A classical iterative receiver is frame-based, which induces large latency. The latency is introduced by the block interleaving/de-interleaving, which is based on memory writing and reading. The latency is also due to the state-of-art LDPC decoding algorithm (horizontal layer decoding algorithm). Indeed this algorithm provides the extrinsic information only after one complete iteration. Therefore, one iteration of a classical receiver consists of one complete

Introduction Context:

The emergence of new market driven services such as High Definition (HD) television and 3D-TV have offered unprecedented user experience creating a real need for improving nowadays transmission systems. A better use of the scarce spectrum resources became a must leading to the development of next generation broadcasting systems.

Single Frequency Network (SFN) is a way to increase spectral efficiency. It consists of a broadcast network where several transmitters simultaneously send the same signal over the same frequency channel. While spectrally efficient, such a topology can lead to a severe form of multipath propagation. Indeed, the receiver sees several echoes of the same signal, the destructive interference among these echoes known as self-interference may result in additional fade events. This is problematic especially in wideband communication and highdata rate digital communications, since the frequency-selective fading and the Inter-symbol Interference (ISI) caused by the time spreading of the echoes greatly deteriorate the system performance in terms of Bit Error Rate (BER). Spectral efficiency should not come at the price of reduced robustness. Therefore, numerous technical aspects are to be improved from first generation systems including source coding, channel coding, interleaving, modulation, diversity etc.

In 2008, the European Digital Video Broadcasting (DVB) standardization committee launched the second generation of Digital Video Broadcasting-Terrestrial (DVB-T2) standard [1]. As the successor of DVB-T, it introduces several enhancements to the transmission system including the 4th generation of the Moving Picture Experts Group (MPEG4) source coding, multiple physical layer pipes, a state-of-the-art forward error correcting codes: Low Density Parity Check (LDPC) [2] + Bose Ray-Chaudhuri Hocquenghem (BCH) [3], increased diversity thanks to a longer channel interleaver and the introduction of a diversity technique at the signal space level, a Multiple Input Single Output (MISO) Alamouti [4] based-scheme, etc.

Since the invention of turbo codes in 1993 [START_REF] Berrou | Near shannon limit error-correcting coding and decoding: Turbo-codes[END_REF], iterative processing has found its way INTRODUCTION into numerous domains. The Low Density Parity Check (LDPC) codes are another branch of powerful iterative codes, which was re-found [START_REF] Mackay | Near shannon limit performance of low density parity check codes[END_REF] after the invention of Turbo codes. In digital communications, the iterative process called turbo principle was extended to additional blocks than the traditional FEC. Indeed, an iterative process between an FEC decoder and a soft Multiple Input Multiple Output (MIMO) detector [START_REF] Salz | Digital transmission over cross-coupled linear channels[END_REF] or a demapper or an interference canceller has proven to improve performance. The iterative process between a demapper and a LDPC decoder was recommended in the implementation guideline of DVB-T2 standard in order to improve the performance over fading channel without and with erasures. The fading channel with erasures represents the case of a severe fading in SFN network.

Objectives:

In this document, we restrict ourselves to techniques that intended to improve throughput and reliability in the context of channel coding, diversity and modulation. The main objective of our study is to design a DVB-T2 receiver that can achieve high throughput for an acceptable hardware complexity. Moreover, the proposed receiver has to support both non-iterative process and iterative process. However, practical applications are reluctant to mandate solutions based on iterative processes due to some challenges and constraints in terms of increased hardware complexity, memory access conflicts and additional latency.

Signal Space Diversity (SSD) [START_REF] Boutros | Signal space diversity: a power-and bandwidth-efficient diversity technique for the rayleigh fading channel[END_REF] can improve the robustness of the DVB-T2 system and mitigate the effects of self-interference due to SFN. While improving performance, SSD introduces additional complexity especially for spectrally efficient constellation sizes. DVB-T2 is the first standard to adopt signal space diversity with high order constellation such as 256-QAM. In this case, the classical one dimensional Max-Log demapping algorithm applied on log(M ) PAM based on de-coupling the I and Q components is not applicable. The quest for a hardware efficient SSD demapper is raised and not addressed yet.

The Low Density Parity Check (LDPC) codes are defined by their parity check matrices.

The double diagonal sub-matrices in the parity check matrix of the LDPC codes induce message update conflicts problem in the shuffled LDPC decoding algorithm. In the meanwhile, the memory access problem caused by scheduling induces inefficient message passing between the check nodes and bit nodes. These are two crucial problems that have to be addressed for designing an LDPC decoder dedicated to the DVB-T2 standard.

INTRODUCTION 3 iteration of LDPC decoding, block de-interleaving memory writing and reading, demapping and block interleaving memory writing and reading. The resulting large latency prohibits efficient message exchange between the demapper and decoder hence reduces the throughput.

In this study, architectural solutions have to be provided to such problems for a Bit-Interleaved Coded Modulation(BICM) system with SSD applying an iterative processing between the demapper and the LDPC decoder.

Contributions:

Towards these objectives, some contributions are given in two domains : algorithmic domain and architecture design domain.

Contributions in algorithmic domain:

1.) Proposal of a two-dimensional Max-Log demapping algorithm based on sub-region detection to reduce the computational complexity of two-dimensional demapping algorithm and the corresponding architecture. The proposal of a linear approximation for the computation of Euclidean distance further reduces the requirement of multiplication operations, especially for high order constellations.

2.) Proposal of a Min-Sum vertical shuffled LDPC decoding algorithm. The message update conflicts problem due to the double diagonal sub-matrices and the message access conflicts due to pipeline in the case of vertical shuffled schedule are well solved.

3.) Proposal of a joint vertical shuffled iterative demapping and decoding algorithm for an iterative BICM receiver, which greatly reduce the latency of message exchange between demapper and decoder. An efficient message passing schedule between the demapper and decoder is also proposed which is suitable for a paralleled hardware implementation.

Contributions and results in hardware domain:

1.) Design and FPGA prototyping of a flexible demapper with low latency and low complexity, which supports 8 different kinds of QAM constellations.

2.) Design and FPGA prototyping of a vertical shuffled Min-Sum LDPC decoder.

3.) Prototyping of two transmission systems without OFDM modulation for the DVB-T2

standard onto a Xilinx Virtex5 LX330 device. One includes non-iterative receiver and the other one includes the iterative receiver.

4.) Integrating the proposed demapper and the LDPC decoder into a real DVB-T2 demodulator, which is provided by Teamcast company and supports various modulation schemes.

The measured performance of the three prototypes achieves expected performance gain.

The estimated maximum working frequency of the iterative receiver after place and route is INTRODUCTION 80 Mhz. The corresponding throughput is equal to 107 Mbps for a 64K LDPC code with a code rate of R=4/5. To the best of our knowledge, the prototype of an iterative receiver is the first published hardware implementation for the DVB-T2 standard.

Organization:

This manuscript is organized as follow:

In Chapter 1, we first give a brief introduction about a digital communication system and error control codes. Then, a description of a wireless channel and its corresponding mathematical model is provided. The state-of-the-art of the coded modulations and the details of the coded modulation adopted in the DVB-T2 standard are presented afterwards.

In Chapter 2, we first recall the classical demapping algorithm for non-rotated QAM.

Then, a two-dimensional demapping algorithm suitable for rotated QAM constellations is detailed. This section is followed by a proposal of a computational complexity reduced and hardware friendly demapping algorithm for rotated and Q-delayed QAM constellations. It applies Max-Log demapping and sub-region detection. The corresponding architecture is provided afterwards. Finally, a prototype of a complete uncoded transmission chain is introduced and the performance measurements are listed.

In Chapter 3, we first give an overview of the classical LDPC decoding algorithms and the simplification methods for the check node processing. Horizontal shuffled and vertical shuffled message passing schedules, which accelerate the decoding convergence speed, are also presented. Inspired by previous work, we propose a vertical shuffled Min-Sum LDPC decoding algorithm and its corresponding architecture design. The proposal includes methods to avoid message update conflicts due to double diagonal sub-matrices and memory access conflicts due to pipeline. A prototype of a simplified DVB-T2 transmission system is implemented to test the efficiency of the decoder. The designed demapper and LDPC decoder were also integrated in a real DVB-T2 demodulator.

In Chapter 4, we detail a novel vertical shuffled iterative processing algorithm dedicated to an iterative receiver. It applies a hardware oriented message exchange schedule between the demapper and decoder. The corresponding architecture is detailed and tested in a simplified DVB-T2 transmission system. The measured performance validates the efficiency of the proposed algorithm and the design. résumé L'émergence récente de nouveaux services de diffusion numérique tels que la télévision haute définition (HD) ou la télévision 3D a engendré la nécessité de définir des systèmes de diffusion numériques plus performants, capables de supporter la diffusion généralisée de tels services. En 2008, le consortium européen DVB (Digital Video Broadcasting) a défini le standard de télévision numérique terrestre de deuxième génération DVB-T2 qui permet à la fois une meilleure occupation des ressources spectrales et une meilleure robustesse de réception pour les récepteurs fixes, portables et même mobiles que son prédécesseur DVB-T.

Le mode de transmission préférentiel de DVB-T2 utilise des réseaux de diffusion isofréquences ou SFN (single frequency networks) dont tous les émetteurs envient le même signal au même instant et à la même fréquence. Les réseaux SFN permettent une utilisation optimisée du spectre radio-fréquence, permettant la diffusion d'un nombre plus important de programmes TV comparativement aux traditionnels réseaux multi-fréquences. Cependant dans les zones couvertes par deux ou plusieurs émetteurs, le récepteur doit faire face à l'arrivée de trajets multiples d'amplitudes équivalentes et présentant différents angles d'arrivée et retards, qui peuvent interférer de manière destructive et produire des phénomènes d'évanouissements ou fadings. Dans certains cas, ces interférences peuvent provoquer un effacement du signal. Ce type de canal à effacement est un modèle de canal de transmission typique défini dans les directives d'implémentation (implementation guidelines) du standard DVB-T2. Dans notre étude, nous avons principalement considéré ce modèle de canal à effacement, ainsi que le modèle plus classique de canal à fading sans mémoire de type Rayleigh, représentatif de la réception fixe d'un seul émetteur. DVB-T2 a adopté plusieurs techniques innovantes de communications numériques offrant une robustesse de réception supérieure à DVB-T. Une avancée importante est l'adoption d'une modulation codée entrelacée par bit ou BICM (bit-interleaved coded modulation) faisant appel à la fois à un code correcteur d'erreur puissant et à une technique additionnelle de diversité de constellation. Le code correcteur d'erreur est constitué de la concaténation d'un code LDPC (low density parity-check) et d'un code BCH, chargé d'éliminer les erreurs résiduelles à la sortie du décodeur LDPC. La technique de diversité de constellation, qui permet de doubler l'ordre de diversité de la transmission, est utilisée pour la première fois en pratique en association avec un code puissant tel qu'un LDPC.

Quand il ne met pas en oeuvre de technique de diversité de constellation, l'émetteur BICM inclut habituellement le codeur correcteur d'erreurs, un entrelaceur au niveau bit et le convertisseur bits-symbole ou mappeur de la constellation de modulation. En présence de la technique de diversité de constellation, encore appelée « constellations tournées », la conversion bits-symbole est réalisée en deux étapes :

1) Les points de la constellation subissent tout d'abord une rotation d'un angle donné, qui entraîne la corrélation des axes en phase (I) et en quadrature (Q) de la constellation. Les deux composantes I et Q contiennent la totalité de l'information portée par chaque point de la constellation.

2) La composante Q est ensuite retardée par rapport à la composante I avant d'être envoyée sur le canal de transmission.

Les deux composantes I et Q de la constellation originale n'étant pas transmises simultanément, elles subissent des atténuations indépendantes sur le canal. En réception, le processus inverse est appliqué. Lorsqu'une des composantes du symbole de constellation original a été fortement atténuée ou même effacée, le contenu de celui-ci peut être récupéré à grâce à l'autre composante. Depuis l'invention des turbocodes en 1993, le principe de décodage itératif, encore appelé principe turbo, est utilisé dans de nombreux domaines. Dans la chaîne de communication numérique, le principe turbo a été appliqué à d'autres blocs que les traditionnels décodeurs correcteurs d'erreurs ou égaliseurs. En particulier, l'application d'un processus itératif entre le démappeur et le décodeur LDPC est suggérée dans les directives d'implémentation du standard DVB-T2, afin d'améliorer les performances du système sur les canaux à, notamment lorsque ceux-ci présentent des phénomènes d'effacement.

Notre étude avait pour objectif de concevoir un décodeur BICM pour le standard DVB-T2 mettant en oeuvre un processus itératif entre le démappeur et le décodeur et prenant en compte des contraintes de latence et de complexité matérielle. L'étude architecturale a été réalisée en trois phases. Dans un premier temps, nous avons conçu un démappeur de complexité matérielle réduite qui supporte les constellations tournées pour des modulations d'amplitude en quadrature (QAM) carrées allant jusqu'à l'ordre 256. La seconde étape a consisté à concevoir une architecture de décodeur LDPC adaptée à la mise en oeuvre d'un échange d'information itératif avec le démappeur. Enfin, dans la dernière phase, nous avons étudié l'optimisation du séquencement des processus de décodage et de démapping ainsi que la réalisation du récepteur itératif.

Conception d'un démappeur de complexité réduite

Pour une modulation M-QAM non tournée, les informations binaires portées par les composantes I et Q sont indépendantes car la modulation QAM peut être vue comme deux modulations √𝑀-PAM (pulse amplitude modulation) séparées. En réception, le démappeur estime le LLR (Log-Likelihood Ratio) des bits portés par chaque composante en calculant √𝑀 distances euclidiennes sur chacun des axes de la constellation.

Dans le cas d'une constellation M-QAM tournée, le démappeur doit calculer M distances euclidiennes bi-dimensionnelles pour chaque LLR ν : 

σ σ π σ σ π ∈ ∈     ⋅ -         =     ⋅ -           ∑ ∑ (1) où 2 2 , , ( ) ( ) ( ) 
I I Q Q euc t
            = - + -                     (2) 
L'approximation linéaire communément appliquée pour simplifier l'expression des LLRs lorsque la constellation n'est pas tournée ne peut pas s'appliquer dans ce cas car la rotation introduit une inter-dépendance entre les composantes I et Q. Le calcul des LLRs est plus complexe que dans le cas classique car les deux composantes sont utilisées simultanément.

Néanmoins la complexité du démappeur peut être réduite lorsque l'on applique l'approximation dite Max-Log. L'expression des LLRs devient alors :
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Malgré ces approximations, dans le cas d'une constellation 256-QAM, 256 distances euclidiennes doivent être calculées, ce qui requiert 512 multiplications. La complexité matérielle correspondante peut dans certains cas être rédhibitoire. Afin de réduire le nombre de distances euclidiennes à calculer, nous proposons un algorithme de demapping basé sur la division de la constellation en quatre sous-régions. Le choix et le dimensionnement des sous-régions suivent les règles suivantes :

1.

Pour un signal reçu donné, un quart de la constellation (quadrant) est choisi en fonction du signe des composantes I et Q reçue,

2.

La sous-région correspondante est dimensionnée de telle sorte que, pour tout point du quadrant sélectionné, celle-ci contienne l'ensemble des points ne différant que d'un bit du point considéré. Outre la diminution du nombre de distances euclidiennes à calculer, nous avons réduit la complexité du calcul de ces distances proprement dites. Le calcul complet d'un terme de distance requiert normalement au moins deux multiplications. Afin de réduire le nombre total de multiplications, nous avons proposé l'application de l'approximation suivante dans l'équation (4) pour le calcul des distances euclidiennes : Eb/N0(dB) 
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check node memory bank Lors de l'étape de mise à jour du noeud de parité, chaque noeud de variable fournit simultanément une nouvelle information extrinsèques à plusieurs noeuds de parités, ce qui cause un conflit d'accès mémoire. Le partitionnement de la matrice s'avère être une technique efficace pour réduire le nombre de DDSMs. Il ne peut néanmoins assurer la suppression de la totalité des DDSMs dans la matrice de parité. Pour résoudre le problème de conflit dans les DDSMs résiduelles, nous avons proposé de réutiliser l'information mise à jour de la première diagonale et de de renvoyer le résultat intermédiaire en tant qu'entrée pour le processus de mise à jour de la seconde diagonale. La Fig. 5 décrit le schéma logique correspondant à la mise à jour du signe d'une DDSM. Des conflits peuvent en découler qui dégradent les performances de décodage. Un séquencement élaboré doit par conséquent être mis en place pour éviter ce type de conflits.

Nous avons proposé une méthode de modification du séquencement pour le décodage VSS. Il s'agit tout d'abord de détecter les cas de conflit et de modifier l'ordre de traitement des noeuds de parité dans une sous-itération. Puis la sous-matrice est partitionnée, la plupart des conflits étant supprimés lors de cette étape. Pour les cas problématiques résiduels, l'ordre de traitement des noeuds de variable est modifié avant de pouvoir décider de l'information décodée. Cette technique n'engendre quasiment aucun cycle d'attente entre les sous-itérations, ce qui se traduit par une augmentation conséquente du débit de décodage. Eb/N0(dB) Eb/N0(dB ) E b /N 0 (dB)
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Les performances du prototype de décodeur BICM-ID QPSK ont été mesurées dans le cas du code 64K et rendement de codage 4/5 pour une transmission sur un canal à fading avec 15% d'effacement. Les résultats sont présentés en Fig. 12. Le gain liée à la diversité de constellation est de l'ordre de 10 dB tandis le gain additionnel lié au processus itératif est égal à 0,5 dB pour l'algorithme MS et 0,8 dB pour l'algorithme MS3. Les performances mesurées sont quasiment identiques aux courbes de référence simulées en virgule fixe. A notre connaissance, il s'agit du premier prototype de décodeur BICM-ID DVB-T2 référencé dans la littérature.

La suite de ces travaux va essentiellement consister à étendre cette dernière étude aux cas des constellations d'ordres supérieurs : 16-QAM, 64-QAM et 256-QAM.

CHAPTER 1 Background

The second generation of terrestrial video broadcasting standard (DVB-T2) was defined in 2008. The key motivation for the second generation is to provide high capacity and robust transmission to fixed, portable and mobile terminals. One of the important key technologies in DVB-T2 is the advanced Bit-Interleaved Coded Modulation (BICM) with Signal Space Diversity (SSD). The possibility of iteration between the decoder and demapper further increases the performance gain especially over a deep faded channel.

In this chapter we start with a brief introduction of the digital communication system, then we offer a review of different Forward Error Correction (FEC) codes. The fading channel model used in the test of our study is represented next. It is followed by a review of the existing different schemes of the coded modulation. Afterwards, we give a brief introduction of the DVB-T2 system and a detailed description of BICM with Signal Space Diversity (BICM-SSD) and BICM with Signal Space Diversity and iterative process (BICM-ID-SSD). In the remaining section, we give a detailed introduction of the LDPC codes adopted in DVB-T2 system, including the encoding method and the property of the codes.
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CHAPTER 1. BACKGROUND

A digital communication system

The functional diagram and basic elements of a digital communication system is illustrated in Fig. 1.1. In a digital communication system, the source may be either analog or digital signal. The messages produced by the source are converted into digital sequence. To have an efficient communication, we seek efficient representation of the source information that results in little or no redundancy. The process of efficiency converting the source into a sequence of binary digits is called source encoding or data compression.

To have a reliable communication system, the channel encoder induces some redundancy in a controlled manner. The redundancy can be used at the receiver to overcome the effects of noise and interference encountered in the transmission of the signal through the channel.

The encoding involves taking k information bits at a time and mapping each k-bit sequence into a unique n-bit sequence, which is called a codeword. The ratio k/n is called code rate.

The modulator serves as the interface for the channel encoder to the communication channel. It maps the binary information sequence into a continuous-time electrical signals (waveforms). Let us suppose that the modulator may transmit b coded information bits at the same time t by using one waveform of the set of

M = 2 b distinct waveforms, s i (t), i = 0, 1, • • • , M -1. We call this M -ary modulation (M > 2,M=2 binary modulation).
The communication channel is the physical medium that is used to send the signal from the transmitter to the receiver. The channel may be the atmosphere, wire lines, optical fiber cables, ect. Whatever the physical medium used for the transmission of the information, the essential feature is that the transmitted signal may get corrupted and induced errors.

At the receiving end of a digital communication system, the demodulator processes the channel-corrupted transmitted waveform and reduces the waveforms to a sequence that represents estimates of the transmitted data symbols. This sequence is passed to the channel decoder, which attempts to reconstruct the original information sequence. The average probability of a bit-error at the output of the decoder is a measurement of the performance of the combination of the demodulator and the decoder, which is a function of the code characteristic, the type of the waveform of the modulator, the transmitter power, the characteristic of the channel and the demodulation and decoding algorithms. Finally, the source decoder attempts to reconstruct the original signal by processing the output of the channel decoder based on the knowledge of the source encoding method.

Error control codes

Error control codes also called Forward Error Correction (FEC) enable the detection and correction of the errors introduced by transmission of a modulated signal through a channel. 

Digital Modulator

Digital demodulator

Source encoder

Source decoder

Channel encoder

Channel decoder

Channel

Linear block codes

A binary block code generates a block of n coded bits from k information bits, we call this as an (n, k) binary block code, with (n -k) parity bits. Hamming [START_REF] Salz | Digital transmission over cross-coupled linear channels[END_REF]4) code is a famous binary block code that encodes 4 bits of data into 7 bits by adding 3 parity bits. The linear block codes are encoded by C = U × G. For an (n, k) code with k information bits, denoted as:

U = [u 1 , u 2 , • • • , u k ], are encoded into the codeword, denoted as C = [c 1 , c 2 , • • • , c n ]. G k×n is
the generator matrix and for a systematic linear block code, the generator matrix is described as G k×n = [I k×k |P k×(n-k) ], where I k×k is the k × k identity matrix and P k×(n-k) matrix determines the parity bits.

G k×n =        g 11 g 12 • • • g 1n g 21 g 22 • • • g 2n . . . . . . . . . . . . g k1 g k2 • • • g kn        (1.1) G k×n = [I k×k |P k×(n-k) ] =        1 0 • • • 0 g 11 g 12 • • • g 1(n-k) 0 1 • • • 0 g 21 g 22 • • • g 2(n-k) . . . . . . . . . . . . . . . . . . . . . . . . 0 0 • • • 1 g k1 g k2 • • • g k(n-k)        (1.2)
The parity check matrix is used to decode linear block codes. The parity check matrix corresponding to the generator matrix

G k×n = [I k×k |P k×(n-k) ] is defined as: H (n-k)×n = [I (n-k)×k |P (n-k)×(n-k) ]. It is easy to verify that G × H = 0 k×(n-k) . Recall that C = U × G, CHAPTER 1. BACKGROUND
we can get C × H = 0 k×(n-k) . Thus, multiplication of any valid codeword with the parity check matrix results in all-zero vector, this is called syndrome testing and is used to determine the valid codeword.

One powerful class of block codes is the Bose-Chadhui-Hocquenghem (BCH) codes, which were invented in 1959 by Hocquenghem, and independently in 1960 by Bose and Ray-Chaudhuri [3]. BCH codes are polynomial codes over a finite field with a particularly chosen generator polynomial, so it provides a large selection of block length. The BCH codes are cyclic codes, in which the high rates BCH codes typically outperform all other block codes with the same n and k at moderate to high SNRs.

Reed-Solomon (RS) codes, which are non-binary BCH codes, with symbols as coefficients of a polynomial p(x) over a finite field GF (q), (q > 2), invented by Irving S. Reed [START_REF] Reed | Polynomial codes over certain finite fields[END_REF] and Gustave Solomon. Reed-Solomon codes achieve a minimum distance of

d min = N -K + 1,
which is the largest possible minimum distance between codewords for any linear code (n, k).

The RS(204,188) based on GF (2 8 ) shortened from RS(255, 239), is the RS codes adopted in the DVB-T standard with the generator polynomial p(x)

= 1 + x 2 + x 3 + x 4 + x 8 . Berlekamp-
Massey decoding algorithm is the most popular hard decision decoding algorithm for BCH and RS codes, which was discovered by Elwyn Berlekamp [START_REF] Berlekamp | Algebraic coding theory, laguna hills[END_REF] and James Massey [START_REF] Massey | Shift-register synthesis and BCH decoding[END_REF]. While Chase-Pyndiah algorithm [START_REF] Pyndiah | Near-optimum decoding of product codes: block turbo codes. Communications[END_REF] is a soft input soft output decoding algorithm well used in the turbo decoding of product codes composed of BCH or Reed-Solomon component codes.

Convolutional codes

Convolutional codes differ from block codes in that the encoder contains memory so the output of the encoder at any given time is not only determined by the input but also by the previous memorized inputs. Convolutional codes are commonly specified by three parameters (n, k, m), where n is the number of output bits, k is the number of input bits and m is the number of memory registers. The octal generated polynomial is also used for defining a convolutional code. The constrain length K = k • (m -1) represents the number of bits in the encoder memory that affect the generation of the n output bits, The code in Fig. 1.2 is a (3, 1, 3) convolutional code, with a code rate of R=1/3 and the constrain length as 2. Viterbi [START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF] in 1967 proposed a maximum likelihood (ML) decoding algorithm that was relatively easy to implement for soft-decision decoding of the convolutional codes. In 1974, Bahl, Coke, Jelinek and Raviv (BCJR) [START_REF] Bahl | Optimal decoding of linear codes for minimizing symbol error rate[END_REF] introduced a maximum a posteriori probability (MAP) decoding algorithm for convolutional codes with unequal a prior probability for the information bits. The BCJR has been widely applied to soft-decision iterative decoding scheme in which the a prior probability information changes from iteration to iteration. 

Turbo codes

Shannon set out the performance limits of channel coding and modulation schemes as early as 1948 [START_REF] Shannon | A mathematica theory of communication (Part I)[END_REF] [17], however he gave no indication on how to construct good practical codes.

The achievement of the Shannon capacity limit has been the goal of channel coding theorists CHAPTER 1. BACKGROUND ever since. However the performance of the mentioned Reed-Solomon codes, convolutional codes, product codes and concatenated codes is still a long way from the Shannon limit.

Turbo codes, invented by Berrou and Glavieux [START_REF] Berrou | Near shannon limit error-correcting coding and decoding: Turbo-codes[END_REF] in 1993, is the first codes that are capable of approaching Shannon's limit.

These codes involve a parallel concatenation of two recursive systematic convolutional Each decoder takes three inputs: the systematic bit, the parity bit transmitted from the corresponding component encoder and the information from the other component decoder, which is referred to as a priori information. Each decoder needs to provide the probability of the decoded bit sequence, so a Soft Input Soft Output (SISO) decoding algorithm is required.

BCJR-based decoding and Max-Log MAP decoding represent two classical decoding algorithms for Turbo codes. A soft output version of the Viterbi decoding (SOVA) is also a wide spread decoding algorithm for these concatenated codes. During the decoding process, each decoder alternately builds upon the results of the other to gradually enhance the reliability of the decisions via the exchange of extrinsic information on the systematic bits.

Low density parity check codes

Low density parity check (LDPC) codes were originally invented by Gallager [2] in 1963.

However, these codes were ignored until the introduction of turbo codes or more precisely iterative decoding. LDPC codes were re-born by Mackay and Neal [START_REF] Mackay | Near shannon limit performance of low density parity check codes[END_REF] in 1997. These codes are linear block codes based on simple parity check equations and specified by a sparse parity-check matrix containing mostly zeros and a few ones (hence low density).

They are often represented as bipartite graphs (Tanner Graphs) [START_REF] Tanner | A recursive approach to low complexity codes[END_REF] which contain loops or cycles. An LDPC code is said to be regular if the check node and bit node degrees are constant and irregular if they are not. The degree correspond to the number of ones in the rows (for check nodes) or columns (for bit nodes) of the parity check matrix.

The widely used decoding algorithm is Belief Propagation (BP) also named as Message Passing (MP), since the messages are passed between the check nodes and bit nodes through the connection defined by the parity check matrix. A well-known instance of BP is the sumproduct algorithm first proposed by Gallager in [2], which may also be realized in the log domain. The method to simplify the check node process were well studied by Chen and Fossorier [START_REF] Chen | Reducedcomplexity decoding of LDPC codes[END_REF]. Among them normalized min-sum is mostly used in current LDPC decoders.

Different ways of scheduling the bit and check node update can have a significant impact on the convergence speed of the decoding process. The default approach used in classical BP is called flooding with two phase, where all of the bit nodes are updated in parallel followed by the update of all the check nodes. Faster convergence can be achieved with shuffled scheduling [20] [21]. A detailed explanation of the decoding algorithm and scheduling will be presented in Chapter 3.

The fading channel model

The communication channel represents a physical medium between the transmitter and the receiver. The channel model is a representation of the input-output relationship in mathematical or algorithmic form. Unlike wired channels whose characteristics are stationary and predictable, wireless channels are not predictable. They introduce significant levels of interference, distortion, and noise. Modelling wireless channels has been one of the most difficult parts in the wireless system design.

General description of fading channel

Developing mathematical models for the propagation of signals over a transmission medium requires a good understanding of the underlying physical phenomena. In wireless mobile communications, the electromagnetic waves often do not directly reach the receiver because of the obstacles that block the Line Of Sight (LOS) path, such as buildings, mountains or foliage. A signal travels from transmitter to receiver over multiple reflective paths; this phenomenon is called multipath propagation. This effect can cause fluctuations in the received signal's amplitude, phase and angle of arrival, which can be constructive or destructive. A typical scenario of mobile radio communications is shown in Fig. 1.6, where the three main mechanisms that impact the signal propagation are depicted.

3 causes fluctuations in the receiver signal's amplitude and phase. The sum of the signals can be constructive or destructive. A typical scenario of mobile radio communications is shown in Fig. 1, where the three main mechanisms that impact the signal propagation are depicted [1.9].

Fig. 1. A typical scenario of mobile radio communications

Those mechanisms are:

• Reflection. It occurs when the electromagnetic wave bumps against a smooth surface, whose dimensions are large compared with the signal wavelength. • Diffraction. When a building whose dimensions are larger than the signal wavelength obstructs a path between transmitter and receiver, new secondary waves are generated. This phenomenon is often called shadowing, because the diffracted field can reach the receiver even when shadowed by an impenetrable obstruction (no line of sight). • Scattering. It happens when a radio wave bumps against a rough surface whose dimensions are equal to or smaller than the signal wavelength. In the urban area, typical obstacles that cause scattering are lampposts, street signs, and foliage. Another negative influence on the characteristics of the radio channels is the Doppler effect, due to the motion of the mobile station. The Doppler effect causes a frequency shift of each portion of transmitted waves [1.10]. Relation (1.1) gives the Doppler frequency of the incident wave:

! f = f max cos" , (1) 
where ! " is the angle of arrival of the incident wave (Fig. 2) with respect to the mobile velocity vector [1.11, 1.12]. Those mechanisms are: 1.) Reflection. It occurs when the electromagnetic wave bumps against a smooth surface, whose dimensions are large compared to the signal wavelength.

! f max = v c 0 f 0 (2)

Fig. 2. Angle of arrival of the n-th incident wave

2.) Diffraction. When a building whose dimensions are larger than the signal wavelength obstructs a path between transmitter and receiver, new secondary waves are generated. This phenomenon is often called shadowing, because the diffracted field can reach the receiver even when shadowed by an impenetrable obstruction. 3.) Scattering. It happens when a radio wave bumps against a rough surface whose dimensions are equal to or smaller than the signal wavelength. In the urban area, lampposts, street signs, and foliage are typical obstacles that cause scattering. Another negative influence on the characteristics of the radio channels is the Doppler effect, due to the motion of the mobile receiver. The Doppler effect causes a frequency shift of each portion of transmitted waves, as described in equ. (1.3).

f = f max • cos α (1.3)
where f max = (v/c 0 ) • f 0 is the maximum Doppler frequency. The value of f max depends 1.3. THE FADING CHANNEL MODEL 13 on the ration of the speed of the receiver v, the speed of the light c 0 and the carrier frequency f 0 . α is the angle of the arrival of the wave with respect to the mobile receiver. This phenomenon is affected by prominent terrain contours (hills, forests, clumps of buildings, etc) between the transmitter and the receiver. The signal suffered large-scale fading is said to be shadowed by these obstacles. The amplitude change caused by shadowing is often modelled by a log-normal distribution with a standard deviation according to the log-distance path loss.

Small-scale fading refers to the dramatic changes in signal amplitude and phase that can be experienced as a result of small changes (as small as half-wavelength) between the receiver and transmitter. If the multiple reflective paths are large in number and there is no line-of-sight signal component, the envelope of the received signal is statistically described by a Rayleigh probability distribution function (pdf). When there is a dominant non-faded signal component, such as a line-of-sight propagation path, the small-scale fading envelope is described by a Rician pdf. The small-scale fading manifests itself into two distinct mechanisms, namely, time spreading of the signal and time variance of the channel. The former one is due to multipath and the later one is due to motion.

Frequency selective fading and Flat fading are the two kinds of fading in the signal dispersion manifestation,which could get explained both in time domain and frequency domain.

From time domain point of view, frequency selective fading occurs when the multipath delay spread is greater than the duration of symbol. The frequency selective fading is also known as Intersymbol Interference (ISI), which leads to an irreducible BER degradation. From the CHAPTER 1. BACKGROUND frequency point of view, frequency selective fading occurs when the coherence bandwidth of the channel is smaller than the bandwidth of the signal. The coherence bandwidth means the statistical measure of the range of frequencies over which the channel passes all spectral components with approximately equal gain and linear phase. In this case, different frequency components of the signal therefore experience decorrelated fading. While in flat fading, the coherence bandwidth of the channel is larger than the bandwidth of the signal. Therefore, all frequency components of the signal will experience the same magnitude of fading.

Fast fading and slow fading are the two kinds of fading in the time variance manifestation.

Fast fading describes a condition when the time duration in which the channel behaves in a correlated manner is short compared to the time duration of a symbol. Therefore, it can be expected that the fading character of the channel will change several times while a symbol is propagating, which leads to distortion of the baseband pulse shape and yields an irreducible error. While in the slow fading the time duration that the channel behaves in a correlated manner is longer compared to the time duration of the transmission symbol.
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Hence, the amount of margin indicated is intended to provide adequate received signal power for approximately 98-99 percent of each type of fading variation (large-and small-scale).

A received signal, r(t), is generally described in terms of a transmitted signal s(t) convolved with the impulse response of the channel h c (t). Neglecting the degradation due to noise, we write

r(t) = s(t) * h c (t), (2) 
where * denotes convolution. In the case of mobile radios, r(t) can be partitioned in terms of two component random variables, as follows [START_REF] Berrou | Near shannon limit error-correcting coding and decoding: Turbo-codes[END_REF]:

r(t) = m(t) x r 0 (t), (3) 
where m(t) is called the large-scale-fading component, and r 0 (t) is called the small-scale-fading component. m(t) is sometimes referred to as the local mean or log-normal fading because the magnitude of m(t) is described by a log-normal pdf (or, equivalently, the magnitude measured in decibels has a Gaussian pdf). r 0 (t) is sometimes referred to as multipath or Rayleigh fading. Figure 3 illustrates the relationship between large-scale and small-scale fading. In Fig. 3a, received signal power r(t) versus antenna displacement (typically in units of wavelength) is plotted, for the case of a mobile radio.

Small-scale fading superimposed on large-scale fading can be readily identified. The typical antenna displacement between the small-scale signal nulls is approximately a half wavelength. In Fig. 3b, the large scale fading or local mean, m(t), has been removed in order to view the smallscale fading, r 0 (t), about some average constant power.

In the sections that follow, we enumerate some of the details regarding the statistics and mechanisms of largescale and small-scale fading.

LARGE-SCALE FADING: PATH-LOSS MEAN AND STANDARD DEVIATION

F or the mobile radio application, Okumura [6] made some of the earlier comprehensive path-loss measurements for a wide range of antenna heights and coverage distances. Hata [START_REF] Salz | Digital transmission over cross-coupled linear channels[END_REF] transformed Okumura's data into parametric formulas. For the mobile radio application, the mean path loss, -L p (d), as a function of distance, d, between the transmitter and receiver is proportional to an nth power of d relative to a reference distance d 0 [3].

(4) -L p (d) is often stated in decibels, as shown below.

-

L p (d) (dB) = L s (d 0 ) (dB) + 10 n log (d/d 0 ) (5) 
The reference distance d 0 corresponds to a point located in the far field of the antenna. Typically, the value of d 0 is taken to be 1 km for large cells, 100 m for microcells, and 1 m for indoor channels.

-L p (d) is the average path loss (over a multitude of different sites) for a given value of d. Linear regression for a minimum mean-squared estimate (MMSE) fit of -L p (d) versus d on a log-log scale (for distances greater than d 0 ) yields a straight line with a slope equal to 10n dB/decade. The value of the exponent n depends on the frequency, antenna heights, and propagation environment. In free space, n = 2, as seen in Eq. 1. In the presence of a very strong guided wave phenomenon (like urban streets), n can be lower than 2. When obstructions are present, n is larger. The path loss L s (d 0 ) to the reference point at a distance d 0 from the transmitter is typically found through field measurements or calculated using the free-space path loss given by Eq. 1. Figure 4 shows a scatter plot of path loss versus distance for measurements made in several German cities [START_REF] Boutros | Signal space diversity: a power-and bandwidth-efficient diversity technique for the rayleigh fading channel[END_REF]. Here, the path loss has been measured relative to the free-space reference measurement at d 0 = 100 m. Also shown are straight-line fits to various exponent values.

The path loss versus distance expressed in Eq. 5 is an average, and therefore not adequate to describe any particular setting or signal path. It is necessary to provide for variations about the mean since the environment of different sites may be quite different for similar transmitter-receiver separations. Figure 4 illustrates that path-loss variations can be quite large. Measurements have shown that for any value of d, the path loss L p (d) is a random variable having a log-normal distribution about the mean distant-dependent value -L p (d) [START_REF] Reed | Polynomial codes over certain finite fields[END_REF]. Thus, path loss L p (d) can be expressed in terms of -L p (d) plus a random variable X σ , as follows [3]:

L p (d) (dB) = L s (d 0 ) (dB) + 10nlog 10 (d/d 0 ) + X σ (dB) (6) 
where X σ denotes a zero-mean Gaussian random variable (in decibels) with standard deviation σ (also in decibels). X σ is site-and distance-dependent. The choice of a value for X σ is Hence, the amount of margin indicated is intended to provide adequate received signal power for approximately 98-99 percent of each type of fading variation (large-and small-scale).

A received signal, r(t), is generally described in terms of a transmitted signal s(t) convolved with the impulse response of the channel h c (t). Neglecting the degradation due to noise, we write

r(t) = s(t) * h c (t), (2) 
where * denotes convolution. In the case of mobile radios, r(t) can be partitioned in terms of two component random variables, as follows [START_REF] Berrou | Near shannon limit error-correcting coding and decoding: Turbo-codes[END_REF]:

r(t) = m(t) x r 0 (t), (3) 
where m(t) is called the large-scale-fading component, and r 0 (t) is called the small-scale-fading component. m(t) is sometimes referred to as the local mean or log-normal fading because the magnitude of m(t) is described by a log-normal pdf (or, equivalently, the magnitude measured in decibels has a Gaussian pdf). r 0 (t) is sometimes referred to as multipath or Rayleigh fading. Figure 3 illustrates the relationship between large-scale and small-scale fading. In Fig. 3a, received signal power r(t) versus antenna displacement (typically in units of

In the sections that follow, details regarding the statistics scale and small-scale fading.
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where X σ denotes a zero-mean Ga decibels) with standard deviation site-and distance-dependent. The Any wireless signal r(t) = m(t) • r 0 (t) transmitted over large physical distances is suffered both large-scale fading m(t) as well as small-scale fading r 0 (t). Since large-scale fading affects only the average strength of the received signal, it will not be considered in the rest of our study. We restrict our study to small-scale fading and especially to flat fading and flat fading with erasures.

Rayleigh fading channel model

The mathematical model of the multipath channel can be presented by using the method of the impulse response used for linear systems. At time 0, Dirac delta function as x(t) = δ(t) is used to describe the transmitted single. At the receiver side, due to the presence of the multiple electromagnetic paths, more than one pulse will be received (we suppose here that the channel has infinite bandwidth, thus the pulse shape is not modified at all), and each one of them will arrive at different times τ (t), with different energy strengths β(t) and different 1.3. THE FADING CHANNEL MODEL angles α(t). The phase of the path is uniformly distributed between 0 and 2π. Fig. 1.9(b) describes one path of the mobile fading channel model with the receiver moving in the xdirection with Doppler shift ∆f i which is described in equ. (1.3). Fig. 1.9(a) illustrates the multipath channel impulse response, where a(t) = β(t) • exp(α(t)). Let S(t) be the transmitted complex signal having a carrier frequency f 0 modulated by a baseband complex signal x(t), it can be written as:

Time spreading (dispertion)

S(t) = x(t) exp(j2πf 0 t) (1.4)
The received signal suffers a multipath channel with m distinct waves. With the additive white Gaussian noise omitted, it can be expressed as equ. (1.5)

S (t) = m i=1 a i (t)S (t -τ i (t)) = m i=1 a i (t) exp (-j2πf 0 τ i (t)) • x (t -τ i (t)) • exp(j2πf 0 t) (1.5)
where a i (t) = β i (t) • exp(α i (t)) and τ i (t) represent the attenuation and the delay of the i-th path. The received signal S (t) can be rewritten as the baseband signal y(t):

y(t) = m i=1 c i (t)x (t -τ i (t)) (1.6)
where

c i (t) = a i (t) exp (-j2πf 0 τ i (t)) (1.7)
The Doppler shift affects the attenuation a i (t) periodically and is comparably small when compared with the carrier frequency f 0 .

As a result, y(t) can still be considered as narrowband and the central limit theorem can be applied with high value of m. Then c i (t) can be modelled as complex, mutually independent Gaussian processes as follows:

c i (t) = p i (t) + jq i (t) (1.8)
where p i (t) and q i (t) are independent Gaussian process having the same variance σ 2 i . In the case of flat fading, the maximum delay τ i (t) is much smaller than the symbol duration T , hence x(t -τ i (t)) can be approximated by x(t). The received signal y(t) can be rewritten as:

y(t) = x(t) m i=1 c i (t) (1.9)
In the discrete time domain, with sample time T , the received signal becomes as:

y(nT ) = x(nT ) m i=1 c i (nT ) (1.10)
Here we introduce the complex Gaussian process c n = m i=1 c i (nT ), which is the sum of m independent complex Gaussian process c i (nT ), then according to the central limit theorem c n becomes as follows:

c n = p n + jq n (1.11)
where p n and q n represent two independent Gaussian processes having the same variance

σ 2 n = m i=1 σ 2 i .
c n can also be expressed in the form as:

c n = ρ n exp(jϕ n ) (1.12)
where

ρ n = p 2 n + q 2 n is the amplitude of c n with E ρ 2 t = 1. ϕ n is the phase of c n uniformly distributed in [0, 2π].
Taking equ. (1.9), equ. (1.12) and the additive complex Gaussian noise b n into account, the discrete received signal can be expressed as:

y n = ρ n exp(jϕ n )x n + n n (1.13)
If a perfect phase detection is assumed, y n becomes as:

y n = ρ n x n + n n (1.14)
The received discrete-time baseband signal that suffered a flat Rayleigh fading is finally described as equ. (1.14), based on thesis [START_REF] Charbel | Iterative mehtods for improving error correcting performance of spectrally efficient coded transmissions[END_REF]. In the rest of the thesis, we assume perfect phase detection and perfect Channel State Information (CSI).

1.4. CODED MODULATION

Single Frequency Network

A Single-frequency Network (SFN) is a broadcast network where several transmitters simultaneously send the same signal over the same frequency channels. The aim of SFN is an efficient utilization of the radio spectrum, allowing a higher number of radio and TV programs in comparison to traditional multi-frequency network (MFN) transmission. The receiver gets several echoes of the same signal at the same time with the same frequency, the effect can be constructive or destructive. In the fringe areas covered by two or more SFN transmitters, any drift will cause reception degradation. Therefore, SFN transmission can be considered as a severe form of multipath propagation in a negative point of view.

If only two paths are considered, an undesired static echo at a specific delay will cause the magnitude of the received signal to change up or down depending on its relative phase shift. In an extreme case, the undesired echo may arrive at 180 • and at an equal energy level (0-dB) relative to the desired signal. In this case, the received signal is cancelled or erased.

If the interference is dynamic, i.e., with a very small Doppler shift, the received signal will suffer erasure periodically even the reception is stable.

Channel model for the fading channel with erasures

In a single-frequency network, the received signal may suffer erasures. This is a typical scenario in the state-of-art of the broadcasting system. In the DVB-T2 implementation guidelines [START_REF]DVB-T2. Digital video broadcasting (DVB); implementation guidelines for a secondgeneration digital terrestrial television broadcasting system[END_REF], a 0-dB echo channel is defined as a fading channel with dynamic erasures having two paths with the same energy and one of them has 1Hz Doppler shift. Therefore, in the rest of the study, we focus on the fading channel with erasures as well. The received discrete-time baseband signal, that suffers a Rayleigh fading with erasures is described as equ. (1.15):

y t = ρ t e t x t + n t (1.15)
where e t is a random discrete process, that takes value 0 with a probability of P e and value 1 with a probability of 1 -P e . At the receiver side, the transmitted energy has to be normalized by a factor √ 1 -P e in order to compensate the loss of transmitted power. Based on the 0-dB echo channel model, the erasure ratio of 15% corresponding to P e = 0.15 have been chosen in our study.

Coded Modulation

Coded Modulation is a technology of combining bandwidth efficient modulation and coding to achieve coding gain without bandwidth expansion or reducing data rate. There are several 

Trellis coded modulation

Trellis coded modulation (TCM) is a modulation scheme which enables highly efficient transmission over band-limited channels, proposed by Ungerboeck in 1982 [START_REF] Ungerboeck | Channel coding with multilevel/phase signals[END_REF]. This breakthrough is achieved by joint optimization of channel coding and modulation, which uses multilevel/phase signal modulation with set-partition mapping and simple convolutional coding.

Fig. 1.10 represents a classical encoding scheme of TCM for 8PSK modulation with a code rate of R=2/3 . A binary convolutional encoder operates on 2 information bits to produce 1 coded bit P. This coded bit P selects one of 2 2 subsets of the signal constellation, in which

the minimum distance is expended to 2 √ E s from (2 - √ 2) • E s .
Then the information bit b 1 and b 0 choose one of the point in the selected subset consecutively. Finally the selected point is passed to a PAM modulator and the transmitted symbols is achieved finally. At the receiver side, a sequence detector is employed (i.e., Viterbi decoder) to determine the maximum likelihood sequence transmitted. To achieve a reliable communication over a fading channel, the primary design criterion is to increase the diversity order of coded modulation. Since TCM is designed to maximize the minimum free Euclidean distance and not diversity order, the performance of TCM over

  0 2 2 s d E    0 2 s d E   b0 Convolutional encoder R=2/3 p b1 p s E 0 0 c  0 1 c  b1 1 0 c  1 1 c  b1 1 0 c  1 1 c  b0 b0 2 0 c  2 1 c  2 0 c  2 1 c  b0 2 0 c  2 1 c  b0 2 0 c  2 1 c 

Transmitted symbol

Trellis code Constellation mapper Symbol
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Rayleigh fading channel is degraded. Adding a symbol interleaver in conjunction with a trellis code and avoiding parallel transition is a common technique used to improve TCM performance. The diversity order for any symbol interleaved system is limited to the minimum number of distinct symbols along any error event, so the performance gain achieved by adding symbol interleaver is limited. Increasing the constraint length of the code is another way to increase the diversity order.

Pragmatic trellis coded modulation

TCM as created by Ungerboeck requires predefined association between the code and the modulation. Viterbi [START_REF] Viterbi | A pragmatic approach to trelliscoded modulation[END_REF] 

Bit-interleaved coded modulation

Based on this concept, Zehavi [START_REF] Zehavi | 8-PSK trellis codes for a rayleigh channel[END_REF] in 1992 recognized the code diversity. He showed that the diversity order can be increased, which can achieve the smallest number of distinct bits (rather than channel symbols) along any error events. This is achieved by bit-wise interleaving after encoding and by using an appropriate soft-decision bit metrics as an input to the Viterbi decoder. This technique is later known as bit-interleaved coded modulation. It further improves the performance of coded modulation over Rayleigh fading channel because the diversity order is increased to the minimum Hamming distance of the code.

Although first introduced by Zehavi [START_REF] Zehavi | 8-PSK trellis codes for a rayleigh channel[END_REF], it was Caire [START_REF] Caire | Bit-interleaved coded modulation. Information Theory[END_REF] in 1998 who presented the underlying theory behind BICM and provided a general information-theoretical framework for this concept, which is regarded as the guidelines of BICM system design.

A conventional BICM is modelled as a serial concatenation of a conventional encoder, random bit interleaver and a memoryless modulator as shown in 

x t = x I t , x Q t ∈ χ (1.16)
x I t and x Q t represent the in-phase(I) and quadrature(Q) components of µ m at the sampling time t. χ represents the possible 2 m signals in the constellation set.

The bit interleaver function for every transmitted bits is defined as equ. (1.17 π (mt + i) = mod ((mt + i), N s m);

(1.17)

Bits-to-symbol mapping plays a critical role in the BICM system. It greatly affects the bit error correcting performance. There are several ways to label the symbols: Gray, mixed, setpartitioning, modified set-partitioning and random. The mostly used is Gray mapping, which characterized by only one different bit between one constellation signal and its neighbors.

At the receiver side, the demodulator (demapper) provides probabilities on transmitted bit sequence v i , i = {0, 1, ..., m -1}. At sample time t, the output of the demodulator which is the probability of error on bit b i t noted P v i t = b|y; O is expressed as equ. (1.18):

P v i t = b|y; O = xt∈χ i b P (x t |y t ) = xt∈χ i b P (y t |x t ) • P (x t ) (1.18)
where b = {0, 1}, χ i b represents the set of signals in the signal space. It contains the signals whose i th bit equal to value b. P (x t ) designates the a priori probability of transmitted x t .
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With perfect CSI, the soft output of the demodulator is illustrated as equ. (1.19):

P v i t = b|y; O = xt∈χ i b P (x t ) σ √ 2π • exp   - y I t -ρ t x I t 2 + y Q t -ρ t x Q t 2 2σ 2    (1.19)
where σ 2 represents the channel variance and ρ t represents the amplitude of the fading.

P (x t ) is not available at the receiver side. It is assumed to be 2 -m with each bit having an equal probability 2 -1 . After the de-interleaving step, P c i t = b|y; O becomes the input of the soft input decoder P c i t = b|y; I .

Improving the performance of BICM system over a fading channel

Signal space diversity improves the diversity order of BICM. It consists of rotating the constellation and interleaving one of the component axis(I or Q) with respect to the other. The coordinate interleaving was first proposed in [START_REF] Slimane | An improved PSK scheme for fading channels[END_REF], whereas the constellation rotation coupled with coordinate interleaving was first proposed in [START_REF] Boutros | Signal space diversity: a power-and bandwidth-efficient diversity technique for the rayleigh fading channel[END_REF].

The choice of the rotated angle α is selected based on maximizing of the so-called product distance introduced in [START_REF] Boutros | Signal space diversity: a power-and bandwidth-efficient diversity technique for the rayleigh fading channel[END_REF]. The author of [START_REF] Tran | Performance of BICM-ID with signal space diversity[END_REF] used the bit error rate as the criterion to determine the optimal rotation matrices. In [START_REF] Nour | Improving BICM performance of QAM constellations for broadcasting applications[END_REF] a new criterion was proposed to achieve good performance for the fading channel with and without erasures. [START_REF] Qiuliang | Coded modulation with signal space diversity[END_REF] determines the optimal rotation angle by maximizing average mutual information at the output of demapper.

In [START_REF] Xiaodong | Bit-interleaved coded modulation with iterative decoding[END_REF] and [START_REF] Xiaodong | Trellis-coded modulation with bit interleaving and iterative decoding. Selected Areas in Communications[END_REF], it has been shown that the performance of a BICM system can be improved by iterative decoding (ID) using hard-decision feedback by proper bit labeling of the constellation. So the minimum inter signal Euclidean distance of a BICM system can be increased while retaining the desirable Hamming distance. BICM with iterative decoding greatly outperforms TCM and compares favorably with bandwidth-efficient turbo TCM over AWGN, while significantly outperforms over a Rayleigh and Ricean channel. The authors in [START_REF] Xiaogdong | Bit-interleaved coded modulation with iterative decoding using soft feedback[END_REF] firstly adopted the soft-input soft-output(SISO) module for the convolutional decoding and optimised the bit-metric calculation of the soft-output feedback from the decoder to further improved the performance of BICM-ID.

Combining iterative BICM with signal space diversity (BICM-ID-SSD) can further improve the performance over Rayleigh fading channel. The authors in [START_REF] Nour | Improving BICM performance of QAM constellations for broadcasting applications[END_REF] first applied BICM-ID-SSD with modern codes (Turbo codes, LDPC codes), which provides attractive performance gains over fading channel with and without erasures. 

DVB-T2 standard introduction

Digital Video Broadcasting-Terrestrial (DVB-T) is the most widely developed digital terrestrial television system worldwide over thirty countries. In order to increase its spectral efficiency and enable new services, the DVB organization has developed a next generation of DVB-T2 standard [START_REF] Dvb-T2 | Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system[END_REF]. The latest advanced coding and modulation technologies have been included in the specification of DVB-T2 to provide high capacity and improve robustness Alamouti encoding [4]. and published with advanced forward error correcting code, such as Turbo codes or LDPC codes before 2008. In [START_REF] Nour | Improving BICM performance of QAM constellations for broadcasting applications[END_REF] and [START_REF] Nour | Rotated QAM constellations to improve BICM performance for DVB-T2[END_REF], BICM-SSD and BICM-SSD-ID have been studied with Turbo codes and LDPC codes. The exhibited gains lead to their adoption in the DVB-T2 standard.

DVB-T DVB-T2

A description of this system is given in Fig. 1.12 and a solution to double the diversity order relies on two independent parts as shown in Fig. 1.15.

1. Correlating the in-phase I and quadrature Q components of the transmitted symbols by constellation rotation. Rotation is applied for the squared Gray labelled QAM to make the coordinates correlated, hence maximizes the diversity order. In the rotated constellation, each symbol could be uniquely identified based on the projection on axis I or Q. independent interleaver for I and Q components of the transmitted symbol. A practical solution is to replace the coordinates interleaver with a cyclic delay of one of the component (Q is adopted in the standard) before the cell-interleaver and time-interleaver.

In consequence, the detection of the transmitted signal is still possible with a cyclic delayed and constellation rotated system in case the transmitted signal suffers a completely fading. 

LDPC codes of DVB-T2

The LDPC codes in the DVB-T2 standard are the irregular repeat accumulate (IRA) LDPC codes in the same family of LDPC code in DVB-S2, which support two different frame lengths (16200 bits for short code length and 64800 for long code length) and a set of code rates (R1/4, R1/2, R3/5, R2/3, R3/4, R4/5, R5/6). It is defined by the parity check matrix

H (n-k)×n = [I (n-k)×k |P (n-k)×(n-k) ],
as shown in Fig. 1.17.

There are two types of variable nodes, the information and parity nodes, corresponding to the systematic bits (i

0 , i 1 , • • • , i k-1
) and parity bits (p 0 , p 1 , • • • , p n-k-1 ) respectively. The information part of the parity check matrix consists of two sets, A with a bit node degree larger than 3 (the value changes according to code rate), B with a constant bit node degree 3, as shown in Fig. 1.17. The parity part is a staircase lower triangular matrix. The code can also be represented by a bipartite graph, called Tanner graph [START_REF] Tanner | A recursive approach to low complexity codes[END_REF], as illustrated in Fig.

1 .18. The connection between the information nodes and the check nodes is semi-random
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via a permutation, which is defined by the encoding rules defined in [START_REF] Dvb-T2 | Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system[END_REF]. The connection between the parity nodes and the check nodes is a fixed zigzag pattern, which results in the accumulative encoding property.
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Inform bits=(180-q)*360 Parity check bits=q*36 The zigzag pattern of the connection between the parity bits and check nodes shows the accumulative property of the code (equ. (1.21)). Therefore, the parity bits can be derived from the a recursive addition operation on GF (2). The encoding algorithm can be explained by equ. (1.22).

H= Figure 1.17 -Parity Check Matrix of the LDPC code in DVB-T2 1 1 1 1 1 11 1 1 1 1 2 v d                               P      0,q,2q,…,1,q+1,2q+1,… q * 360
CHAPTER 1. BACKGROUND Algorithm 1 Encoding algorithm of the LDPC code in DVB-T2 1: Initialization:

2: p 0 = p 1 = • • • = p n-k-1 = 0
3: Encoding:

4: for the ith bit, where mod(i,360)=0

5: p j = p j ⊕ b i , j = 1, 2, • • • , dv i
{ p j are the parity bit addresses specified in annex A and B in the standard } 6: for the ith bit, where mod(i,360) = 0

7: p x = p x ⊕ b i , x = 1, 2, • • • , dv i , where p x = mod ((p j + mod(i, 360) • q), (n ldpc -k ldpc ))
{ q is specified in the standard, see table.1.3}

8: for the ith parity bit, where i = 1,2,(n ldpc -k ldpc ) 

9: p 0 = p 0 , p i = p i ⊕ p i-1 64K 16K rate q rate q 1/
a (p-2)0 a (p-2)1 ... a (p-2)(k-1) 0 0 ... 1 0 a (p-1)0 a (p-1)1 ... a (p-1)(k-1) 0 0 ... 1 1             •              i 0 . . . i k-1 p 0 . . . p n-k-1              =        0 0 . . . 0        (1.20)
a 00 i 0 ⊕a 01 i 1 ... ⊕a 0(k-1) i (k-1) ⊕p 0 ⊕0 = 0; a 10 i 0 ⊕a 11 i 1 ... ⊕a 1(k-1) i (k-1) ⊕p 0 ⊕p 1 = 0; a 20 i 0 ⊕a 21 i 1 ... ⊕a 2(k-1) i (k-1) ⊕p 1 ⊕p 2 = 0; . . . . . . . . . . . . . . . . . . = 0; a (p-2)0 i 0 ⊕a (p-2)1 i 1 ... ⊕a (p-2)(k-1) i (k-1) ⊕p n-k-3 ⊕p n-k-2 = 0; a (p-1)0 i 0 ⊕a (p-1)1 i 1 ... ⊕a (p-1)(k-1) i (k-1) ⊕p n-k-2 ⊕p n-k-1 = 0;
(1.21)

1.5. DVB-T2 STANDARD INTRODUCTION 29 p 0 = a 00 i 0 ⊕a 01 i 1 ... ⊕a 0(k-1) i (k-1) ⊕0; p 1 = a 10 i 0 ⊕a 11 i 1 ... ⊕a 1(k-1) i (k-1) ⊕p 0 ; p 2 = a 20 i 0 ⊕a 21 i 1 ... ⊕a 2(k-1) i (k-1) ⊕p 1 ; . . . . . . . . . . . . . . . p n-k-2 = a (p-2)0 i 0 ⊕a (p-2)1 i 1 ... ⊕a (p-2)(k-1) i (k-1) ⊕P t n-k-3 ; p n-k-1 = a (p-1)0 i 0 ⊕a (p-1)1 i 1 ... ⊕a (p-1)(k-1) i (k-1) ⊕P t n-k-2 ;
(1.22)

1.5.2.

Properties of LDPC codes in DVB-T2

From the Annex A and Annex B of the DVB-T2 standards [START_REF] Dvb-T2 | Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system[END_REF], we could not only know the way of encoding but also know the construction of the codes. For bit i which satisfies mod(i,360) = 0, the index of j of a ij , whose value equals to one, is defined in the standard.

The rest of a ij equal to zero. We denote the index of j, which is defined in the standard, as

j * = j * 1 , j * 2 , • • • , j * dv-1 .
For the other bit i (mod(i,360) =0), the index of j for a ij , whose value equals to one can be calculated based on equ. (1.23). In fact, it is possible to process one group of the connection between the check nodes B and bit nodes C simultaneously. With the re-arrangement of the check node order as equ.

mod ((j * + mod(i, 360) • q), (n ldpc -k ldpc )) (1.23)
(1.24) and parity variable bits as shown in equ. (1.25), the parity check matrix of the LDPC codes becomes quasi-cyclic, as illustrated in Fig. 1.19. The check node indexes with the re-arrangement are listed in equ. (1.26).

B = {l • M, l • M + 1, • • • , l • M + M -1} , l ∈ [0, 1, • • • , N ldpc M ], M = 360 (1.24) C = {r, r • q, • • • , r • (M -1) • q} , r = mod(j * , q) (1.
(0, q, 2q, • • • , 359q) , (1, q + 1, 2q + 1, • • • , 359q + 1) , • • • , (q -1, 2q -1, 3q + 1, • • • , 360q -1) (1.26)
Having such a structure, decoder can decode cyclic blocks in parallel. However, the parallel decoding can introduce additional constraints. In fact, memory conflicts can occur when a double-diagonal is observed in certain sub-matrix, in which the row and column degree is bigger than one. A detailed explanation and corresponding solution is detailed in Chapter 3. 
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LLR(v

i t ) = log P r(v i t = 0)|y I t , y Q t P r(v i t = 1)|y I t , y Q t (2.1) = log           xt∈χ i 0 P (x t ) σ √ 2π • exp   - y I t -ρ t x I t 2 + y Q t -ρ t x Q t 2 2σ 2    xt∈χ i 1 P (x t ) σ √ 2π • exp   - y I t -ρ t x I t 2 + y Q t -ρ t x Q t 2 2σ 2              (2.2)
The sets of signals equal to the value zero and the value one for mapping bit v i t in a 16-QAM of the DVB-T2 standard are listed as: The simplified computation of the LLRs is illustrated as equ. (2.3), where χ 0 0 is reduced to the set {3, 1} and χ 0 1 is reduced to the set {9, 11} for v 0 and v 2 .

LLR(v i t ) = log         xt∈χ i 0 P (x t ) σ √ 2π • exp - y I t -ρ t x I t 2 2σ 2 xt∈χ i 1 P (x t ) σ √ 2π • exp - y I t -ρ t x I t 2 2σ 2         (2.3)
For the sake of simplicity, P (x t ) is assumed to be equivable (2 -m ) and the signal space is normalized. For the moment we focus on the AWGN channel, hence ρ t is equal to one. Under this scenario, the demapping equation for v 0 can be written as:

LLR(v 0 t ) = log           exp   - y I t -1 √ 10 2 2σ 2    + exp   - y I t -3 √ 10 2 2σ 2    exp   - y I t + 1 √ 10 2 2σ 2    + exp   - y I t + 3 √ 10 2 2σ 2              (2.4)
The 

LLR(v 0 t ) = log           max      exp   - y I t -1 √ 10 2 2σ 2    , exp   - y I t -3 √ 10 2 2σ 2         max      exp   - y I t + 1 √ 10 2 2σ 2    , exp   - y I t + 3 √ 10 2 2σ 2                   (2.6)
The LLR computation for v 0 t and v 2 t can further be reduced to equ. (2.7) and equ. (2.8). These equations are more efficient in terms of hardware implementation.

LLR(v 0 t ) =            4 σ 2 • √ 10 • y I t -1 √ 10 if y I t > 2 √ 10 2 σ 2 • √ 10 if 2 √ 10 ≥ y I t ≥ -2 √ 10 4 σ 2 • √ 10 • y I t + 1 √ 10 if y I t < -2 √ 10
(2.7)

LLR(v 2 t ) =      2 σ 2 • √ 10 • y I t -2 √ 10 if y I t > 0 -2 σ 2 • √ 10 • y I t + 2 √ 10 if y I t ≤ 0 (2.8)
The LLR computation for v 1 t and v 3 t follow the one for v 0 t and v 2 t , but is based on the quadrature component of the received channel symbol. Fig. 2.4 illustrates the relationship between the LLR output and y I t of the input symbol for 256-QAM.

LLR(v 1 t ) =            4 σ 2 • √ 10 • y Q t -1 √ 10 if y Q t > 2 √ 10 2 σ 2 • √ 10 if 2 √ 10 ≥ y Q t ≥ -2 √ 10 4 σ 2 • √ 10 • y Q t + 1 √ 10 if y Q t < -2 √ 10
(2.9) 

LLR(v 3 t ) =      2 σ 2 • √ 10 • y Q t -2 √ 10 if y Q t > 0 -2 σ 2 • √ 10 • y Q t + 2 √ 10 if y Q t ≤ 0 (2.

Demapping algorithms for rotated QAM

In this section, two different demapping algorithms are described. The first algorithm has a low complexity since it is obtained with a method based on one-dimensional detection.

However, the lower complexity comes at the price of a penalty in terms of performance.

The second algorithm is a two-dimensional based algorithm. It achieves the expected gains when introducing SSD. Due to its high complexity, we have also proposed a novel simplified algorithm based on sub-region detection.

One-dimensional demapping algorithm

The number of signal space projections on every component axis for a non-rotated M-QAM is √ M . However, the corresponding number of projections for a rotated M-QAM is M. In order to reuse the hardware demapping model of a non-rotated M-QAM, a de-rotation process can be applied prior to the piecewise linear demapping.

According to equ. (1.14), the received symbol is defined as y n = ρ n • x n + n n . Hence the received symbol in the case of BICM with signal space diversity and Q delay becomes as:

y t = y I t-1 + j • y Q t = ρ t-1 • x I t-1 + n I t-1 + j • ρ t • x Q t-1 + n Q t-1 (2.11)
where ρ t-1 = ρ I and ρ t = ρ Q , if a Q-delayed BICM-SSD system is considered.

Equ. (2.1) becomes equ. (2.12) over a AWGN channel for the rotated constellation. (s I t , s Q t ) denotes the transmitted symbol at sampling time t and (x I , x Q ) is one of the signals in a non-rotated signal space.

LLR(v i t ) = ln          xt∈χ i 0 P (x t ) σ √ 2π exp   - (s I t-1 + n I t-1 , s Q t + n Q t ), (x I , x Q ) • e j 2πφ 360 2 2σ 2   xt∈χ i 1 P (x t ) σ √ 2π exp   - (s I t-1 + n I t-1 , s Q t + n Q t ), (x I , x Q ) • e j 2πφ 360 2 2σ 2            (2.12)
Multiplied by a vector e -j 2πφ 360 2

, with an amplitude of one, the Euclidean distances are not changed. So the original demapping algorithm becomes:

LLR(v i t ) = ln          xt∈χ i 0 P (x t ) σ √ 2π exp   - e -j 2πφ 360 • (s I t-1 + n I t-1 , s Q t + n Q t ), (x I , x Q ) 2 2σ 2   xt∈χ i 1 P (x t ) σ √ 2π exp   - e -j 2πφ 360 • (s I t-1 + n I t-1 , s Q t + n Q t ), (x I , x Q ) 2 2σ 2            (2.13)
This means that the LLR computation for the rotated QAM is based on the computation of non-rotated QAM with a de-rotation process of the input symbol.

Over a fading channel, the constellations are no longer square but shaped by the attenuation of in-phase and quadrature components. Any type of a rectangular constellation shaped by the attenuation of the fading channel is not suitable for the de-rotation algorithm. Fig. 2.5

represents the performance degression of a demapper with de-rotation algorithm over fading channel.

A compensation process can lead to a squared constellation, which supports the derotation process. Fig. 2.6 illustrates the process of a one-dimensional demapping algorithm over fading channel. The received symbol is firstly compensated to square and de-rotated to the non-rotated QAM. Then the piecewise linear demapper can be applied to the √ M -PAM for the bits corresponding to each component. Equalization can also lead to a squared constellation before applying the de-rotation process. We call it CR-1D algorithm. Nevertheless, the demapping algorithm is of high computational complexity. For a 256-QAM, 256 squared two dimensional Euclidean distances have to be calculated in order to find the minimum values for each mapping bit, which requires 1024 multiplications. We take the rotated 64-QAM as an example. Table 2.1 shows the interval of x I that corresponding to the projection of signals on the Re axis for the 3 different mapping bits v i which takes the values 1 and 0, respectively. The same reasoning is applied to the Q component x Q . From Table 2.1, we can see that bit v 0 sets the critical condition on the choice of the sub-region since v 0 = 1 for all x I < 0 (respectively v 0 = 0 for all x I ≥ 0 ). In the region where x I < 0, v 1 is symmetric with respect to x = 4.01 and v When an erasure occurs, the detection is limited to the projections of all the M signals on the non-erased remaining axis. Hence a one-dimensional demapping algorithm is applied in this case, which is illustrated in equ. (2.15).

LLR(v

i t ) = 1 2σ 2 • min xt∈χ i 0 (D euc (x t )) -min xt∈χ i 1 (D euc (x t )) (2.

( ) ( )
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LLR(v i t ) = log         xt∈χ i 0 P (x t ) σ √ 2π • exp - y I t -ρ t x I t 2 2σ 2 xt∈χ i 1 P (x t ) σ √ 2π • exp - y I t -ρ t x I t 2 2σ 2         (2.15)
where χ i 0 represents the projections of the set of signals in the constellation, whose i th bit Max-Log SR 2D: the sub-region detection algorithm for rotated QAM as illustrated in Fig. 2.9. The simulation results show that the two-dimensional demapping algorithm with Max-Log approximation has almost no performance loss when compared to the full complexity twodimensional demapping algorithm. Moreover, the two-dimensional demapping based on the sub-region detection with Max-Log approximation has no impact on performance compared to the whole region detection with Max-Log approximation both over a fading channel and a fading channel with erasures.

As a conclusion, the sub-region detection with a Max-Log approximation demapping algorithm is an appropriate method for hardware implementation. Indeed, this approach achieves almost the same performance as the un-simplified two-dimensional demapping algorithm for rotated QAM both over a fading and a fading erasure channel while greatly reduces computation complexity for high order modulations. This work is a notable contribution to the state-of-the-art demapping algorithm if a rotated constellation is considered.

Architecture of a flexible demapper for DVB-T2

The proposed demapping algorithm based on sub-region detection has shown good performance both over a fading and a fading channel with erasures and shows a good tradeoff between performance and hardware complexity. Therefore, we have designed and implemented the equivalent demapper.

The original demapping algorithm illustrated in equ. (2.1) can be rewritten as equ. (2.16), if the input of the demapper is replaced by the equalized symbol (s

I t-1 , s Q t ). LLR(v i t ) = log           xt∈χ i 0 P (x t ) σ √ 2π • exp   - ρ 2 t-1 • s I t-1 -x I 2 + ρ 2 t • s Q t -x Q 2 2σ 2    xt∈χ i 1 P (x t ) σ √ 2π • exp   - ρ 2 t-1 • s I t-1 -x I 2 + ρ 2 t • s Q t -x Q 2 2σ 2              where y I t-1 = ρ I t-1 s I t-1 , and y Q t = ρ Q s Q t .
It can be further rewritten as:

LLR(v i t ) = log        xt∈χ i 0 P (x t ) σ √ 2π exp -CSI I • (s I t-1 -x I ) 2 -CSI Q • (s Q t -x Q ) 2 xt∈χ i 1 P (x t ) σ √ 2π exp -CSI I • (s I t-1 -x I ) 2 -CSI Q • (s Q t -x Q ) 2        (2.16) 2.3. ARCHITECTURE OF A FLEXIBLE DEMAPPER FOR DVB-T2 45 
where CSI is denoted as

CSI = ρ σ (2.17)
σ denotes the standard variance of the channel noise.

Simplification of the Euclidean distance computation

Even though the sub-region detection method reduces the number of the squared Euclidean distances to be calculated, there are still ( In fact, the Euclidean distance between two points P p I , p Q and Q q I , q Q is defined as

(p I -q I ) 2 + (p Q -q Q ) 2 .
It can also be reformulated as

a 2 + b 2 = a • 1 + (b/a) 2
, where Eb/N0(dB) Fig. 2.12 shows that the linear approximation has perfect estimation of the exact computation in floating point. Moreover, the difference between the approximated method and the exact method is negligible in fixed point computation, with the quantization schedule as: 1 bit for the sign, 2 bits for the integral magnitude and 4 bits for the precision.

a = p I -q I and b = p Q -q Q . If a is
1 0 -3 1 0 -2 1 0 -1 1 0 -4 1 0 -5 1 0 -6 1 0 -7
The simplified linear approximation of the Euclidean distances greatly reduces the computation needed in equ. (2.16). Then, the hardware oriented demapping algorithm with Max-Log approximation is then rewritten as equ. (2.18). The architecture for the Euclidean distance computation based on the proposed approximation is given in Fig. 2.13. Only two comparators, one adder, one subtracter and one multiplexer are allocated.

LLR(v i t ) = log         min xt∈χ i 0   exp   - CSI I • (s I t-1 -x I ) 2 + CSI Q • (s Q t -x Q ) 2 2     min xt∈χ i 1   exp   - CSI I • (s I t-1 -x I ) 2 + CSI Q • (s Q t -x Q ) 2 2             = log     min xt∈χ i 0 exp -(Eucldiean 0 ) 2 min xt∈χ i 1 exp -(Eucldiean 1 ) 2     (2.

Architecture of a 2D demapper based on sub-region detection

The top level scheme of the architecture of the 2D demapper is given in Fig. x ' Q eq x Figure 2.15 -Architecture of the pre-processor module for the demapper to compute 81 Euclidean distances (9 by 9). The architecture computes 9 Euclidean distances from the received symbol to signal (x I l,q , x Q l,q ) in parallel, where q denotes the column number q ∈ [-1, 7] and l denotes the row number l ∈ [0, 8]. After 9 period times, 81 Euclidean distances are obtained. In other words, the ROM generates the values of the signals in the signal space panel row by row. In our point of view, this architectural solution offers a good tradeoff between throughput and complexity.

It is possible to re-use the 9 core elements for a fading channel with erasures. The demapper needs to compute (log 2 (M )/2) • (log 2 (M )/2 + 1) Euclidean distances if one-dimensional region algorithm is applied. However, in the case of an erased channel, every Euclidean distance depends only on one component of the received symbol (the non-erased one). In consequence, every core module can compute two one-dimensional Euclidean distances together and then selects and sends the minimum one to the network module. This process is obtained thanks to the structure of the core module that enables two computations of one-dimensional Euclidean distances in parallel. However, one pre-processor is needed to keep the input of x I l,q and x Q l,q equal to the non-erased value. Following this reasoning, all the Euclidean distances can be computed in 4 system clocks for 64-QAM and in 8 system clocks for 256-QAM respectively.

The network works according to the configuration of the previous modules and has two different kinds of function. One is the distribution of the Euclidean distances and the other one is the comparison of those to get the temporary minimum of each mapping bit of the received symbol at each period time.

The network is in charge of the distribution of the (log 2 (M )/2 + 1) Euclidean distances to M Get min modules belonging to M transmitted bits for an M -ary modulation. The generated (log 2 (M )/2 + 1) Euclidean distances are delivered to dedicated registers in every processing time. The delivery is determined by the value of the M bits of the (log 2 (M )/2 + 1) symbols in each row of the constellation. Let us take the rotated 64-QAM as an example 2.3. ARCHITECTURE OF A FLEXIBLE DEMAPPER FOR DVB-T2 49 to explain this idea. If the received symbol has positive sign for both I and Q components, then region I is selected, as shown in Fig. 2.7. At the first processing time, 5 Euclidean distances Ecd l,q from the received symbol to 5 signals x I l,q , x Q l,q in the first row of the signal space panel, where q ∈ [-1, 3] and l = 0 , are delivered to some registers. The registers are in the M get-min models according to 5 different transmitted bits. We first look at bit v 0 , the transmitted value of the first bit of the 5 signals at the first processing time are {1, 0, 0, 0, 0}. Therefore, Ecd 0,-1 , which is the Euclidean distance from the received symbol to The proposed design not only enjoys low complexity but also has low latency. In fact, the delay of the output is only 14 system clocks for rotated 256-QAM, which guarantees in time feedback when an iterative modulation is applied.

Choice of the number of quantization bits

Fig. 2.16 and Fig. 2.17 give the theoretical guideline about how to choose the quantization bits for the input symbol (y I , y Q ) and CSI. Mutual information per bit for different quantization schemes in the case of 256-QAM over a fading channel with 15% erasures are plotted. First, the quantization bits assigned for CSI is fixed as (1,[START_REF] Berlekamp | Algebraic coding theory, laguna hills[END_REF]4), which means 1 bit for the sign, 10 bits for the integer part and 4 bits for the fractional part. Then the mutual information per bits at the output of the demapper is calculated with different quantization schemes for (y I , y Q ).

From Fig. 2. [START_REF] Shannon | A mathematica theory of communication (Part I)[END_REF] we can observe that 9 bits quantization outperforms 8 bits quantization and the scheme (1, 1, 7) and (1,1,[START_REF] Boutros | Signal space diversity: a power-and bandwidth-efficient diversity technique for the rayleigh fading channel[END_REF] provide almost the same mutual information. Afterwards, the quantization bits for the input symbol (y I , y Q ) is fixed at (1, 1, 7) and the mutual information is calculated with different quantization schemes of CSI. From Fig. 2.17 we can observe that (1, 7, 1) and (1, 6, 2) are the two schemes show best performance. However, the quantization scheme of CSI changes according to the constellation mode, (1,[START_REF] Berrou | Near shannon limit error-correcting coding and decoding: Turbo-codes[END_REF]3) is assigned for 64-QAM and (1, 4, 4) is assigned for 16-QAM and QPSK.

Logic synthesis results

The flexible QAM demapper was synthesized and implemented onto a Virtex II Pro FPGA using Xilinx ISE tools. Computational resources of the demapper take up 791 slice Flip-Flops and 4,667 slice LUTs. The corresponding occupation rates are about 2% and 17% of a Xilinx XC2VP30 FPGA for slice registers and slice LUTs, respectively. In addition, multiplication resources for the demapper module take up 20 DSP blocks. It represents 14% of the total DSP blocks available in the chosen device. No block memory resource is used in our design because the ROM module was mapped in slice LUTs. The maximum clock frequency f 0 reaches 62 MHz and one input symbol lasts for 10 clocks. So an output data rate of 49.6 MLLR/s for 256-QAM is achieved at the input date rate of 6.2 Msymbol/s. Importantly, a reduction of the number of multipliers from 512 to 20 is achieved for 256-QAM.

BER performance

In order to validate the flexible QAM demapper, BER performance measures have been carried out. For this reason, a flexible mapper is designed, which supports eight different kinds of constellation modes in DVB-T2. In addition, a channel emulator was integrated.

It supports a Rayleigh channel with and without erasures and that is based on Gaussian generators using Wallace method [START_REF] Wallace | Fast pseudorandom generators for normal and exponential variates[END_REF]. This channel emulator needs 4,907 slice Flip-Flops and 6321 slice LUTs. In addition, 59 DSP resources are necessary for multiplications and 13 Block RAMs are also assigned. 

MAPPER

Conclusion

In this chapter, the study of demapping algorithm for the DVB-T2 standard is presented.

It includes two main contributions. The first contribution is dividing the signal space into sub-region. The detection is then performed on a limited space, which enables an important decrease of complexity. The second contribution consists of a linear approximation for the computation of Euclidean distance. This simplification enables an important reduction in the Eb/N0(dB) Eb/N0 The aim of the thesis is to design an iterative BICM receiver for the DVB-T2 standard, with an efficient message exchange schedule between the notated demapper and the LDPC decoder. However, the state-of-art LDPC decoder using horizontal shuffled decoding algorithm prohibits an immediate message exchange between the demapper and decoder, since the a posteriori and extrinsic message are only accessible after a complete decoding iteration.

In this chapter, we propose a vertical shuffled Min-Sum LDPC decoding algorithm with the corresponding architecture. The vertical shuffled decoding algorithm can provide the a posteriori information of each bit node with a latency of only dv cycles. This enables an efficient exchange of extrinsic information between the rotated demapper and the LDPC decoder if an iterative receiver is considered.

Memory access conflicts due to double diagonal sub-matrix or pipeline is the major problem for the design of an efficient LDPC decoder for the DVB-T2 standard. Some solutions have been proposed for a horizontal shuffled decoder, however no previous work has addressed this kind of problem for a vertical shuffled decoder.

In the following chapter, we first give a brief introduction of different schedulings for 57 the decoding algorithms and the way to simplify the check node process. Then, we give a detailed description of the algorithm and the corresponding architecture for the proposed vertical shuffled Min-Sum LDPC decoder. Moreover, the way to solve the message updating conflicts by double diagonal sub-matrix and the memory access conflicts caused by pipeline architecture are also detailed. Afterwards, a prototype of a simplified transceiver is implemented onto an FPGA target. The proposed demapper and decoder are also integrated into a real DVB-T2 reference demodulator. Performance tests are carried out for these two systems to demonstrate the efficiency of the proposed LDPC decoder.

3.1. BACKGROUND 59

Background

The Low Density Parity-Check (LDPC) codes were first proposed by Gallager [2] in 1963.

LDPC codes were re-discovered by MacKay [START_REF] David | Near shannon limit performance of low density parity check codes[END_REF] in 1996. Since the first LDPC code adopted by the DVB-S2 standard in 2003, LDPC codes found their way into many communication standards, such as DVB-T2, DVB-C2, DVB-NGH, WiMax, Wifi, etc.

The design of a low complexity and high throughput LDPC decoder has been widely studied since the beginning of the 21th century. The first LDPC decoder of a length 1024 with a code rate of R=1/2 LDPC code was published in 2002 [START_REF] Blanksby | A 690-mw 1-gb/s 1024-b, rate-1/2 low-density paritycheck code decoder. Solid-State Circuits[END_REF] and the first LDPC decoder for DVB-S2 was published in 2005 [START_REF] Kienle | A synthesizable ip core for dvb-s2 ldpc code decoding[END_REF]. However, both of them used the belief propagation or Two Phase Message Passing (TPMP) algorithm. This algorithm requires amount of memory and therefore leads to high hardware complexity. The messages from bit nodes to check nodes and from check nodes to bit nodes have both to be memorized. These messages are exchanged between bit nodes and check nodes along routed message wires, called network. This network quickly becomes the bottleneck of the hardware implementation and prohibits the design of a parallel decoder for long codes. The architecture-aware LDPC codes, such as quasi-cyclic (QC) LDPC codes, that are described by sparse parity-check matrices comprised of circulant sub-matrices, soon became the hot topic among the researches and industry field.

Hocevar [START_REF] Hocevar | A reduced complexity decoder architecture via layered decoding of LDPC codes[END_REF] proposed a layered LDPC decoding algorithm in 2004. Then Mansour [START_REF] Mansour | A Turbo-decoding message-passing algorithm for sparse parity-check matrix codes[END_REF] gave a detailed explanation and proposed the corresponding architecture for architectureaware LDPC codes. This layered decoding algorithm is also called as Turbo Decoding Message

Passing (TDMP). The TDMP algorithm accelerates the convergence behavior of the standard TPMP by roughly a factor of two in terms of decoding iteration number and attains an order of magnitude improvement in Bit Error Rate (BER) at high Signal-to-Noise Ratios (SNR).

It greatly reduces the required memory size and increases the convergence speed.

As a dual part of TDMP decoding, Fossorier [START_REF] Juntan | Shuffled iterative decoding[END_REF] in 2005 proposed a vertical shuffled iterative decoding, in which the schedule of the message passing follows a column-wise processing other than row-wise. A comparison of state-of-the-art decoding schedules are carried out in [START_REF] Guilloud | Generic description and synthesis of LDPC decoders[END_REF], where the authors classified the decoding schedule into three different kinds: folding schedule , horizontal shuffle schedule (HSS) and vertical shuffle schedule (VSS).

Two phase message passing decoding algorithm

The most popular LDPC decoding algorithm is Belief Propagation (BP) algorithm which is introduced in Gallager's work [2]. This is also called Message Passing (MP) iterative algorithm, because during each iteration messages are passed from bit nodes to check nodes and then from check nodes back to bit nodes. The messages sent from bit nodes to check nodes are computed based on the observed value of the bit nodes and the messages provided by the neighboring check nodes to the considered bit node.

Before describing the algorithm, we have to introduce some notations that will be used Symbol ⊕ denotes modulo-2 summation and L(u) represents the log-likelihood ratio of a variable u in GF(2). For statistically independent random variable u1 and u2, the loglikelihood ratio of the sum of u1 and u2: L (u1 ⊕ u2), is denoted as equ. (3.2).

L (u) = log P r(u = 1) P r(u = 0) (3.1) L (u1 ⊕ u2) = log 1 + e L(u1) e L(u2) e L(u1) + e L(u2) (3.2) 
Based on the derivation [START_REF] Hagenauer | Iterative decoding of binary block and convolutional codes[END_REF], we define the symbol as the notation of the addition defined by equ. (3.3).

L (u 1 ) L (u 2 ) L (u 1 ⊕ u 2 ) (3.3)
The LLR summation follows some additional rules:

L (u) ∞ = L (u) ; L (u) -∞ = -L (u) ; L (u) 0 = 0 (3.4)
When the modulo-2 addition is extended to n variables, one can further prove that

J j=1 L (u j ) L   J j=1 ⊕u j   (3.5) = log        J j=1 e (L(u j )) + 1 + J j=1 e (L(u j )) -1 J j=1 e (L(u j )) + 1 - J j=1 e (L(u j )) -1        (3.6) J j=1
L (u j ) can be further rewritten as equ. (3.8) by using equ. (3.7). 

L (u j ) = log        1 + J j=1 tanh (L(u j )/2) 1 - J j=1 tanh (L(u j )/2)        (3.8) = 2tanh -1   J j=1 tanh (L(u j )/2)  
Based on the decision rule described in equ. Let φ n,k denote the k th parity check constraint (syndrome equals to zero) of the bits in In a cycle free Tanner Graph, the events that φ n,|M (n)| = 1 are independent in the case of y n =n . So E n is expressed as:

M (n) without the bit c n , k ∈ {1, 2, • • • , |M (n)|}.
E n = log        |M (n)| k=1 P r φ n,k = 0|y n =n |M (n)| k=1 P r φ n,k = 1|y n =n        (3.14) = |M (n)| k=1 log P r φ n,k = 0|y n =n P r φ n,k = 1|y n =n
Consequently, E n is the summation of E k,n , which is defined in equ. (3.15). E k,n is the information given by each of the parity check constraints belonging to the k th row of the parity check matrix. 

E k,n = 2 tanh -1 l∈N (k)\n tanh T k,l 2 (3.16) 
where T k,l denotes the messages sent from bit nodes to check nodes.

T k,l = T k -E k,l (3.17) 
Finally, the a posteriori information of bit c n can be rewritten as:

T n = I n + |M (n)| k=1 E k,n (3.18) 
E k,n is called the message sent from check nodes to bit nodes.

The Two Phase Belief Propagation decoding algorithm is described in Algorithm 3. It is the classical message passing algorithm, in which each iteration consists of two phase computations. The message update of all bit nodes are done during phase 1 and the message is then sent to neighboring check nodes. Then the update of all check nodes is done during phase 2 and then the message is sent to neighboring bit nodes. An important aspect is that the message sent from a bit node v to a check node c may not take into account the message sent during the previous iteration from c to v. The same principle is also applied for the message passed from check nodes to bit nodes. The check node processor is a Soft Input Soft Out (SISO) core. This latter uses the a priori information to generate the extrinsic information by using equ. (3.14). The bit node processor is also a SISO core that uses the extrinsic information to provide the a posteriori and the a priori information. for all Check nodes 6:

E (t) mn = 2 tanh -1 k∈N (m)\n tanh T (t-1) mk 2 7:
for all Bit nodes 8:

T (t) n = llr n + k∈M (n) E (t-1) kn 9: T (t) mn = T (t)
n -E (t-1) mn 10: Hard decision according to T (t) n

Check node process simplification

The most complex computation in the LLR based decoding algorithm is the check node process, in which the non-linear function tanh(x) is not convenient for a hardware implementation. Indeed, the quantization for the sharp non-linear function and the infinite value is particularly critical and costly in terms of hardware implementation. In this subsection, we give a detailed introduction of check node process algorithms and the corresponding simplification methods.

Check node process based on Gallager's approach

The original check node update computation equ. (3.19) based on the tanh(x) function [2] can be rewritten as equ. (3.20). The computation is split into the sign part and the amplitude part. The separation process of the sign and the amplitude is applied to all the following check node processing algorithms. 

E (t) mn = 2 tanh -1 k∈N (m)\n tanh T (t-1) mk 2 (3.19) E (t) mn =   k∈N (m)\n sign T (t-1) mk   • 2 tanh -1   k∈N (m)\n tanh |T (t-1) mk | 2   (3.
E k,n = ϕ -1   l∈N (k)\n ϕ (T mk )   (3.21) =   k∈N (m)\n sign T (t-1) mk   • ϕ -1   l∈N (k)\n ϕ (|T mk |)   (3.22) ϕ(x) = ln e x + 1 e x -1 (3.23)
The function ϕ(x) is illustrated in Fig. 3.2 and has the properties of: The ϕ(x) function can be elegantly implemented by software with floating point (very high precision). However, the quantization precision becomes an important constraint for hardware implementation, which leads to a very high implementation cost.

ϕ(ϕ(x)) = x and ϕ(x) -1 = ϕ(x) (3 

Check node process based on Jacobian logarithm

The ϕ(x) function can be further rewritten as equ. (3.25) by using the Jacobian logarithm [START_REF] Erfanian | Reduced complexity symbol detectors with parallel structure for ISI channels[END_REF]:

L (u ⊕ v) = sign(L(u))sign(L(v)) min(|L(u)|, |L(v)|) (3.25) + log 1 + e -|L(u)+L(v)| -log 1 + e -|L(u)-L(v)|
with a two time usage of function g(x), where g(x) = log (1 + e -x ) is shown in Fig. 3.3. Assuming that the check node m with dc degree has the connection to bit nodes

N (m) = (n 1 , n 2 , • • • , n dc ), that are denoted as b 1 , b 2 , • • • , b dc .
We induce two kinds of temporary variables: forward temporary variable f i and backward temporary variable b i .

f 1 = b 1 , f 2 = b 2 ⊕ f 1 , f 3 = b 3 ⊕ f 2 , • • • , f dc = b dc ⊕ f dc-1 d bc = b dc , d dc-1 = d bc ⊕ b dc-1 , • • • , d 1 = d 2 ⊕ b 1
where the operation ⊕ denotes the modulo-2 summation.

All the bit nodes should meet the parity check constraint:

b 1 ⊕ b 2 ⊕ • • • ⊕ d dc = 0
Therefore, any bit node b x can be computed by: 

b x = f x-1 ⊕ d x+1 Based on this idea, L(f 1 ), L(f 2 ), • • • , L(f dc ) and L(d dc ), L(d dc-1 ), • • • , L(d 1 )
E mn =            L(d 2 ) i=1, L(f i-1 ⊕ d i+1 ) i=2,3,...,dc-1 L(f dc-1 ) i=dc.
(3.26)

The approach based on Jacobian logarithm is more appealing for a hardware implementation when compared to Gallager's approach. In fact, the function g(x) = log (1 + e -x ) is easier to be quantized by using a lookup table or/and a piecewise linear approximation. Indeed, the slope of g(x) (see Fig. 3.3) is not steep and its maximum value remains below 1. This is an x → 0. In addition, the computation of extrinsic messages is based on the backward-forward algorithm, that is already widely used for turbo decoding. This algorithm requires 3(dc -2) computations of the log likelihood ratio for a modulo-2 variable, while Gallager's approach requires 2dc computations. For check node degree dc ≥ 3, the backward-forward algorithm reveals to be less complex.

Check node process based on normalized Min-Sum

The former two check node processing algorithms are based on the full complexity belief propagation algorithm. An additional simplification is possible if the following approximation is applied: the magnitude of L(U ⊕ V ) is less than or equal to the minimum of the magnitude of L(U ) or L(V ).

L(U ⊕ V ) ≤ min (L(U ), L(V )) (3.27) 
Based on this lemma, equ. (3.20) is then simplified as:

E (t) mn =   k∈N (m)\n sign T (t-1) mk   × η • min k∈N (m)\n |T (t-1) mk | (3.28)
where η is a normalization factor (η ≤ 1), which tries to minimize the effect of the approximation in equ. (3.27). Note good BER performance for an LDPC decoder is achieved with an adaptive η, that varies with SNRs and iterations. In practice, this η value is set to be constant around value 0.8.

The check node processing determines the two minimum amplitude value of T mn as well as the product of the sign of T mn . For BP based check node processing algorithm, dc extrinsic messages of the signed value have to be memorized. Whereas for a normalized Min-Sum check node processing algorithm only the sign of the dc extrinsic messages, the minimum and the second minimum plus the index of the minimum have to be memorized [START_REF] Marchand | Architecture and finite precision optimization for layered ldpc decoders[END_REF].

Check node process based on offset Min-Sum

An additional simplification based on Min-Sum approximation called offset Min-Sum is presented in [START_REF] Chen | Reducedcomplexity decoding of LDPC codes[END_REF]. The corresponding check node processing is illustrated as:

E (t) mn =   k∈N (m)\n sign T (t-1) mk   × max min k∈N (m)\n |T (t-1) mk | -ε, 0 (3.29)
where ε is a factor (ε ≤ 1). In practice, this value is kept constant and set to 0.15. The major difference to the normalized Min-Sum is the total removal of some extrinsic messages with low probability. In fact, the ones with a magnitude lower than ε are set to zero. Therefore these messages will not be taken into account for the next iteration. When the minimum value or the second minimum value are selected, the offset Min-Sum uses a comparator instead of the multiplication with a normalized factor as it is the case for the normalized Min-Sum. This operation takes up less resources and achieves higher working frequency that is necessary for a higher throughput.

Normalized and offset Min-Sum greatly reduce check node processing complexity. However, this advantage comes at the price of a performance penalty. In [START_REF] Chen | Reducedcomplexity decoding of LDPC codes[END_REF], a detailed performance comparison between the Min-Sum based algorithms and BP based algorithms is performed. It has shown that the performance penalty increases when lowing the coding rate.

Check node process based on lambda-Min-Sum

The λ-Min-Sum was first proposed in [START_REF] Guilloud | Lambda-min decoding algorithm of regular and irregular LDPC codes[END_REF] to offer a good trade-off between hardware complexity and BER performance, especially for low code rates. The performance of λ-Min-Sum with an offset can get very close to the Jacobian-based Belief Propagation algorithm for the regular (5,10) short (N=816) LDPC code proposed by MacKay [START_REF] Mackay | LDPC datebase[END_REF] and the irregular LDPC code (N = 2000) with a code rate of R=0.85 proposed by Urbanke [START_REF] Urbanke | a fast and accurate degree distribution optimizer for LDPC code ensembles[END_REF].

In the approach of the Jacobian logarithm (equ. (3.25)) the two terms of correlations are negligible in the case of U V .

L (u ⊕ v) = sign(L(u))sign(L(v))|L(v)| if U V (3.30)
Therefore, the computation of the check node process can be simplified by limiting the number of magnitude computations of L (u ⊕ v). The corresponding λ-Min-Sum algorithm is illustrated in equ. (3.31). N λ (m) represents the set having the minimum λ magnitudes of

|T (t-1)
mk |. The check node process differs in two cases. If the bit node n belongs to the set N λ (m), then the amplitude of E mk |, the minimum λ values and the corresponding indexes of the addresses are registered. Afterwards, at each time period, two of these values or the temporary results are selected to compute equ. (3.25). However, the process of the sign is based on all the coming T (t-1) mk excluding the value connected to bit node n, similar to normalized Min-Sum. In the case of a regular LDPC code, with a check node degree equalling to 20, the required memory for extrinsic messages for a λ-Min-sum decoder(λ=2), is only 30% of the required memory in a corresponding belief propagation based decoder.

Summary

Table 3.1 summarizes the properties of the different check node process methods mentioned above. Two kinds of belief propagation methods have almost the same properties in the listed content in Table 3.1. However, the Jacobian based belief propagation is more suitable for a hardware implementation. Normalized Min-Sum and offset Min-Sum requires the least amount of memories at the price of a performance penalty especially for low code rates.

λ-Min-Sum represents a good tradeoff between performance and complexity. Indeed, sensitivity to the estimation of channel information is very important for any non-linear function, such as ϕ(x) and g(x). A poor estimation could lead to a severe penalty.

However, unlike BP-based algorithm, the Min-Sum based algorithm described above does not require a perfect estimation of the channel.

For different LDPC codes and different applications, requirements and constraints differ.

The designer has to choose a well adapted decoding method based on these constraints.

Horizontal shuffled decoding algorithm

If a horizontal shuffled decoding schedule is considered, the parity check matrix is viewed as horizontal layers. The horizontal shuffled decoding schedule is performed by applying the decoding algorithm to each successive layer. The decoding algorithm for one particular layer uses the result from the previous decoded layers. The horizontal shuffled decoding schedule differs from the two phase message passing schedule, in which all check node processing of one layer are processed and the corresponding bit node processing is calculated immediately.

One iteration in horizontal shuffled decoding algorithm is composed of and T n participate in the next sub-iteration. The latest updated T n can provide the latest information to the following sub-iterations. In contrast to the HSS schedule, the updated T n in the TPMP algorithm is sent to check node processors only after all the bit node processing is finished. Consequently, the horizontal shuffled schedule doubles the decoding convergence speed.

P ldpc = N ldpc -K ldpc sub-iterations,

Algorithm 4 Horizontal shuffled belief propagation algorithm

1: Initialization: for m = 1, .., P ldpc { sub-iteration}

7:

Check node processing 8:

E (t) mn = k∈N (m)\n sign T (t-1) n -E (t-1) mk • ϕ -1    k∈N (m)\n T (t-1) n -E (t-1) mk    , m ∈ M (n) 9:
Bit node processing 10:

T (t) n = T (t-1)
n -E (t-1) mn + E (t) mn , n ∈ N (m) 11: Hard decision according to T (t) n

Horizontal shuffled normalized Min-Sum decoding algorithm

In a horizontal shuffled normalized Min-Sum decoding algorithm, shown in Algorithm 5, the check node process first makes a comparison between dc incoming a priori messages

T (t-1) mn = T (t-1) n -E (t-1)
mn for each layer. Then the value of the minimum plus the corresponding index and the second minimum value are memorized. Moreover, the magnitude of the extrinsic message 

E (t) mn = k∈N (m)\n •sign(T (t-1) mk )η • M 1 m 14:
Bit node processing 15:

T (t) n = T (t-1)
n -E (t-1) mn + E (t) mn , n ∈ N (m) 16: Hard decision according to T (t) n

Vertical shuffled decoding algorithm

In order to obtain the objective of our work: design an efficient iterative receiver for DVB-T2 with low complexity and high throughput, a vertical shuffled LDPC decoding is mandatory to increase the throughput. Similarly to the horizontal shuffled schedule, the main idea of the vertical shuffled schedule is to update the check node information as soon as possible. In difference from horizontal shuffled schedule, the vertical shuffled decoding algorithm operates on the bit nodes. Each iteration is composed of n ldpc sub-iteration, if serial decoding is considered. Each sub-iteration uses the newest T mn , which have been updated during the previous sub-iteration to update the check node information β m and α m as depicted in equ.

(3.32) and equ. (3.33).

β m = k ∈ N (m)\n k < n ϕ |T (t-1) mn | + k ∈ N (m)\n k > n ϕ |T (t-1) mn | (3.32) α m = k ∈ N (m)\n k < n sign T (t-1) mn + k ∈ N (m)\n k > n sign T (t-1) mn (3.33)
First, the messages T mn and α m , β m are initialized with corresponding intrinsic channel reliability values llr n . Each sub-iteration involves three steps: check node processing, bit node processing and the update of α m , β m . The check node process is based on the property of x = ϕ(ϕ(x)). The a posteriori message T n for the bit node n is computed by adding all the

E (t)
mn with llr n , hence T

mn . The sign of T n is the decoded codeword. Afterwards, the updated T (t) mn is sent back to check node processor to update the α m , β m . Thus the latest check node information is provided in the following sub-iteration. α m and β m values are updated dc m times per iteration, where dc m means the check node degree of check node m.

The faster convergence speed is due to the usage and the update of the variables β m and α m . Actually, they always include the latest information and send the latest information to the bit nodes. for n = 1, .., N ldpc { sub-iteration}

Vertical shuffled normalized Min-Sum decoding algorithm

8:
Check node processing 9:

E (t) mn = α m • sgn T (t-1) mn • ϕ β m -ϕ |T (t-1) mn | , m ∈ M (n) 10:
Bit node processing 11:

T (t) n = llr n + m∈M (n) E (t) mn , n ∈ N (m)
12:

T (t) mn = T (t) n - m∈M (n) E (t) mn , n ∈ N (m) 13:
check node update for next sub-iteration 14: for n = 1, .., N ldpc {sub-iteration}

α m = α m • sgn T (t-1) mn • sgn T (t) mn , m ∈ M (n) 15: β m = β m -ϕ |T (t-1) mn | + ϕ |T (t) mn | , m ∈ M (n)

Performance comparison

9:
Check node processing 10:

if n == P 0 m 11:

E (t) mn = α m • η • sgn T (t-1) mn • M 1 m , m ∈ M (n) 12:
else 13:

E (t) mn = α m • η • sgn T (t-1) mn • M 0 m , m ∈ M (n) 14:
Bit node processing 15:

T (t) n = llr n + m∈M (n) E (t) mn , n ∈ N (m)
16: 

T (t) mn = T (t) n - m∈M (n) E (t) mn , n ∈ N (m)

LDPC decoder

In this section, the architecture design of a vertical shuffled Min-Sum LDPC decoder for the DVB-T2 standard is detailed. This is motivated by the introduction of an iterative information exchange between the decoder and the demapper. The output processor is in charge of reading the codeword bus from the Codeword RAM and providing them to the output serially. The decoding processor is also triggered by the frame start signal and it uses the pre-processed LLRs as input to start the decoding process.

The decoding process is composed of the MP initialization state and the iteration state.

During the MP initialization state, the LLRs belonging to each column group are read from the LLR RAM, transmitted through the permutation network and then sent to check node processors. The check node processors provide: M 0 ,M 1 ,P 0 ,P 1 ,α, for each check node group.

Those values are then registered into the check node memory bank. The sign of LLRs are passed through SISOB and registered into a SgnT RAM.

One decoding iteration is composed of N ldpc /P sub-iterations, where P is the parallelism level of the decoder. During each sub-iteration, M 0 ,M 1 ,P 0 ,P 1 , α are first read out from the memory bank to compute the extrinsic message

E (t)
mn . Then, the extrinsic messages are permuted by a barrel shifter to different elements of bit nodes processor, in which the a posteriori message T n is computed based on all the extrinsic messages belonging to the bit node n. Afterwards, the a priori message T (t) mn is sent back to the check node processor. SISOB uses the a priori message T (t) mn to update M 0 ,M 1 ,P 0 ,P 1 and α. The iteration state stops the execution either when the iteration number reaches the maximum iteration number or when the decoder detects that the syndrome computation is satisfied. . A 360x360 sub-matrix is split into four 90x90 sub-matrices. A detailed explanation will be given in sub-section 3.7.1.4.

SgnT RAM and the check node memory bank are the two memories that are directly connected to the check node processor. The elements of the data bus are organized in a row order, as illustrated in Fig. 3.9. (a). The size of SgnT RAM is T e/P , where T e is the total number of 1s in the parity-check matrix. The check node memory bank includes five small address element0 element1 element2 

. . 4(K b -1) 360(K b -1) + 0 360(K b -1) + 4 360(K b -1) + 8 • • • 360(K b -1) + 356 4(K b -1) + 1 360(K b -1) + 1 360(K b -1) + 5 360(K b -1) + 9 • • • 360(K b -1) + 357 4(K b -1) + 2 360(K b -1) + 2 360(K b -1) + 6 360(K b -1) + 10 • • • 360(K b -1) + 358 4(K b -1) + 3 360(K b -1) + 3 360(K b -1) + 7 360(K b -1) + 11 • • • 360(K b -1) + 359 4K b 0 + 0 + Kldpc 4Q + 0 + Kldpc 8Q + 0 + Kldpc • • • 356Q + 0 + Kldpc 4K b + 1 1Q + 0 + Kldpc 5Q + 0 + Kldpc 9Q + 0 + Kldpc • • • 357Q + 0 + Kldpc 4K b + 2 2Q + 0 + Kldpc 6Q + 0 + Kldpc 10Q + 0 + Kldpc • • • 358Q + 0 + Kldpc 4K b + 3 3Q + 0 + Kldpc 7Q + 0 + Kldpc 11Q + 0 + Kldpc • • • 359Q + 0 + Kldpc 4K b + 4 0 + 1 + Kldpc 4Q + 1 + Kldpc 8Q + 1 + Kldpc • • • 356Q + 1 + Kldpc 4K b + 5 1Q + 1 + Kldpc 5Q + 1 + Kldpc 9Q + 1 + Kldpc • • • 357Q + 1 + Kldpc 4K b + 6 2Q + 1 + Kldpc 6Q + 1 + Kldpc 10Q + 1 + Kldpc • • • 358Q + 1 + Kldpc 4K b + 7 3Q + 1 + Kldpc 7Q + 1 + Kldpc 11Q + 1 + Kldpc • • • 359Q + 1 + Kldpc . . . . . . . . . • • • . . . 4N b -4 0 + (Q -1) + Kldpc 4Q + (Q -1) + Kldpc 8Q + (Q -1) + Kldpc • • • 356Q + (Q -1) + Kldpc 4N b -3 1Q + (Q -1) + Kldpc 5Q + (Q -1) + Kldpc 9Q + (Q -1) + Kldpc • • • 357Q + (Q -1) + Kldpc 4N b -2 2Q + (Q -1) + Kldpc 6Q + (Q -1) + Kldpc 10Q + (Q -1) + Kldpc • • • 358Q + (Q -1) + Kldpc 4N b -1 3Q + (Q -1) + Kldpc 7Q + (Q -1) + Kldpc 11Q + (Q -1) + Kldpc • • • 359Q + (Q -1) + Kldpc
Table 3.2 -The address of initial LLR RAM memories for M 0 ,M 1 ,P 0 ,P 1 and α. The read and write addresses and the timing of those memories are identical. Therefore, we call them the check node memory bank. The size of check node memory bank is P ldpc /P , where P ldpc is the number of parity check nodes.

Sub-matrix split

The throughput of DVB-T2 LDPC decoder with the original parallelism 360 is too high in practice, as mentioned before. Reducing the parallelism level by sub-matrix split is a good way to reduce the hardware cost at the price of reducing the throughput. Let us denote the original parallelism level as M and the number of the reduced parallelism as D. The number D can be a fraction of M . In our case, M =360 and D can be 180, 120, 90 or 45. The choice of the number D depends on the required throughput, the clock frequency, the number of iteration and the required hardware resources.

The target of the sub-matrix split is to make sure that each group of D bit nodes connected to a group of D parity check nodes can be accessed during the same time or in the same data bus. The traditional update process of the a posteriori message T n by these two diagonals is listed as:

Message update conflict problem

[T (t)

mn a ] P = [T (t-1) n ] P -[E (t-1)
mn a ] P (3.34)

[T (t) n ] P = [T (t) mn a ] P + [E (t) mn a ] P (3.35) [T (t) mn b ] P = [T (t-1) n ] P -[E (t-1) mn b ] P (3.36) [T (t) n ] P = [T (t) mn b ] P + [E (t) mn b ] P (3.37)
The message passing inefficiency is caused by two aspects. One is that the a priori message [T 

mn b ] P + [E (t)
mn b ] P ) provide the feedback information, holding the information provided by their own computation without any additional information provided by the other diagonal.

Unlike the horizontal shuffled decoding algorithm, the update conflict is present in the update process for the check node information (M 0 ,P 0 ,M 1 , P 1 and α) of the vertical shuffled [

α m ] P = [α m ] P • [sgn T (t-1) mn b ] P • [sgn T (t)
mn b ] P (3.39) Fig. 3.12 illustrates how the update conflict impacts the decoding performance both for horizontal and vertical shuffled decoding algorithms. The vertical shuffled algorithm is more sensitive to the update conflict. Indeed, α represents the syndrome information. Any modification to the syndrome estimation leads to a sign inverse in the computation of the extrinsic information. The summation of extrinsic messages with sign inversion is more sensitive to modification of the sign of the a posteriori message. The number of DDSMs is reduced from 8 to 1 with parallelism of the parity-check matrix decreased from 360 to 90.

However, even for a DVB-T2 decoder with a parallelism level of 45, there are still some residual DDSMs. The authors in [START_REF] Marchand | Conflict resolution by matrix reordering for DVB-T2 LDPC decoders[END_REF] proposed to extend the parity-check matrix to reduce the residual DDSM in order to avoid any modification of the decoding algorithm for a horizontal shuffled decoder. Moreover, the authors in [START_REF] Muller | A novel LDPC decoder for DVB-S2 IP[END_REF] proposed a way to improve the performance of the decoder for the LDPC code with DDSM, as shown in equ. (3.41). In this case, some modification of the architecture is mandatory.

[

T (t) n ] P = [T (t) mn a ] P + [E (t) mn a ] P + [E (t) mn b ] P -[E (t-1) mn b ] P (3.41) = [T (t-1) n ] P + [E (t) mn a ] P -[E (t-1) mn a ] P + [E (t) mn b ] P -[E (t-1) mn b ] P (3.42)
The update of the a posteriori message T

(t)

n is based on the summation of the differences of extrinsic message of the two diagonals. In this case, [E (t-1)

mn b ] P have to be memorized and a selection between the a posteriori message update from the first diagonal equ. (3.35) and the a posteriori message update from the second diagonal equ. (3.41) is also necessary. Let us take the α m update processor as an example to illustrate the proposal. If there is no double diagonal, then the latest updated α m is achieved by the multiplication of:

1.) α m : information read out from the check node information bank 2.) sgn(T (t-1) mn ): information read out from SgnT RAM 3.) sgn(T (t-1) mn ): information fed back from the bit node processor A register for α m is assigned. Then the updated α m is memorized and written back to the check node memory bank. For any double diagonal sub-matrix, the update of α m for the first diagonal, that is denoted as temporary α , follows the way mention previously. However this is not the final value. The update of α m for the second diagonal uses the registered α and sgn(T

(t) mn b ), sgn(T (t-1)
mn b ). Only this final α m is written back to the check node memory bank. So the update process for the final α m can be computed as:

[α m ] P = [α m ] P • [sgn T (t-1) mn a ] P • [sgn T (t) mn a ] P [α m ] P •[sgn T (t-1) mn b ] P • [sgn T (t) mn b ] P (3.43)
The main idea of designing a conflict free message update architecture for a check node processor resides in taking advantage of a temporary value (from the update of the first diagonal) in order to complete the final update. This principle is also applied to M 0 ,P 0 ,M 1 and P 1 , which are shown in Fig. 3.15. A non-pipelined timing schedule for the check node and bit node processor of the proposed VSS decoder is shown in Fig. 3.16. First the check node processor SISOB sequentially reads the check node information M 0 ,P 0 ,M 1 ,P 1 and α from the check node memory bank and feeds them into a FIFO RAM serially. At the same time, SISOB processor uses this information to generate the extrinsic information E mn and feeds E mn into a FIFO RAM and SISOA processor. The SISOA processor provides the a posteriori information after bit node processor receives all the dv n extrinsic information, where dv n means the bit node degree of the n th bit. In the following dv n time periods, the extrinsic information E mn is read sequentially from FIFO RAM and the a priori information is generated by subtracting E mn from T n simultaneously. The permuted a priori information T mn is then fed back to the check node processor. Finally, the check node processor uses it and reads the corresponding check node information to update the check node information at the same. In this non-pipelined schedule, one sub-iteration needs 2dv n + time periods, where = 3 is the delay of one sub-iteration process. The corresponding throughput is given by:
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One sub-iteration

D = K ldpc • f 0 T iter • N iter (3.44)
where K ldpc is the number of information bits, f 0 is the working frequency of the decoder, N iter is the iteration number and T iter is the total executive cycles necessary for one iteration.

For the non-pipelined schedule, T iter is equal to

T iter = i<(K ldpc )/P i=0 2dv i + • (K ldpc )/P (3.45) 
Most of LDPC decoders use pipeline technique to increase the throughput and the architecture efficiency. However introducing pipeline may cause memory access conflict problems.

The check node messages in the check node memory bank may be accessed before being updated. Fig. 3.17 depicts the timing schedule for the check node and bit node processors with pipeline. The delay from the reading of the check node information to the update of the check node information is dv + 3. During this period, any usage of the check node information M P m , α m leads to performance degradation.

Adding idle time before the usage of check node information to wait for the update of required check node information is one method to solve the problem. However this waiting time for each conflict event is totally different. Therefore it is not suitable for hardware implementation.

Let cad i j denote the address of the i th check node group connected to the bit node group j. If the check node information with address cad i j is read out more than once before the update of this check node information, then there is a memory access conflict. Actually, the condition that leads to a conflict-free memory access is: 

{cad i j } {(dv i + ) clk delay of cad i j } = φ (3.46) 
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One sub-iteration The schedule re-arrangement for the horizontal shuffled decoder can be carried out both for the different addresses belonging to check node group and among the sets of check node groups. However for the vertical shuffled decoder, the arrangement among the address sets of bit node groups (step 3) is forbidden, unless it follows by a corresponding re-order of the codeword.

Let us denote the parity check matrix

H = [h 1 , h 2 , h 3 , • • • , h n ]
, where h i means the i th column of the the parity check matrix. For any linear code, the codeword

C = [c 1 , c 2 , c 3 , • • • , c n ]
should satisfy the syndrome equation : equ. (3.47). So any re-arrangement of the column order of the parity check matrix by π function requires a corresponding codeword re-arrangement by π.

[h 1 , h 2 , h 3 , • • • , h n ] • [c 1 , c 2 , c 3 , • • • , c n ] = 0 (3.47) [π(h 1 , h 2 , h 3 , • • • , h n )] • [π(c 1 , c 2 , c 3 , • • • , c n )] = 0 (3.48)
In conclusion: different from the scheduling scheme for horizontal shuffled decoder, the proposed method consists of three steps: re-arrangement of the addresses in the set for each bit node group; sub-matrix split and re-arrangement among the sets of addresses for the bit node groups if necessary. The proposed method guarantees no memory access conflicts caused by a pipeline architecture. Moreover, it limits the time of T iter to a minimum number as:

T iter = i<(K ldpc )/P i=0 dv i + dv I A -dv I B T stage2 + dv I B -dv P T stage4 + (3.49)
Each iteration is divided into 5 stages, as shown in Fig. 3.19. The waiting time for stage i is equal to dv stage(i-1) -dv stage(i+1) , in order to avoid the check node memory bank update conflict between stage(i -1) and stage(i + 1). Consequently, the number of idle time for one iteration in our conflict-free scheduling is (dv I A -dv I B) + (dv I B -dv P ).

Logic synthesis results

The proposed LDPC decoder was designed by VHDL and implemented onto a FGPA board with Virtex 5 LX330 device. The implementation does not support all the code rates of the 

Prototype of a simplified DVB-T2 transceiver system

To demonstrate the performance of the proposed vertical shuffled Min-Sum LDPC decoder, a prototype of the transmission system without OFDM modulation on the DVB-T2 standard is implemented in a Xilinx Virtex5 LX330 device on a target board. The performance test was carried out for three different kinds channel: AWGN channel, fading channel and fading channel with erasures. A simplified DVB-T2 system including the transmitter, channel emulator and receiver was implemented to verify and validate the efficiency of the proposed demapping and decoding algorithm and the corresponding architectures. The block diagram of the prototype of the simplified DVB-T2 system is given in Fig. 3.20. 
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Transmitter elements

The transmitter consists of the pseudo random generator, LDPC encoder, bit interleaver and mapper.

Pseudo random generator

At the transmitter side, a Pseudo Random Generator (PRG) is assigned to generate the random binary source by using Linear Feedback Shift Register (LFSR) with the prime polynomial equation: p = x 31 + x 30 + x 29 + x 9 + 1. Table 3.5 lists the input and output ports of the PRG module and gives the quantization bits and the description of each signal. In order 

LDPC encoder

The LDPC encoder takes the random binary information bit stream to generate the parity check bits using the encoding algorithm, which has been detailed in Chapter 1. The corresponding architecture is illustrated in Fig. 3.21 and the ports definitions are listed in Table 3.6. 

Bit interleaver

The bit interleaver consists of parity interleaving followed by column twist interleaving. The input of the parity interleaver is denoted as λ, the output of the parity interleaver is denoted as u and the output of the column twist interleaver is denoted as v.

In the parity interleaving part, parity bits are interleaved as follows:

µ K ldpc +360•t+s = λ K ldpc +Q ldpc •s+t 0 ≤ s < 360, 0 ≤ t < Q ldpc (3.50)
where Q ldpc is defined in Chapter 1. The value of Q ldpc changes with different code rates and different length of LDPC codes.

In the column twist interleaving part, the data bits u i from the parity interleaver are serially written into the column-twist interleaver column-wise and serially read out row-wise as shown in Fig. 3.22. Actually, the write start position of each column is twisted by t c which depends on different code rates. This interleaver is described by the following:

The input bit u i with index i, for 0 ≤ i < N ldpc , is written to column c i , row r i of the interleaver,where:

c i = i div N r r i = i + t c mod N r
The output bit v j with index j, for 0 ≤ i < N ldpc , is read from row r j , column c j , where

r j = j div N c c j = j mod N c
where The parity interleaver is in the form of the parity bits re-order as detailed in the Chapter 1 to make the parity check matrix quasi-cyclic. According to the encoding algorithm with the parallelism level of 360, the 360 parity bits in any data bus of the parity RAM have been interleaved in the form of equ. (3.50). Therefore, no additional hardware resource is necessary 

Mapper

The flexible mapper is composed of the traditional mapper and the rotation computation, that has been detailed in Chapter 2. 10 bits are assigned for each component of the symbol

(1 bit for sign, 1 bit for the integral part and 8 bits for the fractional part). The 8 bits can provide a precision of 1/256 in the case of rotated 256-QAM. In order to support the timing constraint of the proposed demapper, the channel input symbol lasts for ten clock periods. The corresponding architecture is illustrated in Fig. 3.25 and the ports definitions are listed in Table 3.8. The FPGA logic synthesis results of the transmitter are detailed in Table 3.9.

Control

Channel emulator

The designed channel emulator supports three different kinds of channels: AWGN, Rayleigh 

H attenuation = V 1 2 Gaussian + V 2 2

Gaussian

(3.51)

Y I = X I • H attenuation + V 3 2 Gaussian (3.52) Y Q = X Q • H attenuation + V 4 2 Gaussian (3.53)
The SNR ratio is configurable by the input signal sigma, that denotes the square root of the variation of the Gaussian noise. The percentage of the erasure is also configurable by the input signal Pe. If the signal is labelled as erased, the output symbol is forced to zero. The main blocks are illustrated in Fig. 3.26 and the ports definitions are listed in Table 3.10. This channel emulator is designed by one PhD candidate in our lab [START_REF] David | Design and implementation of a mimo channel emulator onto fpga device[END_REF]. The quantization of the output symbols is fixed. So the precision of the channel output hence the following receiver is limited by the number of the quantization bits. The FPGA logic synthesis results of the channel emulator are shown in Table 3.11.

Receiver elements

The receiver consists of the equalizer, demapper, bit de-interleaver and LDPC decoder. 

Equalizer

An equalization is assigned before the demapper to provide the equalized symbol and CSI information. In the proposed system, we assume that the equalizer knows perfect channel information. So the attenuation and sigma signals from the channel emulator are directly connected to the equalizer. The corresponding architecture is illustrated in Fig. 3.27 and the ports definitions are listed in Table 3.12. The architecture of the proposed demapper has been previously detailed in chapter 2. Importantly, the input complex symbol and according CSI last for ten system clocks. The ports definitions are listed in Table 3.13.

Gaussian generator

X_re

The input and output schedule in the case of QPSK is illustrated in Fig. 3.28. The delay of LLR generation for all the mapping modes is equal to 14 clock cycles and the LLRs belonging to each channel input symbol has an interval of 10 clock cycles. 

Bit de-interleaver

The bit de-interleaver consists of the bit de-interleaver and parity de-interleaver. The parity de-interleaver has the same form of the parity bits re-order detailed in the Chapter 1, that is in order to make the parity check matrix quasi-cyclic. In order to reduce the memory size and the system delay, this part of the function is embedded in the I/O processor of the LDPC decoder.

The column twist de-interleaver shares the same architecture as the column twist inter- The FPGA logic synthesis results of the proposed receiver is shown in Table 3 

System platform

The prototype was implemented onto one Xilinx FPGA chip on a logic emulation board (DN9000K10PCI) composed of 6 Xilinx Virtex 5 LX330 devices. With this board, appropriate communication controllers are available and can be added to the design in order to read/write various output/input memories from a host computer using a USB interface.

The system environment is illustrated in Fig. 3.32.

1. The whole system is implemented onto one FPGA device on DN9000K10PCI emulation board.

2. The host computer is connected to the board by PCI, it is in charge of setting up the various parameters by key board and getting the BER results from emulation board.

3. On the screen, the graphical user interface is in charge of display the configuration, the performance results and the corresponding performance curve. La transmission de signaux en mode LVDS présente l'avantage de réduire les problèmes de synchronisation en réception. C'est pour cette raison que nous avons, par la suite, privilégié l'utilisation de ce mode de fonctionnement pour la transmission des données entre les FPGAs. Les 6 FPGAs sont également reliés par un bus principal (main bus) pour des opérations de configuration ou bien pour des transmissions de données moins exigeantes en terme de bande passante. Le main bus est accessible de l'extérieur via le contrôleur PCI permettant de lire ou d'écrire des données sur les 6 FPGAs. Les FPGAs peuvent être configurés via un port USB ou bien par une liaison RS232. Des sockets sont également disponibles pour accueillir une grande The measured performance in terms of BER over AWGN channel is illustrated in Fig. 3 LDPC with a code rate of R=4/5 with rotated constellation 3.9 Integration of the demapper and decoder in a complete DVB-T2 system Our work is sponsored by an European project calle SME42, which is built up by TeamCast (a French company), SIDSA (a Spanish enterprise) and Telecom Bretagne, with the aim to perform the world's first experimentation of the brand new second generation standard for Digital Terrestrial TV. In the SME42 project TeamCast has developed a DVB-T2 modulator, channel emulator and a DVB-T2 demodulator. The proposed demapper and VSS Min-Sum LDPC decoder were also integrated into a real DVB-T2 receiver which is designed by Team-Cast. A complete DVB-T2 transmission chain is set up with a DVB-T2 modulator, channel emulator and the receiver, in order to test the performance of the proposed architectures for the DVB-T2 system.

E b /N 0 (dB) 1 - 3 1 -2 1 -1 1 -4 1 -5 1 -6 1 -7 1 -8 1 

System platform

A complete DVB-T2 transmission chain provided by TeamCast is shown in Fig. 3.38.

1. Power4-T2: a DVB-T2 modulator supports complex modulation schemes.

2. Channel emulator provides configurable AWGN channel, fading channel with and without erasures plus the Doppler shift.

3. Demod4-T2: a DVB-T2 reference demodulator provides a means to test the system performance for basic system configuration.

4. A laptop is in charge of the configuration of channel emulator, such as SNR value; the channel type; number of multipath; the delay, the amplitude and the arriving angle of each path and the value of Doppler shift. The computer is connected to the channel emulator by Ethernet.

5.

A comprehensive software Controlcast is installed on this computer, which is in charge of the configuration of the modulator and demodulator and also in charge of display the system configuration, measurement traces, signal spectrum and constellation. The connection between the computer and the demodulator is done by Ethernet protocol.

Prototype and performance

The demodulator board of TeamCast includes 4 FPGA chips with model Virtex5 LX110. The first three devices are in charge of the base band converter, FFT, synchronization, equalizer, frequency de-interleaver, time de-interleaver, etc. TeamCast provides the bit streams for the C/N(dB) C/N(dB) - C/N(dB) - 

Conclusion

The main novelty of this chapter is the proposal of a vertical shuffled Min-Sum decoding algorithm and the architecture of the corresponding decoder for the DVB-T2 standard. It facilitates message exchange between the demapper and the decoder for an iterative BICM receiver. To the best of our knowledge, this is the first proposal of a vertical shuffled Mim-Sum decoder for DVB-T2. These results were published in [START_REF] Li | Design and FPGA prototyping of a bit-interleaved coded modulation receiver for the DVB-T2 standard[END_REF] and [START_REF] Li | Design of an efficient ldpc decoder for bit-interleaved coded modulation receivers[END_REF].

The implementation of an iterative BICM receiver for DVB-T2

The iterative BICM scheme with SSD can provide more performance gain when compared to the non-iterative BICM scheme [START_REF] Li | Efficient iterative receiver for bit-interleaved coded modulation according to the dvb-t2 standard[END_REF]. Therefore, it is adopted in the DVB-T2 standard and its implementation was encouraged in the implementation guideline of DVB-T2.

The iterative receiver shows attractive performance however it demands high computational complexity. Moreover, the conventional frame-by-frame processing mode causes important additional delay of the message passing between the demapper and decoder due to the block interleaving and de-interleaving process and the state-of-art LDPC decoding. The target of this work is to design a low complexity low latency iterative receiver so that it can completely meet the practical requirements and constraints.

In the following chapter, a novel iterative receiver is proposed. This novel iterative receiver is based on a vertical shuffled LDPC decoding algorithm, which has been presented in Chapter

3. An additional vertical shuffled idea is also applied for the message exchange between the demapper and decoder. This information exchange is performed on sub-frame other than the whole frame. The size of the sub-frame is depending on the desired throughput and code modulation constraints. The proposed receiver is implemented onto an FPGA board. this is the first published iterative receiver design for a BICM system dedicated to the DVB-T2 standard. Actually, there are two levels of iteration in an iterative BICM system. One is the local iteration inside the LDPC decoder and the other one is the global iteration between the demapper and decoder. In this chapter, we assume that the LDPC decoder provides the extrinsic information to the demapper just after one local iteration, which provides the best performance of the iterative BICM receiver [START_REF] Nour | On lowering the error floor of high order turbo BICM schemes over fading channels[END_REF]. In other words, one local iteration inside the decoder corresponds to one global iteration between the demapper and decoder.

Demapping algorithm for an iterative BICM receiver

If an iterative demapping is considered, the LLR of bit v i t should be calculated in the light of a priori knowledge, which is obtained from the LDPC decoder during the previous iteration.

Thanks to this knowledge, we should no longer assume that all the constellation bits have the same probability of being 0 or 1. Therefore, an updated LLR computation is provided in equ. (4.1). 

LLR(v

i t ) = log           xt∈χ i 0 P apriori (x t ) σ √ 2π • exp - y I t -ρ t x I t 2 + y Q t -ρ t x Q t 2 2σ 2 xt∈χ i 1 P apriori (x t ) σ √ 2π • exp - y I t -ρ t x I t 2 + y Q t -ρ t x Q t 2 2σ 2           ( 
= P aposteriori π -1 (b k ) P intrinsic (π -1 (b k )) (4.3) LLR ext (b k ) = LLR aposteriori π -1 (b k ) -LLR intrinsic π -1 (b k ) (4.4)
Then the a posteriori information for mapping bit b k is obtained from the LLR ext (b k ) by:

P r(b k = 0) = 1 1 + e LLRext(b k ) (4.5) P r(b k = 1) = 1 -P r(b k = 0) (4.6)
In order to simplify the computational complexity of the demapping algorithm for an iterative process, we divide all P apriori (x t ) by a fixed factor, as described in equ. (4.7). Note that this division has no effect on the BER performance.

f apriori (x t = 1111 m |b i ) = m k=0 P r(b k = 1) (4.7) 
As a consequence, the computation of the LLR based on Max-Log approximation becomes as:

LLR(b k ) = min xt∈χ i 0   - y I t -ρ t x I t 2 + y Q t -ρ t x Q t 2 2σ 2 + m-1 j=0;j =k;b j =0 LLR ext (b j )    -min xt∈χ i 1   - y I t -ρ t x I t 2 + y Q t -ρ t x Q t 2 2σ 2 + m-1 j=0;j =k;b j =0 LLR ext (b j )    (4.8)
where the summation of LLR ext over j spans all bits b k that are equal to zero excluding itself. for n = 1, .., N ldpc {sub-iteration} 10:

T (0) mn = llr n 3: α (0) m = n∈N (m) sgn(llr n ) 4: M 0 m = min (|llr n |) , P 0 m = index M 0 m 5: M 1 m = secmin (|llr n |) , P 1 m = index M 1 m 6: M 2 m = thirdmin (|llr n |) , P 2 m = index M 2
Check node processing 11:

if n == P 0 m 12: 

E (t) mn = α m • η • sgn T (t-1) mn • M 1 m , m ∈ M (n) 13:
E (t) mn = α m • η • sgn T (t-1) mn • M 0 m , m ∈ M (n) 15:
Bit node processing 16:

T (t) n = llr n + m∈M (n) E (t) mn , n ∈ N (m) 17: T (t) mn = T (t) n - m∈M (n) E (t) mn , n ∈ N (m) 18:
Check node update for next sub-iteration 19: 

α m = α m • sgn T (t-1) mn • sgn T (t) mn , m ∈ M (n) 20: M 0 m = min |T (t) mn |, |T (t-1) mk | , P 0 m = Index M 0 m , k ∈ N (m)\n 21: M 1 m = secmin |T (t) mn |, |T (t-1) mk | , P 1 m = Index M 1 m , k ∈ N (m)\n 22: M 2 m = thirdmin |T (t) mn |, |T (t-1) mk | , P 2 m = Index M 1 m , k ∈ N (m)

BICM receiver

The conventional iterative receiver processing is executed in a frame-by-frame manner. The demapper gets the channel symbol information to generate the LLRs, that are fed into the de-interleaver simultaneously. The LLRs can only be read out until the de-interleave is fully written. In other words, until the whole frame of LLRs are fed into the de-interleaver RAM.

Classically, LDPC decoding algorithm is horizontal layered decoding, in which the extrinsic information is accessible only after one complete iteration. The interleaving process is similar to the de-interleaving process, which is based on the frame processing. This kind of schedule induces a large latency for the messages exchange between the demapper and decoder. This is a critical problem for hardware implementation.

To overcome this problem, a vertical shuffled iterative processing is proposed [START_REF] Li | Efficient iterative receiver for bit-interleaved coded modulation according to the dvb-t2 standard[END_REF]. The main idea is that dividing the whole frame into several sub-frames and applying iterative processing on each sub-frames, which greatly reduces the delay of the message exchange between the demapper and decoder and improves the message exchange efficiency between the demapper and decoder. The proposal is composed of two stages:

1. Decoding: based on vertical shuffled paralleled LDPC decoding. Different from the horizontal layered decoding algorithm, in which the extrinsic message is available after one iteration, the vertical shuffled decoding schedule can provide a fast generation of the extrinsic message of each bit node.

2. Interleaving/de-interleaving: based on Look-Up-Table (LUT) memorizing the routing addresses. A memoryless process of the interleaving and de-interleaving function facilitate the message exchange between the demapper and decoder. Combining with the shuffled iterative decoding algorithm, the messages can be sent between demapper and decoder as soon as possible.

Thanks to these two proposals, the classical frame-based one iteration can be decomposed into multiple paralleled sub-frame processing, with a length equalling to the parallelism level.

Consequently, both the decoded and demapped extrinsic information can be exchanged as soon as it is available.

The shuffled iterative demapping and decoding algorithms is detailed in Algorithm 10.

Let us denote Q as the parallelism of the decoder. It can be any factor of 360. Each global iteration of the vertical shuffled iterative processing consists of several sub-iterations, in which the vertical shuffled decoding is applied on one sub-frame, that corresponding to Q bit nodes.

During the initialization stage, one main demapper takes the input symbols and processes {Decoding:} for n = 1, 2.., Q where n = π -1 (i)

11:

Check node processing 12:

if n == P 0 

E (t) mn = α m • η • sgn T (t-1) mn • M 1 m , m ∈ M (n) 14:
E (t) mn = α m • η • sgn T (t-1) mn • M 0 m , m ∈ M (n) 16:
Bit node processing 17:

T (t) n = llr n + m∈M (n) E (t) mn , n ∈ N (m) 18: T (t) mn = T (t) n - m∈M (n) E (t) mn , n ∈ N (m) 19: ext (t) n = T (t) n -llr n 20:
Check node update for next sub-iteration 21:

α m = α m • sgn T (t-1) mn • sgn T (t) mn , m ∈ M (n) 22: M 0 m = min |T (t) mn |, |T (t-1) mk | , P 0 m = Index M 0 m , k ∈ N (m)\n 23: M 1 m = secmin |T (t) mn |, |T (t-1) mk | , P 1 m = Index M 1 m , k ∈ N (m)\n 24: M 2 m = thirdmin |T (t) mn |, |T (t-1) mk | , P 2 m = Index M 1 m , k ∈ N (m)\n 25:
{Demapping:} for k = π(1), .., π(Q)

26: LLRs updating of M -QAM constellation. In this case, for a 16-QAM, the bit node processing In order to take the best advantage of the updated LLRs, the 12 bit node groups need to process simultaneously, that is not suitable for a hardware implementation.

max xt∈χ i 0    -D ecd (xt) σ 2 + m-1 j=0;j =i;b j =0 ext (t) j    -max xt∈χ i 1    -D ecd (xt) σ 2 + m-1 j=0;j =i;b j =0 ext ( 
Although the above example is a severe case, this kind of connection may exist. Therefore, finding proper message passing schedule, that suits hardware implementation, is a critical issue for the design of a shuffled iterative receiver. Bits node processed @ decoder log 2 M -1 90 90

Extrinsic information feedback @ decoder log 2 M -1 90 90 

Design and implementation of an iterative BICM receiver

The proposed iterative receiver with shuffled schedule has several advantages compared to the non-iterative receiver and the non-shuffled iterative receiver [START_REF] Li | A shuffled iterative bit-interleaved coded modulation receiver for the dvb-t2 standard: Design, implementation and fpga prototyping[END_REF], [START_REF] Li | FPGA implementation of a shuffled iterative bit-interleaved coded modulation receiver[END_REF], [START_REF] Li | Etude d'un récepteur itératif dédié à un systéme de modulation codée à bits entrelacés pour le standard DVB-T2[END_REF]. At first, the 126 CHAPTER 4. DESIGN AND IMPLEMENTATION OF AN ITERATIVE BICM RECEIVER FOR DVB-T2 the usual buffer and reduces both the latency and the hardware requirements in terms of resources. At third, by decomposing the frame into several sub-frames, the iterative processing is applied on each sub-frame. Thus, the latest decoded or demapped information can be rapidly exchanged and therefore accelerates the iterative process convergence. For a QPSK constellation, the bit node i and (i + 1) are associated to the same channel input symbol for information bits, while in order to obtain quasi-cyclic property, the bit (K ldpc + i) and (K ldpc + i + 4) are associated to the same input symbols for parity bits for any LDPC code rates with Q as even number. and the decoder for the information bits and parity bits, receptively. For the two bit node processors belonging to one channel symbol, the latter bit node processor uses the LLR in- (K ldpc + i), (K ldpc + i + 4), (K ldpc + i + 1), (K ldpc + i + 5), (K ldpc + i + 2), (K ldpc + i + 6), (K ldpc + i + 3), (K ldpc + i + 7) (4.9) All the components of the iterative BICM transceiver are illustrated in Fig. 4.17. The BICM-ID receiver is made up of a main demapper and a BICM-ID core. The transmitter and channel emulator are the same as the prototype described in the previous chapter.

The transceiver was synthesized and implemented onto an FPGA board. Computational resources of the BICM-ID MS core takes up about 11% and 44% slice registers and slice 

Conclusion

In this chapter we have proposed a novel iterative receiver with vertical shuffled schedule for the DVB-T2 standard. It enables an efficient information exchange between the demapper and the decoder in an ID context hence greatly reducing the message passing latency. Several schedules of message exchange between the demapper and decoder are studied. The proposed hardware oriented message passing schedule is verified to have almost the same performance as the optimal schedule, that enjoys low complexity and low latency. The work of algorithm level has been published in [START_REF] Li | Efficient iterative receiver for bit-interleaved coded modulation according to the dvb-t2 standard[END_REF] and the work of hardware implementation level has been published in [START_REF] Li | A shuffled iterative bit-interleaved coded modulation receiver for the dvb-t2 standard: Design, implementation and fpga prototyping[END_REF].

FPGA prototypes based on a vertical shuffled schedule with Min-Sum and Min-Sum-3 decoding algorithms have been implemented. The designed iterative receiver achieves high performance gain as expected, that validates the efficiency of the proposed method. To the best of our knowledge, this is the first hardware implementation of a BICM-ID receiver for the DVB-T2 standard.

Conclusion

The work accomplished during this PhD thesis focuses on design and implementation of a DVB-T2 BICM system with low hardware complexity and high throughput both for noniterative and iterative processing. The obtained results both in algorithm design and hardware implementation have shown the potential of an iterative receiver as a practical and competitive solution for the DVB-T2 standard.

First, we have addressed the issue that the demapping algorithm for rotated QAM constellation should be two-dimensional. It requires large number of multiplications, especially for high order constellations. In order to reduce the computation complexity, we have pro- Afterwards, we have proposed a joint vertical shuffled iterative demapping and decoding algorithm to reduce the processing latency of an iterative receiver. The main idea of our proposal relies on dividing the whole frame into sub-frames and applying iterative processing on every sub-frame. This is achieved by using vertical shuffled LDPC decoding to provide a fast generation of extrinsic information and by using a Look-Up-Table based interleaving/deinterleaving to provide a fast routing of information between the demapper and the decoder.

The message exchange schedules have been investigated. An efficient schedule that is suitable for hardware implementation has been detailed and the corresponding shuffled parallel iterative BICM receiver has been designed and implemented onto an emulation board for QPSK constellation as a first step. The design of this iterative receiver takes up around 50% of hardware resources in terms of RAM and logic slice of a Xilinx Virtex 5 LX330 device. The estimated maximum working frequency of the receiver is 80Mhz, that results to a throughput of 107 Mbps for 64K LDPC with a code rate of R=4/5. The measured performance achieves expected performance gains, which validate the efficiency of our proposal. To the best of our knowledge, this is the first hardware implementation of a BICM-ID receiver for the DVB-T2 standard.

Perspectives

The results obtained during this PhD study provide a novel framework for designing an iterative receiver for the DVB-T2 standard. Future works on this subject are expected to design an iterative receiver that supports higher QAM constellation modes and all LDPC code lengths and code rates.

Although the Look-Up-Table based interleaving/de-interleaving can provide a fast routing of information between the demapper and decoder, the interleaver in the DVB-T2 standard does not facilitate parallel processing. This is the main bottleneck of the design of a high throughput vertical shuffled iterative receiver. A new interleaver that supports paralleled processing has to be well designed.

At the presence of extrinsic information, the demapping algorithm does not reduce to a simple geometrical problem any more. Indeed, feedback has to be taken into account and the need to go through the demapper for every iteration can result into an important complexity increase especially for high order constellations. Therefore, further simplification of demapping algorithm is required to reduce the hardware complexity and the processing latency to enable a fast message exchange between the decoder and the demapper.
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In the case of an iterative process, the vertical shuffled Min-Sum-3 decoding algorithm outperforms the vertical shuffled Min-Sum decoding algorithm. However, the Min-Sum-3 requires more hardware resources. Future work may be carried out in order to find the best check node processing algorithm at the lowest hardware cost for an iterative receiver.

From the implementation point of view, the way to memorize the channel input symbol, extrinsic information, LLR and the temporary information inside the LDPC decoder should be well organized to avoid memory access conflicts when a paralleled LUT based interleaver/de-interleaver is introduced.

From a long-term perspective, the idea of vertical shuffled iterative structure can also be extended to other blocks of the receiver. A vertical shuffled iterative process can be carried out between the synchronization block or the channel estimation block or etc and the FEC decoder, in order to improve furthermore performance. 
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Fig. 1

 1 Fig. 1 Les quatre sous-régions utilisées pour la constellation 64-QAM tournée.

  être approximé par : • F(𝑎, 𝑏) = max (𝑎, 𝑏) si min (𝑎, 𝑏) ≤ max (𝑎, 𝑏)/4, sinon • F(𝑎, 𝑏) = max(𝑎, 𝑏) + (min(𝑎, 𝑏) -max (𝑎, 𝑏)/4)/2 L'application simultanée de ces simplifications ont permis la conception d'une architecture flexible de démappeur pour DVB-T2, supportant les constellations QAM tournées et non tournées d'ordre 4, 16, 64 et 256 pour des transmissions sur canaux gaussiens et canaux à fading avec et sans effacements.
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 2 Fig. 2 Architecture d'un démappeur DVB-T2 flexible.

Fig. 3

 3 Fig.3 compare les courbes de taux d'erreurs binaires résultant d'une part de la simulation en virgule flottante et d'autre part de mesures sur le démonstrateur, pour la transmission d'une constellation 64-QAM sur un canal de Rayleigh avec 15% d'effacements. On observe que les performances du prototype sont quasiment identiques à celles d'un modèle idéal de démappeur bi-dimensionnel.

Fig. 4

 4 Fig.4 Architecture du décodeur LDPC VSS utilisant l'algorithme min-somme.

Fig. 5

 5 Fig. 5 Schéma logique pour la mise à jour du signe d'une DDSM.

Fig. 6

 6 Fig. 6 Schéma-bloc de la chaîne de transmission DVB-T2 simplifiée.

Fig. 8

 8 Fig.8 Performances comparées du prototype et du modèle C du décodeur BICM avec QAM non tournées pour une transmission sur canal à fading avec 15% d'effacements.

Fig. 9

 9 Fig.9 Performances comparées du prototype et du modèle C du décodeur BICM avec QAM tournées pour une transmission sur canal à fading avec 15% d'effacements.

  Nous avons dans un premier temps implémenté le récepteur itératif pour la constellation QPSK. Deux prototypes ont été réalisés, basés sur le séquencement C. Le premier prototype utilise l'algorithme de décodage VSS min-somme (MS) tandis que le second met en oeuvre l'algorithme VSS min-somme-3 (MS3), dont les performances sont plus proches de celles de l'algorithme de référence somme-produit. Les ressources matérielles utilisées pour les deux décodeurs BICM itératifs (BICM-ID) sont recensées dans la
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  is the maximum Doppler frequency or shift, which depends on the ratio of the speed of the vehicle ( ! v ), the speed of the light ( ! c o ), and the carried frequency ( ! f o );
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 16 Figure 1.6 -A typical scenario of mobile radio communications

Figure 1 . 7 -

 17 Figure 1.7 -Fading types and their corresponding manifestation
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 1 Fig. 1.7 represents an overview of the manifestation of a fading channel [22] [23]. It falls into two main categories: large-scale fading and small-scale fading. Large-scale fading represents the average signal power attenuation or path loss due to motion over large areas.
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 18 Figure 1.8 -Large-scale and small-scale fading
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 19 Figure 1.9 -Mathematical model of the multipath impulse response and the reception of the mobile receiver with one incoming path

CHAPTER 1 .

 1 BACKGROUNDapproaches for constructing such bandwidth efficient coded modulation techniques. Two of these: Trellis coded modulation (TCM) and Bit-Interleaved Coded Modulation (BICM) are studied in the following content.
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 110 Figure 1.10 -General coding scheme of TCM
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 111111 Figure 1.11 -Transmitter(a) and receiver(b) in the BICM system

  ), where i = {0, 1, ..., m -1} and N s is the number of symbols of the constellation in the coded frame, t and t ∈ [1, N s ]. The interleaving function is a modulo m mathematical operation that divides the coded sequence into m subsequences. Uniform interleaver and S-random interleaver are the two possible interleaving schemes. The interleaving function is considered to break any existing correlation between the m subsequences.
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 1 [START_REF] Viterbi | Error bounds for convolutional codes and an asymptotically optimum decoding algorithm[END_REF] shows some performance comparison for 16-QAM with the 64K LDPC code in DVB-T2 ( coding rate R=4/5) over fading channel with 15% erasures. The value of performance gain from signal space diversity CHAPTER 1. BACKGROUND and iterative process chances according to different coding rate and different constellation size.
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 112113 Figure 1.12 -System description of the BICM-SSD and BICM-ID-SSD mode

1. 5 .

 5 DVB-T2 STANDARD INTRODUCTION 23 in the terrestrial transmission environment. Multiple-Input Single-Output (MISO) technique, Low-Density Parity Codes (LDPC), rotated constellation, new pilot pattern are the most remarkable new techniques in the DVB-T2 standard.Table1.1 lists the system configuration for both DVB-T2 and DVB-T. The LDPC codes combined with BCH codes are used as the Forward Error Correcting (FEC) part in DVB-T2, which improve coding gain when compared to the concatenated codes in DVB-T. DVB-T2 introduces a higher order constellation 256-QAM and the four QAM constellations (from QPSK to 256-QAM) can be rotated to achieve high coding diversity. Four different FFT sizes are added in the DVB-T2. 16K and 32K FFT increase the date rate while 1K makes the system more robust in the mobile channel. The added three different guard intervals provide more flexible selection of the OFDM parameters and let the receiver can endure high delayed multipath. In addition, two new bandwidth are included: 10MHz for professional application, 1.712MHz for the narrow RF channel such as L-band. Eight different scattered pilots are available for DVB-T2, which is selected according to the FFT size and guard interval. Moreover, DVB-T2 can support Multiple Input Single Output (MISO) which can improve the overall performance in SFN using a transmitter diversity technique based on
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 1 Fig. 1.14 illustrates the basic physical layer structure of a DVB-T2 transmitter. The system input may be one or more MPEG-2 or MPEG-4 Transport Streams (TS) and/or one or more Generic Stream. The input Pre-Processor is also a part of the DVB-T2 system, which has a service splitter or de-multiplexer for Transport Streams to separate the services into the T2 system inputs. Those are the input of the DVB-T2 transmitter. One logical data stream
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 114115 Figure 1.14 -Physical layer structure of a DVB-T2 transmitter

  1.2. The rotated constellation for 16-QAM is shown in Fig. 1.16. 2. Making these two components faded independently. The in-phase I and quadrature Q components for a same symbol can be made to be faded independently if they are not concurrently transmitted during the same fading time interval. This can be reached by adding Modulation QPSK 16-QAM 64-QAM 256
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 1116 Figure 1: rotated 16-QAM constellation and its projection over components I and Q showing bit 0 and bit 1 mappings Figure 1.16 -Constellation of non-rotated and rotated 16-QAM
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 118 Figure 1.18 -Tanner graph of the LDPC code in DVB-T2
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 1192 Figure 1.19 -The LDPC code in the DVB-T2 standard with quasi-cyclic property
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 21 Figure 2.1 -Signal space panel for non-rotated 16-QAM and 64-QAM
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 122 Figure 2.2 -Simplified LLR computation for v 0 and v 2 , in a PAM mode

  [START_REF] Berlekamp | Algebraic coding theory, laguna hills[END_REF] Equ. (2.7) to equ.(2.10) show that the LLR computation is steadily expressed by a linear equation, a(x -b), in a particular interval. Therefore, the LLR computation can be performed via a piecewise linear approximation. This approximation greatly reduces hardware complexity while having a limited impact on performance. It represents the state of the art for demapping algorithms.
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 24 Figure 2.4 -LLR value of bits related to in-phase for 256-QAM over AWGN channel (@SNR=9dB)
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 2526 Figure 2.5 -Performance degradation for a non-compensated but re-rotated piecewise linear 1D demapping algorithm for different rotated QAM constellation over fading channel

14 )

 14 In order to reduce the required computations, we propose a detection method based on the decomposition of the constellation into two-dimensional sub-regions in the signal space, called SR-2D. It leads to the computation of the squared Euclidean distances on a limited number of constellation points. This approach is particularly attractive for high order QAM constellations. It can also be applied to a fading channel with erasures.The equ. (2.14) is a function of two different kinds of Euclidean distances: the shortest distance to the constellation signal where the value of the mapping bit is zero and the corresponding distance to the signal where the value of the mapping bit is one. The selected sub-region must contain the two shortest distances for each transmitted bit. A closer look at the Gray mapping of the constellation allows the partitioning of the constellation into sub-regions according to the sign of the received channel observation y I t-1 and y Q t .

  2 is symmetric with respect to x = 1.91 and x = 6.00 according to the value 1 and 0. Consequently,[-7.96, 1.90] is a good sub-region for x I < 0 containing the signals which have the minimum Euclidean distance for each transmitted bit taking respectively the value 1 and 0. ([-1.90, 7.96] for x I ≥ 0 respectively) An illustration of the proposed sub-regions as a function of the sign of the received I and Q components is shown in Fig. 2.7.

Figure 2 . 7 -

 27 Figure 2.7 -The rotated 64-QAM constellation of DVB-T2 with the proposed sub-regions over fading channel

CHAPTER 2 .

 2 DESIGN AND IMPLEMENTATION OF A FLEXIBLE DEMAPPER equals to value zero. χ i 1 represents the projections of the set of signals in the constellation, whose i th bit equals to value one. The region partitioning should be based on the projections of all the constellation points on the non-erased axis. The sub-region can be divided depending on the sign of the nonerased component. Each sub-region contains log 2 (M ) • (1 + log 2 (M )/2) points for M-QAM, as shown in Fig. 2.8. We denote the resulting algorithm as SR-1D.
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 2829 Figure 2.8 -The proposed sub-regions over fading erasure channel for rotated 64-QAM
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 210 Figure 2.10 -BER comparison for 64-QAM uncoded over fading channel without erasure

Algorithm 2

 2 chosen as the maximum of (a, b), then (b/a) is smaller than one. A linear approximation of the Euclidean distance is then performed as: Simplification of the Euclidean distance computation if (min(a, b) <= max(a, b)/4) then F (a, b) = max(a, b) else F (a, b) = max(a, b) + (min(a, b) -(max(a, b)/4) /2)
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 214213214 Figure 2.13 -Architecture of the Euclidean distance computation

  symbol 10100[bin] in the constellation, is delivered to register e 1 b0 . e j bi denotes the temporary minimum distance for bit bi, whose value equals to j ∈ [0, 1]. At the same time, four distances {Ecd 0,0 , Ecd 0,1 , Ecd 0,2 , Ecd 0,3 } which are the Euclidean distances from the received symbol to the four symbols 001000[bin], 001010[bin], 00010[bin], 00000[bin] are delivered to register e 0 b0 . For bit v 1 , the transmitted value of the second bit of the 5 signals are {0, 0, 0, 0, 0}. So none of the Euclidean distance is delivered to register e 1 b1 and five Euclidean distances {Ecd 0,-1 , Ecd 0,0 , Ecd 0,1 , Ecd 0,2 , Ecd 0,3 } are all delivered to register e 0 b1 . The same reasoning applies for the remaining 2 bits. The comparison is done for each register belonging to a Get min module. Only the minimum value in each group is registered as the temporary minimum value e 0 bi and e 1 bi . This network module is composed of 68 comparators.Then eight Get min modules are still necessary to obtain the final minimum for the eight mapping bits with value one and value zero. 2•(log 2 (M )/2+1) temporary values are obtained through the network module after (log 2 (M )/2 + 1) system clocks for a fading channel and log 2 (M )/2 system clocks for a fading channel with erasures, respectively. Each of the Get min module consists of two comparators and two registers. The registers are in charge of the memorization the final minimum values e 0 bi and e 1 bi . After all these steps, the LLRs are computed by two multiplexers, two multipliers and one subtractor. Only 20 multipliers are assigned to the proposed architecture. They are in charge of 1024 multiplications for the Max-Log demapping algorithm and 162 multiplications in the sub-region based Max-Log demapping algorithm for the most complicated 256-QAM case.
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 2163217 Figure 2.16 -Mutual information per bit in function of the quantization of the received symbol in the fading channel with 15% erasures 256-QAM

2. 3 .

 3 ARCHITECTURE OF A FLEXIBLE DEMAPPER FOR DVB-T2 51 (y I , y Q ) for all the constellation modes and (1, 6, 2) is assigned for CSI in case of 256-QAM.

Figure 2 . 18 -Figure 2 . 19 -

 218219 Figure 2.18 -Architecture of the flexible 2D Mapper
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 220 Figure 2.20 -Performance of uncoded system for 64-QAM over fading channel
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 223 Figure 2.23 -Performance of uncoded system for 256-QAM over fading erasure (15%) channel

  hereafter. Let M (n) denote the set of check nodes connected to the bit node n, and let N (m) denote the set of bit nodes that participated in the m th parity-check equation. Furthermore, N (m)\n represents the set N (m) excluding the variable n and M (n)\m represents the set M (n) excluding the check node m, similarly.

1 Figure 3 . 1 -

 131 Figure 3.1 -One example of φ n,k and φ n,k,l

Fig. 3 . 1 and φ 2 , 2

 3122 1 illustrates the bit node set of φ 2,in one parity check matrix. The probability that c n = 1 is the probability that all the syndromes related to bit n are equal to zero with c n = 1. It means the parity check equations are satisfied. P r c n = 1|y n =n = P r φ n,1 = 1, • • • , φ n,|M (n)| = 1|y n =n (3.13)

Algorithm 3 4 :

 34 Two phase belief propagation decoding algorithm 1: Initialization: for t = 1, .., t max {iteration } 5:

20 )

 20 Following Gallager's proposal, the check node process can be rewritten as equ. (3.21) by 3.3. CHECK NODE PROCESS SIMPLIFICATION 65 using function ϕ(x) in equ. (3.23).
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 32 Figure 3.2 -The ϕ(x) function
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 33 Figure 3.3 -The g(x) = log 1 + e -x function

  can be calculated in a recursive manner. The computation of the messages from check node m to dc bit nodes can be achieved by applying equ. (3.26) based on equ. (3.25).

3. 3 .

 3 CHECK NODE PROCESS SIMPLIFICATION 67 undeniable advantage when compared to the ϕ(x) function (see Fig. 3.2) since ϕ(x) →∝ when

  mn is processed over λ -1 minimum values of |T (t-1) mk |. If the bit node n does not belong to the set N λ (m), then the amplitude of E the check node process carries out the comparison of the amplitude of each coming |T (t-1)

5 :

 5 for t = 1, .., t max {iteration } 6:

3. 5 .Algorithm 5 5 : 6 :

 5556 VERTICAL SHUFFLED DECODING ALGORITHM 71 is achieved by applying the normalization to the selected minimum or second minimum values, as illustrated from line 10 to line 13 in Algorithm 5. The split of the magnitude and sign processes of the extrinsic messages greatly reduce the required memory size for extrinsic messages. In a classical belief propagation based decoding algorithm, all the E (t-1) mn messages have to be memorized. The number of extrinsic messages are equal to the number of elements in the parity check matrix. However, in the Min-Sum based decoding, only the sign of all the E (t-1) mn messages plus the magnitude of M 0 m , M 1 m and P 0 m for each check node have to be memorized. P 0 m is the index of k th bit node of M 0 m for the check node m. A benefit for any LDPC code with check node degree larger than 3 can be observed. The memory reduction ratio increases when the check node degree increases.The horizontal Min-Sum algorithm enjoys low complexity and fast convergence speed, therefore it is widely used. Horizontal shuffled normalized Min-Sum algorithm 1: Initialization: for t = 1, .., t max {iteration } for m = 1, .., P ldpc { sub-iteration}

  Base on the vertical shuffled schedule, a normalized Min-Sum algorithm for the vertical shuffled scheduling is proposed to reduce hardware complexity. Following the principle of Min-Sum algorithm, vertical shuffled normalized Min-Sum decoding algorithm uses the minimum value M 0 m and the second minimum value M 1 m of all the E (t) mn connected to the check node m to simplify the check node processing.The principle of the shuffled normalized Min-Sum decoder is that the M 0 m and M 1 m should be updated as soon as the new extrinsic messages T (t) mn are available. So the incoming bit node processing for bit n in N (m) can use the latest check node information from the m th check node processor.

Algorithm 6 6 :

 66 Vertical shuffled belief propagation algorithm 1: {Initialization: for all bit nodes n, where m ∈ M (n) } for t = 1, .., t max {iteration } 7:

Fig. 3 . 7 1 m 6 : 7 :

 37167 Fig. 3.4 shows the BER performance comparison of different decoding algorithms of DVB-T2 LDPC code with a frame size of 64800 and a code rate of R=4/5 over an AWGN channel with the maximum iteration number of 50. The legend VSSMS and HSSMS means the normalized Min-Sum for VSS and HSS, respectively. The simulation results show that the performance

1 )

 1 mk | , P 1 m = Index M 1 m , k ∈ N (m)\n 21: Hard decision according to T (t) n of the horizontal and vertical shuffled decoding schedule is very close both for the belief propagation algorithm and the normalized Min-Sum. These results demonstrate the efficiency of vertical shuffled decoding algorithm and the proposed vertical shuffled Min-Sum decoding algorithm.In the following section, we will propose an architecture for the vertical shuffled Min-Sum LDPC decoder with parallelism level of 90. The curves of the floating point and fixed point VSSMS with maximum iteration number of 25 give the reference performance for the prototype of the corresponding LDPC decoder.
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 534 Figure 3.4 -Performance comparison for 64K LDPC code with a code rate of R=4/5 over an AWGN channel and a QPSK constellation

3. 7 . 1 Fig. 3 .

 713 Fig. 3.5 depicts the proposed architecture based on the proposed Min-Sum algorithm detailed in sub-section. 3.5.1. The decoder is mainly composed of five major blocks: a bit node processor SISOA, a check node processor SISOB, two permutation networks, an IO processor and a control model. The InputOutput (IO) processor includes the LLR RAM and Codeword RAM, which are connected to the bit node processor. The bit node processor and check node processor are connected by two permutation networks.The original parallelism level of the LDPC codes in the DVB-T2 standard is 360. A paralleled LDPC decoder with the parallelism of 360 can provide high throughput, which is around 350 Mbps for the 64K LDPC with a code rate of R=4/5 with a maximum iteration number of 20 at the working frequency of 90 Mhz. However, in practice, the highest throughput of
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 35 Figure 3.5 -Architecture of the proposed vertical shuffled normalized Min-Sum LDPC decoder
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 38 Figure 3.8 -Finite state machine of the decoding state
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 33931081 Fig. 3.10 gives an example of sub-matrix split. In this case, M is equal to 9, D is equal

Fig. 3 .Figure 3 . 11 -

 3311 Fig.3.11 shows a sub-matrix that contains two diagonals. We call it Double Diagonal Sub-Matrix (DDSM). As mentioned in Chapter 1, the parity check matrices of DVB-T2 LDPC codes contain this kind of sub-matrices. There are even triple diagonal sub-matrices for the LDPC code with a code length of 64800 with a code rate of R = 4/5 LDPC code.If paralleled LDPC decoder is considered, the double or triple diagonal sub-matrices induce message update conflicts, that affect BER performance.Let us take the horizontal shuffled Min-Sum decoding algorithm as an example to illustrate this problem. The message sent from the check node group to the bit node group for the first

3. 7 .

 7 DESIGN AND IMPLEMENTATION OF A VERTICAL SHUFFLED MIN-SUM LDPC DECODER 83 LDPC decoding algorithm. Let us take the update of α as an example. The [α m ] P is first updated based on the feedback a priori message [sgn T (t) mn a ] P from the first diagonal. [α m ] P = [α m ] P • [sgn T (t-1) mn a ] P • [sgn T (t) mn a ] P (3.38) However, the [α m ] P get the updated value based on the feedback a priori message [sgn T (t) mn b ] P from the second diagonal simultaneously and independently from equ. (3.38).
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 312 Figure 3.12 -Performance comparison for 64K LDPC with a code rate of R=4/5 over an AWGN channel and a QPSK constellation

3. 7 .Figure 3 . 13 -

 7313 Figure 3.13 -Parity check matrix with double diagonal sub-matrices of 16K LDPC with a code rate of R=1/2
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 314 Figure 3.14 -Architecture of α update for the vertical shuffled normalized Min-Sum LDPC decoder
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 315 Figure 3.15 -Architecture of M P information update for the vertical shuffled normalized Min-Sum LDPC decoder

Figure 3 . 16 -

 316 Figure 3.16 -Timing schedule of one iteration for SISOA and SISOB processor without pipeline for a vertical shuffled Min-Sum LDPC decoder
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 317 Figure 3.17 -Timing schedule of one iteration for SISOA and SISOB processors with pipeline

3. 8 .

 8 PROTOTYPE OF A SIMPLIFIED DVB-T2 TRANSCEIVER SYSTEM 93 3.8.1 Simplified DVB-T2 transceiver system
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 320 Figure 3.20 -Block diagrams of a simplified DVB-T2 transceiver system

  to avoid the repetition, we do not list clk and rst signals in the following Tables of the ports

Figure 3 . 21 -

 321 Figure 3.21 -Architecture of the LDPC encoder

  N r means the number of rows of the interleaver block and N c means the number of columns of the interleaver, which satisfy this constraint N c • N r = N ldpc . Both of them are constant values for different code rates, that are given in Fig. 3.23.
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 322 Figure 3.22 -Column twist interleaving scheme for 16K LDPC code and 16-QAM constellation
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 323324 Figure 3.23 -Column twisting parameters
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 325 Figure 3.25 -Architecture of the mapper

  fading without erasure and Rayleigh fading with erasures. The corresponding mathematical models have been detailed in Chapter 1. The channel emulator is obtained based on four Gaussian generators by using the Wallace method [39]. The channel attenuation is based on equ. (3.51) and the in-phase and quadrature components of the output symbol are obtained based on equ. (3.52) and equ. (3.53).
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 326 Figure 3.26 -Architecture of the channel emulator
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 327 Figure 3.27 -Architecture of the equalizer
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 328 Figure 3.28 -IO schedule of the demapper
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 329330 Figure 3.30 -IO timing of the proposed LDPC decoder

  GROUP. Le schéma bloc de la carte est présenté sur la figure5.11. Cette carte est reliée à un PC via un bus PCI et intègre 6 FPGAs Virtex-5 LX330 de la société Xilinx. Les FPGAs sont interconnectés par l'intermédiaire de liaisons directes configurables en mode single-end ou bien différentiel. Le mode différentiel LVDS (Low Voltage Differential Signaling) autorise des transmissions de données à des débits plus élevés (1.25 Gb/s par liaison) que pour des liaisons single-ended (800Mb/s par liaison) mais nécessite l'utilisation de deux liens physiques quand un seul suffit pour une connexion single-end.Cette carte a été financée par le Pôle de Recherche Avancée en COMmunications (PRA-COM).
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 511 Figure 5.11 -Carte de prototypage DN9000K10PCI de la société DINIGROUP à base de Xilinx Virtex-5

Figure 3 . 31 -

 331 Figure 3.31 -Block diagrams of DN900K10PCI board
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 332 Figure 3.32 -Real development environment
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 334335336 Figure 3.34 -The system performance over fading channel for 64K LDPC with a code rate of R=4/5 with non-rotated constellation 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0 E b /N 0 (dB)
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 337 Figure3.37 -The system performance over fading channel with 15% erasures for 64K

  Figure 3.40 -Real development environment

5 Figure 3 . 41 -

 5341 Figure 3.41 -Performance comparison over AWGN for 64K LDPC with a code rate of R=4/5
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 4343 Figure 3.43 -Performance comparison over AWGN for 64K LDPC with a code rate of R=3/4

  proposed vertical shuffled Min-Sum decoding algorithm, which uses the latest check node information to speed up the convergence, shows almost the same performance when compared to the horizontal shuffled Min-Sum decoding algorithm. The message update conflict problem due to double diagonal sub-matrix and the memory access conflict problem due to pipeline architecture are the two main critical problems for the design of a LDPC decoder of the DVB-T2 standard. Conflicts due to double diagonal sub-matrix is solved by matrix split and a little modification of decoding algorithm. The conflicts due to pipeline has been solved by an elaborate scheduling coupled with sub-matrix split and column re-order if necessary. The implementation of the proposed LDPC decoder has been carried out onto a Xilinx Virtex XC5VLX330 device. It enables a maximum throughput of 80 Mbits/s for 64K LDPC code with a code rate of R=4/5.The proposed demapper and VSS Min-Sum LDPC decoder have also been validated by two prototypes of DVB-T2 system. A simplified DVB-T2 system is implemented onto a Virtex 5 LX330 FPGA device. The measured performance is quasi-identical to the fixed point simulation results over AWGN channel and fading channel with and without erasures. Furthermore, the demapper and decoder have also been integrated into a real reference DVB-T2 demodulator. The demodulator with proposed demapper and decoder has more or less the close performance with TeamCast's demodulator for different code rates in different constellation modes, which considerably validates the efficiency of the proposed algorithm and architecture of demapper and decoder.
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 14141 Figure 4.1 -Iterative BICM structure in the DVB-T2 standard
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 1 4.1) where P apriori (x t ) = m-=i;k=0 P r(b k ), where (b m-1 , b m-2 , ..., b 0 ) = x t (4.2) 116 CHAPTER 4. DESIGN AND IMPLEMENTATION OF AN ITERATIVE BICM RECEIVER FOR DVB-T2 In the case of iterative process, P apriori (x t ) value for each symbol in the signal space panel for LLR computation for certain bit b i is computed from extrinsic messages provided by the LDPC decoder. It is expressed as a function of the product of probabilities of (m -1) bits (excluding the correspond bit b i ) taking the value 0 or 1. The value of other (m -1) bits are defined by the value of the constellation symbol ((b m-1 , b m-2 , ..., b 0 ) = x t ). These probabilities are estimated by the previous iteration of LDPC decoding as equ. (4.3) in probability domain and equ. (4.4) in log domain. The interleaver function and deinterleaver function are defined as π and π -1 , respectively. P r(b k )
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 42 Figure 4.2 -Performance comparison for 64K LDPC with a code rate of R=4/5 over fading channel with 15% erasures and 256-QAM constellation
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 78 {Decoding:} for t = 1, .., t max {iteration} 9:
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 23 Hard decision according to T (t) n 120 CHAPTER 4. DESIGN AND IMPLEMENTATION OF AN ITERATIVE BICM RECEIVER FOR DVB-T2 4.1.3 A joint shuffled demapping and decoding algorithm for an iterative
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 1102329 ALGORITHM DESIGN FOR AN ITERATIVE BICM RECEIVER 121 Shuffled parallel iterative demapping and decoding algorithm 1: {Initialization: } ext n = 0 {for all bit nodes n, where m ∈ M (n) } 0 m = min (|llr n |) , P 0 m = index M 0 m 7: M 1 m = secmin (|llr n |) , P 1 m = index M 1 m 8: M 2 m = thirdmin (|llr n |) , P 2 m = index M for t = 1, .., t max {iteration} 10:
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 14 Message passing schedules between LDPC demapper and decoder for an iterative BICM receiverA basic idea of the paralleled vertical shuffled iterative receiver is illustrated in the form of the Tanner graph in Fig.4.3. The shuffled iterative schedule guarantees immediate message exchange between the demapper and the decoder. There exists several possible schedules, which correspond to the possible combinations between the different parallelism levels of the LDPC decoder and the different partial update strategies for the demapper. A good match between the demapping process and decoder process is mandatory to design an efficient prototype achieving high throughput.
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 44 Figure 4.4 -An example of efficient connections between channel symbols and bit nodes
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 452 Figure 4.5 -Another example of connections between channel symbols and bit nodes
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 46 Figure 4.6 -Parallel vertical shuffled iterative BICM receiver
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 47 Figure 4.7 -Performance comparison for a 16K LDPC code with a code rate R=4/5 over a fading channel with 15% erasures and a QPSK constellation
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 48 Figure 4.8 -Performance comparison for a 64K LDPC code with a code rate R=4/5 over a fading channel with 15% erasures and a 256-QAM constellation
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 49 Figure 4.9 -The required time cycles of one decoding iteration for 64K LDPC codes with different code rates and interleaving and de-interleaving
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 4 Fig. 4.9 lists the required time cycles for one decoding iteration of a LDPC decoder with a parallelism level of 90 for 64K LDPC codes with different code rates. The required cycles
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 410 Figure 4.10 -Scheduling of a horizontal iterative receiver
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 411 Figure 4.11 -Scheduling of a vertical iterative receiver

Fig. 4 .

 4 Fig. 4.10 and Fig. 4.11 illustrate the iterative processing schedule of the frame-based processing and vertical shuffled processing, respectively. The parity check matrix of 64K LDPC code with a code rate of R=4/5 has 630 nonzero sub-matrices with a dimension of 360x360. To perform one iteration, the frame-by-frame schedule requires 630 • (360/90) + 64800•4 time cycles for an iterative receiver with parallelism of 90, while the iterative shuffled schedule needs only 630 • (360/90) + δ time cycles. δ is the delay of interleaver access plus one demapping process of one sub-iteration. If a LUT is applied in an iterative processing with parallelism of 90, δ is equal to 10 time cycles. It means that the latter only takes around 2% of cycles as the former.
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 21 Architecture of an iterative BICM receiverA parallel vertical shuffled iterative receiver should support parallel LUT routing for interleaving and de-interleaving. The parallelism of the proposed receiver is 90. However, the interleaver in the DVB-T2 standard has not took the parallel access into account. Therefore, for the moment we have considered and implemented as a first step only an iterative receiver 128 CHAPTER 4. DESIGN AND IMPLEMENTATION OF AN ITERATIVE BICM RECEIVER FOR DVB-T2 for a QPSK constellation, in which mode there is no interleaving and de-interleaving process in the DVB-T2 standard.
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 417 Figure 4.17 -Experimental setup for prototyping of the iterative BICM system for DVB-T2
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  posed a Max-Log two-dimensional demapping algorithm based on sub-region detection. This algorithm reduces the number of required computations of Euclidean distances. The proposal of linear approximation of Euclidean distance further reduces the number of multiplications.Based on these two contributions, a flexible demapper was implemented and tested. It supports all the eight different constellations over an AWGN channel, a fading channel with and without erasures. The demapper can be easily extended to higher order constellations, such as 1024-QAM constellation or 4096-QAM constellation adopted in the DVB-C2 standard.Then, in order to reduce the latency of the message exchange between the demapper and the LDPC decoder in the case of an iterative receiver, a Min-Sum vertical shuffled LDPC decoding algorithm has been proposed to provide a fast generation of extrinsic information. In addition, the methods to avoid memory access conflicts due to pipeline and to avoid message update conflicts due to double diagonal sub-matrix have been detailed for the vertical shuffled LDPC decoder. A digital communication setup, including source generator, LDPC encoder, bit interleaver, mapper, channel emulator, equalizer, demapper, bit de-interleaver, LDPC decoder and BER calculator, has been implemented onto one FPGA device(Xilinx Virtex 5 ) on an emulation board (DN9000K10PCI) to verify the algorithm and architecture design of the demapper and LDPC decoder over an AWGN channel and a fading channel with and without erasures. The demapper and LDPC decoder have also been integrated onto a real DVB-T2 demodulator provided by the company Teamcast. The performance measures have been performed in a real environment provided by Teamcast funded by the SME42 project, 136 CONCLUSION which includes a real demodulator, channel emulator and the demodulator. Promising results have shown the efficiency of the demapper and the LDPC decodere.
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  minimale des informations provenant des noeuds de variables, ainsi que les indices correspondants. L'ensemble de ces informations sont stockées dans le banc mémoire associé aux noeuds de parités. Puis chaque itération de décodage VSS est constituée de

		10 0
		Simulation, non-rotated
		Prototype, non-rotated
		Simulation, rotated
		Protoype, rotated
	BER	10 -1
		10 -2

valeur ldpc N sous-itérations exécutées de manière séquentielle. A chaque sous-itération, le processeur de noeud de parité (SISO-B) calcule une information dite extrinsèque qui est envoyée au processeur de noeud de variable (SISO-A). Le processeur de noeud de variable calcule l'information a posteriori en additionnant les LLRs provenant du canal à l'ensemble des informations extrinsèque et en extrait une information a priori qui est renvoyée au processeur de noeud de parité. Enfin le processeur de noeud de parité met à jour les valeurs minimales des informations provenant des noeuds de variable en utilisant les anciennes valeurs et l'information a priori.

Table

  

  Les performances du prototype ont été vérifiées sur canal gaussien et de Rayleigh avec et sans effacements. Les Fig.8et 9 montrent le résultat des comparaisons de performance entre les mesures effectuées sur le prototype et les simulations en virgule fixe réalisées à partir d'une

		Erasure %	SNR	
		11 bits	7 bits	
	rotated description en langage C du décodeur, pour le code 64k de rendement 4/5, sur canal de mapper Rayleigh channel emulator XI XQ bit BER computation Yeq I Yeq Q YI YQ 10 bits equalizer 9 bits rotated demapper d d d bit PRG LDPC encoder interleaver bit 9 bits 8 bits LDPC decoder bit 6 bits LLR I ρ Q I CSI Q CSI ρ 10 bits de interleaver
	Rayleigh avec 15% d'effacements. Les courbes de la Fig. 8 ont été obtenues avec des
	constellations QAM conventionnelles (non-tournées) tandis que la Fig. 9 montre les
	performances avec constellations tournées.	
	Le démappeur et le décodeur ont également été intégrés sur le démonstrateur de démodulation
	DVB-T2 montré en Fig. 10, fourni par Teamcast dans le cadre du projet Eurêka/Eurostars
	XC5VLX330	Flip-Flops		LUTs	RAMs
	Décodeur LDPC	18,029 (8%)	41,032 (19%)	84 (29%)
	Table 1 Utilisation des ressources matérielles du FPGA pour la réalisation du décodeur
			LDPC.

. Le décodeur fonctionne à une fréquence de 113MHz, correspondant à un débit utile en sortie du décodeur égal à 151 Mbit/s dans le cas d'un code de longueur 64k, de rendement 4/5 et pour 15 itérations de décodage VSS. SME42 (SMEs for T2). Les performances du démodulateur intégrant notre démappeur et décodeur ont été mesurées pour différents rendements de codage et constellations et ont permis de valider les algorithmes et architectures proposées.

Table 2

 2 Afin de limiter la latence, nous avons divisé le bloc LDPC en plusieurs sous-blocs et appliqué le processus itératif au niveau de chaque sous-bloc. D'autre part, nous avons remplacé la RAM dédiée à l'entrelacement et au désentrelacement par des look-up tables pour permettre

				Prototype QPSK
				Simulation fix QPSK
				Prototype 16-QAM
				Simulation fix 16-QAM
				Prototype 64-QAM
				Simulation fix 64-QAM
				Prototype fix 256-QAM
				Simulation fix 256-QA M
	BER			
	QPSK	16-QAM	64-QAM	256-QAM
	1 0 -8			

Fig. 11 Structure d'un récepteur itératif Le passage de message lors du décodage VSS est réalisé colonne par colonne ; l'information extrinsèque et les LLRs peuvent ainsi être échangés entre le démappeur et le décodeur en un nombre de cycles limité. Plusieurs séquencements d'échange de messages peuvent être considérés, basés sur différentes stratégies de combinaison du parallélisme et de mise à jour des LLRs. Trois séquencements de référence ont été étudiés et sont listés dans la Table 2. Les trois séquencements étudiés pour les échanges de messages entre le décodeur LDPC et le démappeur.

i P v o ( ; )

Table 3 .

 3 La fréquence maximale de fonctionnement du décodeur BICM-ID MS est égale à 80 MHz après placement-routage, ce qui correspond à un débit de 107 Mbit/s en sortie du décodeur LDPC pour un rendement de codage de 4/5 et 15 itérations de décodage VSS.

	XC5VLX330	Flip-Flops	LUTs	RAMs
	BICM-ID MS	23,118 (11%)	9,3130 (44%)	179 (62%)
	BICM-ID MS3	26,088 (14%)	10,8126 (51%) 193 (67%)
	Coût additionnel	2970 (3%)	14996 (7%)	14 (5%)
	(MS MS3)			

Table 3
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	6	8	1 0	1 2	1 4	1 6	1 8

Utilisation des ressources matérielles FPGA la conception d'un décodeur BICM itératif. Fig. 12 Courbes de performance d'un décodeur BICM-ID QPSK sur canal à fading avec 15% d'effacements. Code LDPC 64k de rendement 4/5.
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	FEC	Convolutional Code + RS	LDPC + BCH
		1/2, 2/3, 3/4, 5/6, 7/8	1/2, 3/5, 2/3, 3/4, 4/5, 5/6
	Modulations	QPSK, 16QAM, 64QAM	QPSK, 16QAM, 64QAM
			256QAM rotated or non
	FFT Size	2K,8K	2K, 8K
			1K, 4K, 16K, 32K
	Guard Interval	1/4, 1/8, 1/16, 1/32	1/4, 1/8, 1/16, 1/32
			19/256, 19/128, 1/128
	Bandwidth	5, 6, 7, 8 MHz	5, 6, 7, 8
			1.712, 10 MHz
	Scattered Pilots	8% of total	1%, 2%, 4%, 8% of total
	Continual Pilots	2.6% of total	0.35% of total

1 -Comparison of available modes in DVB-T and DVB-T2

Table 1 . 2

 12 

-Rotation angle for each modulation type

Table 1 .

 1 4 and Table 1.5 give the codes parameters of the long and short LDPC codes.

	rate P ldpc	Kldpc	dv a value column value column dv b	dc Total edges
	1/2 90x360 90x360	8	36x360	3	54x360	7	630x360
	3/5 72x360 108x360	12	28x360	3	80x360 10	720x360
	2/3 60x360 120x360	13	12x360	3	108x360 10	600x360
	3/4 45x360 135x360	12	15x360	3	120x360 14	630x360
	4/5 36x360 144x360	11	18x360	3	126x360 18	648x360
	5/6 30x360 150x360	13	15x360	3	135x360 22	660x360

Table 1 . 4 -

 14 All the parameters of the long codes (N=64800)

Table 1 . 5 -

 15 [START_REF]DVB-T2. Digital video broadcasting (DVB); implementation guidelines for a secondgeneration digital terrestrial television broadcasting system[END_REF] All the parameters of the short codes (N=16200)
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  CHAPTER 2. DESIGN AND IMPLEMENTATION OF A FLEXIBLE DEMAPPER2.1 Demapping algorithm for non-rotated QAMAccording to the system description of sub-section 1.2.3, the demapper computes the Log Likelihood Ratio (LLR) of v i t related to the i th bit based on v t for the received symbol y t

		y I t , y Q t . A positive LLR would indicate that v i t is more probably transmitted as 0 and a
		negative value would indicate v i t is more probably transmitted as 1. The probability compu-
		tation is written in equ. (2.1).						
	b4b5 1010 000010			b0b1b2b3			100000	100010 101010 101000	b0b1b2b3b4b5 b0b1b2b3b4b5 001000 001010 000010 000000
							100000	100010 101010 101000	001000	001010 000010 000000
	1011 000011	1000	1010	0010	0000		100001	100011 101011 101001	001001	001011 000011 000001
							100001	100011 101011 101001	001001	001011 000011 000001
	1111 000111						100101	. 100111 101111 101101 . .	001101	A 001111 000111 000101
	1110 000110	1001	1011	0011	0001		100101 100100 100100	. 100111 101111 101101 . . 100110 101110 101100 100110 101110 101100	001101 . . . 001100 . . . 001100	001111 000111 000101 B 001110 000110 000100 001110 000110 000100
	1110 010110						110100	110110 111110 111100	011100	011110 010110 010100
		1101	1111	0111	0101		110100	110110 111110 111100	011100	011110 010110 010100
	1111 010111						110101	110111 111111 111101	011101	011111 010111 010101
							110101	110111 111111 111101	011101	011111 010111 010101
	1011 010011						110001	110011 111011 111001	011001	011011 010011 010001
							110001	110011 111011 111001	011001	011011 010011 010001
	11010 010010 010000	1100	1110	0110	0100		110000	110010 111010 111000	011000	011010 010010 010000
							110000	110010 111010 111000	011000	011010 010010 010000
			(a) non-rotated 16-QAM					(b) non-rotated 64-QAM
									y(I)		b0b2b4
				100	101	111	110	010	011	001	000	Re
											b1b3b5
				100	101	111	110	010	011	y(Q)	001	000	Re

  Max-Log approximation shown in equ. (2.5) is also applied to reduce complexity.

	i=1,...,k	(a i )	(2.5)
	Therefore, equ. (2.4) is rewritten as equ. (2.6)		

ln (exp(a 1 ) + . . . + exp(a k )) ≈ max

  Region of x I with v i = 1Region of x I with v i = 0

	v 0	[-7.96, 0.06]	[-0.06, 7.96]
	v 1	[-4.01, 4.01]	[-7.96, -3.89], [3.89, 7.96]

v 2 [-6.00, 1.91],

[1.91, 6

.00] [-7.96, -5.89], [-2.04, 2.04],

[5.89, 7.96] 

Table 2 . 1 -

 21 The interval of x I for each bit v i that takes the value 1 and 0 respectively

  1 + log 2 (M )/2) 2 terms to be computed over fading channel. It means that 2 • (1 + log 2 (M )/2) 2 multiplications have to be performed. In the case of 256-QAM, 162 multiplications are needed. It definitely represents the bottleneck for the architecture design. The computation complexity can be further reduced by introducing a linear approximation for the computation of Euclidean distance.

1.4 1.5 Euclidean distance ideal simplification

  

					Prototype QPSK	
					Simulation fix QPSK
					Prototype 16-QAM
					Simulation fix 16-QAM
					Prototype 64-QAM
					Simulation fix 64-QAM
					Prototype fix 256-QAM
					Simulation fix 256-QA M
	BER					
	QPSK 16-QAM	64-QAM 256-QAM		
	1 0 -8					
	1.3					
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Figure 2.12 -Linear approximation of the Euclidean distance
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		The squared Euclidean distance The number of the multiplication
		Max-Log Max-Log Sub-region Max-Log	Max-Log Sub-region
	64-QAM	64	25	256	52
	256-QAM	256	81	1024	162

18) (2.19) Based on equ. (2.18), only 2 • (1 + log 2 (M )/2) 2 + 2 multiplications are necessary for the computation over a fading channel and only 2•(1+log 2 (M )/2)•log 2 (M )/2+2 multiplications are needed for the computation over fading channel with erasures for M-QAM modulation. The corresponding values for considered constellation are listed in Table 2.2. -The gain of the simplification for high order modulations

  c n,k,l means the l th bit in the parity check constraint of φ n,k , which belongs to any bit in N (m) excluding n. In Fig.3.1, φ 2,1,1 = {v 4 ⊕ v 6 }, φ 2,1,2 = {v 0 ⊕ v 6 } andφ 2,1,3 = {v 0 ⊕ v 4 }. With this notation and equ. (3.8), E k,n is derived as:
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	Furthermore, E k,n = log	P r φ n,k = 0|y n =n P r φ n,k = 1|y n =n	(3.15)
	= 2 tanh -1	|φ n,k | l=1	tanh	1 2	log	P r(c n,k,l=0 |y n =n ) P r(c n,k,l=1 |y n =n )
	Let log					

P r(c n,k,l=0 |y n =n ) P r(c n,k,l=1 |y n =n ) denote T k,l , which means the information sent by bit node l to its connected check node k. Then E k,n is rewritten as:

Table 3 .
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		BP Gallager BP Jacobien	λ-Min-Sum	Normalized	Offset
					Min-Sum	Min-Sum
	Performance	+ + ++	+ + ++	+ + +	++	+
	Hardware Complexity	+	++	+ + +	+ + ++	+ + + + +
	CSI sensitive	Yes	Yes	Yes	No	No
	Memory for	W dc	W dc	W (λ + 1)+	2W	2W
	check node process	+ dc	+ dc	λlog 2 (dc) + dc	+ dc	+ dc

1 -A comparison of the check node process methods

  if a serial decoding is considered here. First, the a posteriori messages T n are initialized with the intrinsic channel reliability values. The extrinsic messages of the check nodes processors E mn are initialized to zero. Each sub-iteration involves two steps: check node process and bit node addition. The a priori messages are generated by subtracting the mk are stored for the next iteration and the a posteriori messages T n are updated by adding the current extrinsic messages E

	extrinsic messages E mk (t-1)	of the previous iteration from the a posteriori messages T n . The
	outputs E	(t)
			(t) mk to the a priori messages T mn . Both E (t-1) mk (t)

  The same principle is applied if the processing bit n is equal to P 1 m . In this case, the candidates for a new M 0

	(t)	
	n	
	In practice, two more variables are necessary to register the index of M 0 m and M 1 m , denoted
	by P 0 m and P 1 m . If the processing bit n neither equals to P 0 m nor P 1 m , then the candidates of
	new M 0 m are M 0 m , |T mn | and the candidates for a new M 1 (t) m are M 1 m , |T mn | . However, (t)
	if the processing bit n equals to P 0 m , then the candidates for a new M 0 m are M 1 m , |T mn | (t)
	and the candidates for a new M 1 m are M 1 m , |T mn | . In this case, |T (t) mn | is the old M 0 (t-1) m .
	Therefore, the update of check node information should exclude |T	(t-1)
		m
	are M 0 m , |T mn | and the candidates for a new M 1 (t) m are M 0 m , |T mn | . The update of P 0 (t) m and
	P 1 m is carried out simultaneously with the update of M 0 m and M 1 m .	

16: Hard decision according to T mn |.
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					frame start No	frame start No
			frame start No idle f r a m e s t a r t Y e s f r a m e s t a r t Y e s	f r a m e s t a r t ( N f r a m e > 1 ) Y e s idle	S e c o n d f r a m e s t a r t Y e s
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	Figure 3.6 -Timing of the vertical shuffled normalized Min-Sum LDPC decoder
	3.7.1.3 Memory management		

LLR RAM and codeword RAM are the two block memories that are directly connected to the bit node processor. Two RAMs are assigned for each of these two kinds of RAMs, with the address size of N ldpc /P , where P is the parallelism level. One of the LLR RAMs and one of the codeword RAMs are assigned for the decoding state, at the same time one of the

Table 3 .

 3 2 depicts how the input LLRs are memorized in the LLR RAM with a parallelism level of 90, where K b =

	N ldpc
	360

Table 3 .

 3 

				5 R2/3 R3/4 R4/5 R5/6
	360	8	32	12	23	31	35
	180	4	19	5	10	13	21
	120	2	16	4	8	15	12
	90	2	8	2	3	6	13
	45	0	2	0	3	3	5

3 -Number of DDSMs for different parallelism level for 64K LDPC codes

Table 3 .

 3 

3 lists the number of the residual DDSMs for different code rates of 64K LDPC with different parallelism levels. Fig.

3

.13 illustrates the density of the DDSM in the paritycheck matrix of the 16K LDPC with a code rate of R=1/2 with different parallelism levels.

  CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VERTICAL SHUFFLED LDPC DECODER Figure 3.19 -Finite state machine of one iteration two different code lengths. For the moment, the decoder supports 64K LDPC codes with code rate of R=3/4, R=4/5 and 16K LDPC codes with a code rate of R=3/4. Table3.4 lists the logic synthesis results of the proposed LDPC decoder after place and route. The maximum frequency f 0 of the decoder can reach 80Mhz after place and route. This results leads to a throughput of 80Mbps for 64K LDPC code with a code rate of R=4/5 with a maximum iteration number of 20.

			No	
	decoding			
	start No			
	idle	S y		column IA	Wait dv_a-3 clk
		n d r o m e M o r a x s i z e r o o s t e r Y e a i t s		state1	state 2	column IB
		n		
	tion	iteration			state3
		No and Max iteration Syndromes zeros	iter+1	state5	state 4
				column Parity	Wait 1 clk
			Number of Slices	14958 out of 51840 28%
			Number of Slice Registers	12404 out of 207360 5%
			Number of Slice LUTS	39713 out of 207360 19%
			Number of Slice LUT-Flip Flop pairs 44809 out of 207360 21%
			Number of RAMB18X2s	2 out of 288 1%
			Number of RAMB18X2SDPs	6 out of 288 2%
			Number of RAMB36SDP EXPs	33 out of 288 11%
			Number of RAMB36 EXPs	46 out of 288 15%

Table 3 . 4 -

 34 Virtex5 LX330 device logic synthesis results after place and route

Table 3 .

 3 

5 -Ports definition of PRG

Table 3 . 6 -

 36 Ports definition of LDPC endcoder

Table 3 .

 3 7 -Ports definition of column twist interleaver

Table 3 . 8 -

 38 Ports definition of the mapper

	Number of Slice Registers 2010 out of 207360 (0%)
	Number of Slice LUTS	3235 out of 207360 (1%)
	Number of RAM	5 out of 288 (1%)
	Frequency	254Mhz

Table 3 . 9 -

 39 Device occupation after logic synthesis for the transmitter

Table 3 .

 3 10 -Ports definition of the channel emulator

	Number of Slice Registers 4675 out of 207360 (2%)
	Number of Slice LUTS	4082 out of 207360 (1%)
	Number of RAM	4 out of 288 (1%)
	Frequency	61Mhz

Table 3 .

 3 [START_REF] Massey | Shift-register synthesis and BCH decoding[END_REF] -Device occupation after logic synthesis for the channel emulator

Table 3 .

 3 12 -Ports definition of the equalizer

	3.8. PROTOTYPE OF A SIMPLIFIED DVB-T2 TRANSCEIVER SYSTEM	101
	3.8.4.2 Demapper	

Table 3 .

 3 13 -Ports definition of the demapper 102 CHAPTER 3. DESIGN AND IMPLEMENTATION OF A VERTICAL SHUFFLED LDPC DECODER

  .15. 

	3.8. PROTOTYPE OF A SIMPLIFIED DVB-T2 TRANSCEIVER SYSTEM	103
	Signal	I/O Quantization	Description
	frame str in	I	1	start of the frame
	rate	I	3	1: R1/2; 2: R3/5; 3: R2/3; 4: R3/4; 5: R4/5; 6: R5/6
	mapping mode	I	2	0: QPSK 1:16-QAM 2: 64-QAM 3: 256-QAM
	MaxIter	I	5	Maximum iteration number
	llr en	I	1	enable of llr
	llr in	I	6	llr
	rame str out	O	1	start of the frame
	info en	O	1	enable of decoded information
	info	O	1	decoded information

Table 3 .

 3 14 -Ports definition of the LDPC decoder

	Number of Slice Registers 18029 out of 207360 (8%)
	Number of Slice LUTS	41032 out of 207360 (19%)
	Number of RAM	84 out of 288 (29%)
	Frequency	113Mhz

Table 3 .

 3 [START_REF] Forney | Concatenated codes[END_REF] -Device occupation after logic synthesis for the receiver

Table 3 .

 3 [START_REF] Shannon | A mathematica theory of communication (Part I)[END_REF] -Device occupation after logic synthesis for the FEC part of DVB-T2 demod-

	ulator

  The prototype results demonstrate the efficiency of the proposal. To the best of our knowledge, 113 114 CHAPTER 4. DESIGN AND IMPLEMENTATION OF AN ITERATIVE BICM RECEIVER FOR DVB-T2

Table 4 .

 4 

		1 -Performance comparison for 64K LDPC with a code rate of R=3/4 and QPSK
					constellation			
	(NID) are also listed.							
		BP(P=1) BP(P=90) MS(P=1) MS(P=90) MS3(P=1) MS3(P=90) MS(P=90) MS3(P=90)
		floating	floating	floating	floating	floating	floating	fixed	fixed
	NID @10 -4	7.94 dB	7.94 dB	8.06 dB	8.08 dB	8.05 dB	8.06 dB	8.30 dB	8.18 dB
	ID @10 -4	7.22 dB	7.24 dB	7.60 dB	7.62 dB	7.26 dB	7.30 dB	7.95 dB	8.65 dB
	Gain @10 -4	0.72 dB	0.70 dB	0.46 dB	0.46 dB	0.79 dB	0.76 dB	0.45 dB	0.53 dB
	NID @10 -6	8.05 dB	8.04 dB	8.25 dB	8.20 dB	8.16 dB	8.18 dB	8.35 dB	8.26 dB
	ID @10 -6	7.35 dB	7.35 dB	7.66 dB	7.70 dB	7.35 dB	7.36 dB	8.05 dB	8.76 dB
	Gain @10 -6	0.70 dB	0.69 dB	0.59 dB	0.50 dB	0.81 dB	0.82 dB	0.30 dB	0.50 dB
	Table 4.2 -Performance comparison for 64K LDPC with a code rate of R=3/4 and QPSK
					constellation			
	Serial decoding denoted as P = 1 has no message update conflict problem hence provides
	the best performance. Thanks to the proposed solution for message update conflict problems
	detailed in Chapter 3, the parallel decoding algorithm with a parallelism level of 90 achieves
	almost the same performance gain as serial decoding both for BP, Min-Sum and Min-Sum-3
	decoding algorithm.							
		BP(P=1) BP(P=90) MS(P=1) MS(P=90) MS3(P=1) MS3(P=90) MS(P=90) MS3(P=90)
		floating	floating	floating	floating	floating	floating	fixed	fixed
	NID @10 -4 20.40 dB	20.40 dB	20.57 dB	20.77 dB	20.40 dB	20.60 dB	21.70 dB	20.60 dB
	ID @10 -4	19.50 dB	19.50 dB	20.18 dB	20.37 dB	19.82 dB	19.83 dB	21.10 dB	21.35 dB
	Gain @10 -4	0.90 dB	0.90 dB	0.39 dB	0.40 dB	0.58 dB	0.77 dB	0.60 dB	0.75 dB
	NID @10 -6 20.60 dB	20.60 dB	20.62 dB	20.95 dB	20.59 dB	20.82 dB	21.82 dB	20.80 dB
	ID @10 -6	19.70 dB	19.70 dB	20.30 dB	20.57 dB	19.92 dB	19.93 dB	21.32 dB	21.55 dB
	Gain @10 -6	0.90 dB	0.90 dB	0.32 dB	0.28 dB	0.67 dB	0.89 dB	0.60 dB	0.75 dB

Table 4 .

 4 

	3 -Performance comparison for 64K LDPC with a code rate of R=3/4 and 256-
	QAM constellation
	Note that the number of quantization bits for channel inputs, LLR and check node infor-
	mation in the fixed point simulation are the same as the number mentioned in the previous
	chapter.

From Table

4

.1 to Table

4

.4, we can observe that the iterative receiver with VSS MS3 decoding algorithm outperforms the iterative receiver with VSS MS decoding algorithm by 1: {Initialization: for all bit nodes n, where m ∈ M (n) } 2:

  122 CHAPTER 4. DESIGN AND IMPLEMENTATION OF AN ITERATIVE BICM RECEIVER FOR DVB-T2the LLR serially, with extrinsic information set as zero. After the initialization of LDPC decoder(from line 1 to line 8), the Q check node processors firstly generate and pass the extrinsic information (from line 12 to line 15) to the bit node processors during each shuffled sub-iteration. Then Q bit node processors take the intrinsic information and extrinsic information to generate the a posteriori information (line 17), a priori information (line 18) and extrinsic information (line[START_REF] Chen | Reducedcomplexity decoding of LDPC codes[END_REF]. Afterward, this extrinsic information is sent back to the demapper through a network, according to the connection between the input channel symbols and the bit nodes. In parallel, Q check node processors update the check node information from the a priori information generated by the bit nodes processors (from line 20 to line 24). Finally, Q demappers in maximum use the fed back extrinsic information to update the corresponding LLRs (line[START_REF]DVB-T2. Digital video broadcasting (DVB); implementation guidelines for a secondgeneration digital terrestrial television broadcasting system[END_REF][START_REF] Ungerboeck | Channel coding with multilevel/phase signals[END_REF], where D ecd (x t ) denotes the squared Euclidean distances from the received symbol to signals in the constellation panel. Some of the updated LLRs are sent back to the LDPC decoder through a network.

		
	t)	
	j	
		
	(t) n 27: Hard decision according to T	

  4.1. ALGORITHM DESIGN FOR AN ITERATIVE BICM RECEIVER 123 of one bit node group provides 4 extrinsic information, that leads 12 LLRs updating. The 12 LLRs correspond to 12 bit nodes, that are allocated in the other 3 bit node groups. Therefore, any other bit node group can use the latest LLRs hence takes the best advantage of LLR update. However, in practice, this kind of connection seldom exists. Fig. 4.5 gives another example of the channel symbols and bit nodes connection. In this case, the 4 extrinsic messages provided by the first bit node group trigger 12 LLRs update. However these LLRs are sent back to 12 different bit node groups. The update of any bit node group just benefits from one updated LLR.

Table 4 . 5 -

 45 Message exchange schedules for the shuffled iterative receiver

QAM demapper Bit de-interleaver

  

y u  ( ; )

Table 4 .

 4 4.2. DESIGN AND IMPLEMENTATION OF AN ITERATIVE BICM RECEIVER 131 LUTs of a Xilinx Virtex5 VLX330 FPGA device, respectively. If a BICM-ID MS3 core is implemented, 12% slice registers and 52% slice LUTs are necessary. The FPGA logic synthesis results of the proposed BICM-ID core using VSS MS decoding algorithm and VSS MS3 decoding algorithm are shown in Table 4.6 and Table 4.7, respectively. 6 -Device occupation for the BICM-ID core using VSS MS decoding Number of Slice Registers 26088 out of 207360 (12%)

	Number of Slice Registers 23118 out of 207360 (11%)
	Number of Slice LUTS	93130 out of 207360 (44%)
	Number of Block RAM	179 out of 288 (62%)
	Frequency	125 Mhz
	Number of Slice LUTS	107438 out of 207360 (51%)
	Number of Block RAM	193 out of 288 (67%)
	Frequency	114 Mhz

Table 4 .

 4 7 -Device occupation for the BICM-ID core using VSS MS3 decodingThe FPGA logic synthesis results of the corresponding transceivers are shown in Table4.8 and Table4.9 respectively. The maximum frequency estimated for the BICM-ID MS core and BICM-ID MS3 core after place and route is 80MHz. It results in a throughput of 107

	Mbps, for 64K R=4/5 @ 15 iterations.	
	Number of Slice Registers 38722 out of 207360 (18%)
	Number of Slice LUTS	114857 out of 207360 (55%)
	Number of Block RAM	188 out of 288 (65%)
	Frequency	98 Mhz

Table 4 . 8 -

 48 Device occupation for the BICM-ID transceiver using VSS MS decoding

	Number of Slice Registers 41702 out of 207360 (20%)
	Number of Slice LUTS	125578 out of 207360 (60%)
	Number of Block RAM	202 out of 288 (70%)
	Frequency	89 Mhz

Table 4 .

 4 9 -Device occupation for the BICM-ID transceiver using VSS MS3 decoding A comparison of simulated performance in terms of BER is presented in Fig. 4.18. More than 10 dB gain is observed from the BICM-ID VSS MS3 receiver with signal space diversity when compared to the non-iterative classical BICM receiver. Moreover, an additional 0.8dB gain is achieved for the iterative receiver with VSS MS3 decoding algorithm when compared to the non-iterative BICM receiver with signal space diversity. 132 CHAPTER 4. DESIGN AND IMPLEMENTATION OF AN ITERATIVE BICM RECEIVER FOR DVB-T2
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1.6. CONCLUSION

The bit nodes are divided into three parts according to the value of bit node degree. IA belongs to the information bit nodes. Its bit node degree is bigger than 3 and the value is a function of the code rate. IB also belongs to the information bit nodes. Its bit node degree is constant and is equal to 3. Parity denotes the parity bit nodes, with a constant bit node degree of 2. The delay of the three parts is different. A lower delay time leads to a lower chance of having memory conflict event.

Rovini [START_REF] Rovini | A minimumlatency block-serial architecture of a decoder for ieee 802.11n ldpc codes[END_REF] and Marchand [START_REF] Marchand | Conflict resolution by matrix reordering for DVB-T2 LDPC decoders[END_REF] have proposed to re-arrange the schedule carefully to avoid or minimize the idle time for the horizontal shuffled decoding. In our study, we proposed a memory access free schedule with negligible idle time for vertical shuffled LDPC decoder.

The method illustrated in Fig. 3.18 consists of three steps, as follows: 

G v

Sub-matrix split E b /N 0 (dB) The performance comparison between the prototype and fixed point simulation for 64K LDPC with a code rate of R=4/5, which is the FEC mode of Finnish broadcast system, over fading channel are shown in Fig. 3.34 and Fig. 3.35 for the non-rotated and rotated constellation.

The performance comparison of the same FEC mode for fading channel with 15% erasures are shown in Fig. 3.36 and Fig. 3.37 for the non-rotated and rotated constellation, respectively.

From the performance results, we can observe that lower constellations provide more performance gain from the signal space diversity. For 64K LDPC code with a code rate of R=4/5, over fading channel, the performance gain from signal space diversity for QPSK is around 1.5 dB and for 16-QAM is around 0.5 dB at BER equals 10 e -6 while there is almost no gain achieved for 63-QAM and 256-QAM. For 64K LDPC code with a code rate of R=4/5, over fading channel with 15% erasures, the performance gain from signal space diversity for QPSK is around 11.5 dB, for 16-QAM is around 10 dB, for 64-QAM is around 9 dB and for 256-QAM is around 7 dB at BER equals 10 e -6.

The tested performance of this prototype is very close to the fixed point simulation results.

It verifies the efficiency of the proposed demapper and LDPC decoder. In order to manage the message exchange, few modifications are necessary. Fig. 4. [START_REF] Shannon | A mathematica theory of communication (Part I)[END_REF] gives the corresponding architecture of the message routing between the demappers and the decoders. During the processing of information bit nodes, the bit node processing for the bit node group with odd number index directly gets the updated LLRs generated during the bit node processing of the previous bit node group. As for the bit node processing for the bit node group with even number index, they need to get the LLRs values from the LLR