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Résumé détaillé en

francais de la these

a décomposition modale empirique (Empirical Mode Decomposition "EMD'

en anglais) est une méthode caractérisée par un processus appelé Tamisage

(Sifting) permettant de décomposer temporellement un signal en une
somme de composantes oscillantes appelées Modes Empiriques connues sous le nom
de Intrinsic Mode Functions (IMF).

Le but général de la these est 'exploration des possibilités de 'EMD pour traite-
ment et 'analyse des signaux sonores avec comme application débruitage, compres-
sion et tatouage. Ainsi, mes travaux de recherche actuels s’inscrivent dans un esprit
de continuité du travail effectué en mastere, qui touche particulierement les traite-
ments du signal. Le rapport de la these est écrit en anglais, il est structuré en quatre

parties.

.1 Transformée de Huang : EMD

Dans ce chapitre, on propose d’étudier la technique EMD en précisant ses caractéris-
tiques, tout en insistant sur les critéres qui nous offrent une bonne décomposition

du signal.

.1.1 Principe de la méthode EMD

L’EMD est une méthode algorithmique de décomposition des signaux. Elle se base

sur le principe de décomposer le signal en une somme d’une composante locale haute
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fréquence (oscillation rapide) et d'une composante basse fréquence (tendance). Ce

principe est illustré par I’équation (1):

z(t) = d(t) +m(t) (1)

ou x(t) constitue le signal & décomposer, d(t) est l'oscillation rapide, m(t) est le
signal tendance et t indique le temps discret.

De méme le signal tendance peut étre aussi décomposé en deux termes (2).
m(t) = di(t) +m(t) (2)

ou dq(t) est la composante haute fréquence et mq(t) est la composante basse
fréquence.

Pour calculer un mode relatif a un signal, on suit le principe suivant :

1. Identifier tous les extrema locaux de z(t).

2. Interpoler les minima (resp. les maxima) de maniére a construire une certaine

enveloppe: EnvMin (resp. EnvMax).
3. Calculer la moyenne de deux enveloppes m(t) = ( EnvMin(t) + EnvMax(t))/2.

4. Extraire le détail d(t) = z(t) — m(t). Le signal d(t) n’est consideré IMF
qu’apres un certains nombre d’itérations nécessaires afin que d(t) obéisse a un

critere d’arrét donné.

En itérant ce principe, on obtient une décomposition du signal décrite comme

suit:

ﬁ:IMF +r(t) avec N € N* (3)

ou IMFj est 'IMF d’ordre j qui est de type plus haute fréquence que '/ M F} 1,
Le signal r(t) est appelé résidu, il correspond a la composante la plus basse fréquence
du signal.

D’aprés (3) et en supposant que N est fini, on reconstruit linéairement le signal
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original sans perte ou distorsion de I'information [34].

Toutefois, on ne parle d'une IMF que si elle vérifie les critéres suivants [34]:

1. Une moyenne nulle.

. ifféren ntr nombr xtrem nombr A zEér u
2. La différence entre le nombre d’extrema et le nombre de passage a zéros est a
plus de un (c’est a dire qu’entre un minimum et un maximum successif, I'IMF

passe par z€ro).

Le principe de décomposition de 'TEMD est assuré par le processus de tamisage

défini par 'algorithme décrit dans ce qui suit.

.1.2 Procédure algorithmique de 'EMD

Notations :

¢ : indique le seuil prédéfinie, c’est un critere de condition de la boucle indicée par i.
j : représente l'indice de I'IMF.

i : constitue l'indice de l'itération appliquée sur le résidu pour vérifier le critere
d’une IMF.

rj : désigne le résidu aprés I'obtention de la 77 IMF

hj; : c’est une variable intermédiaire de calcul qui prend la valeur du nouveau
résidu a la premiere itération, puis, elle prend la différence entre le résidu et la
valeur de I’enveloppe moyenne aux itérations suivantes.

Uj.: représente l'enveloppe supérieure de h;;, construite par interpolation des
maxima.

L

minima.

;i ¢ représente l'enveloppe inférieure de h;;, construite par interpolation des

f;i = désigne I'enveloppe moyenne, obtenu a partir des deux enveloppes de h; ;.
SD (i) : indique le critere d’arrét a la i®m itération.
L’algorithme correspondant a la méthode EMD peut s’écrire sous la forme du
pseudo - code suivant :
Etapel: fixer €, j < 1 (" IMF).
Etape2 : r;_(t) < z(t) (résidu).
Etape3 : extraire la j*"¢IMF :
(a) : hj;—1(t) = r;_1(t) ;i <= 1 ( gitération de la boucle sifting).

(b) : extraire les maxima et les minima locaux de h;;_1(t).
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(c) : calculer les enveloppes supérieure et inférieure : U;;_;(t) et L;;_1(t) par in-
terpolation ( splines cubiques par exemple ) des maxima et des minima de h;; 4(t)
respectivement.

(d) : calculer I'enveloppe moyenne : f1;,;1(t) =(U;,;—1(t) + L;—1(t))/2.

(e) : mettre a jour h;;(t) < h;,;—1(t)- pji-1(t) , 7 < i+ 1.

|hgyi—1(t)~hj,i(t)|?

T
(f) : calculer le critére d’arrét (par exemple) : SD(i) = > SO

ou T représente le nombre d’échantillons du signal.

(g) : décision : répeter I'étape (b),(f) tant que SD(i)<e.

a la sortie de I’étape(3), on met IMF; < h;,;(t) (j"“IMF).

Etaped : mettre a jour le résidu r;(t) < rj_1(t) - IMF;(t).

Etape5 : répéter I'étape(3) avec j < j + 1 jusq'u a ce que le nombre d’extrema
dans r;(t) < 2.

L’algorithme décrit ci-dessus, comporte deux boucles imbriquées 'une dans l'autre,
celle indicée par j permet d’extraire I'IMF, qui nous détermine le niveau de pro-
fondeur de décomposition et I'autre indicée par i conditionne la fonction IMF(t) de
maniere a respecter les critéres requis; avoir deux enveloppes symétriques afin que
le signal extrait IMF; soit bien une IMF.

Une bonne décomposition donnée par cet algorithme est conditionnée par le choix

de certains parametres.

.1.3 Parametres pertinants de la décomposition

Généralement, le choix des parametres repose sur le critere d’arrét. Comme il existe
deux boucles dans l'algorithme, il faut s’assurer que les deux doivent s’arréter. La
boucle principale indicée par j s’arréte lorsqu’il n’est plus possible de décomposer
le résidu courant cad que r;(t) possede moins de deux extrema. La boucle indicée
J
par i est liée a un critere d’arrét qu’il convient de définir de maniere précise.
u indicé ri)w rréter lorsqu . véri riter

La 2°"¢ boucle (indicée pa a s’arréter lorsque h;;(t) vérifie les criteres de
définition d'une IMF ( de moyenne nulle). Théoriquement, cette hypothese n’est
pas démontrée, pour cela en pratique on ajoute a ce critere un autre qui évite au
proccesus de tamisage entrer dans une boucle infinie. La définition d'un critere

d’arrét du processus de tamisage est alors nécessaire:

Ainsi dans [34], les auteurs proposent un critere d’arrét SD(i) reposant sur la
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deviation standard et défini par :

— 1(t) — hyj,i(t)?
(hj,i—1(t))

sp(i) =y 1! (@)
t=0

Le test d’arrét est validé lorsque la différence entre deux tamisages consécutifs est
inférieur a un seuil prédéfinie €. Typiquement, la valeur € permettant de stopper le
tamisage est comprise entre 0.2 et 0.3 [1]. Cette valeur réalise un certain compromis.
En effet si € est trop grand, 'EMD ne permet pas de séparer les différents modes
présents dans le signal, cependant si € est trop petit, 'TEMD risque d’aboutir a des
composantes dont 'amplitude est quasiment constante et modulée par une seule

fréquence ( sur-décomposition de signal).

Un autre critére local a été proposé par P.Flandrin [28] et notamment choisi en

pratique. Ce critere est défini comme suit :

i1 (t) ‘

O = Lo0

(5)

En adoptant le critere o(t), trois conditions nécessaires sont définies pour que
h; j(t) soit bien une IMF [28].

o La différence entre le nombre de zéros de h;(t) et les nombres d’extrema de

h;(t) est inférieure ou égale en valeur absolue a 1.
e o(t) <6, pour t <(1-a)T

e 0(t) <6y pour (1-a)T <t<T

ou T : la taille de la fenétre d’analyse, #et 0y deux réels tels que 0 < 6; < 6, et
0 < (a = (Tolerence)) <1

La premiere condition revient a dire qu'une IMF doit étre une fonction oscillante
autour de zéro : entre un maximum et un minimum, il doit y avoir un passage par
zéro. Les deux derniéres conditions exigent que le parametre o(t) soit faible. Toute

fois, il peut dans une certaine mesure prendre des valeurs élevées.
Dans [28]le bon copromis du choix des valeurs des seuils et 0 est le suivant :

0 ~ 0.05 et Oy ~ 10 x 0, et a ~ 0.05. On conclut que tous les criteres d’arrét

sont exigés pour que h;;(t) vérifie bien les propriétés d'une IMF.
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Dans notre travail, nous adoptons le critére choisie par [28], car il nous permet

d’obtenir des modes qui correspondent bien a la définition d’'une IMF.

.2 Débruitage des signaux de la parole par EMD

Nous présentons dans cette partie une procédure basée sur 'EMD pour le rehausse-
ment du signal de la parole. En particulier le traitement proposé tiendra compte du
caractere voisé ou non voisé de la séquence de parole considérée. Puisque le signal de
parole est constitué de séquences voisées et non voisées, on a été amené a considérer
séparément les deux types de séquences.

L’idée du débruitage d’un signal de parole bruité se présente selon le principe suivant:

1. Découper le signal bruité en trames.
2. Pour chaque trame on fait appelle a 'TEMD pour la décomposer.

3. Apres avoir décomposer la trame bruitée en modes, on calcule ’énergie de cha-
cun des modes et suivant la variation des énergies, on déduit le type de la

trame.

4. Suivant le type de la trame, on applique le procédé du débruitage, c’est a dire s’il
s’agit d'une séquence voisée, on applique 'approche du filtrage puis on débruite
seulement les modes qui ne sont pas pris lors du filtrage par EMD, alors que

dans le cas d’une séquence non voisée, on débruite tous les modes.

5. Le signal estimé est reconstruit en utilisant les séquences débruitées.

.2.1  Débruitage de séquences voisées

La séparation entre le bruit et le signal original est possible. En fait, cette sépa-
ration se base sur I'hypotheése que les premieres IMF (les modes de plus hautes
fréquences) sont majoritairement dominés par le bruit et sont peu représentatives
de l'information propre au signal initial. Cependant, les modes qui correspondent
au signal non bruité contiennent quand méme un peu du bruit. Le débruitage de
ces modes va engendrer une distorsion au niveau de reconstitution du signal es-
timé. Ainsi, le débruitage d’une séquence voisée revient a débruiter seulement les

modes qui ne sont pas filtrés par EMD. Enfin, le signal débruité est la somme des
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modes filtrés par EMD et les modes débruités. L’approche proposée est résumée par

I'organigramme suivant:

IMF,

MMSE

IMF MMSE
IMF.

3 | MMSE

Séquence estimée

Séquence bruitée —— EMD

Critere énergétique

Organigramme de débruitage d’une séquence voisée par approche EMD-MMSE

.2.2  Débruitage de séquences non voisées

Lors de la décomposition d’un signal de type non voisé bruité par EMD, qu’il est
difficile de séparer le signal original du bruit. Cependant, I’hypothese que le bruit
est uniquement réparti sur les premieres IMF n’est pas vérifiée sur les séquences
non voisées. Ainsi, les informations qui correspondent au signal original seraient
intégrées dans tous les modes, donc l'approche du débruitage se basera sur un
traitement de tous ces modes un par un. La procédé consiste a reconstruire le signal

estimé avec toutes les IMF préalablement filtrés.
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.3 Codage des signaux audio par EMD

Dans cette partie, nous proposons une alternative a la décomposition par ondelettes,
il s’agit de la décomposition modale empirique (EMD) [34]. Contrairement a la
décomposition par ondelettes, 'EMD est entierement pilotée par les données. Par
conséquent, 'EMD ne nécessite pas le choix a priori d'une famille de fonctions de

base de décomposition des signaux.

L’EMD consiste a décomposer un signal en une somme finie d’'IMF. L’analyse
du processus du tamisage qui génere les IMF montre qu’on peut envisager un
schéma de compression a bas débit basé sur le codage des IMF du signal audio a
coder. En effet, chaque IMF peut étre vue comme la composante du signal dans
une certaine sous-bande, implicitement définie par 'EMD [28]. Du fait du caracteére
oscillant et de moyenne nulle des signaux a bande étroite, le codage de chaque IMF
peut étre réalisé en ne considérant que ses extrema. Notons, en particulier qu'une
simple interpolation de ses extrema au moyen de fonctions spline[47], permet la
la reconstruction presque parfaite de 'IMF considérée. L’analyse du processus du
tamisage qui génere les IMF montre qu’on peut envisager un schéma de compression
des signaux a bas débit en utilisant I'approche EMD. En effet, comme chaque IMF
est représentée uniquement par ses extrema et un modele d’interpolation spline, un
codage pour la compression est possible. Ainsi, la compression du signal correspond
a celle des extrema des IMF. Donc, le décodeur aura besoin uniquement des extrema
préalablement stockés pour reconstruire les IMF et par conséquent le signal initial.
L’association du modele psycho-acoustique dans le procédé de codage des extrema

des différents IMFs obtenus, garantira une bonne qualité d’écoute du signal décodé.

La nouvelle technique est décomposée en plusieurs modules liés les uns aux autres.

Le principe de ’approche proposée est résumé par I'organigramme de la Figure 1.

.3.1 Décomposition par EMD

On découpe tout d’abord le signal audio en trames de taille 512 échantillons [63].
En utilisant le processus de tamisage, chaque trame du signal est ensuite décom-

posée temporellement en une somme de composantes modales (I M F;);—1 ¢, qui sont
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61.,711 eé,nn
L | Quantification
Code de Huffman

Signal codé
(Trame codée)

Figure 1: Organigramme de la compression par EMD.

completement représentées par leurs extrema (E; n,)i—1.c, avec Eqp = (Xop, Yap) la

position du 6°¢ extremum de I'IMF a.

.3.2 Seuillage des extrema selon le modele

psycho-acoustique

Notre objectif dans cette partie est de réduire au maximum le nombre d’extrema
d’une IMF, tout en assurant que l'erreur entre 'IMF estimée a partir des extrema
restants et la vraie IMF reste au-dessous de son seuil de masquage. Ce dernier est
calculé en se basant sur le modele psycho-acoustique utilisé dans le codeur MPEGT.
La technique de seuillage utilisée ici est de type dur [55]. On obtient ainsi un jeux

réduit d’extrema (e;,)i—1.c-
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.3.3 Quantification des extrema seuillées

Puisque le nombre des extrema seuillés décroit d'une IMF & la suivante (les IMF
successives sélectionnent des composantes du signal de fréquences de plus en plus
basses), le nombre de bits alloués varie d'une IMF a l'autre afin d’optimiser
I’allocation de débit, comme c’est le cas dans les codeurs en sous-bandes de type
MPEG. Ainsi, le nombre réduit de bits utilisés pour coder les extrema de chaque

IMF doit garantir I'inaudibilité de 'erreur de quantification de 'ITMF.

Pour cela, on commence par affecter un méme nombre réduit de bits pour chaque
IMF. Ce nombre de bits peut étre ensuite augmenté jusqu’a assurer l'inaudibilité de
I'erreur de codage de I'IMF. Il s’agit d’'un procédé itératif de quantification de I'IMF
suivi de sa reconstruction, en augmentant progressivement le nombre de bits alloués
jusqu’a satisfaire la contrainte de masquage. En fait, ce procédé consiste a quantifier
I'IMF, la reconstruire puis comparer la Densité Spectrale de Puissance (DSP) son
erreur par rapport a son seuil de masquage. Si la DSP de l'erreur est au dessus du
seuil de masquage, on recommence la quantification en augmentant le nombre de
bits alloués et ainsi de suite jusqu’a ce que la DSP de 'erreur soit au dessous de la
courbe de masquage.

Au début, on fixe le nombre de bits pour tout extrema des IMFs (1 bits), la mise a
jour du nombre de bits est obtenue en addition par un I'ancienne valeur du nombre
de bits. Dés que la nouvelle IMF reconstruite respecte le seuil de masquage, la
boucle de quantification pour cette IMF s’arréte.

Cette méthode de quantification présente un avantage, car le nombre de bits utilisés

pour respecter la contrainte psycho-acoustique est ici minimisé individuellement pour
chaque IMF'.

.3.4 Codage

La réduction de I'information redondante résiduelle est alors assurée par un codage
d’Huffman. Son principe est basé sur une étude statistique définie par la PDF
(Probability Density Function) . Le code le plus fréquent est attribué a un nouveau

code contenant le nombre minimal des bits possible et ainsi de suite.
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3.5 Résultats de simulation

L’approche de la compression par EMD est appliquée a des signaux audio de
natures différentes (chanson, guitare, piano et violon). Ils sont tous échantillonnés
a la méme fréquence fe = 44.1K Hz. La Figure 2 présente les signaux originaux.
Chaque signal est découpé en trames de taille 512 échantillons [63]. Ensuite
en utilisant le processus de tamisage, chaque trame du signal est decompsée en
ensembles d'IMFs et un résidu. Les positions des extrema sont codés sur 9 bits,

alors que leurs valeurs sont codés selon le procédé de quantification décrit ci-dessus.

chanson

Amplitude

guitare

Amplitude

piano

1
i
4

Amplitude

0.5 1 15 2 25 3 35 4

violon

3
i

—
1 2 3 4 5 6
Temps ( en échantillons) X 10°

ROk

Amplitude

Figure 2: Signaux audio (chanson, guitare, piano et violon)

Les résultats obtenus par la méthode proposée sont comparés a ceux obtenus par
la méthode a base de 'ondelette (Daubechies 8) [20] et le codeur MP3 [?]. En fait,
nous avons choisi db8 de 5 niveaux de décomposition, parce qu’elle donne de meilleurs
résultats par rapport aux autres types d’ondelettes [20]. Comme critére d’évaluation
des performances de la compression des signaux audio, nous avons opté pour le Taux
de Compression (TC), Rapport Signal & Bruit (RSB), Subjective Difference Grade
(SDG) et instantaneous Perceptual Similarity Measure (PSMt). Ces deux derniers
criteres sont offrent une évaluation de la qualité d’écoute du signal. subjective
Les valeurs de TC, RSB, SDG et PSMt obtenues par ces différentes méthodes sont

présentées dans le tableau VI.1.

Le tableau VI.1 montre que notre approche présente des performances meilleures
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Table 1: Résultats de la compression par EMD, MP3 et par ondelette.

Signal chanson | guitare | Piano | violon
TC 11.62:1 | 12.8:1 | 11.96:1 | 12.41:1
% RSB[dB] | 22.28 19.15 | 21.43 | 20.03
@ | SDG -0.63 -0.70 -0.9 -0.83
PSMt 0.96 0.94 0.88 0.91
& TC 10.11:1 | 9.42:1 | 9.25 9.83:1
< [RSB[dB] | 2343 [20.17 | 2159 | 19.65
= | SDG -1.94 -1.51 -2.01 -1.76
O [ PSMt 0.81 0.83 0.72 0.79
TC 6.92:1 7.37:1 | 8.21:1 | 7.84:1
2> | RSB[dB] | 23.69 21.84 17.63 19.72
= | SDG -0.67 -0.79 [-0.72 [-1.05
PSMt 0.96 0.92 0.94 0.86

que celles des autres techniques testées. En effet, ’analyse des valeurs du TC et du
(SDG) montre qu’elle offre une amélioration en termes de taux de compression et
de qualité audio du signal décodé respectivement. En particulier cette amélioration

est clairement visible surtout pour les signaux guitare et violon.

.4 Tatouage des signaux audio par EMD

L’EMD consiste a décomposer un signal en une somme finie de composantes de
type AM-FM, appelées IMF (Intrinsic Mode Function). L’analyse du processus du
tamisage qui génere les IMF montre qu’on peut envisager un schéma de tatouage
qui consiste a insérer la marque dans la derniere IMF. En effet, la derniere IMF
peut étre vue comme la composante la plus basse fréquence, par conséquence la
plus résistante aux attaques. Ainsi, on propose d’insérer la marque en association

avec le code de synchronisation dans les extrema de la derniere IMF.

4.1 Algorithme de tatouage proposé
Code de synchronisation

Le code de synchronisation est introduit pour localiser la position de la marque dans

le signal et par conséquence facilite 'extraction de la marque du signal tatoué.
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Etant donné un code de sunchronisation U et une séquence inconnue V qui sont de
méme longeur. La séquence V est définie comme étant un code de synchronisation
si seulement la valeur de simularité entre U et V (bit par bit) est supérieur ou égale

a un seuil prédefini 7.

Procédure d’insertion

Apres combination de la marque avec le code de synchronisation pour former un
flux binaire m;, la procédure d’insertion de la marque est illustré dans les étapes
suivantes:

Etape 1: Segmenter le signal audio en trames.

Etape 2: Decomposer chaque trame en IMFs, en utilisant 'EMD.

Etape 3: Insérer P fois la séquence binaire m; dans les extrema de la derniere IMF.
L’insertion des bits se fait par modulation d’amplitude des extrema, ainsi chaque

bit de sequence binaire doit étre inséré comme suit:

(6)

7

, le;/S].S sgn 3S/4 sim; =1
e. =
lei/S].S sgn S/4 sim; =0

e; et e désigne les extrema de la derniere IMF de signal audio respectivement le
signal audio tatoué. sgn est égale a "+" si e; est un maximum, et "-" si’il est un
minimum. | | est la fonction partie entiere, et S répresente le facteur d’insertion, que
doit étre choisi de telle sorte que le signal tatoué respecte la contraine d’inaudibilité.
Etape 4: Reconstruire la trame (EMD™) en utilisant la derniére IMF modifiée puis

on concaténe la trame tatouée pour construire le signal audio tatoué.

Procédure d’extraction

Etant donné N; et Ny est le nombre de bits de code de synchronisation respective-
ment le nombre de bits de la marque. L’extraction de la marque est décrit comme
suit:

Etape 1: Segmenter le signal en trames.

Etape 2: Decomposer chaque trame en IMFs, en utilisant 'EMD.

Etape 3: Extracter les extrema e} de la derniere IMF.
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Etape 4: Extracter la sequence m; de e].

. 1 sief —|ef/S].S> sgn S/2
m; = (7)
0 sief—|ef/S|.S < sgnS/2
sgn est "+" si ef est un maximum,et "-" s’il est un minimum.

Etapeb: Grouper toute sequence de bits ;.

Etape 6: [ < 1 et L < N (taille fenétre)

Etape 7: Evaluer la similarité entre le premier code de synchronisation extracté,
V = y(I:L), et le code de synchronisation original U bit par bit. Si la valeur de
similarité est > 7, Donc V est considéré comme étant le code de synchronisation et
sauter a I'étape 9, sinon aller a I’étape 8.

Etape 8: I < I +1et L < L+ 1 et revenir a I'étape 7.

Etape 9: Evaluer la similarité entre le second code de synchronisation extracté,
V'=y(I4+N;+Ny: I+2N;+N3) et le code de synchronisation original. si la valeur de
similarité > 7, donc V' est considéré comme étant le code de synchronisation code,
et extracter la marque N2 bits (y(I4+Ny: I4+N;4+Ny-1)) a partir de la position [4+N1
et aller a ’étape 10, sinon revenir a I’étape 8.

Etape 10: [ < [+ N;+ Ns, si la nouvelle valeur I est égale a la longeur de séquence
yi, aller a I’étape 11, sinon revenir a 1’étape 8.

Etape 11: Extracter le P marques et fait comparison bit par bit entre ces marques,

pour la correction, et finalement extracter la marque désirée.

4.2 Principaux résultats

Pour illustrer les performances de 'algorithme de tatouage par EMD, nous avons
effectué des simulations numériques sur des signaux audio de natures différentes.
Les signaux sont tous échantillonnés a la fréquence fe = 44.1KHz. La marque est
une image logo binaire.

Pour evaluer la performance de l'algorithme proposé, nous avons utilisé les deux
criteres suivants : TEB et NC (Normalised Cross-correlation).

Table VI.1 montre la robustesse de I’algoritme proposé pour le signal audio "Rock".

Les Valeurs de TEB et NC reflette la bonne performance de notre algorithme pour

tifferends g %%Mu&ﬁe notre approche présente de meilleures performances que

les autres techniques testées. En effet, elle offre une amélioration en termes de

débits et robustesse en fonction de codeur MP3 par rapport aux autres algorithmes
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Table 2: TEB et NC de la marque extractée pour le signal audio "Rock" par

I’approche proposée.

de tatouage.

Table 3: Performance des algorithmes de tatouage, trier par débits.

Type d’attaque

TEB % | NC

Pas d’attaque
AWGN
Débruitage
Cropping
Rechantillonage
MP3(64 kb/s)
MP3 (32 kb/s)
Requantification

0

[l e Nl o Mo M)
e}
Ne}
©
oo
©

Robustesse avec MP3 (kb/s)

Référence Débits (b/s)
Algorithme proposé 46.9-50.3
Bhat K 45.9
Lie 43
Cvejic 27.1
Yeo 10
Tachibana 8.5

Li 4.2
Mansour 2.3
Xiang 2
Kirovski 0.5-1

32
32
80
32
96
96
32
56
64
32

.5 Conclusion

Dans cette thése on a exploré I'apport de 'EMD en traitement et en analyse des

signaux audio et de parole. Cette décomposition du signal en IMF est adaptative

et ne fait pas d’hypothéses (stationnarité et linéarité) sur le signal a analyser. Le

comportement en banc de filtre dyadique de 'EMD ainsi que la quasi-symétrie des

modes et leur représentation via leurs extrema sont les propriétés qui sont 1’origine

des outils qu’on a développés: débruitage, codage et tatouage. Ces contributions

sont illustrées sur des données synthétiques et réelles et les résultats comparés a ceux

de méthodes éprouvées telles que le filtre MMSE, I'approche ondelettes et les codecs

AAC et MP3 montrent les bonnes performances des outils développés autour de

I’EMD. Ces résultats montrent les capacités de 'EMD comme outils de traitement

et d’analyse de fagon adaptative des signaux audio et de parole.
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Introduction

Signals can be derived from different sources, but most of them, arising from
physical phenomena, are non-stationary. Locally, these signals can be regarded as
stationary and thus decomposed as a superposition of sine waves, the frequency
of which evolves over time. Among non-stationary signals, we can distinguish
speech and audio signals. Conventional tools such as Fourier Transform (FT)
and Discrete Cosine Transform (DCT) are unsuitable to analyze non stationary
signals. In fact, when the signal spectrum is time varying, such as for music, speech
and biomedical signals, time-frequency analysis approach is more relevant. The
results of a time-frequency analysis depend on the choice of the time-frequency
decomposition tool used, such as Short-Time Fourier Transform (STFT), Wigner
distribution or Wavelet Transform (WT).

In several scenarios, it is preferable to take advantage of multi-resolution character-
istics of WT. A limit of the wavelet approach is that first, the basis function must
be specified and, second a specific basis function may not be able to catch all the
non stationarity of the analyzed signal. To overcome this drawback time-frequency
atomic signal decomposition can be used [31],[56]. As for wavelet packets, if the
dictionary is very large and rich enough with a large collection of atomic waveforms
which are located on a much finer grid in time-frequency space than wavelet and
cosine packet tables, then it should be possible to faithfully represent a wide range
of real signals. Furthermore, the ideal is to find an adaptive decomposition of the
signal, so that it does not require a priori information about the signal time varying
characteristics.

Recently, a new data-driven technique, referred to as Empirical Mode Decom-
position (EMD) has been introduced by Huang et al. [34] for analyzing data
resulting from non-stationary and nonlinear processes. EMD has received much
attention in terms of applications [3],[7]-[9] interpretation [33]-[35], and improve-
ment [16],[84]. Major advantage of EMD is that the basis function is derived from
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the signal itself. Hence, the analysis is adaptive, in contrast to the traditional
methods where the basis functions are fixed. The EMD is based on the sequential
extraction of energy associated with various intrinsic time scales of the signal,
called Intrinsic Mode Functions (IMFs), starting from finer temporal scales (high
frequency IMFs) to coarser ones (low frequency IMFs). The superposition of the

extracted IMFs matches the signal very well and therefore ensures completeness [34].

Characteristics of EMD and its effectiveness as a decomposing tool, have been
addressed by different research. Indeed, an improvement in terms of signal
decomposition has been shown in [68],[69]. The combination of EMD with Hilbert
transform demonstrated the interest of EMD as a tool to investigate time-frequency
domain representations [6],[11]. In [21] it has been shown that, provided some
hypothesis, the extraction of IMF is reduced to the resolution of partial differential
equation (Heat equation). Further, EMD has demonstrated its usefulness and
effectiveness in many applications such as biomedical signals filtering and sonar
target tracking [6],[11].

Main motivation of this thesis is to investigate the potential of EMD as an
analyzing method for both speech and audio signals. More particularly, we address
the problems of denoising, coding and watermarking. Also the goal of this work is
to explore the limit of self-adaptive nature of the EMD process as signal analyzing

tool in speech and audio processing.

Outline of the thesis

The dissertation is organized chapter by chapter as follows

chapter I is devoted to a presentation of the Huang transform, known as EMD.
In particular, interest is focused on the relevant parameters which have influences
on extracted IMFs; such as interpolation and sampling [34],[69]. The capability of

EMD for separation of components is also studied and illustrated.

In the first part of the thesis, we are interested in techniques of noise reduction

(filtering and denoising). Particularly in the case of additive white Gaussian noise,
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different approaches have been proposed [72],[75]. When the noise distribution can
be estimated accurately, then filtering yields acceptable results. However, these
methods are not so effective when the noise level is difficult to estimate. Linear
methods based on Wiener filtering [67] are sometimes preferred because linear fil-
ters are easy to implement and design. However, linear filtering methods are not so
effective when signals contain sharp edges and impulses of short duration. Further-
more, real signals are often non-stationary. In order to overcome these shortcom-
ings, nonlinear methods have been proposed and especially those based on wavelets
thresholding [22],[23]. The idea of wavelet thresholding relies on the assumption
that signal magnitudes dominate the magnitudes of the noise in a wavelet repre-
sentation, so that wavelet coefficients can be set to zero if their magnitudes are
less than a pre-determined threshold [22]. Using the same strategy as in wavelets
thresholding approach, we propose in this thesis new techniques of speech denoising
based on EMD. Our contribution related to these techniques are organized into two

chapters.

In Chapter 11, different denoising strategies based on EMD that address both
additive white and colored noise are presented. In fact, it has been shown in [7]-
[9], that EMD can be used for signal denoising. The proposed denoising method
reconstructs the signal from all the IMFs previously filtered or thresholded as in
wavelet analysis [7]-[9]. In this chapter, firstly two new denoising strategies for
white noise context are presented. The first strategy combines EMD and Minimum
Mean Squared Error (MMSE) filter [75], and the second one associates EMD with
hard shrinkage [7]-[9]. The two methods, effective for a large class of signals, are

applied to speech signals corrupted with different white noise levels.

The third denoising technique, called EMD-ACWA, consists in filtering IMFs by
Adaptive Center Weighted Average (ACWA) filter [52], which exploits some local
statistics of the signal. This technique is efficient both in the context of white noise
and colored one. The use of ACWA filter is motivated by two important reasons.
First, it operates in the time domain as the EMD. So, there is no need to use
of FT as in the case of the MMSE filter [75]. Second, the ACWA filter operates
regardless of the nature of the signal and noise. In particular, the assumptions of

signal stationarity and white noise are not required.

Chapter III deals with a new noise reduction technique dedicated to speech
signal. This technique, which combines EMD with ACWA filter, takes into account
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the characteristics of speech signal. The proposed approach takes into account the
class of the processed speech frame (voiced/unvoiced and transient). Indeed, in
the IMF filtering step the number of denoised IMFs depends on whether the noisy
frame is voiced or unvoiced. An energy criterion detects voiced frames while the

stationarity index [51] is used to distinguish between unvoiced and transient frames .

The second part of the thesis is devoted to audio coding. The coding process is a
central topic in the fields of audio and image processing [39],[82] and particularly
in audio domain where different strategies have been proposed [40],[64]. When
applications are not limited by low bit rate constraints, coding usually leads to
acceptable results. However, in many applications such as digital audio broadcasting
or multimedia, low bit rate and high fidelity are required. In order to reduce the
bit rate, sub-band coding [10],[78] and transform coding approaches [20],[74] have
been used to design efficient coding algorithms. These methods use basically a
subband decomposition of the signal followed by perceptual encoding of significant
coefficients at each subband which appeals to the following principle: do not code
what the ear can’t listen. Applying this principle enables good results at low bit
rate. Unfortunately, using a decomposition strategy based on the representation on
a fixed basis prevents the decomposition from being parsimonious for any kind of
audio signal. Indeed, even if a decomposition tool is well suited for a large class
of audio signals, in the sense that it yields compact descriptions with only a few
significant terms, there are audio signals for which the basis under consideration
performs poorly [20]. The EMD can be seen as a type of subband decomposition
whose subbands are able to automatically separate the different components of a
signal. Each IMF replaces the signal details, at a certain scale or frequency band.
Thanks to IMF properties, the EMD seems to be a very interesting decomposition
tool to use for a low bit rate audio coding. The presentation of our contribution to

audio coding is organized in two chapters.

In chapter IV, a new signal coding based on EMD is introduced. The first
step consists in encoding the IMFs extrema, since the IMFs are fully described
by their local extrema [34]. To further reduce the bit rate, only one of the IMFs
envelops is encoded. This is motivated by the quasi-symmetrical property of the
IMF. In a second step, a waveform coding approach based on EMD in association

with Hilbert transform is presented. Based on the Hilbert and Huang transforms,
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we can calculate the Instantaneous Amplitude (IA), Instantaneous Phase (IP) and
the Instantaneous Frequency (IF) for IMFs. The idea is then to encode the TA and

IF by linear prediction, while the IP is encoded by a scalar quantization.

Chapter V is devoted to apply the proposed coding approaches, described in
the previous chapter to audio signals. We show that it is interesting to introduce a
psychoacoustic model, in extrema thresholding and bit allocation; and detector for
transient sequence in these approaches. The performance of the proposed methods
are analyzed and compared to the MPEGI1 layer3, known as MP3, to AAC codecs

and to the wavelet based compression.

Watermarking is as a solution to control unapproved copying and redistribution
of multimedia data, where many bit streams can be transmitted by taking the
audio signal as a transmission medium. Various constraints must be considered in
the watermarking process such as inaudibility of the watermarked signal, higher
transmission bit rate and robustness against distortions. The detection of the in-
serted message is the subject of several research [2],[79] where several watermarking
techniques have been proposed [13],[41]. The watermarking approach of Malvar [50]
is among of the recent algorithms in the context of audio signals. This approach has
shown good robustness to a wide variety of attacks but it imposes a very limited
transmission bit rate. So, to increase the bit rate, many watermarking algorithms
based on the wavelet has been presented [41],[86]. A limit of the wavelet approach
is that the basis functions are fixed, and thus may not be effective for all real
signals. The IMFs are fully described by their local extrema [34], thus, they can
be constructed from only their extrema [47]. The superposition of extracted IMFs
matches the signal very well and therefore ensures completeness [34]. Based on
these interesting proprieties, we considered a watermarking scheme based on EMD.

The proposed watermarking approach is the subject of chapter VI.

Chapter VI introduces a new audio watermarking approach, based on EMD,
dedicated to control unapproved copying. The watermark and the synchronization
codes are embedded into the extrema of the last IMF, a low frequency mode
stable under different attacks and preserving an audio perceptual quality of the
host signal. Relying on exhaustive simulations, we show the robustness of the
hidden watermark data to additive noise, low-pass filtering, MP3 compression,

re-quantization and denoising. The reported results are compared to watermarking
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schemes reported recently.

Finally, the conclusion will review all the work done and presents several sug-

gestions and extensions to improve and optimize the contributions of this work.

Main contributions of the thesis

In the following we list the main contributions of the dissertation

o Introduction of a new noise reduction scheme operating in adaptive way. Differ-
ent strategies of filtering and denoising of audio signals are developed. Improve-
ment in terms of output SNR (Signal to Noise Ratio) and PESQ (Perceptual
Evaluation Speech Quality) are obtained compared to MMSE filter and wavelet
approach.

o Introduction of a new signal coding framework based on the extrema of IMFs.
Different coding strategies are presented. No assumptions concerning the lin-
earity or the stationary are made about the signal to be coded. The new scheme
can be extended to encode any signal and from any source. Improvement in
terms of BR (Bit Rate), ODG (Objective Difference Grade) and NMR (Noise
to Mask Ratio) are obtained compared to MP3 and AAC codecs, and wavelet

based compression.

o Introduction of a new adaptive watermarking scheme based on the EMD. Wa-
termark is embedded in very low frequency mode (last IMF), thus achieving
good performance against various attacks. Data bits of the synchronized wa-
termark are embedded in the extrema of the last IMF of the audio signal based
on quantization index modulation. FExtensive simulations over different audio
signals indicate that the proposed watermarking scheme has greater robust-
ness against common attacks than nine recently proposed algorithms. The new
scheme has higher payload and better performance against MP3 compression

compared to these earlier audio watermarking methods.
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his chapter presents the Huang transform, known as Empirical Mode De-
composition (EMD), introduced by Huang et al. [34]. The EMD is a data
driven method, defined by an algorithm, that enables the adaptive decom-
position of a signal into finite sum of components, called Intrinsic Mode Functions
(IMFs). The principle of EMD is presented and is illustrated on synthetic signals.
Some parameters, such as interpolation and sampling frequency, which influence
the results of the decomposition are point out. Finally, some aspects of the EMD

considered as a time-frequency description tool are presented and discussed.
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I.1 Introduction

In this chapter, we introduce the Huang transform known as Empirical Mode De-
composition (EMD). The EMD is introduced by Huang et al, to overcome the limi-
tations of Fourier based methods when applied to non-stationary signals. The EMD
decomposes adaptively a signal into a sum of oscillating components. Unlike the
Fourier Transform (FT) or Wavelet Transform (FT), the EMD is a data driven de-
composition technique. It has been introduced for analyzing data deriving from
non-stationary and nonlinear processes. The major advantage of the EMD is that
the basis functions are derived from the signal itself. Hence, the analysis is adap-
tive in contrast to the traditional methods where the basis functions are fixed. The
EMD is based on the sequential extraction of energy associated with various intrinsic
time scales of the signal or oscillating components, called Intrinsic Mode Functions
(IMFs), starting from finer temporal scales (high frequency IMFs) to coarser ones
(low frequency IMFs). The total sum of the IMFs matches the signal very well and

therefore ensures completeness [34].

I.1.1 Principle of EMD

The EMD is an algorithmic signal decomposition method. It is based on the principle
of decomposing a signal into the sum of a high frequency component (fast oscillation)
and a low frequency component (trend). This principle is illustrated by equation

(L),
z(t) = d(t) + m(t), (L.1)

where ¢ denotes the discrete time, x(t) is the signal to decompose, d(t) is the fast
oscillation and m(t) is the signal trend. Similarly, the signal trend can also be

decomposed into two terms,
m(t) = di(t) +ma(t), (1.2)

where d;(t) is the high frequency component of m(t), and m,(t) is its low frequency
component.

To extract the mode of a signal x(t), the following principle is considered:

o identify all extrema of x(t).

e interpolate between minima (resp. maxima), ending up with some envelope
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Emin(t) (resp €max(t)).
 compute the average m(t) = (€min(t)+ €maz(t))/2.

o extract the detail d(t) = x(t) — m(t).

The signal d(t) is considered as IMF after a number of iterations needed to satisfy
a given stop criterion. By iterating this principle to the obtained trends, we get a

signal decomposition described as follows:

x(t) = XC:IMFj(t) +rc(t),C € N* (1.3)
j=1
where IMF} is the j' order IMF. I M F; contains higher frequency oscillations than
the IMF; 1. The signal r.(t) is called the residual, it is the lower frequency com-
ponent of signal x(t). According to Eq. 1.3 and assuming that C' is finite, we can
construct linearly the original signal without loss of any information [34].
By definition, a component is considered as a true IMF if it satisfies the following

criteria [34]:

1. the number of its extrema and the number of its zero crossings may differ by

no more than one.

2. the average value of the envelope defined by the local maxima and the envelope

defined by the local minima, is zero.

1.1.2 EMD algorithm

The principle of IMFs extraction is ensured by the sifting process, which is

implemented by the following generic algorithm.

Notations:

e: predetermined threshold, that is used to specify the loop exit condition.
j: IMF index.

i: index of current iteration in the loop for extracting an IMF.

T: length of the decomposed signal: x= x(t);=1._ 7.

r;: residual after obtaining the j% IMF
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h

iteration. It is equal to the difference between the residual and the value of the

;io intermediate variable, equal to the value of the new residual at the first
average envelope in the following iterations.

U,.i: upper envelope of h;; constructed by maxima interpolation.

L;;: lower envelope of h;; built by minima interpolation.

f;i: average envelope, obtained from both envelopes of h; ;.

SD(i): stopping criterion at i" iteration.

The sifting can be summarized as follows :
Step 1: Fix the threshold € and set j < 1 (j""IMF)
Step 2: 1;_1(t) + x(t) (residual)
Step 3: Extract the j""IMF :
(a) : hy;—1(t) = 1j_1(t) ;i <= 1 (¢ number of sifts)
(b) : Extract local maxima/minima of h;,;_(t)
(c) : Compute upper and lower envelopes U,,;_1(t) and L;,;_1(t) by spline,
interpolation of local maxima and minima of h;; ;(t) respectively
(d) : Compute the mean of the envelopes : p;,;-1(t) =(U;,;_1(t) + L;—1(t))/2
(e) : Update : hj;(t) := hj—1(t) — pjia(t), i :=i+1
(f) : Calculate the stopping criterion : SD(i) = Y7, [ Z(;Jl(f:g;)é(mg
(g) : Repeat Steps (b)-(f) until SD(i)< € and then put IMF,(t) < h;(t)
(j*INF)
Step 4: Update residual : 7;(t) := r;_1(t) — IMF,(¢).
Step 5: Repeat Step 3 with j := j + 1 until the number of extrema in r;(¢) is < 2.

The sifting is repeated several times (i) in order to guarantee that the computed
IMF h;; tulfills the required conditions (1) and (2).
The sifting has two effects: (a) it eliminates riding waves and (b) it smoothes uneven

amplitudes.

I.1.3 Meaningful parameters of EMD

Decomposition result of EMD depends on the choice of two important parameters:

the stopping criterion and the interpolation technique used.



CHAPTER I. HUANG TRANSFORM

1.1.3.1 Stopping criterion

Since there are two loops in the EMD algorithm, we must ensure that both must
stop. The main loop indexed by j stops when it is impossible to decompose the
current residual, i.e., that r;(¢) has less than two extrema. The second loop indexed
by i is linked to a stopping criterion that should be defined precisely.

In fact, the second loop will stop when h;;(t) satisfies the criteria defining an IMF.
Theoretically, this assumption is not proven. So in practice a stopping criterion of
the sifting process is imposed, in order to prevent the sifting processes from coming
into an infinite loop.

Thus in [34], the authors propose a stopping criterion based on the standard devia-
tion SD(7) defined by,

N e g () = Ry
P = ; (hji-1(2))? (L4)
The stopping test is validated when SD(i) is below a predefined threshold e. Typ-
ically, the value € to stop the sifting is between 0.2 and 0.3 [34],[35]. In fact, if € is
too high, the EMD does not separate the different modes present in the signal, how-
ever if € is too small, the EMD extracts components whose amplitudes are almost
constant and modulated by a single frequency (over decomposition of the signal).
Another stopping criterion was proposed by Rilling et al [69], and is particularly

chosen in practice. This criterion is defined from the function:

o(t) = 2| iz ()

i-1(t) — Li—a(t) . (L5)

By adopting the criterion (Eq. 1.5), three conditions must be satisfied so that h; ()
is an IMF [69].

o The number of extrema of h;(t) and the number of the zeros crossings of h;(t)

may differ by no more than one.
e o(t) <6 fort < (1-a)T.

e o(t) <Byfor (1-a)T <t <T.

0, and 6, are real numbers such that 0 < #; < 0y and « is chosen in [0,1].
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The first condition means that an IMF must be an oscillating function around zero.
The last two conditions require that the function o(¢) has small values. Therefore,
it can take high values to some extent. In [69], a good compromise of empirical
choice of the threshold values 6, and 6, is given as follows:

0, = 0.05 and 6, ~ 10 x ¢; and o = 0.05.

In our work, we adopt the criteria chosen by [69]. Indeed, it gives modes that
correspond well to the definition of an IMF.

Nevertheless, to improve the decomposition result, we need to find an appropriate
interpolation method, which allows to estimate both envelopes (maxima, minima)

with the lowest error.

1.1.3.2 Interpolation

Interpolation is an important step in the estimation and extraction of IMFs. Indeed,
the envelopes are estimated by interpolation from the extrema, so the interpolation
determines the shape of the IMF. There are various interpolation methods, but not
all are effective for a good EMD representation. According to [34], the interpolation
methods known as "nearest' and "linear" are not recommended for the estimation
of IMFs, because both methods result in an excessive number of modes. However,
the spline interpolation method provides better results than those obtained by other
approaches. To illustrate the efficiency of spline interpolation compared to other

methods, we consider the signal described by:

x(t) = cos(t) + \ﬂt) (1.6)

where ¢ > 0 represents the discrete time.

Figure 1.1 shows the curves presenting the interpolated version of the signal by four
interpolation methods (cubic, spline, nearest and linear). The corresponding errors
are also presented. The error corresponds to the difference between the original
signal z(t) and its interpolated version. This figure shows a much higher quality
obtained with the spline method. Indeed, with a spline interpolation the error is

ten times lower than other methods (nearest, linear and cubic).

The spline interpolation method coupled with a good choice of stopping criterion
ensures a good result of the signal decomposition. This is illustrated by the following

example.
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Figure I.1: Interpolation of the signal (x(t) = cos(t) + \/Et)) by different methods
and the corresponding error.

Example:

Consider the signal described by,
x(t) = sin(8t) + sin(3t) + 2t (L.7)

The threshold values are identical to those chosen in [69], i.e ; = 0.05, 05 ~ 10 % 6y,
a = 0.05. The spline interpolation method is used.

The decomposition of this signal by EMD is shown in figure 1.2.

The stopping criterion chosen in [69] and the spline interpolation method offer in
this case a very accurate decomposition, since we extracted two sinusoidal signals

corresponding to sin(8t) and sin(3t), and trend signal corresponding to (3t).
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Figure 1.2: Decomposition the signal x(t) = sin(8t) + sin(3t) + 2¢ by EMD.
1.2 IMPFs properties
1.2.1 IMFs orthogonality
The EMD decomposes a signal into a finite sum of components. According to [34],
the IMFs of a signal are orthogonal. For a signal x(t), one can write that
(IMF,|IMF;) =0V i#j (1.8)

where (|) denotes the scalar product in L?, ¢ and j € {1,....,C} and C is the
number of IMFs obtained .

Theoretically this orthogonality cannot be proved. In practice, the equality (Eq. 1.8)
is not strictly verified because the average envelope is derived from two envelopes
which are estimated by interpolation [34]. Note that in general the residual is not
orthogonal to IMFs. It is a non-oscillating function (it is a trend increasing or de-
creasing or null). As a measure of orthogonality between different IMFs, we propose
the use of the orthogonality index.

The orthogonality index Ol arr, 1ar; is defined as the normalized version of product
(IMF, |IMF) [11],
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(IMF, |IMF; ) -
— V (i, ) (1.9)
| IMF; || . || IMFj |

Olryr,iur;, =

where || IMF || corresponds to the standard Euclidean norm. If (i = j)

Olryr, 1vrj =1.

S IME(t).IMF;(1)
\/ngFf (t). \/;IMFJ? (t)

Olryvr, vr;, = v (i, ), (1.10)
OI can also be interpretable as a correlation coefficient between I'MF; and I M F)
as the cosine of the angle between these two signals. According to Eq. 1.9, it is also
possible to define a matrix of orthogonality, that embodies all calculated indices [11].

We denote this matrix by Olgpyp; its entry (i,j) is defined as Olrar, 1ur,

In practice the matrix Olg)/p is symmetric and its main diagonal is unitary. Ideally,
in the case of exact estimation of IMFSs, the matrix Olg)/p is equal to the identity
matrix. An overall orthogonality index oi can be defined from the matrix IOgyp
as follows [34]:

01 = Z (OIIMFl ,[ij)Q, (111)

1<i <j<C

If we consider the signal described by Eq. 1.7, then the table 1.1 shows the
matrix of orthogonality computed considering the components IMF; and IMF;
obtained by EMD. In this example, the overall index of orthogonality oi = 3.14

10~° Despite the good decomposition seen in the figure 1.2, both components of

| OIgup | IMF, || IMF, |
| IMF, [ 1.0000 || 0.0056 ||
| IMF, ][ 0.0056 || 1.0000 ||

Table I.1: Matrix of orthogonality of the signal (Eq. 1.7)

the matrix OlIgyp (Table 1.1) are not strictly orthogonal. Indeed, the overall
orthogonality index (3.14 107°) is very low but not 0. Obtained orthogonality
errors are due to the IMFs estimation error. This is attributed to the envelope
calculation by the interpolation method. In fact, given that the estimated IMFs

are obtained from one another by subtraction, then there is an error propagation [34].



CHAPTER I. HUANG TRANSFORM

1.2.2 PDE for IMFs characterization

Since the EMD is defined by a sifting process, recently many studies have been
focused on the comprehension of the EMD [18],(60],[73],[81]. These different studies
have tried to find a mathematical framework for the IMF description. In [18], the
sifting process is modeled by a fourth order Partial Differential Equation (PDE),
such approach was validated by numerical simulations.

In [21], a mathematical characterization of IMFs is obtained. The IMFs are the
solutions of the PDE as follows:

oh 1 10%h __
{ s tahtage =0 (1.12)

h(t,0) = ()

where s is a PDE variable, t is a time variable, ¢ is the adjusted parameter and
x denote the signal. This mathematical model depends on the sifting process, in
contrast to the works [73],[81], where the mathematical relationship of IMFs is in-
dependent of the sifting process. This model (Eq. 1.12) holds only for harmonic

signals and require a good choice of the adjusting parameter 9.

I.3 EMD: a time-frequency description tool

1.3.1 Importance of the sampling frequency

Sampling frequency has a big influence on the results of the decomposition. It can
influence the number of IMFs obtained. We propose to display the effect of the
sampling frequency for a pure frequency signal (or tone). This study is based on the
work of Rilling et al. [69],[68] and that of Stevenson et al. [77].

Let us consider the following signal:
x(t) = cos(2muvt) (I.13)

where ¢ is the discrete time € {1....... N}, v= ﬁ is the normalized frequency and fe
is the sampling frequency.

The study consists in varying the normalized frequency of the signal, and the results
of the EMD are compared to the theoretical sinusoidal component of frequency v,

i.e the original signal.
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Figure 1.3 illustrates perfectly the problem of sampling frequency. Thus, although
the number of samples is the same in both cases (N = 256 samples), the decom-
position of z(t) is different depending on the chosen normalized frequency. Only
the signal with normalized frequency v = 0,050 is decomposed correctly by EMD
(the residual is null). However, for signal of normalized frequency v = 0,032, the

decomposition by EMD gives three IMFs and a residual not null. To illustrate

Empirical Mode Decomposition
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Figure 1.3: Decomposition of the tone signal (Eq. 1.13) by EMD.

the phenomenon, the relative error E(v) associated to the first IMF is defined as
follows [69]:

M=

— IMF(1)]?

E(V) — t=1

[, (¢
(1.14)

)
> a2(1)

1
where v is the normalized frequency, and I M Fi(t) is the first IMF of signal x(t).
Figure 1.4 shows the variation of F(v) as a function of v in a log-log (base 2) plane.
We see that the overall error is raised by a quadratic function of v : E(v) < A2
More precisely the error E(v) is modeled as follows [11],[68],[69] (Fig 1.4):

. . . 1—cos(mv) w22
o the error is raised by : E(v) < < 5

. . . _ 1 _ 2 *
« the errors are increased for frequencies v = 5= and v = 5=, where k£ € N™,

o the error is zero for frequencies v = i, where k € N* = f. = 2kf, where f

and f. denotes the frequency and the sampling frequency respectively.

The EMD of the tone depends strongly on the normalized frequency v, consequently
the sampling frequency for a fixed frequency f [11],[68],[69].
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Figure 1.4: Estimation and behavior of E(v) associated with the first IMF for a
tone.

1.3.2 Tones separation

In this section we study the ability of EMD to separate two sinusoidal components,
according to the ratio of their frequency. This study is inspired by the work of
Rilling et al. [68],(69].

We consider a signal composed of two tones. It is defined as follows:
z(t) = x,, (1) + 2,,(t) = cos(2mnt) + cos(2muat) (I.15)

where t € {1,...., N}, and (v, 1) the pair of distinct normalized frequencies, such
that v; > 1. For simplicity, we assume that the amplitudes both signals x,, (t) and
x,,(t) are equal.
We expect the EMD to produce two IMFs at least: one associated to the highest
frequency and the other to the lowest one.

Figure 1.5 shows the decomposition of signal z(¢) by EMD. We remark that the
decomposition depends on the ratio of the two frequencies 1y and v,. For two
frequencies sufficiently distinct from each other, the decomposition of a signal ()
gives two IMFs (Fig. 1.5(a)). Otherwise, the EMD approach considers the signal
z(t) as a single component amplitude modulated (Fig. 1.5(b)) [68],[69].

According to [69], the estimation error of the first and second IMF is given by:
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Figure 1.5: Decomposition of the signal (Eq.1.15) by EMD.
N 2 X 2 X 2 N 2
> @y, (t) 2 (w0, (1) = IMFL())? + X a3, (t) X (2, (t) — IMFy(t))
E = |&=L t=1 =1 =1
(V 1, UV 2) —
2 2 2
(X (@3, (8) +27,(1))) X #2(t)
t=1 t=1
(.16)

where (v, 19) both frequencies are varied in the interval |0,0.5[ and satisfying vy >
Vs.

Figure 1.6 shows the variation of E(vq,1,) versus frequencies v; and 1. Fig.1.6
shows that the separation is very good over a certain range of values (vq,15) where
|v1-15] is large enough. We note that in case of very low error, the decomposition of
x(t) by EMD gives two IMFs, each IMF' corresponds to a tone. However, when the
error E(vy, 1) is high, the signal z(t) is analyzed as modulated in frequency and

amplitude.
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Figure 1.6: Estimation and behavior of the error E(vy, 1) Eq. 1.16 for signal x(t) =
Ty, (t) + 2, (t) = cos(2mu1t) + cos(2must).

1.3.3 EMD acts as a Filter bank: Gaussian white noise case

The previous section showed that the EMD behaves as a self-adaptive filter bank.
Thus, EMD decomposes locally a signal into a sum of IMFs from the highest frequen-
cies to the lowest. In some well-controlled cases (Gaussian white noise for example),
this decomposition is organized in a structure of a filter bank [11],[29],[87].
This filter bank structure is illustrated in figure 1.7. The considered signal is a Gaus-
sian white noise with zero mean and a variance equal to 1. The reported results
correspond to averages over three thousand realizations [11]. We have plotted in the
log-log plane the standardized spectral of the seven IMFs obtained for all realiza-
tions.

We note that the EMD behaves as well as a diadic filter bank for modes higher
than 2. The first mode corresponds to the high-pass filter of the filter bank.
Based on exhaustive simulations, similar behavior of diadic filter bank is also proven
for fractional Gaussian noise [26],[28],[68]. It is also proven that for fractional Gaus-
sian noise, the spectral power is distributed over all IMFs under a law of exponential
type [29],[28],[68]. All of these studies characterized the behavior of the EMD to-

wards different noise types.
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Figure [.7: IMFSs spectra for a white noise.

I.3.4 Comparison with wavelets

The EMD is similar to a multi-resolution analysis, so it explores the signal from
the highest to the lowest frequencies, i.e from the smallest details to the largest.
However, the EMD is different from the wavelet decomposition in the way it describes
the signal. Indeed, in a multi-resolution analysis by wavelet, the decomposition goes
from low frequencies to higher frequencies. The EMD is an auto-adaptive method,
contrary to the wavelet, where a mother function is needed to decompose a given
data.

To further illustrate this difference, we compare the results of decomposition by the
EMD to the orthogonal Daubechies wavelet (db3) over four levels (Fig. 1.9). The

analyzed signal is given by:
x(t) = sin(3t) + sin(0.3t) 4 sin(0.03t) (L.17)

This signal is constituted of three different tones (Fig. 1.8). The EMD manages to
separate correctly the three components that constitute the signal. A low residual
signal is still obtained.

The wavelet decomposition is shown in figure 1.9(b), where An and Dn represent
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respectively the approximations and details of signal.

Signal and theoretical components

Signal
o 6]
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Cc2

C3
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Figure 1.8: Signal z(t) = sin(3t) + sin(0.3t) + sin(0.03¢) and its theoretical compo-
nents.

400 500

This figure shows that the

first component sin(3t) is presented in D1, the second component sin(0.3t) in D4,

and finally A4 roughly corresponds to the third component sin(0.03t).

As shown by Fig. 1.10, we note that in this case the estimated errors for different
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Figure 1.9: Comparison of decomposition by the EMD to wavelet.

components are generally more important in the case of wavelet approach than for

the EMD approach. All the differences and errors in the EMD decomposition are

mainly due to the sampling frequency of the signal and the spectral differences
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between the components of the signal. For the wavelet, the lack of accuracy of the

choice of the base function respect to z(t) explain its less effective behavior.
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Figure 1.10: Error estimates with EMD and wavelet.

1.4 Conclusion

In this chapter, we studied some aspects of the EMD [34]. This temporal and non-
linear decomposition is defined as the output of an algorithm. We have shown that
the signal can be decomposed into a finite number of components of oscillating na-
ture and named IMF. IMFs are centered modes and type AM-FM. We have checked,
based on simulations, that the extraction of IMFs is nonlinear, but that their linear
recombination is accurate. Each IMF is obtained by a process called sifting, which
is iterative, sequential and local. We have shown that the decomposition results
supplied by the EMD is conditioned by the interpolation technique used and the
sampling frequency of the signal. Finally, we noted that this decomposition is orga-
nized in a dyadic filter bank structure, in particular for Gaussian white noise.

The analysis of the behavior of the EMD suggests that it could be a useful tool
for many problems met with audio signal processing. Indeed, many audio signals
are known to be well described as a sum of harmonics and white noise. This is the
case in particular for speech signals. Thus, in the rest of the thesis, we are going to

investigates how successful could be the use of EMD in audio and signal processing.
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n this chapter, a new speech denoising strategy is presented. Based on EMD,
the method is fully data-driven approach. For additive white Gaussian noise,
two strategies to denoise each extracted IMF are proposed: filtering using the
Minimum Mean Squared Error (MMSE) filter [75], or thresholding using a shrinkage
function. The performance of the two methods is analyzed and compared with those
based on MMSE filter, and wavelet shrinking approach. To avoid frequency analysis
when using MMSE filter [75], the IMFs are filtered by Adaptive Center Weighted
Average (ACWA) filter [52], which operates in time domain. Finally, we show the
interest of the conjunction EMD and ACWA for both white and colored noises

reduction.
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II.1 Introduction

In this chapter, denoising methods based on the EMD are proposed. We first propose
two new noise reduction schemes dedicated to additive white noise. Actually these
schemes are complementary and depend on the noise level and its estimation. The
first strategy combines the EMD and the MMSE filter [75], and the second one
associates the EMD with hard shrinkage [7],[9]. The MMSE filter assumes the
whiteness of the noise and the stationarity of the denoised signal. In second time,
a noise reduction approach combining the EMD with ACWA filter is introduced.
Indeed, the ACWA filter, as the EMD, operates in the time domain, and it does not
require neither the stationarity of the signal nor the whiteness of the noise. As a
result, this method is effective for both white noise and colored one. Furthermore,
in contrast to the classical filters, such as MMSE filter [75], all the parameters are
computed in time domain and, hence, transformation to frequency domain is not

necessary.

I1.2  EMD based white noise reduction
Let a clean speech signal z(t) be corrupted by an additive white noise b(t) as follows:

y(t) = x(t) + b(t) (IL.1)

Noisy signal is decomposed into a sum of IMFs by the EMD, such that:
c
y(t) = > IMF,;(t) + rc(t) (11.2)
j=1
We make assumption that each mode IMF;(#) is a noisy version of the signal f;(¢):
IMF,(t) = f,(8) + b, (1 (1L.3)
Based on the noisy observation IMF;(#), an estimation f;(t) of f;(t) is given by,

fi(t) = T[IMF;(1)], (IL.4)

where I'[IMF;(¢)] is a filtering function applied to IMF,(¢) [7],[9]. Function I' cor-
responds to MMSE filter [75], or to a thresholding function [7],[9]. Finally, the
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denoised signal, Z(t), is given by:

C
i(t) = Z £t +re(t) (IL5)

Note that the use of MMSE filter requires the knowledge of the noise level.

I1.2.1 EMD-MMSE filter

As mentioned previously, the EMD-MMSE strategy combines the EMD and the
MMSE filter [25]. To guarantee the signal stationarity imposed by the MMSE filter

a frame processing is required. Thus, each IMF is filtered in frequency domain by
the MMSE filter as follows:

Fj(fdvm) = H(fdvm)IMFj(fdum)7 (116)

where IMF;(fs,m) and F;(fs, m) are the spectral noisy IMF and the spectral de-
noised IMF respectively, observed at the discrete frequency f; on the frame m. The
frequency response of the MMSE filter H(fy, m) is given by [25]:

_ SNRprio(fd7 m)
1 + SNRprio(fd7 m) ’

H(f4, m) (IL.7)

where the a priori Signal to Noise Ratio (SNR), SNR,,,, is estimated according to
the method of Ephraim and Malah [25], as following:

FQ(fdum - ]')

SN Ryrio( fa,m) = B frm—1)

+ (1 — o) max(SN Ripsi(fa,m), 0) (11.8)
where « is a weighting factor (equal to 0.98, it is a compromise), SN R;, is the
instantaneous SNR, defined as the local estimation of SN Ry, and the B*(f4, m—1)

is the noise power spectra value at the discrete frequency f,; in the frame (m-1).

[IMF (fa, m)?

N . g
SN Finst = B (7P

—1 (I1.9)
Generally, noise estimation in speech is performed using the Boll’s method [5].
Indeed, first, the silence periods of the signal are detected at the beginning of the
signal. Then, the estimation of the noise power spectra is obtained by averaging

the power spectra of the noisy signal over M frames which are considered as being
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moments of silence. This method gives an estimation of the noise power spectra [5].

1 M—1

BUP =57 3 1B(faka)l? (11.10)

km=0
where the k,, are the frame indices that correspond to silence periods. Extensive
simulations have shown that when the speech signal presents the silence period, the
first IMF also presents the silence period. Since, the first IMF is noise dominant then
it can be used to estimate accurately the noise level. According to [28], behavior of
EMD is like of that of wavelets [76], and thus the noise levels of the modes following
the first IMF (k=1) are estimated as follows:

. o1

G = k> 2, (IL11)

\/ik—l’ —

where g7 is the noise level of the first IMF.

11.2.2 EMD-Shrinkage

A smooth version of the input signal can be obtained by thresholding the IMFs
before signal reconstruction [7],[9]. In this case, the threshold parameter of each
IMFy, is estimated by the following expression [7],[9],[23]-[24]:

T = \/210g(T)ak. (1112)

where T is the signal length and oy, is the estimated noise level (scale level) at the
IMFy. Noise level of the first IMF is given by [7],[9],[66]

G, = 1.4826 x Median {|IMF () — Median {IMF, ()} |} (IL.13)

According to [28], the noise level 6} of the k" IMF can be deduced from &) by
Eq.( IL11).

There are different non-linear shrinkage functions [55]. In the present work, we use
the hard shrinkage which has given interesting denoising results for speech enhance-

ment compared to the soft shrinkage:

. { IMF; (1), if [IMF; ()] > 7 (IL.14)

fi(t) = 0, if [IMF,(t)] <



CHAPTER II. SPEECH ENHANCEMENT BY EMD

11.2.3 EMD-MMSE versus EMD-Shrinkage

The two proposed noise reduction methods are tested on speech signals corrupted
by additive white Gaussian noise with different input SNRs. Four clean speech
signals, download from Brown Corpus Database, pronounced by a male and female
speaker, and are sampled by a sampling frequency equal to 16 KHz. The results are
compared to MMSE filter and to wavelet approach (Haar, Symmlet 4, Daubechies 4).
The output SNR ! and Perceptual Evaluation of Speech Quality (PESQ)? [65],[70]
are used as objective measure to evaluate the denoising methods. More precisely, the
PESQ criterion measures the perceptual quality of speech signal. The EMD-MMSE
method is compared to the classical MMSE denoising method [75].

The EMD-MMSE denoising scheme is applied to four clean speech signals "spechl”,
"speech2", "speech3" and "speech4" (Figs. II.1(a)-(b)-(c)-(d)) corrupted by additive
white Gaussian noise with input SNR values ranging from 4 dB to 10 dB. Noisy
versions of the original signals corresponding to input SNR=5 dB are shown in
figure I1.2. Figure I1.3 shows the denoising results obtained by the EMD-MMSE and
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Figure II.1: Original signals "speechl", "speech2", "speech3" and "speech4".

the MMSE filter. From this figure, one can conclude that the EMD-MMSE performs
better (noise reduction) than MMSE filter compared to the original signals (Figs.
I1.1). This fact is confirmed by the results shown in figure I1.4, where more SNR gain

Isee Appendix A
2see Appendix A
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Figure 11.2: Noisy version of signals "speechl", "speech2" 'speech3" and "speech4'
(input SNR = 5 dB).

is obtained by the EMD-MMSE compared to the MMSE. For each input SNR value,
100 independent noise simulations are generated and the average of output SNR and
the PESQ values are calculated. One may note that the EMD-MMSE provides an
improvement about 1 dB compared to standard MMSE filter for noisy versions of
all signals "spechl", "speech2", "speech3" and "speech4". The obtained results also
show that it is more efficient to apply the MMSE to the different components of the
signal than to the signal itself. These results are also demonstrated by Fig. IL.5,
where the PESQ values of the proposed approach are better than those of MMSE
filter. These results also show that it is more efficient to apply MMSE filter to all

IMFs, since the IMFs are more stationary than the original signal.

The EMD-Shrinkage is applied to the same clean speech signals "speechl", "speech2",
"speech3" and "speech4" (Figs.I1.1(a)-(b)-(c)-(d)) corrupted by additive white Gaus-
sian noise with input SNR values ranging from -10 dB to 3 dB. Noisy versions
of the original signals corresponding to input SNR=-5 dB are shown in figure IL.6.
Denoising results of the EMD-Shrinkage (hard thresholding) and the wavelet method
(Daubechies 4) are shown in figure I1.7.



CHAPTER II. SPEECH ENHANCEMENT BY EMD

speechl
5]
© 1 T T T T T T T T
2
5 0 - .
E 1 1 1 1 1 1 1 1
< 1
0 0.5 1 15 2 25 3 35 4 4.5
x 10°
o speech2
S 1
E T T T T T T T T
S O §p——— e .
E _1 1 1 1 1 1 1 1 1
< 0 0.5 1 15 2 25 3 35 4 4.5
x 10°
o speech3
©
E 1 T T T T T
5 O gty ol + 1
E _1 Il Il Il Il Il
< 0 1 2 3 4 5 6
x 10
o speech4
=]
E 1 T T T T T
5 0 {0 e - e .
E _1 Il Il Il Il Il
< 0 1 2 3 4 5 6
Time (samples) % 10*
EMD-MMSE
speechl

Amplitude

_1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35 4 45
x 10°
o speech2
S 1
E T T T T T T T T
S O p——tma———a»—= -
E _1 1 1 1 1 1 1 1 1
< 0 0.5 1 15 2 25 3 35 4 4.5
x 10*
o speech3
©
E 1 T T T T T
3 0 Sty - ol - 1
E _1 Il Il Il Il Il
< 0 1 2 3 4 5 6
4
x 10
© speech4
° l T T T T T
2
20 e p— 1
E _1 1 | | | 1
< 70 1 2 3 4 5 6
Time (samples) % 10*
MMSE filter

Figure I1.3: Denoising results of signals "speech1", "speech2","speech3" and "speech4"
by the EMD-MMSE and the MMSE filter.



CHAPTER II. SPEECH ENHANCEMENT BY EMD

49

17

16

15

14

SNR output [dB]

13

12

21

20

19r

18

SNR output [dB]

15F
14r
13F

12
4

T
—&— EMD-MMSE
— + — MMSE Filter
-
-
-
-
A
-
/// z -
-
_*
-
v
-
-
s
-
-
-
-
_¥
. . . .
5 6 7 8 9 10
Initial SNR [dB]

—&— EMD-MMSE
— % — MMSE Filter

r — -
-
-
g
X
-
-
-
[

£

11
4

17r

161

5 6 7 8 9 10
Initial SNR [dB]

(a) Speechl signal.

(c) Speech3 signal.

SNR output [dB]

SNR output [dB]

19

18

17r

161

15f

141

21

20

191

18r

17r

16

151

141

—&— EMD-MMSE
— % — MMSE Filter

13
4

7
Initial SNR [dB]

(b) Speech2 signal.

10

—o— EMD-MMSE| |
— + — MMSE Filter

L
13
4

5 6 7 8
Initial SNR [dB]

(d) Speech4 signal.

10

Figure I1.4: Final SNR values obtained from different initial noise levels of signals
"speechl", "speech2", "speech3" and "speech4'. The results are averages over 100
instances of the noisy signals. They are reported for EMD-MMSE and the MMSE
filter.

A careful examination of the signals shown in figures II.1 and I1.7, shows that the
EMD-Shrinkage performs better than the wavelet method in terms of noise reduc-
tion. Furthermore, signals structures or features are globally better preserved with
the EMD-Shrinkage than with the wavelet method. Figure I1.8 shows the improve-
ment in SNR values obtained with different noise levels of the signals "speechl",
"speech2", "speech3" and "speech4" for the EMD-Shrinkage and three wavelet meth-
ods (Haar, Symmlet 4, Daubechies 4).
in output SNR provided by the EMD-Shrinkage varies from -0.7 dB to 11.5 dB
compared to the three wavelet methods. The gain in SNR achieved by the EMD-

This figure shows that the improvement

shrinkage is much higher than with wavelets. When listening to the enhanced
speeches, the EMD-shrinkage is found to produce lower residual noise and, notice-

ably, less speech distortion for all the signals compared to the wavelet method (Fig.
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Figure II.5: PESQ values obtained from different initial noise levels of signals
"speechl", "speech2", "speech3" and "speech4'. The results are averages over 100
instances of the noisy signals. They are for EMD-MMSE and the MMSE filter.

11.9).

I1.3 EMD-ACWA filtering of white and colored

noises

I1.3.1 Interest of ACWA filter

Classically, the ACWA filter has been used in image enhancement applications
[52],[59],[71]. The ACWA filter operates in the time domain, and it does not re-
quire the stationarity of the signals and the whiteness of the noise. The best of our
knowledge it is the first time (in this thesis) that ACWA filter is used in signal pro-

cessing. The effectiveness of the ACWA filter can be improved when it is associated
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Figure I1.6: Noisy versions of signals "speechl", "speech2", "speech3" and "speech4"
(input SNR =-5 dB).

with the EMD. Indeed, the IMFs are less noisy and more stationary than the noisy
speech signal. In contrast to the classical filters, such as MMSE filter [75], all the
parameters are computed in time domain and, hence, transformation to frequency
domain is not necessary. Besides, the noise variance is computed at each instant
time, and this filter can adapt to more general noisy contexts: white as well as col-
ored noise, high as well as low noise level.

The ACWA filtered signal Z(t) is described as follows [52]:

Fmean + K t) — Fmean f Fvar > 2
#(t) = &) ) P20 (IL.15)
Fcan otherwise
where,
o 11.16
K=1- .
Fvar’ ( )

Flean and Fi,, denote respectively the average and the variance of the noisy signal
y(t) computed over a sliding window of size L, and ¢? denotes the variance of the

noise. The noise variance, o2, is calculated as previously (Eq. I1.13).

In order to show the effectiveness of this filter in the speech context, a compar-
ative analysis between ACWA filter and MMSE filter [75] is preformed in a context
of additive white noise with SNR;, = 2dB. Figure 11.10 shows the superposition
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different Wavelets (Haar, Symmlet 4, Daubechies 4).

of the clean signal and the filtered signals obtained by the ACWA and the MMSE

filters.

The comparative analysis of the three signals (Fig. I1.10) does not clearly show the

superiority of the ACWA filter over the MMSE one. Therefore, we use the output

SNR and the PESQ criteria to quantify the speech enhancement quality obtained
by both filters. Table II.1 reports the obtained results for different levels of the
additive noise fixed through the input SNR. These results show that for very low

input SNR values, the ACWA filter gives higher output SNR than the MMSE filter.

In addition, for most considered input SNR values, the PESQ values given by the
ACWA filter are higher than those of the MMSE filter. The PESQ results confirm
that the ACWA filter guarantees better listening quality of the enhanced speech
than the MMSE filter.
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Figure I1.9: Variations of the PESQ values versus from the input SNR for signals
"speechl", "speech2", "speech3" and "speech4'. The results are averages over 100
instances of the noisy signals. They are reported for EMD-Shrinkage and for three
different wavelets (Haar, Symmlet 4, Daubechies 4).

11.3.2 Performance analysis of EMD-ACWA

The EMD-ACWA denoising technique consists on filtering all IMFs by ACWA filter.
This approach is still applicable regardless of the value added noise and noise type.
Note that he function I' (Eq. I1.4) can be interpretable as a kind of ACWA filter.
Finally, the estimated signal, Z(¢), is given by :

C
i(t) = Z £+ re(t) (I1.17)

The denoising of the IMF by the ACWA filter is given by Eq. I1.15. The noise level

o; is calculated using equation II.13.
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Figure I1.10: Clean and filtered signals by the ACWA and the MMSE filters (input
SNR=2 dB).

Table II.1: Variations of the output SNR and of the PESQ over the input SNR for
the MMSE and ACWA filters.

MMSE filter ACWA filter
SNR input [dB] || SNR output [dB] || PESQ || SNR output [dB] || PESQ
-10 0.87 0.70 2.7 1.05
-8 1.53 0.91 4.04 1.2
-6 3.52 1.07 5.94 1.38
-4 5.00 1.29 7.98 1.58
-2 7.37 1.51 10.18 2.15
0 9.82 2.05 11.19 2.21
2 12.63 2.35 12.08 2.27
4 13.76 24 13.95 24
6 15.88 2.51 15.67 2.49
8 16.53 2.64 16.58 2.7
10 17.23 2.8 17.18 2.73

This proposed noise reduction method is tested on speech signals corrupted by
different noises, taken from Noisex-92 database, whose levels are fixed through the

input SNR. The noise (f16, factory) spectrum is depicted in figure II.11.

The results obtained by the proposed method are compared to the wavelet approach
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(Daubechies 4) and ACWA filter. Here, we use the ACWA filter as a reference
comparison method because it gives better results than the MMSE filter [43]. As

objective criteria to evaluate the performance of the denoising method, we use the

output SNR and PESQ as before.

At a first step, we take as example two speech signals "speechl" and "speech2'.
These signals are corrupted by a colored noise "f16" (cockpit noise) with input SNR

value fixed to -2 dB. The original signals and their corresponding noisy versions are

depicted in figure I1.12.

Figure I1.12: Original signals ("speechl" and "speech2") and their noisy versions (f16

noise with SNR =-2 dB).
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results shown in figure I1.13 where the variations of the output SNR versus L are
displayed for two values of input SNR. : -2 dB and 0 dB. Figure I1.13, shows that for
L = 511 the output SNR remains almost constant.

The denoised versions of signals "speechl" and "speech2" obtained by the EMD-
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Figure I1.13: Variation of the output SNR relating to the noisy signal "speechl'
versus the size L of the ACWA filter window (f16 noise with SNR=-2 dB and SNR=0
dB).

ACWA, the wavelet thresholds (db4), and the ACWA filter, are shown respectively
in figures I1.14(a) and I1.14(b). The input SNR is fixed to -2 dB. In fact, we consider
db4 with a hard threshold for comparison, because it gives good results compared
to other wavelets.

A careful comparative examination of the signals of figures I1.14, shows that the
EMD-ACWA performs better than the wavelet (db4) and ACWA-filter in terms of
noise reduction. For deeper performance analysis, figures I1.15, I1.16 and I1.17 show
the variations of the output SNR versus the input SNR relating to the denoising
of signals "speechl" and "speech2" when corrupted respectively by a white Gaus-
sian noise, the colored f16 noise and the colored factory noise, taken from Noisex-
92 database. The reported results demonstrate the effectiveness of the proposed
method. Indeed, the improvement in SNR provided by the EMD-ACWA is much
higher than those given by the wavelet method and the ACWA filter. Besides, a
significant SNR improvement, varying from 4.2 dB to 17.4 dB, is achieved by the
EMD-ACWA method. In fact, even for very low SNR values, we can still observe

the effectiveness of the proposed method in removing the noise components as the
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Figure I1.14: Denoised version of the signals "speechl" and "speech2" obtained by
the EMD-ACWA, the wavelet (db4) and ACWA filter (f16 noise with input SNR
=-2 dB)
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Figure II1.15: Variation of the output SNR versus the input SNR relating to the
denoising of the signals "speechl" and "speech2" corrupted by a white Gaussian

noise. The results are averages over 100 instances of the noisy signals. They are
reported for EMD-ACWA, ACWA filter and wavelet(db4)

Figures I1.18, 11.19 and I1.20 show the PES(Q values: the obtained results show
that the PESQ values achieved by EMD-ACWA are higher than those obtained by
wavelet and ACWA filters. Consequently when listening to the enhanced speeches,
the EMD-ACWA produces lower residual noise, noticeably less speech distortion
compared to the wavelet (db4) method and ACWA filter.
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Figure I1.16: Variation of the output SNR versus the input SNR relating to the
denoising of the signals "speechl" and "speech2" corrupted by the f16 noise. The
results are reported for EMD-ACWA, ACWA filter and wavelet (db4)
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Figure I1.17: Variation of the output SNR versus the input SNR relating to the
denoising of the signals "speechl" and "speech2" corrupted by the factory noise. The
results are reported for EMD-ACWA, ACWA filter and wavelet(db4)

I1.4 Conclusion

The proposed denoising schemes introduced in this chapter are based on the EMD.

They are simple and fully data-driven methods. In particular, they do not require

any pre- or post-processing and any use of parameters setting (except L value using

ACWA).

For the two first approaches, the study is limited to signals corrupted by additive

white noise. Obtained results for clean speech signals corrupted with additive Gaus-

sian noise with different SNR values ranging from -10 dB to 10 dB show that the pro-
posed EMD-MMSE and EMD-Shrinkage methods, perform better than the MMSE
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Figure I1.19: PESQ values obtained from different initial noise levels of signals
"speech1" and "speech2" corrupted by the f16 noise. The results are reported for
EMD-ACWA, ACWA filter and wavelet(db4)

filter and the wavelet approaches. These results show that the EMD-denoising meth-
ods are effective for noise removal and confirm our findings presented in [7]-[9]. In
particular, the obtained results also show that it is more efficient to apply the thresh-
olding or the filtering to the different components (IMFs) of the signal than to the
signal itself. Quite normal, since IMFs are more stationary than the noisy signal,
and consequently the association of filter or threshold with the EMD improves the
denoising results. Furthermore, the introduction of the EMD is very simple, since
it is an adaptive decomposition, data driven, and does not need to define a kernel
function. Thus, the results are not limited to the choice of basic functions, as in the

case of wavelets.
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PESQ

Figure 11.20: PESQ values obtained from different initial noise levels of signals
"speech1" and "speech2" corrupted by the factory noise. The results are reported for
EMD-ACWA, ACWA filter and wavelet(db4)

In the case of colored and white noise, the EMD-ACWA gives better results com-
pared to the other approaches (ACWA filter, wavelet). The effectiveness of the
ACWA filter is improved when it is associated with the EMD. In addition, the
ACWA filter does not require the stationarity of the signal or the whiteness of the

noise. For these reasons, the ACWA filter will be used in the future techniques
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dedicated to denoising speech signal, subject of the next chapter.
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n this chapter, we show how to improve the performance of the EMD-ACWA
method. The new scheme takes into account the class of speech frames
(voiced/unvoiced and transient). The noisy signal is divided into frames and
each one is decomposed adaptively into IMFs. The number of IMFs filtered by
ACWA filter depends on the frame class and is selected according to an appropri-

ate criterion. An energy criterion detects voiced frames while a stationarity index,
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based on the local statistics, is used to distinguish between unvoiced and transient
frames sequences. The new denoising approach performs better than ACWA filter,
wavelet (db4) approach and the conventional EMD-ACWA in terms of output SNR
and PESQ.
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III.1 Introduction

In chapter II, three strategies for noise reduction were proposed: MMSE filtering,
thresholding and ACWA filtering of the extracted IMFs from the noisy frame. In
particular, the ACWA filter [52], using local statistics of the speech signal, has shown
very interesting performances in speech denoising. These last methods are based
on filtering of all IMFs extracted from noisy frame regardless of their speech class
(voiced /unvoiced /transient). However, when the signal features are concentrated on
medium and low frequencies such as voiced speech, the filtering of all IMFs introduces
some distortions in the denoised signal [1],[8],[85]. As a matter of fact, when voiced
speech signal is contaminated by an additive white noise, the first IMFs are much
more noisy than the last ones. Consequently, in the case of voiced speech, it is more
appropriate to only filter the first IMFs, and to keep unchanged the last ones which
are signal dominated.

In this chapter, we further improve the speech denoising using the EMD and the
ACWA filter. This is achieved by taking into account the type of the processed
frame: voiced, unvoiced and transient. As for the voiced frame special consideration
related to the signal characteristics must be taken into account when denoising
unvoiced frame or transient one that is considered here as concatenation of two sub-
frames: voiced or unvoiced.

This chapter is organized as follows. In the second section, we present the techniques
adopted to determine the type of frame. A criterion based on the IMFs energy is used
to detect voiced frames, while a stationarity index criterion is used to distinguish
between an unvoiced and a transient frame. Section I11.3 details the speech denoising
technique. The idea is based on filtering selected IMFs by the ACWA filter. The
number of selected IMFs depends on the frame class. Section II1.4 investigates
the performance of this speech denoising approach, based on exhaustive simulation
results. In a first step we shall only consider voiced frames, and frames of different

types in a second step.

I11.2 Frames classification

The speech signal is a combination of voiced and unvoiced frames. So, to apply the

denoising approach for each frame, we must firstly determine the frame type.

The principle of frames classification is depicted in figure I11.1. Noisy frame is first
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decomposed by EMD and the energies of the associated IMFs are calculated. An
energy criterion is applied to detect whether the input frame is voiced speech or
not. While a stationary index is used to classify the frame into unvoiced or transient
frame formed by two adjacent sub-frames. Finally, in the case of transient frame,
the energy criterion is applied to classify the two sub-frame into voiced or unvoiced

speech.

Noisy frame

EMD
TM F UWIM F2 ........ IM FC
i Energy calculation i
{ B J o l o

Energetic Yes Noisy voiced
e frame

criterion

l No

Noisy unvoiced

Stationarity index frame

criterion

Noisy transient frame

Sub-frames
classification

/N

Noisy voiced sub-frame Noisy unvoiced sub-frame

Figure II1.1: Frames classification scheme.

I11.2.1 Voiced frames detection

The energy criterion relies on the basic idea that most important features struc-
tures of the signal are concentrated at medium and low frequencies (last IMFs)
[1][8],[11],[17],[44],[85], in particular for voiced frames. Therefore the first IMFs of
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the noisy voiced frames are essentially noise dominated, while the last ones are sig-
nal dominated. According to this idea and in the case of an additive white noise,
there will be a mode, indexed by 7j,, from which energy distribution of the important
structures of the signal overcomes that of the noise [1],[8]. Thus, a criterion based
on energy density can be used to detect voiced frames [27],[87].

From the observed noisy signal y(t), the objective is to find an approximation #(t)

to the original signal x(t) that minimizes the Mean Square Error (MSE):
1 N
MSE( — I1I.1
(x,7) N ; (1IL.1)

where x = [2(1),2(2),...,z(N)]T and 7 = [2(1),Z(2),...,Z(N)]T. N is the length
of the signal. Other distortion measures such as the Mean Absolute Error (MAE)
can be used. Then, the signal y(¢) is first decomposed into IMF;(¢),7 = 1,...C,

and a residual r¢(t),

Z IMF; (1) + re (1), (111.2)

Finally Z(t) is reconstructed using (C' — k + 1) selected IMFs starting from k to C.
ZIMF )+re(t), k=2,...,C (T11.3)

The aim of the EMD filtering, which is carried out in the time domain, is to find
the index k = j that minimizes the MSE(z, ). Note that Eq. (II1.3) corresponds
to a low-pass filtering [33]. In practice the MSE or the MAE can not be calculated
because the original signal z(t) is unknown. In this work, we use a distortion measure
called Consecutive MSE (CMSE) that does not require the knowledge of z(t) [8].
This quantity measures the squared Euclidean distance between two consecutive
reconstructions of the signal. The CMSE is defined as follows [8]:

] =

1

.
I

A

2= 2=

] =

(IMF(t,))” (IIL.5)

.
Il
—

where Z; and 7, are signals reconstructed starting from the IMFs indexed by &
and (k + 1) respectively.
Thus, according to Eq. (IIL.5) the CMSE is reduced to the energy of the £ IMF. It
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is also the classical empirical variance estimate of the k** IMF. Note that, if k = 1,
Z1(t) = y(t). Finally, the index j, is given by
Js = Argmaz [CMSE(Zy, Tr41)] (I11.6)

1<k<C—1

The CMSE criterion allows to identify the IMF order where there is the first sig-
nificant change in energy. This empirical fact is derived from extensive experiments
and simulations [8]. Figure I11.2(c) shows the energies of the IMFs of a noisy voiced
sequence (Figure II1.2(b)). The most important features of this speech sequence
begin at the fourth IMF (j; = 4). This energy criterion is appropriate only to detect
voiced frames [42]. In fact, as shown by figure I11.3(c) the energies of IMFs decrease
versus the IMF index for a noisy transient frame (Fig. IIL.3(b)). The same result is

obtained in the case of an unvoiced frame (Fig. I11.4(c)).

I11.2.2 Transient frames detection

A transient frame can be linked to a concatenation of two sub-frames of different
nature: voiced and unvoiced. The statistical properties of voiced and unvoiced
speech are very different. The invariance of statistical properties over the time
of a speech or audio signal can be measured using a stationarity index. Indeed,
based on time-frequency analysis, this index detects fast transients of signals [51]. It
was shown that both Kullback and Bhattacharyya distances are sensitive to abrupt
changes of signals in the time-frequency plane [51]. In this work, Bhattacharyya
distance is used as index of stationarity.

Two sub-images Iy (n; 7, f) and Io(n; 7, f) are extracted, at each time n, from a Time

Frequency Representation (TFR) of the signal [51]:

L(n;7,f) = TFR(n—L+7,f) (111.7)
L(ni7,f) = TFR(n+.f) (IIL8)

where L is the width of sub-images, f is the frequency and 7 € [0, L]. The station-
arity index is obtained by computing the Bhattacharyya distance between the two

sub-images:

SI(n) = — log( / io 1 j N (n 7, f)NL(n; 7, f)dfdr) (IIL9)
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Figure II1.2: Voiced sequence, noisy voiced sequence and the energy variations of
their noisy IMFs.

NIy (k=1,2) is the normalized version of the TFR of two sub-images I, (k = 1,2). In
this work, the TFR used is the spectrogram which is of simple use (one parameter).
A peak in the SI(n) variations indicates abrupt changing in the signal spectrum.
Thus, it demonstrates the presence of transition zone. Indeed, the unvoiced frame
is much more stationary than the transient one, the distinction between them can
be performed using a SI index (Eq. I11.9). Figure II1.5 shows the behavior of the
stationarity index in presence of a transient sequence (Fig. II1.3(b)). Based on the
stationarity index, it is possible to locate the time position of the transient that
separates the transient speech frame into two sub-frames of different nature: voiced

and unvoiced. A large peak is noticed at the transient instant corresponding to the
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Figure I11.3: Not voiced sequence, noisy not voiced sequence and variations of the
energies of its noisy IMFs.

beginning of the second sub-frame. The location of the transient instant supplied

by the stationarity index can be used to split the frame into sub-frames. Then,

sub-frames can be classified using the energy criterion. As shown in figure II1.6, the

two sub-frames of different nature: the first one is voiced, while the second one is

unvoiced.

I1I.3 Proposed speech denoising method

Basics of the proposed speech denoising technique are summarized as follows:
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Figure I11.4: Unvoiced sequence, noisy unvoiced sequence and variations of the en-
ergies of its IMFs.

1. Noisy speech signal is segmented into frames.
2. Each frame is decomposed into IMFs.

3. Detection of the frame class. For transient frames, a detection of the two sub-

frames type is performed.

4. IMFs are filtered by ACWA filter depending on whether the frame or sub-frame

is voiced or unvoiced.

5. The enhanced speech signal is reconstructed from denoised frames.
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Figure I11.6: Energy variations of the IMFs of the sub-frames.

II1.3.1 Voiced sequence denoising

The denoising method dedicated to voiced frames consists in filtering a set of IMFs
selected using the energy criterion (Eq. II1.5) [8]. It is described in the four following
steps :

Step A: Decompose y(t) into j IMFs, j € {1,...,C}, and the residual ro(%).

Step B: Calculate the energy of each IMF and find the index js using equation
I1L.6.

Step C: Denoise the shorter scale (j; — 1) IMFs with the according ACWA filter

(Eq. 1L15).
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Step D: The denoised signal, Z(t), is reconstructed as follows:

() = ]il £ () + EC: IMF(t) + re(t) (I11.10)

J:JS
II1.3.2 Unvoiced sequence denoising

For a noisy unvoiced speech frame, all the extracted IMFs are noisy. Consequently
each IMF,(¢) must be filtered by ACWA filter. The estimated signal frame, Z(t), is
given by:

i(t) = ijfj (t) +ro(t). (IIL.11)

II1.3.3 Transient sequence denoising

A transient frame corresponds to two adjacent sub-frames of unvoiced (voiced) and
voiced (unvoiced) speech. The stationarity index helps to locate the transient instant
between these two sub-frames. The denoising strategy is chosen according to the

sub-frame class : voiced or unvoiced.

I1I.4 Performance analysis

I11.4.1 Voiced frames

The proposed noise reduction method is tested on voiced speech signals corrupted
by varying additive white Gaussian noise levels, fixed through the input SNR. Four
clean voiced speech signals vowels /o/, /a/, /e/ and /i/ (Fig. I11.7) pronounced by

a male speaker are analyzed.

These signals are corrupted by an additive white Gaussian noise with SNR values
ranging from -10 dB to 10 dB. The results of the proposed scheme are compared to
those of three methods: ACWA filtering of all IMFs (EMD-ACWA), denoising based
on wavelet decomposition and ACWA filtering of the noisy voiced signal, i.e., ACWA
filtering all IMFs. The performance evaluation is based on the output SNR and the
PESQ measures. For each input SNR value, 100 independent noise realizations are
generated and averaged values of the output SNR and the PESQ are computed.

Noisy versions of the original signals corresponding to input SNR = 2 dB are shown
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Figure IIL1.7: Original signals /o/, /a/, /e/ and /i/.

in figure II1.8. For illustration, figure II1.9 shows that the EMD decomposes the
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Figure II1.8: Noisy versions of signals /o/, /a/, /e/ and /i/ (input SNR=2 dB).

noisy signal /o/ into 10 IMFs and a residual. According to this decomposition, we
can see that from the fourth IMF, the signal energy dominates over the noise. This

observation is well verified based on CMSE criterion.
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Figure I11.9: Decomposition of noisy signal /o/ into IMFs (input SNR= 2dB)

Figure I11.10 shows that for the sequence /o/, the maximum of CMSE corresponds
to the fourth IMF. Figure II1.10 shows the plots of the CMSE values versus the
extracted IMFs index for the four signals. Each curve is characterized by only one

maximum that defines the index j,. Table III.1 summarizes for each signal, the
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Figure II1.10: Variations of CMSE (energy) values versus the number of IMFs for
the four noisy signals.

number of extracted IMFs, and the index js corresponding to the largest CMSE
or IMF energy. The second stage of the proposed method consists in filtering the
(js — 1) first IMFs using the ACWA filter. The size, L, of the sliding window of
ACWA filter is set to 511. Such setting is justified by the results shown in figure
I1.13.

Denoising results obtained by the proposed method, the ACWA filtering of the
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Table III.1: C and j, values of each signal

Signals | /o/ | /a/ | Je/ | /i/
C 10 | 11 | 11 | 12
7 i 3|45

noisy signal, the ACWA filtering of all IMFs of the noisy signal (EMD-ACWA), and
a denoising based on the wavelet (db4) thresholding [45], are shown in figure II1.11
for an input SNR = 2 dB. In chapter II, we choose the db4 wavelet with a hard
thresholding, because it gives good results compared to the other wavelets. A careful
comparative examination between the signals shown in figures I11.7 and II1.11, shows
that the proposed method performs better than the other three methods in terms
of noise reduction. This conclusion is confirmed by the output SNR values listed in
table II1.2. For all voiced speech signals, the SNR gain achieved by the proposed
method is the highest one.

Table II1.2: Denoising results, based on the output SNR, of four noisy voiced differ-
ent signals (input SNR=2 dB)

Noisy signals (SNR=2dB) | /o/ | /a/ | Je/ | /i/
Proposed method 14.82 | 11.87 | 10.55 | 9.44
EMD-ACWA 11.94 | 7.87 | 7.41 |5.23
Wavelet (db4) 11.38 | 7.85 | 7.40 | 5.24
ACWA filter 9.80 | 8.04 | 791 | 7.31

These findings are also confirmed by the results shown in figure I11.12, where it is
shown that for the four signals the proposed method performs remarkably better
than the EMD-ACWA and the other methods. The SNR improvement achieved
by the proposed method varies from 3.4 dB to 17.9 dB. For very low input SNR
values, we still observe the effectiveness of the proposed method in removing the

noise components.
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Figure I11.11: Enhanced signals obtained by the proposed method, Wavelet (db4),
ACWA filter and EMD-ACWA (input SNR=2 dB).

When listening to the enhanced speech signals, the proposed method produces lower
residual noise and noticeably less speech distortion for all the signals. This result
is confirmed by the PESQ results shown in figure II1.13. These results demonstrate
that our approach gives a significant enhancement in listening quality as the im-
provement of the PES(Q values is high. Indeed, the obtained results also show that
it is more efficient to apply the ACWA filter to selected IMFSs of the noisy signal than
to all the IMFS. These results are very logical, since the information of original sig-
nal is concentrated into last IMFs, consequently the filtering of all IMFs introduces

some distortions in the denoised signal.
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Figure I11.12: Variations of output SNR versus input SNR for signals /o/, /a/,
Je/ and /i/. The results are average over 100 noise realizations. The reported
results correspond to the proposed method, Wavelet(db4), ACWA filter and the
EMD-ACWA.

I11.4.2 Speech signal

The proposed noise reduction methods are tested on speech signals corrupted by
additive white Gaussian noise with different variances fixed through the input SNR.
The performances of the proposed technique are compared to those of the following
methods: ACWA filtering of all IMFs (EMD-ACWA), wavelet (db4) thresholding
method [45], and ACWA filtering of the noisy signal. As objective criteria to evalu-
ate the performance of the denoising method, we use the output SNR and PESQ.
For our simulations, we consider four clean speech signals "speechl", "speech2",
"speech3" and "speech4" (Figure I11.14) corrupted by additive white Gaussian noise
with input SNR values ranging from -10 dB to 10 dB. Noisy versions of the original
signals corresponding to input SNR =2 dB are shown in figure I11.15.
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/a/, /e/ and /i/. The results are average over 100 noise realizations. The reported
results correspond to the proposed method, wavelet(db4), ACWA filter and the

EMD-ACWA.

Figure II1.16 shows the denoising signals result obtained by applying the proposed
method, the wavelet method, the ACWA filtering and the EMD-ACWA technique.

From figure II1.16 and compared to the original signals (Fig. II1.14), one can con-
clude that the proposed method performs better in terms of noise reduction than
the other techniques. This fact is confirmed by the results shown in figure I11.17
where the gain in output SNR achieved by the proposed method compared to other
methods is presented. Indeed, we note that the proposed method provides an im-
provement of about 2 dB compared to the other methods for different considered
signals "speechl", "speech2", "speech3" and "speech4". For deeper performance inves-
tigation, figure II1.17 shows the variations of the output SNR versus the input SNR
corresponding to the denoising of the speech signals: "speechl", "speech2", "speech3’

and "speech4"'. For each input SNR value, averaged values are calculated over 100
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(input SNR = 2 dB).
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Figure III1.16: Denoising of noisy signals "speechl', "speech2", "speech3" and
"speech4" ( input SNR=2 dB) by the proposed method, Wavelet (db4), ACWA
filter and EMD-ACWA.

independent noise simulations.

These results demonstrate the effectiveness of the proposed method. Indeed, the
output SNR values obtained by the proposed speech denoising technique are much
higher than those obtained by the wavelet method, EMD-ACWA and the ACWA
filtering. In particular, even for very low input SNR values, we can still observe the
effectiveness of the proposed method in removing the noise components as the gain
in SNR can go up to 15 dB. The PES(Q measures reported by the figure II1.18 also
show that the proposed method offers much better speech quality than the other
methods.

The analysis of the reported results shows the interest to take into account the frame
class in the IMF filtering strategy. Indeed, the proposed method outperforms the
EMD-ACWA technique where all the IMFs are filtered.
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Figure II1.17: Final SNR values obtained from different initial noise levels of signals
"speechl", "speech2", "speech3" and "speech4". The results averages over 100 Monte
Carlo simulations of the additive noise. It is reported for the proposed method,
wavelet(db4), ACWA filter and the EMD-ACWA.

II1.5 Conclusion
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In this chapter, a new speech enhancement method that takes into account the frame

class (voiced or unvoiced) is proposed. In fact, according to the frame class, a set
of the IMFs of the noisy frame are filtered by the ACWA filter. Obtained results
in the case of additive white Gaussian noise with varying SNR values show that
the proposed method performs better than the ACWA filtering of all IMFs (EMD-
ACWA), wavelet denoising approach (db4) and ACWA filtering of the noisy signal.

Taking into account the frame class (voiced/unvoiced) in the filtering process, gives

very interesting performance in terms of output SNR and PESQ.
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his chapter introduces different signal coding approaches based on EMD.
In the first approach, we were interested in coding the IMFs extrema
since the IMFs are fully described by their local extrema [34]. In order
to achieve lower BR, the coding of one out of the two IMFs envelopes was consid-
ered. This idea relies on the quasi-symmetrical property of the IMF. In a second

approach, we exploit the auto-correlation of the Instantaneous Amplitude (IA) and
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Instantaneous Frequency (IF) of the IMFs of the signals to be encoded. Thus a
parametric coding based on linear prediction has been adopted to encode IA and IF

components.
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IV.1 Introduction

In this chapter we present the encoders architecture. The first encoder consists
in encoding the IMFs extrema, since the IMFs are fully described by their local
extrema [34]. To further reduce the Bit Rate (BR), one out of two IMFs envelops
is coded. This is motivated by the quasi-symmetrical property of the IMF. In the
second architecture, a parametric coding approach based on the EMD in association
with Hilbert transform is presented. Based on the Hilbert and Huang Transforms
(HHT), Instantaneous Amplitude (IA), Instantaneous Phase (IP) and Instantaneous
Frequency (IF) of each extracted IMF are calculated. Given the relatively high
autocorrelation of the TA and IF values, a linear predictive coding technique of TA
and IF is used

This chapter is organized as follows. In the first section, we present the motivation
of IMFs coding. Section 1V.3.2.2 details the first encoder architecture that consists
to encode the IMFs extrema or one of its envelopes. Finally Section IV.4 focuses
on the second encoder architecture witch revolves around decoding of A and IF of
each IMF of the signal.

IV.2 Why IMFs coding?

Two main properties of the IMFs are exploited for coding purpose.

IV.2.1 IMF extrema

As earlier recalled, the IMFs are zero mean and have oscillating shape properties.
With a view to compression, these are interesting features. Indeed, most relevant in-
formation of the IMF can be represented by its extrema [34]. Roughly, this amounts
to sampling the IMF almost regularly at twice its original frequency. Figure IV.1
shows the plots of an IMF and its approximate obtained by spline interpolation of
the extrema. A comparative examination of the true IMF and its estimate shows the
effectiveness of the spline interpolation for the reconstruction of the IMF from its
extrema. Indeed, we notice that the error corresponding to the difference between
the true and the reconstructed IMF is negligible. So, the idea of encoding the IMFs
extrema seems interesting and will be more advantageous in terms of reduction of

coding rate compared to waveform coding.
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Figure IV.1: Original IMF and its estimated version by spline interpolation.

IV.2.2 Quasi-symmetry of IMF

The aim of the sifting process is to remove the dissymmetry between the upper
(maxima) and lower (minima) envelopes in order to transform the original signal into
an amplitude modulated signal. So exploiting the symmetry of the upper and lower
envelopes, it is possible to encode only a single envelope and as a result reduce the
coding rate while ensuring good quality of the encoded signal. However, extracted
IMFs are, in general, not truly symmetric with respect to the time axis (a« = 0)
but they are symmetric about a parallel line y = «. This problem is illustrated by
figure IV.2 where the envelopes are symmetrical with respect to line y = 0.05. An
example of offset values obtained for five IMFs extracted from an audio frame signal
is presented in table IV.1. As expected, IMFs are not all symmetric with respect

to y = 0.

Table IV.1: Offset values of IMFs extracted from an audio frame.

IMF | 1 2 3|4 )
a [0.05]0.02]0]0]0.006

Thus, provided the offset « is encoded, at the decoder the upper (lower) envelope is
reconstructed and then the lower (upper) envelope is deduced by symmetry about

the line y = a.
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Figure IV.2: IMF mean envelope offset

IV.2.3 IMF modelling

We have shown that any signal can be decomposed, using EMD, into a finite number
of IMFs. These oscillating components are centered modes and AM-FM type. Using
Hilbert transform, #[.], the analytic signal z(t) corresponding to IMF(t) is given
by :

2(t) = IMF(t) +iH[IMF(t)] (IV.1)

where the signal /M F(t) is the real part of Eq. (IV.1), and the imaginary part is
the Hilbert transform of I M F(t),

—+00
HIMF(1) :—PV / IME(r (IV.2)

t—T

where PV is the Cauchy principal value of the integral. In the complex plane, the

analytic signal z(t) can be written as follows,

2(t) = a(t)e®V, (IV.3)

where a(t)= \/[[MF( )2+ H[IMF(t)]? is the TA and 6(t) = tan™! <HI[%F(S)]>

corresponds to the IP. Recall that f(t)= iﬂ—i is the IF.

Figure IV.3 shows the time variations of IA, IP, and IF of an IMF. EMD roughly
implements filter bank decomposition [28] and its IMFs are oscillatory type. Thus,
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IMFs are strongly correlated. Consequently, IA and IF values are very strongly
correlated, while the IP values are slowly varying. The basic idea consists to encode

the TA and IF by linear prediction, or IP by scalar quantization [58],[19].
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Figure IV.3: TA, IP and IF of an IMF.

IV.3 EMD based encoder architecture

IV.3.1 IMF extrema coding basics: IMF,..irema

The proposed coding scheme is shown in figure IV 4.

IV.3.1.1 Segmentation and decomposition

The first step consists in a segmentation of the signal into frames and each one is
decomposed into IMFs and a residual. These IMFs are completely represented by

their extrema (E; n,)i—1,c. Each extrema is characterized by a time position and an

amplitude.

IV.3.1.2 Extrema thresholding

The number of extrema for each IMF is reduced by using an appropriate threshold

fixed according to the signal type. For example in the case of audio signal, the
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Figure IV.4: Encoding scheme.

threshold can be fixed using the psychoacoustic model which corresponds the be-
havior of the human ear. In coding audio application [4], the threshold is chosen
depending to the fixed compression ratio. The objective of this step is to diminish

the number of extrema to be coded, in order to reduce the BR.

IV.3.1.3 Extrema quantification

The extrema amplitudes of each IMF are scaled by their maximum of value. We
quantize the positions of the extrema, the scaling factor and the scaled extrema
amplitudes. The extrema’s positions are quantified, in a fixed way, by a scalar
quantization. We note that the number of extrema, (e;,,)i=1.c, selected for coding
decreases from one IMF to the next. Consequently, in order to optimize the BR,
the number of bits allocated to the quantization extrema’s amplitudes must vary

from an IMF to another while ensuring a minimum quantization error of the IMF.
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IV.3.1.4 Coding

Better performance can be achieved by using lossless compression such as Huffman
or Lempel-Ziv encoding techniques. These techniques account for probability of
occurrence of encoded data to reduce the number of bits allocated to. Although
Lempel-Ziv is not optimum, the decoder does not need to know the encoding dic-

tionary [83].

IV.3.1.5 Decoding process

Firstly, we begin by decoding the extrema positions. Then we decode the extrema
amplitude. Finally, the IMFs are recovered thanks to a spline interpolation among
the extrema [46],[47], and the sum of IMFs yields the original signal [34].

IV.3.2 IMF envelope coding basics : IMF,,ciope

Based on quasi-symmetry property of IMF, and in order to reduce further the BR,
we propose to encode one out of the two envelopes of each IMF. In this approach,

we focus on the coding of the upper (maxima) envelope.

IV.3.2.1 Encoding scheme

The block diagram of the proposed encoding scheme IMF,, eope is presented in
figure IV.5. The signal is segmented into frames. The windowed signal frame is
decomposed into IMFs and a residual. These modes are encoded under the two

following constraints.

o BR: the number of bits used to encode maxima must be as small as possible.

» Encoding noise: the difference between the true IMF and the reconstructed one

must be negligible.

Each maxima is presented by both position index and amplitude. The quantization
of the maxima amplitudes is performed as in presented in section IV.3.1.3. Finally
the maxima positions, the scaling factors and the offset values are also encoded. The

different steps of the proposed approach are summarized as follows:

o Divide the original signal into frames.
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o+ Using EMD, extract the j" IMF, j € {1,...,C}, and the associated residual
Tc(t).

o For the j*® IMF, determine all the maxima and the offset «;.

o Quantize and encode maxima positions, maxima amplitudes value, scaling fac-

tors and offsets (ajee = 1,...,C).

1V.3.2.2 Decoding process

For each IMF, the decoder first recovers the upper (lower) envelope using the
corresponding scaling factor and the encoded maxima (positions and amplitudes).
Then the lower (upper) envelope of the IMF is determined from the upper (lower)
envelope by symmetry using the corresponding decoded offset value. Finally, the
IMFs are recovered thanks to a spline interpolation between the extrema [46],[47],

and the sum of IMFs yields the original signal [34].



CHAPTER IV. SIGNAL CODING SCHEMES IN EMD FRAMEWORK 94

IV.4 HHT based encoder architecture

The signal is segmented into frames. Then, using EMD each frame is decomposed
into sum of IMFs. For each IMF, IA a(t), IF f(¢) and IP 6(¢) using Hilbert transform

are calculated.

IV.4.1 TA and IP coding basics: [A — IP
IV.4.1.1 TIA encoding

As mentioned before, IA a(t) values are strongly correlated. So, Auto Regressive

(AR) model can be used to exploit efficiently this temporally correlated information.

M=

a(t) =) c(k)a(t — k) + €(t) (IV.4)

k=1

where [¢(1),¢(2), ..., c(p)] are the coefficients of the AR model and €(t) is assumed
to be a white noise process. The determination of the coefficients is based on the
minimization of the prediction Mean Square Error (MSE). The order, p, of AR model
for TA coding is fixed depending to the signal type. For example, in [48], the order
is fixed at 9 for a speech signal. In the proposed approach, at encoder we encode

the coefficients and the noise variance.

IV.4.1.2 1P encoding

The analysis of IP variations shows that only IP’s extrema can be encoded by clas-
sical scalar quantization. As shown in figure IV.3, the phase variations is almost
linear as it undergoes variation of 27r. This suggests encoding only zero crossings of

the phase, together with its initial and final values.

IV.4.1.3 Decoding scheme

IP 0(t) is decoded from zero crossing by linear interpolation. TA a(t) is recovered by

linear prediction. The estimated IMF is calculated as follows:

IMF(t) = |a(t)] cos(6(t)) (IV.5)
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The signal frame is constructed from estimated IMFs summation and the decoded

signal is obtained by frames concatenation.

IV.4.2 TA and IF coding basics: [A — I[F

The principle of the proposed approach consists in encoding TA and IF by linear
prediction. The encoding of IF instead of IP allows a decrease of the BR without

increasing of decoding error.

IV.4.2.1 1IF encoding

The IF encoding is done in the same way as the coding of IA. But, the only change
is at the choice of the order of the model. Since each IMF contains lower frequency
oscillations than each previously extracted ones, the order of the AR model for
IF is varies from one IMF to another. Therefore, for each IMF we determine the
order of the AR model of the IF. The determination of the order of the AR model
is based on the estimation of the partial autocorrelation coefficients that fits the
variations of the corresponding IF. As illustration example, let consider an audio
frame. This last is decomposed into IMFs and residual by EMD (Fig. IV.6). The
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Figure IV.6: Decomposition of an audio frame by EMD.

partial autocorrelation coefficients corresponding to the IF of IMF (Fig. IV.6) are
shown in figure IV.7.

Table IV.2 resumes the orders of the AR models for the IFs. The order of AR model
is determined according to the plotted of Partial autocorrelation coefficient for IF,
that is constant. The transmitted information corresponds to the coefficients and
the variances of the excitation of the AR models of the IA and IF of the IMFs. The
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Table IV.2: Order of AR model for IF of IMFs (figure IV.7).

IMF 1121314156
Order of ARmodel | 11 | 7|8 |7 |8 1|4

value from which the partial autocorrelation curve is constant, is identified as the
order for IF modeling (Fig. IV.7) Finally, we encode the coefficients, variances, and
order of the model.

IV.4.2.2 Decoding approach

IA a(t) and IF f(t) are decoded using linear prediction. The estimated IMF for the
IF coding approach (HHTyr) is calculated as follows:

INF(t)

()| cos / 27 f(1)dt) (IV.6)

The signal frame is constructed from estimated IMFs summation, and the decoded

signal is obtained by frames concatenation.

IV.5 conclusion

In this chapter coding approaches, based on the EMD, are presented. The properties

of IMF allow the introduction of different coding schemes which are applicable for
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wide range of signals. In particular, for both techniques IM F, tyema and I M Fepyeiope,
the bit allocation is done in accordance with a constraint that depends on the nature
of the signal. In the case of audio signals, this constraint is the audibility. In the

next chapter we illustrate the proposed schemes on audio signals.
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n this chapter, we illustrate the developed coding schemes based on EMD on
audio signals. We show the interest to introduce psychoacoustic model and
transient sequences detector to guarantee good performances of the proposed
codings. The performance of the proposed methods are analyzed and compared
to the MPEG1 layer3 known as MP3 and AAC codecs, and to the wavelet based

compression.



CHAPTER V. ENCODING SCHEMES: APPLICATION TO AUDIO SIGNALS
100

V.1 Introduction

In this chapter we show the effectiveness of introduced EMD-based coding strate-
gies on audio signals. For IMF, iema and I M Fepyeiope coders, a masking threshold
related to the psychoacoustic model is used. To guarantee good performances, speci-
ficity of the transient sequences is taken into account in the coding process. Also,
to ensure a good audio quality and a reduced BR, the encoders based on the IMF
waveform coding, are slightly modified according to the specificity of the audio sig-
nal. Thus the structure of the IM F,,;yema coder is depicted by Fig.V.1.

This chapter is organized as follows. In the second section, we present the en-
coders architecture for an audio signal, consequently we detail the segmentation
step, thresholding procedure and the quantization step for IMF,..irema and also
IMFppeiope approaches. Finally, Section V.3 presents the performance of the audio

encoding approaches, based on exhaustive simulation results.

V.2 Encoders architecture

V.2.1 Transient detection

We have shown that the first step of the proposed coders (IM F.iirema,---) 18 to
divide the signal into frames. Indeed, insofar as all the approaches compute pa-
rameters depending on the signal statistics, these frames must be stationary. To
guarantee the statistics invariance of each frame, a non parametric detector [30] is
used to test this stationarity. Thus, when a transient is detected, the frame is di-
vided into two sub-frames. The detection of transient sequence is based on the Local
Entropic Criterion (LEC) which is a non parametric detector. The LEC of signal
x(t) is given by [30]:

Exc(t) - [Exl(t) + Exr(t)]
|Eze(t)]

LEC,(t) = (V.1)

where E,.(t), E;(t) andE,,(t) denote the Shannon entropies of the principal window
and of the left and right sub-windows respectively.
Eqge(t) = Ex[t—%,t+%—1p

En(t) = Ex[t—%,t—lp
E. (1) = Ex[t,ﬂr%*l]‘
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Figure V.1: IMF,.irema encoder architecture in context of audio signals.

The Shannon entropy of a signal x(t) in the interval [0, N — 1], Egjo,y—1], is defined
by :

N-1
Eoov-1 = — > [X(k)[*log | X (k)|* (V.2)
k=0

with X (k) the discrete F'T of (¢). Thus, the LEC takes its values in the range of -1
to 1. A transient in the signal that occurs at time ¢ is characterized by a LEC value
which is greater to 0. An example of LEC variations for an audio frame is shown in
figure V.2, with N set to 64 [30]. Figure V.3 shows an example of segmentation of

an audio frame of 1500 samples (zoom for audio frame signal figure V.2).
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Figure V.2: LEC variation for an audio frame.
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Figure V.3: Example of segmentation for an audio frame.
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V.2.2 Thresholding step for IMF.,irem, coder

To decrease the BR, we have shown that in the second step of IMF, irema coding
the extrema must be thresholded. Further, the error between the estimated IMF,
from the selected extrema, and the true IMF must respect some constraint. For
audio coding, this constraint relies on the masking threshold. In fact the number of
extrema of each IMF is reduced while ensuring that the PSD of IMF’s estimating
error remains below the masking curve of the IMF. This reduction of the number
of extrema controlled by the masking curve provides significant compression gain
while maintains a good listening quality. Clearly, the thresholding procedure is an
iterative process: aiming at estimating an IMF from a reduced number of extrema,
while ensuring the inaudibility of the reconstruction error. Since EMD behaves as a
wavelet decomposition [28], the threshold parameter is very soon given by a standard
wavelet coefficients thresholding procedure [7]. The following e xpression gives for
an IMF the initial value of the threshold (7;) [9],[4],[62]:

0.05 max [IMF, ()|, if &, = 0
Tm:{ IME; @), i 5 v3)
0j, else
where ¢; is given by [7]:
d; = Median {|IMF;(t) — Median {IMF;(¢)} |} . (V.4)

Although there are different non linear thresholding functions [55], in the present

work, hard thresholding is used:

E;, if |[E:| > T;
ej: J 1 | ]‘ 7_] (V5)
O, lf |E]‘ STJ‘,

where e; et E; correspond respectively to the thresholded and the initial extrema
values. To confirm the efficiency of the initial value of the threshold (Eq. V.3),
the estimated IMF is reconstructed from non zero thresholded extrema by using
spline interpolation. If the error’s DSP is under the masking curve of the IMF[63],
we iterate the thresholding procedure by reducing the threshold value, as follows
[4],[61].

Tji = —Tj’;l : (V.6)

where 7;; is the threshold parameter of the IMF; at the iteration number i (i > 1).
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V.2.3 Quantization step for IMF., ciope and IM Feptrema

In order to reduce the BR, a perceptual coding controlled by the psychoacoustic
model [63] is used to encode the scaled maxima (or extrema) amplitudes. Initially,
the number of the allocated bits is fixed according to the coding BR. However, the
number of bits allocated to each IMF is adjusted in order to ensure that the PSD
of the quantization error of the IMF is below its masking curve [46]. We start by
allocating the same number of bits to all IMFs maxima (or extrema) amplitude.
Since each IMF contains lower frequency oscillations than each previously extracted
ones, we start firstly the quantification of the last IMF. If the number of bits does not
exceed the starting number of bits allocated, we will keep the number of remaining
bits in the previous IMF i.e., the new starting number of allocated bits for previous
IMF becomes the old number of bits allocated added to the remaining bits of next
IMFs. Since direct optimization is unfeasible, bit allocation is done in iterative
way. A loop is intended to quantize the scaled maxima (or extrema) amplitude, to
reconstruct IMF, and then to compare the reconstruction error PSD to the masking
threshold: if it remains under the masking curve, the quantization is restarted with
an increased number of bits, and so on until the masking constraint is satisfied. The
quantization loop is shown in figure V.4. This loop is stopped for IMF respecting the
inaudibility constraint. Initially, we allocate one bit for each maximum (or extrema).

At each iteration of the quantization loop the number of bits is increased by one.

i=1 bit IMF Vo
extrema or Inaudibility
maxima constraint
No
i=1i+1

Figure V.4: Quantization scheme.



CHAPTER V. ENCODING SCHEMES: APPLICATION TO AUDIO SIGNALS
105

V.3 EMD based audio coders performance

The coding approaches, described in the previous chapter, are tested on different
audio signals sampled at 44100 HZ. In particular, gspi, harp, quar and trpt recordings
are taken from the SQAM database. The results are compared to the MP3 (ISO/IEC
11172- 3 MPEG Layer 3) and the AAC (ISO/IEC 13818-7 Advanced Audio Coding
) codecs, and to the wavelet compression approach. We used Daubechies wavelet of
order 8 which, in general, gives good results in comparison to other wavelets [20].
The obtained performances are analyzed using the BR, the Noise to Mask Ratio
(NMR), and the Objective Difference Grade (ODG)' [38], which is a perceptual
criterion, using the algorithm of Huber [36]. The original tested audio signals are

depicted in figure V.5. Firstly, the audio signal is segmented into frames, of size

0 2 4 6 8 10 12
X 10
harp
0 5 T T T T
0 - ]
-05 1 1 1
0 1 2 3 4 5 6 7 8
x 10°
quar

o
N
IN
o
©
&
N]

violin

Time (samples)

Figure V.5: Original audio signals (gspi, harp, quar, song, trpt and violin).

512 samples, with an overlap is equal to 64 samples. Using the LEC, the transient

frame is divided into sub-frames. In our approaches, we have focused essentially

Isee Appendix B
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on the quality of encoding/decoding signal rather than ratio compression. Indeed
all loop in the proposed algorithms are stopped when the quality is satisfied. We
essentially focus on the quality of encoding/decoding signal rather than on the BR.
For IMF,,irema and IA— I P coders, it is not possible for comparison purpose to fix
the BR to 64 kb/s, so both proposed approaches are compared to AAC and MP3
codecs with a BR set to 96kb/s. In IMF, remq coder, the time index of extrema is
encoded by 5 bits, the scaled factor is encoded by 8 bits, while the amplitude index
is encoded variably, such that the final BR is equal to 96kb/s. The order of AR
model for IA coding of each IMF in IA — IP approach is fixed to 9 [48]. For IP
coding, each extrema is characterized by two indices (time and amplitude) and each
index is encoded by 8 bits. Values of NMR, BR and ODG obtained at BR equal to
96 kb/s with IM F_ irema and IA — I P coders are summarized in table V.1.

Table V.1: Compression results of audio signals (gspi, harp, quar, song, trpt and
violin) by IMF . trema, TA — IP, AAC, MP3 and the wavelet.

Signal gspi | harp | quar | song | trpt | violin
BR [kb/s] 96 96 96 96 96 96
IMF,. trema NMR -5.87 | -6.21 | -6.23 | -7.24 | -6.47 | -5.56

ODG -0.75 | -0.67 | -0.71 | -0.62 | -0.76 | -0.71
BR [kb/s] 96 96 96 96 96 96
IA—1IP NMR -496 | -3.1 | -2.89 | -4.12 | -3.84 | -3.17

ODG -0.78 | -1.02 | -1.05 | -0.8 | -0.78 | -0.81
BR [kb/s] 96 96 96 96 96 96
AAC NMR -6.12 | -8.27 | -6.36 | -6.74 | -8. 19 | -6.49

ODG -0.67 | -0.59 | -0.62 | -0.7 | -0.69 | -0.66
BR [kb/s] 96 96 96 96 96 96
MP3 NMR -2.14 | -1.17 | -1.29 | -2.46 | -2.23 | -2.59

ODG -0.98 | -1.04 | -1.1 | -0.89 | -0.94 | -0.96
BR [kb/s] 96 98 96 96 102 95
Wavelet NMR -3.25 | 273 | -1.83 | -3.52 | -3.3 | -2.97
ODG -0.79 | -1.08 | -1.19 | -0.84 | -0.81 | -0.96

A careful examination of the results reported in table V.1, shows that both proposed
approaches perform remarkably better than wavelets method in terms of BR and
decoded listening quality. Compared to MP3 codec, at fixed BR to 96 kb/s, both
approaches yield higher objective quality. Indeed, most of ODG index vary between
—1 and 0 and have value greater than offered by MP3, which reflects the good
quality of decoded signal. Compared to AAC codec, the performance of IMF,.irema
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and IA — IP varies with the signal type. Indeed, in /song/ signal, IM F..irema
performs better than AAC codec, while in the other signals AAC coded perform
better than the proposed approaches. Overall, the performance of the IMF, i ema
audio are not so far from those of the AAC coder. In the case of IMF,,,ciope and
IA— IF coding approaches, we have succeeded fix the BR to 64 kb/s, since the bit
allocation in both proposed approaches is variable. In the 1M Fi,,ciope approach, the
time index of maxima and scaled factor are encoded by 5 bits, while the amplitude
index is encoded variably, in a way that the final BR is equal to 64kb/s. The offset
value is coded over 8 bits. The order of AR model for IA coding of each IMF in
IA — IF approach is fixed to 9 [48]. For IF coding, the order of AR model of IF
is detected, based on partial autocorrelation coefficient (Sec.IV.4.2.1). Finally, the
coefficients and noise variance of both AR models are encoded by 6 bits. Results
of IMF,,eiope and 1A — IF coders, wavelet approach, MP3 and AAC codecs, at
BR 64kb/s, for different signals are shown in table V.3. According to this table, we

Table V.2: Compression results of audio signals (gspi, harp, quar, song, trpt and
violin) by I M Fyppeiope, ITA — IF, AAC, MP3 and wavelet methods.

Signal gspi | harp | quar | song | trpt | violin
BR [kb/s] 64 64 64 64 64 64
I M Feppeiope NMR -5.37 | -5.65 | -5.47 | -5.13 | -5.32 | -5.04

ODG -0.82 | -0.73 | -0.74 | -0.79 | -0.84 | -0.83
BR [kb/s] 64 64 64 64 64 64
TA—TF NMR -3.65 | -4.29 | -5.47 | -3.37 | -5.73 | -5.68

ODG -0.84 | -0.74 | -0.75 | -0.72 | -0.90 | -0.92
BR [kb/s] 64 64 64 64 64 64
AAC NMR -3.43 | -6.46 | -4.78 | -4.23 | -6.15 | -4.59

ODG -0.85 | -0.73 | -0.75 | -0.89 | -0.88 | -0.86
BR [kb/s] 64 64 64 64 64 64
MP3 NMR 142 | 1.21 1.27 | 1.23 | 2.68 | 1.86

ODG -1.12 | -1.87 | -1.91 | -1.09 | -1.27 | -1.34
BR [kb/s] 65 67 64 65 66 64
Wavelet NMR -2.30 | -3.67 | 1.64 | -3.40 | -1.35 | -2.52
ODG -0.86 | -1.27 | -1.74 | -0.98 | -0.97 | -1.08

conclude that I M F,pyei0pe coding, at BR 64 kb/s, performs remarkably better than
MP3 and wavelet methods in terms of perceptual quality. Compared to AAC coder,
we remark that M F.,ci0pe gives also better results especially with the /gspi/ and
/song/ audio signals. Even I A — I F approach provides the best results compared to

the wavelet approach and MP3 codec. However, improvement in perceptual quality
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is achieved for only gspi and song signals compared to the AAC coder. For other
signals, A — I'F' and AAC coder have comparable performances, where ODG varies

between -1 and 0. This reflects the good decoded signal quality.

V.4 Conclusion

In this chapter, we have illustrated the EMD based coding on different audio signals
and results compared to wavelet approach and to AAC and MP3 codecs. The ob-
tained results in terms of BR and of ODG measure show that the proposed methods
perform much better than MP3 codec and wavelet compression. The IMF,, ciope
is the most efficient approach that performs better than the AAC codec. The ef-
fectiveness of this coding is observed especially for audio signals /gspi/, /song/,
/trpt/ and /violin/. Further, the efficiency of IMF,,,ciope is essentially due to use
of a psychoacoustic model and the symmetry property of the IMF, which enable
good audio quality at low BR. In addition, the decoding by spline interpolation is
very easy. The proposed codings are adaptive and without any prior assumptions.
Overall, the obtained results and the comparison to well established coding methods
demonstrate the potential of the EMD as a promising audio coding tool. We show

in the next chapter, how the EMD can also exploited for watermarking purpose.
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his chapter introduces a new adaptive audio watermarking algorithm,

based on EMD, dedicated to copyright protection. The audio signal is

divided into frames and each one is decomposed adaptively into IMFs.
The watermark and the synchronization codes are embedded into the extrema of
the last IMF of each frame, a low frequency mode stable under different attacks
and preserving an audio perceptual quality of the host signal. The watermarking
technique is chosen in the category of Quantization Index Modulation (QIM) due to
its good robustness and blind nature. Parameters of QIM are chosen to guarantee
that the embedded watermark in the last IMF is inaudible. The data embedding
rate of the proposed algorithm is 46.9-50.3b/s. Relying on exhaustive simulations,
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we show the robustness of the hidden watermark for additive noise, MP3 compres-
sion, re-quantization, filtering, cropping and resampling. The comparison analysis
shows that our method has better performance than watermarking schemes reported

recently.
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VI.1 Introduction

We propose in this chapter an adaptive watermarking scheme based on the EMD.
The IMFs are nearly orthogonal to each other, and all have nearly zero means. The
number of extrema is decreased when going from one mode to the next, and the whole
decomposition is guaranteed to be completed with a finite number of modes. The
IMFs are fully described by their local extrema and thus can be recovered using these
extrema [34],[47]. Low frequency components such as higher order IMFs are signal
dominated [8],[44] and thus their alteration can lead to degradation of the signal.
Thus, these modes can be considered to be good locations for watermark placement.
Watermarks inserted into lower order IMFs (high frequency) are most vulnerable to
attacks. The watermark can also be embedded into the trend (coarsest mode) of
the host signal, but our experiments indicate that this mode is not highly robust to
attacks. It has been argued that for watermarking robustness, the watermark bits
are usually embedded in the perceptually components, mostly, the low frequency
components of the host signal [37]. To simultaneously have better resistance against
attacks and imperceptibility, we embed the watermark in the last IMF. We choose
in our method a watermarking technique in the category of Quantization Index
Modulation (QIM) due to its good robustness and blind nature [12]. Parameters
of QIM are chosen to guarantee that the embedded watermark in the last IMF is
inaudible. The watermark is associated with a synchronization code to facilitate its
location. Audio signal is first segmented into frames where each one is decomposed
adaptively into IMFs. Bits are inserted into the extrema of the last IMF such that

the watermarked signal inaudibility is guaranteed.

V1.2 Proposed watermarking algorithm

The idea of the proposed watermarking method is to hid into the original audio signal
a watermark together with a Synchronized Code (SC) in the time domain. The input
signal is first segmented into frames and the EMD is conducted on every frame to
extract the associated IMFs (Fig. VI.1). Then a binary data sequence consisted
of SCs and informative watermark bits (Fig. VI.2) is embedded in the extrema
of the last IMF (very low frequency component). The sequence is embedded P
times. However, since the number of IMFs and the number of extrema depend on

the amount of data of each frame, the number of binary sequence (< P) to be
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Figure VI.1: Decomposition of an audio frame into IMFs.
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embedded varies from one frame to the following. Finally, inverse transformation
(EMD™!) is applied to the modified extrema to recover the watermarked audio
signal by superposition of the IMFs of each frame followed by the concatenation of
the frames (Fig. V1.3). For data extraction, the watermarked audio signal is splitted
into frames and EMD applied to each frame (Fig. VI.4). Binary data sequences are
extracted from each last IMF by searching for SCs (Fig. VI.5). We show in figure
VI.6 the last IMF before and after watermarking. This figure shows that there is
little difference in terms of amplitudes between the two modes. EMD being fully
data adaptive, thus its is important to guarantee that the number of IMFs will be
same before and after embedding the watermark (Figs. VI.1,VI.4). In fact, if the
numbers of IMFs are different, there is no guarantee that the IMF always contains
the watermark information to extract. To overcome this problem the sifting of
the watermarked signal is forced to extract the same number of IMFs as before
watermarking. The proposed watermarking scheme is blind, that is, the host signal
is not required for watermark extraction. Overview of the proposed method is

detailed as follows:
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Figure VI.4: Decomposition of the watermarked audio frame by EMD.

VI1.2.1 Synchronization code

To locate the embedding position of the hidden watermark bits in the host signal a
SC is used. This code is unaffected by cropping and shifting attacks [86].
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Figure VI.6: Illustration of the last IMF of an audio frame before and after water-
marking.

Let U be the original SC and V be an unknown sequence of the same length. Se-
quence V is considered as a SC if only the number of different bits between U et V
(bit by bit) is less or equal than to a predefined threshold 7 [86].

VI1.2.2 Watermark embedding

Before embedding, SCs are combined with watermark bits to form a binary sequence
denoted by m; € {0,1}, i-th bit of watermark (Fig. VI.2). Basics of our watermark
embedding are shown in figure VI.3 and detailed are follows:

Step 1: Split original audio signal into frames.

Step 2: Decompose each frame into IMFs.

Step 3: Embed P times the binary sequence {m;} into extrema of the last IMF
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(IMF¢) by QIM [12]:

. lei/S].S +sgn(3S/4) ifm; =1

o { le;/S].S +sgn(S/4) ifm; =0 (VL)

where e; and e} are the extrema of IMF¢ of the host signal and the watermarked
signal respectively. sgn function is equal to "+" if ¢; is a maxima, and "-" if it is
a minima. | | denotes the floor function, and S denotes the embedding strength
chosen to maintain the inaudibility constraint.

Step 4: Reconstruct the frame (EMD™) using modified IMF¢ and concatenate the

watermarked frames to retrieve the watermarked signal.

VI1.2.3 Watermark extraction

For watermark extraction, host signal is splitted into frames and EMD is performed
on each one as in embedding. Binary data is extracted using rule given by equation
(VI.2). We then search for SCs in the extracted data. This procedure is repeated
by shifting the selected segment (window) one sample at time until a SC is found.
With the position of SC determined, we can then extract the hidden information
bits, which follows the SC. Let y = {m}} denote the binary data to be extracted
and U denote the original SC. To locate the embedded watermark we search the
SCs in the sequence {m!} bit by bit. Let N; and Ny be the numbers of bits of
SC and watermark respectively. The extraction is performed without using the
original audio signal. Basic steps involved in the watermarking extraction, shown in
figure V1.5, are given as follows:

Step 1: Split the watermarked signal into frames.

Step 2: Decompose each frame into IMFs.

Step 3: Extract the extrema {e!} of IMF.

Step 4: Extract m; from e} using the following rule [86]:

. { 1 ife; — [e/S].S > sgn(S/2) (VL2)

") 0 ifer — [e1/S].S < sen(S/2)

Step 5: Set the start index of the extracted data, y, to I = 1 and select L = N;
samples (sliding window size).

Step 6: Evaluate the similarity between the extracted segment V = y(I : L) and U
bit by bit. If the similarity value is > 7, then V' is taken as the SC and go to Step
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8. Otherwise proceed to the next step.

Step 7: Increase I by 1 and slide the window to the next L = N; samples and
repeat Step 6.

Step 8: Evaluate the similarity between the second extracted SC, V' = y(I + Ny +
Ny: I+ 2N; + Ny). If the similarity value is > 7, then V’ is taken as the SC and
the sequence y(I + Ny : [ + Ny + Ny — 1) is taken as the mark, and go to Step 9.
Otherwise repeat Step 7.

Step 9: [ < I+ Ny + N», if the new I value is equal to sequence length of bits, go
to Step 10, else repeat Step 7.

Step 10: Extract the P watermarks and make comparison bit by bit between these

marks, for correction, and finally extract the desired watermark.

V1.3 Performance analysis

We evaluate the performance of our method in terms of data payload, error proba-
bility of SC, SNR, Bit Error Rate (BER) and Normalized cross-Correlation (NC).
The SNR is defined as

> X%(0)
SNR = 101log,y —— (V1.3)
> (X (i) = X(4))

i=1

where X and X denote the original and the watermarked audio signals respectively.
According to International Federation of the Photographic Industry (IFPI) recom-
mendations, a watermark audio signal should maintain more than 20 dB SNR. To
evaluate the watermark detection accuracy after attacks, we used the BER and the
NC defined as follows [41]:
M N -
Number of error bits 221 %:1 We.j) & W j)

BER(W, W) = = V1.4
(W, W) Number of total bits M x N ( )

where @ is the XOR operator. W and W are the original and the recovered water-

mark respectively. BER is used to evaluate the watermark detection accuracy after



CHAPTER VI. AUDIO WATERMARKING BASED ON THE EMD 118

signal processing operations.

NC(W, W) = i (VL5)

NC is used to evaluate the similarity between the original watermark and the ex-
tracted watermark. A large NC indicates the presence of watermark while a low
value suggests the lack of watermark. Two types of errors may occur while search-
ing the SCs: the False Positive Error (FPE) and the False Negative Error (FNE).
These errors are very harmful because they impair the credibility of the watermark-

ing system. The associated probabilities of these errors are given by [41],[86]:

1 p

Pepp = — > c*
2 k=p—T1 .
1 & -
Prnp = §k§TO§(BER)k(1—BER)P k (VL6)

where p is the SC length and 7 is the threshold. Prpg is the probability that a SC is
detected in false location while Pryg is the probability that a watermarked signal is
declared as unwatermarked by the decoder. We also use as performance measure the
payload which quantifies the amount of information to be hidden. More precisely,
the data payload refers to the number of bits that are embedded into that audio
signal within a unit of time and is measured in the unit of bits per second (b/s).

The data payload, D, is defined as follows:

D —
M,

(VL7)

where Ly, is the length in seconds of the host audio signal and M, is the number of

bits of the watermark data.

V1.4 Results

To evaluate the performance of our scheme, simulations are performed on audio
signals including classic, jazz, rock and pop, sampled at 44.1 kHz. The embedded
watermark, W, is a binary logo image of size MxN=34x48= 1632 bits (Fig. VL.7).

We convert this 2D binary image into 1D sequence in order to embed it into the
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audio signal. The SC used is a 16 bit Barker code 1111100110101110. Each au-

<t

Figure VI.7: Binary watermark.

dio signal is divided into frames of size 64 samples and the threshold 7 is set to
4. The S value is fixed to 0.98. These parameters have been chosen to have a
good compromise between imperceptibility of the watermarked signal, payload and
robustness. Figure VI.8 shows a portion of the pop signal and its watermarked

version. Perceptual quality assessment can be performed using subjective listening

Original pop audio signal

Amplitude

0.5 1 1.5 2 2.5 3 35 4
x 10
Watermarked pop audio signal

Amplitude

0.5 1 1.5 2 2.5 3 35 4
Time [sample] X 10°

Figure VI.8: A portion of the pop audio signal and its watermarked version.

tests by human acoustic perception or using objective evaluation tests by measuring
the SNR and Objective Difference Grade (ODG). In this work we use the second
approach. ODG and SNR values of the four watermarked signals are reported in
table VI.1. The SNR values are above 20 dB showing the good choice of S value
and confirming to IFPI standard. All ODG values of the watermarked audio signal

are between -1 and 0 which demonstrates their good quality.
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Table VI.1: SNR and ODG between original and watermarked audio.

Audio file | SNR (dB) | ODG
classic 25.67 -0.5
jazz 26.38 -0.4
pop 24.12 -0.6
rock 25.49 -0.5

Robustness test

To asses the robustness of our approach, different attacks are performed:

« Noise: White Gaussian Noise (WGN) is added to the watermarked signal until
the resulting signal has an SNR of 20 dB.

o Low pass filtering: A second order Butterworth filter, which eliminated fre-

quency more than 11025 Hz, is used.
e Denoising: Filter the watermarked audio signal using Wiener filter.

o Cropping: Segments of 512 samples are removed from the watermarked signal
at thirteen positions and subsequently replaced by segments of the watermarked

signal contaminated with WGN.

e Resampling: The watermarked signal, originally sampled at 44.1 kHz, is re-
sampled at 22.05 kHz and restored back by sampling again at 44.1 kHz.

e MP3 compression 64 kb/s and 32 kb/s: Using MP3, the watermarked signal is

compressed and then decompressed.

« Requantization: The watermarked signal is re-quantized down to 8 bits/sample
and then back to 16 bits/sample.

Table VI.2 shows the extracted watermarks with the associated NC and BER values
for different attacks on pop audio signal. NC values are all above 0.9682 and BER
values are all below 4%. The extracted watermark are visually similar to the original
watermark. These results shows the robustness of watermarking method for pop
audio signal. Even in the case of WGN attack with SNR of 20dB, our approach
does not detects any error. This is mainly due to the insertion of the watermark
into IMF ¢ extrema. In fact low frequency subband has high robustness against noise
addition [41],[86].
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Table VI.2: BER and NC of extracted watermark for pop audio signal by proposed

approach.

Attack type BER % NC Extracted watermark
No attack 0 1 <
AWGN (20dB) | 0 1 <4
Low pass filter- 0 0.9994 o
ing

Denoising 6 0.9482 b
Cropping 0 1 <
Resampling 3 0.9783 oo
MP3 (64 Kb/s) | 0 0.9996 o
MP3 (32 Kb/s) |1 0.9876 e
Requantization 0 1 SN
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Table VI.3 reports similar results for classic, jazz and rock audio files. NC values
are all above 0.9964 and BER values are all below 3%, demonstrating the good per-
formance robustness of our method on these audio files. This is robustness is due to
the fact that even the perceptual characteristics of individual audio files vary, the

EMD decomposition adapts to each one. Table VI.4 shows comparison results in

Table VI.3: BER and NC of extracted watermark for different audio signals (Clas-
sical, Jazz, Rock) by proposed approach.

Audio signal | Attack type BER % | NC
Classical No attack 0 1
AWGN 0 1
Low pass filtering 0 1
Denoising 0 1
Cropping 0 1
Resampling 2 0.9986
MP3(64 kb/s) 0 1
MP3 (32 kb/s) 0 1
Requantization 0 1
Jazz No attack 0 1
AWGN 0 1
Low pass filtering 1 0.9989
Denoising 6 0.9964
Cropping 0 1
Resampling 2 0.9973
MP3(64 kb/s) 0 1
MP3 (32 kb/s) 1 0.9983
Requantization 0 1
Rock No attack 0 1
AWGN 0 1
Low pass filtering 0 1
Denoising 0 1
Cropping 0 1
Resampling 1 0.9989
MP3(64 kb/s) 0 1
MP3 (32 kb/s) 0 1
Requantization 0 1

terms of payload and robustness to MP3 compression attack of our method to nine
recent watermarking schemes. Due to diversity of these embedding approaches, the
comparison is sorted by attempted data payload. It can be seen that our method
achieves the highest payload for the three audio files. Also, for these signals our

scheme has a good performance against MP3 (32kb/s) compression, where the max-



CHAPTER VI. AUDIO WATERMARKING BASED ON THE EMD 123

imum of BER against this last is of 1%.

Table VI.4: BER and NC of extracted watermark for different audio signals (Clas-
sical, Jazz, Rock) by proposed approach.

Reference payload (b/s) | Robustness to MP3 (kb/s)
Proposed algorithm 46.9-50.3 32
Bhat K[41] 45.9 32
Lie[54] 43 80
Cvejic[14] 27.1 32
Yeo[89] 10 96
Tachibana[80] 8.5 96
Li[53] 4.2 32
Mansour[57] 2.3 56
Xiang|[88§] 2 64
Kirovski[49] 0.5-1 32

Figure VI.9 plots the Prpg versus p. We see that Prpg tends to 0 when p > 16.
So, this confirms the choice of SC length. Figure VI.10 shows that the Ppyg is
dependent on the length of watermark bits. So, we note that for the embedding bits
length > 30, the Pryg tends to 0. Since the watermark bits used is of 1632 bits
(> 30), the obtained Pryg is very low.
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Figure VI.9: Prpg versus synchronization code length.
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Figure VI.10: Ppyp versus the length of embedding bits.

V1.5 Conclusion

In this chapter a new adaptive watermarking scheme based on the EMD is proposed.
Watermark is embedded in very low frequency mode (last IMF), thus achieving good
performance against various attacks. Watermark is associated with synchronization
codes and thus the synchronized watermark has the ability to resist shifting and
cropping. Data bits of the synchronized watermark are embedded in the extrema of
the last IMF of the audio signal based on QIM. Extensive simulations over different
audio signals indicate that the proposed watermarking scheme has greater robustness
against common attacks than nine recently proposed algorithms. This scheme has
higher payload and better performance against MP3 compression compared to these
earlier audio watermarking methods. In all audio test signals, the watermark intro-
duced no audible distortion. Experiments demonstrate that the watermarked audio
signals are indistinguishable from original ones. These performances take advantage
of the self-adaptive decomposition of the audio signal being marked provided by
the EMD. The proposed scheme achieves very low false positive and false negative
error probability rates. Our watermarking method involves easy calculations and
does not use the original audio signal. In the conducted experiments the embedding
strength S is kept constant for all audio files. To further improve the performance
of the method, the S parameter should be adapted to the type and magnitudes of

the original audio signal.






Conclusions and

perspectives

he purpose of this thesis was to investigate the potential of EMD (Huang
transform) as analyzing tool for audio and speech processing. Main
contributions, around EMD, of this dissertation are: speech denoising,

audio coding and audio watermarking for copyright protection.

In chapter I, EMD is presented. This expansion into IMFs is performed in
adaptive way. Unlike FT or WT, basis functions of EMD are derived from the
signal itself and hence, the decomposition is adaptive in contrast to FT or WT
where the basis functions are fixed. This is one reason that motivated our choice for
the EMD. Further an other interest of the EMD is that no assumptions concerning
the linearity or the stationarity are made about the signal to be analyzed. IMFs are
orthogonal [34] and their extraction is nonlinear, but their linear recombination is
accurate. We have shown that the decomposition results by EMD are conditioned
by sampling and signals interpolation. Based on simulations, we noted that this
decomposition is organized in a filter bank structure toward a Gaussian white
noise. Both orthogonality of modes and filter bank nature of EMD are important
properties exploited for denoising, decoding and watermarking purposes. In general
the EMD results are conditioned by the sampling rate and interpolation used. The
reported results are obtained with signals oversampled and using cubic splines
interpolation which is commonly used to approximate upper and lower envelopes in
EMD. To improve the obtained results, it would be useful to test other interpolation
approaches such as cubic Hermite spline or regularized interpolation. Although
EMD has advantages in signal decomposition, it still has limitations such as end

effect and the mode mixing (caused by signal intermittency). These shortcomings
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must be resolved to improve the performance of the signal decomposition. As its
name, EMD is still an empirical technique. Our results show that EMD is very effec-
tive for denoising, coding and watermarking, but it still needs theoretical support.
Even, EMD based processing methods have shown good performances compared to
MMSE filter or wavelet approach it is interesting, as future work, to extend the

comparison to other approaches such as methods based on matching pursuit [15],[32].

In chapter II, three denoising approaches based on the EMD are proposed.
Two approaches were dedicated to white noise and the third one has focused
on a large class of noises including correlated case. For approaches dedicated to
white noise, EMD-Shrinkage is used especially in the case where the estimated
noise level is not reliable. However, when the estimation of noise level is accurate,
EMD combined with MMSE filter (EMD-MMSE) improves the denoising results.
Furthermore, the obtained results also show that it is more efficient to apply the
thresholding or the filtering to the extracted modes (IMFs) of the signal than to
the signal itself. In the case of colored noise, the EMD-ACWA gives better results
compared to ACWA filter and to wavelet approach. Indeed, the effectiveness of
the ACWA filter is improved when it is associated with the EMD. In particular,
we have also shown that it is more efficient in term of performance to combine
EMD with the ACWA filter than with other classical filters such as MMSE filter.
This is essentially due to the fact that as the EMD, the ACWA filter operates
in time domain and exploits the local statistics of the signal. Furthermore, the
assumptions of signal stationarity and white are not required. Since ACWA filter
performs a sliding window analysis, performances of EMD-ACWA are partly
dependent on proper choice of window length. The optimal size of the window
is in general not known (depends on SNR and signal) and is determined only
through experimentation. As future research we plan to work on a strategy to
choosing optimal length value of the window. Ongoing research work is also to apply

the proposed denoising to a large class of real signals to confirm the obtained results.

Chapter III is dedicated to speech denoising. As in chapter II, EMD is used in
conjunction with ACWA filter. The aim was to improve the previously obtained
denoising performances. This was achieved by taking into account the class of
speech frame (voiced/unvoiced). The obtained results have shown that the number

of denoised IMFs depends on whether the noisy frame is voiced or unvoiced. Thus,
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an energy criterion is used to detect voiced frames while a stationarity index is
used to distinguish between unvoiced and transient sequences. Obtained results
for clean speech signals corrupted with additive white Gaussian noise with varying
SNR values show that the proposed method performs better than the ACWA
filtering of all IMFs (EMD-ACWA), wavelet denoising approach (db4) and ACWA
filtering of the noisy signal. As shown from the reported results, taking into account
the statistical properties over the time of signal (voiced/unvoiced) in the filtering
process improves noticeably the performances of the speech denoising in terms of
both SNR and PESQ. To capture the stationarity of the speech frame, the index
used is based on spectrogram. This TFR is chosen due to its simple use. However,
the spectrogram performs less better in term of temporal and frequency resolution
than other TFRs such Wigner-Ville distribution. As result, other TFRs than

spectrogram should be tested to see if there is enough stationarity in the data.

In chapter IV, a new signal coding strategy is introduced. A salient property of
the IMF is that it can be fully described by its extrema. This property is the core of
the proposed signal coding. Firstly, two waveform coding schemes are introduced.
These two codings are non-parametric approaches. The first scheme (IM Fpirema)
consist in encoding the IMFs extrema. Motivated by quasi-symmetrical property
of the IMF and in order to further reduce the bit rate a second scheme was
proposed. Thus, one out of two IMF envelopes is coded (IMF,peiope). Secondly,
two parametric approaches combining HHT and AR modeling are proposed. AR
modeling is supported by the correlation of TA and IF values of the IMFs. So,
this model is useful to exploit this correlation. In the first parametric approach
(IA—1IF), coefficients of the AR model of both IA and IF components are encoded.
In the second method (/A — I P), we keep the same encoding for IA i.e., by linear
prediction, and the IP extrema are coded by scalar quantization. On the whole,
coding of IMF extrema provides a general framework for signal coding in adaptive
way and potentially can be useful for a large class of signals. Even the proposed
coding is illustrated on only audio signals (Chap. V), the developed algorithms can
be easily extended, for example, to biomedical signals (ECG, EEG, MEG,...).

Results of the coding framework in audio context are reported in chapter V.
To reduce the BR, IMFepirema and IMFoppeiope audio coders are associated with
psychoacoustic model. We have also shown in /A — I'F' approach, that the order
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of the AR model for IF varies from one IMF to another. Therefore, for each IMF
the AR order of associated IF function is determined using partial autocorrelation
coefficient. Obtained results in terms of BR and of ODG show that the proposed
methods perform much better than MP3 codec and wavelet compression. The
IMFppeiope is the most efficient approach, which provides better results compared
to the AAC codec. Efficiency of the IMF,,,ciope is essentially due to the use of
a psychoacoustic model and the symmetry property of the IMF, which enable
good audio quality at low BR. Results of the proposed empirical coding are
not prejudiced by predetermined basis and/or subband filtering. This coding
does not require any user parameters setting, except the stopping criterion of
the EMD. Decoding by spline interpolation is very easy and the computational
time of the method is much lower. Although different practical experiments have
already been carried out on different kinds of audio sources, future works should
consider large classes of audio signals as well as varied experimental conditions

such as different sampling rates or frame size for improving the tuning of the method.

In chapter VI, a new adaptive audio watermarking algorithm based on EMD
and dedicated for copyright protection is introduced. The principle of the proposed
watermarking consists in embedding the watermark into extrema of the low
frequency IMF. Low frequency components such as higher order IMFs are signal
dominated and thus their alteration can lead to degradation of the signal. As result,
these modes can be considered to be good locations for watermark placement.
To simultaneously have better resistance against attacks and imperceptibility, we
embed the watermark in the last IMF. We choose in our method a watermarking
technique in the category of QIM due to its good robustness and blind nature.
Parameters of QIM are chosen to guarantee that the embedded watermark in the
last IMF is inaudible. Obtained results for audio signals demonstrate that the
hidden data are robust against attacks such as additive noise, MP3 compression,
requantization, cropping and filtering. Our method has hight data payload and
performance against MP3 compression compared to nine audio watermarking
approaches reported recently. Furthermore our approach has higher payload, where
the data payload of the proposed algorithm, varies between 46.9 and 50.3 b/s, and
better performance against MP3 compression compared to other watermarking
approaches. Our watermarking method involves easy calculations and does not use

the original audio signal. In the conducted experiments the embedding strength
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S is kept constant for all audio files. To further improve the performance of the
method, the S parameter should be adapted to the type and magnitudes of the

original audio signal.

Even based on extensive simulations (synthetic and real data), the obtained re-
sults of denoising, encoding and watermarking compared to well established methods
such as MMSE filter, wavelets approach, MP3 and AAC codecs illustrate the real
potential of the EMD as analyzing tool (in adaptive way) in speech and audio pro-
cessing. Although the developed tools are illustrated on 1D signals, they can be
easily extended to image processing. On the whole, the obtained results can be
further improved through a modification of the conventional sifting. More specifi-
cally, instead of interpolation (exact B-splines fitting) to construct the upper and
lower envelopes of the signal to be decomposed we can use a smoothing (regularized
B-splines). Advantage of this sifting is to give EMD more robustness against noise
and to reduce the number of unwanted IMFs of conventional EMD. As result the
number of IMFs to be denoised or encoded will be reduced. Also as future work we
plan to explore some theoretical aspects of the EMD such interpolation, mode mix-
ing or orthogonality of the modes. The formalism of the EMD remains an exciting

challenge for the signal processing community.
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Chapter 111

In this appendix, we give brief descriptions of the quality measures used.

Input Signal-to-Noise Ratio (SNR;,): The input Signal to Noise Ratio
(SN R;,) is given by:

SNRi, = 101ogy, (A1)

where x and y are respectively the clean and the noisy signals.
Output Signal-to-Noise Ratio (SNR,,:): The SNR,,; is very sensitive to the

time alignment of the original and distorted signal. The SN R,,; is measured as

SNRout = 10log;, (A.2)

where 7 is the reconstructed signal.

Perceptual Evaluation of Speech Quality (PESQ): The PESQ measure is
the most complex to compute, and it is recommended by ITU-T for speech quality
assessment of 3.2 kHz (narrow-band) handset telephony and narrow-band speech
codec [65]. The note refers PESQ values type Mean Opinion Score (MOS), in the

form of a scalar between -0.5 and 4.5.
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Objective Difference Grade (ODG): The ODG is a perceptual criterion [38],
which is located by 5 impairment grade (table B.1).

Table B.1: Impairment grade.

ODG | Impairment Quality
0 Imperceptible Excellent
-1 Perceptible, but not annoying | Good

-2 Slightly annoying Fair

-3 Annoying Poor

-4 Very annoying Bad




Résumé - Abstract

Traitement et analyse des signaux sonores
par transformée de Huang (EMD)

Résumé:
Dans cette thése on a exploré I'apport de 'EMD en traitement et en analyse des
signaux audio et de parole. Cette décomposition du signal en IMF est adaptative
et ne fait pas d’hypotheses (stationnarité et linéarité) sur le signal a analyser. Le
comportement en banc de filtre dyadique de 'EMD ainsi que la quasi-symétrie des
modes et leur représentation via leurs extrema sont les propriétés qui sont 1'origine
des outils qu’on a développés: débruitage, codage et tatouage. Ces contributions
sont illustrées sur des données synthétiques et réelles et les résultats comparés a
ceux de méthodes éprouvées telles que le filtre MMSE, I'approche ondelettes et
les codecs AAC et MP3 montrent les bonnes performances des outils développés
autour de 'EMD. Ces résultats montrent les capacités de 'EMD comme outils de
traitement et d’analyse de facon adaptative des signaux audio et de parole. Méme
si les outils développés ont été illustrés uniquement sur des signaux 1D, ils peuvent
étre étendus au cas du traitement des images avec des applications a des domaines
variés telsque la biomédecine ou I'imagerie satellitaire.
Mots clés: EMD, Débruitage, Codage, Tatouage, Transformée de Hilbert.
Abstract:
This dissertation explores the potential of EMD as analyzing tool for audio and
speech processing. This signal expansion into IMFs is adaptive and without any
prior assumptions (stationarity and linearity) on the signal to be analyzed. Salient
properties of EMD such as dyadic filter bank structure, quasi-symmetry of IMF
and fully description of IMF by its extrema, are exploited for denoising, coding
and watermarking purposes. These contributions are illustrated on synthetic and
real data and results compared to well established methods such as MMSE filter,
wavelets approach, MP3 and AAC codecs showing the good performances of EMD
based signal processes. These findings demonstrate the real potential of EMD as
analyzing tool (in adaptive way) in speech and audio processing. Although the
developed tools are illustrated on 1D signals, they can be easily extended to image
processing and find applications in areas such as Biomedicine or Satellite imaging.

Key words: EMD, Denoising, Encoding, Watermarking, Hilbert Transform.



