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Abstract

In Model-Based Diagnosis, a set of inference rules is typically used to compute diagnoses using
a scientific and mathematical theory about a system under study and some observations.
Contrary to the classical hypothesis, it is often the case that these Models are abnormal with
respect to a series of required properties, hence affecting the quality of the computed diagnoses
with possibly huge economical consequences, in particular at Airbus.

A thesis on reality and cognition is firstly used to redefine the classic framework of model-
based diagnosis from a formal model-theoretic perspective. This, in turn, enables the formal-
isation of abnormalities and of their relation with the properties diagnoses.

With such material and the idea that an implemented diagnostic system can be seen a real-
world artefact to be diagnosed, a theory of meta-diagnosis is developed, enabling the detection
and isolation of abnormalities in Models of diagnostic systems and explanation in general.
Such theory is then encoded in a tool, called MEDITO, and successfuly tested against Airbus
real-world industrial problems.

Moreover, as different heterogeneous implemented Airbus diagnostic systems, suffering
from distinct abnormalities, may compute different diagnoses, methods and tools are developed
for: 1) checking the consistency between subsystem-level diagnoses and 2) validating and
comparing the performance of these diagnostic systems. Such work relies on an original bridge
between the Airbus framework of diagnosis and its academic counterpart.

Finally, meta-diagnosis is generalised to handle meta-systems other than implemented di-
agnostic systems.





Résumé

Dans le cadre du diagnostic à base de Modèle, un ensemble de règles d’inférence est ty-
piquement exploité pour calculer des diagnostics, ceci en utilisant une théorie scientifique et
mathématique sur le système à diagnostiquer, ainsi qu’un ensemble d’observations. Contraire-
ment aux hypothèses classiques, les Modèles sont souvent anormaux vis-à-vis d’un ensemble
de propriétés requises. Naturellement, cela affecte la qualité des diagnostics [à Airbus].

Une théorie sur la réalité, l’information et la cognition est créé pour redéfinir, dans une
perspective basée sur la théorie des modèles, le cadre classique de diagnostic à base de Modèle.
Ceci rend possible la formalisation des anomalies et de leur relation avec des propriétés des
diagnostics.

Avec ce travail et avec l’idée qu’un système de diagnostic implémenté peut être vu comme un
objet à diagnostiquer, une théorie de méta-diagnostic est développée, permettant la détection
et isolation d’anomalies dans les Modèles des systèmes de diagnostic. Cette théorie est mise
en pratique à travers d’un outil, MEDITO; et est testée avec succès à travers un ensemble de
problèmes industriels, à Airbus.

Comme des différents systèmes de diagnostic Airbus, souffrant d’anomalies variées, peuvent
calculer des diagnostics différents, un ensemble de méthodes et outils et développé pour: 1)
déterminer la cohérence entre diagnostics et 2) valider et comparer la performance de ces
systèmes de diagnostic. Ce travail dépend d’un pont original entre le cadre de diagnostic
Airbus et son équivalent académique.

Finalement, la théorie de méta-diagnostic est généralisée pour prendre en compte des méta-
systèmes autres que des systèmes de diagnostic implémentés.
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Chapter 1

Introduction

Logic: The art of thinking and reasoning in strict accordance with the limita-
tions and incapacities of the human misunderstanding.

- Ambrose Bierce

From the numerous fields of Artificial Intelligence, this work investigates one: Models and their
usage in scientific explanation on the form of implemented [Airbus] diagnostic systems.

Ubiquitous in our everyday life, explanation has a tremendous practical value in the real-
world. We want to understand the meaning of a word or how to drive a car. We want to know
why our bedroom window is broken, why there are glass pieces all over the room and why there
is a strange ball on the bed. We might even want to know why our doctor does not discover
why we have headaches after every day of work. All these questions, however, correspond to
two very different accounts of explanation. As Salmon puts it [92], there are “[explanations]
of what something means or how to do something”, like understanding how to drive a car;
and “[explanations] of why something occurs”, as in the strange case of the broken window.
Straightforwardly, in this work I am interested in the latter account of explanation, the one
that comes to our rescue with causes everytime there are effects to be explained in our lives.
Hereafter, the word “explanation” will be used solely on the context of these why-questions.

As we will see further in this dissertation, several different accounts of explanation exist,
both in Artificial Intelligence and in philosophy, none of which being generally accepted. Nev-
ertheless, every single thesis on what explanation is tells us that, in order to bring up the
answers we need, explanation relies on Models. First, we need to build a cognitive Model
of both the question and the context: the observations. As so, we have to perceive the ex-
plananda - a broken window, the glass pieces, the ball - and perceive the context - the oxygen,
the gravity and so on. Then, explanation relies on another cognitive Model, the scientific and
mathematical theories, to reason about such observations. Finally, this reasoning process is
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based on another Model of how inferences are drawn, the rules of inference. In a nutshell, ob-
servations, scientific and mathematical theories and rules of inference are the Models on which
explanation relies; and we say that some explanans explain some explananda-observations if
the latter can be inferred from the former and the context-observations, both at some earlier
time, along with some scientific and mathematical theories.

Presenting a more than sufficient reason for one to embrace the study of Models, explana-
tion is certainly far from being the only motivation. In parallel with it, Models play a central
role both in prediction, planning and learning ; the main Artificial Intelligence fields that
require reasoning about time [97]. If explanation is seen as a reasoning process where, by and
large, some observations over a period of time and some scientific and mathematical theories
are used to determine a description of the real-world at some earlier time, then we can see:
prediction as a task where some observations over a period of time and some scientific and
mathematical theories are used to determine a future description of the real-world; planning
as a task where some observations over a period of time and some scientific and mathematical
theories are used to determine a sequence of actions that enable one to get to a goal real-world
description; and learning as a task where some observations over a period of time are used to
determine new scientific and mathematical theories.

In a straightforward manner, although in this book explanation will be used as a framework
for reasoning about Models, I think that several of the obtained results can be applied to other
Artificial Intelligence fields. Concerning the remainder of this chapter, I will start by diving
much deeper into the explanation world, explore its Model-related problems in connection
with implemented diagnostic systems and map those problems into Airbus industrial context.
This work’s objectives will follow directly from the problems stated. Finally, an overview of
this book and the dependency between chapters will be presented.

1.1 When Models hurt explanation: academic objectives

As affirmed above (and justified in Section 2.1), although there are many different notions of
explanation, they all rely on Models, i.e. scientific and mathematical theories, observations
and rules of inference. What happens then when Models have “problems”?

In this section, I intuitively expose some of the many “problems” Models may have; and
argue that, no matter what notion of explanation, Model-based diagnosis and Artificial Intel-
ligence in general need tools both to detect and to isolate these and many other “problems”.

1.1.1 Scientific and mathematical theories have and will always have holes

Imagine a logician, Mr. Tortuga, inhabiting an island where little to no technology exists. One
fine day, Tortuga finds a very strange object known to us as a car. After some days studying
the artefact, he turns the car key and the car starts. Eventually, by repeatedly turning the
car key and observing the consequent effects, he builds up a theory on how the car works:
“turning a normal key implies the car start”; or :Ab(Key) ^ Turn(Key) ) Start(Car).
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Happy to have found a working relic, Tortuga uses the car for some time. One cursed morn-
ing, however, he turns the key and the car does not start, i.e. Turn(Key) ^ :Start(Car). Our
main character is now facing a why-question (or explanation problem, or diagnostic problem):
why does the car not start? From what he knows, he naturally explains the observed effect
with an abnormality in the keys. Indeed, f:Ab(Key) ^ Turn(Key) ) Start(Car), Turn(Key) ^
:Start(Car)g j= Ab(Key). This, however, proves to be wrong. Tortuga then tries to take the
doors off, swap the tires, and so on - after all he knows nothing about how cars work. Without
any chance, our hero eventually gives up.

Suppose that, for the sake of the argument, Tortuga takes his car to Mr. Zapato, a very
well known illegal technology dealer. In a minute, Tortuga is told that the car is missing a
substance called gasoline. The theory on how the car works quickly evolves in Tortuga’s mind:
“turning a normal key and having gasoline implies the car start”; or :Ab(Gas) ^ :Ab(Key) ^
Turn(Key) ) Start(Car). And from that day on, when wanting to take a ride, Tortuga always
checked for the presence of gasoline before turning the key.

The situation with the gasoline keeps happening with the battery, the spark plugs and
many other car parts. Eventually, Tortuga finds out that:

• There are and there may always be unknown conditions among the premisses of an effect
in a scientific and mathematical theory. For example, Tortuga once turned the key and
the car did not start. When turning it again, surprisingly, he observed the opposite
effect. Until this day he could not understand the condition that was missing in the first
try: an automatic reset of the engine control unit temporarily disabled the spark plugs’
electricity and, consequently, the ability of the car to start.

• It is too expensive to indiscriminately check for every condition whenever an observation
contradicts an expected effect. For instance, Tortuga once realized that it was almost
always an empty tank that caused the car not to start. From that day on, he always
checked for the presence of gasoline whenever the car failed to start.
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In Artificial Intelligence terms, what our hero is facing is a well known problem: the qualifica-
tion problem, i.e. how to express and reason with all the known and unknown preconditions
required for an action to produce an effect, introduced by McCarthy and Hayes in [76].

Just as the qualification problem, many other problems affect scientific and mathematical
theories. The frame problem [77, 76, 95] concerns producing a scientific and mathematical
theory expressing information about what is changed and, especially, what remains unchanged
by an action or event. It can be illustrated, for instance, by Tortuga’s need to know that push-
ing the accelerator pedal does not stop the car. The ramification problem [95] is characterised
by our intrinsic inability to produce a scientific and mathematical theory containing all the
indirect effects of an action or event. For example, our main character knows that having the
headlights on for a long period of time will have the desired effect of illuminating his house
in the dark. Conversely, he does not know that it will also have the undesired consequence of
inducing a discharge in the battery and a consequent impossibility of starting the car. The
incompleteness problem - which can be viewed as a hard qualification problem - concerns
generating a scientific and mathematical theory that contains all of the relevant effects and
their preconditions. It is illustrated by Tortuga’s lack of knowledge on how to stop his car the
first time he used it. The ontologically false theories’ problem (cf. Chapter 2) is certainly the
most annoying one. It corresponds to having scientific and mathematical theories representing
things that are not as so in reality [106]. Tricked by Mr. Zapato, our hero once thought that
clapping his hands twice when inside the car caused the car to start.

The qualification, frame, ramification, incompleteness and ontologically false theories’ prob-
lems are just some of the many known holes in scientific and mathematical theories affecting
explanation; but there can exist, in theory, many more unknown ones. Moreover, all these
problems are closely related, and some even imply others 1. Finally, since the objective of
Artificial Intelligence is to encode these theories in a robot’s “mind”, there can also be holes in
this encoding. All in all, scientific and mathematical theories have and will always have holes.

1.1.2 Observations have and will always have holes

Let us go back to Mr. Tortuga and his car. One fine day, Tortuga starts the car and observes
that, contrary to what was usual, the “change oil” light was bright red, i.e. Red(OilLight).
Knowing that a low level of oil produces that effect, he immediately checks the oil level. After
many hours inspecting the car and a lot of money spent with Mr. Zapato’s services, Tortuga
finds out that everything is fine with his relic: the red colour was an optical effect produced
by the red windows in his garage, i.e. :Red(OilLight).

This time, Tortuga is facing the problem of ontologically false observations (cf. Chap-
ter 2), intuitively corresponding to gathering observations that are not as so in reality [106].

The problem of ontologically false observations is not the only problem affecting one’s
observations. The problem of uncertain observations [23, 84] concerns collecting precise
measures of the observables (what can be observed) in a scientific and mathematical theory.

1I will expose this in Chapter 2 and use such fact to justify treating only some of these holes.
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For example, Tortuga needs to determine if the “change oil” light is red or, as usual, white;
and he may doubt between such values. The problem of incomplete observations [23, 84]
concerns capturing all the observations needed to draw precise conclusions using scientific and
mathematical theories. Once again, Tortuga needs to observe a car that did not start, a turned
key, a normal battery and so on, just to conclude that the spark plugs were abnormal.

As with scientific and mathematical theories, observations have many known holes - shown,
for instance, in the problems of ontologically false, uncertain and incomplete observations -
and possibly many more unknown ones. If we add to these, once again, the possible errors in
the encoding of observations in an Artificial Intelligence agent, there should remain no doubt
that observations have and will always have holes.

1.1.3 Rules of inference may have holes

In the same way as observations and scientific and mathematical theories, rules of inference
may also be exposed to some holes.

The soundness problem [74, 56] is the problem of inferring truths that are not logically
entailed by observations together with scientific and mathematical theories. As for its dual,
the completeness problem [74, 56] is concerned with inferring all the truths entailed by sci-
entific and mathematical theories and observations. For example, if f:Ab(Key) ^ Turn(Key)
) Start(Car), Turn(Key) ^ :Start(Car)g j= Ab(Key); then the inference of :Ab(Key) from
:Ab(Key) ^ Turn(Key) ) Start(Car) and Turn(Key) ^ :Start(Car) would be unsound, and the
inference of ; from these same sentences would be incomplete.

Even if these rules-of-inference-related issues are not as problematic as the ones mentioned
in the previous subsections, for the soundness and completeness of a set of inference rules
in a given logic can be mathematically proved, they need to be considered for two reasons.
First, as with observations and scientific and mathematical theories, the encoding of rules of
inference in a robot’s “mind” is error-prone. Second, there are real-life situations where it is
impossible to mathematically prove the soundness and completeness of such rules (eg. when
they constitute a black-box for the user).

1.1.4 The academic objectives

In the previous subsections I argued that Models, i.e. scientific and mathematical theories,
observations and rules of inference, are condemned to always suffer from several abnormalities
(referred to as “holes”) clearly affecting explanation. Model-based diagnosis is a particular
form of explanation, where one is interested in nothing but those causes of some effects that
correspond to abnormalities in certain system’s components (detailed in Section 2.3). This
being so, the following is the main academic objective of this dissertation:

Academic objectives:

• To reason about Models for detecting and isolating abnormalities in implemented
diagnostic systems (and explanation in general).
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1.2 When Models hurt Airbus diagnoses: industrial objectives

This chapter begun with a general overview of explanation, followed by my argument that
scientific and mathematical theories, observations and rules of inference, ubiquitous in every
account of explanation, will always suffer from abnormalities. This motivated the main aca-
demic objective of this book. It is now time to move from the academic field to the industrial
one, understand how Model-based diagnosis at Airbus suffers from Model abnormalities, and
be confronted to the industrial objectives behind this dissertation.

1.2.1 Diagnosis at Airbus

Just like nuclear power plants or satellites, aircraft are complex systems with tens of interacting
subsystems and thousands of underlying parts; some being complex systems on their own.

Naturally, as the aircraft life progresses, these parts are subjected to different types of stress;
stress which, eventually, originate faults, i.e. abnormal conditions, or non-permitted deviations
regarding some fundamental properties of the components. Faults leading to failures, i.e. the
permanent interruption of the aircraft’s (or one of its subsystems) ability to perform some
required functions under specified operating conditions, maintenance appears as a fundamental
activity to preserve aircraft airworthiness [65] (These concepts will be dissected in Chapter 4).

From a maintenance standpoint, the first approach to preserve this aircraft airworthiness
is to perform scheduled activities, such as structural inspections or electronic tests; aiming at
confirming and restoring the safety and reliability levels of the aircraft at minimum cost. Nev-
ertheless, in between scheduled maintenance activities, operational failures often appear and
put the aircraft dangerously close to unsafe situations. This is when unscheduled maintenance
activities take place, aiming at restoring, as quickly as possible, some aircraft functions.

To decrease the time spent by mechanics during unscheduled activities, several constituents
of aircraft subsystems are designed to be quickly replaced. These Line Replaceable Units are,
thus, the atomic components in the unscheduled maintenance process.

As stated before, having modular and quickly replaceable components is a key-factor for
reducing unscheduled maintenance time and costs. Nevertheless, since there are thousands of
Line Replaceable Units in an aircraft like the Airbus A380 and there can be tens or hundreds
contributing to a single aircraft function, it is virtually impossible for a line mechanic to always
infer what units to change and how to change them, when facing a given failure. This is why
Airbus relies on automatic diagnostic means and manual standardized troubleshooting steps
to help mechanics accomplish their goals of getting the aircraft back to nominal conditions; by
providing them with “fast, accurate, and unambiguous identifications of faulty Line Replaceable
Units and recommendations for corrective action” [64].

Concerning automatic diagnostic means, Airbus uses a semi-centralised diagnostic architec-
ture. Generally speaking, sets of Line Replaceable Units are overseen bymonitoring functions
in each aircraft subsystem. Whenever a discrepancy between a subsystem’s normal and cur-
rent behaviour is detected by the monitoring function, a signal is sent either/both to: 1) the
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Flight Warning System, if the discrepancy can be symptomatic of a failure with an operational
impact to the flight crew; or/and 2) the Built-In Test Equipment, a subsystem-level diagnos-
tic agent, if the discrepancy can be symptomatic of a failure with a line maintenance impact.
Note that such discrepancies are not necessarily symptomatic of a failure (such decision is a
responsibility of the Built-In Test Equiments and of the Flight Warning System).

As for the Flight Warning System, it uses the reported discrepancies along with some air-
craft operational conditions to decide whether a safety-related failure is present in the aircraft;
and whether the flight crew should be informed, in which case they are sent an Aircraft Effect.

The Built-In Test Equipments, in an unrelated but similar manner, use the reported dis-
crepancies along with the aircraft operational conditions to decide whether some maintenance-
related subsystem-level failures are present in its subsystem. If this is the case, a report - called
Maintenance Message - is produced to indicate the presence of those failures; and, depending
on the diagnostic philosophy specific to each aircraft, to indicate what Line Replaceable Units’
faults, subsystem-external failures or operational conditions caused such failures.

Monitoring 

function

Built-In Test 

Equipment

Centralised 

Maintenance 

System

Maintenance-

related 

discrepancy

Operation-

related 

discrepancy

Maintenance 

Message

Flight Warning 

System

Aircraft Effect

Post-Flight 

Report

1) Subsystem-

level failure

2) Failure 

Explanation

1) Aircraft-

level failure

2) Failure 

Explanation

Trouble-

shooting 

Manual

1) Subsystem-

level failure

2) Failure 

Explanation

Figure 1.1: End-to-end diagnosis data flow at Airbus.

Both Aircraft Effects and Maintenance Messages are then sent to the Centralised Mainte-
nance System whose algorithms’ main objectives are: 1) to isolate the Maintenance Messages
containing the root failures that gave rise to every other failure in the aircraft, 2) associate
such root failures, according to some logic, with the Aircraft Effects or with some potential
Maintenance Effects (effects noticed by the maintenance crew) that might have been caused
by them, and 3) explain those root failures in a Post-Flight Report as a logical combina-
tion of Line Replaceable Units’ faults and operational conditions 2. To do so, the Centralised
Maintenance System relies on a series of databases that constitute its knowledge.

2Note that although the objective of the Centralised Maintenance System’s algorithms is to explain each
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Following the computation of an automatic diagnostic result, the manual troubleshooting
takes place as a final isolation step towards an end-to-end diagnostic result (post-trouble-
shooting). In fact, associated to every reportable failure in the aircraft (and, hence, every
Maintenance Message possibly emitted by a Built-In Test Equipment) there is a Troubleshoot-
ing Manual procedure that enables the mechanic to: 1) confirm the presence of the failure, 2)
isolate the operational condition or the Line Replaceable Unit’s fault causing the failure, and
3) perform corrective actions. As so, if mechanics want, for example, to eliminate the presence
of a given Aircraft Effect, all they have to do is, in theory, follow the Troubleshooting Manual
procedures associated by transitivity to the Aircraft Effect through some root failures.

Before ending this subsection, let me transpose the introduced Airbus-world concepts,
depicted in Figure 1.1, to the vocabulary of the previous section:

• The monitoring functions act as observers providing discrepancies (observations) to the
Built-In Test Equipments and the Flight Warning System.

• The Built-In Test Equipments act as local agents performing Model-based diagnosis on
some subsystems. They use their own algorithms (rules of inference), knowledge bases
(scientific and mathematical theories) and the discrepancies sent by the monitoring func-
tions (explananda-observations) 3 to produce Maintenance Messages (local diagnoses).

• The Centralised Maintenance System acts as a global agent performing Model-based
diagnosis on the whole aircraft. It uses its own algorithms (rules of inference), knowledge
bases (scientific and mathematical theories), Maintenance Messages (context-observa-
tions) and Global Effects 4 (explananda-observations) 5 to produce a Post-Flight Report
(aircraft-level automatic diagnosis).

• The Troubleshooting Manual procedures enrich the contents of Maintenance Messages
and, by extension, of Post-Flight reports.

1.2.2 What can be improved in Airbus diagnostic scene

Although, as stated, theory presents a perfect end-to-end unscheduled maintenance process,
things are somehow different in practice and:

• The number of ontologically true discrepancies computed by monitoring functions can
be improved (holes in observations).

• The validity and precision of Maintenance Messages computed by Built-In Test Equip-
ments algorithms can be improved (holes in scientific and mathematical theories, obser-
vations and rules of inference).

• The validity and precision of Post-Flight Reports computed by the Centralised Mainte-
nance System algorithms can be improved (holes in scientific and mathematical theories,
observations and rules of inference).

Aircraft Effect or potential Maintenance Effect in terms of a logical combination of root Maintenance Messages
each of which explained by a logical combination of Line Replaceable Units’ faults and operational conditions;
this does not mean that the syntax of the results produced by the algorithms is exactly as stated.

3There are more BITE-level observations other than monitoring functions’ discrepancies.
4Hereafter we will use the notion of Global Effect to refer to Aircraft Effects and Maintenance Effects.
5As in the BITE case, there are more observations other than Maintenance Messages and Global Effects.
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• The Troubleshooting Manual procedures can be improved to ensure they are always
associated to a Maintenance Message and both always have consistent contents (holes in
scientific and mathematical theories).

Accordingly, airlines would benefit from these improvements to ensure that no situations
exist where there are either/both too many explananda of a given Global Effect or the real
causes behind the Global Effect are not among the explananda. Since these situations may
induce aircraft delays with important economic consequences, Airbus is interested in avoiding
them by increasing the performance of its implemented diagnostic systems.

It is at this point that Airbus diagnosis scene could benefit from automatic means to:

• detect and isolate abnormalities in Models of implemented Airbus diagnostic systems
(naturally inheriting from its academic counterpart).

• ensure Troubleshooting Manual procedures are consistent with Maintenance Messages.
• validate and compare different configurable Built-In Test Equipments/Centralised Main-

tenance System algorithms and knowledge bases and Troubleshooting Manual proce-
dures performances using heterogeneous real-world multi-program 6 data; to ensure the
produced automatic/end-to-end diagnoses enable mechanics to repair nothing but the
correct components causing the Effects as quickly as possible.

• obtain a return of experience on the performance of the computed diagnoses.

Moreover, having a common framework of diagnosis would enable the standard formalisa-
tion of different aircraft program concepts.

1.2.3 Industrial objectives

The Airbus end-to-end maintenance process and implemented diagnostic systems were pre-
sented; and it was argued that Airbus could benefit from automatic means to detect and to
isolate abnormalities in such systems’ Models, to ensure the consistency of Troubleshooting
Manual procedures and Maintenance Messages, and to validate and compare the performance
of its implemented diagnostic systems. The industrial objectives follow these observations.

Industrial objectives:

• To define a common framework of diagnosis for every studied Airbus aircraft program
- A380, A400M, A350 and research.

• To define a method, and specify and develop a tool, to detect and to isolate Model
abnormalities in the Centralised Maintenance System.

• To define a method, and specify and develop a tool, to check for the consistency
between Troubleshooting Manual procedures and Maintenance Messages.

• To define a method, and specify and develop a tool, to validate and compare different
configurable Built-In Test Equipments/Centralised Maintenance System algorithms
and knowledge bases and Troubleshooting Manual procedures performances using
heterogeneous real-world multi-program data.

6At Airbus, a program is a class of aircraft with similar characteristics, as the A380 or the A350 program.
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These industrial objectives are in straight connection with the academic one and both
nourish each other. Finally, due to its complexity, I suspect systems such as nuclear power
plants, satellites or cars may suffer from these same problems. Hence, the results obtained
may be of use in such areas.

1.3 Overview

It is now time to provide an overview of the remainder chapters of this book; a book which
is both vertical and wide in scope, ranging from fundamental problems in philosophical and
Artificial Intelligence accounts of explanation and Model-based diagnosis to the industrial V&V
process of implemented Airbus diagnostic systems.

Chapter 2. This chapter focuses on the Artificial Intelligence classical account of Model-based
diagnosis and the exposure of its intrinsic issues. I initiate the chapter by presenting the
reader with a historical view of explanation, both in Artificial Intelligence and philosophy.
Then, motivated by the lack of a fundamental framework for reasoning about the Models
used by explanation, i.e. scientific and mathematical theories, observations and rules of
inference; I establish a thesis on reality, cognition, information and their connections with
these Models. This is, in my opinion, a necessary starting line to the deep investigation
of this field. From its foundation, Reiter’s classical diagnostic framework [90] is then
introduced from a different perspective. Furthermore, some problems of Model-based
diagnosis are revealed and a series of diagnostic system’s Models and diagnostic results’
properties, as well as the relations between them are uncovered. Finally, I justify my
contribution by comparing it to others in the literature.

Chapter 3. From an extensive account of Model-based diagnosis, I move to reasoning about
abnormalities in Models of implemented diagnostic systems and explanation. This chap-
ter starts with an original theory of meta-diagnosis, providing the theoretical tools to
tackle the problem; as well as with a process for modelling meta-diagnostic problems. I
then argue that such theory shares the syntax of Reiter’s classical diagnostic framework,
although with different semantics. Exploiting this observation, I specify and develop a
meta-diagnosis tool, MEDITO, and put it to use against some toy problems. Finally,
the novelty of this contribution is justified with an overview of some related works in the
literature.

Chapter 4. Moving to the industrial world, the fourth chapter of this dissertation tackles
the core of the industrial problems. First, Airbus is provided with a clear definition of
its diagnoses and implemented diagnostic systems in the framework of Chapter 2. This
constitutes the common framework of diagnosis for every studied Airbus aircraft program
- A380, A400M, A350 and research - enabling the comparison of diagnostic methods and
results. Then, using this framework, I bring down the problem of defining a method and
specifying and developing a tool to check for the consistency between Troubleshooting
Manual procedures and Maintenance Messages. This is how CONCKER, a CONsistency
ChecKER, appears to the Airbus world. With CONCKER introduced, I then focus
on problem of automatically validating and comparing different configurable Built-In



1.3. Overview 11

Test Equipments/Centralised Maintenance System algorithms and knowledge bases and
Troubleshooting Manual procedures performances using heterogeneous real-world multi-
program data. The problem is separated in pieces and all of the previous work is used
to tackle it by building a Diagnosis Performance Assessment Tool, DPAT, and defining
its underlying method. Finally, MEDITO is used, in an Airbus context, to show how it
can detect and isolate Model abnormalities in the Centralised Maintenance System. As
in the previous chapters, I justify the originality of our contributions by providing, as
far as known, same-scope works in the related literature.

Chapter 5. The industrial objectives of this dissertation achieved, I focus one again on meta-
systems and on the unproven claim regarding the meta-diagnosis thesis’ generality. In a
nutshell, this chapter is concerned with providing evidence for the usage of meta-diagnosis
to detect and to isolate abnormalities in Models of 1) non-logical-based diagnostic sys-
tems, and 2) meta-systems other than implemented diagnostic systems.

Chapter 6. This last chapter is focused on the contributions made in this book, discusses
their Achilles’ heel and finished with a series perspectives opened by this dissertation.

The dependency between chapters and sections is depicted hereafter.
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Finally, this dissertation is deeply related to model theory. Hence, the following words,
whose definitions are provided in Appendix A, will be reserved to such context: logic, tuple,
signature, structure, signature interpretation, correct structure interpretation, substructure,
extension, model 7, isomorphism, theory, satisfiability, entailment, syntax, semantics, infer-
ence, logical implication, consequence, theorem and complete theory.

7Note that the capitalised word “Model” will be distinguished from the uncapitalised one “model”. The
former will always refer to one of the three Models, i.e. scientific and mathematical theories, observations and
rules of inference; while the latter will define a structure in which a given sentence or theory is true.
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Chapter 2

Diagnostic systems

All our knowledge has its origin in our perceptions.

- Leonardo da Vinci

As presented in the introductory chapter, the main objective of this dissertation is to provide
Artificial Intelligence and Airbus with means for reasoning about abnormalities in Models
(scientific and mathematical theories, observations and rules of inference) of implemented
diagnostic systems and explanation in general. The prerequisites for achieving such goal are
both a formal and clear definition of a well-founded framework of Model-based diagnosis, and
a formal account of Model abnormalities and of their relations with diagnoses and explanans
in general. The present chapter addressed these subjects.

In the first section, the reader is presented with a historical view of explanation, both in
Artificial Intelligence and philosophy. Two reasons form the rational behind such exposé. First,
it aims at making it clear that there are many different notions of explanation, both in Artificial
Intelligence and in philosophy, without a generally accepted conceptual and technical account.
Second, it highlights the fact that every single account of explanation relies on Models, i.e.
scientific and mathematical theories, observations and rules of inference, as a means to bring
up the answers we need.

Being Models essential for Model-based diagnosis (and explanation in general), the second
section reveals my thesis on reality, cognition, information and their connections with them.
In my opinion, establishing a solid foundation of diagnostic systems is a fundamental step
into achieving our objectives; a step which, to my best knowledge, is missing in almost every
account of Model-based diagnosis.

In the third section, this thesis is used to expose the classical logical framework of Model-
based diagnosis in Artificial Intelligence from a different perspective; a perspective which is
based on the difference between the real-world and the cognitive concepts of, for instance,
system, component, abnormality, function, input, output or replaceability.
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Having a well-founded framework of Model-based diagnosis, the fourth section is devoted
both to the formal study of Models’ properties in the case of diagnostic systems, transforming
the informally exposed Model “holes” into a set of well-defined mathematical definitions; and
to the establishment of a series of relations between such properties and those of the computed
diagnoses (or explanans in general).

Finally, in the last section I relate this chapter to many works in philosophy, science and
mathematics; and use such connections as a means to express the originality of my contribution.

2.1 A historical view of explanation and Models

Explanation is far from being a simple modern subject. Accordingly, and in an attempt to
provide the reader with a solid background, this section offers a brief overview on the major
historical accounts of Model-based diagnosis and explanation in general, both in philosophy
and Artificial Intelligence.

2.1.1 Explanation in philosophy

Aristotle exposed what can be considered nowadays as one of the first general accounts of
explanation in his discussion of the four causes [6] [7]. With the idea that explanation relies
on causation, Aristotle introduced the notion of aition (or explanatory factor), i.e. whatever
appropriately occurs in response to a [rephrased] why-question. With many possible senses,
aitia might be: 1) material, i.e. on the form “x is what y is made out of”, 2) formal, i.e. “x is
what it is to be y”, 3) efficient, i.e. on the form “x is what produces y”, and 4) final, i.e. on
the form “x is what y is for”. In the 4th century B.C., causation and explanation were already
in a deep connection.

Between Aristotle and the present days, many philosophers continued to address the prob-
lem of scientific explanation. In the 1st century B.C., Lucretius presented an explanation of
the origin of the universe. What is important for us is that, in his path, he came across two
fundamental philosophical problems: determinism and free will; in straight connection with
causation and scientific explanation. According to Lucretius, determinism is false for it implies
not having free will, which, in his opinion, humans do have.

Fast-forwarding, in the 17th and 18th centuries other philosophers came to change our
vision of causation and scientific explanation. Laplace, with his “demon”, told us that “Given
(...) an intelligence which could comprehend all the forces of which nature is animated and the
respective situation of the beings who compose it - an intelligence sufficiently vast to submit
these data to analysis - (...) nothing would be uncertain and the future, the past, would
be present to its eyes” [72]. Hence, Laplace defended determinism over free will and stated
that if an intelligence could access every observation about the world, then it would be able
to predict all the future and explain all the past. By comparing Laplace’s account with the
introductory definition of both prediction and explanation tasks, we can see that Laplace’s
account has a deep implication of the nature of observations and scientific and mathematical
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theories. In his opinion, if an intelligence existed capable of assessing all observations and
scientific and mathematical theories of the universe then it would be able to fully infer the
past and the future, for these Models completely determine the universe. I encourage the
reader to retain this thought; a though which was shared by both Leibnitz [110] and Kant [66]
in the form of the principle of sufficient reason, according to which “nothing happens without
a reason”. Finally, and also in these centuries, Hume brought up another difficulty to the
quest of finding a general accepted account of scientific explanation. According to him, causal
connections are purely cognitive and do not exist in the real-world. As so, we believe that
there is a causal relation when we perceive 1) a temporal priority between causes and effects,
2) a spatio-temporal contiguity of causes to effects, and 3) the fact that the occurrence of
the causes always produces the occurrence of the effects [92]. This is how he accepted both
determinism and free will (compatibilism).

As we moved away from Laplace, Leibniz, Kant, Hume and many others, and entered
the 20th century, new data came into the scientific explanation equation: the Heisenberg un-
certainty principle and quantum mechanics, relativity and the Einstein-Podolsky-Rosen para-
dox [44]. First of all, Heisenberg uncertainty principle guarantees that no Laplace demon could
have access to every observations in the universe. After all, according to such principle, no
observation can be unambiguously gathered. Moreover, since quantum mechanics, if accepted,
describes an indeterministic world, then even Laplace’s demon’s scientific and mathematical
theories could be at risk 1. On the other hand, the Eintein-Podolsky-Rosen paradox states
that quantum mechanics provides an incomplete description of reality. Therefore, the ques-
tion of determinism and indeterminism remained opened. If we add to this the Duhem-Quine
thesis [51], stating that scientific theories are underdetermined by physical evidence, we get a
rough environment for explanation.

After the EPR paradox, many philosophers worked on new accounts of scientific explanation
and its underlying Models. From the existing explanation-related works between the 1930’s
and nowadays, let us focus on those of Popper, Hempel, Oppenheim and Kuhn.

Introduced by Popper in [89] and formalized by Hempel and Oppenheim in [59], the
Deductive-Nomological model (D-N model) of scientific explanation marks the transition be-
tween the attitude towards explanation in the beginning of the century and the modern one.
According to this model, “a D-N explanation of a particular event is a valid [classical] deductive
argument whose conclusion states that the event-to-be-explained did occur. Its premises must
include essentially at least one general law” [92]. Thus, if for instance someone asked why a
the length of a flagpole shadow is x, then a D-N explanation could be that the height of the
flagpole is y and the angle between the sun’s rays and the flagpole is �; since from these facts
and the “laws of physics” one can certainly deduce the length of the shadow 2. Firstly, let me
point the readers’ attention to the similarity between the D-N model and the rough defini-
tion of explanation provided in the beginning of the chapter. Secondly, notice that the D-N
model: 1) does not impose a temporal asymmetry (or at least simultaneity) between causes
and effects, and 2) imposes the use of classical deduction instead of an inference in an arbitrary

1In [42] Earman proved that Newton physics are not deterministic, a required hypothesis for Laplace, but
that was not the paradigm in Laplace, Leibniz, Kant and Hume’s era.

2The flagpole example was introduced by Bromberg in [21].
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logic. The rational behind these differences is two-fold. Concerning the temporal symmetry
of the D-N model, it has been criticized by numerous philosophers [92]. For example, the D-N
model tells us that we can explain the height of the pole from the length of the shadow, which
is far from being accepted. As for the deduction argument, it is far more trickier. In fact,
classical deduction presents many “problems” for scientific explanation, such as, for instance,
monotony. I will come back to these problems later in this dissertation.

The Hempel-Oppenheim D-N model provided a “consensus” 3 in the scientific explanation
community. Nevertheless, as recognized by Hempel, it was not enough; maybe because it
clearly fails to include quantum mechanics due to the classical-deduction problem. This is
why in Deductive-Nomological vs. Statistical Explanation [57] and Aspects of Scientific
Explanation [58] Hempel introduced a new type of model in parallel with the D-N one: the
Inductive-Statistical (I-S) model; according to which induction substitutes deduction in D-N
models with a certain degree of probability. But even the sum of these two models had some
issues, as discussed in [92], among which the same time symmetry problems.

All in all, explanation has been studied for centuries in philosophy without a single accepted
account for it. Coming across several issues with causation, determinism, free will, time
symmetry, unprovability of models, underdetermination and much more; explanation is far
from being a trivial subject. And yet, explanation is ubiquitous in our daily lifes.

2.1.2 Explanation in Artificial Intelligence

If we leave the realm of philosophy and enter the much more recent Artificial Intelligence one,
explanation and its underlying Models gain another interesting contour: not only we want to
understand how to provide scientific explanations, but we also want robots to explain.

Accordingly, let us focus, Model-based-diagnosis-wise, on the explanation world in AI.
In [37], de Kleer provided us with what can be seen as one of the roots of Model-based diagnosis:
a “simple theory of troubleshooting” and its “unexpected complexities”. As so, in 1975, the
problems of incompleteness of expert knowledge - which we can see as the incompleteness of
scientific and mathematical theories in each expert’s mind - and the uncertainty of measures -
corresponding to the accuracy of observations in this dissertation’s framework - appeared for
the first time.

Following de Kleer, authors such as Davis, Genesereth and Shirley [35, 50, 96] shed some
light on the community. However, it was not until Reiter [90] and de Kleer and Williams [40]
seminal works that a clear and accepted formalism for Model-based diagnosis appeared. In
1987 we had, for the first time, a theory of diagnosis from the first principles distinguishing:

• the artefact to be diagnosed in a real-world context,
• a logical theory for representing the artefact’s structure and behaviour,
• some observations obtained from the real-world and mapped into a logical theory, and
• an algorithm for computing diagnoses.

3The quotation marks account for the fact that in philosophy and science there is rarely a total consensus.
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As for the notion of explanation itself, Reiter, de Kleer and Williams encoded the idea that an
explanan is any state of the world satisfiable with some scientific and mathematical theories
(the artefact representation) and with the observations gathered 4. Although not in phase with
the philosophical accounts, for instance in the temporal aspects, these works provided a first
step towards the formal treatment of explanation (as diagnosis) in Artificial Intelligence 5.

Naturally, many works followed these ones. On the one hand, Aleliunas, Console, Goebel,
Poole, Theseider Dupré and Torasso [87, 27] coined the notion of abductive diagnosis; where
explanans are seen as any states of the world that, along with some scientific and mathematical
theories representing the artefact to be diagnosed, entail all the observations gathered. On the
other hand, Console, de Kleer, Dressler, Hamscher, Poole, Struss, Torasso and Williams [29, 53,
41, 85, 101] worked on the scientific and mathematical theories side, and on how to integrate
models of good/faulty behaviour into consistency-based and abduction-based diagnoses.

In 1991, the notion of explanation behind Model-based diagnosis evolved once more with
the work of Console and Torasso [30]. By taking all the previous contributions into account,
these authors proposed a view of explanation as a reasoning process where explanans explain
some explananda-observations if the latter can be logically implied from the former and some
context-observations, along with some scientific and mathematical theories representing the
artefact to be diagnosed. Although without explicit temporal constraints or a strategy to
separate context from explananda observations, this notion of explanation certainly approaches
the one introduced in the beginning of the present chapter.

From Console and Torasso’s work until nowadays, several authors explored and enriched
the Model-based diagnosis world in many different axes. There have been many studies in the
development of diagnostic algorithms [122, 121]; in the exploration of techniques for managing
complexity [78, 26]; in the direct or indirect inclusion of time [22]; among many other fields.
Conversely, and despite the ubiquity of, for instance, invalid and imprecise diagnoses, few
works focused on Models and their “problems”, a central part of Model-based diagnosis.

2.2 Building a deep foundation

In the previous section, a historical view of explanation and Model-based diagnosis has been
provided. With such background, one is now able to understand that there are many different
notions of explanation without a generally accepted conceptual and technical account. More-
over, it should also be clear that every one of them relies on Models. Hence, I devote this
section to providing a deep foundation of Models and, by transitivity, implemented diagnostic
systems (and explanation in general). Such thesis relies on the concepts of reality, information
and cognition. In order to highlight the model-theoretic roots of such thesis, every word used
in this section on a model-theoretic context will be written in this font (eg. structure). I
encourage the reader to refer to Appendix A for more details on model theory.

4The technical view over Reiter, de Kleer and Williams will be a part Chapter 2.
5In [90], Reiter tells us that his framework can accommodate a variety of logics from temporal monotonic to

non-monotonic ones. However, besides some brief notes on the intrinsic nonmonotony of diagnosis, he gives no
clues on the characteristics these logics should have to integrate a correct notion of explanation.
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2.2.1 On reality, information and cognition

Human beings, in the same manner as robots and its encoded diagnostic systems, are a part
of what I will hereafter refer to as reality or real-world. This seemingly obvious statement
has more to it than what meets the eye. In fact, let me introduce it as the first pile of our
foundation and justify its importance along the present chapter.

Philosophers, scientists and mathematicians have struggled for years to define this “reality”
without a well accepted result. Hence, I will just assume that reality exists and that we are
a part of it; without ever trying to define it. Moreover, let me borrow a number of Wheeler’s
ideas [117] and introduce some properties one generally thinks reality must have.

To start with, Wheeler’s “No super-turtles! No tower of turtles!” principle tells us that
reality must exist by itself and one should stop looking for ever-prior laws (super-turtles).
This being so, as Wheeler puts it, “to endlessness no alternative is evident but a loop, such
a loop as this: Physics gives rise to observer-participancy; observer-participancy gives rise to
information; information gives rise to physics.”.

Wheeler’s principle brings with it a series of useful data. First, we notice a special kind
of “objects” 6, the observer-participants, and a straightforwardly related distinction between
reality and mind or the real-world and the cognitive-world. After all, Wheeler’s “observer-
participants” differ from “physics” due to their consciousness and cognitive capabilities. This
is the second pile of our foundation.

The second interesting aspect behind the “No super-turtles! No tower of turtles!” principle
is the role of information as a narrow bridge between reality and cognition. Information is a
mathematical structure that can be seen as reality’s quasi-dual in the cognitive-world. This
is our third pile and I will return to it in a few paragraphs to detail what information is.

With the triple reality, information and cognition introduced, we can move a step further
into establishing deep foundation for reasoning (mind) with and about real-world (reality)
applications and, in particular, implemented diagnostic systems. Let me do so by introducing
the concept of perception.

Perception is the process through which observer-participants interpret a substructure of
information corresponding to a sensed part of reality. Being based on each observer-participant
interpretation, percepts, the cognitive-world resultant structure of perception, are shaped by
hers theories and goals. As for observations, these are, simply put, theories that aim at
axiomatising (or at least at being satisfied in) percepts. A classical example of how percepts
based on the same substructure of information may be different is conveyed by optical illusions
such as the “Knight” (cf. Figure 2.1); perceived by some as a series of pixels forming a pattern
and by others as a knight riding his horse 7.

With it, the concept of perception brings another Wheeler-related topic: the “no question,
no answer” principle through which the existence of information (answer) is predicated to

6The “” account for my intrinsic obligation to use a cognitive term when referring to the real-world.
7As Wheeler puts it: “what we call reality consists ... of a few iron posts of observation between which we

fill a papier-maché of imagination and theory” [115].
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each observer-participant perception (question) [117]. As so, and in model-theoretic terms,
information is the structure underlying “every” observer-participant percept.

Figure 2.1: An optical illusion presenting a classical example of how the same perceived
sensed part of reality may originate more than one percept.

The reader may feel this definition to be somewhat ambiguous. After all, who are “every”
observer participants?

I will start to answer this question by borrowing some famous words from Einstein: “time
and space are modes by which we think and not conditions in which we live”. This, supported
by Wheeler’s “super-Copernican” principle which states that no particular point in time is
special, tells us that “every” observer-participant are those that exist (or are a part of the
real-world) in the limit of time, space or any other cognitive-axis known or unknown to us.

To sum up, the reader has been presented with the three piles of our foundation: reality,
information and cognition; related through observer-participants perceptions and actions. In
this context, the following main principles have been exposed:

Principle 1: Observer-participants and robots are a part of physics: they exist in reality.
Principle 2: There is a distinction between the real-world and the cognitive-world. Observer-

participants differ from other parts of physics; for they exist in the former, but reason
about and own their consciousness and cognition to latter.
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Principle 3: Information is a mathematical structure (of the cognitive-world), hereon noted
	, underlying every observer-participant’s - those that exist in the real-world in the
limits of time, space and possibly other unknown axes - percepts and representing their
sensed part of reality.

Principle 4: Perception is the process through which observer-participants interpret a sub-
structure of information corresponding to their sensed part of reality. Percepts are the
result of perception. As for observations, they are theories that aim at axiomatising
(or at least at being satisfied in) percepts.

2.2.2 On theories and observations

In the previous section I introduced the concept of perception and how a substructure of in-
formation corresponding to some sensed part of reality is interpreted by observer-participants
using their own cognitive-world-based theories and goals. Let me now focus on these theories.

A theory is a set of sentences in a language, usually put together to describe a fact or
phenomenon. Being cognitive in essence, depending on the object of its description theories
can be classified as being either scientific or mathematical ; with the former being concerned
with the real-world, e.g. quantum mechanics, and the latter with the cognitive-world, e.g. set
theory. In a nutshell, mathematical theories lack of a connection with reality, a connection
which is in the nature of scientific theories.

Concerning its building process, mathematical theories, evolve through a method in which:

1. a set of axioms is invented;
2. some theorems are conjectured ; and
3. if these theorems can be [logically] proved by a sound and complete proof system, then

they are logically true and are added to the theory.

Scientific theories, on the other hand, are formed using the scientific method, where:

1. observations are gathered and analysed through the existing scientific theories;
2. if no existing theory is consistent with the observations, then a new theory is conjec-

tured to fit these empirical data; and
3. the new theory is tested against new observations. If no empirical tests contradict the

new theory then it is assumed to be ontologically true.

These methods to build up mathematical and scientific theories are responsible for their
main characteristics. Firstly, the reader may note the discriminate usage of the concepts
logical truth and ontological truth. Let me borrow some words from Tarski to provide a
proper informal introduction to the subject: "[an ontological] true sentence is one which says
that the state of affairs is so and so, and the state of affairs is indeed so and so" [106]. Hence,
the famous sentence “All men are mortal”, for instance, is assumed as being an ontological
truth, since as far as we know, all men are indeed mortal. However, the also famous sentence
“All birds fly” is not an ontological truth since according to our perception, there are some birds
that do not fly. As for logical truths, they represent all the axioms and theorems (obtained
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using a sound and complete proof system) in a theory. The notion of ontological truth of a
theory is formally defined below; where, as defined in Appendix A, Mod(.) denotes the set of
models of a given theory, M�P represents the fact that M is a substructure of P, M
P
the fact thatM is isomorphic to P and �(M;P) a correct interpretation ofM in P.

Definition 1 (Ontological truth of a theory). Let 
 be the set of all structures, 	 2 


the structure of information and � a correct interpretation. A theory T is an ontological
truth iff 9M2Mod(T) 9P,R2
 9�(M;P) (P�R)^(R
	). If T is an ontologically true theory,
then so are every sentences in T.

The relation between logical truths and mathematical theories, and ontological truths and
scientific theories should now be clear. As so, let me now introduce a fundamental theorem:

Theorem 1. Let T be an ontologically true theory in a classical logic L, and ' a sentence
in that same logic. If T j=L ', then ' is ontologically true.

Proof.

1. In a classical logic, T j= ' if every model of T is a model of '.
2. T being ontologically true, it has a modelM such that 9P,R2
 9�(M;P) (P�R)^(R
	).
3. 1) and 2) ) ' has a model M such that 9P,R2
 9�(M;P) (P�R)^(R
	) , i.e. ' is

ontologically true.

�

Theorem 1 is the formal rational behind our intuition that the consequences of ontological
truths are ontological truths. To my knowledge an original theorem, it has more to it than
meets the eye. First, using the direct interpretation, fields such as prediction, explanation or
planning are offered a formal condition guaranteeing the ontological truth of entailed state-
ments in classical logics. Secondly, the contraposition of Theorem 1 provides a much more
important result: while both mathematical and scientific theories can be logically proved,
insofar as logical truths can be entailed from other logical truths in a given logic; scientific
theories can also be ontologically disproved by new observations. This single characteristic
in the essence of scientific theories is what lies behind Popper’s “Falsifiability, or refutability,
or testability” [88], behind Hume’s intuition in his problem of induction [63] and behind Ein-
stein’s insight: “No amount of experimentation can ever prove me right; a single experiment can
prove me wrong” [43]; courtesy of the straight connection between these theories, information
and observer-participants. As it was stated before, information is the structure underlying
every observer-participants percepts. Since, for example, “future” observer-participants can,
in theory, perceive their sensed part of reality through a substructure of information differ-
ent from “present” and “past” observer-participants, then a “present” theory can always, in
principle, be ontologically disproved by “future” observer-participants’ observations. Being
observations, through percepts, shaped by our theories and goals, and being theories im-
possible to be proved ontologically true, then observations themselves can never be proved
ontologically true. This proof-lacking-loop is the actual rational nourishing most of our work
in this dissertation; and is the reason why the problems of ontologically false theories and
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observations mentioned in Chapter 1 are the most annoying ones: ontological truth of theories
and observations is and will always be an assumption. I will come back to this in Section 2.4.

To sum up, the reader have been presented with three main principles that, when added
to the ones exposed in the previous subsection, form the seven principles of our foundations:

Principle 5: Mathematical theories, having no connection to the real-world, can be proved
[logically] true.

Principle 6: Scientific theories, connected to the real-world, can be proved [logically] true,
but can never be proved ontologically true.

Principle 7: Observations, shaped by scientific theories through perception, inherit from
these theories’ incapability of being proved ontologically true.

2.3 Towards a framework of diagnosis

In the last section I introduced the concepts of reality, information and cognition, and argued
that these notions are related through observer-participants’ perception and action. I then pre-
sented scientific and mathematical theories; for observer-participants’ observations are forged
in these theories’ moulds. Finally, I argued that both observations and scientific theories can
never be proved ontologically true. This is how the seven principles of our foundations were
built; and how two of the three Models were discussed, being rules of inference discarded of
reference for its already precise definition in proof theory and logics. This being said, it is
now time to jump to the Model-based Diagnosis (MBD) world to introduce a framework of
diagnosis relying on these three Models and distinguishing reality and cognition.

2.3.1 On systems, components, abnormality and other concepts

Diagnosis is usually defined as a reasoning process which aims at determining the normal and
abnormal components of a system, typically for replacing the abnormal ones [90, 40, 39]. Some
fundamental questions arise straight away when one is aware of the seven principles:

Question 1: Since the notions of component and system belong to the cognitive-world, what
do they represent in reality? In other words, what is the real-world equivalent of a
component and a system?

Question 2: What is it for a component to be abnormal? Is the notion of abnormality absolute
or is it relative to an observer-participant’s perception?

In my opinion, it is impossible to start a proper discussion on Model-based diagnosis
without a clear answer to these questions. Before doing so, let me assert that the following
notions of system, component, abnormality, function, input, output and so on are all from
the cognitive-world: they designate what we see as constants in physics necessary for us to
reason in the real-world.

Addressing the first question, the notion of system can be defined by relying on parame-
ters, goals and on the concept of perception (cf. Principle 4):
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Definition 2 (Parameter). A parameter represents a sensed part of reality perceived as a
flow of physics 8. Its valuation is the perceived flow rate.

Definition 3 (Goal). A goal is a [possibly empty] set of parameters each of which with
an admissible value range, and a [possible empty] set of mathematical relations - also
called functions - that must hold between them [25].

Definition 4 (System). A system represents a sensed part of reality perceived as a part
of physics with: 1) an identity [118, 119, 49, 73, 54, 98] and 2) a [possibly empty] set
of assigned goals.

This notion of system, based on the framework of the previous section, is connected to the
equivalent ones from physics and systems engineering. Concerning the former, we can read
in [94] that a system is “a small portion of the universe” and that a “system boundary [is] an
imaginary surface (not necessarily coinciding with a physical surface) that divides the universe
into the system and the environment surrounding the system”. Clearly, this is our perception
of a part of reality with an identity. As for the systems engineering perspective, in [3] a system
is defined as “a construct or collection of different elements that together produce results
not obtainable by the elements alone. The elements, or parts, can include people, hardware,
software, facilities, policies, and documents; that is, all things required to produce system-
level results. The results include system-level qualities, properties, characteristics, functions,
behaviour, and performance”; and in [82] a system is seen as “a combination of interacting
elements organized to achieve one more stated purposes” with an element being “a member of
a set of elements that constitutes a system”. In systems engineering, a system is thus defined,
by and large, as a set of interacting elements with a goal. This is clearly linked to Definition 4,
especially if one takes into account the notion of “component” defined in a few paragraphs.

Moving a step further, from all the parameters perceived by an observer-participant, those
that correspond to flows of physics inside the system are called internal system-parameters;
while those that represent flows of physics into and from a given system are named boundary
system-parameters. Boundary system-parameters corresponding to flows of physics into a
system are also called input system-parameters; while those associated to flows of physics
from a system are referred to as output system-parameters. It is at this point that the notion
of context, depending on the concept of perception (cf. Principle 4), is useful; for the input
and output character of system-parameters is not static in its nature:

Definition 5 (Context).A context of a system represents a perceived partition of boundary
system parameters into input and output system parameters.

From the concept of context, let us move to the one of component; a concept that relies
on the notions of replaceability and perception (cf. Principle 4):

Definition 6 (Replaceability). A sensed part of reality is perceived by an observer-
participant as being replaceable iff, when interchanged through her actions by another

8In today’s paradigm, this “flow of physics” is usually seen as an exchange of mass, momentum or energy [19],
related in Einstein’s special theory of relativity.
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sensed part of reality perceived as being identical, the substructure of information inter-
preted by her remains the same 9.

Definition 7 (Component). A component represents a sensed part of reality perceived
as a part of physics: 1) with an identity, 2) that is a part of a system and 3) that is
replaceable.

From the definitions of system and component it follows, naturally, that:

• a component becomes a system if it is assigned with a goal, and
• a system becomes a component (usually of another system) if it is replaceable.

With these notions in mind, one is now finally able to understand how the provided defini-
tion of system perfectly fits the systems engineering one. As for the second question, note that
since components can be seen as systems if one assigns them goals, the notion of abnormality
can be defined as follows:

Definition 8 (Abnormality). When assigned with a goal, a component is: normal, if
the goal is met; and abnormal otherwise. A goal is met whenever all its underlying
parameter values are within range and all its underlying relations hold [91, 25].

Let us go back to Mr. Tortuga to illustrate most of these concepts. Suppose that our
hero’s car contains a very old jukebox that works as follows: 1) the user inserts a coin in the
jukebox, 2) the jukebox gives the user an iron token, 3) the user chooses a song and inserts
the token back in the jukebox, and 4) the song is played. Moreover, suppose also that, when
understanding the way his jukebox worked, Tortuga identified each iron token as a component
of the jukebox, each one being also a sub-system whose goal is to have fixed weight, size and
marks enabling the jukebox to work. One fine day, Tortuga parks his car near the beach and
goes out for a long swim in the ocean. Meanwhile, suppose that a token left outside of the
jukebox gets severely oxidized. When coming back to his car, Tortuga still perceives the token
as being the same token as before. After all, he is still able to perceive that sensed part of
reality as having the same or an indiscernible identity as the token he left unoxidised before
leaving the car. However, when putting the token in the jukebox, Tortuga realizes that the
jukebox is unable to play a song when that particular token is inserted: the token must be
abnormal. For the sake of the argument, suppose the same situation but imagine that, while
Tortuga swims, Mr. Zapato goes to his car and forges the token into a spoon. This time, when
Tortuga enters his vehicle he finds no token, immediately concluding that it was lost (although
he finds a very strange spoon in the passenger’s seat). Mr. Tortuga example illustrates the
notions of system and component. Moreover, it shows us that identity is a very important
concept and illustrates the difference between this notion and that of abnormality.

Finally, imagine that the jukebox in Tortuga’s car has a keyboard enabling the song selec-
tion and a screen showing a series of songs and their associated lyrics. In this case, Tortuga
perceives the data flowing from the keyboard to the jukebox as an input system-parameter

9The identity of indiscernibles and the indiscernibility of identicals are two principles naturally related to
this discussion. The reader is encouraged to refer to [110, 17, 1, 33, 48] or [55] for more information.
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and the data flowing from the screen as an output system-parameter. No other combination
of input and output system-parameters is perceived by Tortuga since he simply cannot “write
letters on the screen so that they get pressed on the keyboard”. Consider, for example, the car
battery. If, on the one hand, it is true that Tortuga uses the current flowing from the battery
to charge his electronic compass, in which case he may perceive the electrons flowing out of the
negative pole to be an output system-parameter; on the other hand it is also true that Tortuga
charges the car battery from time to time, in which case he may perceive the electrons flowing
into the negative pole to be an input system-parameter. What actually differentiates both
situations is the context of utilisation. This last example illustrates the notions of context and
input and output system-parameters.

2.3.2 Characterising diagnoses

With the concepts of system, component and abnormality introduced, it is now viable to expose
the classical logical framework of Model-based diagnosis while assuring a clear distinction
between the real and the cognitive worlds 10. Such framework arises from the works of Console,
de Kleer, Mackworth, Reiter, Struss, Torasso and Williams [90, 40, 30, 39, 100] and is enriched
through some definitions; definitions whose justification will arise with the developments in
the remainder of the present chapter.

The classical logical framework of Model-based diagnosis relies, unsurprisingly, on the three
Models, i.e. scientific and mathematical theories, observations and rules of inference, and on
the concept of explanation. Hence, it is natural for a description of such framework to focus
on each these Models separately and converge towards what a diagnosis is. Before starting this
description, note that I will hereafter use the language and inference rules of first-order logic
with equality; for it is already defined in literature and has an expressive power necessary to
tackle the examples treated in this dissertation. Nevertheless, let me also strongly assert, as

10Some of the work presented in this section was published in [13].
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Reiter did in [90], that the results below apply to a series of other logics. This is extremely
important since, as we will see further in this dissertation, the whole notion of explanation
depends on this fact. I encourage the reader to retain this statement.

The first Model: believed systems

As for the first Model, it appears in the classical logical framework of Model-based diagnosis
in the form of believed systems, relying on the notions of system, component and abnormality
(cf. Definitions 4, 7 and 8):

Definition 9 (Believed system). A believed system is a pair (SD,COMPS) where:

• SD, the believed system description, is a set of first-order sentences. Semantically,
it is a scientific and mathematical theory describing one or more systems.

• COMPS, the believed system components, is a finite set of constants. Semantically,
each element c of COMPS represents a component whose abnormality one wants
to determine.

Hence, believed systems are, intuitively, a scientific and mathematical theory describing
a system diagnosis-wise; with a set of distinguished elements determining the components of
such system. Being a scientific and mathematical theory, believed system descriptions typi-
cally characterise what is usually referred to (in Model-based diagnosis) as one’s structural,
behavioural, functional and teleological knowledge about the system and its underlying com-
ponents [25, 91]. In a nutshell, believed system descriptions represent, by and large, some
system goals, how the system components interact and how the system behaves when certain
components are normal and abnormal, all this depending on the system context. This is where
certain distinguished predicates come to our help. Start with the abnormality predicate relying
on the notions of component and abnormality (cf. Definitions 7 and 8):

Definition 10 (Abnormality predicate). Ab(.), the abnormality predicate, is a unary pred-
icate. If c 2 COMPS is a believed system component, then Ab(c) and :Ab(c) are well-
formed-formulas. Semantically, Ab(.) represents the abnormality of a component; while
:Ab(.) represents its normality.

A tool is now available to assert whether a certain believed system component is normal or
abnormal. However, it is still impossible to define how a component’s normal and abnormal
behaviour relates to values of the system parameters. Believed system parameters and their
values come to our rescue at this point, relying on the concepts of system and parameter (cf.
Definitions 4 and 2). They correspond to the Struss’ concepts of local variables and its values
in a certain situation [100].

Definition 11 (Believed system parameters). P, the believed system parameters, is a finite
set of constants semantically representing the system parameters. Moreover:

• BP�P, represents the boundary system-parameters, and
• IntP �P, represents the internal system-parameters.
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Definition 12 (Valuation function). v(.), the valuation function, is a unary function. If p
2 P is a believed system parameter, then v(p) is a term. Semantically, the valuation of
a believed system parameter represents the value of a parameter.

With the help of believed system parameters and their respective values, it is now almost
possible to correctly guarantee the description of a component’s behaviour in a system. Nev-
ertheless, boundary system-parameters are dynamic entities that may change with the system
context. This being so, the [to my best knowledge] original notion of believed system context
needs to be introduced in our framework, naturally relying on Definition 5.

Definition 13 (Believed system contexts). CXT, the believed system contexts, is a set
of constants, where each element m 2 CXT maps a partition {IP,OP} of BP 2 P. Se-
mantically, believed system contexts represent system contexts and IP and OP represent,
respectively, the input and output system-parameters for some context.

Definition 14 (Context presence predicate). CP(.), the context presence predicate, is a
unary predicate. If m 2 CXT is a believed system context, then CP(m) and :CP(m) are
well-formed-formulas. Semantically, CP(.) represents the presence of a context.

Believed system descriptions, using all the other notions introduced above, provide us with
the first of the three Models necessary to reason in Model-based diagnosis and explanation in
general: the scientific and mathematical theories. Such notions can be illustrated through a
well known example: Davis Polybox [35]; an example which will serve as a basis for some other
discussions throughout the present dissertation.

Example 1. Consider the classic circuit of Figure 2.2 introduced by Davis in [35].
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Figure 2.2: A circuit with 3 multipliers (M1,M2 and M3) and 2 adders (A1 and A2).

If one supposes that the observer-participant building a believed system description
can perceive the existence of all the data flows, then the set of parameters chosen by her
could be: P = {a,b,c,d,e,f,g,x,y,z}. Suppose also that the observer participant perceives only
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one context to be possible, the one in which a,b,c,d and e are input parameters and f and
g are output ones. If that context is represented by the constant m1, then CXT = {m1}.

With P and CXT defined, one may imagine that the observer-participant represents
the circuit by a believed system where COMPS = {M1,M2,M3,A1,A2}; and SD is a theory
formed by the following first-order sentences extended with the appropriate axioms for
arithmetic and so on. 11:

M1desc: CP(m1) ^ :Ab(M1) ) (v(x) = (v(a) +1) � v(c))
M2desc: CP(m1) ^ :Ab(M2) ) (v(y) = v(b) � v(d))
M3desc: CP(m1) ^ :Ab(M3) ) (v(z) = v(c) � v(e))
A1desc: CP(m1) ^ :Ab(A1) ) (v(f) = v(x) + v(y))
A2desc: CP(m1) ^ :Ab(A2) ) (v(g) = v(y) + v(z))

The second Model: believed system observations

The second Model, observations, is viewed in the classical logical framework of Model-based
diagnosis in the form of believed system observations, relying on the concepts on system,
parameter, context and observation (cf. Definitions 4, 2 and 5 and Principle 4):

Definition 15 (Believed system observations). The believed system observations, is a set
OBS = OBSP[OBSCXT where:

• OBSP, the believed system parameter observations, is a finite set of first-order sen-
tences. Sentences are usually on the form

W
[:](v(p)=bi) with each bi being an

observed possible value of p 2 BP. Semantically, believed system parameter obser-
vations represent observations of boundary system-parameter values 12.

• OBSCXT, the believed system context observations, is a finite set of first-order sen-
tences. Semantically, believed system context observations represent observations
of some system contexts.

Believed system observations are, by and large, observations about the system context and
parameter values. A continuation of Davis Polybox’s example illustrated this concept.

Example 1 (continued). With a believed system defined, one may imagine a situation
where an observer-participant observes the present context to be m1 and the values of
parameters a,b,c,d,e,f and g to be, respectively, 1,2,3,4,5,11 and 22. In this case, OBSCXT

= {CP(m1)} and OBSP is the theory formed by the first-order sentences below:

Obs1: v(a) = 1 Obs2: v(b) = 2
Obs3: v(c) = 3 Obs4: v(d) = 4
Obs5: v(e) = 5 Obs6: v(f) = 11
Obs7: v(g) = 22

11Note that the first sentence in SD is ontologically false since it does not truly represent the multiplier in
the circuit. This will be explored later on this dissertation.

12Note that for a system parameter to be observed it needs to be accessible from outside the system. Thus,
internal system-parameters cannot be observed per se.
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The notion of explanation

In the introductory chapter, I stated that “explanans explain some explananda-observations
if the latter can be inferred from the former and the context-observations, both at some earlier
time, along with some scientific and mathematical theories.”. This notion of explanation is
quite attractive for the following reasons:

1. it does not commit on what explanans are among the many known and unknown con-
ditions necessary for an explananda-observation to be registered. By postponing such
choice through the non-imposition of a fixed logic through which inferences are drawn, it
accommodates, for instance, Hempel’s Deductive-Nomological and Inductive-Statistical
models of explanation (cf. Section 2.1).

2. it complements both Hempel’s and Console and Torraso’s accounts of explanation with
the imposition of a time asymmetry between explanans and context-observations, and
explananda-observations; a condition that enables solving, for instance, the flagpole prob-
lem (cf. Section 2.1).

For these arguments, together with the lack of a consensus on what explanation is both in
philosophy and Artificial Intelligence, such notion of explanation will be retained hereafter. I
encourage the reader, nevertheless, to keep in mind that although it has been postponed, one
still has to commit to a logic behind explanation.

With an account of explanation in our hands, it is now possible to map it into the classi-
cal logical framework of Model-based diagnosis. First, note that every explanation problem
is defined through a series of explananda-observations one wants to explain based on some
context-observations and scientific and mathematical theories, that is, two of the three Mod-
els. Formally speaking:

Definition 16 (Diagnostic problem). DP, diagnostic problem, is a tuple (SD,COMPS,OBS).

Note that this concept of diagnostic problem is analogous to the notions of “abduction
problem” in [30] and of “system” in [39]. It is at this point that another interesting aspect
of explanation comes to play. In fact, among the believed system observations, some must
correspond to explananda-observations and some other to context-observations. Moreover not
every believed system observation can be an explananda-observation in the context of Model-
based diagnosis since, for instance, input system parameters values can never be explained
through the description of the system - after all, they are inputs. Despite such fact, both
[39] and [30] do not provide a “guideline” for restricting the choice of explananda-observations.
Hence, I contribute with an answer to such question.

Definition 17 (Correctly chosen diagnostic problem). Let DP = (SD,COMPS,OBS) be a
diagnostic problem, let CXT be the set of believed system contexts and let OBSexp�OBSP

�OBS be the subset of the believed system parameter observations corresponding to
explananda-observations. DP is said to be correctly chosen iff for every parameter p
evaluated in a sentence of OBSexp, p2OP for every context m2CXT.
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Intuitively and as envisaged, if a diagnostic problem is correctly chosen then believed system
input parameter observations will not be a part of explananda-observations. With a diagnos-
tic problem and a strategy for correctly restraining the choice of explananda-observations in
Model-based diagnosis, it is now time to move towards a solution to such problem; a solution
relying on the notion of health state:

Definition 18 (Health state). Let � � COMPS. �(�,COMPSn�), a health state, is the
conjunction [

V
c2 �Ab(c)]^[

V
c2(COMPSn�) :Ab(c)].

Health states are, by and large, statements asserting the normality or abnormality of every
believed system component. It is now possible to define what a diagnosis is as an answer to a
diagnostic problem. In order to do so, one has to finally commit to a logic behind explanation.
Hereafter, and as stated in the beginning of the present chapter, I will be using first-order
logic with equality; for it is already defined in literature and has an expressive power necessary
to tackle the examples treated in this dissertation. However, my choice shall not be seen as
a hard directive toward the choice of a logic. In fact I even encourage the reader to refer to
the works of Shoham [97], Shanahan [95] or Thielscher [108] that show us, for instance, that
the qualification problem [76] cannot be solved with a classical logic. Since the objective of
this dissertation is not that of providing the reader with the best strategy towards reasoning
with abnormalities in Models of explanation but, instead, it concerns reasoning about such
abnormalities; I ask the reader to retain that first-order logic with equality was chosen for the
sake of simplicity without, however, impacting the results obtained.

With this being said, a diagnosis is defined as follows [30, 39]:

Definition 19 (Diagnosis). Let DP = (SD,COMPS ,OBS) be a diagnostic problem to be
solved, and let {OBSexp,OBScons} be a partition of OBSP in OBS. A diagnosis for DP is
a set of health states (called, in this case, diagnosis hypotheses) � such that:

SD[OBSCXT[OBScons[f�g
is satisfiable, and

SD[OBSCXT[OBScons[f�g j= OBSexp.

Note that, when OBSexp= ;, OBScons = OBS and we obtain “consistency-based” diagnoses.
Conversely, when OBSexp, ;, we obtain “abduction-based” diagnoses. Recall such concepts
from Section 2.1.

Since representing all the diagnosis hypotheses for a given diagnostic problem can be a
daunting task, the notions of partial and kernel diagnosis were introduced [39]:

Definition 20 (Partial diagnosis hypothesis).A partial diagnosis hypothesis for a diagnostic
problem DP is a satisfiable conjunction Q of Ab-literals (Ab(.) or :Ab(.)) such that for
every satisfiable conjunction R of Ab-literals covered by Q, SD[OBSCXT[OBScons[fRg is
satisfiable and SD[OBSCXT[OBScons[fRg j= OBSexp.

Definition 21 (Kernel diagnosis hypothesis). A kernel diagnosis hypothesis is a partial
diagnosis hypothesis with the property that the only partial diagnosis wich covers it is
itself.
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Example 1 (continued). Eight consistency-based kernel diagnosis hypotheses (using
definitions 19, 20 and 21) exist in this case:

fAb(A1)^Ab(A2)g fAb(A2)^Ab(M2)g
fAb(A2)^Ab(M1)g fAb(A1)^Ab(M3)g
fAb(A1)^Ab(M2)g fAb(M2)^Ab(M3)g
fAb(M1)^Ab(M3)g fAb(M1)^Ab(M2)g

The third Model: diagnostic algorithms

While it is true that Definition 19 provides clear semantics to the notion of diagnosis; since it
is given in terms of all models, it has little computational interest. Proof-theory comes to our
rescue with a syntactic approach to logic, and hence an attractive computational environment.
This is where diagnostic algorithms come to play, relying on Definition 19.

Definition 22 (Diagnostic algorithm). A diagnostic algorithm, noted A, is an algorithm
with an underlying set of inference rules aiming at computing diagnoses.

Reiter in [90] provides us an example of a diagnostic algorithm explicitly relying on a
theorem-prover. Model-theoretic and proof-theoretic diagnoses, are thus, distinguished as
follows:

Definition 23 (model-theoretic and proof-theoretic diagnoses).
• A model-theoretic diagnosis, DM-T, is the set of diagnostic hypotheses respecting
Definition 19.

• A proof-theoretic diagnosis, DP-T, is the set of diagnostic hypotheses computed by a
diagnostic algorithm A (`A).

With diagnostic algorithms, the third of the three Models has been introduced in the scope
of Model-based diagnosis and it is finally possible to formally define diagnostic systems:

Definition 24 (Diagnostic system). A diagnostic system is a tuple (SD,COMPS, OBS,A).

2.4 Defining and relating properties in diagnostic systems and
diagnoses

In the introductory chapter, the main question to be answered by this dissertation was raised:
how to reason about abnormalities in Models of implemented diagnostic systems. As we moved
to the present chapter, it was stated that tackling such problem required a deep understanding
of diagnostic systems, which was exactly what has been aspired in the last two sections.
Moreover, I promised that some eternal weaknesses of Model-based diagnosis would be revealed
through a series of diagnostic systems’ and diagnoses’ properties whose absence is usually
considered abnormal; as well as the relations between them. It is now time to address this
subject 13.

13Most of the work presented in this section was published in [13] and [14].
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2.4.1 Defining properties

As stated before, believed system descriptions (scientific and mathematical theories), believed
system observations (observations), diagnostic algorithms (rules of inference) and diagnoses
(explanans) usually require some properties whose absence is considered abnormal. Hence,
some of these properties will now be exposed, being the reader advised for the fact that I do
not aim at building an exhaustive list; for this is far from the main objectives of this book.

Diagnoses properties

Two important properties of model-theoretic and proof-theoretic diagnoses (cf. Definition 23)
are now presented: validity and certainty ; the notion of true health state:

Definition 25 (True health state). �T, the true health state, is a health state with the
property that f�Tg is an ontologically true theory (cf. Definition 1).

Definition 26 (Validity of a diagnosis). Let �T the true health state, let #(.) be the
cardinality function and let Hamm(a,b) be the Hamming distance between a and b [52].
A diagnosis, D, is said to be valid iff �T2D; and invalid otherwise. Moreover, the degree
of validity is:

1� min(Hamm(�T ;d1);:::;Hamm(�T ;dn))
#(COMPS)

where each di2D is a diagnosis hypothesis.

Definition 27 (Certainty of a diagnosis). Let #(.) be the cardinality function. A diagnosis,
D, is said to be certain iff #(D) = 1; and uncertain otherwise. Furthermore, the degree of
uncertainty is:

2#(COMPS)�#(D)

2#(COMPS)�1

As indicated by Principle 6 (cf. Subsection 2.2.2) it is impossible to prove that a health
state is a true health state and one can only assume it. I will come back to this major point in
Chapter 3, but I encourage the reader to retain this fact. As for the validity and certainty of
diagnoses, in order to illustrate both concepts suppose a framework with COMPS = {c1,c2} and
a true health state Ab(c1)^:Ab(c2). Suppose also two diagnoses: D1 = {Ab(c1)^Ab(c2)} and
D2 = {Ab(c1)^:Ab(c2),:Ab(c1)^:Ab(c2)}. In this case D1 is a certain but invalid diagnosis;
while D2 is an uncertain but valid one. Validity can be seen as the property guaranteed by
“valid models” in [100] over the past observations; or the always implicitly assumed property
behind monotonic approaches in Model-based diagnosis. As for certainty, it is the property
guaranteed by “diagnosable systems” in [28]. Having valid and certain diagnoses is extremely
interesting for most real life diagnostic applications. In the aeronautic industry, for example,
invalid diagnoses may lead the aircraft maintenance team to replace the wrong components;
and uncertain diagnoses naturally increase the time of repair.
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Believed system observations’ properties

Let us focus on a single property of believed system observations: ontological truth. Infor-
mally, ontologically true believed system observations assure a correct perception of reality.
On a formal manner, and using the material from Definition 1:

Definition 28 (Ontological truth of believed system observations). The believed system
observations are an ontological truth iff OBS is an ontologically true theory.

First of all, note that this property formalises a “hole” in observations, as described in
Section 1.1: the problem of ontologically false observations; a problem illustrated by Mr.
Tortuga’s incorrect perception of a red “change oil” light. This property, together with the
ontological truth of believed system descriptions which we will discuss in a few paragraphs,
is the most important property of implemented diagnostic systems; for having ontologically
true believed system observations is a necessary although insufficient condition for determining
valid diagnoses. This will be proved in Subsection 2.4.2 . Finally, the reader may notice that
Principle 7 (cf. Subection 2.2.2) determines the impossibility to prove the ontological truth of
observations.

Believed system descriptions’ properties

From believed system observations’ properties, let us move to believed system descriptions’
ones: satisfiability, ontological truth, completeness, coverage and diagnosability.

Definition 29 (Satisfiability of a believed system description). A believed system description
is satisfiable if the theory SD has a model.

This apparently unflavoured property is extremely interesting. In fact, if a believed system
description is not satisfiable it cannot represent an artefact in the real-world, for, by Defini-
tion 1, it must have a model. Moreover, courtesy of Gödel’s completeness theorem (see [62]
for details), a first-order theory has a model iff it is consistent. Thus, a syntactic check on a
first-order theory enables the assessment of this property.

From satisfiability let us move to the ontological truth of believed system description; a
property assuring the correct representation of reality.

Definition 30 (Ontological truth of a believed system description). A believed system de-
scription is an ontological truth iff for all ontological true OBS, SD[OBS is an ontolog-
ically true theory (cf. Definition 1).

The ontological truth of believed system descriptions formalises the problem of ontologically
false scientific and mathematical theories exposed in Section 1.1; a problem illustrated by Mr.
Zapato’s prank leading Tortuga to think that clapping his hands twice when inside the car
causes the car to start. This property is also in strict connection with the qualification problem
as we will see further in this section.
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As stated before, together with the ontological truth of believed system observations, such
property is one of the most important ones in implemented diagnostic systems. This is as so
for the same reasons as before: it is a necessary although insufficient condition for determining
valid diagnoses. Before ending this discussion, note that Principle 6 (cf. Subsection 2.2.2)
imposes the impossibility to prove the ontological truth of scientific and mathematical theories.

Let me now introduce a third property of interest in believed system descriptions: com-
pleteness.

Definition 31 (Completeness of a believed system description). Let m 2 CXT be a believed
system context partitioning P into {IP,OP}. Moreover, let � be a set containing first-order
sentences of the form v(ip) = b assigning a value for every ip 2 IP. Finally, let � be a
health state. In this case, a believed system description is said to be complete iff for
every � in every believed system context m and for every different health state �:

If SD[CP(m)[�[f�g is satisfiable,

then SD[CP(m)[�[f�g is a complete theory.

Intuitively, the completeness property is a measure of how many “loose strings” there are
in the believed system description. When this property is verified, one is guaranteed to have a
representation of how all the believed system output parameters are related to the input ones,
for every believed system context, health state and input parameter values. Nevertheless, one
is not guaranteed to have an ontologically true representation. Together, the completeness and
ontological truth properties formalise another “hole” in scientific and mathematical theories
described in Section 1.1: the qualification problem, illustrated by Tortuga’s inability to know
and to check all the preconditions necessary for his car to start. Finally, one interesting aspect
of this property is that it can, in theory, be measured; for it relies on two mathematical
concepts: satisfiability and completeness of mathematical theories; concepts which can be
[logically] proved (for instance using Vaught’s test [74]).

Diagnosability is the last property of believed system descriptions to be exposed.

Definition 32 (Diagnosability of a believed system description). Let m 2 CXT be a believed
system context and P the set of believed system parameters. Moreover, let � be a theory
containing first-order sentences of the form v(p) = b assigning a value for every p 2 BP.
A believed system description is said to be diagnosable iff there is a � � � in every
possible believed system context m such that:

If SD[CP(m)[� is satisfiable, then DM-T for (SD,COMPS,�) is certain.

Diagnosability is a very important property of believed system descriptions for it guarantees
the certainty of the computed diagnoses. Moreover, diagnosability and completeness are two
faces of the same coin. While completeness guarantees that, given a believed system context,
a health state and every believed system input parameter value, every believed system output
parameter value can be determined; diagnosability guarantees that given a believed system
context and every believed system input and output parameter values, a certain diagnosis can
be determined.
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Diagnostic problems’ properties

It is now possible to expose two diagnostic problems’ properties: satisfiability and observ-
ability.

Definition 33 (Satisfiability of a diagnostic problem). A diagnostic problem is said to be
satisfiable if the theory SD[OBSCXT[OBSP has a model.

Being stronger than the satisfiability of the believed system description, the satisfiability of
the diagnostic problem (corresponding to the “remark 1” of [39]) has an added interest attached
since it helps measuring the adequacy of the believed system description to the believed system
observations. More precisely, if a diagnostic problem is not satisfiable then either the believed
system description or the believed system observations (or both) must be ontologically false.

As for the observability of a diagnostic problem, it is a good measure of how much infor-
mation the diagnostic system has to perform a diagnosis.

Definition 34 (Observability of a diagnostic problem). A diagnostic problem DP = (SD,
COMPS,OBS) is said to be:

• weakly observed iff OBSCXT contains one and only one observed believed system
context and every believed system input parameter in IP is given one and only one
value in OBSP.

• strongly observed iff OBSCXT contains one and only one observed believed system
context and and every believed system boundary parameter in BP is given one and
only one value in OBSP.

This concept can easily be illustrated through Davis Polybox and the development done
in Example 1. In such example, the diagnostic problem is strongly observed, since every input
and output parameter is observed for that single believed system context.

Diagnostic algorithms’ properties

Following the introduction of some properties of diagnostic problems, let us focus on those
of diagnostic algorithms: soundness and completeness ; formalising two “holes” in rules of
inference previously described in Section 1.1: the soundness and completeness problems.

Definition 35 (Soundness and completeness of a diagnostic algorithm). Let T and ' be,
respectively, a theory and a sentence in a logic L. A diagnostic algorithm A is sound iff:

If (T `A '), then (T j=L ')

and complete iff:

If (T j=L '), then (T `A ')
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Intuitively, a diagnostic algorithm is sound if every truth it determines (or infers) is entailed
by the starting premises. Conversely, a complete diagnostic algorithm is one that determines
(or infers) all the truths entailed by some starting premises. These properties are crucial for
implemented diagnostic systems, for they are the last necessary condition - together with the
ontological truth of believed system descriptions and observations - guaranteeing the compu-
tation of valid diagnoses. This is why Reiter, for example, explicitly requires a sound and
complete theorem prover in his diagnostic algorithm [90].

All in all, in this subsection I contributed with a series of formal properties usually re-
quired to implemented diagnostic systems and diagnostic results. Naturally, this is the first
step into developing a solution to reason about implemented diagnostic systems for detecting
and isolating properties that do not hold in their Models. However, the reader may feel some-
how disappointed. After all, the most interesting properties such as the ontological truth of
believed system descriptions and observations cannot be proved; and no formal means have
been provided to ensure the computation of valid diagnoses. The following subsection focuses
on these issues and introduces a series of relations between diagnostic systems’ and diagnostic
results’ properties. These will be used, in the following chapters, to reason about Models.

2.4.2 Relating properties

Implemented diagnostic systems are typically built with one objective in mind: computing
valid diagnoses in every situation. If, on one hand, it is hard not to accept this observation,
on the other hand and to our knowledge, the necessary conditions to fulfil such objective
are missing in the Model-based diagnostic community. Courtesy of the insights provided by
Theorem 1, the following theorems address this issue.

Theorem 2. If SD is an ontologically true believed system description, then for every di-
agnostic problem (SD,COMPS,OBS) with ontologically true believed system observations:

1. every consistency-based model-theoretic diagnosis DM-T is valid.
2. some abduction-based model-theoretic diagnoses DM-T may be invalid.

Proof.

1. Suppose that the consistency-based model-theoretic diagnosis DM-T for the diagnostic
problem (SD,COMPS,OBS) is not valid, i.e. �T < DM-T. In this case, by Definition 19,
SD[OBS[f�Tg is unsatisfiable, thus having no model. From Definition 25, f�Tg must
have a model M such that 9P,R2
 9�(M;P) (P�R)^(R
	). Combining all the argu-
ments we get that :(9M2Mod(SD[OBS) 9P,R2
 9�(M;P) (P�R)^(R
	); and either the
believed system or the observations are not true.

2. Suppose an ontologically true but incomplete believed system description. Suppose
also a believed system output parameter op (for every context) such that, for a given
health state �, for every sentence ' evaluating op and for every observations OBS:
SD[OBS[f�g 6j= f'g and SD[OBS[f�g 6j= f:'g. In this case, if for a given diagnostic
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problem with ontologically true observations and system description, the true health
state �T = � and op is evaluated in a sentence ' of OBSexp, then DM-T is not valid.

�

According to Theorem 2, there can be invalid abduction-based model-theoretic diagnoses
resulting from diagnostic problems with ontologically true believed system descriptions and
believed system observations. However, we will see in a few paragraphs that some conditions
exist to guarantee its validity, namely: the completeness of the believed system description,
the observability of the diagnostic problem, and the classical properties of the underlying logic.

Theorem 3. If A is a sound and complete diagnostic algorithm, then DM-T = DP-T for a
given diagnostic problem (SD,COMPS,OBS).

Proof.

From Definition 19, � is a model-theoretic diagnosis hypothesis iff SD[ OBScons[f�g is
satisfiable and SD[OBScons[f�g j= OBSexp.

One can make the bridge between model and proof-theory shine by stating that an anti-
diagnostic hypothesis is � such that SD[OBScons j= f:�g or SD[OBScons[f:

V
o2OBSexpog

j= f:�g; and stating that every health state � that is not an anti-diagnostic hypothesis is a
diagnostic hypothesis.

Since A is sound and complete, model-theoretic and proof-theoretic anti-diagnostic hy-
potheses are the same; and since anti-diagnosis and diagnosis are complementary, model-
theoretic and proof-theoretic diagnoses are equivalent for a sound and complete diagnostic
algorithm. �

Corollary 4. If A is a sound and complete diagnostic algorithm and (SD,COMPS) is an
ontologically true believed system, then for every diagnostic problem (SD,COMPS,OBS)
with ontologically true observations:

1. every consistency-based proof-theoretic diagnosis, DP-T, is valid.
2. some abduction-based proof-theoretic diagnoses, DP-T, may be invalid.

Proof.

Trivial from Theorems 2 and 3. �

With these three theorems at our hands, some interesting conclusions can be drawn. First
of all, inheriting from the conclusions provided in the analysis of Theorem 1 in Subsection 2.2.2,
valid consistency-based diagnoses are proved to be a product of correctly implemented diag-
nostic systems with sound and complete inference rules and ontologically true scientific and
mathematical theories and observations. Moreover, as predicted in that same Subsection, from
invalid consistency-based diagnoses one can infer the ontological falsehood of believed system
descriptions or observations, or the unsoundness or incompleteness of diagnostic algorithms.
These results are the actual rational behind Chapter 3. Finally, these three theorems also
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tell us that while consistency-based diagnoses can be guaranteed to be valid in some situa-
tions, abduction-based diagnoses do not. At this point, it is interesting to prove that, in some
cases, these abduction-based diagnoses can retrieve the advantages of their consistency-based
counterparts:

Theorem 5. Let L be a classical logic. Moreover, let SD be a complete believed system
description in L and let DP be a correctly chosen diagnostic problem based on SD and
L, at least weakly observed. In this case for every health state �:

SD[OBS[f�g is satisfiable ,

(
SD [OBScons [ f�gis satisfiable and
SD [OBScons [ f�g j=L OBSexp

Proof.

• (: If SD[OBScons[f�g is satisfiable, then it has a model. Since SD[OBScons[f�g j=

OBSexp then every model of SD[OBScons[f�g is a model of OBSexp (for L is classic).
This being the case, since OBScons[OBSexp = OBS, then SD[OBS[f�g has a model,
thus being satisfiable.

• ): Since OBScons[OBSexp = OBS, SD[OBScons[OBSexp[f�g is satisfiable so one
only needs to prove that SD[OBScons[f�g j= OBSexp. Let ' =

V
o2OBSexp o. Since

SD is a complete believed system description and DP is at least weakly observed,
SD[OBScons[f�g is a complete theory and, this being so, either SD[OBScons[f�g

j= f'g or SD[OBScons[f�g j= f:'g (for L is classic). Suppose SD[OBScons[f�g

j= f:'g, which is the same as saying that SD[OBScons [f�g[f'g is unsatisfiable.
This, however, cannot be the case because SD [OBScons[f�g[f'g is satisfiable. Thus,
SD[OBScons[f�g j= f'g.

�

The presented theorem exposes a bridge between abduction and consistency-based di-
agnoses provided by the completeness of believed system descriptions, the observability of
diagnostic problems and the properties of classical logic. In a nutshell, this theorem tells
us that sometimes abduction becomes consistency and vice-versa. The importance of this
relation is two-fold. First, consistency-based tools can be used to compute abduction-based
explanations in some situations; and vice-versa. Secondly, abduction-based explanation can
sometimes inherit from the advantages of the consistency-based one:

Corollary 6. Let L be a classical logic. If SD is an ontologically true and complete
believed system description in L sand DP is an at least weakly-observed correctly chosen
diagnostic problem based on SD and L, then every model-theoretic consistency-based or
abduction-based diagnosis is valid.

Proof.

Immediate by Theorems 5 and 2. �
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One now has the necessary tools to relate Models’ properties with the validity of diagnoses.
Nevertheless, a connection is still missing between the properties of Models and the certainty
of computed diagnoses:

Theorem 7. Let SD be a diagnosable believed system description, (SD,COMPS,OBS) be
a fully observed correctly-chosen satisfiable diagnostic problem and A be a sound and
complete diagnostic algorithm. In this case, all the proof-theoretic diagnoses DP-T are
certain.

Proof.

Immediate from Definitions 32, 33 and 34 and Theorem 3. �

With all the theorems and corollaries that have been presented in this subsection, as well as
with their combinations, one can now relate all the properties introduced in Subsection 2.4.1
and formally understand why some abnormal properties (“holes”) of Models, i.e. scientific and
mathematical theories, observations and rules of inference, can be so harmful for explanation.

2.5 Originality and Related work

I started this chapter by reaffirming the main academic objective of this dissertation: to
provide a tool for reasoning about abnormalities in Models of implemented diagnostic systems
and explanation in general. Moreover, I stated that the first step in the path to solving our
problem was 1) to build a solid foundation of diagnostic systems themselves, 2) characterise
Model-based diagnosis based on such foundations and 3) expose and relate some properties
of diagnostic systems and diagnostic results. Thus, my contribution in this chapter appears
naturally related with other works focused on these three axes.

Concerning the foundation of diagnostic systems, exposed in Section 2.2, it is a thesis on
how scientific and mathematical theories and observations are formed and evolve in observer-
participants’ minds through information. Deep inside the realm of Philosophy of Science, this
thesis is, as far as my knowledge goes, an original contribution drinking from and formalising
some concepts informally introduced by Wheeler [114, 113, 115, 116, 117]. First, it uses
many of Wheeler’s ideas such as the “super-Copernican”, the “no question, no answer” or the
“No super-turtles! No tower of turtles” principles. Secondly, it formalises information as a
model-theoretical notion in a way that fits both scientific realism and empiricism (among
other anti-realism positions), and is consistent with the “no question, no answer” principle.
When the formal concept of information is then used explore scientific and mathematical
theories, observations and their respective ontological truth, many more ideas, related for
instance to the semantic view of theories, become in line with our contribution. The works of
Suppes [104, 105], da Costa and French [34], Suppe [102, 103] or van Fraassen [111] present
just some of these ideas, where, to my knowledge, the closest we can go to this work is that:
a theory is ontologically true if one of its models is [partially] isomorphic to the real-world.
However, since the real-world is not even a mathematical structure, these accounts are basically
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mathematically flawed and this is where our notion of information comes to our rescue as a
necessary condition both for correctly defining the ontological truth of a theory and for proving
the original and important Theorem 1.

From the foundation of diagnostic systems, Section 2.3 advanced to a characterisation of
Model-based diagnosis nourished by such thesis. As mentioned in that section, most of the ex-
posed concepts relied on the works of Chittaro, Console, de Kleer, Guida, Mackworth, Reiter,
Struss, Tasso, Toppano, Torasso and Williams [25, 90, 40, 30, 39, 100]. Nevertheless, my con-
tribution lied behind the different glasses through which Model-based diagnosis was presented.
First, the historical view of Models and explanation exposed in Section 2.1 set the stage for a
deeper critic on the notion of explanation lying below the classical framework of Model-based
diagnosis. Secondly, backed up by the seven principles of Section 2.2, I contributed with an
in-depth discussion on the three Models of explanation and how they appear in Model-based
diagnosis. This was backed up by a distinction between the real and the cognitive worlds using
concepts such as those of system, component, abnormality, function, input, output or replace-
ability; a distinction which, in my opinion, is a necessary condition for a proper discussion
on Model-based diagnosis. Finally, the notions of context of a system and correctly chosen
diagnostic problem are also, to my best knowledge, original in the literature.

As for the third axis of the present chapter, it is to my best knowledge an original contribu-
tion (backed up by the publication of [13]), providing: 1) a formalisation of many properties in
scientific and mathematical theories, observations and rules of inference affecting explanations,
and 2) a set of theorems proving how these properties relate with explanans’ properties. Be-
sides the works naturally related to this contribution either through the problems mentioned
in Section 1.1 or through the two previously discussed axes, I would like to point the works
of Struss [100], and Nayak and Levy [79] that relate to this one through the study of prop-
erty relations between different model abstractions; and the unpublished vision of Mathen,
clearly addressing (although in an informal manner) the completeness and ontologically truth
of scientific and mathematical theories [75].
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Meta-diagnosis

It is difficult to say what truth is, but sometimes it is so easy to recognize a
falsehood.

- Albert Einstein

In the introductory chapter many problems of scientific and mathematical theories, observa-
tions and rules of inference were exposed. Moreover, it was said that Model-based diagnosis
(and explanation in general) needs: 1) a framework for reasoning with abnormal Models using
a correct notion of explanation, and 2) a framework for reasoning about abnormal Models for
detecting and isolating Model abnormalities. The first point was defined as the main objective
of this dissertation. In order to provide a prerequisite enabling the achievement of such goal,
the second chapter focused on establishing both a formal and clear definition of a well-founded
framework of Model-based diagnosis, and a formal account of abnormalities and of their re-
lations with diagnoses and explanans in general. It is now time to focus on reasoning about
abnormalities in the Models of implemented diagnostic systems and explanation in general. In
this chapter, I contribute both with a theory and a tool of meta-diagnosis tackling this issue
from the academic side. As for the industrial one, it will be the object of the following chapter.

In the first section, Artificial Intelligence is provided with a general logical theory of meta-
diagnosis; a theory which enables the detection and isolation of abnormal properties in the
Models of implemented diagnostic systems (and explanation in general). This theory has many
advantages: first, it enjoys the clear semantics provided by logic; second, it is a general unified
theory to reason about any implemented Model-based diagnostic system; and third it can be
mapped into a theory of diagnosis, thus inheriting from the arsenal of tools already developed
through the years in the diagnostic-world.

With a theory of meta-diagnosis in our swiss-knife, the second section exposes a process for
modelling meta-diagnostic problems. Furthermore, it presents two toy-problems, thus offering
the reader a flavour of what can be done with the meta-diagnostic framework.
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The theoretical view of meta-diagnosis will be complemented with a practical one in the
third section; a section devoted to providing Artificial Intelligence with a detailed architec-
tural and functional description of a logical-based meta-diagnosis tool: MEDITO. Exploiting
the syntactic equivalence between diagnosis and meta-diagnosis, MEDITO uses diagnostic al-
gorithms from field of Model-based diagnosis. Doing so, it presents empirical proof supporting
the meta-diagnosis claim: any diagnostic algorithm can tackle a meta-diagnostic problem.

As for the final section, it will focus on exploring the works in the literature related to
ours, and to clearly assessing the originality of our contribution.

3.1 Towards a framework of meta-diagnosis

At the beginning of the introductory chapter, I stated that this dissertation is focused on
explanation in the context of why-questions, such as: “why does Tortuga’s car not start?”.
Moreover, it was argued argued that explanation is based on Models, i.e. scientific and math-
ematical theories, observations and rules of inference; and a series of Model’s and diagnoses’
properties and relations were exposed.

With these tools in our hands, extended questions, such as: “why are the explanans of the
“why does Tortuga’s car not start” problem invalid?”; arise in a natural manner. After all, we
typically may want to detect, isolate and repair the abnormalities of scientific and mathematical
theories, observations and rules of inference, causing abnormalities in the computed explanans.
In a nutshell, we can now think of why-questions about why-questions, that is, of meta-
explanations or meta-diagnoses 1. The logical characterisation of these meta-diagnoses is the
object of the present section.

3.1.1 On meta-systems, meta-components and other concepts

The formal characterisation of meta-diagnoses starts with the definition of meta-diagnosis as a
cognitive-world reasoning process which aims at determining the normal and abnormal meta-
components of a meta-system under study. First, the reader is welcome to see the straight
connection between this primary account of meta-diagnosis and that of diagnosis in Section 2.3.
Secondly, in the same way as the characterisation of diagnoses relied on a clear definition of
components and systems, the path into a correct characterisation of meta-diagnoses starts with
the notions of meta-components and meta-systems. Let me, as so, begin by addressing the
later concept which depends on meta-parameters and meta-goals.

Definition 36 (Meta-parameter). A meta-parameter represents a sensed part of reality
perceived as a flow of physics to or from an implemented diagnostic system.

Definition 37 (Meta-Goal). A meta-goal is a [possibly empty] set of meta-parameters
with an admissible value range, and a [possible empty] set of mathematical relations that
must hold between them.

1Meta-explanation will actually be generalised to cover more than why-questions about why-questions. This,
however, will be a subject of Chapter 5; a subject which will be put on standby for now.
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Definition 38 (Meta-System). A meta-system represents a sensed part of reality perceived
as a part of physics implementing a diagnostic system and assigned with some meta-goals.

Note that meta-systems of special importance to us for 1) they are particular systems (cf.
Definition 4), 2) they are correspond to implemented diagnostic systems which are our object
of study, and 3) diagnostic system’s and diagnoses’ properties (some of the possible meta-
parameters in meta-goals) and property relations can be proved. I encourage the reader to
retain this remark. As for meta-components, they can be defined as follows:

Definition 39 (Meta-component). A meta-component represents a sensed part of reality
perceived (cf. Principle 4) as a replaceable (cf. Definition 6) part of an implemented
diagnostic system (cf. Definition 24).

Naturally, meta-components can be defined at different abstraction levels. Moreover, it
is not mandatory for every part (or element) of an implemented diagnostic system to be
considered as a meta-component. From this concept, we can go one step further and explore
the notion of meta-abnormality.

Definition 40 (Meta-Abnormality).When assigned with a meta-goal, a meta-component is
said to be: normal, if the meta-goal is met; and abnormal otherwise. A meta-goal is met
whenever all its underlying implemented diagnostic system’s and diagnoses’s property
values are within range and all its underlying relations hold.

With the concepts of meta-system, meta-component and meta-abnormality apprehended,
the meaning of the introductory sentence: “meta-diagnosis [is] a cognitive-world reasoning
process which aims at determining the normal and abnormal meta-components of a meta-
system under study”; should now be crystal clear. As for how normal and abnormal meta-
components are determined, it is the object of the remainder of this Section.

For now, let me illustrate the notions exposed in the present subsection with the help of
Mr. Tortuga and his “car start” situation of Section 1.1. Recall that Tortuga had developed
a thesis on how the car starts: “Turning a normal key implies the car start”; a sentence that
can be expressed, for example, by the following first-order theory fitting the framework of
diagnosis presented in Chapter 2: f:Ab(Key) ^ Turn(Key) � Start(Car)g, where Key and Car
are constants (the first one representing a component) and Turn(.) and Start(.) are unary
relations. Moreover, recall that Tortuga once turned the key and his car did not start, i.e.
he observed Turn(Key)^:Start(Car). Finally, remember that Tortuga first explained (or diag-
nosed) the fact that the car did not start with an abnormality with the key, only to be proved
wrong by Mr. Zapato’s conclusion that the car was missing gasoline. In this case, one can
view the meta-system representing a sensed part of reality perceived as Tortuga’s implemented
diagnostic system with the meta-goal of producing valid diagnoses. Moreover, the :Ab(Key)
^ Turn(Key) � Start(Car) sentence can correspond to a meta-component whose abnormality
Tortuga wants to meta-diagnose. Indeed, Tortuga found that this meta-component was abnor-
mal and “replaced” it with the sentence :Ab(Key) ^ Turn(Key) ^ :No(Gasoline) � Start(Car).
As stated before, the remainder of this section exposes Tortuga’s reasoning process to detect
and isolate meta-component abnormalities.
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3.1.2 Characterising meta-diagnoses

The notions of meta-system, meta-component and meta-abnormality are the building blocks
of meta-diagnoses. With them, it is now possible to introduce a logical framework of Model-
based meta-diagnosis. Naturally, as was the case with Model-based diagnosis in Chapter 2, this
framework relies on the three Models, i.e. scientific and mathematical theories, observations
and rules of inference, and on the concept of explanation.

The first Model: believed meta-systems

Start with the first Model appearing on the form of believed meta-systems, relying on the con-
cepts of meta-system, meta-component, meta-abnormality and perception (cf. Definitions 38,
39 and 40, and Principle 4):

Definition 41 (Believed meta-system). A believed meta-system is a pair (M-SD,M-COMPS)
where:

• M-SD, the believed meta-system description, is a set of first-order sentences. Se-
mantically, it is a scientific and mathematical theory describing a meta-system and
possibly some systems.

• M-COMPS, the believed meta-system meta-components, is a finite set of constants.
Semantically, each element mc of M-COMPS represents a meta-component whose
abnormality one wants to meta-diagnose.

To describe the behaviour of believed meta-system meta-components, as well as their in-
teractions, believed meta-system descriptions typically use the meta-abnormality predicate:
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Definition 42 (Meta-abnormality predicate). M-Ab(.), the meta-abnormality predicate, is
a unary predicate. If mc 2 M-COMPS is a believed meta-system meta-component, then
M-Ab(mc) and :M-Ab(mc) are well-formed-formulas. Semantically, M-Ab(.) represents
the abnormality of a meta-component; while :M-Ab(.) represents its normality.

Such concepts can be illustrated through the Polybox example (cf. Chapter 2):

Example 1 (continued). Suppose that the meta-goal of computing valid diagnoses is
assigned to the correctly implemented diagnostic system (SD,COMPS,OBS,A). Moreover,
for the sake of the argument assume that OBS is an ontologically true theory and A is
a sound and complete diagnostic algorithm. Finally, if each SD-sentence is considered
as a meta-component with the meta-goal of being ontologically true, one possibility for
M-SD with M-COMPS={M1desc,M2desc,M3desc,A1desc,A2desc} would then be 2:

:M-Ab(M1desc) ) [CP(m1) ^ :Ab(M1) ) (v(x) = (v(a) +1) � v(c))]
:M-Ab(M2desc) ) [CP(m1) ^ :Ab(M2) ) (v(y) = v(b) � v(d))]
:M-Ab(M3desc) ) [CP(m1) ^ :Ab(M3) ) (v(z) = v(c) � v(e))]
:M-Ab(A1desc) ) [CP(m1) ^ :Ab(A1) ) (v(f) = v(x) + v(y))]
:M-Ab(A2desc) ) [CP(m1) ^ :Ab(A2) ) (v(g) = v(y) + v(z))]

The idea behind such M-SD is that if a meta-component is not abnormal, then the SD-
sentence it represents is ontologically true.

The second Model: meta-observations

From believed meta-systems, one can advance to the notion of meta-observations; used along
these to determine the normal and abnormal meta-components. Such notion relies on Principle
4 and on Definitions 4 and 38.

Definition 43 (Meta-observations). The set of meta-observations, M-OBS, is a finite
set of first-order sentences. Semantically, meta-observations are observations about a
meta-system and possibly some observations the systems underlying such meta-system.

Such concept can be illustrated through a continuation of the Polybox example:

Example 1 (continued). Suppose the true health state is meta-observed, in this example,
to be :Ab(M1)^:Ab(M2)^:Ab(M3)^:Ab(A1)^ Ab(A2). In this case, M-OBS can be:

v(a) = 1 v(b) = 2 v(c) = 3 v(d) = 4
v(e) = 5 v(f) = 11 v(g) = 22 CP(m1)

:Ab(M1) ^ :Ab(M2) ^ :Ab(M3) ^ :Ab(A1) ^ Ab(A2)

2Section 3.2 clarifies the rational for the meta-system description presented.
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The notion of explanation

With a believed meta-system and some meta-observations in our possession, we can advance
to the notion of meta-diagnostic problem.

Definition 44 (Meta-diagnostic problem). A meta-diagnostic problem M-DP is a tuple
(M-SD,M-COMPS,M-OBS).

The solutions of meta-diagnostic problems are meta-diagnoses. These, in turn, depend on
the concept of meta-health state.

Definition 45 (Meta-health state). Let � � M-COMPS. A meta-health state, �(�,M-
COMPSn�), is the conjunction [

V
mc2 �M-Ab(mc)]^[

V
mc2(M-COMPSn�) :M-Ab(mc)]

Stop for a brief moment and recall some important concepts. In the beginning of the present
section it was stated that meta-diagnosis or meta-explanation can be seen as a reasoning process
aiming and providing answers to why-questions about why-questions. In a nutshell, meta-
diagnosis depends, in its essence, on the idea of explanation. This being so, let me use the idea
of explanation provided in the previous chapter, that is, “explanans explain some explananda-
observations if the latter can be inferred from the former and the context-observations, both at
some earlier time, along with some scientific and mathematical theories.”. Moreover, and since
one has to commit to a logic behind explanation, I will be working with first-order logic with
equality. Unsurprisingly, other logics can be chosen, but let me strongly assert that, in some
situations (exactly those that are of interest to us), classical logics can be used without harm.
This fact will be explored in a few paragraphs. For now, let meta-diagnosis be introduced:

Definition 46 (Meta-diagnosis). Let M-DP = (M-SD,M-COMPS,M-OBS) be a meta-diagnos-
tic problem to be solved; and {M-OBSexp,M-OBScons} be a partition of M-OBS. A meta-
diagnosis for M-DP is a set of meta-health states (called, in this context, meta-diagnosis
hypotheses) � such that:

M-SD[M-OBScons[f�g

is satisfiable, and

M-SD[M-OBScons[f�g j= M-OBSexp.

Meta-diagnoses are called “consistency-based” when M-OBSexp= ;; and are called “abduc-
tion-based” otherwise.

3.1.3 Some words on meta-diagnoses

The notion of meta-diagnosis being introduced, it is now time to settle down and explore the
implications of such definition.
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Syntactic equivalence

The first point to emphasize is the syntactic equivalence between Definitions 19 and 46, i.e.
between diagnosis and meta-diagnosis. A series of conclusions follow directly from this fact:

• The notions of partial and kernel meta-diagnosis hypothesis can be directly drawn from
Definitions 20 and 21.

• Every diagnostic algorithm can become a meta-diagnostic algorithm if it is sound and
complete with respect to the underlying semantics (cf. Definition 35). As so, one does
not need to start from scratch into the development of meta-diagnostic algorithms and,
for example, the works of [122] or [121] can be used in meta-diagnosis.

• Every approach to handle the complexity problems of diagnosis can be used in meta-
diagnosis. Thus, as in the previous point, meta-diagnosis can benefit from the many years
of experience gathered in the diagnostic world concerning complexity management.

These conclusions are, in a nutshell, the rational behind this dissertation’s lack of a detailed
account on meta-diagnostic algorithms and complexity management techniques. Straightfor-
wardly, the third Model behind meta-diagnosis is a gift from diagnosis.

Semantic difference

The discussion on the semantic difference between diagnoses and meta-diagnoses starts with
some questions: If why-questions about why-questions are justified, can we also think of why-
questions about why-questions about why-questions? If yes, then when should we stop? At
meta-meta-diagnosis level or even further?

The answer to all these questions lies behind the semantic difference between diagnosis
and meta-diagnosis. Recall that, in the introductory chapter, it was stated that Model-based
diagnosis (or explanation in general) is a reasoning process relying on scientific and mathe-
matical theories, on observations and on some rules of inference. Moreover, it was shown that
although rules of inference can be proved sound and complete with regards to a certain logic,
scientific theories and observations can never be proved ontologically true; for they are forged
in reality’s moulds. Thus, the fact that the artefact to be diagnosed can be a part of the
real-world justifies a meta-diagnosis.

Contrary to Model-based diagnosis, in Model-based meta-diagnosis the artefact to be diag-
nosed is always perceived as an implemented diagnostic system, a well defined cognitive-world
concept. As so, if one hypothesises that meta-systems are based on correct interpretations
of well-implemented diagnostic systems, the notion of ontological truth becomes meaningless
with regards to interesting believed meta-system descriptions 3. This, in turn, justifies the
absence of a meta-meta-diagnosis on believed meta-system description abnormalities.

3Although it is true that the general syntax of believed meta-system description allows the inclusion of
sentences about any cognitive-world concept representing a view on the real-world; it is here defended that
there is a whole series of believed meta-systems that can be built on cognitive-world concepts representing
other cognitive-world concepts: the diagnostic system’s and diagnosis’ properties to be meta-diagnoses. Under
the hypothesis that meta-systems are based on correct interpretations or that diagnostic systems are correctly
implemented in the real-world, these are precisely the believed meta-system descriptions that interest us.
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As for meta-diagnostic algorithms, the results from the previous subsubsection tell us that
they coincide with diagnostic algorithms. Since the rules of inference behind the theorem
provers underlying every diagnostic algorithm can be proved sound and complete with respect
to a given logic, the meta-meta-diagnosis of meta-diagnostic algorithms’ abnormalities can also
be avoided.

Concerning meta-observations, these can be separated in two different groups: 1) the ones
that coincide with the believed system observations, and 2) the others, called exclusive meta-
observations. Concerning the former group, their possible ontological falsehood is taken into
account in the meta-diagnosis itself. Thus, no meta-meta-diagnosis is needed for its treatment
if one supposes that meta-systems are based on correct interpretations or that diagnostic
systems are correctly implemented. Exclusive meta-observations, on the other hand, are the
Achilles heel of meta-diagnosis. In fact, while it is true that one can sometimes avoid having
observations about systems other than meta-systems in this group; interesting cases, such as
the inclusion of diagnoses’ validity as a meta-goal, need these observations to be a part of
meta-observations; meta-observations that may be, in turn, ontologically false. In a nutshell,
the second major hypothesis behind meta-diagnosis is the ontological truth of this group of
meta-observations.

With this last conclusion, and before the reader feels that the basis of this dissertation is
falling apart, let me affirm that the hypothesis of ontological true exclusive meta-observations:

• is much weaker that the hypothesis of ontologically true believed system descriptions and
ontologically true believed system observations on which Model-based diagnosis relies;
for it does not carry the problem of induction (cf. Section 2.1.1).

• is perfectly justified in real-world applications such as in implemented Airbus’ diagnostic
systems, where one is interested is the validity of diagnosis with respect to a given
benchmark set by component’s suppliers.

Finally, note that the notion of explanation used also affects the need for a meta-meta-
diagnosis in two different ways. First, the underlying logic must be monotonic or else a
preference criteria on models may exclude potentially wanted solutions. Fortunately, non-
monotonic logics are justified when scientific and mathematical theories and observations are
not guaranteed to be ontologically true; in which case one needs to “jump to conclusions”
and retract them, if necessary, when new observations are gathered. However, courtesy of the
meta-equivalent of Corollary 4, the need for no such retraction is guaranteed in the case of
ontologically true believed meta-system descriptions and meta-observations, and sound and
complete meta-diagnostic algorithms. Since this is exactly the case in meta-diagnosis if one
takes the previous discussions into account, then a monotonic logic can be used. Second, and
according to the meta-equivalents of Corollary 4 and Theorem 5, meta-diagnoses must either
be computed using a consistency-based approach or the believed meta-system description must
be complete and the meta-diagnostic problem must be correctly chosen and at least weakly
observed. Since the latter condition cannot be assured in general, the further discussions on
meta-diagnosis will use a consistency-based approach.

All in all, meta-meta-diagnosis can be avoided if one is sure that the logic behind ex-
planation is monotonic and that no abnormalities affect the Models of the meta-diagnostic
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system. This, in turn corresponds to two hypotheses: 1) meta-systems are based on correct
interpretations of well-implemented diagnostic systems, and 2) exclusive meta-observations are
ontologically true. In this case, meta-diagnosis can be used on its own to detect and isolate
abnormalities in Models of implemented diagnostic systems.

3.2 Modelling and solving meta-diagnostic problems

Up until this point, the reader has been provided with a characterisation of meta-diagnosis
that, together with the diagnostic systems’ and diagnoses’ properties and relations provided in
Section 2.4, guarantees the detection and isolation of abnormalities in Models of implemented
diagnostic systems. In a nutshell, it is now possible to understand how Mr Tortuga determined
that the :Ab(Key) ^ Turn(Key) � Start(Car) sentence was ontologically false. Nevertheless, a
discussion on how to model and solve typical practical meta-diagnostic problems is important
not only to simplify the approach to these problems, but also to provide the reader with a
flavour of what can be done with such framework. This is the object of the present section.

As for the modelling process, although a series of other strategies can be applied, the
following is adopted:

1. Identify the meta-system, i.e. the implemented diagnostic system to be meta-diagnosed
and its assigned meta-goals.

2. Identify the meta-components and their meta-goals based on the meta-system meta-
goals, on diagnostic system’s and diagnoses’ properties and on their relations, and on
the detail level wanted for the solution.

3. Describe meta-components and meta-components’ normal/abnormal behaviour on be-
lieved meta-systems.

4. Identify meta-observables based on the believed meta-system description.

Concerning the solving process, this section relies on the General Diagnostic Engine (GDE)
[40][47]. This was possible because, as discussed in the previous section, every sound and
complete diagnostic algorithm can become a meta-diagnostic algorithm (if it is implemented
without errors); which is the case of GDE.

3.2.1 The problem of ontologically false believed system description

Imagine we are given the following problem, typically in the V&V process of a believed sys-
tem description: “In a given meta-system correctly perceived as a well-implemented diagnostic
system S = (SD,COMPS,OBS,A), assume OBS are ontologically true believed system obser-
vations and A is a sound and complete diagnostic algorithm. Knowing that all the computed
consistency-based diagnoses must be valid, meta-diagnose S using a consistency-based ap-
proach.”. Suppose an instance of this problem where SD, COMPS and OBS are those of
Example 1.

Let us start by following the modelling process:
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1. The meta-system is made of:
• a sensed part of reality correctly perceived as a well-implemented diagnostic system

S = (SD,COMPS,OBS,A); where SD, COMPS and OBS are those of Example 1.
• the meta-goal of computing valid proof-theoretic consistency-based diagnoses.

2. Using Corollary 4 and the problem hypotheses, the meta-components can be chosen to
represent every implemented SD-sentence, whose associated meta-goal is their ontological
truth.

3. Suppose a sentence A represented by a believed meta-system meta-component mc1. Now,
either A is ontologically true or mc1 is abnormal, i.e. M-Ab(mc1) _ A. So, the normal
behaviour of this sentence would be described, at a believed meta-system level, as: :M-
Ab(mc1) ) A.

4. From Corollary 4 and the problem hypotheses we get that if every believed meta-
component is normal then the DP-T is valid. To assess DP-T validity we need to meta-
observe �T

4 and take into account that DM-T = DP-T in our conditions.

Following such modelling process in our problem instance resulted in the M-SD and M-
COMPS also given in Example 1. If M-OBS are also those of that example we get the following
meta-diagnosis (from GDE output):

There are 3 kernel meta-diagnosis hypotheses:
fM-Ab(M1desc)g fM-Ab(M2desc)g fM-Ab(A1desc)g

Although not certain, the meta-diagnosis correctly includes the ontological falsehood of
the sentence M1desc.

3.2.2 The problem of diagnosable believed systems and sound and complete
diagnostic algorithms

Suppose the M1desc sentence was corrected using the meta-diagnosis computed in the last
subsection; and it can now be assumed - and not proved due to the sixth principle in Section 2.2
- that the believed system description is ontologically true. Imagine some further requirements,
typically when testing a new diagnostic algorithm and considering it as a black box, as well as
when exploring further properties of the implemented believed system: “Admit the ontological
truth of the believed system description and observations, as well as the possible lack of
soundness and/or completeness by the diagnostic algorithm. Knowing that all the computed
consistency-based diagnoses must be valid and certain, meta-diagnose S using a consistency-
based approach.”. Suppose an instance of this problem where the SD’ (the corrected SD),
COMPS and OBS are those of Example 1.

Let us once more follow the modelling process:
4As discussed in the previous section, in many real-world applications it is possible to hypothesise the

ontological truth of some exclusive meta-observations such as the true health state or a part of it. In the
aeronautic domain, for instance, we have access to the true health state since each replaced component is tested
after its removal.



3.3. MEDITO: a logic-based meta-diagnosis tool 51

1. The meta-system is made of:
• a sensed part of reality correctly perceived as a well-implemented diagnostic system

S = (SD’,COMPS,OBS,A); where COMPS and OBS are those of Example 1 and
SD’ is the corrected SD.

• the meta-goal of computing valid and certain proof-theoretic consistency-based di-
agnoses.

2. Using Corollary 4 and Theorem 7, the meta-components can be chosen to represent
the implemented diagnostic algorithm and the whole implemented believed system de-
scription. Their meta-goals are the soundness and completeness and the diagnosability,
respectively.

3. From Corollary 4 and the problem hypotheses we get the normal behaviour of the be-
lieved meta-system meta-component associated to the diagnostic algorithm. If Alg is the
believed meta-system meta-component associated to A we get: :M-Ab(Alg) ) ( �T )

Dis(DP-T) ); where Dis(�) is a function that returns the disjunction of every element in a
set. Moreover, using Theorem 7 and the problem hypotheses we get the normal behaviour
for the believed meta-system meta-component SDcomp: :M-Ab(Alg)^:M-Ab(SDcomp))
(#DP-T =1)

4. From the previous conditions, the meta-observables are the believed system observables
extended with the proof-theoretic diagnosis DP-T and the true health state �T.

Following such modelling process in our problem instance, a possible M-COMPS is fAlg,
SDcompg and a possible M-SD is the theory made of the following sentences (extended with
the appropriate axioms for arithmetic and so on):

:M-Ab(Alg) ) ( �T ) Dis(DP-T) )
:M-Ab(Alg)^:M-Ab(SDcomp) ) ( #DP-T = 1 )

Suppose the meta-observations: �T = :Ab(M1)^:Ab(M2)^:Ab(M3)^:Ab(A1)^Ab(A2)
and the proof-theoretic diagnosis DP-T is f:Ab(M1)^:Ab(M2)^:Ab(M3)^:Ab(A1)^:Ab(A2)g.

We get the following kernel meta-diagnosis hypothesis (from GDE output): {M-Ab(Alg)}.

3.3 MEDITO: a logic-based meta-diagnosis tool

In the previous sections, the reader has been provided with a meta-diagnosis theory that,
although far from a practical application, is a necessary condition for building one. It is now
time to introduce MEDITO: a logic-based MEta-DIagnostic TOol aiming at computing the
implemented diagnostic systems’s normal and abnormal meta-components.

As for the computational implementation, MEDITO relies on the fact that every meta-
diagnostic problem can be seen as a diagnostic one. This way, MEDITO uses Zhao and
Ouyang [122] [121] diagnostic algorithms for determining all kernel meta-diagnosis hypothesis
for a given meta-diagnostic problem. Since these algorithms require a test for determining the
consistency of a logical theory, MEDITO also implements a Constraint Satisfaction Problem
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(CSP) solver, CHOCO [107]. Note that the choice of CHOCO (as a CSP solver) and Zhao
and Ouyang algorithms (as diagnostic algorithms) was one among the many possible choices
of diagnostic algorithms and CSP solvers available.

With respect to MEDITO limitations, due to CHOCO’s language constraints, MEDITO
can only accept those implemented diagnostic systems where SD and OBS are finite first-order
theories; for determining the ontological truth of implemented sentences requires M-SD to use
a language at least as expressive as the one in SD and OBS, and CHOCO does not handle
those languages that are more expressive than first-order language. Note that this limitation is
linked to my implementation choice and it is not a restriction of the theory of meta-diagnosis
exposed in the previous section. In a nutshell, other choices of CSP solvers may overcome this
handicap; a handicap that does not impact the general idea behind the present section.

In the two subsections that follow, I will focus on: 1) providing a general view on MEDITO’s
architecture, 2) giving a detailed view on MEDITO’s modules, and 3) using MEDITO to meta-
diagnose the Polybox problem.

3.3.1 MEDITO’s architecture

GUI

Database 

Management 

Tool

Database

Meta-diagnoser

Core 

Algorithms

Parsing 

Tool
Model Tool

Figure 3.1: MEDITO’s architecture

As depicted in Figure 3.1, MEDITO is composed of six interacting modules, where:

• the GUI module provides a Graphical User Interface for handling user inputs such as
adding, editing or removing believed systems, observations and meta-observations; as
well as for displaying the meta-diagnoses,

• the Database Management Tool module is responsible for managing MEDITO’s SQL
database containing believed systems, observations and meta-observations,

• the Meta-diagnoser module manages the computation of meta-diagnoses based on a
choice of meta-components and test-cases (pairs of observations and meta-observations),
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(a) MEDITO’s System Manager screen (b) MEDITO’s Meta-diagnoser screen

Figure 3.2

• the Parsing Tool module transforms user-input text into CHOCO Java objects,
• the Model Tool module creates a CSP model in CHOCO and checks for the consistency

between such model and a given CHOCO constraint, and
• the Core Algorithms module is responsible for implementing Zhao and Ouyang algo-

rithms [122] [121] for computing all hitting sets and minimal conflict sets of a theory.

3.3.2 A detailed view on MEDITO’s modules

Following the architectural overview of MEDITO in the preceding subsection, we provide,
hereafter, a detailed view of each MEDITO module.

MEDITO’s GUI module

MEDITO’s Graphical User Interface is divided in three main screens. In MEDITO’s System
manager screen, depicted in Figure 3.2a, the user is able to create, change and delete a believed
system. These are represented by two text blocs, the first one containing the believed system
components’ and observables’ declarations and the second one the believed system description.

In the first text bloc, text lines of the form: “component c”, and “observable o range a
b”; are used to declare, respectively, a believed system component c and a believed system
observable o ranging from value a to b. As for the second text bloc, a believed system
description is declared through a series of text lines; each of them representing a SD-sentence
in the Skolem normal form and with all the universal quantifiers omitted.
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Moving to MEDITO’s Test Cases manager screen, it is where the user is able to create,
change and delete a series of test-cases, i.e. pairs of observations and meta-observations, for
each believed system. Observations and meta-observations are represented by two text blocs
containing text lines representing OBS and M-OBS sentences.

Finally, MEDITO’s Meta Diagnoser screen, (cf. Figure 3.2b), enables the user to choose
a believed system and a series of test-cases to compute meta-diagnoses, according to some
preferences on meta-components. In MEDITO’s current version, one can choose:

• every SD-sentence to be a meta-component whose property of truth may be lacking,
• every OBS-sentence to be a meta-component whose property of truth may be lacking,
and/or

• the diagnostic algorithm to be a meta-component whose properties of soundness and/or
completeness may be lacking.

Finally, according to users choices, MEDITO automatically builds a believed meta-system
description to fit the user needs and displays the kernel meta-diagnoses this same screen.

MEDITO’s Database Management Tool module and database schema

The Database Management Tool (DMT) module enables the user to store, change and delete
believed systems and test-cases in a SQL database; and provides the Meta-diagnoser module
access to such database in order to compute meta-diagnoses. Figure 3.3 illustrates MEDITO’s
SQL database schema, where: “PK” refers to a primary key, “FK” refer to a foreign key, the
word “system” refers to a believed system, the word “variable” refers to an observable with
some value ranges or to a component, and the word ”situation” refers to a set of believed
system observations and meta-observations.

SystemSD

PK Constraint_ID

FK1 System_ID

 Constraint

SystemVariables

PK Variable_ID

FK1 System_ID

 Variable

TestCases

PK Observation_ID

FK1 GlobalSituation_ID

 Observation

Systems

PK System_ID

 System_Name

ObservedSystems

PK GlobalSituation_ID

FK1 System_ID

 Situation_ID

MetaTestCases

PK MetaObservation_ID

FK1 GlobalSituation_ID

 MetaObservation

Figure 3.3: MEDITO’s database schema
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MEDITO’s Meta-diagnoser module

The Meta-diagnoser module manages the computation of meta-diagnoses by making use of
the Parsing Tool (PT), Model Tool (MT) and Core Algorithms (CA) modules.

Algorithm 1 Algorithm implemented in the Meta-diagnoser module to compute kernel
meta-diagnoses
Require: A believed system name, systemName
Require: A test-case identification, situationID
Require: Meta-comps. choice, {sdOp,obsOp,algOp}
{Step1: Get observables (Ob), COMPS, OBS, M-OBS from DB, parse user-text and initialize variables}
mdPbText  DMT.imp(systemName,situationID)
pb  PT.parse(mdPbText)
pb.mOb  pb.Ob
pb.mSD  ;
{Step2: Create M-COMPS, M-SD and M-OBS based on user meta-component choices}
if sdOp = TRUE then

pb.mCOMPS  createMCOMPS(pb.SD)
pb.mSD  pb.mSD[transfToMeta(pb.SD)
pb.mOb  pb.COMPS[pb.mOb

end if
if obsOp = TRUE then

pb.mCOMPS  pb.mCOMPS [ createMCOMPS(pb.OBS)
pb.mSD pb.mSD[transfToMeta(pb.OBS)
pb.mOb  pb.COMPS[pb.mOb

else
pb.mOb  pb.mOb[pb.OBS

end if
if algOp = TRUE then

(...)
end if
{Step3: Solve the meta-diagnostic problem}
CSPmod  MT.createModel(pb)
(mDiag,mDiagMinCard)  CA.metaDiag( CSPmod,pb.mCOMPS)
return (mDiag,mDiagMinCard)

Algorithm 1 is implemented in the Meta-diagnoser module. Intuitively, this algorithm’s:

Step 1: serves the purpose of importing a meta-diagnostic problem using Database Man-
agement Tool module’s import function and using the Parsing Tool module to: 1) transform
user-input-text components and observables declarations into CHOCO variables; and 2) trans-
form system descriptions, observations and meta-observations into CHOCO constraints.

Step 2: serves the purpose of building meta-components and a meta-system description,
by taking user choices of meta-components into account.
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First, function createMCOMPS(�) associates a meta-component to each input-theory-sen-
tence. As for function transfToMeta(�), it transforms every SD-sentences and/or OBS-sentences
stating “A” into meta-SD-sentences: :M-Ab(mc) ) A; where mc is the meta-component asso-
ciated to the sentence. This is as so because if a sentence stating “A” is not guaranteed to be
ontologically true, then either “A” is ontologically true or the meta-component mc associated
to such sentence is abnormal, i.e. :M-Ab(mc) ) A.

Finally, if either the SD or OBS sentences can be ontologically false, the real-system health
state is added as a possible meta-observable as a result of Theorem 2; and if the observations
are assumed to be ontologically true, then they are added directly as meta-observations. As
for the diagnostic algorithm, if it can be ontologically false then the computed proof-theoretic
diagnoses are added as possible meta-observables as a result of Corollary 4.

Step 3: uses the Model Tool and Core Algorithms modules, respectively, to 1) create
a CHOCO CSP model where the decision variables are the meta-components (through the
function createModel(�)), and 2) compute, based on such model, all the kernel meta-diagnoses
and minimal cardinality diagnoses for the meta-diagnostic problem (through the function
metaDiagnose(�)).

MEDITO’s Parsing Tool module

MEDITO’s Parsing Tool module implements the parsing of user-input-text fields into CHOCO
variables and constraints. This is done according to the syntax and semantics described in
Subsubsection 3.3.2.

MEDITO’s Model Tool module

The Model Tool module in MEDITO encodes two simple functionalities. First, it enables
the construction of a CHOCO model based on a series of CHOCO variables and constraints.
Second, it enables one to test the consistency between a CHOCO model and a constraint
through CHOCO’s exception in the “propagate” method; a method that propagates constraints
until a fixed point is achieved and a set of solutions is found or a contradiction is detected.

MEDITO’s Core Algorithms module

The last module to be described is MEDITO’s Core Algorithms module. By making use of
the syntactic equivalence between diagnosis and meta-diagnosis (cf. Section 3.1) this module
implements Zhao and Ouyang diagnostic algorithms and applies them in a meta-diagnosis
context to compute kernel meta-diagnoses. Moreover, it also transforms the problem into a
min-CSP problem and solves it with CHOCO in order to obtain all the minimal cardinality
meta-diagnoses. Note, once again, that this was one of the possible choices of algorithms.

In a more detailed manner:
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• Zhao and Outang SE-tree based Minimal Hitting Set computation algorithm [122] is
implemented in MEDITO’s Core Algorithms module “MetaDiag” function to compute
the kernel meta-diagnoses for a given meta-diagnostic problem, based on all Minimal
Conflict Sets for that same problem.

• In order to compute all the Minimal Conflict Sets for the meta-diagnostic problem, MED-
ITO’s Core Algorithms module implements Zhao and Ouyang SE-tree based Minimal
Conflict Set computation algorithm detailed in [121]. To do so, the algorithm takes as
input the CHOCO model generated by the Model Tool module and representing the
diagnostic problem to be solved, as well as the set of meta-components in the meta-
diagnostic problem.

• Finally, Zhao and Ouyang algorithm for computing all Minimal Conflict Sets needs an
underlying consistency checker to verify if a set is a conflict set. As so, MEDITO’s
Core Algorithms module transforms the set to be verified into a CHOCO conjunction
constraint and makes use of Model Tool module’s consistency check function to test
the consistency between that constraint and the CHOCO model representing the meta-
diagnostic problem.

As for the minimal cardinality meta-diagnoses, these are obtained by adding a constraint on
the number of abnormal meta-components to the CHOCO CSP model representing the meta-
diagnostic problem; and solving the resulting new CSP model by minimizing such constraint.

3.3.3 Meta-diagnosing with MEDITO

Before concluding this chapter, the reader is provided with a demonstration of MEDITO’s
results meta-diagnosing the Polybox example, illustrated in Figures 3.4a, 3.4b and 3.4a.

By obtaining the same meta-diagnoses as the ones predicted in Section 3.2, an illustration
has been provided of meta-diagnosis claim that any sound and complete diagnostic algorithm
can be used to solve a meta-diagnostic problem.

Complexity-wise, this tool inherits from the properties of Zhao and Ouyang diagnostic
algorithms: it has a worst-case complexity of O(2n) and a consequent inability to handle
large amounts of meta-components (as it is the case with every diagnostic algorithm aiming at
computing every diagnosis we are aware of). Moreover, MEDITO’s performance is proportional
to the time needed by CHOCO to execute the consistency check of a CSP model. This being
said, MEDITO computed the solution of the Polybox example in 142 miliseconds 5.

3.4 Originality and Related work

The objective of the present chapter was to offer Artificial Intelligence both a theory and a tool
for reasoning about abnormalities in Models of implemented diagnostic systems, i.e. for meta-
diagnosis or meta-explanation in general. As far as my knowledge goes an original contribution

5Intel Core 2 Duo CPU at 2.4GHz and 2Gb of RAM
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(a) System Manager screen for Polybox example (b) Test Cases Manager screen for Polybox example

(c) Meta-diagnoser screen for Polybox example

Figure 3.4
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- a statement supported by the publication of [14] and [15] - it was structured in three Sections
where 1) a logical characterisation of meta-diagnosis was developed, 2) a modelling process
was proposed and applied in two toy-problems, and 3) the general architecture and detailed
modular specification of a meta-diagnosis tool was provided.

Concerning the logical characterisation of meta-diagnosis and the proposed modelling pro-
cess, exposed in Sections 3.1 and 3.2, they provide a framework for reasoning about abnor-
malities in Models of implemented diagnostic systems. With respect to the works related to
this one, let me start by stating that in the Model-based diagnosis community one can find
some literature that recognise the existence of abnormalities in implemented diagnostic sys-
tems, even if very locally in the whole spectrum of possible abnormalities. Examples of such
recognition are Davis and Hamscher’s, statement in [36]: “a model is never completely correct”;
Console, Dupré and Torasso’s statement in [27]: “[in some cases] a complete model is either
not available or intractable”; or Struss’s work on abstractions and simplifications of models
in [100]. As for managing abnormalities, few attempts have been made. Exceptions are, for
instance, the management of incomplete believed systems in [27] and [120] or the management
of uncertain observations in [71]. Furthermore, to our best knowledge, in the Model-based
diagnostic community there has been little work done on detecting and isolating abnormali-
ties in implemented diagnostic systems; despite the interest and ubiquity of the problem. In
fact, the closer we can get to such results is the work of Yeung and Kwong in [120] where the
authors not only focus on fault detection and isolation but also attempt to learn what must be
changed to repair the believed system incompleteness. Finally, even in other communities such
as in Modelling and Simulation and Systems Engineering, no works exist, to our knowledge,
on the subject of meta-diagnosis. Once again, the further we can get are the very informal
accounts of, for example, Naylor and Finger [80], Weld [112] or Sargent [93]. All in all, our
theory of meta-diagnosis provides Model-based diagnosis with a uniform framework for deal-
ing with possibly abnormal implemented diagnostic system. Moreover, meta-diagnosis can be
used to isolate abnormalities in implemented diagnostic systems and select the best approach
to manage them. For example, if a meta-diagnosis is the incompleteness of a believed system,
then one can deal with such incompleteness by using Console, Dupré and Torasso’s approach.
Finally, note that the exposed concept of meta-diagnosis has no relation to the homonymous
one defined by de Kleer in [38].

The third section on the present chapter was built around a general architecture and
detailed modular specification of a logic-based meta-diagnosis tool: MEDITO; a tool providing
empirical proof supporting meta-diagnosis claim that any diagnostic algorithm can be used
to solve a meta-diagnostic problem. This proof will become even clearer in Chapter 4, where
MEDITO will be used to meta-diagnose an Airbus A380 LGERS believed system description
with very positive practical results. Finally, being the characterisation of meta-diagnosis an
original contribution of this dissertation, MEDITO naturally inherits from this originality.
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Chapter 4

The Airbus world

I believe in everything until it’s disproved. So I believe in fairies, the myths,
dragons. It all exists, even if it’s in your mind. Who’s to say that dreams
and nightmares are not as real as the here and now?

- John Lennon

The introductory chapter announced a series of academic and industrial objectives that
involved, by and large, reasoning about abnormalities in Models of implemented diagnostic
systems. So far I have concentrated mostly on the former and accomplished the objectives
of exposing a clear framework of diagnosis, defining and relating properties of diagnoses and
diagnostic systems, and providing a theory and tool of meta-diagnosis for reasoning about
abnormalities in Models of implemented diagnostic systems.

It is now time to focus on the industrial problems and objectives of this dissertation. In
order to dive deep into this subject, let me remind the reader of what has been stated in the
first chapter of this book concerning implemented Airbus diagnostic systems:

• The monitoring functions act as local observers providing discrepancies between a sub-
system’s normal and current behaviour (observations) to the Built-In Test Equipments
and the Flight Warning System.

• The Built-In Test Equipments act as local agents performing Model-based diagnosis
on some subsystems. They use their own algorithms (rules of inference), knowledge
bases (scientific and mathematical theories) and the discrepancies sent by the monitoring
functions (explananda-observations), among other observations, to produce Maintenance
Messages (local diagnoses).

• The Centralized Maintenance System acts as a global agent performing Model-based
diagnosis on the whole aircraft. It uses its own algorithms (rules of inference), knowledge
bases (scientific and mathematical theories), Maintenance Messages (context-observa-
tions) and Aircraft Effects and Maintenance Effects (explananda-observations), among
other observations, to produce a Post-Flight Report (aircraft-level automatic diagnosis).
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• The Troubleshooting Manual procedures, through a series of manual isolation steps,
enrich the contents of Maintenance Messages and, by transitivity, of Post-Flight reports.

With the material of the previous chapters, it is now possible to formally understand that
local (subsystem-level) and global (aircraft-level) implemented diagnostic systems’ Models can
present a series of abnormalities affecting the properties of the computed diagnoses. This is
the actual rational behind the industrial objectives of this dissertation. As so, in this chapter,
Airbus is provided with:

1. a common framework of diagnosis for every studied Airbus aircraft program - A380,
A400M, A350 and research - enabling the comparison of diagnostic methods and results.
Such framework will be done by thoroughly analysing the semantics of the results com-
puted by the local and global diagnostic systems; and mapping them into the framework
of Model-based diagnosis presented in Chapter 2.

2. a method and tool, based on the common framework of diagnosis, for checking local
(subsystem-level) consistency between Maintenance Messages and Troubleshooting Man-
ual procedures. Moreover, the developed tool, CONCKER (CONsistency ChecKER), be
used to analyse some real-world Airbus data.

3. a method and tool, also based on the common framework of diagnosis and on the the-
oretical tools of Chapter 2, for validating and comparing configurable Built-In Test
Equipments/Centralized Maintenance System algorithms and knowledge bases and Trou-
bleshooting Manual procedures performances using heterogeneous real-world multi-pro-
gram data. Once again, this Diagnosis Performance Assessment System, DPAT, will be
used to analyse some Airbus real-world data.

4. a method and tool to detect and to isolate abnormalities in Models of the Centralised
Maintenance System, i.e. observations, knowledge bases and algorithms. By making use
of the material provided in Chapters 2 and 3, this industrial problem will be transformed
into a meta-diagnostic problem that fits our theory of meta-diagnosis. As so, MEDITO
will then be used as a tool to solve a real-world problem.

Each of these contributions will be exposed in a section of its own and according to the order
above. As for the local-level equivalent of the fourth contribution, since it is not an Airbus
responsibility, it is out of this book’s scope. Nevertheless, I will try to convince the reader
that transposing our fourth contribution to a local-level is far from being a daunting task.

As for the proof of this contribution’s originality, it will be provided through a clear com-
parison between this work and other related ones in the literature. Such will be exposed, as
usual, in the last section.

As a side-note, the reader is alerted for the fact that, for confidentiality issues, some names
and data have been altered in the present chapter. However, this has absolutely no impact on
the results presented.
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4.1 Towards a common framework of diagnosis at Airbus

A common framework of diagnosis is essential, at Airbus, to enable the comparison between
different aircraft programs’ diagnostic methods and results. Hence, I will start by focusing on
establishing such framework, both at subsystem and at aircraft-level; a framework that has
been revised and accepted by Airbus’ diagnostic community [11, 10].

4.1.1 Defining a common vocabulary of diagnosis

In my opinion, the first step into establishing a common framework of diagnosis at Airbus
is the definition of a common vocabulary enabling the communication between engineers,
experts and researchers working with implemented diagnostic systems of the different aircraft
programs. This will be the object of the present subsection which is based on the academical
works of Chittaro, Guida, Tasso and Toppano [25], Ribot, Pencolé and Combacau [91], and
Isermann and Ballé [65]; and on the Airbus technical report of Cheriere [24]. Start with the
notions of Line Replaceable Unit and Line Replaceable Unit mode.

Definition 47 (Line Replaceable Unit). A Line Replaceable Unit (LRU) is a component
(cf. Definition 7) designed to be easily replaceable during line maintenance activities.
These include software, hardware and wirings.

Definition 48 (Line Replaceable Unit mode).A Line Replaceable Unit mode is a component
that is part of a LRU.

Subsystem 

mode

Subsystem

LRU

LRU

Mode

Figure 4.1: A visual interpretation of subsystems, subsystem modes, LRUs and LRU modes.

The distinction between LRUs and LRU modes is extremely important. In fact, while LRUs
are the atoms of maintenance from the viewpoint of line mechanics; LRU modes are (some
of) the atoms of maintenance from Airbus diagnostic systems’ perspective. This perspective
also brings with it the notions of subsystem and subsystem mode, relying on the concept of
system (cf. Definitions 4).

Definition 49 (Subsystem). A subsystem is a system whose perceived part of physics is
a set of LRUs and components other than LRU modes.
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Definition 50 (Subsystem mode). A subsystem mode is a system that is part of a sub-
system.

The notions of subsystem and subsystem mode, whose possible visual interpretation is
given in Figure 4.1, will prove to be interesting in the following developments. For now, note
that LRU modes are components and, as so, they may be abnormal (cf. Definition 8). At
Airbus, depending on the LRU mode, these abnormalities take different names. Start with the
notion of LRU mode fault, relying on the concept of perception (cf. Principle 4):

Definition 51 (LRU mode fault). A LRU mode fault is a sensed part of reality perceived
as an unpermitted deviation in a property of a LRU mode. The set of LRU modes that
may be faulty will be noted FAULT.

As stated above, a LRU mode fault is a possible abnormality. As for abnormalities - not
just LRU mode faults - they can cause a subsystem mode goal (cf. Definition 3) not to be
achieved. This is where the concept of failure appears.

Definition 52 (Failure). A failure is the inability of a subsystem mode to meet a goal.
The set of subsystem modes that may fail will be noted FAIL.

At this point, it is interesting to illustrate the concepts of LRU mode fault and failure
as well as their connections. Suppose there is a short-circuit in the battery of Mr Tortuga’s
car. In this case, the battery is said to be faulty. Moreover, due to this fault, suppose the
battery is unable to provide a stable electrical current to other car components. In this case,
a failure is said to occur. Hence, faults can lead to failures. As for failures in a subsystem
mode, they can lead to failures in other subsystem modes (called, here after, inter-subsystem
failures), as the inability to provide stable electrical current may lead to the inability of the
car’s electronic control unit to acquire data; failures can lead to faults, as the inability to
provide stable electrical current can lead to a current spike which may lead to damages in
some equipments; and faults may lead to faults, as a damaged battery can lead to a spilling
of acid over another component, thus damaging it.
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While failures can be caused by LRU mode faults, there are other possible abnormalities
that may cause a given failure: LRU regular inoperative modes and non-LRU non-faulty
abnormal conditions ; the other possible abnormalities considered at Airbus.

Definition 53 (LRU Regular inoperative mode). A LRU Regular Inoperative Mode (RIM)
is a sensed part of reality perceived as a permitted working LRU mode potentially causing
a failure. LRU modes that may be regular inoperative will be noted RIM.

Definition 54 (Non-LRU non-faulty abnormal condition). A non-LRU Non-Faulty Abnor-
mal Condition (NFAC) is a sensed part of reality perceived as an unpermitted deviation
in a property of a component other than a LRU, potentially causing a failure. The set
of these components will be noted NFAC.

The notion of RIM can be exemplified by a LRU reset causing a temporary failure. As for
that of NFAC, ice present in the fuel tank is an example of a non-LRU non-faulty abnormal
condition that may cause a series of failures in the fuel valves. With Faults, RIMs, NFACs and
failures exposed, one is now able to focus on the concept of Virtual Line Replaceable Unit.

Definition 55 (Virtual Line Replaceable Unit). A Virtual Line Replaceable Unit (VLRU)
is a A380/A400M/A350-specific concept representing either:

1. a single non-LRU component, possibly under a non-faulty abnormal condition,
2. a single LRU mode that may be regular inoperative, or
3. a set of LRU modes that may be faulty [5].

The set of virtual line replaceable units will be noted VLRU. Finally, the function Cov-
ered(.) returns the elements of NFAC, RIM or FAULT represented by a VLRU.

All the concepts presented above are grouped in the notions of Element, a concept particular
to the A380, A400M and A350 aircraft programs [5]; and Accusable Object, a concept particular
to the research program [24].

Definition 56 (Element). An element, noted e, is either a member of FAULT, a member
of VLRU or a special member of NFAC called power supply accusation (PSA).

Definition 57 (Accusable Object). An accusable object, noted o, is either a member of
FAULT, a member of RIM, a member of NFAC or a member of FAIL.

The abnormality of Elements and Accusable Objects are, respectively, what the A380/
A400M/A350 and the research programs diagnostic systems judge as potential causes of all
the failures in the aircraft. This is why such concepts are introduced and also why the reader
is encouraged to retain them. Moreover, note that the word “Element” and the expression
“Accusable Object” (and plurals), will always be capitalised when used in this context.

At this point, let me stop for a brief moment to regain a high-level vision. As the reader
has been told numerous times, explanation (and Model-based diagnosis in particular) is a
reasoning process where explanans explain some explananda-observations if the latter can
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be inferred from the former and some context-observations, both at some earlier time, along
with some scientific and mathematical theories representing the artefact to be diagnosed.
So far, I have concentrated on abnormalities, the explanans as computed by implemented
Airbus diagnostic systems. It is now time to focus on observations at Airbus and introduce
the concepts of system symptom, Aircraft Effect, Maintenance Effect, Global Effect and
context observation. These rely, naturally, on Principle 4.

Definition 58 (System symptom).A System Symptom is an observation indicating a local-
level (subsystem-level) failure to be explained, usually by a Built-In Test Equipment 1.

Definition 59 (Aircraft Effect). An Aircraft Effect is an observation of a global-level
(aircraft-level) failure with an operational impact, that has to be explained by the main-
tenance function of the Centralised Maintenance System.

Definition 60 (Maintenance Effect). A Maintenance Effect is the observation of a global-
level (aircraft-level) failure with a maintenance impact, that has to be explained by the
maintenance function of the Centralised Maintenance System.

Definition 61 (Global Effect). A Global Effect is either an Aircraft Effect or a Main-
tenance Effect. The unary function GEPer(.) returns the set of Elements/Accusable
Objects whose abnormality may cause a given Global Effect.

Definition 62 (Context observation). A Context Observation is a local or global-level ob-
servation, other than aircraft or Maintenance Effects, sent to the implemented diagnostic
system.

Concerning System Symptoms, in the aircraft programs A380, A400M and A350, they
correspond to “confirmed events” as defined in [4]; and in the research program they correspond
to symptoms [24]. An example of a System Symptom is the Loss of COM1 AFDX data from
CPIOM X to CPIOM W. Concerning Aircraft Effects, they correspond to warnings, dispatch
advisory messages, flags, advisories and crew observations. An example is the L/G CTL SYS 1
+ 2 FAULT warning. Finally, context observations do not have a general name at Airbus. An
example of context observation is the flight phase.

Before ending this subsection, the concepts involved with the explanation of System Symp-
toms will be introduced in the form of Maintenance Messages and Troubleshooting Manual
procedures.

Definition 63 (Maintenance Message). A Maintenance Message, noted mm, is a local
diagnosis sent by a Built-In Test Equipment to the Centralised Maintenance System.
For every Airbus aircraft program, a Maintenance Message contains:

• a Fault Message Code (FMC) identifying the Maintenance Message and mapping
it to a set of System Symptoms. SS(.) is a unary function returning the set of
System Symptoms associated to a given Maintenance Message.

1If a system symptom indicates a subsystem-level failure that can never lead to a Maintenance or Aircraft
Effect, then it must not be explained by a Built-In Test Equipment. These cases, however, will not be treated
in this dissertation.
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• a BITE identifier, indicating the Built-In Test Equipment that computed the Main-
tenance Message. BITE(.) is a unary function returning the identifier of the Built-In
Test Equipment that computed a given Maintenance Message.

• an explanation, that is, a boolean combination of AB-literals over either Elements,
in the A380/A400M/A350 case, or Accusable Objects, in the research-program
case. E(.) is a unary function returning the explanation of a given Maintenance
Message. PCMM(.) is a unary function returning the Elements/Accusable Objects
present in the explanation of a Maintenance Message.

• a Task Reference, pointing to a single Troubleshooting Manual procedure (cf. Def-
inition 64). Task(.) is a unary function returning the task reference of a given
Maintenance Message.

Definition 64 (Troubleshooting Manual procedure). A Troubleshooting Manual procedure,
noted tsmp, is a task pointed by a Maintenance Message enabling the confirmation and
isolation of the abnormalities causing a given failure. For every Airbus aircraft program,
a Troubleshooting Manual procedure contains:

• A Task Reference, identifying the TSM procedure.
• Some FMC-references, i.e. a set of Fault Message Codes of the Maintenance Mes-
sages pointing to the TSM procedure. MMRef(.) is a unary function returning the
FMC of these Maintenance Messages for a given TSM procedure.

• A set of possible causes, i.e. a set of elements from FAULT and NFAC potentially ver-
ified in the isolation phase and replaced or restored in a TSM procedure. PCTSM(.)
is a unary function returning the set of possible causes for a given TSM procedure.

• Some BITE Tests for isolation, the Built-In Test Equipment’s tests that need to
be done in the manual isolation step. Tests(.) is a unary function returning the
set of tests associated to a given TSM procedure. TestOwner(.) is a unary function
returning the BITE identifier for a given test.

Finally, at Airbus each Built-In Test Equipment is in charge of a given exclusive set of
Elements (in the A380/A400M/A350 case) or Accusable Objects (in the research-program
case). This set is called the BITE Perimeter. The unary function Per(.) returns the perimeter
of a given BITE; while the unary function Owner(.) returns the BITE whose Perimeter a given
Element/Accusable Object or test belongs to.

4.1.2 Defining a common subsystem-level diagnostic framework

Up to this point nothing has been done except the establishment of a common vocabulary of
diagnosis. This vocabulary enables the attachment of every Airbus aircraft program concept
to ones introduced in the remainder of this section. It is now time to focus on local-level
diagnostic systems and contribute with: 1) a common framework of subsystem-level diagnosis,
and 2) a method to transpose every aircraft-program-specific subsystem-level diagnosis into
our common framework.

Before tackling these subjects, the the reader is provided with the exact notion of what
local-level diagnoses are considered to be. Recall that, in every aircraft program:
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• the Built-In Test Equipments perform Model-based diagnosis on some subsystems, hence
producing Maintenance Messages (local diagnoses).

• associated to every Maintenance Message there is a Troubleshooting Manual procedure
enriching its contents.

As so, two types of local-level diagnoses can be considered: the MM-related local diagnoses
and the TSM-related local diagnoses. While both are explanations of System Symptoms,
MM-related and TSM-related local diagnoses may differ, since: 1) the teams in charge of the
implemented diagnostic system computing MM-related local diagnoses and the ones in charge
of producing TSM procedures are not the same, and 2) no exhaustive process guarantees that
both explanations are consistent. The reader is encouraged to retain this fact.

The subsystem-level common framework of diagnosis

The common framework of subsystem-level diagnosis arises by instantiating the diagnostic
framework of Chapter 2 to Airbus local-level diagnostic systems (cf. Definitions 19 and 16).

Definition 65 (System symptom diagnosis). A System Symptom diagnosis is a diagnosis
for the diagnostic problem (SD,COMPS,OBS) with:

• OBS, the set of System Symptoms and context observations observed by the BITE.
• OBSexp � OBS, the set of System Symptoms to be diagnosed.
• OBScons = OBS n OBSexp.
• SD, the believed system description representing the subsystem to be diagnosed. At
Airbus it corresponds to Built-In Test Equipments knowledge bases.

• COMPS, the set of components whose abnormality is to be diagnosed in the subsys-
tem. At Airbus these correspond to every element of FAULT[RIM[NFAC[FAIL that
may lead to an observable System Symptom.

From A380/A400M/A350 local-level diagnoses to the common framework

As stated in the beginning of the present subsection, two types of local diagnoses can be
considered at Airbus, namely the MM-related and TSM-related ones. Moreover, it was also
exposed that both types of local diagnoses are explanations of System Symptoms. As for the
objective of the present subsection, it is to map A380, A400M and A350 MM-related and
TSM-related local diagnoses into the subsystem-level common framework of diagnosis above.
To achieve such objective, a thorough analysis of these aircraft programs local diagnoses’
semantics is needed.

MM-related local diagnoses
Concerning A380/A400/A350 MM-related local diagnoses, to analyse them one has to focus
on A380/A400M/A350 Maintenance Messages and on their particularities 2. Hence:

2I will focus on nothing but Standard B Maintenance Messages as described in [4], for Standard A ones
are mapped, in the A380, A400M and A350 aircraft programs, into these ones before being treated by the
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• The explanation in A380/A400M/A350 Maintenance Messages is a boolean combination
of abnormalities of a fixed number of Elements (from one to eight depending on the
elements to be accused).

• The A380/A400M/A350 Maintenance Messages contain a priority report, indicating the
internal or external property of the MM 3. A MM is said to be internal iff all the Elements
in the explanation belong to the emitter BITE perimeter.

As agreed in [10], the semantics behind an A380/A400M/A350 Maintenance Message ex-
planation depend on its priority report. As so, intuitively:

• for every internal (high priority) MM, the abnormality of the non-VLRU Elements di-
rectly present or represented by a VLRU in the MM explanation is seen as a possible
cause of the set of System Symptoms associated to the MM.

• for every external (low priority) MM, the abnormality of the MM-explanation Elements
that belong to the perimeter of the emitter BITE is seen as above. As for those MM-
explanation Elements that belong to a different BITE perimeter, the abnormality of every
non-VLRU Element directly present or represented by a VLRU in that BITE perimeter
is seen as a possible cause of the System Symptoms associated to the MM.

These remarks enable the formal mapping of A380/A400/A350 MM-related local diagnoses
into the subsystem-level common framework of diagnosis.

Definition 66 (A380/A400M/A350 MM as System Symptom diagnoses). Let mm be a
A380/A400M/A350 Maintenance Message and let ei2PCMM(mm). Moreover, let E’ be
the transformation of E(mm) with:

• Ab(ei) 7!
W

e’ 2 Per(Owner(ei)) Ab(e’), if ei<Per(BITE(mm)),

and let E” be the transformation of E’ with

• Ab(ei) 7!
W

e’ 2 Covered(ei) Ab(e’), if ei2VLRU.

A System Symptom diagnosis for SS(mm) is the set of health states covered (cf. Subsec-
tion 2.3.2) by E”.

TSM-related local diagnoses
As for A380/A400/A350 TSM-related local diagnoses, its analysis depends on TSM procedures.
Before going any further, I encourage the reader to note that each MM points to a TSM
procedure, while the opposite is not true. This means that an MM-explanation should always
entail a TSM procedure explanation; a fact that will be exploited in Section 4.2. Facing this
information, the semantics behind a TSM procedure can be defined. As agreed in [10]:

• For every possible cause directly present in a TSM procedure or represented by a VLRU
in the perimeter of a BITE in the BITE Tests for isolation, its abnormality is seen as a
possible cause of at least one set of symptoms associated to the FMC referenced in the
TSM procedure.

Centralised Maintenance System.
3The Internal/external priority in standard B Maintenance Messages corresponds to the high/low priority

field in standard A ones.
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• Every LRU Regular Inoperative Mode present in a MM-related local diagnosis associated
to a FMC referenced in the TSM procedure is seen as a possible cause of at least one set
of symptoms associated to the FMC referenced in the TSM procedure.

It is now possible to formally map A380/A400/A350 TSM-related local diagnoses into our
subsystem-level common framework of diagnosis.

Definition 67 (A380/A400M/A350 TSM procedures as System Symptom diagnoses). Let
tsmp be a A380/A400M/A350 TSM procedure and R =

S
mm2MMRef(tsmp) RIM\PCMM(mm).

A System Symptom diagnosis for
W

mm2MMRef(tsmp)
V

x2SS(mm)x is the set of health states
covered by:W

e2PCTSM(tsmp)Ab(e) _
W

r2RAb(r) _
W

tj2Tests(tsmp)
W

e’2Per(TestOwner(tj ))Ab(e’s).

From research-program local-level diagnoses to the common framework

Once we have defined the view of A380/A400M/A350 MM-related and TSM-related local diag-
noses as System Symptom diagnoses, it is time to focus on the research-program counterpart.

MM-related local diagnoses
In order to study the syntax and semantics of research-program MM-related local diagnoses,
let me follow the same strategy as before and analyse the particularities of research-program
Maintenance Messages (also called Health Data) [24]. Straightforwardly:

• in the research-program case, Maintenance Messages’ explanations are about Accusable
Objects instead of Elements. This being so, it is possible for failures to be a part of
MM-explanations.

• the Maintenance Message explanation is the research-program case (also called Sufficient
Diagnosis) is a kernel diagnosis (cf. Definition 21) for the set of System Symptoms
associated to the FMC.

Being research-program MM-related explanations already connected to the framework of
Chapter 2, mapping them into our subsystem-level common framework of diagnosis becomes
a trivial task.

Definition 68 (Research-programMM as System Symptom diagnoses).Let mm be a research-
program Maintenance Message. A System Symptom diagnosis for SS(mm) is the set of
health states covered by E(mm).

The reader is encouraged to compare Definitions 66 and 68 and verify a two very impor-
tant aspects. First, contrary to research-program local diagnoses, the restrained syntax of
A380/A400M/A350 MM-related local diagnoses makes the usage of VLRUs for representing
sets of Elements mandatory. Moreover, the fact that failures can be a part of research-program
MM-related diagnoses makes it possible to logically establish a cascade of Maintenance Mes-
sages; for some MM System Symptoms may be related to a failure that is a part of another
MM local diagnosis. This is impossible in the A380/A400M and A350 cases and is one of the
most important rationales behind the research-program diagnostic concepts.
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TSM-related local diagnoses
Finally, concerning research-program TSM-related local diagnoses, they are almost equivalent
to the A380/A400M/A350 TSM-related local diagnoses if one takes into account the changes
introduced by the suppression of VLRUs and the introduction of failures. This being so:

Definition 69 (Research-program TSM procedures as System Symptom diagnoses). Let tsmp
be a research-program TSM procedure, let R =

S
mm2MMRef(tsmp) RIM\PCMM(mm) and let

Func(.) be a mathematical function returning the aircraft function whose failure is asso-
ciated to a given BITE test. A System Symptom diagnosis for

W
mm2MMRef(tsmp)

V
x2SS(mm)x

is the set of health states covered by:

W
e2PCTSM(tsmp)Ab(e) _

W
r2RAb(r) _

W
tj2Tests(tsmp)Ab(Func(tj)).

4.1.3 Defining a common aircraft-level diagnostic framework

In the previous subsection I provided Airbus with both a common framework of subsystem-level
diagnosis, and a method to transpose every aircraft-program-specific subsystem-level diagnosis
into that common framework. It is now time to focus on their aircraft-level equivalent. In
order to do so, recall that, in every aircraft program:

• the Centralized Maintenance System performs Model-based diagnosis on the whole air-
craft, thus producing a Post-Flight Report (aircraft-level automatic diagnosis).

• the Troubleshooting Manual procedures enrich the contents of Maintenance Messages
and, by transitivity, of Post-Flight reports.

The aircraft-level common framework of diagnosis

The common framework of aircraft-level diagnosis arises in the same way as the subsystem-
level one did, that is, by trivially instantiating the diagnostic framework of Chapter 2 to Airbus
aircraft-level diagnostic systems (cf. Definitions 19 and 16).

Definition 70 (Global Effect diagnosis). A Global Effect diagnosis is a diagnosis for the
diagnostic problem (SD,COMPS,OBS) with:

• OBS, the set of Global Effects and context observations observed by the Centralised
Maintenance System.

• OBSexp � OBS, the set of Global Effects to be diagnosed.
• OBScons = OBS n OBSexp.
• SD, the believed system description representing the aircraft for diagnostic pur-
poses. At Airbus these are Centralised Maintenance System knowledge bases.

• COMPS, the set of components whose abnormality is to be diagnosed in the aircraft.
At Airbus these correspond to every element of FAULT[RIM[NFAC that may lead
to an observable Global Effect.
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From A380/A400M/A350 aircraft-level diagnoses to the common framework

As in the previous subsection, a mapping between the A380/A400M/A350 global diagnoses
and our framework of aircraft-level diagnosis has to be developed. In order to do so, one
must understand the semantics behind a Post-Flight Report, i.e. the report computed by the
Centralised Maintenance System:

• Syntax-wise, A380 and A400M Post-Flight Reports consist of a set of PFR items. These
contain a series of Global Effects related to the PFR item, as well as a set of Fault Cases.
As for Fault Cases, each of them contains a set of received Maintenance Messages with
one and only one of those tagged “Fault Origin”. As far as the semantics goes, each
PFR item represents a maintenance action necessary for every Global Effect present in
it to disappear. As for the maintenance action, it is selected among the TSM procedure
pointed by Fault Origins in each Fault Case.

• With respect to its syntax, A350 Post-Flight Reports consist of a set of PFR global
items, each of which containing a set of related Global Effects and a boolean combina-
tion of Fault Cases. As for Fault Cases, they are defined as above. Moreover, contrary
to the A380 and A400M cases, the Global Effects are exclusive of each PFR global item.
Semantics-wise, each global PFR item represents a boolean combination of maintenance
actions necessary and sufficient for every Global Effect in the global PFR item to disap-
pear. As before, each maintenance action is represented by a TSM procedure pointed by
the Fault Origin of each Fault Case.

All in all, in both the A380/A400M and the A350 cases, one can see that every Maintenance
Message tagged as Fault Origin was effectively received, meaning that its underlying System
Symptoms and associated failure were registered. As so, the explanation of each Global Effect
is the conjunction of each Maintenance Message explanation interpreted at an aircraft level.
Using the same arguments as those of Subsection 4.1.2, we are once more confronted to two
types of aircraft-level diagnoses: the MM-related global diagnoses and the TSM-related global
diagnoses; inheriting the possible difference between each other from the local differences
between Maintenance Messages’ and Troubleshooting Procedures’ local diagnoses.

MM-related aircraft-level diagnoses
Concerning MM-related aircraft-level diagnoses, at Airbus it was agreed that:

• for every Maintenance Message, the abnormality of the non-VLRU Elements directly
present or represented by a VLRU in the MM explanation is seen as a possible cause of
the Global Effect associated to the MM.

• for every non-VLRU Elements absent in every MM explanation associated to the Global
Effect, its abnormality is considered not to be a possible cause of the Global Effect.

As so:

Definition 71 (A380/A400M/A350 MM-related PFR as Global Effect diagnoses). Let PFR be
an A380/A400M/A350 Post-Flight Report with a given Global Effect GE. Moreover, let
ORIG be the set of Fault Origin Maintenance Messages in every PFR item or global PFR
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item where GE is present. Furthermore, let NC = GEPer(GE)n
S

mm2ORIGPCMM(mm).
Finally, let E’x be the transformation of E(mmx) with:

• Ab(ei) 7!
W

e’ 2 Covered(ei) Ab(e’), if ei2VLRU.

A Global Effect diagnosis for GE is the set of health states covered by:V
mmx2ORIGE’x ^

V
e’2NC :Ab(e’)

TSM-related aircraft-level diagnoses
Concerning TSM-related aircraft-level diagnoses, at Airbus it was agreed that:

• for every possible cause in a TSM procedure, its abnormality is seen as a possible cause of
the Global Effect associated to that TSM procedure (through a Maintenance Message).

• every LRU Regular Inoperative Mode present in a MM explanation associated to a FMC
referenced in the TSM procedure is seen as a possible cause of the Global Effect associated
to that TSM procedure (by transitivity through a Maintenance Message)

• for every possible cause absent in every TSM procedure associated to a Global Effect (by
transitivity through a Maintenance Message), its abnormality is considered not to be a
possible cause of the Global Effect.

As so:

Definition 72 (A380/A400M/A350 TSM-related PFR as Global Effect diagnoses). Let PFR
be an A380/A400M/A350 Post-Flight Report with a given Global Effect GE. Moreover,
let ORIG be the set of Fault Origin Maintenance Messages in every PFR item or global
PFR item where GE is present; and TSMORIG be the set of Troubleshooting Manual
procedures pointed by them. Furthermore, let PC =

S
tsmp2TSMORIGPCTSM(tsmp) and let

R =
S

mm2ORIG RIM\PCMM(mm). Finally, let NPC = GEPer(GE)nPC[R. A Global Effect
diagnosis for GE is the set of health states covered by:

[
V

tsmp2TSMORIG
W

e2PC Ab(e) _
W

r2RAb(r)] ^
V

e2NPC :Ab(e)

From research-program aircraft-level diagnoses to the common framework

Finally, it is time to establish a mapping between research-program global diagnoses and our
framework of aircraft-level diagnosis. Contrary to the A380/A400M/A350 case, these global
diagnoses are not simply a boolean combination of Maintenance Messages. As so, if on the one
hand one can define MM-related global diagnoses, the TSM-related ones cannot be defined;
for as far as our knowledge goes there is still no method defined for selecting Troubleshooting
Procedures in the research-program. Concerning MM-related global diagnoses:

Definition 73 (Research-program MM-related PFR as Global Effect diagnoses). Let PFR
be a research-program Post-Flight Report with a given Global Effect GE. Moreover, let
EGE = f(Ab(o1),...,Ab(on)) be a kernel diagnosis in the research-program Post-Flight Report
explaining GE, where each oi is an Accusable Object. A Global Effect diagnosis for GE
is the set of health states covered by:

EGE ^
V

o2GEPer(GE)nfo1,...,ong
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4.2 Checking for local consistency with CONCKER

The first section of the present chapter defined a common framework of diagnosis at Airbus;
a framework which enables the comparison of different aircraft programs’ diagnostic methods
and results. With such framework, I now have all the necessary means to address one of the
major industrial objectives: to define a method and specify and develop a tool to check for
the consistency between Troubleshooting Manual procedures and Maintenance Messages.

4.2.1 Improving local-diagnoses’ consistency at Airbus

From the numerous insights provided by the formalisation of Airbus diagnostic-world in the
previous section, the first that I will explore is the existence of two types of local-diagnoses:
the MM-related and the TSM-related ones.

First of all, note that theory tells us that every Maintenance Message should point to
a single Troubleshooting Manual procedure; and that the latter can be pointed by several
Maintenance Messages. Hence, for a given TSM procedure, its TSM-related local-diagnosis
should cover all the MM-related local diagnoses of all the System Symptoms in every single
Maintenance Message that points at it. In a nutshell, with the framework of the previous
section one can assert a mathematical condition that must hold between Maintenance Messages
and TSM procedures: if MM is the set of all the potentially emitted Maintenance Messages for
a given aircraft, SSDMM(.) is a function returning the System Symptom diagnosis associated
to a Maintenance Message and SSDTSMP(.) is the TSM counterpart of SSDMM(.), then:

8mm2MM Task(mm) , ;, and
8mm2MM SSDMM(mm) � SSDTSMP(Task(mm))

If, on one hand, theory established a formal relation between MM-related and TSM-related
local diagnoses; things can be somehow different in practice for the A380, A400M and A350
aircraft programs. In fact, line mechanics can be confronted with situations where:

1. a Maintenance Message points to no TSM procedure, and
2. a MM-related local-diagnosis is not covered by its associated TSM-related local-diagnosis.

Such situations could happen because, as stated in the previous section: 1) the teams in charge
of the implemented diagnostic system computing MM-related local diagnoses and the ones in
charge of producing TSM procedures are not the same, and 2) the process guaranteing the
consistency between both explanations is not perfect.

Noting that the first condition is an organisation constraint at Airbus, this dissertation
contributes with a CONsistency ChecKER method and tool, CONCKER, that exhaustively
checks for the validity of the condition mentioned above for every Maintenance Message in
Airbus’ A380, A400M and A350 aircraft programs.

In the three subsections that follow, I will focus on: 1) providing a general view on CON-
CKER’s architecture, 2) giving a detailed view on CONCKER’s modules, and 3) using CON-
CKER against some real-world data. Finally, I would like to state that CONCKER was built
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with the help of Boulaabi [20], Stella [99] and Oh [83], three Airbus interns; and that CON-
CKER is effectively used today, at Airbus, to tackle the local consistency checking problem.

4.2.2 CONCKER’s architecture

Start by focusing on CONCKER’s architecture.

As depicted in Figure 4.2, CONCKER is composed of seven interacting modules, where:

• the GUI module provides a Graphical User Interface for handling user inputs such
as adding, editing or removing Tuning files, DK2 customisation files (VLRU coverage
definition), Troubleshooting Manual files, Filter files and customised lists of Maintenance
Messages; as well as for launching the consistency checks and displaying the results.

• theDatabase Management Tool module is responsible for managing and querying CON-
CKER’s H2 database engine,

• the Consistency-checker module manages the customisable computation of inconsisten-
cies between a set of Maintenance Messages and one or many Troubleshooting Procedures,

• the Parsing Tool module transforms the raw input data (eg. the text in TSM proce-
dures) into H2 database engine objects or java objects.

• the Fault Code Reconstructor builds the MM-explanation of every Maintenance Mes-
sage either in the Tuning file or in the user inputs. It uses a subsystem-level inter-
pretation of MM-explanation according to the common framework of subsystem-level
diagnosis presented in Subsection 4.1.2.

• the Consistency Evaluator module is responsible for computing all the inconsistencies
between a set of Maintenance Messages and a set of Troubleshooting Manual procedures
according to the framework of Subsection 4.1.2.

• the Log Tool module logs the inconsistencies found.

GUI

Database 

Management 

Tool

Static Knowledge 

Database

Consistency-checker

Consistency 

Evaluator

Parsing 

Tool

Fault Code 

Reconstructor
Log Tool

Figure 4.2: CONCKER’s architecture
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4.2.3 A detailed view on CONCKER’s modules

After exposing the architecture of CONCKER, it is time to focus on each of its modules and
provide the reader with a detailed account of such tool. Note that the Parsing Tool and Log
Tool modules will not be analysed for no conceptual value would be added.

CONCKER’s GUI module

Concerning CONCKER’s Graphical User Interface, it is divided in a series of screens enabling:
1) the injection, edition and removal of data into and from CONCKER’s database, 2) the
configuration of the consistency analysis, and 3) the display of CONCKER’s results.

In CONCKER’s Data Input screen, depicted in Figure 4.3, the user is able to select the
Tuning files and Troubleshooting Manual files to be stored in the static knowledge database;
and the Filter files and MM-input files in the consistency-check phase. I will come back to a
detailed view on these files in a few paragraphs.

Figure 4.3: CONCKER Data Input screen

With respect to CONCKER’sDatabase Management screen, it enables the user to manage
the Troubleshooting Manuals, Fault Message Descriptions and LRU-info standards. Moreover,
it provides the user with the possibility of defining the elements covered by the Virtual Line
Replaceable Units. Figure 4.4a illustrates such screen.

From the Database Management screen, let us move to the Consistency Checker one.
This screen allows the user to customise the consistency checking and select the Maintenance
Messages and Troubleshooting Manuals to be checked. As depicted in Figure 4.4b, the user
must select a Tuning file enabling CONCKER to acquire an aircraft configuration of elements.
Second, at least one Troubleshooting Manual has to be selected for consistency checking. Third,
the user is allowed to select a Filter file with a list of Fault Message Codes corresponding to
Maintenance Messages that shall not be tested for consistency. Moreover, the choice of the set
of Maintenance Messages for consistency checking has to be made. Hence, the user has the
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(a) CONCKER Database Management screen (b) CONCKER Consistency Checker screen

Figure 4.4

possibility of either selecting all the Maintenance Messages in the Fault Message Description
of the selected Tuning file; or selecting a customisable set of Maintenance Messages with an
option for filtering aircraft, MM classes and dates. This allows real-world data to be analysed
at Airbus with a minimal user effort. At last, the user may select between a full or partial
consistency check. I will come back to this point later in this section.

After the computation of the consistency-check results, these are stored in a .csv file and
automatically displayed to the user as depicted in Figure 4.6.

CONCKER’s Database Management Tool module and database schema

With respect to the Database Management Tool (DMT) module, it is responsible for man-
aging the interaction between CONCKER’s modules and its H2 static knowledge database,
depicted in Figure 4.5.

As the reader may remark, the schema of CONCKER’s static knowledge database stan-
dardises some of the data contained in Maintenance Messages and Troubleshooting Manual
procedures as mentioned in Section 4.1. This being so, the first major function of the Database
Management Tool module is to parse the Tuning files and Troubleshooting Manual files to
fill this database. This is done with the help of the Parsing Tool module. Moreover, this
module manages the database and answers to queries from other CONCKER modules.
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Figure 4.5: CONCKER’s database schema
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CONCKER’s Consistency-checker module

From CONCKER’s database and DMT module, it is now time to focus on the consistency
analysis. The consistency-checker module is responsible for computing the inconsistencies
between a given set of Maintenance Messages and Aircraft Effects, and a set of Troubleshoot-
ing Manual procedures. This is done with the help of the Parsing Tool (PT), Fault Code
Reconstructor (FCR), Consistency Evaluator (CE) and Log Tool (LT) modules.

Require: A Tuning File part-number, tuningFilePN.
Require: A set of Troubleshooting Manual names, TSMNames.
Require: A Filter file path, filterFilePath.
Require: A MM-AE-input-file path, inputFilePath.
Require: A set of analysis options, ffilterOp, fullFMDOp, allACOp, useInputMMExpOp, date-

sOp, ACAndClassesOp, inclusionAnalysisOpg.
MM  ; ; AE  ; ; TSMP  ; ; filteredMM  ; ; incResults  ;
{Step1: Get the list of Maintenance Messages (MM) and Aircraft Effects (AE) from DB or user inputs. }
if fullFMDOp = True then
fMM,AEg  DMT.impMMAE(tuningFilePN)

else
fMM,AEg  PT.parseInputMMAE(inputFilePath,allACOp,datesOp,ACAndClassesOp)

end if
MM  FCR.rebuildExp(MM,tuningFilePN,useInputMMExpOp,inputFilePath)
{Step2: Filter the MM according to the Filter option (filterOp) and the Filter file (filterFilePath). }
if filterOp = True then

filteredMM = PT.parseFilterMM(filterFilePath)
MM  removeMM(MM,filteredMM)

end if
{Step3: Check for inconsistencies according to the Inclusion option (inclusionAnalysisOp) and log them. }
fincResults,TSMPg  CE.evalNotFound(MM,AE,TSMNames)
if inclusionAnalysisOp = True then

incResults  incResults [ CE.evalInclusion(MM,AE,TSMP)
end if
LT.log(incResults)

Algorithm 2 is implemented in CONCKER’s Consistency-checker module. Intuitively:

Step 1: serves the purpose of importing a set of Maintenance Messages Fault Code and
Aircraft Effects FDCE codes either from CONCKER’s static knowledge database (using the
DMT module), or from an input file provided by the user (using the PT module). In the former
case, according to the tuningFilePN, CONCKER queries the MMEL table to gather Aircraft
Effects’ FDCE identification and the MasterFMD table to gather Maintenance Messages’ Fault
Message Codes (cf. Figure 4.5). As for the latter case, CONCKER parses the inputFilePath
respecting the allAircraftOp, datesOp and aircraftAndClassesOP options to gather the same
data as in the former case. Finally, CONCKER’s rebuildExp function in the FCRmodule builds
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the MM-explanation of all the Maintenance Messages in MM using the common framework of
subsystem-level diagnosis (cf. Subsection 4.1.2). This is done either using the data in the
static knowledge database or in the user input files, according to useInputMMExplanationOP.

Step 2: serves the purpose of filtering the MM set according to the Fault Message Codes
specified in the filterFilePath file.

Step3: serves the purpose of computing the inconsistencies between the sets MM and AE,
and the Troubleshooting Manual procedures mapped by the TSMNames. First, the MM and
AE for whom no TSM procedure is identified is computed by the evalNotFound function in
the CE module. Moreover, the TSM procedures found are stocked in TSMP. Then, if the
inclusionAnalysisOp option is selected, CONCKER identifies those MM whose explanation
is not consistent with the associated TSM procedure explanation. This is done using the
evalInclusion function in the CE module. Finally, inconsistencies are logged using the log
function in the Log Tool module.

CONCKER’s Fault Code Reconstructor module

The Fault Code Reconstructor module is responsible for building a first-order sentence repre-
senting a MM-explanation interpreted according to the common framework of subsystem-level
diagnosis exposed in Subsection 4.1.2. To do so, this module uses either the data in the
BITEIdent, BITESideList, VersionArchive, MasterFMD, MasterBITEPer, TuningFileArchive,
LRUInfo and DK2Table tables of CONCKER’s static knowledge database; or the equivalent
data contained in the user input file.

CONCKER’s Consistency Evaluator module

CONCKER’s heart is the Consistency Evaluator module and its two main functions:

• The evalNotFound function is responsible for 1) gathering all the Fault Message Codes
in MM and all the FDCE codes in AE, 2) verifying through SQL queries and according to
the Troubleshooting Manual procedures in TSMNames, if these codes have a counterpart
in the TSMFMtofTask and TSMEffectToTask tables in CONCKER’s specific knowledge
database (according to the first condition provided in Subsection 4.2.1, i.e.: 8mm2MM ,

;, and 3) returning the identification of all the TSM procedures found, as well as all the
elements of the sets MM and AE without an associated TSM procedure.

• The evalInclusion function is responsible for determining all the Maintenance Messages in
MM whose MM-related local-diagnosis is inconsistent with the associated TSM-related
diagnosis according to the condition provided in Subsection 4.2.1, i.e.: 8mm2MM SS-
DMM(mm) � SSDTSMP(Task(mm)). Since the analysis of Definitions 66 and 67 tells
us that: 1) there are no :Ab(.) in either mapped System Symptom diagnosis, and 2)
the TSM-related local-diagnoses are a disjunction of abnormalities; then the consistency
analysis becomes an inclusion check of Elements, implemented through SQL queries.
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Figure 4.6: CONCKER results

4.2.4 Checking for local consistency with CONCKER

Up to this point I have provided the reader with a description CONCKER in terms of its
architecture and modular specification. This tool, implementing a method for verifying the
consistency between local diagnoses at Airbus, is already used at Airbus for such purposes.
As so, it is now time to provide empirical proof supporting my statements by demonstrating
CONCKER’s results against real-world data. Before doing so, however, let me remind you
that for confidentiality issues, some names and data have been altered. This has been done in
a way that does not impact the results presented.

The first step into using CONCKER is to populate its static knowledge-base, using the in-
put menu functions, with some Tuning files and Troubleshooting Manual files. These, gathered
directly from the same sources as the airline ones, constitute the basis of our study. Figure 4.4a
depicts the state of the Static Knowledge screen after the insertion of such files.

The input of Tuning files and Troubleshooting Manual files is followed by the configuration
of the consistency analysis in CONCKER. As depicted in Figure 4.4b, in this demonstration I
have chosen to analyse the consistency of the full list of Maintenance Messages in the Tuning
file with the selected part-number; against the a single Troubleshooting Manual. Moreover, I
have decided to perform a complete analysis.

As illustrated in Figure 4.6, there are many inconsistencies found; some of which were
corrected after this analysis, thus showing its importance.
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4.3 Assessing performance with DPAT

In the beginning of the present chapter, I stated that four objectives were to be achieved.
With two of them already tackled, it is now time to focus on another one: the definition of a
method and specification of a tool to automatically validate and compare different configurable
Built-In Test Equipments/Centralized Maintenance System algorithms and knowledge bases
and Troubleshooting Manual procedures performances using heterogeneous real-world multi-
program; and introduce the reader to the Diagnosis Performance Assessment Tool (DPAT).

4.3.1 Improving Airbus diagnostic performance assessment

The arrival of the A380 aircraft program and its severely interconnected complex subsystems,
in the beginning of the present millennium, brought up a series of problems to implemented
Airbus’ diagnostic systems. While, until then, experts of a given subsystem could forge be-
lieved system descriptions that could easily be put together by them, this is no more the case
and Centralised Maintenance System’s knowledge bases are much more error-prone. Moreover,
with maintenance becoming a very important factor distinguishing aircraft manufacturers, Air-
bus strives to produce better implemented diagnostic systems that quickly become mature.
Therefore, the problem of automatically validating and comparing the performance of different
solutions for implemented diagnostic systems - even before detecting and isolating abnormal-
ities in the Models of certain solutions - is becoming a fundamental question at Airbus; a
question whose absence of answer disables reuses, retrofits and proofs of added value. Unfor-
tunately, and despite the importance of this problem, finding a solution to it is far from being
a simple task for:

1. different diagnostic systems from heterogeneous aircraft programs demand specific input
syntaxes and semantics.

2. different diagnostic systems from heterogeneous aircraft programs produce outputs in
specific syntaxes and semantics.

3. diagnostic systems are not [sufficiently] formalised, let alone in the framework of Chap-
ter 2. As so, properties such as the soundness and completeness of their diagnostic
algorithms cannot be proved.

4. Airbus diagnostic system’s common performance criteria are not optimal.

Straightforwardly, the common framework of diagnosis provided in the first section ad-
dresses the first two items of the list above for: 1) every specific aircraft-level diagnosis can be
seen as a standard Global Effect diagnosis (cf. Definition 70), and 2) every specific subsystem-
level diagnosis can be seen as a System Symptom diagnosis (cf. Definition 65).

Concerning the last two items, things are somehow more complicated. In fact, the ab-
sence of a high degree of formalisation leaves no choice but to consider implemented Airbus’
diagnostic systems as grey boxes whose direct performance analysis is a daunting task 4. For-
tunately, the combined results of Chapter 2 and of Section 4.1 come to our help. In fact, if 1)

4Note, however, that the “white part” can even be meta-diagnosed as we will see in the following section.
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Global Effect diagnoses (cf. Definition 70) are diagnoses (cf. Definition 19), 2) diagnoses have
a series of theoretically well defined properties whose absence one may consider abnormal (cf.
Definitions 26 and 27), and 3) the properties of diagnoses are directly related to the proper-
ties of diagnostic systems’ Models (cf. Subsection 2.4.2); then one can infer the “quality” of
implemented Airbus diagnostic systems by analysing the properties of their computed specific
diagnoses. This is how the problem of automatically validating and comparing different config-
urable Built-In Test Equipments/Centralized Maintenance System algorithms and knowledge
bases and Troubleshooting Manual procedures performances using heterogeneous real-world
multi-program will be tackled; and how DPAT (Diagnosis Performance Assessment Tool) will
appear to the world.

In order to describe exactly how DPAT works, recall that the Centralized Maintenance
System uses its own algorithms (rules of inference), knowledge bases (scientific and mathemat-
ical theories), Maintenance Messages (context-observations) and Global Effects (explananda-
observations), among other observations, to produce a Post-Flight Report (aircraft-level auto-
matic diagnosis). This being so, the term:

• “dynamic inputs” will refer to all the observations received by the Centralized Mainte-
nance System, i.e. Maintenance Messages, Aircraft Effects and so on.

• “static inputs” will refer to all the Centralized Maintenance System scientific and math-
ematical theories, i.e. Tuning Files, Troubleshooting Manual files, and so on.

• “CMS dump” will refer to the CMS internal logs containing, among others, 1) all the
dynamic inputs received during a given number of flights, and 2) the configuration of
the CMS static inputs at each time.

• “test-case” will refer to: 1) a set of dynamic inputs emitted during a test situation in
Airbus’ common framework of diagnosis and/or the automatic diagnosis produced by
the CMS algorithm used, 2) for each Global Effect that is part of the dynamic inputs,
the [partial] conjunction of abnormalities that caused such effect, 3) an identification of
the test situation from which dynamic inputs were retrieved, and 4) a set static inputs.

In a nutshell, DPAT’s main functions enable: 1) the generation of test-cases using some
aircraft-program-specific dynamic inputs (gathered from real flight data) and the [partial] con-
junction of abnormalities that caused each Global Effect (gathered from mechanics’ reports),
2) the simulation of test-cases using every Centralised Maintenance System algorithm and
knowledge base (gathered from Airbus’ software repository), and 3) the computation and
comparison of a set of performance criteria over each simulation result. DPAT uses the frame-
work of Section 4.1 for the generation of standard test-cases, for the translation of test-cases
into every CMS algorithm specific input and for the translation of Post-Flight Reports into
diagnoses, according to its definition in Chapter 2. This enables the computation of some
standard performance criteria, whose exact definition will be given in a few pages.

The remainder of this section will be devoted to present DPAT’s architecture and detailed
modular view; as well as to using DPAT to determine the performance of some implemented
diagnostic systems using real-world data. As it was the case with CONCKER, DPAT was built
with the help of Boulaabi [20], Stella [99] and Oh [83]; three Airbus interns.
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Figure 4.7: DPAT’s architecture

4.3.2 DPAT’s architecture

Exactly in the same way as I presented MEDITO and CONCKER, let me start by focusing
on DPAT’s architecture.

As depicted in Figure 4.7, DPAT is composed of twelve interacting modules, where:

• theGUI module provides a Graphical User Interface for handling user inputs and launch-
ing performance computation.

• the Database Management Tool module is responsible for managing and querying
DPAT’s H2 and Oracle databases.

• the Parsing Tool module converts all the raw input data into Oracle, H2 Database
Engine or java objects; and converts all the computed Post-Flight Reports into the
common framework of aircraft-level diagnosis (cf. Section 4.1).

• the DPATi module is responsible for creating DPAT test-cases.
• the Abstraction Tool module abstracts the aircraft-program-specific dynamic inputs so
they can be exploited by every Airbus diagnostic algorithm.

• theDPATo module is responsible for computing and comparing the performance of every
aircraft-level diagnosis generated by a set of diagnostic algorithms and test-cases.

• the Instantiation Tool module is the dual of the Abstraction Tool module. It instan-
tiates a test-case into a set of aircraft-program-specific dynamic inputs adapted to a
diagnostic algorithm to be tested.

• the Diagnostic Algorithms’ Wrapper is responsible for launching a set of selected di-
agnostic algorithms seen as black boxes.
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• the Fault Code Reconstructor builds the MM-explanation of every Maintenance Mes-
sage in the computed and parsed Post-Flight Report. It uses an aircraft-level interpreta-
tion of MM-explanation according to the common framework of aircraft-level diagnosis
presented in Subsection 4.1.3.

• the TSM Extension Tool module builds the TSM-explanation associated to every Main-
tenance Message in the computed and parsed Post-Flight Report. It uses an aircraft-level
interpretation of TSM-explanation according to the common framework of aircraft-level
diagnosis presented in Subsection 4.1.3.

• the Performance Computing module computes aircraft-level diagnoses’ performance.

This being so, DPAT can be separated in fours big blocks, with three of them directly
visible in Figure 4.7:

1. the “Utilities” block, where the databases are managed, all the parsing is done and the
User Interface is managed thanks to the Parsing Tool, Database Management Tool
and GUI modules.

2. the “Specific-knowledge Generation” block, where the knowledge base of the Diagnosis
Performance Assessment Tool is built offline.

3. the “Test-case Generation” block, where test-cases are built thanks to the DPATi and
Abstraction Tool modules, and

4. the “Performance Assessment” block, where the performance indicators are computed
and grouped into performance reports thanks to the DPATo, Instantiation Tool, Di-
agnostic Algorithms’ Wrapper, Fault Code Reconstructor, TSM Extension Tool and
Performance Computing Tool modules.

Hereafter I provide a detailed description of each block followed by the usage of DPAT with
some real-world data.

4.3.3 “Utilities” block

As stated above, DPAT’s utilities block is concerned with the management of databases, of
the graphical user interface and the parsing of numerous DPAT files. As with CONCKER, the
Parsing Tool module will not be analysed for no conceptual value would be added.

DPAT’s GUI module

DPAT’s Graphical User Interface is divided in numerous screens enabling: 1) the injection,
edition and removal of data into and from DPAT’s databases, 2) the computation of all the
performance criteria needed, 3) the configuration of the consistency analysis as in CONCKER,
and 4) the display of DPAT’s results.

First, as shown in Figure 4.8a CONCKER’s Data Input, Database Management and
Consistency Checker screens are replicated in DPAT; for DPAT’s static knowledge database
schema and executable functions are the same as CONCKER’s. With respect to DPAT’s
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(a) DPAT Static Knowledge Database Management
screen

(b) DPAT Dump Input screen

Figure 4.8

original screens, the first one is the Dump Input screen (cf. Figure 4.8b), enabling the user
to introduce a CMS dump from any aircraft program into DPAT’s CMS Dump database.

From these screens, let us move to the Test-Case Input screen (cf. Figure 4.9), enabling
the user to 1) define a test-case based on all the flights in all the CMS dumps, and 2) inject
the selected test-case in DPAT’s Test-Case database. Naturally, a Test-Case Removal screen
also exists, enabling the user to to remove test-cases from the homonymous database.

With the screens enabling the injection, edition and removal of data into and from DPAT’s
databases, it is time to focus on the data usage. DPAT’s execution menu takes the user directly
to the Test-Case Selection screen, depicted in Figure 4.10a. Using this screen, the user is
able to 1) select a set of test-cases from DPAT’s Test-Case database, 2) define if the original
Post-Flight Report sent by the on-board CMS shall also be used for performance comparison
(if available), and 3) define if the TSM-extension step shall be performed; among others. Note
that, in this version of DPAT, the diagnostic algorithms to be compared are hard-coded.

In the cases where the user determines that a TSM-extension shall be performed, she is
presented with the TSM Extension screen, depicted in Figure 4.10b. In this screen, the user
is able to select a series of TSMs as well as the types of extension to be performed 5. Finally,
the user is presented with the results computed by DPAT in the Performance Comparison
screen. This screen, depicted in Figure 4.15, will be presented further in this dissertation for
comprehension purposes.

5The user may select if the TSM-related explanation shall replace or be concatenated to the MM-related
explanation.
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Figure 4.9: DPAT Test-Case Input screen

(a) DPAT Test-Case Selection screen (b) DPAT TSM Extension screen

Figure 4.10
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TestCasesTable

PK TESTCASEID

FK1 DYNINPUTSDATAID

FK2 CONFDATAID

FK3 REALITYDATAID

DynamicInputsTable

PK DYNINPUTSDATAID

 ACPROGRAM

 CMSDUMP

 DATE

 LEG
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 PFRPATH

ConfigurationDataTable

PK CONFDATAID

 SCENARIOPATH

 FILTERPATH

 TSMNAME

 TUNINGFILEPN

 ACFINPNCONF

RealityTable

PK REALITYDATAID

 REALITY

Figure 4.11: DPAT’s Test-Case database schema

DPAT’s Database Management Tool module and database schemas

With respect to the Database Management Tool (DMT) module, it is responsible for man-
aging the interaction between DPAT’s modules and its CMS Dump, Test-Cases and Static
Knowledge databases. Concerning this last database, its schema is exactly the same as that
of CONCKER’s database; for DPAT needs exactly the same data as CONCKER for achieving
its goal. We remind the reader that such database schema is depicted in Figure 4.5. As for
the CMS Dump databases, there is a database schema for each aircraft program; schemas that
will not be presented in this book for confidentiality purposes. Finally, the Test-Case database
schema is presented in Figure 4.11.

Concerning such database, note that it standardises the notion of test-case presented be-
fore. Moreover, I want to attract the reader’s attention to the “TAGS” field in the “Dynam-
icInputsTable”; as it handles the tags produced by the abstraction of aircraft-program-specific
dynamic inputs in the “Specific-knowledge Generation” block presented hereafter.

4.3.4 “Specific-knowledge Generation” block

As stated in the beginning of the present section, DPAT aims at automatically validating and
comparing different configurable Built-In Test Equipments/Centralized Maintenance System
algorithms and knowledge bases and Troubleshooting Manual procedures’ performances. From
the many technical problems that appear when one tries to achieve such goal, I hereafter treat
the first one: since each CMS algorithm can, in general, be designed to handle observations
and scientific and mathematical theories with different syntaxes and semantics; DPAT needs
some means to convert any aircraft-program-specific data so it can be injectable into any
CMS diagnostic algorithm. This is done with the help of both the common framework of
subsystem-level diagnosis (cf. Subsection 4.1.2) and the “specific-knowledge table” presented
in a few paragraphs.
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The DPAT block to generate the specific-knowledge table is an offline manual module
divided in four steps to be followed in a linear manner:

1. Specific knowledge identification,
2. Specific knowledge common tagging,
3. Specific knowledge table initialization, and
4. Common tag cross-identification.

Step 1: Specific knowledge identification

As stated above, the first step when building a specific-knowledge table is to identify specific
knowledge in each diagnostic algorithm to be analysed in DPAT; where specific knowledge is
considered to be any information the diagnostic algorithm needs to retrieve in its observations
and scientific and mathematical theories.

To illustrate this concept, suppose a diagnostic algorithm evaluating a condition such as: if
(Emitter BITE = ID) then .... In this case, Emitter BITE = ID is an example of specific knowledge.

Step 2: Specific knowledge common tagging

With every diagnostic algorithm’s specific knowledge identified, the second step into the con-
struction of the specific-knowledge table is to determine a complete base of common tags
transversal to every diagnostic algorithm. As for common tags, they are defined as cross-
algorithm functional abstractions of specific knowledge. Accordingly, every specific knowledge
identified in step 1 has to be associated to a common tag; and two pieces of information in
two diagnostic algorithms that are functionally equivalent shall share the same tag.

An example of a common tag is Emitter BITE = LGERS BITE, which could be mapped in
two different diagnostic algorithms, for instance, as Emitter BITE = 10 and Emitter BITE = 98.

Step 3: Specific knowledge table initialization

After the association of common tags with the specific knowledge previously identified, the
third step to generate a specific-knowledge table is to gather these data in a “specific-knowledge
table” (cf. Figure 4.12), associating common tags, diagnostic algorithms and specific knowl-
edge, and containing:

• a “common tag” column, where common tags are gathered one per row.
• one “diagnostic algorithm x from a/c program p” column for each diagnostic algorithm
present in DPAT; where the image (specific knowledge associated) of each common tag
for a given diagnostic algorithm is introduced.

• a “specific for” column, with an indication of what diagnostic algorithms use each common
tag as specific knowledge.
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Common Tag CMS Alg. X  prog. p ... CMS Alg. Y prog. q  Specific for

A A ID in X X

B B ID in X B ID in Y X  , Y

C C ID in Y Y

Figure 4.12: Specific knowledge table after Step 3

Step 4: Common tag cross-identification

At this point, the “specific-knowledge table” is only party filled; having blank cells correspond-
ing to diagnostic algorithms where a given common tag is not used. As so, the last step in the
“Specific-knowledge Generation” block consists in filling those cells with: 1) The knowledge
corresponding to the common tag, if there is a correspondence, or 2) “Not defined”, otherwise.

4.3.5 “Test-case Generation” block

The “Test-case Generation” block serves the purpose of building a multi-program test-case
database necessary for DPAT to overcome the problem of using the dynamic inputs specific to
a given aircraft program with a diagnostic algorithm of another aircraft program.

Relying on the previously generated specific-knowledge table, the DPAT block to generate
test-cases is divided in the following three steps, linearly implemented in the DPATi module:

1. Test-case data selection,
2. Dynamic inputs abstraction, and
3. Test-case and test-data injection in the databases.

Step 1: Test-case gathering

The first step of the test-case generation block consists in selecting the data gathered from a
given aircraft to be a part of the test-case. Note that if no dynamic inputs are present in a
given test-case, i.e. automatic diagnosis based test-case, the following step 2 is to be skipped.

Step 2: Dynamic inputs abstraction

Test-cases contain, as defined above, a set of dynamic inputs specific for a given program.
In order to produce a multi-program test-case database, these inputs have to be functionally
abstracted using the specific-knowledge table generated through the “Specific-knowledge Gen-
eration” block and the Abstraction Tool module. This module abstracts a set of dynamic
inputs collected from a given program p according to Algorithm 3.
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for i = 1 to size(dynInputs) do
element  dynInputs[i]
for j = 1 to size(attributes(element)) do
attribute  attributes(element)[j]
for k = 1 to height(specificKnowledgeTable) do
row  specificKnowledgeTable [k]
if matches(getAircraftProgramColumn(row,p), value(attribute)) then
tag(attribute,getCommonTag(row))

end if
end for

end for
end for

Note that the tag(�) function is responsible for associating a common tag to every dynamic
input attribute identified in the specific-knowledge table.

Step 3: Test-case injection

Following step 2, test-cases with abstract dynamic inputs are to be injected in the test-case
database using the Database Management Tool module.

4.3.6 “Performance Assessment” block

Once a specific-knowledge table has been created using the block described in Subsection 4.3.4,
and a database of test-cases has been created using the block described in Subsection 4.3.5;
it is now time to focus on the “Performance Assessment” block, implemented in the DPATo
module through the following steps:

1. Diagnostic algorithm, static input, TSM procedure and test-case selection,
2. Dynamic input instantiation,
3. Aircraft-level diagnose computation,
4. Partial common-framework conversion,
5. Fault code reconstruction,
6. Troubleshooting procedure extension,
7. Full common-framework conversion,
8. Diagnosis performance computation, and
9. Report building.

These steps are followed according to diagram 4.13.
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Figure 4.13: Activity diagram of the “Performance Assessment” block

Step 1: Inputs and options selection

The first step of the “Performance Assessment” block is the selection, through theGUI module,
of the CMS algorithms, CMS knowledge bases and TSM procedures one wants to compare; as
well as the test case one wants to use for the performance assessment.

This being so, DPAT users select:

1. Zero or more CMS algorithms (to be compared),
2. Zero or more sets of static inputs per CMS algorithm chosen (to be compared),
3. Zero or more TSM procedures (to be compared), and
4. One or more test-cases from the test-case database.
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Note that if no dynamic inputs are present in a given test-case, i.e. automatic diagnosis
based test-case, the following steps 2 and 3 are to be skipped.

Step 2: Dynamic inputs instantiation

With CMS algorithms, static inputs, TSM procedures and test-cases selected, the second step
in DPAT “Performance Assessment” block is the instantiation of test-cases dynamic inputs us-
ing the Instantiation Tool module. Straightforwardly, for every selected diagnostic algorithm
of a given program q, dynamic inputs instantiation goes according to Algorithm 4.

crossReferenceF ile  ;

for i = 1 to size(dynInputs) do
element  dynInputs[i]
for j = 1 to size(attributes(element)) do
attribute  attributes(element)[j]
if isTagged(attribute) then
tag  getCommonTag(attribute)
for k = 1 to height(specificKnowledgeTable) do
row  specificKnowledgeTable [k]
if matches(getCommonTag(row),tag) then
if matches(getSpecificFor(row),q) then
tempDyn  value(attribute)
tempSub  select(getAircraftProgram Column(row,q))
value(attribute)  tempSub

store(crossReferenceF ile,tag, tempDyn,tempSub)
end if

end if
end for

end if
end for

end for

By and large, the objective of the algorithm is to convert dynamic inputs from its origin
program X to the framework of a CMS algorithm from a program Y ; and tracing all the data
conversion in a temporary file (crossReferenceF ile).

Step 3: Aircraft-level diagnoses computation

The automatic diagnoses computation step consists in running the CMS algorithms selected in
Step 1 as black boxes configured with the static inputs selected in that same step, and having
as inputs the instantiated dynamics inputs from Step 2. This is done using the Diagnostic
Algorithms’ Wrapper module.
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Step 4: Partial common-framework conversion

Following the computation of aircraft-level diagnoses specific to each diagnostic algorithm, the
Partial common-framework conversion step uses the Parsing Tool module to gather: a) every
Global Effect and the associated Fault Origin Maintenance Messages from the Post-Flight
Report, in the A380/A400M/A350 case; or b) every Global Effect and the associated kernel
diagnosis from the Post-Flight Report, in the research-program case.

Step 5: Fault code reconstruction

As for DPAT’s fault code reconstruction step, it uses the Fault Code Reconstructor module
for building a first-order sentence representing a MM-explanation interpreted according to the
common framework of aircraft-level diagnosis exposed in Subsection 4.1.3. Being an aircraft-
level equivalent of CONCKER’s homonymous module, it uses either the data in the BITEIdent,
BITESideList, VersionArchive, MasterFMD, MasterBITEPer, TuningFileArchive, LRUInfo and
DK2Table tables of DPAT’s static knowledge database; or the equivalent data contained in
the Post-Flight Report. Finally, this step is not executed in the research-program case for its
computed diagnoses are already as required.

Step 6: Troubleshooting Manual procedures extension

Since every Maintenance Message points 6 to a given TSM procedure, each of which containing
a TSM-explanation; one may extend an MM-explanation with the associated TSM-explanation.
This is the objective of the TSM procedures extension step relying on the TSM Extension
Tool module. This module, in turn, majes use of the framework of Subsection 4.1.3 and the
TSMArchive, TSMTaskToCauses, TSMFMToTask, TSMTaskToTest, TuningFileArchive,
LRUInfo and DK2Table tables of DPAT’s static knowledge database to extend MM-explanations
with the associated TSM-explanations. Finally, this step is not executed in the research-
program case.

Step 7: Full common-framework conversion

The objective of the “Performance Assessment” block’s sixth step is to complete the mapping
of aircraft-program-specific Post-Flight Reports into the common framework of aircraft-level
diagnosis. This is done by using the Parsing Tool module and the results of Subsection 4.1.3 to
produce a Global Effect diagnosis (cf. Definition 70). Finally, using the crossReferenceF ile,
all the data is converted back to the dynamic inputs’ initial format.

6While, in theory, every Maintenance Message is associated to a Troubleshooting Manual procedure; as
shown in Section 4.2 this is not always true in practice. As so, CONCKER must be used before DPAT if one
wants to follow the TSM-procedure-extension step.
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Step 8: Diagnosis performance computation

Regardless of the selected diagnostic algorithms, static inputs or TSM procedures, at this point
one has a Global Effect diagnosis (cf. Definition 70) at her disposal. It is now time to focus on
computing the performance of such diagnosis with the help of the Performance Computing
Tool module. Note that the results that follow were agreed at Airbus in [12] and [60].

Before going any further, let me state that the performance criteria presented hereafter
depend on the true health state. This, in turn, is recovered by transforming the Reality input
file into a conjunction of AB-literals.

The Performance Computing Tool module implements a series of performance criteria
based on the results of Chapter 2 and of the present chapter. The first two criteria implemented
are exactly the degrees of validity (cf. Definition 26) and uncertainty (cf. Definition 27) already
introduced in Chapter 2. Besides these, one more criterium is also implemented by the present
module: the diagnostic distance; firstly introduced in the Airbus technical report [9].

As far as the diagnostic distance goes, it aims at providing some means to evaluate the
quality of diagnoses with a single criteria. Even if this may seem an essential problem of a
diagnostic system conceiver, literature lacks of answers to such challenge. Krysander and Ny-
berg [68] try to compute both coverage and false coverage probabilities, Vachtsevanos, Lewis,
Roemer, Hess and Wu [109] provide several metrics for implemented diagnostic systems mainly
based on false positives, false negatives, time delays and percent isolation to one LRU, Baldi,
Brunak, Chauvin, Andersen and Nielsen [8] give an overview of the existing methods to com-
pute the accuracy of prediction algorithms for classification; however, although these methods
for evaluating the performance of diagnoses are adequate in many situations, they do not pro-
vide the desired results for Airbus, simply because they fail to reach our goals in situations
where multiple faults are present and the diagnosis covers many partially valid hypotheses.

Intuitively, the diagnostic distance is a fusion of the degrees of validity and uncertainty
along an importance scale. Accordingly, the diagnostic distance between a diagnosis and its
associated true health state is zero if and only if the diagnosis is valid and certain. Moreover,
the diagnostic distance decreases with the degree of validity and increases with the degree of
uncertainty. Furthermore, if two diagnoses have the same degree of validity, the one with the
lower degree of uncertainty will be closer to the true health state. Finally, if two diagnoses
have different degrees of validities, the one with the higher one will be closest to the true
health state. Formally:

Definition 74 (Diagnostic Distance). Let �T the true health state, let #(.) be the cardinality
function and let Hamm(a,b) the Hamming distance between a and b [52]. Moreover, let
D = fd1,...,dng be a diagnosis such that:

8i;j2N2 i < j ) Hamm(di; �T ) � Hamm(dj ; �T )

Finally:

• �
def
� 2#(COMPS).
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• �
def
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A full proof that the diagnostic distance is a distance varying in [0; 1] 2 R is given in [9].

All in all:

• from invalid MM-related/TSM-related global-level diagnoses, DPAT can infer that ei-
ther the BITE reports, CMS algorithm, the BITE/CMS knowledge bases or the TSM
procedures are not ontologically true,

• from valid but uncertain automatic/end-to-end global-level diagnostic results, DPAT
can infer that either the CMS algorithm, the BITE/CMS knowledge bases or the TSM
procedures are not diagnosable,

• from the diagnostic distance of MM-related/TSM-related global-level diagnoses, DPAT
can infer the overall best end-to-end diagnostic chain from monitoring to aircraft-level
diagnosis.

• by comparing automatic and end-to-end computed diagnostic distances DPAT can detect
errors in the TSM procedures, and so on.

Finally, concerning the isolation of abnormalities following their detection, this will be the
object of Section 4.4.

Step 9: Report building

The report building step is responsible for: 1) the fusion of the degree of validity, degree
of certainty and diagnostic distance computed using the selected combinations of test-cases,
diagnostic algorithms, static inputs and TSM procedures; and 2) the logging of such results in
a single performance report on the format of Figure 4.14.

CMS Alg. X  Program
p with static input i

and  TSM j
...

CMS Alg. Y program 
q with static input k 

and  TSM l
Fusion Precision

Fusion Validity

Fusion Diag. Distance

Figure 4.14: Layout of a diagnosis comparison performance report

The fusion step is a weighted average of the performance criteria for every test case.
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4.3.7 Assessing performance with DPAT

Since the beginning of this section and up to this point, I have provided the reader with a full
description of DPAT’s architecture and blocks. Is is now time to use DPAT against real-world
data to compare different configurable Built-In Test Equipments/Centralized Maintenance Sys-
tem algorithms and knowledge bases and Troubleshooting Manual procedures performances.
The demonstration that follows has the objective of providing empirical evidence that DPAT
can be used in practice to tackle our initial problems. Before doing so, I would like to state
that only three Airbus diagnostic algorithms have been used in the present version of DPAT:
the diagGraph algorithm, the CVT algorithm and the TSFT algorithm corresponding to the
main algorithms in the research, A350 and A380 aircraft programs. However, in the following
example the diagGraph results will be omitted.

The usage of DPAT starts with the insertion of data into its Static Knowledge database.
This is done thanks to the Static Knowledge Database Management screen depicted in Fig-
ure 4.8a. For this demonstration three tuning files and one set of TSM procedures were added.

Following the population of the Static Knowledge database, let us move to populating the
CMS Dump databases. This is done thanks to the Dump Input screen of Figure 4.8b. For
this demonstration a single A380 CMS dump was provided as input.

Once the CMS Dump databases are populated, one is able to create test-cases by selecting,
in the Test-Case Input screen (cf. Figure 4.9):

• a set of dynamic inputs corresponding to a flight among all the ones contained in the
CMS Dump databases,

• a set of static inputs to be tested corresponding to a Tuning file 7, a Filter file and a
Scenario file,

• an optional PFR file corresponding to an aircraft-level diagnosis already computed for
such dynamic inputs (eg. the original PFR for the selected flight), and

• a Reality file containing the abnormalities that actually caused each Global Effect in the
dynamic inputs.

With all the inputs provided, let us move to computing and comparing the performance
of CVT and TSFT against one of the inserted test-cases. As depicted in Figure 4.10a, in this
demonstration I have selected, in DPAT’s Test-Case Selection screen, a test-case with an
associated flight number. Moreover, I have chosen to perform a TSM extension as depicted in
Figure 4.10b.

Before jumping to the results obtained, let me provide the reader with some information
about the selected test-case. First, among the Global Effects present in the flight chosen, we
will be comparing the performance of CVT and TSFT diagnosing the CDS CAPT+F/O EFIS
CTL PNLs FAULT Aircraft Effect. Moreover, the fault of the AESU-1 was the real cause behind
the failure that originated this effect.

7Note that if no Tuning file is selected, the Tuning file corresponding to the one effectively used in the
selected flight will be automatically selected.
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Figure 4.15: DPAT Performance Comparison screen

As illustrated in the upper part of Figure 4.15, CVT failed to find an explanation for
this Global Effect. As for TSFT, both TSM-related aircraft-level diagnoses for the Global
Effect CDS CAPT+F/O EFIS CTL PNLs FAULT were that either the abnormality of the LRU
AESU-1, the abnormality of the wiring connected to the AESU-1 pin 5F or the abnormality
of the wiring connected to the AESU-1 pin 5E explained this Global Effect. The application
of the performance criteria exposed in the previous subsection explains the obtained Distance,
Accuracy and Validity results. However, two comments are important at this point. First, the
Accuracy indicator illustrated in Figure 4.15 corresponds to the degree of certainty, i.e. 1 -
degree of uncertainty, of each aircraft-level diagnosis. Secondly, one may have been expecting
the accuracy and diagnostic distance to be slightly less than 100% since, after all, the computed
diagnoses were uncertain. This was in fact the case. However, due to the number of components
in the perimeter of the Global Effect, both the degree of uncertainty and the diagnostic distance
were very close to zero and were rounded in by DPAT’s GUI.

4.4 Meta-diagnosing Airbus Models with MEDITO

In the previous sections I have accomplished the objectives of providing Airbus with a com-
mon framework of diagnosis and with some methods and tools for checking local (subsystem-
level) consistency between Maintenance Messages and Troubleshooting Manual procedures and
for validating and comparing configurable Built-In Test Equipments/Centralized Maintenance
System algorithms and knowledge bases and Troubleshooting Manual procedures performances
using heterogeneous real-world multi-program data.

It is now time for me to concentrate on the last objective of this chapter, that is, on
the detection and isolation of Model abnormalities in the Centralised Maintenance System
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observations, knowledge bases and algorithms. If on the introductory chapter achieving this
objective seemed a daunting task, this is far from being true at this point. In fact, since the
results of Chapter 3 offer us a method and tool to detect and to isolate Model abnormalities
in implemented diagnostic systems, provided they are defined in the framework of Chapter 2;
we only need to represent Centralised Maintenance System observations, knowledge bases and
algorithms in such framework. Courtesy of Section 4.1 this is now an easier task.

In the remainder of this section I will illustrate how this representation can be done through
an example. Hence, I will focus on the problem of detecting and isolating abnormalities in
the Centralised Maintenance System description of a Landing Gear Extraction and Retraction
System (LGERS); while assuming that Centralised Maintenance System’s believed system
observations are ontologically true and its diagnostic algorithms are sound and complete. Once
more, some data in the present section has been altered for confidentiality issues.

4.4.1 An Airbus landing gear extraction and retraction system

The purpose of the Airbus A380 Landing Gear Extension and Retraction System (LGERS) is
to provide controlled Landing Gear extension and retraction and door opening/closing such
that the aircraft can perform a normal landing and cruise flight. Structurally speaking, an A380
landing gear consists of: a retracting Nose Landing Gear (NLG), two retracting Wing Landing
Gears (WLG), and two retracting Body Landing Gears (BLG). In terms of the associated
actuators, all the landing gears (NLG, WLG and BLG) have retract, unlock and gear uplock
actuators; and the associated doors are, for the most part, hydraulically operated through
some hydraulic actuators, being the remaining doors mechanically operated.

As for the Landing Gear Control [and Indication] System (LGCIS), it serves the primary
purpose of detecting and controlling the position of the landing gears, doors and uplocks.
Moreover, its simplified general architecture is depicted in Figure 4.16, where component real
names and some details have been changed/removed for confidentiality issues.
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Figure 4.16: LGCIS architecture

First of all, one shall note that LGCIS is decomposed, for safety purposes, into two redun-
dant sides executing, by and large, the same functions in alternate active/standby modes.

In terms of sensor data, each LGCIS side has its own sensor inputs which are transmitted
to the Core Processing Input and Output Modules (CPIOM) - that can be seen as aircraft
generic computers - through some Remote Data Concentrators (RDC) by means of Arinc 429
data links.

Using such sensor data and the control commands provided by the landing gear control lever
(not represented in Figure 4.16), CPIOM W (resp. Y) LGERS COM HIGH software computes
and sends control signals via the AFDX network to the Electrical Power Distribution Centre
1 (resp. 2) controlling the actuators; and CPIOM X (resp. Z) LGERS COM LOW software
computes and sends control signals through RDCs A and B (resp. C and D) to the actuators.

4.4.2 An Airbus LGERS believed system

From the brief description of an Airbus A380 LGERS given in the previous subsection, let us
move to its representation in Airbus’ diagnostic systems. Relying on each system description,
such as the LGERS one provided in Subsection 4.4.1, and on BITE/FWS isolation capabilities,
Airbus engineers build a CMS aircraft believed system. Suppose that a part of such believed
system is depicted in Figure 4.17, where: 1) continuous arrows symbolize material implica-
tions, 2) dashed arrows symbolize unrepresented nodes present in the believed system, and 3)
there is an underlying hypothesis that only the predecessors of a node imply it (completeness
hypothesis).
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Figure 4.17: LGCIS model used by the implemented diagnostic system

So, for instance, the nodes L/G CTL 1 Fault, L/G CTL 2 Fault and L/G CTL 1+2 Fault as well
as their edge relations are involved in the first-order sentence: [L/G CTL 1 Fault = >] ^ [L/G
CTL 2 Fault = >] , [L/G CTL 1+2 Fault = >]; where the reader may notice the equivalence
relation - instead of a material implication - due to the completeness hypothesis 8.

Finally, to provide the reader with some intuition on such model, we can see, for instance,
that engineers expect LGCIS side 2 to be lost after a CPIOM Y fault, since as described before
the LGERS COM HIGH software in this CPIOM computes non-redundant side 2 control
inputs.

4.4.3 Meta-diagnosing an Airbus LGERS believed system with MEDITO

As mentioned before, reality is sometimes different from what one expects and engineers contin-
uously struggle to produce ontologically true believed systems - a necessary (although insuffi-
cient) condition to assure correct component replacements (cf. Theorem 2). In this subsection,
we provide an example of how to use MEDITO to automatically detect and isolate ontologically
false sentences in LGERS SD.

Using MEDITO’s System manager screen, the first thing to do is to provide MEDITO
with the LGERS believed system one wants to meta-diagnose such as the one depicted in
Figure 4.17 (cf. Figure 3.2a) 9.

Once this is done, observations and meta-observations are added in MEDITO’s Test-
Cases manager screen. In this example, a test-case was added, by using some [not] re-
ceived FWS warnings: OBS = {LGERSCTL1+2FAULT=?, LGERSCTL1FAULT=>, LGER-
SCTL 2FAULT=?}; and some mechanic feedback on real-world system unit faults:M-OBS =
{Ab(CPIOMW), :Ab(CPIOMX), :Ab(CPIOMZ), :Ab(SoftCPIOMXCOM)}.

8The symbol > represents logical true; and the symbol ? represents logical false.
9For space constraints it is impossible to present the reader with the full LGERS believed system.
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Finally, in the Meta Diagnoser screen, the option “SD-sentences may be false” is selected.

In this example, MEDITO computed three kernel diagnoses for a fifteen-sentences SD in
29689 milliseconds; as well as three minimal cardinality diagnoses in 63 miliseconds 10. The
computed kernel meta-diagnoses were the following:

{SD-sentence2}, {SD-sentence8}, {SD-sentence4}

where:

SD-sentence2: [LossCPIOMX=>] _ [LossCOM1AFDXDataFromXtoW=>]
_ ... , [LGERSCTL1FAULT=>]

SD-sentence4: Ab(CPIOMX) _ Ab(SoftCPIOMXCOM)
, [LossCOM1AFDXDataFromXtoW=>]

SD-sentence8: Ab(CPIOMX),[LossCPIOMX=>]

Based on these results, one can see that either SD-sentence2, SD-sentence4 or SD-sentence8 are
ontologically false. Since meta-diagnosis can rely on a monotonic logic under some hypotheses
(those that we have been using), as discussed in Section 3.1.3, and since our meta-diagnosis
engine is considered sound and complete with respect to the underlying logic, adding new
meta-observations can only reduce the set of meta-diagnoses.

As so, the provided test-case was extended by adding some received BITE information to
the set OBS: LossCOM1AFDXDataFromXtoW=?. As depicted in Figure 3.2b, the computed
kernel meta-diagnoses were:

{SD-sentence4}

The reason why {SD-sentence4} was ontologically false was later found: the abnor-
mality of CPIOM W can also lead to the loss of COM 1 AFDX data from CPIOM X to
CPIOM W; since the later CPIOM cannot acknowledge receiving the data. This was con-
firmed by changing SD-sentence4 to Ab(CPIOMX) _ Ab(SoftCPIOMXCOM) _ Ab(CPIOMW)
, [LossCOM1AFDXDataFromXtoW=>]; and noticing the resulting empty set of kernel meta-
diagnoses.

4.5 Originality and related work

I started this chapter with the ambition of providing Airbus with: 1) a common framework
of diagnosis for every studied Airbus aircraft program - A380, A400M, A350 and research -
enabling the comparison of diagnostic methods and results, 2) a method and tool for check-
ing local (subsystem-level) consistency between Maintenance Messages and Troubleshooting
Manual procedures, 3) a method and tool for validating and comparing configurable Built-In
Test Equipments/Centralized Maintenance System algorithms and knowledge bases and Trou-
bleshooting Manual procedures performances using heterogeneous real-world multi-program

10Intel Core 2 Duo CPU at 2.4GHz and 2Gb of RAM
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data, and 4) a method and tool to detect and to isolate Model abnormalities in the Cen-
tralised Maintenance System observations, knowledge bases and algorithms. I can now state
that my goal was achieved, thus answering to all the industrial objectives presented in the
beginning of this book.

Concerning the common framework of diagnosis, exposed in Section 4.1, it is to my knowl-
edge an original work at Airbus; a fact supported by [11] and [10]. Moreover, it is a very
important contribution to the Airbus diagnostic world. First, it clearly defines a bridge be-
tween the academic and the industrial world with formal vision on the expected local-level
and aircraft-level Airbus diagnoses. Second, it provides a language enabling the common un-
derstanding between every diagnostic system conceiver at Airbus. Finally, it is a central piece
enabling the other industrial contributions in this chapter.

From the introduction of a common framework of diagnosis we advanced, in Section 4.2,
to tackle the problem of checking for local (subsystem-level) consistency between Mainte-
nance Messages and Troubleshooting Manual procedures with CONCKER and its underlying
method. Straightforwardly, I will not discuss the originality of this industrial contribution
outside the Airbus scope, simply because it is essentially an answer to an Airbus-exclusive
problem. As for the extent of this contribution, CONCKER (as far as my knowledge goes an
original work at Airbus) is already being used by the Airbus departments responsible for pro-
ducing Troubleshooting Manuals both for: 1) checking the consistency between a whole new
batch of TSM procedures, and 2) establishing a priority among the TSM procedures to change
when multiple inconsistencies are found for a given batch. This being so, CONCKER has the
potential of saving airlines from TSM-procedure-error-generated delays and the correspondent
economical and financial losses.

In the third section we introduced the reader to DPAT, and showed how to tackle the
problem of automatically validating and comparing different configurable Built-In Test Equip-
ments/Centralized Maintenance System algorithms and knowledge bases and Troubleshooting
Manual procedures performances using heterogeneous real-world multi-program. As far as the
whole DPAT goes, literature lacks of material in its domain; with the exception being the works
of Kurtoglu, Narasimhan, Poll, Garcia, Kuhn, de Kleer, van Gemund and Feldman in [70] [69].
According to its authors, the objective of such works is to:

1. “define a standard representation format for the system description [the model of the
system], sensor data, and diagnosis result”,

2. “develop a software run-time architecture that can run specific scenarios from actual
system, simulation, or other data sources such as files (individually or as a batch), execute
Diagnostic Algorithms, send scenario data to the DA at appropriate time steps, and
archive the diagnostic results from the DA.”, and

3. “Define a set of metrics to be computed based on the comparison of the actual scenario
and diagnosis results from the diagnostic algorithm”.

Despite being close to solving our technical problem described above, the works of Kurtoglu
et al. do not address certain problems:

1. Contrary to our technical problem hypotheses, the CMS/BITE knowledge bases are
considered to be ontologically true, complete and known a priori.
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2. CMS algorithms have to be built to match the underlying framework and cannot be
seen as a black-box by the system user. Consequently, no methods for transforming
dynamic and static data from its original framework and the CMS algorithm framework
are provided.

3. CMS algorithms are supposed to output diagnoses in a standardized format with lim-
ited underlying semantics. Consequently, no methods for transforming diagnoses into a
common framework are provided.

4. TSM procedures are not addressed in Kurtoglu et al. framework. As so, no methods
are provided to assess TSM procedures performance and ensure they are consistent with
BITE/CMS knowledge bases.

5. The framework provided cannot handle semi-distributed diagnostic architectures such as
the ones in Airbus or Boeing implemented diagnostic systems.

Moreover, concerning the performance metrics implemented in DPAT, they are an original
contribution establishing a return on the algorithms, observations and scientific and math-
ematical theories through the results of Section 2.4. All in all, DPAT adds value both for
airlines and for Airbus by enabling the improvement of diagnostic systems and diagnoses not
only in the design and development phases of the aircraft life-cycle, but also in the post entry-
in-service phase where new tests cases based on in-service observed real data can be used.
This implies, among others: 1) savings for Airbus in the path towards implemented diagnostic
systems’ maturity, and 2) less potential flight delays and cancellations for airlines.

As for the problem of detecting and isolating abnormalities in Models of implemented
Airbus diagnostic systems, it was tackled in Section 4.4 thanks to MEDITO. Accordingly, the
originality of this contribution is strictly related to that of Section 3.3; with the difference
being made through the application of MEDITO to an industrial problem.

Finally, the most important contribution of this whole chapter was providing empirical
evidence that the academic and industrial worlds benefit from each others’ contributions. In
a nutshell, CONCKER, DPAT and MEDITO are three examples of Airbus tools that drink
directly from the academic-world fountain.
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Generalising meta-systems

It ain’t what you don’t know that gets you in trouble. It’s what you know for
sure that just ain’t so.

- Mark Twain

With the three previous chapters, Artificial Intelligence has now some means to reason about
abnormalities in Models of implemented diagnostic systems and explanation is general; and
Airbus is finally provided with CONCKER, DPAT and MEDITO, three tools with underlying
methods addressing our industrial objectives. When all is said and done, it is time to focus
once more on meta-diagnosis and explore some questions about meta-systems and their scope.

Before doing so, however, I would like to focus on logic; a formalism used since the begin-
ning of this book for dissecting diagnosis and meta-diagnosis both in the academic and in the
industrial worlds. The use of logic is sometimes a subject of numerous critics, mainly concern-
ing, among others, 1) its lack of pragmatism motivated by an excessive concern with form, and
2) its lack of efficiency shown by the time-complexity issues of most logic-based solutions to
Artificial Intelligence problems [81][16]. Although there is a hint of truth behind such points,
note that logic provides a precise syntax and clear semantics for representing and reasoning,
not content; and is exactly this content what defines the complexity of the underlying prob-
lems. As so, what some may call an excessive concern with form is exactly what enables logical
approaches to clearly expose the premisses behind a given problem; premisses that are usually
implicit in non-logical approaches solving such problems in an efficient manner.

Accordingly, and despite my preference in this dissertation for logic as a formalism for
Model-based diagnosis and meta-diagnosis, I am aware that not every Model-based diagnostic
approach is based on the roots of Artificial Intelligence, let alone logic (eg. Analytical Re-
dundancy Relations’ approaches to Model-based diagnosis which are based on control theory).
Therefore, if in Chapter 3 it was claimed that meta-diagnosis was a general theory enabling the
detection and isolation of abnormal properties in Models of implemented diagnostic systems
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(and explanation in general); it is time to pay the price for such assertion and provide the
reader with evidence supporting it. This will be done in the first section, by meta-diagnosing a
non-logic-based meta-system: a diagnostic system based on Analytical Redundancy Relations
(ARR), an important approach in the FDI Model-based diagnostic community.

The general character of meta-diagnosis is not restrained to the formalism on which meta-
system are based. As the reader may recall, in the introductory chapter it was stated that,
presenting a more than sufficient reason for one to embrace the study of Models, explanation
was certainly far from being the only motivation; for Models play a central role in many other
fields such as prediction, planning and learning. It is time to dive deep into this subject
and provide evidence that meta-systems are not limited to implemented diagnostic systems;
and meta-diagnosis can be used to detect and isolate abnormalities in Models of prediction,
planning or learning systems. Hence, the second section of the present chapter will be devoted
to meta-diagnosing an implemented abnormality prediction system.

As for the third section, it will be concerned with discussing the originality of the contri-
butions provided in this chapter and establishing a relation with other works in literature.

5.1 Meta-diagnosing non-logic-based diagnostic systems

As stated above, the objective of the present section is to provide empirical evidence supporting
meta-diagnosis claim of being a general theory for reasoning about Models in implemented
diagnostic systems, these being logic-based or not. In order to do so, I will focus on meta-
diagnosing implemented diagnostic systems built-up using the Analytical Redundancy Relation
(ARR) approach from the FDI Model-based diagnostic community.

As for the organisation, in Subsection 5.1.1 the reader will be provided with an example of
how an ARR-based scientific and mathematical theory can represent a DC motor, diagnosis-
wise. Then, thanks to some observations, the appearance of invalid diagnoses in this approach
will be illustrated, and the need for meta-diagnosis in ARR-based implemented diagnostic
systems will find a motivation. As for Subsection 5.1.2, it will expose a Bridge (cf. [32]
and [31]) between the FDI ARR-approach and the DX consistency-based logical approach; a
Bridge that will be used to map our ARR-based diagnostic problem into the framework of
Section 2.3. Such mapping enables the application, in Subsection 5.1.3, of our theory of meta-
diagnosis introduced in Chapter 3. Finally, one will return to the FDI community’s world and
have such results explained and generalised. This will be the subject of Section 5.1.4.

5.1.1 When Models hurt ARR-based MBD: a DC motor trial

The present subsection is devoted to illustrating how abnormalities in Models of ARR-based
implemented diagnostic systems can affect the computed diagnoses, thus providing a basis
example for the remainder of this section. In order to do so, I will start by building an ARR-
based scientific and mathematical theory representing a DC motor, and then move to exposing
how a diagnostic system based on this theory fails to compute a valid diagnosis.
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Modelling a DC motor

Imagine that, after a series of experiences with his new car, Mr Tortuga decided to spend some
nights building a diagnostic system for the DC Motor start-engine. Suppose, for the sake of the
argument, that he decided to use an FDI analytical redundancy approach. Assume Tortuga
perceives the motor as depicted in Figure 5.1.

22 1. The Physics of the DC Motor

A picture of a DC motor servo system and its associated schematic is shown
in Figure 1.19. In the schematic, R is the resistance of the rotor loop, L is
the inductance of the rotor loop, £ — K^UJR is the back emf, r.m = Kri is
the motor torque, J is the rotor moment of inertia, and / is the coefficient
of viscous friction. The positive directions for r m , OR, and TL are indicated
by the curved arrows. The fact that the curved arrow for TL is opposite to
that of r m just means that if the load torque is positive then it opposes a
positive motor torque rm.

f

FIGURE 1.19. DC motor drawing and schematic.

Electromechanical Energy Conversion

The mechanical power produced by the DC motor is rmujR = KT^OJR =
i^i^BujR while the electrical powTer absorbed by the back emf is z£ =
iKjjUjR — UI^BUJR. The fact that KT = Kb — l\^B must be for conser-
vation of energy to hold. That is, the electrical power absorbed by the back
emf equals (is converted to) the mechanical power produced. Another way
to view this energy conversion is to write the electrical equation as

di

The power out of the voltage source Vs(t) is given by

di
Vs(t)i(t) = Ri2(t) + Li- + iKbu>Rat

= Re + !L(lLeyKTiuJR
r>-2 d / ! r ^

(JAJ \ ^ J

Thus the power Vs{t)i(t) delivered by the source goes into heat loss in
the resistance R, into stored magnetic energy in the inductance L of the
loop and the amount i£ goes into the mechanical energy TmujR.

Remark Voltage and Current Limits
The amount of voltage Vs that may be applied to the input terminals

Ti, 72 of the motor is limited by capabilities of the amplifier supplying the
voltage, that is, \Vs\ < Vmax. Let Vc(t) be the voltage commanded to the

Figure 5.1: A graphical representation of a DC motor.

Straightforwardly, from the electrical part of this circuit he can extract the equations:

VL = VS �R � i�Kv � !R

d(i)

d(t)
= �

R

L
� i�

Kv

L
� !R +

VS
L

(5.1)

where R is the resistance of the electrical wiring of the rotor loop, L is its inductance, VL is
the voltage across L, VS is the drive voltage, i is value of the current in the rotor loop, !R is
the shaft angular velocity and Kv is the velocity constant determined by the flux density, the
reluctance of the core, and the number of turns of the armature winding. Moreover, admit R
and L are modelled as constants.

As for the mechanical part of the circuit, suppose it is represented by the following equation:

d(!R)

d(t)
=

KT

J
� i�

f

J
� !R �

�L
J

(5.2)



108 Chapter 5. Generalising meta-systems

where J is the rotor moment of inertia, f is the coefficient of viscous friction, �L is the load and
KT is the torque constant determined by the flux density, the reluctance of the core, and the
number of turns of the armature winding. Again, suppose J and f are modelled as constants.

Moreover, imagine there is a set of sensors placed for diagnosis purposes so that the drive
voltage VS , the voltage across L, the angular velocity of the shaft !R and the current i can
be measured. Furthermore, admit that Tortuga predicts possible faults in the rotor causing
changes in the resistance and inductance of the electrical wiring in the rotor loop, in the
rotor moment of inertia, in the coefficient of viscous friction or in the torque constant/velocity
constant, resp. fR, fL, fJ, ff, and fK.

Hypothesizing no electromagnetic losses entails that electrical and magnetic powers equal
each other and Kv = KT = K. From all this information, the following state-space represen-
tation can be built: 
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Suppose also that R = 1
, L = 0:5H, K = 0:01N:m=A, J = 0:01kg:m2=s2, f = 0:1N:m:s and
�L = 0.

The next step into building a diagnostic system using an analytical redundancy approach
is the computation of the Analytical Redundancy Relations (ARR) of interest. Imagine that
Tortuga determined the following ARR’s, where the first three correspond to a motor with a
positive drive voltage and the fourth one corresponds to a motor in an open circuit:

ARR1 r1 where r1 = VLobs � [Vs �R � i(t)�K � !R(t)]

ARR2 r2 where r2 = iobs � i(t)

ARR3 r3 where r3 = !Robs
� !R(t)

ARR4 r4 where r4 = !Robs
� !R(t)

As for their structures, ARR1 has a structure {fL,fR,fK}, ARR2 has a structure {fL,fR,fK,fJ,ff},
ARR3 has a structure {fL,fR,fK,fJ,ff} and ARR4 has a structure {fK,fJ,ff}

In this case, when rejecting both the exoneration and the no-compensation assumptions [32]
the fault signature matrix was determined to be:

fL fR fK fJ ff
ARR1 x x x 0 0
ARR2 x x x x x
ARR3 x x x x x
ARR4 0 0 x x x

This is the representation that will be used for diagnosis.
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Diagnosing the DC motor

All the necessary elements to tackle the problem are now gathered. Suppose that, one fine
day, the DC motor was started with a drive voltage of 1V. Then, 1s after its start, VL, i and
!R were measured to be, respectively, 0.0822V, 0.7348A and 0.0713rad=s. Some minutes later,
admit the DC motor was put in an open circuit and that 0.2s after this, !R was measured
to be 0.0135rad=s. Figure 5.2 illustrates these four measurements (crosses) and depicts the
predicted values of those same variables.
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Figure 5.2: The first three figures correspond to the representation of VL(t), i(t) and !R(t)

in the first situation plotted against the observed values of these variables. The fourth figure
corresponds to the second situation.

Based on such observations, the vector of residuals was computed to be [1,1,1,0]T . Note
that, for the sake of simplicity, “measurement noise”, “model uncertainties” and so on were
not taken into account. Nevertheless, this has absolutely no impact on the generality of the
obtained results; for I could easily have rendered the present example slightly more complex
through the introduction of such factors in the representation used for diagnosis. Going back
to the DC motor, the consequent diagnosis of the computed vector of residuals, assuming the
existence of no faults or repairs between observations, is: {fL} , {fR}, {fK} or any multiple fault
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resulting as a combination of at least these faults.

Finally, suppose that when Tortuga returned back to his house in order to repair his vehicle
he checked for these three faults, but everything was found to be normal. He is now facing a
meta-diagnosis problem that needs to be solved: why does the diagnostic system determine
some faults to be present while his own perception is that every component is normal?

5.1.2 From an FDI approach to a DX one: transforming the problem

A precondition for computing meta-diagnoses (cf. Chapter 3) is having a problem formalised
in the framework of diagnosis provided in Chapter 2, a framework usually referred to, in the
literature, as a DX logical framework. As so, the present subsection is devoted to transforming
the FDI ARR-based framework of the previous section into a DX logical one. This will be
done with the help of Bridge (cf. [32] and [31]).

According to Bridge, the conversion of a diagnostic system in an ARR-based framework into
a logic-based one consists in transforming ARR’s and measurements into believed systems and
observations. First, the set COMPS may be defined as {L,R,K,J,f}, semantically representing
the inductor, resistor, rotor moment of inertia, torque/velocity constant and coefficient of
viscous friction “components”. Moreover, SD can be designed by adapting the structures and
the residuals in the analytical redundancy relations. The following sentences, extended with
the appropriate axioms for arithmetic, the equations describing i and !R and so on, determine
SD.

S1: Closed(circuit)^:Ab(L)^:Ab(R)^:Ab(K) ) (VLobs � [Vs �R � i�K � !R] = 0)
S2: Closed(circuit)^:Ab(L)^:Ab(R)^:Ab(K)^:Ab(J)^:Ab(f) ) (iobs � i = 0)
S3: Closed(circuit)^:Ab(L)^:Ab(R)^:Ab(K)^:Ab(J)^:Ab(f) ) (!Robs

� !R = 0)
S4: Open(circuit)^:Ab(K)^:Ab(J)^:Ab(F) ) (!Robs

� !R = 0)

The reader may notice that sentence S1 corresponds to ARR1, and so on. This will be
exploited later in this section. As for the observations, they are two sets associated to the two
situations mentioned before:

OBS1 = {Closed(circuit) , t = 1 , Vs = 1 , VLobs = 0:0822 , iobs = 0:7348 , !Robs
= 0:0713}

OBS2 = {Open(circuit) , t = 0:2 , !Robs
= 0:0135}

Kernel consistency-based diagnoses can then be computed for both the diagnostic problems
DP1 = (SD,COMPS,OBS1) and DP2 = (SD,COMPS,OBS2), using the same assumptions as in
the previous section, i.e. rejecting both the exoneration and no-compensation hypotheses
(a default in consistency-based approaches). These are KD1 = {{Ab(L)},{Ab(R)},{Ab(K)}} and
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KD2 = ;. Finally, assuming that no faults or repairs occurred between both situations, the
final consistency-based kernel diagnosis is: KD = {{Ab(L)},{Ab(R)},{Ab(K)}}; the exact same
result as the one obtained in FDI’s analytical redundancy approach. This comes with no
surprise since as affirmed in [32], when no fault models are present - and they never are in the
present FDI analytical redundancy approach - and when “releasing the exoneration and the
no-compensation assumptions”, then “FDI and DX views agree on diagnoses”.

5.1.3 Meta-diagnosis

At this point, let us stop for a moment and re-gain a high-level vision of this section. I started
this section by stating that the theory of meta-diagnosis introduced in Chapter 3 could be used
to reason about abnormalities in Models of non-logic-based implemented diagnostic systems.
Then, I motivated the need for meta-diagnosis in the FDI community. This was illustrated
with a DC motor example in Subsection 5.1.1. When this stage was reached, I stated that
a precondition for computing meta-diagnoses using the framework of Chapter 3 was having
a problem formalised in a DX logical framework. As so, the previous section was devoted to
transforming the FDI analytical-redundancy-based depart framework into a DX consistency-
based logical one. It is finally the time to meta-diagnose our DC motor diagnostic system. In
order to do so, let me recall the modelling process explained in Section 3.2:

1. Identify the meta-system, i.e. the diagnostic system to be meta-diagnosed and its as-
signed meta-goals.

2. Identify the meta-components and their meta-goals based on the meta-system meta-
goals, on diagnostic system’s and diagnoses’ properties and on their relations, and on
the detail level wanted for the solution.

3. Describe meta-components and meta-components’ normal/abnormal behaviour on be-
lieved meta-systems.

4. Identify meta-observables based on the believed meta-system description.

In Tortuga’s DC motor case, one is looking for the reason behind the invalid diagnoses com-
puted. Moreover, for the sake of the argument, imagine that Tortuga assumes the implemented
diagnostic algorithm computing diagnoses is sound and complete and that the implemented
believed system observations are ontologically true. Hence, he is confronted with the typi-
cal problem of Subsection 3.2.1, i.e. with “the problem of ontologically false believed system
descriptions”. This being so:

1. The meta-system is made of:
• the implemented diagnostic system S = (SD,COMPS,OBS,A); where SD, COMPS

and OBS are those of the previous subsection.
• the meta-goal of computing valid proof-theoretic consistency-based diagnoses.

2. Using Corollary 4 and the problem hypotheses, the meta-components can be chosen to
represent every implemented SD-sentence, whose meta-goal is their ontological truth.

3. Every SD-sentence s represented by a meta-component S is modelled, at a meta-system
level as: :M-Ab(S) ) s.



112 Chapter 5. Generalising meta-systems

4. From Corollary 4 and the problem hypotheses we get that if every meta-component is
normal then the DP-T is valid. To assess DP-T validity we need to meta-observe �T and
take into account that DM-T = DP-T in our conditions.

In a nutshell, meta-components can be chosen as M-COMPS = {S1,S2,S3,S4}; and the
following meta-system description, M-SD, can be built:

:M-Ab(S1) )
�
Closed(circuit)^:Ab(L)^:Ab(R)^

^:Ab(K) ) (VLobs � [Vs �R � i�K � !R] = 0)
�

:M-Ab(S2) )
�
Closed(circuit)^:Ab(L)^:Ab(R)^

^:Ab(K)^:Ab(J)^:Ab(f) ) (iobs � i = 0)
�

:M-Ab(S3) )
�
Closed(circuit)^:Ab(L)^:Ab(R)^

^:Ab(K)^:Ab(J)^:Ab(f) ) (!Robs
� !R = 0)

�
:M-Ab(S4) )

�
Open(circuit)^:Ab(K)^:Ab(J)^

^:Ab(f ) (!Robs
� !R = 0)

�
extended with the appropriate axioms for arithmetic, the equations describing i(t) and !R(t)

and so on. As for meta-observations, they contain all the observations at system-level. More-
over, this theory is extended by taking into account the unobserved abnormality in the three
components analysed by Tortuga: L, R and K. As so,

M-OBS1 = {:Ab(L) , :Ab(R) , :Ab(K) , Closed(circuit) , t = 1 , Vs = 1 , VLobs = 0:0822 ,
iobs = 0:7348 , !Robs

= 0:0713}

M-OBS2 = {:Ab(L) , :Ab(R) , :Ab(K) , Open(circuit) , t = 0:2 , !Robs
= 0:0135}

With a meta-system and some meta-observations the consistency-based kernel meta-dia-
gnoses for both meta-diagnostic problems M-DP1 = (M-SD,M-COMPS,M-OBS1) and M-DP2

= (M-SD,M-COMPS,M-OBS2) can now be computed. These are M-KD1 = {M-Ab(S1)} and M-
KD2 = ;. Finally, since it is assumed that no changes in the Model occurred between both
situations, then the final consistency-based kernel meta-diagnosis is: M-KD = {M-Ab(S1)}. In a
nutshell, the meta-diagnosis tells us that the first sentence in the believed system description
must be corrected.

5.1.4 Back to an FDI approach

In the previous subsection, a consistency-based kernel meta-diagnosis was computed. However,
what does that mean in terms of the elements in FDI’s analytical redundancy framework:
ARR’s and measurements?

The answer to such question relies on the fact that, under some assumptions, believed
system description sentences are perfectly equivalent to ARR’s residuals and their structure.
Recall, once again, the words of [32]: “Releasing the exoneration and the no-compensation
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assumptions (...) FDI and DX views agree on diagnoses”. As also stated in that work, this
is true whenever one is not interested in fault models; for the present analytical redundancy
approach cannot handle these objects. Since these were exactly the assumptions made all
along the present section (and these assumptions can always be made when one wants to
meta-diagnose FDI analytical redundancy approach Models) then the result from the previous
section tells us that ARR1 needs to be repaired, either in terms of its structure or in terms of
its residual definition.

Using this result, Mr Tortuga inspected the residual in ARR1, i.e. r1 = VLobs � [Vs �

R � i(t) � K � !R(t)] and, with the help of Mr Zapato’s knowledge about cars, he found out
the problem. In fact, since he worked during the night, the DC motor diagnostic system
was always tested in low temperatures. Unfortunately, when he used the car in a hot sunny
day when high temperatures were registered, the resistance of the resistor changed. This
happened because, being made of iron 1, the resistor has an electrical resistance temperature
coefficient of, by and large, 0:0062K�1. When changing the residual equation of ARR1 to
r1 = VLobs � [Vs �R0 � (1+ � � (T � T0)) � i(t)�K � !R(t)] with R0 = 1
, the test temperature
T0 = 5C and the temperature registered in the region where the drive took place T = 45C;
Tortuga verified that, in fact, the implemented diagnostic system provided the correct answers.
The Model was then assumed as being correct once again. Figure 5.3 extends Figure 5.2 with
the new Model to provide a visual representation of what has been stated.

All in all, with the correct detection and isolation the ontologically false Analytical Redun-
dancy Relation in the DC motor’s diagnostic system, empirical evidence has been provided
supporting meta-diagnosis claim of being a general theory for reasoning about Models in im-
plemented diagnostic systems, these being logic-based or not.

5.2 Meta-diagnosing other meta-systems

In the previous section, I tried to convince the reader that the general character of meta-
diagnosis is not restrained to the formalism on which diagnostic systems are based. This time,
the second objective of this chapter will be addressed, namely, to provide evidence that meta-
systems are not limited to implemented diagnostic systems, and meta-diagnosis can be used
to detect and isolate abnormalities in Models of prediction, planning or learning systems. I
will do so by focusing on an implemented abnormality prediction system, and meta-diagnose
it.

As for the organisation, in Subsection 5.2.1 a logical framework of Model-based abnor-
mality prediction will be exposed; a framework complemented with a series of abnormality
prediction systems’ and abnormality predictions’ properties and property relations exposed
in Subsection 5.2.2. These are the necessary conditions for studying the meta-diagnosis of
such meta-systems. From this basis, the need for meta-diagnosing Models of implemented
abnormality prediction systems will be illustrated through a DC motor example. Finally, in

1Although electrical wires in the coils of a DC motor armature are usually made of copper, in this example
iron was used to present a uniform framework for the whole section.



114 Chapter 5. Generalising meta-systems

0 0.5 1 1.5
0

0.5

1

Time: tV
ol

ta
ge

 in
du

ct
or

: V
L(

t)

0 0.5 1 1.5
0

0.5

1

Time: t

C
ur

re
nt

: i
(t

)

0 0.5 1 1.5
0

0.05

0.1

Time: t

A
ng

ul
ar

 v
el

oc
ity

: w
(t

)

0 0.5 1 1.5
0

0.05

0.1

Time: t

A
ng

ul
ar

 v
el

oc
ity

: w
(t

)

Figure 5.3: An extension of Figure 5.2 with the repaired Model of the DC motor depicted
in a dashed red line.

Subsection 5.2.4, the DC motor abnormality prediction believed system will be successfully
meta-diagnosed, hence providing empirical evidence that meta-diagnosis can be used to de-
tect and isolate abnormalities in Models of meta-systems other than implemented diagnostic
systems.

5.2.1 Characterising abnormality predictions

In order to introduce the meta-diagnosis of implemented abnormality prediction systems, the
characterisation of these entities, as well as of abnormality predictions, is needed. This char-
acterisation will be profoundly based on the work of Subsection 2.3.2.

First, recall a statement from the introductory chapter: “If we see explanation as a reasoning
process where, by and large, some observations over a period of time and some scientific and
mathematical theories are used to determine a description of the real-world at some earlier
time, then we can see: prediction as a task where some observations over a period of time and
some scientific and mathematical theories are used to determine a future description of the real-
world (...)”. Thus, both scientific and mathematical theories, observations and the description
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of the real-world can be seen as a common factor between explanation and prediction; and
believed systems (cf. Definition 9) and believed system observations (cf. Definition 15) come
as natural pieces of an abnormality prediction system. The first two Models of Model-based
abnormality prediction are, hence, a gift from Model-based diagnosis. Recall the notation of
section 2.3:

• SD, is the believed system description,
• COMPS, are the believed system components,
• P, are the believed system parameters,
• BP�P, are the boundary believed system parameters,
• CXT, the believed system contexts (where each element m of CXT maps a partition
{IP,OP} of BP),

• OBSP, are the believed system parameter observations (observations about boundary
system-parameters), and

• OBSCXT, the believed system context observations.

This will be the exact same notation used in Model-based abnormality prediction. Note,
however, that since the notion of context and its added value has already been exposed in
along this dissertation, for the sake of simplicity a single context will be assumed hereafter.

With both the notions of believed system and believed system observations re-introduced,
it is time to focus on the differences between diagnosis and abnormality prediction, i.e. past
and future. In explanation we say that some explanans explain some explananda-observations
if the latter can be inferred from the former and the context-observations, both at some earlier
time, along with some scientific and mathematical theories. As for prediction, we say that some
predictions are predicted by some predicta-observations if the former can be inferred from the
latter and the context-observations, both at some earlier time, along with some scientific and
mathematical theories. This being so, as the reader may note, explanation and prediction are
two faces of the exact same coin; and if A is an explanan of B, then B is a prediction of A 2.
From this vision, consistent with the work of Poole in [86] let us move into what constitutes
an abnormality prediction problem:

Definition 75 (Abnormality prediction problem). APP, an abnormality prediction problem,
is a tuple (SD,COMPS,OBS,HYP).

Note that while diagnostic problems depend on nothing but observations, in abnormality
prediction problems one may also want to select those predictions of believed system compo-
nents normal and abnormal behaviour where some observables take a given value. This is the
object of the theory HYP:

Definition 76 (Prediction hypotheses). The prediction hypotheses, HYP, is a finite set of
first-order sentences. Semantically, prediction hypotheses represent [future] observations
(cf. Principle 4).

As for the solutions of abnormality prediction problems they rely, as it was the case with
diagnostic problems, on health states (cf. Definition 18). It is time to commit to a logic behind

2For a discussion on what causes are, the reader is encouraged to refer to [92].
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abnormality prediction. As it was the case with Model-based diagnosis, I will be using first-
order logic with equality; for it is already defined in literature and has an expressive power
necessary to tackle the examples hereafter. Once again and as discussed in Section 2.3, note
that this choice shall not be seen as a hard directive toward the choice of a logic and the reader
is encouraged to refer to the works of Shoham [97], Shanahan [95] or Thielscher [108]. This
being said, an abnormality prediction is defined as follows:

Definition 77 (Abnormality prediction). Let APP = (SD,COMPS,OBS,HYP) be an abnor-
mality prediction problem to be solved, and let {HYPpred,HYPcons} be a partition of HYP.
An abnormality prediction for APP is the smallest non-empty set AP of health states
(called, in this context, abnormality prediction hypotheses) � such that:

SD[OBSCXT[OBSP[HYPcons
is satisfiable, and

SD[OBSCXT[OBSP[HYPcons j= HYPpred[f
W
�2AP �g.

A series of natural consequences arise from this definition:

1. “abduction-based” shall be substituted by that of “deduction-based”; for no abduction
takes place in abnormality prediction.

2. “consistency-based” abnormality predictions are those corresponding to the situation
where HYPpred = ;; while, otherwise, we are presented with “deduction-based” abnor-
mality predictions.

3. the notions of partial (cf. Definition 20), kernel (cf. Definition 21), model-theoretic and
proof-theoretic diagnosis (cf. Definition 23) find a perfect equivalent in the abnormality-
prediction framework.

As so, the third Model can be defined:

Definition 78 (Abnormality prediction algorithm). An abnormality prediction algorithm,
noted A, is a algorithm with an underlying set of inference rules aiming at computing
abnormality predictions (cf. Definition 77).

Before ending this subsection, note the concept of abnormality prediction system:

Definition 79 (Abnormality prediction system). An abnormality prediction system is a
tuple (SD,COMPS,OBS,HYP,A).

5.2.2 Defining and relating properties in abnormality prediction systems
and abnormality prediction results

Up to this point, a framework of abnormality prediction has been defined. Hence, in the
same way a series of diagnostic systems’ and diagnoses’ properties and property relations
were exposed in Chapter 2 so they could be meta-diagnosed; such will also be done in the
abnormality-prediction-wise.

With respect to abnormality prediction systems’ properties, since believed system descrip-
tions, believed system observations, diagnostic problems, diagnostic algorithms and diagnoses
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have a perfect equivalent in the abnormality prediction side; then so do their properties. In
a nutshell, every property exposed in Subsection 2.4.1 is both applicable to diagnostic sys-
tems and to abnormality prediction systems (naturally moderated by the difference in both
concepts).

Concerning property relations, things are not so easy; for they depend on the concepts of
explanation and prediction themselves. Therefore, I will not aim at providing an extensive
account on abnormality prediction systems’ property relations and will, instead, focus on
nothing but those theorems that will be used in the remainder of the present section.

Now, abnormality prediction systems are typically built with objective in mind: computing
valid abnormality predictions in every situation. Therefore, the necessary conditions to fulfil
such objective have to be stated; conditions which are yet another consequence of the insights
provided by Theorem 1. The following three theorems address such issue.

Theorem 8. If SD is an ontologically true believed system description, then for every
abnormality prediction problem (SD,COMPS,OBS,HYP) with ontologically true believed
system observations and prediction hypotheses:

1. every consistency-based model-theoretic abnormality prediction APM-T is valid.
2. some deduction-based model-theoretic abnormality prediction APM-T are not valid.

Proof.

1. First, if SD, OBS and HYP are ontologically true, then SD[OBS[HYP is satisfiable
for, by Definition 1, SD, OBS and HYP share at least a model M such that 9P,R2


9�(M;P) (P�R)^(R
	). Suppose that the consistency-based model-theoretic abnor-
mality prediction APM-T for the abnormality prediction problem (SD,COMPS,OBS,HYP)
is not valid, i.e. �T < APM-T. In this case, from Definition 77 and the previous result,
SD[OBS[HYP[f�Tg is unsatisfiable. From Definition 25, f�Tg must have a modelM
such that 9P,R2
 9�(M;P) (P�R)^(R
	). Combining all the arguments we get that
:(9s2Mod(SD[OBS[HYP) 9P,R2
 9�(M;P) (P�R)^(R
	); and either the believed system
description, the believed system observations or the prediction hypotheses are not onto-
logically true.

2. Suppose an ontologically true but incomplete believed system description. Suppose also
a sentence ' in HYPpred such that: SD[OBS[HYPcons 6j= f'g and SD[OBS[HYPcons

6j= f:'g. In this case, no abnormality prediction satisfies the required condition and, as
so, the APM-T is not valid.

�

Theorem 9. If A is a sound and complete abnormality prediction algorithm, then APM-T

= APP-T for a given abnormality prediction problem (SD,COMPS,OBS,HYP).

Proof. Trivial from the definition of model-theoretic and proof-theoretic abnormality predic-
tion and Definitions 35 and 77. �
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Corollary 10. If A is a sound and complete abnormality prediction algorithm and SD
is an ontologically true believed system description, then for every abnormality predic-
tion problem (SD,COMPS,OBS,HYP) with ontologically true observations and prediction
hypotheses:

1. every consistency-based proof-theoretic abnormality prediction, APP-T, is valid.
2. some abduction-based proof-theoretic abnormality prediction, APP-T, are not valid.

Proof.

Trivial from Theorems 8 and 9. �

With a series of abnormality prediction systems’ properties and property relations, we are
now ready to meta-diagnose abnormalities in Models of abnormality prediction systems.

5.2.3 When Models hurt prediction: a DC motor trial

As stated in the beginning of the present section, in this subsection I will illustrate how ab-
normalities in Models of implemented abnormality prediction systems can affect the computed
predictions. This, in turn, will provide a basis example for the remainder of this section. As
so, I will start by elaborating a scientific and mathematical theory representing a DC motor
prediction-wise. Then, I will expose how an implemented abnormality prediction system based
on this theory fails to compute a valid prediction.

Modelling a DC motor

Consider once again Mr. Tortuga and his car. Satisfied by the results obtained with the new
ARR-based permanent magnet DC motor diagnostic system, Tortuga decided to continue his
experiences by implementing an abnormality prediction system for this same motor, whose
representation is depicted in Figure 5.1. First, suppose that Tortuga noticed that the iron-
made electrical wiring on the armature (represented by its equivalent perfect line, resistor
R and inductor L in Figure 5.1) had a tendency to slowly become oxidised. This being so,
Tortuga realised that when a critical penetration level of iron oxide was achieved, the wires
tended either to break due to the motor vibrations or to generate enormous amounts of heat
leading to internal fires in the motor. As so, Tortuga thought it would be a very good idea to
predict when a given penetration level of iron oxide was attained in order to fully replace the
DC motors’ armature wirings before all the important damage takes place. Second, suppose
also that after a series of bad experiences with motors that tore themselves apart, Tortuga
understood that 1) the viscous friction in the rotor (represented by its equivalent coefficient
of viscous friction f in Figure 5.1) has a tendency to increase with the number of cycles, 2)
that this friction generated vibrations in the motor, and 3) that these same vibrations, in turn,
generated even more friction, and so on until the motor tears itself apart. In a nutshell, he
realised that the coupling between vibrations and friction generated an exponential increase
in friction that had to be quickly predicted before huge damages in the motor take place.
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Interested as he certainly is, Tortuga started by asking for Mr Zapato’s help into obtaining
a series of informations concerning iron corrosion and iron oxide. This way, he first gathered
some data on the penetration of iron oxide on his island conditions and understood that the
function p(t) = 1:5 �10�4 � ln(1+100 �( t

365)
2) perfectly interpolated all the gathered observations

for a new unoxidised piece of iron; for as more and more iron gives rise to iron oxide, the inner
iron core becomes more protected and corrosion slows down. Moreover, he measured the length
and determined the radius of the iron wire to be, respectively, 216:5m and 2:5 � 10�3m. Finally,
Mr Zapato told him that an iron core radius of less than 1:2 � 10�3m would entail breaking
through vibrations and potential fires. Using all these informations, he built a scientific and
mathematical theory on how the iron core radius evolves with time as oxidation takes place.
This is depicted in Figure 5.4.
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Figure 5.4: Scientific and mathematical theory on the iron core radius evolution with oxi-
dation

Once the Model of the iron core radius was ready, Tortuga then focused on the viscous
friction in the DC motor. With Mr Zapato’s help, he set up a series of run-to-failure tests
and concluded that: 1) the function f(t) = f0 � e

( t
2000 )

50
(with f0 being the initial value of the

coefficient of viscous friction) interpolated all the observations gathered on those tests (where
the coefficient of friction was measured through its impact on the angular velocity of the DC
motor); and 2) the DC motor tears itself apart when the coefficient of viscous friction exceeds
the value of 1N:m:s. This is depicted in Figure 5.5.

From these two scientific and mathematical theories, Tortuga then proceeded into studying,
from a different perspective, the electrical and mechanical equations describing the behaviour
of the DC motor. As so, he started by deciding he would only gather observations for prediction
when the DC motor is in steady state; for this would remove every possible errors committed
when modelling the transient behaviour of the motor. Hence, from Equations 5.1 and 5.2 in
steady state, he discovered that:

!R(1) =
VS �KT

R
� �L

KT �Kv

R
+ f

i(1) =

�L�Kv

f
� VS

KT �Kv

f
+R
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Figure 5.5: Scientific and mathematical theory on the viscous friction evolution with cycles

once again with Kv = KT (cf. Subsection 5.1.1).

Tortuga also wondered about the relation between the resistance of the electrical iron wire
and the amount of iron oxide formed. Since the iron core and the iron oxide act as two resistors
in parallel, the total resistance is given by:

R =
1

1
Rcore

+ 1
Roxide

Furthermore, each individual resistance Rx is determined by �x � lS �(1+�x �(T�T0)), where the
factor (1+�x �(T�T0)) has been detailed in Subsection 5.1.4, �x is the resistivity of the material
x, and l and S are, respectively, the length and cross-sectional area of the wire. In this case:
1) l = 216:5m, 2) Score = � � (r0 � p(t))2 (with r0 = 10�3m), 3) Soxide = � � [r20 � (r0 � p(t))2],
4) �core = �oxide = 6:2 � 10�3K�1, 5) �core = 1 � 10�7
 �m and 6) �oxide = 6 � 102
 �m.

Finally, Tortuga decided not to add any more sensors to the ones in his implemented
diagnostic system (cf. Section 5.1). Therefore, the angular velocity of the shaft !R and the
current i can be measured. Moreover, he decided to always measure !R and i when the DC
motor is considered to be in steady state.

With all these data, he could finally define a believed system (cf. Definition 9) where
COMPS = {Electric,Mechanic}, representing the electrical wire and the mechanical components
of the DC motor, and SD is the theory containing the following sentences:
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f

+R
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��L

KT �Kv
R
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S3: R = 1
1

Rcore
+ 1
Roxide
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S5: Roxide = �oxide �
l

��[r20�(r0�p)
2]
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S6: p = 1:5 � 10�4 � ln(1+ 100 � ( t
1
0+t
365 )

2)

S7: f = f0 � e
(
t20+t
2000 )

50

S8: ppred = 1:5 � 10�4 � ln(1+ 100 � ( t
1
0+tpred
365 )2)

S9: fpred = f0 � e
(
t20+tpred

2000 )50

S10: Ab(Electric) , ((r0 � ppred) < rlim)

S11: Ab(Mechanic) , (fpred > flim)

together with the axioms for arithmetic and so on; and with: Kv, KT , �L, f0, l, r0, T0, �core,
�oxide, �core, �oxide, rlim and flim defined as before. Moreover, t, t10 and t20 are variables. This
is the Model that will be used for prediction. Note that, for the sake of simplicity, Tortuga used
a propositional logic, for he is only interested in abnormality predictions at a given instant
of time. This generates two pairs of redundant sentences: S6 and S8, and S7 and S9; that
represent the functions p and f at two different instants: the instant where prediction takes
place, and the predicted instant. Such redundancy could have been avoided by using the more
expressive first-order language.

Predicting abnormalities on the DC motor

As seen before, both believed systems (cf. Definition 9) and believed system observations (cf.
Definition 15) can be seen as a common factor between explanation and prediction. Since
the former has been treated above, it is time to focus on the latter. Suppose that, each
time Tortuga rides his car, the DC motor is started with a drive voltage of 1V. One fine
day, after waiting for the armature current and shaft angular velocity to reach their steady
state values, Tortuga determined i and !R to be, respectively, 0:2382A and 0:01507rad=s.
Moreover, suppose that Tortuga decided to predict the health state of his DC motor 90 days
later. Finally, to ensure the validity of his predictions (cf. Corollary 10), he decided to
use a consistency-based approach. Hence, the set of believed system observations is: OBS
= {Vs = 1,i = 0:2382,!R = 0:01507,t = 0}; and the set of prediction hypotheses is: HYP =
{tpred = 90}.

Based on the believed system, believed system observations and prediction hypotheses
above, the kernel model-theoretic abnormality previsions (cf. Subsection 5.2.1) for the abnor-
mality prevision problem (SD,COMPS,OBS,HYP) can be determined to be (with HYPpred =
;): KAP = {:Ab(Electric),Ab(Mechanic)}; with t10 = 1549, t20 = 1969, ppred = 0:001364 and
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fpred = 7:21506. The green and yellow lines in Figures 5.4 and 5.5 represent, respectively,
the prediction and predicted instants’ values of the iron core radius and the viscous friction
coefficient.

Having these results in his hands, Tortuga decided to continue riding his car for 90 days
in order to test them. After all, he could spare one single DC motor for this noble cause.
Strangely, after these 90 days had passed, the DC motor did not tear itself apart. Tortuga
is now facing a meta-diagnostic problem that needs to be solved: why did the implemented
abnormality prediction system foresee a mechanic abnormality while his own perception is
that 90 days later every component is normal?

5.2.4 Meta-diagnosis

In the previous sections and chapters we focused on diagnostic systems. In that context, to
meta-diagnose a given meta-system one had to identify it, along with its meta-goals, identify
the components and their meta-goals, describe meta-components and meta-components’ nor-
mal/abnormal behaviour on believed meta-systems and identify meta-observables based on the
believed meta-system description. If meta-diagnosis claim of being a general theory is verified,
such modelling process should be exactly the same for abnormality prediction systems, with
the concept of meta-system extended to take these objects into account.

In Tortuga’s case, he is looking for the reason behind the invalid abnormality predictions
computed. Moreover, for the sake of the argument, imagine that Tortuga assumes the im-
plemented abnormality prediction algorithm computing abnormality predictions is sound and
complete, that the believed system observations are ontologically true and that the meta-
system is correctly perceived as a well-implemented abnormality prediction system. Hence, we
are confronted with a problem similar to the one of Subsection 3.2.1, i.e. with “the problem
of ontologically false believed system descriptions”. This being so:

1. The meta-system is made of:
• a sensed part of reality correctly perceived as a well-implemented abnormality pre-
diction system S = (SD,COMPS,OBS,A); where SD, COMPS and OBS are those
of the previous subsection.

• the meta-goal of computing valid proof-theoretic consistency-based abnormality pre-
dictions.

2. Using Corollary 10 and the problem hypotheses, the meta-components can be chosen to
represent every implemented SD-sentence, whose associated meta-goal is their ontological
truth. Moreover, implemented sentences S6 and S8, describing the same part of reality
can be described by a single believed meta-system meta-component. This is also the case
of implemented sentences S7 and S9.

3. Every SD-sentence s represented by a believed meta-system meta-component S is mod-
elled, at a meta-system level as: :M-Ab(S) ) s.

4. From Corollary 10 and the problem hypotheses we get that if every believed meta-system
meta-component is normal then the APP-T is valid. To assess APP-T validity we need to
meta-observe �T and take into account that APM-T = APP-T in our conditions.
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In a nutshell, believed meta-system meta-components can be chosen as M-COMPS =
{S1,S2,S3,S4,S5,S6&8, S7&9,S10,S11}; and the following believed meta system description, M-
SD, can be built:
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:M-Ab(S10) ) [Ab(Electric) , ((r0 � ppred) < rlim)]
:M-Ab(S11) ) [Ab(Mechanic) , (fpred > flim)]

extended with the appropriate axioms for arithmetic and so on. As for meta-observations,
they contain all the believed system observations at system-level. Moreover, this theory is
extended by taking into account the unobserved abnormality in the two components analysed
by Tortuga represented by the believed system components: Electric and Mechanic. As so,
M-OBS = {Vs = 1,i = 0:2382,!R = 0:01507,t = 0,tpred = 90,:Ab(Electric),:Ab(Mechanic)}

With a believed meta system and some meta-observations the consistency-based kernel
meta-diagnoses for the meta-diagnostic problem M-DP = (M-SD,M-COMPS,M-OBS) can now
be computed. It contains the following kernel meta-diagnosis hypotheses:

fM-Ab(S11)g fM-Ab(S7&9)g
fM-Ab(S1)g fM-Ab(S2)g

Using such results, Tortuga inspected the sentences S1, S2, S11 and S7 and S9. With the
help of Mr. Zapato he understood what the problem was. In fact, while the passage of time
affects corrosion independently of DC motor’s usage, this is not the case with viscous friction.
As so, Tortuga found that sentences S7 and S9 needed to be corrected to reflect how much
time the DC motor had been used.
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5.3 Originality and Related work

I started this chapter by affirming that, the main objectives of this dissertation being achieved,
it was time to focus on meta-systems and on the unproven claim regarding the meta-diagnosis
thesis’ generality. Accordingly, I defined the main objectives of the present chapter to be con-
cerned with providing evidence for the usage of meta-diagnosis to detect and isolate abnormal-
ities in Models of 1) non-logical-based implemented diagnostic systems, and 2) meta-systems
corresponding to entities other than implemented diagnostic systems. My contribution in this
chapter appears, thus, naturally related to these two axes.

Concerning the meta-diagnosis of non-logical-based implemented diagnostic systems, in
Section 5.1, it offers to the naked eye an original contribution towards the usage of meta-
diagnosis for reasoning in the Model-based diagnosis framework of analytical redundancy re-
lations. In fact, if on one hand it is true that some works exist in the FDI community for
reasoning in the presence of possibly abnormal - or “uncertain”, or “failing to correctly repre-
sent noise”, and so on - Models [23][45][2], even if such works invariably make some hypotheses
about the unknown, about how approximate the Model is to reality or about how the reality is
structured, among many others hypotheses described, for instance, by [84]; on the other hand
it is also true that, to my knowledge, the FDI community is chronically missing of a method in
its arsenal to detect and isolate abnormalities in Models of implemented diagnostic systems.

Nevertheless, there is much more to this section than meets the eye. In fact, this contribu-
tion brings with it the much stronger idea that if a diagnostic problem encoded in a non-logical
formalism can be mapped into the framework of Section 2.3, then our theory of meta-diagnosis
can be used to reason about abnormalities in the Models of its underlying diagnostic system.
In a nutshell, the Bridge used in that section can be seen as a metaphor for a whole set of
mappings.

As for the meta-diagnosis of meta-systems representing entities other than implemented
diagnostic systems, in Section 5.2, it is once again a trojan horse. Straightforwardly, a greater
idea lies behind the superficial contribution concerning the usage of meta-diagnosis for reason-
ing about abnormalities in Models of implemented abnormality prediction systems; the idea
that if one can describe some meta-goals of a meta-system in the framework of Section 3.1,
then one can meta-diagnose such meta-system. Finally, it appears to me that the characterisa-
tion of abnormality predictions and the definition and relation of properties in its underlying
systems is a collateral yet original contribution related to the work of Poole in [86].
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A final perspective

Last words are for fools who haven’t said enough.

- Karl Marx

This dissertation was dedicated to reasoning about Models, i.e. scientific and mathematical
theories, observations and rules of inference. Motivated by implemented [Airbus] diagnostic
systems’ problems, its main message was that detecting and isolating abnormalities in [Airbus]
Models is possible, both in theory and in practice. In the remainder of the present book, I
will start by navigating the reader through all the arguments given in order to reach this and
other conclusions and finish with a glimpse into the future.

6.1 Summary of the contribution

The introductory chapter announced that Models are condemned to suffer from a series of ab-
normalities; abnormalities that affect, in particular implemented [Airbus] diagnostic systems
and their computed results. This being so, building a theory and developing a tool for de-
tecting and isolating such abnormalities became the prime goal of this dissertation. Moreover,
as different heterogeneous implemented Airbus diagnostic systems, suffering from distinct ab-
normalities, may compute different diagnoses, developing methods and specifying tools for: 1)
checking the consistency between subsystem-level diagnoses and 2) validating and comparing
the performance of these implemented diagnostic systems; became two other objectives of this
dissertation.

Since the first step into solving a problem is understanding and formalising it, I started
by redefining the classic framework of Model-based diagnosis from formal model-theoretic
perspective, based on the difference between the cognitive and the real-worlds. Such framework
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enabled me to express exactly what abnormalities are and how they relate to the properties
of the computed diagnoses. Chapter 2 served such purpose.

The material of the second chapter was then exploited in the third one. From the idea that
an implemented diagnostic system can be, itself, seen as a real-world artifact to be diagnosed,
I developed a theory of meta-diagnosis enabling the detection and isolation of abnormalities in
Models of implemented diagnostic systems and explanation in general. Then, I implemented
such theory in a tool, called MEDITO, and tested it against the classical Polybox toy problem.

Applying the developed theory of meta-diagnosis at Airbus was the main motivation be-
hind the fourth chapter. In order to so, and since the implemented diagnostic systems from
different Airbus aircraft programs (A380,A400M,A350 and research) have different syntaxes
and semantics, I started by establishing a common framework of diagnosis at Airbus, natu-
rally mapped to the developments of Chapter 2. A gateway was then opened to the direct
usage of MEDITO for detecting and isolating abnormalities in Models of implemented Airbus
diagnostic systems. Moreover, I solved the two other industrial objectives behind this book.
As for the first one, relying once again in Airbus’ common framework of diagnosis, I defined a
theoretical condition for subsystem-level diagnoses’ consistency; and developed a tool, called
CONCKER, for verifying such condition at Airbus. Finally, I tackled the problem of validating
and comparing the performance of different implemented diagnostic systems at Airbus. Un-
surprisingly using the common framework of diagnosis, I exploited the fact that the properties
of diagnoses are intimately related to the abnormalities in Models of implemented diagnostic
systems - courtesy of Chapter 2 developments - and built a method and tool, called DPAT,
for computing such properties.

With all the initial objectives tackled, the fifth chapter of this book was devoted to con-
vincing the reader that meta-systems can be generalised, both in the formalism used and on
their scope. To do so, I started by successfully meta-diagnosing an implemented Analytical-
Redundancy-Relation-based diagnostic system. Finally, an implemented abnormality predic-
tion system, whose theoretical bases were given in the same chapter, was meta-diagnosed.

6.2 A glimpse into the future

Straightforwardly, this dissertation is far from being a complete account. Hence, I hereafter
provide the reader with some of the main questions that either remain unanswered or whose
answer has not been developed in this book.

6.2.1 The notion of knowledge

Scientific theories and observations were presented, in this work, as sets of sentences stating
some facts about the real-world; sentences that are usually assumed ontologically true at a
meta-level. If instead of adopting such approach, one sees these sentences as statements of
what we know, what we believe, what we think is possible, and so on, then the assumption of
ontological truth can be displaced from a meta-level to the level of those theories themselves.
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In terms of a logic formalism, this can be done with the same classical logics as before, even
if one usually prefers modal epistemic logics such as the S5 or KD45 for its elegance and for
its already exploited connection with the philosophical accounts 1 [61, 67, 46]. The reader is
encouraged, for instance, to see the parallel between the assumption of ontological truth and
the truth axiom in these logics. Formalising our Models using these concepts is a future axis
of development.

6.2.2 The notion and logic of explanation

The notion and logic of explanation have been discussed several times along this disserta-
tion. Straightforwardly, I have committed to one of the many possible notions of explanation
conjectured throughout the times. Moreover, for simplicity reasons, I have made all the de-
velopments using classical logics, although I stated that the results obtained were applicable
to other logics. Hence, a future axis of development would be the effective usage of other
notions and better-suited logics of explanation, such as, for instance, those of Shoham [97] and
Thielscher [108].

6.2.3 The logics handled by MEDITO

When introducing MEDITO, I stated that, implementing CHOCO as a Constraint Satisfaction
Problem solver, it was only able to handle first-order theories. While this is enough to handle,
for example, set theory (eg. Zermelo-Fraenkel set theory with the axiom of choice) and many
aspects of natural language, it is still unable to take into account, for instance, some subtleties
of these language [18]. This is why it would be interesting for MEDITO to be able to manage
other logics such as, for instance, second-order logic.

6.2.4 The formalism of Meta-diagnosis

Model-based meta-diagnosis has been defined using a logical formalism. Despite such choice,
the fifth chapter provided empirical evidence that non-logical-based implemented diagnostic
systems, such as Analytical-Redundancy-Relations-based ones, could be meta-diagnosed. Do-
ing so, however, required two transformations to and from an ARR-based formalism to a logical
one; transformations which have underlying costs. As so, it would be important to directly
implement meta-diagnostic systems in other formalisms.

In Mr. Tortuga’s DC-motor example of Chapter 5, for instance, since Definition 19 and
Definition 46 are syntactically equivalent and [32] tells us that under some assumptions “FDI
and DX views agree on diagnoses”, then one could certainly try to investigate the possibility
of directly computing meta-diagnoses through an FDI analytical redundancy approach.

In this perspective, one could take, for instance, the first M-SD-sentence in the DC motor
problem:

1Note that basic modal logics can be seen as classical logics using the standard translation.
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and use the analogy between both worlds to formulate a meta-ARR with a meta-residual:

m� r1 = (r1 � r1obs)

with r1 = 0 if (VLobs � [Vs � R � i(t) � K � !R(t)]) = 0 and 1 otherwise; and r1obs = 0 if no
component in the structure of ARR1 is meta-observed as faulty and 1 otherwise. Moreover,
rejecting the exoneration and no-compensation hypotheses a m� r1 < 0 could be interpreted
as a possible misdetection and not as a fault in the model. Finally, the M-ARR would have
the structure {ARR1}.

6.2.5 The selection of test-cases

Meta-diagnosis (implemented in MEDITO) and diagnosis performance assessment (imple-
mented in DPAT) rely on a series of sets of observations, called test-cases, for achieving its
goals. At this point, two important difficulties arise. First, one usually wants test-cases to
cover all the situations the implemented diagnostic system may be confronted to throughout
his life. Second, one is typically fond of those sets of tests-cases that are as small as possible;
for big sets of test-cases require more computations with potentially redundant results. Now,
selecting a minimal complete set of test-cases is far from being trivial and remains an open
point in this dissertation.

6.2.6 The repair of Meta-systems

I left what is maybe the most important incomplete axis of this dissertation to the end. In
order to introduce it, I encourage the reader to note that when an implemented diagnostic
systems determines a component of a given system to be abnormal, then one simply needs
to replace it by a normal one. In a nutshell, repairing a system is usually done through the
replacement of abnormal components by normal ones. Unfortunately, things are not so simple
in meta-diagnosis if the isolated abnormalities do not correspond to implementation errors. In
fact, suppose an implemented SD-sentence is found to be ontologically false. In this case, in
order to repair its associated implemented diagnostic system one must either: 1) completely
remove this sentence, at the cost of a loss of precision in the computed diagnoses; or 2) re-
define that sentence to guarantee its ontological truth (eg. through learning). The treatment
of latter case is not covered by this book, and it is maybe the most interesting perspective for
the future.
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Model-theory

In this dissertation, I use the notions of: logic, tuple, signature, structure, signature inter-
pretation, correct structure interpretation, function, relation, constant, variable, symbol, sub-
structure, extension, model, isomorphism, closed term, closed sentence, ground term, ground
sentence, theory, satisfiability, entailment, syntax, semantics, inference, logical implication,
consequence, theorem and complete theory. These concepts are clarified hereafter. The ma-
terial presented is completely brought from the works of Hodges [62], Marker [74] and Hed-
man [56]; and should be used as a reference for model-theory in this dissertation.

First of all, a structureM is an mathematical object specified by:

• A (possible empty) set called the domain or universe ofM written M. Each element
of M is called an element of the structureM.

• A (possible empty) set of constant elements ofM, each named by one or more con-
stants. If c is a constant, cM indicates the constant element named by c.

• For each positive integer n, a (possible empty) set of n-ary relations on M (subsets of
Mn). Each relation is named by one or more n-ary relation symbols. If R is a relation
symbol, RM indicates the relation named by R.

• For each positive integer n, a (possible empty) set of n-ary operations on M. Each
operation is named by one or more n-ary function symbols. If F is a function symbol,
FM indicates the function named by F.

Moreover, every well-ordered sequence of elements of a structure will be written m, n, and
so on. A tuple in M is a finite sequence of elements of M; and if a tuple has length n it is
referred to as an n-tuple. Finally, if f is a function andm is an n-tuple, fm means (fm1,...,fmn).

The signature L of the structureM is specified by the set of constants, relation symbols
and function symbols ofM (we assume L can be read off uniquely from the structure). Note,
however, that constants, functions and relations of a structure can be named by different
symbols, i.e. a signature can be interpreted in several different ways. IfM has signature L,
we sayM is an L-structure.

LetM and P be two L-structures with domains M and P respectively. An homomorphism
f:M!P is a function f from M to P with the following properties:
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• For each constant c of L, f(cM) = cP .
• For each positive integer n, each n-ary relation symbol R of L and n-tuple m fromM,

if m 2 RM then fm 2 RP .
• For each positive integer n, each n-ary function symbol F of L and n-tuple m fromM,

f(FM(m)) = FP (fm).

Now, an embedding of M into P is a homomorphism f:M!P which is injective and
satisfies the following stronger version of the second condition:

• For each positive integer n, each n-ary relation symbol R of L and each n-tuple m from
M, m 2 RM , fm 2 RP .

An isomorphism is a surjective embedding. An isomorphism between the structuresM and
P will be notedM
P.

Another interesting concepts are the ones of extension and substructure. If M and P
are L-structures with M�P, and the inclusion map i:M!P is an embedding, then we say P is
an extension ofM or thatM is a substructure of P. This is notedM�P.

Now, every language is built up from the atomic formulas of a signature, let us say L;
where atomic formulas are some strings of symbols including the symbols of L. Moreover,
every language has a stock of variables. These are symbols that serve as temporary labels
for the elements a structure. As for the terms of the signature L, these are strings of symbols
defined as follows:

• Every variable is a term of L.
• Every constant of L is a term of L.
• If n > 0, F is an n-ary function symbol of L and t1,...,tn are terms of L then the expression

F(t1,...,tn) is a term of L.
• Nothing else is a term of L.

A term is said closed or ground if no variables occur in it. Moreover, if a term t is introduced
as t(x), this means that x is a sequence x0; x1,..., possibly infinite, of distinct variables; and
every variable which occurs in t is among the variables in x.

As for the atomic formulas of L, these are the strings of symbols given by the following
conditions:

• If s and t are terms of L, then the string s = t is an atomic formula of L.
• If n > 0, R is an n-ary relation symbol of L and t1,...,tn are terms of L then the expression

R(t1,...,tn) is an atomic formula of L

In this case, the symbol = is not assumed to be a relation symbol in the signature. Moreover,
when an atomic formula has no variables, it is referred to as being an atomic sentence.
Furthermore, a literal of L is either an atomic or a negated atomic formula of L; where the
latter is a string :� with � being an atomic formula ofM. Finally, the symbol : shall be read
as “not” and we say thatMj= :�[m] holds iffMj= �[m] does not hold.

Now, if the variables x of an atomic formula �(x) are interpreted as names of elements m
in a structureM, then � makes a statement aboutM. This statement can be true or false.
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If it is true, then we say � is true of m inM, or that m satisfies � inM. This is noted as
M j= �[m]. Formally speaking, if �(x) is an atomic formula of L with x = (x0; x1; :::), M is
an L-structure and m is a sequence (m0;m1; :::) of elements ofM (assumed at least as long as
x, then:

• if � is the formula s = t where s(x) and t(x) are terms, then M j= �[m] iff sM[m] =
tM[m], and

• if � is the formula R(s1,...,sn) where s1(x),...,sn(x) are terms, then M j= �[m] iff the
ordered n-tuple (s1

M[m],...,sn
M[m]) is in RM.

Note that when � is an atomic sentence, then the sequence m can be omitted and one can
writeM j= � instead ofM j= �[m]. We say thatM is a model of �, or that � is true inM
ifM j= �.

The language L based on the signature L consists of formulas, that is, strings of symbols
built using the terms, atomic formulas and the literals of the signature L, together with rules
of grammar, some logical symbols (8,9,^ or _, for instance) variables and punctuation signs.
The notation Mj=�[m] is extended to fit formulas of the language L by induction on the
construction of the formula, depending on the language. Furthermore, a logic is a family of
languages which differ from each other only in signature.

As for the sentences of the language L, they are formulas with no free variables, that is,
formulas in which every variable is inside a quantifier (8 or 9). Moreover, a theory is simply
a set of sentences. To make a long story short, ifM is a L-structure, then each sentence � is
once again either true or false in M. If � is true in M, M is said to be a model of � and
noted as M j= �. Moreover, given a theory T, M is said to be a model of T if M j= � for
all sentences � 2 T. This is written as M j= T. A theory with at least a model is said to be
satisfiable.

Now, let T be a theory in the language L and K a class of L-structures. We say that
T axiomatises K, if K is the class of all L-structures which are models of T. This is noted
K=Mod(T). Likewise, if both T and U are theories in the language L, U axiomatises T if
Mod(U)=Mod(T).

Conversely, let L be a language and K a class of L-structures. The L theory of K, ThL(K)
is the set of all sentences � of L such thatMj=� for every structureM in K. Moreover, when
a theory T is written to describe a particular structure M, we say that M is the intended
model of T. Finally, if a theory T has models that are not isomorphic to the intended one,
these are called nonstandard models.

This duality between the syntax of a language (its terms, formulas, sentences, and so on)
and its related semantics (the structures) is extremely important; for theories define classes
of structures that satisfy them, and structures define sets of sentences that are satisfied by
them.

Now, the symbol j= can also be used to relate theories and sentences, and theories and
other theories. Let T and U be two theories and � be a sentence in the language L. We say that
Tj=� iffMj=� wheneverMj=T. Naturally, Tj=U iffMj=U wheneverMj=T. In these cases, T
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is said to entail or imply � and U; and � and U are said to be logical consequences of T.
A theory T is said to be complete iff for every sentence � in the language L, either T j= � or
T j= :�.

As for the proof-theoretic symbol ` it can also be used to relate theories and sentences.
Let T be a theory and � be a sentence in a language L. T`� if � is deducible from T in some
proof calculus. In this case, we say that � is inferred or proved from T, and � is a theorem
of T.

The last concept I will be exposing is the notion of interpretation of a structure. Let
L and K be signatures, M a K-structure and P a L-structure, and n a positive integer. An
(n-dimensional) correct interpretation � of P inM, noted �(P,M) is defined to consist of
three items,

• a formula ��(x0; :::; xn�1) of signature K,
• for each unnested atomic formula �(y0; :::; yj�1) of L, a formula ��(x0; :::; xj�1) of signa-

ture K in which the xi are disjoint n-tuples of distinct variables,
• a surjective map f� : ��(M

n)! P,

such that for all unnested atomic formulas � of L and all mi 2 ��(M
n),

• Pj=�(f�m0; :::; f�mj�1) , Mj=��(m0; :::;mj�1).

The formula �� is the domain formula of �; and the formulas �� and �� are the defining
formulas of �. As for the map f�, it is the coordinate map of �. To interpret a structure
P in a structure M is to try to build a correct interpretation of P in M. To interpret a
structure does not mean that there is a correct interpretation.
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