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Résumé détaillé en français de la thèse

L

a décomposition modale empirique (Empirical Mode Decomposition "EMD" en anglais) est une méthode caractérisée par un processus appelé Tamisage (Sifting) permettant de décomposer temporellement un signal en une somme de composantes oscillantes appelées Modes Empiriques connues sous le nom de Intrinsic Mode Functions (IMF).

Le but général de la thèse est l'exploration des possibilités de l'EMD pour traitement et l'analyse des signaux sonores avec comme application débruitage, compression et tatouage. Ainsi, mes travaux de recherche actuels s'inscrivent dans un esprit de continuité du travail effectué en mastère, qui touche particulièrement les traitements du signal. Le rapport de la thèse est écrit en anglais, il est structuré en quatre parties.

.1 Transformée de Huang : EMD

Dans ce chapitre, on propose d'étudier la technique EMD en précisant ses caractéristiques, tout en insistant sur les critères qui nous offrent une bonne décomposition du signal. x(t) = d(t) + m(t) (1) où x(t) constitue le signal à décomposer, d(t) est l'oscillation rapide, m(t) est le signal tendance et t indique le temps discret.

De même le signal tendance peut être aussi décomposé en deux termes (2).

m(t) = d 1 (t) + m 1 (t) (2) 
où d 1 (t) est la composante haute fréquence et m 1 (t) est la composante basse fréquence.

Pour calculer un mode relatif à un signal, on suit le principe suivant :

1. Identifier tous les extrema locaux de x(t).

2. Interpoler les minima (resp. les maxima) de manière à construire une certaine enveloppe: EnvMin (resp. EnvMax).

3. Calculer la moyenne de deux enveloppes m(t) = ( EnvMin(t) + EnvMax(t))/2. En itérant ce principe, on obtient une décomposition du signal décrite comme suit:

x(t) = N j=1 IMF j (t) + r(t) avec N ∈ N * (3) 
où IMF j est l'IMF d'ordre j qui est de type plus haute fréquence que l'IMF j+1 .

Le signal r(t) est appelé résidu, il correspond à la composante la plus basse fréquence du signal. D'aprés (3) et en supposant que N est fini, on reconstruit linéairement le signal RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE vi original sans perte ou distorsion de l'information [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF].

Toutefois, on ne parle d'une IMF que si elle vérifie les critères suivants [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]:

1. Une moyenne nulle.

2. La différence entre le nombre d'extrema et le nombre de passage à zéros est au plus de un (c'est à dire qu'entre un minimum et un maximum successif, l'IMF passe par zéro).

Le principe de décomposition de l'EMD est assuré par le processus de tamisage défini par l'algorithme décrit dans ce qui suit.

.1.2 Procédure algorithmique de l'EMD Notations :

ǫ : indique le seuil prédéfinie, c'est un critère de condition de la boucle indicée par i. j : représente l'indice de l'IMF.

i : constitue l'indice de l'itération appliquée sur le résidu pour vérifier le critère d'une IMF.

r j : désigne le résidu aprés l'obtention de la j eme IMF h j,i : c'est une variable intermédiaire de calcul qui prend la valeur du nouveau résidu à la première itération, puis, elle prend la différence entre le résidu et la valeur de l'enveloppe moyenne aux itérations suivantes.

U j,i : représente l'enveloppe supérieure de h j,i , construite par interpolation des maxima.

L j,i : représente l'enveloppe inférieure de h j,i , construite par interpolation des minima.

µ j,i : désigne l'enveloppe moyenne, obtenu à partir des deux enveloppes de h j,i . SD (i) : indique le critère d'arrêt à la i ème itération.

L'algorithme correspondant à la méthode EMD peut s'écrire sous la forme du pseudo -code suivant :

Etape1: fixer ǫ, j ← 1 (j ème IMF ).

Etape2 : r j-1 (t) ← x(t) (résidu).

Etape3 : extraire la j ème IMF :

(a) : h j,i-1 (t) ← r j-1 (t) ,i ← 1 ( i;itération de la boucle sifting).

(b) : extraire les maxima et les minima locaux de h j,i-1 (t).

RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE vii (c) : calculer les enveloppes supérieure et inférieure : U j,i-1 (t) et L j,i-1 (t) par interpolation ( splines cubiques par exemple ) des maxima et des minima de h j,i-1 (t) respectivement.

(d) : calculer l'enveloppe moyenne : µ j,i-1 (t) =(U j,i-1 (t) + L j,i-1 (t))/2.

(e) : mettre à jour h j,i (t) ← h j,i-1 (t)µ j,i-1 (t) , i ← i + 1.

(f) : calculer le critère d'arrêt (par exemple) : SD(i) = T t=0 |hj,i-1(t)-hj,i(t)| 2 (hj,i-1(t)) 2 , où T représente le nombre d'échantillons du signal.

(g) : décision : répeter l'étape (b),(f) tant que SD(i)<ǫ.

à la sortie de l'étape(3), on met IMF j ← h j,i (t) (j ème IMF ).

Etape4 : mettre à jour le résidu r j (t) ← r j-1 (t) -IMF j (t).

Etape5 : répéter l'étape(3) avec j ← j + 1 jusq'u à ce que le nombre d'extrema dans r j (t) ≤ 2.

L'algorithme décrit ci-dessus, comporte deux boucles imbriquées l'une dans l'autre, celle indicée par j permet d'extraire l'IMF, qui nous détermine le niveau de profondeur de décomposition et l'autre indicée par i conditionne la fonction IMFj(t) de manière à respecter les critères requis; avoir deux enveloppes symétriques afin que le signal extrait IMF j soit bien une IMF.

Une bonne décomposition donnée par cet algorithme est conditionnée par le choix de certains paramètres.

.

Paramètres pertinants de la décomposition

Généralement, le choix des paramètres repose sur le critère d'arrêt. Comme il existe deux boucles dans l'algorithme, il faut s'assurer que les deux doivent s'arrêter. La boucle principale indicée par j s'arrête lorsqu'il n'est plus possible de décomposer le résidu courant càd que r j (t) possède moins de deux extrema. La boucle indicée par i est liée à un critère d'arrêt qu'il convient de définir de manière précise.

La 2 ème boucle (indicée par i) va s'arrêter lorsque h j,i (t) vérifie les critères de définition d'une IMF ( de moyenne nulle). Théoriquement, cette hypothèse n'est pas démontrée, pour cela en pratique on ajoute à ce critère un autre qui évite au proccesus de tamisage entrer dans une boucle infinie. La définition d'un critère d'arrêt du processus de tamisage est alors nécessaire:

Ainsi dans [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], les auteurs proposent un critère d'arrét SD(i) reposant sur la RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE viii deviation standard et défini par :

SD(i) = T t=0 |hj, i -1(t) -hj, i(t)| 2 (hj, i -1(t)) 2 (4) 
Le test d'arrêt est validé lorsque la différence entre deux tamisages consécutifs est inférieur à un seuil prédéfinie ǫ. Typiquement, la valeur ǫ permettant de stopper le tamisage est comprise entre 0.2 et 0.3 [1]. Cette valeur réalise un certain compromis.

En effet si ǫ est trop grand, l'EMD ne permet pas de séparer les différents modes présents dans le signal, cependant si ǫ est trop petit, l'EMD risque d'aboutir a des composantes dont l'amplitude est quasiment constante et modulée par une seule fréquence ( sur-décomposition de signal).

Un autre critère local a été proposé par P.Flandrin [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF] et notamment choisi en pratique. Ce critère est défini comme suit :

σ(t) = 2| µ i-1 (t) U i-1 (t) -L i-1 (t) | (5) 
En adoptant le critère σ(t), trois conditions nécessaires sont définies pour que h i,j (t) soit bien une IMF [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF].

• La différence entre le nombre de zéros de h i (t) et les nombres d'extrema de h i (t) est infèrieure ou égale en valeur absolue à 1.

• σ(t) < θ 1 pour t ≤ (1α)T

• σ(t) < θ 2 pour (1α)T < t <T où T : la taille de la fenêtre d'analyse, θ 1 et θ 2 deux réels tels que 0 ≤ θ 1 ≤ θ 2 et 0 ≤ (α ≡ (T olerence)) ≤1

La première condition revient à dire qu'une IMF doit être une fonction oscillante autour de zéro : entre un maximum et un minimum, il doit y avoir un passage par zéro. Les deux dernières conditions exigent que le paramètre σ(t) soit faible. Toute fois, il peut dans une certaine mesure prendre des valeurs élevées.

Dans [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF]le bon copromis du choix des valeurs des seuils θ 1 et θ 2 est le suivant : θ 1 ≈ 0.05 et θ 2 ≈ 10 * θ 1 et α ≈ 0.05. On conclut que tous les critères d'arrêt sont exigés pour que h j,i (t) vérifie bien les propriétés d'une IMF.

RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE ix Dans notre travail, nous adoptons le critère choisie par [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF], car il nous permet d'obtenir des modes qui correspondent bien à la définition d'une IMF.

.2 Débruitage des signaux de la parole par EMD

Nous présentons dans cette partie une procédure basée sur l'EMD pour le rehaussement du signal de la parole. En particulier le traitement proposé tiendra compte du caractère voisé ou non voisé de la séquence de parole considérée. Puisque le signal de parole est constitué de séquences voisées et non voisées, on a été amené à considérer séparément les deux types de séquences.

L'idée du débruitage d'un signal de parole bruité se présente selon le principe suivant:

1. Découper le signal bruité en trames.

2. Pour chaque trame on fait appelle à l'EMD pour la décomposer.

3. Après avoir décomposer la trame bruitée en modes, on calcule l'énergie de chacun des modes et suivant la variation des énergies, on déduit le type de la trame. 4. Suivant le type de la trame, on applique le procédé du débruitage, c'est à dire s'il s'agit d'une séquence voisée, on applique l'approche du filtrage puis on débruite seulement les modes qui ne sont pas pris lors du filtrage par EMD, alors que dans le cas d'une séquence non voisée, on débruite tous les modes. 5. Le signal estimé est reconstruit en utilisant les séquences débruitées. 

Codage des signaux audio par EMD

Dans cette partie, nous proposons une alternative à la décomposition par ondelettes, il s'agit de la décomposition modale empirique (EMD) [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. Contrairement à la décomposition par ondelettes, l'EMD est entièrement pilotée par les données. Par conséquent, l'EMD ne nécessite pas le choix a priori d'une famille de fonctions de base de décomposition des signaux.

L'EMD consiste à décomposer un signal en une somme finie d'IMF. L'analyse du processus du tamisage qui génère les IMF montre qu'on peut envisager un schéma de compression à bas débit basé sur le codage des IMF du signal audio à coder. En effet, chaque IMF peut être vue comme la composante du signal dans une certaine sous-bande, implicitement définie par l'EMD [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF]. Du fait du caractère oscillant et de moyenne nulle des signaux à bande étroite, le codage de chaque IMF peut être réalisé en ne considérant que ses extrema. Notons, en particulier qu'une simple interpolation de ses extrema au moyen de fonctions spline [START_REF] Khaldi | Audio encoding based on the empirical mode decomposition[END_REF], permet la la reconstruction presque parfaite de l'IMF considérée. L'analyse du processus du tamisage qui génère les IMF montre qu'on peut envisager un schéma de compression des signaux à bas débit en utilisant l'approche EMD. En effet, comme chaque IMF est représentée uniquement par ses extrema et un modèle d'interpolation spline, un codage pour la compression est possible. Ainsi, la compression du signal correspond à celle des extrema des IMF. Donc, le décodeur aura besoin uniquement des extrema préalablement stockés pour reconstruire les IMF et par conséquent le signal initial.

L'association du modèle psycho-acoustique dans le procédé de codage des extrema des différents IMFs obtenus, garantira une bonne qualité d'écoute du signal décodé.

La nouvelle technique est décomposée en plusieurs modules liés les uns aux autres.

Le principe de l'approche proposée est résumé par l'organigramme de la Figure 1.

.

Décomposition par EMD

On découpe tout d'abord le signal audio en trames de taille 512 échantillons [START_REF] Noll | Mpeg digital audio coding[END_REF].

En utilisant le processus de tamisage, chaque trame du signal est ensuite décomposée temporellement en une somme de composantes modales (IMF i ) i=1,C , qui sont 

.3.2 Seuillage des extrema selon le modèle psycho-acoustique

Notre objectif dans cette partie est de réduire au maximum le nombre d'extrema d'une IMF, tout en assurant que l'erreur entre l'IMF estimée à partir des extrema restants et la vraie IMF reste au-dessous de son seuil de masquage. Ce dernier est calculé en se basant sur le modèle psycho-acoustique utilisé dans le codeur MPEG1.

La technique de seuillage utilisée ici est de type dur [START_REF] Mallat | Une exploration des signaux en ondelettes[END_REF]. On obtient ainsi un jeux réduit d'extrema (e i,n i ) i=1,C . RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE xiii .

Quantification des extrema seuillées

Puisque le nombre des extrema seuillés décroît d'une IMF à la suivante (les IMF successives sélectionnent des composantes du signal de fréquences de plus en plus basses), le nombre de bits alloués varie d'une IMF à l'autre afin d'optimiser l'allocation de débit, comme c'est le cas dans les codeurs en sous-bandes de type MPEG. Ainsi, le nombre réduit de bits utilisés pour coder les extrema de chaque IMF doit garantir l'inaudibilité de l'erreur de quantification de l'IMF.

Pour cela, on commence par affecter un même nombre réduit de bits pour chaque IMF. Ce nombre de bits peut être ensuite augmenté jusqu'à assurer l'inaudibilité de l'erreur de codage de l'IMF. Il s'agit d'un procédé itératif de quantification de l'IMF suivi de sa reconstruction, en augmentant progressivement le nombre de bits alloués jusqu'à satisfaire la contrainte de masquage. En fait, ce procédé consiste à quantifier l'IMF, la reconstruire puis comparer la Densité Spectrale de Puissance (DSP) son erreur par rapport à son seuil de masquage. Si la DSP de l'erreur est au dessus du seuil de masquage, on recommence la quantification en augmentant le nombre de bits alloués et ainsi de suite jusqu'à ce que la DSP de l'erreur soit au dessous de la courbe de masquage.

Au début, on fixe le nombre de bits pour tout extrema des IMFs (1 bits), la mise à jour du nombre de bits est obtenue en addition par un l'ancienne valeur du nombre de bits. Dés que la nouvelle IMF reconstruite respecte le seuil de masquage, la boucle de quantification pour cette IMF s'arrête.

Cette méthode de quantification présente un avantage, car le nombre de bits utilisés pour respecter la contrainte psycho-acoustique est ici minimisé individuellement pour chaque IMF.

.3.4 Codage

La réduction de l'information redondante résiduelle est alors assurée par un codage d'Huffman. Son principe est basé sur une étude statistique définie par la PDF (Probability Density Function) . Le code le plus fréquent est attribué à un nouveau code contenant le nombre minimal des bits possible et ainsi de suite. Chaque signal est découpé en trames de taille 512 échantillons [START_REF] Noll | Mpeg digital audio coding[END_REF]. Ensuite en utilisant le processus de tamisage, chaque trame du signal est decompsée en ensembles d'IMFs et un résidu. Les positions des extrema sont codés sur 9 bits, alors que leurs valeurs sont codés selon le procédé de quantification décrit ci-dessus. 

Procédure d'insertion

Après combination de la marque avec le code de synchronisation pour former un flux binaire m i , la procédure d'insertion de la marque est illustré dans les étapes suivantes:

Etape 1: Segmenter le signal audio en trames.

Etape 2: Decomposer chaque trame en IMFs, en utilisant l'EMD.

Etape 3: Insérer P fois la séquence binaire m i dans les extrema de la dernière IMF.

L'insertion des bits se fait par modulation d'amplitude des extrema, ainsi chaque bit de sequence binaire doit être inséré comme suit:

e ′ i =    ⌊e i /S⌋.S sgn 3S/4 si m i = 1 ⌊e i /S⌋.S sgn S/4 si m i = 0 (6) 
e i et e ′ i désigne les extrema de la dernière IMF de signal audio respectivement le signal audio tatoué. sgn est égale à "+" si e i est un maximum, et "-" si'il est un minimum. ⌊ ⌋ est la fonction partie entière, et S répresente le facteur d'insertion, que doit être choisi de telle sorte que le signal tatoué respecte la contraine d'inaudibilité.

Etape 4: Reconstruire la trame (EMD -1 ) en utilisant la dernière IMF modifiée puis on concaténe la trame tatouée pour construire le signal audio tatoué.

Procédure d'extraction

Etant donné N 1 et N 2 est le nombre de bits de code de synchronisation respectivement le nombre de bits de la marque. L'extraction de la marque est décrit comme suit:

Etape 1: Segmenter le signal en trames.

Etape 2: Decomposer chaque trame en IMFs, en utilisant l'EMD. 

.4.2 Principaux résultats

Pour illustrer les performances de l'algorithme de tatouage par EMD, nous avons effectué des simulations numériques sur des signaux audio de natures différentes.

Les signaux sont tous échantillonnés à la fréquence fe = 44.1KHz. La marque est une image logo binaire.

Pour evaluer la performance de l'algorithme proposé, nous avons utilisé les deux critères suivants : TEB et NC (Normalised Cross-correlation). In several scenarios, it is preferable to take advantage of multi-resolution characteristics of WT. A limit of the wavelet approach is that first, the basis function must be specified and, second a specific basis function may not be able to catch all the non stationarity of the analyzed signal. To overcome this drawback time-frequency atomic signal decomposition can be used [START_REF] Goodwin | Matching pursuit and atomic signal models based on recursive filter banks[END_REF], [START_REF] Mallat | Matching pursuit with time-frequency dictionaries[END_REF]. As for wavelet packets, if the dictionary is very large and rich enough with a large collection of atomic waveforms which are located on a much finer grid in time-frequency space than wavelet and cosine packet tables, then it should be possible to faithfully represent a wide range of real signals. Furthermore, the ideal is to find an adaptive decomposition of the signal, so that it does not require a priori information about the signal time varying characteristics.
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INTRODUCTION 16 the signal itself. Hence, the analysis is adaptive, in contrast to the traditional methods where the basis functions are fixed. The EMD is based on the sequential extraction of energy associated with various intrinsic time scales of the signal, called Intrinsic Mode Functions (IMFs), starting from finer temporal scales (high frequency IMFs) to coarser ones (low frequency IMFs). The superposition of the extracted IMFs matches the signal very well and therefore ensures completeness [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF].

Characteristics of EMD and its effectiveness as a decomposing tool, have been addressed by different research. Indeed, an improvement in terms of signal decomposition has been shown in [START_REF] Rilling | Décomposition modale empirique : échantillonnage et résolution[END_REF], [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF]. The combination of EMD with Hilbert transform demonstrated the interest of EMD as a tool to investigate time-frequency domain representations [START_REF] Bouchiki | Détection et classification d'échos de cibles Sonar par THT (Transformation de Huang-Teager[END_REF], [START_REF] Cexus | Non-stationary signals analysis by teager-huang transform (THT)[END_REF]. In [START_REF] Diop | A pde charecterization of the intrinsic mode functions[END_REF] it has been shown that, provided some hypothesis, the extraction of IMF is reduced to the resolution of partial differential equation (Heat equation). Further, EMD has demonstrated its usefulness and effectiveness in many applications such as biomedical signals filtering and sonar target tracking [START_REF] Bouchiki | Détection et classification d'échos de cibles Sonar par THT (Transformation de Huang-Teager[END_REF], [START_REF] Cexus | Non-stationary signals analysis by teager-huang transform (THT)[END_REF].

Main motivation of this thesis is to investigate the potential of EMD as an analyzing method for both speech and audio signals. More particularly, we address the problems of denoising, coding and watermarking. Also the goal of this work is to explore the limit of self-adaptive nature of the EMD process as signal analyzing tool in speech and audio processing.

Outline of the thesis

The dissertation is organized chapter by chapter as follows chapter I is devoted to a presentation of the Huang transform, known as EMD.

In particular, interest is focused on the relevant parameters which have influences on extracted IMFs, such as interpolation and sampling [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF]. The capability of EMD for separation of components is also studied and illustrated.

In the first part of the thesis, we are interested in techniques of noise reduction (filtering and denoising). Particularly in the case of additive white Gaussian noise, different approaches have been proposed [START_REF] Scalart | Speech enhancement based on a priori signal to noise estimation[END_REF], [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF]. When the noise distribution can be estimated accurately, then filtering yields acceptable results. However, these methods are not so effective when the noise level is difficult to estimate. Linear methods based on Wiener filtering [START_REF] Proakis | Digital Signal Processing: Principles, Algorithms, and Applications[END_REF] are sometimes preferred because linear filters are easy to implement and design. However, linear filtering methods are not so effective when signals contain sharp edges and impulses of short duration. Furthermore, real signals are often non-stationary. In order to overcome these shortcomings, nonlinear methods have been proposed and especially those based on wavelets thresholding [START_REF] Donoho | De-noising by soft-thresholding[END_REF], [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF]. The idea of wavelet thresholding relies on the assumption that signal magnitudes dominate the magnitudes of the noise in a wavelet representation, so that wavelet coefficients can be set to zero if their magnitudes are less than a pre-determined threshold [START_REF] Donoho | De-noising by soft-thresholding[END_REF]. Using the same strategy as in wavelets thresholding approach, we propose in this thesis new techniques of speech denoising based on EMD. Our contribution related to these techniques are organized into two chapters.

In Chapter II, different denoising strategies based on EMD that address both additive white and colored noise are presented. In fact, it has been shown in [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF]- [START_REF] Boudraa | EMD-based signal noise reduction[END_REF], that EMD can be used for signal denoising. The proposed denoising method reconstructs the signal from all the IMFs previously filtered or thresholded as in wavelet analysis [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF]- [START_REF] Boudraa | EMD-based signal noise reduction[END_REF]. In this chapter, firstly two new denoising strategies for white noise context are presented. The first strategy combines EMD and Minimum Mean Squared Error (MMSE) filter [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF], and the second one associates EMD with hard shrinkage [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF]- [START_REF] Boudraa | EMD-based signal noise reduction[END_REF]. The two methods, effective for a large class of signals, are applied to speech signals corrupted with different white noise levels.

The third denoising technique, called EMD-ACWA, consists in filtering IMFs by Adaptive Center Weighted Average (ACWA) filter [START_REF] Lee | Digital image enhancement and noise filtering by using local statistics[END_REF], which exploits some local statistics of the signal. This technique is efficient both in the context of white noise and colored one. The use of ACWA filter is motivated by two important reasons.

First, it operates in the time domain as the EMD. So, there is no need to use of FT as in the case of the MMSE filter [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF]. Second, the ACWA filter operates regardless of the nature of the signal and noise. In particular, the assumptions of signal stationarity and white noise are not required.

Chapter III deals with a new noise reduction technique dedicated to speech signal. This technique, which combines EMD with ACWA filter, takes into account the characteristics of speech signal. The proposed approach takes into account the class of the processed speech frame (voiced/unvoiced and transient). Indeed, in the IMF filtering step the number of denoised IMFs depends on whether the noisy frame is voiced or unvoiced. An energy criterion detects voiced frames while the stationarity index [START_REF] Laurent | Stationarity index for abrupt changes detection in the time frequency plane[END_REF] is used to distinguish between unvoiced and transient frames .

The second part of the thesis is devoted to audio coding. The coding process is a central topic in the fields of audio and image processing [START_REF] Jayant | Signal compression[END_REF], [START_REF] Veldhuis | Subband coding of digital audio signals[END_REF] and particularly in audio domain where different strategies have been proposed [START_REF] Johnston | Transfom coding of audiosignals using perceptual criteria[END_REF], [START_REF] Noll | Mpeg digital audio coding[END_REF]. When applications are not limited by low bit rate constraints, coding usually leads to acceptable results. However, in many applications such as digital audio broadcasting or multimedia, low bit rate and high fidelity are required. In order to reduce the bit rate, sub-band coding [START_REF] Brandenburg | Iso-mpeg-1 audio: A generic standard for coding of high-quality digital audio[END_REF], [START_REF] Stoll | Generic architecture of the iso/mpeg audio layer i and ii-compatible developments to improve quality and addition of new features[END_REF] and transform coding approaches [START_REF] Deshmukh | Multiwavelet decomposition for audio coding[END_REF], [START_REF] Sinha | Low bit rate transparent audio compression using adapted wavelets[END_REF] have been used to design efficient coding algorithms. These methods use basically a subband decomposition of the signal followed by perceptual encoding of significant coefficients at each subband which appeals to the following principle: do not code what the ear can't listen. Applying this principle enables good results at low bit rate. Unfortunately, using a decomposition strategy based on the representation on a fixed basis prevents the decomposition from being parsimonious for any kind of audio signal. Indeed, even if a decomposition tool is well suited for a large class of audio signals, in the sense that it yields compact descriptions with only a few significant terms, there are audio signals for which the basis under consideration performs poorly [START_REF] Deshmukh | Multiwavelet decomposition for audio coding[END_REF]. The EMD can be seen as a type of subband decomposition whose subbands are able to automatically separate the different components of a signal. Each IMF replaces the signal details, at a certain scale or frequency band.

Thanks to IMF properties, the EMD seems to be a very interesting decomposition tool to use for a low bit rate audio coding. The presentation of our contribution to audio coding is organized in two chapters.

In Watermarking is as a solution to control unapproved copying and redistribution of multimedia data, where many bit streams can be transmitted by taking the audio signal as a transmission medium. Various constraints must be considered in the watermarking process such as inaudibility of the watermarked signal, higher transmission bit rate and robustness against distortions. The detection of the inserted message is the subject of several research [2], [START_REF] Swanson | Robust audio watermarking using perceptual masking[END_REF] where several watermarking techniques have been proposed [START_REF] Cvejic | Robust audio watermarking in wavelet domain using frequency hopping and patchwork method[END_REF], [START_REF] Bhat | An adaptive audio watermarking based on the singular value decomposition in the wavelet domain[END_REF]. The watermarking approach of Malvar [START_REF] Kiroveski | Robust spread-spectrum audio watermarking[END_REF] is among of the recent algorithms in the context of audio signals. This approach has shown good robustness to a wide variety of attacks but it imposes a very limited transmission bit rate. So, to increase the bit rate, many watermarking algorithms based on the wavelet has been presented [START_REF] Bhat | An adaptive audio watermarking based on the singular value decomposition in the wavelet domain[END_REF], [START_REF] Wu | Statistical significance test of intrinsic mode functions[END_REF]. A limit of the wavelet approach is that the basis functions are fixed, and thus may not be effective for all real signals. The IMFs are fully described by their local extrema [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], thus, they can be constructed from only their extrema [START_REF] Khaldi | Audio encoding based on the empirical mode decomposition[END_REF]. The superposition of extracted IMFs matches the signal very well and therefore ensures completeness [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. Based on these interesting proprieties, we considered a watermarking scheme based on EMD.

The proposed watermarking approach is the subject of chapter VI. Finally, the conclusion will review all the work done and presents several suggestions and extensions to improve and optimize the contributions of this work.

Chapter

Main contributions of the thesis

In the following we list the main contributions of the dissertation 

•

I.1.1 Principle of EMD

The EMD is an algorithmic signal decomposition method. It is based on the principle of decomposing a signal into the sum of a high frequency component (fast oscillation) and a low frequency component (trend). This principle is illustrated by equation ( I.1),

x(t) = d(t) + m(t), (I.1)
where t denotes the discrete time, x(t) is the signal to decompose, d(t) is the fast oscillation and m(t) is the signal trend. Similarly, the signal trend can also be decomposed into two terms,

m(t) = d 1 (t) + m 1 (t), (I.2)
where d 1 (t) is the high frequency component of m(t), and m 1 (t) is its low frequency component.

To extract the mode of a signal x(t), the following principle is considered:

• identify all extrema of x(t).

• interpolate between minima (resp. maxima), ending up with some envelope e min (t) (resp e max (t)).

• compute the average m(t) = (e min (t)+ e max (t))/2.

• extract the detail d(t) = x(t) -m(t).

The signal d(t) is considered as IMF after a number of iterations needed to satisfy a given stop criterion. By iterating this principle to the obtained trends, we get a signal decomposition described as follows:

x(t) = C j=1 IMF j (t) + r C (t), C ∈ N * (I.3)
where IMF j is the j th order IMF. IMF j contains higher frequency oscillations than the IMF j+1 . The signal r c (t) is called the residual, it is the lower frequency component of signal x(t). According to Eq. I.3 and assuming that C is finite, we can construct linearly the original signal without loss of any information [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF].

By definition, a component is considered as a true IMF if it satisfies the following criteria [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]:

1. the number of its extrema and the number of its zero crossings may differ by no more than one.

2. the average value of the envelope defined by the local maxima and the envelope defined by the local minima, is zero.

I.1.2 EMD algorithm

The principle of IMFs extraction is ensured by the sifting process, which is implemented by the following generic algorithm.

Notations:

ǫ: predetermined threshold, that is used to specify the loop exit condition. j: IMF index.

i: index of current iteration in the loop for extracting an IMF.

T: length of the decomposed signal: x= x(t) t=1...T .

r j : residual after obtaining the j th IMF h j,i : intermediate variable, equal to the value of the new residual at the first iteration. It is equal to the difference between the residual and the value of the average envelope in the following iterations.

U j,i : upper envelope of h j,i constructed by maxima interpolation.

L j,i : lower envelope of h j,i built by minima interpolation.

µ j,i : average envelope, obtained from both envelopes of h j,i .

SD(i)

: stopping criterion at i th iteration.

The sifting can be summarized as follows :

Step 1: Fix the threshold ǫ and set j ← 1 (j th IMF)

Step 2:

r j-1 (t) ← x(t) (residual)
Step 3: Extract the j th IMF :

(a) : h j,i-1 (t) ← r j-1 (t) ,i ← 1 ( i number of sifts) (b) : Extract local maxima/minima of h j,i-1 (t)
(c) : Compute upper and lower envelopes U j,i-1 (t) and L j,i-1 (t) by spline, interpolation of local maxima and minima of h j,i-1 (t) respectively (d) : Compute the mean of the envelopes :

µ j,i-1 (t) =(U j,i-1 (t) + L j,i-1 (t))/2 (e) : Update : h j,i (t) := h j,i-1 (t) -µ j,i-1 (t), i := i + 1 (f) : Calculate the stopping criterion : SD(i) = T t=1 |hj,i-1(t)-hj,i(t)| 2 (hj,i-1(t)) 2 (g) : Repeat Steps (b)-(f) until SD(i)< ǫ and then put IMF j (t) ← h j,i (t) (j th IMF)
Step 4: Update residual : r j (t) := r j-1 (t) -IMF j (t).

Step 5: Repeat Step 3 with j := j + 1 until the number of extrema in r j (t) is ≤ 2.

The sifting is repeated several times (i) in order to guarantee that the computed IMF h j,i fulfills the required conditions ( 1) and ( 2).

The sifting has two effects: (a) it eliminates riding waves and (b) it smoothes uneven amplitudes.

I.1.3 Meaningful parameters of EMD

Decomposition result of EMD depends on the choice of two important parameters:

the stopping criterion and the interpolation technique used.

I.1.3.1 Stopping criterion

Since there are two loops in the EMD algorithm, we must ensure that both must stop. The main loop indexed by j stops when it is impossible to decompose the current residual, i.e., that r j (t) has less than two extrema. The second loop indexed by i is linked to a stopping criterion that should be defined precisely.

In fact, the second loop will stop when h j,i (t) satisfies the criteria defining an IMF.

Theoretically, this assumption is not proven. So in practice a stopping criterion of the sifting process is imposed, in order to prevent the sifting processes from coming into an infinite loop.

Thus in [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], the authors propose a stopping criterion based on the standard deviation SD(i) defined by,

SD(i) = T t=0 |h j,i-1 (t) -h j,i (t)| 2 (h j,i-1 (t)) 2 (I.4)
The stopping test is validated when SD(i) is below a predefined threshold ǫ. Typically, the value ǫ to stop the sifting is between 0.2 and 0.3 [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], [START_REF] Huang | A confidence limit for the empirical mode decomposition and hilbert spectral analysis[END_REF]. In fact, if ǫ is too high, the EMD does not separate the different modes present in the signal, however if ǫ is too small, the EMD extracts components whose amplitudes are almost constant and modulated by a single frequency (over decomposition of the signal).

Another stopping criterion was proposed by Rilling et al [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF], and is particularly chosen in practice. This criterion is defined from the function:

σ(t) = 2| µ i-1 (t) U i-1 (t) -L i-1 (t) |, (I.5)
By adopting the criterion (Eq. I.5), three conditions must be satisfied so that h i,j (t) is an IMF [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF].

• The number of extrema of h i (t) and the number of the zeros crossings of h i (t) may differ by no more than one.

• σ(t) < θ 1 for t ≤ (1α)T.

• σ(t) < θ 2 for (1α)T < t <T. θ 1 and θ 2 are real numbers such that 0 ≤ θ 1 ≤ θ 2 and α is chosen in [0,1].
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The first condition means that an IMF must be an oscillating function around zero.

The last two conditions require that the function σ(t) has small values. Therefore, it can take high values to some extent. In [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF], a good compromise of empirical choice of the threshold values θ 1 and θ 2 is given as follows:

θ 1 = 0.05 and θ 2 ≈ 10 * θ 1 and α = 0.05.

In our work, we adopt the criteria chosen by [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF]. Indeed, it gives modes that correspond well to the definition of an IMF.

Nevertheless, to improve the decomposition result, we need to find an appropriate interpolation method, which allows to estimate both envelopes (maxima, minima)

with the lowest error.

I.1.3.2 Interpolation

Interpolation is an important step in the estimation and extraction of IMFs. Indeed, the envelopes are estimated by interpolation from the extrema, so the interpolation determines the shape of the IMF. There are various interpolation methods, but not all are effective for a good EMD representation. According to [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], the interpolation methods known as "nearest" and "linear" are not recommended for the estimation of IMFs, because both methods result in an excessive number of modes. However, the spline interpolation method provides better results than those obtained by other approaches. To illustrate the efficiency of spline interpolation compared to other methods, we consider the signal described by:

x(t) = cos(t) + (t) (I.6)
where t ≥ 0 represents the discrete time. The spline interpolation method coupled with a good choice of stopping criterion ensures a good result of the signal decomposition. This is illustrated by the following example.
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Example:

Consider the signal described by,

x(t) = sin(8t) + sin(3t) + 2t (I.7)
The threshold values are identical to those chosen in [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF], i.e θ 1 = 0.05, θ 2 ≈ 10 * θ 1 , α = 0.05. The spline interpolation method is used. The decomposition of this signal by EMD is shown in figure I.2.

The stopping criterion chosen in [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF] and the spline interpolation method offer in this case a very accurate decomposition, since we extracted two sinusoidal signals corresponding to sin(8t) and sin(3t), and trend signal corresponding to (3t). 

I.2 IMFs properties I.2.1 IMFs orthogonality

The EMD decomposes a signal into a finite sum of components. According to [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF],

the IMFs of a signal are orthogonal. For a signal x(t), one can write that

IMF i |IMF j = 0 ∀ i = j (I.8)
where | denotes the scalar product in L 2 , i and j ∈ {1, ...., C} and C is the number of IMFs obtained .

Theoretically this orthogonality cannot be proved. In practice, the equality (Eq. I.8)

is not strictly verified because the average envelope is derived from two envelopes which are estimated by interpolation [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. Note that in general the residual is not orthogonal to IMFs. It is a non-oscillating function (it is a trend increasing or decreasing or null). As a measure of orthogonality between different IMFs, we propose the use of the orthogonality index.

The orthogonality index OI IM F i ,IM F j is defined as the normalized version of product [START_REF] Cexus | Non-stationary signals analysis by teager-huang transform (THT)[END_REF],

IMF i |IMF j
OI IM F i ,IM F j = IMF i |IMF j IMF i . IMF j ∀ (i, j) (I.9)
where IMF corresponds to the standard Euclidean norm. If (i = j)

OI IM F i ,IM F j =1. OI IM F i ,IM F j = t IMF i (t).IMF j (t) t IMF 2 i (t). t IMF 2 j (t) ∀ (i, j), (I.10)
OI can also be interpretable as a correlation coefficient between IMF i and IMF j as the cosine of the angle between these two signals. According to Eq. I.9, it is also possible to define a matrix of orthogonality, that embodies all calculated indices [START_REF] Cexus | Non-stationary signals analysis by teager-huang transform (THT)[END_REF].

We denote this matrix by OI EM D ; its entry (i,j) is defined as

OI IM F i ,IM F j
In practice the matrix OI EM D is symmetric and its main diagonal is unitary. Ideally, in the case of exact estimation of IMFs, the matrix OI EM D is equal to the identity matrix. An overall orthogonality index oi can be defined from the matrix IO EM D

as follows [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]:

oi = 1≤i <j≤C (OI IM F i ,IM F j ) 2 , (I.11)
If we consider the signal described by Eq. I. ) is very low but not 0. Obtained orthogonality errors are due to the IMFs estimation error. This is attributed to the envelope calculation by the interpolation method. In fact, given that the estimated IMFs are obtained from one another by subtraction, then there is an error propagation [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF].

I.2.2 PDE for IMFs characterization

Since the EMD is defined by a sifting process, recently many studies have been focused on the comprehension of the EMD [START_REF] Delechelle | Empirical mode decomposition: An analytical approach for sifting process[END_REF], [START_REF] Meigen | A new formulation for emperical mode decomposition based on constrined optimization[END_REF], [START_REF] Sharpely | Analysis of the intrinsic mode functions[END_REF], [START_REF] Vatchev | Decomposition of functions into pairs of intrinsic mode functions[END_REF]. These different studies have tried to find a mathematical framework for the IMF description. In [START_REF] Delechelle | Empirical mode decomposition: An analytical approach for sifting process[END_REF], the sifting process is modeled by a fourth order Partial Differential Equation (PDE), such approach was validated by numerical simulations.

In [START_REF] Diop | A pde charecterization of the intrinsic mode functions[END_REF], a mathematical characterization of IMFs is obtained. The IMFs are the solutions of the PDE as follows:

   ∂h ∂s + 1 δ 2 h + 1 2 ∂ 2 h ∂t 2 = 0 h(t, 0) = x(t) (I.12)
where s is a PDE variable, t is a time variable, δ is the adjusted parameter and

x denote the signal. This mathematical model depends on the sifting process, in contrast to the works [START_REF] Sharpely | Analysis of the intrinsic mode functions[END_REF], [START_REF] Vatchev | Decomposition of functions into pairs of intrinsic mode functions[END_REF], where the mathematical relationship of IMFs is independent of the sifting process. This model (Eq. I.12) holds only for harmonic signals and require a good choice of the adjusting parameter δ.

I.3 EMD: a time-frequency description tool I.3.1 Importance of the sampling frequency

Sampling frequency has a big influence on the results of the decomposition. It can influence the number of IMFs obtained. We propose to display the effect of the sampling frequency for a pure frequency signal (or tone). This study is based on the work of Rilling et al. [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF], [START_REF] Rilling | Décomposition modale empirique : échantillonnage et résolution[END_REF] and that of Stevenson et al. [START_REF] Stevenson | A sampling limit for the empirical mode decomposition[END_REF].

Let us consider the following signal:

x(t) = cos(2πνt) (I.13)
where t is the discrete time ∈ {1.......N}, ν = f f e is the normalized frequency and f e is the sampling frequency.

The study consists in varying the normalized frequency of the signal, and the results of the EMD are compared to the theoretical sinusoidal component of frequency ν, i.e the original signal. the phenomenon, the relative error E(ν) associated to the first IMF is defined as follows [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF]:

E(ν) = N t=1 [x ν (t) -IMF 1 (t)] 2 N t=1 x 2 ν (t) (I.14)
where ν is the normalized frequency, and IMF 1 (t) is the first IMF of signal x(t). We see that the overall error is raised by a quadratic function of ν :

E(ν) ≤ λν 2 .
More precisely the error E(ν) is modeled as follows [START_REF] Cexus | Non-stationary signals analysis by teager-huang transform (THT)[END_REF], [START_REF] Rilling | Décomposition modale empirique : échantillonnage et résolution[END_REF], [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF] (Fig I .4):

• the error is raised by :

E(ν) ≤ 1-cos(πν) √ 2 ≤ π 2 ν 2 2 √ 2 , • the errors are increased for frequencies ν = 1 2k+1 and ν = 2 2k+1 , where k ∈ N * ,
• the error is zero for frequencies ν = 1 2k , where k ∈ N * ⇒ f e = 2kf , where f and f e denotes the frequency and the sampling frequency respectively.

The EMD of the tone depends strongly on the normalized frequency ν, consequently the sampling frequency for a fixed frequency f [START_REF] Cexus | Non-stationary signals analysis by teager-huang transform (THT)[END_REF], [START_REF] Rilling | Décomposition modale empirique : échantillonnage et résolution[END_REF], [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF]. 

I.3.2 Tones separation

In this section we study the ability of EMD to separate two sinusoidal components, according to the ratio of their frequency. This study is inspired by the work of Rilling et al. [START_REF] Rilling | Décomposition modale empirique : échantillonnage et résolution[END_REF], [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF].

We consider a signal composed of two tones. It is defined as follows:

x(t) = x ν 1 (t) + x ν 2 (t) = cos(2πν 1 t) + cos(2πν 2 t) (I.15)
where t ∈ {1, ...., N}, and (ν 1 , ν 2 ) the pair of distinct normalized frequencies, such that ν 1 > ν 2 . For simplicity, we assume that the amplitudes both signals x ν 1 (t) and

x ν 2 (t) are equal. We expect the EMD to produce two IMFs at least: one associated to the highest frequency and the other to the lowest one. [START_REF] Rilling | Décomposition modale empirique : échantillonnage et résolution[END_REF], [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF].

According to [START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF], the estimation error of the first and second IMF is given by: 

E(ν 1 , ν 2 ) = N t=1 x 2 ν 1 (t) N t=1 (x ν 1 (t) -IMF 1 (t)) 2 + N t=1 x 2 ν 2 (t) N t=1 (x ν 2 (t) -IMF 2 (t)) 2 ( N t=1 (x 2 ν 1 (t) + x 2 ν 2 (t))) N t=1 x 2 (t) (I.16)
where (ν 1 , ν 2 ) both frequencies are varied in the interval ]0,0. 

(t) = x ν 1 (t) + x ν 2 (t) = cos(2πν 1 t) + cos(2πν 2 t).

I.3.3 EMD acts as a Filter bank: Gaussian white noise case

The previous section showed that the EMD behaves as a self-adaptive filter bank.

Thus, EMD decomposes locally a signal into a sum of IMFs from the highest frequencies to the lowest. In some well-controlled cases (Gaussian white noise for example), this decomposition is organized in a structure of a filter bank [START_REF] Cexus | Non-stationary signals analysis by teager-huang transform (THT)[END_REF], [START_REF] Flandrin | Sur la décomposition modale empirique[END_REF], [START_REF] Wu | A study of the characteristics of white noise using the empirical mode decomposition method[END_REF].

This filter bank structure is illustrated in figure I.7. The considered signal is a Gaussian white noise with zero mean and a variance equal to 1. The reported results correspond to averages over three thousand realizations [START_REF] Cexus | Non-stationary signals analysis by teager-huang transform (THT)[END_REF]. We have plotted in the log-log plane the standardized spectral of the seven IMFs obtained for all realizations.

We note that the EMD behaves as well as a diadic filter bank for modes higher than 2. The first mode corresponds to the high-pass filter of the filter bank.

Based on exhaustive simulations, similar behavior of diadic filter bank is also proven for fractional Gaussian noise [START_REF] Flandrin | Empirical mode decompositions as data-driven wavelet like expansions[END_REF], [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF], [START_REF] Rilling | Décomposition modale empirique : échantillonnage et résolution[END_REF]. It is also proven that for fractional Gaussian noise, the spectral power is distributed over all IMFs under a law of exponential type [START_REF] Flandrin | Sur la décomposition modale empirique[END_REF], [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF], [START_REF] Rilling | Décomposition modale empirique : échantillonnage et résolution[END_REF]. All of these studies characterized the behavior of the EMD towards different noise types. 

I.3.4 Comparison with wavelets

The EMD is similar to a multi-resolution analysis, so it explores the signal from the highest to the lowest frequencies, i.e from the smallest details to the largest.

However, the EMD is different from the wavelet decomposition in the way it describes the signal. Indeed, in a multi-resolution analysis by wavelet, the decomposition goes from low frequencies to higher frequencies. The EMD is an auto-adaptive method, contrary to the wavelet, where a mother function is needed to decompose a given data.

To further illustrate this difference, we compare the results of decomposition by the EMD to the orthogonal Daubechies wavelet (db3) over four levels (Fig. I.9). The analyzed signal is given by:

x(t) = sin(3t) + sin(0.3t) + sin(0.03t) (I.17 components are generally more important in the case of wavelet approach than for the EMD approach. All the differences and errors in the EMD decomposition are mainly due to the sampling frequency of the signal and the spectral differences between the components of the signal. For the wavelet, the lack of accuracy of the choice of the base function respect to x(t) explain its less effective behavior. 

I.4 Conclusion

In this chapter, we studied some aspects of the EMD [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. This temporal and nonlinear decomposition is defined as the output of an algorithm. We have shown that the signal can be decomposed into a finite number of components of oscillating nature and named IMF. IMFs are centered modes and type AM-FM. We have checked, based on simulations, that the extraction of IMFs is nonlinear, but that their linear recombination is accurate. Each IMF is obtained by a process called sifting, which is iterative, sequential and local. We have shown that the decomposition results supplied by the EMD is conditioned by the interpolation technique used and the sampling frequency of the signal. Finally, we noted that this decomposition is organized in a dyadic filter bank structure, in particular for Gaussian white noise.

The analysis of the behavior of the EMD suggests that it could be a useful tool for many problems met with audio signal processing. Indeed, many audio signals are known to be well described as a sum of harmonics and white noise. This is the case in particular for speech signals. Thus, in the rest of the thesis, we are going to investigates how successful could be the use of EMD in audio and signal processing. the method is fully data-driven approach. For additive white Gaussian noise, two strategies to denoise each extracted IMF are proposed: filtering using the Minimum Mean Squared Error (MMSE) filter [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF], or thresholding using a shrinkage function. The performance of the two methods is analyzed and compared with those based on MMSE filter, and wavelet shrinking approach. To avoid frequency analysis when using MMSE filter [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF], the IMFs are filtered by Adaptive Center Weighted Average (ACWA) filter [START_REF] Lee | Digital image enhancement and noise filtering by using local statistics[END_REF], which operates in time domain. Finally, we show the interest of the conjunction EMD and ACWA for both white and colored noises reduction.

CHAPTER II

II.1 Introduction

In this chapter, denoising methods based on the EMD are proposed. We first propose two new noise reduction schemes dedicated to additive white noise. Actually these schemes are complementary and depend on the noise level and its estimation. The first strategy combines the EMD and the MMSE filter [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF], and the second one associates the EMD with hard shrinkage [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF], [START_REF] Boudraa | EMD-based signal noise reduction[END_REF]. The MMSE filter assumes the whiteness of the noise and the stationarity of the denoised signal. In second time, a noise reduction approach combining the EMD with ACWA filter is introduced.

Indeed, the ACWA filter, as the EMD, operates in the time domain, and it does not require neither the stationarity of the signal nor the whiteness of the noise. As a result, this method is effective for both white noise and colored one. Furthermore, in contrast to the classical filters, such as MMSE filter [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF], all the parameters are computed in time domain and, hence, transformation to frequency domain is not necessary.

II.2 EMD based white noise reduction

Let a clean speech signal x(t) be corrupted by an additive white noise b(t) as follows:

y(t) = x(t) + b(t) (II.1)
Noisy signal is decomposed into a sum of IMFs by the EMD, such that:

y(t) = C j=1 IMF j (t) + r C (t) (II.2)
We make assumption that each mode IMF j (t) is a noisy version of the signal f j (t):

IMF j (t) = f j (t) + b j (t) (II.3)
Based on the noisy observation IMF j (t), an estimation fj (t) of f j (t) is given by,

fj (t) = Γ[IMF j (t)], (II.4)
where Γ[IMF j (t)] is a filtering function applied to IMF j (t) [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF], [START_REF] Boudraa | EMD-based signal noise reduction[END_REF]. Function Γ corresponds to MMSE filter [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF], or to a thresholding function [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF], [START_REF] Boudraa | EMD-based signal noise reduction[END_REF]. Finally, the CHAPTER II. SPEECH ENHANCEMENT BY EMD 44 denoised signal, x(t), is given by:

x(t) = C j=1 fj (t) + r C (t) (II.5)
Note that the use of MMSE filter requires the knowledge of the noise level.

II.2.1 EMD-MMSE filter

As mentioned previously, the EMD-MMSE strategy combines the EMD and the MMSE filter [START_REF] Ephraim | Speech enhancement using a minimum mean square error short-time spectral estimator[END_REF]. To guarantee the signal stationarity imposed by the MMSE filter a frame processing is required. Thus, each IMF is filtered in frequency domain by the MMSE filter as follows:

Fj (f d , m) = H(f d , m)IMF j (f d , m), (II.6)
where IMF j (f d , m) and Fj (f d , m) are the spectral noisy IMF and the spectral denoised IMF respectively, observed at the discrete frequency f d on the frame m. The frequency response of the MMSE filter H(f d , m) is given by [START_REF] Ephraim | Speech enhancement using a minimum mean square error short-time spectral estimator[END_REF]:

H(f d , m) = SNR prio (f d , m) 1 + SNR prio (f d , m) , (II.7)
where the a priori Signal to Noise Ratio (SNR), SNR prio , is estimated according to the method of Ephraim and Malah [START_REF] Ephraim | Speech enhancement using a minimum mean square error short-time spectral estimator[END_REF], as following:

SNR prio (f d , m) = α F 2 (f d , m -1) B 2 (f d , m -1) + (1 -α) max(SNR inst (f d , m), 0) (II.8)
where α is a weighting factor (equal to 0.98, it is a compromise), SNR inst is the instantaneous SNR, defined as the local estimation of SNR prio , and the

B 2 (f d , m-1)
is the noise power spectra value at the discrete frequency f d in the frame (m-1).

SNR inst = |IMF(f d , m)| 2 |B(f d )| 2 -1 (II.9)
Generally, noise estimation in speech is performed using the Boll's method [5].

Indeed, first, the silence periods of the signal are detected at the beginning of the signal. Then, the estimation of the noise power spectra is obtained by averaging the power spectra of the noisy signal over M frames which are considered as being moments of silence. This method gives an estimation of the noise power spectra [5].

| B(f d )| 2 = 1 M M -1 km=0 |B(f d , k m )| 2 (II.10)
where the k m are the frame indices that correspond to silence periods. Extensive simulations have shown that when the speech signal presents the silence period, the first IMF also presents the silence period. Since, the first IMF is noise dominant then it can be used to estimate accurately the noise level. According to [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF], behavior of EMD is like of that of wavelets [START_REF] Steidl | On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs[END_REF], and thus the noise levels of the modes following the first IMF (k=1) are estimated as follows:

σk = σ1 √ 2 k-1 , k ≥ 2, (II.11)
where σ1 is the noise level of the first IMF.

II.2.2 EMD-Shrinkage

A smooth version of the input signal can be obtained by thresholding the IMFs before signal reconstruction [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF], [START_REF] Boudraa | EMD-based signal noise reduction[END_REF]. In this case, the threshold parameter of each IMF k is estimated by the following expression [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF], [START_REF] Boudraa | EMD-based signal noise reduction[END_REF], [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF]- [START_REF] Donoho | Wavelet shrinkage: Asymptopia with discussion[END_REF]:

τ k = 2 log(T )σ k (II.12)
where T is the signal length and σ k is the estimated noise level (scale level) at the IMF k . Noise level of the first IMF is given by [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF], [START_REF] Boudraa | EMD-based signal noise reduction[END_REF], [START_REF] Press | Numerical Recipes in C: The Art of Scientific Computing[END_REF] 

σ1 = 1.4826 × Median {|IMF 1 (t) -Median {IMF 1 (t)} |} (II.13)
According to [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF], the noise level σk of the k th IMF can be deduced from σ1 by Eq.( II.11).

There are different non-linear shrinkage functions [START_REF] Mallat | Une exploration des signaux en ondelettes[END_REF]. In the present work, we use the hard shrinkage which has given interesting denoising results for speech enhancement compared to the soft shrinkage:

fj (t) =    IMF j (t), if |IMF j (t)| > τ j 0, if |IMF j (t)| ≤ τ j (II.14)

II.2.3 EMD-MMSE versus EMD-Shrinkage

The The output SNR 1 and Perceptual Evaluation of Speech Quality (PESQ) 2 [START_REF] Itu-T P | Subjective test methodology for evaluating speech communication systems that include noise suppression algorithm[END_REF], [START_REF] Rix | Perceptual evaluation of speech quality (pesq) -a new method for speech quality assessment of telephone networks and codecs[END_REF] are used as objective measure to evaluate the denoising methods. More precisely, the PESQ criterion measures the perceptual quality of speech signal. The EMD-MMSE method is compared to the classical MMSE denoising method [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF].

The EMD-MMSE denoising scheme is applied to four clean speech signals "spech1", "speech2", "speech3" and "speech4" ( shrinkage is much higher than with wavelets. When listening to the enhanced speeches, the EMD-shrinkage is found to produce lower residual noise and, noticeably, less speech distortion for all the signals compared to the wavelet method (Fig. II.9).

II.3 EMD-ACWA filtering of white and colored noises II.3.1 Interest of ACWA filter

Classically, the ACWA filter has been used in image enhancement applications [START_REF] Lee | Digital image enhancement and noise filtering by using local statistics[END_REF], [START_REF] Meguro | Data-dependent weighted average filterig for image sequence restoration[END_REF], [START_REF] Russo | Nonlinear fuzzy filters: An overview[END_REF]. The ACWA filter operates in the time domain, and it does not require the stationarity of the signals and the whiteness of the noise. The best of our knowledge it is the first time (in this thesis) that ACWA filter is used in signal processing. The effectiveness of the ACWA filter can be improved when it is associated with the EMD. Indeed, the IMFs are less noisy and more stationary than the noisy speech signal. In contrast to the classical filters, such as MMSE filter [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF], all the parameters are computed in time domain and, hence, transformation to frequency domain is not necessary. Besides, the noise variance is computed at each instant time, and this filter can adapt to more general noisy contexts: white as well as colored noise, high as well as low noise level.

The ACWA filtered signal x(t) is described as follows [START_REF] Lee | Digital image enhancement and noise filtering by using local statistics[END_REF]:

x(t) =    F mean + K(y(t) -F mean ) if F var ≥ σ 2 F mean otherwise (II.15)
where,

K = 1 - σ 2 F var , (II.16)
F mean and F var denote respectively the average and the variance of the noisy signal y(t) computed over a sliding window of size L, and σ 2 denotes the variance of the noise. The noise variance, σ 2 , is calculated as previously (Eq. II.13).

In order to show the effectiveness of this filter in the speech context, a comparative analysis between ACWA filter and MMSE filter [START_REF] Soon | Noisy speech enhancement using discrete cosine transform[END_REF] is preformed in a context of additive white noise with SNR in = 2dB. II.1 reports the obtained results for different levels of the additive noise fixed through the input SNR. These results show that for very low input SNR values, the ACWA filter gives higher output SNR than the MMSE filter.

In addition, for most considered input SNR values, the PESQ values given by the ACWA filter are higher than those of the MMSE filter. The PESQ results confirm that the ACWA filter guarantees better listening quality of the enhanced speech than the MMSE filter. 

II.3.2 Performance analysis of EMD-ACWA

The EMD-ACWA denoising technique consists on filtering all IMFs by ACWA filter.

This approach is still applicable regardless of the value added noise and noise type.

Note that he function Γ (Eq. II.4) can be interpretable as a kind of ACWA filter.

Finally, the estimated signal, x(t), is given by :

x(t) = C j=1 fj (t) + r C (t) (II.17)
The denoising of the IMF by the ACWA filter is given by Eq. II.15. The noise level σ j is calculated using equation II.13. comparison method because it gives better results than the MMSE filter [START_REF] Khaldi | Speech enhancement by adaptive weighted average filtering in the EMD framework[END_REF]. As objective criteria to evaluate the performance of the denoising method, we use the output SNR and PESQ as before.

At a first step, we take as example two speech signals "speech1" and "speech2". A careful comparative examination of the signals of figures II.14, shows that the EMD-ACWA performs better than the wavelet (db4) and ACWA-filter in terms of noise reduction. For deeper performance analysis, figures II.15, II.16 and II.17 show the variations of the output SNR versus the input SNR relating to the denoising of signals "speech1" and "speech2" when corrupted respectively by a white Gaussian noise, the colored f16 noise and the colored factory noise, taken from Noisex-92 database. The reported results demonstrate the effectiveness of the proposed method. Indeed, the improvement in SNR provided by the EMD-ACWA is much higher than those given by the wavelet method and the ACWA filter. Besides, a significant SNR improvement, varying from 4.2 dB to 17.4 dB, is achieved by the EMD-ACWA method. In fact, even for very low SNR values, we can still observe the effectiveness of the proposed method in removing the noise components as the 

II.4 Conclusion

The proposed denoising schemes introduced in this chapter are based on the EMD.

They are simple and fully data-driven methods. In particular, they do not require any pre-or post-processing and any use of parameters setting (except L value using ACWA).

For filter and the wavelet approaches. These results show that the EMD-denoising methods are effective for noise removal and confirm our findings presented in [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF]- [START_REF] Boudraa | EMD-based signal noise reduction[END_REF]. In particular, the obtained results also show that it is more efficient to apply the thresholding or the filtering to the different components (IMFs) of the signal than to the signal itself. Quite normal, since IMFs are more stationary than the noisy signal, and consequently the association of filter or threshold with the EMD improves the denoising results. Furthermore, the introduction of the EMD is very simple, since it is an adaptive decomposition, data driven, and does not need to define a kernel function. Thus, the results are not limited to the choice of basic functions, as in the case of wavelets. In the case of colored and white noise, the EMD-ACWA gives better results compared to the other approaches (ACWA filter, wavelet). The effectiveness of the ACWA filter is improved when it is associated with the EMD. In addition, the ACWA filter does not require the stationarity of the signal or the whiteness of the noise. For these reasons, the ACWA filter will be used in the future techniques dedicated to denoising speech signal, subject of the next chapter.

III.1 Introduction

In chapter II, three strategies for noise reduction were proposed: MMSE filtering, thresholding and ACWA filtering of the extracted IMFs from the noisy frame. In particular, the ACWA filter [START_REF] Lee | Digital image enhancement and noise filtering by using local statistics[END_REF], using local statistics of the speech signal, has shown very interesting performances in speech denoising. These last methods are based on filtering of all IMFs extracted from noisy frame regardless of their speech class (voiced/unvoiced/transient). However, when the signal features are concentrated on medium and low frequencies such as voiced speech, the filtering of all IMFs introduces some distortions in the denoised signal [1], [START_REF] Boudraa | EMD-based signal filtering[END_REF], [START_REF] Weng | Ecg denoising based on the Empirical Mode Decomposition[END_REF]. As a matter of fact, when voiced speech signal is contaminated by an additive white noise, the first IMFs are much more noisy than the last ones. Consequently, in the case of voiced speech, it is more appropriate to only filter the first IMFs, and to keep unchanged the last ones which are signal dominated.

In this chapter, we further improve the speech denoising using the EMD and the ACWA filter. This is achieved by taking into account the type of the processed frame: voiced, unvoiced and transient. As for the voiced frame special consideration related to the signal characteristics must be taken into account when denoising unvoiced frame or transient one that is considered here as concatenation of two subframes: voiced or unvoiced.

This chapter is organized as follows. In the second section, we present the techniques adopted to determine the type of frame. A criterion based on the IMFs energy is used to detect voiced frames, while a stationarity index criterion is used to distinguish between an unvoiced and a transient frame. Section III.3 details the speech denoising technique. The idea is based on filtering selected IMFs by the ACWA filter. The number of selected IMFs depends on the frame class. Section III.4 investigates the performance of this speech denoising approach, based on exhaustive simulation results. In a first step we shall only consider voiced frames, and frames of different types in a second step.

III.2 Frames classification

The speech signal is a combination of voiced and unvoiced frames. So, to apply the denoising approach for each frame, we must firstly determine the frame type. 

III.2.1 Voiced frames detection

The energy criterion relies on the basic idea that most important features structures of the signal are concentrated at medium and low frequencies (last IMFs) [1][8], [START_REF] Cexus | Non-stationary signals analysis by teager-huang transform (THT)[END_REF], [START_REF] Deger | Speech enhancement using soft thresholding with DCT-EMD based hybrid algorithm[END_REF], [START_REF] Khaldi | Voiced speech enhancement based on adaptive filtering of selected intrinsic mode functions[END_REF], [START_REF] Weng | Ecg denoising based on the Empirical Mode Decomposition[END_REF], in particular for voiced frames. Therefore the first IMFs of the noisy voiced frames are essentially noise dominated, while the last ones are signal dominated. According to this idea and in the case of an additive white noise, there will be a mode, indexed by j s , from which energy distribution of the important structures of the signal overcomes that of the noise [1], [START_REF] Boudraa | EMD-based signal filtering[END_REF]. Thus, a criterion based on energy density can be used to detect voiced frames [START_REF] Flandrin | Emd equivalent filter banks, from interpretation to applications[END_REF], [START_REF] Wu | A study of the characteristics of white noise using the empirical mode decomposition method[END_REF].

From the observed noisy signal y(t), the objective is to find an approximation x(t) to the original signal x(t) that minimizes the Mean Square Error (MSE): The aim of the EMD filtering, which is carried out in the time domain, is to find the index k = j s that minimizes the MSE(x, x). Note that Eq. (III.3) corresponds to a low-pass filtering [START_REF] Huang | Hilbert-Huang transform stability spectral analysis applied to flutter flight test data[END_REF]. In practice the MSE or the MAE can not be calculated because the original signal x(t) is unknown. In this work, we use a distortion measure called Consecutive MSE (CMSE) that does not require the knowledge of x(t) [START_REF] Boudraa | EMD-based signal filtering[END_REF].

MSE(x, x) 1 N N i=1 (x(i) -x(i))
This quantity measures the squared Euclidean distance between two consecutive reconstructions of the signal. The CMSE is defined as follows [START_REF] Boudraa | EMD-based signal filtering[END_REF]: Thus, according to Eq. (III.5) the CMSE is reduced to the energy of the k th IMF. It is also the classical empirical variance estimate of the k th IMF. Note that, if k = 1, xk (t) = y(t). Finally, the index j s is given by

CMSE(x k , xk+1 ) 1 N N i=1 (x k (i) -xk+1 (i)) 2 , k = 1, . . . , C -1 (III.4) 1 N N i=1 (IMF k (t i )) 2 (III.
j s = Arg max 1≤k≤C-1 [CMSE(x k , xk+1 )] (III.6)
The CMSE criterion allows to identify the IMF order where there is the first significant change in energy. This empirical fact is derived from extensive experiments and simulations [START_REF] Boudraa | EMD-based signal filtering[END_REF]. 

III.2.2 Transient frames detection

A transient frame can be linked to a concatenation of two sub-frames of different nature: voiced and unvoiced. The statistical properties of voiced and unvoiced speech are very different. The invariance of statistical properties over the time of a speech or audio signal can be measured using a stationarity index. Indeed, based on time-frequency analysis, this index detects fast transients of signals [START_REF] Laurent | Stationarity index for abrupt changes detection in the time frequency plane[END_REF]. It was shown that both Kullback and Bhattacharyya distances are sensitive to abrupt changes of signals in the time-frequency plane [START_REF] Laurent | Stationarity index for abrupt changes detection in the time frequency plane[END_REF]. In this work, Bhattacharyya distance is used as index of stationarity.

Two sub-images I 1 (n; τ, f ) and I 2 (n; τ, f ) are extracted, at each time n, from a Time Frequency Representation (TFR) of the signal [START_REF] Laurent | Stationarity index for abrupt changes detection in the time frequency plane[END_REF]:

I 1 (n; τ, f ) = TFR(n -L + τ, f ) (III.7) I 2 (n; τ, f ) = TFR(n + τ, f ) (III.8)
where L is the width of sub-images, f is the frequency and τ ∈ [0, L]. The stationarity index is obtained by computing the Bhattacharyya distance between the two sub-images: A peak in the SI(n) variations indicates abrupt changing in the signal spectrum. Thus, it demonstrates the presence of transition zone. Indeed, the unvoiced frame is much more stationary than the transient one, the distinction between them can be performed using a SI index (Eq. III.9). 

SI(n) = -log( L τ =0 +∞ -∞ NI 1 (n; τ, f )NI 2 (n; τ, f )df dτ ) (III.9)

III.3 Proposed speech denoising method

Basics of the proposed speech denoising technique are summarized as follows: 

III.3.1 Voiced sequence denoising

The denoising method dedicated to voiced frames consists in filtering a set of IMFs selected using the energy criterion (Eq. III.5) [START_REF] Boudraa | EMD-based signal filtering[END_REF]. It is described in the four following steps :

Step A: Decompose y(t) into j IMFs, j ∈ {1, ..., C}, and the residual r C (t).

Step B: Calculate the energy of each IMF and find the index j s using equation III.6.

Step C: Denoise the shorter scale (j s -1) IMFs with the according ACWA filter (Eq. II.15).

Step D: The denoised signal, x(t), is reconstructed as follows:

x(t) = js-1 j=1 fj (t) + C j=js IMF j (t) + r C (t) (III.10)

III.3.2 Unvoiced sequence denoising

For a noisy unvoiced speech frame, all the extracted IMFs are noisy. Consequently each IMF j (t) must be filtered by ACWA filter. The estimated signal frame, x(t), is

given by:

x(t) = C j=1 fj (t) + r C (t).
(III.11) When listening to the enhanced speech signals, the proposed method produces lower residual noise and noticeably less speech distortion for all the signals. This result is confirmed by the PESQ results shown in figure III.13. These results demonstrate that our approach gives a significant enhancement in listening quality as the improvement of the PESQ values is high. Indeed, the obtained results also show that it is more efficient to apply the ACWA filter to selected IMFs of the noisy signal than to all the IMFS. These results are very logical, since the information of original signal is concentrated into last IMFs, consequently the filtering of all IMFs introduces some distortions in the denoised signal. 

III.3.3 Transient sequence denoising

III.4.2 Speech signal

The proposed noise reduction methods are tested on speech signals corrupted by additive white Gaussian noise with different variances fixed through the input SNR.

The performances of the proposed technique are compared to those of the following methods: ACWA filtering of all IMFs (EMD-ACWA), wavelet (db4) thresholding method [START_REF] Khaldi | Speech enhancement via EMD[END_REF], and ACWA filtering of the noisy signal. As objective criteria to evaluate the performance of the denoising method, we use the output SNR and PESQ.

For our simulations, we consider four clean speech signals "speech1", "speech2", "speech3" and "speech4" (Figure III where the gain in output SNR achieved by the proposed method compared to other methods is presented. Indeed, we note that the proposed method provides an improvement of about 2 dB compared to the other methods for different considered signals "speech1", "speech2", "speech3" and "speech4". For deeper performance investigation, figure III.17 shows the variations of the output SNR versus the input SNR corresponding to the denoising of the speech signals: "speech1", "speech2", "speech3" and "speech4". For each input SNR value, averaged values are calculated over 100 CHAPTER III. SPEECH DENOISING USING EMD AND LOCAL STATISTICS 80 

(d) EMD-ACWA.

Figure III.16: Denoising of noisy signals "speech1", "speech2", "speech3" and "speech4" ( input SNR=2 dB) by the proposed method, Wavelet (db4), ACWA filter and EMD-ACWA.

independent noise simulations.

These results demonstrate the effectiveness of the proposed method. Indeed, the output SNR values obtained by the proposed speech denoising technique are much higher than those obtained by the wavelet method, EMD-ACWA and the ACWA filtering. In particular, even for very low input SNR values, we can still observe the effectiveness of the proposed method in removing the noise components as the gain in SNR can go up to 15 dB. The PESQ measures reported by the figure III.18 also show that the proposed method offers much better speech quality than the other methods.

The analysis of the reported results shows the interest to take into account the frame class in the IMF filtering strategy. Indeed, the proposed method outperforms the EMD-ACWA technique where all the IMFs are filtered. Figure III.17: Final SNR values obtained from different initial noise levels of signals "speech1", "speech2", "speech3" and "speech4". The results averages over 100 Monte Carlo simulations of the additive noise. It is reported for the proposed method, wavelet(db4), ACWA filter and the EMD-ACWA.

III.5 Conclusion

In this chapter, a new speech enhancement method that takes into account the frame class (voiced or unvoiced) is proposed. In fact, according to the frame class, a set of the IMFs of the noisy frame are filtered by the ACWA filter. Obtained results in the case of additive white Gaussian noise with varying SNR values show that the proposed method performs better than the ACWA filtering of all IMFs (EMD-ACWA), wavelet denoising approach (db4) and ACWA filtering of the noisy signal.

Taking into account the frame class (voiced/unvoiced) in the filtering process, gives very interesting performance in terms of output SNR and PESQ.

IV.1 Introduction

In this chapter we present the encoders architecture. The first encoder consists in encoding the IMFs extrema, since the IMFs are fully described by their local extrema [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. To further reduce the Bit Rate (BR), one out of two IMFs envelops is coded. This is motivated by the quasi-symmetrical property of the IMF. In the second architecture, a parametric coding approach based on the EMD in association 

IV.2 Why IMFs coding?

Two main properties of the IMFs are exploited for coding purpose.

IV.2.1 IMF extrema

As earlier recalled, the IMFs are zero mean and have oscillating shape properties.

With a view to compression, these are interesting features. Indeed, most relevant information of the IMF can be represented by its extrema [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. Roughly, this amounts to sampling the IMF almost regularly at twice its original frequency. Figure IV.1

shows the plots of an IMF and its approximate obtained by spline interpolation of the extrema. A comparative examination of the true IMF and its estimate shows the effectiveness of the spline interpolation for the reconstruction of the IMF from its extrema. Indeed, we notice that the error corresponding to the difference between the true and the reconstructed IMF is negligible. So, the idea of encoding the IMFs extrema seems interesting and will be more advantageous in terms of reduction of coding rate compared to waveform coding. 

IV.2.2 Quasi-symmetry of IMF

The aim of the sifting process is to remove the dissymmetry between the upper (maxima) and lower (minima) envelopes in order to transform the original signal into an amplitude modulated signal. So exploiting the symmetry of the upper and lower envelopes, it is possible to encode only a single envelope and as a result reduce the coding rate while ensuring good quality of the encoded signal. However, extracted IMFs are, in general, not truly symmetric with respect to the time axis (α = 0) but they are symmetric about a parallel line y = α. This problem is illustrated by figure IV.2 where the envelopes are symmetrical with respect to line y = 0.05. An example of offset values obtained for five IMFs extracted from an audio frame signal is presented in table IV.1. As expected, IMFs are not all symmetric with respect to y = 0. 

IV.2.3 IMF modelling

We have shown that any signal can be decomposed, using EMD, into a finite number of IMFs. These oscillating components are centered modes and AM-FM type. Using Hilbert transform, H[.], the analytic signal z(t) corresponding to IMF (t) is given by :

z(t) = IMF (t) + iH[IMF (t)] (IV.1)
where the signal IMF (t) is the real part of Eq. (IV.1), and the imaginary part is the Hilbert transform of IMF (t),

H[IMF (t)] = 1 π PV +∞ -∞ IMF (τ ) t -τ dτ (IV.2)
where PV is the Cauchy principal value of the integral. In the complex plane, the analytic signal z(t) can be written as follows,

z(t) = a(t)e iθ(t) , (IV.3)
where

a(t)= [IMF (t)] 2 + H[IMF (t)] 2 is the IA and θ(t) = tan -1 H[IM F (t)] IM F (t) corresponds to the IP. Recall that f (t)= 1 2π dθ(t)
dt is the IF. 

IV.3 EMD based encoder architecture IV.3.1 IMF extrema coding basics: IMF extrema

The proposed coding scheme is shown in figure IV.4.

IV.3.1.1 Segmentation and decomposition

The first step consists in a segmentation of the signal into frames and each one is decomposed into IMFs and a residual. These IMFs are completely represented by their extrema (E i,N i ) i=1,C . Each extrema is characterized by a time position and an amplitude.

IV.3.1.2 Extrema thresholding

The number of extrema for each IMF is reduced by using an appropriate threshold fixed according to the signal type. For example in the case of audio signal, the threshold can be fixed using the psychoacoustic model which corresponds the behavior of the human ear. In coding audio application [4], the threshold is chosen depending to the fixed compression ratio. The objective of this step is to diminish the number of extrema to be coded, in order to reduce the BR.

IV.3.1.3 Extrema quantification

The extrema amplitudes of each IMF are scaled by their maximum of value. We quantize the positions of the extrema, the scaling factor and the scaled extrema amplitudes. The extrema's positions are quantified, in a fixed way, by a scalar quantization. We note that the number of extrema, (e i,n i ) i=1,C , selected for coding decreases from one IMF to the next. Consequently, in order to optimize the BR, the number of bits allocated to the quantization extrema's amplitudes must vary from an IMF to another while ensuring a minimum quantization error of the IMF.

IV.3.1.4 Coding

Better performance can be achieved by using lossless compression such as Huffman or Lempel-Ziv encoding techniques. These techniques account for probability of occurrence of encoded data to reduce the number of bits allocated to. Although Lempel-Ziv is not optimum, the decoder does not need to know the encoding dictionary [START_REF] Welch | A technique for high-performance data compression[END_REF].

IV.3.1.5 Decoding process

Firstly, we begin by decoding the extrema positions. Then we decode the extrema amplitude. Finally, the IMFs are recovered thanks to a spline interpolation among the extrema [START_REF] Khaldi | Codage audio perceptuel à bas débit par décomposition en modes empiriques[END_REF], [START_REF] Khaldi | Audio encoding based on the empirical mode decomposition[END_REF], and the sum of IMFs yields the original signal [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF].

IV.3.2 IMF envelope coding basics : IMF envelope

Based on quasi-symmetry property of IMF, and in order to reduce further the BR,

we propose to encode one out of the two envelopes of each IMF. In this approach, we focus on the coding of the upper (maxima) envelope.

IV.3.2.1 Encoding scheme

The block diagram of the proposed encoding scheme IMF envelope is presented in figure IV.5. The signal is segmented into frames. The windowed signal frame is decomposed into IMFs and a residual. These modes are encoded under the two following constraints.

• BR: the number of bits used to encode maxima must be as small as possible.

• Encoding noise: the difference between the true IMF and the reconstructed one must be negligible.

Each maxima is presented by both position index and amplitude. The quantization of the maxima amplitudes is performed as in presented in section IV. • Using EMD, extract the j th IMF, j ∈ {1, ..., C}, and the associated residual r C (t).

• For the j th IMF, determine all the maxima and the offset α j .

• Quantize and encode maxima positions, maxima amplitudes value, scaling factors and offsets (α j ae = 1, ..., C).

IV.3.2.2 Decoding process

For each IMF, the decoder first recovers the upper (lower) envelope using the corresponding scaling factor and the encoded maxima (positions and amplitudes).

Then the lower (upper) envelope of the IMF is determined from the upper (lower) envelope by symmetry using the corresponding decoded offset value. Finally, the IMFs are recovered thanks to a spline interpolation between the extrema [START_REF] Khaldi | Codage audio perceptuel à bas débit par décomposition en modes empiriques[END_REF], [START_REF] Khaldi | Audio encoding based on the empirical mode decomposition[END_REF], and the sum of IMFs yields the original signal [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF].

IV.4 HHT based encoder architecture

The signal is segmented into frames. Then, using EMD each frame is decomposed into sum of IMFs. For each IMF, IA a(t), IF f (t) and IP θ(t) using Hilbert transform are calculated. for IA coding is fixed depending to the signal type. For example, in [START_REF] Khaldi | Audio encoding using huang and hilbert transforms[END_REF], the order is fixed at 9 for a speech signal. In the proposed approach, at encoder we encode the coefficients and the noise variance.

IV

IV.4.1.2 IP encoding

The The signal frame is constructed from estimated IMFs summation and the decoded signal is obtained by frames concatenation.

IV.4.2 IA and IF coding basics: IA -IF

The principle of the proposed approach consists in encoding IA and IF by linear prediction. The encoding of IF instead of IP allows a decrease of the BR without increasing of decoding error.

IV.4.2.1 IF encoding

The 

IV.4.2.2 Decoding approach

IA a(t) and IF f (t) are decoded using linear prediction. The estimated IMF for the IF coding approach (HHT IF ) is calculated as follows:

Î MF(t) = |â(t)| cos( 2π f(t)dt) (IV.6)
The signal frame is constructed from estimated IMFs summation, and the decoded signal is obtained by frames concatenation.

IV.5 conclusion

In this chapter coding approaches, based on the EMD, are presented. The properties of IMF allow the introduction of different coding schemes which are applicable for

V.1 Introduction

In This chapter is organized as follows. In the second section, we present the encoders architecture for an audio signal, consequently we detail the segmentation step, thresholding procedure and the quantization step for IMF extrema and also IMF envelope approaches. Finally, Section V.3 presents the performance of the audio encoding approaches, based on exhaustive simulation results.

V.2 Encoders architecture V.2.1 Transient detection

We have shown that the first step of the proposed coders (IMF extrema ,. . . ) is to divide the signal into frames. Indeed, insofar as all the approaches compute parameters depending on the signal statistics, these frames must be stationary. To guarantee the statistics invariance of each frame, a non parametric detector [START_REF] Gonon | Improved entropic gain and adaptive time-frequency segmentation. application to audio coding[END_REF] is used to test this stationarity. Thus, when a transient is detected, the frame is divided into two sub-frames. The detection of transient sequence is based on the Local Entropic Criterion (LEC) which is a non parametric detector. The LEC of signal x(t) is given by [START_REF] Gonon | Improved entropic gain and adaptive time-frequency segmentation. application to audio coding[END_REF]:

LEC x (t) = E xc (t) -[E xl (t) + E xr (t)] |E xc (t)| (V.1)
where E xc (t), E xl (t) andE xr (t) denote the Shannon entropies of the principal window and of the left and right sub-windows respectively. The Shannon entropy of a signal x(t) in the interval [0,

E xc (t) = E x[t-N 2 ,t+ N 2 -1] , E xl (t) = E x[t-N 2 ,t-1] , E xr (t) = E x[t,t+ N 2 -1] .
N -1], E x[0,N -1]
, is defined by :

E x[0,N -1] = - N -1 k=0 |X(k)| 2 log |X(k)| 2 (V.2)
with X(k) the discrete FT of x(t). Thus, the LEC takes its values in the range of -1 to 1. A transient in the signal that occurs at time t is characterized by a LEC value which is greater to 0. An example of LEC variations for an audio frame is shown in figure V.2, with N set to 64 [START_REF] Gonon | Improved entropic gain and adaptive time-frequency segmentation. application to audio coding[END_REF]. 

V.2.2 Thresholding step for IMF extrema coder

To decrease the BR, we have shown that in the second step of IMF extrema coding the extrema must be thresholded. Further, the error between the estimated IMF, from the selected extrema, and the true IMF must respect some constraint. For audio coding, this constraint relies on the masking threshold. In fact the number of extrema of each IMF is reduced while ensuring that the PSD of IMF's estimating error remains below the masking curve of the IMF. This reduction of the number of extrema controlled by the masking curve provides significant compression gain while maintains a good listening quality. Clearly, the thresholding procedure is an iterative process: aiming at estimating an IMF from a reduced number of extrema, while ensuring the inaudibility of the reconstruction error. Since EMD behaves as a wavelet decomposition [START_REF] Flandrin | Empirical mode decomposition as a filter bank[END_REF], the threshold parameter is very soon given by a standard wavelet coefficients thresholding procedure [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF]. The following e xpression gives for an IMF the initial value of the threshold (τ j,0 ) [START_REF] Boudraa | EMD-based signal noise reduction[END_REF], [4], [START_REF] Misiti | Matlab wavelet toolbox[END_REF]:

τ j,0 =    0.05 max |IMF j (t)|, if σj = 0 σj , else (V.3)
where σj is given by [START_REF] Boudraa | Denoising via empirical mode decomposition[END_REF]:

σj = Median {|IMF j (t) -Median {IMF j (t)} |} . (V.4)
Although there are different non linear thresholding functions [START_REF] Mallat | Une exploration des signaux en ondelettes[END_REF], in the present work, hard thresholding is used:

e j =    E j , if |E j | > τ j 0, if |E j | ≤ τ j , (V.5)
where e j et E j correspond respectively to the thresholded and the initial extrema values. To confirm the efficiency of the initial value of the threshold (Eq. V.3), the estimated IMF is reconstructed from non zero thresholded extrema by using spline interpolation. If the error's DSP is under the masking curve of the IMF [START_REF] Noll | Mpeg digital audio coding[END_REF],

we iterate the thresholding procedure by reducing the threshold value, as follows [4], [START_REF] Mertins | Signal analysis: Wavelets, filter banks, time-frequency transforms and applications[END_REF].

τ j,i = τ j,i-1 2 , (V.6)
where τ j,i is the threshold parameter of the IMF j at the iteration number i (i ≥ 1).

V.2.3 Quantization step for IMF envelope and IMF extrema

In order to reduce the BR, a perceptual coding controlled by the psychoacoustic model [START_REF] Noll | Mpeg digital audio coding[END_REF] is used to encode the scaled maxima (or extrema) amplitudes. Initially, the number of the allocated bits is fixed according to the coding BR. However, the number of bits allocated to each IMF is adjusted in order to ensure that the PSD of the quantization error of the IMF is below its masking curve [START_REF] Khaldi | Codage audio perceptuel à bas débit par décomposition en modes empiriques[END_REF]. We start by allocating the same number of bits to all IMFs maxima (or extrema) amplitude.

Since each IMF contains lower frequency oscillations than each previously extracted ones, we start firstly the quantification of the last IMF. If the number of bits does not exceed the starting number of bits allocated, we will keep the number of remaining bits in the previous IMF, i.e., the new starting number of allocated bits for previous IMF becomes the old number of bits allocated added to the remaining bits of next IMFs. Since direct optimization is unfeasible, bit allocation is done in iterative way. A loop is intended to quantize the scaled maxima (or extrema) amplitude, to reconstruct IMF, and then to compare the reconstruction error PSD to the masking threshold: if it remains under the masking curve, the quantization is restarted with an increased number of bits, and so on until the masking constraint is satisfied. The quantization loop is shown in figure V.4. This loop is stopped for IMF respecting the inaudibility constraint. Initially, we allocate one bit for each maximum (or extrema).

At each iteration of the quantization loop the number of bits is increased by one. 

V.3 EMD based audio coders performance

The coding approaches, described in the previous chapter, are tested on different audio signals sampled at 44100 HZ. In particular, gspi, harp, quar and trpt recordings are taken from the SQAM database. The results are compared to the MP3 (ISO/IEC 11172-3 MPEG Layer 3) and the AAC (ISO/IEC 13818-7 Advanced Audio Coding ) codecs, and to the wavelet compression approach. We used Daubechies wavelet of order 8 which, in general, gives good results in comparison to other wavelets [START_REF] Deshmukh | Multiwavelet decomposition for audio coding[END_REF].

The obtained performances are analyzed using the BR, the Noise to Mask Ratio (NMR), and the Objective Difference Grade (ODG) 1 [38], which is a perceptual criterion, using the algorithm of Huber [START_REF] Huber | Pemo-qa new method for objective audio quality assessment using a model of auditory perception[END_REF]. The original tested audio signals are depicted in figure V.5. Firstly, the audio signal is segmented into frames, of size 512 samples, with an overlap is equal to 64 samples. Using the LEC, the transient frame is divided into sub-frames. In our approaches, we have focused essentially on the quality of encoding/decoding signal rather than ratio compression. Indeed all loop in the proposed algorithms are stopped when the quality is satisfied. We essentially focus on the quality of encoding/decoding signal rather than on the BR.

For 

V.4 Conclusion

In this chapter, we have illustrated the EMD based coding on different audio signals and results compared to wavelet approach and to AAC and MP3 codecs. The obtained results in terms of BR and of ODG measure show that the proposed methods perform much better than MP3 codec and wavelet compression. The IMF envelope is the most efficient approach that performs better than the AAC codec. The effectiveness of this coding is observed especially for audio signals /gspi/, /song/, /trpt/ and /violin/. Further, the efficiency of IMF envelope is essentially due to use of a psychoacoustic model and the symmetry property of the IMF, which enable good audio quality at low BR. In addition, the decoding by spline interpolation is very easy. The proposed codings are adaptive and without any prior assumptions.

Overall, the obtained results and the comparison to well established coding methods demonstrate the potential of the EMD as a promising audio coding tool. We show in the next chapter, how the EMD can also exploited for watermarking purpose.

VI.1 Introduction

We propose in this chapter an adaptive watermarking scheme based on the EMD.

The IMFs are nearly orthogonal to each other, and all have nearly zero means. The number of extrema is decreased when going from one mode to the next, and the whole decomposition is guaranteed to be completed with a finite number of modes. The IMFs are fully described by their local extrema and thus can be recovered using these extrema [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], [START_REF] Khaldi | Audio encoding based on the empirical mode decomposition[END_REF]. Low frequency components such as higher order IMFs are signal dominated [START_REF] Boudraa | EMD-based signal filtering[END_REF], [START_REF] Khaldi | Voiced speech enhancement based on adaptive filtering of selected intrinsic mode functions[END_REF] and thus their alteration can lead to degradation of the signal.

Thus, these modes can be considered to be good locations for watermark placement.

Watermarks inserted into lower order IMFs (high frequency) are most vulnerable to attacks. The watermark can also be embedded into the trend (coarsest mode) of the host signal, but our experiments indicate that this mode is not highly robust to attacks. It has been argued that for watermarking robustness, the watermark bits are usually embedded in the perceptually components, mostly, the low frequency components of the host signal [START_REF] Cox | A secure, robust watermark for multimedia[END_REF]. To simultaneously have better resistance against attacks and imperceptibility, we embed the watermark in the last IMF. We choose in our method a watermarking technique in the category of Quantization Index Modulation (QIM) due to its good robustness and blind nature [START_REF] Chen | Quantization index modulation methods for digital watermarking and information embedding of multimedia[END_REF]. Parameters of QIM are chosen to guarantee that the embedded watermark in the last IMF is inaudible. The watermark is associated with a synchronization code to facilitate its location. Audio signal is first segmented into frames where each one is decomposed adaptively into IMFs. Bits are inserted into the extrema of the last IMF such that the watermarked signal inaudibility is guaranteed.

VI.2 Proposed watermarking algorithm

The idea of the proposed watermarking method is to hid into the original audio signal 

VI.2.1 Synchronization code

To locate the embedding position of the hidden watermark bits in the host signal a SC is used. This code is unaffected by cropping and shifting attacks [START_REF] Wu | Statistical significance test of intrinsic mode functions[END_REF]. Let U be the original SC and V be an unknown sequence of the same length. Sequence V is considered as a SC if only the number of different bits between U et V (bit by bit) is less or equal than to a predefined threshold τ [START_REF] Wu | Statistical significance test of intrinsic mode functions[END_REF]. Step 1: Split original audio signal into frames.

VI.2.2 Watermark embedding

Step 2: Decompose each frame into IMFs.

Step 3: Embed P times the binary sequence {m i } into extrema of the last IMF CHAPTER VI. AUDIO WATERMARKING BASED ON THE EMD 116 (IMF C ) by QIM [START_REF] Chen | Quantization index modulation methods for digital watermarking and information embedding of multimedia[END_REF]:

e * i =    ⌊e i /S⌋.S + sgn(3S/4) if m i = 1 ⌊e i /S⌋.S + sgn(S/4) if m i = 0 (VI.1)
where e i and e * i are the extrema of IMF C of the host signal and the watermarked signal respectively. sgn function is equal to "+" if e i is a maxima, and "-" if it is a minima. ⌊ ⌋ denotes the floor function, and S denotes the embedding strength chosen to maintain the inaudibility constraint.

Step 4: Reconstruct the frame (EMD -1 ) using modified IMF C and concatenate the watermarked frames to retrieve the watermarked signal.

VI.2.3 Watermark extraction

For watermark extraction, host signal is splitted into frames and EMD is performed on each one as in embedding. Binary data is extracted using rule given by equation (VI.2). We then search for SCs in the extracted data. This procedure is repeated by shifting the selected segment (window) one sample at time until a SC is found.

With the position of SC determined, we can then extract the hidden information bits, which follows the SC. Let y = {m * i } denote the binary data to be extracted and U denote the original SC. To locate the embedded watermark we search the SCs in the sequence {m * i } bit by bit. Let N 1 and N 2 be the numbers of bits of SC and watermark respectively. The extraction is performed without using the original audio signal. Basic steps involved in the watermarking extraction, shown in figure VI.5, are given as follows:

Step 1: Split the watermarked signal into frames.

Step 2: Decompose each frame into IMFs.

Step 3: Extract the extrema {e * i } of IMF C . Step 4: Extract m * i from e * i using the following rule [START_REF] Wu | Statistical significance test of intrinsic mode functions[END_REF]:

m * i =    1 if e * i -⌊e * i /S⌋.S ≥ sgn(S/2) 0 if e * i -⌊e * i /S⌋.S < sgn(S/2) (VI.2)
Step 5: Set the start index of the extracted data, y, to I = 1 and select L = N 1 samples (sliding window size).

Step 6: Evaluate the similarity between the extracted segment V = y(I : L) and U bit by bit. If the similarity value is ≥ τ , then V is taken as the SC and go to Step 8. Otherwise proceed to the next step.

Step 7: Increase I by 1 and slide the window to the next L = N 1 samples and repeat Step 6.

Step 8: Evaluate the similarity between the second extracted SC, V ′ = y(I + N 1 + N 2 : I + 2N 1 + N 2 ). If the similarity value is ≥ τ , then V ′ is taken as the SC and the sequence y(I + N 1 : I + N 1 + N 2 -1) is taken as the mark, and go to Step 9.

Otherwise repeat Step 7.

Step 9: I ← I + N 1 + N 2 , if the new I value is equal to sequence length of bits, go to Step 10, else repeat Step 7.

Step 10: Extract the P watermarks and make comparison bit by bit between these marks, for correction, and finally extract the desired watermark.

VI.3 Performance analysis

We evaluate the performance of our method in terms of data payload, error probability of SC, SNR, Bit Error Rate (BER) and Normalized cross-Correlation (NC).

The SNR is defined as

SNR = 10 log 10 T i=1 X 2 (i) T i=1 (X(i) -X(i)) 2 (VI.3)
where X and X denote the original and the watermarked audio signals respectively.

According to International Federation of the Photographic Industry (IFPI) recommendations, a watermark audio signal should maintain more than 20 dB SNR. To evaluate the watermark detection accuracy after attacks, we used the BER and the NC defined as follows [START_REF] Bhat | An adaptive audio watermarking based on the singular value decomposition in the wavelet domain[END_REF]:

BER(W, W ) =

Number of error bits Number of total bits =

M i=1 N j=1 W (i, j) ⊕ W (i, j) M × N (VI.4)
where ⊕ is the XOR operator. W and W are the original and the recovered watermark respectively. BER is used to evaluate the watermark detection accuracy after signal processing operations.

NC(W, W ) = M i=1 N j=1 W (i, j) W (i, j) M i=1 N j=1 W 2 (i, j) M i=1 N j=1 W 2 (i, j) (VI.5)
NC is used to evaluate the similarity between the original watermark and the extracted watermark. A large NC indicates the presence of watermark while a low value suggests the lack of watermark. Two types of errors may occur while searching the SCs: the False Positive Error (FPE) and the False Negative Error (FNE).

These errors are very harmful because they impair the credibility of the watermarking system. The associated probabilities of these errors are given by [START_REF] Bhat | An adaptive audio watermarking based on the singular value decomposition in the wavelet domain[END_REF], [START_REF] Wu | Statistical significance test of intrinsic mode functions[END_REF]:

P F P E = 1 2 p p k=p-τ C k p P F N E = 1 2 p p k=1+τ C k p (BER) k (1 -BER) p-k (VI.6)
where p is the SC length and τ is the threshold. P F P E is the probability that a SC is detected in false location while P F N E is the probability that a watermarked signal is declared as unwatermarked by the decoder. We also use as performance measure the payload which quantifies the amount of information to be hidden. More precisely, the data payload refers to the number of bits that are embedded into that audio signal within a unit of time and is measured in the unit of bits per second (b/s).

The data payload, D, is defined as follows:

D = L h M b (VI.7)
where L h is the length in seconds of the host audio signal and M b is the number of bits of the watermark data.

VI.4 Results

To evaluate the performance of our scheme, simulations are performed on audio 

VI.5 Conclusion

In this chapter a new adaptive watermarking scheme based on the EMD is proposed.

Watermark is embedded in very low frequency mode (last IMF), thus achieving good performance against various attacks. Watermark is associated with synchronization codes and thus the synchronized watermark has the ability to resist shifting and cropping. Data bits of the synchronized watermark are embedded in the extrema of the last IMF of the audio signal based on QIM. Extensive simulations over different audio signals indicate that the proposed watermarking scheme has greater robustness against common attacks than nine recently proposed algorithms. This scheme has higher payload and better performance against MP3 compression compared to these earlier audio watermarking methods. In all audio test signals, the watermark introduced no audible distortion. Experiments demonstrate that the watermarked audio signals are indistinguishable from original ones. These performances take advantage of the self-adaptive decomposition of the audio signal being marked provided by the EMD. The proposed scheme achieves very low false positive and false negative error probability rates. Our watermarking method involves easy calculations and does not use the original audio signal. In the conducted experiments the embedding strength S is kept constant for all audio files. To further improve the performance of the method, the S parameter should be adapted to the type and magnitudes of the original audio signal.

Conclusions and perspectives

T he purpose of this thesis was to investigate the potential of EMD (Huang transform) as analyzing tool for audio and speech processing. Main contributions, around EMD, of this dissertation are: speech denoising, audio coding and audio watermarking for copyright protection.

In chapter I, EMD is presented. This expansion into IMFs is performed in adaptive way. Unlike FT or WT, basis functions of EMD are derived from the signal itself and hence, the decomposition is adaptive in contrast to FT or WT where the basis functions are fixed. This is one reason that motivated our choice for the EMD. Further an other interest of the EMD is that no assumptions concerning the linearity or the stationarity are made about the signal to be analyzed. IMFs are orthogonal [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF] and their extraction is nonlinear, but their linear recombination is accurate. We have shown that the decomposition results by EMD are conditioned by sampling and signals interpolation. Based on simulations, we noted that this decomposition is organized in a filter bank structure toward a Gaussian white noise. Both orthogonality of modes and filter bank nature of EMD are important properties exploited for denoising, decoding and watermarking purposes. In general the EMD results are conditioned by the sampling rate and interpolation used. The reported results are obtained with signals oversampled and using cubic splines interpolation which is commonly used to approximate upper and lower envelopes in EMD. To improve the obtained results, it would be useful to test other interpolation approaches such as cubic Hermite spline or regularized interpolation. Although EMD has advantages in signal decomposition, it still has limitations such as end effect and the mode mixing (caused by signal intermittency). These shortcomings CHAPTER VI. CONCLUSION AND PERSPECTIVES 127 must be resolved to improve the performance of the signal decomposition. As its name, EMD is still an empirical technique. Our results show that EMD is very effective for denoising, coding and watermarking, but it still needs theoretical support.

Even, EMD based processing methods have shown good performances compared to MMSE filter or wavelet approach it is interesting, as future work, to extend the comparison to other approaches such as methods based on matching pursuit [START_REF] Daudet | Sparse and structured decompositions of signals with the molecular matching pursuit[END_REF], [START_REF] Gribonval | Harmonic decompositions of audio signals with matching pursuit[END_REF].

In chapter II, three denoising approaches based on the EMD are proposed.

Two approaches were dedicated to white noise and the third one has focused on a large class of noises including correlated case. For approaches dedicated to white noise, EMD-Shrinkage is used especially in the case where the estimated noise level is not reliable. However, when the estimation of noise level is accurate, EMD combined with MMSE filter (EMD-MMSE) improves the denoising results.

Furthermore, the obtained results also show that it is more efficient to apply the thresholding or the filtering to the extracted modes (IMFs) of the signal than to the signal itself. In the case of colored noise, the EMD-ACWA gives better results compared to ACWA filter and to wavelet approach. Indeed, the effectiveness of the ACWA filter is improved when it is associated with the EMD. In particular, we have also shown that it is more efficient in term of performance to combine EMD with the ACWA filter than with other classical filters such as MMSE filter. This is essentially due to the fact that as the EMD, the ACWA filter operates in time domain and exploits the local statistics of the signal. Furthermore, the assumptions of signal stationarity and white are not required. Since ACWA filter performs a sliding window analysis, performances of EMD-ACWA are partly dependent on proper choice of window length. The optimal size of the window is in general not known (depends on SNR and signal) and is determined only through experimentation. As future research we plan to work on a strategy to choosing optimal length value of the window. Ongoing research work is also to apply the proposed denoising to a large class of real signals to confirm the obtained results.

Chapter III is dedicated to speech denoising. As in chapter II, EMD is used in conjunction with ACWA filter. The aim was to improve the previously obtained denoising performances. This was achieved by taking into account the class of speech frame (voiced/unvoiced). The obtained results have shown that the number of denoised IMFs depends on whether the noisy frame is voiced or unvoiced. Thus, an energy criterion is used to detect voiced frames while a stationarity index is used to distinguish between unvoiced and transient sequences. Obtained results for clean speech signals corrupted with additive white Gaussian noise with varying SNR values show that the proposed method performs better than the ACWA filtering of all IMFs (EMD-ACWA), wavelet denoising approach (db4) and ACWA filtering of the noisy signal. As shown from the reported results, taking into account the statistical properties over the time of signal (voiced/unvoiced) in the filtering process improves noticeably the performances of the speech denoising in terms of both SNR and PESQ. To capture the stationarity of the speech frame, the index used is based on spectrogram. This TFR is chosen due to its simple use. However, the spectrogram performs less better in term of temporal and frequency resolution than other TFRs such Wigner-Ville distribution. As result, other TFRs than spectrogram should be tested to see if there is enough stationarity in the data.

In chapter IV, a new signal coding strategy is introduced. A salient property of the IMF is that it can be fully described by its extrema. This property is the core of the proposed signal coding. Firstly, two waveform coding schemes are introduced.

These two codings are non-parametric approaches. The first scheme (IMF extrema ) consist in encoding the IMFs extrema. Motivated by quasi-symmetrical property of the IMF and in order to further reduce the bit rate a second scheme was proposed. Thus, one out of two IMF envelopes is coded (IMF envelope ). Secondly, two parametric approaches combining HHT and AR modeling are proposed. AR modeling is supported by the correlation of IA and IF values of the IMFs. So, this model is useful to exploit this correlation. In the first parametric approach (IA -IF ), coefficients of the AR model of both IA and IF components are encoded.

In the second method (IA -IP ), we keep the same encoding for IA i.e., by linear prediction, and the IP extrema are coded by scalar quantization. On the whole, coding of IMF extrema provides a general framework for signal coding in adaptive way and potentially can be useful for a large class of signals. Even the proposed coding is illustrated on only audio signals (Chap. V), the developed algorithms can be easily extended, for example, to biomedical signals (ECG, EEG, MEG,. . . ).

Results of the coding framework in audio context are reported in chapter V.

To reduce the BR, IMF extrema and IMF envelope audio coders are associated with psychoacoustic model. We have also shown in IA -IF approach, that the order CHAPTER VI. CONCLUSION AND PERSPECTIVES 129 of the AR model for IF varies from one IMF to another. Therefore, for each IMF the AR order of associated IF function is determined using partial autocorrelation coefficient. Obtained results in terms of BR and of ODG show that the proposed methods perform much better than MP3 codec and wavelet compression. The IMF envelope is the most efficient approach, which provides better results compared to the AAC codec. Efficiency of the IMF envelope is essentially due to the use of a psychoacoustic model and the symmetry property of the IMF, which enable good audio quality at low BR. Results of the proposed empirical coding are not prejudiced by predetermined basis and/or subband filtering. This coding does not require any user parameters setting, except the stopping criterion of the EMD. Decoding by spline interpolation is very easy and the computational time of the method is much lower. Although different practical experiments have already been carried out on different kinds of audio sources, future works should consider large classes of audio signals as well as varied experimental conditions such as different sampling rates or frame size for improving the tuning of the method.

In chapter VI, a new adaptive audio watermarking algorithm based on EMD and dedicated for copyright protection is introduced. The principle of the proposed watermarking consists in embedding the watermark into extrema of the low frequency IMF. Low frequency components such as higher order IMFs are signal dominated and thus their alteration can lead to degradation of the signal. As result, these modes can be considered to be good locations for watermark placement.

To simultaneously have better resistance against attacks and imperceptibility, we embed the watermark in the last IMF. We choose in our method a watermarking technique in the category of QIM due to its good robustness and blind nature.

Parameters of QIM are chosen to guarantee that the embedded watermark in the last IMF is inaudible. Obtained results for audio signals demonstrate that the hidden data are robust against attacks such as additive noise, MP3 compression, requantization, cropping and filtering. Our method has hight data payload and performance against MP3 compression compared to nine audio watermarking approaches reported recently. Furthermore our approach has higher payload, where the data payload of the proposed algorithm, varies between 46.9 and 50.3 b/s, and better performance against MP3 compression compared to other watermarking approaches. Our watermarking method involves easy calculations and does not use the original audio signal. In the conducted experiments the embedding strength CHAPTER VI. CONCLUSION AND PERSPECTIVES 130 S is kept constant for all audio files. To further improve the performance of the method, the S parameter should be adapted to the type and magnitudes of the original audio signal.

Even based on extensive simulations (synthetic and real data), the obtained results of denoising, encoding and watermarking compared to well established methods such as MMSE filter, wavelets approach, MP3 and AAC codecs illustrate the real potential of the EMD as analyzing tool (in adaptive way) in speech and audio processing. Although the developed tools are illustrated on 1D signals, they can be easily extended to image processing. On the whole, the obtained results can be further improved through a modification of the conventional sifting. More specifically, instead of interpolation (exact B-splines fitting) to construct the upper and lower envelopes of the signal to be decomposed we can use a smoothing (regularized B-splines). Advantage of this sifting is to give EMD more robustness against noise and to reduce the number of unwanted IMFs of conventional EMD. As result the number of IMFs to be denoised or encoded will be reduced. Also as future work we plan to explore some theoretical aspects of the EMD such interpolation, mode mixing or orthogonality of the modes. The formalism of the EMD remains an exciting challenge for the signal processing community.
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 11 Principe de la méthode EMD L'EMD est une méthode algorithmique de décomposition des signaux. Elle se base sur le principe de décomposer le signal en une somme d'une composante locale haute RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE v fréquence (oscillation rapide) et d'une composante basse fréquence (tendance). Ce principe est illustré par l'équation (1):

.2. 1

 1 Débruitage de séquences voisées La séparation entre le bruit et le signal original est possible. En fait, cette séparation se base sur l'hypothèse que les premières IMF (les modes de plus hautes fréquences) sont majoritairement dominés par le bruit et sont peu représentatives de l'information propre au signal initial. Cependant, les modes qui correspondent au signal non bruité contiennent quand même un peu du bruit. Le débruitage de ces modes va engendrer une distorsion au niveau de reconstitution du signal estimé. Ainsi, le débruitage d'une séquence voisée revient à débruiter seulement les modes qui ne sont pas filtrés par EMD. Enfin, le signal débruité est la somme des RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE x modes filtrés par EMD et les modes débruités. L'approche proposée est résumée par l'organigramme suivant: Lors de la décomposition d'un signal de type non voisé bruité par EMD, qu'il est difficile de séparer le signal original du bruit. Cependant, l'hypothèse que le bruit est uniquement réparti sur les premières IMF n'est pas vérifiée sur les séquences non voisées. Ainsi, les informations qui correspondent au signal original seraient intégrées dans tous les modes, donc l'approche du débruitage se basera sur un traitement de tous ces modes un par un. La procédé consiste à reconstruire le signal estimé avec toutes les IMF préalablement filtrés. RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE xi .

RÉSUMÉFigure 1 :

 1 Figure 1: Organigramme de la compression par EMD.

. 3 . 5

 35 RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSExiv Résultats de simulation L'approche de la compression par EMD est appliquée à des signaux audio de natures différentes (chanson, guitare, piano et violon). Ils sont tous échantillonnés à la même fréquence f e = 44.1KHz. La Figure2présente les signaux originaux.

Figure 2 :

 2 Figure 2: Signaux audio (chanson, guitare, piano et violon)

Etape 6 :Etape 7 :Etape 9 : 11 :

 67911 I ← 1 et L ← N 1 (taille fenêtre) Evaluer la similarité entre le premier code de synchronisation extracté, V = y(I:L), et le code de synchronisation original U bit par bit. Si la valeur de similarité est ≥ τ , Donc V est considéré comme étant le code de synchronisation et sauter à l'étape 9, sinon aller à l'étape 8. Etape 8: I ← I + 1 et L ← L + 1 et revenir à l'étape 7. Evaluer la similarité entre le second code de synchronisation extracté, V'=y(I+N 1 +N 2 : I+2N 1 +N 2 ) et le code de synchronisation original. si la valeur de similarité ≥ τ , donc V ′ est considéré comme étant le code de synchronisation code, et extracter la marque N2 bits (y(I+N 1 : I+N 1 +N 2 -1)) à partir de la position I+N1 et aller à l'étape 10, sinon revenir à l'étape 8. Etape 10: I ← I +N 1 +N 2 , si la nouvelle valeur I est égale à la longeur de séquence y i , aller à l'étape 11, sinon revenir à l'étape 8. Etape Extracter le P marques et fait comparison bit par bit entre ces marques, pour la correction, et finalement extracter la marque désirée.
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 2225112723121333333133323734401 scheme has higher payload and better performance against MP3 compression compared to these earlier audio watermarking methods.

Figure I. 1

 1 Figure I.1 shows the curves presenting the interpolated version of the signal by four interpolation methods (cubic, spline, nearest and linear). The corresponding errorsare also presented. The error corresponds to the difference between the original signal x(t) and its interpolated version. This figure shows a much higher quality obtained with the spline method. Indeed, with a spline interpolation the error is ten times lower than other methods (nearest, linear and cubic).

Figure I. 1 :

 1 Figure I.1: Interpolation of the signal (x(t) = cos(t) + (t)) by different methods and the corresponding error.

Figure I. 2 :

 2 Figure I.2: Decomposition the signal x(t) = sin(8t) + sin(3t) + 2t by EMD.

Figure I. 3

 3 Figure I.3 illustrates perfectly the problem of sampling frequency. Thus, although the number of samples is the same in both cases (N = 256 samples), the decomposition of x(t) is different depending on the chosen normalized frequency. Only the signal with normalized frequency ν = 0, 050 is decomposed correctly by EMD (the residual is null). However, for signal of normalized frequency ν = 0, 032, the decomposition by EMD gives three IMFs and a residual not null. To illustrate

Figure I. 3 :

 3 Figure I.3: Decomposition of the tone signal (Eq. I.13) by EMD.

Figure I. 4

 4 Figure I.4 shows the variation of E(ν) as a function of ν in a log-log (base 2) plane.

  Figure I.4: Estimation and behavior of E(ν) associated with the first IMF for a tone.

Figure I. 5

 5 Figure I.5 shows the decomposition of signal x(t) by EMD. We remark that the decomposition depends on the ratio of the two frequencies ν 1 and ν 2 . For two frequencies sufficiently distinct from each other, the decomposition of a signal x(t) gives two IMFs (Fig. I.5(a)). Otherwise, the EMD approach considers the signal x(t) as a single component amplitude modulated (Fig. I.5(b))[START_REF] Rilling | Décomposition modale empirique : échantillonnage et résolution[END_REF],[START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF]. According to[START_REF] Rilling | On empirical mode decomposition and its algorithms[END_REF], the estimation error of the first and second IMF is given by:

  (ν 1 , ν 2 )=(0.01,0.002). (ν 1 , ν 2 )=(0.01,0.007).

Figure I. 5 :

 5 Figure I.5: Decomposition of the signal (Eq.I.15) by EMD.

  Figure I.6: Estimation and behavior of the error E(ν 1 , ν 2 ) Eq. I.16 for signal x(t) = x ν 1 (t) + x ν 2 (t) = cos(2πν 1 t) + cos(2πν 2 t).

Figure I. 7 :

 7 Figure I.7: IMFs spectra for a white noise.

)Figure I. 8 :

 8 Figure I.8: Signal x(t) = sin(3t) + sin(0.3t) + sin(0.03t) and its theoretical components.

Figure I. 9 :

 9 Figure I.9: Comparison of decomposition by the EMD to wavelet.

Figure I. 10 :

 10 Figure I.10: Error estimates with EMD and wavelet.
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 123 figure II.2. Figure II.3 shows the denoising results obtained by the EMD-MMSE and

Figure II. 4 :

 4 Figure II.4: Final SNR values obtained from different initial noise levels of signals "speech1", "speech2", "speech3" and "speech4". The results are averages over 100 instances of the noisy signals. They are reported for EMD-MMSE and the MMSE filter.

Figure II. 5 :

 5 Figure II.5: PESQ values obtained from different initial noise levels of signals "speech1", "speech2", "speech3" and "speech4". The results are averages over 100 instances of the noisy signals. They are for EMD-MMSE and the MMSE filter.

Figure II. 6 :

 6 Figure II.6: Noisy versions of signals "speech1", "speech2", "speech3" and "speech4" (input SNR =-5 dB).

Figure II. 7 :

 7 Figure II.7: Denoising results of signals "speech1", "speech2", "speech3" and "speech4" by the EMD-Shrinkage and the wavelet approach (Daubechies 4).

Figure II. 8 :

 8 Figure II.8: Final SNR values obtained from different initial noise levels of signals "speech1", "speech2", "speech3" and "speech4". The results are averages over 100 instances of the noisy signals. They are reported for EMD-Shrinkage and for three different Wavelets (Haar, Symmlet 4, Daubechies 4).

Figure II. 9 :

 9 Figure II.9: Variations of the PESQ values versus from the input SNR for signals "speech1", "speech2", "speech3" and "speech4". The results are averages over 100 instances of the noisy signals. They are reported for EMD-Shrinkage and for three different wavelets (Haar, Symmlet 4, Daubechies 4).

  Figure II.10: Clean and filtered signals by the ACWA and the MMSE filters (input SNR=2 dB).

Figure II. 11 :

 11 Figure II.11: Noise power spectral density

Figure II. 12 :

 12 Figure II.12: Original signals ("speech1" and "speech2") and their noisy versions (f16 noise with SNR =-2 dB).

Figure II. 14 :Figure II. 15 :

 1415 Figure II.14: Denoised version of the signals "speech1" and "speech2" obtained by the EMD-ACWA, the wavelet (db4) and ACWA filter (f16 noise with input SNR =-2 dB)

Figure II. 16 :Figure II. 17 :

 1617 Figure II.16: Variation of the output SNR versus the input SNR relating to the denoising of the signals "speech1" and "speech2" corrupted by the f16 noise. The results are reported for EMD-ACWA, ACWA filter and wavelet (db4)

Figure II. 18 :Figure II. 19 :

 1819 Figure II.18: PESQ values obtained from different initial noise levels of signals "speech1" and "speech2". The results are an average of 100 instances signal. It's reported for EMD-ACWA, ACWA filter and wavelet(db4)

Figure II. 20 :

 20 Figure II.20: PESQ values obtained from different initial noise levels of signals "speech1" and "speech2" corrupted by the factory noise. The results are reported for EMD-ACWA, ACWA filter and wavelet(db4)

5 )

 5 where xk and xk+1 are signals reconstructed starting from the IMFs indexed by k and (k + 1) respectively.

  Figure III.2(c) shows the energies of the IMFs of a noisy voiced sequence (Figure III.2(b)). The most important features of this speech sequence begin at the fourth IMF (j s = 4). This energy criterion is appropriate only to detect voiced frames [42]. In fact, as shown by figure III.3(c) the energies of IMFs decrease versus the IMF index for a noisy transient frame (Fig. III.3(b)). The same result is obtained in the case of an unvoiced frame (Fig. III.4(c)).

  Energy of noisy IMFs.

Figure III. 2 :

 2 Figure III.2: Voiced sequence, noisy voiced sequence and the energy variations of their noisy IMFs.

  Figure III.5 shows the behavior of the stationarity index in presence of a transient sequence (Fig. III.3(b)). Based on the stationarity index, it is possible to locate the time position of the transient that separates the transient speech frame into two sub-frames of different nature: voiced and unvoiced. A large peak is noticed at the transient instant corresponding to the Not voiced sequence. (b) Noisy not voiced sequence.

  Energy of noisy IMFs.

Figure III. 3 :

 3 Figure III.3: Not voiced sequence, noisy not voiced sequence and variations of the energies of its noisy IMFs.

Figure III. 4 :

 4 Figure III.4: Unvoiced sequence, noisy unvoiced sequence and variations of the energies of its IMFs.

Figure III. 5 :

 5 Figure III.5: The stationarity index of a noisy transient frame.

  First sub-frame. (b) Second sub-frame.

Figure III. 6 :

 6 Figure III.6: Energy variations of the IMFs of the sub-frames.

AIII. 4

 4 transient frame corresponds to two adjacent sub-frames of unvoiced (voiced) and voiced (unvoiced) speech. The stationarity index helps to locate the transient instant between these two sub-frames. The denoising strategy is chosen according to the sub-frame class : voiced or unvoiced. Performance analysis III.4.1 Voiced frames The proposed noise reduction method is tested on voiced speech signals corrupted by varying additive white Gaussian noise levels, fixed through the input SNR. Four clean voiced speech signals vowels /o/, /a/, /e/ and /i/ (Fig. III.7) pronounced by a male speaker are analyzed. These signals are corrupted by an additive white Gaussian noise with SNR values ranging from -10 dB to 10 dB. The results of the proposed scheme are compared to those of three methods: ACWA filtering of all IMFs (EMD-ACWA), denoising based on wavelet decomposition and ACWA filtering of the noisy voiced signal, i.e., ACWA filtering all IMFs. The performance evaluation is based on the output SNR and the PESQ measures. For each input SNR value, 100 independent noise realizations are generated and averaged values of the output SNR and the PESQ are computed. Noisy versions of the original signals corresponding to input SNR = 2 dB are shown

Figure III. 9 :Figure III. 10 :

 910 Figure III.9: Decomposition of noisy signal /o/ into IMFs (input SNR= 2dB)

  Denoising of noisy signal /o/. (b) Denoising of noisy signal /a/. Denoising of noisy signal /e/. (d) Denoising of noisy signal /i/.

Figure III. 11 :

 11 Figure III.11: Enhanced signals obtained by the proposed method, Wavelet (db4), ACWA filter and EMD-ACWA (input SNR=2 dB).

  Gain in SNR for noisy version of /o/. (b) Gain in SNR for noisy version of /a/. Gain in SNR for noisy version of /e/. (d) Gain in SNR for noisy version of /i/.

Figure III. 12 :

 12 Figure III.12: Variations of output SNR versus input SNR for signals /o/, /a/, /e/ and /i/. The results are average over 100 noise realizations. The reported results correspond to the proposed method, Wavelet(db4), ACWA filter and the EMD-ACWA.

  .14) corrupted by additive white Gaussian noise with input SNR values ranging from -10 dB to 10 dB. Noisy versions of the original signals corresponding to input SNR =2 dB are shown in figure III.15.

  PESQ for noisy version of /o/. (b) PESQ for noisy version of /a/. PESQ for noisy version of /e/. (d) PESQ for noisy version of /i/.

Figure III. 13 :

 13 Figure III.13: Variations of PESQ values versus input SNR for the signals /o/, /a/, /e/ and /i/. The results are average over 100 noise realizations. The reported results correspond to the proposed method, wavelet(db4), ACWA filter and the EMD-ACWA.

Figure III. 16

 16 Figure III.16 shows the denoising signals result obtained by applying the proposed method, the wavelet method, the ACWA filtering and the EMD-ACWA technique. From figure III.16 and compared to the original signals (Fig. III.14), one can conclude that the proposed method performs better in terms of noise reduction than the other techniques. This fact is confirmed by the results shown in figure III.17

Figure III. 14 :Figure III. 15 :

 1415 Figure III.14: Original signals "speech1", "speech2", "speech3" and "speech4".

with

  Hilbert transform is presented. Based on the Hilbert and Huang Transforms (HHT), Instantaneous Amplitude (IA), Instantaneous Phase (IP) and Instantaneous Frequency (IF) of each extracted IMF are calculated. Given the relatively high autocorrelation of the IA and IF values, a linear predictive coding technique of IA and IF is used This chapter is organized as follows. In the first section, we present the motivation of IMFs coding. Section IV.3.2.2 details the first encoder architecture that consists to encode the IMFs extrema or one of its envelopes. Finally Section IV.4 focuses on the second encoder architecture witch revolves around decoding of IA and IF of each IMF of the signal.

Figure IV. 1 :

 1 Figure IV.1: Original IMF and its estimated version by spline interpolation.

Figure IV. 2 :

 2 Figure IV.2: IMF mean envelope offset

Figure IV. 3 :

 3 Figure IV.3: IA, IP and IF of an IMF.

Figure IV. 4 :

 4 Figure IV.4: Encoding scheme.

3 . 1 . 3 .Figure IV. 5 :

 3135 Figure IV.5: Encoding scheme.
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 41 IA and IP coding basics: IA -IP IV.4.1.1 IA encoding As mentioned before, IA a(t) values are strongly correlated. So, Auto Regressive (AR) model can be used to exploit efficiently this temporally correlated information. a(t) = p k=1 c(k)a(t -k) + ǫ(t) (IV.4) where [c(1), c(2), ..., c(p)] are the coefficients of the AR model and ǫ(t) is assumed to be a white noise process. The determination of the coefficients is based on the minimization of the prediction Mean Square Error (MSE). The order, p, of AR model

Figure IV. 6 :

 6 Figure IV.6: Decomposition of an audio frame by EMD.

Figure IV. 7 :

 7 Figure IV.7: Partial autocorrelation coefficient for IF of IMF generated by audio frame (figure IV.6).

  this chapter we show the effectiveness of introduced EMD-based coding strategies on audio signals. For IMF extrema and IMF envelope coders, a masking threshold related to the psychoacoustic model is used. To guarantee good performances, specificity of the transient sequences is taken into account in the coding process. Also, to ensure a good audio quality and a reduced BR, the encoders based on the IMF waveform coding, are slightly modified according to the specificity of the audio signal. Thus the structure of the IMF extrema coder is depicted by Fig.∨.1.

Figure V. 1 :

 1 Figure V.1: IMF extrema encoder architecture in context of audio signals.

  figure V.2, with N set to 64[START_REF] Gonon | Improved entropic gain and adaptive time-frequency segmentation. application to audio coding[END_REF]. Figure V.3 shows an example of segmentation of an audio frame of 1500 samples (zoom for audio frame signal figure V.2).

Figure V. 2 :

 2 Figure V.2: LEC variation for an audio frame.

Figure V. 3 :

 3 Figure V.3: Example of segmentation for an audio frame.

Figure V. 4 :

 4 Figure V.4: Quantization scheme.

Figure V. 5 :

 5 Figure V.5: Original audio signals (gspi, harp, quar, song, trpt and violin).

aFigure VI. 1 :Figure VI. 2 :Figure VI. 3 :Figure VI. 4 :

 1234 Figure VI.1: Decomposition of an audio frame into IMFs.

CHAPTER

  Figure VI.5: Watermark extraction.

  Before embedding, SCs are combined with watermark bits to form a binary sequence denoted by m i ∈ {0, 1}, i-th bit of watermark (Fig. VI.2). Basics of our watermark embedding are shown in figure VI.3 and detailed are follows:

Figure VI. 7 :Figure VI. 8 :

 78 Figure VI.7: Binary watermark.

Figure VI. 10 :

 10 Figure VI.10: P F N E versus the length of embedding bits.

Table 1 :

 1 Résultats de la compression par EMD, MP3 et par ondelette.

		Signal	chanson guitare Piano	violon
	EMD	TC RSB[dB] 22.28 11.62:1 12.8:1 19.15 SDG -0.63 -0.70	11.96:1 12.41:1 21.43 20.03 -0.9 -0.83
		PSMt	0.96	0.94	0.88	0.91
	Ondelette	TC RSB[dB] 23.43 10.11:1 9.42:1 20.17 SDG -1.94 -1.51 PSMt 0.81 0.83	9.25 21.59 -2.01 0.72	9.83:1 19.65 -1.76 0.79
		TC	6.92:1	7.37:1	8.21:1	7.84:1
	MP3	RSB[dB] 23.69 SDG -0.67	21.84 -0.79	17.63 -0.72	19.72 -1.05
		PSMt	0.96	0.92	0.94	0.86

1. Le tableau VI.1 montre que notre approche présente des performances meilleures RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE xv que celles des autres techniques testées. En effet, l'analyse des valeurs du TC et du (SDG) montre qu'elle offre une amélioration en termes de taux de compression et de qualité audio du signal décodé respectivement. En particulier cette amélioration est clairement visible surtout pour les signaux guitare et violon. .4 Tatouage des signaux audio par EMD L'EMD consiste à décomposer un signal en une somme finie de composantes de type AM-FM, appelées IMF (Intrinsic Mode Function). L'analyse du processus du tamisage qui génère les IMF montre qu'on peut envisager un schéma de tatouage qui consiste à insérer la marque dans la dernière IMF. En effet, la dernière IMF peut être vue comme la composante la plus basse fréquence, par conséquence la plus résistante aux attaques. Ainsi, on propose d'insérer la marque en association avec le code de synchronisation dans les extrema de la dernière IMF.

.4.

1 Algorithme de tatouage proposé Code de synchronisation

  

Le code de synchronisation est introduit pour localiser la position de la marque dans le signal et par conséquence facilite l'extraction de la marque du signal tatoué.

RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE xvi

Etant donné un code de sunchronisation U et une séquence inconnue V qui sont de même longeur. La séquence V est définie comme étant un code de synchronisation si seulement la valeur de simularité entre U et V (bit par bit) est supérieur ou égale à un seuil prédefini τ .

  Grouper toute sequence de bits y i .

	m * i =	  	1 si e * i -⌊e * i /S⌋.S ≥ sgn S/2 0 si e * i -⌊e * i /S⌋.S < sgn S/2	(7)
	sgn est "+" si e * i est un maximum,et "-" s'il est un minimum.	
	Etape5:			

Etape 3: Extracter les extrema e * i de la dernière IMF. RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE xvii Etape 4: Extracter la sequence m * i de e * i .

Table VI .

 VI 1 montre la robustesse de l'algoritme proposé pour le signal audio "Rock". Les Valeurs de TEB et NC reflette la bonne performance de notre algorithme pour differents type d'attaques. Le tableau B.1 montre que notre approche présente de meilleures performances que les autres techniques testées. En effet, elle offre une amélioration en termes de débits et robustesse en fonction de codeur MP3 par rapport aux autres algorithmes RÉSUMÉ DÉTAILLÉ EN FRANÇAIS DE LA THÈSE xviii

Table 2 :

 2 TEB et NC de la marque extractée pour le signal audio "Rock" par l'approche proposée.

	Type d'attaque TEB %	NC
	Pas d'attaque	0	1
	AWGN	0	1
	Débruitage	0	1
	Cropping	0	1
	Rechantillonage	1	0.9989
	MP3(64 kb/s)	0	1
	MP3 (32 kb/s)	0	1
	Requantification	0	1
	de tatouage.		

Table 3 :

 3 Performance des algorithmes de tatouage, trier par débits.

	Référence	Débits (b/s) Robustesse avec MP3 (kb/s)
	Algorithme proposé	46.9-50.3	32
	Bhat K	45.9	32
	Lie	43	80
	Cvejic	27.1	32
	Yeo	10	96
	Tachibana	8.5	96
	Li	4.2	32
	Mansour	2.3	56
	Xiang	2	64
	Kirovski	0.5-1	32
	.5 Conclusion		

Dans cette thèse on a exploré l'apport de l'EMD en traitement et en analyse des signaux audio et de parole. Cette décomposition du signal en IMF est adaptative et ne fait pas d'hypothèses (stationnarité et linéarité) sur le signal à analyser. Le comportement en banc de filtre dyadique de l'EMD ainsi que la quasi-symétrie des modes et leur représentation via leurs extrema sont les propriétés qui sont l'origine des outils qu'on a développés: débruitage, codage et tatouage. Ces contributions sont illustrées sur des données synthétiques et réelles et les résultats comparés à ceux de méthodes éprouvées telles que le filtre MMSE, l'approche ondelettes et les codecs AAC et MP3 montrent les bonnes performances des outils développés autour de l'EMD. Ces résultats montrent les capacités de l'EMD comme outils de traitement et d'analyse de façon adaptative des signaux audio et de parole.
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  5[ and satisfying ν 1 > ν 2 . Figure I.6 shows the variation of E(ν 1 , ν 2 ) versus frequencies ν 1 and ν 2 . Fig.I.6shows that the separation is very good over a certain range of values (ν 1 ,ν 2 ) where |ν 1 -ν 2 | is large enough. We note that in case of very low error, the decomposition of

x(t) by EMD gives two IMFs, each IMF corresponds to a tone. However, when the error E(ν 1 , ν 2 ) is high, the signal x(t) is analyzed as modulated in frequency and amplitude.
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  two proposed noise reduction methods are tested on speech signals corrupted by additive white Gaussian noise with different input SNRs. Four clean speech signals, download from Brown Corpus Database, pronounced by a male and female speaker, and are sampled by a sampling frequency equal to 16 KHz. The results are compared to MMSE filter and to wavelet approach (Haar, Symmlet 4, Daubechies 4).

Table II . 1 :

 II1 Variations of the output SNR and of the PESQ over the input SNR for the MMSE and ACWA filters.

		MMSE filter		ACWA filter	
	SNR input [dB] SNR output [dB] PESQ SNR output [dB] PESQ
	-10	0.87	0.70	2.7	1.05
	-8	1.53	0.91	4.04	1.2
	-6	3.52	1.07	5.94	1.38
	-4	5.00	1.29	7.98	1.58
	-2	7.37	1.51	10.18	2.15
	0	9.82	2.05	11.19	2.21
	2	12.63	2.35	12.08	2.27
	4	13.76	2.4	13.95	2.4
	6	15.88	2.51	15.67	2.49
	8	16.53	2.64	16.58	2.7
	10	17.23	2.8	17.18	2.73
	This proposed noise reduction method is tested on speech signals corrupted by
	different noises, taken from Noisex-92 database, whose levels are fixed through the

input SNR. The noise (f16, factory) spectrum is depicted in figure II.11.

The results obtained by the proposed method are compared to the wavelet approach CHAPTER II. SPEECH ENHANCEMENT BY EMD 56

  SPEECH DENOISING USING EMD AND LOCALSTATISTICS 66 decomposed by EMD and the energies of the associated IMFs are calculated. An energy criterion is applied to detect whether the input frame is voiced speech or not. While a stationary index is used to classify the frame into unvoiced or transient frame formed by two adjacent sub-frames. Finally, in the case of transient frame, the energy criterion is applied to classify the two sub-frame into voiced or unvoiced speech.

	Noisy frame		
		❄		
		EMD		
	IMF 1	IMF 2 ........ IMF C	
	❄	❄	❄	
	Energy calculation	
	❄ E 1 E 2 ......... ❄	❄ E C	
	Energetic criterion	Yes	✲	Noisy voiced frame
		❄ No		
	criterion Stationarity index	✲	Noisy unvoiced frame
		Noisy transient frame
		❄		
	classification Sub-frames	
	✢	)		
	Noisy voiced sub-frame Noisy unvoiced sub-frame
	Figure III.1: Frames classification scheme.

The principle of frames classification is depicted in figure III.1. Noisy frame is first CHAPTER III.

  Figure III.7: Original signals /o/, /a/, /e/ and /i/. in figure III.8. For illustration, figure III.9 shows that the EMD decomposes the
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	Figure III.8: Noisy versions of signals /o/, /a/, /e/ and /i/ (input SNR=2 dB).
	noisy signal /o/ into 10 IMFs and a residual. According to this decomposition, we
	can see that from the fourth IMF, the signal energy dominates over the noise. This
	observation is well verified based on CMSE criterion.	

Table III .

 III 1: C and j s values of each signal In chapter II, we choose the db4 wavelet with a hard thresholding, because it gives good results compared to the other wavelets. A careful comparative examination between the signals shown in figures III.7 and III.11, shows that the proposed method performs better than the other three methods in terms of noise reduction. This conclusion is confirmed by the output SNR values listed in table III.2. For all voiced speech signals, the SNR gain achieved by the proposed method is the highest one.

	Signals /o/ /a/ /e/ /i/
	C	10	11 11 12
	j s	4	3	4	5
	noisy signal, the ACWA filtering of all IMFs of the noisy signal (EMD-ACWA), and
	a denoising based on the wavelet (db4) thresholding [45], are shown in figure III.11
	for an input SNR = 2 dB. Table III.2: Denoising results, based on the output SNR, of four noisy voiced differ-
	ent signals (input SNR=2 dB)				
	Noisy signals (SNR=2dB) /o/	/a/		/e/	/i/
	Proposed method		14.82 11.87 10.55 9.44
	EMD-ACWA		11.94 7.87	7.41 5.23
	Wavelet (db4)		11.38 7.85	7.40 5.24
	ACWA filter		9.80	8.04	7.91 7.31
	These findings are also confirmed by the results shown in figure III.12, where it is
	shown that for the four signals the proposed method performs remarkably better
	than the EMD-ACWA and the other methods. The SNR improvement achieved
	by the proposed method varies from 3.4 dB to 17.9 dB. For very low input SNR
	values, we still observe the effectiveness of the proposed method in removing the
	noise components.				

Table IV .

 IV 1: Offset values of IMFs extracted from an audio frame.

  analysis of IP variations shows that only IP's extrema can be encoded by classical scalar quantization. As shown in figure IV.3, the phase variations is almost linear as it undergoes variation of 2π. This suggests encoding only zero crossings of the phase, together with its initial and final values.

	IV.4.1.3 Decoding scheme	
	IP θ(t) is decoded from zero crossing by linear interpolation. IA a(t) is recovered by
	linear prediction. The estimated IMF is calculated as follows:	
	ÎMF(t) = |â(t)| cos( θ(t))	(IV.5)

  IMF extrema and IA -IP coders, it is not possible for comparison purpose to fix the BR to 64 kb/s, so both proposed approaches are compared to AAC and MP3 codecs with a BR set to 96kb/s. In IMF extrema coder, the time index of extrema is encoded by 5 bits, the scaled factor is encoded by 8 bits, while the amplitude index is encoded variably, such that the final BR is equal to 96kb/s. The order of AR model for IA coding of each IMF in IA -IP approach is fixed to 9[START_REF] Khaldi | Audio encoding using huang and hilbert transforms[END_REF]. For IP coding, each extrema is characterized by two indices (time and amplitude) and each index is encoded by 8 bits. Values of NMR, BR and ODG obtained at BR equal to 96 kb/s with IMF extrema and IA -IP coders are summarized in table V.1. Table V.1: Compression results of audio signals (gspi, harp, quar, song, trpt and violin) by IMF extrema , IA -IP , AAC, MP3 and the wavelet. Compared to AAC codec, the performance of IMF extrema is achieved for only gspi and song signals compared to the AAC coder. For other signals, IA -IF and AAC coder have comparable performances, where ODG varies between -1 and 0. This reflects the good decoded signal quality.

		Signal	gspi	harp quar song	trpt violin
		BR [kb/s]	96	96	96	96	96	96
	IMF extrema	NMR	-5.87 -6.21 -6.23 -7.24 -6.47 -5.56
		ODG	-0.75 -0.67 -0.71 -0.62 -0.76 -0.71
		BR [kb/s]	96	96	96	96	96	96
	IA -IP	NMR ODG	-4.96 -0.78 -1.02 -1.05 -3.1 -2.89 -4.12 -3.84 -3.17 -0.8 -0.78 -0.81
		BR [kb/s]	96	96	96	96	96	96
	AAC	NMR	-6.12 -8.27 -6.36 -6.74 -8. 19 -6.49
		ODG	-0.67 -0.59 -0.62 -0.7 -0.69 -0.66
		BR [kb/s]	96	96	96	96	96	96
	MP3	NMR	-2.14 -1.17 -1.29 -2.46 -2.23 -2.59
		ODG	-0.98 -1.04	-1.1	-0.89 -0.94 -0.96
		BR [kb/s]	96	98	96	96	102	95
	Wavelet	NMR	-3.25 -2.73 -1.83 -3.52	-3.3	-2.97
		ODG	-0.79 -1.08 -1.19 -0.84 -0.81 -0.96
	A careful examination of the results reported in table V.1, shows that both proposed
	approaches perform remarkably better than wavelets method in terms of BR and
	decoded listening quality. Compared to MP3 codec, at fixed BR to 96 kb/s, both

approaches yield higher objective quality. Indeed, most of ODG index vary between -1 and 0 and have value greater than offered by MP3, which reflects the good quality of decoded signal.

Table VI .

 VI 1: SNR and ODG between original and watermarked audio.
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In the first approach, we were interested in coding the IMFs extrema since the IMFs are fully described by their local extrema [START_REF] Huang | The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF]. In order to achieve lower BR, the coding of one out of the two IMFs envelopes was considered. This idea relies on the quasi-symmetrical property of the IMF. In a second approach, we exploit the auto-correlation of the Instantaneous Amplitude (IA) and 

Robustness test

To asses the robustness of our approach, different attacks are performed:

• Noise: White Gaussian Noise (WGN) is added to the watermarked signal until the resulting signal has an SNR of 20 dB.

• Low pass filtering: A second order Butterworth filter, which eliminated frequency more than 11025 Hz, is used.

• Denoising: Filter the watermarked audio signal using Wiener filter.

• Cropping: Segments of 512 samples are removed from the watermarked signal at thirteen positions and subsequently replaced by segments of the watermarked signal contaminated with WGN.

• Resampling: The watermarked signal, originally sampled at 44.1 kHz, is resampled at 22.05 kHz and restored back by sampling again at 44.1 kHz.

• MP3 compression 64 kb/s and 32 kb/s: Using MP3, the watermarked signal is compressed and then decompressed.

• Requantization: The watermarked signal is re-quantized down to 8 bits/sample and then back to 16 bits/sample. 

Résumé -Abstract Traitement et analyse des signaux sonores par transformée de Huang (EMD)

.

Résumé:

Dans cette thèse on a exploré l'apport de l'EMD en traitement et en analyse des