
HAL Id: tel-00719175
https://theses.hal.science/tel-00719175

Submitted on 19 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Canevas de programmation pour gérer l’héterogénéité et
la consommation d’énergie des mobiles dans un

environnement ubiquitaire
Hongyu Guan

To cite this version:
Hongyu Guan. Canevas de programmation pour gérer l’héterogénéité et la consommation d’énergie
des mobiles dans un environnement ubiquitaire. Informatique ubiquitaire. Université Sciences et
Technologies - Bordeaux I, 2012. Français. �NNT : �. �tel-00719175�

https://theses.hal.science/tel-00719175
https://hal.archives-ouvertes.fr

Département de formation doctorale en informatique

École doctorale EDMI Bordeaux

No d’ordre : 4526

Canevas de programmation pour gérer
l’hétérogénéité et la consommation

d’énergie des mobiles dans
un environnement ubiquitaire

THÈSE

soutenue le 01 juin 2012

pour l’obtention du

Doctorat de l’Université de Bordeaux 1

(spécialité informatique)

par

Hongyu GUAN

Jury

Président : Ye-Qiong Song, Professeur à l’Université de Lorraine - ENSEM

Rapporteurs : Philippe Lalanda, Professeur à l’Université Joseph Fourier de Grenoble

Philippe Roose, Mâıtre de Conférences (HdR) à l’Université de Pau

Encadrants : Charles Consel, Professeur à l’Institut Polytechnique de Bordeaux

Patrice Kadionik, Mâıtre de Conférences à l’Institut Polytechnique de Bordeaux

Cette thèse est librement téléchargeable sur hal.inria.fr

Copyright © 2012, Hongyu Guan,

LaBRI
Unité Mixte de Recherche CNRS (UMR 5800),
351 cours de la libération,
F-33405 Talence cedex

INRIA Bordeaux Sud-Ouest
Bâtiment A 29,
351 cours de la libération,
F-33405 Talence Cedex

Université de Bordeaux 1

Cette œuvre est mise à
disposition selon le contrat
Attribution-ShareAlike 3.0 Un-
ported disponible en ligne :

http://creativecommons.org/licenses/by-sa/3.0/

Première édition, juin 2012.

A B S T R A C T

managing heterogeneity and energy

via high-level programming framework

The topics of heterogeneity and energy are two fundamen-
tal considerations for pervasive computing environments. In
this thesis, we describe our approach to manage heterogeneity
and to handle energy concerns via a high-level programming
framework.

To manage heterogeneity, we describe a methodology and a
programming support that use the SIP protocol as a universal
communication bus in pervasive computing environments. Our
work enables homogeneous communications between heteroge-
neous distributed entities. In doing so, we integrate the SIP com-
munication bus into our programming framework. We rely on a
declarative language named DiaSpec to describe the architecture
of pervasive applications. This description is passed to a genera-
tor for producing a Java programming framework dedicated to
the application area. We leverage the generated framework with
SIP adaptations to raise the abstraction level of SIP operations.
We then present a classification of a wide variety of entities in
terms of features, capabilities and network connectors. Based on
this classification, a methodology and a programming support
are described for connecting entities on the SIP communication
bus. This work has been validated by applications using the
SIP communication bus to coordinate widely varying entities,
including serial-based sensors (RS232, 1-Wire), ZigBee devices,
X10 devices, PDA, native SIP entities, and software components.

Regarding the energy concerns, we describe a methodology
that uses two strategies, namely computation offloading and data
compression, to minimize energy cost of mobile applications.
In doing so, we present an execution and transfer model for a
task of a mobile application and define its five different stubs for
three program execution and data transfer modes. Based on this
model and our two strategies, we construct a strategy scheme to
determine the most efficient stub in terms of energy consumption.
We then design the OffDeci tool, using this strategy scheme, to
provide energy feedback for the developer and to analyze the
balance between local and remote computing with consideration
of data compression. Our experimental study demonstrates the
feasibility of the strategy scheme of our approach. Finally, we
extend DiaSpec with declarations dedicated to manage energy
concerns during the application design phase. We sketched the

iii

integration of this energy-handling declaration and OffDeci into
our high-level programming framework. This integration permits
to determine the best stub of a declared DiaSpec component in
terms of its energy cost.

keywords : Architecture Description Language, Domain-Specific
Language, SIP, Heterogeneity, Energy consumption, Mobile ap-
plication, Computation offloading, Data compression

iv

R É S U M É

L’hétérogénéité des objets communicants et la consommation
d’énergie sont deux considérations fondamentales pour les envi-
ronnements informatiques ubiquitaires. Dans cette thèse, nous
présentons notre approche pour gérer l’hétérogénéité et pour
économiser l’énergie via des canevas de programmation dédiés.
Pour gérer l’hétérogénéité, nous proposons une méthodologie et
un support de programmation qui visent à faire communiquer les
différents objets communicants de l’environnement ubiquitaire,
et ce, en utilisant le protocole SIP considéré alors comme un bus
de communication universel. Nous avons intégré ce bus SIP dans
les canevas de programmation générés à partir des descriptions
d’applications d’informatique ubiquitaire, écrites dans le lan-
gage DiaSpec. Concernant la consommation d’énergie, nous pro-
posons une méthodologie qui utilise les techniques d’offloading
et de compression de données pour minimiser la consommation
d’énergie des applications mobiles. Nous avons ainsi construit
une stratégie d’aide à la conception au travers d’un outil qui
permet de déterminer le meilleur mode d’exécution pour une
tâche donnée. Nous proposons l’intégration de cette stratégie
dans le langage de description DiaSpec.

mots clés: Architecture Logicielle, Langage Dédié, SIP,
Hétérogénéité, Consommation d’énergie, Applications mobiles,
Calcul déporté, Compression de données

L I S T E D E S P U B L I C AT I O N S

Les travaux discutés dans cette thèse ont été présentés précédem-
ment.

conférences internationales

• “SIP as a Universal Communication Bus: A Methodology
and an Experimental Study,” dans ICC’10 : Proceedings of the
International Conference on Communications, 2010, Cape Town,
South Africa, Bertran Benjamin, Consel Charles, Jouve Wil-
fried, Guan Hongyu et Kadionik Patrice

vii

R E M E R C I E M E N T S

Cette thèse, qui est constituée de moments de joie, de courage et
de doute, n’aurait jamais pu arriver à son terme sans l’aide et le
soutien de nombreuses personnes. Je remercie tout d’abord mes
deux encadrants. Je n’aurais jamais pu commencer et effectuer
cette thèse dans de si bonnes conditions sans mon directeur de
thèse Professeur Charles Consel. Il a su me faire confiance et
Il m’a poussé afin de donner le meilleur de moi-même pour
soumettre dans les meilleures conférences internationales. Aussi,
cette thèse n’aurait pas non plus vu le jour sans le support in-
conditionnel de Maître de Conférences Patrice Kadionik. Je n’ai
jamais vu personne d’autre se donner autant pour ses étudiants:
il m’a introduit dans une nouvelle communauté de logiciel libre,
il m’a permit de m’ouvrir l’esprit et m’a invité à participer aux
Rencontres Mondiales du Logiciel Libre.

Je remercie les membres de mon jury :
- Je remercie Philippe Lalanda, professeur à l’Université Joseph

Fourier de Grenoble, et Philippe Roose, Maître de Conférences
(HdR) à l’Université de Pau, pour avoir accepté la charge de
rapporteur.

- Je remercie Ye-Qiong Song, professeur à l’Université de Lor-
raine, qui a présidé ce jury et ma soutenance.

Je remercie tous les membres de l’équipe Phoenix. En par-
ticulier, je voudrais donc remercier Benjamin Bertran pour ton
soutien lors de l’écriture des articles et pour tes conseils, Benjamin
a su être assez courageux pour relire et corriger mes premiers
brouillons lors des écritures des articles. Je le remercie aussi
pour son aide précieuse dans la concrétisation de l’approche SIP.
Je voudrais également remercier Julien B. et Henner pour leurs
conseils concernant ma thèse. Je voudrais aussi remercier Luc et
Ghislain car vous m’avez poussé à faire toujours mieux et pour
toutes nos discussions que ce soit sur le domaine tecnique ou
encore sur les cultures françaises et chinoises. Je voudrais parti-
culièrement remercier Pengfei Liu pour toutes nos discussions
sur nos travaux de thèses, sur la technologie de l’électronique et
de l’informatique, la politique, la vie des étrangers en France, la
cusine et la culture chinoise et pour finir l’actualité de la Chine.
Merci à Quentin pour tes conseils sur mes travaux et merci à
Stéphanie et Zoé pour leurs bonnes humeurs. Merci aussi à
Chrystel et Sylvie d’avoir si bien organisé et tant aidé en ce qui
concerne mes tâches administratives durant ma thèse et merci à
Aurélien, Christophe, Florent et Jérome d’avoir résolu tous mes

ix

problèmes techniques concernant le système informatique de
l’INRIA.

Enfin, je remercie tous les membres de ma famille. Je remer-
cie en particulier ma mère (Mme Shuqin LIU), mon père (M.
Xingchang GUAN), mon frère (M. Hongfeng GUAN), ma belle-
mère (Mme Shuhua DU), mon beau-père (M. Zhiyi GUO), ma
belle soeur(Mme Qingli WANG), ma nièce (Mlle Enya GUAN),
mon grand père (M. Shanyi LIU). Ils m’ont fourni un cadre idéal
pour mes études et sans le soutient de leurs parts je n’aurais pas
effectué ma thèse. Ces derniers mots sont pour ma femme (Mlle
Zhuosha GUO) dont l’amour m’a été indispensable durant ma
thèse et me le sera encore. Je lui consacre mes remerciements les
plus sincères. Sans elle, cette thèse n’aurait jamais pu commencer.
Elle m’a apporté le meilleur soutien durant ma thèse.

Je dédie cette thèse à tous les membres de ma famille car c’est
aussi la leurs.

x

C O N T E N T S

1 introduction 1

1.1 Approach 3

1.2 Thesis contribution 5

1.3 Roadmap 6

i sip as a universal communication bus : a method-
ology and an experimental study 9

2 background 11

2.1 Requirements of pervasive computing systems 11

2.2 The DiaSpec Approach 16

2.3 Summary 19

3 sip for heterogeneity handling 21

3.1 A Case for SIP as a Universal Communication
Bus 21

3.2 Building SIP Adapters 24

3.3 Enabling SIP communication 28

3.4 SIP back-end 32

3.5 Summary 34

4 evaluation of the platform 35

4.1 Experimental platform 35

4.2 Experimental study 36

4.3 Evaluation of the DiaSpec with a SIP Back-End 43

4.4 Related Work 45

4.5 Summary 46

5 summary 49

ii offload methodology for energy efficient ap-
plication in smartphone context 51

6 background 53

6.1 Requirements for energy concerns in mobile ap-
plications 55

6.2 Summary 58

7 computation offloading and data compres-
sion for reducing energy cost 59

7.1 Our approach 59

7.2 Energy analysis for computation and communi-
cation 60

7.3 A strategy scheme for three program execution
and data transfer modes 62

7.4 Design of execution and transfer mode decision
tool "OffDeci" for energy concerns 69

7.5 Summary 71

8 evaluation and experimental study 73

xi

xii contents

8.1 Experimental platform 73

8.2 Implementation of motivating examples 76

8.3 Results 79

8.4 Prediction rules 80

8.5 Related Work 81

8.6 Summary 82

9 diaspec extension for energy handling 85

9.1 Characterizing DiaSpec component 86

9.2 Declaring energy management 89

9.3 Analyzing energy cost 89

9.4 Summary 90

10 summary 93

iii conclusion 95

11 conclusion 97

12 future work 101

iv appendices 103

bibliography 105

L I S T O F F I G U R E S

Figure 1 Pervasive computing environment 13

Figure 2 Special requirements of pervasive comput-
ing environments 14

Figure 3 Special requirements of pervasive comput-
ing environments 16

Figure 4 The DiaSpec software structure 17

Figure 5 Special requirements of pervasive comput-
ing environments 22

Figure 6 Adapting entities to SIP 24

Figure 7 Entity Classification 25

Figure 8 SIP adapter for entities of types 1 and 2 26

Figure 9 Entities of types 3 and 4 and gateway archi-
tecture 27

Figure 10 Registration (a) and discovery (b) processes 29

Figure 11 Event interaction mode: (a) subscription (b)
publication 31

Figure 12 The DiaSpec software structure 32

Figure 13 Experimental platform 35

Figure 14 Software architecture of a SIP gateway 37

Figure 15 Hardware platform of the SIP gateway 38

Figure 16 ZigBee module: (a) ZigBee base (b) Our
own ZigBee sensor 39

Figure 17 X10 module: (a) CM11 (b) LM11 39

Figure 18 iButton device 40

Figure 19 Performances as a function of CPU fre-
quency: (a) Variation of run time of two
interaction modes of the SIP user agent
with varying the frequency CPU (b) Varia-
tion of run time of read or write operations
of the SIP adapters with varying the fre-
quency CPU (c) Variation of bandwidth for
our SBC board with varying the frequency
CPU 42

Figure 20 Special requirements of pervasive comput-
ing environments 53

Figure 21 A system for health monitoring 57

Figure 22 Three execution modes for a given applica-
tion on smartphone 58

Figure 23 Classification of program execution and
data transfer model 64

xiii

Figure 24 Five stubs for three execution and transfer
modes 67

Figure 25 Program execution and data transfer strat-
egy scheme 67

Figure 26 Architecture of OffDeci with three main
components: power estimation, time pro-
filing and comparator of energy consump-
tion 70

Figure 27 Battery replacement with four wires for cur-
rent measurement 74

Figure 28 Our measurement platform for power mon-
itoring 75

Figure 29 Power consumption of the screen of HTC
Hero in three different modes 75

Figure 30 Power consumption of the HTC Hero: (a)
CPU in idle mode, (b) Wi-Fi in idle mode 76

Figure 31 Power consumption of the HTC Hero: (a)
CPU utilization of 100 %, (b) CPU utiliza-
tion of 40 % 77

Figure 32 Power consumption of the HTC Hero: (a)
Wi-Fi in continuous data transmission mode,
(b) Wi-Fi in discontinuous data transmis-
sion mode 78

Figure 33 Prediction rules of three execution and trans-
fer modes for a task 81

Figure 34 Integration of OffDeci into DiaSpec 85

Figure 35 Architecture of the fall detection applica-
tion 87

Figure 36 Implementation of extended energy-handling
DiaSpec 90

L I S T O F TA B L E S

Table 1 Entity examples 25

Table 2 SIP gateway memory footprint 40

Table 3 SIP gateway run-time overhead 41

Table 4 Parameters for the energy consumption mea-
surements 74

Table 5 Average power consumption of different
hardware components in idle mode 75

xiv

Table 6 Energy cost of the task of the fall detection
application in five different stubs 79

Table 7 Energy cost of the task of the activity un-
derstandings application in five different
stubs 79

L I S T I N G S

Listing 1 A DiaSpec specification 18

Listing 2 A LightController implementation using
supplied framework 19

Listing 3 A SIP message generated by the back-end 33

Listing 4 DiaSpec specification of the fall detection
application 87

Listing 5 Energy-handling declaration of extended
DiaSpec 89

xv

1
I N T R O D U C T I O N

Pervasive computing will be a fertile source
of challenging research problems in com-

puter systems for many years to come. Solv-
ing these problems will require us to broaden

our discourse on some topics, and to revisit
long-standing design assumptions in others.

— Satyanarayanan, M. [61]

In 1991, Mark Weiser, chief technology officer for Xerox’s Palo
Alto Research Centre, wrote: “The most profound technologies are
those that disappear. They weave themselves into the fabric of every-
day life until they are indistinguishable from it.” This paper [67]
described his vision for 21st century computing that countered
the ubiquity of personal computers. This vision corresponds to
ubiquitous computing, now also called pervasive computing. The
essence of that vision was the creation and the development of
environments saturated by computing and communication capa-
bilities, yet gracefully integrated with human users. At that time,
this vision looks like science fiction. Today, different technical
trends seem to tell us that this vision is going to become a reality.

Firstly with the emergence of networking PC became connected.
Computers evolved to distribute computing. They can share
capabilities over the network. Distributed computing marked the
next step toward pervasive computing by introducing seamless
access to remote information resources and communications with
fault tolerance, high availability, and security [61].

Secondly mobile computing began from the integration of
cellular technology with the Web [60]. The miniaturization
technology of equipment has made great progress in recent years.
At the same time, computation, storage and communication
capacity have increased significantly. Consumption energy of
these devices has also greatly reduced. This progress allows that
both the size and price of mobile devices are falling everyday
and could eventually support Weiser’s vision of ubiquitous inch-
scale computing devices readily available to users in any human
environment.

The technological advances in distributed computing and mo-
bile computing prepare the way to achieve ubiquitous or perva-

1

2 introduction

sive computing’s goal and build a pervasive computing environ-
ments.

Potential applications in the field of pervasive environments
are numerous ranging from building management to healthcare.
They present real economic, social and technical issues. New
applications in the field tend to share capabilities of several
devices. Despite recent technological advances in hardware and
networking, ubiquitous and pervasive applications are relatively
few and far from the vision of Weiser. This is mainly due to the
lack of abstraction layer for system infrastructure to facilitate
the creation of pervasive applications. An abstraction layer for
system infrastructure is directly dependent on the challenges of
pervasive computing system. Pervasive computing subsumes
the research challenges of distributed computing and mobile
computing while going much further and opening up new issues
and demands. Specifically the challenges and requirements of
pervasive computing environments are identified: scalability,
heterogeneity, invisibility, energy consumption, smart spaces,
fault tolerance and security, etc [59], [61]. The challenges of
pervasive computing provide many opportunities for research
and require more than a single thesis. Therefore we narrow the
scope of this thesis and focus on two aspects: heterogeneity and
energy consumption.

As device-rich networked environments are becoming increas-
ingly prevalent in different areas, heterogeneity increases in such
environments. These pervasive computing environments consist
of a variety of entities that are heterogeneous in many aspects: (1)
they are either hardware (e.g., camera and telephone) or software
(e.g., agenda, news and location server); (2) they rely on different
network layers generally dedicated to pervasive environments
(e.g., X10, 1-Wire, ZigBee, and IP); (3) they interact using various
modes of communication (e.g., events and streams); and, (4) they
exchange various kinds of data (e.g., temperature measurements
and video streams). Such environments are also highly dynamic
with entities appearing and disappearing over time (e.g., a tele-
phone is switched on/off). Moreover, software systems managing
these entities need to be open-ended to keep pace with a constant
flow of technological advances.

As heterogeneity increases in pervasive computing environ-
ments, developing applications in such environments become
exceedingly difficult. Managing heterogeneity in an ad-hoc way
leads to make the integration of all various platforms almost im-
possible. We need an abstraction layer to hide heterogeneity and
to facilitate the application creation. Several general-purpose mid-
dlewares (e.g., CORBA, DCOM) have been studied in this domain.
While existing software engineering approaches support the de-

1.1 approach 3

velopers for the most error-prone tasks and ad hoc techniques
[6], they still lack a platform that relies on industrial standards to
tackle the heterogeneity, using a high-level abstraction layer for
all kind of entities.

Today’s smart phones are programmable and come with a
growing set of cheap powerful computation and communication
capabilities. These technological advances meet the requirements
of pervasive computing for the seamless interoperation of di-
verse devices. Especially with these increasingly pervasive smart
phones, more and more services which used to be available only
by personal computer are expected to be provided by mobile de-
vice. As there are more and more various and complex services
on mobile, the required performance of mobile devices increases.
Thus power consumption by mobile devices is growing rapidly.
However, battery capacity has shown slower growth. Therefore,
reducing power consumption effectively is a crucial issue in mo-
bile devices. Moreover, battery consumption is clearly important
for users when buying mobile phones and choosing applications
and services to use. Software systems must integrate energy con-
sumption concerns of the pervasive smart phones into pervasive
computing systems.

Because smart phones offer more and more pervasive services
and applications, they play a major role in this domain. Energy
consumption impacts all resources of a smart phone. Integrating
energy consumption concerns in an ad-hoc way leads to making
maintenance and upgrading of the system virtually impossible.
Bass et al. [13] propose to consider them through design, im-
plementation, and deployment phases of software systems. To
support and facilitate the work for the developer, we need tools
that can give energy consumption feedback during the applica-
tion development and debugging cycle.

1.1 approach

To manage heterogeneity and energy concerns in pervasive en-
vironments, our approach leverages DiaSuite1, a toolkit which
provides a development environment dedicated to pervasive com-
puting systems. The core of DiaSuite is a domain-specific design
language for pervasive computing systems named DiaSpec. A
dedicated programming framework is generated from a DiaSpec
specification, which supports the implementation of the function-
ality, testing, and deployment of applications. The programming
framework is able to provide the programmer with high-level
programming mechanisms, raising the abstraction level of interac-

1 http://diasuite.inria.fr/

http://diasuite.inria.fr/

4 introduction

tion modes between entities. Thanks to this support, developers
manipulate high-level concepts (e.g., service discovery) in Java.

Based on this observation, this thesis proposes an approach
to managing heterogeneity and energy concerns of pervasive
computing environments and to going beyond the limits of exist-
ing approaches. Our approach is composed in two parts. First,
we present a methodology and programming support to use
SIP as a universal communication bus for pervasive computing
environments. Second, we construct a program execution and
data transfer strategy scheme that uses computation offloading
and data compression technologies. We then apply this scheme
to help the developer to determine whether and how to offload
computation of a given program with or without compression
data transfer.

In the first part, our research aims to address the heterogeneity
of pervasive computing environments by generalizing SIP [55]
(Session Initiation Protocol) to a software communication bus.
SIP is now widely deployed in both local and global telecom-
munication infrastructures, as well as at home with the Internet
gateway (ADSL box). This industry standard for Internet tele-
phony provides a basis to address the challenges of pervasive
computing environments. For example, dynamicity can be ad-
dressed by leveraging SIP’s mechanism for user mobility. The
heterogeneous modes of communications between entities can
leverage SIP’s general-purpose forms of communications, namely
multimedia sessions, events and instant messaging. We proposed
a Java programming framework to develop such services.

In the second part, our research aims to address how to take
energy consumption into consideration in the development of
applications and services on pervasive smart mobiles for the
programmer. It is well known that reducing energy consumption
should be based on accurate energy consumption estimation tech-
nique since it is possible to over- or under-constrain design with-
out accurate estimation. To handle this problem we explore two
technologies to reduce the energy consumption on smartphones:
computation offloading to minimize local calculations and data
compression to reduce the volume of data to transfer. We then
construct a program execution and data transfer strategy scheme,
using these two technologies. We integrated this scheme into a
tool named "OffDeci" that permits the programmer to estimate
more accurately energy consumption of wireless communication
and local processing for a given program. Through comparison
between local computation and computation offloading, this tool
decides the trade-off point. We sketch the integration of this tool
into our high-level programming framework.

1.2 thesis contribution 5

By using an integrated programming framework, our approach
facilitates the application creation. In the application design
phase, our approach hides the heterogeneity in pervasive com-
puting environments and takes energy consumption concerns
into account. It allows the programmer to concentrate on high-
level design issues rather than on implementation details (e.g.,
communication layers and interaction modes). In doing so, both
parts of our approach leverage DiaSuite. To facilitate the devel-
opment, we provide the programmer with DiaSpec on top of the
SIP-based support framework that is presented in the first part
of our approach. A Java dedicated programming framework is
generated from a DiaSpec specifications, which supports the im-
plementation, the testing and the deployment of application. The
programmer writes pervasive computing applications using high-
level abstraction methods that are mapped into SIP-compliant
operations. For the second part of our approach we extend ex-
isting DiaSpec specifications to generate coherent configurations
for each relevant DiaSpec component. The implementation of
these configurations are passed to OffDeci tool. The most efficient
energy consumption execution mode of a DiaSpec component is
automatically deployed in the application execution time.

1.2 thesis contribution

This work implements and validates an approach to providing
an abstraction layer for heterogeneity of pervasive computing
and to integrating energy consumption concerns into pervasive
computing systems. The specific contributions of this thesis are
described below.

Main contributions of the first part of this thesis are as follows:

a universal communication bus based on sip We
use a domain specific design language approach to generate
dedicated SIP-based programming frameworks, raising the
abstraction level of SIP-native operations and introducing a
uniform mechanism to invoke non-SIP resources.

a classification of a wide variety of entities

This classification facilitates the integration of these entities in the
SIP communication bus and a methodology and programming
support that make each class of entities SIP compliant.

an experimental study This study validates the SIP ap-
proach as a communication bus for pervasive computing envi-

6 introduction

ronments and comprises numerous entities with vastly varying
features and capabilities.

Main contributions of the second part of this thesis are as
follows:

programming support for trade-off point of com-
putation offloading Our approach allows selecting one
execution and transfer mode for the programmer to minimize the
energy consumed by a given task with a fixed amount of input
and output data. For a variable amount of input and output data,
our approach allows the programmer to choose one execution
and transfer mode with help of prediction estimation rules. Our
tool can verify the correctness of the choice for a specific task.

data compression support Data compression has large
impact on the cost energy of data transfer. We consider com-
pressed data transfer in our program execution and transfer
strategy scheme.

energy estimation without need for external

equipment In our tool, we design a software stopwatch-
benchmarking tool to measure execution time for a task, and we
use the Sesame [20] tool to estimate power consumption. Our
tool calculates then energy estimation for a given task in three
execution and transfer modes. There is no need for external
equipment to calculate energy consumption.

validation We have applied our approach in the develop-
ment of two applications. We measure precisely the energy
consumption of the three execution and transfer modes of these
applications with external equipment hardware for power mea-
surement.

energy-handling declaration We have extended a
domain-specific design language to declare energy concerns at
a design level. A declarative approach is introduced to define
components of an mobile application that may be offloaded. Such
declaration allow managing energy cost of components via high-
level programming framework.

1.3 roadmap

This thesis is split into three parts: The first part represents a
review of the state of the art that introduces the context and

1.3 roadmap 7

the challenge of pervasive computing and then describes our
approach that targets heterogeneity of the pervasive comput-
ing environment; the second part presents our approach that
addresses energy consumption of the mobile in this type of en-
vironment; and the third part concludes the thesis and outlines
future work.

1.3.1 Heterogeneity

Chapter 2 sketches three pervasive computing scenarios. It also
outlines the requirements for pervasive computing. We restrict
and highlight the research question of this thesis and we then
introduce our design language dedicated to pervasive computing,
DiaSpec, with which we leverage to manage heterogeneity and
energy concerns in pervasive environments. Chapter 3 describes
our approach design, gives some backgrounds on the SIP pro-
tocol and presents its benefits in a pervasive computing context.
We detail the general structure of needed SIP adaptions and
adapters, connecting entities to the SIP universal communication
bus in this chapter. We also propose a SIP back-end for DiaSpec
to develop SIP-based applications. Chapter 4 introduces our ex-
perimental platform and examines our experiment results. We
present evaluation and related works relevant to heterogeneity
in the pervasive computing environment. Chapter 5 summarizes
our approach to manage heterogeneity using SIP communication
bus in the first part of this thesis.

1.3.2 Energy consumption

Chapter 6 gives a concise statement of the challenge about energy
consumption on smartphons. It then sketches two applications
and outlines the requirements for energy consumption issue on
smartphones. Chapter 7 presents an overview of our approach
to minimize energy cost of mobile applications. It introduces
overview of three execution and transfer modes and their strat-
egy scheme. We also present the overall design of our tool with
the integration of our program partition strategy scheme. Chap-
ter 8 reports experimental results, which are collected from a
HTC Hero smart phone. We then discuss the prediction rules
and also present related work relevant to energy cost concerns
on smartphones. We leverage DiaSpec with our OffDeci tool
in the Chapter 9. Chapter 10 summarizes our approach to han-
dle energy concerns for mobile application using computation
offloading and data compression in the second part of this thesis.

8 introduction

1.3.3 Conclusions

The third part summarizes our approach to manage heterogeneity
and energy concerns in pervasive environments. Chapter 11

draws overall conclusions while Chapter 12 points out remaining
problems and outlines present avenues for future work.

Part I

S I P A S A U N I V E R S A L C O M M U -
N I C AT I O N B U S : A M E T H O D O L -

O G Y AND AN EXPERIMENTAL STUDY

2
B A C K G R O U N D

Conversion from one domain to another is in-
tegral to computing and communication. As-

suming that uniform and compatible implemen-
tations of smart environments are not achiev-

able, pervasive computing must find ways
to mask this heterogeneity – or uneven con-
ditioning, as it has been called – from users.

— Saha, D. and Mukherjee, A. [59]

This Chapter sketches three pervasive computing scenarios
and outlines the requirements for pervasive computing. It then
introduces DiaSpec that addresses the application-level require-
ments. We present how to leverage DiaSpec approach to handle
the heterogeneity and the energy concerns in the Chapters ahead.

2.1 requirements of pervasive computing systems

This Section presents several scenarios for pervasive computing
environments and identify their needs, limitations, and risks.
Additionally, we describe a typical pervasive computing environ-
ments. Finally, general analysis illustrates a number of concerns
specific to the pervasive computing environments.

2.1.1 Motivating examples

Let us examine three scenarios from three areas: home automa-
tion, surveillance and security, and healthcare. These scenarios
involve the use of a variety of devices including alarms, video
cameras, phones and televisions. These devices are connected
to a home/office network infrastructure. Besides devices, our
working scenarios also consist of external software services such
as agendas and an SMS gateway.

advanced intercom In this scenario, when someone uses
the home intercom, it calls every phone in the house. After a
period of time, if the call has not been answered, it is redirected
to the mobile phone of one of the home owners. Whoever gets

11

12 background

the call can talk to the visitor, as well as remotely open the door
using the keypad of his/her phone.

This application not only illustrates the use of existing SIP fea-
tures, such as audio streams and DTMF [27], but it also exhibits
the need to leverage the telephony infrastructure to enable home
equipments (e. g. doors, lights, alarms) to be controlled remotely.

intrusion detection This scenario is dedicated to house
security. When an intrusion is detected, the application sends an
SMS and an email to the house owner, both with a video. It also
calls the police, providing specific information (e. g. number of
detected intruders and area of intrusion) using a text-to-speech
component.

This scenario demonstrates the need for advanced event mech-
anisms to bring rich information to applications (for instance, the
location of the intrusion). It also points out the need to attach
non-functional information to distinguish and discover entities.
For example, if each video camera has an attribute specifying its
location, then it is possible to dynamically and selectively record
a video of the intrusion scene. Finally, this scenario shows home
components interacting with external services (e. g. SMS).

talking to the patient : media content informa-
tion From her office, the nurse in charge of the treatment
establishes an audio call with the patient in his home. To
facilitate her explanations (e. g. a new dosage), she can remotely
push information like graphs or test results on the patient’s TV
screen from her smartphone. From her office, the nurse in charge
of the treatment establishes an audio call with the patient. To
facilitate her explanations (e. g. a new dosage), she can remotely
push informations like graphs or test results on the patient’s TV
screen from her smartphone.

This scenario underlines the need for combining home and
office equipments to perform a number of tasks. It also introduces
the need for session mechanisms to bring rich information (e. g.
media content) to applications.

2.1.2 The environment

After analyzing our working scenarios, we draw an overview
of a typical pervasive computing environment and provide a
preliminary assessment of its capabilities.

system infrastructure The system infrastructure of a per-
vasive computing environment is populated with numerous de-

2.1 requirements of pervasive computing systems 13

Figure 1: Pervasive computing environment

vices in Figure 1. Each of them provides services accessible
through specific interaction modes and communication technolo-
gies (e. g. Web Services, UPnP, X10, ZigBee, and SIP). This system
infrastructure assumes that an Internet gateway exists for each
building. The gateway makes a bridge between the building and
Internet, giving an access to online services (e. g. calendar, news,
e-mail, and weather forecasts). The gateway contains an entire
system with storage, and computing capabilities (e. g. hard drive,
general-purpose CPU, sizable memory, USB ports, etc.).

applications In our study, an application controls, manages,
and coordinates several entities, whether hardware or software,
realizing a scenario. The orchestration of these entities leads the
applications to interoperate with various devices and software
components coming from heterogeneous domains: surveillance
(e. g. video cameras, alarms), multimedia (e. g. media server,
TV), or home automation (e. g. heaters, lights). In a pervasive
computing environment, applications are hosted in the home
network (e. g. in the Internet gateway itself, or in a dedicated
device) or in the core network (e. g. cloud computing).

2.1.3 Requirements

Beyond the specific requirements illustrated in our working sce-
narios, the system infrastructure and the creation of applications
entail the common requirements of pervasive computing envi-
ronments. These requirements can thus be split into two levels.
To fulfill these requirements, the middleware is a necessary ele-
ment. The term middleware refers to create an abstraction layer
for system infrastructure with interaction modes that enables
heterogeneous entities to communicate each other in both local

14 background

area network and wide area network and provide the support for
application creation through a programming framework or an
API. Thus, pervasive computing environments are staged in three
categories: system infrastructure, middleware, and applications
(Figure 2).

Figure 2: Special requirements of pervasive computing environments

The requirements implied by the system infrastructure are
various (e. g. heterogeneous networks, heterogeneous platform,
energy concern, security) as shown in Figure 2. These require-
ments provide many opportunities in different research areas.
This thesis focus on two main aspects: heterogeneity and energy
concerns. Let us examine different characteristics of these two
aspects.

• Heterogeneous Interaction modes - The study of a wide
range of entities suggests that three interaction modes are
needed: commands, events, and sessions. Commands are
used to perform actions on devices (e. g. operating a light
or triggering an alarm). Events enable entities to react to
situations by publishing information (e. g. motion detection
and temperature change). A session mechanism allows to
configure a communication channel to exchange data over a
period of time (e. g. video streaming from a video camera).

2.1 requirements of pervasive computing systems 15

• Heterogeneous networks - Existing devices and services rely
on heterogeneous communication technologies (e. g. UPnP,
X10, or Web Services), constituting heterogenous networks.
The management and coordination of this heterogeneity
are necessary.

• Heterogeneous platforms - Numerous platforms are widely
deployed in existing pervasive computing environments
(e. g. telephony over IP infrastructures or dedicated home
automation platforms). The convergence of these platforms
can have significant integration cost. The platform has to
seamlessly integrate these existing infrastructures.

• Heterogeneous features of entities - The system infrastruc-
ture contains numerous entities (hardware and software),
providing different features. Technologies advances make
these environments in constant evolution, with new devices
and features. The extensibility is needed to cope with the
integration of entities and their features.

• Energy aware system - Mobile devices are widely used
in pervasive computing environments, especially smart-
phones are rapidly becoming the central computation and
communication device. More and more services and appli-
cations are available on them. However, smartphones are
still energy-limited device if complex signal processing and
machine learning algorithms are required. We need to take
the energy concerns into account during the application
design phase.

Let us examine also the application-level requirements.

• Programming abstractions - Heterogeneity of entities re-
quires an approach for abstracting away entity features that
are not relevant to applications (e. g. protocol, model, and
firmware version). This approach would allow entities that
share common functionalities to be uniformly manipulated.

• Application creation - The development of pervasive com-
puting applications needs to be supported in many aspects:
structuring, insurance of innocuousness, tests, evolution,
and deployment.

16 background

2.2 the diaspec approach

In this Section, we examine the aspects that make a program-
ming framework as an ideal choice to fulfill the application-level
requirements (highlighted in Figure 3). We then present the Dia-
Suite approach that generates a programming framework from
the DiaSpec architecture description. This approach covers the
entire development lifecycle and provides guidance and support
to implementing the application logic.

Figure 3: Special requirements of pervasive computing environments

Programming abstractions

As mentioned earlier, a programming framework can factorize
the boilerplate code to map the programming support to a com-
munication back-end (e. g. RMI, SIP or local). The programming
framework is able to provide the programmer with high-level
programming mechanisms, raising the abstraction level of com-
munication operations.

2.2 the diaspec approach 17

Application creation

An Architecture Description Language [40] (ADL) dedicated to
the pervasive computing domain can facilitate the creation of
new applications. We can use this ADL to generate a dedicated
programming framework that abstracts over the underlying com-
munication layer (e. g. RMI, SIP or local). The dedicated pro-
gramming framework allows us to quickly develop, adapt, and
check our applications. The programming framework can allow
the logic for the application to be developed, without requiring
the knowledge about the underlying communication layer.

DiaSuite toolkit

After this analysis, DiaSuite as a toolkit can fulfill the application-
level requirements. DiaSuite provides a development environ-
ment dedicated to pervasive computing systems. The core of
DiaSuite is a domain-specific design language for pervasive com-
puting systems named DiaSpec.

DiaSpec [17, 31] is a lightweight Architecture Description Lan-
guage [40] dedicated to the pervasive computing domain. From a
DiaSpec specification, the DiaSpec compiler generates a dedicated
programming framework. The generated support provides the
developer with high-level programming mechanisms, abstracting
over the underlying communication layer (e. g. RMI, SIP or local).
This makes it possible to write applications and device wrappers,
without knowing about this protocol. Figure 4 illustrates the
DiaSpec approach.

Figure 4: The DiaSpec software structure

18 background

2.2.1 The DiaSpec Language

A DiaSpec specification defines a taxonomy of entities dedicated
to the target application area. It consists of declarations of classes
of entities, each declaration gathers entities that share common-
alities; their differences are expressed by attribute declarations;
and, three connector declarations are used to define their interac-
tions with other devices, namely, events, commands, and sessions.
Attributes can represent a constant property (e.g., a colour or a
range) or a dynamic state, such as the current location of a mobile
object.

Listing 1 describes the architecture of a light regulation ap-
plication. The environment is composed of lights, light sensors,
and a controller able to receive information from sensors and to
trigger operations on lights. This architecture illustrates both the
command and event interaction modes. As can be noticed, each
declared connector is optionally refined with the class of entities
it may interact with. For example, the LightSensor component
provides the Luminosity event to LightController entities. The
LightController component requires the Variation command
from the Light entities.

1 component Device(String building, String room) { }

2

3 component Light extends Device {

4 provides command Variation to LightController;

5 }

6

7 component LightSensor extends Device {

8 provides event Luminosity to LightController;

9 }

10

11 component LightController {

12 requires command Variation from Light;

13 requires event Luminosity from LightSensor;

14 }

15

16 icommand Variation {

17 void increase();

18 void decrease();

19 void setLevel(int value);

20 }

Listing 1: A DiaSpec specification

2.2.2 Programming Support

From a DiaSpec description, the DiaSpec compiler generates a
dedicated programming framework. Conforming to the specified
environment, it provides the developer with a Java programming

2.3 summary 19

support, facilitating creation of applications and wrappers. The
generated support is independent of a given communication
technology. Developers only manipulate high-level distributed
programming concepts (e. g. registration, discovery and remote
calls).

The generated programming framework is highly customized
with respect to a given DiaSpec description. Listing 2

shows the use of this generated support. Implementation of
MyLightController constructor looks for LightSensors in the
building A29, then subscribes to the Luminosity event. The notify
method is called if the LightController receives a notification of
a Luminosity event. In this implementation, lights of the room
are dimmed or brightened depending on the luminosity event
value.

1 public class MyLightController extends LightController {

2

3 public MyLightController() {

4 LightSensorComposite sensors =

5 select(lightSensorsWhere().building("A29"));
6 sensors.subscribeLuminosity();

7 }

8

9 @Override

10 public void notify(Proxy servicePublisher, Luminosity event) {

11 LightComposite lights =

12 select(lightsWhere().

13 building(event.building).room(event.room));

14 if (event.luminosityValue < 5000)

15 lights.increase();

16 else if (event.luminosityValue > 6000)

17 lights.decrease();

18 }

19 }

Listing 2: A LightController implementation using supplied
framework

This code fragment illustrates discoveries, subscriptions and
commands. Every object used in this implementation comes from
the dedicated support, generated from the DiaSpec description
shown earlier (Listing 1). This support hides the underlying
communication technology. Each technology is addressed by its
own back-end.

2.3 summary

This Section presented DiaSpec, our design language for perva-
sive computing systems. We illustrated how the logic of appli-
cations are designed and implemented throughout the different
development phases. We described how DiaSpec provides a

20 background

programming framework facilitating the creation of applications
and raises the abstraction level of underlying communication bus.
But, as we mentioned in the previous Section, application-level re-
quirements are not sufficient, heterogeneity and energy concerns
have to be addressed during the development process as well.
The next Chapters present our approach to manage heterogeneity
and energy concerns into the existing development process of
DiaSpec.

3
S I P F O R H E T E R O G E N E I T Y H A N D L I N G

This Chapter presents the benefits of the SIP communication
bus in a pervasive computing context and describes our design
approach. We then detail SIP adapters and adaptions needed,
connecting entities to the SIP communication bus.

Our approach aims to leverage DiaSuite and a SIP-based in-
frastructure to developing pervasive computing applications. To
do so, we develop a SIP Back-End as the communication back-
end of DiaSpec. Several SIP adapters and SIP adaptations are
needed to fulfill the pervasive computing requirements. These
SIP adapters make each non-SIP entity SIP compliant. These
SIP adaptations must be in conformance with the SIP protocol
and reuse existing extensions whenever as possible. These two
constraints are critical for a seamless integration of our approach
in already-deployed SIP infrastructures.

Before presenting SIP adapters and SIP adaptations of our
approach, let us examine how SIP fulfills the requirements (het-
erogeneity) needed by the system infrastructure as mentioned in
previous chapter (highlighted in Figure 5).

We elaborate respectively SIP adapters and SIP adaptations to
enable SIP as a universal communication bus in Section 3.2 and
Section 3.3. We describe the integration of the SIP-based support
framework into DiaSpec in Section 3.4.

3.1 a case for sip as a universal communication

bus

Let us examine the aspects that make SIP an ideal basis to form a
universal communication bus.

Heterogeneous Interaction modes

Originally designed to deal with sessions, SIP has the potential
to provide general-purpose communication forms, namely, com-
mands (RPC-like based on instant messaging [8, 16]), events [50],
and sessions of data streams [57]. These forms of communi-
cations cover what is required by an application to coordinate
entities in a pervasive computing environment. More specifically,

21

22 sip for heterogeneity handling

Figure 5: Special requirements of pervasive computing environments

instant messaging is a one-to-one interaction mode; it can be
used, for example, to query a temperature measurement from a
sensor. To do so, the instant message payload can be interpreted
by the recipient to execute actions; and if needed, a return value
can be included in the response payload. Event is a one-to-many
interaction mode; it is the preferred mechanism to propagate
information such as the presence status. Finally, session is a one-
to-one interaction mode with data exchanged over a period of
time; it is typically used to set up a multimedia stream between
two entities, but it can be generalized to a stream of arbitrary
data. For example, a GPS device produces a stream of Cartesian
coordinates.

Heterogeneous networks

In pervasive computing systems, heterogeneous networks (e. g.
UPnP, X10, ZigBee, and SIP) that connect real services provide
different mechanisms and interaction modes (e. g. command,
event and session). SIP can provide these different mechanisms.
Moreover, the extensibility of SIP facilitates the integration to
wrap several proprietary protocols into SIP, including X10, to
control binary and dimming devices, ZigBee, to take advantage

3.1 a case for sip as a universal communication bus 23

of various sensors (e. g. temperature, light), HTTP, to control
video cameras (e. g. motion, zoom, snapshot), and Web Services,
to get agenda information or TV programs.

Heterogeneous platforms

Because it is a de facto standard for IP telephony, SIP platforms
are already widely deployed in various forms, including dedi-
cated IP telephony systems, ADSL modems, and set-top boxes.
Importantly, SIP infrastructures are more open-ended than past
proprietary infrastructures. They often offer extended interfaces
to develop applications. Pervasive computing applications can
thus leverage these platforms, expanding their original scope.
Moreover the increasingly prevalent nature of SIP makes it a
converging point for many technologies. Beyond SIP phones
(whether hardware or software), other SIP-compliant entities are
starting to become available (e.g., video camera1). In fact, SIP
is likely embedded in an increasing number of devices and soft-
ware systems, representing a convergence point of a number of
technologies and areas.

Heterogeneous features of entities

As illustrated in the previous chapter, the extensibility is needed
to cope with the integration of entities and their features. SIP is an
HTTP-like request/response protocol, text-based and transport-
independent. Like HTTP, SIP is extensible in terms of methods,
headers, and message payload. This allows the protocol to be
completed with numerous standardized extensions matching
specific needs, namely, instant messaging [8, 16], and events [50].
Message payload is format-independent, enabling SIP to embed
any kind of data (e. g. SDP [24], presence information [65], and
SOAP [69]).

Moreover, SIP provides another important feature that can
handling the environment dynamicity. Dynamicity is an inherent
feature of a pervasive environment. SIP provides a mechanism
that deals with a form of dynamicity, namely user mobility. To
address this issue, SIP relies on the use of Uniform Resource
Identifiers (URIs) to refer to agents, abstracting over the termi-
nal network address. This mechanism can be used to define
functional entities in a pervasive environment, abstracting over
concrete entities whose availability may vary over time. As a re-
sult, the use of SIP URI shields the application code from runtime
configuration changes in the environment.

1 Mobotix SIP Cameras, http://www.abptech.com/products/Mobotix/.

http://www.abptech.com/products/Mobotix/.

24 sip for heterogeneity handling

3.2 building sip adapters

We have motivated the use of SIP as a universal communication
bus between heterogeneous distributed entities. Let us now
examine how entities need to be adapted to connect them to the
SIP communication bus. This adaptation process is driven by
criteria, classifying entities.

3.2.1 Entity classification

Universal SIP communication bus

SIP-native
Entity

Non-SIP
Entity

SIP
Adapter

Figure 6: Adapting entities to SIP

Our entity classification uses three criteria. This classification
builds on our study of a large panel of entities and factorizes
our experience in developing entity-specific adapters to the SIP
communication bus. The first criterion is whether or not an entity
is SIP native. As shown in Figure 6, a SIP-native entity is directly
connected to the SIP communication bus; such entity is referred
to as type 1. In contrast, a non-SIP entity needs an adapter. To
address a non-SIP entity, a second criterion identifies whether
it is IP-enabled. If so, a third criterion determines whether the
entity is programmable, making it possible to introduce a SIP
stack; this class of entities is of type 2. Type 3 is a non-SIP, non-
programmable entity; as such, it requires the use of a SIP gateway.
Type 4 is a non-SIP entity without IP capability, requiring an
extended gateway. This classification of entities is summarized in
Figure 7. Examples are listed in Table 1. From this classification,
solutions are proposed to create SIP adapters.

3.2.2 Functional architecture of a SIP adapter

We now present the layers required to adapt each class of entities
to the SIP communication bus, omitting entities of type 1 that
support SIP natively. To be SIP compliant, an entity must provide
access to its functionalities via SIP-compliant mechanisms. To do
so, access to entity functionalities are defined in terms of the three

3.2 building sip adapters 25

Type Examples Gateway

1 SIP video camera, SIP phone,
SIP softphone

No

2 PDA, Greenphone, Calendar,
Monitoring entities

No

3 IP video camera, Printer Yes

4 X10 or 1-Wire devices, Tempera-
ture sensors

Yes

Table 1: Entity examples

interaction modes available in SIP: commands (i.e., status query
and entity control), events (i.e., event publishing and subscription)
and sessions (i.e., invitation to a session of data stream). Yet, these
interaction modes need to pass and receive data that may have
different formats: command-parameter values (e.g., using SOAP),
event values (e.g., using an XML-based format [52]) and session-
capability descriptions (e.g., using plain text SDP).

Type-1
Entity

SIP

IP

Prg.

yes yes

yes no

no

no
Prg.: software programmable
SIP: SIP-native
IP: IP-enabled

Type-2
Entity

Type-3
Entity

Type-4
Entity

Figure 7: Entity Classification

Entities of type 2

Despite SIP’s rich forms of communications, the SIP communica-
tion bus needs careful parameterization to cope with a constant
flow of new non-SIP entities, introducing ever changing function-
alities and data formats. To address this situation, SIP adapters
wrap entity functionalities with an interpreter. For a given SIP
method, this layer extracts from the payload of a SIP message,
the constituent parts of the corresponding interaction mode (i.e.,
command, event or session). For example, a SIP request with a
MESSAGE method corresponds to a command interaction. The pay-
load interpreter then extracts from the request payload a SOAP
message, indicating the command name (e.g., getTemperature)
and the parameter values (e.g, a measurement unit). The payload
interpreter then calls the invocation layer of the corresponding inter-

26 sip for heterogeneity handling

action mode (i.e., command, event or session) with its constituent
parts. This layer is responsible to invoke the target functionality
in the entity (e.g., an operation to measure a temperature, given a
measurement unit). Figure 8 depicts the layers involved in adapt-
ing a non-SIP, programmable entity to the SIP communication
bus. Because a type-2 entity is programmable, its SIP adapter can
reside on the entity, making it self-contained.

SIP Bus

Type-1

Interpreter

Functions

SIP

IP

Type-2

Interpreter

SIP

Functions

IP

: Bus : Static : Programmable

Figure 8: SIP adapter for entities of types 1 and 2

Entities of types 3 and 4

When a non-SIP entity is not programmable, the SIP adapter
is implemented as a hardware gateway. Note that a hardware
gateway can also be used for a type-2 entity to reduce energy
consumption or increase performance. A hardware gateway is
mandatory for a type-4 entity to enable IP and SIP capabilities.

As illustrated in Figure 9, functionalities of entities of types 3

and 4 are accessed through ad hoc communication buses consist-
ing of a software communication bus and an associated hardware
communication bus. The hardware communication bus can be
proprietary. It may simply be the processor bus of the device.
Requested data can be directly accessed via registers mapped in
memory. The hardware communication bus can also implement
an industry standard such as X10 [9], for power line-based com-
munication, and ZigBee [10], for wireless communication. There
are low-level devices that use serial communication buses such as
RS232, I2C, or 1-Wire bus [38]. In our approach, these devices are
hidden behind a SIP-compliant component that directly accesses
their functionalities. In fact, each time a hardware communication

3.2 building sip adapters 27

SIP Bus

Type-3

IP

Functions

Other IP
Protocol

SIP
Gateway

SIP

Interpreter

IP Pro-
tocols

HW Bus
Access

IP I/O

Type-4

Functions

Hardware
Bus

Access

I/O

IP Protocols

Proprietary Bus

: Bus : Static : Programmable

Figure 9: Entities of types 3 and 4 and gateway architecture

bus is used, the corresponding specific software communication
bus must be created for hiding underlying hardware specificities.

In practice, our four classes of entities and our methodology
have been successful in adapting all the devices and software
components that we have encountered in developing a variety of
pervasive computing applications.

28 sip for heterogeneity handling

3.3 enabling sip communication

Because SIP is HTTP-inspired, it is highly versatile and extensi-
ble. These features make this protocol amenable to be used in a
range of extended forms of communications such as instant mes-
saging [16, 33], presence [52], as well as converged applications
combining telephony with software systems [32]. Furthermore,
SIP enables to transport a range of data formats by leveraging
such protocols as SDP [24], PIDF [65], and SOAP. More generally,
SIP is widely used in ToIP infrastructures, ranging from small
domestic environments to country-wide telephony networks.

Our approach aims to leverage a SIP-based infrastructure and
its key benefits to developing home automation applications. To
do so, several adaptations are needed to fulfill the home automa-
tion requirements. These adaptations must be in conformance
with the SIP protocol and reuse existing extensions whenever
possible. These two constraints are critical for a seamless inte-
gration of our approach in already-deployed SIP infrastructures.
These adaptations are described in the next section.

To facilitate the use of our approach by developers, we provide
them with a complete programming framework on top of SIP and
our adaptations. Thanks to this support, developers manipulate
high-level concepts (e. g. service discovery) in Java. As well, a
developer does not have to forge SIP messages nor manage SIP
transactions, preventing him from writing boilerplate code.

Because this programming support is generated with respect
to a description of the home environment, it guides the develop-
ment of applications with typed operations and methods to be
implemented.

This section presents how some requirements can be directly
mapped into SIP and what adaptations are needed to address
the remaining ones. Our proposed adaptations revolve around
the use of SOAP to transfer arbitrarily rich data. SOAP messages
are embedded in SIP message payloads. These adaptations are
designed to be in conformance with SIP platforms and SIP-native
agents.

3.3.1 Registration and discovery

Dynamicity is an inherent feature of home automation. New
entities appear and disappear over time (e. g. SIP phones are
switched on/off). SIP provides a mechanism that deals with a
form of dynamicity, namely user mobility. To address this issue,
SIP relies the use of Uniform Resource Identifiers (URIs) to refer
to agents, abstracting over the terminal network address. We can

3.3 enabling sip communication 29

use this mechanism to identify an entity, whether hardware or
software, by its name expressed as a URI. Entities can thus be
viewed as SIP agents that can be found via their URI locally as
well as throughout the Internet.

Figure 10: Registration (a) and discovery (b) processes

For existing SIP services

To achieve service discovery, SIP entities register their SIP URI
with the registration server. This server associates SIP URIs and
network addresses of the entities (e. g. IP address and port).
When communicating, SIP entities have their network address
looked up from their URI by the proxy server. The SIP URI is
a useful building block to provide service discovery. However,
it does not take into account attributes that are needed to refine
entity selection.

For non-SIP compliant services

Although rudimentary, this SIP mechanism can be used to achieve
entity discovery. We propose to extend the registration process
of SIP agents with a semantic description of entities. To do so,
we decompose this process into two steps. The first step is the
normal registration procedure; it uses the REGISTER message,
like native SIP agents. This allows entities to register and pro-
vide their URI and network information as mentioned earlier.
Unfortunately, a URI does not give any information about the
nature of its associated entity (e. g. device type and location). To
obtain additional information from an entity, we add a second
step to registration: we query an entity to handle the OPTIONS

message. If the entity belongs to our approach, it returns an
enriched response describing itself in terms of attributes and its
type name. An attribute is property-value pair characterizing the

30 sip for heterogeneity handling

entity. The type name denotes a set of entities that shares the
same functionalities (e. g. a light, a fan, and an alarm), allowing
the application to manipulate them uniformly. The type name of
an entity and its attributes are used by the application to discover
entities in a given home environment. A query for entity discov-
ery takes the form of a MESSAGE message including the search
criteria. The response message contains a list of matching entities.
This exchange is built as a command invocation, described below.
Figure 10 summarizes the registration process and the entity
discovery.

3.3.2 Commands

Home automation devices often make their functionalities ac-
cessible via an RPC-like command, which is a one-to-one oper-
ation between two services. A command invocation consists of
a name and argument values; it produces a return value. We
implement this mechanism in SIP using extensions for instant
messaging [16, 33]. A command invocation is encoded using
SOAP. The caller builds a MESSAGE message with a SOAP payload.
The targeted service decodes the SOAP message and executes
the command code. When the execution completes successfully,
the result is encoded into a 200 MESSAGE response. Otherwise, an
error message is returned.

3.3.3 Events

Events are based on the publish/subscribe paradigm [50, 56].
In this model, an entity publishes its events to an event notifier,
which in turn notifies the subscribing entities. This is a one-to-
many interaction, where the publisher does not know subscribers
(illustrated in Figure 11). A subscriber targets a particular event
coming from a specific entity (i.e., a URI). Several existing SIP
extensions address this interaction mode [57] but none allows
arbitrary payloads for event subscription and publication.

We lift this limitation by introducing SOAP over SIP event mes-
sages. PUBLISH request body consists of the SOAP-encoded event
name and event value. Similarly, SUBSCRIBE message consists of
the SOAP-encoded URI of the publisher and the event name. In
addition to the contents of a PUBLISH payload, a NOTIFY payload
includes the URI of the event publisher to pass this information
to the event subscribers.

3.3 enabling sip communication 31

Figure 11: Event interaction mode: (a) subscription (b) publication

3.3.4 Sessions

A SIP session supports multimedia sessions that are described
by using SDP. Negotiation of SDP session parameters is based
on the offer/answer model [53]. Once negotiated, the session is
started and a data stream is transmitted. For delivering multi-
media streams, the Real-time Transport Protocol (RTP) is widely
used [62]. Today, combination of SDP with RTP is widely used
to deal with multimedia sessions from negotiation to stream-
ing. However, this combination is limited when addressing other
kinds of streams. Yet, emerging applications combine telephony
with sensors for tracking people’s location, detecting intrusion,
monitoring devices, etc.

To address these new situations, our approach consists of gen-
eralizing SDP to any Java data type, while re-using its negotiation
model. Java data types are used by DiaGen [17] to generate a
codec that takes the form of a serializer, allowing RTP to transmit
streams of any data type. In doing so, our approach leverages
existing technologies and APIs such as JMF [42].

32 sip for heterogeneity handling

3.4 sip back-end

We have implemented a SIP back-end for DiaSpec(illustrated in
Figure 12). It is responsible for mapping DiaSpec concepts into
the ones of SIP. To do so, our back-end makes use of the SIP
adaptations described earlier.

Figure 12: The DiaSpec software structure

3.4.1 SIP message support

The SIP back-end is mainly responsible of the management of SIP
transactions et dialogues. As a consequence, the back-end builds,
sends, receives, and processes SIP messages. It also has to deal
with transaction states, and thus, with timeouts, message loss,
request re-emission, etc. This task usually involve a large amount
of boilerplate and error-prone code. In opposition to ad-hoc
application development, the code is decomposed and factorized
for each concept, namely service discovery, session, event, and
command. Our implementation of the back-end leverages the
Jain-SIP library for message parsing and generation.

3.4.2 Message bodies

The SIP back-end is also in charge of encoding and decoding the
payload of messages, serializing and deserializing Java objects.
Depending on their nature, data payloads are parsed using the
correct library (e. g. kSOAP for SOAP payloads, or Jain-SDP
for session negotiation data). Figure 3 illustrates a command
increase sent to a Light, resulting from a call to the instruction

3.4 sip back-end 33

increase() (Figure 2, line 5). The choice of the payload format
depends on the Java data structure and the interaction mode (e. g.
SDP is chosen for audio session negotiation).

1 MESSAGE sip:Light.Kitchen@home.com SIP/2.0

2 From: <sip:MyLightController@home.com>;tag=cefd113d

3 To: <sip:Light.Kitchen@home.com>

4 Call-ID: 2ad17cb28971a961a669411c6acc2c64@home.com

5 CSeq: 11 MESSAGE

6 [...]

7 User-Agent: DiaSpec v1.1

8 Content-Type: application/soap+xml

9 Content-Length: 327

10

11 <v:Envelope

12 xmlns:i="http://www.w3.org/2001/XMLSchema-instance"

13 xmlns:d="http://www.w3.org/2001/XMLSchema"

14 xmlns:c="http://www.w3.org/2001/12/soap-encoding"

15 xmlns:v="http://www.w3.org/2001/12/soap-envelope">

16 <v:Header />

17 <v:Body>

18 <n0:increase id="o0" c:root="1" />

19 </v:Body>

20 </v:Envelope>

Listing 3: A SIP message generated by the back-end

3.4.3 Service discovery

The discovery service allows to register and look up entities. SIP
provides a basis to deal with the dynamic pervasive computing
environments via its support for user mobility. Specifically, SIP
entities send a SIP REGISTER request to register their SIP URI with
the registration server; this server associates entity SIP URIs with
network addresses. In addition, our approach consists of using
the SIP OPTIONS request to complete the registration process with
a description of the registering entity.

Once registered, an entity can be looked up by querying the
registration server. To do so, a lookup request is sent in a SIP
MESSAGE request, containing a description of the required entity
or entities. The registration server returns all registered entities
matching the request.

For example, our approach for service discovery provides the
programmer with an abstraction layer over SIP URIs. As illus-
trated in Figure 2 line 5, a discovery query contains the target
device class (e. g. Light) and the attribute values the device must
match (e. g. building number is the A29). Matching entities are
returned as Java objects, containing agents’ URI (hidden to the
developer). However, the developer has access to attribute values
and declared operations.

34 sip for heterogeneity handling

3.4.4 Interaction modes

The notification service allows entities to subscribe and publish
events. It improves the scalability of the overall platform by
decoupling producers and consumers of events. The notification
service receives SIP PUBLISH requests containing events from
publishers and sends SIP NOTIFY requests to all entities that
subscribed to the related type of events (e.g., calendar event)
using the SIP SUBSCRIBE request.

In addition to the event interaction mode, the DiaGen mid-
dleware allows entities to interact via the command and session
interaction modes. In the command interaction mode, an entity
sends a SIP MESSAGE request to operate another entity. In the
session interaction mode, an entity sends a SIP INVITE request
to negotiate session parameters and to establish a session with
another entity.

Exchanged data are serialized in the SOAP format using
kSOAP [5] and transported via SIP request and response bodies.
kSOAP is a SOAP Web service library for resource-constrained
Java environments such as J2ME applications. The SOAP format
is standardized, XML-based and widely used. Although verbose,
SOAP is increasingly supported by embedded systems. Further-
more, some implementations are now written in C, providing
high performance and low memory footprint (e.g., XPath offers
an API for manipulating XML in embedded systems).

3.5 summary

This chapter presented the benefits of using SIP as the univer-
sal communication bus in a pervasive computing context. We
presented a classification of a wide variety of entities in terms
of features, capabilities and network connectors. Based on this
classification, a methodology and programming support are de-
scribed for connecting entities on the SIP communication bus.
We developed SIP adapters for non-SIP entities to make them
SIP compliant. The SIP adaptation layer is developed to enable
distributed entities to exchange any media using various interac-
tion modes. Also, we described the integration of the SIP-based
support framework into DiaSpec. We are now ready to evaluate
our approach with an experimental study; this work is described
in the next chapter.

4
E VA L U AT I O N O F T H E P L AT F O R M

To assess the feasibility of our approach to heterogeneity han-
dling, we applied it to our experimental platform. This experi-
mental study allow us to evaluate the performances of our SIP
communication bus for each type of entities (discussed in the
previous Chapter). We also evaluate DiaSpec with a SIP back-end
in the application development for home automation. We focus
on three aspects: flexibility, accessibility and expressiveness. We
then discuss on the related works.

4.1 experimental platform

Our universal communication bus has been developed in the
context of a home automation project. The goal of this project is
to design and implement a home automation platform based on
SIP. Experiments have been made in a real environment, depicted
in Figure 13. This environment was populated by various home
automation entities, ranging from telephony equipments to home
appliances.

Figure 13: Experimental platform

This platform serves as a vehicle to experiment with various
scenarios. For example, we have developed a surveillance appli-
cation that involves IP video cameras, X10 alarms, SIP phones
and PDAs. Another example is an application displaying various
information of interest on a screen, including appointments and
weather conditions.

35

36 evaluation of the platform

4.2 experimental study

In this section, we validate our use of SIP as a universal com-
munication bus. This validation is done in the context of our
experimental platform, equipped with entities belonging to all
the types discussed earlier. First, we examine the adaptation
work required for each type of entities. Then, we present and
analyze performance measurements.

4.2.1 Entity adaptations

Let us examine the development work required to make each
entity type SIP compatible.

Type-1 entity

By design, the DiaGen middleware is fully compatible with
SIP-native entities. Application code developed with the Dia-
Gen middleware can thus directly interact with these entities.
This situation allows to leverage existing SIP infrastructures (e.g.,
OpenSER server) and entities (e.g., SIP video cameras, SIP phones
and softphones).

Type-2 entity

There exists a wide variety of existing entities with programming
capabilities, ranging from PDAs to software calendars. Our ap-
proach consists of providing the developers with a Java program-
ming framework to create invocation layers and to connect entity
functionalities to the SIP communication bus. Developers rely on
high-level operations to (1) register and lookup entities and (2) im-
plement and invoke entity functionalities. Our Java programming
framework abstracts over the intricacies of the underlying tech-
nologies and prevents developers from writing boilerplate code,
e.g., SIP method creation, payload marshalling/unmarshalling
and concurrency handling.

Type-3 entity

The type-3 category consists of non-programmable entities, sup-
porting IP protocols (e.g., HTTP and RTSP for IP video cameras).
Making these entities SIP compliant amounts to develop adapters
mapping their protocol into SIP. Such adapters form a SIP gate-
way. Our programming framework provides support for the
developers to build such gateway. We propose two approaches

4.2 experimental study 37

to implement a gateway. The first approach is based on Java
and requires adequate resources in the platform. The second
approach is less resource-demanding: it relies on a C version of
our programming framework. We chose this second approach
and embedded a C-based gateway into a small Single-Board
Computer (SBC) (e.g., an ARM-based board [2]). The functional
architecture of a SIP gateway is shown in Figure 14.

S
IP

 B
us SIP

User
Agent

SIP Adapter

Communication
Buses

SIP Gateway

...
SIP Adapter

SIP Adapter

Figure 14: Software architecture of a SIP gateway

To develop our SIP gateway, we have first ported Linux [6] 2.6
with its own root file system to the SBC board. The GNU oSIP
library [7] has then been ported to the SBC board, and a SIP user
agent has been developed on top of this library. When deployed,
the SIP user agent registers each entity it serves.

To illustrate the use of our SIP gateway, consider the IP video
camera. A surveillance entity sends an INVITE request to the
SIP gateway of the IP video camera to establish a session of
video stream with a PDA. The SIP gateway extracts appropriate
information from the SIP message and sends an RTSP request
to the camera. Once the communication is established, the SIP
gateway is no longer involved and the video is streamed directly
from the camera to the SIP client of the PDA using the RTP
protocol.

Type-4 entity

The type-4 entities represent the majority of devices deployed in
a typical home environment. This type consists of entities that
are non-programmable and communicate with a non-IP protocol.
An adapter needs to be developed for every entity relying on a
new protocol. This type of adapter is difficult to write because
it involves low-level communication operations. We gather the
adapters for non-IP protocols into a SIP gateway (Figure 14). This
gateway resides in another SBC board (shown in Figure 15) with
specific interfaces (e.g., ZigBee and X10). For ZigBee entities, we
have developed our own specific ZigBee SIP adapter to get the
temperature measurement from the ZigBee temperature sensor

38 evaluation of the platform

via the serial ZigBee base connected to the SBC board (shown in
Figure 16).

Figure 15: Hardware platform of the SIP gateway

For X10 entities in Figure 17, we have ported the Heyu open
source project [3] to the SBC board. A specific SIP adapter has
been written. A USB CM11 module, which handles several
X10 devices, is connected to the SIP adapter. It receives X10

commands from the adapter and sends them to X10 entities
connected to the power line network.

For iButton temperature sensor entities in Figure 18, we have
modified an open source library developed by Dallas Semicon-
ductors [4] and ported it on Linux. A specific iButton SIP adapter
has been written.

4.2.2 Results and Discussion

This section assesses the validity of our approach. To do so,
we have conducted experimental studies to measure the perfor-
mances of our platform and its scalability. We omit the analysis
of type-1 entities because they are SIP native and provide the
required performances by design. In practice, all type-2 entities
we encountered offer enough computing power to map function-
alities into the operations supported by an entity. As a result, this
category of entities incurs negligible overhead.

Type-3 and type-4 entities both require a SIP gateway. However,
type-4 entities are the most demanding in terms of computing
power because they translate a high-level protocol, namely SIP,

4.2 experimental study 39

Figure 16: ZigBee module: (a) ZigBee base (b) Our own ZigBee
sensor

Figure 17: X10 module: (a) CM11 (b) LM11

into a low-level one, such as ZigBee or iButton. Moreover, the
type-4 entities represent the vast majority of the devices deployed
in a typical home environment. Consequently, our experimental
study concentrates on the type-4 entities.

40 evaluation of the platform

Figure 18: iButton device

SIP adapters SIP user SIP

ZigBee iButton X10 agent Gateway

Memory

footprint 113 KB 107 KB 326 KB 350 KB 518 KB

Table 2: SIP gateway memory footprint

Our experimental platform includes a SIP gateway that adapts
two ZigBee temperature sensors, two X10 entities and an iButton
temperature sensor to the SIP communication bus. For the imple-
mentation, we used a 180 MHz ARM9 processor running Linux
2.6.32 with 32 MB SDRAM and 8 MB flash memory.

First, we measure the memory footprint of the run-time support
of our implementation, using the Exmap-console tool1.

This measurement was performed on the adapters and the user
agent of the SIP gateway. Their sizes are shown in Table 2. On
our resource-constrained platform, the memory footprint of the
entire SIP gateway is 518 KB, representing less than 2% of the
total available memory of the SBC board (32 MB SDRAM). Note
that this SIP gateway comprises three SIP adapters. These figures
demonstrate that adapters for non-IP protocols incur minimal
overhead, making our approach realistic to resource-constrained
platforms.

In our implementation, a command or an event is encoded in
SOAP. Like SIP, SOAP uses textual representation. As a result,
message processing is much more computation intensive than
binary encoding such as BER [1]. However, SOAP deals with
complex data structures, facilitates interoperability and enables
extensibility.

1 Exmap-console tool, http://labs.o-hand.com/exmap-console.

http://labs.o-hand.com/exmap-console.

4.2 experimental study 41

Run Time Mode User agent Adapters Total

ZigBee IM 15.3 ms 175 ms 190.3 ms

read PUB 6.4 ms 175 ms 181.4 ms

iButton IM 15.3 ms 557 ms 572.3 ms

read PUB 6.4 ms 557 ms 563.4 ms

X10 write IM 15.3 ms 373 ms 388.3 ms

Table 3: SIP gateway run-time overhead
IM: Instant messaging for command; PUB: Publish for event

Table 3 reports run time of our SIP gateway. The first col-
umn lists read and write operations on ZigBee, iButton and X10

devices. The second column gives the mode of the read/write
operation, which can either be implemented as an instant mes-
sage or an event publication. The remaining columns provide the
execution time of the implementation mode, the adapter and the
total time, respectively.

We observe that the SIP user agent executes an event (less than
7 ms) twice as fast as a command (less than 16 ms). This is
due to the fact that a command produces a full-fledged return
value, whereas an event returns a status. Examining the measure-
ments of the adapters, we note that their run times vary widely.
This variation depends on the nature of the non-IP protocols.
Specifically, the iButton sensor uses a 1-Wire bus through a se-
rial interface that is much slower than the other communication
buses. This results in making the iButton adapter a bottleneck
(more than 550 ms), compared the processing of SIP messages
performed by the user agent (less than 16 ms).

In fact, one can notice that the processing time of the user
agent is 10 to 90 times faster than the adapters. This observation
leads us to introduce a multithreaded SIP gateway to optimize
the SBC board resources. We used POSIX threads to cache values
of sensors. It allows to increase scalability of our SIP gateway.
Our implementation deals with more than 60 commands (1308

bytes per command on average) or 150 events (1346 bytes per
event on average) per second. Based on the interactions we had
with our industrial partners in the telecommunication domain,
this performance fulfills the requirements of realistic home envi-
ronments.

To evaluate our SIP gateway, we also measured the run time
of our implementation, varying the processor frequency from
180 MHz down to 80 MHz. The variation of the performances
is shown in Figure 19. We observed that decreasing the pro-
cessor frequency logically increases the run time to handle a
command or event, almost inversely proportionally, as shown
in Figure 19-(a). However, the execution time to read or write

42 evaluation of the platform

Figure 19: Performances as a function of CPU frequency: (a) Variation
of run time of two interaction modes of the SIP user agent
with varying the frequency CPU (b) Variation of run time
of read or write operations of the SIP adapters with vary-
ing the frequency CPU (c) Variation of bandwidth for our
SBC board with varying the frequency CPU

4.3 evaluation of the diaspec with a sip back-end 43

a value in entities is almost constant in Figure 19-(b), since this
operation depends on the nature of the target proprietary bus.
Thus, with threads, the maximum bandwidth provided by our
SIP gateway for command or event is practically linear in the
processor frequency. It is shown in Figure 19-(c). It allows users
to scale the hardware to meet the requirements of the target
environment. The result of our experimental study with ARM
resource-constrained platforms has proven that our approach has
the potential to be integrated into a gateway of lower power to
reduce costs.

4.3 evaluation of the diaspec with a sip back-end

In this section, we illustrate the practical benefits of our approach,
which leverages DiaSpec with a SIP Back-End, through the real-
ization of a wide range of applications (e.g., three scenarios in
Section 2.1 and various others scenarios defined by Orange Labs
in the home automation domain). For example, we have also
developed a multimedia content alert system that informs users
about their preferred TV programs. Another example is an ap-
plication displaying various information of interest on a suitable
screen, including appointments and weather conditions. This
application involves various type screens and presence detectors
through various means (e. g. RFID badges and fingerprint).

These experiments allowed us to validate our SIP-based plat-
form and our approach in practice. We now discuss the practical
benefits of our integrated programming framework by doing this
work.

Flexibility management for dynamic environments

The service discovery mechanism in our integrated programming
framework has proven its effectiveness in dealing with highly-
dynamic environments where network appliances are frequently
introduced/turned on and removed/turned off.

Thanks to class-based definitions, the discovery mechanism
allows applications to dynamically and transparently integrate
various kinds of devices defined in a DiaSpec area. This capability
enables our platform to evolve and grow without requiring a new
support to be generated.

44 evaluation of the platform

High-level accessibility

As mentioned earlier, SIP adaptations are mapped into our SIP
based support framework. This support framework provides
three interaction modes that cover all the encountered situations.
We have also developed the adapters to wrap non-SIP compliant
services into SIP services. Relying on these adaptations and these
adapters, it is simple and easy to make these services to commu-
nicate each other with the high-level abstraction of interactions
modes based on SIP. To do so, the developers require neither SIP
knowledge nor others heterogeneous network protocols knowl-
edge.

High-level expressiveness

The DiaSpec language, which is a lightweight Architecture De-
scription Language (ADL) dedicated to the pervasive computing
domain, provides globally meaningful high-level expression id-
ioms for three type interactions (e. g. command, event and ses-
sion) and data flows (e. g. requires and provides). These idioms
make the architect to choose simply the appropriate interaction
mode in practice and to write the application logic using the
architectural style, without requiring SIP knowledge.

The ways in which high-level expression idioms are generated
guarantee that any associated values have the right types. Relying
on this generated programming framework allows the developer
to quickly develop, adapt, and check our applications. As well, it
facilitates the creation of new applications.

4.4 related work 45

4.4 related work

Numerous network protocols are available in pervasive comput-
ing environments. The simple X10 protocol allows any user to
control his home devices. More complicated and feature-rich
protocols like Jini, UPnP, HAVi, or ZigBee contains much more
capabilities for appliance communications. But these existing
protocols are mainly designed to work in a single home environ-
ment (i.e. local area network) and do not scale for Internet-wide
communications. SIP is a very scalable protocol, working in both
LAN and WAN conditions.

Gaia [51] uses CORBA relying on raw TCP/IP connections
in order to transmit data. However, for CORBA, a port that is
different from the port 80 for HTTP must be open in a firewall.
Due to such restriction, the use of Web Services instead of CORBA
is increasing, since Web Services is on top of HTTP. However, to
communicate from WAN into LAN, the message of Web Services
must go through firewalls. In SIP infrastructures, SIP proxies are
placed on the edge of the home environment, behind the firewall,
enabling an centralized access to inner entities. SIP messages
pass through the firewall using a unique port. CORBA or Web
Services need to translate address, ports, or URL into local IP
addresses and ports using mechanisms such as Network Address
Translation (NAT).

Several research projects use SIP beyond the telephony domain.
TinySIP is a modified version of SIP for use with wireless sensors
in a hospital environment [35]. Berger et al. [14] leverage
the SIP event model to determine user location in pervasive
computing environments. However, their approach has a limited
scope. Moyer et al. [44] argue for the use of SIP in wide-area
secure networked devices; however, this proposal has not been
studied further. In contrast with our approach, these works rely
on existing, low-level programming frameworks (e.g., Jain-SIP,
SIP Servlet). As a result, the programmer needs to manage
the intricacies of the underlying technologies, such as protocols,
network layers, and signaling.

Rosenberg et al. [54] have emphasized the need for program-
ming support that is dedicated to Internet telephony services.
They propose CPL, an XML-based scripting language for de-
scribing and controlling call services. Wu and Schulzrinne [68]
propose another XML-based language, LESS, to program end-
system services. Services written using CPL and LESS scripting
languages are mostly limited to coarse-grained processing and
dedicated operations. VisuCom is an environment to graphically
create telephony services [36]. It supports the development of
routing services with respect to non-telephony resources like

46 evaluation of the platform

agendas and phone directories. VisuCom includes various verifi-
cations. Examples of errors detected in services include call loss,
incorrect state transitions, and unbounded resource usage.

These high-level languages target non-programmers and pro-
vides static verifications. However, they focus on end-user ser-
vices and call processing. As a consequence, they lack expressiv-
ity to program pervasive applications as targeted DiaSpec.

Existing, general-purpose middlewares (e.g., CORBA, DCOM)
are highly flexible and support a large number of features to ease
the development of distributed applications in a wide range of
application areas. However, these middleware don’t address re-
quirements from specific areas such as telephony, thus adaptation
code must be developed to match the application’s needs [11, 30].
Moreover, associated programming frameworks force developers
to use unsafe and generic structures of code. In contrast, our in-
tegrated programming framework, by generating programming
support, provides developers with structures of code typed with
respect to the target area, as captured by the DiaSpec specifica-
tion.

SPL is a domain-specific language (DSL) whose goal is to ease
the development of robust telephony services [15]. Although SPL
provides high-level programming abstractions, it is still close to
SIP and only addresses the routing logic.

CINEMA is a SIP-based infrastructure that enables multimedia
collaboration via IP phones, instant messaging and e-mail, among
other forms of communication [29]. In CINEMA, service develop-
ment relies on low-level programming support (e.g., SIP Servlet)
or end-user oriented languages (i.e., CPL and LESS). In contrast,
our approach provides high-level programming support and tar-
gets a wide range of applications involving a variety of telephony
and non-telephony resources. Continuing the work on CINEMA,
Shacham et al. address the use of heterogeneous devices in ubiq-
uitous environments [63]. They introduce location-based device
discovery and customization for session interactions using SIP.
Unlike our integrated programming framework, they focus on
a single interaction mode (i.e., session). Moreover, they do not
show how to interface and integrate these devices in distributed
applications.

4.5 summary

In this chapter, we developed different SIP adapters for hetero-
geneous ad hoc communication busses. These adapters enable
SIP to be used as a universal communication bus. This bus has
been validated by an experimental study involving the coordina-

4.5 summary 47

tion of a wide range of entities, including serial-based sensors
(RS232, 1-Wire), ZigBee devices, X10 devices, PDA, native SIP
entities and software components. Furthermore, we evaluated
DiaSpec with a SIP back-end for application development in
a home automation context. This evaluation focused on three
aspects: flexibility, accessibility and expressiveness. Finally, we
compared our approach with the related works.

5
S U M M A RY

The first part of this thesis described the challenge for heterogene-
ity of pervasive computing systems and the importance to man-
age it. We have presented an approach to enabling homogeneous
communications between heterogeneous distributed entities. This
approach relies on the use of SIP as a universal communication
bus for pervasive computing environments. We integrated the
SIP communication bus into DiaSpec. We described a methodol-
ogy and programming support to adapt heterogeneous entities
to the SIP communication bus. Our approach has been used to
make a wide variety of entities SIP compliant. These entities
have then been integrated into a number of applications for home
automation. Finally, our experimental study has proven that our
approach is realistic for all classes of entities, and that our SIP
gateway can run efficiently on resource-constrained platforms.

49

Part II

O F F L O A D M E T H O D O L O G Y F O R E N -
E R G Y E F F I C I E N T A P P L I C AT I O N

I N S M A RT P H O N E C O N T E X T

6
B A C K G R O U N D

Remote execution using wireless networks to
access compute servers thus fills a natural role
in pervasive computing, allowing applications

to leverage both the mobility of small devices
and the greater resources of stationary devices.

— Flinn, J. and Narayanan, D.
and Satyanarayanan, M. [21]

We will discuss the requirements about energy concerns of
applications on smartphone (highlighted in Figure 20) in this
Chapter as mentioned in Chapter 2.

Figure 20: Special requirements of pervasive computing environ-
ments

The mobile phone is the world ’s most popular computing plat-
form. Over 2 billion people now own a mobile and in established

53

54 background

markets it is not uncommon for individuals to own more than
one. Furthermore, modern smartphones are a rapidly growing
segment of the market providing markedly more capability than
conventional handsets. These devices become general-purpose
devices like laptops, pocket PCs, and palm computers. They
contain myriad communication interfaces, significant processing
power and storage and numerous sensors ranging from simple
light sensors to GPS tracking. With these devices, various ser-
vices such as game, monitor, multimedia and mobile banking
have become available from mobile device. Importantly today’s
smartphones are also programmable and come with a growing
set of cheap powerful computation and communication capabil-
ities. More and more services, which used to be available only
by personal computers, are expected to be provided by mobile
devices, especially with the increasingly pervasive smartphones.
For executing various services, the performance of mobile de-
vice increases and the power consumption by mobile devices is
also growing rapidly. However, battery capacity has shown little
growth. Furthermore, battery consumption is clearly important
for users when buying mobile phones and choosing applications
and services to use [45]. Therefore, reducing power consumption
of applications is effectively a crucial issue in smartphones. To
do so, an approach to minimizing the energy cost of applications
on smartphones is required.

Much progress has been achieved in the low-level software
to manage hardware technologies. Several known power-
conservation techniques include turning off the handheld com-
puting device screen when it is not needed [19], optimizing
I/O [23], slowing down the CPU [25], scaling down the wireless
network [39] or optimizing the wireless protocols [46], among
others. However, there is almost no application-level support to
apply these technologies into the design phase of applications
for smartphones. The programmer has to manage the intricacies
of the low-level technologies.

The computation offloading has been studied as another ap-
proach to handling energy concern on smartphone. This ap-
proach doesn’t require knowledge about hardware technologies.
It offloads local processing on a smartphone to a server. Smart-
phones are connected to a selected server via a wireless connec-
tivity. The idea of offloading computation on mobile computers
has been studied in different aspects [21, 34, 66]. Flinn et al. [21]
has explored middleware approach that lets applications simul-
taneously leverage smartphones with the mobility and servers
with greater resources and no power limitations. Although this
work takes only the context of execution into account, it doesn’t
consider energy consumption of applications as a criterion for
deciding the offloading computation point. Several researches

6.1 requirements for energy concerns in mobile applications 55

concentrate on compiler technology [34, 66]. This approach es-
timates only the execution time by program analysis. However,
this cannot give an accurate estimation for energy consumption,
because energy consumption depends also on the power of hard-
ware components such as Wi-Fi, CPU and screen. Recently, one
sees some interests in exploring opportunities to offload the com-
putation in cloud computing [43] by profiling the execution time.
However, such work is conducted in a rather ad-hoc way by
analyzing only some examples and represents only the potential
energy benefit of offloading calculations. This approach can-
not guide programmer in the development process to determine
whether and how to offload the computation of a given program.

Computation offloading has the potential to save energy on mo-
bile device but the savings from offloading the computation need
to exceed the energy cost of the extra additional communication.
The developer needs to identify, within an application, the parts
performed on a server and the others parts on smartphone. The
trade-off point is to find a compromise between the energy effi-
ciency of communication and that of local computing. To achieve
this goal, the developer needs to consider the use of computation
offloading in the design and development of application. Thus
there is a strong need for tools that can give energy consumption
feedback for wireless communication and local processing during
the application development cycle.

6.1 requirements for energy concerns in mobile

applications

This section presents two application examples of smartphones in
pervasive computing environments. It also identifies the require-
ments and limitations of these applications for energy consump-
tion issue. Additionally, based on these requirements, different
execution and transfer modes of an application are defined to
take energy efficiency into consideration.

6.1.1 Motivating examples

Let us examine two applications in one scenario from the area
of surveillance and monitoring for healthcare: fall detection and
activity monitoring. These applications involve the use of smart-
phones to process data from various sensors. These sensors may
be integrated inside a phone or be connected to a phone by wire-
less communication. According to the need of applications, the
level of complexity for the data processing may vary consider-
ably. This leads to a change of the cost of using energy resources.

56 background

These examples illustrate the challenge of energy consumption
for pervasive applications on smartphones.

6.1.1.1 Health monitoring

This health monitoring scenario is dedicated to healthcare for
the aging population who are living independently. The system
needs to provide to care giver valuable informations about daily
activities of individual elderly people. These information per-
mits care giver to monitor, record and analyze individual’s daily
activities i.e. running, walking, standing, sitting and dangerous
activities such as falling. We introduce two typical applications
in this scenario: fall detection and activity understandings.

fall detection. This pervasive application can monitor a
falling accident that is a major health hazard for elderly person
and an important obstacle to their independent living. It needs
to detect a fall all the time everywhere. When a fall is detected,
the application must alert to care giver and relevant people with
a call, a SMS and an email.

activity understandings . In this application, daily activ-
ities of individual elderly people are monitored by the system.
Their activity and behavior monitoring can give significant in-
formation about their health. The application needs to record
physical activities information, and then it analyses and learns to
classify this information.

6.1.1.2 Requirements

This health monitoring scenario underlines the need for collecting
the valuable information about daily activities anytime anywhere.
A typical such system has two major functional components: the
information collection component and the communication com-
ponent. As their names imply, the information collection compo-
nent records various informations to measure, recognize different
activities and detect also user falls. In doing so, various tech-
nologies are available such as acceleration-based detection [49],
image-processing techniques [22, 41]. However, many of them
are only implemented within a small indoor environment since
user can’t bring the camera and some types of sensor everywhere.
Smartphones including accelerometers as the platform meet this
need. After data collection, how can we process them? The com-
plexity of acceleration data processing may vary considerably
in terms of used algorithm and amount of data. For fall detec-
tion application, the data section contains only several hundred

6.1 requirements for energy concerns in mobile applications 57

three-axis acceleration points and its size is relatively small (over
ten kilobytes). The complexity of the fall detection algorithm
will impact the execution time of the corresponding application.
In this context, we need to take the energy consumption of the
smartphone application into account. If we require calculations
such as a threshold of absolute peak values of acceleration to
determine falls [18], we can develop such a fall detection system
on smartphones. Alternatively, we can use complex calculations
to determine falls with more accuracy [?]. This fall detection
algorithm uses 256 samples for FFT computation in order to
extract the feature. It uses a Bagging meta-level classifier for
machine learning. Data collected for a single subject on one day
are used as training data and, data collected for the same subject
on another day are used as testing data. Note that this algorithm
performs intensive calculations on a large amount of data. If this
algorithm is run on a smartphone, these calculations will con-
sume a significant amount of energy. Thus we need to offload the
computation to a server. For activity understandings application,
we need acceleration data for one day for the activity recognition.
The data size is over ten megabytes. We need to record all these
data to analyze and recognize daily activities. Storing such data
on smartphones everyday is not realizable. When we want to
transfer a lot of data, using compression technology has a poten-
tial for saving energy on smartphones because it can reduce the
amount of transmitted data. In this scenario, the communication
component transfers collected data to a server and communicates
with emergency contacts after a fall is detected.

After analyzing our working scenario, we draw an overview
of health monitoring system in Figure 21 and provide a prelim-
inary assessment of its capabilities with focus on computation
offloading to answer energy consumption issue on smartphone.

Laptop Care giver
Server

Internet

Smartphone

Accelerometer

Figure 21: A system for health monitoring

Our working scenario illustrates the specific requirements for
smartphones including accelerometers. Our working applications
illustrate three potential modes for partitioning the computation
for a given application to minimize energy consumption on smart-
phones in Figure 22: (1) computation may be performed on the
smartphone (local mode) such as acceleration-based fall detection

58 background

approach, (2) on both (hybrid mode) or (3) on a server platform
(remote mode) for a complex calculation.

ServerSmartphone

Internet
1

3

2 2

Figure 22: Three execution modes for a given application on smart-
phone

As a smartphone is an energy-constrained device, we need to
partition the application and integrate energy concern in the ap-
plication design phase. Thus the usage of smartphones opens up
a new important issue that is how to make a decision for one ex-
ecution mode of a given program to save energy on smartphones
in the application design stage.

6.2 summary

This chapter introduced the challenge of energy consumption
in the context of smartphones. It presented the main hardware
and software approaches aimed at minimizing the energy cost of
applications on smartphones. Then, it described two application
examples and outlined the requirements for energy consumption
in the context of smartphones. The next chapter presents our
approach, addressing our list of requirements.

7
C O M P U TAT I O N O F F L O A D I N G A N D D ATA
C O M P R E S S I O N F O R R E D U C I N G E N E R G Y C O S T

This Chapter gives an overview of our approach in Section 7.1.
Section 7.2 analyzes some important elements that can influence
energy cost of computation and communication for a given pro-
gram. Section 7.3 describes overview of three execution and
transfer modes for mobile applications and their strategy scheme.
Section 7.4 presents the overall design of our tool with the inte-
gration of our strategy scheme.

7.1 our approach

Our research aims to address how to take energy consumption
into consideration in the design and development of applica-
tions and services on pervasive smartphones for the developer.
To handle this problem, the computation offloading, partially
or completely, has been explored in our approach. To offload
calculations, data transmission is necessary. Data compression
can possibly reduce the energy cost by decreasing the amount of
data to transfer. In this context, we integrate data compression
into our approach. An application can be executed on a smart-
phone, on a server or on both. The developer decomposes an
application into several parts according to the amount of data
and the complexity of the algorithm for a program. Each part
of an application with its input and output data is identified as
a task. Taking computation offloading and data compression
into account, we develop a task execution and transfer strategy
scheme that determines whether and how to offload computa-
tion of a given task with or without compression data transfer.
We apply this scheme to a tool named "OffDeci" that permits a
developer to estimate accurately energy consumption of wireless
communication and local processing for a given task. Through
comparison between computation and communication cost, this
tool decides the trade-off point.

Specifically, based on previous discussions, in our current strat-
egy scheme, three program execution and data transfer modes
(local, uncompressed remote and compressed remote) and five
relevant stubs of these modes are defined. We develop our
OffDeci tool with the use of this partition scheme. The tool takes
each task as a parameter input. Then each task will be executed

59

60 computation offloading and data compression for reducing energy cost

in three modes mentioned earlier. Our approach focuses on the
use of profiling to measure the execution time and the power
consumption and not on program analysis. We collect first pro-
filing information on time for local computation and wireless
communication. We calculate then energy computation of local,
uncompressed remote and compressed remote mode for a given
task by multiplying power consumption and the time interval of
local computation and wireless communication. Based on that,
we construct an energy consumption graph for a task in three
modes. According to the result of this graph, the tool proposes
one specific mode of a task for the programmer to achieve the
most efficient energy cost in the development process. We have
validated our approach by studying two application examples on
an HTC Hero smartphone running Android.

Moreover, the amount of input and output data may be diverse
during the execution of a task. It is difficult to measure results for
all possible input and output data volumes with our tool. In this
context, we propose prediction estimation rules for the developer
of applications on the basis of our energy analysis and experi-
mental study. These prediction estimation rules are dependent
on data volume and algorithm complexity. The programmer can
choose one execution and transfer mode for a given task, using
these prediction estimation rules. For the case that these rules
cannot make an accurate decision, the programmer can use our
tool for each specific task.

To handle energy concerns of mobile applications in pervasive
computing systems, we sketch the integration of OffDeci into our
high-level programming framework. We propose to raise the level
of abstraction beyond the code level, by providing declarative
support to minimize energy cost. Our programming framework
is component-based. We extend existing DiaSpec specifications
with energy-handling declaration to manage the communication
back-end of a DiaSpec component that may be offloaded from
the point of view of energy cost. This declaration is passed to
OffDeci tool that generates five stubs for each relevant component.
The implementation of a component is passed to OffDeci, in
combination with these stubs. OffDeci allows deciding whether
and how to offload a component.

7.2 energy analysis for computation and commu-
nication

The applications that are discussed in previous Chapter demon-
strate the need for computation offloading mechanisms to mini-
mize energy cost of an application. In the context of computation
offloading, the critical aspect for smartphones is the trade-off

7.2 energy analysis for computation and communication 61

between energy consumed by computation and the energy con-
sumed by communication. In doing so, we need to calculate
energy consumed for a given program by each execution mode.
In the literature, two modeling techniques are proposed for cal-
culating the energy consumed. One modeling method (proposed
by Tiwari et al. [37]) is based on the instruction level by using
the following formula.

E = Pave ∗ (n ∗ µ)

We use E to denote the energy consumed. Pave represents the
average power consumption, n is the number of cycles and µ is
cycle period. Each instruction is executed in different number of
cycles. To obtain the cycle cost for each instruction, we require
extensive experimentation to build up an average cost for all
instruction. Thus for a processor with "rich instructions sets",
this technique is not realistic. The other issue is the use of
virtual machine technology for mobile. This technique makes
it almost impossible to obtain the cycle cost of an operation
in a Java embedded platform such as Android. Because this
technique works only in the assembly language by knowing
process addressing modes and is not adapted for high level
programming language. Taking these issues into account, we use
another modeling method (proposed by Russell et al. [58]) to
calculate the energy consumed by using the following formula.

E = Pave ∗ t

Where t is the execution time for a program (e.g., algorithm
calculation, data transmission). Hence the total energy consumed
by a program is the product of the time that it takes to execute
and the average power consumption of a processor. Employing
this method, we define the energy cost of performing the com-
putation locally (ELoc) versus the cost of transferring these data
and offloading the computation (ENetCal). Let us examine these
energy costs on smartphones. First we have:

ENetCal = ENet + ECalDis

Where ENet is the energy cost of transferring these data and
ECalDis is the energy cost of computation on a server. From the
point of view of energy consumption on smartphones, ECalDis

does not concern the mobile and is considered to be equal to zero.
We then have:

ENetCal = ENet

The execution time and the power consumption of computation
and communication hardware components influence significantly
ELoc and ENet. To characterize energy costs associated with
computation and communication, we make use of the following
parameters.

62 computation offloading and data compression for reducing energy cost

PNet: average power consumption of wireless communication
component (e.g., Wi-Fi, 3G) in data transmission mode. Accord-
ing to the study in the literature, power for sending data and that
for receiving data is very similar. We use PNet to represent these
two powers.

TSock: total time for a construction and destruction of a socket
connection

TNetB: average time to send a byte by the socket

vB: amount of data to be transferred in bytes

tNetD: total time for transferring the amount of data

PLoc: average power consumption of CPU module during the
CPU utilization 100 %

tExe: total execution time for a given program with input and
output data

ENet = PNet ∗ tNetD = PNet ∗ (TSock + vB ∗ TNetB) (7.1)

ELoc = PLoc ∗ tExe (7.2)

Where PLoc, PNet, TSock and TNetB are four constant parame-
ters for a given platform and a given type of wireless network.
These parameters can be measured. In this context, ELoc and
ENet are highly dependent on vB and tExe. In the formula 7.1,
vB is a variable parameter that relies on input and output data
for a given program. The execution time value tExe depends on
the complexity of algorithm and amount of data to process for a
given program.

Based on the above discussions, we obtain the complexity of
algorithm and the amount of data as two main parameters that
determine computation offloading strategy for a given program.

7.3 a strategy scheme for three program execu-
tion and data transfer modes

In the previous section, we have motivated the use of three
execution modes to save energy consumption of an application on
smartphones. We have also identified two important parameters
for the determination of computation-offloading strategy. In
this section, we first present the specification of our execution
and transfer model and energy cost model. We then describe a
program execution and transfer strategy scheme to model the
program behavior and cost.

7.3 a strategy scheme for three program execution and data transfer modes 63

7.3.1 Execution and transfer model

To explore opportunities for application offloading, the developer
needs to identify, within an application, server part and client
part. The client part is run on a smartphone and the server part
is offloaded on a server platform. As the complexity of algorithm
and the amount of data have a great influence on the energy
consumed by computation or communication for a program, the
developer can divide an application into several parts according
to these two parameters. In our program execution and data
transfer model, a task corresponds to a part of an application
that is chosen by the developer. For example, a task can be a
component of a component-based application. Specifically, our
execution and transfer model is based on energy consumption
concern on smartphones. For a given task, the energy savings
can be made with offloading local processing to a server. In the
context of offloading a task, the amount of input and output data
has large influence on energy consumption for data transmission.
Apart from computation offloading, data compression has possi-
bility to save mobile energy for a program, such as the case study
of E-mail Xiao et al. [70]. Because the energy cost of compressed
data transfer and the additional computation for data compres-
sion may not exceed that of data transfer without compression, at
the same time, it may not also surpass that of data computation.
In this context, we integrate computation offloading and data
compression into our execution and transfer model. This is the
specification of our execution and transfer model.

Based on the previous discussions, our classification of pro-
gram execution and data transfer model uses two criteria. The
first criterion is whether or not the input and output data of a
chosen task is compressed before the transmission. The second
criterion identifies whether or not a chosen task is offloaded.
As shown in Figure 23, we classify three execution and trans-
fer modes for a task in our model: (1) the computation may be
performed on the smartphone (local mode), (2) on a server with
uncompressed data transfer (uncompressed remote mode) or (3)
on a server with compressed data transfer (compressed remote
mode). We define the scope of the compressed remote mode. In
our compressed remote mode for a task, the input data or the out-
put data or both are compressed before the transmission between
a server and a smartphone. As a result there is always a stage
that is locally performed on a smartphone. This phase produces
a compressed input data set or an uncompressed output data set
or both. The single parameter is the amount of input and output
data for a task.

64 computation offloading and data compression for reducing energy cost

Figure 23: Classification of program execution and data transfer
model

In fact, for an application, the set of task on the server side may
be empty in our execution and transfer model. In such case, the
whole application runs on a smartphone. In contrast, the set of
tasks on the client side will never be empty, because realistic tasks
always have some I/O operations for data acquisition that must
be executed on a smartphone. However, these operations cannot
change the fact that data may need to be transmitted between
a server and a smartphone. Thus, if simple I/O operations are
the only program that is performed on the client side, then the
entire task run on the server side, in which case we consider a
task executed on remote mode.

7.3.2 Energy cost model

According to our execution and transfer model, the energy cost
of three execution and transfer modes for a task is modeled as
follows: Besides the parameters defined in the formula (1) and (2),
we refine vB with the utilization of data compression technology:
the data can be transmitted in compressed or uncompressed form.
The transfer time (tNetD) varies with the utilization of different
data forms. In this context, we utilize the following parameters.

vBIn: amount of input data in bytes in uncompressed form.

vBOut: amount of output data in bytes in uncompressed form.

vBInComp: amount of input data in bytes in compressed form.

vBOutComp: amount of output data in bytes in compressed
form.

tInComp: total time for compressing locally the input data of a
task.

tOutUncomp: total time for uncompressing locally the output
data of a task.

7.3 a strategy scheme for three program execution and data transfer modes 65

PNetIdle: average power consumption of wireless communi-
cation component (e.g., Wi-Fi, 3G) in connection mode without
data transfer.

tSockIdle: total waiting time for the reply of the task from the
server.

TSockOpen: average time for a construction of a socket connec-
tion.

TSockClose: average time for a destruction of a socket connec-
tion.

tNetDS: transfer time for input data that is uncompressed.

tNetDR: transfer time for output data that is uncompressed.

tNetDSComp: transfer time for input data that is compressed.

tNetDRComp: transfer time for output data that is compressed.

We then have: The energy cost of sending uncompressed input
data of a task ENetS:

ENetS = PNet ∗ tNetDS

= PNet ∗ (TSockOpen + vBIn ∗ TNetB) (7.3)

The energy cost of idling wireless communication to wait for the
output sent by a server ENetIdle:

ENetIdle = PNetIdle ∗ tSockIdle (7.4)

The energy cost of receiving uncompressed output data of a task
ENetR:

ENetR = PNet ∗ tNetDR

= PNet ∗ (TSockClose + vBOut ∗ TNetB) (7.5)

The energy cost of compressed input data transfer ENetSComp

and the additional computation for compressing input data
ELocInComp:

ELocInComp = PLoc ∗ tInComp (7.6)

ENetSComp = PNet ∗ tNetDSComp

= PNet ∗ (TSockOpen + vBInComp ∗ TNetB) (7.7)

66 computation offloading and data compression for reducing energy cost

The energy cost of compressed output data transfer
ENetRComp and the additional computation for uncompressing
output data ELocOutComp:

ELocOutComp = PLoc ∗ tOutUncomp (7.8)

ENetRComp = PNet ∗ tNetDRComp

= PNet ∗ (TSockClose + vBOutComp ∗ TNetB) (7.9)

As shown in equations 7.3 - 7.9, we can see that the energy cost
for data transfer varies with the different possible combinations
of input and output form. We have four combinations of input
and output form for a given task: 1) uncompressed input and
output data, 2) compressed input and uncompressed output
data, 3) uncompressed input and compressed output data and 4)
compressed input and output data.

7.3.3 Program execution and data transfer strategy scheme

We take advantage of two technologies in our approach: com-
putation offloading and data compression. In this context, a
given task can be performed on a smartphone or a server with
the compressed or uncompressed data transfer. Specifically, we
may compress the input data or the output data or both for the
compressed data transfer. According to this analysis, we use five
stubs to represent five combinations of three execution and trans-
fer modes with compressed or uncompressed data as illustrated
in Figure 24: (1) A given task may be performed on the smart-
phone. (2) A given task may be performed on the server with
both the input and the output data that are uncompressed or (3)
with input data only that is compressed or (4) with output data
only that is compressed or (5) with both the input and the output
data that are compressed. As a task is a part or a component
of an application on a smartphone, the input data will never be
empty. However, the output data may be empty for a task as
shown in the stubs (2) and (3) in the Figure 24.

Based on five stubs in combination with the implementation
of a task, the energy savings can be made with offloading the
exceeded computation and minimizing the transmission energy
cost with data compression. In doing so, we need to identify two
trade-off points for a task: one consists in deciding how to save
the energy during communication by transmitting uncompressed
data or compressed data. The other involves the determination of

7.3 a strategy scheme for three program execution and data transfer modes 67

Figure 24: Five stubs for three execution and transfer modes

the minimum value between energy consumed by computation
and the energy consumed by communication. We integrate these
two trade-off points into our program execution and data transfer
strategy scheme as shown in Figure 25.

Figure 25: Program execution and data transfer strategy scheme

In our execution and transfer strategy scheme, the first phase
consists in examining which mode consumes the least amount
of energy for a task during the communication between uncom-
pressed and compressed remote mode. We find the minimum
energy consumed by communication with or without data com-
pression. Then the minimum energy cost for communication is
compared with the energy cost for local computation. The mini-
mum energy cost for executing a task is obtained. The relevant

68 computation offloading and data compression for reducing energy cost

stub is selected as the most energy efficiency execution for a task.
Compared with the existing approach [43, 66], our execution and
transfer strategy scheme is more accurate and complete. Because
the existing approach represents only the energy benefit of of-
floading calculations and doesn’t take the possible energy savings
from data compression for the communication into account.

Specifically, we make use of equations 7.1 and 7.3 - 7.9
to represent respectively the energy consumed by computation,
communication and data compression in our five stubs. The
energy cost set E = E1, E2, E3, E4, E5 of five stubs in combination
with the implementation of a given task is respectively defined
as follows.

Energy consumed by executing a task with the stub 1:

E1 = ELoc = PLoc ∗ tExe (7.10)

Energy consumed by executing a task with the stub 2:

E2 = ENetS + ENetIdle + ENetR = PNet ∗ tNetDS

+PNetIdle ∗ tSockIdle + PNet ∗ tNetDR (7.11)

Energy consumed by executing a task with the stub 3:

E3 = ELocInComp + ENetSComp + ENetIdle + ENetR

= PLoc ∗ tInComp + PNet ∗ tNetDSComp + PNetIdle

∗tSockIdle + PNet ∗ tNetDR (7.12)

Energy consumed by executing a task with the stub 4:

E4 = ENetS + ENetIdle + ENetRComp + ELocOutComp

= PNet ∗ tNetDS + PNetIdle ∗ tSockIdle + PNet

∗tNetDRComp + PLoc ∗ tOutUncomp (7.13)

Energy consumed by executing a task with the stub 5:

E5 = ELocInComp + ENetSComp + ENetIdle + ENetRComp

7.4 design of execution and transfer mode decision tool "offdeci" for energy concerns 69

+ELocOutComp = PLoc ∗ tInComp + PNet ∗ tNetDSComp

+PNetIdle ∗ tSockIdle+PNet ∗ tNetDRComp+PLoc ∗ tOutUncomp

(7.14)

Where PLoc, PNet and PNetIdle are three constant parameters
for a given platform and a given type of wireless network, these
parameters can be measured. In this context, the energy cost
set E is highly dependent on the data transfer time (tNetDS,
tNetDR, tNetDSComp, tNetDRComp and tSockIdle) and the local
processing time (tInComp, tOutUncomp and tExe). Based on
the above, the overall energy optimization problem is to find the
minimum energy cost Ei in the set E.

7.4 design of execution and transfer mode deci-
sion tool "offdeci" for energy concerns

Based on previous discussions, our execution and transfer strat-
egy scheme points out the need for the measurement tool to
bring rich informations about energy cost of the implementa-
tion of a task encapsulateid in each stub. In doing so, we use
an execution profiling based approach to design a tool named
"OffDeci". OffDeci provides a support with energy cost feedback
in the application design phase for decision helping for the de-
veloper. The developer chooses a task of an application. A given
task as input parameter invokes OffDeci to determine how and
where the task will execute with uncompressed or compressed
data transfer. OffDeci estimates first power consumption of CPU
and Wi-Fi of a given mobile platform. OffDeci then executes
respectively the task into five different stubs as shown in Fig-
ure 24. It measures the execution time for a task in each stub and
then calculates its energy cost. Using our execution and transfer
strategy scheme (illustrated in Figure 25), OffDeci chooses the
best stub of a task in terms of minimizing energy consumption.
According to the result, a developer can implement a task in the
most energy-efficient way. The Figure 26 presents the architecture
of OffDeci that consists of three principal components as shown
in: 1) power estimation 2) time profiling 3) comparator of energy
consumption.

7.4.1 Power estimation

The OffDeci power estimation component interacts with
Sesame [20] that can acquire the power estimation for PLoc, PNet

70 computation offloading and data compression for reducing energy cost

Figure 26: Architecture of OffDeci with three main components:
power estimation, time profiling and comparator of energy
consumption

and PNetIdle. We use a program to reach almost a CPU uti-
lization of 100 % for 200 seconds. The program execution for
200 seconds permits to obtain the most accurate CPU power
consumption estimation (PLoc), because Sesame has the lowest
error at the reading rate 0.01 Hz. Idem for PNet and PNetIdle,
we perform each of two socket programs for 200 seconds. The
first one transmits continuously data to acquire PNet estimation.
The other one transmits nothing to acquire PNetIdle estimation.
As the Internet socket is a basic communication mechanism and
used by all others upper protocols across IP, from the program-
mer’s point of view, we choose socket programs to characterize
wireless network communication.

7.4.2 Time profiling

We have designed a stopwatch-benchmarking tool that can mea-
sure the amount of time for performing one or more operations.
Our stopwatch measures the time spent in program execution, so
it can trigger CPU utilization. We need to minimize the overhead
of our stopwatch. In doing so, our stopwatch provides three
simple functions to calculate time spent in a specific work. Three
functions are defined as follows:

starttime() : This function call identifies the beginning of a
work and stores the current time of the OS in milliseconds.

stoptime() : This function call identifies the end of a work and
stores the current time of the OS in milliseconds.

7.5 summary 71

elapsedtime() : This function call computes the amount of time
spent in a work.

In the time profiling phase, the OffDeci tool generates five dif-
ferent stubs in combination with the implementation of a given
task as illustrated in the Figure 25. These stubs use the clien-
t/server communication via sockets and data compression and
decompression technology. We use three functions of our stop-
watch to measure and log the program execution time (tInComp,
tOutUncomp and tExe) and data transfer time (tNetDS, tNetDR,
tNetDSComp, tNetDRComp and tSockIdle) in the five stubs for
a task as shown in equations 7.10 - 7.14. We repeat the time
profiling phase for several times. The average value is obtained
for each time variable that needs to be measured. By employing
the average value (low-pass filter), artefacts in measurement of
execution time are reduced. We acquire more accurate value for
the measured time variables.

7.4.3 Comparator of energy consumption

The OffDeci comparator component takes the result of power
estimation and time profiling components as input parameters.
According to equations 7.10 - 7.14, these parameters allow cal-
culating the energy cost set E by multiplying power consumption
and the time interval of local computation and wireless com-
munication. The OffDeci comparator component employs our
program execution and data transfer strategy scheme as shown
in the Figure 25 and compares the energy consumptions of five
stubs in combination with the implementation of a given task in
three execution and transfer modes. This component can deter-
mine how and whether to offload the computation of a given task
and which data form is used for the input and the output data
during the transmission. For data compression to be beneficial
during communication, we require that the minimum energy
cost among three stubs of a given task in compressed remote
mode (min E3, E4, E5) is smaller than the stub in uncompressed
remote mode (E2). For offloading to be beneficial we require
that the energy cost of local mode (E1) is smaller than E2 or min
E3, E4, E5. Finally we can obtain the minimum energy cost Ei
in the set E. The relevant stub of Ei is the most energy-efficient
implementation for the given task.

7.5 summary

This chapter presented our approach for managing energy in
the context of smartphones. For a given program and set of

72 computation offloading and data compression for reducing energy cost

inputs, we have identified two important parameters to the energy
cost: computation and communication. We presented a model
for the execution of an application and the transfer of its data,
parameterized with respect to computation offloading and data
compression. Finally, we presented the design of our tool, named
OffDeci, that gives an approximation of the energy cost of an
application with respect to combinations of offloading and data
compression strategies. The next chapter evaluates our approach
with an experimental study.

8
E VA L U AT I O N A N D E X P E R I M E N TA L S T U D Y

In this Chapter, we validate the use of computation offloading
and data compression. This validation is done in the context of
our experimental platform. We first describe the specific smart-
phone platform and the measurement hardware setup we use in
our experimental platform. We also explain the five stubs, each
of our two motivating examples in three execution and transfer
modes. We then present the energy consumption measurements
for different stubs and compare these measurements with the
result of our tool OffDeci. In doing so, we need to get the value of
different parameters as shown in the Table 4. We outline predic-
tion rules to help a developer to choose one program execution
and data transfer mode for each task of mobile applications.
Finally, we then discuss on the related works.

8.1 experimental platform

This experimental platform was based on a HTC Hero smart-
phone running Android 2.1, a wireless router NETGEAR
WGR614 and a MacBook Pro laptop with 4 GB RAM and the 2.26

GHz Intel a Core 2 Duo processor as a server. The HTC Hero fea-
tures an ARM-based 528 MHz, a 288MB RAM and a 512MB ROM.
It uses a 1350 mAh rechargeable lithium-ion battery. It allows su-
per user access. We used the Android 2.0 software development
kit, which supports both Java and C program development.

The smartphone current consumption is measured by using a
high-precision current probe Tektronix TCP312 around one wire
between the pin Vcc of the battery terminal and its connector
on the smartphone. In doing so, we connect the battery of the
smartphone to its connector with four wires as illustrated in
Figure 27. We use a Tektronix DPO3014 oscilloscope to measure
the current across the smartphone battery and also the voltage
supplied by the battery and the software LabVIEW SignalExpress
to register current traces into PC as shown in Figure 28.

The current probe Tektronix TCP312 allows us getting the real
time current traces with a high precision, using the Hall effect
theory. We then use an oscilloscope Tektronix DPO3014 to inspect
a number of traces with the different sampling rate up to 2.5 GHz.
We choose a sampling rate (100 KHz) that is enough to obtain all
features of the trace.

73

74 evaluation and experimental study

Parameters Estimation Experimentation

current consumption measured

Sesame in power estimation by using a high-precision current

PLoc component of the OffDeci probe with a oscilloscope

current consumption measured

Sesame in power estimation by using a high-precision current

PNet component of the OffDeci probe with a oscilloscope

current consumption measured

Sesame in power estimation by using a high-precision current

PNetIdle component of the OffDeci probe with a oscilloscope

Stopwatch in time profiling

tNetDS component of the OffDeci Oscilloscope

Stopwatch in time profiling

tNetDR component of the OffDeci Oscilloscope

Stopwatch in time profiling

tNetDSComp component of the OffDeci Oscilloscope

Stopwatch in time profiling

tNetDRComp component of the OffDeci Oscilloscope

Stopwatch in time profiling

tSockIdle component of the OffDeci Oscilloscope

Stopwatch in time profiling

tInComp component of the OffDeci Oscilloscope

Stopwatch in time profiling

tOutUncomp component of the OffDeci Oscilloscope

Stopwatch in time profiling

tExe component of the OffDeci Oscilloscope

Table 4: Parameters for the energy consumption measurements

Figure 27: Battery replacement with four wires for current measure-
ment

It is necessary for energy analysis to determine power con-
sumption for each relevant hardware component. In doing so,
we first measure power consumption of the HTC Hero in the idle
mode. We then measure respectively power consumption of CPU
and Wi-Fi. The power is calculated by multiplying the current
and the relevant voltage.

8.1 experimental platform 75

Figure 28: Our measurement platform for power monitoring

Figure 29: Power consumption of the screen of HTC Hero in three
different modes

HTC Hero in idle mode CPU Wi-Fi Screen

Average power (mW) 4.57 13.6 0

Table 5: Average power consumption of different hardware compo-
nents in idle mode

As shown in Figure 29, power consumption of the HTC Hero in
idle mode varies by switching the backlight of the screen in three
modes: on, idle and off. Varying the backlight from maximum-
to-minimum brightness decreases the power consumption of the
smartphone by half a watt.

We illustrate the power consumption of CPU (a) and Wi-Fi
(b) in idle mode in Figure 30. We can observe that the events
are periodic in these modes. The average power consumption
of different hardware components in idle mode is calculated in
the Table 5. The Wi-Fi component in idle mode consumes more
energy. Its average power (PNetIdle) is about 13.6 mW.

To obtain the power consumption of CPU, we exploit a program
to vary the CPU utilization. The power consumption of CPU
utilization of 100 % (a) and 40 % (b) is shown in Figure 31. We

76 evaluation and experimental study

Figure 30: Power consumption of the HTC Hero: (a) CPU in idle
mode, (b) Wi-Fi in idle mode

note that the power consumption of CPU utilization of 100 % is
about 255.3 mW (PLoc).

To acquire the power consumption of Wi-Fi interface, we use
a program to switch data transmission in continuous (a) and
discontinuous (b) mode as illustrated in Figure 32. In discontin-
uous mode, the process alternates transferring data and falling
asleep. We observe that the power consumption of Wi-Fi data
transmission is about 1196.2 mW (PNet).

Based on these initial experiments for each component, we
acquire some useful knowledge to understand energy costs of
computation and communication. This knowledge allows us
measuring energy cost of the implementation of our application
examples on HTC Hero. It has a great importance for application
developers to minimize the energy cost of applications on this
kind of smartphone.

8.2 implementation of motivating examples

Let us explain the development work for the five stubs of each
our two motivating examples in three execution and transfer

8.2 implementation of motivating examples 77

Figure 31: Power consumption of the HTC Hero: (a) CPU utilization
of 100 %, (b) CPU utilization of 40 %

modes. We implement our applications in Java with Eclipse and
Android 2.0 SDK.

fall detection. We implement PerFallD, a pervasive fall
detection system tailored for smartphone, described by Dai et
al. [18]. To detect a fall, features are computed on 4s time window
size for 200 acceleration data sample (a sampling frequency of
50 Hz). In this algorithm, the amplitude of the acceleration in
the absolute vertical direction compares to the thresholds. We
pass this algorithm with input and output data as a task to the
tool OffDeci. OffDeci generates the five different stubs for this
task. For offloading the computation we use the client/server
communication via sockets and for data compression and decom-
pression we write and read data in zip format, using Java APIs
with Eclipse and Android 2.0 SDK. These stubs in combination
with the implementation of this task are respectively executed.
OffDeci calculates their energy consumptions and proposes a
stub that consumes less energy. We compare this result with that
of our measurement platform for power monitoring.

78 evaluation and experimental study

Figure 32: Power consumption of the HTC Hero: (a) Wi-Fi in contin-
uous data transmission mode, (b) Wi-Fi in discontinuous
data transmission mode

activity understandings . The application contains three
components: data collection, feature extraction and data interpre-
tation [49]. Data is collected from the triaxial accelerometer with
a sampling frequency of 50 Hz in the HTC Hero. To recognize the
activities in daily life, we need to deal with a triaxial acceleration
data during whole one day. We suppose that the study of activity
understandings lasts ten hours for one day. In this hypothesis,
1800000 triaxial acceleration data need to be analyzed for one day.
The size of the data is about 20.6M. To recognize the activities,
we implement FFT algorithm to extract the features from the raw
accelerometer data and decision trees classifier to interpret the
accelerometer signal pattern as every corresponding activity. In
feature extraction phase, FFT algorithm uses a window size of
256 acceleration data with 50 % overlapping between consecutive
windows. This choice has illustrated success in the study [12].
We pass feature extraction and data interpretation with input and
output data as a task to the tool OffDeci. Idem, OffDeci generates
the five different stubs for this task.

8.3 results 79

type of stubs E1 E2 E3 E4 E5

OffDeci estimation (mJ) 1.18 22.63 26.37 26.22 28.96

Measurement (mJ) 1.28 25.87 29.15 28.97 32.25

Table 6: Energy cost of the task of the fall detection application in five
different stubs

type of stubs E1 E2 E3 E4 E5

OffDeci estimation (mJ) 621025.93 33720.96 6080.82 33685.36 6086.21

Measurement (mJ) 667769.06 39139.91 7106.24 39142.78 7109.1

Table 7: Energy cost of the task of the activity understandings applica-
tion in five different stubs

8.3 results

This section assesses the validity of our approach. This validation
is done in the context of our experimental platform. The imple-
mentation of the two motivating examples have been discussed
in previous section. We first use our OffDeci tool to estimate the
energy consumption of five different stubs in combination with
the implementation of a given task. We then measure the real
energy consumption of these five stubs with the implementation
in our measurement platform as illustrated in Figure 28. The
estimated and measured energy cost are both calculated by the
equations 7.10 - 7.14.

For the fall detection application, Table 6 shows respectively
the estimation and the real-time measurement of the energy
consumed by the task of this application in five different stubs.
We observe that the result of the estimation is consistent with
measurement. The most energy efficiency stub is to compute
locally fall detection algorithm and can save more than 20 time
energy cost compared with computation offloading.

For the activity understandings application, we note that the
estimated and measured power consumption of five different
stubs for the task of this application is also coherent in the Ta-
ble 7. The result demonstrates that the stub 3 for the task of
this application as shown in the Figure 24 is the most energy
efficiency stub. This illustrates that data compression has the
potential for saving energy.

The activity understandings application can also detect a fall.
We implement FFT algorithm for fall detection. The energy cost
of the stub 1 for fall detection is up to 37.1 mW. The stub 2 (25.87

mJ) of this application has the minimum value. In this context,
the stub 2 (25.87 mJ) of this application becomes the minimum

80 evaluation and experimental study

value. This proves that the computation offloading depends on
algorithm complexity.

Our measurement platform monitors power consumption of
our smartphone HTC Hero in real time. The platform makes
it clear when particular events are occurring. The platform has
allowed us to run and analyze a large number of detailed test
programs by monitoring the traces of power consumptions in
real time. According to these results, the real-time measurement
of energy cost validates our energy estimation profiling approach
that uses our execution and transfer mode decision OffDeci tool
in our experimental platform.

8.4 prediction rules

As discussed in the previous section, we can use our OffDeci tool
to decide which is the best stub in terms of energy consumption
for a task with the constant amount of input and output data.
However, the amount of input and output data may be varied
during the execution of a task. It is difficult to measure results
for all possible input and output data volumes with our tool.
In this context, we analyze the characteristics of energy cost of
computation, data transmission and data compression. We then
propose prediction estimation rules for decision helping for the
developer of applications.

According to the earlier energy analysis and the result illus-
trated in the previous section, a task may be performed on three
execution and transfer modes as shown in Figure 23. The pre-
diction rules for these three modes is illustrated in Figure 33: a
task contains only a small amount of computation with a rela-
tively small amount of input and output data (local mode); a task
contains only a large amount of computation with a relatively
small amount of input and output data (uncompressed remote
mode); a task contains only a large amount of computation with
a relatively large amount of input and output data (compressed
remote mode).

According to these prediction estimation rules, the programmer
can choose one execution and transfer mode for a given task.
The choice will be highly dependent on the amount of data
to transfer and the computation complexity. For the case that
these prediction rules cannot make an accurate decision, the
programmer needs:w to use our tool for a task with each specific
amount of data.

8.5 related work 81

Figure 33: Prediction rules of three execution and transfer modes for
a task

8.5 related work

Energy efficiency has been always critical for mobile applica-
tions on smartphones and the importance seems to be increasing.
Mobile applications are developing towards more and more in-
tensive computation and increasing resource-demand. Evolution
of battery technology has not been able to match the energy
requirements of these mobile applications. The low-level mid-
dleware to manage hardware technologies have been explored
in literature. They are focusing on optimizing energy efficiency
of displays [28], processors [48], communication hardware [26],
software transformation and scaling [39] and energy efficient data
aggregation and communication [64]. These optimizations re-
duce energy consumption of their targeted subsystems by factors
of 2 to 10 demonstrating the importance of energy scale-down
in future designs. However, when we take into account architec-
tures and power saving modes of hardware on smart mobile, the
complexity of the software/hardware interactions is making the
performance and energy consumption behavior increasingly non
intuitive. There is no enough application-level support for these
hardware techniques. The programmer has to manage the intri-
cacies of the low-level technologies. Moreover, these approaches
minimize independently energy usage of every hardware com-
ponent. This is a complement of the remote execution approach
that offloads the computation to a server for smart phones, using
their wireless communication.

Computation offloading has been a challenging research prob-
lem of a number of studies. However, only a subset of those
studies focus on the effect of the computation offloading on the
energy cost of mobile applications on smartphones. In most cases

82 evaluation and experimental study

the focus is on response time and other resource consumption.
Large part of the research uses modeling and simulation, like [47],
which is an early study of computation offloading from mobile
to a fixed server. This work has demonstrated that under certain
conditions 20 % energy savings would be possible. The basic
feasibility of moving tasks to cloud has been studied [43]. The
thresholds for moving to the cloud vary significantly based on
the used communication technology like 3G and Wi-Fi. However
such work is conducted in a rather ad-hoc way and cannot guide
programmer in the development process.

Compiler technology has been used in, e.g., [34, 66], where
a program is partitioned into client and server parts. The client
parts are run on a mobile device and the server part is offloaded.
Even though the measurements show that this approach is able
to save significant energy, compiler technology estimates only the
execution time for program inputs and cannot give an accurate
estimation for energy consumption.

Middleware based approach has been investigated in, e.g., [21].
The described framework uses only the snapshot of resource
availability as criteria for deciding between local, remote and
hybrid execution. The energy consumption of computation and
communication for mobile applications is not considered as a
criterion for deciding the offloading computation point.

We have reviewed existing approaches for handling energy
efficiency on mobile device in hardware and software systems.
To the best of our knowledge, there does not exist tool-based
approaches to determining the trade-off point of computation
offloading for the programmer. Our work complements existing
research by providing a tool to measuring energy consumed by a
given program in local, uncompressed remote and compressed
remote mode and selecting one execution and transfer mode to
guide the programmer in the development application process.

8.6 summary

In this chapter, we validated our approach based on computa-
tion offloading and data compression. We described the specific
smartphone platform (HTC Hero) and measurement hardware
setup that we have used in our experimental platform. We then
explained the five stubs for our two motivating examples into
the three execution and transfer modes. We presented energy
consumption measurements for these stubs and compared these
measurements with results from our tool. We outlined also pre-
diction rules to help developers choose a program execution and
data transfer mode for each task of a mobile application. Finally,

8.6 summary 83

we discussed on the related works. The next chapter presents
how to integrate OffDeci into DiaSpec in order to manage energy
consumption of mobile application via a high-level programming
framework.

9
D I A S P E C E X T E N S I O N F O R E N E R G Y H A N -
D L I N G

The previous chapter introduced the study of two motivating
examples that shows the potential to save energy cost of mo-
bile application with the use of two technologies: computation
offloading and data compression.

In this chapter, we introduce an approach to managing the
energy consumption of mobile applications via a high-level pro-
gramming framework. This approach allows taking energy con-
cerns into account in the phase of application design by an energy-
handling declaration. This approach facilitates the work of archi-
tects and developers by separating energy management tasks for
mobile applications (illustrated in Figure 34).

Figure 34: Integration of OffDeci into DiaSpec

Our approach leverages DiaSuite and extends our design lan-
guage DiaSpec with energy-handling declaration that allows
mobile application developer to characterize components of an

85

86 diaspec extension for energy handling

application from a energy-management viewpoint. This infor-
mation pinpoints a component that may be offloaded for saving
energy in the architecture description of an application.

To resolve energy concerns, we propose to raise the level of ab-
straction beyond the code level, by providing declarative support
to manage energy cost. The mobile application developer uses
energy-handling declaration to specify components that contain
a large amount of calculation or processing data. Offloading
these components has the potential to save their energy cost.
Using this declaration in the architecture description, OffDeci
generates five stubs for each declared component. The mobile
application developer then passes the implementation of each
relevant component. OffDeci combines the implementation with
the five different stubs (shown in Figure 24) and executes them. It
measures execution time of each stub for an implementation and
then calculates its energy cost. Using our execution and transfer
strategy scheme (illustrated in Figure 25), OffDeci chooses the
best stub for a component in terms of minimizing energy con-
sumption and generates the relevant programming framework,
in combination with the implementation of component.

Let us now define our notion of energy concerns by character-
izing DiaSpec components and examine the issues to be resolved
within the DiaSpec development approach. The following Sec-
tions present our approach to energy management of mobile
applications with the fall detection application.

9.1 characterizing diaspec component

This Section characterizes DiaSpec components of mobile appli-
cations and analyzes need of component offloading for energy
saving.

Figure 35 shows a graphical architecture view of the fall detec-
tion application, including a smartphone with an accelerometer,
call and SMS services. This application works as follows, the
accelerometer (AccelSensor component) of the user’s smartphone
pushes periodically an acceleration value to the AccumulatorAc-
celContext component. AccumulatorAccelContext accumulates
the acceleration values. It then pushes a list of values with
a particular size (as event) to FallDetectorContext component.
FallDetectorContext can also get a volume of acceleration values
with a specific window size (as command) from AccumulatorAc-
celContext. It then processes a volume of acceleration data whose
size depends on the used algorithm (i.e., 200 acceleration data
for thresholds method and 256 acceleration data for FFT) and
determines whether there is a fall of the user. Eventually, if there

9.1 characterizing diaspec component 87

Figure 35: Architecture of the fall detection application

is a fall, FallDetectorContext sends a list of specific contacts to
UrgentSMSController component that can invoke SMSActuator
component. SMSActuator then sends SMS to a contact. The
complete specification of the fall detection application can be
found in Listing 4.

1 component MobileDevice (String id) { }

2

3 component AccelSensor extends MobileDevice {

4 provides event AccelerationValue to AccumulatorAccelContext;

5 }

6

7 component SMSActuator extends MobileDevice {

8 provides command SendSMS to UrgentSMSController;

9 }

10

11 component AccumulatorAccelContext {

12 requires event AccelerationValue from AccelSensor;

13 provides event AccelerationValue[] to FallDetectorContext;

14 provides command AccelDataWindow to FallDetectorContext;

15 }

16

17 component FallDetectorContext {

18 requires event AccelerationValue[] from AccumulatorAccelContext;

19 requires command AccelDataWindow from AccumulatorAccelContext;

88 diaspec extension for energy handling

20 provides event Contact[] to UrgentCallController;

21 }

22

23 component UrgentSMSController {

24 requires event Contact[] from FallDetectorContext;

25 requires command SendSMS from SMSActuator;

26 }

27

28 icommand AccelDataWindow {

29 AccelerationValue[] getAccelDataWindow();

30 }

31

32 icommand SendSMS {

33 void sendSMSContact (Contact contact);

34 }

Listing 4: DiaSpec specification of the fall detection application

According to the analysis of the fall detection application in
previous Chapter, the energy cost of components of a mobile
application is a critical issue because mobile platform is energy-
constrained. Let us now categorize DiaSpec components from a
energy consumption viewpoint. Our programming framework is
component-based. Each DiaSpec component is often decomposed
into three stages: acquiring input data (push or pull), process-
ing input data and providing output data. These three stages
influence directly on the energy cost of a component. Our pro-
gramming framework provides also a underlying communication
back-end (i.e., local, SIP or RMI) to each DiaSpec component. In
this context, a DiaSpec component can be executed either lo-
cally or remotely. Let us examine the characteristics of local and
remote DiaSpec component.

9.1.1 Local DiaSpec Component

Using DiaSpec language, we decompose an application into sev-
eral components in its architecture description. Some components
contain only I/O operations on hardware platform and interact
with the native OS. For example, AccelSensor reads an acceler-
ation value on the smartphone and pushes it and SMSActuator
sends SMS to a contact. These components are local components
that need to be executed natively on the smartphone. Some
components process data with few computation and data. For
example, AccumulatorAccelContext only accumulates accelera-
tion values. If this component is performed remotely, the energy
cost of communication will be very expensive. For the same
raison, UrgentSMSController that calls SMSActuator for one by
one contact will be also executed locally. Thus, the local DiaSpec
component is a component that contains only I/O operations

9.2 declaring energy management 89

performed natively on the specific platform or that contains the
small amount of calculation or processing data.

9.1.2 Remote DiaSpec Component

Contrary to the local DiaSpec component, the remote DiaSpec
component is a component that contains the large amount of
calculation or processing data. As discussed in the Chapter 7,
computation offloading can save energy cost for the large amount
of calculation and data compression can save energy cost for large
amount of processing data (illustrated in Figure 33). For example,
for obtaining higher precision, FallDetectorContext may process
a larger volume of acceleration data with a complex algorithm
((i.e., FFT and machine learning) that leads to the large amount
of calculation like using the algorithm of activity understandings
application to detect a fall.

9.2 declaring energy management

To resolve energy concerns, the mobile application developer ana-
lyzes components of an application in its architecture description.
Based on the analysis in previous section, the developer classifies
components. For local DiaSpec components, their declaration
are preserved. For DiaSpec components that may be executed
remotely, we extend DiaSpec and provide an energy-handling
declaration with the energy keyword. The mobile application
developer declares these components with this keyword. For ex-
ample, the energy keyword applies only to FallDetectorContext
in the fall detection application (shown in Listing 5).

1 energy {

2 component FallDetectorContext;

3 }

Listing 5: Energy-handling declaration of extended DiaSpec

9.3 analyzing energy cost

After classification and declaration of components of a mobile
application, the mobile application developer passes the imple-
mentation of the application with the energy-handling declara-
tion to OffDeci tool. For each component declared by the energy
keyword, the time profiling of OffDeci generates five stubs in
combination with the implementation (discussed in the previ-
ous Chapter). OffDeci estimates respectively the energy cost of

90 diaspec extension for energy handling

the implementation with five different stubs and chooses the
most energy efficiency stub for DiaSpec runtime. For example,
FallDetectorContext component is the only component that may
be executed remotely in the fall detection application. The oth-
ers components will be performed locally and located on the
smartphone. In this context, we focus on FallDetectorContext
component that is declared by the energy-handling declaration.
OffDeci takes this declaration and the implementation and gener-
ates five stubs as illustrated in Figure 36. If FallDetectorContext
component is executed remotely, it must communicate with Ac-
cumulatorAccelContext and UrgentSMSController components
using SIP or RMI communication bus. In Figure 36 red words
denote the underlying communication back-end to use and green
words point out whether the transmission data is compressed
or not. After the phase of time profiling, OffDeci calculates the
energy cost of stubs and chooses the best stub that consumes less
energy for this application.

Figure 36: Implementation of extended energy-handling DiaSpec

9.4 summary

In this chapter, we presented our approach that allows mobile
application developers characterize components of an applica-
tion from an energy-management viewpoint. This approach

9.4 summary 91

leveraged DiaSuite and extended our design language DiaSpec
with energy-handling declarations. As a result, energy concerns
can be expressed declaratively during the design phase of an
application.

10
S U M M A RY

We have described the energy issues of mobile applications in per-
vasive computing environments in the second part of this thesis.
Since smartphones are energy-constrained platforms, we have
presented the importance to manage the energy cost of applica-
tions on these platforms. We have presented an approach to help
the mobile application developers to decide when and how to of-
fload each task of a mobile application. This approach has relied
on computation offloading and data compression technologies.
According to these two technologies, we presented an execution
and transfer model for a given task and its five different stubs
for three program execution and data transfer modes. We have
integrated these two technologies and the execution and transfer
model into a strategy scheme for handling energy issues. This
strategy scheme described a methodology to determine the most
efficient stub in terms of energy cost. We have constructed the
OffDeci tool, using this strategy scheme, to provide the energy
feedback for the developer. Our experimental study has proven
the feasibility of the strategy scheme of our approach. Finally, we
extended DiaSpec with declaration dedicated to energy handling.
We have sketched the integration of the energy-handling declara-
tion and OffDeci into our high-level programming framework to
manage energy concerns during the application design phase.

93

Part III

C O N C L U S I O N

11
C O N C L U S I O N

We now summarize the thesis results and draw overall conclu-
sions. In this thesis we were mainly interested in creating per-
vasive applications and the various related problems. Pervasive
computing environments are enriched by computing and commu-
nication capabilities. That promises new ways to integrate envi-
ronments with the human user. Potential applications in the field
of pervasive environments are numerous, ranging from build-
ing management to healthcare. Developing these applications is
challenging because pervasive computing combines elements of
several domains, thus inheriting and creating many challenges for
the application developer (illustrated in Chapter 2). We focused
on two main aspects: heterogeneity and energy concerns. Indeed,
these two aspects complicated greatly the application develop-
ment. The heterogeneity is one of these important challenges.
This is due to the fact that the essence of these environments is
entity-rich networked environments. Various entities are hetero-
geneous in many aspects (eg, network layers and communication
modes). Another important challenge is energy consumption of
mobile applications, because more and more applications and ser-
vices on smartphones increase their energy demands. However,
the smartphone is an energy-constrained device, using a battery.
In this context, we have presented an approach to integrating
heterogeneity and energy concerns into the development process
of pervasive computing systems via a high-level programming
framework.

In the first part of this thesis, we have proposed an approach to
managing heterogeneity of pervasive computing environments.
The increasing heterogeneity and dynamicity of pervasive com-
puting environments calls for novel approaches to model and
implement both middleware and system infrastructure parts of
an application. While existing software engineering approaches
support the developers for the most error-prone tasks and ad hoc
techniques [44], they still lack a platform that relies on indus-
trial standards to tackle the challenges of pervasive computing
environments.

Our approach proposes a solution to this problem by lever-
aging an ADL (DiaSpec) dedicated to the pervasive computing
domain and by using SIP as a universal communication bus for
pervasive computing environments. Our approach describes a
methodology and programming support to adapt heterogeneous

97

98 conclusion

entities to the SIP communication bus and provides developers
with an integrated programming framework for the application
creation, using a high-level abstraction layer for all type entities.

We have detailed how to enable homogeneous communications
between heterogeneous distributed entities. Our approach has
been used to make a wide variety of entities SIP compliant. These
entities have then been integrated into a number of applications
for home automation and healthcare. Then, we have shown our
implementation of a variety of entities running on different hard-
ware platforms. Finally, we have analyzed and discussed our
experimental measurements on memory footprint and communi-
cation performance and have demonstrated that our approach is
realistic for all classes of entities, and that our SIP gateway can
run efficiently on resource-constrained platforms.

In the second part of this thesis, we have proposed an ap-
proach to managing the energy concerns of pervasive computing
environments. As smartphones get smaller, they become con-
strained on their computing power and battery energy. Yet, a lot
of modern applications are resource-intensive, especially with
great energy demands. To cope with these shortcomings, it is
important to handle energy issues for mobile applications in the
design phase. However, existing software approaches can’t give
energy consumption feedback in the design and development of
application.

Our approach explores the potential of computation offload-
ing and data compression technologies to save energy cost for
mobile applications. According to these two technologies, we
have constructed an execution and transfer model for a given task
and introduced five different stubs for three program execution
and data transfer modes. Based on these two technologies and
the execution and transfer model, we have built up a strategy
scheme for handling energy issues. This strategy scheme includes
a methodology to determine the most efficient stub in terms of
energy cost. We have constructed the OffDeci tool, using this
strategy scheme, to give an energy consumption feedback of a
given task of a mobile application without any external equip-
ment assistance. Our experimental results show that, even under
an ordinary wireless LAN environment, the scheme can result
in significant energy-saving for our motivating examples. The
measurement of energy cost in our experimental platform has
validated our energy estimation profiling approach (our OffDeci
tool).

To manage energy concerns during the phase of pervasive
application design, we integrated our OffDeci tool into our high-
level programming framework. In doing so, we enriched Dia-
Spec with the declaration dedicated to energy handling. OffDeci

conclusion 99

uses the added information to generate five stubs for each de-
clared DiaSpec component and combines with his implemen-
tation. OffDeci then executes them and helps the developer to
select the best stub which consumes less energy.

12
F U T U R E W O R K

After drawing an overview conclusion in the previous Chapter,
we now point out remaining problems and outline a number of
possible future extensions to this work.

Concerning the heterogeneity-handling with the use of SIP
protocol, as part of future work we will work on the design and
implementation of an application scenario: an smart house. The
application will use SIP as a universal communication bus. With
the development of SIP network in the house, our application
includes a number of the electronic appliances in a house which
are controlled by a SIP gateway according to the user needs.
This implementation allows us testing our approach with larger
application scope.

Currently, our approach manages energy concerns via a high-
level programming framework. We extend DiaSpec with the
energy-handling declaration and integrate our OffDeci tool into
our high-level programming framework. However, we haven’t
yet validated this integration. We plan to conduct more exper-
iments on various mobile platforms to test coherence between
the estimated and measured energy cost of each stub of a Dia-
Spec component. Furthermore, our generated and dedicated
programming framework abstracts over some distributed com-
munication layers (e. g. RMI or SIP). Our experimental study has
only validated our OffDeci tool with use of a socket communica-
tion. RMI and SIP are upper protocols across IP and add more
payload information for communication charge compared with
Internet socket. Thus we also plan to conduct more experiments
on these distributed communication layers and to analyze these
influences.

For now, OffDeci generates five stubs for each DiaSpec compo-
nent declared by the energy-handling declaration. However, it
is not necessary to generate always five stubs to decide the best
choice in terms of energy consumption. Data compression has
the potential to save energy cost of mobile applications but the
savings from reducing the volume of transmission data need to
exceed the energy cost of the additional computation for com-
pressing or uncompressing data on smartphones. For example, if
the input or output data of a DiaSpec component is a single scalar
value, the data compression can’t save energy for these data. We
don’t need to generate the relevant stubs that compress or un-
compress these data. Therefore, we plan to refine this phase of

101

102 future work

generation with the existing architecture description. In DiaSpec,
we can obtain the input and output data type of a component
from its interaction mode declaration. An interaction mode is ei-
ther command, event, or session that is combined with the name
of a Java type to characterize the interaction. For a command,
the Java type is an interface listing the relevant methods. We can
obtain the data type from the return values of these methods. For
an event or session, the Java type indicates the type of the data
that are exchanged. Using this information, OffDeci can refine
this phase of the generation and generate either two, three or five
efficient stubs to decide the most efficient stub concerning energy
cost.

Part IV

A P P E N D I C E S

B I B L I O G R A P H Y

[1] Asn.1 encoding rules: Specification of basic encoding rules
(BER), canonical encoding rules (CER) and distinguished
encoding rules (DER). ITU-T X.690.

[2] Eukréa SBC Board, http://www.eukrea.com.

[3] The Heyu project, http://heyu.tanj.com.

[4] iButton SDK, http://www.maxim-ic.com/products/ibutton.

[5] kSOAP 2, http://ksoap2.sourceforge.net.

[6] The Linux kernel, http://kernel.org.

[7] The GNU oSIP library, http://www.gnu.org/software/osip.

[8] SIP for Instant Messaging and Presence
Leveraging Extensions. IETF Working Group,
http://www.ietf.org/html.charters/simple-charter.html.

[9] X10 communication protocol, http://www.x10.org.

[10] The ZigBee Alliance, http://www.zigbee.org.

[11] S. Apel et K. Bohm. Towards the development of ubiquitous
middleware product lines. In ASE’04 SEM Workshop, pages
137–153, Linz, Austria, 2005.

[12] Ling Bao et Stephen S. Intille. Activity recognition from
user-annotated acceleration data. pages 1–17. 2004.

[13] Len Bass, Paul Clements, et Rick Kazman. Software Archi-
tecture in Practice. Addison-Wesley Professional, 1997. isbn:
0201199300.

[14] Stefan Berger, Henning Schulzrinne, Stylianos Sidiroglou, et
Xiaotao Wu. Ubiquitous computing using SIP. In NOSSDAV
’03: Proceedings of the 13th international workshop on Network
and operating systems support for digital audio and video, pages
82–89, New York, NY, USA, 2003.

[15] L. Burgy, C. Consel, F. Latry, J. Lawall, N. Palix, et L. Réveil-
lère. Language technology for Internet-telephony service
creation. In IEEE International Conference on Communications,
2006.

105

106 bibliography

[16] B. Campbell, J. Rosenberg, H. Schulzrinne, C. Huitema, et
D. Gurle. Session initiation protocol (SIP) extension for
instant messaging. RFC 3428, IETF, 2002.

[17] D. Cassou, B. Bertran, N. Loriant, et C. Consel. A generative
programming approach to developing pervasive comput-
ing systems. In Proceedings of the 8th International Confer-
ence on Generative Programming and Component Engineering
(GPCE’09), 2009.

[18] Jiangpeng Dai, Xiaole Bai, Zhimin Yang, Zhaohui Shen, et
Dong Xuan. Mobile phone-based pervasive fall detection.
Personal Ubiquitous Comput., 14:633–643, 2010.

[19] J.W. Davis. Power benchmark strategy for systems employ-
ing power management. In Electronics and the Environment,
1993., Proceedings of the 1993 IEEE International Symposium
on, pages 117 –119, 1993.

[20] Mian Dong et Lin Zhong. Self-constructive high-rate sys-
tem energy modeling for battery-powered mobile systems.
In Proceedings of the 9th international conference on Mobile sys-
tems, applications, and services, pages 335–348, New York, NY,
USA, 2011.

[21] Jason Flinn, Dushyanth Narayanan, et M. Satyanarayanan.
Self-tuned remote execution for pervasive computing. In
In Hot Topics in Operating Systems(HotOS-VIII, pages 61–66,
2001.

[22] Zhengming Fu, Eugenio Culurciello, Patrick Lichtsteiner,
et Tobi Delbrück. Fall detection using an address-event
temporal contrast vision sensor. In ISCAS, pages 424–427.
2008.

[23] Kinshuk Govil, Edwin Chan, et Hal Wasserman. Comparing
algorithm for dynamic speed-setting of a low-power cpu. In
Proceedings of the 1st annual international conference on Mobile
computing and networking, pages 13–25, New York, NY, USA,
1995.

[24] M. Handley et V. Jacobson. SDP: Session Description Proto-
col. RFC 2327, IETF, 1998.

[25] David P. Helmbold, Darrell E. Long, et Bruce Sherrod. A
dynamic disk spin-down technique for mobile computing.
pages 130–142, 1996.

[26] M. Honkanen, A. Lappetelainen, et K. Kivekas. Low end
extension for bluetooth. In Radio and Wireless Conference,
2004 IEEE, pages 199 – 202, 2004.

bibliography 107

[27] ITU-T. Recommendation Q.23: Technical features of
push-button telephone sets, http://www.itu.int/rec/T-REC-
Q.23/.

[28] Subu Iyer, Lu Luo, Robert Mayo, et Parthasarathy Ran-
ganathan. Energy-adaptive display system designs for future
mobile environments. In Proceedings of the 1st international
conference on Mobile systems, applications and services, pages
245–258, New York, NY, USA, 2003.

[29] Wenyu Jiang, Jonathan Lennox, Sankaran Narayanan, Hen-
ning Schulzrinne, Kundan Singh, et Xiaotao Wu. Integrating
Internet telephony services. IEEE Internet Computing, 6(3):
64–72, 2002.

[30] W. Jouve, N. Ibrahim, L. Réveillère, F. Le Mouël, et C. Con-
sel. Building home monitoring applications: From design to
implementation into the Amigo middleware. In ICPCA’07:
IEEE International Conference on Pervasive Computing and Ap-
plications, pages 231–236, 2007.

[31] W. Jouve, J. Lancia, N. Palix, C. Consel, et J. Lawall. High-
level programming support for robust pervasive computing
applications. In Proceedings of the 6th IEEE Conference on Per-
vasive Computing and Communications (PERCOM’08), pages
252–255, Hong Kong, China, 2008.

[32] W. Jouve, N. Palix, C. Consel, et P. Kadionik. A SIP-based
programming framework for advanced telephony applica-
tions. In Proceedings of The 2nd LNCS Conference on Princi-
ples, Systems and Applications of IP Telecommunications (IPT-
Comm’08), 2008.

[33] G. Klyne et D. Atkins. Common Presence and Instant Mes-
saging (CPIM): Message format. RFC 3862, IETF, 2004.

[34] Ulrich Kremer, Jamey Hicks, et James M. Rehg. A compi-
lation framework for power and energy management on
mobile computers. In In International Workshop on Languages
and Compilers for Parallel Computing (LCPC?01, 2001.

[35] Sudha Krishnamurthy et Lajos Lange. Distributed interac-
tions with wireless sensors using TinySIP for hospital au-
tomation. In PerSeNS’08: The 4th International Workshop on
Sensor Networks and Systems for Pervasive Computing, Hong-
Kong, China, 2008.

[36] F. Latry, J. Mercadal, et C. Consel. Staging Telephony Service
Creation: A Language Approach. In Principles, Systems and
Applications of IP Telecommunications, IPTComm, New-York,
NY, USA, 2007.

108 bibliography

[37] Mike Tien-Chien Lee, V. Tiwari, S. Malik, et M. Fujita. Power
analysis and minimization techniques for embedded dsp
software. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 5(1):123 –135, 1997.

[38] Maxim. The 1-Wire Bus, http://www.maxim-
ic.com/products/1-wire.

[39] Robert N. Mayo, Robert N. Mayo, Parthasarathy Ran-
ganathan, et Parthasarathy Ranganathan. Energy con-
sumption in mobile devices: Why future systems need
requirements-aware energy scale-down, 2003.

[40] Nenad Medvidovic et Richard N. Taylor. A classification and
comparison framework for software architecture description
languages. IEEE Transactions on Software Engineering, 26(1):
70–93, 2000.

[41] S.-G. Miaou, null Pei-Hsu Sung, et null Chia-Yuan Huang. A
customized human fall detection system using omni-camera
images and personal information. Distributed Diagnosis and
Home Healthcare, 0:39–42, 2006.

[42] SUN microsystems. Media Framework API (JMF),
http://java.sun.com/products/java-media/ jmf.

[43] Antti.P Miettinen et Jukka.K Nurminen. Energy efficiency of
mobile clients in cloud computing. In 2nd USENIX Workshop
on Hot Topics in Cloud Computing, 2010.

[44] S. Moyer, D. Marples, et S. Tsang. A protocol for wide area
secure networked appliance communication. Communica-
tions Magazine, IEEE, 39(10):52–59, Oct 2001.

[45] Jukka.K Nurminen et Mikko Heikkinen. Consumer attitudes
towards energy consumption of mobile phones and services.
In VTC-Fall 2010, 2010.

[46] M N Nyan, Francis E H Tay, M Manimaran, et K H W
Seah. Garment-based detection of falls and activities of
daily living using 3-axis mems accelerometer. Journal of
Physics: Conference Series, 34(1):1059, 2006.

[47] Mazliza Othman et Stephen Hailes. Power conservation
strategy for mobile computers using load sharing. ACM
Mobile Computing and Communication Review, 2:44–50, 1998.

[48] Padmanabhan Pillai et Kang G. Shin. Real-time dynamic
voltage scaling for low-power embedded operating systems.
SIGOPS Oper. Syst. Rev., 35:89–102, 2001.

bibliography 109

[49] Nishkam Ravi, Nikhil D, Preetham Mysore, et Michael L.
Littman. Activity recognition from accelerometer data. In In
Proceedings of the Seventeenth Conference on Innovative Appli-
cations of Artificial Intelligence(IAAI, pages 1541–1546. 2005.

[50] A. B. Roach. Session Initiation Protocol (SIP)-Specific Event
Notification. RFC 3265, IETF, 2002.

[51] Manuel Román, Christopher Hess, Renato Cerqueira, Anand
Ranganathan, Roy H. Campbell, et Klara Nahrstedt. A
middleware infrastructure for active spaces. IEEE Pervasive
Computing, 1(4):74–83, 2002.

[52] J. Rosenberg. A presence event package for the session
initiation protocol SIP: Session Initiation Protocol. RFC 3856,
IETF, 2004.

[53] J. Rosenberg et H. Schulzrinne. An offer/answer model with
the session description protocol (sdp). RFC 3264, IETF, 2002.

[54] J. Rosenberg, J. Lennox, et H. Schulzrinne. Programming
Internet telephony services. IEEE Internet Computing, 3(3):
63–72, 1999.

[55] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, et E. Schooler. SIP: Ses-
sion Initiation Protocol. RFC 3261 (Proposed Standard), 2002.
url: http://www.ietf.org/rfc/rfc3261.txt. Updated by
RFCs 3265, 3853, 4320, 4916, 5393, 5621.

[56] J. Rosenberg, H. Schulzrinne, et O. Levin. A session initiation
protocol (SIP) event package for conference state. RFC 4575,
IETF, 2006.

[57] Rosenberg, J. et al. SIP : Session Initiation Protocol. RFC
3261, IETF, 2002.

[58] J.T. Russell et M.F. Jacome. Software power estimation and
optimization for high performance, 32-bit embedded pro-
cessors. In Computer Design: VLSI in Computers and Proces-
sors, 1998. ICCD ’98. Proceedings. International Conference on,
pages 328 –333, 1998.

[59] Debashis Saha et Amitava Mukherjee. Pervasive computing:
A paradigm for the 21st century. IEEE Computer, 36(3):25–31,
2003.

[60] Debashis Saha, Amitava Mukherjee, et Somprakash Bandy-
opadhyay. Networking Infrastructure for Pervasive Computing:
Enabling Technologies and Systems. Kluwer Academic Pub-
lishers, 2002. isbn: 140207249X.

http://www.ietf.org/rfc/rfc3261.txt

110 bibliography

[61] M. Satyanarayanan. Pervasive computing: vision and chal-
lenges. Personal Communications, IEEE, 8(4):10 –17, 2001.

[62] H. Schulzrinne, S. Casner, R. Frederick, et V. Jacobson. Rtp:
A transport protocol for real-time applications. RFC 3550,
IETF, 2003.

[63] Ron Shacham, Henning Schulzrinne, Srisakul Thakolsri, et
Wolfgang Kellerer. Ubiquitous device personalization and
use: The next generation of IP multimedia communica-
tions. ACM Trans. Multimedia Comput. Commun. Appl., 3(2):
12, 2007.

[64] Mohamed A. Sharaf, Jonathan Beaver, Alexandros Labrini-
dis, Ros Labrinidis, et Panos K. Chrysanthis. Tina: A scheme
for temporal coherency-aware in-network aggregation. In In
MobiDE, 2003.

[65] H. Sugano, S. Fujimoto, G. Klyne, A. Bateman, W. Carr, et
J. Peterson. Presence Information Data Format (PIDF). RFC
3863, IETF, 2004.

[66] Cheng Wang et Zhiyuan Li. A computation offloading
scheme on handheld devices. J. Parallel Distrib. Comput.,
64:740–746, 2004.

[67] Mark Weiser. The computer for the 21st century. SIGMO-
BILE Mob. Comput. Commun. Rev., 3:3–11, 1999.

[68] X. Wu et H. Schulzrinne. Programmable end system services
using SIP. In Proceedings of The IEEE International Conference
on Communications 2002. 2003.

[69] X. Wu, P. Koskelainen, et H. Schulzrinne. Use of session
initiation protocol (SIP) and simple object access protocol
(SOAP) for conference floor control. Internet draft, IETF,
September 2003.

[70] Yu Xiao, Matti Siekkinen, et Antti Ylä-Jääski. Framework for
energy-aware lossless compression in mobile services: The
case of e-mail. In ICC, pages 1–6. 2010.

A B S T R A C T

The topics of heterogeneity and energy are two fundamental considerations for pervasive
computing environments. In this thesis, we describe our approach to manage heterogeneity
and to handle energy concerns via a high-level programming framework. To manage hetero-
geneity, we describe a methodology and a programming support that use the SIP protocol
as a universal communication bus in pervasive computing environments. Our work enables
homogeneous communications between heterogeneous distributed entities. In doing so, we
integrate the SIP communication bus into our programming framework. We rely on a declar-
ative language named DiaSpec to describe the architecture of pervasive applications. This
description is passed to a generator for producing a Java programming framework dedicated
to the application area. We leverage the generated framework with SIP adaptations to raise the
abstraction level of SIP operations. Regarding the energy concerns, we describe a methodology
that uses two strategies, namely computation offloading and data compression, to minimize
energy cost of mobile applications. In doing so, we present an execution and transfer model
for a task of a mobile application and define its five different stubs for three program execution
and data transfer modes. Based on this model and our two strategies, we construct a strategy
scheme to determine the most efficient stub in terms of energy consumption. We then design
the OffDeci tool, using this strategy scheme, to provide energy feedback for the developer
and to analyze the balance between local and remote computing with consideration of data
compression. We sketched the integration of this energy-handling declaration and OffDeci
into our high-level programming framework.

keywords: Architecture Description Language, Domain-Specific Language, SIP, Hetero-
geneity, Energy consumption, Mobile application, Computation offloading, Data compression

R É S U M É

L’hétérogénéité des objets communicants et la consommation d’énergie sont deux considéra-
tions fondamentales pour les environnements informatiques ubiquitaires. Dans cette thèse,
nous présentons notre approche pour gérer l’hétérogénéité et pour économiser l’énergie
via des canevas de programmation dédiés. Pour gérer l’hétérogénéité, nous proposons une
méthodologie et un support de programmation qui visent à faire communiquer les différents
objets communicants de l’environnement ubiquitaire, et ce, en utilisant le protocole SIP con-
sidéré alors comme un bus de communication universel. Nous avons intégré ce bus SIP dans
les canevas de programmation générés à partir des descriptions d’applications d’informatique
ubiquitaire, écrites dans le langage DiaSpec. Concernant la consommation d’énergie, nous
proposons une méthodologie qui utilise les techniques d’offloading et de compression de don-
nées pour minimiser la consommation d’énergie des applications mobiles. Nous avons ainsi
construit une stratégie d’aide à la conception au travers d’un outil qui permet de déterminer
le meilleur mode d’exécution pour une tâche donnée. Nous proposons l’intégration de cette
stratégie dans le langage de description DiaSpec.

mots clés: Architecture Logicielle, Langage Dédié, SIP, Hétérogénéité, Consommation
d’énergie, Applications mobiles, Calcul déporté, Compression de données

	Abstract
	Résumé
	Liste des publications
	Remerciements
	Contents
	List of Figures
	List of Tables
	Listings
	1 Introduction
	1.1 Approach
	1.2 Thesis contribution
	1.3 Roadmap

	i SIP as a Universal Communication Bus: A Methodology and an Experimental Study
	2 background
	2.1 Requirements of pervasive computing systems
	2.2 The DiaSpec Approach
	2.3 Summary

	3 SIP for heterogeneity handling
	3.1 A Case for SIP as a Universal Communication Bus
	3.2 Building SIP Adapters
	3.3 Enabling SIP communication
	3.4 SIP back-end
	3.5 Summary

	4 Evaluation of the platform
	4.1 Experimental platform
	4.2 Experimental study
	4.3 Evaluation of the DiaSpec with a SIP Back-End
	4.4 Related Work
	4.5 Summary

	5 Summary

	ii Offload methodology for energy efficient application in smartphone context
	6 background
	6.1 Requirements for energy concerns in mobile applications
	6.2 Summary

	7 Computation offloading and data compression for reducing energy cost
	7.1 Our approach
	7.2 Energy analysis for computation and communication
	7.3 A strategy scheme for three program execution and data transfer modes
	7.4 Design of execution and transfer mode decision tool "OffDeci" for energy concerns
	7.5 Summary

	8 Evaluation and Experimental study
	8.1 Experimental platform
	8.2 Implementation of motivating examples
	8.3 Results
	8.4 Prediction rules
	8.5 Related Work
	8.6 Summary

	9 DiaSpec extension for energy handling
	9.1 Characterizing DiaSpec component
	9.2 Declaring energy management
	9.3 Analyzing energy cost
	9.4 Summary

	10 Summary

	iii Conclusion
	11 Conclusion
	12 Future work

	iv Appendices
	Bibliography
	Résumé

