p(f) =
∏

j

p(fj) (A.11)

p(w) =
∏

k

p(wk). (A.12)

From Equation (10) of (Miskin and MacKay, 2000), we wish to minimize the follow-

ing cost function, first using the calculus of variations to find the optimal form of the

approximate distributions, then iteratively optimizing their parameters, which is equiv-

alent to minimizing the Kullback-Leibler (KL) divergence between the posterior and the

approximating distribution (see Bishop, 2006, Equation. (10.3), page 463):

CKL =

∫

q(Θ)

[

ln
q(Θ)

p(Θ)
− ln p(g|Θ)

]

dΘ. (A.13)

A.2 Inside the Cost Function

Since q(Θ) = q(f)q(w)q(βσ) and p(Θ) = p(f)p(w)p(βσ),

CKL =

∫

q(Θ)

[

ln
q(f)

p(f)
+ ln

q(w)

p(w)
+ ln

q(βσ)

p(βσ)
− ln p(g|Θ)

]

dΘ. (A.14)

CKL =

∫

q(f) ln
q(f)

p(f)
df +

∫

q(w) ln
q(w)

p(w)
dw +

∫

q(βσ) ln
q(βσ)

p(βσ)
dβσ

−
∫

q(Θ) ln p(g|Θ) dΘ. (A.15)
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Similarly, since q(f) =
∏

j q(fj), q(w) =
∏

k p(wk), p(f) =
∏

j p(fj), and p(w) =
∏

k p(wk),

CKL =
∑

j

∫

q(fj) ln
q(fj)

p(fj)
dfj +

∑

k

∫

q(wk) ln
q(wk)

p(wk)
dwk +

∫

q(βσ) ln
q(βσ)

p(βσ)
dβσ

−
∫

q(Θ) ln p(g|Θ) dΘ. (A.16)

Finally, we expand the last term:

p(g|Θ) =
∏

i

G(gi; g∗i , β−1σ ), (A.17)

ln p(g|Θ) =
∑

i

lnG(gi; g∗i , β−1σ ) (A.18)

=
1

2

∑

i

(

lnβσ − βσ(gi − g∗i )
2 − ln 2π

)

(A.19)

∫

q(Θ) ln p(g|Θ) dΘ =
1

2

∫

q(Θ)
∑

i

(

lnβσ − βσ(gi − g∗i )
2 − ln 2π

)

dΘ (A.20)

=
1

2

∫

q(βσ)
∑

i

(

lnβσ − βσ

∫

q(f)q(w)(gi − g∗i )
2 df dw

)

dβσ

− 1

2

∑

i

ln 2π. (A.21)

Putting (A.21) into (A.16) and ignoring terms independent of Θ,

CKL =
∑

j

∫

q(fj) ln
q(fj)

p(fj)
dfj +

∑

k

∫

q(wk) ln
q(wk)

p(wk)
dwk +

∫

q(βσ) ln
q(βσ)

p(βσ)
dβσ

− 1

2

∫

q(βσ)
∑

i

(

lnβσ − βσ

∫

q(f)q(w)(gi − g∗i )
2 df dw

)

dβσ (A.22)

A.3 Optimal Distributions

A.3.1 Optimal q(βσ)

To derive the optimal form of q(βσ), we ignore terms in CKL independent of βσ, add

a Lagrange multiplier for the constraint that
∫

q(βσ) dβσ = 1, and differentiate with
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respect to q(βσ) :

CKL

(

q(βσ)
)

=

∫

q(βσ)

[

ln
q(βσ)

p(βσ)
− 1

2

∑

i

(

lnβσ − βσ
〈

(gi − g∗i )
2
〉)

]

dβσ

+ λσ

(
∫

q(βσ) dβσ − 1
)

, (A.23)

where 〈·〉 denotes the expectation under the approximating distribution q(Θ).

CKL

(

q(βσ) + δq(βσ)
)

=

∫

q(βσ)

[

ln
q(βσ) + δq(βσ)

p(βσ)
− 1

2

∑

i

(

lnβσ − βσ
〈

(gi − g∗i )
2
〉)

]

dβσ

+

∫

δq(βσ)

[

ln
q(βσ) + δq(βσ)

p(βσ)
− 1

2

∑

i

(

lnβσ − βσ
〈

(gi − g∗i )
2
〉)

]

dβσ

+ λσ

(
∫

q(βσ) dβσ +

∫

δq(βσ) dβσ − 1
)

(A.24)

ln
(

q(βσ) + δq(βσ)
)

≃ ln q(βσ) +
δq(βσ)

q(βσ)
to first order, so (A.25)

CKL

(

q(βσ) + δq(βσ)
)

= CKL

(

q(βσ)
)

+

∫

δq(βσ) dβσ

+

∫

δq(βσ)

[

ln
q(βσ)

p(βσ)
+

δq(βσ)

q(βσ)
− 1

2

∑

i

(

lnβσ − βσ
〈

(gi − g∗i )
2
〉)

]

dβσ

+ λσ

∫

δq(βσ) dβσ. (A.26)

Discarding higher order terms in δq,

δCKL =

∫

δq(βσ)

[

1 + ln
q(βσ)

p(βσ)
− 1

2

∑

i

(

lnβσ − βσ
〈

(gi − g∗i )
2
〉)

+ λσ

]

dβσ

(A.27)

∂CKL

∂q(βσ)
= 1 + ln

q(βσ)

p(βσ)
− 1

2

∑

i

(

lnβσ − βσ
〈

(gi − g∗i )
2
〉)

+ λσ. (A.28)
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Setting this derivative to zero, we obtain an relation similar to Equation (14) in (Miskin

and MacKay, 2000):

ln q(βσ) = ln p(βσ) +
1

2

∑

i

(

lnβσ − βσ
〈

(gi − g∗i )
2
〉)

− 1− λσ. (A.29)

Thus the optimal distribution is

q(βσ) ∝ p(βσ)β
N
2
σ exp

(

−1
2
βσ

∑

i

〈

(gi − g∗i )
2
〉

)

, (A.30)

which, given that p(lnβσ) = 1, which implies that p(βσ) = Γ(βσ; ǫ, ǫ) with ǫ→ 0 (Equa-

tion (8) of (Miskin and MacKay, 2000)), gives Equation (17) of (Miskin and MacKay,

2000):

q(βσ) = Γ

(

βσ;
1

2

∑

i

〈

(gi − g∗i )
2
〉

,
N

2

)

, (A.31)

where the Γ distribution is given by Equation (15) of (Miskin and MacKay, 2000):

Γ(x; a, b) =
1

Γ(b)
abx(b−1) exp(−ax). (A.32)

A.3.2 Optimal q(fj)

Starting from Equation (A.22), and isolating the relevant terms,

CKL

(

q(fj)
)

=

∫

q(fj) ln
q(fj)

p(fj)
dfj +

1

2
〈βσ〉

∑

i

∫

q(f)q(w)(gi − g∗i )
2 df dw

+ λj

(∫

q(fj) dfj − 1
)

. (A.33)
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For convenience, we partition f into fj , the pixel of interest, and fj∗ , the remaining

pixels:

CKL

(

q(fj)
)

=

∫

q(fj)

[

ln
q(fj)

p(fj)
+
1

2
〈βσ〉

∑

i

∫

q(fj∗)q(w)(gi − g∗i )
2 dfj∗ dw

]

dfj

+ λj

(
∫

q(fj) dfj − 1

)

(A.34)

CKL

(

q(fj) + δq(fj)
)

=

∫

q(fj)

[

ln
q(fj)

p(fj)
+

δq(fj)

q(fj)
+
1

2
〈βσ〉

∑

i

∫

q(fj∗)q(w)(gi − g∗i )
2 dfj∗ dw

]

dfj

+

∫

δq(fj)

[

ln
q(fj)

p(fj)
+

δq(fj)

q(fj)
+
1

2
〈βσ〉

∑

i

∫

q(fj∗)q(w)(gi − g∗i )
2 dfj∗ dw

]

dfj

+ λj

(
∫

q(fj) dfj +

∫

δq(fj) dfj − 1

)

(A.35)

= CKL

(

q(fj)
)

+ (1 + λj)

∫

δq(fj) dfj

+

∫

δq(fj)

[

ln
q(fj)

p(fj)
+
1

2
〈βσ〉

∑

i

∫

q(fj∗)q(w)(gi − g∗i )
2 dfj∗ dw

]

dfj

(A.36)

∂CKL

∂q(fj)
= ln

q(fj)

p(fj)
+
1

2
〈βσ〉

∑

i

∫

q(fj∗)q(w)(gi − g∗i )
2 dfj∗ dw + 1 + λj .

(A.37)

Setting this equal to zero, we obtain the optimal form

ln q(fj) = ln p(fj)−
1

2
〈βσ〉

∑

i

∫

q(fj∗)q(w)(gi − g∗i )
2 dfj∗ dw − 1− λj .

(A.38)

Here we need to make some simplifications to obtain a function of fj . For convenience

we re-write the forward model in Equation (3.11) (p. 64) as

g∗i = f⊤Ciw, (A.39)
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where theN×K matrixCi is obtained by re-arranging the elements of the transformation

matrices T(k). We split g∗i into the contribution from j and j∗:

g∗i = f⊤j∗Cij∗w + fjc
⊤
ijw (A.40)

where c⊤ij is the j
th row of Ci, and Cij∗ is Ci with this row removed.

(gi − g∗i )
2 = g2i − 2gig

∗
i + g∗i

2 (A.41)

= g2i − 2gi(f
⊤Ciw) + (f⊤Ciw)

2 (A.42)

= g2i − 2gi(f
⊤
j∗Cij∗w)− 2gi(fjc

⊤
ijw) + (f⊤j∗Cij∗w)

2

+ 2(f⊤j∗Cij∗w)(fjc
⊤
ijw) + (fjc

⊤
ijw)

2 (A.43)

= −2gi(fjc⊤ijw) + 2(f⊤j∗Cij∗w)(fjc
⊤
ijw) + (fjc

⊤
ijw)

2 + const.

(A.44)

〈

(gi − g∗i )
2
〉

q(fj∗ ,w)
=

∫

q(fj∗)q(w)(gi − g∗i )
2 dfj∗ dw (A.45)

=
〈

−2gi(fjc⊤ijw) + 2(f⊤j∗Cij∗w)(fjc
⊤
ijw) + (fjc

⊤
ijw)

2 + const.
〉

q(fj∗ ,w)

(A.46)

= −2fj
(

gic
⊤
ij

〈

w
〉

q(w)
−
〈

fj∗
〉⊤

q(fj∗ )

〈

(Cij∗w)(c
⊤
ijw)

〉

q(w)

)

+ f2
j

〈

(c⊤ijw)
2
〉

q(w)
+ const. (A.47)

∑

i

〈

(gi − g∗i )
2
〉

q(fj∗ ,w)
= −2fj

∑

i

(

gic
⊤
ij

〈

w
〉

q(w)
−
〈

fj∗
〉⊤

q(fj∗ )

〈

(Cij∗w)(c
⊤
ijw)

〉

q(w)

)

+ f2
j

∑

i

〈

(c⊤ijw)
2
〉

q(w)
+ const. (A.48)

which is just a quadratic in fj . Replacing the coefficients with aj and bj ,

∑

i

〈

(gi − g∗i )
2
〉

q(fj∗ ,w)
= ajf

2
j − bjfj + const. (A.49)

= aj

(

fj −
bj
2aj

)2

+ const. (A.50)
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ln q(fj) = ln p(fj)−
1

2
〈βσ〉aj

(

fj −
bj
2aj

)2

+ const. (A.51)

q(fj) ∝ p(fj) exp

(

−1
2
〈βσ〉aj

(

fj −
bj
2aj

)2
)

(A.52)

∝ p(fj) exp

(

−1
2
f
(2)
j

(

fj − f
(1)
j

)2
)

(A.53)

cf . Equation (43) of (Miskin and MacKay, 2000)

where

f
(2)
j = 〈βσ〉aj (A.54)

= 〈βσ〉
∑

i

〈

(c⊤ijw)
2
〉

q(w)
(A.55)

cf . Equation (48) of (Miskin and MacKay, 2000)

= 〈βσ〉
∑

i

〈(

∑

k

T
(k)
ij wk

)2〉

q(w)
(A.56)

f
(1)
j f

(2)
j =

1

2
〈βσ〉bj (A.57)

= 〈βσ〉
∑

i

(

gic
⊤
ij

〈

w
〉

q(w)
−
〈

fj∗
〉⊤

q(fj∗ )

〈

(Cij∗w)(c
⊤
ijw)

〉

q(w)

)

(A.58)

cf . Equation (49) of (Miskin and MacKay, 2000)

= 〈βσ〉
∑

i

(

gi
∑

k

T
(k)
ij 〈wk〉q(wk) −

∑

j′ 6=j

〈fj′〉q(fj′ )
〈(

∑

k

T
(k)
ij′ wk

)(

∑

k

T
(k)
ij wk

)〉

q(w)

)

.

(A.59)

A.3.3 Optimal q(wk)

We proceed much the same as for q(fj), starting from Equation (A.22), and isolating

the relevant terms,

CKL

(

q(wk)
)

=

∫

q(wk) ln
q(wk)

p(wk)
dwk +

1

2
〈βσ〉

∑

i

∫

q(f)q(w)(gi − g∗i )
2 df dw
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+ λk

(
∫

q(wk) dwk − 1
)

. (A.60)

similarly, we partition w into wk, the element of interest, and wk∗ , the remaining ele-

ments:

CKL

(

q(wk)
)

=

∫

q(wk)

[

ln
q(wk)

p(wk)
+
1

2
〈βσ〉

∑

i

∫

q(f)q(wk∗)(gi − g∗i )
2 df dwk∗

]

dwk

+ λk

(
∫

q(wk) dwk − 1
)

(A.61)

and obtain the optimal form

ln q(wk) = ln p(wk)−
1

2
〈βσ〉

∑

i

∫

q(f)q(wk∗)(gi − g∗i )
2 df dwk∗ − 1− λk.

(A.62)

Here we need to make some simplifications to obtain a function of wk, as in Ap-

pendix A.3.2.

g∗i = f⊤Ciw, (A.63)

= f⊤cikwk + f⊤Cik∗wk∗ (A.64)

where cik is the k
th column of Ci, and Cik∗ is Ci with this column removed.

(gi − g∗i )
2 = g2i − 2gi(f⊤Ciw) + (f⊤Ciw)

2 (A.65)

= g2i − 2gi(f⊤cikwk)− 2gi(f⊤Cik∗wk∗) + (f⊤cikwk)
2

+ 2(f⊤cikwk)(f
⊤Cik∗wk∗) + (f⊤Cik∗wk∗)

2 (A.66)

= −2gi(f⊤cikwk) + 2(f⊤cikwk)(f
⊤Cik∗wk∗) + (f⊤cikwk)

2 + const.

(A.67)

∑

i

〈

(gi − g∗i )
2
〉

q(f ,wk∗ )
= −2wk

∑

i

(

gi
〈

f
〉⊤

q(f)
cik −

〈

(f⊤cik)(f
⊤Cik∗)

〉

q(f)

〈

wk∗
〉

q(wk∗ )

)
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+ w2
k

∑

i

〈

(f⊤cik)
2
〉

q(f)
+ const. (A.68)

q(wk) ∝ p(wk) exp

(

−1
2
w

(2)
k

(

wk − w
(1)
k

)2
)

(A.69)

cf . Equation (42) of (Miskin and MacKay, 2000)

where

w
(2)
k = 〈βσ〉

∑

i

〈

(f⊤cik)
2
〉

q(f)
(A.70)

cf . Equation (46) of (Miskin and MacKay, 2000)

= 〈βσ〉
∑

i

〈(

∑

j

T
(k)
ij fj

)2〉

q(f)
(A.71)

w
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k w
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〈

wk∗
〉

q(wk∗ )

)

(A.72)

cf . Equation (47) of (Miskin and MacKay, 2000).
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