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Résumé

Les travaux de recherche présentés dans cette thése aamtcdas contributions a I'étude de
stabilité des systemes linéaires a retards avec contsdbandre réduit. Cette mémoire est partagée en
trois parties.

La premiére partie est axée sur I'étude des systémes kséairetard mono-entré /mono-sortie,
bouclées avec un contrbleur de type PID. Inspiré par I'agprogéométrique développée par Gu et
al. Nous avons proposé une méthode analytique pour troavergion (ou les régions) de tous les
contréleurs de type PID stabilisant pour le systéme a reladée sur cette méme approche, on a
développé un algorithme pour calculer le dégrée de fragiliun contréleur donné de type PID (PI,
PD et PID).

La deuxiéme partie de la these est axée sur I'étude de sadmiliis une approche NCS (pour son
acronyme en anglais : Networked Control System). Plus g#éuént, nous avons d'abord étudié le
probléme de la stabilisation en tenant compte des retadddt ipar le réseau et les effets induits par la
période d’'échantillonnages. Pour mener une telle analyss avons adopté une approche basée sur la
théorie des perturbations.

Finalement, dans la troisieme partie de la thése nous ah®rkrtains problémes concernant le
comportement des zéros d’'une certaine classe de systemastifbonnés mono-entré /mono-sortie.
Plus précisément, étant donné un systéme a temps contiobfient les intervalles d'échantillonnage
garantissant l'invariance du nombre de zéros instables daaque intervalle. Pour développer cette
analyse, nous adoptons une approche basée sur la pednrhat valeurs propres.

Mots-clefs : stabilité, systémes linéaires a retards, théorie desippations, séries de Puiseux, D-
partition, faisceaux matriciels.
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Introduction

In many physical systems, the rate of variation in the syststate depends not only of
its current value, but also of its past history. Systems gesag such a characteristic are
calledtime-delaysystems (sometimes also calleereditarysystems, systems witime-lag
or systems wittaftereffec}. Delay dynamical systems are abundant in nature, and ibithw
mentioning that they occur in a wide variety of physical, mieal, engineering, economic
and biological systems. In fact, to the best of the authar®Medge, time-delay systems was
first introduced in order to describe the behavior of soméobioal systems and were later
found in many engineering systems, such as mechanicahtiasi®ns, fluid transmissions,
manufacturing processes, transmission lines in pneuragsiems, nuclear reactors, among
others (see, for instance, [32], [39], [72], [133], [12@r further details). As a consequence,
the problem oftability analysisandcontrol of time-delay systems has attracted much atten-
tion, and considerable effort has been done to differereé@spof linear time-delay systems
during the last decades [48], [92], [103], [107].

Basic theories describing time-delay systems propertezs wstablished in the 1950s and
1960s; they developed topics such as the existence andamagsi of solutions of the corre-
sponding dynamic equations, stability methods to studyb#teavior of the trivial solutions,
continuity of the characteristic roots with respect to sarh¢he system’s parameters, etc.
Such works established the foundation for the later aralgied design of controllers for
time-delay systems.

The study and design of physical systems can be carried g empirical methods. In
this vein, we can apply several kinds of signals to a physistem and measure its responses.
If the performance is not satisfactory, then we can adjustesof the parameters, or connect
a compensator to it in order to improve its behavior. HoweWehe system under study is
complex (like nonlinear including or not time-delays, gttexpensive", "dangerous” or if it
is too important (like systems modeling life science), tegperimental methods will became

unworkable and the analytical methods will become indispbte.

Even though, there exist several advanced controller des&hods as, for example, the
finite spectrum assignmerti,—synthesisu and linear matrix inequalities based synthesis
methods for time-delay systems, these methodologies peogenerally controllers with or-
ders comparable with order of the system. Therefore, thersrdf these controllers tend
often to be too high to allow the practical applicability fagh-order systems and, as a conse-
guence, simple controllers are often preferred over coxnmtes. In this contextpw-order
controllersplay a relevant role, not only from the practical but alsaxfrtheoretical point of
view.

Among the most popular low-order controllers, we may cite-Bipe (P, Pl, PD and PID),
such controllers have the following mathematical represgtemn in frequency domain:
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P—controller:  C(s) = kp;
Pl—controller:  C(s) =kp+ki/s;
PD—controller:  C(s) = kp+Kkgs;

PID—controller: C(s) =Kkp+ki/s+Kkgs,

wherekp, ki andky are the proportional, integral and derivative gains, respely. Gener-
ically, PID-type controllers are implemented by feedbdhls implies that the controller out-
put signal is calculated by taking into account the avadatltput plant measurements. In
this vein, a typical single loop containing a PID-type coiiar and a linear time-delay SISO

(single-input, single-output) syste@(s) = %e*sr is shown in Fig.0.1.

r——O—>| c S >y (1)

T Controller Plant

Figure 0.1: Typical feedback control system.

The popularity of the PID-type controllers can be attriloltiits relativesimple structure
which can be easily understood and implemented in pradite that such controllers have
"sufficient” ability of solving many practical control prigms (see, for instance, [5], [27],
[123], for further details). Surprisingly, despite the fubarity” of PID controllers, the prob-
lem of finding the all set of stabilizing PID controlleia the (kp, kg, ki) parameters space is
still of interest and it becomes quite complicated in thespree of delays in the loop even for
the simplest system’s structure. In order to illustratelteefits of such knowledge, consider
now the following simple example.

Example 0.1. Consider the PID stabilization problem of the following pila
B S 48”4542 s
4+ 85*+ 3253+ 4682 + 465+ 17

This system has the following stabilizing setly, kq, ki) parameters (see, Example 7.1, for
complete details).

G(s)

Taking several controllers within the above stabilizingios, we have the following step
response curves.

Then, using the information obtained from the knowledgéefcomplete stabilizing set
of PID controller, could be extremely useful in the designoaitrollers that must satisfy some
requirements for the system performance.

In addition to the previous remarks, the fact that PID cdldrs have only three tuning
parameters, the parameter-space approach have captaratightion of several researchers
and, as a consequence, there exists an important amourguttsrdealing with the analysis
of PID-type controllers. In fact, it is worth to mention there exist several results related
with the calculation of the set of stabilizing PID contrefieln delay free case [27, 51], a gen-
eralization of the Hermite-Biehler theorem was derived #&h used for a given LTI (linear
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Figure 0.2:Stabilizing set of ky, kq,ki).

-02 ! ! ! ! ! ! \ ! >
0 10 20 30 40 50 60 70 80 90

Figure 0.3:Step response curves corresponding to different PID-clberts.

time-invariant) plant. In the delay case, in order to findgaeof all stabilizing PID controllers
a generalization of the Hermite-Biehler theorem is appligader this approach, the works of
[112, 110] found necessary and sufficient condition to firelah set of stabilizing PID con-
trollers, however the analysis requires an additional gné frequency variabled'. On the
other hand, by using the Neimark [101] decomposition mef{li@d80] (D—decomposition)
under the assumption thi§ = ki /n (wheren € R) derived the set of stabilizing PID con-
troller, under this assumption, clearly the problem wasawohpletely solved. Based on the
same approach but without imposing the above restrictioworks of [8, 54] derived the
set of stabilizing PID controllers and also they find out ttiet exact stable region can be
described by a finite number of boundaries if the relativerele®@f the system is larger than
2, yielding to a set of convex polygons as the stable regidaheitky, ki) —plane.
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Among the long list of problems when using PID controllerg, will mention one that,
in our opinion, is quite important: theerfectknowledge of the gains when implementing the
control. This assumption is in some extend valid, sincearbfethe plant uncertainty is the
most significant source of uncertainty in the control systehilst controller are implemented
with high-precision hardware. However, there will inebiabe some amount of uncertainty
in the controller, a fact that sometimes is ignored in rolaust optimal control design [69]
(see also, [68], [81], for further comments). If the contolwill be implemented by ana-
logue means, then, there will be some tolerance in the coemsen On the other hand, if
the controller is implemented digitally, then, there wi# bome rounding in the controller
parameters. Where, for reasons of security, cost and egaajpeed, the implementation is
with fixed point rather than floating point processors, theilebe increased uncertainty in
the controller parameters due to the finite length and funtineertainty due to the rounding
errors in numerical computations.

Based on these remarks, such controllers have to be dedigramhsidering:

(a) performancecriteria;
(b) robustnessssues;

(c) fragility.

Roughly speaking, a controller for which the closed-looptesn is destabilized by small
perturbations in the controller parameters is call&ddile”. In other words, the fragility
describes the deterioration of closed-loop stability dusrhall variations of the controller
parameters.

The problem received a lot of attention in delay free systesas, e.g., [50] (non-fragile
PID control design procedure), [3] (appropriate index tcaswge the fragility of PID con-
trollers). However, there exists only a few results in thiagease: [124], where only (stable)
first-order systems were considered, [9], a non-fragilérotlier for some classes of non-linear
system is proposed, and more recently, [88], where the esufiroposed a robust non-fragile
control design for a TCP/AQM models.

The above problems constitute the core of the first part ofttlesis. More precisely,
inspired by thegeometric ideasntroduced by Guet al. [40] we propose a simple method
to derive the complete set of stabilizing controllers in tkg kn) parameter space (where the
subindexh stand for the integralor for the derivativel parameter) or in thekp, kg, ki) param-
eter space. Once the complete stabilizing set of contsaatefined, the explicit computation
of the distance of some point to the closest stability cragsboundaries is presented. In other
words, we introduce guantitative fragility measurér the corresponding controller.

Another distinctive feature that is usually related to gedgstems, is that systems pos-
sessing delays in the feedback loop are often accompantldnstability or "bad" behaviors
(as, for examples, oscillations, bandwidth sensitivigg,pointed out by [39], [92] and the
references therein. However, there exist also some sngtwhen the delay haspmsitive
effect, that is, the delay magducestability. In order to illustrate such a situation, recakt
following:

Example 0.2.[1] Consider the following simple second-order system:

Y(t)+ B +y(t)=u(t). (0.1)
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Itis clear to see, that such class of system is stabilizaplé feedback law

ut)=-ky(t), keRy,

moreover, it is easy to see that there does not exist a prigmatitcontroller ut) = —ky(t),
vk € R able to stabilize the syste(@.1). However, using instead a positive delayed output
feedback,

u(t) =ky(t—r1), keRy,

it is possible to stabilize the system asymptotically. bi,fd we chos€k, 1) satisfying the
following inequalities,

1+4n 5
0< k <—7——
- < 1+t4ntem
2nm (2n+1)m
—< T <
wg —k wg + Kk

where ne NU {0}, then the closed-loop system will be asymptotically stédde, [1], for
further details).

For an = 1, figure 0.4 illustrate the stability regions in tlik, T) parameter space, as well
as, the closed-loop behavior fgk, 7) = (1—70, ).

\ \ \ \ 25
stabilityregions -

y(t)

S

va

3

t=z1

Rl

2

(351
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1l
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Figure 0.4: (Left) Stability regions in thik, 7) parameter space. (Right) Step response curve

corresponding tgk, ) = (75, 1).

As pointed out by Michiels & Niculescu [92], the above examppens an interesting
perspective in using delays ascantrol parameters Motivated by this idea, Niculescu &
Michiels in their paper [106] solved the problem of staliigza chain includingp integrators:
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Hyu(S) = 1/s" by means of the control law defined by a chaimudistinct delay blocksk;, ;)
m

u(t)z—zlkiy(t—ri) kkeR, eR,. (0.2)
i=

Furthermore, they have also shown that eitherdelay blocks or a proportional +
(n—1)—delay blocks are necessary and sufficient conditions to psytioally stabilize a
chain ofn integrators it > 2). In addition, they have also shown that thesedelay block
are also able tguaranteean arbitrary pole placement for the correspondmgightmost
eigenvalues of the closed-loop system.

It is also worth mentioning that there are also other couatrdns in this direction. For
example, Kharitonoet al. in [70] gavenecessary conditiorfer the existence of a controller
with multiple (distinct) delays able to stabilize oscilasystems, Mazenet al. in [87] con-
sidered the case of a chain of integrators with bounded iapdia single delay.

The aforementioned ideas but in a networked control systemework constitute the core
of the second part of the thesis. More precisely, inspirethkyresults derived by Niculescu
& Michiels in [106], we first explore such ideas in studyin@ throblem of stabilization of a
chain of integrators by taking into account the networkuiced delays and the corresponding
sampling period. Next, in the second half of the Part Il of thesis we address the out-
put feedback stabilization problem for a class of linearCsEystems subject to input/output
delays. More precisely, we are interested in the charaeigon of the of delay— gain— and
sampling— parameters guaranteeing the stability of theecldoop system.

Outline

The remaining part of the thesis is organized as follows.

Chapters 1-2 presents the main definitions, preliminamylteas well as the main tools
that will be consistently used throughout the thesis. Maeeigely, in Chapter 1 we present
the notions of solutions, stability and some existing atedy criteria to verify the stability in
the frequency-domain case, such notions are presentetbfits¢ continuous-time case and
next for the discrete-time case.

Next, Chapter 2 introduce some fundamental results comgethe perturbation theory
of linear operators First, eigenvalues are classified according to their ctaristics, then
several criteria to determine the main coefficients of théeseexpansion are presented. In
order to illustrate how these results can be applied, skilkrstrative numerical examples
have been detailed and complete the presentation.

Chapters 3-8 form the first part of the thesis, where we censiek stabilization problem
of a linear time-delay SISO system by means of a PID-typerotet as well as the fragility
problem of the PID-type controllers. The results presemdtlis part are collect as a book
chapter in a more compact form [97] to be submitted in thenfayining period.

In Chapter 3, we introduce the basic notations, as well asesgemeral results for a
generic controlleh(s,a,3), which is considered as a transcendental analytical fonethd
wherea and are considered as being the control parameters. The cgossgiues in the
(a,B)—parameter space is determined. Next, by means ofrtipdicit Function Theorem
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[85], the smoothness property of the crossing curves isgatoConditions to determine the
direction of crossing are also presented.

Chapter 4 recalls some results concerning the Proporti©aoatroller, such results have
been presented in [98]. In order to illustrate the applidstnf the theoretical results, several
numerical example are presented at the end of the chapterwtirth to mention that such
results are presented in the seek of completeness.

In Chapter 5, we summarize the results presented in [99]eraimy to the Pl stabilization
problem of a linear SISO system with I/O delays. Severasitiative examples are presented
at the end of the chapter.

Chapter 6 concerns the Geometry of PD controllers for SIS€Desys with 1/0 delays.
Inspired by the results presented in [99], we extend suclpproach to the case of PD con-
trollers. Unlike the PI case, a neutral-type system can satréom the closed-loop system.
Then, additional analysis is presented in order to deal sutth a situations. We include at
the end of the chapter several numerical examples illiistrétte proposed method.

In Chapter 7 following the geometric ideas introduced byegal. in [40], the geometry
of PID controllers for SISO systems with I/O delays is preednFirst, we start by developing
a simple method to derive the stability regions in the gairapeeter space. Then, a classi-
fication of the stability crossing boundaries is proposedchsa classification is established
as a function of the kind of the left and right ends of the cgpmnding frequency crossing
interval. In such a case, 8 types of boundaries have beemettdollowing similar ideas as
those applied in the Pl and PD cases, we propose a critericmetzk the crossing directions.
The proposed method is illustrated by several numericahgkas presented in the last part of
the chapter.

Chapter 8 concerns the fragility analysis for the PID-typatwmllers. The chapter starts
by showing through a numerical example the importance ofréugility in the design of a
controller. Next, a simple geometrical method for computihe fragility of a Pl, PD and
PID controller is proposed. Several numerical examplespteta the presentation. Such a
method is performed in three steps: (i) the constructiomefstability crossing boundaries in
the (kp, ky, ki) —parameter space, (ii) the explicit computation of the drasslirections and
(i) the explicit computation of the distance of some pdiotthe closest stability crossing
boundaries.

Chapters 9-10 form the second part of the thesis and conerstability analysis of a
linear SISO system in a networked control system framework.

In Chapter 9 we focus on a chain of integrators system undeZ @ fkamework. Firstly,

it is stated the main differences with the continuous caamek bf scaling properties, induced

instabilities for small gain values and thatdelay are not sufficient to guaranty an arbi-
trary pole placement. Secondly, a method to construct a@tetable to achieve the pole-

placement of the closed-loop poles is presented (at keast delays are needed). Next,
a method to construct a controller (with-delays) able to achieve asymptotic stability is
presented. Several numerical examples along the chamerasented and are helpful in
understanding some of the proposed notions and approaches.

Chapter 10 concerns the output feedback stabilizationl@nolfor a class of linear SISO
systems subject to 1/0 network delays. We present the clesirzattion of the set of delay-
sampling period- and gain- parameters guaranteeing théditaf the closed-loop system.
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Such an analysis is performed by adopting an eigenvaluarpation-based approach. Vari-
ous numerical examples illustrate the proposed results.

Chapter 11 forms the third part of the thesis. This chaptesgmts some extension of the
eigenvalue perturbation-based approach developed irmgqer 10 to the the analysis of the
zero behavior of some class of sampled-data SISO systenme Bastrative examples are
also presented. In the last part of this chapter, some gedsifore works are mentioned.
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Notations

N

YA

R4

R

C

RN (C")
Rn)(m ((CnX m)

A
ZA

0() B0)

dian].?AZv R 7Am)

rank(-)
det()
trace-)

[aijrli,jzl,m,n’ [aij]irjjzl

List of Symbols

set of natural numbers, i.&\,:= {1,2,...}.

set of integer numbers

set of strictly positive real numbers

field of real numbers

field complex numbers

space of alh—dimensional column vectors with
components iR (C)

space of real (complex) matrices of size m
complex conjugate of € C

argument of the complex numbg&r where/z € [0,2m)
real (imaginary) part of a complex number

unit vector in ther —th direction, with dimension given
by the context

m—dimensional unit vector in the—th direction
identity matrix, with dimension given by the context
transpose of matriA

inverse of matrixA

AL 0 .- 0
0 A - 0
0 0 --- An

rank of a matrix, or a matrix-valued function
determinant of a square matrix

trace of a matrix

square matrix of dimensiom

n—dimensional vector

n—dimensional vector

spectrum of the square matrxe C™"

set of all generalized eigenvalues, i.e.,

{A €C: det(A—AB) =0}

inner product of the vectorsy € C"

Euclidean norm of vector € C"

[rivi“}v’ el for integersa € {1,...,n} andiy,
1</<awithl<ii<:---<ig<n
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> SIS

X(t)
(")

csch(z)

O g™
Bo

unitopendiskz: ze C, |z < 1}

unit closed diskz: ze C, |z] < 1}

boundary ofS, whereS is any set. For example,
0D is the unit circle{z: ze C, |2 = 1}

empty set

derivative ofx(t) with respect to time, 9%
binomial coefficient defined k;y(n”'_—r),

hyperbolic cosecant functiacsch: C — C, defined by
cschz):=2/(e#—€e %)

V-1

degree of a polynomial

equals by definition

end of a proof
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Abbreviations

AQM
CRS
DDE
FE
FDE
LHP
LTI
NCS
PD

PI
PID
RFDE
RHP
SISO
TCP

active queue management
complete regular splitting
delay differential equations
functional equation

functional differential equation
left-half plane

linear time invariant

networked control systems
proportional derivative
proportional integral
proportional integral derivative
retarded functional differential equation
right-half plane

single input, single output

transmission control protocol
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1 Stabilization of Dynamical Systems

1.1 Introduction

The study of time-delay systems (hereditary systems oesystvith aftereffect or with time-
lag) had its origins in the 18th century, with the works of &uBernoulli, Lagrange, Laplace
and others [118], and it received substantial attentioméndarly 20th century [39]. Such a
growth of popularity is related to the fact that delays arturad components of dynamical
processes in physics, biology, engineering; for examplgapulation dynamics systems it
has been stated that a delayed logistic model provides arlieitnework for modeling the
dynamical behavior than a model that not taking into acctiumpast history [26, 120, 133].
Among the open problems that required an increasing irttdragng the last decade, we cite
the networked control systems (NCS) [137]. Without discusthe modeling issues, we shall
focus on the time-delay systems representedubygtional differential equationswvhich are
also calledifferential equations with deviating arguments

According to [72],functional equation$FE’s) are equatiotns involving an unknown func-
tion for different argument values. The equatiogt) + 2x <§> =10, x(vt) = x(t+1) +

5[x(t +2)]2, x(x(t)) = x(t — 1)2+ 2 ,etc., are examples of functional equations. The dif-
ferences between the argument values of an unknown funahdnt” in a FE are called
argument deviations

Roughly speaking, a simple combination of differential dadctional equations leads
to functional differential equations or equivalently @iféntial equations with deviating argu-
ments. Thus, this is an equation connecting the unknowrtimand some of its derivatives
for, in general, different argument values.

In this vein, since the first part of the thesis is devoted éstiability analysis of time-delay
systems (continuous-time representation), in the firdt gfathis chapter we introduce some
basic concepts, as well as some elementary results fordetssrsystems. On the other hand,
since in the second part of the thesis some notions for destirae systems will be needed, in
the rest of the chapter we will present some basic concepitsemults for such systems too.

1.2 Continuous-Time Systems

Introduce now the basic definitions concerning differdmttpations with retarded arguments:

LetC ([a,b],R") be the set of continuous functions mapping the intefadl] to R". The
notationC = C ([-r,0],R") will denote the set of continuous functions mappirg, 0] to
R". For anyA > 0 and any continuous function of timgee C ([to —r,to+ A ,R"), andty <
t<to+A let¢(08) =¢(t+06), —r < 8 <0. The general form of aetarded functional
differential equationRFDE) (or functional differential equation of retardegey is

X(t) = f(t,%), (1.1)

wherex(t) e R"and f : R x C — R". Since equation (1.1) shows that the derivative of the
state variablesx" at the time t" depends on and some "past-piece-of-trajectory(¢) for
t—r < ¢ <t. Then, in order to determine the future evolution of theestatis necessary to
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specify the initial "state" variablegt) on a time-interval of length, say, fromto —r to to,
le.,

Xo =9, (1.2)
where¢ € C is given. In other wordsg(to+ 8) = ¢(6), —r < 0 <O0.

It is worth mentioning that since the necessary "amountbtwstruct the solution is repre-
sented by the definition of a function on some appropriateghmal, FDESs belong to the class
of infinite-dimensional systems

For anA > 0, a functionx is said to be a solution of (1.1) on the interyal—r,to+ A)
if within this intervalx is continuous and satisfies the RFDE (1.1). Of course a solatiso
implies that(t,x) is within the domain of the definition of. If the solution also satisfies
the initial condition (1.2), we say that it is a solution oétGauchy problem (1.1) with initial
condition (1.2), or simply a solution throudty, ¢ ). A fundamental issue in studying FDE is
represented by the existence and uniqueness of a solution;

Theorem 1.1.[39] Suppose thaf is an open set iR x C, f: Q — R" is continuous, and
f(t,¢) is Lipschitzian ing in each compact set i, that is for each given compact set
Qo C Q, there exists a constant L, such that:

| f(t,d1) —f(t,¢2)| <L[d1— 2,

for any (t,¢1) € Qo and (t, ¢2) € Qo. If (to,¢) € Q, then there exists a unique solution of
(1.1) through(to, ¢).

1.2.1 Stability Notions

Let y(t) be a solution of the RFDE (1.1). Roughly speaking, the stglof the solution
concerns the system’s behavior when the system trajegtbyydeviates fromy(t). In the
following, we will assume without loss of generality thaetfunctional differential equation
(1.1) admits the solutior(t) = 0, which will be referred to as thegivial solution. Indeed,
if we are interested to study the stability of a nontrivialsion y(t), then we may sort the
standard variable transformatiaft) = x(t) — y(t), so that the new system

2t) =f(t,z+wn) —f(t,n) (1.3)
has the trivial solutior(t) = 0.

For a functiong € C ([a,b],R"), lets introduce now the following norh|| by

1@llc = max [[¢ (8)]].

a<f<b
In the above definition, the vector noiim || represents the standard 2-nojfr|».

Definition 1.1. [39] For the system described by (1.1), the trivial solutigt) = O is said to
be stable if for anyd < R and anye > 0O, there exist & = d (to,£) > 0 such that]|x,||, < o
implies ||x(t)|| < € for t > to. It is said to be asymptotically stable if it is stable, and fo
any b € R and anye > 0O, there exist ad, = 9 (to,£) > 0 such that||x,||, < & implies
lim{_,,X(t) = 0. It is said to be uniformly stable if it is stable arto, £) can be chosen
independently ofgt It is uniformly asymptotically stable if it is uniformlyadile and there
exist ad, > 0 such that for any) > 0, there exista T=T (84, 1), such that|x ||, < & implies
IIX(t)|| < nfort >to+T and b € R. It is globally (uniformly) asymptotically stable if it is
(uniformly) asymptotically stable andj, can be an arbitrarily large, finite number.



1.2 - Continuous-Time Systems 25

Linear Systems

Since in this thesis we mainly focus the linear time-invatrid.T1) case, i.e, wherf is
linear with respect tog, in the following we will give a brief review of general lineime-
variant delay systems and next focus on linear time-inmasgstems.

A general linear time-delay system can be described by theERF
X(t) = Alt)x +9(t), (1.4)

whereA(t) is a time-varying linear operator acting &n In this case, it is always possible to
find a matrix functiorF : R x [—1,0] — R"™" of bounded variation, such that

F(t,0)=0,

and 0
L6 = [ dolF(1.0)]0(6). 15)

In general, in (1.5) it is required a Stieltjes integral, am¢1.5) the subscripf means tha®
(rather thart) is the integration variable. As such, a general linear RIEBE be represented
as

X(t) = /_OT de [F (t,0)]X(t + 1) +g(t). (1.6)

In particular, many linear RFDEs can be specialized to:

Z)Ak X(t — Ty (t) +/ (t, T)X(t+6) d, (L1.7)

whereAy(t) andA(t, T) are givenn x n real continuous matrix functions, ang(t) are given
continuous functions representing time-varying delaysictvcan be ordered with no loss of
generality, such that

O=r1p(t) <my(t) <...n(t) < T.

Such a generic representation covers both classical {tangng or not) point and distributed
delays cases. If the functidnin (1.6) is independent of timtg then the system described by
(1.6) is linear time-invariant. An LTI RFDE can be written as

:/0 dF(8)X(t+6). (1.8)

Let
Xo= ¢ (1.9)

be the initial condition. Taking the Laplace transform aBlwith the initial condition (1.9),
we get

sX(s)—¢(O)_/O e9SdF (6 +/ dF (6 / ~95¢ () da

whereX(s) is the Laplace transform of’t),

X(s) = £ [X(t)] = /O " (e Sdt.
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Solving forX(s) yields

0 0
X(s) =A"(s) {4)(0) +/ eede(G)/ e ¢ (a)da|, (1.10)
-7 6

whereA : C — C™" 0
A(S) = sl —/ e*SdF(6) (1.11)

-1

is the so-calleatharacteristic matrix The equation

det/A(s)] =0 (1.12)

is called the characteristic equation, and the expressiA@)] defines the so-callecharac-
teristic function or alternatively, theharacteristic quasipolynomialThe solutions to (1.12)
are called theharacteristic rootr poles of the system

An useful notion in the study of the stability properties ofjigen FDE is given by the
notion of thespectral abscissa

det[s| —/0 e9SdF (9)} _ o}. (1.13)

-1

p(T;F) = SUD{D (s)

In this vein, the key result that enables frequency-domaatyais of stability for the time-
delay systems is given by the following result:

Theorem 1.2.[39] For any real scalary, the number of the solutions, counting their mul-
tiplicities, to the characteristic equation (1.12) withateparts greater thary is finite. The
following statements are true.

(i) The LTI delay system (1.8) is stable if and onlg {fr; F) < O.

(i) Foranypo > p(T; F), there exist an I> 1 such that any solution(k) of (1.8) and the
initial condition (1.9) is bounded by

Ix(t)] < Le™ [l (1.14)
(iii) p(t; F) is continuous with respect t, for all 7, >0, k=1,2,--- /N.

Sometimes the spectral abscissa is knowstalility exponenof the system [39].

Remark 1.1. Observe that this theorem states that the LTI system (1akde if and only

if its spectral abscissa is strictly negative. This is eqlewt to saying that all the poles of
the system have negative real parts, which renders the stithe stability of an LTI delay
system into the study of the zeros-location of the systdraiscteristic quasipolynomial.

A particular class of LTI delay systems under (1.8) is tho#th wointwise (or concen-
trated) delays, which can be further simplified to the desiam

N

X(t) = Z)AkX(t —Ty). (1.15)

k=
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Here Ay are givenn x n real constant matrices, ang are given real constants, ordered such
that
O=p<n<---<IN=T.

For such a system, the characteristic quasipolynofr{igl takes the form

N
P(sT1,...,Tn) = det|sl—§ e A,
(sT1 N) < k; )
= po(s)+ ) P(s)e™™, (1.16)
K=1

wherepy(s), k=1,...,mare polynomials, ant, k= 1,...,mare sums of some of the delay
parameters of the delay parametgys There exist several situations describing the way the
delays are related, rational dependence or not, commeasuraot. For instance, if the ratios
between the delays;/tj, may be irrational numbers, in which case the delays aretedid
incommensurateWhen all such ratios are rational numbers, on the other,haaday that
the delays areommensurateln the later case, the delayg (and hence;) become integer
multiples of a certain positive. The characteristic quasipolynomi(s) of systems with
commensurate delays can then be written as

q
pST) = P(9) g ks, (1.17)
o

On the other hand, based on the relation between delays disslge to classify delays ac-
cording to their interdependence. In this vein, the delayso,..., Ty are calledrationally
independenif and only if

N
Z zy1,=0, zZe€Z,
(=1

impliesz,=0,/=1,...,N.

If the delaysty, 1,..., Ty arerationally dependentthen there always exists an integer
p < N and a matrix” € ZN*P of full column rank such that

K] S

with the numberssy, ..., sp rationally independent. It is worth mentioning that in trese
wherep = 1, the delayg, 15, ..., Ty are commensurate, as they are all multiples of the same
number.

For example, the numbers 1, 2 aglare commensurate as

1 3
2 | =|6]().
: 5(3)

The numbers 17 andrt+ 2 are rationally dependent, yet not commensurate, as

1 10

1
%T =101 {E}’
2+ 2 2 2
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with 1 and7 rationally independent.

In order to illustrate the importance of the above concdpts,relate the commensurate
and incommensurate cases with the above notions. In theotasenmensurate delays, it is
possible to express each delay by a relation of the form

(T]_,...,TN):T(fl,...,gN), ieNi=1...,N,

wheret € R, is the free parameter. Geometrically, the parametrizadloove corresponds
to a particularay or direction in the delay-parameter space. Moreover, irotd include
incommensurate delays it is possible to relax the abovemtraation to the following one

(T1,...,TN) =T(r1,...,N), FH€ER,i=1,...,N,
with T € R, being once again the free parameter.

Based on the above geometric parameterizations, Michiédlsc&ilescu [92] studied the
delay-independent stability when the ray under consideratonsists of delay values with
any type of interdependen¢eommensurate, rationally (in)dependent delays). Furibee,
they obtained the complete characterization of the seddklay-interference phenomenon
that is, the presence of delay-independent stability ampagrticular ray, which is not ro-
bust against small perturbations of the direction of the rmyorder to introduce such re-
sults, lets consider the following notions. Given a direetir’ := (r1,...,rn) € BY =
{T €RY: || 7| =1} in the delay parameter space, the associated 1@y ) is defined as
follows:

Definition 1.2. [92] For T € BY, let T (7)) := {17 : T€ R, }.

Definition 1.3. [92] The systen{l.15)is delay-independent stable if and only if its zero solu-
tion is asymptotically stable for alf € Rﬁ.

Definition 1.4. [92] The ray 7 () is stable if and only if the zero solution ¢1.15)is
asymptotically stable for all’ € 7 (7).

Definition 1.5. [92] A stable ray7 (T') is subject to the delay-interference phenomenon if
and only if for alle > 0, there exists a € BY with || 7" — S| < & such that the ray (5)
IS not stable.

Consider the following matrix-value functions:

e Lg: [O,Zn]N — C"*N, given by:
N .
L (?) —L1(61,...,60) :Ao+; Ao (1.18)
=1
e Ly Ry xRY s C™N, given by:
N .
L2(6,7):=Lo(6,r1,...,IN) = Ao+; Aeor, (1.19)
=1

The following quatities play a major role in the charactatian of delay-independent stability
and the interference phenomenon:
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Definition 1.6. Let

W= U ofu(?)
Fef0.2mM
ap = sup{d(A): A e W}

and for 7 ¢ BY, let

V(T) = Jo((6,T),
6>0

a(F) = sup{O(A): A eV(T)}.
Proposition 1.1. [92] If the components oF are rationally independent, then

V(T)=W, a(T)=ao,

where(-) is the closure of the sét).

The above concepts and results are illustrated with tharseglation:

X(t) = —1—2X(t)—1—c7)x(t—rl)—gx(t—rz), (1.20)

example that slightly modifies the one presented in [92]. Aleh

we= U (_%—%e_'el—%e"ez):{/\ €C: E)§|/\+2.4|§§},
(61,62)€(0,27]
V(7)) = U (_%2 - %e_irle _ %e—irze) _
6>0

In Figure 1.1 we have shown the sms?) (solid curves) an®V (dotted curves) for = (1,4)
andr = (10,39). As mentioned in [92], when the components @re commensurat®,(T")
forms a closed curve. We can consider the ragir; = 3.9 as a perturbation af/r1 = 4,
and despite the fact that the componetes are still commatestiney are "more" independent,
since the coprime numbers 39 and 10 are larger than 4 and seGoently, the curve

12 17 _,; 4 _jr2
GEOH—g—l—Oe*'Q—ge 170 (1.21)

with rp/r; = 3.9 will closes only aB = 20rrwhen@ is increased from zero (instead®f 27

for rp/r1 = 4), and a larger portion o¥V is covered byV(r). In order to illustrate such
situation, the values of (1.21) fé& < [0, 2r1] are also plotted in the right side of Fig.1.1 (bold
curve). Now, ifro/rp = 2 would perturbed instead to an irrational value, such asZn,

n> 2, the the corresponding cur¥&r) would never close and and its points would densely
fill W as indicated in Proposition 1.1 (see, [92], for further deXa
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Figure 1.1:The setV (F) for the system (1.20). (Left) for = (1,4); (right) for ¥ = (10,39). The
dotted curves are the boundariesydf

The delay-interference phenomena is characterized bytlosving results.

Proposition 1.2. [92] The ray7 (T) is stable if and only if
V(r) c (C_u{0}).

Proposition 1.3.[92] Assume thatV ¢ (C_uU{0}). If aray 7 (T) is stable, then it is sub-
jected to the delay-interference phenomenon.

Theorem 1.3.[92] Assume thatV N C,. # 0. Then the following holds:

1. If the components @fare rationally independent, then the rgy(T) is unstable.
2. Ifthe ray7 (T) is stable, then it is subjected to the delay-interferencengimenon.

3. The sefre B : T(r) stable is nowhere dense .

Neutral time-delay systems
Consider now the linear time-invariant systems with poiseaelays in the form of

N
Z)[Akx(t — Tx) +BeX(t — k)| =0, (1.22)
k=
whereAg is nonsingular (bearing in mind thag = 0). With this later assumption and without
any loss of generality, we may take thigt=|. The initial condition condition can again be
expressed as

Xo= 9. (1.23)

In general, the functiog is assumed to be differentiable for the solutions to be wafined,
although a relation to be discontinuous solutions is pés¢gee, [39] for further details). Let
the characteristic quasipolynomi¥(s) be defined as

A(S) = det( ie‘“‘s [sA+ Bk]) : (1.24)
k=
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As in the retarded case, the solution of the characterigtiagon
A(s)=0 (1.25)

are referred to as th@olesor characteristic root®f the system.

For the system (1.22), the spectral abscissa can be defined as

N
det(sl — k;e‘rks [SA+ Bk]> = O} )

Theorem 1.4.[39] Consider the system described by (1.22). The follovgitagements are
true:

Jo) (?;Ao,...,AN,Bo,...,BN) = sup{D (s)

(i) System (1.22) is stablegf(T;Ao,...,An;,Bo,...,Bn) <O.

(i) Foranypo>p (?;AO, ...,An,Bo,...,Bn), there exist an 1> 0 such that any solution
X(t) of (1.22) with the initial condition (1.23) is bounded by

IX(t)]| < Lmge™, (1.26)

where

= max t ).
my = max (|9 (t)] +[1¢ ©)])
Remark 1.2. It is important to note that in the neutral case the spectiag@ssa is not nec-
essarily continuous with respect to the delay parametas, (®r instance, [92]).

Analytical Methods

From the above results, we conclude that in order to studtdglity of a time-delay we

must analyze the zero-location of a given quasipolynoniidlq), for retarded systems, or
given by (1.24) for neutral time-delay systems. Since apprate calculation of all roots

of a quasipolynomial is a problem of a great difficulty, diffat numerically tractable tests
of negativity of the real parts of all roots the quasipolymainmave been developed in the
literature for avoiding such an issue. Among such tests t mibsn the following ones are

generally employed:

1) the amplitude-phase method and its modifications [72];
2) the method ofD-partitions and its modifications [32, 92];
3) the Pontryagin Criterion [115];

4) the method of Meiman and Chebotarev [19].

1. Amplitude-phase methodit is well known, from the complex function theory [78], that
f(s) is an analytical function, different from zero on some siejplosed contour (without
any self-intersections), and the interiorfohas only a finite set of polar singularities, then:

1 (2
ZT/F f(Z) dz= Nr—Pr,
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whereNr is the number of zeros of(s) in the interior ofl", counting according to their
multiplicities, andPr is the number of poles in the interior 6f counted according to their
multiplicities. This leads to the so-callddgument Principle

1
- ArArgf(s) =Nr —Fr-. (1.27)

Here, ArArgf(s) is the total increase of the argument of the functids) under a single
“circuit" of the points, in a positive direction, around the contdur On the other hand, the
differenceNr — B equals the number of complete revolutions which the vestperform in
the plane, going from the poimt = O to the pointw = f(s), when the poinst describes the
contourl” in the positive direction.

For obtaining a condition for the absence in the charatteqsasipolynomiaf (s; 7) of roots
with positive real parts, it is possible to apply the argutr@inciple to the contouFg, con-
sisting of the segment of the imaginary axisiR,iR| and the semi-circle of radiuR with
center at the origin, lying in the half-plafé(s) > O; as preliminary, it is necessary to check
that the quasipolynomial does not have any zeros on the maagaxis.

We note that, in this cas& = 0. Using the argument principle, we find from (1.2\),
and, if I|m NrR = 0, then all rootss of the quasipolynomial satisfy the conditiah(s)) < 0.

To apply thls method to the quasipolynomial

f(s) =Pa(s) + Qn-1(s)e ™,

corresponding to theth order equation with single retarded argument, wheys) and
Qn-1(s) are polynomials of degree and not greater than— 1, respectively, it is possible
to somewhat simplify the investigation. Instead of the fiorcf(s), it is considered the func-

tion
f(S) Qn 1( )
Pa(s) Pa(s)

the zeros of which coincide with the zeros of the functids) (if Py(s) andQp_1(s) do not
have common zeros) and which has poles at the zeros of theqolgl P,(s).

e’

Define noww;(s) 1= — O (1())e IS, The limiting position aR — o of the form of the

contourlr under the mapplngvr( s) is called theamplitude-phase characteristicSince

an(( )) = 1—w;(s), the zeros of the functioér% correspond to the points at whigh (s) =
Therefore, applying the argument principle to the functigits), it is necessary to calculate
the number of circuits of the amplitude-phase characterisot of the poins = 0, but of the
points= 1. The number of circuits of the amplitude-phase charatterof the points= 1
equals to the differencsr — P and, consequently, in order thidt = O, it is necessary that
the number of circuits of the amplitude-phase characte$the points= 1 equals-Pr. We
recall that, for this it is assumed that there are no zerosefunctionf (s) on the imaginary

axis and thab,(s) andQy_1(s) do not have common zeros.

For construction of the amplitude-phase characteridtis, gonvenient at first to find the
so-calledlimiting characteristi¢ appearing as the limiting form of the contdug under the
mappingwg : C — C
Qn-1(s)

Wo(S) = — O

(1.28)
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For construction of the form of the imaginary axis under thapping

Qn l( ) e TS
RS

Wi (s) = =Wwp(s)e ™® (1.29)

or .
we (iy) = wo(iy)e ™,

knowing already the limiting characteristic, it sufficesctansider the influence of the factor
e ™ of rotation without change of modulus, the radius vectorhaf point of the limiting
characteristic corresponding to the valpat the angle-ty. It is worth mentioning that a
particular attention should be given to the points of thetlmy characteristic lying on the
circle |s| = 1 since these points, under rotation by an angtg, may find themselves at the
points= 1.

Example 1.1. A well-studied example in classical stability analysisiofa-delay system is
given by the first-order delay system

X(t) = —ax(t) —bx(t—1), (1.30)
where ab € R andt € R . The characteristic equation for this system has the form

f(s) =s+a+be ™.
Then, according t¢1.28)and (1.29) we have

b
= —— 1.31
Wo (S> S+ a’ ( 3 )
b — TS
= —— : 1.32
wi(s) = —o e (1.32)
Now, in order to analyze the shape of the mapdih@1) we observe that
. b
Wo (iy)| = o (1.33)

/y2+a2
It is clear to see fronfl.33)that the modulus is bounded. Moreover, since

d .
d—y\WO(W)\ = 0

S L (1.34)
<y2+a2>§

The later equation implies that=¢ O is the only critical point, and smch |Wo(0)| =

bl
EE

by lim |wo (iy)| = |2|. Based on these observations, we compwtgdy) +
y—0

< 0, this implies that at y= 0 the modulus reach its maximum and such value is given

Za‘ - 4a2’ which

implies that(l 31) maps the imaginary axis into a circle with radil%%| with center at the
point s= —».. The above discussion is illustrated in Fig1.2.

Now, if a> 0 the function w (s) has no poles in the RHP, and if in additi¢i] < a, then

under each rotation of the points of the C|rqlao iy) + Za‘ = 2“2‘1‘ caused by the presence of

the term €'Y in w;(s), the amplitude-phase characteristic will not contain thuérp s= 1 as
illustrated in Fig.1.3 and consequently, all zeroes of thagjpolynomial {s) =s+a-+be ™
are located in the LHP. Moreover, under the above assumgtitbha system will be stable
independently of the delay.
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Figure 1.2: The wp(iy) map. The blue (right) and red (left) circle correspond to ¢thse when
sign(2) <0, or whensign(2) > 0, respectively.

Figure 1.3:Thewy(iy) map fora > 0 and|b| < a. The green (right) and red (left) circle correspond
to the case whesign(b) < 0, or whensign(b) > 0O, respectively.

2. D-partition Method. The zeros of the characteristic quasipolynontigd) for a fixed
"deviation"1 are continuous functions of its coefficients (assumed thetficient of the prin-
cipal term is not equal to zero, which is always satisfied fyuations with retarded argu-
ment). This method divides the space of coefficients intomregby hypersurfaces, the points
of which correspond to quasipolynomials having at leastazmre on the imaginary axis (the
cases = 0is not excluded). The points of each region of stizpartition clearly correspond
to a quasipolynomial with the same number of zeros with p@sreal parts (counting their
multiplicities), since under a continuous variation of doefficients, the number of zeros with
positive real parts can change only if a zero passes acresmtyinary axis, that is, if the
point in the coefficient space passes across the boundamegfan of theD-partition.

Thus, to every regioffy of theD-patrtition, it is possible to assign a numlkawhich is the
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number of zeros with positive real parts of the quasipolymbuefined by the points of this
region. Among the regions of this decomposition, we can fordes particular region% (if

it exists) corresponding with quasipolynomial which do hate even one root with positive
real part. These regions are simply caltdbility regionsor domains

Thus, the investigations of stability by the methodIdf partition in the space of coeffi-
cients (or other parameters on which the coefficients antatiens of the argument depend)
reduces to the following scheme: find tle-partition and single out therefrom the region
To. If the region7p is connected, then it may be identified by verifying that asteone of its
points corresponds to a quasipolynomial whose roots a# hagative real parts.

In order to clarify how the number of roots with positive rpakts changes as some boundary
of the D—patrtition is crossed, the differential of the real part of tloot is computed, and
the decrease or increase of the number of roots wit posei@eparts is determined from its
algebraic sign.

If f(s;a1,...,ap) =0 is a characteristic equation containing the parametgrs ., ap, then

of P of .
gds = —i;d—aida., S=X+1y,
P 2lda;
dx = -0 (%) (1.35)
ds

Usuallydx is computed on some boundary of the-partition for a change in only one pa-
rameter whose changes guarantee passage across the lgdaidgrexamined.

Example 1.2. As an example, consider again the sys(&r0) i.e.,

X(t) = —ax(t) —bx(t—1), (1.36)
where ab € R and 7 € R,. Adopting the notation presented above, the characteristi
quasipolynomial of1.36)will be written as

@(s) =s+a+be ™. (1.37)
The quasipolynomidll.37)has a zero root if
a+b=0, (1.38)

and such a straight line will belong to the boundary of thepartition. Now, following the
method, find the set of points in the paramet@d) such that the quasipolynomiél.37)
has at least one zero on the imaginary axis. In this vein, idens=iwin (1.37)

(iw)+a+be'®T=0,
separating the real and imaginary parts we obtain
a+bcos(wr)=0 and w-—bsin(wt)=0,

respectively. Separating variables, we obtain the paraimetjuations for theD—partition
boundaries:

a(w) = —wcot(w), (1.39a)
w
b(w) = (1) (1.39b)
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From the above equations we have thatcas~ 0, (a,b) — (—1,1), which belong to the
straight line given in(1.38) Then, the boundaries of tH2—partition are composed by the
straight lines(1.38)together with those given by the equati¢hs39) these boundaries de-

compose the plane into regions, as shown in Figl.4.

Region|IT

P2 N\ >

Region I

S 4

Al

Region|IT1

A;N

Figure 1.4:The D—partition boundaries for the system (1.36).

D1

Since inside each region we have the same number of unstadife then in principle
it is sufficient to investigate the stability of a a pair of pts of a given region in order to
conclude about the stability of the entire region. In thimmy@assuming that & 0 and since
(a,b) = (a,0) belongs to Region I, we have that for such point the systersyimiptotically
stable and as a consequence we conclude that Region | isglmref asymptotically stable
solutions for the systed.36) Now, in order to evaluate the crossing direction from regio
into region Il or from region Il into region Il, lets evalua (1.35) To this end, let consider
the paths pand p as show in figure 1.4.

Now, since in both paths;@and p we have a constant b, we will have that in such situation
db= 0and(1.35)will be reduced to:

dx=—0 (L) . (1.40)

1—the st

Moreover, since both paths are crossing through the stitdigk (1.38) we know that on this
line we have one zero ats0 (whereas the real part of the remaining roots of the quagipol
nomial approach-), consequently we can lose (or not) at most one root. In aidisince
over this line we have:s 0, then the conditiori1.40)can be reduced to

da

dX:_l—Tb' (1.41)

Since, for a crossing from region | to region Il through thatlp p, we have that Ix % and a
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decreasing a, therefore dx 0, or in other words the real part of the roots0 on this straight
line receives a positive increment.

Consider now a crossing from the region Il into region Il dlmgh the path g Since
in such situation we have thatb % then from(1.41) we get dx> O for da > 0, therefore
in region 1l will have two roots with positive real part. In nolusion, he have that region
[, correspond to the stability region, region Il has two reatith positive real part, whereas
region Il has one root with positive real part. Such conaetumsis illustrated in Fig.1.5.

Region|l 1

Region I

stability region

%

3 |—=t

Region|IT1

Figure 1.5:The stability regions for system (1.36).

3. Pontryagin Criterion. In the analysis of stability of a time-delay system, Porgiga
[115, 116] obtained some fundamental results concernimgéhos of a quasipolynomial.

Remark 1.3. Observe that a linear system with single delay or with mldtiut commensu-
rable delays, can be associated with a quasipolynomial@félowing form

M N
P(s) = Za”-§e‘3. (1.42)
i=0 =1

Consider the quasipolynomial (1.42) fer= iw, wherew is a real numberP (iw) =
g(w)+ih(w). The method is summarized in the following

Theorem 1.5(Pontryagin’s Criterion [72]) If quasipolynomial (1.42) has no zeros with posi-
tive real part, then all the zeros of the function@g and h(w) are real, simple and alternat-
ing and _

h(w)g(w) —g(w)h(w) >0, —o < w< 0. (1.43)

For absence of zeros with positive real part of (1.42) onenheffollowing conditions is suffi-
cient:
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(1) All zeros of the functions(@v) and h(w) are real, simple and alternating, and inequality
(1.43) is fulfilled for at least one reab;

(2) allthe zeros of the function(go) (or h(w)) are real and simple and for each zero relation
(1.43) is satisfied.

Example 1.3. Consider the simplest first-order time-delay system
X(t) = —bx(t— 1), (L.44)

where be R and 1t € R,. According to(1.42)the corresponding quasipolynomial for this
system is

P(s) =sd5+h. (1.45)
For s=iw, we have
Pliw) = (iw)€e“"+b (1.46)
= b—wsin(w1) +i wcos(wr). (1.47)
—g(w) —h(w)
(20-1)

It is clear to see, that the roots of(t) are given bywy = 0 and wy = ~=;= 1, with £ € N.
Now, differentiating gw) and h(w) with respect taw, we obtain

g(w) = —sin(wT)—wrtcos(wr),
h(w) = cos(wT)—wTsin(wT).

According to the above expressions, we have that
h(w)g(w) —§(w)h(w) = bcos(wT) + wT(w—bsin(wT)).

Then, in order to apply Theorem 12(we compute firdt (0) g(0) — §(0)h(0) = b. Next, for
w = ay we haveh(awy)g(w) —§(w)h(w) = wT (wg - (—1)5_1b). Since, we require the
positivity of both quantities, we must have

b > 0,
(wg - (_1)f—1b) > 0,
From the last inequality we conclude thakbw, V¢ € N, i.e.,
O<b<w<w<---<w<--.

Thus, if0 < b < Jt, the system will be asymptotically stable.

4. Method of Meiman and Chebotarev.This method deals with the stability analysis of
guasipolynomials with incommensurable delays by meansgaferalization of the Routh-
Hurwitz conditions For the quasipolynomial

P(s) = %aﬁéﬁ (1.48)
=1
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expandP(s) in the serie$(s) = ap+ a;s+ axs* + - -- and define the functiong(s) andv(s):
Pis) = u(s)+iv(s), u(s)=ap—axs’+ayst—--
V(s) = ajs—azSS+ass—--
Lets introduce the following determinar@s:

ap a3 as -+ am-1
a a d a a4 - a@m-2

Qi=a;, Q=1 ®| Qu= C :
0 0 0 .-+ any

The method is summarized in the following

Theorem 1.6(Chebotarev-Meiman’s Theorem [72B\ssume that the functionssy and us)
have no common zeros. Then the quasipolynomial (1.48) hasme with positive real part
if and only if

Qm >0, m=12,... (1.49)

Applications of this theorem are not effective because &nitp number of inequalities
(1.49) must be verified.

Example 1.4. Consider the second-order time-delay system

%(t) — 2x(t—z)+8x< _gz) —0. (1.50)

Now, in order to apply Theorem 1.6, we express the quasipaiyal as

V2 T
P(s) = 2elitF)s_ 25675 4 8elS.
In such case, we have thatiB) can be written as
P(is) = u(s) +iv(s),

where

us) = 8- (1+——\f2>52+( +-1 —i—f—i)s“JrM

4752 32~ 768

v(s) = 2(-1+ms— (—§+ﬁ+z+4—8) St

Then, in order to evaluate conditiqt.49) lets form Q, in this case is given by
QL=2(-1+m).
Since, Q > 0, we continue with the procedure. To this end, lets foun Q
2-1+m) -§+H+5+5
8 14+7 V2

Since Q =2—-2v2—-22n— ’;2 + ’;3 ~ —4.31357< 0, we can see that conditiqi.49)is
violated and according to Theorem 1.6 we have that the dsistgsy1.50)is unstable.

Q=

From the above example itis clear to see, that the drawbatieashethod is that for stable
quasipolynomials the method is not conclusive.

Remark 1.4. There exist other methods to analysis the stability of a-iielay system, like
T—decomposition [39], Yesupovisch-Svirskii [127], Intdg@xiterion [72], among others.
However, in the seek of brevity we will omit such a discussion
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1.3 Discrete-Time Systems

The general form of discrete-time systei given by
X[+ = (X)), X(lo) =%o, (1.51)

with x[¢] € R" is the state vectof,c N and it is assumed thdt: N x R" — R" is a continuous
function inx. A point x* is said to be arequilibrium pointof (1.51) if f (¢,x*) = x* for all
¢ > {y. As in the continuous case€ is assumed to be the origin O and is called fego
solution The justification of this assumption is as follows: lyg¢t) = x(¢) —x*. Then, (1.51)
becomes

y(L+1)=f(Ly(0)+x)—x =g(Ly(0)). (1.52)

From the above equation it is clear to see that0 correspond ta = Xx*.

1.3.1 Stability Notions

Introduce now various stability notions of the equilibrigmint x* of (1.51).

Theorem 1.7.[31] The equilibrium point X of (1.51) is said to be:

(i)  Stable (S) if givers > 0 and ¢ > 0 there existd = & (&, o) such that||xg—x*|| <
0 implies ||x (4, ¢o,%0) —X*|| < € for all £ > ¢p, uniformly stable if5 may be chosen
independent ofp, unstable if it is not stable.

(i)  Attracting (A) if there existt = 1 (o) such that|xg — x| < u implies fim X(0,40,%0) =
—500

X", uniformly attracting (UA) if the choice qi is independent ofp. The condition for
uniform attracting may be paraphrased by saying that theadsteu > 0 such that for
everye and /g such that|x (¢, o, xg) —X*|| < € for all £ > {9+ L whenevef|xy — X*|| <

.

(i)  Asymptotically stable (AS) if it is stable and attractingdauniformly asymptotically
stable (UAS) if it is uniformly stable and uniformly attrang.

(iv) Exponentially stable (ES) if there exiét> 0, M > 0, and n € (0,1) such that
1X(£,£0,%0)|| < M ||%0 — x*|| n*~‘°, whenevet|xg — x*|| < &.

(v)  Asolution X¢,¢o,x%o) is bounded if for some positive constant|M(¢, £o,Xo)|| < M for
all £ > ¢p, where M may depend on each solution

If in parts (i), (iii) 4 = c or in part(iv) d = o, the corresponding stability property is
said to beglobal. Observe that in the above definitions, some of the stalgtibperties auto-
matically imply one or more of the others. In general suchlicagions can not be reversed,
however, for some special classes of equations, such acatiplns may be reversed. In par-
ticular, the following result holds:

Theorem 1.8.[31] For the autonomous system
X[¢+1] = f(x(¢)), (1.53)

the following statements holds for the equilibrium point x
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(i) S<US.

(i) AS< UAS.

(i) A< UA.

Linear Systems

In the sequel we will discuss briefly the nonautonomous cadetfzen we will focus in the
autonomous linear systems.

Nonautonomous Linear Systems
Lets consider the stability properties of the linear systgran by

X[0+1] =A()x(¢), 0> 10y >0. (1.54)
The following result guarantees the existence and unicggeoithe solutions of (1.54).

Theorem 1.9.[31] For each % € R" and/g € Z* there exist a unique solution & £o, %) of
(1.54) with (4o, 40, X0) = Xo-

Let W (/) be ann x n matrix whose columns are solutions of (1.54). Thér/) satisfies
the difference equation
WE+1) =AW (). (1.55)

Furthermore, the solutiong (¢) ,x2(¢),...,X,(¢) are linearly independent if and only if the
matrix W (¢) is nonsingular (i.e., d&¢ (¢) # 0).

Definition 1.7. [31] If W (/) is a matrix that is nonsingular for all > /g and satisfies (1.55),
then it is said to be a fundamental matrix for systems (1.54)

One may, in general, writd (¢, k) = W (¢) W~ (k) for any two positive integerg k with
¢ > k. The fundamental matri% (¢,1) has the following properties:

(i) w14,k =w(k,0);

(i) W,k =¥,mW¥Y(mKk);

(i) W (£,k) = Mi¢AG).

Corollary 1.1. [31] The unique solution of ¢, £o,Xo) of (1.54) with X 4o, £0,X0) = Xo IS given

by
X(€,40,%0) = W (£,40) Xo.

Theorem 1.10.[31] Consider system (1.54). Then its zero solution is

(i) stable if and only if there exist a positive constant M sueétt th

W) <M,  fori>1y>0; (1.56)

(i) uniformly stable if and only if there exist a positive comstsl such that

WK <M,  forlo<k<{<w; (1.57)
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(iif) asymptotically stable if and only if

lim ||W (0)[| = O; (1.58)

{—c0

(iv) uniformly asymptotically stable if and only if there exisisgive constants M ang €
(0,1) such that:

WK <MnK  forlg<k</!< oo (1.59)

Corollary 1.2. [31] For the linear system (1.54) the following statemertdh

() The zero solution is stable if and only if all solutions araibded.

(i) The zero solution is exponentially stable if and only if iuisformly asymptotically
stable.

(i) Every local stability property of the zero solution implike corresponding global sta-
bility property.

Autonomous Linear Systems
In the following we will consider the autonomous (time-inaat) system given by

X[¢+ 1] = Ax[{]. (1.60)
The next result summarize the main stability results follitiesar autonomous systems (1.60).

Theorem 1.11.[31] The following statements holds:

(i) The zero solution of (1.60) is stable if and only if all eigaies of A has modulus less or
equal than one and the eigenvalues on the unit circle aresigmlel

(i) The zero solution of (1.60) is asymptotically stable if antyaf all eigenvalues of A have
modulus less than one.

2 Introductory Remarks to the Perturbation Theory for
Linear Operators

Roughly speaking, Perturbation theory studies the behavia system subject to small per-
turbations in its variables. In order to illustrate the pgp of the perturbation theory, consider
the particular case of a system represented by a diffeteafigtion (or, by a difference equa-
tion) X(t) = Ax(t) + f(t) (or,x[¢ + 1] = Ax[¢] + f [¢]), for example we can be interested on the
solutionx(t) (or, x[¢]) if A exhibits a perturbation of the ford+ B, wheree is a scalar quan-
tity sufficiently small € << 1) and will be called th@erturbation factor In other words, we
may be interested by the way of how a small parameter affeetisehavior of some particular
systems dynamics.

1An eigenvalue is said to be semisimple if the correspondimgah block is diagonal. For further details,
see the next chapter where we will deeply discuss such ideas.
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It should be stressed thpérturbation analysistarts only after we have already obtained
the solution of the original system; which means that themhés there only to explore the
change in the behavior of the system when perturbation tioe p

The main goal of this chapter, is to introduce some fundaatenésults concerning to the
perturbation theory, which will be required parts|l-1ll to obtain some stability properties
of the analyzed systems.

The fundamental motivation to use such a perturbationebaperoach irparts|i-lll of
the thesis, stays in the fact that we will study how a stablaligium state (or steady motion)
becomes unstable or vice versa with a change of some parar(eate, in particular, the delay
parameter). Thus, thearameter spaces divided into stability and instability domains. On
the other hand, we have that perturbation methods prodwadgtarapproximations that often
reveal the essential dependence of the exact solution qratlaeneters.

2.1 Basic Notions
2.1.1 The Eigenvalue Problem

Consider now an eigenvalue problem [135]
Au=Au, (2.1)

whereA is ann x n real matrix,A is aneigenvalugandu is the correspondingigenvectar
The eigenvalues are determined form tharacteristic equation

det(A—Al) =0, (2.2)

or, equivalently by
det(Al —A) =0. (2.3)

Since the defA— A1) is a polynomial of degrem with respect toA, there aren eigenvalues,
counting multiplicities. Sincé is a real matrix, its eigenvalues and corresponding eigenve
tors are real or appear in complex conjugate pairs. Mutfigliof an eigenvalue as a root of
the characteristic equation is calletfjebraic multiplicity The eigenvalud is calledsimple

if its algebraic multiplicity is equal to one. There is a dmgigenvector, up to a scaling factor,
corresponding to a simple eigenvalue.

2.1.2 Multiple Eigenvalues and the Jordan Canonical Form

A multiple eigenvalueAr of algebraic multiplicitym can have one or several corresponding
eigenvectors. The maximal number of linearly independgy@reectorg is calledgeometri-
cal multiplicity of the eigenvalue, which is less or equal to the algebraidiptigity [90, 74],

g<m (2.4)

If the algebraic and geometric multiplicities are equgm), then the eigenvalue is called
semi-simplelf there is a single eigenvector corresponding t@ = 1), then the eigenvalue is
callednon-derogatorysee [114], for further details). X is a non-derogatory eigenvalue, then
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there exist a set of linearly independent vectfug, u,...,un— 1} satisfying the following
equations

Aw = Al,
Aup = Aup+Ug,

Al = AUz+U, (2.5)

AUn-1 = AUm-1+Un_2.

The vectorslg, uy,. .., un_1 are calledJordan chain of length pnwhereug is the eigenvector
and the vectorsy, ..., Uy_1 are calledgeneralized eigenvectdor associated eigenvectQrs
If A is an eigenvalue having several linearly independent ggpars (thederogatory casg
i.e.,g > 1, then in this case there are nonnegative integetsi < --- < mg such that

Mg+ +mg=m, (2.6)

and linearly independent vectalg), e u,(Ti{l, i=1,...,9, satisfying the Jordan Chain equa-
tions

Aug) = )\ug),
Au(li) = )\u(li)+ug),
A = aud ), (2.7)

O _ gy
Aunk1 = )\um71+um72.
The numbersny, ..., mg are unique and callegartial multiplicities of the eigenvalue , and
the eigenvectore(()'), ce u,(T'{l are called the Jordan chain of lengih In general, a multiple
eigenvaluel with 1 < g < mis called anonsemisimpleigenvalue.

Equation (2.7) can be written in the following matrix form

‘Jml ()‘)
AU, = U, , (2.8)
Jmg (A)
where
U, = ué”,...,ufjl)fl,...,uég),...,u%)fl (2.9)

iS ann x mmatrix.

2.2 Analytic Perturbations

As mentioned at the beginning of the chapter, the goal ofdhépter is to present the tools
to investigate how the eigenvalues and eigenvector (omepgeces) of a linear operat®r
change whef is subject to a small perturbation. In dealing with such ajfmm, it is often
convenient to consider a family of operators of the form

T(X)=T+xT. (2.10)
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whereT(0) = T is called theunperturbed operatoand T the perturbation In a more
general case, we will assume that in the neighborhood=eD, the perturbed operatdr(x)
is holomorphic, or equivalently, can be expanded into thegrseries,

T(x) = T(0)+xT'(0) + ix2T”(0) + %XST”’(O) - (2.11)

2!
The eigenvalue of (x) satisfies the characteristic equation,
det(T(x) —&l)=0. (2.12)

This is an algebraic equation §of degreen, with coefficients which are holomorphic in
(see, [67] for further detalils).

2.3 Perturbations of a Simple and Semisimple Eigenvalues

At a first instance, consider the family of operators giver{hy0), i.e.,
T(X)=T+xT.

Then, if T has the eigenvalue&sl(o),)\z(o),...,)\r%o) and eigenvectors;, ..., u, the eigenvalue
problem for the perturbed system can be written as

(T +x'|~'> ux)=A0u(x).
From the above equation, the vectdx) has a nontrivial solution only if
det(ul ~-T —xf) = 0. (2.13)
Obviously, (2.13) can be written in powersoés follows:
det(ul . xf) — f, (A <°)> xfy (A (°>> X (/\ (°>) ,

where
fo(A)=det(ul —T).
The following theorem gives the first order terms in the cdsesimple eigenvalue.

Theorem 2.1([30]). If )\i(0> is a distinct eigenvalue of a semisimple matrix T with corre-

sponding eigenvectori((a, the eigenvalugy; (x) and its corresponding eigenvectoy(y) of
the perturbed matrix B XT are given for first order approximation by

100 = A+ x (T ) + o), (2.14)
and < O >
n ) ,Tq 0
Ui (X +x —u, 2.15
= 12£7é i )\g ‘ (219

where Lio),...,uﬁ,o) are the eigenvectors of T ané%,...vn their reciprocal basis.
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Example 2.1.Let T andT be

4 1 -1 B 1 0 -2
11 2

the eigenvalues of T are =5, 3,3. The independent eigenvectors are

1] [ 1 -1
2 |, u=1,0 and w=| 1 |.
1 1 0

U =

Their reciprocal basis are

% -1
Vi = 5 | Vo= | — and y= o |.
_%_ % 1

Then, according t¢2.14)the first order approximation for the eigenvalm{eo) =5is given by

=N

N

pi(x) = /\1(0)+x<v1,fu1>+o(x)

% 1 0 -2 1
2},!5 1 1}{2]>x+o(x)
— 0 -1 1 1

= 544x+40(X).

The following result cover the case whéﬁo) is a semi-simple eigenvalue.

Theorem 2.2([30]). If A(9 is an eigenvalue of multiplicity m of a semi-simple matrix ithw
corresponding eigenvectors‘ioh u(zo),...,uﬁ?), the eigenvalugy (x) and the corresponding
eigenvector ux) of the perturbed matrix F XT are given for first order approximation by

i (X) :/\i(o) +x)\i(1) +0(x), I=1,...,m, (2.16)

where)\i(l), are given by the meigenvalues of

Vg-O)*
s=| ¢ [T|u® - 9],
v
and 0) +,,0
n zﬁ”zlcij <vk T >
Ui (X) = Vi +X 0 , i=1,....m,
k=m+1 A (O) _Ak

wherel[-]* is the transpose conjugate of the vecitoy u(lo), . uﬁo) are the eigenvectors of T,
and \go), . ,vﬁo) their reciprocal basis. The values ofj @re obtained by solving the set of
linear simultaneous equations
Ci1
[Ai(l)l —s} . | =0, i=12....m
Cim
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and

Example 2.2. Consider the same matrices T ahdreated in example 2.1. Since the eigen-
valueA (9 = 3, is semi-simple, we can apply the later result. In such a casehave:

1330 2] 1
sz{_l o 1]1811 i]h cl)] (2.17)

= {_21 cl)] (2.18)
Simple computations show that matrix S has the eigenvaﬁ}?e& —2,1. Then, according to
(2.16)we conclude that

H2(X) = 3—2x+0(x),
H3(X) = 3+X+0(X).

x

Consider now a more general operator, i.e., assumelthatis holomorphic, or equiva-
lently, admits an expansion of the form (2.11). In this cage=have the following:

Theorem 2.3.[67] Let A (%) be a semisimple eigenvalue of0J with multiplicity m, and P be
the eigenprojection foA (9, that is,

1 -1
P— =} (€1-T(0) az. (2.19)

whereZ is a positive-oriented closed contour enclosi§ but no other eigenvalues of(T).
Then the corresponding eigenvalues @kJrare analytic in x and have the form:

() =A@ +AW0x+003), i=1,....,m (2.20)

)

where); ™ are the eigenvalues of P[0)P.

Without any loss of generality assume tha?) be ordered as the first eigenvalueldD)
with multiplicity m. Then, according to the results presented in § 2(D) can be decom-
posed as:

e 55 0 [R
T(0)=QR=[ Q1 Q] { 0 ZJ { R, } (2.21)
whereZ; is a diagonal matrix with diagonal entries®®), R=Qt=[r] ... rl ] and
Q= [0 --- on] consist of the eigenvectors f(0). Based on this decomposition, the

)

following result shows hov))«i(l may be computed.

Lemma 2.1.[21] Let T(0) be partitioned as in (2.21). Then the corresponding eigkres
of T(x) are analytic in x and have the form

() =A@ A0x10x), i=1,....m

Where)\i(l), i=1,...,m, are the eigenvalues of R (0)Qs.
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Example 2.3.Let T(x) € C3*3 be the matrix operator

4—2cos(2x) 16 7+ X
T(x)= 4+X 14— %2 8
e *(x*+sin(x)) —8 —31—cos(x) x*—18

Simple computations reveal thatd) has a semisimple eigenvalue)eﬁO> =-2,i€{1,2}
and a simple eigenvalue a§°> = 2. Following Lemma 2.1, we first find

2 16 8
TO)=| 4 14 8 |,
-8 -32 -18
which can be decomposed as
-2 —4|-1 -2 0 0 2 8 5
TO=| 0 1]|-1 0 -2 0 -1 -3 -2
1 0] 2 0O 0 2 -1 -4 -2
Since,
0 0 —i
TO=|10 0|,
100
it follows that
[0 0 —i -2 —4
RiT'(0)Q1 = { fa _f; _f;} 100 0 1
10 0 1 0

—26—2i —52]
10+i 20 |-

Simple computations show thai R(0)Q; has eigenvalueﬁl(l) = —6 and )\2(1) =-2i. In
conclusion, we find

m(x) = —2-6x+o(x),
H2(X) = —2—2ix+0(X).

2.3.1 Second-Order Asymptotic Expansion

The first-order asymptotic series introduced in the previparagraph can be further devel-
oped to include terms of higher orders. In this section, wkderive and recall some formulas
for computing the coefficients of the asymptotic series ujhnéosecond-order.

Consider first the asymptotic expansion of the operato0j2.Then, according to [131], for

small (u —A (°)>, the simple eigenvalues of (2.13) can be expanded as:

10 = 240+ AP 4.
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and the problem reduce in the computatiod6f, A2 . ... In this case, following [131], the
eigenvector has the following expansion:

u(x) = u? 4 xy 42?4
To compute the shift in the eigenvalues and eigenvectorgamesubstitutes (x) andu(x) in
the eigenvalue problem of the perturbed system to obtain:

(T + xf)(ui(O)Jr xuP 2@y ) = ()\i(o) Al @y )(ui(0)+ xu M@y ) .

Grouping appropriately the termsxnwe obtain:

( Tui(o) _ /\i(O) ui(O)
TUY £ T = A0 £ 20O
2 ~ (1 0 2 1 1 2 0
Tu £ Ty =A% A A2y (2.22)
Tui(k+1) +fq(k) _ /\i(O)ui(k+1) Jr)\i(l)ui(k) +...+)\i(k+1)ui(0)

Since we have already presented the results to corﬁéﬁtandui(l), we will focus in deriving

the computation o}\i(z). Let v(lo),...,vﬁo) be the reciprocal basis uﬁo), . .,uﬁo), then taking

the inner product of the third equation in (2.22) W‘bfﬂ) we obtain:
0 2 0 = (1 0) /.0 (2 1) /. (0) (1 2) /. (0) (0
<Vi( ),Tq< )>+<Vi( ),Tui( )> :/\i( )<Vi( )7ui( )>+/\i( )<Vi( )7ui( )>+/\i( )<Vi( )7ui( )>.

However,
<Vi(0)7Tui(2)> _ )\i(O) <vi(0),u-(2)> _

Therefore, we have established:

Lemma 2.2. Let)\i(o) be a distinct simple eigenvalue of T with corresponding rigetor
ui(o). Then, the corresponding eigenvalues ¢kT= T +xT have the form

where)\i(l) are computing according to (2.14),

A2 <Vi(0),ftﬁ(l)> _)\i(l) <v-(0),u-(1>> (2.23)

where \?O) is the reciprocal vector ofi(ﬁ) and Lfl) are computed according to (2.15).

1 2 ~ 1 2
= 5 = 5
EE VRS ERY!

The eigenvalues of T av\el(o) =+/3i and /\2(0) = —+/3i. The eigenvectors of T are:

[P e[

Example 2.4. Let
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Their reciprocal basis are:

vgo):ll */é ] and \éo ]
2 2\[ 2+2\/§

Next, in order to compute the first-order eigenvalue appr@ation we apply Lemma 2.1, lead-
ing to:

Similar computations reveal thaél) = 0 concluding that none important information can be
obtained from the first order analysis. Then, a second oraeiysis will be required. In this

vein, lets compute first(ljd:

(
ul = i <V€ Ty >ugo)
(=TT i —/\é
0) = (0
_WTY)
= /\1(0)_/\2(0) U
i. .
SN
_ §+2—ﬁl 5 -1 1 |:_1—1\é§i ]
2V/3i 1
u(ll) _ 2—10—\2/—3i
1y 8
Next, according t¢2.23) we have:

5; .
NENES )
2754 | L2 11| 3+
AP = —?'.

Following the same steps, we fw\élz ‘[I As a result, the eigenvalues ofXj are given
by:

p(x) = V3i- f|x2+o( x2),

t(x) = V3i+ f|x2+o( x2).
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In the sequel, assume thE¢x) is holomorphic around a neighborhoodyof 0, that is, it
admits an expansion as (2.11).
Define the operator-valued function:

Y(&)=(T(0)—&N™, (2.24)

which is known as the resolvent df(0). It is obvious that the singularities of(&) are
the eigenvalues of (0). Let A9 be a semisimple eigenvalue ©{0). ThenY(&) can be
expanded as a Laurent seriegat A (9, that is,

(&) =—(E-20) P g(f—/\( )" 1Dy + ZO (E—A0)g, . (2.25)
n=1

whereP, D, and S, 1 are the corresponding coefficient matrices. Evidently,rtadrix P,
known as the eigenprojection fat?, can be found as

_ 1 -1
oo o= & fia o s

wherel is a positively-oriented closed contour enclosin§) but no other eigenvalues of
T(0). It was found in [21] that
P=Q1iRu.

The holomorphic part in the Laurent expansion is calledréfuieiced resolventf T(0) with
respect to the eigenvalue?, denoted as

s =3 (£-29) s

n=0

Let S= S(A(9), namely the value of the reduced resolvenf¢0) at £ = A(©). Thenitis
obvious that 1 Y(E)
S=5= H?{ F-A0 0

Lemma 2.3. [36] For any matrix T(0) decomposed in the form of (2.21), whergis in
Jordan form with diagonal entries a9, the reduced resolvent §t= A (9 is equal to:

0 0 0)y-1
S=Q| , (ZZ_A(0)|)—1]R=Q2(Zz—/\()|) Ro.

The following Lemma given in [67] provides the result on tleesnd-order perturbation
of T(x) when all the eigenvalues a@f(0) are semisimple.

Lemma 2.4.[67] Let A (9 be a semi-simple eigenvalue of0T, )\i(l) be a semi-simple eigen-
value of PT(0)P with the eigenprojectioni@, thatis

R = (&1-PT(0P) ag, (2.26)

whererl’; is a positively-oriented closed contour enclosi)q@) but no other eigenvalues of
PT'(0)P. Then Tx) has d= dim Pi(l) repeated eigenvalues of the form

Uip(x) =A © +X/\I(l) +X2“i(p2) + 0(X2)7 p= 17 T 7d7 (227)
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whereui(s) are the repeated eigenvalues P @R with T@ = T7(0) — T/(0)ST/(0), and

P(l)T(Z) P(l) _ P(l)TH(O) P(l) . Pl(l)T,(O)ST{(O) Pl(l)

The eigenvalues dﬁ(l)T(z) Pi(l) can be computed in a manner similar to that in the first-
order analysis.

Lemma 2.5.[36] Let A(© be a semisimple eigenvalue ofar, )\i(l) be a semisimple eigen-
value of PT(0)P. Let also T0) be decomposed as in (2.21), angdlR0)Q; be decomposed
as:

RiT'(0)Q; = Q?z@R?

(2 (2

_ [o® @2 9 ||R
= | Q" Q [ 2] 2 | (2.28)

of o o =¥ || R?

Wherez(l2> is the Jordan block corresponding to the eigenva?lﬁ@. Then the eigenvalues of

Pi(l)T(Z) Pi(l) are those of the matrix RR; T (2 QlQ(lz).

2.4 Perturbations of a Nonsemisimple Eigenvalues

As previously we will consider first in this subsection thenfly of operators given in (2.10),
le.,
T(X)=T+xXT

In this case the corresponding coefficients can be calculateneans of the result:

Theorem 2.4.[30] If A(© is an nonsemisimple eigenvalue of multiplicity m of T, with ¢
responding generalized eigenvectots.u., Uy, then the eigenvalugs,(x) (¢ =1,...,m) of
T(x) =T +xT will lie, for small enoughx|, on the circumference of a circle with center c

and radius rx ’/\é(l) x|, where

cz)\<°)+%i<vi,xfu>,
i=

AP =1 (v, Tu)e™, £=1,....m,

where V..., vy are the reciprocal bases forju .., un. And the eigenvector(y) of T(x) is
given by

and

u(x)e ~ Gy + U3 My,

wherey is the eigenvector of T, and is assumed that T is non-derogatithout loss of
generality.

Example 2.5.Let T andT be given by

3 25 -

0 -1 5

(BN =
o |
w
o |
H
| |
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The eigenvalues of T ak? = 3,3, 3, with corresponding generalized eigenvectors given by:

1 1 1
uu=1|01|, w=|2 and = | -3 |.
0 1 -1

The reciprocal basis are
0
-1 |.
2

1 0
Vi = 2 |, ww=| -1 and =
-5 3

Next, in order to apply Theorem 2.4, we made the followingmdations:

(vs.Tw) = <{21”§ j0§ 21] HD

= 2

Therefore,
H() = 3472340 (x?),

Ho(X) = 3+\/_<—1'+\/§> 1/3+0(X/3)7

) = 3492(-3- Y0 #R0(<).

Consider now a more general operaidx). It is assumed that it is holomorphic around
a neighborhood of = 0, or equivalently that admits the expansion (2.11)A® is a non-
semisimple eigenvalue of multiplicity. In this case, according to § 2T{0) admits a Jordan
decomposition in whiclx is block diagonal with diagonal Jordan blocks, @gdconsists of
the generalized eigenvectors associated with. In particular,

A0 g 0
(0)
5= 0 A 0
: 1
0 20

The eigenvalue of (x) can no longer be expanded in the form of (2.20), but insteaa as
Puiseux series [67].

Lemma 2.6.[21] Let A O be a non-semi-simple eigenvalue ¢ with multiplicity m. Then
the corresponding eigenvalues ofX] have the form

1
ui(x):/\<°>+(;41))mx%+---, i—1...m, (2.29)

Whereyi(1> =rmT’(0)0s.
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lllustrate now the above result with the following:

Example 2.6. Consider a matrix operator Tx) € C*** where

0 0 V2 0
0 0 0 2
TW=13 o 0 2y/2e4x (2.30)

0 1 i2v/2e*¥(1—x) 0

A simple computation reveals that(@) has 2 non-semi-simple eigenvaluestt,/2, with
multiplicity 2. More over, we found:

00 0 0
00 0 0
!/ _ .
T <O>_ 00 . 0 8\/§e74lx ’
0 0 —2v2e ¥ ((i—4)+4x) 0
and
—i 72
1 1
o= | -iv2 1 Rl_[ 00 3 3 ]
’ - 2 1 2 2;
1o R

According to Lemma 2.6 we have thatf(0)q; = 2+ 16i, thus we find

pi(x) = V2i+ 2+16ix1/2+o<x1/2>,
(X)) = V2i- 2+16ix1/2+0<x1/2>.

Fig. 2.6 illustrate the eigenvalue behavior.

I
I
w
|
N
I
AN
o
=
N
w
IN

Figure 2.1: Zero loci fox € (—3,1).
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2.5 The Complete Regular Splitting (CRS) Property

The mean goal of this section is to introduce the notion ofsixealledComplete Regular
Splitting Property and the results that enable us to test when an ailgenposses such a
behavior.

Consider now the analytic matrix valued functiof , o). For a fixed value ofr, we callA
aneigenvalueof L(A, o) whenever ddt(A,a) = 0. LetA = Ag be an isolated eigenvalue of
L(A,0) with partial multiplicitiesmy > --- > my. Then,Hryniv and Lancastef53] showed
that there exists a neighborho6tlof A = Ag such that the spectrum &fA,a) in O for all
complexa sufficiently close to zero consists of exadily= my + - - - +my eigenvalues(a),
i=1,...,M. Furthermorej;(a) are algebraic functions af and can be expressed by all the
branches of several Puiseux series [14, 53]:

uv(a):cvaqiv +o(|a|q%), v=1....N g €N, (2.31)

wheredgs > --- > gy andqi +--- + v = M. A completely regular splittindCRS) [77]
property of the eigenvalug@ = Ag at a = 0 corresponds toN = N’, g = m and¢; # 0,
i=1,....N.

Definition 2.1. Let A(A) be an analytic matrix-valued function of a complex variableA
vector-valued function(® ) which is analytic in a neighborhood @ is called a generating
function for AA) of order p athA = Ag if A(A)X(A) = O(|A — Ag|P) asA — Ao.

The following result characterizes the CRS property:

Theorem 2.5([53]). With the notations above, Iat = 0 be an eigenvalue of(,0) of ge-
ometric multiplicity N and algebraic multiplicity M. Supg® also that for every generating
eigenvector x of (A, 0) there exists a generating eigenveckoof (L(A,0))* such that

<g—'c‘1 (0,0)x, x> £0. (2.32)

Then the eigenvalug = 0 possesses the CRS property.

2.6 The Newton Diagram

The purpose of the section is to present a basic tool employ#dte perturbation analysis.
Even though, we will use such a technique only in the third pathe thesis and that such a
results are very well documented (see for example, [11, @@}eferences therein), we decide

to present such a notion in order to give a self-containeggmtation.
Let f (X,y) be apseudo-polynomiahy, i.e.,

n
fxy) = ay, (2.33)
K=0
where the corresponding coefficients are given by,

ak (x) = x Z)arkxf/q, (2.34)
r=
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ark are complex numbergandy are complex variablepy are non-negative rational numbers,

g is an arbitrary natural numbeg,(x) # 0, andag(x) # 0.

In one of his treatise, Newton [102] considered the equaf2o83) with complex variables

x andy, assuming thaf (x,y) can be expanded into a series in positive integral powers of
(Xx—Xp) and(y —Yo). He then sought a solution of (2.33) in the form of a series

y:y0+a(x—x0)£+a’(X—x0)£'+...,

whereg, €', ..., is an increasing sequence of rational numbers. To deterthanpossible val-
ues ofe, a, €, a’, ..., Newton made use of a geometrical approach, now knoviseagon’s
diagram (or Newton’s polygon, Newton’s parallelograng§ince by simple translation any
point on a curve can be moved to the origin, we will only coesieixpansions of the solution
of f(x,y) = 0 around the origin. In this vein, we will consider solutioin(2.33) in the form
of the following series:

Y(X) = YeXE +YerxXE +yprxE 4 (2.35)
wheree < €' <€’ < ---,y¢ #0, or, in abbreviated form,
y(X) = Yex* +V (X), (2.36)
whereV (x) = o(xf) asx — 0.

Definition 2.2 (Newton Diagram) Given a pseudo-polynomial equation of the form (2.33)
with coefficients given by (2.34), plpk versus k for k for k=0,1,...,n (if ax(-) = 0, the
corresponding point is disregarded). Denote each of thesetp by = (k, px) and let

M={m: a()#0}

be the set of all plotted points. Then, the Newton diagraro@ated with {x,y) is the lower
boundary of the convex hull of the $ét

For a given pseudo-polynomié(x,y), the following figure illustrat®efinition2.2.

YA

(0, po)+

LN
n 2T

Figure 2.2: Newton Diagram fofr(x,y).
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Algorithm 2.1 (Newton Diagram Procedurelsiven a pseudo-polynomial (2.33) with coeffi-
cients given by (2.34),

1) Draw first the associated Newton diagram.

2) The leading exponentsin (2.35) are the different slopes of the segments formieg th
Newton diagram.

3) The number of solutions of ordef »are given by the length of the projection on the
horizontal axis of the segment with slope

4) The leading coefficients: yfor each solution of order®are the non-zero roots of the
following polynomial,

i b
( i aoﬂé) =0, (2.37)
1

where i and j are the end points pj) and(j, pj) of a segment of the Newton’s diagram
with slopeg, and §) signifies that the summation runs over only tho&@,) lying on
this segment, i.eg, + {€ = 0 = const.

5) To find higher order terms in the expansion (2.35), we sulieti2.36) into fx,y) =0
and repeat stepslj-(4).

Let us illustrate the above procedure with the following:

Example 2.7. Let
F(EA) =fo(A)+fL(A)E+F(A)E¥ =0,

where
foM)i= A*  (p=3),
fi(A):= =3 (;=1),
f2(A):= 0,
fs(\)i= 1 (p3=0)

In order to construct the Newton diagram, we plot the po{®s8), (1,1) and(3,0), leading
to the figure Fig.2.3.

From the diagram (Fig.2.3) we can see that
&= 2, & = —.

In order to find,, andé&,, we use2.37)obtaining the following equations
1-3&, =0 and —3&,+&3=0.

From these equations, one gets:

, and &, =+V3

Wl

Efl =
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A

Figure 2.3: Newton Diagram fofr(&,A ).

Thus, in accordance wit{R.36), we obtain the principal terms of the solutions:

1
§=ZA%+0(?)  and &= i\/ﬁ)\l/ero(/\l/Z) .
To find the second-order term of the serieg(2135) we substitute each solution into the
original equation. We start with the first solution, writifg= A2+ ¢. Substituting this
expression into the original equation, we obtain

2i7)\6+ (—3/\ +%/\4) {+A%2+3=0. (2.38)

To this equation we again apply the Newton diagram methodbl@tehe point§0,6), (1,1),
(2,2) and (3,0) obtaining figure 2.4.

Figure 2.4: Newton Diagram for (2.38).



2.6 - The Newton Diagram 59

From the diagram, we obtain:

g =5, & =

NI =

Since for the serie@.35)we should have’ > ¢, the expresion obtained fay is inappropri-
ate. as above, we fin@é from the equation

1
—-3{=0
57 3¢ =0,

it follows that
1., 1.5 5
§ =322+ A +o<A )

The second terms of the seri@s35)for the other solutions are found analogously. Sub-
stituting
E=+V3AY2 47

into the original equation, we obtain:
A4 6A £V3AY2Z2 1 73 =0. (2.39)

We construct the Newton diagram using the poifts), (1,1), (2, %) and(3,0) (see Fig.2.5).
We obtaing; =2 and g = % As in the previous case, the second vadhiés inappropriate,

A

| |
I I
1 2 3

Figure 2.5: Newton Diagram for (2.39).

for it is necessary that’ > €. We find{,, from the equation
1+ 6{81 =0

and write 1
= i\/é/\l/z—é/\2+o(/\2).

The higher order terms in the seri€& 35), are found similarly.
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3 Preliminaries and Problem Formulation

This section presents some general ideas that will be ustbe ianalysis developed in all of
the next sections of the first part of the thesis. More prégiges introduce the basic concepts
and describe a part of the analysis using a general equattuding all the particular cases
that will be treated throughout the chapter. The same ides@ncepts can be used to obtain
similar results for different problems as can be seen in (89P8]. It is worth mentioning
that r;ﬂl the results presented in this part are collectedoa®k chapter [97] in a more compact
form<.

3.1 Preliminaries

Let us consider the problem of stability analysis of a gengess of differential equations
(DDE) that can be described in frequency domain by the fallgwcharacteristic equation
H:CxRxR—C

H(s a,B) =Q(s)+P(s)h(s,a,B) =0, (3.2)

where 5" is the variable of the corresponding Laplace transforma@an@ are some parame-
ters controlling the behavior of the system. Throughowt thiapteP andQ are polynomials
andh is a analytic function containing at least an exponentiatfion and making the equa-
tion (3.1) transcendental. Furthermore the followingestant will be considered as being
satisfied:

Assumption 3.1. The polynomials B5), Q(s) are such that s) and s@s) do not have com-
mon zeros.

It is obvious to see that if Assumption 3.1 is violated thea plolynomiald® andQ have
a common factor(s) # constant. Simplifying byc(s) we get a system described by (3.1)
which satisfies Assumption 3.1.

The aim of this study is to present the way the closed-loopesyslescribed by a charac-
teristic equation of the type (3.1), behaves in plagameter-spacdefined by the paifta, 3).
Without any loss of generality, the continuity dependentéhe roots of the characteristic
function with respect to the parameterand (see, for instance, [28] or [32] for the depen-
dence of the roots of DDE’s with respect to delay parametedy)ces the (stability) analysis
to the following problems:

a) first, to detect crossings with respect to the imaginary sixce such crossing are re-
lated to changes in the stability behavior. In other words, eed to compute the
frequency crossing set denoted Qy which consists of all positive frequencies corre-
sponding to the existence of at least one characteristicrothe imaginary axis. Such
a characteristic root will be callettitical. As we shall see in the cases treated in the
next sections, the corresponding frequency crossing setlisced to a finite collection
of intervals. This set will be derived by using geometriclangnts.

b) second, to describe the behavior of critical roots unlanges of parameters (o, 3)
parameter space. More precisely, we will detect switchelsraversals corresponding

2This book chapter includes I.-C. Mamescu, K. Gu, my Ph.D. advisor and myself as authors
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to the situation when the critical characteristic rootsserthe imaginary axis towards
instability, and stability, respectively. Excepting soexplicit computation of the cross-

ing direction, we will also briefly discuss the smoothnesypprties together with some

appropriate classification of the stability crossing baames. The geometric arguments
will be also useful in defining our classification.

Another useful related concept is represented by the cteairstic crossing curves consist-
ing of all pairs(a, B) for which there exists at least one valwes Q such thaH (iw, a, ) =0.

Remark 3.1. » The first issue pointed out above will be solved separatelgdch par-
ticular class of systems considered in the next sectiongh&umore, in each case we
shall give the analytical expression of the crossing curves

» The second issue is presented in this section considdratgte frequency crossing set
and the stability crossing curves are known.

3.2 Smoothness of the Crossing Curves and Crossing Directio

In the sequel, let us consider that the frequency crossih§2ss given and the stability
crossing curves are described by

a = d(w)
{B — Blw.a)’ weQ. (3.2)

Let us also denote by}, an arbitrary crossing curve and consider the following deoo-
sitions into real and imaginary parts:

. .0H(s,a,B)’
Ro+ilp = i——=——=| |
Js s=iw
. dH(s,a,B)‘
Ri+ll; = ——557 ;
dB s=iw
. dH(s,a,B)'
R+l = ————= .
Jda s=iw

Then, sinceH (s, a,B) is an analytic function o, a and 3, the Implicit function theorem
(see, [85] for further details) indicates that the tangdrifcan be expressed as

da

do :(Rl Rz)_l<Ro): 1 (Rllo—Roll) (3.3)
% 1 |2 lo Rolq1 — Rylo Rolo —Rolg /)’ :
dw s=iw

provided that
Rilo — Roly #0. (3.4)

It follows that 7}, is smooth everywhere except possibly at the points whenerg(8.4) is not

satisfied, or when
da dp
—=—=0. 35
dw dw (3.5)
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Remark 3.2. If (3.5) is satisfied then straightforward computationswhes that § = Io = 0.
In other words s= iw is a multiple solution of (3.1).

The next paragraph focuses on the characterization of tissicig direction corresponding
to the curves defined by (3.2). We will call the direction oé tturve that corresponds to
increasingw the positive direction We will also call the region on the left hand side as we
head in the positive direction of the curthee region on the left

To establish the direction of crossing we need to conssdand 8 as functions of =
o +iw, i.e., functions of two real variables and w, and partial derivative notation needs to
a Jf
0w dw

. Corresponding to a

be adopted. Since the tangentffalong the positive direction i , the normal

JB da
0w’ dw
pair of complex conjugate solutions of (3.2) crossing thagmary axis along the horizontal

a Jp
0o’ do
crossing curves from the right hand side to the left hand, sadeair of complex conjugate
solutions of (3.2) crosses the imaginary axis to the rigktpiane, if

<0_0’@_@‘7_“) o (3.6)

dwdo Jdwdo

to 7n pointing to the left hand side of positive direction(

direction, (a,3) moves along the directio . So, as(a, ) crosses the stability

i.e. the region on the left of;, gains two solutions on the right half plane. If the inequyalit
(3.6) is reversed then the region on the leftfgfloses two right half plane solutions. Similar
to (3.3) we can express

Ja L
ARRCINES
B 2 11 —Ro
00 / s—iw
B 1 RoR2 + lol2
- R2I1—R1I2(—R0R1—IOI1)' (3.7)

Proposition 3.1. Assumew € Q, a, 3 satisfy (3.2) and s- iw is a simple solution of (3.1)
and H(io/,a,B) #0,Vw' >0, w # w (i.e. (a,B) is not an intersection point of two curves
or different sections of a single curve). Then(asf3) moves from the region on the right to
the region on the left of the corresponding crossing curveaia of solutions of (3.1) crosses
the imaginary axis to the right (through=s +iw) if Rol; — R1l2 > 0. The crossing is to the
left if the inequality is reversed.

Proof. Straightforward computation shows that
da dB 9B da _ (R+13)(Ral1—Rul2)
dwdo dwdo ).,  (Rl1—Ril2)2
Therefore (3.6) can be written &sl; — Ryl> > 0. O

Any given direction,(ds, d>), is to the left-hand side of the curve if its inner producttwit

the left-hand side normél— 9B oa

900’ 9o ) is pOSItIVE le.,

9B 4,99 -0 (3.8)

—thg T %5,
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from which we have the following result.

Corollary 3.1. Letw, a and 3 satisfy the same condition as Proposition 3.1. Therica$)
crosses the curve along the directi@h, d;), a pair of solutions of (5.4) crosses the imaginary
axis to the right if

d1(Relo — Rol2) 4 d2(Rylo — Rol1) > 0. (3.9)

The crossing is in the opposite direction if the inequaktyeversed.

Proof. Writing out the left-hand side, then (3.8) becomes
di(Ra2lo — Rol2) +da(Ralo — Rol1)

Rol1 — Rylo
If (d1,d) is in the same side as the left-hand side normal, then, as we atong thgd;, dy)

direction, the crossing is from the LHP to the RHP if the ledind sides of (3.10) arf@yl, —
Rol; have the same sign, i.e., their product is positive. O

> 0. (3.10)

Remark 3.3. It is worth to mention, that all above ideas follows the samed that those
developed by Gu et al. in [40].

4 Output Feedback (Proportional Controller)

In order to give a complete presentation of the low-ordetr@dlers for continuous-time sys-
tems, we shall recall in the sequel some results conceroirtiget delayed output feedback
case (see, [98], for further details).

Consider the following class giroper SISGopen-loop transfer function:
P(s)
Q(s)

where (A b,cT,d) is a state-space representation of the open-loop systetrgamsider the
control law.

Hyu(s) := =c'(sh—A)"tb+d (4.1)

u(t) = —ky(t — 7). (4.2)

The interest is to findll the pairs (k, ) such that the controller (4.2) stabilizes the corre-
sponding SISO system (4.1The corresponding characteristic equation of the cldsef-
system simply writes as:

Q(s) +kP(s)e™>" = 0. (4.3)

Precisely, we deal with a characteristic equation of typ&)(&here the pair of parameters
(a,B) is replaced byk, 7) andh(s,k, 7) = ke~S". The aim of this section is to illustrate the
underlyingstability/instability mechanismis presence of delays, that is to see the way the
closed-loop system behaves in fherameter-spacdefined by the paitk, 7).

4.1 Preliminaries and Problem Formulation

As mentioned above, in this section we deal with the follagywharacteristic equation:
H(s,k,T) = Q(s) + kP(s)e>" =0 (4.4)

The polynomiald® andQ will satisfy the following constraints.
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Assumption 4.1. One assumeded Q) > dedP).
Assumption 4.2. P'(iw) # 0 whenever RPiw) = 0.

The Assumption 4.1 is needed in order to ensure that for a frakce ofk, the real part
of any characteristic roots is bounded to the right. Thisiagdion implies thak will vary
in a limited domaink| < kmaxsince larger gain values will induce instability for infiegimal
delay values. The Assumption 4.2 is imposed to exclude samgesingular cases in order
to simplify the presentation. It is noteworthy that Assuiopt3.1 is imposed even if it is not
explicitly mentioned.

First at all, we briefly present some necessary considespooposed in [107] using a
continuity principle argument for the dependence of theés@d the characteristic equation
with respect to some real parameter (the damour study).

Introduce now the following Hurwitz matrix associated torsogeneric polynomial

As) = iia*-s”ai:

[ a az as ... am,-1 ]
d a a4 ... aAxn,-2
0 a az ... @n,-3 naxn
HA =1 0 a a ... am 4 | ER™™, (4.5)
i 0O 0 0 ... an

where the coefficientg, are assumed to be zer & 0), for all| > n,.

ConsiderH (Q), H(P) € R™" where de¢Q) = n > m= dedP), the coefficientsj =0
for all | > nand the coefficientp; =0 for all| > m.

Consider also the séft of the roots ofH (s, k, 0) located in the closed right half plane, and
the quantitykmax given by:

(4.6)

. {‘;';2, if deg(Q) = degP)

+oo, if deg(Q) > degP)

Such a quantity will define the controller’s gain domain. slteiasy to see that while in the
case of a strictly proper transfer (d€y > degP)), we do not have any restriction on the
gain, the case of a proper transfer (l@g= deg P)) imposes such restrictions. The expla-
nation can be resumed as follows: in this last case, the sjuoraling closed-loop system is
a quasipolynomial oheutraltype (see, for instance, [48, 103] for further discussiomshe
topics), and one explicitly needs further constraints anghin, that ik should satisfy the
inequality |k| < kmax= 1/ | d | (stability of the corresponding difference operator).ded, if
this is not the case, larger gain values will induce insiigleven for infinitesimal small delay
values (de¢Q) = ded P) with unstable difference operators) as pointed out by [91].

As a consequence of the remarks above, it is important td pairthat for allk € R, such
that| k | < kmax card{) is finite, where card) denotes the cardinality (number of elements).

Lemma 4.1. Let A1 < Az < ... < Ap, with h< n be the real eigenvalues of the matrix pencil
2(A)=AH(P)+H(Q) inside the interval —Kkmax Kmax)-
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Then,cardl{) remains constant as k varies within each interi/al A 1). The same holds
for the intervals(—Kkmax A1) and (An, kmax)-

It is worth mentioning that the lemma above gives a simplenaetto compute cafd/)
by computing the generalized eigenvalues of the matrixip&iig ). Such a quantity cafél)
is needed to derive the stability regions in the parametacespefined by the gain and delay
parametersk, 7).

4.2 Stability Crossing Curves Characterization

The following results characterize the stability crossingves in thgk, 7) parameter space.
The presentation is as simple as possible, and intuitiveneSexamples illustrating various
case study are considered at the end of this section.

4.2.1 Identification of Crossing Points

Let 7 denote the set of alk, 7) € R x R, such that (4.4) has at least one zero on imaginary
axis. Any(k,T) € T is known as arossing point The set7, which is the collection of all
crossing points, is known as t&ability crossing curves

We consider also the s& of all real numbeww such thai w satisfy (4.4) for at least one
pair (k,7) € R x R;.. We will refer toQ as thecrossing set

Remark 4.1. If wis a real number andk, 7) € R x Ry then

Q(—iw) + kP(—iw)e'®T = Q(iw) + kP(iw)e 1wt
Therefore, in the sequel, we only need to consider posidive
Proposition 4.1. [98] Given anyw > 0, w € Q if and only if it satisfies:
|P(iw)| > O, 4.7)

and all the corresponding pair&, 7) can be calculated by:

K(w) = i)g((::j)) ‘; (4.8)
In(@) = é(AP(iw)—AQ(iw)+(2m+8k+ 1)) (4.9)
m=0,£1,+2,...
0if k>0
whereg, = { 1ifk<0 "

Remark 4.2 (small gain) [98] If the open-loop SISO system does not include oscijato
modes, that is (¥) has no roots on the imaginary axis, then some simple algelnainipu-
lations prove that for all the gains k satisfying the follogiinequality:

1

Piw)|

| K| — oy
sup{ Giel }

(4.10)
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the closed-loop system (4.4)hgperbolic(see [47, 103] for further details on such a notion),
that is there does not exist any crossing roots on the imayiaais for all positive delays
7. In other words, the closed-loop system is stable (unstdbleall delays value if it is
stable (unstable) in the case free of delays. Furthermbe fiequency-sweeping test above
(4.10) gives a simple way to exclude some k-interval fronfb&ggnning, since in such a case
crossing roots can not exist.

However, it is important to point out that such a frequenayesping test (4.10) losses all
its interest if if the polynomial (&) has roots on the imaginary axis (the corresponding upper
bound becomeB), that is in the case of linear systems including oscillgtorodes (such a
case will be considered later in a paragraph dedicated toasdhastrative examples).

4.2.2 ldentification of the Crossing Set

In the circumstances presented above, we can askumitbin some finite intervala, 8] C
(—kmax, kmax), Which contains all generalized eigenvaldesf the matrix pencik(A ), but ex-
cluding thek-interval given by (4.10) if the SISO system does not incladeillatory modes.
Lemma 4.1 ensures us that the choice of the intelwgB] includes all the remaining pos-
sibilities for the system free of delay. In such a case, ddfine min{| a |,| 8 |} > 0, and
y:=maX| a |,| B |} <. Then, there are only finite number of solution® each of the
following three equations:

|Qliw) | = 4 |P(iw) |, (4.11)
|Qliw) | = fu|P(iw) |, (4.12)

and
Piw) = 0, (4.13)

becausd?, andQ are polynomials satisfying the Assumptions 4.1, 3.1 and Flzerefore,
the crossing sef will be defined by all the frequencies > 0 satisfyingsimultaneouslyhe
inequalities:

{ 6| Piw) [<] Qi) |[< fu| Pliw) |,

| P(iw) |> 0. (4.14)

In conclusion, due to the form of (4.14), and from the Assuams 4.1 and 3.1, the corre-
sponding crossing s&? consists of a finite number of interval®enote these intervals as:
Q1,Qo, ..., QnN. Then:

Remark 4.3 (strictly proper SISO case)n the case of a strictly proper SISO systgpak= «
(that is no any constraints on the gain k), we note that far(8, ) (or k € (—, a)) we can
still expresH2 as a finite number of intervals, but one of them has an infimte e

Remark 4.4 (Invariance root at the origin)f Q(0) /P(0) € [a, B], then 0 will be a character-
istic root for all T if k = Q(0) /P(0), since €' = 1 for s= 0, independently of the delay value
T. The last remark allows us to eliminate the valu@P(0) from Q if it is the case.
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Remark 4.5 (Crossing characterizationThe frequency-sweeping test (4.14) above gives all
the frequency intervals for which crossing roots exist fa torresponding chosen gain inter-
val, but it does not give any information on tt@ssing direction

In other words, such a test does not make any distinction dextswitches(crossing
towards instability) andeversalgcrossing towards stability) [103]. Such a problem will be
considered in the paragraph concerning the direction oksing.

4.2.3 Crossing Curves Characterization

In the sequel, we conside); = [oq' '], foralli=1,2,...,N. Without any loss of generality,
we can order these intervals from left to right, i.e., for anye Q;;, wp € Q;,, i1 < i, we
havew, < wy.

We note thatv] can be 0 and in this ca®y is open to the left.

It is clear thatk(w)), k(«f) € {a,B} for all i = 1..N if w} # 0. We will not restrict
ZQ(iw) andZP(iw) to a 2rrange. Rather, we allow them to vary continuously withinheac
interval Q;. Thus, for each fixedh, (4.8) and (4.9) give us two continuous almost everywhere
curves. We can lose the continuity of the curve in the poirtickv correspond to the case
Q(iw) = 0. For example, iQ(iw") is a real polynomial and its sign is changinguatt, then
Z(Q(iw)) is not continuous irw*.

It should be noted that condition (4.8) akfinite, implyP(iw) #0, VYw € Q. We denote
the curves defined by (4.8) and (4.9) V\/Utﬂtt Therefore, corresponding to a given interval
Q;, we have an infinite number of continuous stability crossimg/eSTimi, m=0,£1+£2,....

Finally, is worth mentioning that, for somm, part or the entire curve may be outside of
the rangeR x R, and therefore, may not be physically meaningful. The ctibe of all the
points in7T corresponding t&; may be expressed as

Ti = U (T NRXRY))U(T™ N(RxRL))]

mM=—oo

Obviously,

Also it is easy to see that, for ea€h, we define two curves, one to the right of D& axis
and the other to the left. According to the fixed limétsf of the interval where varies we
can eliminate some of these curves. The end points of thesescare classified as follows:

Type 1. It satisfies the equatiok(w) =
Type 2. It satisfies the equatiok(w) =
Type 3. It equals 0.

Obviously, onlycu'1 can be of type 3. We note that all the crossing curves aretsiua
the vertical stripD between the linek = a andk = 3. Now, let w, be an end point of the
interval Q;. We have already said that ea@li'" is an continuous almost everywhere curve,
s0, (k(w.), Tm(w,)) is an end point of;™*, and it can be characterized as follows:
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o If w, is of type 1, therk(w,) = a and1(w,) are finite. More precisely;™" intersects
the vertical linek = a, which is the left bound of the strip.

* If w, is of type 2 therk(w,) = a and 7(w,) are finite. Or, we may say thaf™"
intersects the vertical link(w) = B, which is the right bound of the strip.

* If w, is of type 2 thenr approachese andk approache€(0)/P(0). In other words,
7™ has a vertical asymptote given ky= Q(0)/P(0).

Remark 4.6. The previous description holds also ff"".

As defined previously we say that an inter@alis of typelr if its left end is of typd and
its right end is of type. Tehn, itis possible to divide accordingly these interviale 6 types.

4.2.4 Smoothness of the Crossing Curves and Direction of Cssing

For a giveni, we will discuss the smoothness of the curves7ii™™= and thus7 =
+00
U [(T™n(RxRL))U(T™ N(RxRy))]. For this purpose, we considkrand T as

m=—o
implicit functions ofs = iw defined by (4.4).

Proposition 4.2.[98] The curve T”i is smooth everywhere except possibly at the point cor-
responding to s= iw in any one of the following cases:

1) s=iwis a multiple solution of (4.4), and

2) wis a solution of Qiw) =0< k=0.

The direction of crossing is characterized as follows:

Proposition 4.3.[98] Let w € («, &) and (k,T) € 7; such thatiw is a simple solution of

(4.4) and Hiw',k, T) # 0,V > 0, w # w (i.e. (k,T) is not an intersection point of two
curves or different sections of a single curve/gf Then a pair of solutions of (4.4) will cross
the imaginary axis to the right, through=ss +iw if Ryl — Ryl> > 0. The crossing is to the left
if the inequality is reversed.

4.3 lllustrative Examples

In the sequel, we consider some classical examples in dratlitre (first-order, second-order
oscillatory systems).

Example 4.1(Scalar delay caselConsider the system given by the transfer function

Hyu(s) = S—i—ia (4.15)

subject to the control law (1) = —ky(t — 7). The corresponding characteristic equation of
the corresponding closed-loop system can be written as:

s+a+ke s =0. (4.16)
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For a> Qitis obvious that either for k= 0 or T = 0 and a+ k > 0, we obtain a stable equa-
tion. On the other hand using Proposition 4.3, we derive #ilhthe crossings are towards
instability.

It is noteworthy that in a completely different frameworkeBe [15] considered &k 0
and he proved that for K a one gets a delay independent stable system. He also prhoaed t
for k > a one has only one stability intervi, 1), wheretg is a decreasing function of k.

Using the above method for-a 3 we can draw the crossing curves and establish the
stability region as in figure 4.1. In this case, we have:

SO
50
40

30 stability region

20

10,

% 2.5 3 35 4 45 5 7k

Figure 4.1:7™", me {0,1,2} for the system (4.16)

0ifk > -3,
cardl) = {1ﬁk<—3
(4.17)

and for ke [—5, 5] the crossing se® consists in one intervdl0, 4] of type 31. Therefore, we
obtainonly onestability interval for k> 3, and this interval iJ0, 7o), whererg is given as a
function of the gain "k" by:

1 ) 1 vkZ—9
To(k):z)(n—arctan§> = 75 n—arctanT ,

which is nothing else that the formula given by Boese for tireesponding upper bound of
the (closed-loop) stability interval.

Now consider the case-a —3 (open-loop system unstable) and K—5,5|, once again
we deriveQ = (0,4] and

Oifk >3
C”*”*:{1Wk<3'

Since all the crossing direction are towards instabilityjd sufficient to plot only the first
stability crossing curve. As expected (figure 4.2), theesgdiecomes unstable agncreases.

Example 4.2(Linear (second-order) oscillatorsfonsider the transfer function

1

o) = g (419)
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AT
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Figure 4.2:70°% for the system (4.16) wita = —3

subject to the control law () = —ky(t — 7). The corresponding characteristic equation is
given by:

S +2+ke ST =0. (4.19)
For k € (—2,0) the results regarding stability intervals of the systems ba found in [107]
and they simple say that far € O,%“(' the system is stable (see also [1] for a

different stability argument). It is easy to see that the benof stabilizing delay interval is a
decreasing function dk|.

Our computation in this case point out that foek(—2, 0) the crossing se® consists in
one interval(0, 2] of type 32.

According to Proposition 4.2, all the crossing curves argogintinuous in the points that
correspond to k=0 and it is easy to see that:

lifk < -2,
cardlt) = { 2ifk > —2.

Proposition 4.3 simply says that fork 0 the region on the right hand side of each crossing
curve has two more unstable roots.

Remark 4.7. If w € (0,+/2) thenty(w) = 0 as we can deduce from the computation below:

m:%uuyzp—w%+mﬁnm:o,Vwemwﬁ (4.20)

More precisely (see figure 4.3), we recover the result predas [105, 107].

Example 4.3(Third-order unstable system)his example is only to illustrate that it is possi-
ble to have most types of the curves enumerated in the ctadigifi section. In the sequel we
present a dynamical system with crossing curves of type2, 32and 32.

Consider the transfer function

1

T $_221+95-8 (4.21)

HyU(S)
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Figure 4.3:1;, me {0,1,2,3} versusk for the system (4.19)

subject to the control law (1) = —ky(t — 7). The corresponding characteristic equation of
the closed-loop system is given by:

s?— 282 +9s— 8+ ke ST = 0. (4.22)

We note that this system can not be stabilized by any statjpuibfeedback. Indeed, straight-
forward computations show us that:

1 if k<-10
cardi/) =< 3 if ke (-10,8),
2 if k> 8.

Takinga = —10 and 8 = 10, we getQ = (0,1] U [2,3] and 7;"" is of type 32,7,"" is of
type 31,7, is of type 11,7, is of type 22. We present the last three curves in the figures
4.4-4.5.

Y

2l N

1L m=20 > o

L L I I I I <

T T
8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 98 k710

Figure 4.4: 7", me {0,1,2} for the system (4.22)

Example 4.4(Sixth-order unstable systemin this example, we consider a system that can
not be stabilized by a static output feedback, but it can bbilkted by a delayed output
feedback. This example is borrowed from [107].

Consider the system:

1

— 4.23
S+ p1®+ post+ P3P+ pas? + PsS+ Ps ( )

Hyu(s)
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Figure 4.5:7™" me {1,2,3},i € 1,2 for the system (4.22)

where

p1 = —6.000000@— 04, p,=1.4081634+00, p3=—56326538—04,
ps =4.348189k—-01, ps=—8,696377k—-05 ps=2.665556%—02.

Using Lemma 1, we obtain:

3 if k < —0.0707886

cardas)— | 5 1 K€ (-0.0707886: 00266556,
6 if (—0.0266556;00120036,
4 if k > 0.0120036

The stability crossing curves and the first two stabilityioegfor k € (0,0.16) are plotted in
figure 4.6, whereas figure 4.7 shows the dependence of th& gaia function oto.

P g \ \
7 m=3 i
£
Y
20K —mn=0 1534
; 15_
=) .. .
alr - W5 stability regions
144

A 2

T i :IJ‘_) | 1331

‘ k
>

| | |
0 001 002 003 004 005 006 o 0 1 2 3 4 5 b i 8 910710

Figure 4.6:Left:Stability crossing curves for the system given by 8%; Right: Zoom of the stability
regions.
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Figure 4.7:The dependence of the gdinas a function ofw for some positive frequencies for the
system (4.23).

5 The Geometry of Pl Controllers for SISO Systems with
Input/Output (I/O) Delays

As discussed in [109], there exists several methods fordh&allers construction, and several
technigues have been proposed for the analysis of theistadnid of the performances of
the corresponding closed-loop schemes. Among them, we eamtion the computation of
stabilizing PI controller's parameters considered by [1235] using a Pontryagin approach.
More precisely, [123] addresses the control of first-ordestesm with a time-delay in both
cases (stable, and unstable delay-free systems), andd&ag with some robustness issues
in terms of delays for the closed-loop system under the agBamthat the delay-free system
can be stabilized by a proportional controller.

In order to give a complete presentation of the low-ordetradiers for continuous-time
systems, we shall recall in the sequel some results comgetaithe Pl controller case (see,
[99], for further details). In this vein, we are interestedcharacterizing the stability by the
crossing boundaries in the parameter-space defined by tben@bller's parameters. By a
crossing boundary, we understand the set of parametershichwhe corresponding char-
acteristic equation has at least one root on the imaginag é&uch a result offers some
alternative analysis ways to the approach considered (8; f135].

5.1 Problem Formulation
Consider the following class atrictly properSISO open-loop systems subject to input delay:

{ X(U) = AXO)FbUL—T), 4y pn i) e R (5.1)

y(t) = c'x(t)
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with the transfer function:

1 P(s) _
H — T o — A 1 ST _ 1 \Y) nST 2
yu(8) =¢' (sh—A) "be Q(S)e (5.2)
In this section the loop is closed using a classical PI cdletr& (s) of the form:

K(s):k(l+I) :kp+ﬁ. (5.3)

S S

It is noteworthy that in some situation the existence of a&tuhelay in the actuating input may
induce instability or poor performance for the closed-l@gpeme (see, for instance, [103]
and the references therein). At the same time, there exigtgion when the presence of an
appropriate time-delay in the actuating input may have fiposite effectgtabilizing effect
(see, for instance [1, 107]). However, many problems in @secontrol engineering involve
time-delays, thus they can not be neglected. Under the almmsderations, the closed-loop

system can be expressed as:

H (s kp, ki, T) = Q(s) +P(s) (kp + %) e T =0, (5.4)

which is a quasi-polynomial (see, e.g. [39]) with an infimtenber of roots [48].

The interest of the this section it to show the explicit coiodis on the parameters pair
(kp, ki), such that the closed-loop system (5.4) is asymptoticédlyle.

In order to simplify the presentation and without any losgi@herality, we consider that
the Assumption 3.1 holds, that is the polynomia(s), Q(s) are such thal(s) andsQ(s) do
not have common zeros.

5.2 Stability in the Controller Parameter-Space

In the sequel, we are interested in the behavior of the clusmal system (5.4) for a fixed
delay valuer. More precisely, for a givem = t* we search the crossing frequenciesand
the correspondingrossing pointsn the parameter spacky, k) defined by the PI control law
such that (iw, kp, ki, 7*) = 0. Since the delay value is fixed, the characteristic equ#&ict)
can be seen as a particular form of equation (3.1) where thé¢@a3) is replaced byky, ki)

andh(s kp, k) = (kp+ g) e ST,

Remark 5.1. Using the conjugate of a complex number we get

H(iw,Kp, ki, T) = 0& H(—iw,kp, ki, T) =0.
Therefore, it is natural to consider only positive frequiescthat is the frequency crossing set
Q C (0,0).
5.2.1 Stability Crossing Curves

Considering that the s€l is known we can easily derive all the crossing points in thaipa
eter spacekp, ki).
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Proposition 5.1.[99] For a givent > 0 andw € Q, the corresponding crossing poifky, ki)

is given by: o)
W) jwrt
ko — —00 (P(iw)el ) (5.5)
o Q(IO)) iwT
k._w~D<P(iw>e' ) (5.6)

Remark 5.2. For all w € Q we have Riw) # 0. Indeed, it is easy to see thatifc Q, then
there exists at least one paikp, ki) such that Hiw, kp, ki, 7) = 0. Therefore, assuming that
P(iw) = O we get also Qiw) = 0 which contradicts Assumption 3.1.

Remark 5.3. Itis important to point out that the controller’s gaing &nd k includeexplicitly
delay information. Furthermore, throughout the chapteg assume that the corresponding
input delay is (perfectly) known, and it is not subject to ammgertainty. The way the de-
lay parameter affects the crossing boundaries can be alstyaad using similar geometric
arguments, and, for the sake of brevity, it is not considéere.

5.2.2 Analytic Characterization of the Crossing Set

In the sequel, we are interested in finding the crossing pdky ki) such thatk, andk;
arefinite. This will not restrict the usefulness of the following résuwsince the controller
parameters can not be set to some infinite values in prasitcaition.

Proposition 5.2. [99] Let ki > 0 and k' > O be given. LeleW denotes the set of all
frequenciesw > 0 such that s= iw satisfies equation (5.4) for at least one pair(kf, ki) in
the rectanglgkp| < ki, |ki| < k*. Then, the seDy. - consists of a finite number of intervals
of finite length.

5.2.3 Smoothness of the Crossing Curves

When w varies within some interva®,, the equations (5.5) and (5.6) define a continuous
curve. Using the technique developed in Subsection 3.2a{see[40] and [98]), it can easily
be seen that the next result holds.

Proposition 5.3. [99] The curveT, is smooth everywhere except possibly at the point corre-
sponding to s= iw such that s= iw is a multiple solution of (5.4).

The crossing direction is then obtained directly from Psafion 3.1 by replacindga, 3)
with (kp, ki).

Remark 5.4. Straightforward computations show thatlR— Ryl1 is always positive. Thus,
a system described by a closed-loop characteristic equatidype (5.4) may have more than
one stability region in controller parameter spage,, ki) if one of the following two items is
satisfied:

* it has one or more crossing curves with some turning potis direction in controller
parameter space changes - see for instance Example 8.7).

« it has at least two different crossing curves with oppoditection in (kp, ki) - space.
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5.3 lllustrative Examples

In this section, we present several examples in order td pairthe usefulness of this method-
ology in various situations.

Example 5.1(Scalar system)First, we validate our results by treating an open-loop $ab
scalar system already studied in the literature (see fotanse [122, 111]). More precisely,
we consider

Q(s)=4s+1, P(s)=1, (5.7)

and we easily find the corresponding closed-loop charastierequation

H(s k T,7) =4s+1+ (kp+ %)esr.

Takingt = 1 (as the authors of [122, 111]) and plotting\ersus k we obtain the figure 5.1.
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Figure 5.1:Stability crossing curve in thék,, ki) space for the system given by (5.7)

Using Proposition 3.1 we derive that all the crossing directaretowards instability

On the other hand, the characteristic equation reveals thatsystem given by (5.7) is
stable only if k> 0. Therefore, in order to obtain the boundary of the stabiégion in the
(kp, ki) space, we search the first interval@hwhere k> 0. Explicitly, we solve the equation

wlm ((4iw+ 1)ei“’> >0,

and we getw € (0,1.715). Using (5.5) and (5.6) the boundary of the stability regiarthie
(kp, ki) space is plotted in figure 5.2.

We note that the same boundary of the stability region has bb&ined in [122, 111] by
using a different argument.
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Figure 5.2:The boundary of the stability region in tifky,, ki) space for the system given by (5.7)

Example 5.2(Double integrator subject to input delayJonsider now the case of a double
integrator subject to input delay:

Closing the loop with the PI controller:

K(s) = <kp+%) ,

the characteristic equation of the system writes as:
S+ (kp+ %) e ST =0. (5.8)

One obtains:
kp = w?cogwT), k= —w’sin(w1).
Thus, kand k, are even functions ab. In other words it is sufficient to plot kersus k for

positive values ofv. We derive again that the number of unstable roots is getsirger when
the distance to the origin increases.

All the crossing directions are towards instability. Tadsiimto account that the system in
absence of any control is unstable, we conclude that themsysan not be stabilized with a
PI controller. The crossing curve for the system is plottetigure 5.3.

Example 5.3(An academic example)n the sequel we consider the unstable system whose
dynamics is expressed by the following transfer functi@b]{f

(s—1)e~>

Hy= = 2~
W™ 05s+05
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Figure 5.3:Stability crossing curve in thék,, ki) space for the system given by (5.8)

The characteristic equation of the closed-loop system siyguthe Pl controller is given by
s> —0.5s+ 0.5+ (s—1) <kp+%) e 3=0. (5.9)

Straightforward computations show that

. (0.5—0.5w?) cos 2w+ w>sin 2w
P 1+ w? ’
(0.5—0.5w?) wsin 2w — w* cos 2w

1+ w?

k =

As we have pointed out before we only need to consider thexgas@. Plotting k versus k,
one obtains the border of stability region as illustratedigure 5.4.

The conclusion in figure 5.4 is obtained taking into accobat stability crossing curve, it
has a turning point. Analyzing the direction of this curve@an see that all the crossings are
towards instability except the one concerning the smabittg region pointed out on figure
5.4.

6 The Geometry of PD Controllers for SISO Systems with
Input/Output Delays

In this section, we roughly present the characterizatiorthef stability regions in the
parameter-space defined by the PD controller's parametdiare precisely we adapt the
methodology proposed in the previous section to the casdotdntrollers. For the sake
of brevity, since the analysis is based on the same argunjergsented in the PI control
framework) and does not change in the main aspects, we datestteo much into details.
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Figure 5.4:The boundary of the stability region in tifky,, ki) space for the system given by (5.9)

6.1 Problem Formulation

Consider again the class sfrictly proper SISO open-loop systems subject to input delay
given by (5.1) with the transfer function (5.2). In this sentthe loop is closed using a
classical PD controlleK(s) of the form:

K(s) =k(14+Ts) =kp+Kkgs. (6.1)
Under the above considerations, the closed-loop systerhearpressed as:
H (s, kp, kg, T) = Q(S) + P(s) (kp + kys) €' = 0. (6.2)

The problem considered in this section can be defined asv®ilo

Problem 6.1. Find explicit conditions on the parameters pdky,kq), such that the closed-
loop system (6.2) is asymptotically stable.

The Assumption 3.1the polynomials Bs), Q(s) are such that Ps) and s@s) do not
have common zerosjakes sense in the PD controller framework and is kept alsaglthis
section.

6.2 Stability in the Controller Parameter-Space

In the sequel, we consider that the delay valigfixed and we search the crossing frequencies
w and the correspondingrossing pointsn the parameter spacép,ky) defined by the PD
control law such thalt (iw, kp,kq, T) = 0.

As we have pointed out in the previous section, the numberaisrin the RHP can change
only when some zeros appear and cross the imaginary axistiite, thefrequency crossing
setQ consisting of all real positivev such that there exist at least a p@ip, kq) for which

H (iw, kp, kg, T") = Q(iw) + P(iw) (kp+ ikgw) e7'9T = 0. (6.3)
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Remark 6.1. Similarly to the PI controller case, using the conjugate abanplex number we
get:

H(iw,, kp, kg, T) =0 H(—iw,kp, kg, 7) =0
Therefore, it is natural to consider only positive frequies¢that isQ C (0, ).
6.2.1 Stability Crossing Curves

Mimicking the analysis made in the previous section we artovthe following results:

Proposition 6.1. For a givent > 0 and w € Q the corresponding crossing poitkp,ky) is

given by: oliw)
kp=—0 (me'm) (6.4)
1 Q(iw) jer
kd_—E)D(P(iw)e' ) (6.5)

Proof. Following similar lines to the ones proposeddroposition5.1, we have that (6.2) can
be rewritten as: .
Q('w) eiwr

P(iw) — (kp+iwky).
Since kp, kg andw are real, the previous relation states that the real palnedeft hand side is

equal to—kp whereas the imaginary partiswky. Next, some straightforward computations
allow deriving (6.4) and (6.5). O

Unlike the PI-controller, in the PD-controller case if d@¢s) = dedP(s) + 1, some addi-
tional attention must be paid. Such a situation is summaizethe following result:

Proposition 6.2.LetT € R. Then, the following straight lines belong to the stabitityssing
curves:

(_q_g,kd) if degQ(s) > degP(s) +1
( kd> ( ) (kp,—‘pjjl) if degQ(s) = degP(s) + 1

where pand q are the coefficients of the polynomialédPand Q(s), respectively:

Zps Q(s Z)q.

Proof. Let us consider first the case d@gs) > degP(s) + 1. In such a situation, we observe
from (6.3) that, forw = 0, the stability crossing curves satisfy:

Q(0) +P(0) (kp+ky-0) = 0,
_ %
Po

(6.6)

pnl

Since, the above equation holds forlgl) we conclude tha( kd> belongs to the stability
crossing curves.
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Next, if degQ(s) = degP (s) + 1, then system become of neutral-type [103] and, in addition
the previous boundary, we must take into account that treedidoop characteristic equation
(6.2) possesses a neutral chain that asymptotically apipesahe vertical line [48]:

D(s):3|n(’kdp”—l).

T On
Since In([x|) > 0 [x| > 1, this implies that the straight linep, - ]g—‘) and (kp
belong to the stability crossing curves.

On
Pn

)

6.2.2 Analytic Determination of the Crossing Set

In the sequel, we are interested in finding the crossing pdky ky) such thatk, andky
arefinite. This will not restrict the usefulness of the following résuwsince the controller
parameters can not be set to some infinite values in prasitcaition:

Proposition 6.3. Let k; > 0 and kj > 0 be given. LerE,ké denotes the set of all frequencies
w > O satisfying equation (6.3) for at least one pair(&p, ky) in the rectanglek,| <k, [kq| <
ki. Then the S@k;,k;; consists of a finite number of intervals of finite length.

Proof. The proof follows the idea presented in Proposition 5.2. driessing sef is derived
solving the polynomial inequality:

Qliw)|? 2 2. 2
- < (K : . 6.7
’P(lw) < (kg)“+ (k)" w (6.7)
For the sake of brevity, we do not present further details.her O

6.2.3 Smoothness of the Crossing Curves

Whenw varies within some intervd, satisfying (6.7), the equations (6.4) and (6.5) define a
continuous curve. Using the notations introduced in theiptes paragraph and the technique
developed above, we can easily derive the crossing direcbaesponding to this curve.

Precisely, one denotef the crossing curve that correspondsQe and considers the
following decompositions into real and imaginary parts:

. .OH(s,kp, kg, T)
Ro+1lg = | ;
Js s=iw
. OH (s, kp, kg, T)
Ri+ily = — ;
0kd S=iw
Rotil, — _ SHSkeka D
0kp s=iw

Then, 7, is smooth everywhere except possibly at the points corretipg tos = iw such
thats= iw is a multiple solution of (6.2).

Finally, the crossing direction is characterized by théofeing:
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Proposition 6.4. Assumew € Q/, kp,kq satisfy (6.4) and (6.5) respectively, ands a simple
solution of (6.3) and Kiiw', kp, Ky, T) # 0, Vo' > 0, o' # w (i.e. (Kp, Kq) is not an intersection
point of two curves or different sections of a single curvE)en as(kp, ky) moves from the
region on the right to the region on the left of the correspogdcrossing curve, a pair of
solutions of (6.2) crosses the imaginary axis to the rightoigh s= +iw) if Rol; — Ryl > 0.
The crossing is to the left if the inequality is reversed.

6.3 lllustrative Examples

In the sequel, we present several numerical examples &ardlie the proposed results.

Example 6.1(Sixth order non-minimal phase systen@onsider a sixth-order, non-minimum
phase open-loop system, described by the following trafigfietion:

Hou(s) — -7 -2s+1
YO (s+1)(s+2)(5+3)(s+4)(s+5+1
The use of a PD-controller leads to characteristic closedg equation:

(5+1)(5+2) (5+3) (5+4) (P+5+1) — (+73+25-1)e #°=0.  (6.9)
In Fig.6.1 is illustrated the stability region in thikp, ky) parameter space fo{6.8). From

10*@
5,

[e]3

S

>e*20. (6.8)

—
~a

stability region
-5}

-10}F
-154

-20} - (

o, ka)

38

-25|
_30|
_35} - ]
-40} \ kp
30 20 10 ) =3
Figure 6.1: Stability region dt, andky for (6.8).

Fig.6.1 we can observe that the stability crossing curvescmposed by those of equations
(6.4)—(6.5)together with first equation of6.6).

Example 6.2 (Third Order, non-minimal phase, unstable syste@jnsider now a system
described by the following transfer function:

_ 158+35-20 o2
- 12583+ 702+ 10s+ 8
The interest of the analysis of this system arises form ttietfiat the closed-loop charac-

teristic equation behaves as a system of neutral-type. ,Tdfégr applying Proposition 6.1
together with Proposition 6.2, we obtain the results degadh Fig.6.2

HYU(S>

(6.10)
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Figure 6.2: Stability region df, andky for (6.9).

7 The Geometry of PID Controllers for SISO Systems with
Input/Output Delays

As it has been emphasized along this first part of the thelidsgéhtrollers are by far the most
applied feedback law for SISO systems in industrial pro¢ess, for instance, [5, 109, 123]
and reference therein). The “popularity” of PID contraflean be attributed to their particular
distinct featuressimplicityandeasy implementation

Actually, to the best of our knowledge, there exist mainly tapproaches enabling to get
the set of stabilizing PID controllers for a LTI delay-systeMore precisely, we think firstly
to the approach based on an extendtwrmite-Biehler Theorerno the time-delay systems
[112, 110]. In this case, using the property of interlacimdnigh frequencies and solving
some linear inequalities, they obtained the set of stabgiPID controllers. However, the
only drawback of the method is the complexity of the algantinat calculate the appropriate
kp intervals. Second, based on the Neim&rkpartition method, the works of [8, 54] derived
a method to find the set of stabilizing PID controllers.

As in the previous chapters, the method presented herepgeadsby the analysis (based
on some geometric arguments) proposed in [40]. Even tohgiproposed method is closely
related to the above mentioned works, the method propogedieke use of some different
arguments, that in addition will enable us to present a dtanaation of crossing boundaries.
More over, such a technique will be the core, of the next arapiat will deal with fragility
analysis of PID-type controllers.
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7.1 Problem Formulation

As in the previous paragraphs, consider the following atdssrictly proper SISO open-loop
systems subject to input/output delays:

{ ;;8 - QTX)(:(%)‘L bUt=1), 1y eR", u(t) eR (7.1)
with the transfer function:
_ st P(S) st
Hyu(s) = c" (shh—A) *he _we = G(s). (7.2)

The same property holds if the delay acts on the output sgralthis chapter, the loop is
closed using a classical PID controlke(s) of the form:

ki

1 /
K(s) =k <1+Tds+ —) = kpkas+ -

s (7.3)

Under the above considerations, it is clear that the clésep-dynamics can be characterized
by the equation:

1+G(5)K(s) =0, (7.4)
which rewrites as: 1 "

The problem considered in this section can be defined assllo

Problem 7.1. Find explicit conditions on the controller parametdis,, ky, ki), such that the
closed-loop system (7.5) is asymptotically stable.

In order to simplify the presentation and, without any lokgenerality, we consider that
the Assumption 3.1 holds.

Remark 7.1. Similarly to the previous chapters, using the conjugate ad@mplex number we
get

H (iw;Kp, kg, ki) = 0 < H (—iw;Kkp, kg, ki) = 0. (7.6)

Therefore, we only need to consider positive frequenoigbat is the frequency crossing set
Q C (0, ).

7.2 Stability in the Controller Parameter-Space

As in the previous chapters, in the sequel we will focus on dlosed-loop behavior of
the system (7.5) for a fixed delay value More precisely, we want to derive trsta-
bility crossing boundaries]” which is the set of parameter&p,kq,ki) € R? such that
(7.5) has imaginary solutions. As the parametfqs ky, ki) cross the stability crossing
boundaries, some characteristic roots cross the imagiags, We also consideR =
{w e R|3(Kp,ky.ki) € R3 such thaH (iw;kp, kg, ki) =0} the set of frequencies where the
number of unstable roots of (7.5) changes. TheXseill be calledstability crossing set
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7.2.1 Stability Crossing Characterizations

Considering tha€ is known, the stability crossing boundaries are simply abi@rized by:

Proposition 7.1. The stability crossing boundaries associated#®) are described as fol-
lows: Qliw)
— _ W) jwr
=0 (Hiay @)

k = kaw? + ol (7(582)’))@6”) |

Yw e Q. (7.7)

Proof. From its definition,7 is the set of paramete(&p, kg, ki) € IR3, for which there exists
at least one frequenay € Q such thaH (iw; kp, Ky, ki) = 0. Therefore, both the real and the
imaginary parts o (iw; kp, Ky, ki) have to be zero. Straightforward computation shows that:

O(H(iw;-)) =kp+0 (Gliw) 1),
which leads to the first relation stated in (7.7). On the ottaard,
OH(iw;-) = 0(G(iw) 1) +kew—ki/w,
which allows us deriving the second relation in (7.7). O

Remark 7.2. For any fixedw* € Q, one obtains a section of a stability crossing surface

which consists in a straight line parallel to th&y, ki) plane and passing through the point
Qi) jur QW) wr o _ .

( O (P(iw)el ,0, w0 Pliw) e . The slope of this line in théky, ki) plane is

always positive and is given lay?.

Remark 7.3. From the proof of Proposition 7.1, it is clear thgtk 0 defines a boundary.

Remark 7.4. Let the relative degree of the system (7.1)de 1. Then, the closed-loop
system (7.1) becomes a system of neutral-type (see, &g94P and

(kp, ,m) and (kp,— ,lq)

belong to the stability crossing surfaces. Herg, pand ¢, represent the leading coefficients
of the polynomials B5) and Qs), respectively:

On

Pn-1

On
Pn-1

P(S)z?zzpié, Q(S)=iiqi§.

From Proposition7.1 it is clear to see that for fixed, = ki, € R, the second equation in
(7.7) defines a set of straight lines in tfig, ki) —plane. More over, such a set will define the
stability crossing curves in thig, ki) controller parameter space. Then, it will be interesting
(necessary) to find thg—intervals, for which the stability characteristics rensaimchanged.

In this vein, lets introduce the sAtdenoted by,

N:={a eRy|ky(ay) =00 N},
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whereky () := {-kp (w). Additionally, definew; € A if ky(w;) > 0 andw, € A if
Kp (w[) < 0. According to these definitions lets indexiaﬁ satisfying
0 < kp(wf) <kp(wy) <kp(wy)<... (7.8a)
0 > kp(oy) >kp(wy)>kp(wy)>... (7.8b)
Proposition 7.2. Based or(7.8), lets consider the following intervals:

{/cr:<kp<w1>,kp<wf>>,/c;:<kp<wf>,kp<w;>>,--- k() 20
Ki= (ko (@3 ) ko (@), Ky = (kp (@5) ko (7)) - P
or

{fq:<kp<wr>,kpw))Jc;:<kp<aa+>,kp<w;>>,.-. k() =0

Ky = (kp (wy) ko (")) . K= (kp () .kp (o)), P '

Then, the number of stability regions in the parameter spktmed by the proportional gain,
the derivative gain and the integral gain parametgks, ky, ki) remains constant as,k/aries
within each intervakCy, ¢ € N,

Proof. According to Proposition 7.1, the stability crossing boarmels are given by:

B Q(iw) it
ky = —D(P(iw)e' ) (7.92)
ki = kdw2+wﬂ<%eim). (7.9b)

Then, the key idea is to express (7.9)%a8Kp, kg, ki) = 0 (without depending ow), in such
situation it will be possible to obtain directly the statyilregion in the(kp, ky, ki) parameter
space. In this vein, we can observe from (7.9) thatkheénterval is determined solely by
(7.9a), or in other wordk, depends solely of the frequenay, that is, it can be seen as a
function of one real variable. Bearing the above fact in mind have that according to the
Inverse Function theorelfsee, [58], for further details), that there exists a unicomtinuous
functionw:Z C R+— J C R, (for some appropriate intervals) such that

w=Ww(kp). (7.10)
Then, substituting (7.10) into (7.9b) we get

Q(iW(kp)) iw(kp)T
w(Ko) kg — ki +w(k )D(.ie' (k)7) = 0.
P P\ P(iw (kp)) ;
=:F (Kp,ka.ki )
The remaining proof consists in showing that the appropsatsZ, 7 are precisely given by
the intervalsC;". In this vein, from the construction ¢~ we can observe that i € K7 for
some/ € N, thenky is continuous and since the signlq,fremains constant, this implies the
monotonicity ofk, and in consequendg, will be a one-to-one map for atb € ICZ'E. Then,
according to thénverse Function theorenthe above arguments are necessary and sufficient
conditions for the existence and uniqueness of the funetiég). Finally, at the points where
ki, vanish, two situations may occur: (i) fé = kp (w), the mapw (kp) has two (or more)
possible solutions, in this situation we can have two (orehstability regions sharing the
same number of unstable roots (sEgample7.2 for an illustrative example); (ii) the second
possibility is thatw (k) is not differentiable, implying that the stability regiasrieducing to
a point on the stability boundary. O

N
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7.2.2 Stability Crossing Sets and Classification of the Stally Crossing Boundaries

In the sequel, we present a practical methodology to dewestability crossing set. For the
sake of brevity, we suppose that the following technicaliaggtion is satisfied:

Assumption 7.1. There exist some bounfék*,k_’E,), (kg,@) and (E,E) of the controller
gains. -

These bounds can be arbitrarily fixed and, in principle, tireychosen by the designer ac-
cording to the physical constraints of the model/controlie this context, when Assumption
7.1 holds, the section of the stability crossing surfacaiolet for a fixedw € Q reduces to a
segment (see Remark 7.2).

Proposition 7.3. Consider that Assumption 7.1 holds. Then the stabilityssngssetQ is a
union of bounded intervals consisting in all frequencied 8imultaneously satisfy the follow-
ing conditions:

33

Qliw) |
< -0 vl <
(S62) o

Tkj <ks <K s.t. K < kgw*+ w0 <§§:Z));e'm) <k

Proof. The characterization of the stability crossingQagiven by (7.11) follows straightfor-
ward from (7.7) and Assumption 7.1. In order to prove the limamess of the crossing €@t
we notice that due to the assumption that the trars{ey is strictly proper, one has

. . 71 o
wILnlm}G(lw) | = +oo.

In other words, this means that either

lim |0 (G(iw)™ )| =+e

wW—+0
or
winloo ]D (G(iw)*l) } = o0
which contradicts either the first relation in (7.11) or teeand one. O

Remark 7.5. Propositions 7.1 and 7.3 lead to the following algorithm &ermine both the
stability crossing se@ and the stability crossing boundarigs

* Step 1:One solves the systerp K —L ( ) < k_’lg getting a union of intervals.

1
G(iw)

+ Step 2: For all w derived at the previous step, one compuigard derive the equation
of the line(ky, ki) given by the second equation(in7).

« Step 3: Finally, one keeps only those frequencie$or which the line(ky, ki) derived
at the previous step intersects the rectanghg, k'); (kg, k); (k§, k"); (kg, k)]
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It is worth noting here thakp, ky andk; continuously depend ow. Therefore, in order to
classify the stability crossing boundaries we will firstsddy the intervals belonging to the
stability crossing set. Precisely, a deeper analysis gié&ition 7.3 allows us to say that is
an end of an interval belonging f2 if and only if one of the following condition is satisfied:

1 L. — .
e Type 1. —0O <m) = kg, Wherekg is eltherk’lg = @ or k’{) = kg. In this case,

w* € Q and the stability crossing surface approaches a segmeaitgbao the (kq, ki)
plane given by, = ki and
1
o+ (@2 + 00 g7 )

G(iw*)
ki <kg <kj, K <k <k’

1 1 . . .
* Type 2: ——D (G( o >) = k3. In this casav* € Q and the stability crossing surface
-0

<G(|1w*)> 7—%5 (G(ilw*)) ,O), included in the(kp,kq)

ends in the poin

plane.

1
G(iw")

: . 1 . 1
ends in the pom(—D (m) 0,00 (W)) included in thekp, ki) plane.

Similarly to [40], we classify the stability crossing bowes in 6 types in function of the
kind of the left and right ends of the corresponding freqyesrossing interval. Precisely, we
say that a crossing surface is of tygle a,b € {1,2,3} if it corresponds to a crossing interval
(w,wy) with oy of typea andwy of typeb. Let us notice that generally the intervéts , oy )
are closed.

e Type 3: w0 =k{". In this casew* € Q and the stability crossing surface

7.2.3 Crossing Direction

As explained in [25, 132], a pair of imaginary zer¢ss) of the characteristic equation
H(s; kp,kd,ki) = O cross the imaginary axis through the "gated'v , iw respectively, as
(kp, k4, ki) moves from one side of a stability crossing surface to theratlde. The direction
of crossing may be calculated using implicit function thesoras described in the preceding
chapters (see, for further details [40] and reference tingr&recisely, the characteristic equa-
tion H(s; kp,kq, ki) = 0 defines an implicit functios of variablesky, kg andk;. The definition

of H(s; kp,kq,ki) given by (7.5) allows us to compute the following partialidatives:

fJs _ SZGZ(S)

oky  kiG?(s) — kySPG?(s) + G/ (s)’

s - 5362( )

oki  KiGX(s) —kgSPG(s) +2G/(s)’ (7.12)
s SGZ( )

ok kG?(s) —kg*G2(s) +PG/(s)
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Let (kp, ka, ki) a point belonging to a stability crossing surface andleti®, @ > 0 be the
corresponding imaginary zero of the characteristic equatiLetx = (Xp, X4, %) be a unit

vector that is not tangent to the surface. Let us also usetlosving notationk — (Kp, kg, ki)
andk’ = (kp, ko, k).

Proposition 7.4. A pair of zeros of(7.5) moves from the left half complex plane (LHP) to
the right half complex plane (RHP) &kp, kq, ki) moves from one side of a stability crossing
surface to the other side througky, kg, ki) in the direction of if

s s s
O =—Xp+ =—X4+ ==X > 0. 7.13

The crossing is from the RHP to the LHP if the inequalityL3)is reversed.

Proof. The proof follows directly from the fact that the derivatiothe implicit functions
along the direction given by in the point(kp, kg, ki) is

d_s
dx

(kp:kd E)

B < o"'sX N o"'sxdJr s )
- - —\ 3 NPTy .
(kokok) \Okp = Jka " Ok

Thus the real part of the previous directional derivativeasputed as the right part of (7.13)
U

7.3 lllustrative Examples

In order to illustrate the previous results, in the sequepvesent several numerical examples
borrowed from the literature.

PID Stabilization Problem

Example 7.1. Consider the PID stabilization problem of the following Ammimal phase
system [112]:
B $— 48 +542 s
T F 8581 325° 1 467 1 4bs + 17"
Now, in order to apply Proposition 7.2 we pld[; w), obtaining:
Next, based on Fig.7.1 thig’s values are summarized in Table 7.1.

G(s)

(7.14)

| [ o [ & [ @ [ o | | & | o [-]

AES 0 |0.8542| 1.9233 | 3.5050 | 5.572 | 8.019 | 10.730

Kp(w) | —8.5| 4.6332| —6.610| —29.27 | 59.433 | —1085 | 177.45
Table 7.1:Solution ofk;, (w) = 0, for the system (7.14).

Now, based on the results showed in Table 7.1, we apply Pitapo3.2, obtaining the
kp— intervalskC; that are summarized in Table 7.2.

The interval containing the stabilizable parameter«is = (—6.6109 4.63329, and the
stability region computed is depicted in Fig.7.2.
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Figure 7.1:Intersections ok;, (w) and 0O for the example (7.14).

(7= | 1 | 2 | 3 B

Kt | (—6.61094.63329 | (4.6332959.4333 (59.4333177.4514)

Ki | (-85,-6.6109 (—29.2746 —8.5) | (—108578Q —29.2746)
Table 7.2: Theékp—interval for the system (7.14).

Figure 7.2:Stabilizing set ofky, ky, ki) for the system (7.14).

Example 7.2(Non-Minimal Phase SystemTonsider now the PID control for a non-minimal
phase plant described by the following transfer functioj [8
—st 783 -2s+1 1
G(s) — St - 208

(s+1)(s+2)(s+3)(s+4) (s>+s+ 1>e 20°, (7.15)

In order to apply Proposition 7.2 we plo’E)Kw), obtaining Fig.7.3. Where th@'s values are
summarized in the Table 7.3. Based on the results given ile TaB, we apply Proposition

| oo | o | w | wy | w | ws |-
w = 0 0.511222| 0.714606| 1.64704| 23.236 73.7516] ---
ko(w) | —24 | 4.68073 | —3.76712| 6.06932| —294.211 | 478659

Table 7.3:Solution ofk;, (w) = 0, for the system (7.15).
7.2, obtaining the g—intervals summarized in Table 7.4. For this example, weddbat the
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-8 I I I ! | | I LN
1 15 2 25

0 05 T s 4 5 %%
Figure 7.3:Intersections okj, (w) and 0 for the example (7.15).

Li=] 1 | 2 | 3 ]
Ki" | (-3.767124.68073 | (4.680736.06932 | (6.06932478659)
Ki | (—24,-376712 | (-29421-24) | (—167047,—294.21)

Table 7.4:Thekp—interval for the system (7.15).

stability interval are given byC;, K{ and k3. However, it is interesting to note that these
interval possess different characteristics, that aresthated in the following figures.

The complete stability regioki = K7 UK UK] is depicted in Fig.7.5.
Example 7.3(unstable, non-minimal phase syster@pnsider the following plant:

s—2 is

G(S)=—— - &
®) P—1s4 13

(7.16)

The interest in the analysis of this system remains in thetfed the closed-loop plant be-
comes a system of Neutral-Type.

Now, as in the above examples we proceed to QJM obtaining Fig.7.16

The maing values are summarized in Table7.5.

| | o | o | w | w | w | ws | ws |-
W~ 0 1.70834 | 4.73632| 10.1297 | 16.1451| 223063 | 285204 | --
kp(m) 1.625| 0.325953| 3.26132| —9.42698| 15.7038| —21.9869| 28.2706

Table 7.5:Solution ofk;, (w) = 0, for the system (7.16).

Based in the results of Table7.5, we obtain the mganrktervals summarized in Table7.6.

L | 1 | 2 | 3 [ ]
K | (—9.426980.325953 | (0.3259531.625) (1.6253.26132
K | (—21.9869-9.42698 | (—34.5543 —21.9869 | (—47.1214 —34.5543)

Table 7.6:Thekp—interval for the system (7.16).
For this examplelCZ+ is the interval containing the stabilizable parameters émel stabil-
ity region is depicted in Fig.7.7.
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Figure 7.4:The PID stability region fok,, € [—5,5]. (Upper-Left) One stable region, fé; . (Upper-
Right) Two separated stable regions, f6f . (Lower) One stable region, fd¢; .

10

-30
0 -40

Figure 7.5: The PID stability region for the system (7.15).
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Figure 7.6:Intersections ok;, (w) and 0 for the example (7.16).

kq

-2 -05
Figure 7.7: The PID stability region of Neutral-Type .

Stability crossing boundaries classification

Now, in order to illustrate the proposed boundaries clasgifin, we consider the follow-
ing example:

Example 7.4. Lets consider again the same plant given in Example 7.2, i.e.

S 452 +5+2 s

G(s) —
(&= Fres 1391 462 1 465 1 17°

By choosing the rectanglé < k, <5, —12<kj <5, 0 < ky < 10, the table 7.4 summa-
rizes some of the cases cited above.
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Figure 7.8: Boundary classification for the system (7.15). (Upper-Lé&flassification of Type 1.
(Upper-Right) Classification of Type 2. (Lower) Classificatof Type 3

Interval Classification

(0.378233.16356  Type 11
(0.378230.89290  Type 12
(0.378230.41294  Type 13
[0.892903.16356  Type 21
(0.412943.16356  Type 31
(0.412940.89290  Type 32

Table 7.7: Classification intervals type for the system${Y.

8 Fragility Analysis for Low-Order Controllers

Tuning and designing PI/PD/PID controllers is an activeeagsh area that has attracted the
attention of many researchers during the last decades. d\lisinof Pl, PD and PID tuning
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methods for controlling processes can be found in [109, 5] mfntioned by [3], such con-
trollers have to be designed by considering: gajformancecriteria; (b) robustnessssues
and, finally, (c)fragility. Roughly speaking, a controller for which the closed-loggtem is
destabilized by small perturbations in the controller paters is calledfragile” . In other
words, the fragility describes the deterioration of clesmup stability due to small variations
of the controller parameters.

It is a common assumption in the design of a controller thahsucontroller can be im-
plemented exactly. This assumption is to some extend \&hde clearly, plant uncertainties
are the most important source of uncertainty in the conyslesn, whilst controller are im-
plemented with high-precision hardware. However, thelkingvitably be some amount of
uncertainty in the controller, a fact that is sometimes rgdan advanced robust control de-
sign. If the controller is implemented by analogue meanstetlare some tolerances in the
analogue components. More commonly, the controller wililpglemented digitally. Subse-
guently, there will be some rounding of the controller pagéens. Where for reasons of cost
and execution speed, the implementation is with fixed paittitar than floating point proces-
sors, there will be increased uncertainty in the contrgdrameters due to the finite word
length and further uncertainty due to rounding errors in edcal computations [134].

Despite of the preceding arguments, we can still ask: Hovwomant could be to consider,
for example,(kj, ki, k') +A4, instead of(ky, ki, k") ? (in the case of a PID setting), for some
|All < 1. Obviously, such answer depends on the system to be coedidehen, in order to
motivate such analysis, consider the following example:

Example 8.1. Consider the following plant:

1171875 oz
& +4.59315+ 2.1486 ’

with a classical Pl controller Ks) = k(1+ %) In this case, for a Pl-controlle(k, Ti) =
(0.000122.4) his dynamical behavior is illustrated in Fig.8.1.

1.0
A
L6} 8
L4f 8

1.2r b

y (t)

t

Figure 8.1: Step response curve {&rT;) = (0.000122.4) .

Now, if instead of the above controller we consider the péed controller parameters
(E,Ti) = (0.000182.4), we obtain the dynamical behavior depicted in Fig.8.2.
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Figure 8.2: Step response curve (d?,'l’,) — (0.000182.4) .

From the above figures, we can appreciate how the dynamid¢shsfiom stability to in-
stability for a very small controller parameter perturbaii.

Motivated by the above discussion, in this chapter we pressmple algorithnmto ana-
lyze the fragility of a given low-order controller. More misely, we will consider the fragility
analysis for a Proportional Controller, PI-PD Controlleda PID-Controller. As in the previ-
ous chapters, the proposed method is based dinplecit Function Theoreny2] and related
properties, and requires three “ingredients”:

(i) the construction of thatability crossing boundaries (surfaces)the parameter-space
defined by "P" (proportional), "I" (integral) and "D" (deative) gains,

(ii) the explicit computation of the crossing directionWi@rds stability or instability) when
such a surface is traversed,

(i) finally, the explicit computation of the distance ofree point to the closest stability
crossing boundaries.

8.1 Problem Formulation

For the sake of brevity, let us consider now the clasgradtly properSISO open-loop systems
with I/O delays given by the transfer function:

G(s) := %e‘g =c' (sl,—A)tbe ¥, (8.1)

where(A, b, cT) is a state-space representation of the open-loop systeecartirol law is of
PI, PD or PID-type with the following transfer functions:

Pl controller: K(s) =kp+ %
PD controller: K(s) =kp+Kkgs, (8.2)

PID controller: K(s)

kp+kds+%.
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. - . —
Denote its control parameters by, i.e., if K(s) is a PI controller, thenk = (kp,ki). As
mentioned in the Introduction, the aim of this chapter isampute the maximum controller
parameters deviation without loosing the closed-loopiktyabln other words, given the pa-

rametersi? such that the roots of the closed-loop characteristic ényuat
Q(s) +P(s)K(s)e ' =0, (8.3)

are located irC_ (that is the closed-loop system is asymptotically stalfiie, the maximum
parameter deviation & R such that the roots of (8.3) stay locateddn for all controllers

_k> satisfying: H_k> ) E?H .

This problem can be more generally reformulatedfext the maximum parameter deviation
d such that the number of unstable roots of (8.3) remains ammgéd

8.2 Fragility Analysis of PI-PD Controller

Based on the geometric approach presented in the previapserhwe present now a simple
and user-friendly approach not only to analyze the fragdftPI or PD controllers, but also to
provide practical guidelines for the designrain-fragilePl or PD controllers. The proposed
methodology is illustrated by analyzing several examphesantered in the control literature.

8.2.1 Fragility Analysis of PI-Controllers

Consider thePI fragility problem that is the problem of computing the maximum controller
parameters deviation without losing the closed-loop &tgjthat is given the pair of param-
eters(kp, k) such that the roots of the equation:

Q(s) +P(s) (k;g, + '%) e S =0, (8.4)

are located irC_ (that is the closed-loop system is asymptotically stalfiied, the maximum
parameter deviatiodp; € R such that the roots of (8.4) stay locatedln for all controllers

(kp, ki) satisfying:

V (ko= k)2 + (k=) < .
First, let us introduce some notation:
N
T:U,]T? ﬁ:{(kpvkl)’wegh}
=1

(@) = (kp(@). ki (@)", K = (k. k)T
Let us also denoté; = minic(y Ny di, Where

d = min{ \/(kp—kg)2 + (ki — k)2 | (kp.Ki) € 77}

With the notation and the results above, we have:
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Proposition 8.1. The maximum parameter deviation erh‘,@, ki), without changing the num-
ber of unstable roots of the closed-loop equati®)can be expressed as:

oo =min{ 1. min {e) ¥} | 63

wherlepi is the set of roots of the functiopit R, — R,
dk (e )
foi(00) 2 <(k (@) - k), 5 > (8.6)

Proof. We consider that the pafky), k*) belongs to a region generated by the crossing curves.
Since the number of unstable roots changes only wlkerk;) get out of this region, our
objective is to compute the distance betwéeh k) and the boundary of the region. Further-
more, the boundary of such a region consists of “pieces’@$sing curves and possibly one
segment of th&, axis. In order to compute the distance betw@ejk) and a crossing curve
we only need to identify the points where the vedty — k3, ki — k) and the tangent to the
curve are orthogonal. In other words we have to find the swigtof

wherefp; is defined by (8.6). Taking into account the relation (3.3} ver = kp and3 = ki)
we may write (8.6) as

fpi (-) = (kp — Kp) (Rilo— Rol1) + (ki — k) (Rol2 — Rzlo).
It is noteworthy thaf i (w) is a polynomial function and, therefore, it will havéimite number
of roots. Let us considefwy,...,wu} the set of all the roots ofpi(w) when we take into

account all the pieces of crossing curves belonging to tgmearound(ky, k). Since the
distance fromky, k) to thekp(w) axis is given byk*|, one obtains:

g =minf i,,_min {[R@) -} }.

that is just another way to express (8.5). O

The explicit computation of the maximum parameter deviaticcan be summarized by
the following algorithm:

Algorithm 8.1 (PI-Fragility Algorithm).
Step 1: First, compute the “degenerate” points of each cufe(i.e. the roots of Ry —
Rol1 = 0 and the multiple solutions ai8.4)).

Step 2: Second, compute the €&t ; defined by Proposition 8.1 (i.e. the roots of equation
fpi(w) = 0, where }; is given by (8.6)).

Step 3: Finally, the corresponding maximum parameter deviatipisdiefined by (8.5).

Remark 8.1(On the gains’ optimization)it is worth mentioning that the geometric argument
above can be easily used for solving othebustness problemdhus, for instance, if one of
the controller’s parameters is fixed (prescribed), we caoaxplicitly compute th@aximum
interval guaranteeing closed-loop stability with respecthe other parameter. In particular
if T; (“integral”) is fixed, we can derive the corresponding staing maximum gain interval
This gives a different insight to the results proposed by3[11130] by using the small-gain
theorem (see, for instance, the illustrative examplesvoelo
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8.2.2 lllustrative Examples

Example 8.2(Chemical Process)Consider the problem of controlling a continuous stirred
tank reactor (CSTR) as in Fig.8.3 with the numerical valudseh from [57] (see, e.g., [65,
125] for more details on CSTR). The goal is to control the teacomposition by manip-
ulating the cool rate through the control signal u. Withoetting into details, the transfer
function of the system has the form:

1.308
H _ —4.8965 8.7
w(S) =~ {13515+ 1) (624151 1) (8.7)
The use of a Pl-controller leads to:
) N - ﬁ _4.8965
H (s kp, ki) = (13.515%+1)(6.241s+ 1) —1.308( kp + S e . (8.8)

The system (8.8) has one stability region plotted in Fig.8.4

iiet u
+
— F
Y — — EED (F Cﬂf:Tf)
U
E:
TC‘L @

COOLANT

ProDucT >(F’ Gt )

Figure 8.3: A CSTR control system

Next, we will study the fragility of Pl-setting for some o #l controllers proposed in the
literature:

Huang-Chou-Wuang[57](k, = —1.6881 k" = —0.0732);

Hwang([60]: (k; = —1.2173 kK" = —0.0529);

Chao-Lin-Guu-Chang[18](ky = —1.1294 k" = —0.0387);

Ziegler-Nichols[138]: (k, = —1.4702 k" = —0.0601).
By applying Proposition 8.1, the derived results are sumnpearin Table 8.1 and illustrated
in the Fig.8.5.

Example 8.3 (A TCP/AQM network model) Consider the fluid-flow model introduced
by [52] for describing the behavior of TCP/AQM networks andbject to Pl controllers.
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Figure 8.4: The boundary of the stability region in {tkg, ki) parameters space for the system
(8.7)

| o | dr [ min{dr Kk} |
Huang-Chou-Wang | 0.1387| 0.1114 0.0732
Hwang 0.1225( 0.1202 0.0529
Chao-Lin-Guu-Chang 0.1194 | 0.1308 0.0387
Ziegler-Nichols 0.1323( 0.1210 0.0601
Optimal Non-Fragile | 0.1405| 0.0925... | 0.0925...

Table 8.1:PI fragility comparison for the system (8.7)

k
0 -1.5 - -0.5 0 0.5 >p
005 [ \i -
0aH ¥ -
015k .
Y '
0.2 | L _ |
e > Ziegler-Nichols
t > Huang-Chou-Wang

> Optimal Non-Fragile
Figure 8.5: The maximum parameter deviation without logtability for the system (8.7),

where the Optimal Non-Fragile controller is given kfy= —1.7420542840243 . andk’ =
—0.09250851510052.

As mentioned by [88], the stability of the linearized closeop system reduces to the root
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location of H(s,kp, ki, T) :=

st f(kp+ %)]e"sz 0

1 n 2n
2yl Mgy N 1n
JrT(erc)Jr 2T 2n

= (8.9)
Here, n denotes the load factor (number of TCP sessiartbg round-trip time (seconds) and

c the link capacity (packets/sec). The crossing curves i@engy:

2n 5, 2N () ny .
kp = ?[(w _rTc) cos(wr)+?(l+ﬁ)sm(wr)}
- 2w(w n 20 o) nw
k = e [r (1+TC> cos(wr)+(T3C w)sm(wr)JrTZJ

Considering the same network parameters as in [52, 88+ @0, c = 375Q 1t = 0.246) and
applying Proposition 3.1 we get that all the crossing direes are towards instability. Fur-
thermore, we havenly one stability regionConsider now some of the controllers proposed
in the literature:

Melchor-Niculescu[88]:(k; = 9.1044x 107> ki = 6.8 x 107);

Hollot-Misra-Towsley-Gong[52]1k} = 1.8485x 107>,k = 9.7749x 10°°);

Ustebay-Ozbay[129](ks, = 3.5252x 10~ ki = 8.9564x 10~°);

Ziegler-Nichols[138]: (ki, = 7.4401x 10>, k! = 5.7057x 10>);

Huang-Chou-Wang[57](ks; = 10.0011x 10>, k" = 6.4880x 10™°).

The results are briefly outlined in the table 8.2 and illustdin Fig.8.6.

w dr min{dy, [k}

[x107] [x107]
Melchor w =176 d;; =6.74

and wp=2.75| d;, =8.78 6.7410
Niculescu | w3 =3.49 | d; =6.82
Hollot-Misra | wy =0.72 | d7; =3.00

and wp,=3.00 | dj; =170 0.9774
Towsley-Gong| w3 =3.69 | dr; =156
Ustebay | w3 =0.81| dj; =4.56

and wp=293|d; =162 0.8956
Ozbay w3 =372 dr; =140
Ziegler w, =155 dp; =5.89

and wp,=2.85|dp =102 5.7057
Nichols w3 =352 | dj; =877
Huang w =179 | dp =7.65

Chouand | ap =268 | d7, =9.07 6.1094
Wang w3 =3.53 | d7; =6.10

Table 8.2:PI-fragility comparison for the characteristic equatir)
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Figure 8.6: Fragility comparison of the Pl-controllers foe system

Remark 8.2. As mentioned in the previous chapter, it is also possiblebteesthe following
problem — given a fixed integral (gain) parametgeTKy/k;, find theoptimalinterval for the
gain (integral) parameter k= k, such that, the resulting closed-loop system is stablalfor
gain (integral) parameters In this case, it is sufficient talfthe “mid-point” of the maximal
interval which belong to the stability region. Reconsides previous controllers:

« “optimal" gain (Hollot-Misra-Towsley-Gong): k= 7.91x 107>

« “optimal" gain (Ustebay-Ozbay): k 8.56x 10~°;

« “optimal" gain (Melchor-Niculescu): k= 7.34x 10~°

It is easy to see that the controller proposed by Ustebaya@igy‘closer" to the “non-fragile”
one than Hollot-Misra-Towsley-Gong. The above resultsadse depicted in Fig.8.7

TA
7 > Hollot-Misra-Towsley-Gong i
> (Jstebay-Ozbay
6 —> Melchor-Niculescu ]
5 -
4 -
3 stability [region ]
2 -
v
1 -
O ic. |
02 04 06 08 1 12 14 16 187 2
-4
x10

Figure 8.7: Gain fragility comparison of the Pl-controfidor the system (8.9)
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Example 8.4(Fourth-order process)Consider a fourth-order, non-minimum-phase and un-
stable open-loop system, with the transfer function:

(—1.3s+3)e 28
Hyu(s) = > :
0.2s* —0.08s3 4 1.3455%2 — 0.4s+1.725
Similarly to the previous cases, the problem reduces to tia¢yais of equation:

(8.10)

0.2s* — 0.085% + 1.345% — 0.45+ 1.725+ (—1.3s+ 3) (kp + 2) e?®=0 (8.11)

The “optimal’non-fragile PI-controller for the system (8)) is given by(kp, k') =

0.15

0.1+
w3

0.05+

stability region" ws

-0.05F 2

0.1r ]

0 0.05 0.1 0.15 0.2

Figure 8.8: The stability crossing curves for the dynamitas (8.10), the boundary of the
stability region (shadowed region) in tile,, ki) parameters space and the maximum parame-
ter deviation without loosing stability.

(0.1149...,0.0778...) (see also Table 8.3 and Fig.8.8):

Frequency d7 k'l | min{dr, |ki[}
@ =1.2311 | 0.0313616
w, =1.2422 | 0.0313627
w; =1.3232 | 0.0311658 | 0.077849| 0.0311658
@y = 1.5556 | 0.0400741
ws=1.7025 | 0.0311658

Table 8.3: Parameters deviation results without loosiegstability.

8.2.3 Fragility Analysis of PD-Controllers

Consider now the PD fragility problem, which is the problefrcomputing the maximum
controller parameters deviation without loosing the atbkmop stability, that is given the pair
of parameterskg, ki) such that the roots of the characteristic equation:

Q(s) + P(s) (kp+ kqs)e™" =0, (8.12)
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are located irfC_ (that is the closed-loop system is asymptotically stalfiled,the maximum
parameter deviatiod,g € R, such that the roots of (8.12) stay locatedin for all controllers

(k5 ky) satisfying:

V (kp—ke) 2+ (ka — k5)? < dpg. (8.13)
In order of presenting the main result, lets consider thiefohg notations:
N
T:UWa T:{(kpukd)|w€Q|}7 (814)
=1
k(@) = (kp(@) ka(@)T, K = (k5. K))T. (8.15)

Let us also denotd; = | {mln }d| where:

d|:min{\/( + (kg — k%)2| (Kp, kg eT.}. (8.16)

With the notation and the results above, we have:

Proposition 8.2. The maximum parameter deviation frtﬁk;f,, k;;) without changing the num-
ber of unstable roots of the closed-loop characteristicatopun (8.12)can be expressed as:

Aoy = min{kdw,|k’;,—kp(o>|,wr€n§i2?d{HkTwﬁ—FH}}, (8.17)
Kgoo := { (anln{

andQs , is the set of roots of the functiofpy : Ry — R,

Fog(@ é<k—§ _*Z),dk—g>. (8.18)

where

o } if m=n-1
if m<n-—1

Proof. We consider first that the paiky, kj) belongs to some region generated by the crossing
curves. Since the number of unstable roots changes only {Kaghy) get out of this region,
our objective is to compute the distance betwgejky) and the boundary of the region. Now,

if degQ(s) = degP(s) + 1 (i.e., we have a neutral-type system) it is well known [4&]ttthe
system possesses a neutral chain that asymptoticallyagptbe vertical line

0(9=1 L <'kdp”1), (8.19)
On
implying that |ky| < ’ ’ must be considered. As a consequence, the boundary of such a

region consists of "pieces" of crossing curves and possilsiggment of the shifted axkg +

’ pgil orkp+ ’ pgil for a neutral-type system, and a segment of the shiftedkaxisy(0). In

order to compute the distance betwékf kj) and a crossing curve we only need to identify
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the points where the vectdk, — k5, kg — k) and the tangent to the boundaries are orthogonal.
In other words, we have to find the solutions of:

fpd(w> = 07

wherefyq is defined by (8.18). Taking into account the relation (3v@){ a = kp andf = ky)
we may write (8.18) as:

fpd(-) = (kp —kp) (Relo— Rol1) — (kg — ki) (Rol2 — Ralo). (8.20)

It is worth mentioning that the stability region is defined i, w) and, therefore, (8.18) will
have a finite number of roots. Let us consides,...,wv} the set of all the roots ofq(w)
when we take into account all the pieces of crossing curvembang to the region around
(kp,kg). Since the distance froifiy, kj) to the shifted axiy +kp(0) is given by|ky —Kkp(0))

and the minimal distance frortky, kj) to the shifted axis, + ‘ p‘:fl or kp + ‘ p‘:fl’ (for a
neutral-type system), is given Iy, one obtains that
mi - : 4
dpg = mln{kdoo,|kp kp(0)|,3:1’.|_r.1’M{Hk(wg K H}} (8.21)
which are just another way to express (8.17). O

The explicit computation of the maximum parameter deviatigy can be summarized by
the following algorithm:

Algorithm 8.2 (PD-Fragility Algorithm)

Step 1: First, compute the “degenerate” points of each cufije(i.e. the roots of Ry —
Rol1 = 0 and the multiple solutions d8.12).

Step 2: Second, compute the €% ; defined by Proposition 8.2 (i.e. the roots of equation
fod(w) = 0, where fq is given by (8.18)).

Step 3: Finally, the corresponding maximum parameter deviatiggid defined by8.17)

8.2.4 lllustrative Examples

In order to illustrate the previous result, consider nowftil®wing example.

Example 8.5(Gantry crane) For this example we have chosen a gantry crane model with a
time delay of 2 seconds used as slave robot in a teleopersyistem [34]:

(5= 408% + 25+ 400 o2
9% = 20081 302 + 24055+ 2000

According toProposition8.2, we present the corresponding crossing curves(8a22) in
Fig.8.9.

(8.22)

After applying the proposed algorithm to analyze the figgfor the controller(kp, kj) =
(3.25,1.65), we summarize the obtained results in table 8.4.

Figure 8.10 illustrate the stability region for the syst€&22) as well as the maximum
parameter deviation for the proposed control(éf, ky).
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Figure 8.9: Corresponding crossing curves for (8.22).

stability region”

-20 15 -10 - 0 3 10 5

Figure 8.10: Stability region df, andky for (8.22).k;, = 3.25,kj = 1.65,d = 2.345980

Frequency dr Kioo | |Kp —kp(0)] | min{dr,Kge, Kpo}
w; =0.9017| 2.3459
wy = 2.7292| 23.0540
w3 = 2.8228| 23.0158
wy = 3.1625| 203161
ws =3.5744| 2.8603
ws =4.1134| 10.6317| 3.35 3.75 2.34598084836201
wy = 4.6386| 2.4229
wg =5.5736| 28.3525
wy = 6.3485| 6.2916
wio= 7.1127| 30.5030
w1 = 7.8169| 3.13656

Table 8.4: Parameters deviation results without losingsthbility for system (8.22).
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Figure 8.11: Inverted Pendulum

Example 8.6(Inverted Pendulum)The linearized dynamics of a normalized inverted pendu-
lum with delayed inputr(= 1/2) can be represented by the following transfer function:

o 1° (8.23)

g(s) =

where the input is acceleration of the pivot and the outptihéspendulum anglé, as show
in Fig.8.11. Now, after applying Proposition 8.2 we obtdie tcrossing curves depicted in
Fig.8.13.

20r

15

10f

_10,
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_20 -
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>
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) 000

Figure 8.12: Corresponding crossing curves for (8.23)

Next, in order to analyze the fragility for the PD controllg;, k) = (2.702072.12879,
we apply the proposed Algorithm 8.2, we obtain the resultsmsarized in Table 8.5. Figure
8.13 illustrate the stability region for the systgf23)as well as the maximum parameter
deviation for the proposed controll¢ks, k).

In all the above examples that we have seen, the systemssgessa most one stability
region. However according tBemark5.4 it is possible to have multi-stability regions if
turning points exists. Then, in order to illustrate suclestent consider the next example.
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Frequency dr; Kdeo | [k —Kp(0)] | min{dr, Kyeo, kpo}
w; = 1.641505| 0.823298
wy = 2.019206| 0.851033
w3 = 2.509846| 0.759900 1.70207 0.759900
wy = 7.298481| 49.60874
w5 = 9.460565| 11.69581

Table 8.5: Parameters deviation results without losingsthbility for system (8.22).

\kg

3.5\

3,

2.5F
2 |
1.5F
I stability region |
0.5f 1
0 L L L ]{/‘p
-1 0 1 2 3 4

Figure 8.13: Stability region df, andky for (8.23).

Example 8.7 (multi-stability regions) Consider the sixth-order unstable open-loop system,
with transfer function:

S +168' +1525° + 8245”2788+ 4624 1

= e 8.24
S 127+ gt 2B | g 3 155 (8.2

G(s)

Applying Proposition 8.2 we obtain the crossing curves ckepl in Fig.8.14. Then, in order
to analyze the fragility for the PD controlle(mg,kg) = (27.5,0.25), we apply the proposed
Algorithm 8.2, we obtain the results summarized in Table Bdure 8.15 illustrate the multi-

Frequency dr; Kgeo | [Kp —kp(0)] | min{dr,Kgeo, Kpo}
w; = 7.008604| 3.041536
wpy =11.99477| 9.871934
w3 = 20.86991| 0.942710
wy = 31.82475| 9.807249| 0.75| 27472967 | 0.66579911198
ws =41.10371| 0.665799
ws = 75.43110| 1047725
wy = 99.93986| 1.235575

Table 8.6: Parameters deviation results without losingsthbility for system (8.24).

stability region for the syster{8.24) as well as the maximum parameter deviation for the
proposed controlle(ksy, k).
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Figure 8.14: Corresponding crossing curves for (8.24)
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Figure 8.15: Multi-stability region for (8.24).

8.3 PID Controller Fragility Analysis

Finally, in the rest of this chapter we will consider tR& fragility problem that is the prob-
lem of computing the maximum controller parameters dematwithout loosing the closed-
loop stability. In other words, given the parameték, kj, k') such that the roots of the
closed-loop characteristic equation:

Q(s) + P(s) (k* +kds+k' ) ST =0, (8.25)

are located irC_ (that is the closed-loop system is asymptotically stalfiled, the maximum
parameter deviatiod € R such that the roots of (8.25) stay locatedin for all controllers

(kp,kd, ki) satisfying:

V(oK) + (ka —kG)2+ (k)2
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First as in the previous section, let us introduce some iooist

N
T = U7, 7= {(kp ks, k)| we},
=1

K@) = (0. ka(@).ki(@)T, K = (kKiK.

Let us also denotd;= min d;, where
le{1,...,N}

d'ikp,kTLﬂef.W (kp — ki) 2+ (ka — g2+ (k — )2}

Finally, observe that for a fixe@d* € R, the second equation in (7.7) describes a line in the
(kg,ki) —plane. This observation motivates the following definition

Méwﬂ) |

L (ay) := awrkyg — ki + a0 (P(iwe)

In order to present the PID fragility algorithm the followimesult will be needed. Let
kp = ki € R be fixed, we have the following:

Proposition 8.3. The maximum parameter deviation frgkj, k), without changing the num-
ber of unstable roots of the closed-loop equaii®r25)can be expressed as:

déimin{ls*,wrgg] { }} (8.26)

whereQy. is the set of roots of the functiop: t R x Ry — R,
fi, (K, @) 2kt + 0 {Q(“")eiwf}. (8.27)

P(jw)

Proof. Let the pair(kj, k") be inside of a polygor formed by the set of linek,(wy) with
¢e{1,2,...,N}. Then, for each,(wy), the associated perpendicular line passing through the
points(kj, k*) will be given by:

(L)Ezké—l(i*+w€|:|{MengT}

P(jor)
(0)5)4 +1

wflq*:ké)

07

Ly (o) = —%kdﬂL (
7

more over, the intersection poinflgs, ki) of L}'(c) with Ly(a) are given by:

WPk +kg—wP0{G H(wr) }
1+ o}

[ ki ] B w? (0Pl +)+w0{G () }

1+

Then, it is clear to see, that the distance from the po@hg,ki*) to Ly(wy) is

\/(k;'] —E)2+ (ki* —E)Z, which is precisely given by the second argument of (8.26). F
nally, according tdRemark7.3, we know thak; = O belongs to the boundary set, since the
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distance fronkj, k*) to thekq—axis is given byk’|, we have that the minimum distance from
(kj, k") to the boundary of is equal to:

wgzkg—lq*ergD{ gc‘:jf)elwﬂ} }}

ddimm{kiée{L 7N}{ @)+ 1

which is equivalent to (8.26). O

Remark 8.3. Observe that (8.27) has an uncountable number of solutlensever in Propo-
sition 8.3 we have considered the set including the cornedpg (kj, k) points.

In order to obtain the obtain the PID fragility we presentfileowing:
Algorithm 8.3 (PID-Fragility Algorithm).

« Step l:Letk;, € R® be fixed. Then, set# mm{d;l, pd,dd,}

» Step 2:Sweep over alb [ } and compute% K+ dsin6.

Step 3:Solve i;, <k’|ge, w) = 0 and denote bfg the set of solutions.

Step 4:Compute,

dg = min
wEeQp

(Ol)g) +1

{ kg — I + D { Q2 ))elw”}}

Step 5:1fdj < dcosB then set d=dj/cosB and go to step 2. Otherwise continue to
step 2.

Step 6:If 8 = 7, the procedure is finish and d is the PID fragility for the aafier

(koo kg ).
8.3.1 lllustrative Examples

In order to motivate the previous results, we consider irstguiel some numerical examples.
Example 8.8. Consider now the same plafit.14)as in Example 7.1, i.e.,

45 +s+2 o
S° + 854+ 3253 + 4652 + 465+ 17

Next, in order to illustrate the proposed PID fragility-aigthm, consider(ks, ki, k) =
(2,3,3), leading to the values in Table 8.7 and depicted in Fig.8.16.

G(s) =

Example 8.9. Consider now the plar(f7.15)considered in Example 7.2, i.e.,

—t 73 -2s+1 s
(s+1)(s+2)(s+3)(s+4)(s°+s+1)

G(s) =

Then, in order to apply the PID fragility-algorithm 8.3, csider (kj, ki, k') = (1,-1,3),
leading to the following results:
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Controller Fragility Initial PID-Fragility
(kp. kg k) | (PI,PD,DI) | PID-Fragility | min{d*,dj}
dp = 1.68051
(2,3,3) dog = 1.33313| d* =1.27520| dg = 1.26295
dy; = 1.27520

Table 8.7: PID fragility for the example (7.14).

Figure 8.16: PID-fragility for the controlle(m*,kg,lq*) =(2,3,3).

Controller Fragility Initial PID-Fragility
(kp. ki k) | (PI,PD,DI) | PID-Fragility | min{d*,dj}
dp; = 3.00000
(1,-1,3) dpg = 3.38832| d* =3.00000| dg = 2.98908
dj; = 3.00000

Table 8.8: PID fragility for the example (7.15).

Example 8.10(unstable, non-minimal phase systerkjnally, in order to analyze a plant of
neutral-type, we consider the plafit.16)given in Example 7.3, i.e.,

Now, applying the same procedure as before, and considékig]gg, ki*) = (g, —1—10, —%) we

obtain the results summarized in Table 8.9. Figure 8.1&ihate such a results.
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0 40

Figure 8.17: PID-fragility for the controllefk, ki, k*) = (1, —1,3).

Controller Fragility Initial PID-Fragility

(kp, ki, k") | (P1,PD,DI) | PID-Fragility | min{d*,d;}
dp = 0.29314

5 -1 -2 * * *

(5.73.2) | dfy=016758| d* = 0.16758| dj = 0.16453
dj; = 0.16782

Table 8.9: PID fragility for the example (7.16).

N ‘ ““\‘

\
\

S

8.3.2 Conclusions

In this chapter, a simple geometric-based algorithm isveédrfor computing the fragility of
PID-controllers. To prove the efficiency of the proposedhnds, several illustrative exam-
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ples have been considered. It is important to note that sudthe@ can be easily extended to
proper SISO systems with I/O delays.

Remark 8.4. The results presented in this part has been reported in temlure as follows:
* ThePI Fragility in [89],
* ThePD Analysisand Fragility in [82],

e ThePID Analysis and Fragility in [96].

As mentioned at the beginning of this part, it is worth menitig that a book chapter [97]
covering all these problems is in preparation and will be jghed after the thesis defense.
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9 Chain of Integrators

9.1 Introduction

In this chapter, we introduce first the output feedback Biathion problem of a chain of
integrators using multiple delays in the continuous-timmgec To this end, we will recall
the properties and results developedMigulescu and Michiel§2004) [106]. As mentioned
previously, the aim of this chapter is to explore such ideathe NCS framework, that is
to stabilize a chain of integrators by taking into accoumetribtwork-induced delaysnd the
correspondingampling period Although such an idea sounds simple and easy to analyze,
however such a problem was not fully addressed in the colitechture. For example, [137]
treated the case of a single integrator with one delay block taey derived the stability
regions in the parameter-space defined by the delay andniaisg period and, for higher-
order systems, they suggested the use of simulations im trdgproach a solution for the
corresponding stabilization problem. It is well known titae stability and the performances
of NCS are affected by theetwork delayss pointed out by [137], [128]. To overcome such
a problem, several approaches have been proposed and, dmeamgve cite: a model-based
method [94] for stability analysis or some optimal coneadl when the network-induced delay
is smaller [108] or longer [56] than the sampling period, paliy, a queuing mechanism [17]
used to reshape random NCS delays to deterministic leadiagite-invariant NCS.

In this context, we are interested in deriving closed-lo@ity conditions by using the
network-induced delays aontrol parametergor the continuous-time process described by
the transfer functiody,(s) = 1/s" (n > 1). The corresponding discrete control law is given

by:

m
)=~ 3 Kay(th—Tu) tE [th+Tm (£+Dh+Tr),
=1

where/ is a nonnegative integer and the network-induced detays1, < ... < T, are pos-

itive real numbers. First, considering a small gain valuéhacontrol law we will see that,
similarly to the continuous-time case [106, 70] one delackl(gain, delay) cannot stabilize

a chain ofn integrators, witi > 2. The approach is based on the use of the complete regular
splitting (CRS) property of multiple, non-semisimple eigalues (see, e.g. [77] and section
2.5 for some prerequisites).

Next, we will explore the cases when multiple delay blocles alvle to stabilize the cor-
responding chain of integrators. More precisely, a pedtion theory approach (see, for
instance, [67] or Chapter 2, section 2.5) will allow conchglon the behavior of the char-
acteristic roots of the closed-loop system as a functionoafies parameters of the system.
We will see (sections 9.7-9.8) that the closed-loop stghbitan be obtained by usingde-
lay blocks, but an arbitrary pole placement requines- 1) delay blocks. In both cases, the
corresponding control law is explicitly derived. In the ficase  delay blocks), the pro-
posed controller leads to some appropriate closed-loopactaisticlacunary polynomials
(see, e.g. [84]) with nice properties: (a) only one tuningapaeter (for improving eventually
other performances in closed-loop), (b) particular betravof the roots wrt the variations of
the corresponding parameter.
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9.2 Continuous-Time Systems

As mentioned previously, this chapter is based on the esbthined biculescu & Michiels
(2004)[106]. Then, in order to present the mean difference betwsoontinuous-time cases
and the Networked Control System (NCS) case, in the follgvginbsection we will discuss
briefly the characteristics and results of the continuaue-tase.

9.2.1 Problem Formulation

Given a chain ofiintegrators:
y(t) = u(t). (9.1)

Find (necessary and/or sufficient) conditions on (k@ -+ 1)—tuple (m,k;, 1), i = 1,m such
that the (output feedback) control law defined by the chaim dfstinct delay blockk;, 7;)

LR 9.2

asymptotically stabilize the system (9.1).

9.2.2 Properties and Motivated Examples

The continuous-time control-law, has the following imgort property:

Property 9.1 (Scaling) The control law

m

ut) = Z Kjy(t—T1j) (9.3)
J_

is asymptotically stabilizing if and only if
m .
Zé_J y(t—o1)), 6>0 (9.4)

is asymptotically stabilizing.

Now, it is clear to see, that system (9.1) can asymptotidad\stabilized by a feedback
law
u(t) = —doy (t) =y (t) —--- —an-1y™ (1) (9.5)
whereq(s) =s"+ 515, Lgis is a Hurwitz polynomial. From this observation, the key idea

veloped in [106] in order to choose appropriated contr@iensk;, consists of approximating
the output derivatives in (9.5) with delayed output measamts, for instance,

Y (1) ~ w (9.6)

for smalle, corresponding to an approximation

S=

+0(&9)
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in the frequency domain.
In order to construct a stabilizing controllers, two apmtues have been proposed in [106].
Before introducing such a results, lets consider the fahgWwandermonde matrix

11 2 - ot
11 12 ... 1

T(r=| = 27 2 9.7)
1 1y 12 - 11

whereT (1) is invertible whenever the delaysare all different.

Theorem 9.1(Interpolation Based-Approach)106] Assume thad <11 < --- < T and ((s)
a Hurwitz polynomials. Then, the control law

y(t—1m)
ut)=—| "o Lpm e o S | T YT g
y(t - Tn)
achieves asymptotic stability for small valuessofAs e — 0+, the n rightmost eigenvalues

converge t&A;, i = 1,n, with A; the zeros of (p).

The following result presents an alternative approach sigthea stabilizing feedback law.

Theorem 9.2(Exact Pole Placement Based-Approadip6] Assumethad <11 < --- < Ty
and let T(7) be defined by (9.7). Then, the control law

e &n y(t—11)
ut)=(-)"[ " ne™t ... nle]-T(1)t : (9.9)
e | | yit—)

achieves asymptotic stability for small values oMoreover, there is a closed-loop eigenvalue
at A = & with multiplicity n.

Remark 9.1. Observe that the control law based on interpolation or inepplacement will
not necessarily coincide, for example takingp= (s+ 1)" with the control law (9.8) we get

y(t—1)

n— _1)gn-2 _
U(t) — [ en rzi]_)l n(n(_ll))ez ce (_T)i_l T ('[) 1 . (910)
y(t—Tn)

Clearly, this control law does not coincide with (9.9) besadut is based on an asymptotic
approximation of gs), while (9.9) is based on an exact placement of n eigenvalues.

9.3 Stabilization of A Chain of Integrators in NCS Framework

In the remaining part of the chapter we will focus on the atbk®p stability of a chain of
integrators in a networked-control setting. Similar to doatinuous-time case, we will see
that a single delay is not sufficient to stabilize a chain hgvi (n > 2) integrators, but that
n delay-blocks are able to stabilize such a chain withoutdpalvle to guarantee an arbitrary
pole placement for the corresponding system.
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9.4 Problem Formulation and Motivating Examples

Consider the following chain of integrators system,
yV(t)=u(t) te[th+Tm ({+1)h+T1y) (9.11)

with a discrete controller given by

m

ut) =y uu(t), telh+tm ({+1h+Tm), (9.12)
u=1

where the delay-blocks are definedigst) := —k,y (Eh — T“), he R, isthe sampling period,
T is the induced network delay afid—1)h< 1=T1 < o < ... < Ty < dh,ford € N (i.e.,
a positive integer).

9.5 Discretized Delay Case and Some Related Properties

Let h be the sampling period, the induced network delay satisfying= (d —1)h+ 7, d €

N and lett, be chosen satisfying, = (d—1)h+ 7T, where 0< T=1T; < ... < Tn < h.
Since the control law (9.12) is piecewise constant, thesr aftme algebraic manipulation the
discretized open-loop system can write as (Astrom & Wittarki{1997)) [6]:

X[+ 1] = d(h)x[(] + g r(O,h—1y)uy [ —d+1]+ g r(h—ty,hu,[¢—d], (9.13)
p=1 =1

whered € N and:

hV—H
. if v >
o) 2 (g M), . with gt 2{ (V_p " (9.140)
0 if v<u
—H+L o \n—p4l
n i (tf)n o — (ti)

Mttr) = [ou(tite)],_y, withoy(titr) £ ) (9.14b)
Define now the augmented state
vector agz[] £ [x" [¢],xq [ —d], X [{ —d+1],...,X [( — 1]] T wherexq[(] = el x[¢], leading
to the augmented closed-loop system:

z[0+1] = ®(h;k,m)z[/]. (9.15)

Equation (9.13) describes a general situation, that is,nwthe induced network delay is
larger/smaller than the sampling period. Under these ghtens, we have:

Remark 9.2 (Smaller delay) Let T be the induced network delay, such that: 11 < --- <

Tm < h. Then d= 1 7, = 1, and the transfer matrix of the augmented closed-loop system
rewrites as:

®(h) —Ag(k;m)e]  Aq(k;m)

®(h;k,m) £ “a 0

(9.16)
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Remark 9.3 (Larger delay) Let t be the induced network delay and h the sampling period,
such that d> 1.Then,0 < T =: T; < --- < Ty < h, and the corresponding transfer matrix
becomes:

[ ®(h) Ay(k;m) Ag(k;m) -~ 0]
0 0 1 -0
d(hkm 2 | : A (9.17)
0 0 o -1
—ef 0 0o ...0

whereAi (k;m) i € {0,1} is defined by\i(km) = 37 T ((h—Tp,)i,h— (1—i)Ty) k.

The characteristic polynomial @(h; k, m) given by:
P (2) 2 2%+ anyg-1 (N k,m) 2791+ +ag (K, m),
describes the general case (larger/smaller delay) foutpmanted closed-loop system (9.15).

Assertion 9.1. Let d= 1 (smaller delay case). Then, the coefficients gf# satisfy the
following properties:

1. ay(h;k,m) are affine functions in k3, € R):
m
ay(hk,m) = Z kvay v(h, 1) + By, (9.18)
v=1

2. ay,y(h, 1) is a polynomial function irfh, T) verifying:

oy (h, 1) = apy(h,T) for i#].

This assertion follows by a straightforward applicationtloé Laplace expansion’sule
([74]) to the last row of:

~ T e
Ba(zh km)2 | Dot Lo(kmie] —@(h) —A(km)

=l z
Remark 9.4. By applying the determinant properties [74], it is easy te #eatay, , (h, 1), Bn
andao,(h, 1), Bo satisfy:

(h—1)" "

an,v <h7 T) = n! 9 Bn = _n7 aO,V (h7 T) = n_ BO =0.

9.6 Motivating examples

In the rest of this section, we present several illustragkamples which show some "singular”
behaviors. Specifically, we will see that as in the contiraioase, one delay-block cannot
stabilize a chain oh integrators, withn > 2 and that at leasih = n delay-blocks should
be taken into account. Moreover, it is shown that in contwagt the continuous case, for
sufficiently small enough gain parameters the closed-lgsfes is unstable.
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9.6.1 Complete Regular Splitting Property.

In the sequel we present first several motivating exampleshwhustrate the behavior of the
closed-loop system for small gain-parameters. Next, aiggation-based approach is adopted
in order to describe such a behavior in a general contexteMuozcisely, we will see that for
m—delay blocks the closed-loop system possesses the CRSriyrops in the continuous
case, we have the following property:

Property 9.2 (Scaling Property) The control law
m
z KuY(t — 1), t € [fh+ Tm, (€4 1)+ Tm) (9.19)

is asymptotically stabilizing if and only if the control law

m K
uth =-3y p—‘:]y(t —pT1y) t€p[lh+Tm (£ +1)h+ 1), with p > 0, (9.20)
u=1

is stabilizing.

Proof. This property can be shown by takiags p"'x;, T £ pt andut £ pln sm.z(t—p1),
proving thus the equivalence of the systems. O

In the scalar case, Zhamyg al.[137] derived the stability region in thig(k;), T) param-
eter space for the case of one integrator:

y(t) = u(t), tethtt,(l+1)h+1)
ut™) = —ky(t—r1) te{ih+1]ie NU{0}}.

The corresponding NCS will be stabfeand only if:

1 1 . [1
max{éh— K 0} <T< mm{k—l,h}. (9.21)

Unfortunately, such a property does not hold for higherorsystems (i.en > 2), as it is
shown by the following result:

Proposition 9.1. The double integrator system
y(t)=u(t), teth+rt,(¢+1)h), T<h, (9.22)
can not be stabilizable with a discrete control law of thenfior
u(tt) =—ky(t—1), te{th+1|cNU{0}}, (9.23)
for all k; € R.
Proof. Taking the discretization of the system (9.22) with conkaal (9.23), we derive:

z((04+1)h) =:z[¢+1] = ®(h,T,k;) 2[/] (9.24)
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where
2[] £ [x[q" ule-1)],
T
) 1-3ky(h—1)% h kl(h—é)r
P(htk) = —ki(h—1) 1 KiT
-1 0 0

Applying the Schur-Cohn criteria, the system will be asyotiptlly stable if and only if the

following inequalities hold:

Condition 1:

Condition 2;

Condition 3;:

k214
1-1 >0
4 >

a?—pZ>0

as— Bz >0

wherea; andf;, i = {1,2} are defined as,

ai
az

B
B

4

4

L

L

2
2+ % +hky T — ky T2

Lk
4
2

2 % —hiq T + ki T2

h?k212

2
14 M g — 4T T

(9.25)

(9.26)

(9.27)

hi¢r® kit

4

It is clear thatkj # O, otherwise (9.26)-(9.27) will not hold. Then, analyzi®g25)-(9.27)

we get the following results:

(i) Condition 1will holds if and only if:

4-KET* > 0
& -2<kt? < 2

(9.28)
(9.29)

(ii-a) Condition 2 will hold whenever one of the following two cases holds:

« Case 1(ay+B1) < 0= (a1 —P1) < O: simplifying (a1 + B1) and(ay — 1) we

obtain:

=k < O
8+4hkqT < 4k T?

(9.30)
(9.31)

Next, considering fronCondition 3 (a2 — B2) > 0 and(az+ B2) > 0, we get:

k]_ <0
{8+ 4hky T} + 2h%k; + 2hiET3—
—hK3T2 — 23T > 0

(9.32)

(9.33)
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from (9.31) we know that 8 4hk; T < 4k, T2, then (9.33) can be rewritten as:
2hiT3 > 2Kk3T4 + h2k212 — 4k T2 — 2h%ky > 0 (9.34)
From the fact thah— 7 > 0, we define the following difference:
d2h—-1>0
Then,h =d+ 1, applying this fact to (9.34), we derive:
0> d2k3T? + Ke1* — 4k T2 — 2h?ky > 0 (9.35)

clearly (9.35) leads to a contradiction, that implies that + 1) < 0 =
(a1 — 1) < 0 doesn't hold.

(ii-b) Next we consider ifCondition 2the casda; — f31) > 0, that is:

e Case 2(a;— 1) > 0= (a1+ B1) > 0: following the same ideas that in the pre-
vious case, we obtain the following inequalities:

8+4hkT > 4k1? (9.36)
ki > 0 (9.37)

Taking into accoun€ondition 3for (a2 + 32) < 0, we get:
8-+ 2h%ky + 4hkq T 4 2hIET3 < 2k3T* + h?k212 (9.38)

Now, according to (9.28) we have that-4k314 = 8 > 2k214, with this fact, we
have that (9.38) can be stated as:

0 < 8+ 2h’ky +4hky T+ 2hkET® < 84 h?kiT?
0 < 2h%k; +4hky T +2hiET3 < 2h%Kg
0< 4hkgT+2hKeT® < 0 (9.39)

In the second line of the previous inequalities, we have tiseéact thahzkfr2 =
h%k; (k1 T2) < 2h?%k; (by (9.29)). Once again, we have a contradiction, this means
thatvk; € R the system (9.22) cannot be stabilized by the control [a23(9.

O

However, the use of a controller involving two delays will &ilgle to stabilize the double
integrator system (9.22). Indeed, consider=1 < g T =T+ewithO<e< %(h— 37).
Then the control gains:

6h? +4h(T+¢€) —6(T +¢€)?
he(4h?+21(1+¢) —3h(21+¢)
—6h? — 4ht + 677

A
T8 = ot re) a2 e) (9-41)

ki(h,T,6) 2 (9.40)

will define a stabilizing control law (9.12), as is illustedtin figure Fig 9.1. The algebraic
technigue developed iRroposition9.1 is not suitable to deal with the general case>(
2), then in order to prove a general result the following pon adopt theperturbation
techniquesieveloped in th€hapter2.
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1.5— 1.5
Alm AIm
1F 1t
0.5f 1 0.5
o < 0
-05 -0.5
_1, _1,
Re Re|
_15 I L ; _15 I L L L L L L ;
-15 15 2 -15 -1 -0.5 0 0.5 1 15 2

Figure 9.1: Double integrator system (9.22) whth- % andt = 1—10. (Left) One delay-block
with ky € [—2—5, 2—;] (Right) Two delay-blocks, witlk; andk, satisfying (9.40) and (9.41),

) '
respectively.

Proposition 9.2. If n > 2, then the closed-loop system consisting of a chain of nnategs
yW(t)=u(t), telh+t,((+1)h+1), T<h (9.42)
and a control law of the form
ut)=—-kiy(¢h—1), teth+t,({+1)h+1) (9.43)

is unstable for small values of the controller gain k

Proof. The assertion follows from the behavior of the eigenvalgie- 1 for k; = 0 as|k| is
increased from zero, and is based on Theorem 2.5. To thixendider

L(X,kl): O —1-Al 0 ]+[—Ao(k1;l)eI Al(kl;l)] (9.4

—e] “A-1 0 0
whereA £ A —1. From the definition ofp(h) it follows that the algebraic and geometric
multiplicity of the eigenvalu@ = 0 for k; = 0 isnand 1, respectively. Furthermore the right
and left eigenvectors are given ky- e; andxX= e,. Next, we have

oL | -T(O,h—1) T(h—r1,h)
0—k1()\’k1) = { 0 0 :
It is easy to see that (2.32) holds if and only if the equation
oL
L(0,00y = —— (0,0
(h—0)"
n!
®hh)—1 O B ;
@[ el _Jy = — - (9.45)
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has no solution foy. Since, by hypothesi$ > 1, this is the case and the eigenvaﬁJ& 0
has the CRS property. It follows that for smgd]| it can be expanded as

~ o L 1
Mi(ky) = c& T Kf +o(k), i =1,...,n,

for somec € C. Since) = 1+ A it follows that the original system always has one eigerealu
outside the unit circle for small values [t |. O

Consider now a discrete control law with two parametersggahs a motivation example,
we will considem =3 andm= 2, i.e.,

yIt)=u(t), telth+t,({+1)h+T), T<h, (9.46)
where 0< 11 < T2 < h and with the control law,
ut)=—-kiy(lh—1) —koy(¢h—1) te[th+1,({+1)h+12). (9.47)

Without any loss of generality, assume tkat= ak; for somea € R\ {—1}. Then, applying
the Newton Diagram’q[73]) the characteristic roots for "small" control gdin= € behave
as:

—W3 5432 3h
z(g) = Wo,3£+wo’3( Lyt ot WO"2>82+C9(83),

2w3 . +hwg 1 —w3
Zi1(8) = 1+wyees + 1’3}&1 g3 10(e), (e{1,23},

A Tl+O{T

wherewg, = andwlg 2 ¥ Jh(ljL a) . In the particular case = —1, the closed-

loop charagterlstlc function can be rewritterfagz) = (z— 1) P(2). Now, applying the same
analysis tdP(z), we conclude that the characteristic roots for "small” ealafk; = € behave
as:

3_.3 —1,)2 2_
7 (€)= T13!T28—|— h(11-12) (h+r1+;22)((r1+r2) 11,) 240 (83),

Z3(8)=1+hyT — The2 + h(”’TZ)(A{Hl’TZ)st O (s%) .
Figure (Fig.9.2) illustrates the closed-loop behaviortaf tharacteristic roots for several val-

ues ofa. In the above analysis the poiot= —1 represents aingular case which can be
generalized as follows:

Property 9.3. Let k = aj¢g, for somes € R\ {0} andaj € R fori =1,...,m. Assume that
ai+az+---+am= 0. Then for the control law

ut) =— glk“y(ﬁh— Tu), te[h+tm ((+1)h+1m), (9.48)

the closed-loop system (9.15) has at least one charadterigit on the unit circle at z= 1.

Proof. Sincea; + a2+ -+ am = 0, this implies thag, h h-(h-m)™ z, (h~ T' a; for

N =1,....n. Then, the first and last columns of the characterlstlc mma (1,h,a,m) are
identical. In other words, for all sampling perigd) and for all possible delaysr;), z=1
represents a characteristic root of the closed-loop sy&elb). O
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ImA ‘
0.15} [ = —0.99, € > 0-eee
a=-—1, € > 0-ee
a=-1, €< 0ee -
0.1} ‘Z‘ =1—>\A_-"
0.05}
< Of K oo
-0.05}
-0.1}
1 -0.15}
Re ‘ ‘ |
-1 -05 0 0.5 1 “15 0.9 0.95 1

Figure 9.2:Branches series behavitor a = —0.99 (green) andr = —1 (red). (Right) Zoom
of the dashed region.

The following result concerns the behavior of the closempleigenvalues for sufficiently
"small" controller gains. To this end, we considgecontroller parameters satisfying
ki=aje, i=1,....m,

wheree € R is a parameter, and the direction= (ay,...,am), ||a| = 1 is fixed. For the
sake of brevity, we will consideg > 0.

Proposition 9.3. Let T be the induced network delay satisfying= (d —1)h+ T, d € N,
0<T=IT1<--<Tm<h,n>2 and assume that; +--- + an # 0. Consider the closed-
loop system consisting of a chain of n integrators

yV ) =u(t), te[th+tm(+1)h+Tm), (9.49)

with a control law of the form
m
u®)=— 3 kay(th—14), te[th+tm ((+1)h+1m). (9.50)
u=1

Then, for sufficiently small control gaing kthe eigenvalues of the closed-loop system pos-
sesses the CRS property and behave as:

Sl

21y (Q1+ 02+ -+ Om)

M(K)=1+he ento(lelt), £=1,....n (9.51)

1
la|n

Proof. Consider first the smaller-delay case (ice= 1). According to (9.44), we have that
the behavior of the zeros of the closed-loop system can lided by,

Al —®(h) O} 3 [Ao(a;m)el —Ap (a;m) (9.52)

A _
L“"”‘[ d ATl o 0

According to this definition, we have thag = 1 is anon-semi-simpleigenvalue ot (A, 0)
with multiplicity n, then we can apply Theorem 2.4. To this end, observe thataherglized
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eigenvector of_(A,0) can be written ag; = e; — e,,1, whereas its corresponding reciprocal
eigenvector is given by, = ﬂ%ﬁe}ﬁ then the mean coefficient of the Puiseux series\f@r)

is given by:

sy (h—rul)nau 0 h”—(hl—r“)nau .
n! n:
h-1,)" A1 (h-t,)" "
YmAxa) =[0 0 ... M2 g -5 U 0 T l| O
Yn,A1X1) = E . . :
: : 0
h— h—(h—
S U 7 T O g U 11 1
0 o ... 0 - -
P
0
hn—l hn—l .
:[_HaHZ(h—Tu)au 0 O o 2Tl || ¢
0
-1
n m ) )
(Yn, Arx1) =] > au
u=1

These arguments complete the proof for the smaller delag. c&onsider now the larger
delay case (i.ed > 1). According to (9.17), the zero closed-loop behavior sotided by the
following matrix-valued function,

&

L(A,e)=

% e(1n)T

Al — Jq (0) Od><d
The remainder of the proof follows the same arguments a®ttiegeloped irsmaller-delay
caseand for the sake of brevity they will be omitted. O

Example 9.1. Consider first the triple integrator. As mentioned aboveofisition 9.2), it
cannot be stabilized by using a single block-delay (se€lbid. (left)). Secondly, consider
a fourth-integrator system. As stated in Proposition 9d8,dmall controller-gains the sys-
tem has the CRS property, however by taking m= 4 block-delays and by increasing the
controller-gains it is possible to stabilize the closedysystem (see Fig.10.1 (right)).

9.6.2 Admissible Pole Placement.

Next, we will see that unlike the continuous case, taking n delay-blocks are not able to
place arbitrarily the eigenvalues of the closed-loop systén order to see such a property,
consider the smaller delay case andA&t £ {z(o), e 7Zr(821} be the set of roots o (2).
Then, the fact that the uncontrolled system hasl roots onC(0, 1) simply points out that, if
m= nin the control law (9.12), then the system does not have sifti¢degrees-of-freedom
for an arbitrary pole placement.

Example 9.2. Consider now the triple integrator:
Y3 (t) = u(t),

te[th+1m ({+1)h+1y), Tm<h
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KIm
1,
0.5]
0,
-0.5
_1,
Re
1 05 o0 05 1 15 2 -1 ~0.5 0 0.5 >

Figure 9.3:Completely Regular Splittingroperty illustratingroposition9.2 andProposition
9.3 for A = 1. (Left) Triple-integrator(n = 3) for k € [-3;, %]. (Right) Fourth-integrator
(n=4) fork, = ae, with £ € {1,...,4} ande € [0, 20].

Figure 9.4: Admissible pole-placement for the control 1&.2) withm=n=3

Taking m= 3in (9.12) and denoting the roots oy {{, } for u = {1,4} and considering
that {4 depend or({1,{2,{3). Then, the only admissible rootd, | < 1 for u = {1,3} such
that|{4({1,{2,{3)| < 1 are depicted in figure Fig.9.4.
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9.7 Control-Law Based on Exact Pole Placement
Denote the set of desired closed-loop rootsAby £ {A1,...,Aq,1} and the corresponding
characteristic polynomial by:

Pi(zc) 22—+ 4 (—D)" ey (9.53)

wherec, is the? —th symmetric functiorf A(? defined as the sum of the product of the
eigenvalues takefat the time:

A
CB = Z All .. 'AI
1<i1<-Zij<nt1

4
Proposition 9.4 (Exact pole-placementAssume thad < T=1T1 < T2 < ... < Thy1 < h.
Under the notations above, define the gain:

k=A"1T (9.54)

with A 2 [HN_:L(h?TV)}ZTVl:]_’ o [(_1)n+1cn+1 (=1)"ch— ()" (D) --- _c1+(nﬂl)}

whered; (h, ) is defined recursively by taking)B | and,

B 9 _
au(h1) 2 _ﬁﬁ—k‘/trace(qb(h,k,m)Bnu)
trace(&)(h;k,m)Bu_1> ~
By = — | +®(h;k,m)By_1.

u

Then the corresponding control law (9.12) guarantees thatiosed-loop characteristic roots
are located at\ (9.

Proof. According toAssertion 9.1(1)the coefficients oF;(z) satisfy:
m
ay(hk,m) = Z kvayv(h, ) + By,
v=1

thatis,
day (h;k,m)

dky
A straightforward application ofheorem A.leads to:

= a“,v (h, Tv> .

ﬁ“(h, T) - auv<h, Tu),

Assertion 9.1(2allows concluding that the above equality is true fonalOn the other hand,
from Assertion 9.1(1)a, (h, 7,0) = By. Then, a straightforward application of theduction
Methodto:

aDd(Z;h,O,m) _ |: 4 —CD(h) 0 :| :

el z

1
shows thapy = (,,",). With this fact in mind, we have tha, (h;k,m) = (=1)" 15,44,
takingu = 0,n and putting this in a matrix form we obtain (9.54). The praofinished if we
show thatA is nonsingular. Singularity oA simply means that there exist some dependent
row or column vectors. Then, a straightforward applicatbissertion 9.1(2andRemark

9.4implies thatry = - - - = 11 Since, by assumption we have thak - - - < 1,11, the proof
is completed. O
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9.8 Reduced Order Controller

We focus now on finding the control lake= (ky, ...,k,) such that the closed-loop character-
istic polynomial becomes:

P(zpip) 22 4 p(Z P 420 4 24 1) (9.55)

with 1 <ip <n+1andn> 1. Itisimportant to mention that the so-calleg¢unary polynomi-
als, which are of the form (9.55), have received some attentidhe literature in the context
of delay-difference equations, see, e.g. [66]. Its maiarggt lies in interesting properties to
be exploited in what follows:

Property 9.4. The following properties hold for &; p,ip):
(i) the moduli of the roots increase ap | increases.

(ii) the roots are inside the unit circle jip| < +2

Proof. First, P(z p,ip) = yALEE pw. Next, for (i), see [66]. (ii) Take now (z) =

z-1
2" andg(zip) £ p(zn "’sz) For allze C, we have thatg(zip)| = |p|| T, Ip+1zk| <
Ip| zn Ip+l|zk| Then, taking p| < = +2 = 1 we have thatf(z)| > |g9(zip)|. Then,

by a straightforward application of Rouches lemma ([8#)z p,ip) = f(2) +9(zip) is a
Schur-stable polynomial. O

Remark 9.5. The proof above guarantees not only the existence of soatalizing” param-
eter p, but it also gives a "cheap” way to compute it.

Define nowX as the set of real zeros of the polynomial:

n—ip N—ip+1

Tnr1(X) Uj (X) —Un(x) Ti (x), (9.56)
+1 j;) ] ];) ]

(see the appendix for the definition of the Chebyshev polyalsii, andU,) and introduce
the following quantities:

p~ = max nf,:jﬁ <03, ph= = min —nj:)“(x*) >05. (9.57)
X*e IEOUI(X*) Xre IEOUI(X*)

Then we can state the following result:
Proposition 9.5. The polynomial Pz p*,ip) is Schur stable if and only if

max{n |1+2, P~ } <p‘<p’. (9.58)

Proof. The polynomialP(z0,ip) is Schur. Now, since the roots of a polynomial are con-
tinuous with respect to their coefficients (see, e.g., [IZ]L it follows the existence of
some realp close to 0 such tha&(z p,ip) is still Schur stable. Moreover, in the limit case,
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there exists @* € [~1,1] such thatP(Z?; p*,ip) = 0= 29 = €9 8 [0, 2m). Then,
(0)« y* i
0 (P9 p.ip)) = 0 and P& 0 — o lead to:

sin@
n—ip+1
Tt (X) + p* T (x) = 0, (9.59)
+1 ;i? J
Un(®+5" T Uj(%) = O, (9.60)
,Zo j

wherex =[] (z(o)) = cosB. Equations (9.59)-(9.60) will give the whole set of solaspexcept
the singular poinZ® = 1. In this last casep* can be obtained by solving(1;p*,ip) = 0.
Some simple algebraic manipulations lead to the condit{®ris). O

Remark 9.6. It follows from the first assertion of Property 9.4 that thexdaion (9.58) defines
the whole set of solutions. Notice also that, (9.56) has astmosolutions. Finally, [66]
proposed a different argument for proving a similar propert

We can now state the main result of this subsection:

Proposition 9.6. Let T be the induced network delasg, . .., T, chosen liker = T+ (i — 1)&
fori={2,...,n} and g be chosen satisfying (9.58) for soth€ i, < n+ 1. Then, the control
law (9.12) with, _

k(e)=A"1pT (9.61)

— . n
whereA = [, (h.v)] ;.

p2 | P = (-1 - PPN GOSN e ()
guarantees the closed-loop stability, whenewsatisfies,
Po < To(h,T1)ki(€) +---+qo(h, ) kn(€) < pg, (9.62)

for e > 0,h> 1+ (n—1)¢, and where g are given by:

N, p*—1ifn—ip e 2N ,

Po = R0\ Z1  otherwise Po<P
(9.63a)
po = min{po|po>p"} (9.63Db)

where p is the set given by,
N—ip+1
po= — {Tn+l(X*> +p° > T (X*)} (9.64)
<1

and X is a root of the following polynomial

n—ip

Un()+P" 3 Ur(9): (9.65)
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Proof. According toProposition9.5, for the invertibility ofA is sufficient to have; # - - - # 1,
andh > 1 for all i = 1,n. Since this fact is fulfilled by hypothesis¢) is well defined. Then,
let k(¢) be given by (9.61). It is clear frorRroposition 9.4that the closed-loop system will
be rewritten as follows:

PC|(Z>:ZH+1+p* (Zn*ip+l_|_znfip+“'+z)+5;k<8>’

wherep*(¢) is given by:

p*(g) 2 do(h, To) ke (€) +---+To(h, Tn) kn (€).

Since by assumptiop* satisfies (9.58), we have that, fﬁr(s) = p*, the closed-loop system
is asymptotically stable. Then, similarly to the proof obposition 9.5, there exists some
interval (pa, pg) including p* such that the system remains asymptotically stable. In the
limit case,Py (€)= 0. Taking the corresponding real and imaginary pagtgF (¢9)] =0,

O [Pd (eie)] = 0) and using the Chebyshev polynomials, we obtain (9.645(9respectively.
Equation (9.64) gives the set of all possible intervalsudaig p*, excepting for the singular
point8 = . At this point, we must havp, = p* —1 wheneven—ip, € 2N. Then, in order to
preserve the stability, we must choose the smallest intarea pg must be contained in the
interval (py , py) given by equation (9.63). This means thatpjf < p*(£) < p§ the closed-
loop system will be asymptotically stable. Since this isiegjent with equation (9.62), the
proof is completed. O

9.9 lllustrative Examples

In order to illustrate how the present methodology workscamsider a fourth-order chain of
integrators as:

YY) =u®t), teth+tm(+1)h+T1n), Tm<h (9.66)

wheret = 0.1 is the induced-network delay ahd= 0.6 is the sampling period. Takimg= 4,

Ti =T+ (i—1)efori = {2 4} in the control law (9.12), then applyiriRyoposition 9.5-9.6ve
obtainp € (—0.25,0.4450 andpp € (—0.7181 0.8158 (where the later interval was obtained
by choosingp* = 0.2), respectively. Then, according Rsoposition 9.6the system (9.66) is
asymptotically stable wheneverc (0,0.012032. In order to illustrate this result graphically,
we plot the roots’ trajectories fqup € (—0.7181 0.8158) in Fig.9.5.

9.10 Concluding Remarks

In this chapter, the problem of stabilizing a chain of intggrs by using network delays as
controller parameters was addressed. Several algorithchpperties have been outlined
and various illustrative examples proving the theoretieallts have also been proposed. For
the sake of brevity, only the case of delays smaller thandhging period has been consid-
ered. However, the approach proposed here works also faageof larger delays.
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Figure 9.5: Root trajectories fqip € (—0.7181,0.8158

10 Output Feedback Stabilization. An Eigenvalue Based
Approach

As we saw in the previous chapter, in the case of a chain ofiaters, the effects induced
by the delay presence on the dynamics of NCS appear to be mongicated than expected:
lack of scaling propertiegxcepting the single integrator case, induced instatiitysmall
gain values (see also Fig.10.1 of this chapterErample9.1 of theChapter9), etc. Next,
the dependence of the characteristic roots on the delay valy lead to a sequensgabil-
ity/instability/stabilityif one increases the delay continuously within one samptiagod.
Such a property is observed for a simple second-order sy&em) for instance, system
(10.14)). Roughly speaking, the interest of both exam@e® ipoint out somesensitivity
properties of the characteristic roots with respect to #ia-gor the delay-parameter, respec-
tively. Such topics will constitute the core of this chapter

First, inspired by the terminology introduced by [40], weds on the characterization
of the crossing (frequency) sethat is, the set of parameters (delay, gain, sampling) rior o
(delay, gain) if the sampling is fixed, etc.) for which thexréses at least oneritical® charac-
teristic root Next, we explore conditions under whiclgain may stabilize the corresponding
SISO NCS scheme and we will see that the gain stabilizatioblem is reduced to thgener-
alized eigenvaluesomputation of an appropriateatrix pencil Such a result ca be interpreted
as the "discrete-time" version of the analysis propose®byfpr characterizing the stabiliz-
ing gains of "continuous-time" linear LTI SISO systems foéeelays. However it is worth to
mention that, in the discrete case, not all real generakrgenvalues defines crossings with
respect to the unit circle (see Proposition 10.2).

3By acritical characteristic root we mean a root of the corresponding characteristic equitimted on the
unit circle of the complex plan€.
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Next, aneigenvalue-based perturbatiomethodology (see, e.g., [67]) is adopted for char-
acterizing thecrossing directiortowards stability and/or instability. If the analysis wité-
spect to the gain-parameter is relatively simple (see, mpositions 10.2 and 10.3), the
analysis becomes more involved when the delay-parametensidered. More precisely, if
the delay changes around a multiple of the sampling peraxtitianal characteristic roots may
appear (or disappear) and a continuity-type argument iygteow the characteristic roots be-
have with respect to the delay parameter (see Propositid). 1inally, the characterization
of the crossing direction with respect to the delay-paramistgiven in the simple (Corollary
10.1), semi-simple (Proposition 10.8) and non semi-sinpteposition 10.10) cases. These
last results follow closely the arguments proposed by [@Tantinuous-time for the stability
analysis of delay systems.

10.1 Problem Formulation and Motivating Examples

Consider the following continuous-time linear SISO system

x(t) = Ax(t)+ba(t), te th+T,({+1)h+T1),
oS (104

and the discrete control law,
G(tT)=—ky(t—T7), te{th+T, (N} (10.2)

whereT is the induced network delay satisfying= (r —1)h+1,for0O< 7 <h,xe R" k,ye R
andr € N. As mentioned previously, we are interestediimling all parametersgk, h, 1) such
that the controller (10.2) (asymptotically) stabilizeg ttlosed-loop SISO system (10 A% in
the previous chapter, the system (10.1) includes bothmootis- and discrete-time dynamics,
the classical analysis consists in discretizing the estistem in order to homogenize the state
variables. To this end, we apply similar ideas to the onepgsed by [6, 137], leading to the
representation:

X[0+1] = D ()X[¢] + P (h— )T (1) bG[L — ] +T (h—1)bG[¢ — 1 + 1] (10.3)

wherel (t) := [3€*ds ®(t) := €™, T = (r — 1)h+ 1 with r € N and 0< 1 < h. Define now
the augmented state vector #g] £ [x" [¢],u[{—r],u[(—r+1],...,u[(— 1]}T, leading to
the augmented closed-loop system:

z[0+1] = ®(p)z[(]. (10.4)

The representation (10.3) describes a general situatian,ig, when the induced network
delay is larger/smaller than the sampling period. Undesdhabservations, we have the fol-
lowing:

Remark 10.1(Smaller delay.) If the induced network delaysatisfies the conditiod < T <
h, then,T = 1, r = 1in (10.3) and the corresponding transfer matrix rewrites as

®(p) = dJ(h)—k_Fk(:—r)bc CD(h—é)l'(T)b . (10.5)
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Remark 10.2 (Larger delay ) If the induced network delay satisfiest = (r —1)h+ 1 for
some positive integerx 1, with T < h, then the corresponding transfer matrix becomes:

[ ®(h) ®h—1)F(1)b T(h—1)b 0
0 0 1 0
d(p)i=| : : : (10.6)
0 0 0 1
| —ke 0 0 0|

10.2 Transfer Function Description
10.2.1 Smaller delay case:

Assume that & T <h, thatisT = 1. Then, the transfer function can be writtert§g(z, po) :=
N (z po) /D (Z; po) =

_c(z— ()t dth—1)l(1)b

z

+T(h—1)b|. (10.7)

Now, by taking into account the control law (10.2), the clegeastic function of the closed-

loop system becomes:
F(z p) =D(z po) + kKN(z po). (10.8)

10.2.2 Larger delay case:

Now, if T = (r —1)h+ 1, with r > 1, then the corresponding transfer function is given by:

Hu = c(zl—@(h) @ (h—1)T (1)bz "+ (h—1)bZ "],
N(z; po)

T — Sl-r . —
Hyu = Z H (Z’ pO) - Zr_lD(Z, po>7 (109)
leading to the following closed-loop characteristic fuont
F_1(zp)=Z"1D(z po) +kN(z po). (10.10)

From (10.10) we have th&} (z p) = F (z p). Note also that for > h the characteristic func-
tion of the closed-loop system is affect By %, motivating thus the notatioB,_1(z po) :=
77D (z po).

10.3 Motivating Examples
10.3.1 Chain of Integrators Systems

Even though in the previous chapter we have deeply studidthim ©f integrators system,
we will recall in the following, some interesting propegieConsider the chain of integrators
system,

y"W () =a(th)

teth+1,((+1)h+1), (10.11)
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wherel(t™) is given by,
a(tt) =—ky(t—1), te{th+r1, (N} (10.12)

In the case of NCS stabilization of one integrator(1) [137] derived the stability region in
the (h(k), T) parameter space, and the NCStable if and only if

max{%hk— 1,0} < kt < min{1,hk}. (10.13)

Unfortunately, the above result it longer validfor higher-order systemsi(> 2), as it

is stated in the previous part of the thedisgposition9.2). In other words, @mall gain

is always destabilizing. In order to understand better ttopgrty above, consider now the
triple-integrator casen(= 3). In other words, amall gainis always destabilizing. In order to
understand better the property above, consider now the-npegrator casen(= 3).In other
words, asmall gainis always destabilizing. In order to understand better topgrty above,
consider now the triple-integrator case= 3). Then, for small values of the parameter gain,

Figure 10.1: Triple-integratdin = 3) subject tok < 0.

l.e.,k = ¢, the closed-loop characteristic roots behave as:

—w3 ,+3h2 3lh
z(e) = Wo,3£+WO'3< Lt o W°'2>£2+(9(£3)
1 203, +hPwo w3, 2
z1() = Lwyed+ TS L 0 ()

where,wp ¢ := 2—,[ Wy = eFihand/ = 1,3. Fig.10.1 illustrates the above result fox 0
(Chapter9 illustrates the closed-loop characteristic root behaiapk > 0).
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10.3.2 Second-Order Systems

In continuous-time, the interest of oscillatory systemwl-known since it is the simplest
example pointing out thetabilizingeffect of the delay in output feedback control schemes
(see, for instance, [1, 103] and the comments therein). i@ensow the following system:

X(t):[i alz}x(t)+{g}ﬁ(t),te[£h+r,(£+l)h+r),

(10.14)
y(t)=[c1 ¢ ]x(t).

Now consider thatas,ap,c;,Cp) = (—wg,o,wo,o), with ap = 3, and assume the sampling
ho = 6.1 and the gaikg = 5.2. Some simple computations prove that if one chooses tlag del
parameterry = 2.5, and we take the network delay= tq, then the characteristic function
of the closed-loop systeify(z p) is stable. Next, if the network delay is assumed to be one
sampling larger, i.eT = hg + 1o, the corresponding characteristic function becomgg; p)
which is still stable. However, if one varies the networkayet betweentg andhg + 19, for
some critical delay values, the characteristic roots witlss 9D towards instability and for
larger network delays they will crog) back towards stability. Such a situation is depicted
in Fig.10.2(a) and reflects the complex behavior of the attarsstic roots with respect to the
delay parameter. In other words, increasing the networkydehrameter leads to a sequence
of stability/instability/stabilitywithin one sampling period. This example will be further-dis
cussed in the forthcoming paragraphs. Consider now as anfio@lating example, the case:

AIm Alm

0.5F

R\é
T

Figure 10.2: Characteristic roots behavior as a functiothefdelay parameter. (a) Second-
order oscillator(ag,ap,C1,C2) = (—wg,o, ab,o). (b) Second-order systelf@;,ap,C1,C2) =
(-1,-1,0,1).

(a1,ap,¢1,C2) = (—1,—1,0,1). According to [22], it is known that for the delay= 11, the
continuous-time system hastangentialroot-trajectory, i.e., the root-trajectory (as a func-
tion of the delay) touches in a tangential way the imaginaig.aTaking a sampling period
h = 2m, we have that the above property is not longer valid, i.e.haxe a simple crossing as
itis illustrated in Fig.10.2(b).
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10.4 Stability Analysis

10.5 Spectral Radius Properties

In this paragraph we consider first, the continuity propeityhe spectra of the augmented
closed-loop system (10.4) with respect to the delay parm&b this end, introduce now the
following definition:

Definition 10.1. Let (h*,k*) be fixed, the Spectral Radius (functign) R, — R is defined
by: p(T):= sup{|z| . z€0 (an(h*,r,k*))}.

Property 10.1. The spectral radius function has the following properties:

* it always exists;
* itis finite;
* itis continuous.

Proof. First observe that for eaghe N, the characteristic function of the closed-loop system
can be written as,

Fr1(zp) =2+ o1 (P2 4 f1(p) 2+ o (p), (10.15)
where fj (p) are analytical functions for alp € Ri x R, then the first two properties fol-
lows straightforwardly from the properties of analytic ftions (see, for instance [78]).
Consider now the continuity property. To this end, we introel the following intervals
Z; = (¢h+1,(£+1)h]. Observe that whem € Z;, the characteristic function (10.15) has
constant degree, sindg(p) are analytical, then according to [84] we have that the z&(p3
of (10.15) are continuous functions with respect to the mpa&tar p, implying that spectral
radius function is continuous for alle N. Consider nowr; € Z, and T, 1 € Z,,1, then the

proof will be complete if  lim p (7)) = lim p (Ty11). In order to see this fact, is
T~ ((+1)h- T —(+1ht

necessary to considerdegree-normalizationTo this end and without any loss of generality

let T, € Z, for £ > 1 (i.e., the larger delay case) and denotalyp*; ¢) its respective transfer

matrix, we consider the following definition,

[ ®h") 0 d(h—1)F(1)b T (h*—1)b 0
0 O 1 0 0
_ 0 0 0 1 0
@ (h",1,K) = . . . . 0 (10.16)
0 O 0 0 1
| —kc 0 0 0 0 |

From (10.16) itis clear to see th@t( p*;¢) is Schur-stabléf and only if ® (h*, T,k*) is Schur-
stable bearing in mind this fact, we have the following conseqesnc
lim ®(h*,7,k") = lim®(h* 1,k*;/+1)

7—0

T—h

= |im ) = lim Tyiq).
,fﬁ(é+l)h_P( v) ,mﬁ(é+l)h+9( 141)

Then, the proof is complete. O
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10.6 Crossing Set Characterization

Denote byF (z p) the characteristic function of the closed-loop system. Aentioned
in the previous section, for smaller/larger networks deldy can be eithelr_1(z p) =

M ai(r_l) (p)Z (larger delay) ofFy(z p) (smaller delay). Inspired by [40], we introduce
the following notions:

Definition 10.2. The crossing sé®, is defined as the collection of all frequencis [0, 2m)

such that there exist a triplet‘pof parameters such that F; (€9; p*) = 0. The collection
of all triplets p* corresponding to crossing frequencies@will define the stability crossing
surfacesS C Ri x R. Finally, for a fixed sampling ) the restriction$|p:Ioho denotes the

corresponding stability crossing curves.

These critical values can be computed in the following wagsdtiate now td~_1, the
following parameter-dependent matridds, M, € R(n1)x(n+r).

2o (p) 0 w0

Mi(p) = al:(p) ao:(p) (:) (10.17)
i 1(P) anr2(p) - a(p)
anir (P) @nir-1(p) -+ a(p)

W o | O el wb) | 1019
0 0 aw(p)

and introduceP := (h,7,k) C R2 x R as the set of all parametepssatisfying the following
equality:
detM: (p) =0, (10.19)

where
WE (p) := M2(p)M3 (p) —M1(p)M] (p). (10.20)

We have the following:

Proposition 10.1. Consider the system (10.1) in closed-loop having the charestic func-
tion F(z p). We have the following properties:

(a) p*isacrossing point (pe S) if and only if the following conditions
(i) 0 oWk (p));
(i) o (&:(p*)) ndD 0.
hold simultaneously.

(b) If for some fixed paith*,k*), F,(z h*, 1,k*)|;=o is Schur-stable, theth*, Tmin, k*) € S,
wheretmn is the minimal value of\n, := {T € R} : 0 (W, (1)) = 0}.
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Remark 10.3. It is important to point out that (i) is necessary but not sudfnt for the ex-
istence of a crossing since excepting the real crossingtpdie determinant above vanishes
also for symmetric points with respect to the unit cird®*. Indeed, the following example
illustrate such a situation:

Consider now the second-order system (10.14), athay,c1,¢2) = (—1,—1,0,1) and
corresponding open-loop transfer function:

2e*9+§ sin[@(hfr)] 22 Ze*h+§ <7eh/2 sin[%é(hfr)] +sin[@])
V3 " V3
B —2e N2 cos[@} Z+ehz

26 M3 sin[@}

R

Hyu(zZ, Po) =
Then the characteristic function of the closed-loop systathdepend on the parameters
p* = (ho, To, ko) and writes as:

F(z p*) := D(z po) +koN(z, po)- (10.21)

In this case, by choosing* = (2m, 11,227.1017), detW= vanishes without corresponding to
the existence of a crossing frequencyinFig.10.3 illustrates the symmetry mentioned above.

Alm A1 AIm

(a) (b)

Figure 10.3: Symmetric roots with respect d@. (a) For the open-loop transfer func-

tion Hyu(z To) = 82(52542;022;2);(&’5100303;)4 = With (ko, To) = (1,logV/'2), given the symmet-

ric roots: |A1] = 2, |Az| = |A3] = % and ¢ = 7. (b) For the polynomial (10.21), where
|A1] = 0.0432,|A;| = 0.9624.

Remark 10.4. The above result follows from a straightforward applicatiof the Schur-
Cohn-Fujiwara result (see, for instance, [10]).

Remark 10.5. Note that the above result can be also applied to the comiputaf the sta-
bility crossing curvesS|;,_y,, for some samplingd

“Here, we say that two pointg andz € C aresymmetricwith respect to a circle of radiuR and center
located a if: |21 —29 |- | 22— 20 |= R?, etc.
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Proof. (a) According to [84]F_1(z p*) andF* (z p*) :=2"*" Fr_l(%; p*) has a common
root if and only if the determinant of the following resultamatrix,

o[ Ma(p) M7 (p)
Re ,F = Ma(p) MI(p) (10.22)

has the property déRFH) = 0. Now, a common root ofy_1(z p*) andF* ;(z p*)
means thak; _1(z p*) can be factored &5 _1(z p*) = Y (z) f(2), with:

W(@) = [(z-pid?)(z- pijei%) (10.23)
J

and f(z) collect the rest of the roots belonging to the unit circle. t@a other hand,
the fact thatM; (p) andMz (p) commute, implies that d&, , - = —detWg _, (p).

Finally, by observing that conditioa <$(p*)> N JD # 0 excludes all solutions of the
form (z— pj€9)(z— pijeiq’i), the proof is complete.

(b) Let us prove this property by contradiction, i.e. assuhe (h*, Tmin,K*) ¢ S, then
there exisZ9 e C such that,(Z9; h*, Tmin, k*) = Fg(z(io); h*, Tmin, k*) = 0, wherez%)

is symmetric with respect to the unit circle. But this implikhath(z(O); h*, Tmin, K*)
is unstable, contradicting the fact that the rootddfz; h*, 7,k*) are continuous with
respect to the delay argument.

O

10.7 Stabilizing Gains and Corresponding Crossing Directins

Consider now that the parametéis 1) are fixed. Then we are interested in developing an
algorithm to compute theet of all stabilizing gains k R. By an abuse of notation, we will
construct thén+r) x (n+r) matrices (10.17)-(10.18) for lower order polynomials bitiag

the coefficient of higher order terms as zeros. In order tgBkiynthe notations, we will
define the resultant of any polynomfl_1(z p) with its associated polynomi&* (z p) by
Rr., (P) :=Rr_, -, (P). Then, we have the following result:

Proposition 10.2. Assumgh, 1) a fixed and known pair .= (hp, Tp). Introduce the sets
A =0 (Rp, ;(Po),—Rn(Po)) NR,

Ns = {E eN: dneAN é&n :1,0<El3(p0,.{)>m0]]):0}.

LetA; <... <Ay withZ <n+randA; € A—As. Then, the system (10.3) cannot be stabilized
forany k= A, i =1,2,...,¢. Furthermore, the number of unstable roots remains invaria
for all k € (Aj,Ai+1). The same holds for the intervalse, A1) and (Az, ©).

Proof. First, by construction, the seis includes the real spectrum of the matrix pencil
Re(Po,A) = Ro, ,(Po) + AR, (Po) having the property of symmetry with respectd®,
but without being characteristic roots of the closed-loggtem. Thus, the sét — /s collects
all the gains for which some crossing with resped@f»exists. Then, the remaining proof is
a direct consequence Bfoposition10.1. O
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Remark 10.6. The result above can be simply interpreted as the "disdrate* version of
the matrix pencil approach proposed by [20] in the outputiegck stabilization of SISO LTI
systems.

Remark 10.7. Notice that the above characterization for the gain conénd can also be
obtained by applying the NeimafR-partition method ([32]). According to this method we
have,

- ei(“l)eDrfl(eie,pg)
k(@) = — N ) (10.24)
Im(k(6)) = O, (10.25)

wheref € [0, r1].

In order to illustrate the above results, consider the sg@yder system (10.14) with
(a1,ap,€1,C2) = (—wg,o, wn,0) corresponding to the second-order oscillator system (with
ap = 3). Taking the induced-network delay as- h+ 1, we obtain the following discretized
open-loop transfer function:

N2(Po) 2%+ M(Po)Z+ No(T)
322 -6cog3n)z24-3z

Hyu(z,po) = (10.26)

where ny(h,7) = 1 — cos(3h—3r1), ni(h,T) = cos(3h—31) — 2cog3h) + cos(31) and
no(T) = 1— cos(37). Then, applyingProposition10.2 with p, = (32, 32), we obtain the

results summarized in Table 11.3. Let denotelby/,n+r —¢) the interval with/—stable

Table 10.1: Generalized eigenvalues forr) = (32, 39).

)\1 )\2 )\3 )\4 )‘5
-3 0 21061 27302 42710
Stability Interval  (—w,—3) (—3,0) (0,2.10) (2.11,2.73) (2.74,4.27) (4.28 )

@This is not accurate, owing to numerical rounding.

zeros andn+r — ¢)—unstable zeros. Then, accordingRemark10.7, we apply Neimark
D—partition method to comput&(0), obtaining Fig.10.4, where we obtain the same results
than showed in Table 11.3.

Proposition 10.2 explicitly gives the set of all controltgins with corresponding charac-
teristic roots on the unitary circléD. Then, assuming first that the controller gain parameter
is fixed to some critical gain value for which there exists at least one critical characteristic
root ondD, the characterization of the crossing directions is givefodows:

Proposition 10.3. Assume that the sampling h and the detare known and fixed atghand
To, respectively. Let k= k* be a critical gain for the crossing frequenéy= 6*. Under the
assumption that the critical characteristic roots of F ammple, the following statements are
equivalent:

(i) The rootz = €9 is crossingdD towards instability (stability).
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4 \ \Im

Figure 10.4: Stability interval®(¢,n+r —¢) for (10.26), where&(6) = A; for appropriated
i andj.

(i) The following inequality holds:

d|z|

ak | >0 (<0,

for any k sufficiently close tg"kbut k> k*.
(i) The following inequality holds:

dF (e :k,po
dF(zp*)

<0 (>0), (10.27)
e T P

then for any k sufficiently close t6 kut k> k*.

Proof. The equivalence between (i) and (ii) is based on the use aftpkcit function theo-
rem. The same holds for the equivalence between (ii) and (iii O

Remark 10.8. Observe that Fz p*) is affine in k. Then the direction of crossing can also be
obtained by a straight application of the NeimaPkpartition method. To this end, consider
6* € ©. Then when (@) "crosses" the "point8* a pair of complex roots of the characteristic
closed-loop equation will go outside (inside)did according to the rule:

dim(k(8)) >0 (<0). (10.28)
de 06—+

In order to illustrate the previous methodologieBrdposition 10.3 andD—partition
method), lets consider example (10.26) with the same paeas® = (32, 2°). After evalu-
ating conditions (10.27) and (10.28), Table 10.2 summadhieeesults. In some situations the
inequality (10.27) will vanish. In such a case, the follog/zorollary provides a second-order
analysis.
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Table 10.2: Direction of crossing for example, accordingh® D-partition method and to
Proposition10.3.

Method =1 2 3 4 5
2] 0 13190 228 28422 rr

D-Partition w‘g , 71609 49809 267247 22955 25089

=t

sign(10.28) — + — + —

A —3 0 21061 27302 4271

Proposition(10.3) ~condition (10.27) 0.1396 02451 —0.1858 —0.0439 03847
sign(10.27) + + - — +

Proposition 10.4. Assume that the sampling h and the detare known and fixed atgrand
To, respectively. Let k= k* be a critical gain for the crossing frequenéy= 6*. Under the
assumption that the critical characteristic roots of F aimple, the following statements are
equivalent:

(i) The root z = €9 stays outside (inside) of the unit cirakD.
(i) The following inequality holds:

d?| z|
di?

>0 (<0,
K=k

for any k sufficiently close ta'kbut k> k*.

(iii) The following inequality holds:

0.0%F OF OF _ 0%F (0_F>2 dF (69 k )
0K 9k 0z — 97 \ oK T
3 +09 —arek Ty >0 (<0) (10.29)
Z<%—';> 7 z dz ‘z:eie*
7—

k=k*

then for any k sufficiently close t6 kut k> k*.

Proof. The proof follows similar lines thaRroposition10.3, but with more complicate alge-
braic manipulations. O

Remark 10.9. Note that if condition (10.27) doesn’t hold, then the cuimeches the unitary
circle in a tangent way, i.e. it will remain in the same stépildomain and the stability
property will be given by the second-order analysis (Projpas 10.4).

Such a situation is illustrated by the following example.n€ider the following second-
order continuous-time system:

0

0 . x(t)+[l]0(t), te[th+1, ((+1)h+T)

X(t) = —(a?+B?%) 2a
yt)=[0 1]x(),

(10.30)
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with corresponding discrete transfer-function:

&) sinB(h—1)] 2y ea(hfr)(eahsin[[zr}—sin[ﬁ(h—r)}) - ea<2h7rl)3$in[‘8 1]
28 — 2e?hcos[Bh] 22 + e2ahz ’

2\/2 arct
M with ag ~ 1.17872 andBy ~ 0.168987° Then, ap-

plying Proposition10.2-10.3 andProposition10.4 for po = (v/2T, \/lé) we obtain the results
summarized imMable10.3. Observe that fot, condition (10.27) vanish, then a second order

Hyy (zpo) =

_logay o _
wherea = o B =

Table 10.3: Direction of crossing for the system (10.30¢0ading toProposition10.3 and
Proposition10.4.

Method (=1 2

vy —5.00872 0164509
Proposition (10.3) condition (10.27) 0.0285081 0
sign(10.27) + 0

Proposition (10.4) condition (10.29) * 10.2764
sign(10.29) * +

analysis is required. On the other hand, since the sign o2@}@s positive, this means that
the curve trajectory stays outside of the unit circle. Sushuation is illustrated in Fig10.5.

Remark 10.10.If instead of inequality (10.29) we have an equality, theghbr-order deriva-
tives have to be taken into account.

Remark 10.11. Observe, that Proposition 10.3 and Corollary 10.4 are stélid, if instead
of the controller gain k, we consider the sampling period hhar induced network-delay,

10.8 Sensitivity with Respect to the Delay-Parameter

According toRemarkl0.1, we have that the formulations (10.7)-(10.9) are Malicll T < h.

By taking into account this observation, consider now thsvoek delay as being a multiple
of the sampling period = rh, with the integer > 1. Then the open-loop system has the
transfer function:

H(zpo) = c(zl—®(h)) *r(hbz" (10.31)
_ N@zh
= ZD@zh) (10.32)

Remark 10.12.From (10.31), it is easy to see that the polynomialg,B) and N(z h) can be
obtained by discretizing directly the continuous-timeesys(10.1) without taking into account
the delay effects.

SWhere both,ag and By are algebraic numbers which can be computed exactly.is a root of the
polynomial py(x) := x* +x3 —x2 —x— 1 given by ap = max{xc R: py(x) =0} and By is a root of the
polynomial pg (x) := 13x8 — 584’ 4 4940¢ — 15736¢ + 22990¢* — 15736 + 4940 — 584x + 13 given by
Bo=min{xe R: pg(x) = 0}.
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tangent point z*

£

tangent point Z*

-1.5f

Re
-1 -0.5 0 0.5 1 1.

NS

Figure 10.5: Root trajectory for the system (10.30). Tahgemtz* = %i ]

We have the following result:

Proposition 10.5. Assume that for some fixed parametér=p(h*, 7*,k*), with * = h* the
following polynomial,
R (zp") =ZD(z.p) +K'N(z p)). (10.33)

is Schur stable. Then, there exists some sufficiently ssnald such that the same property
holds for the perturbed polynomials k(z p;_,,_,) and k(z p;_;,, ). Furthermore,

0(F (z pr=n+) = 0(F-1(Z pr=n-) U{0}, (10.34)

wheret = h+ (1 = h—) defines the corresponding right (left) limit.

Proof. Without any lack of generality assume that the closest e@eae todD, denoted in
the sequeh (9, is simple.

A(O)::{)\EC: A= max |}\“|}.
Aca(d(p*))

Without any loss of generality, assume that 1 (i.e., 7 = h*). Then, since the characteristic
polynomial associated to the closed-loop system has diftedegrees for larger or smaller
network delays, we need to consider two independent cages: & 1 — € and (ii)) 7" —

T* + &, respectively. In both situation, we will use a continuigpé argument.

Case (i): We have thab, (z h*,k*) = R _1(z h*, 7" = h*,k*), then by the continuity of the
roots with respect to the coefficients we know tBat> 0 such that,_1(z h*,h* — g ,k*) is
Schur stable.
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Case (ii): As mentioned above, observe thatz h*,k*) andF (z h*,h* + €,k*) has dif-
ferent degrees. Then, in order to normalize the degree esvaoothy to see that the associate
transfer matrix of polynomiatR (z h*,k*) can be rewritten as:
®h*) 0 rh")b ]

® (h*, k") := 0O O 1

—k*c O 0

In the sequel, we interpretas a perturbation in the delay parameter and next, we antigze
eigenvalue behavior of(© ase is increased from zero. To this end, consider:

®h*) d(h*—e)l(g)b F(h*s)b}

T(g):= 0 0 1

—k*c 0 0

Sincet* = h*, from the above definition we have thaf¢) £29 @ (h*,k*), more over it is

clear thafT (¢) is analytic ine and its first-order derivative is given by:

0 ®(h)b—AD(h —)l(e)b —d(h*—e)b
0 0 0
0 0 0 ]

Then, according themma2.3 the eigenvalues df(¢) can be expanded in series as (2.20),
i.e..
u(e) =A@ +AVe 1 o(e?), i=1,....m,

now applyingLemmaz2.1, we know that?\l(l) = rIT’(O)ql. From the above expansion it is
clear that there always exists some sufficiently sraal 0 such that (z h*,h* + £,k*) is
Schur stable. This argument completes the proof for simpdeacteristic roots. The remain-
ing cases (semi-simple or multiple, but not semi-simple) ba treated by similarity, and
thus they are omitted. Finally, the presence of one additionaracteristic root at the origin
appears naturally from the formulation ®ffor t = h+t €. O

The following result, is a direct consequencdPobposition10.5.

Proposition 10.6. Assume p= (h*, 7%,k*) fixed such that F 1(z p*) is Schur-stable. Let
T:=T-T"No:={Toe Ry : 0 (Wg,_,(To)) =0}, A1 :={r1 € Ry : 0(WE,(11)) =0}, and
define the minimum elements’afand/A1 by 7~ :=infAg andt™ := infA1. Then, the system
(10.1) is asymptotically stable for all fixede [(¢ —1)h*+ t*, ¢/h* + 7] if and only if the
following inequality hold:

-1t <17 1". (10.35)

Proof. Sufficiency Since, botht— and 1™ are the minimal elements &, andA;, respec-
tively, inequality (10.35) implies that the unstable rootgolynomialsF,_1(z h*, 11,k*) and
Fi(z h*, 12,k*) are invariant for allr; € [(¢ —1)h* + 1%, ¢h*] and 12 € [¢h*, ¢h* + T*]. More-
over, the fact thal,_1(z h*, 7%, k*) is Schur-stable implies th&t_1(z h*, T = h*,k*) is Schur-
stable, then, straightforwardly Broposition10.5 we conclude thd¥(z h*, 7,k*) is Schur-
stable for allT € [¢h*, /h* + T*] implying that system (10.1) is asymptotically stable fdr al
fixedt € [(¢ —1)h* + 7%, (h* + T*].

Necessity Since the system (10.1) is asymptotically stable for alledixr <
[(¢ —1)h* + 1*, ¢h* + T*], then the minimal critical delays™ and t* satisfyt~ > h* — 1*
andt™ > t*, implying inequality (10.35). O
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Remark 10.13. Observe that the sefy andA; does not exclude the symmetric roots men-
tioned in Remark 10.3. The main reason is because the polghBm; (z h*, 7%, k*) is Schur-
stable, then according to the Proposition 10.1b,will correspond to a critical-delay value.
Similar arguments can been applied to theAet

Proposition 10.7. Let the triplet g = (h*, 7*,k*) be fixed and assume that f(z p*) is a
Schur-stable polynomial. Thenyf p*) is asymptotically stable for all m ¢ — 1 if the
following inequality holds:

K| 1"3(2;"0), vze I,

3IN(z ps)

3

Proof. The proof is based on theouché’stheorem [23] and in the sake of brevity will be
omitted. m

To determine the direction of crossing when the delay isn@gknto account, we will
restrict our analysis to the case when the delasysmaller that the sampling peridd In this
case,T = 7. However, the results are still valid for larger networkajeVvalues.

Let p* be fixed such that™ andAg be a critical pair of critical delay and critical zero of
F(z p*), i.e,Af =€ € o(d(p*)). Without any loss of generality, let’” be ordered as the
first eigenvalue ofb(p*), with multiplicity m. Assuming tha&'®" is semi-simple we have the
following:

Proposition 10.8. Let A = €9 be a semi-simple eigenvalue ®f p;—;-). Then for anyr
sufficiently close ta*, the characteristic zeros correspondingAg can be expanded by the
power series:

A%+ A (RiT (0)Qy) (T— r*)+o((r—r*)2> . (=12...m

Thus, fort sufficiently close ta* butt > 7* there are at least M (M< m) of the characteristic
zeros going outside (inside) the unit cird® if M of the eigenvalues satisfy the condition:

cos(6,—6") >0 (<0), (=1,....m

where6, € [0,2m) is the phase angle of; (R T/(0)Q1) # 0and T (0) is given by

T’(O) _ ko (h*)bc @ (h*)b ' (10.36)
0 0
Proof. Introduce now the new real variabde= 1 — ¥, and define:
T(e) = [ ®(h )—kj«(:h —&)bc ®(h —é)l'(s)b } . (10.37)

Then, the result follows straightforwardly by applyihgmma2.1 and observing that close
to € = 0, the matrix function (10.37) can be expanded &gg) = T(0) + £T/(0) + o(&?).
The derivative of (10.37) leads to the expression (10.3@glfy, by observing the increasing
(decreasing) properties of the modulus; | in the left- and right-semicircle alD, the proof
is complete. O
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In the case of a simple root, the result above rewrites asvirst|

Corollary 10.1. LetA; = €9 be a simple eigenvalue df(pr—7+). Then for anyr sufficiently
close tor*, the characteristic zero correspondingAg can be expanded by the power series:

AS+ (rIT’(O)ql) (1—1")+0 <(T — T*)2> .

Thus, fort sufficiently close ta*, butt > 7, the corresponding characteristic zero is going
outside (inside) the unit circl@D if the following condition is satisfied:

cos(6,—6%) >0 (<0), (=1....m-1
where T (0) is given by

ke (h*)bc @ (h*)b } . (10.38)

/ —_—
T(0) = { 0 0
The next results concerns to the case when the first appragimanish.

Proposition 10.9. Let A5 = €% be a semi-simple eigenvalue ®f( pr—r+) with multiplicity

m, and let TO) be partitioned as in (2.21). Let alsbg(l) be a semi-simple eigenvalue of
R1T’(0)Q1 with multiplicity d. Then for any sufficiently close ta*, the characteristic zeros
corresponding to\; can be expanded into the power series:

A§+)\€(1)(r—r*)+ug(§)(T—T*)2+o<(r—r*)3>, (=1,2,....m

with
A =N (RT'Q), €=1,2,....m,

2 2 2
u =2 [RZR (T"(0) - T(0ST(0) id?| . p=1,....0,
where S is given in Lemma 2.3.
(i) For 1 sufficiently close ta* but T > t* the characteristic zerd * cross to the outside
(inside) of the unit circl@D if for somel/ = 1,...,m,

cos(6,—0*) >0 (< 0)

(i) if cos(6—6°) =0, (=1,...m

sufficiently close ta* but T > 1* the characteristic zerd * cross to the outside (inside)
of the unit circledD if for some p=1,....,d,

cos(6p,—6%) >0 (< 0)

where8,, € [0,2m) is the phase angle o, [RP Ry (T”(0) - T'(0)ST(0)) QuQ?' | #£0
and T’ (0) is given by

(0 = { —k*qu)(h*)bc —ACDO(h*)b | (10.39)

Corollary 10.2. LetA; = €9 be a simple eigenvalue df(p;—;+). Then for anyr sufficiently
close tor*, the characteristic zera * cross to the outside (inside) of the unit cird® if,

cos(8—6%) >0 (<0)
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wherefp € [0,2m) is the phase angle df, (r1T’(0)q1) where g and r, are the right and left
eigenvectors associated wilj. Additionally, if

cos(6 —06%) =0,

then for any sufficiently close @ butt > 7* the characteristic zerd; cross to the outside
(inside) of the unit circle@D if

cos(6,—6%) >0 (< 0)

whereb, € [0, 2m) is the phase angle df [r1 (T”(0) — T/(0)ST(0)) q1] and T”(0) is given in
Proposition 10.9.

Finally, the next result concerns the case whgiis not a semi-simple but repeated eigen-
value.

Proposition 10.10.LetAj = €9 be a repeated eigenvalue Of( pr—r+) with multiplicity m.
Suppose thad; is not semi-simple. Then, for anysufficiently close ta* but t > 7* the
characteristic zeros corresponding Ag can be expanded by the Puiseux Series

s (204146

1
Ag+|rmT (0)qy|me ™ m (T—T*)r%+~~ A =0,m—1,

wheref € [0,2n) is the phase angle ofT’ (0)q;. Hence, fort sufficiently close ta* but
T > 1%, the number of critical zeros going to outside the unit @@D (or vice versa) can be
determined by the condition

((2e+1>n+e— me*
0s m

)>0(< 0, (=0m-L1 (10.40)

The proof is analogous to the previous one, and, for the siliieeuity, it is omitted.

10.9 Illustrative Examples

In order to motivated the previous results, we consider @rést of this paper the following
illustrative numerical examples.

Example 10.1.Consider the following fifth-order unstable system,

( ~122 —218 34 106 -3.4 1
1 O 0 0 O 0
xt)=| o 1 0 0 0 |x@)+]|o]aw,
0 0O 1 0 o0 0 (10.41)
0 0O 0 1 O 0
L yt)=[0 1 5 4 2]x(t)

Then, applying Proposition 10.1, we get stability regiopideed in Fig.10.6(b).
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Figure 10.6: Stability crossing curveS,-. (a) Example 10.2, for the
sampling-period h= 1. (b) Example 10.1, for theampling-period h= 0.6.

Example 10.2.Consider the following system:
X(t):[ 0 1

a ag
y(t)=[c 0]x(t).

For (a1,ap,b1,c1) = (0,—0.1,0.1,1) we got the system considered in [137, 55] and fer h
1.0, we obtain the stability crossing curves illustrated in Hi@.6(a). Now if(ai,ap, b1, c1) =
(—wh,0,1, an) we got the oscillator system considered in [103].Consiaigtiy = 1 and fix-
ing the control gain at k= 0.5, the stability regions depicted in Fig.10.7 were obtainéd.

]x(t)+{t?l}G(t),te[€h+r,(€+l)h+r), 0.2

Kl [ stability region N [ stability region

12 12

A

el — A

IS

, /1><I n

(@) (b)

Figure 10.7: Stability crossing curvék- for k* = 2 andw, = 3. (a) System
F+1(z, p). (b) Systent(z p) withr = 0.

shown in Fig.10.7 some paii$*, T*) preserves the stability property far= 1 +h. How-
ever is noteworthy to see that even in the case whén %) and F.1(z pg) are stable, not
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all T e [rh+1,(r+1)h+ 1] preserves this property. To illustrate such a situatiomsider
(h,7,k) = (6.1,2.5,2) andwp = 3. Fig.10.8 depicts the root trajectory, wherincreases from
To = 2.5to 17 = 8.60. The corresponding delay are enlisted in Table 10.4.

JA[m,

1H

0.5(
0.6f

—os/ 0.5

0.45f

(b)

Figure 10.8: (a) Roots trajectories of the example (10&)d;, az,b1,¢1) = (—wg,o, 1, wp)
andt € [t*,h* + 1*). (b) Zoom of the dashed region.

Table 10.4: Delay stability-crossing values for the oatdt system (10.42).

Critical Delay Values

7" 7 7)) T4 Ts Ts 17

(=1 2 3 4 | /=1 2 |(=1 2 |(/(=1|/(=1|/(=1|/(=1

269 34 478 55| 298 522 635 844 427 | 6.66 | 7.21 | 7.43

Crossing + — + — | + + ] - 1T -7 +7+7T-

Example 10.3(Two-Sampling Period Behaviar)n order to illustrate Proposition 10.6, we
will consider as a final example the system (10.42) athay, by, c1) = (—wg, 0,1, ), (o=

3 (the oscillator case) and fixed sampling period:h%—g. Taking/ = 2, we will consider
the triplets [f = (h*,7%,k}) = (32, %,1) and g = (h*,1*,k}) = (32, %, 2) we which we
know that _1 (z p;) and k_1(z p5) are both Schur-stable. Then in order to investigate if
Fi—1(z,p) (i € {1,2}) stay stable for alf € [h* + 1%, 2h* + 7*] we consider Proposition 10.6.
The following Table 10.5 summarize the computations. Algrto Tablel10.5, we have that

Table 10.5: Evaluation oProposition10.6 for ¢ = 2 and the two tripletp; = (32, &, ),

* 19 2 3
P = (2825 5)-
P Proposition10.6
(h*,r*, ]‘) T T+ T-t7  (h*=19T1"
9 21
(2—5,2—5,5) 0.813695 0136736 0111262 0.0544 stable
(2,2,8) 0726888 0047933 0034842 unstable
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Fi—1(z pj) stay stablevt € [h* + 1%, 2h* 4 7%, whereas F_1(z, p;) does not preserve the
same property. Fig.10.9 shows the stability region in the kkparameter space, where the
points(k;,t;), are given by k= £, ko, = 2 and t, = h* + 1%, tp = 2h* + 1*.

2h+T1

h+T1

Figure 10.9: Stability region in the— T parameter space, for the oscillator system (10.42).
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11 Perturbation Techniques in Discretization

In the this chapter we will discus some extension of the eiglere perturbation based-
approach developed in theart 1l, to the Sampled-Data System3hen, in order to present
the appropriate extension, some preliminaries resulld@ipresented.

11.1 Introduction and Motivating Examples

In the design of linear time-invariant systems, the locgatd poles and zeros plays a funda-
mental role in deriving the performance of the closed-loggtem (see, e.g., [121], and the
references therein). As stated in the literature ([37,,6yeral techniques in adaptive con-
trol are based on zero-cancelation and, as a consequeaa®rtesponding schemes will not
work with unstable zeros. As discussed by [4], the poles aseretized system can be derived
from the polesf,) of the continuous-time system representation by usingithele transfor-
mation p; — exp(p¢h), whereh denotes the sampling period. Unfortunately, there does not
exist any explicit map giving the relation between the zeros continuous-time system and
the zeros of the corresponding sampled-system. Into aeliffeontext, in a pioneer work of
[4, 6], it was shown that the minimal-phase property for aticwous-time system can be lost,
even for a sufficiently small sampling perida)(

The effects of sampling a continuous-time systems with a-petder hold on the resulting
discretized zeros have been largely treated in the litexgaee, for instance, [4, 37, 62, 63]
and the references therein). However, in all these worlesnthin results have been estab-
lished by considering several restrictions. In order to tim@nsome, for example, [4, 37, 62]
consider that the system is a strictly proper stable contisttime system, whereas [63] deals
with strictly proper unstable continuous-time system. alfyp although [63] considered a
more general case, the corresponding zeros charactenzatstated under some additional
restrictions. Among them, we cit@o poles on the imaginary axendall poles are distinct
Moreover, the author does not pay any attention to the casamhiltiple critical samplings
appears on the unit circle. Motivated by these observationisto the best of the authors
knowledge, the characterization of all stability intes/fdr the discretized zeros is still open.

In order to motivate the proposed approach, consider thersys

0 1 0 0
xt=| o 0 1 |xt)+| 0 |u)
ANo?+w?) —0(0+21)—w? 20+A 1

yt)=[ a®+B% —2a 1]x(t).
The corresponding transfer function writes as:

(s—a)?+ B2

C(SP) = G (s—0)2r@®)

(11.1)

wherep := (a,f,A, 0, w) defines the set of parameters. Then, tak@s) := G(s, pi), | =
{1,2,3} we have the following cases:

i) Taking p1 = (0.5,1.5,—3,-0.1,2), the sampled-system is minimal-phase for small
sampling periods, however increasiméeads to a non-minimal-phase system;
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ii) Next, for p, =(—2,1,1,0,2), the sampled-system stays minimal-phase.

i) Finally, for ps = (0.1,1,1,0.1,0.25) the sampled-system is non-minimal-phase for
small sampling periods, however increasimigads to a minimal-phase system.

Such behaviors are depicted in Fig.11.1. Based on the renadnéve, we are interested in

-1 -0.5 0 0.5 1

Figure 11.1: Sampled-root trajectories for the systeml(l Where:z(h) correspond to the
sampled-zero trajectory @(s).

exploring theminimal-phase propertly using an appropriate formalism to analyze the zero
behavior wherh is taken as &ree parameterSuch an approach will give further insights on
the zeros behavior of sampled-systems.

11.2 Preliminaries and Problem Formulation

We introduce now some basic prerequisites on operatorrpattan theory for matrix eigen-
value problems. More precisely, we discuss the eigenvddebavior of a matrix function
with respect to a small perturbation on some of its pararaeféne development is based on
[75], [67].

Let A(A) be ann x n—matrix function, defined and analytic in a neighborhoodA6f
and with deA(A) # 0. Then,A* is aneigenvalueof A(A) if detA(A*) = 0. Thegeometric
multiplicity gof A * is the dimension of the kernel k&fA *). The functionA(A ) admits docal
Smith formatA = A*, thats is there are nonnegative integeis. . ., m, satisfyingm < m_ 1,
i=1,...,n=1withmg ;1 =---=my,=0if g<nandnx n—matrix functionsE(A), F(A)
which are analytic and invertible in a neighborhoodiof A * such that:

A(A) =EA)DA)F(A), (11.2)
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with D(A) =diag((A —A*)™ ..., (A —=A*)™). The numbersn, i = 1,...,g are thepartial
multiplicities of the eigenvalu@d = A* of A(A), whereas their summ + - -- +my is its alge-
braic multiplicity. If there arek groups of mutually equaty, the j—th group containing;
elements we have:

ml:...:rml< rml+1:'.':rm2<'.'<rmk,1+1:'.':rmk7

wherefij = m +--- +n;j, hence settingy; :=mg, j=1....k we have O< My <Mp < -+ <
M.

In the sequel, we recall some results concerning the ei@gwaf the perturbed x
n—matrix function,
T(A,e):=AA)+B(A,¢)

nearA = A* and for smalle under the assumption thB(A, €) is analytic inA near(0,0)
andB(A,0) = 0 for all A. SinceA(A) admits a local Smith form, the study of the eigenvalue
perturbation ofl (A, €) is equivalent to the study of the solutions of the equatidﬁA'@Ik, €)=

0 whereT (A, &) :=D(A) +B(A, &), with B(A, &) := E"1(A)B(A,)F~1(A).

Now, consider a partition dd(A) andB(A, €) as

Di(A) 0] . Bi(A,g) Ba(A,e
po=| PN 01 g gz | BNE) B2AE) (11.3)
0 I BS()\78> B4(/\7£)
whereD1(A) andB1(A, €) areg x g matrices. Next, denote
0B,
H:=——=(0,0 11.4
5 (0.0), (11.4)
and defineforj =1,2... )k; /=1,2,...,n; — 1.
Aj = ZdetH (a1,....an—¢,RNj+1,0;+2,...,0), (11.5)

where the sum runs over a, . . ., On;—¢ suchthafij_; <o; <... < Onj—¢ < nj,

. [ detH(Mj_1+1,Aj_1+2,...,9) if 1<j<k
Next, for a positivenby 9m s, 0 = 1,...,m, we denote then—th roots of unity.

Theorem 11.1([75]). Let AA) and BA,¢) be as above and assume that the condition
A;--- Dy # Ois satisfied.

i) Then for each ¢ {1,2,...,k} there are nm; eigenvalues of TA,&) = A(A) +B(A, €)
nearA* = 0, satisfying fore — 0, the asymptotic relations

1 A
)\]VO'(E) — ijgmj’o-smj +0 (‘g‘mj> 5

hereo = 1,...,M;; v = 1,...,n; and the numberg;, satisfy(yjy)" = &jv, wheregj,
v =1,...,nj, are the solutions of the equation

nj—1

INEEY A&+ 1EM =0. (11.7)
/=1

For smalle there are no other eigenvalues ofX, €) nearA* = 0.
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ii) If for some je {1,2...,k} the j—th equation (11.7) has a simple ro?)jt then there is
a group ofm; eigenvalues\js (&) of T(A, &) nearA* = 0 having Puiseux expansion in
1
g™

N
m.

00
N R 1 ,
Ajo(€) = ViIm, 0™ + Z ajéﬁmhos i, 0=12,...,m;
=

with (%)™ = &;.
11.2.1 System Description

Consider the following continuous-time linear system:

{ X(t) = AX(t) +bu(t)

y(t) = cx(t) +du(t), (11.8)

whereA € R™", andb, c" € R" are real constant matrices. By discretizing the systen8j11.
with a constant sampling peridg we obtain the following discrete-time system:

{ X[0+1] = ©(h)x[¢] +T (huld],

y[€] = cx[¢] +du[f], (11.9)

t
whered : R, — R™Mandrl : R, +— R" are defined byb(t) := e andr (t) := <f eASds) b.
0

The corresponding transfer function of (11.9) is givertiy(z, h) := N(zh) /D (z h) where,
according to [45, 44],

N(zh) = detrl_swh> _ighq, (11.10)

D(zh) = det(zl—®(h)). (11.112)
11.2.2 Problem Formulation

As mentioned in the Introduction, this chapter will focustai problems:

(i) first, detecting all critical samplings iR, that is the explicit computation of afi* €
R* such thaN (¢¢",h*) = 0 for somed* € [0, 2m), and

(i) second, computing all intervalg,|...lyn such that for alh € I, the number of unstable
zeros ignvariant

In this way, we will find an appropriate partition

1S=Jt,, Y=l

R, =13,

such that the discretized systenmimal phasdor all h € IS andnon-minimal phaséor all
hell.

with
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11.3 Main Result

We focus in the analysis of the zeros for the polynomiét; h) when the sampling periokl
range oveiR . Despite the fact that, in theart Il we have introduced the notion of a critical
point and crossing set, we will define such a notions againntadifferent context.

Definition 11.1. A stability crossing poinbr a critical samplingh* is a sampling period
such that there exists at least one critical zefeez2D of the corresponding sampled-system
(N (z';h*) = 0). Thestability crossing sef is defined as the collection of all critical sam-
plings. Finally, the crossing s@ is defined as the collection of @l < [0, 2m) such that there
exists at least one sampling periodl Which a stability crossing point with the critical zero
z2 =€ (N(d%h") =0).

Even though the following matrices have been already intted, we will redefine it, it
the seek of completeness. Lets introduce now the followmgupeter-dependent matrices
M1, Mo R, — R™M:

n
matrices associated t(zh) = 3 ac(h)Z. Next, introduceP := (h) C R, as the set
k=0

of all points h satisfying the equality déty (h)) = 0, whereWy (h) := Ma (h)M] (h) —
My ()M (h).

Proposition 11.1. The inclusionS C P, holds and is strict.

Proof. The proof follows from the observation tHRtcontains not only critical samplings,
but also symmetric points, for which the equality &, (h)) = 0 is also valid. O

We have the following:

Proposition 11.2. Consider the discretized system (11.9) and let the zersingssion behav-
ior be characterized by the polynomial functioriz\h). Then the sampling & h* € Sis a
stability crossing point if and only if the following progiss hold simultaneously:

() h* €Ry;
(i) det(W (h")) = 0;
(i) (P (h*))NID £ 0.

Remark 11.1. As mentioned in Chapter 10 we recall here that the conditiipiis(necessary
but not sufficient for the existence of a crossing since,@xwethe real crossing points, the
determinant above vanishes also for symmetric points wihect to the unit circléD®.

6see Proposition11.1 andRemarkl0.3
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11.3.1 Crossing Direction Characterization

Proposition11.2 explicitly gives the set of all sampling periods> 0) with corresponding
characteristic roots on the unit cirad®. Then, assuming first that the sampling period param-
eter is fixed to some critical valu& for which there exists at least one critical characteristic
root ondD, the characterization of the crossing directions is givefodows:

Proposition 11.3.Let h= h* € R be a critical sampling for the crossing frequency: 2"
Under the assumption that the critical characteristic matf N are simple, the following
statements are equivalent:

() The rootz = €9 is crossingdD towards instability (stability).
(i) The following inequality holds:

dfz|

dh |, . >0 (<0,

for any h sufficiently close tg*hbut h> h*.

(i) The following inequality holds:

dN(eiG*,h>|

—drIh=h*

0 FLTR <0 (>0, (11.12)
|z eo”

then for any h sufficiently close t6é but h> h*.

Even in the case of simple eigenvalues the condition (1d2)anish, in such a case the
following Propositionprovides a second order analysis:

Proposition 11.4.Let i be a critical sampling-period such that the condition (12).¢anish.
Under the assumption that the critical characteristic ¢z = €9°) of N is simple, the
following statements are equivalent:

(i) The root z = €9 stays outside (inside) of the unit cirakD.
(i) The following inequality holds:

d?|z|
dh?

>0 (<0,
h=hr

for any h sufficiently close tg*hbut h> h*.

(i) The following inequality holds:

g_Nd_w%_N d_N(ﬁ_N) ON(zh), 2
02 ’ _h*
O ; +D{(,N‘9(2T“} >0(<0),
( ) T|z:z*
z=z* ,h=h*

then for any h sufficiently close té but h> h*.
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11.3.2 Multiple critical samplings

Now, in order to analyze a more general situation, i.e. aipialtritical samplings, lets
introduce the following notions. Lét andAg = €9, 8% € [0, 2m) be a critical pair of critical
sampling and critical zero dfi(z h), i.e.N(A;h*) = 0. We defineT : C x R, ~» CM1xn+l
given by:

Th.e) = |Q\+Ag)c—¢(s>§ —rd(s*)h[q:(s*)—g:(sw*) —qn(eo*)r(e) (1113)

(. S\ s
g ~~

=:A(A) =:B(¢)

According to this definition it is clear that = O is an eigenvalue o&(A) and thatB(0) =0,
moreover, it is clear thal (A, €) is holomorphic around = 0 ande = 0. In the rest of this
subsection we will adopt the same notations introducedemptéliminary section11.2, i.e.,
m;, i =1,...,gwill denote the partial multiplicities of the eigenvaldie= 0, g = dim(kerA(0))
is the geometric multiplicityk denotes the number of groups mutually eguglwhere the
j—th group contaim; elements (see section 11.2, for more details). In the fofigwe will
refer to equation (11.7) as the-th polynomiai

nj—1

Pi(§) =4+ /Z Djo&" 4+ A1 EM. (11.14)
=1

Additionally, we will denoteE (A) := E~1(A) andF (A) := F~1(A), where these matrices
are partitioned as follow,

con [ 50 BN gy [AW A0
Es(A) E4(A) Fs(A) Fa(A)

Then, in the same spirit ¢fart Il (chapter10) we have the following results:

(11.15)

Proposition 11.5. Assume thaf\; - - - Ay # 0. Then for each g {1,...,k} and any sampling
period h sufficiently close to*hthere are nm; characteristic zeros of the discretized system
(11.9) corresponding td; which can expanded by Puiseux series:

1 1 N
Mvo(h) = A&+ YivIm, o (h—h") ™ +o<\h—h*|mi) Lo=1,...m,

herey;y satisfy(ij)mj = ¢jv whereé;y, v =1,...,n; are the solutions of the- th polyno-
mial (11.14), withAj,, Aj given by (11.5)-(11.6) and
H = ~E1(0)(h") |ARL(0) + bR(0) |

Thus, for h sufficiently close td but h> h* there are at least M (M< m;) of the characteristic
zeros going outside (inside) the unit cird® if M of the eigenvalues satisfy the condition:

cos(f,—6*) >0 (< 0), (=1,...,m

where6, € [0,2m) is the phase angle cy\jvamj,a £ 0.

In the case of a simple roots, of the-th polynomial the result above rewrites as follows:
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Proposition 11.6. Assume thad; - - - Ay # 0. If for some je {1,...,k} the j—th polynomial

(11.14) has a simple rocﬁj, then there is a group af; discretized zeros having a Puiseux
expansion:

~ 1 0@ £ N
)\ja(h):)\(’,‘%—yjﬁmj,a(h—h*)mi+/zzajgz9§1j7asmi, o=1,...,m;.

with (Vj)mj — &;. Thus, for h sufficiently close td but h> h* there are at least M (M< ;)
of the characteristic zeros going outside (inside) the gnitle JD if M of the eigenvalues
satisfy the condition:

cos(6,—0*) >0 (<0), (=1,...,m
where6, € [0,2m) is the phase angle (ﬁ]amho £ 0.

Finally, the next result concerns the case when all partidtiplicities are equal and sim-
ple.

Corollary 11.1. Assume that in= --- = mg =: m and letyy, ..., Uy the eigenvalues of H,
such thaty; = 0, for all i = 1,...,g9. Then, for any h sufficiently close t6 but h> h* the
characteristic zeros of the discretized system (11.9) eaexpanded as:

1 ol _
Aia(h) = Ag + Yidma (h—h")m+o(|h—h*|m), =Tg 0 =L m

Hence, for h sufficiently close tg but h> h*, the number of critical zeros going to outside
the unit circledD (or vice versa) can be determined by the condition

cos(6,—6") >0 (<0), (=1,...,m
where6, € [0,2n) is the phase angle of/Li;m s # 0.

Remark 11.2. Observe that in the previous results our main assumptidmasall A; - - - Ay #
0. However, in case that this condition vanish it is still pbss to extended the previous
results, by applying the similar ideas than [76].

11.3.3 Numerical Examples

In order to illustrate the previous results, we considerfdfiewing examples.
Example 11.1.Consider a transfer function

_ bis-+ bg
(s+a)?

G(s) (11.16)

where ac R\ {0} and by, b1 € R are not both zero. We have the following situations:

) Let bh = 0and b # 0. In this case we have that(X h) = (b;h)e~3"(z— 1) implying
that all sampling periods are critical, i.e5 = R,
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i) If bg+# 0and by =0, then applying Proposition 11.2 we have that the criticahgding
are characterized by the roots of the equatigin)f= 0, where:

f (h) =e?"—2(ah)e?"—1. (11.17)
Since, {h) =0« h =0, we conclude that the only critical sampling i+ O.

i) Consider now b+ 0,1 =1,2. According to Proposition 11.2, the critical samplings are
characterized by the solutions of the equation g(x)=0, wher

9(x) = (bp — aby ) x cschx) — bp. (11.18)
Then anecessary and sufficient condititor the existence and uniqueness of a critical
sampling i € R is given by:
bo
bo — aby
If the inequality (11.19) holds, then the stability croggpoints (critical sampling) are
given by h = ’%’ where X is a zero of (11.18).

0< <1 (11.19)

Table 11.1 summarizes the previous discussion.

Table 11.1: Critical sampling and direction of crossing (@f.16). 3 is given by3 =
{X* € R: (bp—aby)x*csch(x*) — by = 0}.

aN
Case Critical Sampling O {%_h—h* }
Zazl|,_ge*
bo=0 .,
[R5 m-® *
bo#0 ., 2a
{ by =0 =0 { sign(a)
h* = |81 if 0 < bo/ (o —aby) < 1 —2a
2 070 —sign(a)
{ 070 - 2o /bl
bi#0 h*=0 otherwise { sign(bo/b1)

Remark 11.3. Taking h = 0in (11.16), we recover the transfer function (@) considered in
[62, pp.1560]. Although we arrive to a "similar" conclusidrere, the analysis proposed by
[62] is not complete.

Example 11.2. Consider the following non-minimal phase system with thendfer
function[43]: (s 1/10>2+1

G(8) = (s51) (5+ 99/100) (s+ 101/100) (11.20)
Then, evaluating Proposition 11.2, we get that the onlyicaitsampling is i = 1.067186
According to Table 11.3, we conclude that the system is riaivral phase for all he 1V =
(0,1.067186 and minimal-phase if k IS = (1.067186). The interest of this example lies
on the fact that the method of Ishitobi [62] does not work iis ttase, as pointed out by
Hagander [43].
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Table 11.2: Critical values and direction of crossing fosteyn (11.21).
Prop. 11.2(ii) {z€ C|N(z,h*) =0} Cond. (11.12)
hi 1067186 {0.369222+1 0.929340 0.226438

Example 11.3.Consider the following unstable and non-minimal phasessystith the trans-

fer function:
s—1

§J,+ 17382—1— 141638_§

Then, evaluating condition (10.19), we obtain the plotsthated in Fig.11.2. According to

)

0.61

G(s) = (11.21)

0.51

0.4

0.3

0.2

0.1F

Figure 11.2: Evaluation of (10.19), for the discretizedteys(11.21).

Fig.11.2, it appears that the possible critical points aije-h2.055and i, = 4.524. However,
taking h= hj we have that Ne®, hi) # 0 for all 8 € [0, ), this implies that Nz h}) has
the symmetrlc property mentioned previously. Indeedethraties are z= —0.059835and
7z =1/71 = —16.7126 Then, by applying Proposition 11.2, we get that the onlyicai
sampling is h= 4.524 The next table summarizes the above discussion. Accovdihg

Table 11.3: Critical values and direction of crossing fosteyn (11.21).

dN
Prop.1(ii) {ze C|N(zh*) =0} D{ ddh'j‘w}
dz‘ _ei0*

h; 20550 {-16.71,—0.059} not applicable
hy 45242 {-1,-0.002} 0.387(+)

Table 11.3 we conclude that the system is non-minimal pleasdih < IY = (0,4.5242 and
minimal-phase if ke 15 = (4.5242 «).
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Example 11.4.Consider now the following non-minimal-phase system:

0 1 O 0
xt)=| 0 0 1 |x(t)+ | 0 |u(t)
=1 =1 1 1

The corresponding transfer-function writes as:

(s—1)?

C8) =11 @+ 110

(11.22)

In this cases we will have an infinity but countable criticahgplings, assuming that we are
interested only in sampling periods satisfying the inefudl < h* < 100. Table 11.4 sum-
marizes the results obtained from Proposition 11.2. Accgydio Table 11.4 we observe that

Table 11.4: Crossing direction for the respective critgahplings.

ke N  Critical "
hi (k) Sampling {zeC|N(zhf)=0} O { ddl\T h=h* }
z 45| Ty
hi(k) 20617074  {-1,4.15136 —1'?_2?907
hy(k) 27.757700  {—1,~852941% _1-?_1;‘621
hy(k) 52890441  {-1,~852941% _1-?_1;‘621
hj(k) 78023182  {-1,~852941} _1-?_1;‘621
hi(k) 103155924 {—1,~852941% _1-?_1;‘621
: e ~1.314621
hs(k) 4(2k—1)m {_LW} -

the critical sampling b = 8k has a double zero at‘z= 1, then in order to determine the
crossing direction we consider the following invertibletmafunctions:

! 1 3 A
4 2 4 4
—26-17AB 17(2+AB) 94-17AB —17A(A+aq)
EA) = ea K . 9 , (11.23)
4a 2a 4a 8
17 17 17 —8—17Af
L 8a 4a 8a 16
-16 16 1 O
15
- 8 01
F(A) = 7 0 0ol (11.24)
| O 1 0O
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wherea = 1— €87, B = 1+ coth(4m) andcothis the hyperbolic cotangent function. We also
have that detEA ) = %(Mv coth(4m)) and detH A ) = 1. With these matrices, we have that

A 00O
0OA 00O
0 010
0 0 01

DA =EX)AMFQA) =

Then, we have m=mp =1, g= 2, k=1 and n, = 2. All theses facts together implies that
we can apply Corollary 11.1. Then, we obtain that zero as a&tion of the sampling period
around i = 8mrbehave as:

Ao(h) = 1+ 4EVAB ([ _pey Lo(h—h)), (=12

Since co$6,) = %\/71_7 > O0for ¢ =1,2, implies that the discretized zeros are crossing towards

instability. Such a behavior is illustrated in Fig.11.3.

LSAYm

0.5}

-0.5¢

-1.5

Figure 11.3: Sampled-zero behavior aroimid= 8.

11.4 Future Works: Singular Matrix Functions

In the previous sectionsé¢ction11.2-11.3) we have studied analytically the behavior of the
eigenvalue) * of the matrix functionT (A, h) (see, (11.13)) around sonhé > 0, or in other
words we have implicitly assumed that the matrix functiaid , h) is regular. Here, we say
regularin spite of the following

Definition 11.2. A matrix function AA) is singular if for allA € C,
det(A(A)) =0.

Otherwise, the matrix-valued functioff A is said to be regular.
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Now, if we are interested in the asymptotic eigenvalue biema@aroundh* = 0 the matrix-
valued functionT (A, h)|,,_, becomesingular. The termlimiting zerosis used to denote the
discretized zeros for sufficiently small or large samplirgipds. Then, in order to study the
asymptotic properties of the limiting zeros whier> 0+, such a zeros have been classified in
two categories [4, 44].

() intrinsic zeros these correspond to the zeros of the continuous time syatehap-
proach taz= 1 ash — 0+. Then, if the continuous-time system is strictly propeeréh
are at mosh — 1 intrinsic zeros.

(il) discretization zerasthese zeros doesn’'t have continuous-time counterpartdepend
on the relative degreepj of the continuous-time system. Moreover, the behavior as
h — 0+ is given by the foIIowing Euler polynomial:

By(2) = b2 14blP 24 .. bl

k .
bl?) = _Z‘(_l)k—'if’(i:l), k=1,2,...,p.
1=

From the above definition it is not difficult to see tiiB#(z) is asymmetric polynomial

i.e., all their coefficients satlsfyk = bg )k 1 and consequently their roots are sym-

metric with respect to the unit circle, i.e. sinBg(z) = Bp(%), this implies that there
the same number of zeros inside and outside of the unit ¢fiaiieénore details analysis
of this polynomial, see[126]).

It is worth to mention that several attempts have been maef(s instance, ([7, 13, 44, 45,
62, 63, 64], and reference therein) in order to charactasyenptotically the zero behavior as
h — O+. However the problem is still open, and the mean reasontsitiad the above works
they made a description of the limiting zeros, assuming tifatcontinuous zero is simple,
and under this assumption they show that the limiting zgitn) admits a Taylor expansion
with respect to the sampling peritgli.e., they show thaty (h) behave as

zg(h) =14 yth+ yph? +yh+ ... (11.25)

However, if the continuous zeros are multiple, such an esipanis not necessarily valid.
In order to illustrate such a situation, lets consider thetiomous-time system, given by the
following transfer function

S
G(s) = (32 W o (11.26)
(s+1) <52+ 4—12>
In this case, in order to expand in series the limiting zegpd), we apply theNewton-

Diagram2.2, obtaining the diagram depicted in figure 11.4. Now, etiog with theNewton-
Diagram Procedurave conclude that the limiting zeros fordh = € <« 1 behaves as

(y(y—1) (16y2+1))1/3 -5 : :
R e3+o(ed),
(vy—12 (164 +1)ed 5
5 e3+o(ed),
(My-12(167 1) el o s
273 € +o(s )

z1(e) = 1—ye+

() = 1-ye+

73(e) = l—ye+
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Figure 11.4: Newton Diagram for discretized system (11.26)

Then, by an appropriate extension of the previous resudta,fature work can be considered
the asymptotic eigenvalue behavior of the matrix funcligi , h) ash — 0+.
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A Mathematical Background

A.1 Chebyshev Polynomials Definitions

Definition A.1 ( [86]).

(i) The Chebyshev polynomia|(k) of the firstkind is a polynomial in x of degree n, defined
by
Ta(X) = cosnB, when x= cos#,

(i) The Chebyshev polynomiak(k) of the second kind is a polynomial in x of degree n,
defined by
_sin(n+1)6

Un(x) sin@

, when Xx= cos6.

A.2 Leverrier-Sauriau-Frame Algorithm

Theorem A.1([90]). Let the characteristic equation for AR™" be given byA"+c;AM 1+
CoA" 2+ ... +¢, =0, and define a sequence by taking-Bl and B = —%I +AB_1
fori =1,2,...,n. Then, the i th coefficient is &= —T2%AB-1),

A.3 Rouché’s Lemma

In complex analysis, Rouché’s Lemma states that if the ceraghlued functiond andg
are holomorphic inside and on some closed con®@uwith |g(z)| < |f (z)| on D, then f
and f + g have the same number of zeros insile where each zero is counted as many
times as its multiplicity. This theorem assumes that thaaarD is simple, that is, without
self-intersections.

Theorem A.2. [78] Let f(z) and gz) be analytic in a simply connected domé&containing
a Jordan contour”. Let|f(z)| > |g(z)| onJ. Then, 1z) and f(z) +g(z) have the same
number of zeros insidg .

A.4 Implicit Function Theorem

Given a set of suitable equations, timplicit Function theorenstates that some of the vari-
ables can be defined as a functions of the others.

In the general case we shall have a funconR" x R™ — R™, and consider the relation,

Fl(xla-~-7Xn7Yl7~-~7Ym) =0

Fm(X]-?"'?Xn?yl?"':ym) - O



Then, the Implicit Function theorem guarantees at leastllip¢hat we can find a unique
differentiablef such thaf (x, f(x)) = 0. The theorem is as follows.

Theorem A.3(Implicit Function theorem)[85, 73] Let AC R" x R™ be an open set and let
F : A— R™ be a function of class €(that is F has p continues derivatives where fN).
SupposéXo,Yo) € A and F(Xo,Yyo) = 0. Form

oy1 0Ym
A(X7 y) = ’ : : )
oy1 0Ym

where F= (Fy,...,Fyn). Suppose thah (xo,Yo) # 0. Then there is an open neighborhood
U c R" of Xy and a neighborhood \ R™ of yp and a unique function fU — V such that

F(xf(x)=0
for all x € U, Furthermore, f is of class €

Corollary A.1. [85] In Theorem A.37 fj/dx; are given by

ofr . 9f1 aF . R\ L /om0 0R
X1 Xn A 0Ym X1 0Xn
0fm dfm O0Fm . J0Fm J0Fm O0Fm

o o ayr Oym ox1 0%n
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