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Résumé

Les travaux de recherche présentés dans cette thèse concernent des contributions à l’étude de
stabilité des systèmes linéaires à retards avec contrôleurs d’ordre réduit. Cette mémoire est partagée en
trois parties.

La première partie est axée sur l’étude des systèmes linéaires à retard mono-entré /mono-sortie,
bouclées avec un contrôleur de type PID. Inspiré par l’approche géométrique développée par Gu et
al. Nous avons proposé une méthode analytique pour trouver la région (ou les régions) de tous les
contrôleurs de type PID stabilisant pour le système à retard. Basée sur cette même approche, on a
développé un algorithme pour calculer le dégrée de fragilité d’un contrôleur donné de type PID (PI,
PD et PID).

La deuxième partie de la thèse est axée sur l’étude de stabilité sous une approche NCS (pour son
acronyme en anglais : Networked Control System). Plus précisément, nous avons d’abord étudié le
problème de la stabilisation en tenant compte des retards induit par le réseau et les effets induits par la
période d’échantillonnages. Pour mener une telle analyse nous avons adopté une approche basée sur la
théorie des perturbations.

Finalement, dans la troisième partie de la thèse nous abordons certains problèmes concernant le
comportement des zéros d’une certaine classe de systèmes échantillonnés mono-entré /mono-sortie.
Plus précisément, étant donné un système à temps continu, onobtient les intervalles d’échantillonnage
garantissant l’invariance du nombre de zéros instables dans chaque intervalle. Pour développer cette
analyse, nous adoptons une approche basée sur la perturbation aux valeurs propres.

Mots-clefs : stabilité, systèmes linéaires a retards, théorie des perturbations, séries de Puiseux, D-
partition, faisceaux matriciels.
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Introduction

In many physical systems, the rate of variation in the system’s state depends not only of
its current value, but also of its past history. Systems possessing such a characteristic are
calledtime-delaysystems (sometimes also calledhereditarysystems, systems withtime-lag
or systems withaftereffect). Delay dynamical systems are abundant in nature, and it is worth
mentioning that they occur in a wide variety of physical, chemical, engineering, economic
and biological systems. In fact, to the best of the author’s knowledge, time-delay systems was
first introduced in order to describe the behavior of some biological systems and were later
found in many engineering systems, such as mechanical transmissions, fluid transmissions,
manufacturing processes, transmission lines in pneumaticsystems, nuclear reactors, among
others (see, for instance, [32], [39], [72], [133], [120], for further details). As a consequence,
the problem ofstability analysisandcontrol of time-delay systems has attracted much atten-
tion, and considerable effort has been done to different aspects of linear time-delay systems
during the last decades [48], [92], [103], [107].

Basic theories describing time-delay systems properties were established in the 1950s and
1960s; they developed topics such as the existence and uniqueness of solutions of the corre-
sponding dynamic equations, stability methods to study thebehavior of the trivial solutions,
continuity of the characteristic roots with respect to someof the system’s parameters, etc.
Such works established the foundation for the later analysis and design of controllers for
time-delay systems.

The study and design of physical systems can be carried out using empirical methods. In
this vein, we can apply several kinds of signals to a physicalsystem and measure its responses.
If the performance is not satisfactory, then we can adjust some of the parameters, or connect
a compensator to it in order to improve its behavior. However, if the system under study is
complex (like nonlinear including or not time-delays, etc.), "expensive", "dangerous" or if it
is too important (like systems modeling life science), thenexperimental methods will became
unworkable and the analytical methods will become indispensable.

Even though, there exist several advanced controller design methods as, for example, the
finite spectrum assignment,H∞−synthesis,µ and linear matrix inequalities based synthesis
methods for time-delay systems, these methodologies produce generally controllers with or-
ders comparable with order of the system. Therefore, the orders of these controllers tend
often to be too high to allow the practical applicability forhigh-order systems and, as a conse-
quence, simple controllers are often preferred over complex ones. In this context,low-order
controllersplay a relevant role, not only from the practical but also from theoretical point of
view.

Among the most popular low-order controllers, we may cite PID-type (P, PI, PD and PID),
such controllers have the following mathematical representation in frequency domain:
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P−controller: C(s) = kp;

PI−controller: C(s) = kp+ki/s;

PD−controller: C(s) = kp+kds;

PID−controller: C(s) = kp+ki/s+kds,

wherekp, ki andkd are the proportional, integral and derivative gains, respectively. Gener-
ically, PID-type controllers are implemented by feedback,this implies that the controller out-
put signal is calculated by taking into account the available output plant measurements. In
this vein, a typical single loop containing a PID-type controller and a linear time-delay SISO
(single-input, single-output) systemG(s) = A(s)

B(s)e
−sτ is shown in Fig.0.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−+
C (s) G (s) y (t)

u (t)

Plant

r (t)

Controller

Figure 0.1: Typical feedback control system.

The popularity of the PID-type controllers can be attributed to its relativesimple structure,
which can be easily understood and implemented in practice,and that such controllers have
"sufficient" ability of solving many practical control problems (see, for instance, [5], [27],
[123], for further details). Surprisingly, despite the "popularity" of PID controllers, the prob-
lem of finding the all set of stabilizing PID controllersin the (kp,kd,ki) parameters space is
still of interest and it becomes quite complicated in the presence of delays in the loop even for
the simplest system’s structure. In order to illustrate thebenefits of such knowledge, consider
now the following simple example.

Example 0.1.Consider the PID stabilization problem of the following plant

G(s) =
s3−4s2+s+2

s5+8s4+32s3+46s2+46s+17
e−s.

This system has the following stabilizing set of(kp,kd,ki) parameters (see, Example 7.1, for
complete details).

Taking several controllers within the above stabilizing region, we have the following step
response curves.

Then, using the information obtained from the knowledge of the complete stabilizing set
of PID controller, could be extremely useful in the design ofcontrollers that must satisfy some
requirements for the system performance.

In addition to the previous remarks, the fact that PID controllers have only three tuning
parameters, the parameter-space approach have captured the attention of several researchers
and, as a consequence, there exists an important amount of results dealing with the analysis
of PID-type controllers. In fact, it is worth to mention thatthere exist several results related
with the calculation of the set of stabilizing PID controllers. In delay free case [27, 51], a gen-
eralization of the Hermite-Biehler theorem was derived andthen used for a given LTI (linear
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Figure 0.2:Stabilizing set of(kp,kd,ki).
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Figure 0.3:Step response curves corresponding to different PID-controllers.

time-invariant) plant. In the delay case, in order to find theset of all stabilizing PID controllers
a generalization of the Hermite-Biehler theorem is applied. Under this approach, the works of
[112, 110] found necessary and sufficient condition to find the all set of stabilizing PID con-
trollers, however the analysis requires an additional gridon a frequency variable "ω". On the
other hand, by using the Neimark [101] decomposition method[79, 80] (D−decomposition)
under the assumption thatkd = ki/η (whereη ∈ R) derived the set of stabilizing PID con-
troller, under this assumption, clearly the problem was notcompletely solved. Based on the
same approach but without imposing the above restriction, the works of [8, 54] derived the
set of stabilizing PID controllers and also they find out thatthe exact stable region can be
described by a finite number of boundaries if the relative degree of the system is larger than
2, yielding to a set of convex polygons as the stable region inthe(kd,ki)−plane.
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Among the long list of problems when using PID controllers, we will mention one that,
in our opinion, is quite important: theperfectknowledge of the gains when implementing the
control. This assumption is in some extend valid, since, clearly, the plant uncertainty is the
most significant source of uncertainty in the control system, whilst controller are implemented
with high-precision hardware. However, there will inevitably be some amount of uncertainty
in the controller, a fact that sometimes is ignored in robustand optimal control design [69]
(see also, [68], [81], for further comments). If the controller will be implemented by ana-
logue means, then, there will be some tolerance in the components. On the other hand, if
the controller is implemented digitally, then, there will be some rounding in the controller
parameters. Where, for reasons of security, cost and execution speed, the implementation is
with fixed point rather than floating point processors, therewill be increased uncertainty in
the controller parameters due to the finite length and further uncertainty due to the rounding
errors in numerical computations.

Based on these remarks, such controllers have to be designedby considering:

(a) performancecriteria;

(b) robustnessissues;

(c) fragility.

Roughly speaking, a controller for which the closed-loop system is destabilized by small
perturbations in the controller parameters is called "fragile". In other words, the fragility
describes the deterioration of closed-loop stability due to small variations of the controller
parameters.

The problem received a lot of attention in delay free systems, see, e.g., [50] (non-fragile
PID control design procedure), [3] (appropriate index to measure the fragility of PID con-
trollers). However, there exists only a few results in the delay case: [124], where only (stable)
first-order systems were considered, [9], a non-fragile controller for some classes of non-linear
system is proposed, and more recently, [88], where the authors proposed a robust non-fragile
control design for a TCP/AQM models.

The above problems constitute the core of the first part of thethesis. More precisely,
inspired by thegeometric ideasintroduced by Guet al. [40] we propose a simple method
to derive the complete set of stabilizing controllers in the(kp,kh) parameter space (where the
subindexh stand for the integrali or for the derivatived parameter) or in the(kp,kd,ki) param-
eter space. Once the complete stabilizing set of controllers is defined, the explicit computation
of the distance of some point to the closest stability crossing boundaries is presented. In other
words, we introduce aquantitative fragility measurefor the corresponding controller.

Another distinctive feature that is usually related to delay systems, is that systems pos-
sessing delays in the feedback loop are often accompanied with instability or "bad" behaviors
(as, for examples, oscillations, bandwidth sensitivity),as pointed out by [39], [92] and the
references therein. However, there exist also some situations when the delay has apositive
effect, that is, the delay mayinducestability. In order to illustrate such a situation, recall the
following:

Example 0.2. [1] Consider the following simple second-order system:

ÿ(t)+ω2
0 +y(t) = u(t) . (0.1)
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It is clear to see, that such class of system is stabilizable by the feedback law

u(t) =−kẏ(t) , k∈ R+,

moreover, it is easy to see that there does not exist a proportional controller u(t) = −ky(t),
∀k ∈ R able to stabilize the system(0.1). However, using instead a positive delayed output
feedback,

u(t) = ky(t − τ ) , k∈ R+,

it is possible to stabilize the system asymptotically. In fact, if we chose(k,τ ) satisfying the
following inequalities,

0≤ k <
1+4n

1+4n+8n2ω2
0

2nπ√
ω2

0 −k
< τ <

(2n+1)π√
ω2

0 +k

where n∈ N∪{0}, then the closed-loop system will be asymptotically stable(see, [1], for
further details).

For ω0 = 1, figure 0.4 illustrate the stability regions in the(k,τ ) parameter space, as well
as, the closed-loop behavior for(k,τ ) = ( 7

10,1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10
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40
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k

stability regions

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

t [s]

y (t)

Figure 0.4: (Left) Stability regions in the(k,τ ) parameter space. (Right) Step response curve
corresponding to(k,τ ) = ( 7

10,1).

As pointed out by Michiels & Niculescu [92], the above example opens an interesting
perspective in using delays as acontrol parameters. Motivated by this idea, Niculescu &
Michiels in their paper [106] solved the problem of stabilizing a chain includingn integrators:
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Hyu(s) = 1/sn by means of the control law defined by a chain ofmdistinct delay blocks(ki ,τi)

u(t) =−
m

∑
i=1

kiy(t − τi) ki ∈ R, τi ∈ R+. (0.2)

Furthermore, they have also shown that eithern−delay blocks or a proportional +
(n−1)−delay blocks are necessary and sufficient conditions to asymptotically stabilize a
chain ofn integrators (n ≥ 2). In addition, they have also shown that thesen− delay block
are also able toguaranteean arbitrary pole placement for the correspondingn−rightmost
eigenvalues of the closed-loop system.

It is also worth mentioning that there are also other contributions in this direction. For
example, Kharitonovet al. in [70] gavenecessary conditionsfor the existence of a controller
with multiple (distinct) delays able to stabilize oscillator systems, Mazencet al. in [87] con-
sidered the case of a chain of integrators with bounded inputand a single delay.

The aforementioned ideas but in a networked control system framework constitute the core
of the second part of the thesis. More precisely, inspired bythe results derived by Niculescu
& Michiels in [106], we first explore such ideas in studying the problem of stabilization of a
chain of integrators by taking into account the network-induced delays and the corresponding
sampling period. Next, in the second half of the Part II of thethesis we address the out-
put feedback stabilization problem for a class of linear SISO systems subject to input/output
delays. More precisely, we are interested in the characterization of the of delay– gain– and
sampling– parameters guaranteeing the stability of the closed-loop system.

Outline

The remaining part of the thesis is organized as follows.

Chapters 1–2 presents the main definitions, preliminary results as well as the main tools
that will be consistently used throughout the thesis. More precisely, in Chapter 1 we present
the notions of solutions, stability and some existing analytical criteria to verify the stability in
the frequency-domain case, such notions are presented firstto the continuous-time case and
next for the discrete-time case.

Next, Chapter 2 introduce some fundamental results concerning theperturbation theory
of linear operators. First, eigenvalues are classified according to their characteristics, then
several criteria to determine the main coefficients of the series expansion are presented. In
order to illustrate how these results can be applied, several illustrative numerical examples
have been detailed and complete the presentation.

Chapters 3–8 form the first part of the thesis, where we consider the stabilization problem
of a linear time-delay SISO system by means of a PID-type controller as well as the fragility
problem of the PID-type controllers. The results presentedin this part are collect as a book
chapter in a more compact form [97] to be submitted in the forthcoming period.

In Chapter 3, we introduce the basic notations, as well as some general results for a
generic controllerh(s,α ,β), which is considered as a transcendental analytical function and
whereα andβ are considered as being the control parameters. The crossing curves in the
(α ,β)−parameter space is determined. Next, by means of theImplicit Function Theorem
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[85], the smoothness property of the crossing curves is proved. Conditions to determine the
direction of crossing are also presented.

Chapter 4 recalls some results concerning the ProportionalController, such results have
been presented in [98]. In order to illustrate the applicability of the theoretical results, several
numerical example are presented at the end of the chapter. Itis worth to mention that such
results are presented in the seek of completeness.

In Chapter 5, we summarize the results presented in [99] concerning to the PI stabilization
problem of a linear SISO system with I/O delays. Several illustrative examples are presented
at the end of the chapter.

Chapter 6 concerns the Geometry of PD controllers for SISO systems with I/O delays.
Inspired by the results presented in [99], we extend such an approach to the case of PD con-
trollers. Unlike the PI case, a neutral-type system can be result from the closed-loop system.
Then, additional analysis is presented in order to deal withsuch a situations. We include at
the end of the chapter several numerical examples illustrating the proposed method.

In Chapter 7 following the geometric ideas introduced by Guet al. in [40], the geometry
of PID controllers for SISO systems with I/O delays is presented. First, we start by developing
a simple method to derive the stability regions in the gain parameter space. Then, a classi-
fication of the stability crossing boundaries is proposed. Such a classification is established
as a function of the kind of the left and right ends of the corresponding frequency crossing
interval. In such a case, 8 types of boundaries have been obtained. Following similar ideas as
those applied in the PI and PD cases, we propose a criterion tocheck the crossing directions.
The proposed method is illustrated by several numerical examples presented in the last part of
the chapter.

Chapter 8 concerns the fragility analysis for the PID-type controllers. The chapter starts
by showing through a numerical example the importance of thefragility in the design of a
controller. Next, a simple geometrical method for computing the fragility of a PI, PD and
PID controller is proposed. Several numerical examples complete the presentation. Such a
method is performed in three steps: (i) the construction of the stability crossing boundaries in
the (kp,kd,ki)−parameter space, (ii) the explicit computation of the crossing directions and
(iii) the explicit computation of the distance of some pointto the closest stability crossing
boundaries.

Chapters 9–10 form the second part of the thesis and concern the stability analysis of a
linear SISO system in a networked control system framework.

In Chapter 9 we focus on a chain of integrators system under a NCS framework. Firstly,
it is stated the main differences with the continuous case: lack of scaling properties, induced
instabilities for small gain values and thatn−delay are not sufficient to guaranty an arbi-
trary pole placement. Secondly, a method to construct a controller able to achieve the pole-
placement of the closed-loop poles is presented (at leastn+ 1 delays are needed). Next,
a method to construct a controller (withn−delays) able to achieve asymptotic stability is
presented. Several numerical examples along the chapter are presented and are helpful in
understanding some of the proposed notions and approaches..

Chapter 10 concerns the output feedback stabilization problem for a class of linear SISO
systems subject to I/O network delays. We present the characterization of the set of delay-
sampling period- and gain- parameters guaranteeing the stability of the closed-loop system.
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Such an analysis is performed by adopting an eigenvalue perturbation-based approach. Vari-
ous numerical examples illustrate the proposed results.

Chapter 11 forms the third part of the thesis. This chapter presents some extension of the
eigenvalue perturbation-based approach developed in the chapter 10 to the the analysis of the
zero behavior of some class of sampled-data SISO systems . Some illustrative examples are
also presented. In the last part of this chapter, some possible future works are mentioned.
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Notations

List of Symbols

N set of natural numbers, i.e.,N := {1,2, . . .}.
Z set of integer numbers
R+ set of strictly positive real numbers
R field of real numbers
C field complex numbers
Rn (Cn) space of alln−dimensional column vectors with

components inR (C)
Rn×m (Cn×m) space of real (complex) matrices of sizen×m
λ complex conjugate ofλ ∈ C

∠λ argument of the complex numberλ , where∠z∈ [0,2π)
ℜ (·) (ℑ (·)) real (imaginary) part of a complex number
er unit vector in ther−th direction, with dimension given

by the context

e(m)
r m−dimensional unit vector in ther−th direction

I identity matrix, with dimension given by the context
AT transpose of matrixA
A−1 inverse of matrixA

diag(A1,A2, . . . ,Am)




A1 0 · · · 0
0 A2 · · · 0
...

...
.. .

...
0 0 · · · Am




rank(·) rank of a matrix, or a matrix-valued function
det(·) determinant of a square matrix
trace(·) trace of a matrix[
ai j
]

i, j=1,...,n,
[
ai j
]n

i, j=1 square matrix of dimensionn
[ai]

n
i=1 n−dimensional vector

[ai]
n
i=1 n−dimensional vector

σ (A) spectrum of the square matrixA∈ Cn×n

σ (A,B) set of all generalized eigenvalues, i.e.,
{λ ∈ C : det(A−λ B) = 0}

〈x,y〉 inner product of the vectorsx,y∈ Cn

‖x‖ Euclidean norm of vectorx∈ Cn

R(i1, . . . , iα )
[
r iν iµ

]
ν , µ=1,...,α , for integersα ∈ {1, . . . ,n} andiℓ,

1≤ ℓ≤ α with 1≤ i1 < · · ·< iα ≤ n
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D unit open disk{z : z∈ C, |z|< 1}
D unit closed disk{z : z∈ C, |z| ≤ 1}
∂S boundary ofS, whereS is any set. For example,

∂D is the unit circle{z : z∈ C, |z|= 1}
/0 empty set
ẋ(t) derivative ofx(t) with respect to timet, dx

dt(n
r

)
binomial coefficient defined by n!

r!(n−r)!
csch(z) hyperbolic cosecant functioncsch: C 7→ C, defined by

csch(z) := 2/(ez−e−z)
iii

√
−1

deg(·) degree of a polynomial
:=, , equals by definition
� end of a proof
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Abbreviations

AQM active queue management

CRS complete regular splitting

DDE delay differential equations

FE functional equation

FDE functional differential equation

LHP left-half plane

LTI linear time invariant

NCS networked control systems

PD proportional derivative

PI proportional integral

PID proportional integral derivative

RFDE retarded functional differential equation

RHP right-half plane

SISO single input, single output

TCP transmission control protocol
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1 Stabilization of Dynamical Systems

1.1 Introduction

The study of time-delay systems (hereditary systems or systems with aftereffect or with time-
lag) had its origins in the 18th century, with the works of Euler, Bernoulli, Lagrange, Laplace
and others [118], and it received substantial attention in the early 20th century [39]. Such a
growth of popularity is related to the fact that delays are natural components of dynamical
processes in physics, biology, engineering; for example, in population dynamics systems it
has been stated that a delayed logistic model provides a better framework for modeling the
dynamical behavior than a model that not taking into accountthe past history [26, 120, 133].
Among the open problems that required an increasing interest during the last decade, we cite
the networked control systems (NCS) [137]. Without discussing the modeling issues, we shall
focus on the time-delay systems represented byfunctional differential equations, which are
also calleddifferential equations with deviating arguments.

According to [72],functional equations(FE’s) are equations involving an unknown func-

tion for different argument values. The equationsx(2t)+2x
( t

2

)
= 10, x(

√
t) = x(t +1)+

5[x(t +2)]2, x(x(t)) = x(t − 1)2 + 2 ,etc., are examples of functional equations. The dif-
ferences between the argument values of an unknown functionand ”t” in a FE are called
argument deviations.

Roughly speaking, a simple combination of differential andfunctional equations leads
to functional differential equations or equivalently differential equations with deviating argu-
ments. Thus, this is an equation connecting the unknown function and some of its derivatives
for, in general, different argument values.

In this vein, since the first part of the thesis is devoted to the stability analysis of time-delay
systems (continuous-time representation), in the first part of this chapter we introduce some
basic concepts, as well as some elementary results for time-delay systems. On the other hand,
since in the second part of the thesis some notions for discrete-time systems will be needed, in
the rest of the chapter we will present some basic concepts and results for such systems too.

1.2 Continuous-Time Systems

Introduce now the basic definitions concerning differential equations with retarded arguments:

Let C ([a,b],Rn) be the set of continuous functions mapping the interval[a,b] to Rn. The
notationC = C ([−r,0] ,Rn) will denote the set of continuous functions mapping[−r,0] to
Rn. For anyA > 0 and any continuous function of timeϕ ∈ C ([t0− r, t0+A] ,Rn), andt0 ≤
t ≤ t0+A, let ϕt (θ) = ϕ (t +θ), −r ≤ θ ≤ 0. The general form of aretarded functional
differential equation(RFDE) (or functional differential equation of retarded type) is

ẋ(t) = f (t,xt), (1.1)

wherex(t) ∈ R
n and f : R×C → R

n. Since equation (1.1) shows that the derivative of the
state variables "x" at the time "t" depends ont and some "past-piece-of-trajectory"x(ξ ) for
t − r ≤ ξ ≤ t. Then, in order to determine the future evolution of the state, it is necessary to
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specify the initial "state" variablesx(t) on a time-interval of lengthr, say, fromt0− r to t0,
i.e.,

xt0 = ϕ , (1.2)

whereϕ ∈ C is given. In other words,x(t0+θ) = ϕ (θ), −r ≤ θ ≤ 0.

It is worth mentioning that since the necessary "amount" to construct the solution is repre-
sented by the definition of a function on some appropriated interval, FDEs belong to the class
of infinite-dimensional systems.

For anA > 0, a functionx is said to be a solution of (1.1) on the interval[t0− r, t0+A)
if within this intervalx is continuous and satisfies the RFDE (1.1). Of course a solution also
implies that(t,xt) is within the domain of the definition off . If the solution also satisfies
the initial condition (1.2), we say that it is a solution of the Cauchy problem (1.1) with initial
condition (1.2), or simply a solution through(t0,ϕ ). A fundamental issue in studying FDE is
represented by the existence and uniqueness of a solution;

Theorem 1.1. [39] Suppose thatΩ is an open set inR×C, f : Ω → R
n is continuous, and

f (t,ϕ ) is Lipschitzian inϕ in each compact set inΩ, that is for each given compact set
Ω0 ⊂ Ω, there exists a constant L, such that:

‖ f (t,ϕ1)− f (t,ϕ2)‖ ≤ L‖ϕ1−ϕ2‖ ,
for any (t,ϕ1) ∈ Ω0 and (t,ϕ2) ∈ Ω0. If (t0,ϕ ) ∈ Ω, then there exists a unique solution of
(1.1) through(t0,ϕ ).

1.2.1 Stability Notions

Let y(t) be a solution of the RFDE (1.1). Roughly speaking, the stability of the solution
concerns the system’s behavior when the system trajectoryx(t) deviates fromy(t). In the
following, we will assume without loss of generality that the functional differential equation
(1.1) admits the solutionx(t) = 0, which will be referred to as thetrivial solution. Indeed,
if we are interested to study the stability of a nontrivial solution y(t), then we may sort the
standard variable transformationz(t), x(t)−y(t), so that the new system

ż(t) = f (t,zt +yt)− f (t,yt) (1.3)

has the trivial solutionz(t) = 0.

For a functionϕ ∈ C ([a,b] ,Rn), lets introduce now the following norm‖·‖ by

‖ϕ‖c = max
a≤θ≤b

‖ϕ (θ)‖ .

In the above definition, the vector norm‖ · ‖ represents the standard 2-norm‖ · ‖2.

Definition 1.1. [39] For the system described by (1.1), the trivial solutionx(t) = 0 is said to
be stable if for any t0 ∈ R and anyε > 0, there exist aδ = δ (t0,ε) > 0 such that‖xt0‖c < δ
implies‖x(t)‖ < ε for t ≥ t0. It is said to be asymptotically stable if it is stable, and for
any t0 ∈ R and anyε > 0, there exist aδa = δ (t0,ε) > 0 such that‖xt0‖c < δa implies
limt→∞ x(t) = 0. It is said to be uniformly stable if it is stable andδ (t0,ε) can be chosen
independently of t0. It is uniformly asymptotically stable if it is uniformly stable and there
exist aδa > 0 such that for anyη > 0, there exist a T= T (δa,η ), such that‖xt0‖c < δ implies
‖x(t)‖ < η for t ≥ t0+T and t0 ∈ R. It is globally (uniformly) asymptotically stable if it is
(uniformly) asymptotically stable andδa can be an arbitrarily large, finite number.
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Linear Systems

Since in this thesis we mainly focus the linear time-invariant (LTI) case, i.e, whenf is
linear with respect toxt , in the following we will give a brief review of general linear time-
variant delay systems and next focus on linear time-invariant systems.

A general linear time-delay system can be described by the RFDE:

ẋ(t) = A(t)xt +g(t), (1.4)

whereA(t) is a time-varying linear operator acting onxt . In this case, it is always possible to
find a matrix functionF : R× [−τ ,0]→ Rn×n of bounded variation, such that

F (t,0) = 0,

and

L(t)ϕ =
∫ 0

−τ
dθ [F (t,θ)]ϕ (θ) . (1.5)

In general, in (1.5) it is required a Stieltjes integral, andin (1.5) the subscriptθ means thatθ
(rather thant) is the integration variable. As such, a general linear RFDEcan be represented
as

ẋ(t) =
∫ 0

−τ
dθ [F (t,θ)]x(t + τ )+g(t). (1.6)

In particular, many linear RFDEs can be specialized to:

ẋ(t) =
N

∑
k=0

Ak(t)x(t − τk(t))+
∫ 0

−τ
A(t,τ )x(t +θ)dθ, (1.7)

whereAk(t) andA(t,τ ) are givenn×n real continuous matrix functions, andτk(t) are given
continuous functions representing time-varying delays, which can be ordered with no loss of
generality, such that

0= τ0(t)< τ1(t)< .. .τN(t)≤ τ .

Such a generic representation covers both classical (time-varying or not) point and distributed
delays cases. If the functionF in (1.6) is independent of timet, then the system described by
(1.6) is linear time-invariant. An LTI RFDE can be written as

ẋ(t) =
∫ 0

−τ
dF(θ)x(t +θ) . (1.8)

Let
x0 = ϕ (1.9)

be the initial condition. Taking the Laplace transform of (1.8) with the initial condition (1.9),
we get

sX(s)−ϕ (0) =
∫ 0

−τ
eθsdF(θ)X(s)+

∫ 0

−τ
eθsdF(θ)

∫ 0

θ
e−αsϕ (α )dα ,

whereX(s) is the Laplace transform ofx(t),

X(s) = L [x(t)] =
∫ ∞

0
x(t)e−stdt.
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Solving forX(s) yields

X(s) = ∆−1(s)

[
ϕ (0)+

∫ 0

−τ
eθsdF(θ)

∫ 0

θ
e−αsϕ (α )dα

]
, (1.10)

where∆ : C 7→Cn×n

∆(s) = sI−
∫ 0

−τ
eθsdF(θ) (1.11)

is the so-calledcharacteristic matrix. The equation

det[∆(s)] = 0 (1.12)

is called the characteristic equation, and the expression det[∆(s)] defines the so-calledcharac-
teristic function, or alternatively, thecharacteristic quasipolynomial. The solutions to (1.12)
are called thecharacteristic rootsor poles of the system.

An useful notion in the study of the stability properties of agiven FDE is given by the
notion of thespectral abscissa

ρ (τ ;F) := sup

{
ℜ (s)

∣∣∣∣det

[
sI−

∫ 0

−τ
eθsdF (θ)

]
= 0

}
. (1.13)

In this vein, the key result that enables frequency-domain analysis of stability for the time-
delay systems is given by the following result:

Theorem 1.2. [39] For any real scalarγ, the number of the solutions, counting their mul-
tiplicities, to the characteristic equation (1.12) with real parts greater thanγ is finite. The
following statements are true.

(i) The LTI delay system (1.8) is stable if and only ifρ (τ ; F)< 0.

(ii) For any ρ0 > ρ (τ ; F), there exist an L> 1 such that any solution x(t) of (1.8) and the
initial condition (1.9) is bounded by

‖x(t)‖ ≤ Leρ0t ‖ϕ‖c . (1.14)

(iii) ρ (τ ; F) is continuous with respect toτk, for all τk ≥ 0, k= 1,2, · · · ,N.

Sometimes the spectral abscissa is known asstability exponentof the system [39].

Remark 1.1. Observe that this theorem states that the LTI system (1.8) isstable if and only
if its spectral abscissa is strictly negative. This is equivalent to saying that all the poles of
the system have negative real parts, which renders the studyof the stability of an LTI delay
system into the study of the zeros-location of the system’s characteristic quasipolynomial.

A particular class of LTI delay systems under (1.8) is those with pointwise (or concen-
trated) delays, which can be further simplified to the description

ẋ(t) =
N

∑
k=0

Akx(t − τk). (1.15)
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HereAk are givenn×n real constant matrices, andτk are given real constants, ordered such
that

0= τ0 < τ1 < · · ·< τN = τ .
For such a system, the characteristic quasipolynomial∆(s) takes the form

p(s;τ1, . . . ,τN) = det

(
sI−

N

∑
k=0

e−τksAk

)

= p0(s)+
m

∑
k=1

pk(s)e
−rks, (1.16)

wherepk(s), k= 1, . . . ,mare polynomials, andrk, k= 1, . . . ,mare sums of some of the delay
parameters of the delay parametersτk. There exist several situations describing the way the
delays are related, rational dependence or not, commensurate or not. For instance, if the ratios
between the delays,τi/τ j , may be irrational numbers, in which case the delays are saidto be
incommensurate. When all such ratios are rational numbers, on the other hand, we say that
the delays arecommensurate. In the later case, the delaysτk (and hencer i) become integer
multiples of a certain positiveτ . The characteristic quasipolynomial∆(s) of systems with
commensurate delays can then be written as

p(s;τ ) =
q

∑
k=0

pk (s)e−kτs. (1.17)

On the other hand, based on the relation between delays it is possible to classify delays ac-
cording to their interdependence. In this vein, the delaysτ1, τ2, . . . , τN are calledrationally
independentif and only if

N

∑
ℓ=1

zℓτℓ = 0, zℓ ∈ Z,

implieszℓ = 0, ℓ= 1, . . . ,N.

If the delaysτ1, τ2, . . . , τN are rationally dependent, then there always exists an integer
p< N and a matrixΓ ∈ ZN×p of full column rank such that




τ1
...

τN


= Γ




s1
...

sp


 ,

with the numberss1, . . . ,sp rationally independent. It is worth mentioning that in the case
wherep= 1, the delaysτ1, τ2, . . . , τN are commensurate, as they are all multiples of the same
number.

For example, the numbers 1, 2 and5
3 are commensurate as




1
2
5
3


=




3
6
5


(1

3

)
.

The numbers 1,π2 andπ+2 are rationally dependent, yet not commensurate, as



1
π
2

2+π


=




1 0
0 1
2 2



[

1
π
2

]
,
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with 1 andπ
2 rationally independent.

In order to illustrate the importance of the above concepts,lets relate the commensurate
and incommensurate cases with the above notions. In the caseof commensurate delays, it is
possible to express each delay by a relation of the form

(τ1, . . . ,τN) = τ (ℓ1, . . . , ℓN) , ℓi ∈ N, i = 1, . . . ,N,

whereτ ∈ R+ is the free parameter. Geometrically, the parametrizationabove corresponds
to a particularray or direction in the delay-parameter space. Moreover, in order to include
incommensurate delays it is possible to relax the above parametrization to the following one

(τ1, . . . ,τN) = τ (r1, . . . , rN) , r i ∈ R+, i = 1, . . . ,N,

with τ ∈ R+ being once again the free parameter.

Based on the above geometric parameterizations, Michiels &Niculescu [92] studied the
delay-independent stability when the ray under consideration consists of delay values with
any type of interdependence(commensurate, rationally (in)dependent delays). Furthermore,
they obtained the complete characterization of the so-calleddelay-interference phenomenon,
that is, the presence of delay-independent stability alonga particular ray, which is not ro-
bust against small perturbations of the direction of the ray. In order to introduce such re-
sults, lets consider the following notions. Given a direction −→r := (r1, . . . , rN) ∈ BN

+ :={−→r ∈ RN
+ : ‖−→r ‖= 1

}
in the delay parameter space, the associated rayT (−→r ) is defined as

follows:

Definition 1.2. [92] For −→r ∈ BN
+, let T (−→r ) := {τ−→r : τ ∈ R+}.

Definition 1.3. [92] The system(1.15)is delay-independent stable if and only if its zero solu-
tion is asymptotically stable for all−→τ ∈ RN

+.

Definition 1.4. [92] The ray T (−→r ) is stable if and only if the zero solution of(1.15) is
asymptotically stable for all−→τ ∈ T (−→r ).

Definition 1.5. [92] A stable rayT (−→r ) is subject to the delay-interference phenomenon if
and only if for allε > 0, there exists a−→s ∈ BN

+ with
∥∥−→r −−→s

∥∥< ε such that the rayT
(−→s
)

is not stable.

Consider the following matrix-value functions:

• L1 : [0,2π]N 7→ Cn×n, given by:

L1

(−→
θ
)

:= L1(θ1, . . . ,θN) = A0+
N

∑
ℓ=1

Aℓe
−iiiθℓ, (1.18)

• L2 : R+×RN
+ 7→Cn×n, given by:

L2(θ,−→r ) := L2(θ, r1, . . . , rN) = A0+
N

∑
ℓ=1

Aℓe
−iiiθrℓ. (1.19)

The following quatities play a major role in the characterization of delay-independent stability
and the interference phenomenon:
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Definition 1.6. Let

W =
⋃

−→
θ ∈[0,2π]N

σ
(

L1

(−→
θ
))

,

α0 = sup{ℜ (λ ) : λ ∈W}

and for−→r ∈ BN
+, let

V(−→r ) =
⋃

θ≥0

σ (L2(θ,−→r )) ,

α (−→r ) = sup{ℜ (λ ) : λ ∈ V(−→r )} .

Proposition 1.1. [92] If the components of−→r are rationally independent, then

V(−→r ) =W, α (−→r ) = α0,

where(·) is the closure of the set(·).

The above concepts and results are illustrated with the scalar equation:

ẋ(t) =−12
5

x(t)− 17
10

x(t − τ1)−
4
5

x(t − τ2) , (1.20)

example that slightly modifies the one presented in [92]. We have,

W =
⋃

(θ1,θ2)∈[0,2π]

(
−12

5 − 17
10e−iiiθ1 − 4

5e−iiiθ2

)
=

{
λ ∈ C :

9
10

≤ |λ +2.4| ≤ 5
2

}
,

V(−→r ) =
⋃

θ≥0

(
−12

5 − 17
10e−iiir1θ − 4

5e−iiir2θ
)
.

In Figure 1.1 we have shown the setsV(−→r ) (solid curves) andW (dotted curves) for~r = (1,4)
and~r = (10,39). As mentioned in [92], when the components of~r are commensurate,V(−→r )
forms a closed curve. We can consider the ratior2/r1 = 3.9 as a perturbation ofr2/r1 = 4,
and despite the fact that the componetes are still commensurate, they are "more" independent,
since the coprime numbers 39 and 10 are larger than 4 and 1. Consequently, the curve

θ ≥ 0 7→ −12
5
− 17

10
e−iiiθ − 4

5
e
−iii

r2
r1

θ
(1.21)

with r2/r1 = 3.9 will closes only atθ = 20π whenθ is increased from zero (instead ofθ = 2π
for r2/r1 = 4), and a larger portion ofW is covered byV(~r). In order to illustrate such
situation, the values of (1.21) forθ ∈ [0,2π] are also plotted in the right side of Fig.1.1 (bold
curve). Now, if r2/r1 = 2 would perturbed instead to an irrational value, such as 2−π/n,
n≥ 2, the the corresponding curveV(~r) would never close and and its points would densely
fill W as indicated in Proposition 1.1 (see, [92], for further details).
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Figure 1.1:The setV(~r) for the system (1.20). (Left) for~r = (1,4); (right) for~r = (10,39). The
dotted curves are the boundaries ofW.

The delay-interference phenomena is characterized by the following results.

Proposition 1.2. [92] The rayT (~r) is stable if and only if

V(~r)⊂ (C−∪{0}) .

Proposition 1.3. [92] Assume thatW 6⊂ (C−∪{0}). If a ray T (~r) is stable, then it is sub-
jected to the delay-interference phenomenon.

Theorem 1.3. [92] Assume thatW∩C+ 6= /0. Then the following holds:

1. If the components of~r are rationally independent, then the rayT (~r) is unstable.

2. If the rayT (~r) is stable, then it is subjected to the delay-interference phenomenon.

3. The set
{
~r ∈ BN

+ : T (~r) stable
}

is nowhere dense inBN
+.

Neutral time-delay systems
Consider now the linear time-invariant systems with pointwise delays in the form of

N

∑
k=0

[Akẋ(t − τk)+Bkx(t − τk)] = 0, (1.22)

whereA0 is nonsingular (bearing in mind thatτ0 = 0). With this later assumption and without
any loss of generality, we may take thatA0 = I . The initial condition condition can again be
expressed as

x0 = ϕ . (1.23)

In general, the functionϕ is assumed to be differentiable for the solutions to be well defined,
although a relation to be discontinuous solutions is possible (see, [39] for further details). Let
the characteristic quasipolynomial∆(s) be defined as

∆(s) = det

(
N

∑
k=0

e−τks[sAk+Bk]

)
. (1.24)



1.2 -Continuous-Time Systems 31

As in the retarded case, the solution of the characteristic equation

∆(s) = 0 (1.25)

are referred to as thepolesor characteristic rootsof the system.

For the system (1.22), the spectral abscissa can be defined as

ρ
(−→τ ;A0, . . . ,AN,B0, . . . ,BN

)
:= sup

{
ℜ (s)

∣∣∣∣∣ det

(
sI−

N

∑
k=0

e−τks[sAk+Bk]

)
= 0

}
.

Theorem 1.4. [39] Consider the system described by (1.22). The followingstatements are
true:

(i) System (1.22) is stable ifρ
(−→τ ;A0, . . . ,AN,B0, . . . ,BN

)
< 0.

(ii) For any ρ0 > ρ
(−→τ ;A0, . . . ,AN,B0, . . . ,BN

)
, there exist an L> 0 such that any solution

x(t) of (1.22) with the initial condition (1.23) is bounded by

‖x(t)‖ ≤ Lmϕ eρ0t , (1.26)

where
mϕ = max

τ≤t≤0
(‖ϕ (t)‖+‖ϕ̇ (t)‖) .

Remark 1.2. It is important to note that in the neutral case the spectral abscissa is not nec-
essarily continuous with respect to the delay parameters (see, for instance, [92]).

Analytical Methods
From the above results, we conclude that in order to study thestability of a time-delay we
must analyze the zero-location of a given quasipolynomial (1.16), for retarded systems, or
given by (1.24) for neutral time-delay systems. Since approximate calculation of all roots
of a quasipolynomial is a problem of a great difficulty, different numerically tractable tests
of negativity of the real parts of all roots the quasipolynomial have been developed in the
literature for avoiding such an issue. Among such tests, most often the following ones are
generally employed:

1) the amplitude-phase method and its modifications [72];

2) the method ofD-partitions and its modifications [32, 92];

3) the Pontryagin Criterion [115];

4) the method of Meiman and Chebotarev [19].

1. Amplitude-phase methodIt is well known, from the complex function theory [78], thatif
f (s) is an analytical function, different from zero on some simple, closed contourΓ (without
any self-intersections), and the interior ofΓ has only a finite set of polar singularities, then:

1
2π

∫

Γ

f ′(z)
f (z)

dz= NΓ −PΓ,
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whereNΓ is the number of zeros off (s) in the interior ofΓ, counting according to their
multiplicities, andPΓ is the number of poles in the interior ofΓ, counted according to their
multiplicities. This leads to the so-calledArgument Principle

1
2π

∆ΓArg f (s) = NΓ −PΓ. (1.27)

Here, ∆ΓArg f (s) is the total increase of the argument of the functionf (s) under a single
"circuit" of the points, in a positive direction, around the contourΓ. On the other hand, the
differenceNΓ −PΓ equals the number of complete revolutions which the vectorw perform in
the plane, going from the pointw = 0 to the pointw= f (s), when the points describes the
contourΓ in the positive direction.
For obtaining a condition for the absence in the characteristic quasipolynomialf (s;τ ) of roots
with positive real parts, it is possible to apply the argument principle to the contourΓR, con-
sisting of the segment of the imaginary axis[−iiiR, iiiR] and the semi-circle of radiusR with
center at the origin, lying in the half-planeℜ (s) > 0; as preliminary, it is necessary to check
that the quasipolynomial does not have any zeros on the imaginary axis.

We note that, in this case,PΓ = 0. Using the argument principle, we find from (1.27)NΓR

and, if lim
R→∞

NΓR = 0, then all rootssi of the quasipolynomial satisfy the conditionℜ (si) < 0.

To apply this method to the quasipolynomial

f (s) = Pn(s)+Qn−1(s)e
−τs,

corresponding to thenth order equation with single retarded argument, wherePn(s) and
Qn−1(s) are polynomials of degreen and not greater thann− 1, respectively, it is possible
to somewhat simplify the investigation. Instead of the function f (s), it is considered the func-
tion

f (s)
Pn(s)

= 1+
Qn−1(s)

Pn(s)
e−τs,

the zeros of which coincide with the zeros of the functionf (s) (if Pn(s) andQn−1(s) do not
have common zeros) and which has poles at the zeros of the polynomialPn(s).

Define nowwτ (s) := −Qn−1(s)
Pn(s)

e−τs. The limiting position asR→ ∞ of the form of the

contourΓR under the mappingwτ (s) is called theamplitude-phase characteristic. Since
f (s)

Pn(s)
= 1−wτ (s), the zeros of the functionf (s)Pn(s)

correspond to the points at whichwτ (s) = 1.

Therefore, applying the argument principle to the functionwτ (s), it is necessary to calculate
the number of circuits of the amplitude-phase characteristic, not of the points= 0, but of the
point s= 1. The number of circuits of the amplitude-phase characteristic of the points= 1
equals to the differenceNΓ −PΓ and, consequently, in order thatNΓ = 0, it is necessary that
the number of circuits of the amplitude-phase characteristic of the points= 1 equals−PΓ. We
recall that, for this it is assumed that there are no zeros of the functionf (s) on the imaginary
axis and thatPn(s) andQn−1(s) do not have common zeros.

For construction of the amplitude-phase characteristic, it is convenient at first to find the
so-calledlimiting characteristic, appearing as the limiting form of the contourΓR under the
mappingw0 : C 7→ C

w0(s) =−Qn−1(s)
Pn(s)

. (1.28)
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For construction of the form of the imaginary axis under the mapping

wτ (s) =−Qn−1(s)
Pn(s)

e−τs = w0(s)e
−τs (1.29)

or
wτ (iiiy) = w0(iiiy)e

−τ iiiy,

knowing already the limiting characteristic, it suffices toconsider the influence of the factor
e−τ iiiy of rotation without change of modulus, the radius vector of the point of the limiting
characteristic corresponding to the valuey at the angle−τy. It is worth mentioning that a
particular attention should be given to the points of the limiting characteristic lying on the
circle |s| = 1 since these points, under rotation by an angle−τy, may find themselves at the
points= 1.

Example 1.1. A well-studied example in classical stability analysis of time-delay system is
given by the first-order delay system

ẋ(t) =−ax(t)−bx(t− τ ) , (1.30)

where a, b∈ R andτ ∈ R+. The characteristic equation for this system has the form

f (s) = s+a+be−τs.

Then, according to(1.28)and (1.29), we have

w0(s) = − b
s+a

, (1.31)

wτ (s) = − b
s+a

e−τs. (1.32)

Now, in order to analyze the shape of the mapping(1.31), we observe that

|w0(iiiy)|=
|b|√

y2+a2
. (1.33)

It is clear to see from(1.33)that the modulus is bounded. Moreover, since

d
dy

|w0(iiiy)| = 0,

⇒− |b|y
(y2+a2)

3
2

= 0. (1.34)

The later equation implies that y= 0 is the only critical point, and sinced
2

dy2 |w0(0)| =
− |b|

|a|3 < 0, this implies that at y= 0 the modulus reach its maximum and such value is given

by lim
y→0

|w0(iiiy)| =
∣∣b

a

∣∣. Based on these observations, we compute
∣∣w(iiiy)+ b

2a

∣∣2 = b2

4a2 , which

implies that(1.31)maps the imaginary axis into a circle with radius|b|2|a| with center at the

point s=− b
2a. The above discussion is illustrated in Fig1.2.

Now, if a> 0 the function wτ (s) has no poles in the RHP, and if in addition|b|< a, then

under each rotation of the points of the circle
∣∣w0(iiiy)+

b
2a

∣∣ = |b|
2|a| caused by the presence of

the term e−iiiτy in wτ (s), the amplitude-phase characteristic will not contain the point s= 1 as
illustrated in Fig.1.3 and consequently, all zeroes of the quasipolynomial f(s) = s+a+be−τs

are located in the LHP. Moreover, under the above assumptions the system will be stable
independently of the delay.
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2. D-partition Method. The zeros of the characteristic quasipolynomialf (s) for a fixed
"deviation"τ are continuous functions of its coefficients (assumed that coefficient of the prin-
cipal term is not equal to zero, which is always satisfied for equations with retarded argu-
ment). This method divides the space of coefficients into regions by hypersurfaces, the points
of which correspond to quasipolynomials having at least onezero on the imaginary axis (the
casess= 0 is not excluded). The points of each region of suchD-partition clearly correspond
to a quasipolynomial with the same number of zeros with positive real parts (counting their
multiplicities), since under a continuous variation of thecoefficients, the number of zeros with
positive real parts can change only if a zero passes across the imaginary axis, that is, if the
point in the coefficient space passes across the boundary of aregion of theD-partition.

Thus, to every regionTk of theD-partition, it is possible to assign a numberk which is the
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number of zeros with positive real parts of the quasipolynomial defined by the points of this
region. Among the regions of this decomposition, we can find some particular regionsT0 (if
it exists) corresponding with quasipolynomial which do nothave even one root with positive
real part. These regions are simply calledstability regionsor domains.

Thus, the investigations of stability by the method ofD−partition in the space of coeffi-
cients (or other parameters on which the coefficients and deviations of the argument depend)
reduces to the following scheme: find theD−partition and single out therefrom the region
T0. If the regionT0 is connected, then it may be identified by verifying that at least one of its
points corresponds to a quasipolynomial whose roots all have negative real parts.
In order to clarify how the number of roots with positive realparts changes as some boundary
of theD−partition is crossed, the differential of the real part of the root is computed, and
the decrease or increase of the number of roots wit positive real parts is determined from its
algebraic sign.
If f (s;α1, . . . ,αp) = 0 is a characteristic equation containing the parametersα1, . . . ,αp, then

∂ f
∂s

ds = −
p

∑
i=0

∂ f
∂α i

dα i , s= x+ iiiy,

dx = −ℜ

(
∑p

i=0
∂ f
∂αi

dα i

∂ f
∂s

)
. (1.35)

Usuallydx is computed on some boundary of theD−partition for a change in only one pa-
rameter whose changes guarantee passage across the boundary being examined.

Example 1.2.As an example, consider again the system(1.30), i.e.,

ẋ(t) =−ax(t)−bx(t− τ ) , (1.36)

where a, b ∈ R and τ ∈ R+. Adopting the notation presented above, the characteristic
quasipolynomial of(1.36)will be written as

φ(s) = s+a+be−τs. (1.37)

The quasipolynomial(1.37)has a zero root if

a+b= 0, (1.38)

and such a straight line will belong to the boundary of theD−partition. Now, following the
method, find the set of points in the parameters(a,b) such that the quasipolynomial(1.37)
has at least one zero on the imaginary axis. In this vein, consider s= iiiω in (1.37):

(iiiω)+a+be−iiiωτ = 0,

separating the real and imaginary parts we obtain

a+bcos(ωτ) = 0 and ω−bsin(ωτ) = 0,

respectively. Separating variables, we obtain the parametric equations for theD−partition
boundaries:

a(ω) = −ωcot(ωτ) , (1.39a)

b(ω) =
ω

sin(ωτ)
. (1.39b)
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From the above equations we have that asω → 0, (a,b) →
(
−1

τ ,
1
τ
)
, which belong to the

straight line given in(1.38). Then, the boundaries of theD−partition are composed by the
straight lines(1.38) together with those given by the equations(1.39), these boundaries de-
compose the plane into regions, as shown in Fig1.4.

- 1
τ

a

b

Region IV

Region II

Region V

Region III

Region I

p1

p2

Figure 1.4:TheD−partition boundaries for the system (1.36).

Since inside each region we have the same number of unstable roots, then in principle
it is sufficient to investigate the stability of a a pair of points of a given region in order to
conclude about the stability of the entire region. In this vein, assuming that a> 0 and since
(a,b) = (a,0) belongs to Region I, we have that for such point the system is asymptotically
stable and as a consequence we conclude that Region I is the region of asymptotically stable
solutions for the system(1.36). Now, in order to evaluate the crossing direction from region I
into region III or from region III into region II, lets evaluate (1.35). To this end, let consider
the paths p1 and p2 as show in figure 1.4.

Now, since in both paths p1 and p2 we have a constant b, we will have that in such situation
db= 0 and (1.35)will be reduced to:

dx=−ℜ
(

da
1− τbe−sτ

)
. (1.40)

Moreover, since both paths are crossing through the straight line (1.38), we know that on this
line we have one zero at s= 0 (whereas the real part of the remaining roots of the quasipoly-
nomial approach−∞), consequently we can lose (or not) at most one root. In addition, since
over this line we have s= 0, then the condition(1.40)can be reduced to

dx=− da
1− τb

. (1.41)

Since, for a crossing from region I to region III through the path p1 we have that b< 1
τ and a
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decreasing a, therefore dx> 0, or in other words the real part of the root s= 0 on this straight
line receives a positive increment.

Consider now a crossing from the region III into region II through the path p2. Since
in such situation we have that b> 1

τ , then from(1.41), we get dx> 0 for da> 0, therefore
in region II will have two roots with positive real part. In conclusion, he have that region
I, correspond to the stability region, region II has two roots with positive real part, whereas
region III has one root with positive real part. Such conclusion is illustrated in Fig.1.5.

- 1
τ

a

b

stability region

Region I

Region III

Region IV

Region II

Region V

Figure 1.5:The stability regions for system (1.36).

3. Pontryagin Criterion. In the analysis of stability of a time-delay system, Pontryagin
[115, 116] obtained some fundamental results concerning the zeros of a quasipolynomial.

Remark 1.3. Observe that a linear system with single delay or with multiple but commensu-
rable delays, can be associated with a quasipolynomial of the following form

P(s) =
M

∑
i=0

N

∑
j=1

ai j s
iejs. (1.42)

Consider the quasipolynomial (1.42) fors= iiiω, whereω is a real number:P(iiiω) =
g(ω)+ iiih(ω). The method is summarized in the following

Theorem 1.5(Pontryagin’s Criterion [72]). If quasipolynomial (1.42) has no zeros with posi-
tive real part, then all the zeros of the functions g(ω) and h(ω) are real, simple and alternat-
ing and

ḣ(ω)g(ω)− ġ(ω)h(ω)> 0, −∞ < ω < ∞. (1.43)

For absence of zeros with positive real part of (1.42) one of the following conditions is suffi-
cient:
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(1) All zeros of the functions g(ω) and h(ω) are real, simple and alternating, and inequality
(1.43) is fulfilled for at least one realω;

(2) all the zeros of the function g(ω) (or h(ω)) are real and simple and for each zero relation
(1.43) is satisfied.

Example 1.3.Consider the simplest first-order time-delay system

ẋ(t) =−bx(t − τ ) , (1.44)

where b∈ R and τ ∈ R+. According to(1.42) the corresponding quasipolynomial for this
system is

P(s) = seτs+b. (1.45)

For s= iiiω, we have

P(iiiω) = (iiiω)eiiiωτ +b (1.46)

= b−ωsin(ωτ)︸ ︷︷ ︸
=:g(ω)

+iii ωcos(ωτ)︸ ︷︷ ︸
=:h(ω)

. (1.47)

It is clear to see, that the roots of h(ω) are given byω0 = 0 andωℓ =
(2ℓ−1)

2τ π, with ℓ ∈ N.
Now, differentiating g(ω) and h(ω) with respect toω, we obtain

ġ(ω) = −sin(ωτ)−ωτ cos(ωτ) ,
ḣ(ω) = cos(ωτ)−ωτ sin(ωτ) .

According to the above expressions, we have that

ḣ(ω)g(ω)− ġ(ω)h(ω) = bcos(ωτ)+ωτ (ω−bsin(ωτ)) .

Then, in order to apply Theorem 1.5(2), we compute firsṫh(0)g(0)− ġ(0)h(0) = b. Next, for

ω = ωℓ we haveḣ(ωℓ)g(ωℓ)− ġ(ωℓ)h(ωℓ) = ωℓτ
(

ωℓ− (−1)ℓ−1b
)

. Since, we require the

positivity of both quantities, we must have

b > 0,(
ωℓ− (−1)ℓ−1b

)
> 0.

From the last inequality we conclude that b< ωℓ ∀ℓ ∈ N, i.e.,

0< b< ω1 < ω2 < · · ·< ωℓ < · · · .

Thus, if0< b< π
2τ , the system will be asymptotically stable.

4. Method of Meiman and Chebotarev.This method deals with the stability analysis of
quasipolynomials with incommensurable delays by means of ageneralization of the Routh-
Hurwitz conditions. For the quasipolynomial

P(s) =
M

∑
i=0

N

∑
j=1

ai j s
ieb js (1.48)
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expandP(s) in the seriesP(s) = a0+a1s+a2s2+ · · · and define the functionsu(s) andv(s):

P(iiis) = u(s)+ iiiv(s), u(s) = a0−a2s2+a4s4−·· ·
v(s) = a1s−a3s3+a5s5−·· ·

Lets introduce the following determinantsQm:

Q1 = a1, Q2 =

∣∣∣∣
a1 a3
a0 a2

∣∣∣∣ Qm =

∣∣∣∣∣∣∣∣∣

a1 a3 a5 · · · a2m−1

a0 a2 a4 · · · a2m−2
...

...
...

. . .
...

0 0 0 · · · am

∣∣∣∣∣∣∣∣∣
The method is summarized in the following

Theorem 1.6(Chebotarev-Meiman’s Theorem [72]). Assume that the functions v(s) and u(s)
have no common zeros. Then the quasipolynomial (1.48) has nozeros with positive real part
if and only if

Qm > 0, m= 1,2, . . . (1.49)

Applications of this theorem are not effective because an infinity number of inequalities
(1.49) must be verified.

Example 1.4.Consider the second-order time-delay system

ẍ(t)−2ẋ
(

t − π
4

)
+8x

(
t −

√
2

2

)
= 0. (1.50)

Now, in order to apply Theorem 1.6, we express the quasipolynomial as

P(s) = s2e

(
π
4+

√
2

2

)
s−2se

√
2

2 s+8e
π
4 s.

In such case, we have that P(iiis) can be written as

P(iiis) = u(s)+ iiiv(s),

where

u(s) = 8−
(

1+ π2

4 −
√

2
)

s2+
(
−1

4 +
1

6
√

2
− π

4
√

2
− π2

32 − π4

768

)
s4+ · · ·

v(s) = 2(−1+π)s−
(
−1

2 +
1√
2
+ π

4 +
π3

48

)
s3+ · · ·

Then, in order to evaluate condition(1.49), lets form Q1, in this case is given by

Q1 = 2(−1+π).

Since, Q1 > 0, we continue with the procedure. To this end, lets form Q2,

Q2 =

∣∣∣∣∣
2(−1+π) −1

2 +
1√
2
+ π

4 +
π3

48

8 1+ π2

4 −
√

2

∣∣∣∣∣ .

Since Q2 = 2−2
√

2−2
√

2π− π2

2 + π3

3 ≈−4.31357< 0, we can see that condition(1.49)is
violated and according to Theorem 1.6 we have that the delay system(1.50)is unstable.

From the above example it is clear to see, that the drawback ofthe method is that for stable
quasipolynomials the method is not conclusive.

Remark 1.4. There exist other methods to analysis the stability of a time-delay system, like
τ−decomposition [39], Yesupovisch-Svirskii [127], Integral Criterion [72], among others.
However, in the seek of brevity we will omit such a discussion.
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1.3 Discrete-Time Systems

The general form of adiscrete-time systemis given by

x[ℓ+1] = f (ℓ,x[ℓ]) , x(ℓ0) = x0, (1.51)

with x[ℓ]∈Rn is the state vector,ℓ ∈N and it is assumed thatf :N×Rn →Rn is a continuous
function in x. A point x∗ is said to be anequilibrium pointof (1.51) if f (ℓ,x∗) = x∗ for all
ℓ ≥ ℓ0. As in the continuous casex∗ is assumed to be the origin 0 and is called thezero
solution. The justification of this assumption is as follows: Lety(ℓ) = x(ℓ)−x∗. Then, (1.51)
becomes

y(ℓ+1) = f (ℓ,y(ℓ)+x∗)−x∗ = g(ℓ,y(ℓ)) . (1.52)

From the above equation it is clear to see thaty= 0 correspond tox= x∗.

1.3.1 Stability Notions

Introduce now various stability notions of the equilibriumpointx∗ of (1.51).

Theorem 1.7. [31] The equilibrium point x∗ of (1.51) is said to be:

(i) Stable (S) if givenε > 0 and ℓ0 ≥ 0 there existδ = δ0(ε, ℓ0) such that‖x0−x∗‖ <
δ implies‖x(ℓ, ℓ0,x0)−x∗‖ < ε for all ℓ ≥ ℓ0, uniformly stable ifδ may be chosen
independent ofℓ0, unstable if it is not stable.

(ii) Attracting (A) if there existµ = µ (ℓ0) such that‖x0−x∗‖< µ implies lim
ℓ→∞

x(ℓ, ℓ0,x0) =

x∗, uniformly attracting (UA) if the choice ofµ is independent ofℓ0. The condition for
uniform attracting may be paraphrased by saying that there existsµ > 0 such that for
everyε andℓ0 such that‖x(ℓ, ℓ0,x0)−x∗‖< ε for all ℓ > ℓ0+L whenever‖x0−x∗‖<
µ.

(iii) Asymptotically stable (AS) if it is stable and attracting, and uniformly asymptotically
stable (UAS) if it is uniformly stable and uniformly attracting.

(iv) Exponentially stable (ES) if there existδ > 0, M > 0, and η ∈ (0,1) such that
‖x(ℓ, ℓ0,x0)‖ ≤ M ‖x0−x∗‖η ℓ−ℓ0, whenever‖x0−x∗‖< δ.

(v) A solution x(ℓ, ℓ0,x0) is bounded if for some positive constant M,‖x(ℓ, ℓ0,x0)‖ ≤ M for
all ℓ≥ ℓ0, where M may depend on each solution

If in parts (ii), (iii) µ = ∞ or in part(iv) δ = ∞, the corresponding stability property is
said to beglobal. Observe that in the above definitions, some of the stabilityproperties auto-
matically imply one or more of the others. In general such implications can not be reversed,
however, for some special classes of equations, such a implications may be reversed. In par-
ticular, the following result holds:

Theorem 1.8. [31] For the autonomous system

x[ℓ+1] = f (x(ℓ)) , (1.53)

the following statements holds for the equilibrium point x∗:
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(i) S⇔US.

(ii) AS⇔UAS.

(iii) A⇔UA.

Linear Systems
In the sequel we will discuss briefly the nonautonomous case and then we will focus in the
autonomous linear systems.
Nonautonomous Linear Systems
Lets consider the stability properties of the linear systemgiven by

x[ℓ+1] = A(ℓ)x(ℓ) , ℓ≥ ℓ0 ≥ 0. (1.54)

The following result guarantees the existence and uniqueness of the solutions of (1.54).

Theorem 1.9. [31] For each x0 ∈ Rn andℓ0 ∈ Z+ there exist a unique solution x(ℓ, ℓ0,x0) of
(1.54) with x(ℓ0, ℓ0,x0) = x0.

Let Ψ(ℓ) be ann×n matrix whose columns are solutions of (1.54). Then,Ψ(ℓ) satisfies
the difference equation

Ψ(ℓ+1) = A(ℓ)Ψ(ℓ) . (1.55)

Furthermore, the solutionsx1(ℓ) ,x2(ℓ) , . . . ,xn(ℓ) are linearly independent if and only if the
matrixΨ(ℓ) is nonsingular (i.e., detΨ(ℓ) 6= 0).

Definition 1.7. [31] If Ψ(ℓ) is a matrix that is nonsingular for allℓ≥ ℓ0 and satisfies (1.55),
then it is said to be a fundamental matrix for systems (1.54)

One may, in general, writeΨ(ℓ,k) = Ψ(ℓ)Ψ−1(k) for any two positive integersℓ, k with
ℓ≥ k. The fundamental matrixΨ(ℓ, l) has the following properties:

(i) Ψ−1(ℓ,k) = Ψ(k, ℓ);

(ii) Ψ(ℓ,k) = Ψ(ℓ,m)Ψ(m,k);

(iii) Ψ(ℓ,k) = ∏ℓ−1
i=k A(i).

Corollary 1.1. [31] The unique solution of x(ℓ, ℓ0,x0) of (1.54) with x(ℓ0, ℓ0,x0) = x0 is given
by

x(ℓ, ℓ0,x0) = Ψ(ℓ, ℓ0)x0.

Theorem 1.10.[31] Consider system (1.54). Then its zero solution is

(i) stable if and only if there exist a positive constant M such that

‖Ψ(ℓ)‖ ≤ M, for ℓ≥ ℓ0 ≥ 0; (1.56)

(ii) uniformly stable if and only if there exist a positive constant M such that

‖Ψ(ℓ,k)‖ ≤ M, for ℓ0 ≤ k≤ ℓ < ∞; (1.57)
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(iii) asymptotically stable if and only if

lim
ℓ→∞

‖Ψ(ℓ)‖= 0; (1.58)

(iv) uniformly asymptotically stable if and only if there exist positive constants M andη ∈
(0,1) such that:

‖Ψ(ℓ,k)‖ ≤ Mη ℓ−k, for ℓ0 ≤ k≤ ℓ < ∞. (1.59)

Corollary 1.2. [31] For the linear system (1.54) the following statements hold:

(i) The zero solution is stable if and only if all solutions are bounded.

(ii) The zero solution is exponentially stable if and only if it isuniformly asymptotically
stable.

(iii) Every local stability property of the zero solution impliesthe corresponding global sta-
bility property.

Autonomous Linear Systems
In the following we will consider the autonomous (time-invariant) system given by

x[ℓ+1] = Ax[ℓ] . (1.60)

The next result summarize the main stability results for thelinear autonomous systems (1.60).

Theorem 1.11.[31] The following statements holds:

(i) The zero solution of (1.60) is stable if and only if all eigenvalues of A has modulus less or
equal than one and the eigenvalues on the unit circle are semisimple.1

(ii) The zero solution of (1.60) is asymptotically stable if and only if all eigenvalues of A have
modulus less than one.

2 Introductory Remarks to the Perturbation Theory for
Linear Operators

Roughly speaking, Perturbation theory studies the behavior of a system subject to small per-
turbations in its variables. In order to illustrate the purpose of the perturbation theory, consider
the particular case of a system represented by a differential equation (or, by a difference equa-
tion) ẋ(t) = Ax(t)+ f (t) (or, x[ℓ+1] = Ax[ℓ]+ f [ℓ]), for example we can be interested on the
solutionx(t) (or,x[ℓ]) if A exhibits a perturbation of the formA+εB, whereε is a scalar quan-
tity sufficiently small (ε << 1) and will be called theperturbation factor. In other words, we
may be interested by the way of how a small parameter affects the behavior of some particular
systems dynamics.

1An eigenvalue is said to be semisimple if the corresponding Jordan block is diagonal. For further details,
see the next chapter where we will deeply discuss such ideas.
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It should be stressed thatperturbation analysisstarts only after we have already obtained
the solution of the original system; which means that the theory is there only to explore the
change in the behavior of the system when perturbation take place.

The main goal of this chapter, is to introduce some fundamentals results concerning to the
perturbation theory, which will be required inparts II-III to obtain some stability properties
of the analyzed systems.

The fundamental motivation to use such a perturbation-based approach inparts II-III of
the thesis, stays in the fact that we will study how a stable equilibrium state (or steady motion)
becomes unstable or vice versa with a change of some parameters (and, in particular, the delay
parameter). Thus, theparameter spaceis divided into stability and instability domains. On
the other hand, we have that perturbation methods produce analytic approximations that often
reveal the essential dependence of the exact solution on theparameters.

2.1 Basic Notions

2.1.1 The Eigenvalue Problem

Consider now an eigenvalue problem [135]

Au= λ u, (2.1)

whereA is ann×n real matrix,λ is aneigenvalue, andu is the correspondingeigenvector.
The eigenvalues are determined form thecharacteristic equation

det(A−λ I) = 0, (2.2)

or, equivalently by
det(λ I −A) = 0. (2.3)

Since the det(A−λ I) is a polynomial of degreen with respect toλ , there aren eigenvalues,
counting multiplicities. SinceA is a real matrix, its eigenvalues and corresponding eigenvec-
tors are real or appear in complex conjugate pairs. Multiplicity of an eigenvalue as a root of
the characteristic equation is calledalgebraic multiplicity. The eigenvalueλ is calledsimple
if its algebraic multiplicity is equal to one. There is a single eigenvector, up to a scaling factor,
corresponding to a simple eigenvalue.

2.1.2 Multiple Eigenvalues and the Jordan Canonical Form

A multiple eigenvalueλ of algebraic multiplicitym can have one or several corresponding
eigenvectors. The maximal number of linearly independent eigenvectorsg is calledgeometri-
cal multiplicityof the eigenvalue, which is less or equal to the algebraic multiplicity [90, 74],

g≤ m. (2.4)

If the algebraic and geometric multiplicities are equal (g = m), then the eigenvalue is called
semi-simple. If there is a single eigenvector corresponding toλ (g= 1), then the eigenvalue is
callednon-derogatory(see [114], for further details). Ifλ is a non-derogatory eigenvalue, then
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there exist a set of linearly independent vectors{u0, u1, . . . ,um−1} satisfying the following
equations

Au0 = λ u0,

Au1 = λ u1+u0,

Au2 = λ u2+u1, (2.5)
...

Aum−1 = λ um−1+um−2.

The vectorsu0, u1, . . . , um−1 are calledJordan chain of length m, whereu0 is the eigenvector
and the vectorsu1, . . . , um−1 are calledgeneralized eigenvector(or associated eigenvectors).
If λ is an eigenvalue having several linearly independent eigenvectors (thederogatory case),
i.e.,g> 1, then in this case there are nonnegative integers 1≤ m1 ≤ ·· · ≤ mg such that

m1+ · · ·+mg = m, (2.6)

and linearly independent vectorsu(i)0 , . . . ,u(i)mi−1, i = 1, . . . ,g, satisfying the Jordan Chain equa-
tions

Au(i)0 = λ u(i)0 ,

Au(i)1 = λ u(i)1 +u(i)0 ,

Au(i)2 = λ u(i)2 +u(i)1 , (2.7)
...

Au(i)mi−1 = λ u(i)mi−1+u(i)mi−2.

The numbersm1, . . . ,mg are unique and calledpartial multiplicitiesof the eigenvalueλ , and

the eigenvectorsu(i)0 , . . . ,u(i)mi−1 are called the Jordan chain of lengthmi. In general, a multiple
eigenvalueλ with 1≤ g< m is called anonsemisimpleeigenvalue.

Equation (2.7) can be written in the following matrix form

AUλ =Uλ




Jm1 (λ )
. . .

Jmg (λ )


 , (2.8)

where
Uλ =

[
u(1)0 , . . . ,u(1)m1−1, . . . ,u

(g)
0 , . . . ,u(g)mg−1

]
(2.9)

is ann×mmatrix.

2.2 Analytic Perturbations

As mentioned at the beginning of the chapter, the goal of thischapter is to present the tools
to investigate how the eigenvalues and eigenvector (or eigenspaces) of a linear operatorT
change whenT is subject to a small perturbation. In dealing with such a problem, it is often
convenient to consider a family of operators of the form

T(x) = T +xT̃. (2.10)
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whereT(0) = T is called theunperturbed operatorand εT̃ the perturbation. In a more
general case, we will assume that in the neighborhood ofx= 0, the perturbed operatorT(x)
is holomorphic, or equivalently, can be expanded into the power series,

T(x) = T(0)+xT′(0)+
1
2!

x2T ′′(0)+
1
3!

x3T ′′′(0)+ · · · . (2.11)

The eigenvalue ofT(x) satisfies the characteristic equation,

det(T(x)− ξ I) = 0. (2.12)

This is an algebraic equation inξ of degreen, with coefficients which are holomorphic inx
(see, [67] for further details).

2.3 Perturbations of a Simple and Semisimple Eigenvalues

At a first instance, consider the family of operators given by(2.10), i.e.,

T(x) = T +xT̃.

Then, if T has the eigenvaluesλ (0)
1 ,λ (0)

2 , . . . ,λ (0)
m and eigenvectorsu1, . . . ,un the eigenvalue

problem for the perturbed system can be written as
(

T +xT̃
)

µ (x) = λ (0)µ (x) .

From the above equation, the vectoru(x) has a nontrivial solution only if

det
(

µI −T −xT̃
)
= 0. (2.13)

Obviously, (2.13) can be written in powers ofx as follows:

det
(

µI −T −xT̃
)
= f0

(
λ (0)

)
+x f1

(
λ (0)

)
+ · · ·+xn fn

(
λ (0)

)
,

where
f0(λ ) = det(µI −T) .

The following theorem gives the first order terms in the case of a simple eigenvalue.

Theorem 2.1 ([30]). If λ (0)
i is a distinct eigenvalue of a semisimple matrix T with corre-

sponding eigenvector u(0)i , the eigenvalueµi (x) and its corresponding eigenvector ui (x) of
the perturbed matrix T+xT̃ are given for first order approximation by

µi (x) = λ (0)
i +x

〈
v(0)i , T̃u(0)i

〉
+o(x), (2.14)

and

ui (x) ≈ u(0)i +x
n

∑
ℓ=1, ℓ6=i

〈
v(0)ℓ , T̃u(0)i

〉

λ (0)
i −λ (0)

ℓ

u(0)ℓ , (2.15)

where u(0)1 , . . . ,u(0)n are the eigenvectors of T and v(0)
1 , . . .v(0)n their reciprocal basis.
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Example 2.1.Let T andT̃ be

T =




4 1 −1
2 5 −2
1 1 2


 , T̃ =




1 0 −2
5 1 1
0 −1 1




the eigenvalues of T areλ = 5,3,3. The independent eigenvectors are

u1 =




1
2
1


, u2 =




1
0
1


 and u3 =




−1
1
0


 .

Their reciprocal basis are

v1 =




1
2
1
2
−1

2


, v2 =




−1
2

−1
2

3
2


 and v3 =




−1
0
1


 .

Then, according to(2.14)the first order approximation for the eigenvalueλ (0)
1 = 5 is given by

µ1 (x) = λ (0)
1 +x

〈
v1, T̃u1

〉
+o(x)

= 5+

〈


1
2
1
2
−1

2


 ,




1 0 −2
5 1 1
0 −1 1






1
2
1



〉

x+o(x)

= 5+4x+o(x) .

The following result cover the case whenλ (0)
i is a semi-simple eigenvalue.

Theorem 2.2([30]). If λ (0) is an eigenvalue of multiplicity m of a semi-simple matrix T with

corresponding eigenvectors u(0)
1 , u(0)2 , . . . ,u(0)m , the eigenvalueµi (x) and the corresponding

eigenvector ui (x) of the perturbed matrix T+xT̃ are given for first order approximation by

µi (x) = λ (0)
i +xλ (1)

i +o(x) , i = 1, . . . ,m, (2.16)

whereλ (1)
i , are given by the m−eigenvalues of

S=




v(0)∗1
...

v(0)∗m


 T̃
[

u(0)1 · · · u(0)m

]
,

and

ui (x) = νi +x
n

∑
k=m+1

∑m
j=1ci j

〈
v(0)k , T̃u(0)j

〉

λ (0)−λ (0)
k

, i = 1, . . . ,m,

where[·]∗ is the transpose conjugate of the vector[·], u(0)1 , . . . ,u(0)n are the eigenvectors of T ,

and v(0)1 , . . . ,v(0)n their reciprocal basis. The values of ci j are obtained by solving the set of
linear simultaneous equations

[
λ (1)

i I −S
]



ci1
...

cim


= 0, i = 1,2, . . . ,m,
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and

νi =
m

∑
j=1

ci j u
(0)
j .

Example 2.2. Consider the same matrices T andT̃ treated in example 2.1. Since the eigen-
valueλ (0) = 3, is semi-simple, we can apply the later result. In such a case, we have:

S =

[
−1

2 −1
2

3
2

−1 0 1

]


1 0 −2
5 1 1
0 −1 1






1 −1
0 1
1 0


 (2.17)

=

[
−1 1
2 0

]
. (2.18)

Simple computations show that matrix S has the eigenvaluesλ (1)
i =−2,1. Then, according to

(2.16)we conclude that

µ2(x) = 3−2x+o(x) ,

µ3(x) = 3+x+o(x) .

Consider now a more general operator, i.e., assume thatT(x) is holomorphic, or equiva-
lently, admits an expansion of the form (2.11). In this case,we have the following:

Theorem 2.3. [67] Let λ (0) be a semisimple eigenvalue of T(0) with multiplicity m, and P be
the eigenprojection forλ (0), that is,

P=
1

2πiii

∮

Γ
(ξ I −T(0))−1dξ , (2.19)

whereΣ is a positive-oriented closed contour enclosingλ (0) but no other eigenvalues of T(0).
Then the corresponding eigenvalues of T(x) are analytic in x and have the form:

µi(x) = λ (0)+λ (1)x+o(x2), i = 1, . . . ,m, (2.20)

whereλ (1)
i are the eigenvalues of PT′(0)P.

Without any loss of generality assume thatλ (0) be ordered as the first eigenvalue ofT(0)
with multiplicity m. Then, according to the results presented in § 2.1,T(0) can be decom-
posed as:

T(0) = QΣR=
[

Q1 Q2
][ Σ1 0

0 Σ2

][
R1
R2

]
, (2.21)

whereΣ1 is a diagonal matrix with diagonal entries asλ (0), R= Q−1 =
[

rT
1 · · · rT

n

]
, and

Q =
[

q1 · · · qn
]

consist of the eigenvectors ofT(0). Based on this decomposition, the

following result shows howλ (1)
i may be computed.

Lemma 2.1. [21] Let T(0) be partitioned as in (2.21). Then the corresponding eigenvalues
of T(x) are analytic in x and have the form

µi(x) = λ (0)+λ (1)
i x+o(x), i = 1, . . . ,m,

whereλ (1)
i , i = 1, . . . ,m, are the eigenvalues of R1T ′(0)Q1.
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Example 2.3.Let T(x) ∈ C3×3 be the matrix operator

T (x) =




4−2cos(2x) 16 7+eiiix

4+x 14−x2 8
e−x
(
x2+sin(x)

)
−8 −31−cos(x) x2−18


 .

Simple computations reveal that T(0) has a semisimple eigenvalue atλ (0)
i = −2, i ∈ {1,2}

and a simple eigenvalue atλ (0)
3 = 2. Following Lemma 2.1, we first find

T(0) =




2 16 8
4 14 8
−8 −32 −18


 ,

which can be decomposed as

T(0) =




−2 −4 −1
0 1 −1
1 0 2






−2 0 0
0 −2 0
0 0 2






2 8 5
−1 −3 −2
−1 −4 −2


 .

Since,

T ′(0) =




0 0 −iii
1 0 0
1 0 0


 ,

it follows that

R1T ′(0)Q1 =

[
2 8 5
−1 −3 −2

]


0 0 −iii
1 0 0
1 0 0






−2 −4
0 1
1 0




=

[
−26−2iii −52

10+ iii 20

]
.

Simple computations show that R1T ′(0)Q1 has eigenvaluesλ (1)
1 = −6 and λ (1)

2 = −2iii. In
conclusion, we find

µ1 (x) = −2−6x+o(x) ,

µ2 (x) = −2−2iiix+o(x) .

2.3.1 Second-Order Asymptotic Expansion

The first-order asymptotic series introduced in the previous paragraph can be further devel-
oped to include terms of higher orders. In this section, we will derive and recall some formulas
for computing the coefficients of the asymptotic series up tothe second-order.
Consider first the asymptotic expansion of the operator (2.10). Then, according to [131], for

small
(

µ −λ (0)
)

, the simple eigenvalues of (2.13) can be expanded as:

µi(x) = λ (0)
i +xλ (1)

i +x2λ (2)
i + · · ·
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and the problem reduce in the computation ofλ (1), λ (2), . . .. In this case, following [131], the
eigenvector has the following expansion:

u(x) = u(0)i +xu(1)i +x2u(2)i + · · · .

To compute the shift in the eigenvalues and eigenvectors, wecan substituteµi(x) andu(x) in
the eigenvalue problem of the perturbed system to obtain:
(
T +xT̃

)(
u(0)i +xu(1)i +x2u(2)i + · · ·

)
=
(

λ (0)
i +xλ (1)

i +x2λ (2)
i + · · ·

)(
u(0)i +xu(1)i +x2u(2)i + · · ·

)
.

Grouping appropriately the terms inx, we obtain:




Tu(0)i = λ (0)
i u(0)i

Tu(1)i + T̃ u(0)i = λ (0)
i u(1)i +λ (1)

i u(0)i

Tu(2)i + T̃ u(1)i = λ (0)
i u(2)i +λ (1)

i u(1)i +λ (2)
i u(0)i

...

Tu(k+1)
i + T̃u(k)i = λ (0)

i u(k+1)
i +λ (1)

i u(k)i + · · ·+λ (k+1)
i u(0)i

...

(2.22)

Since we have already presented the results to computeλ (1)
i andu(1)i , we will focus in deriving

the computation ofλ (2)
i . Let v(0)1 , . . . ,v(0)n be the reciprocal basis ofu(0)1 , . . . ,u(0)n , then taking

the inner product of the third equation in (2.22) withv(0)i we obtain:
〈

v(0)i ,Tu(2)i

〉
+
〈

v(0)i , T̃u(1)i

〉
= λ (0)

i

〈
v(0)i ,u(2)i

〉
+λ (1)

i

〈
v(0)i ,u(1)i

〉
+λ (2)

i

〈
v(0)i ,u(0)i

〉
.

However, 〈
v(0)i ,Tu(2)i

〉
= λ (0)

i

〈
v(0)i ,u(2)i

〉
.

Therefore, we have established:

Lemma 2.2. Let λ (0)
i be a distinct simple eigenvalue of T with corresponding eigenvector

u(0)i . Then, the corresponding eigenvalues of T(x) = T +xT̃ have the form

µi(x) = λ (0)
i +xλ (1)

i +x2λ (2)
i +o

(
x2) ,

whereλ (1)
i are computing according to (2.14),

λ (2)
i =

〈
v(0)i , T̃u(1)i

〉
−λ (1)

i

〈
v(0)i ,u(1)i

〉
(2.23)

where v(0)i is the reciprocal vector of u(0)i and u(1)i are computed according to (2.15).

Example 2.4.Let

T =

[
1 2

5
5 −1

]
, T̃ =

[
1 2

5
5 −1

]
.

The eigenvalues of T areλ (0)
1 =

√
3iii andλ (0)

2 =−
√

3iii. The eigenvectors of T are:

u(0)1 =

[
−1+

√
3iii

10
1

]
and u(0)2 =

[
−1−

√
3iii

10
1

]
.
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Their reciprocal basis are:

v(0)1 =

[
− 5√

3
iii

1
2 − 1

2
√

3
iii

]
and v(0)2 =

[
5√
3
iii

1
2 +

1
2
√

3
iii

]
.

Next, in order to compute the first-order eigenvalue approximation we apply Lemma 2.1, lead-
ing to:

λ (1)
1 =

〈
v(0)1 , T̃u(0)1

〉
,

=

〈[
− 5√

3
iii

1
2 − 1

2
√

3
iii

]
,

[
1 2

5
5 −1

][
−1+

√
3iii

10
1

]〉
,

λ (1)
1 = 0.

Similar computations reveal thatλ (1)
2 = 0 concluding that none important information can be

obtained from the first order analysis. Then, a second order analysis will be required. In this

vein, lets compute first u(1)1 :

u(1)1 =
2

∑
ℓ=1, ℓ6=i

〈
v(0)ℓ , T̃u(0)i

〉

λ (0)
i −λ (0)

ℓ

u(0)ℓ

=

〈
v(0)2 , T̃u(0)1

〉

λ (0)
1 −λ (0)

2

u(0)2

=

〈[
5√
3
iii

1
2 +

1
2
√

3
iii

]
,

[
1 2

5
5 −1

][
−1+

√
3iii

10
1

]〉

2
√

3iii

[
−1−

√
3iii

10
1

]

u(1)1 =

[
− 1

20−
√

3
20 iii

−1
4 +

√
3

4 iii

]
.

Next, according to(2.23), we have:

λ (2)
1 =

〈
v(0)1 , T̃u(1)1

〉
−λ (1)

1

〈
v(0)1 ,u(1)1

〉
,

=
〈

v(0)1 , T̃u(1)1

〉
,

=

〈[
− 5√

3
iii

1
2 − 1

2
√

3
iii

]
,

[
1 2

5
5 −1

][
− 1

20−
√

3
20 iii

−1
4 +

√
3

4 iii

]〉
,

λ (2)
1 = −

√
3

2
iii.

Following the same steps, we findλ (2)
2 =

√
3

2 iii. As a result, the eigenvalues of T(x) are given
by:

µ1(x) =
√

3iii−
√

3
2

iiix2+o
(
x2) ,

µ2(x) =
√

3iii+

√
3

2
iiix2+o

(
x2) .
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In the sequel, assume thatT(x) is holomorphic around a neighborhood ofx= 0, that is, it
admits an expansion as (2.11).
Define the operator-valued function:

ϒ(ξ ) = (T(0)− ξ I)−1, (2.24)

which is known as the resolvent ofT(0). It is obvious that the singularities ofϒ(ξ ) are
the eigenvalues ofT(0). Let λ (0) be a semisimple eigenvalue ofT(0). Thenϒ(ξ ) can be
expanded as a Laurent series atξ = λ (0), that is,

ϒ(ξ ) =−(ξ −λ (0))−1P−
∞

∑
n=1

(ξ −λ (0))−n−1Dn+
∞

∑
n=0

(ξ −λ (0))nSn+1, (2.25)

whereP, Dn andSn+1 are the corresponding coefficient matrices. Evidently, thematrix P,
known as the eigenprojection forλ (0), can be found as

P=− 1
2πiii

∮

Γ
ϒ(ξ )dξ =

1
2πiii

∮

Γ
(ξ I −T(0))−1dξ ,

whereΓ is a positively-oriented closed contour enclosingλ (0) but no other eigenvalues of
T(0). It was found in [21] that

P= Q1R1.

The holomorphic part in the Laurent expansion is called thereduced resolventof T(0) with
respect to the eigenvalueλ (0), denoted as

S(ξ ) =
∞

∑
n=0

(
ξ −λ (0)

)n
Sn+1.

Let S= S(λ (0)), namely the value of the reduced resolvent ofT(0) at ξ = λ (0). Then it is
obvious that

S= S1 =
1

2πiii

∮

Γ

ϒ(ξ )
ξ −λ (0)

dξ .

Lemma 2.3. [36] For any matrix T(0) decomposed in the form of (2.21), whereΣ1 is in
Jordan form with diagonal entries asλ (0), the reduced resolvent atξ = λ (0) is equal to:

S= Q

[
0 0
0 (Σ2−λ (0)I)−1

]
R= Q2(Σ2−λ (0)I)−1R2.

The following Lemma given in [67] provides the result on the second-order perturbation
of T(x) when all the eigenvalues ofT(0) are semisimple.

Lemma 2.4. [67] Let λ (0) be a semi-simple eigenvalue of T(0), λ (1)
i be a semi-simple eigen-

value of PT′(0)P with the eigenprojection P(1)i , that is

P(1)
i =

∮

Γi

(
ξ I −PT′(0)P

)−1
dξ , (2.26)

whereΓ i is a positively-oriented closed contour enclosingλ (1)
i but no other eigenvalues of

PT′(0)P. Then T(x) has d= dimP(1)
i repeated eigenvalues of the form

µip(x) = λ (0)+xλ (1)
i +x2µ(2)

ip +o(x2), p= 1, · · · ,d, (2.27)
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whereµ(2)
ip are the repeated eigenvalues of P(1)

i T(2)P(1)
i with T(2) = T ′′(0)−T′(0)ST′(0), and

P(1)
i T(2)P(1)

i = P(1)
i T ′′(0)P(1)

i −P(1)
i T ′(0)ST′(0)P(1)

i .

The eigenvalues ofP(1)
i T(2)P(1)

i can be computed in a manner similar to that in the first-
order analysis.

Lemma 2.5. [36] Let λ (0) be a semisimple eigenvalue of T(0), λ (1)
i be a semisimple eigen-

value of PT′(0)P. Let also T(0) be decomposed as in (2.21), and R1T ′(0)Q1 be decomposed
as:

R1T ′(0)Q1 = Q(2)Σ(2)R(2)

=
[

Q(2)
1 Q(2)

2

][ Σ(2)
1 0

0 Σ(2)
2

][
R(2)

1

R(2)
2

]
, (2.28)

whereΣ(2)
1 is the Jordan block corresponding to the eigenvalueλ (1)

i . Then the eigenvalues of

P(1)
i T(2)P(1)

i are those of the matrix R(2)R1T(2)Q1Q(2)
1 .

2.4 Perturbations of a Nonsemisimple Eigenvalues

As previously we will consider first in this subsection the family of operators given in (2.10),
i.e.,

T(x) = T +xT̃

In this case the corresponding coefficients can be calculated by means of the result:

Theorem 2.4. [30] If λ (0) is an nonsemisimple eigenvalue of multiplicity m of T , with cor-
responding generalized eigenvectors u1, . . . ,um, then the eigenvaluesµℓ(x) (ℓ = 1, . . . ,m) of
T(x) = T + xT̃ will lie, for small enough|x|, on the circumference of a circle with center c

and radius r≈
∣∣∣λ (1)

ℓ
m
√

x
∣∣∣, where

c≈ λ (0)+
1
m

m

∑
i=1

〈
vi ,xT̃ui

〉
,

and

λ (1)
ℓ =

m
√

〈vm, T̃u1〉e
2ℓπ
m iii , ℓ= 1, . . . ,m,

where v1, . . . ,vm are the reciprocal bases for u1, . . . ,um. And the eigenvector u(x) of T(x) is
given by

u(x)ℓ ≈ ûℓ+
m
√

xλ (1)
ℓ u2,

whereûℓ is the eigenvector of T , and is assumed that T is non-derogatory without loss of
generality.

Example 2.5.Let T andT̃ be given by

T =




3 −2 5
0 1 4
0 −1 5


 , T̃ =




1 −3 −1
0 −3 5
1 0 5


 .
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The eigenvalues of T areλ (0) = 3,3,3, with corresponding generalized eigenvectors given by:

u1 =




1
0
0


 , u2 =




1
2
1


 and u3 =




1
−3
−1


 .

The reciprocal basis are

v1 =




1
2
−5


 , v2 =




0
−1
3


 and v3 =




0
−1
2


 .

Next, in order to apply Theorem 2.4, we made the following computations:

〈
v3, T̃u1

〉
=

〈


0
−1
2


 ,




1 −3 −1
0 −3 5
1 0 5






1
0
0



〉
,

= 2.

Therefore,

µ1 (x) = 3+ 3
√

2x1/3+o
(

x1/3
)
,

µ2 (x) = 3+ 3
√

2

(
−1

2
+

√
3

2
iii

)
x1/3+o

(
x1/3

)
,

µ3 (x) = 3+ 3
√

2

(
−1

2
−

√
3

2
iii

)
x1/3+o

(
x1/3

)
.

Consider now a more general operatorT(x). It is assumed that it is holomorphic around
a neighborhood ofx = 0, or equivalently that admits the expansion (2.11). Ifλ (0) is a non-
semisimple eigenvalue of multiplicitym. In this case, according to § 2.1T(0) admits a Jordan
decomposition in whichΣ is block diagonal with diagonal Jordan blocks, andQ1 consists of
the generalized eigenvectors associated withλ (0). In particular,

Σ1 =




λ (0) 1 · · · 0

0 λ (0) . . . 0
...

...
. . . 1

0 · · · · · · λ (0)



.

The eigenvalue ofT(x) can no longer be expanded in the form of (2.20), but instead asa
Puiseux series [67].

Lemma 2.6. [21] Let λ (0) be a non-semi-simple eigenvalue of T(0) with multiplicity m. Then
the corresponding eigenvalues of T(x) have the form

µi(x) = λ (0)+
(

γ(1)i

) 1
m

x
1
m + · · · , i = 1, . . . ,m, (2.29)

whereγ(1)i = rmT ′(0)q1.
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Illustrate now the above result with the following:

Example 2.6.Consider a matrix operator T(x) ∈ C
4×4 where

T (x) =




0 0
√

2 0
0 0 0 2√
2 0 0 iii2

√
2e−4iiix

0 1 iii2
√

2e−4iiix (1−x) 0


 (2.30)

A simple computation reveals that T(0) has 2 non-semi-simple eigenvalues at±iii
√

2, with
multiplicity 2. More over, we found:

T ′ (0) =




0 0 0 0
0 0 0 0
0 0 0 8

√
2e−4ix

0 0 −2
√

2e−4ix ((iii −4)+4x) 0


 ,

and

Q1 =




−iii
√

2
2

−iii
√

2 1
1 0
1 0


 , R1 =

[
0 0 1

2
1
2√

2
2

1
2

√
2

2 iii
√

2
2 iii

]
.

According to Lemma 2.6 we have that r2T ′(0)q1 = 2+16iii, thus we find

µ1(x) =
√

2iii+
√

2+16iiix1/2+o
(

x1/2
)
,

µ2(x) =
√

2iii−
√

2+16iiix1/2+o
(

x1/2
)
.

Fig. 2.6 illustrate the eigenvalue behavior.

−4 −3 −2 −1 0 1 2 3 4
−2.5
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−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Re (λ)

Im (λ)

√
2i

−
√

2i

Figure 2.1: Zero loci forx∈
(
−1

4,1
)
.
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2.5 The Complete Regular Splitting (CRS) Property

The mean goal of this section is to introduce the notion of theso-calledComplete Regular
Splitting Property and the results that enable us to test when an eigenvalue posses such a
behavior.
Consider now the analytic matrix valued functionL(λ ,α ). For a fixed value ofα , we callλ
aneigenvalueof L(λ ,α ) whenever detL(λ ,α ) = 0. Letλ = λ0 be an isolated eigenvalue of
L(λ ,0) with partial multiplicitiesm1 ≥ ·· · ≥ mN. Then,Hryniv and Lancaster[53] showed
that there exists a neighborhoodO of λ = λ0 such that the spectrum ofL(λ ,α ) in O for all
complexα sufficiently close to zero consists of exactlyM , m1+ · · ·+mN eigenvaluesλ i(α ),
i = 1, . . . ,M. Furthermore,λ i(α ) are algebraic functions ofα and can be expressed by all the
branches of several Puiseux series [14, 53]:

µν (α ) = cνα
1

qν +o(|α |
1

qν ), ν = 1, . . . ,N′, qν ∈ N, (2.31)

whereq1 ≥ ·· · ≥ qN′ and q1 + · · ·+ qN′ = M. A completely regular splitting(CRS) [77]
property of the eigenvaluẽλ = λ0 at α = 0 corresponds to:N = N′, qi = mi and ci 6= 0,
i = 1, . . . ,N.

Definition 2.1. Let A(λ ) be an analytic matrix-valued function of a complex variableλ . A
vector-valued function x(λ ) which is analytic in a neighborhood ofλ0 is called a generating
function for A(λ ) of order p atλ = λ0 if A(λ )x(λ ) =O (|λ −λ0|p) asλ → λ0.

The following result characterizes the CRS property:

Theorem 2.5([53]). With the notations above, letλ = 0 be an eigenvalue of L(λ ,0) of ge-
ometric multiplicity N and algebraic multiplicity M. Suppose also that for every generating
eigenvector x of L(λ ,0) there exists a generating eigenvectorx̂ of (L(λ ,0))∗ such that

〈
∂L
∂α

(0,0)x, x̂

〉
6= 0. (2.32)

Then the eigenvalueλ = 0 possesses the CRS property.

2.6 The Newton Diagram

The purpose of the section is to present a basic tool employedin the perturbation analysis.
Even though, we will use such a technique only in the third part of the thesis and that such a
results are very well documented (see for example, [11, 73] and references therein), we decide
to present such a notion in order to give a self-contained presentation.
Let f (x,y) be apseudo-polynomialin y, i.e.,

f (x,y) =
n

∑
k=0

ak(x)y
k, (2.33)

where the corresponding coefficients are given by,

ak (x) = xρk

∞

∑
r=0

arkxr/q, (2.34)
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ark are complex numbers,x andy are complex variables,ρk are non-negative rational numbers,
q is an arbitrary natural number,an(x) 6≡ 0, anda0(x) 6≡ 0.
In one of his treatise, Newton [102] considered the equation(2.33) with complex variables
x andy, assuming thatf (x,y) can be expanded into a series in positive integral powers of
(x−x0) and(y−y0). He then sought a solution of (2.33) in the form of a series

y= y0+α (x−x0)
ε +α ′ (x−x0)

ε ′ + · · · ,

whereε, ε ′, . . ., is an increasing sequence of rational numbers. To determine the possible val-
ues ofε, α , ε ′, α ′, . . ., Newton made use of a geometrical approach, now known asNewton’s
diagram (or Newton’s polygon, Newton’s parallelogram). Since by simple translation any
point on a curve can be moved to the origin, we will only consider expansions of the solution
of f (x,y) = 0 around the origin. In this vein, we will consider solution of (2.33) in the form
of the following series:

y(x) = yεxε +yε ′x
ε ′ +yε ′′x

ε ′′ + · · · , (2.35)

whereε < ε ′ < ε ′′ < · · · , yε 6= 0, or, in abbreviated form,

y(x) = yεxε +V(x), (2.36)

whereV(x) = o(xε) asx→ 0.

Definition 2.2 (Newton Diagram). Given a pseudo-polynomial equation of the form (2.33)
with coefficients given by (2.34), plotρk versus k for k for k= 0,1, . . . ,n (if ak (·) ≡ 0, the
corresponding point is disregarded). Denote each of these points byπk = (k,ρk) and let

Π = {πk : ak(·) 6= 0}

be the set of all plotted points. Then, the Newton diagram associated with f(x,y) is the lower
boundary of the convex hull of the setΠ.

For a given pseudo-polynomialf (x,y), the following figure illustrateDefinition2.2.

0

(0, ρ0)

y

x

(l1, ρl1)

(l2, ρl2)

(l3, ρl3)

(ls, ρls)

n

Figure 2.2: Newton Diagram forf (x,y).
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Algorithm 2.1 (Newton Diagram Procedure). Given a pseudo-polynomial (2.33) with coeffi-
cients given by (2.34),

1) Draw first the associated Newton diagram.

2) The leading exponentsε in (2.35) are the different slopes of the segments forming the
Newton diagram.

3) The number of solutions of order xε are given by the length of the projection on the
horizontal axis of the segment with slopeε.

4) The leading coefficients yε for each solution of order xε are the non-zero roots of the
following polynomial, (

j

∑
ℓ=i

a0ℓx
ℓ
ε

)♮

= 0, (2.37)

where i and j are the end points(i,ρi) and( j,ρ j) of a segment of the Newton’s diagram
with slopeε, and (♮) signifies that the summation runs over only those(ℓ,ρℓ) lying on
this segment, i.e.,ρℓ+ ℓε = σ = const.

5) To find higher order terms in the expansion (2.35), we substitute (2.36) into f(x,y) = 0
and repeat steps (1)-(4).

Let us illustrate the above procedure with the following:

Example 2.7.Let
f (ξ ,λ )≡ f0(λ )+ f1(λ )ξ + f3(λ )ξ 3 = 0,

where

f0(λ ) := λ 3 (ρ0 = 3) ,

f1(λ ) := −3λ (ρ1 = 1) ,

f2(λ ) := 0,

f3(λ ) := 1 (ρ3 = 0) .

In order to construct the Newton diagram, we plot the points(0,3), (1,1) and(3,0), leading
to the figure Fig.2.3.

From the diagram (Fig.2.3) we can see that

ε1 = 2, ε2 =
1
2
.

In order to findξε1 andξε2 we use(2.37)obtaining the following equations

1−3ξε1 = 0 and −3ξε2 + ξ 3
ε2
= 0.

From these equations, one gets:

ξε1 =
1
3
, and ξε2 =±

√
3.
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Figure 2.3: Newton Diagram forf (ξ ,λ ).

Thus, in accordance with(2.36), we obtain the principal terms of the solutions:

ξ =
1
3

λ 2+o
(
λ 2) and ξ =±

√
3λ 1/2+o

(
λ 1/2

)
.

To find the second-order term of the series in(2.35), we substitute each solution into the
original equation. We start with the first solution, writingξ = 1

3λ 2+ ζ . Substituting this
expression into the original equation, we obtain

1
27

λ 6+

(
−3λ +

1
3

λ 4
)

ζ +λ 2ζ 2+ ζ 3 = 0. (2.38)

To this equation we again apply the Newton diagram method. Weplot the points(0,6), (1,1),
(2,2) and(3,0) obtaining figure 2.4.

0 2 4
0

1

2

3

4

5

6

7

1 3

1

2

3

4

5

6

2

Figure 2.4: Newton Diagram for (2.38).
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From the diagram, we obtain:

ε ′1 = 5, ε ′2 =
1
2
.

Since for the series(2.35)we should haveε ′ > ε, the expresion obtained forε ′2 is inappropri-
ate. as above, we findζε ′2 from the equation

1
27

−3ζ = 0,

it follows that

ξ =
1
3

λ 2+
1
81

λ 5+o
(

λ 5
)
.

The second terms of the series(2.35)for the other solutions are found analogously. Sub-
stituting

ξ =±
√

3λ 1/2+ ζ

into the original equation, we obtain:

λ 3+6λζ ±
√

3λ 1/2ζ 2+ ζ 3 = 0. (2.39)

We construct the Newton diagram using the points(0,3), (1,1),
(
2, 1

2

)
, and(3,0) (see Fig.2.5).

We obtainε ′1 = 2 andε ′2 =
1
2. As in the previous case, the second valueε ′2 is inappropriate,

0 1 2 3 4

0

0.5

1

1.5

2

2.5

3

3.5

4

1

2

3

1 2 3

Figure 2.5: Newton Diagram for (2.39).

for it is necessary thatε ′ > ε. We findζε ′1 from the equation

1+6ζε ′1 = 0

and write

ξ =±
√

3λ 1/2− 1
6

λ 2+o
(
λ 2) .

The higher order terms in the series(2.35), are found similarly.
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3 Preliminaries and Problem Formulation

This section presents some general ideas that will be used inthe analysis developed in all of
the next sections of the first part of the thesis. More precisely, we introduce the basic concepts
and describe a part of the analysis using a general equation including all the particular cases
that will be treated throughout the chapter. The same ideas and concepts can be used to obtain
similar results for different problems as can be seen in [95]or [98]. It is worth mentioning
that all the results presented in this part are collected as abook chapter [97] in a more compact
form2.

3.1 Preliminaries

Let us consider the problem of stability analysis of a general class of differential equations
(DDE) that can be described in frequency domain by the following characteristic equation
H : C×R×R 7→C

H(s; α ,β) = Q(s)+P(s)h(s,α ,β) = 0, (3.1)

where "s" is the variable of the corresponding Laplace transform andα , β are some parame-
ters controlling the behavior of the system. Throughout this chapterP andQ are polynomials
andh is a analytic function containing at least an exponential function and making the equa-
tion (3.1) transcendental. Furthermore the following statement will be considered as being
satisfied:

Assumption 3.1.The polynomials P(s), Q(s) are such that P(s) and sQ(s) do not have com-
mon zeros.

It is obvious to see that if Assumption 3.1 is violated then the polynomialsP andQ have
a common factorc(s) 6= constant. Simplifying byc(s) we get a system described by (3.1)
which satisfies Assumption 3.1.

The aim of this study is to present the way the closed-loop system described by a charac-
teristic equation of the type (3.1), behaves in theparameter-spacedefined by the pair(α ,β).
Without any loss of generality, the continuity dependence of the roots of the characteristic
function with respect to the parametersα andβ (see, for instance, [28] or [32] for the depen-
dence of the roots of DDE’s with respect to delay parameters)reduces the (stability) analysis
to the following problems:

a) first, to detect crossings with respect to the imaginary axis since such crossing are re-
lated to changes in the stability behavior. In other words, we need to compute the
frequency crossing set denoted byΩ, which consists of all positive frequencies corre-
sponding to the existence of at least one characteristic root on the imaginary axis. Such
a characteristic root will be calledcritical. As we shall see in the cases treated in the
next sections, the corresponding frequency crossing set isreduced to a finite collection
of intervals. This set will be derived by using geometric arguments.

b) second, to describe the behavior of critical roots under changes of parameters in(α ,β)
parameter space. More precisely, we will detect switches and reversals corresponding

2This book chapter includes I.-C. Morărescu, K. Gu, my Ph.D. advisor and myself as authors
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to the situation when the critical characteristic roots cross the imaginary axis towards
instability, and stability, respectively. Excepting someexplicit computation of the cross-
ing direction, we will also briefly discuss the smoothness properties together with some
appropriate classification of the stability crossing boundaries. The geometric arguments
will be also useful in defining our classification.

Another useful related concept is represented by the characteristic crossing curves consist-
ing of all pairs(α ,β) for which there exists at least one valueω∈Ω such thatH(iiiω,α ,β)=0.

Remark 3.1. • The first issue pointed out above will be solved separately for each par-
ticular class of systems considered in the next sections. Furthermore, in each case we
shall give the analytical expression of the crossing curves.

• The second issue is presented in this section considering that the frequency crossing set
and the stability crossing curves are known.

3.2 Smoothness of the Crossing Curves and Crossing Direction

In the sequel, let us consider that the frequency crossing set Ω is given and the stability
crossing curves are described by

{
α = α (ω)
β = β(ω,α )

, ω ∈ Ω. (3.2)

Let us also denote byTh an arbitrary crossing curve and consider the following decompo-
sitions into real and imaginary parts:

R0+ iiiI0 = iii
∂H(s,α ,β)

∂s

∣∣∣∣
s=iiiω

,

R1+ iiiI1 = − ∂H(s,α ,β)
∂β

∣∣∣∣
s=iiiω

,

R2+ iiiI2 = − ∂H(s,α ,β)
∂α

∣∣∣∣
s=iiiω

.

Then, sinceH(s,α ,β) is an analytic function ofs,α andβ , the Implicit function theorem
(see, [85] for further details) indicates that the tangent of Th can be expressed as




dα
dω
dβ
dω




s=iiiω

=

(
R1 R2

I1 I2

)−1(
R0

I0

)
=

1
R2I1−R1I2

(
R1I0−R0I1
R0I2−R2I0

)
, (3.3)

provided that
R1I2−R2I1 6= 0. (3.4)

It follows thatTh is smooth everywhere except possibly at the points where either (3.4) is not
satisfied, or when

dα
dω

=
dβ
dω

= 0. (3.5)
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Remark 3.2. If (3.5) is satisfied then straightforward computations show us that R0 = I0 = 0.
In other words s= iiiω is a multiple solution of (3.1).

The next paragraph focuses on the characterization of the crossing direction corresponding
to the curves defined by (3.2). We will call the direction of the curve that corresponds to
increasingω thepositive direction. We will also call the region on the left hand side as we
head in the positive direction of the curvethe region on the left.

To establish the direction of crossing we need to considerα andβ as functions ofs=
σ + iiiω, i.e., functions of two real variablesσ andω, and partial derivative notation needs to

be adopted. Since the tangent ofTh along the positive direction is

(
∂α
∂ω

,
∂β
∂ω

)
, the normal

to Th pointing to the left hand side of positive direction is

(
−∂β

∂ω
,
∂α
∂ω

)
. Corresponding to a

pair of complex conjugate solutions of (3.2) crossing the imaginary axis along the horizontal

direction,(α ,β) moves along the direction

(
∂α
∂σ

,
∂β
∂σ

)
. So, as(α ,β) crosses the stability

crossing curves from the right hand side to the left hand side, a pair of complex conjugate
solutions of (3.2) crosses the imaginary axis to the right half plane, if

(
∂α
∂ω

∂β
∂σ

− ∂β
∂ω

∂α
∂σ

)

s=iiiω
> 0, (3.6)

i.e. the region on the left ofTh gains two solutions on the right half plane. If the inequality
(3.6) is reversed then the region on the left ofTh loses two right half plane solutions. Similar
to (3.3) we can express




∂α
∂σ
∂β
∂σ




s=iiiω

=

(
R2 R1

I2 I1

)−1(
I0

−R0

)

=
1

R2I1−R1I2

(
R0R2+ I0I2
−R0R1− I0I1

)
. (3.7)

Proposition 3.1. Assumeω ∈ Ω, α ,β satisfy (3.2) and s= iiiω is a simple solution of (3.1)
and H(iiiω′,α ,β) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (α ,β) is not an intersection point of two curves
or different sections of a single curve). Then as(α ,β) moves from the region on the right to
the region on the left of the corresponding crossing curve, apair of solutions of (3.1) crosses
the imaginary axis to the right (through s= ±iiiω) if R2I1−R1I2 > 0. The crossing is to the
left if the inequality is reversed.

Proof. Straightforward computation shows that
(

∂α
∂ω

∂β
∂σ

− ∂β
∂ω

∂α
∂σ

)

s=iiiω
=

(R2
0+ I2

0)(R2I1−R1I2)

(R2I1−R1I2)2 .

Therefore (3.6) can be written asR2I1−R1I2 > 0.

Any given direction,(d1,d2), is to the left-hand side of the curve if its inner product with

the left-hand side normal

(
−∂β

∂ω
,
∂α
∂ω

)
is positive, i.e.,

−d1
∂β
∂ω

+d2
∂α
∂ω

> 0, (3.8)
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from which we have the following result.

Corollary 3.1. Letω, α andβ satisfy the same condition as Proposition 3.1. Then, as(α ,β)
crosses the curve along the direction(d1,d2), a pair of solutions of (5.4) crosses the imaginary
axis to the right if

d1(R2I0−R0I2)+d2(R1I0−R0I1)> 0. (3.9)

The crossing is in the opposite direction if the inequality is reversed.

Proof. Writing out the left-hand side, then (3.8) becomes

d1(R2I0−R0I2)+d2(R1I0−R0I1)
R2I1−R1I2

> 0. (3.10)

If (d1,d2) is in the same side as the left-hand side normal, then, as we move along the(d1,d2)
direction, the crossing is from the LHP to the RHP if the left-hand sides of (3.10) andR1I2−
R2I1 have the same sign, i.e., their product is positive.

Remark 3.3. It is worth to mention, that all above ideas follows the same lines that those
developed by Gu et al. in [40].

4 Output Feedback (Proportional Controller)

In order to give a complete presentation of the low-order controllers for continuous-time sys-
tems, we shall recall in the sequel some results concerning to the delayed output feedback
case (see, [98], for further details).

Consider the following class ofproper SISOopen-loop transfer function:

Hyu(s) :=
P(s)
Q(s)

= cT(sIn−A)−1b+d (4.1)

where(A,b,cT ,d) is a state-space representation of the open-loop system, and consider the
control law:

u(t) =−ky(t − τ ). (4.2)

The interest is to findall the pairs (k,τ ) such that the controller (4.2) stabilizes the corre-
sponding SISO system (4.1). The corresponding characteristic equation of the closed-loop
system simply writes as:

Q(s)+kP(s)e−sτ = 0. (4.3)

Precisely, we deal with a characteristic equation of type (3.1) where the pair of parameters
(α ,β) is replaced by(k,τ ) andh(s,k,τ ) = ke−sτ . The aim of this section is to illustrate the
underlyingstability/instability mechanismsin presence of delays, that is to see the way the
closed-loop system behaves in theparameter-spacedefined by the pair(k,τ ).

4.1 Preliminaries and Problem Formulation

As mentioned above, in this section we deal with the following characteristic equation:

H(s,k,τ ) = Q(s)+kP(s)e−sτ = 0 (4.4)

The polynomialsP andQ will satisfy the following constraints.
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Assumption 4.1.One assumesdeg(Q)≥ deg(P).

Assumption 4.2.P′(iiiω) 6= 0 whenever P(iiiω) = 0.

The Assumption 4.1 is needed in order to ensure that for a fixedvalue ofk, the real part
of any characteristic roots is bounded to the right. This assumption implies thatk will vary
in a limited domain|k| ≤ kmax since larger gain values will induce instability for infinitesimal
delay values. The Assumption 4.2 is imposed to exclude some rare singular cases in order
to simplify the presentation. It is noteworthy that Assumption 3.1 is imposed even if it is not
explicitly mentioned.

First at all, we briefly present some necessary considerations proposed in [107] using a
continuity principle argument for the dependence of the roots of the characteristic equation
with respect to some real parameter (the gaink in our study).

Introduce now the following Hurwitz matrix associated to some generic polynomial

A(s) =
na

∑
i=0

ais
na−i :

H(A) =




a1 a3 a5 . . . a2na−1
a0 a2 a4 . . . a2na−2

0 a1 a3 . . . a2na−3

0 a0 a2 . . . a2na−4
...

. ..
...

0 0 0 . . . ana




∈ R
na×na, (4.5)

where the coefficientsal are assumed to be zero (al = 0), for all l > na.

ConsiderH(Q), H(P) ∈ Rn×n where deg(Q) = n > m= deg(P), the coefficientsql = 0
for all l > n and the coefficientspl = 0 for all l > m.

Consider also the setU of the roots ofH(s,k,0) located in the closed right half plane, and
the quantitykmax given by:

kmax =

{ q0
p0
, if deg(Q) = deg(P)

+∞, if deg(Q)> deg(P)
(4.6)

Such a quantity will define the controller’s gain domain. It is easy to see that while in the
case of a strictly proper transfer (deg(Q) > deg(P)), we do not have any restriction on the
gain, the case of a proper transfer (deg(Q) = deg(P)) imposes such restrictions. The expla-
nation can be resumed as follows: in this last case, the corresponding closed-loop system is
a quasipolynomial ofneutral type (see, for instance, [48, 103] for further discussions on the
topics), and one explicitly needs further constraints on the gain, that isk should satisfy the
inequality|k|< kmax= 1/ | d | (stability of the corresponding difference operator). Indeed, if
this is not the case, larger gain values will induce instability even for infinitesimal small delay
values (deg(Q) = deg(P) with unstable difference operators) as pointed out by [91].

As a consequence of the remarks above, it is important to point out that for allk∈R, such
that| k |< kmax, card(U) is finite, where card(·) denotes the cardinality (number of elements).

Lemma 4.1. Let λ1 < λ2 < ... < λh, with h≤ n be the real eigenvalues of the matrix pencil
Σ(λ ) = λ H(P)+H(Q) inside the interval(−kmax,kmax).
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Then,card(U) remains constant as k varies within each interval(λ i,λ i+1). The same holds
for the intervals(−kmax,λ1) and(λh,kmax).

It is worth mentioning that the lemma above gives a simple method to compute card(U)
by computing the generalized eigenvalues of the matrix pencil Σ(λ ). Such a quantity card(U)
is needed to derive the stability regions in the parameter space defined by the gain and delay
parameters(k,τ ).

4.2 Stability Crossing Curves Characterization

The following results characterize the stability crossingcurves in the(k,τ ) parameter space.
The presentation is as simple as possible, and intuitive. Some examples illustrating various
case study are considered at the end of this section.

4.2.1 Identification of Crossing Points

Let T denote the set of all(k,τ ) ∈ R×R+ such that (4.4) has at least one zero on imaginary
axis. Any(k,τ ) ∈ T is known as acrossing point. The setT , which is the collection of all
crossing points, is known as thestability crossing curves.

We consider also the setΩ of all real numberω such thatiiiω satisfy (4.4) for at least one
pair (k,τ ) ∈ R×R+. We will refer toΩ as thecrossing set.

Remark 4.1. If ω is a real number and(k,τ ) ∈ R×R+ then

Q(−iiiω)+kP(−iiiω)eiiiωτ = Q(iiiω)+kP(iiiω)e−iiiωτ

Therefore, in the sequel, we only need to consider positiveω.

Proposition 4.1. [98] Given anyω > 0, ω ∈ Ω if and only if it satisfies:

| P(iiiω) | > 0, (4.7)

and all the corresponding pairs(k,τ ) can be calculated by:

k(ω) = ±
∣∣∣∣
Q(iiiω)

P(iiiω)

∣∣∣∣ ; (4.8)

τm(ω) =
1
ω
(∠P(iiiω)−∠Q(iiiω)+(2m+ εk+1)π) (4.9)

m= 0,±1,±2, . . .

whereεk =

{
0 if k ≥ 0

−1 if k < 0
.

Remark 4.2 (small gain). [98] If the open-loop SISO system does not include oscillatory
modes, that is Q(s) has no roots on the imaginary axis, then some simple algebraic manipu-
lations prove that for all the gains k satisfying the following inequality:

| k | <
1

sup
ω>0

{
|P(iiiω)|
|Q(iiiω)|

} , (4.10)
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the closed-loop system (4.4) ishyperbolic(see [47, 103] for further details on such a notion),
that is there does not exist any crossing roots on the imaginary axis for all positive delays
τ . In other words, the closed-loop system is stable (unstable) for all delays value if it is
stable (unstable) in the case free of delays. Furthermore, the frequency-sweeping test above
(4.10) gives a simple way to exclude some k-interval from thebeginning, since in such a case
crossing roots can not exist.

However, it is important to point out that such a frequency-sweeping test (4.10) losses all
its interest if if the polynomial Q(s) has roots on the imaginary axis (the corresponding upper
bound becomes0), that is in the case of linear systems including oscillatory modes (such a
case will be considered later in a paragraph dedicated to some illustrative examples).

4.2.2 Identification of the Crossing Set

In the circumstances presented above, we can assumek within some finite interval[α ,β ] ⊂
(−kmax,kmax), which contains all generalized eigenvaluesλ i of the matrix pencilΣ(λ ), but ex-
cluding thek-interval given by (4.10) if the SISO system does not includeoscillatory modes.
Lemma 4.1 ensures us that the choice of the interval[α ,β ] includes all the remaining pos-
sibilities for the system free of delay. In such a case, defineℓl := min{| α |, | β |} ≥ 0, and
ℓu := max{| α |, | β |} < ∞. Then, there are only afinite number of solutionsto each of the
following three equations:

| Q(iiiω) | = ℓl | P(iiiω) |, (4.11)

| Q(iiiω) | = ℓu | P(iiiω) |, (4.12)

and

P(iiiω) = 0, (4.13)

becauseP, andQ are polynomials satisfying the Assumptions 4.1, 3.1 and 4.2. Therefore,
thecrossing setΩ will be defined by all the frequenciesω > 0 satisfyingsimultaneouslythe
inequalities:

{
ℓl | P(iiiω) |≤| Q(iiiω) |≤ ℓu | P(iiiω) |,
| P(iiiω) |> 0.

(4.14)

In conclusion, due to the form of (4.14), and from the Assumptions 4.1 and 3.1, the corre-
sponding crossing setΩ consists of a finite number of intervals. Denote these intervals as:
Ω1, Ω2, . . ., ΩN. Then:

Ω =
N⋃

k=1

Ωk.

Remark 4.3(strictly proper SISO case). In the case of a strictly proper SISO system kmax=∞
(that is no any constraints on the gain k), we note that for k∈ (β ,∞) (or k∈ (−∞,α )) we can
still expressΩ as a finite number of intervals, but one of them has an infinite end.

Remark 4.4(Invariance root at the origin). If Q(0)/P(0)∈ [α ,β ], then 0 will be a character-
istic root for all τ if k = Q(0)/P(0), since e−sτ = 1 for s= 0, independently of the delay value
τ . The last remark allows us to eliminate the value Q(0)/P(0) fromΩ if it is the case.
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Remark 4.5 (Crossing characterization). The frequency-sweeping test (4.14) above gives all
the frequency intervals for which crossing roots exist for the corresponding chosen gain inter-
val, but it does not give any information on thecrossing direction.

In other words, such a test does not make any distinction betweenswitches(crossing
towards instability) andreversals(crossing towards stability) [103]. Such a problem will be
considered in the paragraph concerning the direction of crossing.

4.2.3 Crossing Curves Characterization

In the sequel, we considerΩi = [ωl
i ,ω

r
i ], for all i = 1,2, . . . ,N. Without any loss of generality,

we can order these intervals from left to right, i.e., for anyω1 ∈ Ωi1, ω2 ∈ Ωi2, i1 < i2, we
haveω1 < ω2.

We note thatωl
1 can be 0 and in this caseΩ1 is open to the left.

It is clear thatk(ωl
i ), k(ωr

i ) ∈ {α ,β} for all i = 1...N if ωl
1 6= 0. We will not restrict

∠Q(iiiω) and∠P(iiiω) to a 2π range. Rather, we allow them to vary continuously within each
intervalΩi . Thus, for each fixedm, (4.8) and (4.9) give us two continuous almost everywhere
curves. We can lose the continuity of the curve in the points which correspond to the case
Q(iiiω) = 0. For example, ifQ(iiiω∗) is a real polynomial and its sign is changing atω∗, then
∠(Q(iiiω)) is not continuous inω∗.

It should be noted that condition (4.8) andk finite, implyP(iiiω) 6= 0, ∀ω∈Ω. We denote
the curves defined by (4.8) and (4.9) withT m±

i . Therefore, corresponding to a given interval
Ωi , we have an infinite number of continuous stability crossingcurvesT m±

i , m= 0,±1,±2, ....

Finally, is worth mentioning that, for somem, part or the entire curve may be outside of
the rangeR×R+, and therefore, may not be physically meaningful. The collection of all the
points inT corresponding toΩi may be expressed as

Ti =
+∞⋃

m=−∞

[(
T m+

i ∩ (R×R+)
)
∪
(
T m−

i ∩ (R×R+)
)]

Obviously,

T =
N⋃

i=1

Ti .

Also it is easy to see that, for eachΩi , we define two curves, one to the right of theOτ axis
and the other to the left. According to the fixed limitsα ,β of the interval wherek varies we
can eliminate some of these curves. The end points of these curves are classified as follows:

Type 1. It satisfies the equationk(ω) = α .

Type 2. It satisfies the equationk(ω) = β .

Type 3. It equals 0.

Obviously, onlyωl
1 can be of type 3. We note that all the crossing curves are situated in

the vertical stripD between the linesk = α andk = β . Now, letω∗ be an end point of the
intervalΩi. We have already said that eachT m+

i is an continuous almost everywhere curve,
so,(k(ω∗),τm(ω∗)) is an end point ofT m±

i , and it can be characterized as follows:
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• If ω∗ is of type 1, thenk(ω∗) = α andτ (ω∗) are finite. More precisely,T m+
i intersects

the vertical linek= α , which is the left bound of the stripD.

• If ω∗ is of type 2 thenk(ω∗) = α and τ (ω∗) are finite. Or, we may say thatT m+
i

intersects the vertical linek(ω) = β , which is the right bound of the stripD.

• If ω∗ is of type 2 thenτ approaches∞ andk approachesQ(0)/P(0). In other words,
T m+

i has a vertical asymptote given byk= Q(0)/P(0).

Remark 4.6. The previous description holds also forT m−
i .

As defined previously we say that an intervalΩk is of typelr if its left end is of typel and
its right end is of typer. Tehn, it is possible to divide accordingly these intervalsinto 6 types.

4.2.4 Smoothness of the Crossing Curves and Direction of Crossing

For a given i, we will discuss the smoothness of the curves inT m±
i and thusT =

+∞⋃

m=−∞

[(
T m+

i ∩ (R×R+)
)
∪
(
T m−

i ∩ (R×R+)
)]

. For this purpose, we considerk and τ as

implicit functions ofs= iiiω defined by (4.4).

Proposition 4.2. [98] The curve Tm±
i is smooth everywhere except possibly at the point cor-

responding to s= iiiω in any one of the following cases:

1) s= iiiω is a multiple solution of (4.4), and

2) ω is a solution of Q(iiiω) = 0⇔ k= 0.

The direction of crossing is characterized as follows:

Proposition 4.3. [98] Let ω ∈ (ωl
i ,ωr

i ) and (k,τ ) ∈ Ti such that iiiω is a simple solution of
(4.4) and H(iiiω′,k,τ ) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (k,τ ) is not an intersection point of two
curves or different sections of a single curve ofT ). Then a pair of solutions of (4.4) will cross
the imaginary axis to the right, through s= ±iiiω if R2I1−R1I2 > 0. The crossing is to the left
if the inequality is reversed.

4.3 Illustrative Examples

In the sequel, we consider some classical examples in the literature (first-order, second-order
oscillatory systems).

Example 4.1(Scalar delay case). Consider the system given by the transfer function

Hyu(s) =
1

s+a
(4.15)

subject to the control law u(t) = −ky(t − τ ). The corresponding characteristic equation of
the corresponding closed-loop system can be written as:

s+a+ke−sτ = 0. (4.16)
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For a> 0 it is obvious that either for k= 0 or τ = 0 and a+k > 0, we obtain a stable equa-
tion. On the other hand using Proposition 4.3, we derive thatall the crossings are towards
instability.

It is noteworthy that in a completely different framework, Boese [15] considered k> 0
and he proved that for k≤ a one gets a delay independent stable system. He also proved that
for k> a one has only one stability interval[0,τ0), whereτ0 is a decreasing function of k.

Using the above method for a= 3 we can draw the crossing curves and establish the
stability region as in figure 4.1. In this case, we have:

2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

m = 1

m = 2

k

m = 0

stability region

τ

Figure 4.1:T m+
1 , m∈ {0,1,2} for the system (4.16)

card(U) =

{
0 if k >−3,
1 if k ≤−3,

(4.17)

and for k∈ [−5,5] the crossing setΩ consists in one interval(0,4] of type 31. Therefore, we
obtainonly onestability interval for k> 3, and this interval is[0,τ0), whereτ0 is given as a
function of the gain "k" by:

τ0(k) =
1
ω

(
π−arctan

ω
3

)
:=

1√
k2−9

(
π−arctan

√
k2−9
3

)
,

which is nothing else that the formula given by Boese for the corresponding upper bound of
the (closed-loop) stability interval.

Now consider the case a= −3 (open-loop system unstable) and k∈ [−5,5], once again
we deriveΩ = (0,4] and

card(U) =
{

0 if k > 3
1 if k ≤ 3

.

Since all the crossing direction are towards instability, it is sufficient to plot only the first
stability crossing curve. As expected (figure 4.2), the system becomes unstable asτ increases.

Example 4.2(Linear (second-order) oscillators). Consider the transfer function

Hyu(s) =
1

s2+2
(4.18)
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Figure 4.2:T 0+
1 for the system (4.16) witha=−3

subject to the control law u(t) = −ky(t − τ ). The corresponding characteristic equation is
given by:

s2+2+ke−sτ = 0. (4.19)

For k ∈ (−2,0) the results regarding stability intervals of the systems can be found in [107]

and they simple say that forτ ∈
(

0,
π√

2+ |k|

)
the system is stable (see also [1] for a

different stability argument). It is easy to see that the number of stabilizing delay interval is a
decreasing function of|k|.

Our computation in this case point out that for k∈ (−2,0) the crossing setΩ consists in
one interval(0,2] of type 32.

According to Proposition 4.2, all the crossing curves are discontinuous in the points that
correspond to k= 0 and it is easy to see that:

card(U) =
{

1 if k <−2,
2 if k >−2.

Proposition 4.3 simply says that for k< 0 the region on the right hand side of each crossing
curve has two more unstable roots.

Remark 4.7. If ω ∈ (0,
√

2) thenτ0(ω) = 0 as we can deduce from the computation below:

τ0 =
1
ω
(∠(1)−∠(2−ω2)+(εk+1)π) = 0, ∀ω ∈ (0,

√
2) (4.20)

More precisely (see figure 4.3), we recover the result proposed in [105, 107].

Example 4.3(Third-order unstable system). This example is only to illustrate that it is possi-
ble to have most types of the curves enumerated in the classification section. In the sequel we
present a dynamical system with crossing curves of type 11, 22, 31 and 32.

Consider the transfer function

Hyu(s) =
1

s3−2s2+9s−8
, (4.21)
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Figure 4.3:τi, m∈ {0,1,2,3} versusk for the system (4.19)

subject to the control law u(t) = −ky(t − τ ). The corresponding characteristic equation of
the closed-loop system is given by:

s3−2s2+9s−8+ke−sτ = 0. (4.22)

We note that this system can not be stabilized by any static output feedback. Indeed, straight-
forward computations show us that:

card(U) =





1 if k <−10,
3 if k ∈ (−10,8),
2 if k > 8.

Takingα = −10 and β = 10, we getΩ = (0,1]∪ [2,3] and T m+
1 is of type 32,T m−

1 is of
type 31,T m−

2 is of type 11,T m+
2 is of type 22. We present the last three curves in the figures

4.4-4.5.
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Figure 4.4:T m+
2 , m∈ {0,1,2} for the system (4.22)

Example 4.4(Sixth-order unstable system). In this example, we consider a system that can
not be stabilized by a static output feedback, but it can be stabilized by a delayed output
feedback. This example is borrowed from [107].

Consider the system:

Hyu(s) =
1

s6+ p1s5+ p2s4+ p3s3+ p4s2+ p5s+ p6
(4.23)
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Figure 4.5:T m+
i , m∈ {1,2,3}, i ∈ 1,2 for the system (4.22)

where

p1 =−6.0000000e−04, p2 = 1.4081634e+00, p3 =−5.6326533e−04,
p4 = 4.3481891e−01, p5 =−8,6963771e−05, p6 = 2.6655565e−02.

Using Lemma 1, we obtain:

card(U) =





3 if k <−0.0707886,
5 if k ∈ (−0.0707886;−0.0266556),
6 if (−0.0266556;0.0120036),
4 if k > 0.0120036.

.

The stability crossing curves and the first two stability region for k∈ (0,0.16) are plotted in
figure 4.6, whereas figure 4.7 shows the dependence of the gaink as a function ofω.

Figure 4.6:Left:Stability crossing curves for the system given by (4.23); Right: Zoom of the stability
regions.
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Figure 4.7:The dependence of the gaink as a function ofω for some positive frequencies for the
system (4.23).

5 The Geometry of PI Controllers for SISO Systems with
Input/Output (I/O) Delays

As discussed in [109], there exists several methods for the controllers construction, and several
techniques have been proposed for the analysis of the stability and of the performances of
the corresponding closed-loop schemes. Among them, we can mention the computation of
stabilizing PI controller’s parameters considered by [123, 136] using a Pontryagin approach.
More precisely, [123] addresses the control of first-order system with a time-delay in both
cases (stable, and unstable delay-free systems), and [136]deals with some robustness issues
in terms of delays for the closed-loop system under the assumption that the delay-free system
can be stabilized by a proportional controller.

In order to give a complete presentation of the low-order controllers for continuous-time
systems, we shall recall in the sequel some results concerning to the PI controller case (see,
[99], for further details). In this vein, we are interested in characterizing the stability by the
crossing boundaries in the parameter-space defined by the PIcontroller’s parameters. By a
crossing boundary, we understand the set of parameters for which the corresponding char-
acteristic equation has at least one root on the imaginary axis. Such a result offers some
alternative analysis ways to the approach considered by [123, 136].

5.1 Problem Formulation

Consider the following class ofstrictly properSISO open-loop systems subject to input delay:

{
ẋ(t) = Ax(t)+bu(t− τ ),
y(t) = cTx(t)

x(t) ∈ R
n,u(t) ∈ R (5.1)
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with the transfer function:

Hyu(s) = cT(sIn−A)−1be−sτ =
P(s)
Q(s)

e−sτ (5.2)

In this section the loop is closed using a classical PI controller K(s) of the form:

K(s) = k

(
1+

T
s

)
= kp+

ki

s
. (5.3)

It is noteworthy that in some situation the existence of a time-delay in the actuating input may
induce instability or poor performance for the closed-loopscheme (see, for instance, [103]
and the references therein). At the same time, there exists situation when the presence of an
appropriate time-delay in the actuating input may have the opposite effect (stabilizing effect)
(see, for instance [1, 107]). However, many problems in process control engineering involve
time-delays, thus they can not be neglected. Under the aboveconsiderations, the closed-loop
system can be expressed as:

H(s,kp,ki ,τ ) = Q(s)+P(s)

(
kp+

ki

s

)
e−sτ = 0, (5.4)

which is a quasi-polynomial (see, e.g. [39]) with an infinitenumber of roots [48].

The interest of the this section it to show the explicit conditions on the parameters pair
(kp,ki), such that the closed-loop system (5.4) is asymptotically stable.

In order to simplify the presentation and without any loss ofgenerality, we consider that
the Assumption 3.1 holds, that is the polynomialsP(s), Q(s) are such thatP(s) andsQ(s) do
not have common zeros.

5.2 Stability in the Controller Parameter-Space

In the sequel, we are interested in the behavior of the closed-loop system (5.4) for a fixed
delay valueτ . More precisely, for a givenτ = τ ∗ we search the crossing frequenciesω and
the correspondingcrossing pointsin the parameter space(kp,ki) defined by the PI control law
such thatH(iiiω,kp,ki,τ ∗) = 0. Since the delay value is fixed, the characteristic equation (5.4)
can be seen as a particular form of equation (3.1) where the pair (α ,β) is replaced by(kp,ki)

andh(s,kp,ki) =
(

kp+
ki
s

)
e−sτ .

Remark 5.1. Using the conjugate of a complex number we get

H(iiiω,kp,ki ,τ ) = 0⇔ H(−iiiω,kp,ki ,τ ) = 0.

Therefore, it is natural to consider only positive frequencies, that is the frequency crossing set
Ω ⊂ (0,∞).

5.2.1 Stability Crossing Curves

Considering that the setΩ is known we can easily derive all the crossing points in the param-
eter space(kp,ki).
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Proposition 5.1. [99] For a givenτ > 0 andω∈ Ω, the corresponding crossing point(kp,ki)
is given by:

kp =−ℜ
(

Q(iiiω)

P(iiiω)
eiiiωτ

)
(5.5)

ki = ω · ℑ
(

Q(iiiω)

P(iiiω)
eiiiωτ

)
. (5.6)

Remark 5.2. For all ω ∈ Ω we have P(iiiω) 6= 0. Indeed, it is easy to see that ifω ∈ Ω, then
there exists at least one pair(kp,ki) such that H(iiiω,kp,ki ,τ ) = 0. Therefore, assuming that
P(iiiω) = 0 we get also Q(iiiω) = 0 which contradicts Assumption 3.1.

Remark 5.3. It is important to point out that the controller’s gains kp and ki includeexplicitly
delay information. Furthermore, throughout the chapter, we assume that the corresponding
input delay is (perfectly) known, and it is not subject to anyuncertainty. The way the de-
lay parameter affects the crossing boundaries can be also analyzed using similar geometric
arguments, and, for the sake of brevity, it is not consideredhere.

5.2.2 Analytic Characterization of the Crossing Set

In the sequel, we are interested in finding the crossing points (kp,ki) such thatkp and ki

are finite. This will not restrict the usefulness of the following results since the controller
parameters can not be set to some infinite values in practicalsituation.

Proposition 5.2. [99] Let k∗p > 0 and k∗i > 0 be given. LetΩk∗p,k
∗
i

denotes the set of all
frequenciesω > 0 such that s= iiiω satisfies equation (5.4) for at least one pair of(kp,ki) in
the rectangle|kp| ≤ k∗p, |ki | ≤ k∗i . Then, the setΩk∗p,k

∗
i

consists of a finite number of intervals
of finite length.

5.2.3 Smoothness of the Crossing Curves

When ω varies within some intervalΩℓ, the equations (5.5) and (5.6) define a continuous
curve. Using the technique developed in Subsection 3.2 (seealso [40] and [98]), it can easily
be seen that the next result holds.

Proposition 5.3. [99] The curveTℓ is smooth everywhere except possibly at the point corre-
sponding to s= iiiω such that s= iiiω is a multiple solution of (5.4).

The crossing direction is then obtained directly from Proposition 3.1 by replacing(α ,β)
with (kp,ki).

Remark 5.4. Straightforward computations show that R1I2−R2I1 is always positive. Thus,
a system described by a closed-loop characteristic equation of type (5.4) may have more than
one stability region in controller parameter space(kp,ki) if one of the following two items is
satisfied:

• it has one or more crossing curves with some turning points (the direction in controller
parameter space changes - see for instance Example 8.7).

• it has at least two different crossing curves with oppositedirection in(kp,ki) - space.
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5.3 Illustrative Examples

In this section, we present several examples in order to point out the usefulness of this method-
ology in various situations.

Example 5.1(Scalar system). First, we validate our results by treating an open-loop stable
scalar system already studied in the literature (see for instance [122, 111]). More precisely,
we consider

Q(s) = 4s+1, P(s) = 1, (5.7)

and we easily find the corresponding closed-loop characteristic equation

H(s,k,T,τ ) = 4s+1+(kp+
ki

s
)e−sτ .

Takingτ = 1 (as the authors of [122, 111]) and plotting ki versus kp we obtain the figure 5.1.
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Figure 5.1:Stability crossing curve in the(kp,ki) space for the system given by (5.7)

Using Proposition 3.1 we derive that all the crossing direction aretowards instability.

On the other hand, the characteristic equation reveals thatthe system given by (5.7) is
stable only if ki > 0. Therefore, in order to obtain the boundary of the stabilityregion in the
(kp,ki) space, we search the first interval inΩ where ki > 0. Explicitly, we solve the equation

ωIm
(
(4iiiω+1)eiiiω

)
> 0,

and we getω ∈ (0,1.715). Using (5.5) and (5.6) the boundary of the stability region in the
(kp,ki) space is plotted in figure 5.2.

We note that the same boundary of the stability region has been obtained in [122, 111] by
using a different argument.
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Figure 5.2:The boundary of the stability region in the(kp,ki) space for the system given by (5.7)

Example 5.2(Double integrator subject to input delay). Consider now the case of a double
integrator subject to input delay:

Hyu(s) =
e−sτ

s2 .

Closing the loop with the PI controller:

K(s) =

(
kp+

ki

s

)
,

the characteristic equation of the system writes as:

s2+

(
kp+

ki

s

)
e−sτ = 0. (5.8)

One obtains:
kp = ω2 cos(ωτ), ki =−ω3 sin(ωτ).

Thus, ki and kp are even functions ofω. In other words it is sufficient to plot ki versus kp for
positive values ofω. We derive again that the number of unstable roots is gettinglarger when
the distance to the origin increases.

All the crossing directions are towards instability. Taking into account that the system in
absence of any control is unstable, we conclude that the system can not be stabilized with a
PI controller. The crossing curve for the system is plotted in figure 5.3.

Example 5.3(An academic example). In the sequel we consider the unstable system whose
dynamics is expressed by the following transfer function ([35]):

Hyu=
(s−1)e−2s

s2−0.5s+0.5
.
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Figure 5.3:Stability crossing curve in the(kp,ki) space for the system given by (5.8)

The characteristic equation of the closed-loop system, by using the PI controller is given by

s2−0.5s+0.5+(s−1)

(
kp+

ki

s

)
e−2s = 0. (5.9)

Straightforward computations show that

kp =
(0.5−0.5ω2)cos2ω+ω3 sin2ω

1+ω2 ,

ki =
(0.5−0.5ω2)ωsin2ω−ω4 cos2ω

1+ω2 .

As we have pointed out before we only need to consider the caseω > 0. Plotting ki versus kp,
one obtains the border of stability region as illustrated infigure 5.4.

The conclusion in figure 5.4 is obtained taking into account that stability crossing curve, it
has a turning point. Analyzing the direction of this curve one can see that all the crossings are
towards instability except the one concerning the small stability region pointed out on figure
5.4.

6 The Geometry of PD Controllers for SISO Systems with
Input/Output Delays

In this section, we roughly present the characterization ofthe stability regions in the
parameter-space defined by the PD controller’s parameters.More precisely we adapt the
methodology proposed in the previous section to the case of PD controllers. For the sake
of brevity, since the analysis is based on the same arguments(presented in the PI control
framework) and does not change in the main aspects, we do not enter too much into details.



82 THE GEOMETRY OFPD CONTROLLERS FORSISO SYSTEMS WITH INPUT/OUTPUT DELAYS

Figure 5.4:The boundary of the stability region in the(kp,ki) space for the system given by (5.9)

6.1 Problem Formulation

Consider again the class ofstrictly proper SISO open-loop systems subject to input delay
given by (5.1) with the transfer function (5.2). In this section the loop is closed using a
classical PD controllerK(s) of the form:

K(s) = k(1+Ts) = kp+kds. (6.1)

Under the above considerations, the closed-loop system canbe expressed as:

H(s,kp,kd,τ ) = Q(s)+P(s)(kp+kds)e−sτ = 0. (6.2)

The problem considered in this section can be defined as follows:

Problem 6.1. Find explicit conditions on the parameters pair(kp,kd), such that the closed-
loop system (6.2) is asymptotically stable.

The Assumption 3.1:the polynomials P(s), Q(s) are such that P(s) and sQ(s) do not
have common zeros,makes sense in the PD controller framework and is kept also during this
section.

6.2 Stability in the Controller Parameter-Space

In the sequel, we consider that the delay valueτ is fixed and we search the crossing frequencies
ω and the correspondingcrossing pointsin the parameter space(kp,kd) defined by the PD
control law such thatH(iiiω,kp,kd,τ ) = 0.

As we have pointed out in the previous section, the number of roots in the RHP can change
only when some zeros appear and cross the imaginary axis. This time, thefrequency crossing
setΩ consisting of all real positiveω such that there exist at least a pair(kp,kd) for which

H (iiiω,kp,kd,τ ∗) = Q(iiiω)+P(iiiω)(kp+ iiikdω)e−iiiωτ∗ = 0. (6.3)
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Remark 6.1. Similarly to the PI controller case, using the conjugate of acomplex number we
get:

H(iiiω, ,kp,kd,τ ) = 0⇔ H(−iiiω,kp,kd,τ ) = 0.

Therefore, it is natural to consider only positive frequencies, that isΩ ⊂ (0,∞).

6.2.1 Stability Crossing Curves

Mimicking the analysis made in the previous section we arrive to the following results:

Proposition 6.1. For a givenτ > 0 andω ∈ Ω the corresponding crossing point(kp,kd) is
given by:

kp =−ℜ
(

Q(iiiω)

P(iiiω)
eiiiωτ

)
(6.4)

kd =− 1
ω

ℑ
(

Q(iiiω)

P(iiiω)
eiiiωτ

)
. (6.5)

Proof. Following similar lines to the ones proposed inProposition5.1, we have that (6.2) can
be rewritten as:

Q(iiiω)

P(iiiω)
eiiiωτ =−(kp+ iiiωkd) .

Since,kp, kd andω are real, the previous relation states that the real part of the left hand side is
equal to−kp whereas the imaginary part is−ωkd. Next, some straightforward computations
allow deriving (6.4) and (6.5).

Unlike the PI-controller, in the PD-controller case if degQ(s) = degP(s)+1, some addi-
tional attention must be paid. Such a situation is summarized by the following result:

Proposition 6.2.Letτ ∈R+. Then, the following straight lines belong to the stabilitycrossing
curves:





(
− q0

p0
,kd

)
if degQ(s)> degP(s)+1

(
− q0

p0
,kd

)
,
(

kp,
∣∣∣ qn

pn−1

∣∣∣
)
,
(

kp,−
∣∣∣ qn

pn−1

∣∣∣
)

if degQ(s) = degP(s)+1
(6.6)

where pi and qi are the coefficients of the polynomials P(s) and Q(s), respectively:

P(s) =
m

∑
i=1

pis
i, Q(s) =

n

∑
i=0

qis
i .

Proof. Let us consider first the case degQ(s)> degP(s)+1. In such a situation, we observe
from (6.3) that, forω = 0, the stability crossing curves satisfy:

Q(0)+P(0)(kp+kd ·0) = 0,

⇒ kp = −q0

p0
.

Since, the above equation holds for allkd, we conclude that
(
− q0

p0
,kd

)
belongs to the stability

crossing curves.
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Next, if degQ(s) = degP(s)+1, then system become of neutral-type [103] and, in additionto
the previous boundary, we must take into account that the closed-loop characteristic equation
(6.2) possesses a neutral chain that asymptotically approaches the vertical line [48]:

ℜ (s) =
1
τ

ln

(∣∣∣∣
kdpn−1

qn

∣∣∣∣
)
.

Since ln(|x|) ≥ 0 ⇔ |x| ≥ 1, this implies that the straight lines
(

kp,−
∣∣∣ qn

pn

∣∣∣
)

and
(

kp,
∣∣∣ qn

pn

∣∣∣
)

belong to the stability crossing curves.

6.2.2 Analytic Determination of the Crossing Set

In the sequel, we are interested in finding the crossing points (kp,kd) such thatkp andkd

are finite. This will not restrict the usefulness of the following results since the controller
parameters can not be set to some infinite values in practicalsituation:

Proposition 6.3. Let k∗p > 0 and k∗d > 0 be given. LetΩk∗p,k
∗
d

denotes the set of all frequencies
ω> 0satisfying equation (6.3) for at least one pair of(kp,kd) in the rectangle|kp| ≤ k∗p, |kd| ≤
k∗d. Then the setΩk∗p,k

∗
d

consists of a finite number of intervals of finite length.

Proof. The proof follows the idea presented in Proposition 5.2. Thecrossing setΩ is derived
solving the polynomial inequality:

∣∣∣∣
Q(iiiω)

P(iiiω)

∣∣∣∣
2

≤
(
k∗p
)2

+(k∗d)
2ω2. (6.7)

For the sake of brevity, we do not present further details here.

6.2.3 Smoothness of the Crossing Curves

Whenω varies within some intervalΩℓ satisfying (6.7), the equations (6.4) and (6.5) define a
continuous curve. Using the notations introduced in the previous paragraph and the technique
developed above, we can easily derive the crossing direction corresponding to this curve.

Precisely, one denotesTℓ the crossing curve that corresponds toΩℓ and considers the
following decompositions into real and imaginary parts:

R0+ iiiI0 = iii
∂H(s,kp,kd,τ )

∂s

∣∣∣∣
s=iiiω

,

R1+ iiiI1 = − ∂H(s,kp,kd,τ )
∂kd

∣∣∣∣
s=iiiω

,

R2+ iiiI2 = − ∂H(s,kp,kd,τ )
∂kp

∣∣∣∣
s=iiiω

.

Then,Tℓ is smooth everywhere except possibly at the points corresponding tos= iiiω such
thats= iiiω is a multiple solution of (6.2).

Finally, the crossing direction is characterized by the following:
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Proposition 6.4. Assumeω ∈ Ωℓ, kp,kd satisfy (6.4) and (6.5) respectively, andω is a simple
solution of (6.3) and H(iiiω′,kp,kd,τ ) 6= 0, ∀ω′ > 0, ω′ 6= ω (i.e. (kp,kd) is not an intersection
point of two curves or different sections of a single curve).Then as(kp,kd) moves from the
region on the right to the region on the left of the corresponding crossing curve, a pair of
solutions of (6.2) crosses the imaginary axis to the right (through s=±iiiω) if R2I1−R1I2 > 0.
The crossing is to the left if the inequality is reversed.

6.3 Illustrative Examples

In the sequel, we present several numerical examples to illustrate the proposed results.

Example 6.1(Sixth order non-minimal phase system). Consider a sixth-order, non-minimum
phase open-loop system, described by the following transfer function:

Hyu(s) =
−s4−7s3−2s+1

(s+1)(s+2)(s+3)(s+4)(s2+s+1)
e−

s
20. (6.8)

The use of a PD-controller leads to characteristic closed-loop equation:

(s+1)(s+2)(s+3)(s+4)
(
s2+s+1

)
−
(
s4+7s3+2s−1

)
e−

1
20s= 0. (6.9)

In Fig.6.1 is illustrated the stability region in the(kp,kd) parameter space for(6.8). From

Figure 6.1: Stability region ofkp andkd for (6.8).

Fig.6.1 we can observe that the stability crossing curves are composed by those of equations
(6.4)–(6.5) together with first equation of(6.6).

Example 6.2 (Third Order, non-minimal phase, unstable system). Consider now a system
described by the following transfer function:

Hyu(s) =
15s2+3s−20

125s3+70s2+10s+8
e−2s. (6.10)

The interest of the analysis of this system arises form the fact that the closed-loop charac-
teristic equation behaves as a system of neutral-type. Then, after applying Proposition 6.1
together with Proposition 6.2, we obtain the results depicted in Fig.6.2
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Figure 6.2: Stability region ofkp andkd for (6.9).

7 The Geometry of PID Controllers for SISO Systems with
Input/Output Delays

As it has been emphasized along this first part of the thesis, PID controllers are by far the most
applied feedback law for SISO systems in industrial process(see, for instance, [5, 109, 123]
and reference therein). The “popularity” of PID controllers can be attributed to their particular
distinct features:simplicityandeasy implementation.
Actually, to the best of our knowledge, there exist mainly two approaches enabling to get
the set of stabilizing PID controllers for a LTI delay-system. More precisely, we think firstly
to the approach based on an extensionHermite-Biehler Theoremto the time-delay systems
[112, 110]. In this case, using the property of interlacing at high frequencies and solving
some linear inequalities, they obtained the set of stabilizing PID controllers. However, the
only drawback of the method is the complexity of the algorithm that calculate the appropriate
kp intervals. Second, based on the NeimarkD−partition method, the works of [8, 54] derived
a method to find the set of stabilizing PID controllers.

As in the previous chapters, the method presented here is inspired by the analysis (based
on some geometric arguments) proposed in [40]. Even tough, the proposed method is closely
related to the above mentioned works, the method proposed here make use of some different
arguments, that in addition will enable us to present a characterization of crossing boundaries.
More over, such a technique will be the core, of the next chapter that will deal with fragility
analysis of PID-type controllers.
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7.1 Problem Formulation

As in the previous paragraphs, consider the following classof strictly proper SISO open-loop
systems subject to input/output delays:

{
ẋ(t) = Ax(t)+bu(t− τ ),
y(t) = cTx(t)

x(t) ∈ R
n, u(t) ∈ R (7.1)

with the transfer function:

Hyu(s) = cT(sIn−A)−1be−sτ =
P(s)
Q(s)

e−sτ =: G(s) . (7.2)

The same property holds if the delay acts on the output signals. In this chapter, the loop is
closed using a classical PID controllerK(s) of the form:

K(s) = k

(
1+Tds+

1
Tis

)
= kp+kds+

ki

s
. (7.3)

Under the above considerations, it is clear that the closed-loop dynamics can be characterized
by the equation:

1+G(s)K (s) = 0, (7.4)

which rewrites as:

H(s;kp,kd,ki) =
1

G(s)
+

(
kp+kds+

ki

s

)
= 0, (7.5)

The problem considered in this section can be defined as follows:

Problem 7.1. Find explicit conditions on the controller parameters(kp,kd,ki), such that the
closed-loop system (7.5) is asymptotically stable.

In order to simplify the presentation and, without any loss of generality, we consider that
the Assumption 3.1 holds.

Remark 7.1. Similarly to the previous chapters, using the conjugate of acomplex number we
get

H (iiiω;kp,kd,ki) = 0 ⇔ H (−iiiω;kp,kd,ki) = 0. (7.6)

Therefore, we only need to consider positive frequenciesω, that is the frequency crossing set
Ω ⊂ (0,∞).

7.2 Stability in the Controller Parameter-Space

As in the previous chapters, in the sequel we will focus on theclosed-loop behavior of
the system (7.5) for a fixed delay valueτ . More precisely, we want to derive thesta-
bility crossing boundariesT which is the set of parameters(kp,kd,ki) ∈ R3

+ such that
(7.5) has imaginary solutions. As the parameters(kp,kd,ki) cross the stability crossing
boundaries, some characteristic roots cross the imaginaryaxis. We also considerΩ ={

ω ∈ R|∃(kp,kd.ki) ∈ R3
+ such thatH (iiiω;kp,kd,ki) = 0

}
the set of frequencies where the

number of unstable roots of (7.5) changes. The setΩ will be calledstability crossing set.
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7.2.1 Stability Crossing Characterizations

Considering thatΩ is known, the stability crossing boundaries are simply characterized by:

Proposition 7.1. The stability crossing boundaries associated to(7.5) are described as fol-
lows: 




kp =−ℜ
(

Q(iiiω)

P(iiiω)
eiiiωτ

)

ki = kdω2+ωℑ
(

Q(iiiω)

P(iiiω)
eiiiωτ

) , ∀ω ∈ Ω. (7.7)

Proof. From its definition,T is the set of parameters(kp,kd,ki) ∈ R3, for which there exists
at least one frequencyω ∈ Ω such thatH(iiiω;kp,kd,ki) = 0. Therefore, both the real and the
imaginary parts ofH(iiiω;kp,kd,ki) have to be zero. Straightforward computation shows that:

ℜ (H(iiiω; ·)) = kp+ ℜ
(
G(iiiω)−1) ,

which leads to the first relation stated in (7.7). On the otherhand,

ℑ (H(iiiω; ·)) = ℑ
(
G(iiiω)−1)+kdω−ki/ω,

which allows us deriving the second relation in (7.7).

Remark 7.2. For any fixedω∗ ∈ Ω, one obtains a section of a stability crossing surface
which consists in a straight line parallel to the(kd,ki) plane and passing through the point(
−ℜ

(
Q(iiiω)

P(iiiω)
eiiiωτ

)
,0,ωℑ

(
Q(iiiω)

P(iiiω)
eiiiωτ

))
. The slope of this line in the(kd,ki) plane is

always positive and is given byω2.

Remark 7.3. From the proof of Proposition 7.1, it is clear that ki = 0 defines a boundary.

Remark 7.4. Let the relative degree of the system (7.1) beδ = 1. Then, the closed-loop
system (7.1) becomes a system of neutral-type (see, e.g., [48, 92]) and

(
kp,

∣∣∣∣
qn

pn−1

∣∣∣∣ ,ki

)
and

(
kp,−

∣∣∣∣
qn

pn−1

∣∣∣∣ ,ki

)

belong to the stability crossing surfaces. Here, pn−1 and qn represent the leading coefficients
of the polynomials P(s) and Q(s), respectively:

P(s) =
n−1

∑
i=0

pis
i, Q(s) =

n

∑
i=0

qis
i .

FromProposition7.1 it is clear to see that for fixedkp = k∗p ∈ R, the second equation in
(7.7) defines a set of straight lines in the(kd,ki)−plane. More over, such a set will define the
stability crossing curves in the(kd,ki) controller parameter space. Then, it will be interesting
(necessary) to find thekp−intervals, for which the stability characteristics remains unchanged.
In this vein, lets introduce the setΛ denoted by,

Λ :=
{

ωℓ ∈ R+

∣∣k′p(ωℓ) = 0, ℓ ∈ N
}
,
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wherek′p(ω) := d
dωkp(ω). Additionally, defineω+

ℓ ∈ Λ if kp
(
ω+
ℓ

)
≥ 0 andω−

ℓ ∈ Λ if
kp
(
ω−
ℓ

)
< 0. According to these definitions lets indexingω±

ℓ satisfying

0 ≤ kp
(
ω+

1

)
< kp

(
ω+

2

)
< kp

(
ω+

3

)
< .. . (7.8a)

0 > kp
(
ω−

1

)
> kp

(
ω−

2

)
> kp

(
ω−

3

)
> .. . (7.8b)

Proposition 7.2. Based on(7.8), lets consider the following intervals:
{ K+

1 =
(
kp
(
ω−

1

)
,kp
(
ω+

1

))
,K+

2 =
(
kp
(
ω+

1

)
,kp
(
ω+

2

))
, . . .

K−
1 =
(
kp
(
ω−

2

)
,kp
(
ω−

1

))
,K−

2 =
(
kp
(
ω−

3

)
,kp
(
ω−

2

))
, . . .

if kp
(
ω+

1

)
6= 0 ,

or
{ K+

1 =
(
kp
(
ω+

1

)
,kp
(
ω+

2

))
,K+

2 =
(
kp
(
ω+

2

)
,kp
(
ω+

3

))
, . . .

K−
1 =
(
kp
(
ω−

1

)
,kp
(
ω+

1

))
,K−

2 =
(
kp
(
ω−

2

)
,kp
(
ω−

1

))
, . . .

if kp
(
ω+

1

)
= 0 .

Then, the number of stability regions in the parameter spacedefined by the proportional gain,
the derivative gain and the integral gain parameters(kp,kd,ki) remains constant as kp varies
within each intervalK±

ℓ , ℓ ∈ N.

Proof. According to Proposition 7.1, the stability crossing boundaries are given by:

kp = −ℜ
(

Q(iiiω)

P(iiiω)
eiiiωτ

)
, (7.9a)

ki = kdω2+ωℑ
(

Q(iiiω)

P(iiiω)
eiiiωτ

)
. (7.9b)

Then, the key idea is to express (7.9) asF (kp,kd,ki) = 0 (without depending onω), in such
situation it will be possible to obtain directly the stability region in the(kp,kd,ki) parameter
space. In this vein, we can observe from (7.9) that thekp interval is determined solely by
(7.9a), or in other word,kp depends solely of the frequencyω, that is, it can be seen as a
function of one real variable. Bearing the above fact in mind, we have that according to the
Inverse Function theorem(see, [58], for further details), that there exists a uniquecontinuous
functionw : I ⊂ R 7→ J ⊂ R+ (for some appropriate intervals) such that

ω = w(kp) . (7.10)

Then, substituting (7.10) into (7.9b) we get

w(kp)kd−ki +w(kp) ℑ
(

Q(iiiw(kp))

P(iiiw(kp))
eiiiw(kp)τ

)

︸ ︷︷ ︸
=:F(kp,kd,ki)

= 0.

The remaining proof consists in showing that the appropriate setsI, J are precisely given by
the intervalsK±

ℓ . In this vein, from the construction ofK±
ℓ we can observe that ifω ∈ K±

ℓ for
someℓ ∈ N, thenkp is continuous and since the sign ofk′p remains constant, this implies the
monotonicity ofkp and in consequencekp will be a one-to-one map for allω ∈ K±

ℓ . Then,
according to theInverse Function theorem, the above arguments are necessary and sufficient
conditions for the existence and uniqueness of the functionw(kp). Finally, at the points where
k′p vanish, two situations may occur: (i) forkp = kp(ω), the mapw(kp) has two (or more)
possible solutions, in this situation we can have two (or more) stability regions sharing the
same number of unstable roots (see,Example7.2 for an illustrative example); (ii) the second
possibility is thatw(kp) is not differentiable, implying that the stability region is reducing to
a point on the stability boundary.
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7.2.2 Stability Crossing Sets and Classification of the Stability Crossing Boundaries

In the sequel, we present a practical methodology to derive the stability crossing set. For the
sake of brevity, we suppose that the following technical assumption is satisfied:

Assumption 7.1. There exist some bounds
(

k∗p,k∗p
)

,
(

k∗d,k
∗
d

)
and

(
k∗i ,k

∗
i

)
of the controller

gains.

These bounds can be arbitrarily fixed and, in principle, theyare chosen by the designer ac-
cording to the physical constraints of the model/controller. In this context, when Assumption
7.1 holds, the section of the stability crossing surface obtained for a fixedω ∈ Ω reduces to a
segment (see Remark 7.2).

Proposition 7.3. Consider that Assumption 7.1 holds. Then the stability crossing setΩ is a
union of bounded intervals consisting in all frequencies that simultaneously satisfy the follow-
ing conditions:





k∗p ≤−ℜ
(

Q(iiiω)

P(iiiω)
eiiiωτ

)
≤ k∗p

∃ k∗d ≤kd≤ k∗d s.t. k∗i ≤ kdω2+ωℑ
(

Q(iiiω)

P(iiiω)
eiiiωτ
)
≤k∗i .

(7.11)

Proof. The characterization of the stability crossing setΩ given by (7.11) follows straightfor-
ward from (7.7) and Assumption 7.1. In order to prove the boundedness of the crossing setΩ,
we notice that due to the assumption that the transferG(s) is strictly proper, one has

lim
ω→+∞

∣∣G(iiiω)−1
∣∣=+∞.

In other words, this means that either

lim
ω→+∞

∣∣ℜ
(
G(iiiω)−1)∣∣=+∞

or
lim

ω→+∞

∣∣ℑ
(
G(iiiω)−1)∣∣=+∞

which contradicts either the first relation in (7.11) or the second one.

Remark 7.5. Propositions 7.1 and 7.3 lead to the following algorithm to determine both the
stability crossing setΩ and the stability crossing boundariesT :

• Step 1: One solves the system k∗
p ≤−ℜ

(
1

G(iiiω)

)
≤ k∗p getting a union of intervals.

• Step 2:For all ω derived at the previous step, one computes kp and derive the equation
of the line(kd,ki) given by the second equation in(7.7).

• Step 3: Finally, one keeps only those frequenciesω for which the line(kd,ki) derived
at the previous step intersects the rectangle[(k∗d,k

∗
i );(k

∗
d,k

∗
i );(k

∗
d,k

∗
i );(k

∗
d,k

∗
i )].
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It is worth noting here thatkp,kd andki continuously depend onω. Therefore, in order to
classify the stability crossing boundaries we will first classify the intervals belonging to the
stability crossing set. Precisely, a deeper analysis of Proposition 7.3 allows us to say thatω∗ is
an end of an interval belonging toΩ if and only if one of the following condition is satisfied:

• Type 1: −ℜ
(

1
G(iiiω∗)

)
= k∗p, wherek∗p is eitherk∗p = k∗p or k∗p = k∗p. In this case,

ω∗ ∈ Ω and the stability crossing surface approaches a segment parallel to the(kd,ki)
plane given bykp = k∗p and

ki = kd · (ω∗)2+ω∗ℑ
(

1
G(iiiω∗)

)
,

k∗d ≤ kd ≤ k∗d, k∗i ≤ ki ≤ k∗i

• Type 2: − 1
ω∗ ℑ

(
1

G(iiiω∗)

)
= k∗d. In this caseω∗ ∈ Ω and the stability crossing surface

ends in the point

(
−ℜ

(
1

G(iiiω∗)

)
,− 1

ω∗ ℑ
(

1
G(iiiω∗)

)
,0

)
, included in the(kp,kd)

plane.

• Type 3: ω∗ℑ
(

1
G(iiiω∗)

)
= k∗i . In this caseω∗ ∈ Ω and the stability crossing surface

ends in the point

(
−ℜ

(
1

G(iiiω∗)

)
,0,ω∗ℑ

(
1

G( jω∗)

))
, included in the(kp,ki) plane.

Similarly to [40], we classify the stability crossing boundaries in 6 types in function of the
kind of the left and right ends of the corresponding frequency crossing interval. Precisely, we
say that a crossing surface is of typeab, a,b∈ {1,2,3} if it corresponds to a crossing interval
(ωl ,ωr) with ωl of typea andωr of typeb. Let us notice that generally the intervals(ωl ,ωr)
are closed.

7.2.3 Crossing Direction

As explained in [25, 132], a pair of imaginary zeros(s̄,s) of the characteristic equation
H(s; kp,kd,ki) = 0 cross the imaginary axis through the "gates"−iiiω , iiiω respectively, as
(kp,kd,ki) moves from one side of a stability crossing surface to the other side. The direction
of crossing may be calculated using implicit function theorem as described in the preceding
chapters (see, for further details [40] and reference therein). Precisely, the characteristic equa-
tion H(s; kp,kd,ki) = 0 defines an implicit functionsof variableskp,kd andki . The definition
of H(s; kp,kd,ki) given by (7.5) allows us to compute the following partial derivatives:

∂s
∂kp

=
s2G2(s)

kiG2(s)−kds2G2(s)+s2G′(s)
,

∂s
∂kd

=
s3G2(s)

kiG2(s)−kds2G2(s)+s2G′(s)
, (7.12)

∂s
∂ki

=
sG2(s)

kiG2(s)−kds2G2(s)+s2G′(s)
.
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Let (k̃p, k̃d, k̃i) a point belonging to a stability crossing surface and lets= iiiω̃, ω̃ > 0 be the
corresponding imaginary zero of the characteristic equation. Let x = (xp,xd,xi) be a unit

vector that is not tangent to the surface. Let us also use the following notation
−→
k = (kp,kd,ki)

and
−→
k∗ = (k̃p, k̃d, k̃i).

Proposition 7.4. A pair of zeros of(7.5) moves from the left half complex plane (LHP) to
the right half complex plane (RHP) as(kp,kd,ki) moves from one side of a stability crossing
surface to the other side through(k̃p, k̃d, k̃i) in the direction ofx if

ℜ
(

∂s
∂kp

xp+
∂s
∂kd

xd+
∂s
∂ki

xi

)∣∣∣∣
s= jω̃,

−→
k =

−→
k∗
> 0. (7.13)

The crossing is from the RHP to the LHP if the inequality(7.13)is reversed.

Proof. The proof follows directly from the fact that the derivativeof the implicit functions
along the direction given byx in the point(k̃p, k̃d, k̃i) is

ds
dx

∣∣∣∣
(k̃p,̃kd ,̃ki)

=

(
∂s
∂kp

xp+
∂s
∂kd

xd+
∂s
∂ki

xi

)

(k̃p,̃kd ,̃ki)

Thus the real part of the previous directional derivative iscomputed as the right part of (7.13)

7.3 Illustrative Examples

In order to illustrate the previous results, in the sequel wepresent several numerical examples
borrowed from the literature.

PID Stabilization Problem

Example 7.1. Consider the PID stabilization problem of the following non-minimal phase
system [112]:

G(s) =
s3−4s2+s+2

s5+8s4+32s3+46s2+46s+17
e−s. (7.14)

Now, in order to apply Proposition 7.2 we plot k′
p(ω), obtaining:

Next, based on Fig.7.1 theωi ’s values are summarized in Table 7.1.

ω0 ω1 ω2 ω3 ω4 ω5 ω6 · · ·
ω ≈ 0 0.8542 1.9233 3.5050 5.572 8.019 10.730 · · ·
kp(ωi) −8.5 4.6332 −6.610 −29.27 59.433 −108.5 177.45 · · ·

Table 7.1:Solution ofk′p (ω) = 0, for the system (7.14).

Now, based on the results showed in Table 7.1, we apply Proposition 7.2, obtaining the
kp− intervalsK±

ℓ that are summarized in Table 7.2.

The interval containing the stabilizable parameters isK+
1 = (−6.6109,4.63329), and the

stability region computed is depicted in Fig.7.2.
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Figure 7.1:Intersections ofk′p (ω) and 0 for the example (7.14).

i = 1 2 3 · · ·
K+

i (−6.6109,4.63329) (4.63329,59.4333) (59.4333,177.4514) · · ·
K−

i (−8.5,−6.6109) (−29.2746,−8.5) (−108.5780,−29.2746) · · ·
Table 7.2: Thekp−interval for the system (7.14).
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0123456
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Figure 7.2:Stabilizing set of(kp,kd,ki) for the system (7.14).

Example 7.2(Non-Minimal Phase System). Consider now the PID control for a non-minimal
phase plant described by the following transfer function [8]:

G(s) =
−s4−7s3−2s+1

(s+1)(s+2)(s+3)(s+4)(s2+s+1)
e−

1
20s. (7.15)

In order to apply Proposition 7.2 we plot k′p(ω), obtaining Fig.7.3. Where theωi ’s values are
summarized in the Table 7.3. Based on the results given in Table 7.3, we apply Proposition

ω0 ω1 ω2 ω3 ω4 ω5 · · ·
ω ≈ 0 0.511222 0.714606 1.64704 23.236 73.7516 · · ·
kp(ωi) −24 4.68073 −3.76712 6.06932 −294.211 4786.59 · · ·

Table 7.3:Solution ofk′p (ω) = 0, for the system (7.15).

7.2, obtaining the kp−intervals summarized in Table 7.4. For this example, we found that the
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Figure 7.3:Intersections ofk′p (ω) and 0 for the example (7.15).

i = 1 2 3 · · ·
K+

i (−3.76712,4.68073) (4.68073,6.06932) (6.06932,4786.59) · · ·
K−

i (−24,−3.76712) (−294.21,−24) (−16704.7,−294.21) · · ·
Table 7.4:Thekp−interval for the system (7.15).

stability interval are given byK−
1 , K+

1 andK+
2 . However, it is interesting to note that these

interval possess different characteristics, that are illustrated in the following figures.

The complete stability regionK=K−
1 ∪K+

1 ∪K+
2 is depicted in Fig.7.5.

Example 7.3(unstable, non-minimal phase system). Consider the following plant:

G(s) =
s−2

s2− 1
2s+ 13

4

e−
1
2s. (7.16)

The interest in the analysis of this system remains in the fact that the closed-loop plant be-
comes a system of Neutral-Type.

Now, as in the above examples we proceed to plot k′
p(ω), obtaining Fig.7.16

The mainωi values are summarized in Table7.5.

ω0 ω1 ω2 ω3 ω4 ω5 ω6 · · ·
ω ≈ 0 1.70834 4.73632 10.1297 16.1451 22.3063 28.5204 · · ·
kp(ωi) 1.625 0.325953 3.26132 −9.42698 15.7038 −21.9869 28.2706 · · ·

Table 7.5:Solution ofk′p (ω) = 0, for the system (7.16).

Based in the results of Table7.5, we obtain the mean kp−intervals summarized in Table7.6.

1 2 3 · · ·
K+

i (−9.42698,0.325953) (0.325953,1.625) (1.625,3.26132) · · ·
K−

i (−21.9869,−9.42698) (−34.5543,−21.9869) (−47.1214,−34.5543) · · ·
Table 7.6:Thekp−interval for the system (7.16).

For this example,K+
2 is the interval containing the stabilizable parameters andthe stabil-

ity region is depicted in Fig.7.7.
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Figure 7.4:The PID stability region forkp ∈ [−5,5]. (Upper-Left) One stable region, forK−
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Right) Two separated stable regions, forK+
1 . (Lower) One stable region, forK+
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Figure 7.5: The PID stability region for the system (7.15).
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Figure 7.7: The PID stability region of Neutral-Type .

Stability crossing boundaries classification

Now, in order to illustrate the proposed boundaries classification, we consider the follow-
ing example:

Example 7.4.Lets consider again the same plant given in Example 7.2, i.e.,

G(s) =
s3−4s2+s+2

s5+8s4+32s3+46s2+46s+17
e−s.

By choosing the rectangle:0≤ kp ≤ 5, −12≤ ki ≤ 5, 0≤ kd ≤ 10, the table 7.4 summa-
rizes some of the cases cited above.
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Figure 7.8: Boundary classification for the system (7.15). (Upper-Left) Classification of Type 1.
(Upper-Right) Classification of Type 2. (Lower) Classification of Type 3

Interval Classification

[0.37823,3.16356] Type 11

[0.37823,0.89290] Type 12

[0.37823,0.41294] Type 13

[0.89290,3.16356] Type 21

[0.41294,3.16356] Type 31

[0.41294,0.89290] Type 32

Table 7.7: Classification intervals type for the systems (7.15).

8 Fragility Analysis for Low-Order Controllers

Tuning and designing PI/PD/PID controllers is an active research area that has attracted the
attention of many researchers during the last decades. A long list of PI, PD and PID tuning
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methods for controlling processes can be found in [109, 5]. As mentioned by [3], such con-
trollers have to be designed by considering: (a)performancecriteria; (b) robustnessissues
and, finally, (c)fragility. Roughly speaking, a controller for which the closed-loop system is
destabilized by small perturbations in the controller parameters is called“fragile" . In other
words, the fragility describes the deterioration of closed-loop stability due to small variations
of the controller parameters.

It is a common assumption in the design of a controller that such a controller can be im-
plemented exactly. This assumption is to some extend valid,since clearly, plant uncertainties
are the most important source of uncertainty in the control system, whilst controller are im-
plemented with high-precision hardware. However, there will inevitably be some amount of
uncertainty in the controller, a fact that is sometimes ignored in advanced robust control de-
sign. If the controller is implemented by analogue means, there are some tolerances in the
analogue components. More commonly, the controller will beimplemented digitally. Subse-
quently, there will be some rounding of the controller parameters. Where for reasons of cost
and execution speed, the implementation is with fixed point rather than floating point proces-
sors, there will be increased uncertainty in the controllerparameters due to the finite word
length and further uncertainty due to rounding errors in numerical computations [134].

Despite of the preceding arguments, we can still ask: How important could be to consider,
for example,

(
k∗p,k

∗
d,k

∗
i

)
+∆, instead of

(
k∗p,k

∗
d,k

∗
i

)
? (in the case of a PID setting), for some

‖∆‖ ≪ 1. Obviously, such answer depends on the system to be considered. Then, in order to
motivate such analysis, consider the following example:

Example 8.1.Consider the following plant:

117187.5
s2+4.5931s+2.1486

e−0.24s,

with a classical PI controller K(s) = k
(

1+ 1
Tis

)
. In this case, for a PI-controller(k,Ti) =

(0.00012,2.4) his dynamical behavior is illustrated in Fig.8.1.
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Figure 8.1: Step response curve for(k,Ti) = (0.00012,2.4) .

Now, if instead of the above controller we consider the perturbed controller parameters(
k̃,Ti

)
= (0.00018,2.4), we obtain the dynamical behavior depicted in Fig.8.2.
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Figure 8.2: Step response curve for
(

k̃,Ti

)
= (0.00018,2.4) .

From the above figures, we can appreciate how the dynamics switch from stability to in-
stability for a very small controller parameter perturbation.

Motivated by the above discussion, in this chapter we propose asimple algorithmto ana-
lyze the fragility of a given low-order controller. More precisely, we will consider the fragility
analysis for a Proportional Controller, PI-PD Controller and a PID-Controller. As in the previ-
ous chapters, the proposed method is based on theImplicit Function Theorem[42] and related
properties, and requires three “ingredients”:

(i) the construction of thestability crossing boundaries (surfaces)in the parameter-space
defined by "P" (proportional), "I" (integral) and "D" (derivative) gains,

(ii) the explicit computation of the crossing direction (towards stability or instability) when
such a surface is traversed,

(iii) finally, the explicit computation of the distance of some point to the closest stability
crossing boundaries.

8.1 Problem Formulation

For the sake of brevity, let us consider now the class ofstrictly properSISO open-loop systems
with I/O delays given by the transfer function:

G(s) :=
P(s)
Q(s)

e−sτ = cT (sIn−A)−1be−sτ , (8.1)

where
(
A,b,cT

)
is a state-space representation of the open-loop system. The control law is of

PI, PD or PID-type with the following transfer functions:




PI controller: K (s) = kp+
ki

s
;

PD controller: K (s) = kp+kds;

PID controller: K (s) = kp+kds+
ki

s
.

(8.2)
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Denote its control parameters by
−→
k , i.e., if K(s) is a PI controller, then

−→
k = (kp,ki). As

mentioned in the Introduction, the aim of this chapter is to compute the maximum controller
parameters deviation without loosing the closed-loop stability. In other words, given the pa-
rameters

−→
k∗ such that the roots of the closed-loop characteristic equation:

Q(s)+P(s)K (s)e−sτ = 0, (8.3)

are located inC− (that is the closed-loop system is asymptotically stable),find the maximum
parameter deviation d∈ R+ such that the roots of (8.3) stay located inC− for all controllers−→
k satisfying: ∥∥∥−→k −

−→
k∗
∥∥∥< d.

This problem can be more generally reformulated as:find the maximum parameter deviation
d such that the number of unstable roots of (8.3) remains unchanged.

8.2 Fragility Analysis of PI-PD Controller

Based on the geometric approach presented in the previous chapter, we present now a simple
and user-friendly approach not only to analyze the fragility of PI or PD controllers, but also to
provide practical guidelines for the design ofnon-fragilePI or PD controllers. The proposed
methodology is illustrated by analyzing several examples encountered in the control literature.

8.2.1 Fragility Analysis of PI-Controllers

Consider thePI fragility problem, that is the problem of computing the maximum controller
parameters deviation without losing the closed-loop stability, that is given the pair of param-
eters(k∗p,k

∗
i ) such that the roots of the equation:

Q(s)+P(s)
(

k∗p+
k∗i
s

)
e−sτ = 0, (8.4)

are located inC− (that is the closed-loop system is asymptotically stable),find the maximum
parameter deviationdpi ∈R+ such that the roots of (8.4) stay located inC− for all controllers
(kp,ki) satisfying: √

(kp−k∗p)2+(ki −k∗i )
2 < dpi.

First, let us introduce some notation:

T =
N⋃

l=1

Tl , Tl =
{
(kp,ki)

∣∣ω ∈ Ωl
}

−−→
k(ω) = (kp(ω),ki(ω))T ,

−→
k∗ =

(
k∗p,k

∗
i

)T

Let us also denotedT = minl∈{1,...,N}dl , where

dl = min
{√

(kp−k∗p)2+(ki −k∗i )
2 | (kp,ki) ∈ Tl

}

With the notation and the results above, we have:
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Proposition 8.1.The maximum parameter deviation from(k∗p,k
∗
i ), without changing the num-

ber of unstable roots of the closed-loop equation(8.4)can be expressed as:

dpi = min

{
|k∗i |, min

ω∈Ω fpi

{∥∥∥
−−→
k(ω)−

−→
k∗
∥∥∥
}}

, (8.5)

whereΩ fpi is the set of roots of the function fpi : R+ 7→R,

fpi (ω) ,

〈(−−−→
k(ω)−

−→
k∗
)
,
d
−−−→
k(ω)

dω

〉
. (8.6)

Proof. We consider that the pair(k∗p,k
∗
i ) belongs to a region generated by the crossing curves.

Since the number of unstable roots changes only when(kp,ki) get out of this region, our
objective is to compute the distance between(k∗p,k

∗
i ) and the boundary of the region. Further-

more, the boundary of such a region consists of “pieces”of crossing curves and possibly one
segment of thekp axis. In order to compute the distance between(k∗p,k

∗
i ) and a crossing curve

we only need to identify the points where the vector(kp−k∗p,ki −k∗i ) and the tangent to the
curve are orthogonal. In other words we have to find the solutions of

fpi(ω) = 0,

where fpi is defined by (8.6). Taking into account the relation (3.3) (with α = kp andβ = ki)
we may write (8.6) as

fpi (·) =
(
kp−k∗p

)
(R1I0−R0I1)+(ki −k∗i )(R0I2−R2I0) .

It is noteworthy thatfpi(ω) is a polynomial function and, therefore, it will have afinitenumber
of roots. Let us consider{ω1, . . . ,ωM} the set of all the roots offpi(ω) when we take into
account all the pieces of crossing curves belonging to the region around(k∗p,k

∗
i ). Since the

distance from(k∗p,k
∗
i ) to thekp(ω) axis is given by|k∗i |, one obtains:

dpi = min

{
|k∗i |, min

ℓ={1,...,M}

{∥∥∥
−−−→
k(ωℓ)−

−→
k∗
∥∥∥
}}

,

that is just another way to express (8.5).

The explicit computation of the maximum parameter deviation d can be summarized by
the following algorithm:

Algorithm 8.1 (PI-Fragility Algorithm).
Step 1: First, compute the “degenerate" points of each curveTl (i.e. the roots of R1I2 −

R2I1 = 0 and the multiple solutions of(8.4)).

Step 2: Second, compute the setΩ fpi defined by Proposition 8.1 (i.e. the roots of equation
fpi(ω) = 0, where fpi is given by (8.6)).

Step 3: Finally, the corresponding maximum parameter deviation dl is defined by (8.5).

Remark 8.1(On the gains’ optimization). It is worth mentioning that the geometric argument
above can be easily used for solving otherrobustness problems. Thus, for instance, if one of
the controller’s parameters is fixed (prescribed), we can also explicitly compute themaximum
interval guaranteeing closed-loop stability with respectto the other parameter. In particular
if Ti (“integral") is fixed, we can derive the corresponding stabilizing maximum gain interval.
This gives a different insight to the results proposed by [113, 130] by using the small-gain
theorem (see, for instance, the illustrative examples below).
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8.2.2 Illustrative Examples

Example 8.2(Chemical Process). Consider the problem of controlling a continuous stirred
tank reactor (CSTR) as in Fig.8.3 with the numerical values taken from [57] (see, e.g., [65,
125] for more details on CSTR). The goal is to control the reactor composition by manip-
ulating the cool rate through the control signal u. Without getting into details, the transfer
function of the system has the form:

Hyu(s) =− 1.308
(13.515s+1)(6.241s+1)

e−4.896s. (8.7)

The use of a PI-controller leads to:

H(s;kp,ki) = (13.515s+1)(6.241s+1)−1.308

(
kp+

ki

s

)
e−4.896s. (8.8)

The system (8.8) has one stability region plotted in Fig.8.4.

Figure 8.3: A CSTR control system

Next, we will study the fragility of PI-setting for some of the PI controllers proposed in the
literature:

• Huang-Chou-Wuang[57]:(k∗p =−1.6881,k∗i =−0.0732);

• Hwang[60]: (k∗p =−1.2173,k∗i =−0.0529);

• Chao-Lin-Guu-Chang[18]:(k∗p =−1.1294,k∗i =−0.0387);

• Ziegler-Nichols[138]:(k∗p =−1.4702,k∗i =−0.0601).

By applying Proposition 8.1, the derived results are summarized in Table 8.1 and illustrated
in the Fig.8.5.

Example 8.3 (A TCP/AQM network model). Consider the fluid-flow model introduced
by [52] for describing the behavior of TCP/AQM networks and subject to PI controllers.
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Figure 8.4: The boundary of the stability region in the
(
kp,ki

)
parameters space for the system

(8.7)

ω dT min{dT ,k∗i }
Huang-Chou-Wang 0.1387 0.1114 0.0732
Hwang 0.1225 0.1202 0.0529
Chao-Lin-Guu-Chang 0.1194 0.1308 0.0387
Ziegler-Nichols 0.1323 0.1210 0.0601
Optimal Non-Fragile 0.1405 0.0925. . . 0.0925. . .

Table 8.1:PI fragility comparison for the system (8.7)

Figure 8.5: The maximum parameter deviation without losingstability for the system (8.7),
where the Optimal Non-Fragile controller is given byk∗p = −1.7420542840243. . . andk∗i =
−0.09250851510052. . .

As mentioned by [88], the stability of the linearized closed-loop system reduces to the root
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location of H(s,kp,ki,τ ) :=

s2+
1
τ
(
1+

n
τc

)
s+

2n
τ 3c

+
[ n

τ 2c
s+

c2

2n

(
kp+

ki

s

)]
e−τs= 0 (8.9)

Here, n denotes the load factor (number of TCP sessions),τ the round-trip time (seconds) and
c the link capacity (packets/sec). The crossing curves are given by:

kp =
2n
c2

[(
ω2− 2n

τ 3c

)
cos(ωτ)+

ω
τ

(
1+

n
τc

)
sin(ωτ)

]

ki =
2nω
c2

[
ω
τ

(
1+

n
τc

)
cos(ωτ)+

(
2n
τ 3c

−ω2
)

sin(ωτ)+
nω
τ 2c

]

Considering the same network parameters as in [52, 88] (n= 60, c= 3750, τ = 0.246) and
applying Proposition 3.1 we get that all the crossing directions are towards instability. Fur-
thermore, we haveonly one stability region. Consider now some of the controllers proposed
in the literature:

• Melchor-Niculescu[88]:(k∗p = 9.1044×10−5,k∗i = 6.8×10−5);

• Hollot-Misra-Towsley-Gong[52]:(k∗p = 1.8485×10−5,k∗i = 9.7749×10−6);

• Üstebay-Özbay[129]:(k∗p = 3.5252×10−5,k∗i = 8.9564×10−6);

• Ziegler-Nichols[138]:(k∗p = 7.4401×10−5,k∗i = 5.7057×10−5);

• Huang-Chou-Wang[57]:(k∗p = 10.0011×10−5,k∗i = 6.4880×10−5).

The results are briefly outlined in the table 8.2 and illustrated in Fig.8.6.

ω dT min
{

dTl , |k∗i |
}

[
×10−5

] [
×10−5

]

Melchor ω1 = 1.76 dT1 = 6.74
and ω2 = 2.75 dT2 = 8.78 6.7410

Niculescu ω3 = 3.49 dT3 = 6.82
Hollot-Misra ω1 = 0.72 dT1 = 3.00

and ω2 = 3.00 dT2 = 17.0 0.9774
Towsley-Gong ω3 = 3.69 dT2 = 15.6

Üstebay ω1 = 0.81 dT1 = 4.56
and ω2 = 2.93 dT2 = 16.2 0.8956

Özbay ω3 = 3.72 dT3 = 14.0
Ziegler ω1 = 1.55 dT1 = 5.89

and ω2 = 2.85 dT2 = 10.2 5.7057
Nichols ω3 = 3.52 dT3 = 8.77
Huang ω1 = 1.79 dT1 = 7.65

Chou and ω2 = 2.68 dT2 = 9.07 6.1094
Wang ω3 = 3.53 dT3 = 6.10

Table 8.2:PI-fragility comparison for the characteristic equation (8.9)
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Figure 8.6: Fragility comparison of the PI-controllers forthe system

Remark 8.2. As mentioned in the previous chapter, it is also possible to solve the following
problem – given a fixed integral (gain) parameter Ti = kp/ki , find theoptimalinterval for the
gain (integral) parameter kp = k, such that, the resulting closed-loop system is stable forall
gain (integral) parameters In this case, it is sufficient to find the “mid-point" of the maximal
interval which belong to the stability region. Reconsider the previous controllers:

• “optimal" gain (Hollot-Misra-Towsley-Gong): k= 7.91×10−5;

• “optimal" gain (Üstebay-Özbay): k= 8.56×10−5;

• “optimal" gain (Melchor-Niculescu): k= 7.34×10−5

It is easy to see that the controller proposed by Üstebay-Özbay is “closer" to the “non-fragile"
one than Hollot-Misra-Towsley-Gong. The above results arealso depicted in Fig.8.7

Figure 8.7: Gain fragility comparison of the PI-controllers for the system (8.9)



106 FRAGILITY ANALYSIS FOR LOW-ORDER CONTROLLERS

Example 8.4(Fourth-order process). Consider a fourth-order, non-minimum-phase and un-
stable open-loop system, with the transfer function:

Hyu(s) =
(−1.3s+3)e−2.8s

0.2s4−0.08s3+1.345s2−0.4s+1.725
. (8.10)

Similarly to the previous cases, the problem reduces to the analysis of equation:

0.2s4−0.08s3+1.345s2−0.4s+1.725+(−1.3s+3)

(
kp+

ki

s

)
e−2.8s = 0 (8.11)

The “optimal”non-fragile PI-controller for the system (8.10) is given by(k∗p,k
∗
i ) =

Figure 8.8: The stability crossing curves for the dynamic system (8.10), the boundary of the
stability region (shadowed region) in the(kp,ki) parameters space and the maximum parame-
ter deviation without loosing stability.

(0.1149. . . ,0.0778. . .) (see also Table 8.3 and Fig.8.8):

Frequency dTl |k∗i | min{dT , |k∗i |}
ω1 = 1.2311
ω2 = 1.2422
ω3 = 1.3232
ω4 = 1.5556
ω5 = 1.7025

0.0313616
0.0313627
0.0311658
0.0400741
0.0311658

0.077849 0.0311658

Table 8.3: Parameters deviation results without loosing the stability.

8.2.3 Fragility Analysis of PD-Controllers

Consider now the PD fragility problem, which is the problem of computing the maximum
controller parameters deviation without loosing the closed-loop stability, that is given the pair
of parameters (k∗p, k∗d) such that the roots of the characteristic equation:

Q(s)+P(s)(kp+kds)e−sτ = 0, (8.12)



8.2 -Fragility Analysis of PI-PD Controller 107

are located inC− (that is the closed-loop system is asymptotically stable),find the maximum
parameter deviationdpd∈R+ such that the roots of (8.12) stay located inC− for all controllers
(k∗p, k∗d) satisfying: √(

kp−k∗p
)2

+
(
kd−k∗d

)2
< dpd. (8.13)

In order of presenting the main result, lets consider the following notations:

T =
N⋃

l=1

Tl , T = {(kp,kd)|ω ∈ Ωl}, (8.14)

−−→
k(ω) = (kp(ω),kd(ω))T ,

−→
k∗ = (k∗p,k

∗
d)

T . (8.15)

Let us also denotedT = min
l∈{1,...,N}

dl , where:

dl = min
{√

(kp−k∗p)2+(kd−k∗d)
2|(kp,kd) ∈ Tl

}
. (8.16)

With the notation and the results above, we have:

Proposition 8.2.The maximum parameter deviation from
(
k∗p,k

∗
d

)
, without changing the num-

ber of unstable roots of the closed-loop characteristic equation (8.12)can be expressed as:

dpd = min

{
kd∞, |k∗p−kp(0)|, min

ω∈Ω fpd

{∥∥∥
−−→
k(ω)−

−→
k∗
∥∥∥
}}

, (8.17)

where

kd∞ :=

{
min

{∣∣∣k∗d−
∣∣∣ qn

pm

∣∣∣
∣∣∣ ,
∣∣∣k∗d+

∣∣∣ qn
pm

∣∣∣
∣∣∣
}

if m= n−1

/0 if m< n−1

andΩ fpd is the set of roots of the functionfpd : R+ 7→ R,

fpd(ω),
〈
(
−−→
k(ω)−

−→
k∗
)
,
d
−−→
k(ω)

dω

〉
. (8.18)

Proof. We consider first that the pair(k∗p,k
∗
d) belongs to some region generated by the crossing

curves. Since the number of unstable roots changes only when(kp,kd) get out of this region,
our objective is to compute the distance between(k∗p,k

∗
d) and the boundary of the region. Now,

if degQ(s) = degP(s)+1 (i.e., we have a neutral-type system) it is well known [48] that the
system possesses a neutral chain that asymptotically approach the vertical line

ℜ (s) =
1
τ

ln

(∣∣∣∣
kdpn−1

qn

∣∣∣∣
)
, (8.19)

implying that |kd| <
∣∣∣ qn

pn−1

∣∣∣ must be considered. As a consequence, the boundary of such a

region consists of "pieces" of crossing curves and possiblya segment of the shifted axiskp+∣∣∣ qn
pn−1

∣∣∣ or kp+
∣∣∣ qn

pn−1

∣∣∣ for a neutral-type system, and a segment of the shifted axiskd+kp(0). In

order to compute the distance between(k∗p,k
∗
d) and a crossing curve we only need to identify
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the points where the vector(kp−k∗p,kd−k∗d) and the tangent to the boundaries are orthogonal.
In other words, we have to find the solutions of:

fpd(ω) = 0,

wherefpd is defined by (8.18). Taking into account the relation (3.3) (with α = kp andβ = kd)
we may write (8.18) as:

fpd(·) = (kp−k∗p)(R1I0−R0I1)− (kd−k∗d)(R0I2−R2I0). (8.20)

It is worth mentioning that the stability region is defined in(ω,ω) and, therefore, (8.18) will
have a finite number of roots. Let us consider{ω1, . . . ,ωM} the set of all the roots offpd(ω)
when we take into account all the pieces of crossing curves belonging to the region around
(k∗p,k

∗
d). Since the distance from(k∗p,k

∗
d) to the shifted axiskd+kp(0) is given by|k∗p−kp(0)|

and the minimal distance from(k∗p,k
∗
d) to the shifted axiskp+

∣∣∣ qn
pn−1

∣∣∣ or kp+
∣∣∣ qn

pn−1

∣∣∣ (for a

neutral-type system), is given bykd∞ one obtains that

dpd = min

{
kd∞, |k∗p−kp(0)|, min

ℓ=1,...,M

{∥∥∥
−−−→
k(ωℓ)−

−→
k∗
∥∥∥
}}

, (8.21)

which are just another way to express (8.17).

The explicit computation of the maximum parameter deviation dpd can be summarized by
the following algorithm:

Algorithm 8.2 (PD-Fragility Algorithm).

Step 1: First, compute the “degenerate" points of each curveTl (i.e. the roots of R1I2 −
R2I1 = 0 and the multiple solutions of(8.12)).

Step 2: Second, compute the setΩ fpd defined by Proposition 8.2 (i.e. the roots of equation
fpd(ω) = 0, where fpd is given by (8.18)).

Step 3: Finally, the corresponding maximum parameter deviation dpd is defined by(8.17).

8.2.4 Illustrative Examples

In order to illustrate the previous result, consider now thefollowing example.

Example 8.5(Gantry crane). For this example we have chosen a gantry crane model with a
time delay of 2 seconds used as slave robot in a teleoperationsystem [34]:

g(s) =
40s2+2s+400

200s3+30s2+2401s+200
e−2s. (8.22)

According toProposition8.2, we present the corresponding crossing curves for(8.22) in
Fig.8.9 .

After applying the proposed algorithm to analyze the fragility for the controller(k∗p,k
∗
d) =

(3.25,1.65), we summarize the obtained results in table 8.4.

Figure 8.10 illustrate the stability region for the system(8.22) as well as the maximum
parameter deviation for the proposed controller(k∗p,k

∗
d).
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Figure 8.9: Corresponding crossing curves for (8.22).

Figure 8.10: Stability region ofkp andkd for (8.22).k∗p = 3.25,k∗d = 1.65,d = 2.345980.

Frequency dTl kd∞
∣∣k∗p−kp(0)

∣∣ min
{

dT ,kd∞,kp0
}

ω1 = 0.9017 2.3459

3.35 3.75 2.34598084836201

ω2 = 2.7292 23.0540
ω3 = 2.8228 23.0158
ω4 = 3.1625 203.161
ω5 = 3.5744 2.8603
ω6 = 4.1134 10.6317
ω7 = 4.6386 2.4229
ω8 = 5.5736 28.3525
ω9 = 6.3485 6.2916

ω10 = 7.1127 30.5030
ω11 = 7.8169 3.13656

Table 8.4: Parameters deviation results without losing thestability for system (8.22).
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Figure 8.11: Inverted Pendulum

Example 8.6(Inverted Pendulum). The linearized dynamics of a normalized inverted pendu-
lum with delayed input (τ = 1/2) can be represented by the following transfer function:

g(s) =
1

s2−1
e−

1
2s, (8.23)

where the input is acceleration of the pivot and the output isthe pendulum angleθ, as show
in Fig.8.11. Now, after applying Proposition 8.2 we obtain the crossing curves depicted in
Fig.8.13.
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Figure 8.12: Corresponding crossing curves for (8.23)

Next, in order to analyze the fragility for the PD controller
(
k∗p,k

∗
d

)
= (2.70207,2.12879),

we apply the proposed Algorithm 8.2, we obtain the results summarized in Table 8.5. Figure
8.13 illustrate the stability region for the system(8.23)as well as the maximum parameter
deviation for the proposed controller(k∗p,k

∗
d).

In all the above examples that we have seen, the systems possesses at most one stability
region. However according toRemark5.4 it is possible to have multi-stability regions if
turning points exists. Then, in order to illustrate such statement consider the next example.
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Frequency dTl kd∞
∣∣k∗p−kp(0)

∣∣ min
{

dT ,kd∞,kp0
}

ω1 = 1.641505 0.823298
ω2 = 2.019206 0.851033
ω3 = 2.509846 0.759900 1.70207 0.759900
ω4 = 7.298481 49.60874
ω5 = 9.460565 11.69581

Table 8.5: Parameters deviation results without losing thestability for system (8.22).
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Figure 8.13: Stability region ofkp andkd for (8.23).

Example 8.7(multi-stability regions). Consider the sixth-order unstable open-loop system,
with transfer function:

G(s) =
s5+16s4+152s3+824s2+2788s+4624

s6+27s5+ 619
4 s4+ 1273

4 s3+ 1845
4 s2− 325

4 s−125
e−

1
15s. (8.24)

Applying Proposition 8.2 we obtain the crossing curves depicted in Fig.8.14. Then, in order
to analyze the fragility for the PD controller

(
k∗p,k

∗
d

)
= (27.5,0.25), we apply the proposed

Algorithm 8.2, we obtain the results summarized in Table 8.6. Figure 8.15 illustrate the multi-

Frequency dTl kd∞
∣∣k∗p−kp(0)

∣∣ min
{

dT ,kd∞,kp0
}

ω1 = 7.008604 3.041536
ω2 = 11.99477 9.871934
ω3 = 20.86991 0.942710
ω4 = 31.82475 9.807249 0.75 27.472967 0.66579911198
ω5 = 41.10371 0.665799
ω6 = 75.43110 104.7725
ω7 = 99.93986 1.235575

Table 8.6: Parameters deviation results without losing thestability for system (8.24).

stability region for the system(8.24) as well as the maximum parameter deviation for the
proposed controller(k∗p,k

∗
d).
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Figure 8.14: Corresponding crossing curves for (8.24)

Figure 8.15: Multi-stability region for (8.24).

8.3 PID Controller Fragility Analysis

Finally, in the rest of this chapter we will consider thePID fragility problem, that is the prob-
lem of computing the maximum controller parameters deviation without loosing the closed-
loop stability. In other words, given the parameters(k∗p,k

∗
d,k

∗
i ) such that the roots of the

closed-loop characteristic equation:

Q(s)+P(s)
(

k∗p+k∗ds+
k∗i
s

)
e−sτ = 0, (8.25)

are located inC− (that is the closed-loop system is asymptotically stable),find the maximum
parameter deviationd ∈ R+ such that the roots of (8.25) stay located inC− for all controllers
(kp,kd,ki) satisfying:

√
(kp−k∗p)2+(kd−k∗d)

2+(ki −k∗i )
2 < d.
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First as in the previous section, let us introduce some notations,

T =
N⋃

l=1

Tl , Tl =
{
(kp,kd,ki)

∣∣ω ∈ Ωl
}
,

−−→
k(ω) = (kp(ω),kd(ω),ki(ω))T ,

−→
k∗ =

(
k∗p,k

∗
d,k

∗
i

)T
.

Let us also denotedT = min
l∈{1,...,N}

dl , where

dl= min
(kp,kd,ki)∈Tl

{√
(kp−k∗p)2+(kd−k∗d)

2+(ki −k∗i )
2
}
.

Finally, observe that for a fixedω∗ ∈ R+ the second equation in (7.7) describes a line in the
(kd,ki)−plane. This observation motivates the following definition:

Lℓ (ωℓ) := ωℓkd−ki +ωℓℑ
(

Q(iiiωℓ)

P(iiiωℓ)
eiiiωℓτ

)
.

In order to present the PID fragility algorithm the following result will be needed. Let
kp = k∗p ∈ R be fixed, we have the following:

Proposition 8.3.The maximum parameter deviation from(k∗d,k
∗
i ), without changing the num-

ber of unstable roots of the closed-loop equation(8.25)can be expressed as:

d∗
di=min



|k

∗
i |, min

ωℓ∈Ωk∗p





∣∣∣∣∣∣

ω2
ℓ k∗d−k∗i +ωℓℑ

{
Q( jωℓ)
P( jωℓ)

ejωℓτ
}

√
(ωℓ)4+1

∣∣∣∣∣∣







, (8.26)

whereΩk∗p is the set of roots of the function fk∗p : R×R+ 7→ R,

fk∗p
(
k∗p,ω

)
, k∗p+ ℜ

{
Q( jω)

P( jω)
ejωτ

}
. (8.27)

Proof. Let the pair(k∗d,k
∗
i ) be inside of a polygonL formed by the set of linesLℓ(ωℓ) with

ℓ∈ {1,2, . . . ,N}. Then, for eachLℓ(ωℓ), the associated perpendicular line passing through the
points(k∗d,k

∗
i ) will be given by:

Lp
ℓ (ωℓ) =− 1

ω2
ℓ

kd +

(
ω2
ℓ k∗i +k∗d

ω2
ℓ

)
,

more over, the intersection points(kd,ki) of Lp
ℓ (ωℓ) with Lℓ(ωℓ) are given by:

[
kd

ki

]
=




ω2
ℓ k∗i +k∗d−ω3

ℓ ℑ {G−1(ωℓ)}
1+ω4

ℓ

ω2
ℓ (ω2

ℓ k∗i +k∗d)+ωℓℑ {G−1(ωℓ)}
1+ω4

ℓ


 .

Then, it is clear to see, that the distance from the point
(
k∗d,k

∗
i

)
to Lℓ(ωℓ) is√(

k∗d−kd
)2

+
(
k∗i −ki

)2
, which is precisely given by the second argument of (8.26). Fi-

nally, according toRemark7.3, we know thatki = 0 belongs to the boundary set, since the
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distance from(k∗d,k
∗
i ) to thekd−axis is given by|k∗i |, we have that the minimum distance from

(k∗d,k
∗
i ) to the boundary ofL is equal to:

d∗
di = min



|k∗i |, min

ℓ∈{1,...,N}





∣∣∣∣∣∣

ω2
ℓ k∗d −k∗i +ωℓℑ

{
Q( jωℓ)
P( jωℓ)

ejωℓτ
}

√
(ωℓ)4+1

∣∣∣∣∣∣







 ,

which is equivalent to (8.26).

Remark 8.3. Observe that (8.27) has an uncountable number of solutions,however in Propo-
sition 8.3 we have considered the set including the corresponding(k∗d,k

∗
i ) points.

In order to obtain the obtain the PID fragility we present thefollowing:

Algorithm 8.3 (PID-Fragility Algorithm).
• Step 1:Let k∗pid ∈ R3 be fixed. Then, set d= min

{
d∗

pi,d
∗
pd,d

∗
di

}
.

• Step 2:Sweep over allθ ∈
[
−π

2 ,
π
2

]
and compute k∗pθ = k∗p+dsinθ.

• Step 3:Solve fk∗p

(
k∗pθ ,ω

)
= 0 and denote byΩθ the set of solutions.

• Step 4:Compute,

d∗
θ = min

ωℓ∈Ωθ





∣∣∣∣∣∣

(ωℓ)
2k∗d−k∗i +ωℓℑ

{
Q( jωℓ)
P( jωℓ)

ejωℓτ
}

√
(ωℓ)4+1

∣∣∣∣∣∣



 .

• Step 5: If d∗
θ < dcosθ then set d= d∗

θ/cosθ and go to step 2. Otherwise continue to
step 2.

• Step 6: If θ = π
2 , the procedure is finish and d is the PID fragility for the controller(

k∗p,k
∗
d,k

∗
i

)
.

8.3.1 Illustrative Examples

In order to motivate the previous results, we consider in thesequel some numerical examples.

Example 8.8.Consider now the same plant(7.14)as in Example 7.1, i.e.,

G(s) =
s3−4s2+s+2

s5+8s4+32s3+46s2+46s+17
e−s.

Next, in order to illustrate the proposed PID fragility-algorithm, consider
(
k∗p,k

∗
d,k

∗
i

)
=

(2,3,3), leading to the values in Table 8.7 and depicted in Fig.8.16.

Example 8.9.Consider now the plant(7.15)considered in Example 7.2, i.e.,

G(s) =
−s4−7s3−2s+1

(s+1)(s+2)(s+3)(s+4)(s2+s+1)
e−

1
20s

Then, in order to apply the PID fragility-algorithm 8.3, consider
(
k∗p,k

∗
d,k

∗
i

)
= (1,−1,3),

leading to the following results:
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Controller Fragility Initial PID-Fragility(
k∗p,k

∗
d,k

∗
i

)
(PI,PD,DI) PID-Fragility min

{
d∗,d∗

θ
}

d∗
pi = 1.68051

(2,3,3) d∗
pd = 1.33313 d∗ = 1.27520 d∗

θ = 1.26295
d∗

di = 1.27520

Table 8.7: PID fragility for the example (7.14).

Figure 8.16: PID-fragility for the controller
(
k∗p,k

∗
d,k

∗
i

)
= (2,3,3).

Controller Fragility Initial PID-Fragility(
k∗p,k

∗
d,k

∗
i

)
(PI,PD,DI) PID-Fragility min

{
d∗,d∗

θ
}

d∗
pi = 3.00000

(1,−1,3) d∗
pd = 3.38832 d∗ = 3.00000 d∗

θ = 2.98908
d∗

di = 3.00000

Table 8.8: PID fragility for the example (7.15).

Example 8.10(unstable, non-minimal phase system). Finally, in order to analyze a plant of
neutral-type, we consider the plant(7.16)given in Example 7.3, i.e.,

G(s) =
s−2

s2− 1
2s+ 13

4

e−
1
2s.

Now, applying the same procedure as before, and considering
(
k∗p,k

∗
d,k

∗
i

)
=
(

5
8,− 1

10,−2
5

)
we

obtain the results summarized in Table 8.9. Figure 8.18 illustrate such a results.
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Figure 8.17: PID-fragility for the controller
(
k∗p,k

∗
d,k

∗
i

)
= (1,−1,3).

Controller Fragility Initial PID-Fragility(
k∗p,k

∗
d,k

∗
i

)
(PI,PD,DI) PID-Fragility min

{
d∗,d∗

θ
}

d∗
pi = 0.29314(5

8,
−1
10 ,

−2
5

)
d∗

pd = 0.16758 d∗ = 0.16758 d∗
θ = 0.16453

d∗
di = 0.16782

Table 8.9: PID fragility for the example (7.16).

Figure 8.18: PID-fragility for the controller
(
k∗p,k

∗
d,k

∗
i

)
=
(

5
8,− 1

10,−2
5

)
.

8.3.2 Conclusions

In this chapter, a simple geometric-based algorithm is derived for computing the fragility of
PID-controllers. To prove the efficiency of the proposed methods, several illustrative exam-
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ples have been considered. It is important to note that such an idea can be easily extended to
properSISO systems with I/O delays.

Remark 8.4. The results presented in this part has been reported in the literature as follows:

• ThePI Fragility in [89],

• ThePD Analysis and Fragility in [82],

• ThePID Analysis and Fragility in [96].

As mentioned at the beginning of this part, it is worth mentioning that a book chapter [97]
covering all these problems is in preparation and will be published after the thesis defense.
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9 Chain of Integrators

9.1 Introduction

In this chapter, we introduce first the output feedback stabilization problem of a chain of
integrators using multiple delays in the continuous-time case. To this end, we will recall
the properties and results developed byNiculescu and Michiels(2004) [106]. As mentioned
previously, the aim of this chapter is to explore such ideas in the NCS framework, that is
to stabilize a chain of integrators by taking into account the network-induced delaysand the
correspondingsampling period. Although such an idea sounds simple and easy to analyze,
however such a problem was not fully addressed in the controlliterature. For example, [137]
treated the case of a single integrator with one delay block and they derived the stability
regions in the parameter-space defined by the delay and the sampling period and, for higher-
order systems, they suggested the use of simulations in order to approach a solution for the
corresponding stabilization problem. It is well known that, the stability and the performances
of NCS are affected by thenetwork delaysas pointed out by [137], [128]. To overcome such
a problem, several approaches have been proposed and, amongthem we cite: a model-based
method [94] for stability analysis or some optimal controllers when the network-induced delay
is smaller [108] or longer [56] than the sampling period, or finally, a queuing mechanism [17]
used to reshape random NCS delays to deterministic leading to a time-invariant NCS.

In this context, we are interested in deriving closed-loop stability conditions by using the
network-induced delays ascontrol parametersfor the continuous-time process described by
the transfer functionHyu(s) = 1/sn (n≥ 1). The corresponding discrete control law is given
by:

u(t) =−
m

∑
µ=1

kµy
(
ℓh− τµ

)
t ∈ [ℓh+ τm,(ℓ+1)h+ τm) ,

whereℓ is a nonnegative integer and the network-induced delaysτ1 < τ2 < .. . < τm are pos-
itive real numbers. First, considering a small gain value inthe control law we will see that,
similarly to the continuous-time case [106, 70] one delay block (gain, delay) cannot stabilize
a chain ofn integrators, withn≥ 2. The approach is based on the use of the complete regular
splitting (CRS) property of multiple, non-semisimple eigenvalues (see, e.g. [77] and section
2.5 for some prerequisites).

Next, we will explore the cases when multiple delay blocks are able to stabilize the cor-
responding chain of integrators. More precisely, a perturbation theory approach (see, for
instance, [67] or Chapter 2, section 2.5) will allow concluding on the behavior of the char-
acteristic roots of the closed-loop system as a function of some parameters of the system.
We will see (sections 9.7–9.8) that the closed-loop stability can be obtained by usingn de-
lay blocks, but an arbitrary pole placement requires(n+1) delay blocks. In both cases, the
corresponding control law is explicitly derived. In the first case (n delay blocks), the pro-
posed controller leads to some appropriate closed-loop characteristiclacunarypolynomials
(see, e.g. [84]) with nice properties: (a) only one tuning parameter (for improving eventually
other performances in closed-loop), (b) particular behaviors of the roots wrt the variations of
the corresponding parameter.
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9.2 Continuous-Time Systems

As mentioned previously, this chapter is based on the results obtained byNiculescu & Michiels
(2004)[106]. Then, in order to present the mean difference betweenthe continuous-time cases
and the Networked Control System (NCS) case, in the following subsection we will discuss
briefly the characteristics and results of the continuous-time case.

9.2.1 Problem Formulation

Given a chain ofn integrators:
y(n)(t) = u(t). (9.1)

Find (necessary and/or sufficient) conditions on the(2m+1)−tuple(m,ki ,τi), i = 1,m such
that the (output feedback) control law defined by the chain ofm distinct delay block(ki,τi)

u(t) =−
m

∑
i=1

kiy(t − τi) (9.2)

asymptotically stabilize the system (9.1).

9.2.2 Properties and Motivated Examples

The continuous-time control-law, has the following important property:

Property 9.1 (Scaling). The control law

u(t) =−
m

∑
j=1

k jy(t− τ j) (9.3)

is asymptotically stabilizing if and only if

u(t) =−
m

∑
j=1

k j

δny(t−δτ j), δ > 0 (9.4)

is asymptotically stabilizing.

Now, it is clear to see, that system (9.1) can asymptoticallybe stabilized by a feedback
law

u(t) =−q0y(t)−q1y′ (t)−·· ·−qn−1y(n−1) (t) (9.5)

whereq(s) = sn+∑n−1
i=0 qisi is a Hurwitz polynomial. From this observation, the key ideade-

veloped in [106] in order to choose appropriated controllergainski , consists of approximating
the output derivatives in (9.5) with delayed output measurements, for instance,

y′ (t)≈ y(t)−y(t − ε)
ε

(9.6)

for smallε, corresponding to an approximation

s=
1−e−εs

ε
+O(εs2)
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in the frequency domain.
In order to construct a stabilizing controllers, two approaches have been proposed in [106].
Before introducing such a results, lets consider the following Vandermonde matrix

T (τ ) :=




1 τ1 τ 2
1 · · · τ n−1

1
1 τ2 τ 2

2 · · · τ n−1
2

...
...

...
. . .

...
1 τn τ 2

n · · · τ n−1
n


 (9.7)

whereT (τ ) is invertible whenever the delaysτi are all different.

Theorem 9.1(Interpolation Based-Approach). [106] Assume that0≤ τ1 < · · ·< τn and q(s)
a Hurwitz polynomials. Then, the control law

u(t) =−
[

εnq0
εn−1

(−1)q1
2!εn−2

(−1)2 q2 · · · (n−1)!ε
(−1)n−1 qn−1

]
·T (τ )−1




y(t− τ1)
y(t− τ2)

...
y(t− τn)


 (9.8)

achieves asymptotic stability for small values ofε. Asε → 0+, the n rightmost eigenvalues
converge toελi , i = 1,n, withλ i the zeros of q(s).

The following result presents an alternative approach to design a stabilizing feedback law.

Theorem 9.2(Exact Pole Placement Based-Approach). [106] Assume that0≤ τ1 < · · ·< τn

and let T(τ ) be defined by (9.7). Then, the control law

u(t) = (−1)n[ εn nεn−1 · · · n!ε
]
·T (τ )−1




e−ετ1

. . .
e−ετn







y(t − τ1)
...

y(t − τn)


 (9.9)

achieves asymptotic stability for small values ofε. Moreover, there is a closed-loop eigenvalue
at λ = ε with multiplicity n.

Remark 9.1. Observe that the control law based on interpolation or in pole placement will
not necessarily coincide, for example taking q(s) = (s+1)n with the control law (9.8) we get

u(t) =−
[

εn nεn−1

(−1)
n(n−1)εn−2

(−1)2 · · · n!ε
(−1)n−1

]
·T (τ )−1




y(t − τ1)
...

y(t − τn)


 . (9.10)

Clearly, this control law does not coincide with (9.9) because it is based on an asymptotic
approximation of q(s), while (9.9) is based on an exact placement of n eigenvalues.

9.3 Stabilization of A Chain of Integrators in NCS Framework

In the remaining part of the chapter we will focus on the closed-loop stability of a chain of
integrators in a networked-control setting. Similar to thecontinuous-time case, we will see
that a single delay is not sufficient to stabilize a chain having n (n ≥ 2) integrators, but that
n delay-blocks are able to stabilize such a chain without being able to guarantee an arbitrary
pole placement for the corresponding system.
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9.4 Problem Formulation and Motivating Examples

Consider the following chain of integrators system,

y(n) (t) = u(t) t ∈ [ℓh+ τm,(ℓ+1)h+ τm) (9.11)

with a discrete controller given by

u(t) =
m

∑
µ=1

uµ (t) , t ∈ [ℓh+ τm,(ℓ+1)h+ τm) , (9.12)

where the delay-blocks are defined asuµ (t) :=−kµy
(
ℓh− τµ

)
, h∈R+ is the sampling period,

τ is the induced network delay and(d−1)h< τ =: τ1 < τ2 < .. . < τm ≤ dh, for d ∈ N (i.e.,
a positive integer).

9.5 Discretized Delay Case and Some Related Properties

Let h be the sampling period,τ the induced network delay satisfyingτ = (d−1)h+ τ̃ , d ∈
N and letτµ be chosen satisfyingτµ = (d− 1)h+ τ̃µ where 0< τ̃ =: τ̃1 < .. . < τ̃m < h.
Since the control law (9.12) is piecewise constant, then after some algebraic manipulation the
discretized open-loop system can write as (Åström & Wittenmark (1997)) [6]:

x[ℓ+1] = Φ(h)x[ℓ]+
m

∑
µ=1

Γ(0,h− τµ)uµ [ℓ−d+1]+
m

∑
µ=1

Γ(h− τµ ,h)uµ [ℓ−d] , (9.13)

whered ∈ N and:

Φ(h) ,
[
φµν (h)

]n
µ,ν=1 , with φµν (h),





hν−µ

(ν −µ)!
if ν ≥ µ

0 if ν < µ
,(9.14a)

Γ
(
ti, t f

)
,

[
σµ
(
ti, t f

)]n
µ=1 , with σµ

(
ti, t f

)
,

(
t f
)n−µ+1− (ti)

n−µ+1

(n−µ +1)!
. (9.14b)

Define now the augmented state
vector asz[ℓ],

[
xT [ℓ] ,x1 [ℓ−d] ,x1 [ℓ−d+1] , . . . ,x1 [ℓ−1]

]T
wherex1[ℓ] = eT

1 x[ℓ], leading
to the augmented closed-loop system:

z[ℓ+1] = Φ̃(h;k,m)z[ℓ] . (9.15)

Equation (9.13) describes a general situation, that is, when the induced network delay is
larger/smaller than the sampling period. Under these observations, we have:

Remark 9.2 (Smaller delay). Let τ be the induced network delay, such thatτ =: τ1 < · · · <
τm < h. Then, d= 1, τ̃µ = τµ and the transfer matrix of the augmented closed-loop system
rewrites as:

Φ̃(h;k,m),

[
Φ(h)−∆0(k;m)eT

1 ∆1(k;m)
−eT

1 0

]
. (9.16)
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Remark 9.3 (Larger delay). Let τ be the induced network delay and h the sampling period,
such that d> 1.Then,0 < τ̃ =: τ̃1 < · · · < τ̃m < h, and the corresponding transfer matrix
becomes:

Φ̃(h;k,m),




Φ(h) ∆1(k;m) ∆0(k;m) · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−eT

1 0 0 . . . 0



, (9.17)

where∆i(k;m) i ∈ {0,1} is defined by∆i(k;m), ∑m
µ=1Γ

(
(h− τ̃µ)i,h− (1− i)τ̃µ

)
kµ .

The characteristic polynomial of̃Φ(h;k,m) given by:

Pcl (z), zn+d+an+d−1 (h;k,m)zn+d−1+ · · ·+a0(h;k,m) ,

describes the general case (larger/smaller delay) for the augmented closed-loop system (9.15).

Assertion 9.1. Let d= 1 (smaller delay case). Then, the coefficients of Pcl (z) satisfy the
following properties:

1. aµ(h;k,m) are affine functions in k (βµ ∈ R):

aµ(h;k,m) =
m

∑
ν=1

kν αµ,ν (h,τν)+βµ , (9.18)

2. αµ,ν (h,τ ) is a polynomial function in(h,τ ) verifying:

αµ,νi(h,τ ) = αµ,ν j (h,τ ) for i 6= j.

This assertion follows by a straightforward application ofthe Laplace expansion’srule
([74]) to the last row of:

Φ̃cl(z;h,k,m),

[
zIn×n+∆0(k;m)eT

1 −Φ(h) −∆1(k;m)
eT

1 z

]
.

Remark 9.4. By applying the determinant properties [74], it is easy to see thatαn,ν (h,τ ), βn

andα0,ν (h,τ ), β0 satisfy:

αn,ν (h,τ ) =
(h− τ )n

n!
, βn =−n, α0,ν (h,τ ) =

τ n

n!
, β0 = 0.

9.6 Motivating examples

In the rest of this section, we present several illustrativeexamples which show some "singular"
behaviors. Specifically, we will see that as in the continuous case, one delay-block cannot
stabilize a chain ofn integrators, withn ≥ 2 and that at leastm= n delay-blocks should
be taken into account. Moreover, it is shown that in contrastwith the continuous case, for
sufficiently small enough gain parameters the closed-loop system is unstable.
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9.6.1 Complete Regular Splitting Property.

In the sequel we present first several motivating examples which illustrate the behavior of the
closed-loop system for small gain-parameters. Next, a perturbation-based approach is adopted
in order to describe such a behavior in a general context. More precisely, we will see that for
m−delay blocks the closed-loop system possesses the CRS property. As in the continuous
case, we have the following property:

Property 9.2 (Scaling Property). The control law

u(t+) =−
m

∑
µ=1

kµy(t− τµ), t ∈ [ℓh+ τm,(ℓ+1)h+ τm) (9.19)

is asymptotically stabilizing if and only if the control law

u(t+) =−
m

∑
µ=1

kµ

ρny(t −ρτµ) t ∈ ρ [ℓh+ τm,(ℓ+1)h+ τm) , with ρ > 0, (9.20)

is stabilizing.

Proof. This property can be shown by takingzi , ρn−ixi , t̃ , ρt andũ+ , 1
ρn ∑m

i=1z(̃t−ρτi),
proving thus the equivalence of the systems.

In the scalar case, Zhanget al. [137] derived the stability region in the(h(k1),τ ) param-
eter space for the case of one integrator:

ẏ(t) = u(t) , t ∈ [ℓh+ τ ,(ℓ+1)h+ τ )
u
(
t+
)

= −k1y(t− τ ) t ∈ { ih+ τ | i ∈ N∪{0}} .

The corresponding NCS will be stableif and only if:

max

{
1
2

h− 1
k1
,0

}
< τ < min

{
1
k1
,h

}
. (9.21)

Unfortunately, such a property does not hold for higher-order systems (i.e.,n ≥ 2), as it is
shown by the following result:

Proposition 9.1. The double integrator system

ÿ(t) = u(t) , t ∈ [ℓh+ τ ,(ℓ+1)h) , τ < h, (9.22)

can not be stabilizable with a discrete control law of the form

u
(
t+
)
=−k1y(t − τ ) , t ∈ {ℓh+ τ | ℓ ∈ N∪{0}} , (9.23)

for all k1 ∈ R.

Proof. Taking the discretization of the system (9.22) with controllaw (9.23), we derive:

z((ℓ+1)h) =: z[ℓ+1] = Φ̃(h,τ ,k1)z[ℓ] (9.24)
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where

z[ℓ] ,
[

x[ℓ]T u[ℓ−1]
]
,

Φ̃(h,τ ,k1) ,




1− 1
2k1(h− τ )2 h k1

(
h− τ

2

)
τ

−k1(h− τ ) 1 k1τ
−1 0 0


 .

Applying the Schur-Cohn criteria, the system will be asymptotically stable if and only if the
following inequalities hold:

Condition 1:

1− k2
1τ 4

4
> 0 (9.25)

Condition 2:
α 2

1 −β2
1 > 0 (9.26)

Condition 3:
α 2

2 −β2
2 > 0 (9.27)

whereα i andβi , i = {1,2} are defined as,

α1 , 2+
h2k1

2
+hk1τ −k1τ 2

α2 , 1− k2
1τ 4

4

β1 , −2+
h2k1

2
−hk1τ +k1τ 2

β2 , 1+ h2k1
2 +hk1τ − h2k2

1τ 2

4 +
hk2

1τ 3

2 − k2
1τ 4

4

It is clear thatk1 6= 0, otherwise (9.26)-(9.27) will not hold. Then, analyzing (9.25)-(9.27)
we get the following results:

(i) Condition 1will holds if and only if:

4−k2
1τ 4 > 0 (9.28)

⇔−2< k1τ 2 < 2 (9.29)

(ii-a) Condition 2 will hold whenever one of the following two cases holds:

• Case 1(α1+β1) < 0⇒ (α1−β1) < 0: simplifying (α1+β1) and(α1−β1) we
obtain:

⇒ k1 < 0 (9.30)

8+4hk1τ < 4k1τ 2 (9.31)

Next, considering fromCondition 3 (α2−β2)> 0 and(α2+β2)> 0, we get:

k1 < 0 (9.32)

{8+4hk1τ}+2h2k1+2hk2
1τ 3−

−h2k2
1τ 2−2k2

1τ 4 > 0 (9.33)
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from (9.31) we know that 8+4hk1τ < 4k1τ 2, then (9.33) can be rewritten as:

2hk2
1τ 3 > 2k2

1τ 4+h2k2
1τ 2−4k1τ 2−2h2k1 > 0 (9.34)

From the fact thath− τ > 0, we define the following difference:

d , h− τ > 0

Then,h= d+ τ , applying this fact to (9.34), we derive:

0> d2k2
1τ 2+k2

1τ 4−4k1τ 2−2h2k1 > 0 (9.35)

clearly (9.35) leads to a contradiction, that implies that(α1+β1) < 0 ⇒
(α1−β1)< 0 doesn’t hold.

(ii-b) Next we consider inCondition 2the case(α1−β1)> 0, that is:

• Case 2(α1−β1) > 0⇒ (α1+β1) > 0: following the same ideas that in the pre-
vious case, we obtain the following inequalities:

8+4hk1τ > 4k1τ 2 (9.36)

k1 > 0 (9.37)

Taking into accountCondition 3for (α2+β2)< 0, we get:

8+2h2k1+4hk1τ +2hk2
1τ 3 < 2k2

1τ 4+h2k2
1τ 2 (9.38)

Now, according to (9.28) we have that 4> k2
1τ 4 ⇒ 8 > 2k2

1τ 4, with this fact, we
have that (9.38) can be stated as:

0< 8+2h2k1+4hk1τ +2hk2
1τ 3 < 8+h2k2

1τ 2

0< 2h2k1+4hk1τ +2hk2
1τ 3 < 2h2k1

0< 4hk1τ +2hk2
1τ 3 < 0 (9.39)

In the second line of the previous inequalities, we have usedthe fact thath2k2
1τ 2 ≡

h2k1(k1τ 2) < 2h2k1 (by (9.29)). Once again, we have a contradiction, this means
that∀k1 ∈ R the system (9.22) cannot be stabilized by the control law (9.23).

However, the use of a controller involving two delays will beable to stabilize the double
integrator system (9.22). Indeed, considerτ1 := τ < h

3, τ2 := τ + ε with 0< ε < 2
3(h−3τ ).

Then the control gains:

k1(h,τ ,ε) ,
6h2+4h(τ + ε)−6(τ + ε)2

hε(4h2+2τ (τ + ε)−3h(2τ + ε)
(9.40)

k2(h,τ ,ε) ,
−6h2−4hτ +6τ 2

hε(4h2+2τ (τ + ε)−3h(2τ + ε)
(9.41)

will define a stabilizing control law (9.12), as is illustrated in figure Fig 9.1. The algebraic
technique developed inProposition9.1 is not suitable to deal with the general case (n >
2), then in order to prove a general result the following proposition adopt theperturbation
techniquesdeveloped in theChapter2.
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Figure 9.1: Double integrator system (9.22) withh= 3
5 andτ = 1

10. (Left) One delay-block

with k1 ∈
[
− 2!

τ 2
1
, 2!

τ 2
1

]
. (Right) Two delay-blocks, withk1 andk2 satisfying (9.40) and (9.41),

respectively.

Proposition 9.2. If n ≥ 2, then the closed-loop system consisting of a chain of n integrators

y(n) (t) = u(t) , t ∈ [ℓh+ τ ,(ℓ+1)h+ τ ) , τ < h (9.42)

and a control law of the form

u(t) =−k1y(ℓh− τ ) , t ∈ [ℓh+ τ ,(ℓ+1)h+ τ ) (9.43)

is unstable for small values of the controller gain k1.

Proof. The assertion follows from the behavior of the eigenvalueλ0 = 1 for k1 = 0 as|k1| is
increased from zero, and is based on Theorem 2.5. To this end,consider

L
(

λ̃ ,k1

)
=

[
Φ(h)− I − λ̃ I 0

−eT
1 −λ̃ −1

]
+

[
−∆0(k1;1)eT

1 ∆1(k1;1)
0 0

]
(9.44)

whereλ̃ , λ −1. From the definition ofΦ(h) it follows that the algebraic and geometric
multiplicity of the eigenvaluẽλ = 0 for k1 = 0 is n and 1, respectively. Furthermore the right
and left eigenvectors are given byx= e1 andx̂= en. Next, we have

∂L
∂k1

(λ ,k1) =

[
−Γ (0,h− τ ) Γ (h− τ ,h)

0 0

]
.

It is easy to see that (2.32) holds if and only if the equation

L(0,0)y =
∂L
∂k1

(0,0)e1

⇔
[
Φ(h)− I 0

−eT
1 −1

]
y = −




(h−τ )n
n!
...

h−τ
1!
0


 (9.45)
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has no solution fory. Since, by hypothesis,h> τ , this is the case and the eigenvalueλ̃ = 0
has the CRS property. It follows that for small|k1| it can be expanded as

λ̃ i(k1) = cej 2πi
n k

1
m
1 +o(k

1
m
1 ), i = 1, . . . ,n,

for somec∈C. Sinceλ = 1+ λ̃ it follows that the original system always has one eigenvalue
outside the unit circle for small values of|k1|.

Consider now a discrete control law with two parameters gains. As a motivation example,
we will considern= 3 andm= 2, i.e.,

y(3) (t) = u(t) , t ∈ [ℓh+ τ2,(ℓ+1)h+ τ2) , τ2 < h, (9.46)

where 0< τ1 < τ2 < h and with the control law,

u(t) =−k1y(ℓh− τ1)−k2y(ℓh− τ2) t ∈ [ℓh+ τ2,(ℓ+1)h+ τ2) . (9.47)

Without any loss of generality, assume thatk2 = αk1 for someα ∈ R\{−1}. Then, applying
theNewton Diagram’s([73]) the characteristic roots for "small" control gaink1 = ε behave
as:

z1(ε) = w0,3ε +
w0,3(−w3

1,3+3h2w0,1+3!hw0,2)
3! ε2+O

(
ε3) ,

zℓ+1(ε) = 1+w1,ℓε
1
3 +

2w3
1,3+h2w0,1−w3

1,ℓ
3w1,2

ε
2
3 +O (ε) , ℓ ∈ {1,2,3},

wherew0,ℓ ,
τ ℓ1+ατ ℓ

2
ℓ! andw1,ℓ , e

ℓπ
3 jh(1+α )

1
3 . In the particular caseα = −1, the closed-

loop characteristic function can be rewritten asPcl (z) = (z−1) P̃(z). Now, applying the same
analysis toP̃(z), we conclude that the characteristic roots for "small" values ofk1 = ε behave
as:

z̃1(ε)=
τ 3

1−τ 3
2

3! ε + h(τ1−τ2)
2(h+τ1+τ2)((τ1+τ2)

2−τ1τ2)
12 ε2+O

(
ε3) ,

z̃2,3(ε)= 1±h
√

τ1− τ2ε
1
2 + h(τ1−τ2)(h−τ1−τ2)

4 ε +O
(

ε
3
2

)
.

Figure (Fig.9.2) illustrates the closed-loop behavior of the characteristic roots for several val-
ues ofα . In the above analysis the pointα = −1 represents asingular case which can be
generalized as follows:

Property 9.3. Let ki = α iε, for someε ∈ R \ {0} andα i ∈ R for i = 1, . . . ,m. Assume that
α1+α2+ · · ·+αm = 0. Then for the control law

u(t) =−
m

∑
µ=1

kµy
(
ℓh− τµ

)
, t ∈ [ℓh+ τm,(ℓ+1)h+ τm) , (9.48)

the closed-loop system (9.15) has at least one characteristic root on the unit circle at z= 1.

Proof. Sinceα1+α2+ · · ·+αm = 0, this implies that∑i
hN−(h−τi)

N

N! ki ≡ − ε
N! ∑i

(h−τi)
N

N! α i for

N = 1, . . . ,n. Then, the first and last columns of the characteristic matrix Φ̃cl (1;h,α ,m) are
identical. In other words, for all sampling period(h) and for all possible delays(τi), z= 1
represents a characteristic root of the closed-loop system(9.15).
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Figure 9.2:Branches series behaviorfor α =−0.99 (green) andα =−1 (red). (Right) Zoom
of the dashed region.

The following result concerns the behavior of the closed-loop eigenvalues for sufficiently
"small" controller gains. To this end, we considerm controller parameters satisfying

ki = α iε, i = 1, . . . ,m,

whereε ∈ R is a parameter, and the directionα , (α1, . . . ,αm), ‖α‖ = 1 is fixed. For the
sake of brevity, we will considerε > 0.

Proposition 9.3. Let τ be the induced network delay satisfyingτ = (d− 1)h+ τ̃ , d ∈ N,
0< τ̃ =: τ̃1 < · · · < τ̃m < h, n> 2, and assume thatα1+ · · ·+αm 6= 0. Consider the closed-
loop system consisting of a chain of n integrators

y(n) (t) = u(t) , t ∈ [ℓh+ τm,(ℓ+1)h+ τm) , (9.49)

with a control law of the form

u(t) =−
m

∑
µ=1

kµy
(
ℓh− τµ

)
, t ∈ [ℓh+ τm,(ℓ+1)h+ τm) . (9.50)

Then, for sufficiently small control gains kµ , the eigenvalues of the closed-loop system pos-
sesses the CRS property and behave as:

λℓ(k) = 1+he
2ℓ+1

n π j (α1+α2+ · · ·+αm)
1
n

‖α‖ 1
n

ε
1
n +o(|ε| 1

n), ℓ= 1, . . . ,n. (9.51)

Proof. Consider first the smaller-delay case (i.e.d = 1). According to (9.44), we have that
the behavior of the zeros of the closed-loop system can be described by,

L(λ ,ε),
[

λ I −Φ(h) 0
eT

1 λ

]
+

ε
‖α‖

[
∆0(α ;m)eT

1 −∆1(α ;m)
0 0

]
. (9.52)

According to this definition, we have thatλ0 = 1 is anon-semi-simpleeigenvalue ofL(λ ,0)
with multiplicity n, then we can apply Theorem 2.4. To this end, observe that the generalized
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eigenvector ofL(λ ,0) can be written asx1 = e1−en+1, whereas its corresponding reciprocal

eigenvector is given byyn =
hn−1

‖α‖ eT
n , then the mean coefficient of the Puiseux series forλ (ε)

is given by:

〈yn,A1x1〉 =
[

0 0 · · · hn−1

‖α‖ 0
]




−∑ (h−τµ)
nαµ

n! 0 · · · ∑
hn−(h−τµ)

n

n! αµ

−∑ (h−τµ)
n−1αµ

(n−1)! 0 · · · ∑
hn−1−(h−τµ)

n−1

(n−1)! αµ
...

...
. . .

...

−∑ (h−τµ)αµ
1! 0 · · · ∑

h−(h−τµ)
1! αµ

0 0 · · · 0







1
0
...
0
−1




=
[
−hn−1

‖α‖ ∑
(
h− τµ

)
αµ 0 · · · 0 hn−1

‖α‖ ∑τµαµ

]




1
0
...
0
−1




〈yn,A1x1〉 =− hn

‖α ‖
m

∑
µ=1

αµ .

These arguments complete the proof for the smaller delay case. Consider now the larger
delay case (i.e.d > 1). According to (9.17), the zero closed-loop behavior is described by the
following matrix-valued function,

L(λ ,ε)=




λ I −Φ(h) 0n×d

e(d)d ×e(n)T1 λ I −Jd (0)


+

ε
‖α‖




0n×n −∆1(α ;m) −∆0(α ;m) 0n×d−2

0d×n 0d×d


 .

The remainder of the proof follows the same arguments as those developed insmaller-delay
caseand for the sake of brevity they will be omitted.

Example 9.1. Consider first the triple integrator. As mentioned above (Proposition 9.2), it
cannot be stabilized by using a single block-delay (see Fig.10.1 (left)). Secondly, consider
a fourth-integrator system. As stated in Proposition 9.3, for small controller-gains the sys-
tem has the CRS property, however by taking m= n= 4 block-delays and by increasing the
controller-gains it is possible to stabilize the closed-loop system (see Fig.10.1 (right)).

9.6.2 Admissible Pole Placement.

Next, we will see that unlike the continuous case, takingm= n delay-blocks are not able to
place arbitrarily the eigenvalues of the closed-loop system. In order to see such a property,

consider the smaller delay case and letz(0) , {z(0)1 , . . . ,z(0)n+1} be the set of roots ofPcl(z).
Then, the fact that the uncontrolled system hasn+1 roots onC(0,1) simply points out that, if
m= n in the control law (9.12), then the system does not have sufficient “degrees-of-freedom”
for an arbitrary pole placement.

Example 9.2.Consider now the triple integrator:

y(3)(t) = u(t), t ∈ [ℓh+ τm,(ℓ+1)h+ τm) , τm < h.
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Figure 9.3:Completely Regular Splittingproperty illustratingProposition9.2 andProposition
9.3 for λ = 1. (Left) Triple-integrator(n = 3) for k ∈ [− 3!

τ 3 ,
3!
τ 3 ]. (Right) Fourth-integrator

(n= 4) for kℓ = αℓε, with ℓ ∈ {1, . . . ,4} andε ∈ [0,20].

Figure 9.4: Admissible pole-placement for the control law (9.12) withm= n= 3

Taking m= 3 in (9.12) and denoting the roots of Pcl by
{

ζµ
}

for µ = {1,4} and considering
that ζ4 depend on(ζ1,ζ2,ζ3). Then, the only admissible roots

∣∣ζµ
∣∣ < 1 for µ = {1,3} such

that |ζ4(ζ1,ζ2,ζ3)|< 1 are depicted in figure Fig.9.4.
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9.7 Control-Law Based on Exact Pole Placement

Denote the set of desired closed-loop roots byλ (0) , {λ1, . . . ,λn+1} and the corresponding
characteristic polynomial by:

Pd (z,c), zn+1−c1zn+c2zn−1+ · · ·+(−1)n+1cn+1 (9.53)

wherecℓ is theℓ− th symmetric functionof λ (0) defined as the sum of the product of the
eigenvalues takenℓ at the time:

cℓ , ∑
1≤i1≤···≤iℓ≤n+1

λ i1 · · ·λ iℓ

Proposition 9.4 (Exact pole-placement). Assume that0 < τ =: τ1 < τ2 < .. . < τn+1 < h.
Under the notations above, define the gain:

k= A−1c̃T (9.54)

with A ,
[
α µ−1(h,τν )

]n+1
µ,ν=1, c̃ ,

[
(−1)n+1cn+1 (−1)ncn− (−1)n(n

0

)
· · · −c1+

( n
n−1

)]

whereα i (h,τ ) is defined recursively by taking B0 , I and,

α µ (h,τ ) , − 1
n−µ+1

∂
∂kν

trace
(

Φ̃(h;k,m)Bn−µ

)

Bµ , −
trace

(
Φ̃(h;k,m)Bµ−1

)

µ
I + Φ̃(h;k,m)Bµ−1.

Then the corresponding control law (9.12) guarantees that the closed-loop characteristic roots
are located atλ (0).

Proof. According toAssertion 9.1(1), the coefficients ofPcl(z) satisfy:

aµ(h;k,m) =
m

∑
ν=1

kναµ,ν (h,τν )+βµ ,

that is,
∂aµ (h;k,m)

∂kν
≡ αµ,ν (h,τν ) .

A straightforward application ofTheorem A.1leads to:

α µ(h,τ ) = αµ,ν (h,τµ),

Assertion 9.1(2)allows concluding that the above equality is true for allν . On the other hand,
from Assertion 9.1(1), aµ(h,τ ,0) = βµ . Then, a straightforward application of theInduction
Methodto:

Φ̃cl(z;h,0,m) =

[
zI−Φ(h) 0

eT
1 z

]
,

shows thatβµ =
( n

µ−1

)
. With this fact in mind, we have thataµ(h;k,m) = (−1)n−µ+1sn−µ+1,

takingµ = 0,n and putting this in a matrix form we obtain (9.54). The proof is finished if we
show thatA is nonsingular. Singularity ofA simply means that there exist some dependent
row or column vectors. Then, a straightforward applicationof Assertion 9.1(2)andRemark
9.4 implies thatτ1 = · · ·= τn+1. Since, by assumption we have thatτ1 < · · ·< τn+1, the proof
is completed.
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9.8 Reduced Order Controller

We focus now on finding the control lawk= (k1, . . . ,kn) such that the closed-loop character-
istic polynomial becomes:

P(z; p, ip), zn+1+ p
(
zn−ip+1+zn−ip + · · ·+z+1

)
(9.55)

with 1≤ ip ≤ n+1 andn≥ 1. It is important to mention that the so-calledlacunary polynomi-
als, which are of the form (9.55), have received some attention in the literature in the context
of delay-difference equations, see, e.g. [66]. Its main interest lies in interesting properties to
be exploited in what follows:

Property 9.4. The following properties hold for P(z; p, ip):

(i) the moduli of the roots increase as| p | increases.

(ii) the roots are inside the unit circle if|p|< 1
n−ip+2.

Proof. First, P(z; p, ip) ≡ zn+1 + pzn−i p+2−1
z−1 . Next, for (i), see [66]. (ii) Take nowf (z) ,

zn+1 andg(z; ip) , p
(

∑
n−ip+1
k=0 zk

)
. For all z∈ C, we have that|g(z; ip)| = |p||∑n−ip+1

k=0 zk| ≤
|p|∑n−ip+1

k=0 |zk|. Then, taking|p| < 1
n−ip+2 for |z| = 1 we have that| f (z)| > |g(z; ip)|. Then,

by a straightforward application of Rouché’s lemma ([84]),P(z; p, ip) ≡ f (z)+g(z; ip) is a
Schur-stable polynomial.

Remark 9.5. The proof above guarantees not only the existence of some "stabilizing" param-
eter p, but it also gives a "cheap" way to compute it.

Define nowX as the set of real zeros of the polynomial:

Tn+1(x)
n−ip

∑
j=0

U j (x)−Un(x)
n−ip+1

∑
j=0

Tj (x) , (9.56)

(see the appendix for the definition of the Chebyshev polynomials Tn andUn) and introduce
the following quantities:

p− = max
x∗∈X





−Un(x∗)
n−i p
∑
j=0

U j (x∗)
< 0





, p+ = min
x∗∈X




− Un(x∗)

n−i p
∑
j=0

U j (x∗)
> 0





. (9.57)

Then we can state the following result:

Proposition 9.5. The polynomial P(z; p∗, ip) is Schur stable if and only if

max
{

−1
n−ip+2, p

−
}
< p∗ < p+. (9.58)

Proof. The polynomialP(z;0, ip) is Schur. Now, since the roots of a polynomial are con-
tinuous with respect to their coefficients (see, e.g., [12, 117]), it follows the existence of
some realp close to 0 such thatP(z; p, ip) is still Schur stable. Moreover, in the limit case,
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there exists ap∗ ∈ [−1,1] such thatP(z(0); p∗, ip) = 0 ⇒ z(0) = eiiiθ , θ ∈ [0, 2π). Then,

ℜ
(

P(z(0); p∗, ip)
)
= 0 and

ℑ (P(z(0);p∗,ip))
sinθ = 0 lead to:

Tn+1(x)+ p∗
n−ip+1

∑
j=0

Tj (x) = 0, (9.59)

Un(x)+ p∗
n−ip

∑
j=0

U j (x) = 0, (9.60)

wherex= ℜ (z(0)) = cosθ. Equations (9.59)-(9.60) will give the whole set of solutions, except
the singular pointz(0) = 1. In this last case,p∗ can be obtained by solvingP(1;p∗, ip) = 0.
Some simple algebraic manipulations lead to the conditions(9.58).

Remark 9.6. It follows from the first assertion of Property 9.4 that the condition (9.58) defines
the whole set of solutions. Notice also that, (9.56) has at most n solutions. Finally, [66]
proposed a different argument for proving a similar property.

We can now state the main result of this subsection:

Proposition 9.6. Let τ be the induced network delay,τ2, . . . ,τn chosen likeτi = τ +(i −1)ε
for i = {2, . . . ,n} and p∗ be chosen satisfying (9.58) for some1≤ ip ≤ n+1. Then, the control
law (9.12) with,

k(ε) = Ā−1pT (9.61)

whereĀ,
[
α µ (h,τν)

]n
µ,ν=1,

p,

[
p∗− (−1)n(n

0

)
· · · p∗− (−1)ip+1( n

n−ip−1

)
(−1)ip+1( n

n−ip

)
· · ·

( n
n−1

) ]
,

guarantees the closed-loop stability, wheneverε satisfies,

p−0 < α 0(h,τ1)k1(ε)+ · · ·+α 0(h,τn)kn(ε)< p+0 , (9.62)

for ε > 0, h> τ +(n−1)ε, and where p±0 are given by:

p−0 , max

{
p0,

{
p∗−1 if n− ip ∈ 2N
−1 otherwise

∣∣∣∣ p0 < p∗
}

(9.63a)

p+0 , min{p0 |p0 > p∗} (9.63b)

where p0 is the set given by,

p0 ,−
{

Tn+1(x
∗)+ p∗

n−ip+1

∑
l=1

Tl (x
∗)

}
(9.64)

and x∗ is a root of the following polynomial

Un(x)+ p∗
n−ip

∑
l=0

Ul (x) . (9.65)
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Proof. According toProposition9.5, for the invertibility ofA is sufficient to haveτ1 6= · · · 6= τn

andh> τi for all i = 1,n. Since this fact is fulfilled by hypothesis,k(ε) is well defined. Then,
let k(ε) be given by (9.61). It is clear fromProposition 9.4that the closed-loop system will
be rewritten as follows:

Pcl(z) = zn+1+ p∗
(
zn−ip+1+zn−ip + · · ·+z

)
+ p̃∗(ε),

wherep̃∗(ε) is given by:

p̃∗(ε), α 0(h,τ1)k1(ε)+ · · ·+α 0(h,τn)kn(ε) .

Since by assumption,p∗ satisfies (9.58), we have that, for̃p∗(ε) = p∗, the closed-loop system
is asymptotically stable. Then, similarly to the proof of Proposition 9.5, there exists some
interval

(
p−0 , p

+
0

)
including p∗ such that the system remains asymptotically stable. In the

limit case,Pcl(eiiiθ) = 0. Taking the corresponding real and imaginary parts (ℜ
[
Pcl(eiiiθ)

]
= 0,

ℑ
[
Pcl(eiiiθ)

]
= 0) and using the Chebyshev polynomials, we obtain (9.64)-(9.65), respectively.

Equation (9.64) gives the set of all possible intervals including p∗, excepting for the singular
pointθ = π. At this point, we must havep−0 = p∗−1 whenevern− ip ∈ 2N. Then, in order to
preserve the stability, we must choose the smallest interval, i.e., p0 must be contained in the
interval

(
p−0 , p

+
0

)
given by equation (9.63). This means that, ifp−0 < p̃∗(ε)< p+0 the closed-

loop system will be asymptotically stable. Since this is equivalent with equation (9.62), the
proof is completed.

9.9 Illustrative Examples

In order to illustrate how the present methodology works, weconsider a fourth-order chain of
integrators as:

y(4) (t) = u(t) , t ∈ [ℓh+ τm,(ℓ+1)h+ τm) , τm < h (9.66)

whereτ = 0.1 is the induced-network delay andh= 0.6 is the sampling period. Takingm= 4,
τi = τ +(i−1)ε for i = {2,4} in the control law (9.12), then applyingProposition 9.5-9.6we
obtainp∈ (−0.25,0.4450) andp0 ∈ (−0.7181,0.8158) (where the later interval was obtained
by choosingp∗ = 0.2), respectively. Then, according toProposition 9.6, the system (9.66) is
asymptotically stable wheneverε ∈ (0,0.01202). In order to illustrate this result graphically,
we plot the roots’ trajectories forp0 ∈ (−0.7181,0.8158) in Fig.9.5.

9.10 Concluding Remarks

In this chapter, the problem of stabilizing a chain of integrators by using network delays as
controller parameters was addressed. Several algorithms and properties have been outlined
and various illustrative examples proving the theoreticalresults have also been proposed. For
the sake of brevity, only the case of delays smaller than the sampling period has been consid-
ered. However, the approach proposed here works also for thecase of larger delays.



9.10 -Concluding Remarks 137

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
p+
0

p+
0

p+
0

p+
0

p+
0

p−
0

p−
0

p−
0

p−
0

p−
0

Figure 9.5: Root trajectories forp0 ∈ (−0.7181,0.8158)

10 Output Feedback Stabilization. An Eigenvalue Based
Approach

As we saw in the previous chapter, in the case of a chain of integrators, the effects induced
by the delay presence on the dynamics of NCS appear to be more complicated than expected:
lack of scaling propertiesexcepting the single integrator case, induced instabilityfor small
gain values (see also Fig.10.1 of this chapter, orExample9.1 of theChapter9), etc. Next,
the dependence of the characteristic roots on the delay value may lead to a sequencestabil-
ity/instability/stability if one increases the delay continuously within one samplingperiod.
Such a property is observed for a simple second-order system(see, for instance, system
(10.14)). Roughly speaking, the interest of both examples is to point out somesensitivity
properties of the characteristic roots with respect to the gain- or the delay-parameter, respec-
tively. Such topics will constitute the core of this chapter.

First, inspired by the terminology introduced by [40], we focus on the characterization
of thecrossing (frequency) set, that is, the set of parameters (delay, gain, sampling) (or only
(delay, gain) if the sampling is fixed, etc.) for which there exists at least onecritical3 charac-
teristic root. Next, we explore conditions under which againmay stabilize the corresponding
SISO NCS scheme and we will see that the gain stabilization problem is reduced to thegener-
alized eigenvaluescomputation of an appropriatematrix pencil. Such a result ca be interpreted
as the "discrete-time" version of the analysis proposed by [20] for characterizing the stabiliz-
ing gains of "continuous-time" linear LTI SISO systems freeof delays. However it is worth to
mention that, in the discrete case, not all real generalizedeigenvalues defines crossings with
respect to the unit circle (see Proposition 10.2).

3By a critical characteristic root, we mean a root of the corresponding characteristic equation located on the
unit circle of the complex planeC.
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Next, aneigenvalue-based perturbationmethodology (see, e.g., [67]) is adopted for char-
acterizing thecrossing directiontowards stability and/or instability. If the analysis withre-
spect to the gain-parameter is relatively simple (see, e.g., Propositions 10.2 and 10.3), the
analysis becomes more involved when the delay-parameter isconsidered. More precisely, if
the delay changes around a multiple of the sampling period, additional characteristic roots may
appear (or disappear) and a continuity-type argument explains how the characteristic roots be-
have with respect to the delay parameter (see Proposition 10.5). Finally, the characterization
of the crossing direction with respect to the delay-parameter is given in the simple (Corollary
10.1), semi-simple (Proposition 10.8) and non semi-simple(Proposition 10.10) cases. These
last results follow closely the arguments proposed by [21] in continuous-time for the stability
analysis of delay systems.

10.1 Problem Formulation and Motivating Examples

Consider the following continuous-time linear SISO system:

{
ẋ(t) = Ax(t)+bû(t) , t ∈ [ℓh+ τ̃ ,(ℓ+1)h+ τ̃ ) ,
y(t) = cx(t) ,

(10.1)

and the discrete control law,

û
(
t+
)
=−ky(t − τ̃ ) , t ∈ {ℓh+ τ̃ , ℓ ∈ N} (10.2)

whereτ̃ is the induced network delay satisfyingτ̃ =(r−1)h+τ , for 0< τ ≤h, x∈Rn, k,y∈R

andr ∈ N. As mentioned previously, we are interested infinding all parameters(k,h,τ ) such
that the controller (10.2) (asymptotically) stabilizes the closed-loop SISO system (10.1). As in
the previous chapter, the system (10.1) includes both continuous- and discrete-time dynamics,
the classical analysis consists in discretizing the entiresystem in order to homogenize the state
variables. To this end, we apply similar ideas to the ones proposed by [6, 137], leading to the
representation:

x[ℓ+1] = Φ(h)x[ℓ]+Φ(h− τ )Γ (τ )bû[ℓ− r]+Γ (h− τ )bû[ℓ− r +1] (10.3)

whereΓ(t) :=
∫ t

0 eAsds, Φ(t) := eAt, τ̃ = (r −1)h+ τ with r ∈ N and 0< τ ≤ h. Define now

the augmented state vector asz[ℓ] ,
[
xT [ℓ] ,u[ℓ− r] ,u[ℓ− r +1] , . . . ,u[ℓ−1]

]T
, leading to

the augmented closed-loop system:

z[ℓ+1] = Φ̃(p)z[ℓ] . (10.4)

The representation (10.3) describes a general situation, that is, when the induced network
delay is larger/smaller than the sampling period. Under these observations, we have the fol-
lowing:

Remark 10.1(Smaller delay ). If the induced network delaỹτ satisfies the condition0< τ̃ ≤
h, then,̃τ = τ , r = 1 in (10.3) and the corresponding transfer matrix rewrites as:

Φ̃(p) :=

[
Φ(h)−kΓ (h− τ )bc Φ(h− τ )Γ (τ )b

−kccc 0

]
. (10.5)
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Remark 10.2 (Larger delay ). If the induced network delaỹτ satisfies̃τ = (r −1)h+ τ for
some positive integer r> 1, with τ ≤ h, then the corresponding transfer matrix becomes:

Φ̃(p) :=




Φ(h) Φ(h− τ )Γ (τ )b Γ (h− τ )b · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−kc 0 0 0 0



. (10.6)

10.2 Transfer Function Description

10.2.1 Smaller delay case:

Assume that 0< τ̃ ≤h, that isτ̃ = τ . Then, the transfer function can be written asHyu(z; po) :=
N(z; po)/D(z; po) =

= c(zI−Φ(h))−1
[

Φ(h− τ )Γ (τ )b
z

+Γ (h− τ )b

]
. (10.7)

Now, by taking into account the control law (10.2), the characteristic function of the closed-
loop system becomes:

F(z; p) = D(z; po)+kN(z; po). (10.8)

10.2.2 Larger delay case:

Now, if τ̃ = (r −1)h+ τ , with r > 1, then the corresponding transfer function is given by:

H̃yu = c(zI−Φ(h))−1[Φ(h− τ )Γ (τ )bz−r+Γ (h− τ )bz1−r] ,

H̃yu ≡ z1−rH (z; po)≡
N(z; po)

zr−1D(z; po)
, (10.9)

leading to the following closed-loop characteristic function:

Fr−1(z; p) = zr−1D(z; po)+kN(z; po) . (10.10)

From (10.10) we have thatF0(z; p)≡ F (z; p). Note also that for̃τ > h the characteristic func-
tion of the closed-loop system is affect byzr−1, motivating thus the notationDr−1(z; po) :=
zr−1D(z; po).

10.3 Motivating Examples

10.3.1 Chain of Integrators Systems

Even though in the previous chapter we have deeply studied a chain of integrators system,
we will recall in the following, some interesting properties. Consider the chain of integrators
system,

y(n) (t) = û
(
t+
)

t ∈ [ℓh+ τ ,(ℓ+1)h+ τ ) , (10.11)
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whereû(t+) is given by,

û
(
t+
)
=−ky(t − τ ) , t ∈ {ℓh+ τ , ℓ ∈ N}. (10.12)

In the case of NCS stabilization of one integrator (n= 1) [137] derived the stability region in
the(h(k),τ ) parameter space, and the NCS isstable if and only if:

max

{
1
2

hk−1,0

}
< kτ < min{1,hk} . (10.13)

Unfortunately, the above result isnot longer validfor higher-order systems (n ≥ 2), as it
is stated in the previous part of the thesis (Proposition9.2). In other words, asmall gain
is always destabilizing. In order to understand better the property above, consider now the
triple-integrator case (n= 3). In other words, asmall gainis always destabilizing. In order to
understand better the property above, consider now the triple-integrator case (n= 3).In other
words, asmall gainis always destabilizing. In order to understand better the property above,
consider now the triple-integrator case (n= 3). Then, for small values of the parameter gain,
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k = −1.68

Figure 10.1: Triple-integrator(n= 3) subject tok< 0.

i.e.,k= ε, the closed-loop characteristic roots behave as:

z1(ε) = w0,3ε +
w0,3(−w3

1,3+3h2w0,1+3!hw0,2)
3! ε2+O

(
ε3)

zℓ+1(ε) = 1+w1,ℓε
1
3 +

2w3
1,3+h2w0,1−w3

1,ℓ
3w1(ℓ)

ε
2
3 +O (ε)

where,w0,ℓ := τ ℓ
ℓ! , w1,ℓ := e

ℓπ
3 jh andℓ = 1,3. Fig.10.1 illustrates the above result fork < 0

(Chapter9 illustrates the closed-loop characteristic root behavior for k> 0).
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10.3.2 Second-Order Systems

In continuous-time, the interest of oscillatory systems iswell-known since it is the simplest
example pointing out thestabilizingeffect of the delay in output feedback control schemes
(see, for instance, [1, 103] and the comments therein). Consider now the following system:





ẋ(t) =

[
0 1
a1 a2

]
x(t)+

[
0
1

]
û(t) , t ∈ [ℓh+ τ ,(ℓ+1)h+ τ ) ,

y(t) =
[

c1 c2
]
x(t) .

(10.14)

Now consider that(a1,a2,c1,c2) =
(
−ω2

0 ,0,ω0,0
)
, with ω0 = 3, and assume the sampling

h0 = 6.1 and the gaink0 = 5.2. Some simple computations prove that if one chooses the delay
parameterτ0 = 2.5, and we take the network delaỹτ = τ0, then the characteristic function
of the closed-loop systemF0(z; p) is stable. Next, if the network delay is assumed to be one
sampling larger, i.e.̃τ = h0+ τ0, the corresponding characteristic function becomesF1(z; p)
which is still stable. However, if one varies the network delay τ̃ betweenτ0 andh0+ τ0, for
some critical delay values, the characteristic roots will cross∂D towards instability and for
larger network delays they will cross∂D back towards stability. Such a situation is depicted
in Fig.10.2(a) and reflects the complex behavior of the characteristic roots with respect to the
delay parameter. In other words, increasing the network delay parameter leads to a sequence
of stability/instability/stabilitywithin one sampling period. This example will be further dis-
cussed in the forthcoming paragraphs. Consider now as a finalmotivating example, the case:

−1.5 −1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

λ
(r)
0 (τf )λ

(r)
0 (τ0)

λ
(r+1)
2 (τf )

λ
(r+1)
0 (τ0)

λ
(r+1)
0 (τf )

λ
(r+1)
2 (τ0)

λ
(r)
0

(
τ
(ℓ)
1

)

λ
(r+1)
0 (τ7) λ

(r+1)
0 (τ5)

Re

Im

(a)

−1.5 −1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Re

Im

(b)

Figure 10.2: Characteristic roots behavior as a function ofthe delay parameter. (a) Second-
order oscillator(a1,a2,c1,c2) =

(
−ω2

0 ,0,ω0,0
)
. (b) Second-order system(a1,a2,c1,c2) =

(−1,−1,0,1).

(a1,a2,c1,c2) = (−1,−1,0,1). According to [22], it is known that for the delayτ = π, the
continuous-time system has atangentialroot-trajectory, i.e., the root-trajectory (as a func-
tion of the delay) touches in a tangential way the imaginary axis. Taking a sampling period
h= 2π, we have that the above property is not longer valid, i.e., wehave a simple crossing as
it is illustrated in Fig.10.2(b).



142 OUTPUT FEEDBACK STABILIZATION . AN EIGENVALUE BASED APPROACH

10.4 Stability Analysis

10.5 Spectral Radius Properties

In this paragraph we consider first, the continuity propertyof the spectra of the augmented
closed-loop system (10.4) with respect to the delay parameter. To this end, introduce now the
following definition:

Definition 10.1. Let (h∗,k∗) be fixed, the Spectral Radius (function)ρ : R+ 7→ R+ is defined
by: ρ (τ ) := sup

{
|z| : z∈ σ

(
Φ̃(h∗,τ ,k∗)

)}
.

Property 10.1. The spectral radius function has the following properties:

• it always exists;

• it is finite;

• it is continuous.

Proof. First observe that for eachℓ ∈ N, the characteristic function of the closed-loop system
can be written as,

Fℓ−1(z; p) = zn+ℓ+ fn+ℓ−1(p)zn+ℓ−1+ · · ·+ f1(p)z+ f0(p) , (10.15)
where fi (p) are analytical functions for allp ∈ R2

+ ×R, then the first two properties fol-
lows straightforwardly from the properties of analytic functions (see, for instance [78]).
Consider now the continuity property. To this end, we introduce the following intervals
Iℓ := (ℓh+ τ ,(ℓ+1)h]. Observe that wheñτ ∈ Iℓ the characteristic function (10.15) has
constant degree, sincefi (p) are analytical, then according to [84] we have that the zeroszi(p)
of (10.15) are continuous functions with respect to the parameter p, implying that spectral
radius function is continuous for allℓ ∈ N. Consider now̃τℓ ∈ Iℓ and τ̃ℓ+1 ∈ Iℓ+1, then the
proof will be complete if lim

τ̃ℓ→(ℓ+1)h−
ρ (τ̃ℓ) = lim

τ̃ℓ+1→(ℓ+1)h+
ρ (τ̃ℓ+1). In order to see this fact, is

necessary to consider adegree-normalization. To this end and without any loss of generality
let τ̃ℓ ∈ Iℓ, for ℓ > 1 (i.e., the larger delay case) and denote byΦ̃(p∗;ℓ) its respective transfer
matrix, we consider the following definition,

Φ(h∗,τ ,k∗) :=




Φ(h∗) 0 Φ(h∗− τ )Γ (τ )b Γ (h∗− τ )b · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . . 0

0 0 0 0 · · · 1
−kc 0 0 0 · · · 0




. (10.16)

From (10.16) it is clear to see thatΦ̃(p∗;ℓ) is Schur-stableif and only if Φ(h∗,τ ,k∗) is Schur-
stable, bearing in mind this fact, we have the following consequences:

lim
τ→h

Φ(h∗,τ ,k∗) = lim
τ→0

Φ̃(h∗,τ ,k∗;ℓ+1)

⇒ lim
τ̃ℓ→(ℓ+1)h−

ρ (τ̃ℓ) = lim
τ̃ℓ+1→(ℓ+1)h+

ρ (τ̃ℓ+1) .

Then, the proof is complete.
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10.6 Crossing Set Characterization

Denote byF (z; p) the characteristic function of the closed-loop system. As mentioned
in the previous section, for smaller/larger networks delays, F can be eitherFr−1(z; p) =

∑n+r
i=0 a(r−1)

i (p)zi (larger delay) orF0(z; p) (smaller delay). Inspired by [40], we introduce
the following notions:

Definition 10.2. The crossing setΘ, is defined as the collection of all frequenciesθ ∈ [0,2π)
such that there exist a triplet p∗ of parameters such that Fr−1

(
eiiiθ ; p∗

)
= 0. The collection

of all triplets p∗ corresponding to crossing frequencies inΘ will define the stability crossing
surfacesS ⊂ R

2
+×R. Finally, for a fixed sampling h0, the restrictionS|p=ph0

denotes the

corresponding stability crossing curves.

These critical values can be computed in the following way. Associate now toFr−1, the
following parameter-dependent matricesM1,M2 ∈ R(n+r)×(n+r):

M1(p) :=




a0(p) 0 · · · 0
a1(p) a0(p) · · · 0

...
...

.. .
...

an+r−1(p) an+r−2(p) · · · a0(p)


 (10.17)

MT
2 (p) :=




an+r (p) an+r−1(p) · · · a1(p)
0 an+r (p) · · · a2(p)
...

...
. . .

...
0 0 · · · an+r (p)


 , (10.18)

and introduceP := (h,τ ,k)⊂ R2
+×R as the set of all parametersp satisfying the following

equality:
detWF (p) = 0, (10.19)

where
WF (p) := M2(p)MT

2 (p)−M1(p)MT
1 (p) . (10.20)

We have the following:

Proposition 10.1. Consider the system (10.1) in closed-loop having the characteristic func-
tion F(z; p). We have the following properties:

(a) p∗ is a crossing point (p∗ ∈ S) if and only if the following conditions

(i) 0∈ σ (WF (p∗));

(ii) σ
(

Φ̃(p∗)
)
∩∂D 6= /0.

hold simultaneously.

(b) If for some fixed pair(h∗,k∗), Fℓ(z;h∗,τ ,k∗)|τ=0 is Schur-stable, then(h∗,τmin,k∗) ∈ S,
whereτmin is the minimal value ofΛm := {τ ∈ R+ : σ (WFℓ (τ )) = 0}.
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Remark 10.3. It is important to point out that (i) is necessary but not sufficient for the ex-
istence of a crossing since excepting the real crossing points the determinant above vanishes
also for symmetric points with respect to the unit circle∂D4. Indeed, the following example
illustrate such a situation:

Consider now the second-order system (10.14), with(a1,a2,c1,c2) = (−1,−1,0,1) and
corresponding open-loop transfer function:

Hyu(z; , po) =

2e−
h
2+

τ
2 sin

[√
3

2 (h−τ )
]

√
3

z2+
2e−h+ τ

2
(
−eh/2 sin

[√
3

2 (h−τ )
]
+sin

[√
3τ
2

])

√
3

z−
2e−h+ τ

2 sin
[√

3τ
2

]

√
3

z3−2e−h/2cos
[√

3h
2

]
z2+e−hz

.

Then the characteristic function of the closed-loop systemwill depend on the parameters
p∗ = (h0,τ0,k0) and writes as:

F(z; p∗) := D(z, po)+k0N(z, po). (10.21)

In this case, by choosingp∗ = (2π,π,227.1017), detWF vanishes without corresponding to
the existence of a crossing frequency inΘ. Fig.10.3 illustrates the symmetry mentioned above.
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Figure 10.3: Symmetric roots with respect to∂D. (a) For the open-loop transfer func-

tion Hyu(z;τ0) =
(25−20eτ0)z2+(8−10eτ0)z+4

8z5+(4−20eτ0)z4+(50−10eτ0)z3 , with (k0,τ0) = (1, log
√

2), given the symmet-

ric roots: |λ1| = 2, |λ2| = |λ3| = 1
2 and φ = π

4 . (b) For the polynomial (10.21), where
|λ1|= 0.0432,|λ2|= 0.9624.

Remark 10.4. The above result follows from a straightforward application of the Schur-
Cohn-Fujiwara result (see, for instance, [10]).

Remark 10.5. Note that the above result can be also applied to the computation of the sta-
bility crossing curvesS|h=h0

for some sampling h0.

4Here, we say that two pointsz1 andz2 ∈ C aresymmetricwith respect to a circle of radiusR and center
located atz0 if: | z1− z0 | · | z2− z0 |= R2, etc.
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Proof. (a) According to [84],Fr−1(z; p∗) andF∗
r−1(z; p∗) := zn+rFr−1(

1
z; p∗) has a common

root if and only if the determinant of the following resultant matrix,

RFr−1,F∗
r−1

:=

[
M1(p) MT

2 (p)
M2(p) MT

1 (p)

]
(10.22)

has the property det
(
RFr−1

)
= 0. Now, a common root ofFr−1(z; p∗) andF∗

r−1(z; p∗)
means thatFr−1(z; p∗) can be factored asFr−1(z; p∗) = ψ(z) f (z), with:

ψ(z) =
ν

∏
j
(z−ρ je

iφj )(z− 1
ρ j

e−iφj ) (10.23)

and f (z) collect the rest of the roots belonging to the unit circle. Onthe other hand,
the fact thatM1(p) andM2(p) commute, implies that detRFr−1,F∗

r−1
≡ −detWFr−1 (p).

Finally, by observing that conditionσ
(

Φ̃(p∗)
)
∩∂D 6= /0 excludes all solutions of the

form (z−ρ jeiφj )(z− 1
ρ j

eiφj ), the proof is complete.

(b) Let us prove this property by contradiction, i.e. assumethat (h∗,τmin,k∗) /∈ S, then
there existz(0) ∈ C such thatFℓ(z(0);h∗,τmin,k∗) = Fℓ(

1
z(0)

;h∗,τmin,k∗) = 0, wherez(0)

is symmetric with respect to the unit circle. But this implies thatFℓ(z(0);h∗,τmin,k∗)
is unstable, contradicting the fact that the roots ofFℓ(z;h∗,τ ,k∗) are continuous with
respect to the delay argument.

10.7 Stabilizing Gains and Corresponding Crossing Directions

Consider now that the parameters(h,τ ) are fixed. Then we are interested in developing an
algorithm to compute theset of all stabilizing gains k∈ R. By an abuse of notation, we will
construct the(n+ r)×(n+ r) matrices (10.17)-(10.18) for lower order polynomials by setting
the coefficient of higher order terms as zeros. In order to simplify the notations, we will
define the resultant of any polynomialFr−1(z; p) with its associated polynomialF∗

r−1(z; p) by
RFr−1 (p) := RFr−1,F∗

r−1
(p). Then, we have the following result:

Proposition 10.2. Assume(h,τ ) a fixed and known pair po := (h0,τ0). Introduce the sets
Λ = σ

(
RDr−1(po),−RN(po)

)
∩R,

Λs :=
{

ξ ∈ Λ : ∃η ∈ Λ, ξη = 1,σ
(

Φ̃(po,ξ )
)
∩∂D= /0

}
.

Letλ1 < .. . < λℓ, with ℓ≤ n+ r andλ i ∈ Λ−Λs. Then, the system (10.3) cannot be stabilized
for any k= λ i, i = 1,2, . . . , ℓ. Furthermore, the number of unstable roots remains invariant
for all k ∈ (λ i ,λ i+1). The same holds for the intervals(−∞,λ1) and(λℓ,∞).

Proof. First, by construction, the setΛs includes the real spectrum of the matrix pencil
RF(po,λ ) = RDr−1(po)+ λ RNr−1(po) having the property of symmetry with respect to∂D,
but without being characteristic roots of the closed-loop system. Thus, the setΛ−Λs collects
all the gains for which some crossing with respect to∂D exists. Then, the remaining proof is
a direct consequence ofProposition10.1.
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Remark 10.6. The result above can be simply interpreted as the "discrete-time" version of
the matrix pencil approach proposed by [20] in the output feedback stabilization of SISO LTI
systems.

Remark 10.7. Notice that the above characterization for the gain controllers can also be
obtained by applying the NeimarkD-partition method ([32]). According to this method we
have,

k(θ) = −ei(r−1)θDr−1
(
eiθ , p∗o

)

N
(
eiθ , p∗o

) , (10.24)

Im(k(θ)) = 0, (10.25)

whereθ ∈ [0,π].

In order to illustrate the above results, consider the second-order system (10.14) with
(a1,a2,c1,c2) = (−ω2

0 ,0,ω0,0) corresponding to the second-order oscillator system (with
ω0 = 3). Taking the induced-network delay asτ̃ = h+ τ , we obtain the following discretized
open-loop transfer function:

Hyu(z, po) =
n2(po)z2+n1(po)z+n0(τ )

3z3−6cos(3h)z2+3z
, (10.26)

where n2(h,τ ) = 1 − cos(3h−3τ ), n1(h,τ ) = cos(3h−3τ ) − 2cos(3h) + cos(3τ ) and
n0(τ ) = 1− cos(3τ ). Then, applyingProposition10.2 with po =

(19
25,

16
25

)
, we obtain the

results summarized in Table 11.3. Let denote byD (ℓ,n+ r − ℓ) the interval withℓ−stable

Table 10.1: Generalized eigenvalues for(h,τ ) = (19
25,

16
25).

λ1 λ2 λ3 λ4 λ5

−3 0 2.1061 2.7302 4.2710
Stability Intervala (−∞,−3) (−3,0) (0,2.10) (2.11,2.73) (2.74,4.27) (4.28,∞)
aThis is not accurate, owing to numerical rounding.

zeros and(n+ r − ℓ)−unstable zeros. Then, according toRemark10.7, we apply Neimark
D−partition method to computek(θ), obtaining Fig.10.4, where we obtain the same results
than showed in Table 11.3.

Proposition 10.2 explicitly gives the set of all controllergains with corresponding charac-
teristic roots on the unitary circle∂D. Then, assuming first that the controller gain parameter
is fixed to some critical gain valuek∗ for which there exists at least one critical characteristic
root on∂D, the characterization of the crossing directions is given as follows:

Proposition 10.3.Assume that the sampling h and the delayτ are known and fixed at h0 and
τ0, respectively. Let k= k∗ be a critical gain for the crossing frequencyθ = θ∗. Under the
assumption that the critical characteristic roots of F are simple, the following statements are
equivalent:

(i) The root z∗ = eiiiθ∗
is crossing∂D towards instability (stability).
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Figure 10.4: Stability intervalsD(ℓ,n+ r − ℓ) for (10.26), wherek(θi) = λ j for appropriated
i and j.

(ii) The following inequality holds:

d | z |
dk

∣∣∣∣
k=k∗

> 0 (< 0) ,

for any k sufficiently close to k∗, but k> k∗.

(iii) The following inequality holds:

ℜ





dF
(

eiiiθ∗ ;k,po

)

dk |k=k∗

zdF(z,p∗)
dz |z=eiiiθ∗





< 0 (> 0) , (10.27)

then for any k sufficiently close to k∗ but k> k∗.

Proof. The equivalence between (i) and (ii) is based on the use of theimplicit function theo-
rem. The same holds for the equivalence between (ii) and (iii).

Remark 10.8. Observe that F(z; p∗) is affine in k. Then the direction of crossing can also be
obtained by a straight application of the NeimarkD-partition method. To this end, consider
θ∗ ∈ Θ. Then when k(θ) "crosses" the "point"θ∗ a pair of complex roots of the characteristic
closed-loop equation will go outside (inside) of∂D according to the rule:

dIm(k(θ))
dθ

∣∣∣∣
θ=θ∗

> 0 (< 0) . (10.28)

In order to illustrate the previous methodologies, (Proposition 10.3 andD−partition
method), lets consider example (10.26) with the same parameterspo = (19

25,
16
25). After evalu-

ating conditions (10.27) and (10.28), Table 10.2 summarizethe results. In some situations the
inequality (10.27) will vanish. In such a case, the following corollary provides a second-order
analysis.
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Table 10.2: Direction of crossing for example, according totheD-partition method and to
Proposition10.3.

Method ℓ= 1 2 3 4 5
θℓ 0 1.3190 2.28 2.8422 π

D-Partition d Im[k(θ)]
dθ

∣∣∣
θ=θℓ

−7.1609 4.9809 −2.67247 2.2955 −2.5989

sign(10.28) − + − + −
λℓ −3 0 2.1061 2.7302 4.271

Proposition(10.3) condition (10.27) 0.1396 0.2451 −0.1858 −0.0439 0.3847
sign(10.27) + + − − +

Proposition 10.4.Assume that the sampling h and the delayτ are known and fixed at h0 and
τ0, respectively. Let k= k∗ be a critical gain for the crossing frequencyθ = θ∗. Under the
assumption that the critical characteristic roots of F are simple, the following statements are
equivalent:

(i) The root z∗ = eiiiθ∗
stays outside (inside) of the unit circle∂D.

(ii) The following inequality holds:

d2 | z |
dk2

∣∣∣∣
k=k∗

> 0 (< 0) ,

for any k sufficiently close to k∗, but k> k∗.

(iii) The following inequality holds:

ℜ





2 ∂2F
∂z∂k

∂F
∂k

∂F
∂z −

∂2F
∂z2

(
∂F
∂k

)2

z
(

∂F
∂z

)3

∣∣∣∣∣∣∣
z=z∗
k=k∗





+ ℑ





dF
(

eiiiθ∗ ;k,p∗o
)

dk |k=k∗

z
dF(z;k∗,p∗o)

dz |
z=eiiiθ∗





2

> 0 (< 0) (10.29)

then for any k sufficiently close to k∗ but k> k∗.

Proof. The proof follows similar lines thanProposition10.3, but with more complicate alge-
braic manipulations.

Remark 10.9. Note that if condition (10.27) doesn’t hold, then the curve touches the unitary
circle in a tangent way, i.e. it will remain in the same stability domain and the stability
property will be given by the second-order analysis (Proposition 10.4).

Such a situation is illustrated by the following example. Consider the following second-
order continuous-time system:





ẋ(t) =

[
0 1

−
(
α 2+β2

)
2α

]
x(t)+

[
0
1

]
û(t) , t ∈ [ℓh+ τ , (ℓ+1)h+ τ )

y(t) =
[

0 1
]
x(t) ,

(10.30)
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with corresponding discrete transfer-function:

Hyu(z; p0) =

eα (h−τ ) sin[β(h−τ )]
β z2+

eα (h−τ )(eα hsin[βτ ]−sin[β(h−τ )])
β z− eα (2h−τ ) sin[βτ ]

β

z3−2eαhcos[βh]z2+e2αhz
,

whereα = logα0√
2π , β =

2
√

2 arctan
(√

β0

)

π with α0 ≈ 1.17872 andβ0 ≈ 0.168987.5 Then, ap-

plying Proposition10.2-10.3 andProposition10.4 for po = (
√

2π, π√
2
) we obtain the results

summarized inTable10.3. Observe that forλ2 condition (10.27) vanish, then a second order

Table 10.3: Direction of crossing for the system (10.30), according toProposition10.3 and
Proposition10.4.

Method ℓ= 1 2
λℓ −5.00872 0.164509

Proposition (10.3) condition (10.27) 0.0285081 0
sign(10.27) + 0

Proposition (10.4) condition (10.29) ∗ 10.2764
sign(10.29) ∗ +

analysis is required. On the other hand, since the sign of (10.29) is positive, this means that
the curve trajectory stays outside of the unit circle. Such asituation is illustrated in Fig10.5.

Remark 10.10.If instead of inequality (10.29) we have an equality, then higher-order deriva-
tives have to be taken into account.

Remark 10.11. Observe, that Proposition 10.3 and Corollary 10.4 are stillvalid, if instead
of the controller gain k, we consider the sampling period h orthe induced network-delaỹτ .

10.8 Sensitivity with Respect to the Delay-Parameter

According toRemark10.1, we have that the formulations (10.7)-(10.9) are validfor all τ ≤ h.
By taking into account this observation, consider now the network delay as being a multiple
of the sampling period̃τ = rh, with the integerr > 1. Then the open-loop system has the
transfer function:

H(z; po) = c(zI−Φ(h))−1Γ(h)bz−r (10.31)

=
N(z,h)

zrD(z,h)
. (10.32)

Remark 10.12.From (10.31), it is easy to see that the polynomials D(z,h) and N(z,h) can be
obtained by discretizing directly the continuous-time system (10.1) without taking into account
the delay effects.

5Where both,α0 and β0 are algebraic numbers which can be computed exactly.α0 is a root of the
polynomial pα (x) := x4 + x3 − x2 − x− 1 given by α0 = max{x∈ R : pα (x) = 0} and β0 is a root of the
polynomial pβ(x) := 13x8 −584x7+ 4940x6− 15736x5+22990x4− 15736x3+4940x2−584x+ 13 given by
β0 = min

{
x∈ R : pβ(x) = 0

}
.
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2 ± j

√
3

2 .

We have the following result:

Proposition 10.5. Assume that for some fixed parameter p∗ = (h∗,τ ∗,k∗), with τ ∗ = h∗ the
following polynomial,

Pr(z; p∗) = zrD(z, p∗o)+k∗N(z, p∗o). (10.33)

is Schur stable. Then, there exists some sufficiently smallε > 0 such that the same property
holds for the perturbed polynomials Fr−1(z; p∗τ=h−ε) and Fr(z; p∗τ=h+ε). Furthermore,

σ(Fr(z; pτ=h+) = σ(Fr−1(z; pτ=h−)∪{0}, (10.34)

whereτ = h+ (τ = h−) defines the corresponding right (left) limit.

Proof. Without any lack of generality assume that the closest eigenvalue to∂D, denoted in
the sequelλ (0), is simple.

λ (0) :=

{
λ ∈ C : |λ |= max

λ̃∈σ(Φ̃(p∗))
|λ̃ |
}
.

Without any loss of generality, assume thatr = 1 (i.e.,τ = h∗). Then, since the characteristic
polynomial associated to the closed-loop system has different degrees for larger or smaller
network delays, we need to consider two independent cases: (i) τ ∗ → τ ∗− ε and (ii) τ ∗ →
τ ∗+ ε, respectively. In both situation, we will use a continuity type argument.

Case (i): We have thatPr(z;h∗,k∗)≡ Fr−1(z;h∗,τ ∗ = h∗,k∗), then by the continuity of the
roots with respect to the coefficients we know that∃ε > 0 such thatFr−1(z;h∗,h∗− ε,k∗) is
Schur stable.
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Case (ii): As mentioned above, observe thatPr(z;h∗,k∗) andFr(z;h∗,h∗+ ε,k∗) has dif-
ferent degrees. Then, in order to normalize the degree is noteworthy to see that the associate
transfer matrix of polynomialzPr(z;h∗,k∗) can be rewritten as:

Φ(h∗,k∗) :=




Φ(h∗) 0 Γ (h∗)b
0 0 1

−k∗c 0 0


 .

In the sequel, we interpretε as a perturbation in the delay parameter and next, we analyzethe
eigenvalue behavior ofλ (0) asε is increased from zero. To this end, consider:

T (ε) :=




Φ(h∗) Φ(h∗− ε)Γ (ε)b Γ (h∗− ε)b
0 0 1

−k∗c 0 0


 .

Sinceτ ∗ = h∗, from the above definition we have thatT (ε) ε→0−→ Φ(h∗,k∗), more over it is
clear thatT(ε) is analytic inε and its first-order derivative is given by:

T ′ (ε) =




0 Φ(h∗)b−AΦ(h∗− ε)Γ (ε)b −Φ(h∗− ε)b
0 0 0
0 0 0




Then, according toLemma2.3 the eigenvalues ofT(ε) can be expanded in series as (2.20),
i.e.:

µ(ε) = λ (0)+λ (1)
1 ε +o(ε2), i = 1, . . . ,m,

now applyingLemma2.1, we know thatλ (1)
1 = rT

1 T ′(0)q1. From the above expansion it is
clear that there always exists some sufficiently smallε > 0 such thatFr(z;h∗,h∗+ ε,k∗) is
Schur stable. This argument completes the proof for simple characteristic roots. The remain-
ing cases (semi-simple or multiple, but not semi-simple) can be treated by similarity, and
thus they are omitted. Finally, the presence of one additional characteristic root at the origin
appears naturally from the formulation ofT for τ = h± ε.

The following result, is a direct consequence ofProposition10.5.

Proposition 10.6. Assume p∗ = (h∗,τ ∗,k∗) fixed such that Fℓ−1(z; p∗) is Schur-stable. Let
τ := τ − τ ∗, Λ0 :=

{
τ 0 ∈ R+ : σ

(
WFℓ−1 (τ 0)

)
= 0
}

, Λ1 := {τ1 ∈ R+ : σ (WFℓ (τ1)) = 0}, and
define the minimum elements ofΛ0 andΛ1 byτ− := inf Λ0 andτ+ := inf Λ1. Then, the system
(10.1) is asymptotically stable for all fixedτ ∈ [(ℓ−1)h∗+ τ ∗, ℓh∗+ τ ∗] if and only if the
following inequality hold:

(h∗− τ ∗)τ ∗ < τ−τ+. (10.35)

Proof. Sufficiency. Since, bothτ− andτ+ are the minimal elements of∆0 and∆1, respec-
tively, inequality (10.35) implies that the unstable rootsof polynomialsFℓ−1(z;h∗,τ1,k∗) and
Fℓ(z;h∗,τ2,k∗) are invariant for allτ1 ∈ [(ℓ−1)h∗+ τ ∗, ℓh∗] andτ2 ∈ [ℓh∗, ℓh∗+ τ ∗]. More-
over, the fact thatFℓ−1(z;h∗,τ ∗,k∗) is Schur-stable implies thatFℓ−1(z;h∗,τ = h∗,k∗) is Schur-
stable, then, straightforwardly byProposition10.5 we conclude thatFℓ(z;h∗,τ ,k∗) is Schur-
stable for allτ ∈ [ℓh∗, ℓh∗+ τ ∗] implying that system (10.1) is asymptotically stable for all
fixed τ ∈ [(ℓ−1)h∗+ τ ∗, ℓh∗+ τ ∗].

Necessity. Since the system (10.1) is asymptotically stable for all fixed τ ∈
[(ℓ−1)h∗+ τ ∗, ℓh∗+ τ ∗], then the minimal critical delaysτ− and τ+ satisfy τ− > h∗− τ ∗
andτ+ > τ ∗, implying inequality (10.35).
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Remark 10.13. Observe that the sets∆0 and∆1 does not exclude the symmetric roots men-
tioned in Remark 10.3. The main reason is because the polynomial Fℓ−1(z;h∗,τ ∗,k∗) is Schur-
stable, then according to the Proposition 10.1b,τ− will correspond to a critical-delay value.
Similar arguments can been applied to the set∆1.

Proposition 10.7. Let the triplet p∗ = (h∗,τ ∗,k∗) be fixed and assume that Fℓ−1(z; p∗) is a
Schur-stable polynomial. Then, Fm(z; p∗) is asymptotically stable for all m> ℓ− 1 if the
following inequality holds:

|k∗|< 1
3

∣∣∣∣
D(z; p∗o)
N(z; p∗o)

∣∣∣∣ , ∀z∈ ∂D.

Proof. The proof is based on theRouché’stheorem [23] and in the sake of brevity will be
omitted.

To determine the direction of crossing when the delay is taking into account, we will
restrict our analysis to the case when the delayτ̃ is smaller that the sampling periodh. In this
case,̃τ = τ . However, the results are still valid for larger network delay values.

Let p∗ be fixed such thatτ ∗ andλ ∗
o be a critical pair of critical delay and critical zero of

F(z, p∗), i.e.,λ ∗
o = eiiiθ∗ ∈ σ (Φ(p∗)). Without any loss of generality, leteiiiθ∗

be ordered as the
first eigenvalue ofΦ(p∗), with multiplicity m. Assuming thateiiiθ∗

is semi-simple we have the
following:

Proposition 10.8. Let λ ∗
o = eiiiθ∗

be a semi-simple eigenvalue ofΦ(pτ=τ ∗). Then for anyτ
sufficiently close toτ ∗, the characteristic zeros corresponding toλ ∗

o can be expanded by the
power series:

λ ∗
o +λℓ

(
R1T ′ (0)Q1

)
(τ − τ ∗)+o

(
(τ − τ ∗)2

)
, ℓ= 1,2, . . . ,m.

Thus, forτ sufficiently close toτ ∗ butτ > τ ∗ there are at least M (M≤m) of the characteristic
zeros going outside (inside) the unit circle∂D if M of the eigenvalues satisfy the condition:

cos(θℓ−θ∗)> 0 (< 0) , ℓ= 1, . . . ,m,

whereθℓ ∈ [0,2π) is the phase angle ofλℓ (R1T ′(0)Q1) 6= 0 and T′ (0) is given by

T ′ (0) =

[
kΦ(h∗)bc Φ(h∗)b

0 0

]
. (10.36)

Proof. Introduce now the new real variableε := τ − τ ∗, and define:

T (ε) :=

[
Φ(h∗)−k∗Γ (h∗− ε)bc Φ(h∗− ε)Γ (ε)b

−kc 0

]
. (10.37)

Then, the result follows straightforwardly by applyingLemma2.1 and observing that close
to ε = 0, the matrix function (10.37) can be expanded as:T(ε) = T(0)+ εT ′(0)+ o(ε2).
The derivative of (10.37) leads to the expression (10.36). Finally, by observing the increasing
(decreasing) properties of the modulus| λ ∗

o | in the left- and right-semicircle of∂D, the proof
is complete.
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In the case of a simple root, the result above rewrites as follows:

Corollary 10.1. Letλ ∗
o = eiiiθ∗

be a simple eigenvalue ofΦ(pτ=τ ∗). Then for anyτ sufficiently
close toτ ∗, the characteristic zero corresponding toλ ∗

o can be expanded by the power series:

λ ∗
o +

(
rT
1 T ′(0)q1

)
(τ − τ ∗)+o

(
(τ − τ ∗)2

)
.

Thus, forτ sufficiently close toτ ∗, butτ > τ ∗, the corresponding characteristic zero is going
outside (inside) the unit circle∂D if the following condition is satisfied:

cos(θℓ−θ∗)> 0 (< 0) , ℓ= 1, . . . ,m−1

where T′ (0) is given by

T ′ (0) =

[
kΦ(h∗)bc Φ(h∗)b

0 0

]
. (10.38)

The next results concerns to the case when the first approximation vanish.

Proposition 10.9. Let λ ∗
o = eiiiθ∗

be a semi-simple eigenvalue ofΦ(pτ=τ ∗) with multiplicity

m, and let T(0) be partitioned as in (2.21). Let alsoλ (1)
ℓ be a semi-simple eigenvalue of

R1T ′(0)Q1 with multiplicity d. Then for anyτ sufficiently close toτ ∗, the characteristic zeros
corresponding toλ ∗

o can be expanded into the power series:

λ ∗
o +λ (1)

ℓ (τ − τ ∗)+µ(2)
ℓp (τ − τ ∗)2+o

(
(τ − τ ∗)3

)
, ℓ= 1,2, . . . ,m.

with
λ (1)
ℓ = λℓ

(
R1T ′Q1

)
, ℓ= 1,2, . . . ,m,

µ(2)
ℓp = λp

[
R(2)

1 R1
(
T ′′(0)−T′(0)ST′(0)

)
Q1Q(2)

1

]
, p= 1, . . . ,d,

where S is given in Lemma 2.3.

(i) For τ sufficiently close toτ ∗ but τ > τ ∗ the characteristic zeroλ ∗ cross to the outside
(inside) of the unit circle∂D if for someℓ= 1, . . . ,m,

cos(θℓ−θ∗)> 0 (< 0)

(ii) if cos(θℓ−θ∗) = 0, ℓ= 1, . . . ,m,

sufficiently close toτ ∗ but τ > τ ∗ the characteristic zeroλ ∗ cross to the outside (inside)
of the unit circle∂D if for some p= 1, . . . ,d,

cos(θp−θ∗)> 0 (< 0)

whereθp ∈ [0,2π) is the phase angle ofλp

[
R(2)

1 R1(T ′′(0)−T′(0)ST′(0))Q1Q(2)
1

]
6= 0

and T′′ (0) is given by

T ′′ (0) =
[
−k∗AΦ(h∗)bc −AΦ(h∗)b

0 0

]
. (10.39)

Corollary 10.2. Letλ ∗
o = eiiiθ∗

be a simple eigenvalue ofΦ(pτ=τ ∗). Then for anyτ sufficiently
close toτ ∗, the characteristic zeroλ ∗ cross to the outside (inside) of the unit circle∂D if,

cos(θ −θ∗)> 0 (< 0)
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whereθp ∈ [0,2π) is the phase angle ofλp(r1T ′(0)q1) where q1 and r1 are the right and left
eigenvectors associated withλ ∗

o . Additionally, if

cos(θ −θ∗) = 0,

then for any sufficiently close toτ ∗ but τ > τ ∗ the characteristic zeroλ ∗
o cross to the outside

(inside) of the unit circle∂D if

cos(θo−θ∗)> 0 (< 0)

whereθo ∈ [0,2π) is the phase angle ofλ [r1(T ′′(0)−T ′(0)ST′(0))q1] and T′′ (0) is given in
Proposition 10.9.

Finally, the next result concerns the case whenλ ∗
o is not a semi-simple but repeated eigen-

value.

Proposition 10.10.Let λ ∗
o = eiiiθ∗

be a repeated eigenvalue ofΦ(pτ=τ ∗) with multiplicity m.
Suppose thatλ ∗

o is not semi-simple. Then, for anyτ sufficiently close toτ ∗ but τ > τ ∗ the
characteristic zeros corresponding toλ ∗

o can be expanded by the Puiseux Series

λ ∗
o +

∣∣rmT ′ (0)q1
∣∣ 1

m ei (2ℓ+1)π+θ
m (τ − τ ∗)

1
m + · · · , ℓ= 0,m−1,

whereθ ∈ [0,2π) is the phase angle of rmT ′ (0)q1. Hence, forτ sufficiently close toτ ∗ but
τ > τ ∗, the number of critical zeros going to outside the unit circle∂D (or vice versa) can be
determined by the condition

cos

(
(2ℓ+1)π+θ −mθ∗

m

)
> 0 (< 0), ℓ= 0,m−1. (10.40)

The proof is analogous to the previous one, and, for the sake of brevity, it is omitted.

10.9 Illustrative Examples

In order to motivated the previous results, we consider in the rest of this paper the following
illustrative numerical examples.

Example 10.1.Consider the following fifth-order unstable system,





ẋ(t) =




−12.2 −21.8 3.4 10.6 −3.4
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0




x(t)+




1
0
0
0
0




û(t) ,

y(t) =
[

0 1 5 4 2
]
x(t) .

(10.41)

Then, applying Proposition 10.1, we get stability region depicted in Fig.10.6(b).
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(a) (b)

Figure 10.6: Stability crossing curvesSh∗ . (a) Example 10.2, for the
sampling-period h∗ = 1. (b) Example 10.1, for thesampling-period h∗ = 0.6.

Example 10.2.Consider the following system:




ẋ(t) =

[
0 1
a1 a2

]
x(t)+

[
0
b1

]
û(t) , t ∈ [ℓh+ τ ,(ℓ+1)h+ τ ) ,

y(t) =
[

c1 0
]
x(t) .

(10.42)

For (a1,a2,b1,c1) = (0,−0.1,0.1,1) we got the system considered in [137, 55] and for h=
1.0, we obtain the stability crossing curves illustrated in Fig.10.6(a). Now if(a1,a2,b1,c1) =
(−ω2

0 ,0,1,ω0) we got the oscillator system considered in [103].Consideringω0 = 1 and fix-
ing the control gain at k= 0.5, the stability regions depicted in Fig.10.7 were obtained.As

(a) (b)

Figure 10.7: Stability crossing curvesSk∗ for k∗ = 2 andωo = 3. (a) System
Fr+1(z, p). (b) SystemFr(z, p) with r = 0.

shown in Fig.10.7 some pairs(h∗,τ ∗) preserves the stability property for̃τ = τ +h. How-
ever is noteworthy to see that even in the case when Fr(z, p∗o) and Fr+1(z, p∗o) are stable, not
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all τ ∈ [rh+τ ,(r +1)h+ τ ] preserves this property. To illustrate such a situation, consider
(h,τ ,k) = (6.1,2.5,2) andω0 = 3. Fig.10.8 depicts the root trajectory, whenτ increases from
τ0 = 2.5 to τ f = 8.60. The corresponding delay are enlisted in Table 10.4.
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Figure 10.8: (a) Roots trajectories of the example (10.2), for (a1,a2,b1,c1) = (−ω2
0 ,0,1,ω0)

andτ̃ ∈ [τ ∗,h∗+ τ ∗). (b) Zoom of the dashed region.

Table 10.4: Delay stability-crossing values for the oscillator system (10.42).
Critical Delay Values

τ (ℓ)1 τ (ℓ)2 τ (ℓ)3 τ4 τ5 τ6 τ7
ℓ= 1 2 3 4 ℓ= 1 2 ℓ= 1 2 ℓ= 1 ℓ= 1 ℓ= 1 ℓ= 1

2.69 3.4 4.78 5.5 2.98 5.22 6.35 8.44 4.27 6.66 7.21 7.43

Crossing + − + − + + − − − + + −

Example 10.3(Two-Sampling Period Behavior). In order to illustrate Proposition 10.6, we
will consider as a final example the system (10.42) with(a1,a2,b1,c1) = (−ω2

0 ,0,1,ω0), ω0 =
3 (the oscillator case) and fixed sampling period h= 19

25. Takingℓ = 2, we will consider
the triplets p∗1 = (h∗,τ ∗,k∗1) =

(19
25,

2
25,

1
5

)
and p∗2 = (h∗,τ ∗,k∗2) =

(19
25,

2
25,

3
5

)
we which we

know that Fℓ−1(z, p∗1) and Fℓ−1(z, p∗2) are both Schur-stable. Then in order to investigate if
Fℓ−1(z, p∗i ) (i ∈ {1,2}) stay stable for allτ ∈ [h∗+ τ ∗, 2h∗+ τ ∗] we consider Proposition 10.6.
The following Table 10.5 summarize the computations. According to Table10.5, we have that

Table 10.5: Evaluation ofProposition10.6 for ℓ = 2 and the two tripletsp∗1 =
(

19
25,

2
25,

1
5

)
,

p∗2 =
(

19
25,

2
25,

3
5

)
.

p∗j Proposition10.6(
h∗,τ ∗,k∗j

)
τ− τ+ τ− · τ+ (h∗− τ ∗)τ ∗

( 9
25,

2
25,

1
5

)
0.813695 0.136736 0.111262

0.0544
stable(

9
25,

2
25,

3
5

)
0.726888 0.047933 0.034842 unstable
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Fℓ−1(z, p∗1) stay stable∀τ ∈ [h∗+ τ ∗, 2h∗+ τ ∗], whereas Fℓ−1(z, p∗2) does not preserve the
same property. Fig.10.9 shows the stability region in the k− τ parameter space, where the
points(k j , t j), are given by k1 =

1
5, k2 =

3
5 and t1 = h∗+ τ ∗, t2 = 2h∗+ τ ∗.

Figure 10.9: Stability region in thek− τ parameter space, for the oscillator system (10.42).
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11 Perturbation Techniques in Discretization

In the this chapter we will discus some extension of the eigenvalue perturbation based-
approach developed in thePart II, to the Sampled-Data Systems. Then, in order to present
the appropriate extension, some preliminaries results will be presented.

11.1 Introduction and Motivating Examples

In the design of linear time-invariant systems, the location of poles and zeros plays a funda-
mental role in deriving the performance of the closed-loop system (see, e.g., [121], and the
references therein). As stated in the literature ([37, 62]), several techniques in adaptive con-
trol are based on zero-cancelation and, as a consequence, the corresponding schemes will not
work with unstable zeros. As discussed by [4], the poles of a discretized system can be derived
from the poles (pℓ) of the continuous-time system representation by using thesimple transfor-
mation pℓ 7→ exp(pℓh), whereh denotes the sampling period. Unfortunately, there does not
exist any explicit map giving the relation between the zerosof a continuous-time system and
the zeros of the corresponding sampled-system. Into a different context, in a pioneer work of
[4, 6], it was shown that the minimal-phase property for a continuous-time system can be lost,
even for a sufficiently small sampling period (h).

The effects of sampling a continuous-time systems with a zero-order hold on the resulting
discretized zeros have been largely treated in the literature (see, for instance, [4, 37, 62, 63]
and the references therein). However, in all these works, the main results have been estab-
lished by considering several restrictions. In order to mention some, for example, [4, 37, 62]
consider that the system is a strictly proper stable continuous-time system, whereas [63] deals
with strictly proper unstable continuous-time system. Finally, although [63] considered a
more general case, the corresponding zeros characterization is stated under some additional
restrictions. Among them, we cite:no poles on the imaginary axisandall poles are distinct.
Moreover, the author does not pay any attention to the case whenmultiple critical samplings
appears on the unit circle. Motivated by these observationsand to the best of the authors
knowledge, the characterization of all stability intervals for the discretized zeros is still open.

In order to motivate the proposed approach, consider the system:




ẋ(t) =




0 1 0
0 0 1

λ
(
σ2+ω2

)
−σ (σ +2λ )−ω2 2σ +λ


x(t)+




0
0
1


u(t)

y(t) =
[

α 2+β2 −2α 1
]
x(t) .

The corresponding transfer function writes as:

G(s; p) =
(s−α )2+β2

(s−λ )((s−σ)2+ω2)
, (11.1)

wherep := (α ,β ,λ ,σ ,ω) defines the set of parameters. Then, takingGi(s) := G(s, pi), i =
{1,2,3} we have the following cases:

i) Taking p1 = (0.5,1.5,−3,−0.1,2), the sampled-system is minimal-phase for small
sampling periods, however increasingh leads to a non-minimal-phase system;
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ii) Next, for p2 = (−2,1,1,0,2), the sampled-system stays minimal-phase.

iii) Finally, for p3 = (0.1,1,1,0.1,0.25) the sampled-system is non-minimal-phase for
small sampling periods, however increasingh leads to a minimal-phase system.

Such behaviors are depicted in Fig.11.1. Based on the remarks above, we are interested in

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

z1(h)

z3(h)

z3(h)

z2(h)

z2(h)z1(h)

Figure 11.1: Sampled-root trajectories for the system (11.1), where:zk(h) correspond to the
sampled-zero trajectory ofGk(s).

exploring theminimal-phase propertyby using an appropriate formalism to analyze the zero
behavior whenh is taken as afree parameter. Such an approach will give further insights on
the zeros behavior of sampled-systems.

11.2 Preliminaries and Problem Formulation

We introduce now some basic prerequisites on operator perturbation theory for matrix eigen-
value problems. More precisely, we discuss the eigenvaluesbehavior of a matrix function
with respect to a small perturbation on some of its parameters. The development is based on
[75], [67].

Let A(λ ) be ann× n−matrix function, defined and analytic in a neighborhood ofλ ∗

and with detA(λ ) 6= 0. Then,λ ∗ is aneigenvalueof A(λ ) if detA(λ ∗) = 0. Thegeometric
multiplicity gof λ ∗ is the dimension of the kernel kerA(λ ∗). The functionA(λ ) admits alocal
Smith formatλ = λ ∗, thats is there are nonnegative integersm1, . . . ,mn satisfyingmi ≤ mi+1,
i = 1, . . . ,n−1 with mg+1 = · · · = mn = 0 if g< n andn×n−matrix functionsE(λ ), F(λ )
which are analytic and invertible in a neighborhood ofλ = λ ∗ such that:

A(λ ) = E(λ )D(λ )F(λ ), (11.2)
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with D(λ ) = diag((λ −λ ∗)m1, . . . ,(λ −λ ∗)mn). The numbersmi, i = 1, . . . ,g are thepartial
multiplicitiesof the eigenvalueλ = λ ∗ of A(λ ), whereas their summ1+ · · ·+mg is its alge-
braic multiplicity. If there arek groups of mutually equalmi , the j−th group containingn j

elements we have:

m1= · · ·= mn1< mn1+1= · · ·= mñ2< · · ·<mñk−1+1= · · ·= mñk
,

whereñ j = n1+ · · ·+n j , hence setting̃mj := mñ j , j = 1. . . ,k, we have 0< m̃1 < m̃2 < · · ·<
m̃k.

In the sequel, we recall some results concerning the eigenvalues of the perturbedn×
n−matrix function,

T (λ ,ε) := A(λ )+B(λ ,ε)
nearλ = λ ∗ and for smallε under the assumption thatB(λ ,ε) is analytic inλ near(0,0)
andB(λ ,0) = 0 for all λ . SinceA(λ ) admits a local Smith form, the study of the eigenvalue
perturbation ofT(λ ,ε) is equivalent to the study of the solutions of the equation det T̂(λ ,ε) =
0 whereT̂(λ ,ε) := D(λ )+ B̂(λ ,ε), with B̂(λ ,ε) := E−1(λ )B(λ ,ε)F−1(λ ).

Now, consider a partition ofD(λ ) andB̂(λ ,ε) as

D(λ )=

[
D1(λ ) 0

0 I

]
, B̂(λ ,ε)=

[
B̂1(λ ,ε) B̂2(λ ,ε)

B̂3(λ ,ε) B̂4(λ ,ε)

]
(11.3)

whereD1(λ ) andB̂1(λ ,ε) areg×g matrices. Next, denote

H :=
∂ B̂1

∂ε
(0,0) , (11.4)

and define forj = 1,2. . . ,k; ℓ= 1,2, . . . ,n j −1:

∆ jℓ :=∑detH
(
α1, . . . ,αn j−ℓ, ñ j +1, ñ j +2, . . . ,g

)
, (11.5)

where the sum runs over allα1, . . . ,αn j−ℓ such that̃n j−1 < α1 ≤ . . .≤ αn j−ℓ ≤ ñ j ,

∆ j := ∆ j0 :=

{
detH

(
ñ j−1+1, ñ j−1+2, . . . ,g

)
if 1 ≤ j ≤ k

1 if j = k+1
(11.6)

Next, for a positivem by ϑm,σ , σ = 1, . . . ,m, we denote them−th roots of unity.

Theorem 11.1 ([75]). Let A(λ ) and B(λ ,ε) be as above and assume that the condition
∆1 · · ·∆k 6= 0 is satisfied.

i) Then for each j∈ {1,2, . . . ,k} there are njm̃j eigenvalues of T(λ ,ε) = A(λ )+B(λ ,ε)
nearλ ∗ = 0, satisfying forε → 0, the asymptotic relations

λ jνσ (ε) = γjνϑm̃j ,σε
1

m̃j +o

(
|ε|

1
m̃j

)
,

hereσ = 1, . . . ,m̃j ; ν = 1, . . . ,n j and the numbersγjν satisfy
(
γjν
)m̃j = ξ jν , whereξ jν

ν = 1, . . . ,n j , are the solutions of the equation

∆ j +
n j−1

∑
ℓ=1

∆ jℓξ ℓ+∆ j+1ξ n j = 0. (11.7)

For smallε there are no other eigenvalues of T(λ ,ε) nearλ ∗ = 0.
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ii) If for some j∈ {1,2. . . ,k} the j−th equation (11.7) has a simple rootξ̂ j then there is

a group ofm̃j eigenvalueŝλ jσ(ε) of T(λ ,ε) nearλ ∗ = 0 having Puiseux expansion in

ε
1

m̃j

λ̂ jσ(ε) = γ̂jϑm̃j ,σε
1

m̃j +
∞

∑
ℓ=2

α jℓϑ ℓ
m̃j ,σε

ℓ
m̃j , σ =1,2, . . . ,mj

with
(
γ̂j
)m̃j = ξ̂ j .

11.2.1 System Description

Consider the following continuous-time linear system:
{

ẋ(t) = Ax(t)+bu(t)
y(t) = cx(t)+du(t) ,

(11.8)

whereA∈ Rn×n, andb, cT ∈ Rn are real constant matrices. By discretizing the system (11.8)
with a constant sampling periodh, we obtain the following discrete-time system:

{
x[ℓ+1] = Φ(h)x[ℓ]+Γ(h)u[ℓ] ,

y[ℓ] = cx[ℓ]+du[ℓ] ,
(11.9)

whereΦ : R+ 7→Rn×n andΓ : R+ 7→Rn are defined byΦ(t) := eAt andΓ(t) :=

(
t∫

0
eAsds

)
b.

The corresponding transfer function of (11.9) is given byHyu(z,h) := N(z,h)/D(z,h) where,
according to [45, 44],

N (z;h) = det

[
zI−Φ(h) −Γ(h)

c d

]
, (11.10)

D(z;h) = det(zI−Φ(h)) . (11.11)

11.2.2 Problem Formulation

As mentioned in the Introduction, this chapter will focus ontwo problems:

(i) first, detecting all critical samplings inR+, that is the explicit computation of allh∗ ∈
R+ such thatN

(
eiiiθ∗

,h∗
)
= 0 for someθ∗ ∈ [0,2π), and

(ii) second, computing all intervals I1, . . . IN such that for allh∈ Iℓ the number of unstable
zeros isinvariant.

In this way, we will find an appropriate partition

IS=
⋃

Iℓ, IU =
⋃

Iℓ

with
R+ = IS

⋃
IU ,

such that the discretized system isminimal phasefor all h∈ IS andnon-minimal phasefor all
h∈ IU .
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11.3 Main Result

We focus in the analysis of the zeros for the polynomialN(z;h) when the sampling periodh
range overR+. Despite the fact that, in thePart II we have introduced the notion of a critical
point and crossing set, we will define such a notions again, but in a different context.

Definition 11.1. A stability crossing pointor a critical samplingh∗ is a sampling period
such that there exists at least one critical zero z∗ ∈ ∂D of the corresponding sampled-system
(N (z∗;h∗) = 0). Thestability crossing setS is defined as the collection of all critical sam-
plings. Finally, the crossing setΘ is defined as the collection of allθ ∈ [0,2π) such that there
exists at least one sampling period h∗ which a stability crossing point with the critical zero
z∗ = eiiiθ (N

(
eiiiθ ;h∗

)
= 0).

Even though the following matrices have been already introduced, we will redefine it, it
the seek of completeness. Lets introduce now the following parameter-dependent matrices
M1,M2 : R+ 7→ Rn×n:

M1(h),




a0(h) · · · 0
...

...
...

an−1(h) · · · a0(h)


; M2(h),




an(h) · · · a1(h)
...

. . .
...

0 · · · an(h)


,

matrices associated toN(z;h) =
n
∑

k=0
ak (h)zk. Next, introduceP := (h) ⊂ R+ as the set

of all points h satisfying the equality det(WN (h)) = 0, whereWN (h) := M2(h)MT
2 (h)−

M1(h)MT
1 (h).

Proposition 11.1.The inclusionS ⊂ P, holds and is strict.

Proof. The proof follows from the observation thatP contains not only critical samplingsh∗,
but also symmetric points, for which the equality det(WN (h)) = 0 is also valid.

We have the following:

Proposition 11.2.Consider the discretized system (11.9) and let the zero transmission behav-
ior be characterized by the polynomial function N(z;h). Then the sampling h= h∗ ∈ S is a
stability crossing point if and only if the following properties hold simultaneously:

(i) h∗ ∈ R+;

(ii) det(WN (h∗)) = 0;

(iii) σ (Φ(h∗))∩∂D 6= /0.

Remark 11.1. As mentioned in Chapter 10 we recall here that the condition (ii) is necessary
but not sufficient for the existence of a crossing since, excepting the real crossing points, the
determinant above vanishes also for symmetric points with respect to the unit circle∂D6.

6see,Proposition11.1 andRemark10.3
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11.3.1 Crossing Direction Characterization

Proposition11.2 explicitly gives the set of all sampling periods (h > 0) with corresponding
characteristic roots on the unit circle∂D. Then, assuming first that the sampling period param-
eter is fixed to some critical valueh∗ for which there exists at least one critical characteristic
root on∂D, the characterization of the crossing directions is given as follows:

Proposition 11.3.Let h= h∗ ∈R+ be a critical sampling for the crossing frequency z= eiiiθ∗
.

Under the assumption that the critical characteristic roots of N are simple, the following
statements are equivalent:

(i) The root z∗ = eiiiθ∗
is crossing∂D towards instability (stability).

(ii) The following inequality holds:

d | z |
dh

∣∣∣∣
h=h∗

> 0 (< 0) ,

for any h sufficiently close to h∗, but h> h∗.

(iii) The following inequality holds:

ℜ





dN
(

eiiiθ∗ ,h
)

dh |h=h∗

zdN(z,h∗)
dz |z=eiiiθ∗





< 0 (> 0) , (11.12)

then for any h sufficiently close to h∗ but h> h∗.

Even in the case of simple eigenvalues the condition (11.12)can vanish, in such a case the
following Propositionprovides a second order analysis:

Proposition 11.4.Let h∗ be a critical sampling-period such that the condition (11.12) vanish.
Under the assumption that the critical characteristic roots (z∗ = eiiiθ∗

) of N is simple, the
following statements are equivalent:

(i) The root z∗ = eiiiθ∗
stays outside (inside) of the unit circle∂D.

(ii) The following inequality holds:

d2 | z |
dh2

∣∣∣∣
h=h∗

> 0 (< 0) ,

for any h sufficiently close to h∗, but h> h∗.

(iii) The following inequality holds:

ℜ





2 ∂2N
∂z∂h

∂N
∂h

∂N
∂z−

∂2N
∂z2

(
∂N
∂h

)2

z

(
∂N
∂z

)3

∣∣∣∣∣∣∣
z=z∗,h=h∗





+ ℑ

{
∂N(z,h)

∂h |h=h∗

z
∂N(z,h∗)

∂z |z=z∗

}2

> 0 (< 0) ,

then for any h sufficiently close to h∗ but h> h∗.



166 PERTURBATION TECHNIQUES INDISCRETIZATION

11.3.2 Multiple critical samplings

Now, in order to analyze a more general situation, i.e. a multiple critical samplings, lets
introduce the following notions. Leth∗ andλ ∗

0 = eiiiθ∗
, θ∗ ∈ [0,2π) be a critical pair of critical

sampling and critical zero ofN(z;h), i.e.,N(λ ∗
0 ;h∗) = 0. We define,T : C×R+ 7→ Cn+1×n+1

given by:

T (λ ,ε) :=

[
I
(
λ +λ ∗

0

)
−Φ(ε∗) −Γ(ε∗)

c d

]

︸ ︷︷ ︸
=:A(λ )

+

[
Φ(ε∗)−Φ(ε+ε∗) −Φ(ε∗)Γ (ε)

0 0

]
.

︸ ︷︷ ︸
=:B(ε)

(11.13)

According to this definition it is clear thatλ = 0 is an eigenvalue ofA(λ ) and thatB(0)≡ 0,
moreover, it is clear thatT(λ ,ε) is holomorphic aroundλ = 0 andε = 0. In the rest of this
subsection we will adopt the same notations introduced in the preliminary section11.2, i.e.,
mi , i =1, . . . ,gwill denote the partial multiplicities of the eigenvalueλ =0,g=dim(kerA(0))
is the geometric multiplicity,k denotes the number of groups mutually equalmi , where the
j−th group containn j elements (see section 11.2, for more details). In the following we will
refer to equation (11.7) as thej − th polynomial:

Pj(ξ ) := ∆ j +
n j−1

∑
ℓ=1

∆ jℓξ ℓ+∆ j+1ξ n j . (11.14)

Additionally, we will denoteÊ (λ ) := E−1(λ ) andF̂ (λ ) := F−1(λ ), where these matrices
are partitioned as follow,

Ê (λ ) =

[
Ê1(λ ) Ê2(λ )

Ê3(λ ) Ê4(λ )

]
, F̂ (λ ) =

[
F̂1(λ ) F̂2(λ )

F̂3(λ ) F̂4(λ )

]
. (11.15)

Then, in the same spirit ofPart II (chapter10) we have the following results:

Proposition 11.5. Assume that∆1 · · ·∆k 6= 0. Then for each j∈ {1, . . . ,k} and any sampling
period h sufficiently close to h∗, there are njm̃j characteristic zeros of the discretized system
(11.9) corresponding toλ ∗

o which can expanded by Puiseux series:

λ jνσ (h) = λ ∗
o +γjν ϑm̃j ,σ (h−h∗)

1
m̃j +o

(
|h−h∗|

1
m̃j

)
, σ = 1, . . . ,m̃j ,

hereγjν satisfy
(
γjν
)m̃j = ξ jν whereξ jν , ν = 1, . . . ,n j are the solutions of the j− th polyno-

mial (11.14), with∆ jℓ, ∆ j given by (11.5)-(11.6) and

H =−Ê1(0)Φ(h∗)
[
AF̂1(0)+bF̂3(0)

]
.

Thus, for h sufficiently close to h∗ but h>h∗ there are at least M (M≤ m̃j ) of the characteristic
zeros going outside (inside) the unit circle∂D if M of the eigenvalues satisfy the condition:

cos(θℓ−θ∗)> 0 (< 0) , ℓ= 1, . . . ,m̃j

whereθℓ ∈ [0,2π) is the phase angle ofγjνϑm̃j ,σ 6= 0.

In the case of a simple roots, of thej − th polynomial the result above rewrites as follows:
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Proposition 11.6.Assume that∆1 · · ·∆k 6= 0. If for some j∈ {1, . . . ,k} the j− th polynomial

(11.14) has a simple root̂ξ j , then there is a group of̃mj discretized zeros having a Puiseux
expansion:

λ̂ jσ(h)=λ ∗
0+γ̂jϑm̃j ,σ (h−h∗)

1
m̃j+

∞

∑
ℓ=2

α jℓϑ ℓ
m̃j ,σε

ℓ
m̃j, σ =1, . . . ,m̃j .

with
(
γ̂j
)m̃j = ξ̂ j . Thus, for h sufficiently close to h∗ but h> h∗ there are at least M (M≤ m̃j )

of the characteristic zeros going outside (inside) the unitcircle ∂D if M of the eigenvalues
satisfy the condition:

cos(θℓ−θ∗)> 0 (< 0) , ℓ= 1, . . . ,m̃j

whereθℓ ∈ [0,2π) is the phase angle of̂γjϑm̃j ,σ 6= 0.

Finally, the next result concerns the case when all partial multiplicities are equal and sim-
ple.

Corollary 11.1. Assume that m1 = · · · = mg =: m and letµ1, . . . ,µg the eigenvalues of H,
such thatµi 6= 0, for all i = 1, . . . ,g. Then, for any h sufficiently close to h∗ but h> h∗ the
characteristic zeros of the discretized system (11.9) can be expanded as:

λℓσ(h) = λ ∗
o +

m
√

µℓϑm,σ (h−h∗)
1
m +o

(
|h−h∗|

1
m

)
, ℓ=1,g, σ = 1,m.

Hence, for h sufficiently close to h∗ but h> h∗, the number of critical zeros going to outside
the unit circle∂D (or vice versa) can be determined by the condition

cos(θℓ−θ∗)> 0 (< 0) , ℓ= 1, . . . ,m̃j

whereθℓ ∈ [0,2π) is the phase angle ofm
√µℓϑm,σ 6= 0.

Remark 11.2. Observe that in the previous results our main assumption is that all ∆1 · · ·∆k 6=
0. However, in case that this condition vanish it is still possible to extended the previous
results, by applying the similar ideas than [76].

11.3.3 Numerical Examples

In order to illustrate the previous results, we consider thefollowing examples.

Example 11.1.Consider a transfer function

G(s) =
b1s+b0

(s+a)2 (11.16)

where a∈ R\{0} and b0, b1 ∈ R are not both zero. We have the following situations:

i) Let b0 = 0 and b1 6= 0. In this case we have that N(z;h) = (b1h)e−ah(z−1) implying
that all sampling periods are critical, i.e.S = R+.
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ii) If b0 6= 0 and b1 = 0, then applying Proposition 11.2 we have that the critical sampling
are characterized by the roots of the equation f(h) = 0, where:

f (h) = e2ah−2(ah)eah−1. (11.17)

Since, f(h) = 0⇔ h= 0, we conclude that the only critical sampling is h∗ = 0.

iii) Consider now bi 6= 0, i = 1,2. According to Proposition 11.2, the critical samplings are
characterized by the solutions of the equation g(x)=0, where:

g(x) = (b0−ab1)x csch(x)−b0. (11.18)

Then anecessary and sufficient conditionfor the existence and uniqueness of a critical
sampling h∗ ∈ R+ is given by:

0<
b0

b0−ab1
< 1. (11.19)

If the inequality (11.19) holds, then the stability crossing points (critical sampling) are

given by h∗ =
∣∣∣ x∗

a

∣∣∣, where x∗ is a zero of (11.18).

Table 11.1 summarizes the previous discussion.

Table 11.1: Critical sampling and direction of crossing for(11.16). β is given by β =
{x∗ ∈ R : (b0−ab1)x∗csch(x∗)−b0 = 0}.

Case Critical Sampling ℜ

{
dN
dh

∣∣∣
h=h∗

zdN
dz |
∣∣∣
z=eiθ∗

}

{
b0 = 0
b1 6= 0

h∗ = R ∗
{

b0 6= 0
b1 = 0

h∗ = 0

{
2a

sign(a)

{
b0 6= 0
b1 6= 0

h∗ =
∣∣∣βa
∣∣∣ if 0 < b0/(b0−ab1)< 1

{
−2a

−sign(a)

h∗ = 0 otherwise

{
2b0/b1

sign(b0/b1)

Remark 11.3. Taking b1 = 0 in (11.16), we recover the transfer function G0(s) considered in
[62, pp.1560]. Although we arrive to a "similar" conclusionhere, the analysis proposed by
[62] is not complete.

Example 11.2. Consider the following non-minimal phase system with the transfer
function[43]:

G(s) =
(s−1/10)2+1

(s+1)(s+99/100)(s+101/100)
. (11.20)

Then, evaluating Proposition 11.2, we get that the only critical sampling is h∗1 = 1.067186.
According to Table 11.3, we conclude that the system is non-minimal phase for all h∈ IU =
(0,1.067186] and minimal-phase if h∈ IS= (1.067186,∞). The interest of this example lies
on the fact that the method of Ishitobi [62] does not work in this case, as pointed out by
Hagander [43].
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Table 11.2: Critical values and direction of crossing for system (11.21).
Prop. 11.2(ii) {z∈ C |N(z,h∗) = 0} Cond. (11.12)

h∗1 1.067186 {0.369222± iii 0.929340} 0.226438

Example 11.3.Consider the following unstable and non-minimal phase system with the trans-
fer function:

G(s) =
s−1

s3+ 173
50 s2+ 143

50 s− 3
25

(11.21)

Then, evaluating condition (10.19), we obtain the plot illustrated in Fig.11.2. According to

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h∗
1 = 2.055

h∗
2 = 4.524

h

Figure 11.2: Evaluation of (10.19), for the discretized system (11.21).

Fig.11.2, it appears that the possible critical points are h∗
1 = 2.055and h∗2 = 4.524. However,

taking h= h∗1 we have that N(eiiiθ ,h∗1) 6= 0 for all θ ∈ [0,π), this implies that N(z,h∗1) has
the symmetric property mentioned previously. Indeed, these values are z1 = −0.059835and
z2 = 1/z1 = −16.7126. Then, by applying Proposition 11.2, we get that the only critical
sampling is h= 4.524. The next table summarizes the above discussion. Accordingwith

Table 11.3: Critical values and direction of crossing for system (11.21).

Prop.1(ii) {z∈ C |N(z,h∗) = 0} ℜ

{
dN
dh

∣∣∣
h=h∗

zdN
dz |
∣∣∣
z=eiiiθ∗

}

h∗1 2.0550 {−16.71,−0.059} not applicable
h∗2 4.5242 {−1,−0.002} 0.387(+)

Table 11.3 we conclude that the system is non-minimal phase for all h ∈ IU = (0,4.5242] and
minimal-phase if h∈ IS= (4.5242,∞).
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Example 11.4.Consider now the following non-minimal-phase system:





ẋ(t) =




0 1 0
0 0 1

−1
16

−1
16 −1


x(t)+




0
0
1


u(t)

y(t) =
[

1 −2 1
]
x(t) .

The corresponding transfer-function writes as:

G(s) =
(s−1)2

(s+1)(s2+1/16)
(11.22)

In this cases we will have an infinity but countable critical samplings, assuming that we are
interested only in sampling periods satisfying the inequality 0 < h∗ < 100. Table 11.4 sum-
marizes the results obtained from Proposition 11.2. According to Table 11.4 we observe that

Table 11.4: Crossing direction for the respective criticalsamplings.
k∈ N Critical

h∗ℓ (k) Sampling
{

z∈ C|N
(
z,h∗ℓ

)
= 0
}

ℜ

{
dN
dh

∣∣∣
h=h∗

zdN
dz |
∣∣∣
z=eiθ∗

}

h∗1(k) 2.0617074 {−1,4.151366} −1.029907
(−)

h∗2(k) 27.757700 {−1,≈ 8.529411} −1.314621
(−)

h∗3(k) 52.890441 {−1,≈ 8.529411} −1.314621
(−)

h∗4(k) 78.023182 {−1,≈ 8.529411} −1.314621
(−)

h∗5(k) 103.155924 {−1,≈ 8.529411} −1.314621
(−)

h∗6(k) 4(2k−1)π
{
−1, 15−2e4(2k−1)π

15e4(2k−1)π−2

} −1.314621
(−)

h∗7(k) 8kπ {1,1} ∗

the critical sampling h∗7 = 8kπ has a double zero at z∗ = 1, then in order to determine the
crossing direction we consider the following invertible matrix functions:

E (λ ) =




−1
4

1
2

3
4

λ
4

−26−17λβ
128

17(2+λβ )
64

94−17λβ
128

−17λ (λ+α )
64α

17
4α − 17

2α
17
4α −17λβ

8
17
8α − 17

4α
17
8α

−8−17λβ
16


 , (11.23)

F (λ ) =




−16 16 1 0
−15

2 8 0 1
1 0 0 0
0 1 0 0


 , (11.24)
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whereα = 1−e−8π, β = 1+coth(4π) andcothis the hyperbolic cotangent function. We also
have that detE(λ ) = 17

128(1+coth(4π)) and detF(λ ) = 1. With these matrices, we have that

D(λ ) = E (λ )−1A(λ )F (λ )−1 =




λ 0 0 0
0 λ 0 0
0 0 1 0
0 0 0 1


 .

Then, we have m1 = m2 = 1, g= 2, k= 1 and n1 = 2. All theses facts together implies that
we can apply Corollary 11.1. Then, we obtain that zero as a function of the sampling period
around h∗ = 8π behave as:

λℓ (h) = 1+ 47± j
√

2143
128 (h−h∗)+o(|h−h∗|) , ℓ= 1,2.

Since cos(θℓ) = 47
16
√

17
> 0 for ℓ= 1,2, implies that the discretized zeros are crossing towards

instability. Such a behavior is illustrated in Fig.11.3.

−1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5
Im

Re

z(h)

z(h)

Figure 11.3: Sampled-zero behavior aroundh∗ = 8π.

11.4 Future Works: Singular Matrix Functions

In the previous sections (section11.2-11.3) we have studied analytically the behavior of the
eigenvalueλ ∗ of the matrix functionT(λ ,h) (see, (11.13)) around someh∗ > 0, or in other
words we have implicitly assumed that the matrix functionT(λ ,h) is regular. Here, we say
regular in spite of the following

Definition 11.2. A matrix function A(λ ) is singular if for allλ ∈ C,

det(A(λ ))≡ 0.

Otherwise, the matrix-valued function A(λ ) is said to be regular.
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Now, if we are interested in the asymptotic eigenvalue behavior aroundh∗ = 0 the matrix-
valued functionT(λ ,h)|h=0 becomessingular. The termlimiting zerosis used to denote the
discretized zeros for sufficiently small or large sampling periods. Then, in order to study the
asymptotic properties of the limiting zeros whenh→ 0+, such a zeros have been classified in
two categories [4, 44]:

(i) intrinsic zeros: these correspond to the zeros of the continuous time systemand ap-
proach toz= 1 ash→ 0+. Then, if the continuous-time system is strictly proper, there
are at mostn−1 intrinsic zeros.

(ii) discretization zeros: these zeros doesn’t have continuous-time counterpart anddepend
on the relative degree (ρ) of the continuous-time system. Moreover, the behavior as
h→ 0+ is given by the following Euler polynomial:

Bρ (z) = b(ρ)1 zρ−1+b(ρ)2 zρ−2+ · · ·+b(ρ)ρ

b(ρ)k =
k

∑
i=1

(−1)k−i iρ
(

ρ +1
k− i

)
, k= 1,2, . . . ,ρ.

From the above definition it is not difficult to see thatBρ(z) is asymmetric polynomial,

i.e., all their coefficients satisfyb(ρ)k = b(ρ)ρ−k+1 and consequently their roots are sym-

metric with respect to the unit circle, i.e. sinceBρ(z) = Bρ(
1
z), this implies that there

the same number of zeros inside and outside of the unit circle(for more details analysis
of this polynomial, see[126]).

It is worth to mention that several attempts have been made (see for instance, ([7, 13, 44, 45,
62, 63, 64], and reference therein) in order to characterizeasymptotically the zero behavior as
h→ 0+. However the problem is still open, and the mean reason is that in all the above works
they made a description of the limiting zeros, assuming thatthe continuous zero is simple,
and under this assumption they show that the limiting zerozd (h) admits a Taylor expansion
with respect to the sampling periodh, i.e., they show thatzd (h) behave as

zd (h) = 1+γ1h+γ2h2+γ3h3+ · · · . (11.25)

However, if the continuous zeros are multiple, such an expansion is not necessarily valid.
In order to illustrate such a situation, lets consider the continuous-time system, given by the
following transfer function

G(s) =
(s−γ)3

(s+1)2
(

s2+ 1
42

) , γ 6= 0. (11.26)

In this case, in order to expand in series the limiting zeroszd (h), we apply theNewton-
Diagram2.2, obtaining the diagram depicted in figure 11.4. Now, according with theNewton-
Diagram Procedurewe conclude that the limiting zeros for 0< h= ε ≪ 1 behaves as

z1(ε) = 1−γε+
(
γ(γ−1)2

(
16γ2+1

))1/3
e− j π

3

4 3
√

3
ε

5
3 +o

(
ε

5
3

)
,

z2(ε) = 1−γε+
(
γ(γ−1)2

(
16γ2+1

))1/3
ej π

3

4 3
√

3
ε

5
3 +o

(
ε

5
3

)
,

z3(ε) = 1−γε+
(
γ(γ−1)2

(
16γ2+1

))1/3
ejπ

4 3
√

3
ε

5
3 +o

(
ε

5
3

)
.
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0 1 2 3 4 5
0

1

2

3

4

5

Figure 11.4: Newton Diagram for discretized system (11.26).

Then, by an appropriate extension of the previous results, as a future work can be considered
the asymptotic eigenvalue behavior of the matrix functionT(λ ,h) ash→ 0+.
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A Mathematical Background

A.1 Chebyshev Polynomials Definitions

Definition A.1 ( [86]).

(i) The Chebyshev polynomial Tn(x) of the first kind is a polynomial in x of degree n, defined
by

Tn(x) = cosnθ, when x= cosθ,

(ii) The Chebyshev polynomial Un(x) of the second kind is a polynomial in x of degree n,
defined by

Un(x) =
sin(n+1)θ

sinθ
, when x= cosθ.

A.2 Leverrier-Sauriau-Frame Algorithm

Theorem A.1([90]). Let the characteristic equation for A∈Rn×n be given by,λ n+c1λ n−1+

c2λ n−2+ · · ·+cn = 0, and define a sequence by taking B0 = I and Bi =− trace(ABi−1)
i I +ABi−1

for i = 1,2, . . . ,n. Then, the i th coefficient is ci =− trace(ABi−1)
i .

A.3 Rouché’s Lemma

In complex analysis, Rouché’s Lemma states that if the complex-valued functionsf andg
are holomorphic inside and on some closed contourD, with |g(z)| < | f (z)| on D, then f
and f + g have the same number of zeros insideD, where each zero is counted as many
times as its multiplicity. This theorem assumes that the contourD is simple, that is, without
self-intersections.

Theorem A.2. [78] Let f (z) and g(z) be analytic in a simply connected domainD containing
a Jordan contourJ . Let | f (z)| > |g(z)| on J . Then, f(z) and f(z)+ g(z) have the same
number of zeros insideJ .

A.4 Implicit Function Theorem

Given a set of suitable equations, theImplicit Function theoremstates that some of the vari-
ables can be defined as a functions of the others.

In the general case we shall have a functionF : Rn×Rm →Rm, and consider the relation,

F1(x1, . . . ,xn,y1, . . . ,ym) = 0

· ·
· ·
· ·

Fm(x1, . . . ,xn,y1, . . . ,ym) = 0.



Then, the Implicit Function theorem guarantees at least locally that we can find a unique
differentiablef such thatF (x, f (x)) = 0. The theorem is as follows.

Theorem A.3 (Implicit Function theorem). [85, 73] Let A⊂ Rn×Rm be an open set and let
F : A → Rm be a function of class Cp (that is F has p continues derivatives where p∈ N).
Suppose(x0,y0) ∈ A and F(x0,y0) = 0. Form

∆(x,y) =

∣∣∣∣∣∣∣∣∣∣∣

∂F1
∂y1

· · · ∂F1
∂ym

· · ·
· · ·
· · ·

∂Fm
∂y1

· · · ∂Fm
∂ym

∣∣∣∣∣∣∣∣∣∣∣

,

where F= (F1, . . . ,Fm). Suppose that∆(x0,y0) 6= 0. Then there is an open neighborhood
U ⊂ Rn of x0 and a neighborhood V⊂ Rm of y0 and a unique function f: U →V such that

F (x, f (x)) = 0

for all x ∈U, Furthermore, f is of class Cp.

Corollary A.1. [85] In Theorem A.3,∂ f j/∂xi are given by




∂ f1
∂x1

· · · ∂ f1
∂xn

· ·
· ·
· ·

∂ fm
∂x1

· · · ∂ fm
∂xn




=




∂F1
∂y1

· · · ∂F1
∂ym

· ·
· ·
· ·

∂Fm
∂y1

· · · ∂Fm
∂ym




−1


∂F1
∂x1

· · · ∂F1
∂xn

· ·
· ·
· ·

∂Fm
∂x1

· · · ∂Fm
∂xn



.
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