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Abstract

Virtual environments allow human beings to be repréed by virtual humans or avatars.
Users can share a sense of virtual presence isavhtar looks like the real human it
represents. This classically involves turning tlatar into a clone with the real human’s
appearance and voice. However, the possibilitylaing the gesture expressivity of a real
person has received little attention so far. Gesaxpressivity combines the style and mood
of a person. Expressivity parameters have beemaeatkfin earlier works for animating
embodied conversational agents.

In this work, we focus on expressivity in wrist noot First, we propose algorithms to
estimate three expressivity parameters from cagtwrgst 3D trajectories: repetition, spatial
extent and temporal extent. Then, we conductedeparal study through a user survey the
relevance of expressivity for recognizing indivilhaman. We have animated a virtual agent
using the expressivity estimated from individuaiiauns, and users have been asked whether
they can recognize the individual human behind eaximation.

We found that, in case gestures are repeated iartineation, this is perceived by users as a
discriminative feature to recognize humans, whhe tbsence of repetition would be
matched with any human, regardless whether thegatepesture or not. More importantly,
we found that 75 % or more of users could recogtheereal human (out of two proposed)
from an animated virtual avatar based only on gaial and temporal extents. Consequently,
gesture expressivity is a relevant clue for clonibhigcan be used as another element in the
development of a virtual clone that representsraqre






Résumeé

Les environnements virtuels permettent de représeté¢s personnes par des
humains virtuels ou avatars. Le sentiment de po&seintuelle entre utilisateurs est
renforcé lorsque l'avatar ressemble a la persontliergprésente. L'avatar est alors
classiqguement un clone de [l'utilisateur qui reprodion apparence et sa Voix.
Toutefois, la possibilité de cloner I'expressivigs gestes d'une personne a recu peu
d'attention jusqu'ici. Expressivité gestuelle comebile style et I'numeur d'une
personne. Des parameétres décrivant I'expressivité&t@ proposes dans des travaux
antérieurs pour animer les agents conversationnels.

Dans ce travail, nous nous intéressons a l'expiEssies mouvements du poignet.
Tout d'abord, nous proposons des algorithmes patimer trois parameétres
d'expressivité a partir des trajectoires dans #espdu poignet: la répétition,
I'étendue spatiale et I'étendue temporelle. Puisysnavons mené une étude
perceptive sur la pertinence de l'expressivité destes pour reconnaitre des
personnes. Nous avons animé un agent virtuel éeanti I'expressivité estimée de
personnes réelles, et évalué si des utilisateursgmé reconnaitre ces personnes a
partir des animations.

Nous avons constaté que des gestes répétitifs ltamsation constituent une
caractéristique discriminante pour reconnaitreplssonnes, tandis que l'absence de
répétition est associée a des personnes qui répdemn gestes ou non. Plus
important, nous avons trouvé que 75% ou plus désateurs peuvent reconnaitre
une personne (parmi deux proposée) a partir d'dmmnsavirtuelles qui ne différent
que par leurs étendues spatiales et temporellexptéssivité gestuelle apparait
donc comme un nouvel indice pertinent pour le agjendune personne.
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Chapter 1 - Introduction

1.1 Problem Statement

Online virtual worlds allow multiple users to indet remotely by means of
animated virtual representations, including virtaaimans or avatars. They allow for
interaction and collaboration around 3D objects.

Virtual humans are a new kind of intelligent Hun@mputer interface that allow
human like animation and conversational skills &#s Sullivan, Prevost, &
Churchill, 2000). They may exhibit a human like esp both in appearance and
behavior, including emotional states, personaligjtd etc. Virtual humans imply
many complex problems that have been studied farsyélhalmann & Thalmann,
1991). Animating virtual humans with actions thafflect real human motion
involves challenges (Thalman, 2000) such as cdmgolimbs deformations and
collisions, high-level direction of avatars, adajota of pre-defined movements and
interacting with objects. Badlest al (1999) state that animating a virtual human
involves generating movements, reactions and ictierss that appear “natural”,
appropriate and contextually sensitive.

In order to interact socially with a real humanvidual human needs to behave
like a real human. A virtual human should preshketdppearance and voice of a real
human. It should also gesture like a real humare pitocess of making a virtual
human look like a real human is termed as cloning.

The behavior of the person depends on personalrgetendencies, or “style”
(Gallaher, 1992). Most of the approaches to stggebased on low level parameters
like joint angles (Tenanbaum & Freeman, 2000) (Eigel & Lee, 2004)
(Grochow, Martin, Hertzmann, & Popayi2004), but, practically it is difficult to
address the style in terms of joint angles or ahgolow level parameters. Cloning
should also involve gesturing style.

Non-verbal behavior conveys user's emotional stétésssin, James, & Bargh,
2005). Mehrabiaret al. (1967) says that body language expresses 55 %eof t
human feelings and intentions. Boaeteal. (1998) work says hand gesture expresses
emotional state of a person. Non-verbal behaviodydanguage and hand gestures
play a major role in delivering human feelings. Hammgestures are affected by their
mood (Zhu & Thagard, 2002). The outcomes of thesphaf action generation are
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mental representations such as intentions, desisichoices, or goals. These
representations are usually on the higher levehefhierarchical organization of
action and therefore are relatively abstract (Gtalj 1980).

This motivates to have a virtual human that repceduhe non-verbal behavior of
a real human. We aim at capturing the style anddhad@ person, which we jointly
refer to as “expressivity” (Hartmann, Mancini, &|&ehaud, 2005), and render this
with virtual human in such a way that it can becpared and recognized by users.

1.2 Thesis contributions

In our work, we first propose algorithms to estienthree expressivity parameters
from 3D human motion.

Then, through a user survey, we evaluate whethanesgivity works as a clue for
virtual cloning of humans. Using the Hartmanhal (2005) animation engine and
conversational agent, we animated a virtual humdh the expressivity estimated
from real humans. The survey showed that up to 8% %sers could recognize the
real human (out of two proposed) behind the virt@aimation, based on
expressivity only.

1.3 Organization of the Thesis

This thesis is organized as follows:

0 Chapter 2 presents the state-of-the art on desgrithie style of human
gestures, mood and expressive animation. It inttegsluparameters to
describe expressivity in communicative gestures.

O In chapter 3, we propose algorithms to estimateeethexpressivity
parameters from 3D motion trajectories.

O In chapter 4, experimentally evaluate whether usarsrecognize humans
from virtual animations that encompass their esith@xpressivity.

0 Chapter 5 concludes with a summary of contributiand discusses future
directions.

0 The appendix shows the animation engines we emgloyeur animation
process.
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Chapter 2 - State of the Art

2.1 Introduction

Expressivity is conveyed by non verbal behaviothef person. . It conveys user’'s
mental and affective states. In the process ohaefiexpressivity we first introduce
communicative gesture and then we discuss humaressipity. We address human
expressivity and body language from the psychot@gmoint of view. We discuss
the automated synthesis and analysis of humanrgesttom computer scientist’s
view. We also discuss the expressivity parametetsazailable animation engine to
animate a virtual human.

2.2 Communicative Gesture — Definition

Communication takes place not only through speeclte but also by means of
gestures such as facial expressions, gaze, heaghmeons, hand movements etc. As
per Oxford dictionaries, the gesture is a movenoémart of the body, especially a
hand or the head, to express an idea or meaniraprdiag to Poggi and Pelachaud,
(2008) definition a communicative gesture stemsft@ notion of communication,
based on a model in terms of goals and beliefsgiR@§07) defines communication
as the case in which sender produces a perceisgnal by performing an action (a
word, gesture, a glace of view etc.) or exhibitangnorphological trait in order to
transform the intention to someone.

Based on this, Poggi and Pelachaud (2008) definemamicative gesture as “a
particular movement of hands, arms or shouldetsishssed by a sender for the goal
of communicating some meaning to some addresseelving shape and positions.
The meaning is a belief or a set of beliefs. A camivative gesture can be
presented as a signal which aims at transmittimgesmeaning. In the process of
analyzing individual person communicative gestungs, process the video of a
person who is communicating with others. After sl we define the human
expressivity based on the hand motions during comcation.
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2.3 Gesture Expressivity

In face-to-face communication, body language canvep up to 55 % of the
information on feelings and intentions (Mehrabian\&ener, 1967).According to
Mehrabian, among channels can convey feelings: svaatount for 7%, tone of
voice accounts for 38%, and body language accoimmt$5%. They are often
abbreviated as the "3 Vs" for Verbal, Vocal & Vikugacial expressions are a great
mean to express emotions (Ekman, 1982). He stas¢some facial expressions of
emotion are not culturally determined, but univeesaoss human cultures and thus
biological in origin. Some studies (Boone & Cunrhiagn, 1998) (Meijer, 1989)
decode the emotional states from expressive bodyements. These studies reveal
that how body expressions play a role in reflectmgexpressivity of a person.

Expressivity is also present how body gesture idopmed. One of the most
influential systems for describing the body gestame its transcription came from
sign language studies. During 1960’s William Stok(#960) first analyzed
American Sign Language (ASL) sign in terms of a lbis@t of parameters namely
hand shape, hand movement and hand location. b#ter parameters like, hand
orientation, wrist orientation and arm position e@dded (Klima & Bellugi, 1979)
(Prillwitz, Leven, Zienert, Hanke, & Henning, 1989)his way of analyzing sign
language is also used to analyze gestures. Latgra@l gestures came to limelight
by other researchers (McNeill, 1992) (Kita, GijnHlst, 1998) (Kendon, 2004).

A gesture has an excursion, from when the hancekeds resting position and up
to its coming back to it. According to Efron’s (194gestural theory, all gestures are
classified in three phases videlicet preparatitnoke and retraction. The stroke is
always necessarily present, and it is the phasieeoéxcursion in which the shape of
the gesture and the movement dynamics are cleand@fe 2004) Several
researchers (Wallbott & Scherer, 1986), (Gallai®&92), (Ball & Breese, 2000),
(Pollick, 2003) have investigated human motion abtaristics and encoded them in
to dimensional categories. Some authors refer tty Inaotion using dual categories
such as slows fast, smallvs expansive, weak's energetic, smalls large,
pleasanvs unpleasant. Bevacqged al. (2007) define expressivity of behavior as the
“How” the information is communicated through theeeution of some physical
behavior.

2.3.1Expressivity — Psychologists Views

Dancers show their expression in hand motions wialecing. Their hand motions
have lot of variations they dance. They also usedammunicate some message
while dancing. Laban (1960) created a way and laggufor interpreting,
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describing, visualizing and notating all ways ofnrfan movement called Laban
Movement Analysis (LMA). LMA is composed of five a components namely
body, space, effort, shape and relationship. Bahlsowith which body parts move,
where the movements initiate and how the movemprdasls through the body.
Space describes how large the mover's kinespramd what crystalline form is
being revealed by spatial pathways of the movent&mpe describes the changing
forms that the body makes in space while efforbimes the dynamic qualities of
the movement and the inner attitude towards usimeggy. Relationship describes
modes of interaction with oneself, others, andaheironment. Each individual has
their own unique repertoire and preferences forlmaations of these basic elements
which can be sequences, phrased, patterned andyocdganized together in a
particular personal and artistic way.

Modern Psychological and a virtual human animatesearches on hand gestures
are based on systematic observations or experincemucted by Efron (1941).
According to Efron’s gestural theory, in the pregiem phase, the hands are raised
to the location where the gesture begins. In thekstphase, the actual gesture is
performed and the hands relax and fall back toréséing places in the restoration
phase.

Johansson (1973) worked with Moving Light DispléyH._D) affiliated with body
parts showed that observers can almost identifiebbdical motion patterns right
away even when presented with only few of theseingpdots. MLDs generate
robust shape from motion cues that allow identisnder, emotions and personality
traits. This raised the question whether recogmitf moving parts can be achieved
directly from motion, without structure recovery.

Wallbott and Scherer (1986) classified the bodighévior using five criterions:
slow or fast, small or expensive, weak or energstitall or large movement activity
and unpleasant or pleasant. Behavior expressiasyldeen correlated to energy in
communication, to the relation with characteristiad gestures and/or
personality/emotion. Wallbott (1998) asked actawspbrtray fourteen different
emotions for a given scenario. He aimed at charaoig emotions based on
specific body movement and posture. A coding schénaody movement and
posture was designed. Movement for each anatomy pad (hand, arm, head,
shoulder, and upper body) is encoded as well ament quality. For upper body,
three dimensions are annotated namely ‘movemenmtitgct(overall quantity of
movements), ‘expansiveness/spatial extension’ (@dfybparts), and ‘movement
dynamics/energy/power’ (of body parts). Totallyrthare twenty six categories in

! Kinesphere: the area that the body is moving witrid how the mover is paying
attention to it.
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the annotation schenf&om the analysis of the annotation it was appdteattmost
of the categories (seventeen in total) served fferdntiate emotiondn particular,
the three movement quality dimensions showed scgmf differences for the
fourteen emotiongzor example, the emotion ‘boredom’ is shown by loavement
activity, un-expansive movements, and low movenagnaimics, while ‘elated joy’
is characterized by high movement activity, expamsmovement, and high
movement dynamics. This shows human movements enooad only content
information (information communicated through gestahape) but also emotional
information (the how it is communicated, the manofezxecution).

McNeil (1992) explains gestures plays a major tméwveen our conceptualizing
capacities and our linguistic abilities. Humans aseery wide variety of gestures
ranging from simple actions of using the hand tinpat objects to the more
complex actions that express feelings and allowrnamcation with others.

Allport and Vernan (1933) consider three main fesguto describe gesture
expressivity, namely an aerial factor of broad usrgonstricted movements, a
centrifugal factor of movements away from the bodgsus towards the body and an
emphasis factor of forceful versus weak movemarierdindividuality differences
are found between subjects performing differerk.t8sit there is also a lot of intra
individual consistency: individuals showed the sabehavior quality over the
different tasks they performed.

Gallaher (1992) found consistencies in the waypjetehave. She conducted
evaluation studies in which subject’s behaviorestybs evaluated by friends, and by
self-evaluation. In a first study (Gallaher, 199#)e evaluated many characteristics
of behavior: tendency to use body, face, headugestqualities of movement, like
fast-slow, small-large, smooth-jerky, etc. In tBaudy friends are asked to observe
subjects and rate their behavior styles (alongt@®s) and personality traits (24
items). Gallaher performed a factor analysis watopaed on the two sets of items.
Four dimensions were retained: ‘expressivenessiniation’, ‘coordination’ and
‘expansiveness’. ‘Expressiveness’ embodies facoch as quantity and variation of
movements; ‘animation’ is associated with adjedigeich as ‘lethargic-animated’
and can be related to tempo-velocity; ‘coordindtisncorrelated with ‘jerkiness-
smoothness’ and ‘awkwardness-gracefulness’; angaesiveness’ is linked to the
guantity of space. The person's behavior tendenay shown to be an innate
individual characteristic that the author claimedbe a personality trait. In the
second study she investigated the consistencypefson's behavior across time and
situations. Results demonstrated this consistgmayple that are quick when writing
have a tendency to be quick while eating; if a pensroduces wide gestures then
she also walks with large steps. Energy of movemast also an enduring

24



characteristic, constant over time. This shows lthimhan movements are consistent
and irrespective of actions what they do.

2.3.2 Expressivity — Computer Scientists Views
2.3.2.1Understanding Human Motion

Gestures can be acquired using electromagnetioseosupled with instrumented
gloves to acquire gesture. In kinesiology the ge#b develop human body models
and explain its mechanical functions and how onghinincrease its movement
efficiency. A typical procedure involves obtainir®D joint data, performing
kinematic analysis, and computing the correspondorges and torques for a
movement of interest (Calvert & Chapman, 1994). ddia is typically obtained in
an intrusive manner, e.g., by placing markers erhtihman body.

Polana and Nelson (1994) referred to “getting yman without finding his body
parts.” Models for human action are then describestatistical terms derived from
these low-level features or by simple heuristidse @pproach without explicit shape
models has been especially popular for applicataisand pose estimation in sign
language recognition and gesture-based dialoguageament.

The character of gestures during communicationthedmeaning it conveys are
addressed by Zhao’s (2001). He approached thergeahalysis on the basis of
LMA and its effort and shape components. He usddrtefjualities and their
combinations as a set of higher level featuresteiracted for feature acquisition.
For each effort dimension, dedicated neural netvi®donstructed. Each network is
trained, validated and tested over a number ofanadeamples. His research result
says all the trained networks have a demonstratedracy of about 90 % in
recognizing effort motion qualities for a group péople who deliberately made
these expressions.

Camurri et al. studies (2003) illustrate analysis and classikeainf expressive
gesture in human full-body movement and in paréicul dance performances. They
aim at (i) individuating motion cues involved inma@ying the dancer’s expressive
intentions (i) measuring and analyzing them ineortb classify dance gestures in
term of basic emotions, (iii) testing a collectioh models and algorithms for
analysis of such expressive content by comparingir tiperformances with
spectators’ ratings of the same dance fragmensy Tiked 4 layered approaches to
model human movement and gesture, from low-leveisiglal measures. Their
analysis raised the hypothesis that the emotioagoaies can be differentiated by
movement cues and that they are in line with thennmmedicted associations
between emotion and movement cues.
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For interpreting hand gestures, Quek (1995) usepeshand motion features.
According to Quek, during the hand motion individtiagers don’t contribute for
hand gesture interpretation in gross motion. Onaler hand, gestures in which
fingers move with respect to each other will befgrened with little hand motion.

2.3.2.2Style and Content Separation by Low-Dimensional
Mapping

To our knowledge, Tenanbaum and Freeman (2000) thergrst who addressed
style and content separation. They considered hainalyv style, recognizing a
familiar face or object seen under unfamiliar viegvconditions and familiar words
spoken in unfamiliar accent. They model the mappimgn style and content
parameters to observations as a bilinear mapping.approach is also related to the
“learning-to-learn” (Thrun & Pratt, 1998) researplogram also known as task
transfer or multitask learning. Defining “learnibgHearn” is that learning problems
often come in clusters of related tasks, and teamkrs may automatically acquire
useful biases for a novel learning task by trairongnany related ones. Tenanbaum
and Freeman work focuses on how learners can éxpmistructure in families of
related observations, bound together by their stylk content interaction.

Tenanbaum and Freeman model the mapping from ahdecontent parameters
to observations as a bilinear mapping. They usexdkiwwds of bilinear models in
their research namely symmetric bilinear model asyimmetric bilinear model.

In the symmetric model, they represent style amdtent as vectors in
observation space. In the observation space, wéigiction acts as a bilinear map
from style and content to observation space. Thensgtric model exactly
reproduces the observation when the dimensiomaliiestyle and content are equal.
The model provides coarser but more compact reptasens as these
dimensionalities are decreased.

Sometimes linear combinations of a few basis stiamed during training may
not describe new styles. So it leads to go for asgtrical bilinear model. The
asymmetric model’s high-dimensional matrix repréggon of style may be too
flexible in adapting to data in new styles and aarsupport translation tasks.

Even though they define these bilinear models tfeg style and content
separation in four different applications as wedsaarlier, our interest lies in
handwriting style and content separation. They udifiérent style fonts for the
separation of style and content. They showedpbssible to learn the style of a font
from observations and extrapolate that style t@engdetters, using a bilinear model.
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In a nutshell, Tenanbaum and Freeman work showe atyd content (alphabets)
can separate from hand written characters basedmathematical model (bilinear
model) and it needs to be further improved in teohéigh dimensionality and a
priori constraints in model parameters.

2.3.2.3Stylistic Motion Synthesis from Human Motion

The problem of stylistic motion synthesis is addegsby Brand and Hertzmann
(2000) through learning motion patterns from a hjigharied set of motion capture
sequences. Learning identifies common choreograplleiments across sequences,
the different styles in which each element is penfed. The learned model can
synthesize novel motion data in any interpolatioexdrapolation of styles.

Style is varied in the mapping from qualitativetssato quantitative observations.
They use Hidden Markov Model (HMM), state spacergspntation to make style
distinction. State space representation has a Gaudistribution over a small space
of full body poses and motion which is added tokidM a multidimensional style
that can be used to vary Gaussian parameters ingsift stylistic HMM called
“Style Machine”.

They encoded style specific HMM by state meansasgjuoot covariance’s and
state dwell times. New styles are generated bypotation and extrapolation within
the space. The dimensionality of the space is estlury Principal Component
Analysis (PCA), treating each HMM as a single obaton and the generic HMM
as the origin. Typically, only a few stylistic degs of freedom (DOFs) are needed
to span the many variations in the training set énede become the dimensions of
the style.

The algorithm automatically segments the data,tifies primitive motion cycles,
learns transitions between primitives and iderdiftae stylist DOFs that make
primitives look quite different in different moticzapture sequencestyle machines
are generative probabilistic models that can sitleedata in a broad variety of
styles, interpolating and extrapolating stylistariations learned from a training set
which is shown in Figure 2-1. This work gives usid®a how stylistic motion can
be synthesized in different varieties captured freal human motion.
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Figure 2-1 Different styles synthesized from the nmt@mn sequences. Five motion sequences
synthesized from the same choreography, but in diéfent styles(one per row). The actions,
aligned vertically are tiptoeing, turning, kicking and spinning. The odd body geometry reflects

marker placements in the training motion capture (Band & Hertzmann, 2000).

2.3.2.4Style and Content Separation using Dimensionality
Reduction

Later, Elgammal and Lee (2004) proposed to sepatgte and content through
non-linear dimensionality reduction. Elgammal anekldescribed human motion
such as gait, facial expression and gesturing,omlimear manifolds. They aim at
separating style and content on manifolds represgdiynamic objects from human
silhouette through the walking cycle for their espents. Given several sequences
of walking silhouettes, with different people walgidecomposing the intrinsic body
configuration through the action (content) from thppearance of the person
performing the action (style).

According to Elgammal and Lee, style is time-ingati personal feature and
content is a representation of the intrinsic bodwgfiguration characterizes activity.
They represent content in continuous domain ankg ssyrepresented by discrete
style classes. They adapted the Local Linear Embgddramework, the
neighborhood of each point is determined by itsrestaneighbors based on the
distance in the input space and their objectivi® iBnd such weights that minimize
global reconstruction error.

They used three dimensional embedding, since thithe least dimensional

embedding that can discriminate the different bpdges through the cycle. They
used nonlinear dimensionality reduction approackescapture the manifold
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geometry. After determining various people maniolthey used LLE to embed
different people manifolds. Given learned nonlineepping coefficients, the style
parameters can be decomposed by fitting an asynumgitmear model to the
coefficients.

Person | style

CERRAAARRRRRRDDY

Person 2 style

LEEAAXAARRRERELY

Person 3 Style

LELLEARAARRLRDL

Interpolated walks at intermediate styles:
0.5 person | + 0.5 person 2

CELRAAAARRRRRLL

0.5 person 2 + 0.5 person 3

LELLLAAARRRLLLL

0.5 person 1 + 0.5 person 3

LELLARRARRRLRED

Figure 2-2 Interpolating styles and contents (Elgamal & Lee, 2004)

Elgammal and Lee learnt a decomposable generativdeimthat explicitly
decomposes the content as a function of time froenappearance (style) of the
person performing the action as time invariant peter. This framework
decomposes style parameters in the space of nanlinections that maps between
a learned unified nonlinear embedding of multipd@tent manifolds and the visual
input space.

The lesson learnt from this work is, based on sidtte analysis we can separate
style and content on manifolds representing dynamhjects. Elgammal and Lee
create styles from different style (Figure 2-2.)sTWwork addresses style and content
separation for repetitive actions by combining aicfebase styles like walking. It
doesn’t address non repetitive gestures such asmoarative gestures.
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Urtasunet al. (2004) defined style based motion synthesis. Timeygeled the
specific style of an individual whose motion had et been recorded through
linear sums of principal components. They have gl a real time motion
generation technique that allows them to generhge rhotion of a particular
individual performing parameterized displacemeirivdies. More specifically, they
have investigated the case of walking, running amdping. The first two are
cyclical and parameterized by speed. The third @engump is noncyclical and
parameterized in terms of its jump length. Giver smgle example, they modified
the speed, length or body size while preservingritividual’s specific style.

Instead of capturing full motion for each time #operson, in this work (Urtasun,
Glardon, Boulic, Thalmann, & Fua, 2004) they extahd Principal Component
Analysis (PCA) approach so that motion capturerastically faster. In the whole
classes of cyclic and non cyclic motions such aking, running or jumping, it is
enough to observe a person moving only once atrécpar speed or jumping
particular distance using either an optical motiaptures system or a simple pair of
synchronized video cameras.

They generate motion as a two step process. Enesy, project the new captured
motion into the PCA space and measure its Mahalartbtance to each recorded
motion corresponding to the same speed or jumptheihe generated motion is
then taken to be a weighted average of motionkseatarget speed with the weights
being inversely proportional to those distances phnciple for generating stylistic
motion is identical. The new stylized motion is jeted into the motion database.
Weights are then computed based on the Mahalawmidtisnce and used to create
the same style at a different speed. Figure 2-3ctde@m sneaking motion at
7 km/h generated by using a single example at mb kand the standard walking
database.

Figure 2-3 Generation of Stylized motion (UrtasunGlardon, Boulic, Thalmann, & Fua, 2004)
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In this method they have validated only three dmedyclic and non cyclic
motions. Other kinds of motions are not experimeéniehis system uses motions
that can be captured on a treadmill like straigie motion sequences other motions
such as curvilinear motions are not consideredesihds not captured through
treadmill. The motions they considered are lineatioms, for non linear motions
PCA approach is not suitable.

Wang et al. (2007) used multi-factor Gaussian process modaissfyle and
content separation in human motion. They develapelli linear models using non
linear basis functions for human locomotion data/imch each pose is generated by
factors representing the person’s identity, gad #re current state of the motion.
They applied the multifactor model to human motilata consisting of sequences of
poses. A single pose is represented as a featuB® afimensions, including 43
angular DOFs their velocities, and the global taisnal velocity. For any
particular motion sequence, it is assumed thae fftdys constant over time. They
approached this problem in two ways namely Gaud3raness dynamics and Circle
Dynamics Model (CDM).

They do not constrain corresponding poses in diffesequences to share the same
content because prior knowledge of the exact cporedences is not assumed. It is
desirable, to restrict the content of differentlesyto lie on the same trajectory,
especially for motion synthesis. Wargal. (2007) demonstrates the ability of the
model to generate smooth transitions from walkmgunning and from running to
striding. The transitions are generated by lineartgrpolating the gait vector with
respect to the changing state vector. The subjectov is fixed to a particular
person.

Figure 2-4 Transitions between different motions ag@ achieved by linear interpolation
(Wang, Fleet, & Hertzmann, 2007)

Later Wanget al. (2008) analyzed the human motion through non fiealysis.
They used Gaussian Process Dynamic Models (GPDKMnhdm linear analysis.
They learn models of human pose and motion frondiB@&nsional motion capture

31



data using GPDM. GPDM represents 50 dimensionailomatapture data in low
dimensional latent space with associated dynamgsyell as map from the latent
space to observation space. This results in a @aoangetric model for dynamical
systems that account for uncertainty of the mddekpite the use of small data sets,
the GPDM learns an effective representation ofnihre linear dynamics in the latent
space.

2.3.2.5Separating Style based on Time Invariant Model

Hsu et al (2005) proposed to transform the style of humaotion while
preserving its original content, by aligning mosoand linear time invariant model
(LTI) to represent stylistic differences. For twations in different styles typically
contain different poses, Hset al propose iterative motion warping, which
automatically computes dense correspondences hetwgegdistically different
motions. Motion warping demonstrates that many atemms in motion can be
modeled by smooth spatial distortions of individdegrees of freedom.

This method uses a LTI model to approximate thatigship between the input
and output styles. Once the parameters are estnieim the training data, the
model translates new motion with simple linear $farmations. The output retains
the content and the detail of the original input, @iffers in its style of execution.

AALERRRRREERRRA
FEEREERASSEARARS
ARFETERTTRRRARAA

Figure 2-5 Style translation system transforms a nonal walk (TOP) into a sneaky crouch
(MIDDLE) and a sideways shuffle (BOTTOM) (Hsu, Puli, & Popovi¢, 2005)

They conducted some experiments using this algorithhe data set contained
various stylized locomotion and each style is penfed in slow, medium and fast
speeds. The results of this algorithm, iterativetiomo warping gave consistently
better results which are shown in Figure 2-5. Toerdinates of the motions were
then interpolated and extrapolated to allow fortocwous control of style and speed
parameters.
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Human identification based on gait analysis hasnbealely studied (Lee &
Grimson, 2002) (Chellappa, Roy-Chowdhury, & Kal®02) (Ekinci, 2006) Gait,
which can be regarded as a walking style, doesegpmformation on the identity of
a person.

Mancini et al. (2007) map acoustic cues and emotion to expréggparameters
they use to control the expressive virtual head tbé Greta Embodied
Conversational Agent (ECA). Pelachaud and PoggdZp0aim at combining the
Greta facial expressions in a complex and subtlg, wast like humans do, by
assessing and managing the multimodal communicabavior of a person when
different communicative functions have to be digpth at the same time.
Pollick (2003) points out limits of dissecting mowvent features and ascribing
discrete values to movement frequency and speedddggree and manner in which
this style is dependent on spatial and temporabding is not trivial and varies
between different movements.

2.3.2.60n-line Motion Style Transfer

Wu et al (2006) propose a fast and convenient algorithimhtonan-motion style
editing. They define the style of a motion as statiproperties of mean and standard
covariance of joint quaternion in 4D unit spheracg Their algorithm can transfer
the style of a motion to another by transferringst properties.

The goal of their approach is to transfer the stflthe reference motion po the
source motion M producing a target motion{MThe target motion can preserve the
details of the source motion and can inherit tiygestf the reference motion. Their
approach is shown in Figure 2-6.

Reference Motion Mg

¥ wation

Post

Processing

Tirme Warping o Style
Transfar

v

¥

Source Maotion Mg —® Target Motion MT

Figure 2-6 Wuet al. (2006) Approach

Ms and Mk are input directly into the time warping module getup frame
correspondence. Then, the time-warped motions adeirito the statistic style
transfer module for style transferring. In the poicessing stage, they apply a
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reverse time warping to obtain target motior. Mhe obtained target motion will
have the style of the reference motion and predfeveetails of the source motion.

They define the style based on Reigéiaal. (2001) work. Reighaet al. define the
style of an image as the mean and standard coeariahcolor components in a
linearized space, and has successfully transféenedtyle of an image to the other
by transferring the mean and standard varianceoloir components in this space.
Using this definition, Wu et al. transfer the matistyle by modifying the mean and
variance of the source motionsMiccording to that of the reference motior.M
They apply this algorithm in quaternion domain atdained smooth results. Their
results are shown in Figure 2-7.

From this work, we see that style is defined bas@dmage processing approach
and it is applied to the full body motion. Also ghapproach cannot be applied to
transfer style between figures that do not haventidal structures. The style is
defined through low level parameters joint angles.

Figure 2-7 Transfer the “stealthy” style of a walkihg motion (middle) to another walking
motion (top) produces a new “stealthy walking” moton (bottom).

2.3.2.7Expressive Animation

We start our discussion with how complex human amoti
(e.g., dancing) is synthesized and then proceedwvitim available methods to
animate the human motions in virtual environmemthie end we will finish up with
how these animation methods bring style and ematidine virtual character.
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There are many works aiming at generating modiéieitnations based on motion
capture data. Liet al. (2002) propose a technique called motion textwe f
synthesizing complex human figure motion that adistically similar to the original
motion capture data. They describe motion textsra @et of motion textohsnd
their distribution which characterize the stoctasind dynamic nature of the
captured motion. They define motion sequence irggnments, such that each
segment can be represented by one of the textomdtipM textons could be
represented by the same texton. A motion textoepsesented by a linear dynamic
system (LDS) that captures the dynamics sharedl lnystances of this texton in the
motion sequence. Once the motion texture is led@rogn be used for synthesizing
novel motion sequences. The synthesized motiontasstscally similar to, yet
visually different from, the motion captured dafhis model enables users to
synthesize and edit the motion at both the texémelland the distribution level.
Synthesized motion is shown in Figure 2-8.

Figure 2-8 This 320-frame sequence of dance motias choreographed from (1) the starting
frame, (2) the ending frame and (3) the learnt motin texture from motion captured dance data.
Four motion textons are generated from the motionexture and then used to synthesize all the
frames in this sequence. A number of key frames aralso shown in the figure to demonstrate
that the synthesized motion is natural, smooth andealistic (Two red lines indicate the
trajectories of the right hand and right foot) (Li, Wang, & Shum, 2002).

Kopp et al (2003) explained a virtual agent can imitate aedognize natural
gestures performed by a human using marker mo@amtuce. The imitations have
two phases. In the first phase, the agent extauisreproduces the essential form
features of the stroke which is the most importgsture phase. The second phase is
the meaning based imitation level that extractss#raantic content of gestures to re
express them with different movements.

Arikan and Forsyth (2002) developed a method feomatic motion generation at
interactive rates. They establish high level caists and a random search

2 Textons refer to fundamental micro structure cosegoof local image features ,
are “the putative units of pre-attentive humanuexiperception” (Julesz, 1981).
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algorithm is used to find the right pieces of motatata to fill in between. Close to
their work, the concept of a motion graph (KovateiGher, & Pighin, 2002) is
defined to enable one to control a character’'s romimn. The motion graph
contains the original motion and automatic geneérdtanslations and allows the
user to have high level control on movements oftctieracters.

Lee et al. (2002) developed a new technique to control aaddtar in real time
using possible interfaces. They aim at obtainirrgcla set of avatar behaviors is to
collect an extended, unlabeled sequence of motiata dippropriate to the
application. So they developed a method for suchhaion database and it's
preprocessed for flexibility in behavior and eféint search and exploited for real-
time avatar control. Three interfacing techniques used to control avatar motion
using the data structure videlicet user selecokavailable choices, user sketches a
path through an environment or acts out a desireiiomin front of a video camera.
All three interfaces are tested and shown in FiQuge

Figure 2-9(Top Left) Choice based interface. (Top BRht) Sketch based Interface. (Middle
Left and Bottom Left) The user performing a motionin front of a video camera and her
silhouette extracted from the video. (Middle Rightand Bottom Right ) the avatar being
controlled through the vision based interface andte rendered silhouette that matches the
user’s interface (Lee, Chai, Reitsma, Hodgins, & Rlard, 2002)
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This method gives us an introduction, how the heahan motion can be brought
in the virtual environment as personalized avatarghis work, they showed how to
handle the motion capture data in terms of humdmaver. This work will be the
starting point in deriving identity and mood ofest human in virtual environment.

From the results, sketch based interface is easgda@and responds instantly to the
user input by finding a matching action and updpatime display while the path is
being drawn. Sometimes, the sketch-based intenfea® not able to distinguish
different styles. In the case of vision based fatz, the silhouette comparison
usually can discriminate different styles. If theeu acts out a motion that is not
available in the database, the system selects mthtad looks similar.

Any of the above techniques would be appropriaterwthe user has a large
database of movements.

The emotional state of a person can be recognized facial expressions. It is a
combination of sadness, anger, worrying, unceggalmppiness and surprise (Poggi
& Pelachaud, 2000). Pelachaud (2009) developed deinthat is based on
perceptual studies and encompasses several pararnteé modulate multimodal
behaviors. This emotional state of the person $e alrried out based on bodily
motion (Niewiadomski, Hyniewska, & Pelachaud, 2009)

In the process of animating quality human moveme@ts et al. (Chi, Costa,
Zhao, & Badler, 2000) proposes a method that allammators to enhance the style
of pre existing motions in a natural way. They ubke principles of Laban
Movement Analysis to create a new interface for d@pglication of the particular
gualities movement to movement.

Ball and Breese (2000) work gives correlation betwdemporal and spatial
tendencies in gesture/posture and personality/emeti movement frequency and
speed were related to emotional arousal, as wasizbef overall body outline.

We started to discuss how human motion is brougktte virtual environment and
within the next section we address how the idergitg mood of a real human can
be brought in a virtual agent.

2.4 Expressivity Parameters

Computer scientists (Hartmann, Mancini, & Pelachag@05) (Poggi, 2001)
designed bodily expressive virtual agent basedhenpsychologists study. This
helps us to design the virtual agent with high leparameters. They present a
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computational model of gesture quality. Once aatenjesture has been chosen for
execution they characterize bodily expressivityhwé small set of dimensions
derived from a review of psychology literature (Watt, 1998).

Based on the introspection and observational stuBlieggi (2001) proposed to
analyze the gesture movement based on followingnpeters.

a) Part of the hand or arm involved — different partghe limbs may be
involved in the gesture movement. For example,rgp$mo” by shaking
only the index finger with still fist is less intes than shaking it along
with the whole fist, or even with the entire fonear

b) Direction — the point in the space toward which ¢festure is directed.
Forward, backward, outward, inward, upward, dowmvand their
combinations.

c) Path — the route of a gesture outlines in spacaigbt, oblique, circular,
half-circular, thrumming, oscillation, etc.,)

d) Size — how large is the movement in width (longyrgmarrow)

e) Pressure — the strength of the movement, whichuded three sub
parameters:

1. Tension — the muscular tension of the hand or arperforming
the movement (tense, normal relaxed)
2. Impact — the way in which the gesture stops atethé of the
movement ( block, normal, skim)
f) Tempo — the set of temporal features of tbeement, that can be
distinguished in to three categories namely
1. Duration - how long the movement lasts (long, rarm
short)
. Speed — how speedy the gesture moves (fast, stomat)
3. Rhythm - if and how the gesture is repeated andvlich
rhythmical structure.

Hartmannet al., (2005) characterize expressivity for human bodilgvement
based on perceptual studies conducted by Walld®®g) (1985), Wallbott and
Scherer (1986) and by Gallaher (1992). Their apgraa driven by a perceptual
stand point — how expressivity is perceived by mh&o their work focuses on
surface realizations of movement and do not atteimphodel underlying muscle
activation patterns. They define an intermediatell®f behavior parameter as a
useful enabling tool to facilitate the mapping alistic, qualitative communicative
functions such as mood, personality and emotidowolevel animation parameters
like joint angles. On the basis of these literatutartmanret al., (2005) proposed
six dimensions that characterize expressivity ialidative terms. They are:
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a) Spatial Extent — amplitude of movements. That isangity of space
taken by a body part (how extended are the armsls dimension is
related to the dimension ‘expansiveness/spatiaénskdn’ defined by
Wallbott and to the ‘dimension expansiveness’ bjlabar.

b) Temporal Extent — Velocity of execution of a moverne (how fast or
how slow an arm moves). It is related to the ‘ariom factor of
Gallaher.

c) Power — Dynamic properties of the movement m (weakstrong). It is
related to the degree of acceleration of body pétrisorresponds to the
dimension ‘movement dynamics/energy/power’ defihgdVallbott.

d) Fluidity — Level of continuity of successive moveme (jerkyvs.smooth
movements). It is similar to the ‘coordination’ ddrrsion defined by
Gallaher.

e) Overall Activation — Overall quantity of movemem a given channel
for the whole animation (many hand gestwsaone, passive / static or
animated / engaged). This dimension embodies similarmation as the
‘expressiveness’ dimension defined by Gallaher.

f) Repetition — Tendency to rhythmic repeats of speafovements. This
dimension is newly added.

Each of the parameters except repetition is fladied and defined over the
interval
[-1, 1], where zero point corresponds to the actthout expressivity control.
Repetition parameter has the values of 0, 1 and 2.

2.4.1Related works on Expressivity Parameters

Castellano and Mancini (2009) analyzed the emotiogestures through
expressivity parameters and animated the emotgestlires in an embodied agent.
Their system allows for the real-time analysis ofmMan movement and gesture
expressivity and the generation of expressive caphiehavior in an agent which is
shown in Figure 2-10. Their system two differerdatfdrms: EyesWeb (2004) and
Greta.

EyesWeb is used track the human motion and EyesWgiyessive Gesture
Processing Library is used to extract the expressmtion cues. Similar to the
expressivity parameters (Hartmann, Mancini, & Pedacl, 2005) they used
contraction index (ClI), velocity, acceleration dfdidity based on Wallbott’'s work
(1998).
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Figure 2-10 Architecture of Castellano and Manciris (Castellano & Mancini, 2009) system.

Human motion is tracked continuously through EyesWdey do not segment the
human movements but they segment the gestures lmasditne window. They
define a time window at the end of which they s#relcomputed motion cues from
EyesWeb to the rest of the system. The duratidhe time window corresponds to
the duration of a gesture performed by the agent.

After extracting expressive motion cues in realetirtheir system associates them
with emotions joy, anger or sadness. Based on \M#Bbstudy (1998) they defined
correspondences between expressive motion cuesmations. They do linear
mapping between contraction index, velocity, aacegien, fluidity and spatial
extent, temporal extent, power, fluidity of Hartménet al. (2005) expressivity
parameters. With the mapped values as input toGteta, the virtual agent is
animated.

They conducted perceptual study to evaluate tratimation. In their test, they
evaluated the three different emotions, joy, arayet sadness. They selected videos
from GEMEP corpus (Banziger, Pirker, & Scherer, @&00n which two persons
showing these emotions separately, totally 6 videgesselected for perceptual study.
In their study, twelve users are asked to obsdreeahimated movements and asked
to choose an emotional label (joy, anger or sagnésser's emotion recognition
rated 83.3 % for joy and anger and 70.8 % for ss&lfm the Greta animated virtual
agent.

In their work, the EyesWeb parameters (ClI, velqaiyceleration and fluidity) are
evaluated for the discrete motions. Discrete mati@me made based on time
window, not based on gesture segmentation. They ainreplicating human
emotions such as joy, anger and sadness in thealVisigent. This work doesn’t
concern about the style of the person.
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Caridakiset al. (2008) work is about multimodal and expressivetlsgsis on
virtual agents, based on the analysis of actiomfopeed by human users. They
consider image sequence of recorded human behasiorput. They analyze both
facial and hand gestural aspects of the user’s viimhdor the multimodality
approach. We are interested in their hand gestam@scking.

Hand motion tracking is starts with identifying sktolor from the input image
sequence. They create moving skin masks and skin aeas are tracked between
subsequent frames. By tracking centroid of thosen skasks, they produce
estimation for user movements. The tracking albarits responsible for classifying
the skin regions in the image sequence of the en@ingesture based on the skin
regions.

They use Hartmanat al. (2005) expressivity parameters because it tacklethe
parameters of expression of emotion. They impleeterilve of Hartmanret al.
(2005) parameters such as overall activation, apatitent, temporal extent, fluidity
and power.

They estimate overall activation from actor (reahtan who performs gestures) as
sum of motion vector’'s norm. Spatial extent is agkdted as the maximum Euclidean
distance of the position of the hands of the aciar.extract fluidity from input
image sequence, they calculate the sum of thenaaiaf the norms of the motion
vectors. Power is calculated from the derivativéhef motion vectors.

They considered twelve actors gestures as inputgemsequence for their
experiments. These actors performs single emotigesiure namely bored, wave,
explain, clap, raise hand, and ‘leave me alonél,rfty god'.

Expressivity parameters are estimated from thesstiens and fed as input to the
Greta gesture engine to replicate the actor’'s gesfitheir architecture is shown in
Figure 2-11.This work aim at replicating human @asi with expressivity.
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Figure 2-11 Architecture of Caridakis & al (2008) system.

2.5 Customized Virtual Agents

A number of platforms ( IMVU, Inc.) (Linden Reselydnc) allows us to animate
an avatar, but only few virtual agents (Noot & Rait, 2005) (Hartmann, Mancini,
& Pelachaud, 2002) have high level interface fopressivity control. We will
elaborate the architecture and its sample imag#sgrsection.
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2.5.1Virtual Agent Based on GESTYLE Language

Noot and Ruttkay (2005) proposed Gesturing StylESGYLE) language that aim
at non verbal expression. It is a markup languagenhotate text to be spoken by an
ECA, to prescribe the usage of hand, head andlfgestures accompanying the
speech in order to augment the communication.

GESTYLE language is written based on XML definesatvigestures an ECA
“knows”, and what are the habits of using thesetuges, concerning intended
meaning, modalities and subtle characteristice (&khnicity and personality of the
ECA) of the gestures. In their language high le¢agk are used to define style for
ECA and the appropriate gestures to be performégh Hvel tags are profession
(carpenter, surgeon, etc.) and culture (Americalu® Japanese culture, etc.).
GESTYLE is hierarchically organized as basic gestuand composite gestures.
Composite gestures are formed by combing two orentm@sic gestures through
gesture expressions. In the next level, the mearlagote the communicative acts
which can be expressed by some gestures. A meain@pped to one or more
gesture expressions, each specifying an alternatiyeto convey the same meaning.
The mappings of meanings to alternatives of gestare given as entries of style
dictionaries. A style dictionary contains a collent of meanings pertinent to a
certain style.

In GESTYLE language the style of the ECA is definedsed on gesture
expressions which are established on style dictiesaThe style dictionaries are at
the core of GESTYLE: they are crucial in the spgeatfon of different styles. In a
style dictionary, the characteristics are given &or individual: professional or
cultural group, or people of certain age, sex os@aality. The expressive gestures
are predefined in GESTYLE based on style dictiasarAnd this style dictionaries
is not universal, which is to be modified basedanneeds. Virtual agent generated
through GESTYLE language is shown in Figure 2-12.

More importantly GESTYLE, XML based markup languaged it is not
implemented in real time. Even though its architeetis completely defined, the
real time implementation and testing with real hansanot done.
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Figure 2-12 Sample stills of virtual agent which igenerated using GESTYLE which are taken
from a longer demonstrator for GESTYLE which renders in VRML and in the STEP system
Eliens et al (2002)

2.5.2Greta

Greta (Hartmann, Mancini, & Pelachaud, 2002) is EXDA which is able to
communicate using a rich palette of verbal and edmal behaviors. Greta is real-
time three dimensional female agents, complianth WIPEG-4 animation standard.
She can talk and simultaneously show facial expess gestures, gaze, and head
movements. Two standard XML languages Function Markanguage (FML) and
Behavior Markup Language (BML) allow the user tdime her communicative
intentions and behaviors.

Greta’s architecture is shown in Figure 2-13. Thgie produce animation data in
MPEG-4 compliant Face Animation Parameter (FAP)dpBA&nimation Parameter
(BAP) format which in turn drive a facial and skelebody model in OpenGL.
Gesture engine first performs text to speech camwerthrough ‘Festival’ (Black,
Taylor, Caley, & Clark) which provides necessaryempbmenon timing for
synchronizing gesture to speech.

Communicative function tags which are candidates dgesture matching are
extracted in ‘Turn Planner’. The ‘Gesture Planmedtches communicative function
tags to a library of known prototype gestures alsd achedules rest phases when
arms are retracted to the body. The ‘Motor Planrbken concretizes abstract
gestures by calculating the key frame joint angled timing, Finally, a bank of
different ‘Interpolators’ generate in between frane complete the animation.
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Figure 2-13 Greta Architecture outline (Hartmann, Mancini, & Pelachaud, 2005)

Using the Hartmann’st al. (2005) expressivity parameters, the intermediatep
are calculated from the key frames. Greta gestarescustomized by the input
expressivity parameters. Some examples of Gre@a dad body pose is shown in
Figure 2-14. Even though there are six expresspaiameters we explain two basic

Hartmann’set al. expressivity (2005) parameters namely spatial éxted temporal
extent more in detail.

Figure 2-14 Examples of Greta gestures and faciakpressions (Pelachaud, 2005)
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2.5.2.1Spatial Extent

Spatial extent describes the space used by a pEnsarmaking gestures. Hartmann
et al. define spatial extent as a parameter controllivey denters of the McNeill’s
sectors (1992) where hand movement occurs. Sgadiaht value +1.0 (respl.0)
means the wrist moves further (resp. closer) toctiwdinate origin, which is set at
the sacroiliac vertebra. Minimum and maximum spatident is pictorially shown
in Figure 2-15.

. .. T . .
They replace wrist pOSItI0n$=(px,py,pz) in the neutral spatial extent

. . . T
trajectory with positionsp’ = (py, py, py)

Dy = (1+spPc -Agenty)py

[p)’c =(1+SPC- Agentx)px‘ (2.1)
p, = (14 SPC - Agent,)p,

where.,, ., and.,refer to the lateral, vertical and frontal direasoSPCrepresents
spatial extent. Agent are scaling factors in the respective directionsdus the
Greta animation engine (resp. 1.3, 0.6 and 0.2% reghex, y andz directions and

Spatial Extent = - 1.0 Spatial Extent = 0.0 Spatial Extent = + 1.0

Figure 2-15 Spatial Extent hand variation , (leftyminimum spatial extent gesture, (middle)
neutral spatial extent gesture, (right) maximum sptial extent gesture.

positive SPC and resp. 0.7, 0.25 and 0.25 resp. inxhg and z directions and
negativeSPQ, andSPCis the spatial extent in the rangeL[0, +1.0].

2.5.2.2Temporal Extent

Temporal extentTMP) describes how fast a gesture is performed. Adegrtb
Hartmannet al, (2005) time for performing a gesture is segmeritéd three
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intervals, namely preparation, stroke and retracbtiased on Efran’s (1941) theory.
A stroke is that part of an expressive gesturedbaveys meaning. It is preceded by
a stroke preparation period when the wrist movesnfthe initial position, and
followed by retraction where the wrist returns be trest position after completing
the stroke.

Temporal extent is related to the stroke time wrd@krHartmanret al. derive the
time taken for each segment from a simplificatibrFat’s law (1954) :

T =a+blogy(llxn — Xpsall + 1) (2.2)

whereT is the duration of the stroka,is a time offsetb is a velocity coefficient,
Xn is the wrist positions at stroke staxt;1 is the wrist positions at the stroke end.
The velocity coefficient is defined by Hartmaeial. as:

, _ (1+02 -TMP) (2.3)
10

where TMP is the temporal extent wherel.0 TMP corresponds to lower speed
and +1.0 TMP to higher speeds. The demonstratiomimimum, neutral and
maximum temporal extent values are shown in Figui€. The variation of wrist in
vertical direction with respect to shoulder is show

Stroke shift | velocity
495 top=-1.0 _tmp=0 tmp=10
fq stroke start

15 stroke end

¥ position of wrist w.r.t shoulder [cm]

Frame[#]

Figure 2-16 Temporal Extent - plot of wrist positi;n over time in one dimension.
(Hartmann, Mancini, & Pelachaud, 2005)
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2.5.2.3Repetition

To further increase the realism of gestural perforoe Hartmannet al
(2002)introduced the concept stroke expansion. e@ation of some human
gesturing expresses additional rhythmical emphasiassentence. In these cases, the
first execution of the stroke of a given gesturaiesrits usual semantic function;
afterwards, however, the hand remains in its asdushape and the arm partially
repeats the gesture’s stroke movement to furtheerduate the rhythm of the
associated speech. To measure the rhythmic a pemammeéntroduced as repetition,
which measures the number of time stroke is regeate

2.6 Conclusion

We aim at rendering virtually the gesturing styledamood of a real human.
Psychologists state that gesture expressivity dépem emotions (Wallbott &
Scherer, 1986). It can be described with the gtyaafimovement of hand and head
(Wallbott, 1985) Focusing on hand communicative gestures, relevaation
features are hand motion having quantity and gualit movements that defines
mood of a person. Mood is related to emotions, siscjoy, sadness, fear, anger etc.
that are common to all humans which is not unique thuman being. But the
quality and quantity of hand movements during narbal communication is
consistent irrespective of actions and emotiongfperson (Gallaher, 1992).

From our literature review about human’s arm matsimape and motion features
contribute to gesture expressivity (section 2.3)soAhand configuration doesn’t
contribute to the expressivity of a gesture. Anpothiay of analyzing arm motion is
through gesturing style, defined mostly from bodgstgres but that also
encompasses face expression.. Gesturing stylefeatare related to identity of a
person across activities (Gallaher, 1992). The mob@ person is a prolonged
emotional state caused by the cumulative effeanomentary emotions and is a
dynamic property that changes with time (Thalmaden, & Ichalkaranje, New
Advances in Virtual Humans: Artificial Intelligenc&nvironment, 2008).We
shouldn’t confuse style, emotion and expressivily a0 person. Expressivity
encompasses both style and mood of a person. Tixniation conveyed through
gestures in a given situation may not be uniquehtonan being, but the way it is
being communicated is consistent, which we calbst style. Also information
conveyed through gestures comprises mood of thepeWe understand from our
earlier literature survey that every human gestunigls his town style and his / her
mood.
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We need to identify and define the style and moiod person. We have seen that
many approaches have been proposed to describidandy the style and mood of
a person. Approaches which are trying to captueestille analyze walking, running
or jogging of a person. We are not aware of previatilempt to retrieve style as an
identity feature of a person from communicationtges upper body or hand
motions. In order to determine expressivity of aspa in our work we use the
expressivity parameters (Hartmann, Mancini, & Pedacl, 2005) based on
emotions of a person along with his natural coaesistbehavior. That is, the
expressivity parameters are built on Gallaher (19%2allbott and Scherer (1986)
and Wallbott's (1998) work.

Previous works (Caridakis, et al., 2008) (Castell&Mancini, 2009) also used
Hartmannret al. (2005) expressivity parameters. In those workpr&ssivity is
regarded as emotional parameters even though ffaoameters are based on
Gallaher (1992) work. Instead, we aim at captuergressivity of a person which
involves style and emotion. We are estimate exprggparameters for the whole
motion rather than individual gesture in the motion
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Chapter 3 - Estimation of Expressivity
Parameters

In this section, we describe our approach to esimgaexpressivity of a person.
Hartmanet al (2005)expressivity parameters are used to crgathesized motion.
We are estimating three of those parameters frahhm@man motion. Overall our
estimation process is a three stage process. Taeasdollows

a) Learning the expressivity estimation from the sgsth motion
b) Estimating expressivity from a real human motiod animating an ECA
c) Testing our results with user survey

In this chapter we are going to discuss aboutiteedtep, learning the expressivity
estimation from synthesis motion.

3.1 Learning Expressivity Estimation

Before estimating from a real human we learn thagressivity from synthesized
motion. Learning process will tell us accuracylod estimation method. Figure 3-1
shows the step by step learning process.

As a first step, we create the reference corpusguSreta Animation Engine with
known expressivity parameters as input. In the ggs®f creating synthesis motion,
we also have joint angles as output from the anémaéngine. Using forward
kinematics we convert the joint angles to wristipoiss. We design our expressivity
estimator which process the input wrist positiod delivers expressivity parameters
as output. Then, we compare the estimated exprgsparameter with input
expressivity parameter and error is measured mdaf absolute mean error. If the
estimated expressivity parameters not validateth wiput expressivity parameters
then we need to improve the estimator. If estimg@dmeters are validated then
our estimator is ready we can proceed to the riages
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Figure 3-1 Step by Step learning process

3.1.1Reference Corpus

The purpose of this reference corpus is to leam toestimate the expressivity
parameters. To create the reference corpus we st @nimation engine. The
input for Greta animation engine is through Gretiioes and players.

3.1.1.1Greta Editors and Player

Greta gesture editor creates the individual gestuereen shot of the gesture
editor is shown in Figure A-1. A gesture can bestarcted by three phases namely
preparation phase, stroke phase and retraction ephBach phase can be
characterized by the hand shape, hand orientattwm position and hand
orientation. Also we can define the gesture fot &&fn or right arm or both arms.
Along with this expressivity parameters are givenrgput. The output of the gesture
editor will be visualization of the gesture and eppody joint angles for the gesture.
We created nine individual gestures with varyingtsp and temporal extent. Spatial
and temporal extents are varied in the range ftbfhto +1.0 in the interval of 0.25.

These individual gestures are combined using BMitoedo create a full motion.
Screen shots of the BML editor is shown in Figur2.AThe created full motion is
can be visualized in Greta player the screen shoheo Greta player is shown in
Figure A-3. Once the motion is created we havetja@ngles. Using forward
kinematics wrist positions are calculated from j@ngles. The detailed explanation
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of the reference corpuses are given in sectionl3.4.section 3.4.2.1 and
section 3.4.3

3.2 Expressivity Estimator

Once we have the wrist positions of the hands, veeraady to estimate the
Hartmannet al (2005) expressivity parameters. There are sbarpaters out of
which we estimate and implemented three parametielslicet spatial extent,
temporal extent and repetition to describe the hmaations of the person.

Spatial extent defines the amplitude of movemeikts éxpanding or contracting
the space for hand motions. It is a measure ofthglitude of the movements which
is usage of 3D space. Equation given in sectioml22.5s to find the new wrist
positions with spatial extent as input. In our ¢cage know the wrist positions we
determine the unknown spatial extent by back sustg the known wrist positions
which is explained in detail in section 3.4.1.

Temporal extent talks about duration of movemeitkeeit is taking more time to
execute the motion or less time to complete theianofThis is measured across
successive poses in the motions. Temporal exteastimated from instant speed.
Instant speed is calculated between successivesp®ge need to measure the
temporal extent from the meaningful phase of th&ge. That is during the stroke
phase. Since we are not segmenting the motionglteidual gestures, we are going
to determine the temporal extent from the instgeated of the whole motion. The
detailed methodology we used to determine from teaipextent from instant speed
IS given in section 3.4.2

Repetition parameter tells number of times a stiwkag repeated while making a
gesture. The detailed explanation of estimationcgse is explained in the
section 3.4.3

3.3 Validation Process

This estimation is method is validated against lsgsis motion. We describe how
the gestures are generated through Greta animatigine.

A gesture is generated for key positions. A keyitgosis comprised of shoulder,
elbow and wrist joint angle positions. A key pasitis denoted in terms of its wrist
positions. For a gesture to be generated a setyopé&sitions are chosen. These key
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positions are interpolated through spline. The gmed gesture has neutral
expressivity parameter value. Varying on exprespparameter values, the gestures
are generated.

3.3.1.1Expressivity Parameter Validation

This estimated method is validated against synshmsition generated using Greta
(Hartmann, Mancini, & Pelachaud, 2002) with inputmber of repetition, spatial
and temporal extent. As explained before the gestare edited using the BML
editor and their animation is computed. We havategta test corpus to validate our
estimation process. From the generated motionsnaetifie wrist positions through
3D motion capture algorithm (Gémez Jauregui, HorRiajagopal, & Karri, 2010).
We estimated repetition, spatial and temporal éxtesmg our method. Since we
know the input number of repetitions, input spatiatl temporal extent values, we
compare our estimated repetition, spatial and teatpextent with it and error is
measured.

We will give detailed explanation of estimation awdlidation process in the
upcoming sections.

3.4 Estimation of Expressivity Parameters

We propose a new algorithm to estimate spatial néxteemporal extent and
repetition parameter from the real human. We esénthese three expressivity
parameters from 3D hand motion trajectories. Wethiegsreta animation engine to
generate example motions with controlled expresgivihrough which we our
algorithms are validated.

3.4.1Estimating Spatial Extent

Hartmannet al. (2005) defines expressivity parameters as onéeirtput to the
synthesized animation. These parameters deliveiddmity and mood of a person.
The spatial extent defines a scale of coordinatehle wrists positions with respect
to an origin. Following the convention of the Greataimation engine, we set that
origin at the sacroiliac vertebra, which stands rapimately between the rest
positions of the two wrists. It is estimated froand 3D motion trajectories.

The definition of spatial extent and its mathegwtiexplanation is given in
section 2.5.2.1 rearranging equation (2.1) aftemtamean we obtain (3.1) where
the termSPCis to be estimated:
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7 (3.1)
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herem represents the lateral, vertical and frontal dioes. wherepg can be learnt
from a set of motion trajectories generated withl spatial extent. Finally, we
estimate the spatial exteBPCof our input trajectory as the mean of the diceci
spatial extents:

SPC

—= (3.2)
-

- Agentg | Pa

Finally, we estimate the spatial ext&S®RCof our input trajectory as the mean of
the directional spatial extents:

1 (3.3)
SPC = §(SPCx + SPC, + SPC,)

3.4.1.1Validating Spatial Extent Estimation

We evaluate the above approach for estimating pihdad extent against a corpus
of 81 communicative hand motions with controllegbressivity that are generated
using the Greta animation engine (Hartmann, Mané&nPelachaud, 2002) . As a
first step in generating communicative hand motiame, generated nine different
gestures using Greta editor (Figure A-1 and ). €heise gestures are generated
with same expressivity value (for example say, i@p&ixtent = 0.0). We combined
these nine gestures through BML editor (Figure A&) made it as single motion.

Motion trajectories are generated with nine differealues of spatial extent (-1.0,
-0.25,-0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.78) afid nine values of temporal extent
(-1.0, -0.25,-0.75, -0.5, -0.25, 0.0, 0.25, 0.5780.1.0). Thus results in 81
trajectories. Now we have eighty one different masi having the spatial extent
values ranging from -1.0 to +1.0 in the interval@25 with respect to temporal
extent ranging from -1.0 to +1.0 in the intervalDa25.

When these motions are animated through BML edBddL editor gives Body
Animation Parameter (BAP) and Face Animation Patam@AP) files as output.
The upper body joint angles information are staredAP file in encoded form.
We decode the joint angles from BAP file and appfrward kinematics algorithm
(Craig, 1986) to find the wrist positions. From thast positions, spatial extent is
calculated as described in paragraph 3.4.1. We iexatie error difference between
the estimated spatial extent and the actual spatigint which is given as input in
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gesture editor. The estimated spatial extent atuhbspatial extent for synthesized
motions are plotted and it is shown in Figure 3-2.

From Figure 3-2 we see that estimated spatiahéxtet exactly lying with actual
spatial extent due to error in the estimation psecélhe error in the estimation
process is calculated in terms of absolute meaor.efhe absolute mean error for
spatial extent estimation is 0.14. In the range0[-11.0] there are 200 samples of
size 0.01. It is understood that our spatial exesitmation process produces the
result with 7 % of error.
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Figure 3-2 Estimated spatial extent vs input spatizextent for synthesized motions

3.4.2Estimating Temporal Extent

As per the definition of temporal extent in sectidb.2.2 the higher the temporal
extentTMP, the higher the speed is. From this tendency, &rével a heuristic to
estimateTMP from the observed instant speeds along the tajgdte. the distance
between poses at successive time intervals.

In the work by Hartman’st al, (2005) expressivity parameters affect synthesized
gestures during stroke time only. Rather than segnge strokes, which known to
be a difficult problem (Quek, McNeill, Bryll, Kirtsa & Arslan, 2000), we estimate
expressivity parameter from whole motion traje@sriln order to do that we
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generate a reference corpus containing nine sedywthesized motions throu
gesture editor and BML editor as explained in teetisn 3.4.1... Nine set of
synthesis motiogiin the reference corpus will have the tempor&mxvalue range
from -1.0 to +1.0 in the interval of 0.25. Some of thegmin the reference corpu:
are shown in Figure 3-:3As we said before, the BML editor which combirted
motions will give ouput as BAP files. After decoding the BAP files wadaulate the
wrist positions through forwarkinematics (Craig, 1986)From synthesiswrist
trajectories, we find that higTMP values give high speed only during the stro
while the preparation and retraction exhibit low sfs

Figure 3-3 some of the poses in reference corpus

Therefore,TMP can be estimated by considering only scquantile of the higher
speedsBased on this, we sort the instant speecnine differentmotion trajectorie:
in the reference corpus in descending o We set the quantile limit based on -
correlation between quantile and the input tempexéént value in the gesture edi
where reference corpus is genere

From the learnt trajectori of the reference corpuemporal extent is estimat
from 7 % of upper quantil The correlation for mean speed up to 7 % uppertia:
is 93%. After rejecting 2 % upper quantile, theretation improves to 97 %. Th
improvement is because there mee a chance for discontinuity while combini
gestures to form a motion in BML edit(Figure A-2). Due to thisorrelation valu
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is increased. So we reject initial 2 % of upperrdi for the mean calculation and
mean speed with the remaining 5% of upper quantdeachieve best mapping to
temporal extent in the range [1.0, +1.0] througtedir regression. Higher instant
speed among reference corpus synthesized motisheven in Figure 3-4.

7 % of highest instant speed - sorted in decreasing order

a0 \ \ | I :
2% rejected § ——TMP=-1.0
45 because of i - TMP =075
discotinuity ? : -
40 while ST FE SO R T TMP=-030]
combining : : ——TMP=-0.25
g5k NI ) NG e == TMP 2 0.0
: : TMP =+0.25

]
wn

Instant Speed
(o)
(]

....S/IM R +TMP=+050
% : Mean has :

]
[

0 1% 2% 3% 49 5% 6% 7%

Figure 3-4 Higher instant speeds from synthesized ations

3.4.2.1Validating Temporal Extent Estimation

The estimation of temporal extent is also validatgdinst synthesized motion with
varying controlled expressivity. We generated aeottet of corpus called testing
corpus which contains the nine set of motions inctvleach motions contains nine
gestures. Nine motions have the temporal extentevednging from -1.0 to +1.0 in
the interval of +0.25. Some of the poses in testimgpus are shown in Figure 3-5.

The idea is to estimate the temporal extent from tisting corpus from the
heuristics described in section 3.4.2 and to mhkecomparison between estimated
temporal extent and actual temporal extent valds.usual first step is to find the
wrist positions from the synthesized motion. As explained before we determine
the wrist positions through forward kinematics.
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Figure 3-5: Set of poses in Testing Corpus
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Figure 3-6: Estimated temporal extent vs input tempral extent for synthesized gestures

From the wrist positions we calculate the instgrgesls of the wrists among each
pose. We map instant speed to temporal extent valsieg the linear regression as
described in section 3.4.2. The estimated and bkeétmaporal extent values are
plotted in Figure 3-6. Similar to the spatial exttehe error measure fGmMP is also
done by absolute mean error. Absolute mean errofMP estimation is 0.15. (i.e.,)
our TMP estimation method causes 7.5 % error in determitihe TMP from 3D
motion data.

3.4.3Estimating Repetitions
The repetition parameter is to be estimated fromt\8D trajectories.
When a gesture is being repeated, only its strekepeated, not the preparation or

the retraction phases (Efron, 1941). During rejostjtthe wrist trajectory follows or
is close to the path at the earlier stroke, witnasalelay.
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One way of finding the repetition in the motionj&&ory is through Fourier
transform. If the repetition occurs then there vii# a periodicity in the stroke
period. The windowed Fourier transform allows detecperiodicity that lasts for a
time interval. Unfortunately, the duration of repiehs varies. Furthermore, the
number of repetitions is very small (2 or 3 periandy). Finally, we see from
Figure 3-7 that, in case of 2 repetitions, the sda@petitions completes faster than
the first repetition. The time period varies amoepetitions. Because of these three
reasons, windowed Fourier transform fails in firgdthe repetitions.

Sl
.

le Edit View Insert Tools Desktop Window Help

BRI LT AR E

08 T

0 200 400 600 800 1000 1200 1400 1600

1
Repetition

Distance between wrist and the body in frontal direction

o | | | | | | | |

0 200 400 600 800 1000 1200 1400 1600 1800

time scale -- 25 frames / second

Figure 3-7: Stroke repetitions in wrist trajectory. Here, only the frontal coordinate of the
wrist 3D trajectory is plotted. Some of the repetiton phases are circled.

Another way of estimating repetition is through domwed auto-correlation.
Correlation is a measure of the similarity betwéeo or more variables. The
correlation coefficient ranges from -1.0 to +1.Migher absolute value of the
correlation indicates that the variables are innadr relationship. In our case, if
repetitions happens, then correlation will be high.
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For windowed auto-correlation, we compute correfai over a sliding time
interval. The window length should match the strédegth. Unfortunately, as we
already noticed, in case of two repetitions strokeliration varies
(Figure 3-7). Even if we choose correct windowglinwe may fail in identifying

the 29 repetition.

Figure 3-8 and Figure 3-9 show some experimensailt® of correlation for single
and double repetition, respectively. Since we arerésted only in positive
correlation, negative correlations are clipped. &déiwv length is one second. Double
repetition has less positive correlation than sngpetition. Correlation fails to find
the second repetition because time difference hmtwairoke and °1 repetition
differs from time difference betweeri' tepetition and ' repetition. We couldn’t
find number of repetitions in this method, so clatien won't suitable for irregular

time period among repetitions.

Delay

- i
0 200 400 600 800 1000 1200 1400 1600
time scale -- 25 frames / second

Figure 3-8: Example correlation with one repetition Correlation over a sliding window
between the current wrist 3D position at the currehframe (given in abscise) and the upcoming
wrist positions (delay given in ordinate). The wristrajectory is sampled at 25 positions per
second.
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Delay

500 200 400 600 800 1000 1200 1400 1600

time scale -- 25 frames / second

Figure 3-9: Example correlation with two repetitions. Correlation over a sliding window
between the current wrist 3D position at the currehframe (given in abscise) and the upcoming
wrist positions (delay given in ordinate). The wristrajectory is sampled at 25 positions per
second.

If a stroke is repeated, the distance between tig positions in the current and
the repeated strokes will be small. Repetitions tteem be detected by comparing
the current and upcoming trajectory over a slidiimge window, the duration of
which is a bit shorter than the stroke duratione Thaximum distance over the
sliding window could be used to detect repetitiaithough it would be highly
sensitive to isolated noisy poses. We rather usentban distance over the sliding
window. Since distances are positive, their sumlmasmall only if each distance is

small.

Note that no segmentation of the wrist trajectario istroke is involved here.
In addition, note that rest periods, where the hkeeps still, also lead to zero
distance. Although, rest periods can be distingadsinom repetition since they have
a longer duration than the repeated strokes.

Just like for the previous expressivity parametess,generate a reference corpus
of wrist 3D trajectories using the Greta animatemygine. This corpus consists of
three hand motions, each composed of nine gestuags)g repetition value of 0, 1
and 2. Figure 3-10 shows some of the poses irctnus.
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Figure 3-10: Set of poses in Reference Corpus foreRetitions
(available online fromwww-public.it-sudparis.eu/~rajagopa/RepVideos.htrh

Repetition phases can be seen in Figuretl3a? shows the frontal coordinate of
wrist 3D trajectories in the corpus. Some repetigghases have been circled. Our
aim is to detect such phases and count the nunfilbepetitions in them.

From the reference corpus, we find the duratioa ¢bossibly repeated) stroke is
around half a second (Figure 3-7), so we use atslighorter sliding window of
10 frames (at 25 poses per second). The resultiatpged distances are shown as
functions of the current frame number and the deldsigure 3-11.
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Figure 3-11: Example distance with zero, one and twrepetitions, respectively.
The average over a sliding window of the distancdmtween the current wrist 3D position at the
current frame (given in abscise) and the upcoming st positions (delay given in ordinate).
The wrist trajectory is sampled at 25 positions pesecond.
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Figure 3-12 gives a schematic view of the distarmafiguration for repetitions.
The Euclidean distance is found by moving the sgdivindow. When the sliding
window reaches the repetition phase, the Euclidtiatance will be less. Those
regions are shown in white patches in the graphpeRens appear as short
interruptions with low values in the oblique andtigal lines of high values. Our
algorithm should be capable detecting these inpdions in the high values.
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Figure 3-12: Schema of wrist distances in case aépetitions.

Upper part: wrist trajectory; ST is the initial str oke, while R1 and R2 are
respectively repetitions after T1 and T2 time shif$, respectively.
Lower part: distances between wrist positions withrespect to time and delay.
Higher distances are shown in blue, while lower diances are in white.

Repeated strokes appear as distance local minimcioge to zero in the
Figure 3-11. These could be detected by threshgldiBut, rest periods, where no
wrist movement occurs, would be selected along wépetitions. We need to
discard rest periods.

From Figure 3-7, repetitions appear as low valuesoanded with high values. We
apply mathematical morphological technique to lecdtose minimum Euclidean
distances. Also we should avoid the minimum Euelidalistances due to rest
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positions. Such confusions can be avoided usinghadpransform and repetitions
are detected.

In image processing, top hat transform is usedulenhancing the detail in the
presence of shading (Gonzalez & Woods, 1992). ffarsformation is also good in
1D for finding peaks that are say, greater tharedam width and more than a
certain depth (significant peaks). Top hat transfadentifies the local minimums.
In our case, during the repetition the distancevbeh the consecutive poses will be
minimum compared to the non repetition period ie tand motion. Top hat
transform detect the minimum distance values ptesenbetween maximum
distance values. .So, top hat transform is empldgedetect the repetition in the
wrist 3D trajectory.

From Figure 3-12, the repetitions are identifidugew vertical column and obliged
column cross each other. We perform top hat tranmsfon these distances in two
ways. In one way, we move the structural elemdnthe top hat transform is
vertically moved along the wrist trajectory andthe second way we move the
structural element diagonally in the wrist trajegtoMultiplying these two will
result detection of repetitions.

For double repetition, when we move the structwel@ment of the top hat
transform starting from stroke period, after ‘Tithé, first repetition is detected as
peak. After ‘T2’ time, second repetition is detectes another peak. ‘T1’ is time
between stroke ‘ST’ and first repetition ‘R1’. ‘TB the time between ‘R1’ and
second repetition ‘R2’ in Figure 3-12. When we mahe structural element
starting from first repetition, we will detect ahet peak after time ‘T2. This is due
to second repetition. If there is a double repetjtthen we will have three peaks
after performing top hat transform.

We experiment top hat transform in vertical coluamd obliged column with the
synthesis motion, the results are shown in thergi@dl3, Figure 3-14, Figure 3-15
and Figure 3-16. Along with the peaks we have #@rical lines in both the vertical
column and obliged column transformation. Thesediare due to local minimums
present in the Figure 3-11. When we multiply these we will end up with the
blobs which show repetition alone.
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Figure 3-13 Top Hat transform — structural elementalong vertically for 1 repetition
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Figure 3-14 Top Hat transform — structural elementalong vertically for 2 repetitions
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Figure 3-15 Top Hat transform — structural elementalong obliged for 1 repetition
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Figure 3-16 Top Hat transform — structural elementalong obliged for 2 repetition

We multiply the both (structural element verticahdaobliged) the top hat
transforms to highlight the peaks. The resultanthat is shown in Figure 3-17 and
Figure 3-18. From these graphs, the repetitionssamvn as blobs in the wrist
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trajectory. Also we can count exactly the numberrgpetitions present in the
trajectory.

v
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time scale -- 25 frames / second

Figure 3-17 Top Hat transform — vertical X diagonalstructural element for 1 repetition
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Figure 3-18 Top Hat transform — vertical X diagonalstructural element for 2 repetition
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Since the estimation process yields fixed valuegepletition (0, 1 or 2), the
validating estimation process is not required. Wstdd our estimation process
directly on real human motion trajectory

3.5 Conclusion

In this chapter, we estimate three expressivityapaters, namely spatial extent,
temporal extent and repetition, from wrist 3D tcgeies. For estimating the spatial
and temporal extents, we generated the four drffen@nd motion corpora. Out of
four different corpora two of them are referencepooa and the remaining two are
test corpora. These corpora contain communica@stures. In the first reference
corpora, spatial and temporal extents are varieeixpkained in the section 3.4.1.1.
In the second reference corpora repetition is daag 0, 1 and 2. Our estimation
processes for three parameters are explained tioseS.4.1, 3.4.2 and 3.4.3.We
validated our estimation process with test corpora.
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Chapter 4 - Perceptive study

In chapter 3, we have presented a computationabapp to estimate expressivity
from motion trajectories. To assess the importasfcexpressivity for cloning, we
need to evaluate the reverse perception, that eheh users can recognize persons
based on their gesture expressivity.

In this chapter, we experimentally study user patioe of gesture expressivity.
Gesture expressivity of real humans is derived fBrmotion capture, and then fed
to an avatar animation engine. Users are askedatohnsynthesis animations that
differ only by gesture expressivity with videosreal humans.

4.1 Experimental setup

Hereafter, we first describe the 3D motion captueeused. Wrist 3D positions are
then input to the expressivity estimator and, tkeressivity parameters are fed as
input to the Greta engine to animate a virtual &gAa a result, we have a virtual
avatar animated with the expressivity captured freal humans. This work flow is
shown in Figure 4-1. Finally, the generated synisesmotion is presented to users
to experimentally evaluate this gesture expressasta clue for cloning.
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Figure 4-1: Cloning the gesture expressivity of agal human

4.1.1Capturing Human Motion

To capture the expressivity of real humans, we needpture their hand motion.

Motion capture was first achieved in the late 187®r military applications
(tracking the movements of pilots) (Furniss, 2000ptical (Optitrack, 2010),
mechanical (Gypsy7, 2010), magnetic (Advanced MvotMeasurement, 2010)
(Advanced Motion Measurement, 2010), acoustic (s&iese, 2010), inertial
(Animazoo, 2010) (Animazoo, 2010) and computerendbased systems (Gomez
Jauregui, Horain, Rajagopal, & Karri, 2010) haverbeesigned for that purpose.
Since the 1990’s, advances in computing power &uatithms have made real-time
motion capture possible. Nowadays, motion captareapidly becoming cheaper
and many more systems have emerged in the market.

Computer vision is attractive for motion capturedogse it frees the user from any
invasive hardware attached to the body. It may watk or without markers, using
several cameras or only one and it can work outdasrwell (Moeslund, Hilton, &
Krtger, 2006) (Poppe, 2007). Monocular vision hasrbused for tracking specific
motions such as walking, golf swinging, jumpingeaftearning (Agarwal & Triggs,
2006), (Urtasun, Fleet, & Fua, 2006).

We are interested in 3D upper body motion. Recemligrosoft released Kinect
sensors to track body motion (Microsoft, 2010) (Mgoft, 2010). We successfully
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experimented with a Kinect sensor to track the humation in live experiments, as
shown in Figure 4-2.

Figure 4-2 Left: Real human motion; Right: Kinect tracking

At the time we started our experiments, Kinect esensvere not yet available. So,
we considered the monocular vision system prewodsleloped in our laboratory
by Gomez Jauregui. It allows capturing 3D humaniomoin real time without any
marker from a single video. It proceeds by registea 3D articulated model of the
human body on video sequence, and it outputs @bspositions (Gomez Jauregui,
Horain, Rajagopal, & Karri, 2010).

4.1.2Estimating Expressivity Parameters of a Real Human

For experiments we considered four videos (V1, W3 and V4) of users
performing communicative gestures in front of tlmnera. Set of poses in those
videos are shown in Figure 4-3, Figure 4-4, Figti® and Figure 4-6. V1 and V2
video clips are parts of video lectures and areuaboe minute long. The other two
videos (V3 and V4) are about 20 second long. TFmsevideos are uploaded hére

3 http://www-public.it-sudparis.eu/~rajagopa/realHumaeos.htm
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Figure 4-4 Set of poses of real human motion in v sequence V2

Figure 4-6 Set of poses of real human motion in vs sequence V4

The Gomez Jaureget al (2010) algorithm tracking algorithm outputs uppedy
joint angles of the person. A sample result is shaw Figure 4-7. Forward
kinematics algorithm (Craig, 1986) then allows @odetermine wrist postions from
the upper body joint angles.

74



Figure 4-7 Tracking with Gdmez Jaureguiet al. algorithm

The spatial extent is then estimated as explainesgction 3.4.1 for the videos of
V1 and V2. As illustrated in the V1 and V2 snaptsh&/1 has more spatial extent
than V2. The estimated spatial extent for V1 isB+énd the spatial extent for V2 is
+0.6.

Similarly, the temporal extent is estimated for &fid V2 as described in section
3.4.2. The estimated TMP is -1.0 for V1 and -0/7\M@. This shows the user in V2
has faster gestures than the user in V1.

The repetition parameter is estimated as explaingte section 3.4.3 for all the
four videos. V1 and V2 do not show any repetitiwstgres. Our algorithm yields
the same result. Repetitive gestures in V3 have repetitions, while in V4 they
have only one repetition.

4.1.3Animating the Virtual Human with Expressivity

We used the Greta animation engine (Hartmann, Man&i Pelachaud, 2002) to
synthesize a communication gesture and to vary niodéion based on input
expressivity.

We first input to the Greta animation engine thatisth and temporal extent values

estimated from videos V1 and V2. This is shown iguFe 4-8 and Figure 4-9,
where high and low spatial extents can be seen.
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Figure 4-8 Animated gesture using Greta for the spil extent of V1.
Note the large spatial extent.

Figure 4-9 Animated gesture using Greta for the spil extent of V2.
Note the small spatial extent.

We synthesize motion trajectories using the Gretianation engine using the
temporal extent estimated from videos V1 and V2e Bynthesized videos are
available on-liné

4VlTMP:http://www-public.it—sudparis.eu/-~raiaqopa/Berqef!.(234 TMP_03.avi
V2TMP: http://www-public.it-sudparis.eu/~rajagopa/Simaticd@34 TMP_02.avi
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Figure 4-10 shows the vertical coordinate of thatlsgsized wrist trajectories.
With a higher temporal extent, the trajectory asats peak and finishes the stroke
earlier, and ends earlier. We retrieve the previmslt that user V2 has higher
temporal extent than user in V1.

temporal extent

0.6 ‘
Attains peak and finish —Vvi=-10
earlier for higher TMP

0.4r

0.2 .

Distance between wrist and chest in vertical direction {metre)

08 o | \ \ |
0 100 200 300 400 500

time scale -- 25 frams / second

Figure 4-10 Wrist trajectories synthesized using th Greta animation engine, with the
temporal extent from V1 and V2.

Similarly we animate the Greta with estimated tiéjp@ parameter from videos
V2,V3 and V4. Wrist motion trajectories for repet actions in the generated
animations are shown in Figure 4-11. The generaige€los also uploaded in the
webpage

5http://www-public.it-sud paris.eu/~rajagopa/repVidEorSurvey.htm
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1 repetition
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Figure 4-11 : Stroke repetitions in wrist trajectory. Here, only the frontal coordinate of the
wrist 3D trajectory is plotted.

4.2 User Reviews

We aim at evaluating the importance of expressitotyvirtually cloning human
beings. As described previously, we have animdted3dreta virtual agent using the
expressivity estimated from individual humans. Vdgénconducted an online survey
with users that were asked whether they can rezeghe individual human behind
various synthesis animations.
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4.2.1Review Setup
Users are first asked six personal questions, |Esv®

i) In order to check answers uniqueness while protgatser anonymity,
we asked users to enter their name through iniéiglBrst letter of user’'s
first name, first letter of first name of user'shar and first letter of first
letter of user’'s mother.

i) Gender

i) Age

iv) Country where the user lived longest

v) User’s highest level of education

vi) User’s professional field / study

We have conducted reviews in two setups. For bethps, the user receives the
following instruction:“You will see videos of 2 (or 3) persons (calledBAand C)
gesturing and a video of a virtual agent. The \aftilhuman is animated with
gestural feature extracted from either person AQrBC. Can you recognize which
one is it? Please say whether the animated virhiggnt is representing person A or
person B or people C. Totally there are 6 (or 3)naated videos to be compared,
one per page. After answering one page, you cagadback to previous pages.”
For both setups, users are askeghith movie is the animated video similarto?
the answering options are A, B (and C).

Page:1
Hello friends, Real Homan Video: A Real Human Videa- B

I am conducting a survey for my research worl.
The survey is very simple and takes few minutes.

You will see videos of 2 persons (called A and B)
gesturing and a video of a virtual agent. The
virtual human is animated with gestural feature
extracted from either person A or person B. Can
vou recogrize which one is it? Please say whether
the animated virtual agent is representing pevson
A or person B.

Totally there are 0 animated videos to be 0 00:06 mem] 00:33 ol 33 M 00:04 i 00:50 sl 3
compared, one per page. After answering one
vage , You cannot go back to previous pages.

Thanks for vour participation in the swrvey.

Manoyf kumar

0 00:04 - 00:26 sl

Survey: Answer these questions:

Figure 4-12: Example page from the first user surwe setup
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Screen shot of the first review setup is shownigufe 4-12. In the first setup, the

V1 and V2 videos are

shown against a series ofréhsgis videos of the Greta

virtual agent. In the first and second synthesile®s, the Greta is gesturing with the
spatial extent estimated from either V1 or V2.Ha third and fourth videos, Greta is
animated with temporal extent from either V1 or W2.the fifth and sixth videos,

Greta is animated with
either V1 or V2.

Hello friends,

I am conducting a survey for my research work. The survey is
very simple and takes few minutes.

You will see videos of 3 persons (called A,B and C) gesturing
and a video of a virtual agent. The virtual human is animated
with gestural feature extracted from either pevson A,B or C.
Can you recognize which one is it? Please say whether the
animated virtual agent is vepresenting person A or pevson B or
person C.

Totally there ave 3 animated videos to be compared, one per
page. After answering one page ,You cannot go back to
previous pages.

Thanks for your participation in the survey.

Manaj kumar

Note: There is no audio.

both the spatial extent @mdporal extent estimated from

Page: 1
Real Human Video: A

Real Human Video: B
|

I 3
00:37  dltl] B 00:00

Real Human Video: C

00:50 st | 53

Virtual Agent Video

00:27  ddemill] | 53

Figure 4-13 Example page from the second user surwsetup

Screen shot of the first review setup is shownigufe 4-13. In the second review
setup, the three V2, V3 and V4 videos are presegitédgether against a series of 3
Greta videos. V2 has no repetitive actions, whistgres in V3 (respectively V4)
are repeated once (respectively twice). Input fer Greta animation is 0, 1 or 2
repetitions (in mixed order).
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4.2.2Analysis of User Responses

The statistics of user responses are shown in Halle

1*' review

2" review setup
setup

6 questiong 1% question| 2 question % question

No of Participants 17 37 31 26
Male 12 29 24 21
Female 5 8 7 5

Countries
France 5 24 19 15
Morocco 0 7 6 5
Tunisia 2 2 2 2

India 5 1 1 1

Lebanon 1 1 1 1
Romania 2 1 1 1
Turkey 0 1 1 1
Mexico 2 0 0 0

Level of Education

Completed high
School 0 ° ! °

College Discontinued 0 1 1 1

Doing Bachelors 0 11 10 9
degree

Doing / completed 12 14 10 8
Masters degree

Doing Phd S 3 3 3
Field of work

7 13 15 14

Computing Robotics
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or Cognitive Science
e PRy w0 | s
Finance or Economics 1 2 1 1
Medicine or Biology 1 0 0 0
Other fields 4 12 8 6
Average Age 28.3 24.3 20.7 22.5

Table 4-1 Reviewers statistics

Results for the first setup are shown in Table 4itZappears that more than 71 %
and less than 88 % people can recognize the exptesst the real human from

virtual human animation.

1S| 2nd 3rd 4th Sth 6th
test test test test test test
Number of participants 17 17 17 17 17 17
Number of users who
correctly recognized the reall .o | o0, | 7604 820 820 889
human from the Greta
animation

Table 4-2 First review setup results

In the second setup, an animated Greta video ispaed with 3 real human

videos (labeled A, B and C). Results are shownabld 4-3:

Greta animation

Repetition input to the animation engine 0 1 2
Number of users who correctly
recognized the real human from the 6 % 41 % 54 %

Table 4-3 Second review setup results
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These results show that a high number of repesitame relevant feature for users
to match the animation with the human. Insteadamaimation with no repetition
would be matched with any human. So the numbeeétitions contributes for the
recognition.

4.3 Conclusion

In this chapter, we have described our user suavelyits results on recognizing
real human motion from synthesis motion.

From our first review setup, we found that usemld¢aecognize the real human
based on the spatial and temporal extents in BB & of the trials. This shows the
importance of spatial and temporal extent.

The second review setup results show that repetisonot so discriminative.
In case gestures are repeated once or twice iartimeation, this is perceived as a
distinctive feature to recognize humans doing soimfations with no repetition
would be matched with any human, regardless whetier repeat gesture or not.
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Chapter 5 - Conclusion

In this work, we address the problem of estimathmgstyle and emotion of a real
human. Our approach estimates three parametershhacterize the expressivity of
a person. Expressivity parameters were implemdiotedCA animation (Hartmann,
Mancini, & Pelachaud, 2005), we extended this apgroand estimate three
parameters from a real human to define the expigsgif a person. Using those
expressivity parameters we animate an avatar. Enermance of our approach is
experimentally validated against synthesis motiwh ractically tested through user
tests. The proposed methods allow estimating soxpeessivity parameters of a
person. In the next sections we summarize the iboitsns of the thesis and present
some future perspectives.

5.1 Summary of Contributions

We have proposed a method to estimate the gestexiprgssivity of a person from
wrist 3D trajectories. Our contribution consists 4 estimating the gesturing
expressivity from wrist 3D trajectories and 2) agaptual study of the relevance of
expressivity for recognizing persons.

We estimate three expressivity parameters, nanpaliiad extent, temporal extent
and repetition, from wrist 3D trajectories. Forimstting the spatial and temporal
extents, we generated the four different hand matarpora. Out of four different
corpora two of them are reference corpora and ehgming two are test corpora.
These corpora contain communicative gestures. hénfirst reference corpora,
spatial and temporal extents are varied as exmlaimehe section 3.4.1.1. In the
second reference corpus repetition is varied dsahd 2. Our estimation processes
for three parameters are explained in sectiond ,334.2 and 3.4.3.We validated our
estimation process with test corpora.

We have animated a virtual agent using the expriggsgistimated from individual
humans, and users have been asked whether theyecagnize the individual
humans behind animations. Using estimated expigssivom real human we
animated the Greta ECA. We have conducted an osliney with users that were
asked whether they can recognize the individual duinehind various synthesis
animations. We found that, in case gestures areate@ in the animation, this is
perceived by users as a discriminative featureetmgnize humans, while the
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absence of repetition would be matched with anydm regardless whether they
repeat gesture or not. More importantly, we fotimat 75 % or more of users could
recognize the real human (out of two proposed) feomanimated virtual avatar
based only on the spatial and temporal extents.

We achieve the virtual cloning by bringing the eegwivity of a real human in the
virtual human.

5.2 Perspectives

Future research will focus on estimating other egpivity parameters and feed
those parameters to the animation engine. For ebeantipe fluidity parameter
controls continuity in the transitions between thesture phases. The power
parameter controls hand shapes: high power willnkhthe hand (Hartmann,
Mancini, & Pelachaud, 2005).

In the user survey, we used 3D motion data captén@d monocular images.
As mentioned in chapter 4, a real-time 3D sensdhee time-of-flight (Mesa
Imaging AG, 2008) (SoftKinetic, 2011) or activeammgulation (Microsoft, 2010),
can be used for 3D motion capture. Such a sensoeweas more robust motion
capture than monocular vision, especially in cdskast motion, potentially leading
to a better estimation of expressivity. (Micros@f®10)

Finally, a future potential application includesraation movies. A virtual actor
can be animated with the expressivity of a real &iumactor. As are.g. James
Stewart and Cary Grant are no more alive, but whierhave the expressivity of
those actors we can reflect their acting skillthie animation movies.

Another application is virtual embassy. An emlpasannot be present in all the
places. The idea is to open the office in differplaices to answer people queries
without real human representative. If an animatearacter with expressivity of an
embassy person is present and answer the quehnies,the user will have an
experience of talking with a real embassy repredmeat
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Appendix A

Greta Editors and Players

We used the gesture editors and player that aiéabhMawith the Greta embodied
conversational agent (Hartmann, Mancini, & Pelach2002).

The editor allows to generate a 3D hand motiorttafies with expressivity and to
visualize the motion. The BML (Behavior Mark-up lgarage) editor was used to
merge gestures into a motion. The Greta Playetajisgghe 3D motion.

Here, snapshots of their interface are shown below.

Figure A-1: Gesture Editor with expressivity windowand visualization window (Hartmann,
Mancini, & Pelachaud, 2002)
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