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Sensitivity Analysis for Functional Structural Plant
Modelling

Global sensitivity analysis has a key role to play in the design and parameterization
of functional-structural plant growth models (FSPM) which combine the description
of plant structural development (organogenesis and geometry) and functional growth
(biomass accumulation and allocation). Models of this type generally describe many
interacting processes, count a large number of parameters, and their computational
cost can be important. The general objective of this thesis is to develop a proper
methodology for the sensitivity analysis of functional structural plant models and to
investigate how sensitivity analysis can help for the design and parameterization of
such models as well as providing insights for the understanding of underlying biological
processes. Our contribution can be summarized in two parts: from the methodology
point of view, we first improved the performance of the existing Sobol’s method to
compute sensitivity indices in terms of computational efficiency, with a better control
of the estimation error for Monte Carlo simulation, and we also designed a proper
strategy of analysis for complex biophysical systems; from the application point of
view, we implemented our strategy for 3 FSPMs with different levels of complexity,
and analyzed the results from different perspectives (model parameterization, model
diagnosis).

Keywords: Sensitivity analysis, FSPM, SRC, Sobol’s method, Non-linearity assess-
ment, Error estimation, GreenLab, NEMA






Analyse de Sensibilité pour la Modélisation
Structure-Fonction des Plantes

L’analyse de sensibilité globale a un role clé a jouer dans la conception et la pa-
ramétrisation des modeles structure-fonction de la croissance des plantes (FSPM).
Ceux-ci combinent la description du développement structurel des plantes (organoge-
nese et géométrie) et de leur croissance fonctionnelle (accumulation de biomasse et
allocation). Les modeles de ce type décrivent généralement de nombreux processus en
interaction, comptent un grand nombre de parametres et leur cotit de calcul peut étre
important. L’objectif de cette these est de développer une méthodologie appropriée
pour l'analyse de sensibilité des modeles structure-fonction des plantes et d’étudier
comment 'analyse de sensibilité peut aider a la conception et la paramétrisation de
ces modeles, ainsi qu’a I'analyse et la compréhension des processus biologiques en jeu.
Notre contribution peut étre vue en deux parties : du point de vue méthodologique
et du point de vue de I'application des méthodes aux modeles. D’un point de vue
méthodologique, nous avons tout d’abord amélioré les performances de la méthode de
Sobol pour le calcul des indices de sensibilité en termes d’efficacité de calcul, avec un
meilleur controle de l'erreur d’estimation par les simulations de Monte Carlo. Nous
avons également congu une stratégie d’analyse adaptée aux systemes biophysiques
complexes. Du point de vue applicatif, nous avons implémenté notre stratégie pour 3
FSPMs avec des niveaux de complexité différents, et nous avons analysé les résultats
selon différents aspects, paramétrisation et diagnostic de modeles.

Mots-clés : Analyse de sensibilité, FSPM, SRC, Sobol, Indice de linéarité, Estima-
tion de 'erreur, GreenLab, NEMA
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1. INTRODUCTION

1.1 General background

Mathematical modelling

Mathematical modelling is a key tool for the analysis of a wide range of real-world
phenomena ranging from physics and engineering to chemistry, biology and economics
[Weigel 2009]. A mathematical model is defined by a series of equations, input factors,
parameters, and state variables to characterize the processes being investigated. An
increasing number of models have been developed in recent decades thanks to the
progress of computational and statistical tools.

The purposes of modelling include: 1) integration of knowledge (exceeding the
capacity of the human brain), 2) quantitative testing of hypotheses, 3) extrapolation
of effects of factors beyond the range of conditions covered experimentally, 4) revealing
of knowledge gaps and ‘guiding’ research, and 5) support of practical management
decisions. In research environments, modelling commonly serves purposes such as
integrating knowledge or the quantitative testing of hypotheses [Vos et al., 2007].
Through a better understanding of phenomena and the prediction and simulation of
the impact of decisions, the different models developed often have an application goal
like agricultural advice, and may in some cases serve as a tool for decision support for
economic and political decision makers.

Modelling of natural phenomena is always facing several sources of uncertainty
which should be considered qualitatively or quantitatively for modelers [De Rocquigny
et al., 2008|. As we will see, it is particularly true in life sciences. For dynamical models
describing the mechanisms of a given phenomenon, we distinguish generally two main
sources of uncertainty: uncertainty about the structure of the model describing the
phenomenon like the form of the equation f(e), and uncertainty in model inputs
(parameters and external variable inputs). We do not consider in this thesis the first
type of uncertainty although the latter is related to the model structure.

In general, the more the model integrates the relevant knowledge, the better it
represents the phenomenon under study for a given level of complexity. We are in-
terested in the statistical methods to identify the most important relevant knowledge
to be included in a model in the process of modelling. The parameters carrying out
the relevant knowledge are then used in the mathematical formulation to describe the
phenomena under investigation. Then some logical questions arise: what subset of
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parameters is more important according to our research aims? How to minimize the
number of parameters to summarize the representation of the phenomena? How do
the interactions between parameters or subsets of parameters work?...etc. All these
questions can be answered by uncertainty analysis and sensitivity analysis. The un-
certainty of a factor is from either the factor in question is not very well known for
the true value, or it is subject to inherent variability [Wallach et al. [2002]. In the
following, the uncertainty of a factor will be described by a probability distribution
that can represent the possible values of the factor according to the scope of analysis.
Uncertain parameters and inputs contribute to the variance of model outputs.

For us, a model designates the mathematical equations about the phenomenon.
Considering a dynamic model represented by the following mathematical equation:
Y (t) = f(Z,0,t), where Z is the vector of input variables of the model, 6 is the vector
of uncertain parameters and Y (¢) is the model output at time ¢, for t € 1,2,...T,
the function f(e) describes the phenomenon studied and it is either deterministic or
stochastic. Our work in this thesis only concentrates on deterministic models and
stochastic models will not be discussed in detail but kept in future possible work.

In the following, we will consider both input variables and uncertain parameters as
potential sources of uncertainty and call them uncertain input ‘factors’ denoted by X
when we talk about sensitivity analysis. Then the dynamic model equation is written:
Y(t) = f(X,t).

Functional-structural plant models (FSPM)

Plant modelling has become a key research activity, with the objective of developing
applications in agriculture, forestry and environmental sciences. The use of an inter-
disciplinary approach is necessary to advance research in plant growth modelling. It
involves a variety of disciplines including botany, biology, ecology, mathematics and
information technology, as such to handle this complexity for the plant growth mod-
ellers is a very challenging aspect. Due to the growth of computer resources and the
sharing of experiences between biologists, mathematicians and computer scientists,
the development of plant growth models has progressed enormously during the last
two decades |[Fourcaud et al., 2008]. Plant growth modelling represents a necessary
tool for understanding plant growth and developing predictive tools for decision mak-
ing. For this purpose, models have been developed to simulate biomass production
and distribution among organs, in interaction with the environment |[De Reffye et al.,
2008].

Initially process-based models (PBM) were developed separately from structural
(or: architectural or morphological) plant models (SPM). Combining PBMs and SPMs
into functional-structural plant models (FSPM) or virtual plants has become feasible
particularly thanks to the progress in modelling and computational science [Sievinen
et al, [2000b]. This adds a dimension to classical crop growth modelling [Vos et al.
2010]. FSPM are particularly suited to analyse problems in which the spatial structure
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of the system is an essential factor contributing to the behaviour of the system of study
[Vos et al. 2007].

Functional structural plant models (FSPMs) can be defined as models that combine
the descriptions of both metabolic (physiological) processes and the structure devel-
opment of a plant. They usually contain the following components 1) Presentation
of the plant structure in terms of basic units, 2) Rules of morphological development
and 3) Models of metabolic processes that drive plant growth. The main emphasis
in these applications has been individual plants [Sievénen et al 2009]. Since FSPMs
usually describe the evolution with time of the state variables characterizing plant
growth, they are generally dynamic models.

Due to the detailed description of the plant structure in FSPMs generally at organ
level, and sometimes, of the local environment of each organ |Chelle, 2005], the FSPMs
tend to require a large number of parameters and input data. Owing to the large
amount of information they contain about the plant and the number of processes
they aim at describing, they also tend to be computationally heavy. Moreover, the
complicated and interacting biophysical processes governing plant growth bring a large
amount of uncertainty into FSPMs: field surveys for collecting the necessary data
for the development of models are difficult and expensive. In consequence, input
data (environmental factors) and experimental data from which model parameters
are estimated are also characterized by great uncertainty. Finally, modelling complex
processes, model parameters estimation and input data collection all contribute to
model uncertainty [Monod et al., [2006], [Wallach et al., |2002].

Good modelling practice requires that the modeler provides an evaluation of the
confidence in the model. Uncertainty analysis (UA) and Sensitivity analyses (SA) offer
valid tools for this evaluation. This thesis is mainly focused on sensitivity analysis, but
since in practice, uncertainty and sensitivity analyses are most often run in tandem,
the implementation of an uncertainty analysis and the implementation of a sensitivity
analysis are very closely connected from both a conceptual and computational point
of view [Helton et al., 2006b] and customarily lead to an iterative revision of the
model structure. So when we study sensitivity analysis, we will generally mention
uncertainty analysis.

Sensitivity analysis for FSPM

A possible definition of sensitivity analysis is the following: ‘The study of how un-
certainty in the output of a model (numerical or otherwise) can be apportioned to
different sources of uncertainty in the model input’ [Saltelli et al., 2004].

Sensitivity Analysis (SA) has the role of ordering by importance the strength and
relevance of the inputs in determining the variations of the output variables of interest.
Such information may provide some help for model assessment:
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e Measurement of model adequacy (e.g. does the model fit observation?)
e Knowledge of model relevance (e.g. is the model-based inference robust?)

e Identification of critical regions in the inputs’ space (e.g. which combination of
factors corresponds to the highest risk?)

e Detection of interactions between factors
e Priorities for research and experimentations

e Simplification of model structure [Saltelli et al., [2004].

Notice that the model output for which sensitivity analysis is performed is clas-
sically a scalar value. So SA are usually performed separately at each calculation
time step for FSPMs. In the case of dynamic crop models, simulations are usually
computed at a daily time step and so is the sequential implementation of sensitivity
analysis at each simulation date with one index per parameter per simulation date.

Sensitivity analysis has an important role to play in functional-structural plant
growth modelling by assessing the different sources of uncertainty. In this recent field
of research in plant biology, models are not yet stable [Sievdnen et al., 2000a]. FSPMs
aim to describe the plant structural development (organogenesis and geometry), the
functional growth (biomass accumulation and allocation) and the complex interactions
between both. The complexity of the underlying biological processes, especially the
interactions between functioning and structure [Mathieu et al. 2009], usually makes
it very difficult to identify the key physiological processes described by the model.
The same problem exists for parameter estimation for which we need to discriminate
the parameters with different levels of importance so as to deduce the proper method
for estimation processing. Likewise, in the process of experiment design, if we have
some guide information about the priority of parameters we need to estimate from
experiments, the cost of experiments can be more effectively arranged by more fre-
quent measurements and more accurate study of those that contribute to the output
variables, and vice versa.

Typically, for the problem of parameterization, there are two groups of parame-
ters in the model: the observed ones that can be directly measured by experimental
observations, and the hidden ones, that can not be measured directly and have to be
estimated by model reversion |[Cournede et al., 2011]. For the observed parameters,
we may need to be clear about the level of experimental data accuracy, so that for
those parameters that mostly contribute to the variability of the output, more at-
tention should be paid to. Regarding the hidden parameters, there is also a proper
balance to be found between the number of parameters used to describe the biophys-
ical processes and the complexity of their estimation, which is always a bottleneck in
the modelling process. Thanks to sensitivity analysis, we can rank the parameters by
their significances to the model output. According to the SA results, we can fix the
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least influential parameters, and we should pay more attention to those who play im-
portant roles in the outputs’ variances. In both cases, the sensitivity analysis may help
to optimize the trade-off between experimental cost and accuracy [Wu and Cournede),
2009]. With the higher order SA indices and the methods of grouping together param-
eters, SA can help computing the level of interactions between parameters or group
of parameters, in order to know the interactions’ contributions to the variance of the
output, hence to know the main processes under investigation.

The most common classifications of SA methods are either distinguished between
quantitative and qualitative methods or between local and global techniques.

e Qualitative methods aim at selecting the ‘most important’ subset of parameters,
while quantitative techniques can be designed to give information on the amount
of variance explained by each factor.

e In local approaches (known as one-at-a-time, OAT), the effect of a single factor’s
variation is estimated while keeping all the others fixed at their average values.
However they cannot include the effect of the shape of the density functions of
the inputs, and they are not model-independent.

e Global approaches estimate the effect on the output of a factor keeping all the
others varying. Generally, global approaches use model-independent methods
while not requiring assumptions of additivity or linearity. As a drawback, they
are usually computationally expensive [Cariboni et al., 2007].

The Standardized Regression Coefficients (SRC) can be viewed as an interesting
trade-off between local and global methods, regarding the advantages and shortcom-
ings of both: the accuracy of the analysis and the computing cost. It is based on the
linear approximation of the model and Monte Carlo simulations. SRC method takes
into account the shape of the probability distribution of every factor. The other im-
portant index produced by SRC is the model coefficient of determination, R?, which
represents the fraction of the output variance explained by the linear regression model
itself. A side result of the model coefficient of determination (R?) is that it provides
an indicator of the degree of non-linearity of the model representing the level of in-
teraction between parameters and how this interaction contributes to the variance of
the output. When R? = 1, the system is linear and the SRCs can totally explain
the variance of the output affected by each factor. Even when models are moderately
non-linear (i.e. > 0.9), the SRCs can provide valid qualitative information. When R?
gets small, the SRCs are no longer reliable sensitivity representations. To be more
direct, we consider this model coefficient of determination as a linearity index, and
use it to assess the non-linearity of models.

Sampling-based approaches to uncertainty and sensitivity analysis are both effec-
tive and widely used [Helton et al 2006a]. One important category of it are ‘Variance
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based’” methods. The basic concept for this kind of method is to decompose the out-
put variance into the contributions imputable to each input factor. The most widely
used methods are the FAST (Fourier Amplitude Sensitivity Test, see |Cukier et al.,
1973, 1978 Koda et al, 1979]), and Sobol’s method, see [Sobol, |[1993]. FAST method
decomposes the output variance V(Y) by means of spectral analysis. Sobol’s method
is based on the same decomposition of variance, which is achieved by Monte Carlo
methods in place of spectral analysis. In this thesis, Sobol’s method that we widely
investigate plays a key role [Sobol, [1993], since the different types of sensitivity indices
that it estimates can fulfill different objectives of sensitivity analysis: factor prioriza-
tion, factor fixing, variance cutting or factor mapping [Saltelli et al 2004]. It is a very
informative method but potentially computationally expensive [Helton et al.; [2006a].

For a given factor X;, the value of first-order Sobol’s index .S; indicates whether
a factor is mainly influent, while an important difference between ST; (Total order
effect) and S; flags an important role of interactions for that factor regarding the
output Y. If this is the case, inspection of the second order index S;; for all ¢ # j will
allow us to identify which factor X; interacts with [| In fact, beside the first-order
effects, Sobol’s method also aims at determining the levels of interaction between
parameters [Wu and Cournede, 2010]. In [Saltelli and Tarantola, 2002, the authors
also devised a strategy for sensitivity analysis that could work for correlated input
factors, based on the first-order and total-order indices from variance decomposition.

Basically, SA for models has to be performed in an orderly fashion. In practice the
development of SA often proceeds in a loop, since the modelers may not have enough
knowledge about the attributes related to the decisions in SA, including the range of
parameters’ uncertainty, lack of experimental data etc. The steps outlined below are
more or less in a logical and chronological order, but there are numerous reasons to
deviate from the sequence that is presented.

1. The first step is to establish the goal of our sensitivity analysis and consequently
to define the output functions that answer the questions. The aims of SA can be
‘Factor Prioritization’, ‘Factor Fixing’, ‘Variance Cutting’ and ‘Factor Mapping’.
In most of the references, when we say SA for screening, it intends to help
identifying parameters that are not important, and could be fixed to their mean
values. What we mentioned in the definition of mathematical model ‘the output
of the model’ corresponds to the state variables of the model which plays very
important role in the model.

2. Next we need to decide which input factors should be included in our analysis,
that is to say, to define the parameter space for sensitivity analysis based on the
objective issue of the first step. At this level, trigger parameters can be defined,
allowing one to sample across model structures, hypotheses, etc. After deciding
the parameter space, we need to choose a distribution function for each of the
input factors.

L Subscript i and j stand for the factors with uncertainty and under sensitivity analysis in the
model
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3. Afterwards, the task is to choose sensitivity methods or to design the strategy
if it must be the combination of more than one SA method. Two classes of
methods exist: local methods and global ones.

4. The we start the Monte Carlo simulation sampling of the input factors for the
analysis, afterwards we evaluate the model on the generated sample and produce
the output, which contains N (sampling number) output values.

5. Lastly, we analyse the model outputs using the estimators provided by the chosen
methods and draw our conclusions based on the analysis result.

1.2 Important issues in SA of FSPMs

If sensitivity analysis is quite usual in crop and plant growth models, it had long
been restricted to local sensitivity analysis or to analysis of variance for linear models.
In recent years, global sensitivity analysis has brought increasing interest to assess
the relative importance of parameters in ecological models |[Cariboni et al., 2007] or
crop models [Makowski et al., 2006]. In [Pathak et al., [2007], the author investigates
whether global sensitivity analysis would provide better information on the importance
of model parameters than the simpler and commonly used local sensitivity analysis
method. |[Makowski et al., |2006] uses global sensitivity analysis method like both the
variance-based method and extend-FAST to fulfill the aim of model simplification
by reducing the number of parameters. Our interest is to investigate the proper
methodology of sensitivity analysis for FSPMs, which are generally more complex
than crop models and for which it may not be possible to apply classical methods in
a straight forward way.

Computational issue

As mentioned in the previous section, FSPMs tend to require a large number of
parameters and/or input data and owing to the large amount of information they
contain about the plant to be modeled, they also tend to be computationally heavy.
In [Cariboni et al., 2007], the author pointed out that the choice of the most suitable
technique for sensitivity analysis depends on the number of factors of the model and
on the CPU time required to run it as shown in fig[1.1]

However, it is of crucial importance to locate the interactions between parameters.
SA can help computing the level of interactions between parameters with the higher
order SA index, so that to evaluate how this interaction contributes to the variance
of the output. So on the one hand, we want to use a global sensitivity analysis
method like Sobol’s to locate the quantitative interaction information for the model
and on the other hand since FSPMs usually have large number of parameters and the
model evaluation is computationally heavy, the implementation of the strategy faces
a great challenge for the computing cost issue. So it deserves our effort to improve
the computing efficiency of the method itself.
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Fig. 1.1 : [Cariboni et al., [2007] Sketch of the various techniques available and their use
as a function of computational cost of the model and dimensionality of the in-
put space. AD: automated differentiation, SRC: Standard regression coefficient,
Morris: |[Morris, [1991]

Bayesian

Specifically for the Sobol’s method, computational methods to evaluate Sobol’s in-
dices sensitivity rely on Monte-Carlo sampling and re-sampling [Sobol, [1993|, [Homma/
and Saltelli, [1996]. For a k dimensional factor of model uncertainty, the & first-order
effects and the ‘k’ total-order effects are rather expensive to estimate, needing a num-
ber of model evaluations strictly depending upon k [Saltelli et al., [2010]. Therefore, it
is crucial to not only devise efficient computing techniques, in order to make best use
of model evaluations [Saltelli, 2002], but also to have a good control of the estimation
accuracy with respect to the number of samples. Error estimation is of crucial interest
to check whether the SA computing has properly converged. Moreover, it can be used
to give confidence bounds of the result. Previous work as in [Homma and Saltelli,
1996 gave interesting results about error estimation, but the conclusions are based
on some restrictive assumptions.

Strategy design

A good sensitivity analysis practice does not only needs well designed SA estimators
(as discussed in the previous paragraph about computational issue) but also needs
good understanding of how to comprehensively use more than one methods to make
them be complementary to each other since different methods tackle different issues
of interest. This is what we consider as ‘strategy design’.

Though pointed out in [Saltelli et al., [2004], one property of an ideal sensitivity
analysis method is that it should be ‘model independent’, which means a method
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should work regardless of the attributes of the model itself like additive, linear, etc.
However, the strategy design is necessary in our work of sensitivity analysis for FSPMs.
More work needs to be done for exploring how global sensitivity analysis can help in
the parameterization of FSPM, by quantifying the driving forces of the phenomena
described by the models and the relative importance of the described biophysical
processes regarding the outputs of interest.

Complex biological models are usually characterized by several interacting pro-
cesses with sub-models describing each of them. Most FSPMs are such models. It is
interesting to evaluate the importance of the sub-models (usually ‘function’ modules
corresponding to the biophysical processes they describe) by sensitivity analysis. For
this objective, in practice we need to firstly classify the parameters into different bio-
logical function modules according to the biologist modeller’s expert knowledge, then
to check the joint sensitivity effects of the groups of parameters that belong to those
modules. This is how ‘module-by-module’ analysis for complex biophysical system is
put forward. The strategy design should be divided into several steps for which we
choose different SA methods to fulfill different requirements.

The choice of a proper sensitivity analysis method to fulfill different aims of dif-
ferent sub-steps of the analysis faces the same SA general issues as mentioned before.
However, module-by-module analysis requires us to make the combination of more
than one SA method in order to make best use of each method’s advantages and to
make them complementary to each other.

An early attempt for the ‘module-by-module analysis’ strategy was proposed by
[Ruget et al.,[2002]. The authors practice a variance-based analysis for the crop model
STICS, with the objective of choosing the main parameters to be estimated. Analysis
was made in two steps: first, within each meta-process (module), the most important
parameters are identified; then sensitivity to the identified parameters is calculated
taking into account all meta-processes together. The main factors addressed concern
the interaction with the environment, which is of crucial interest. However, it was
based on regression techniques, so strict requirements have to be fulfilled for the
model functions: the model has to be linear, additive, or for surface response method,
the model has to be a continuous system. For FSPMs, such hypothesis are not always
satisfied.

As such, according to the past references [Pagano and Ratto, 2007, [Ruget et al.
2002], several more points need to be improved for a better application strategy for
this module-by-module analysis:

e ‘A certain number of parameters (according to empirical information) are se-
lected from each module for the inter-module analysis’. It is risky to rely on
such empirical information that may be misleading afterwards, especially re-
garding the parameter space issue. There may be some parameters missed at
this step, like the ones that have important effect on the output, for example,
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through interactions with the others. And since each module mostly tend to
have different importance in the model, if we decide empirically the number of
parameters selected for each module, it may cause that for some modules we
select not enough parameters and for some modules we select too many. This
decision directly affects the importance evaluation in the final step. So we need
a quantitative standard to choose the proper number of parameters from each
module: even though in the internal analysis of each module, the results we get
should be given in a unified framework to be comparable. In these regards, it
corresponds to keeping the same sampling space while doing the Monte Carlo
simulations.

e To consider parameters only in one module, while fixing the other parameters
to their mean values, the SA indices obtained this way can not stand for the
importance of the parameters in the complete space, but to a surface formed by
the fixed values of the parameters in the space. Plus, by fixing the parameters in
the other modules, the interactions between parameters from different modules
will be eliminated even though it may prove to be important.

1.3 Objectives of this work

Considering the contradiction between the computing cost issue and the necessity of
interest using Sobol’s method for the quantitative information about sensitivity of
models especially regarding the interaction information, our work aims at improving
a computing method inspired by [Homma and Saltelli, 1996] so that best use of the
model evaluations can be made. We also aim at deriving an estimator of the error of
sensitivity indices evaluation with respect to the sampling size for this generic type
of computational methods so that a better control of the Monte Carlo simulation
convergence can be achieved.

Plants are known to be complex systems with a strong level of interactions and
competitions, and the aim of FSPMs is to describe and understand this complexity.
As such, non-linearity is expected to play a key role in the study. So our first objective
for strategy design is about this issue: to evaluate the non-linearity of the model by
determination coefficient in the SRCs method application, and to check how it works
as a preliminary step to provide us a general scheme for the next steps of the sensitivity
analysis studies.

To make all steps of the ‘module-by-module analysis’ more quantitatively precise,
we also aim at exploring an effective simulation design to help the sensitivity analysis
for complex models with several logically distinct but biological functioning interacting
modules, like the NEMA model.

We also aim at applying the developed strategy of sensitivity analysis to 3 FSPMs
with different levels of complexity, and infer in each case what information can be
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drawn from this analysis. The 3 FSPMs are firstly a simple source-sink model of
maize growth, which is used to specifically study the process of carbon (C) allocation
among expanding organs during plant growth, with simple plant structure, multi-stage
and detailed observations, secondly the GreenLab model of tree growth (applied to
poplar tree) characterized by the retroaction of plant functioning on its organogene-
sis [Mathieu, 2006], which describes tree structural plasticity in response to trophic
competition, lastly a functional-structural model, NEMA [Bertheloot et al. 2011a],
describing C and nitrogen (N) acquisition by a wheat plant as well as C and N dis-
tributions between plant organs after flowering. This model is more mechanistic but
also more complex than the two previous ones.

1.4 Organization of the dissertation

The dissertation is consist of four parts:

Part I presents the preliminaries of the thesis. Chapter [2] first gives an overview
about FSPM and modelling techniques, especially about the attributes of FSPM that
are important to be considered for application of SA, then the description of the 3
FSPMs with different complexity for the comprehensive methodology investigation.
Chapter |3| introduces the basic concepts, the methods and scheme design of sensi-
tivity analysis. Definitions and equations about all the indices of SA applied in our
simulation are given.

Part II constitutes the main part of the thesis and introduces the methodological
aspects we developed. The efficient computational method based on some improve-
ment to make best use of the model evaluation in the numerical implementation tech-
nique is described in Chapter [d In this chapter, we present the error estimation to
control the convergence of Monte Carlo simulation in this algorithm, following which
numerical tests are given. Chapter [5| introduces the strategy we proposed to study
complex biophysical systems, mainly about the ‘module-by-module’ analysis scheme
design and several important points to be paid attention to. To complete the numer-
ical implementation issue, we present a new platform PyGMAlion in which we have
implemented the algorithms relating to all our application practices in Chapter [0}

Part III presents the simulation results. It illustrates all the applications and re-
sults corresponding to the algorithm and strategy design presented in Part II. Chapter
[7] gives out the result for the three FSPMs presented in Chapter [2l Some conclusions
relating to model parameterization and model diagnosis are given.

Part IV summarizes the conclusions of our work and gives some perspectives of
this work.

Some technical material is provided to the Appendix. It includes basic computa-
tions for the expectation and variance of functions of one and two dimensional random
variables.
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2. FUNCTIONAL-STRUCTURAL PLANT
MODELLING

This chapter first gives an overview about the background of FSPM in section2.1] and
modelling techniques relating to FSPM in section[2.2] so that the interest of sensitivity
analysis for model design can be clear. In section]2.3] we introduce some limitations
and challenges in functional structural plant growth modelling, especially about the
problems that can be potentially resolved by SA. Lastly, section]2.4] describes some
specific FSPMs to which we applied sensitivity analysis in this thesis.

2.1 General concepts about FSPM

Plants and plant populations can be considered as complex systems, in a mathe-
matical sense. Complex systems consist of high numbers of heterogeneous entities
between which multi-scale interactions generate holistic behaviours (i.e. some emer-
gent properties of the system cannot be deduced from the independent studies of its
components) [Ricard, 2003].

One of the most interesting research in plant modelling has been the construction
of integrated models representing both the function and structure of plants ([Room
et al..|1996], [De Reffye et al.,[1997], [Kurth and Sloboda;, 1997], [Fournier and Andrieul,
1998], [Lacointe), 2000], [Godin et al., 2004]). These models are often termed functional
structural plant models (FSPM). The general approach behind most of these models
is to represent the plant as a relatively large number of interconnected components
(such as leaves and internodes) and to separately model the various physical, chemical
and physiological processes (such as light interception, photosynthesis and nutrient
transport) that occur within and between these components ([Perttunen et al., [199§],
[Sievénen et al., 2000b|, |[Lacointel 2000], [Sinoquet and Le Roux] 2000]).

Initially process-based models (PBM) were developed separately from structural
(or: architectural or morphological) plant models (SPM). Combining PBMs and SPM
into functional-structural plant models (FSPM) or virtual plants has become feasible
particularly thanks to the progress in modelling and computational science [Sievinen
et al., [2000b]. This adds a dimension to classical crop growth modelling [Vos et al.|
2010]. FSPM are particularly suited to analyse problems in which the spatial structure
of the system is an essential factor contributing to the behaviour of the system of study
[Vos et al., 2007].
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Functional structural plant models (FSPMs) can be defined as models that combine
the descriptions of both metabolic (physiological) processes and the structure devel-
opment of a plant. They usually contain the following components 1) Presentation
of the plant structure in terms of basic units, 2) Rules of morphological development
and 3) Models of metabolic processes that drive plant growth. The main emphasis in
these applications has been individual plants [Sievénen et al., 2009]. Though there are
static FSPMs which can be useful to answer certain research question, a large number
of FSPMs usually describe the evolution with time of the state variables characterizing
plant growth, they are generally dynamic models.

Most FSPMs include the same basic processes, simulated at each time step [Letort,
2008|:

e initiation of new architectural units
e biomass production

e biomass partitioning

GreenLab [de Reffye and Hu, 2003| is a functional-structural model simulating
the processes of biomass production and allocation into organs at the whole-plant
scale. Organogenesis is driven by formal grammars determining the topological rules
of organ initiation, production and organization [Cournede et all 2006], |Loi and
Cournede, 2008]. The state variable of this automaton is the differentiation state
of apical meristems, called their physiological age |[Barthélémy and Caraglio, 2007].
Three versions of the model can be considered: deterministic (GL1) [Yan et al., 2004],
stochastic (GL2) |[Kang et al., 2008] or mechanistic, i.e. deterministic with feedback
of photosynthesis on organogenesis (GL3) [Mathieu, 2006] [Mathieu et al.,[2009]. New
versions are still being developed: GL4 [Pallas et al., 2011] and GL5 [de Reffye et al.|
2012]. Biomass production is computed at each time step (growth cycle) depending
on the plant total foliar surface and taking into account the effects of self-shading of
leaves. Biomass is allocated to expanding organs regardless of their position (common
pool of biomass) according to a source-sink model [Warren-Wilson, |1967], [Wardlaw,
1990].

The work in [Mathieu, 2006] has brought significant advances allowing realistic
simulations of branched plants with GreenLab. Trees are considered as self-regulating
systems with several physiological and developmental processes being influenced by
their internal trophic state. It allows reproducing the tree architectural plasticity
in response to environmental or ontogenetic changes (e.g. progressive appearance
of higher branching orders in branches at different growth stages). The model also
generates cyclic patterns as an emergent property, similarly to what can be observed
on real plants (e.g. rhythmic appearance of fruits) [Mathieu et al., [2008].

Besides GreenLab, many other FSPMs have been developed |Allen et all [2005],
[Evers et al., 2007], [Wernecke et al.,2007|. For instance, in [Bertheloot et al., 2011a],
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the author describes a functional-structural model of nitrogen economy for wheat af-
ter flowering, NEMA, which links nitrogen fluxes to physiological activities. Inputs
of nitrogen fertilizers are fundamental to get high-yielding crops and a production of
high quality with the required protein content. This required a proper understanding
of root N uptake regulation and of N determinism on yield and production. Complex
interactions exist between root N uptake, N remobilization to grains, and photosyn-
thesis, the regulatory mechanisms of which remain far from clear. In NEMA, the
Nitrogen content of each photosynthetic organ and its remobilization follow RubisCO
turnover, which depends on intercepted light and a mobile nitrogen pool. This pool
is enriched by root uptake and nitrogen release from vegetative organs, and is de-
pleted by grain uptake and protein synthesis in vegetative organs; it also accounts for
the negative feedback from circulating nitrogen on root uptake, which is formalized
following HATS and LATS activities. Organ Nitrogen content and intercepted light
determine dry matter production via photosynthesis, which is distributed between
organs according to their respective demands.

2.2 Functional-structural plant model design steps

Modelling covers an ever increasing range of disciplines, even in communities not neces-
sarily used to strong quantitative or model-building backgrounds. These trends imply
a need for wider awareness of what constitutes good model development practice: the
modelling process has to be conducted in an orderly fashion. Good modelling practice
involves different steps in model development. Descriptions of Good Modelling Prac-
tice (GMP) were articulated for example in the Good Modelling Practice Handbook
[Van Waveren et al., [1999], which developed a checklist for deterministic, numeri-
cal models. It was applied for models in water management [Scholten et all 2001],
[Refsgaard and Henriksen) 2004]. [Blocken and Gualtieri, 2006] outlined ten steps
underpinning best practice model development to support natural resource manage-
ment. All these guidelines for model development can be generalized for a universal
modelling sketch.

As far as FSPMs are concerned, in [Vos et al., [2007], the author provided a sim-
plified version of good modelling practice for FSPMs and specified the steps specially
for FSPMs. These steps include the conceptual modelling, data collection, model
implementation, model verification and evaluation, sensitivity analysis and scenario
studies.

In the following, we recall the different modelling steps discussed in [Vos et al.,
2007], with a particular stress on the specific points of FSPMs and sensitivity analysis
on which this thesis focuses. A clear view about the model design scheme is important
for us to locate the work in this thesis in the model design procedure, in order to know
how sensitivity analysis can be implemented in this procedure and how it relates to
the other steps of modelling.
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In practice a complete model development procedure often includes a cyclic series
of activities, roughly three types: development of concepts, experimentation field work
and modelling.

1. The conceptual model

Definition of the the modelling purpose. The application fields of FSPMs
are currently mostly restricted to research and teaching. In research en-
vironments, modelling commonly serves purposes such as integration of
knowledge or the quantitative test of hypotheses. For example, a developer
or scientific user may put a stress on the ability of the model to show what
processes dominate a system behaviour, but the model user is more likely
to be concerned with the prediction of the function of the model.

Specification of the modelling context: scope and resources. This step
answers the questions about ‘what has to be included’. For FSPMs, at this
stage important decisions have to be made on which aspects of function
and structure the model needs to explain. In other words, what processes
need to be described in a mechanistic way? The identification of a system
structure, state variables and inputs should be decided in this step.

Definition of equations for the system. This step answers the questions
about ‘how to describe’ the scope defined in the previous step. An ex-
planation of the desired functions as emergent from the behaviour of the
relevant components should be provided. Prior science-based theoretical
knowledge is needed to find the model structure described by the relations
between the variable in the model.

In FSPM the conceptual model includes specifically:

Recognition of the important components of which a plant consists. Infor-
mation on plant composition and topology and qualitative information on
their changes over time should be clear. For each plant species of interest
such concepts are the basis of architectural modelling.

A choice of the basic unit of plant modelling.

The physiological functions to be included in the model, for instance:
photosynthesis, respiration, carbon allocation and sink-source interactions
transport of water, nutrients and signals in the plant structure.

The assumed relationship between environmental variables (e.g. tempera-
ture) and plant development (progression in phenological stages) or growth
processes.

The time step of relevance to the purpose of the model.

The construction of a diagram, showing all the important components of
the modelled system, their interrelations, the flows of material and the flows
of information, the external driving forces and the processes they affect.
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2. Mathematical analysis. Once data requirements are satisfied, the modeller can
give values to inputs, parameters and run model simulations by model imple-
mentation. Once the model is technically run, the work is to make diagnostic
checking by mathematical analysis to answer the question ‘is the model built
right?’. The aspects that need to be checked are: the model behaviour, the
limits and the model stability, etc. Sensitivity analysis can be applied here to
check if the model has the problem of ‘over parameterization’ by identifying
the most ‘non-influential’ parameters. SA can also check whether the variance
of the model output is out of range, by fixing which group of the minimum
number of parameters can achieve the best variance reduction of the output.
In section[3.4] the two objectives of sensitivity analysis are ‘Factor fixing’ and
‘Variance cutting’.

3. Experimentation, collection and analysis of data. The deliverables of the con-
ceptual modelling phase include at least a list of parameters and external inputs
that are needed to construct a functional-structural model. Protocols need to be
made specifying how unknown parameters will be measured in experiments, or
from which data they can be estimated for hidden parameters (or those who are
too difficult to measure). Theoretically, this step is mathematically complex.
We need to study the model identifiability: from a given set of experimental
data, is it possible to estimate the set of unknown parameters? It is possible to
answer this question by using preliminary empirical virtual data from a given
set of parameters and by trying to retrieve the parameters by an estimation
method.

4. Parametric identification. After the structure and parameter list of the model
is decided, we need to do parameter estimation from the experimental data.

e Choice of estimation performance criteria and technique: The parameter
estimation criteria (hardly ever a single criterion) reflect the desired prop-
erties of the estimates. Generally, the criteria of parameter estimation
should be: computationally as simple as possible, robust, efficient, numer-
ically well-conditioned with good statistical properties.

5. Model validation, scenario studies. Model validation seeks to answer the ques-
tions ‘does the model built achieve the modelling objective?” This step corre-
sponds to the qualitative validation. The answer to this question is commonly
obtained by comparing model results with data from the real system. Such tests
of the model performance will gain in value if independent data are included
from conditions that differ from the ones for which the model was derived, for
example from a different agro-ecological zone. Validation of a model under a
wide range of conditions using independent data sets is perhaps not practiced
as widely as desirable mostly due to the difficulty of getting the proper exper-
imental date sets, while it is of utmost importance if we want to have reliable
models.
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6. Model evaluation and model selection. If we consider the previous step as a
qualitative validation to check if the model achieves its objective, then this
step concentrates on the quantitative validation of the objective. Uncertainty
analysis provides an evaluation of the model robustness and test of the predictive
capacity. Besides, to compute some information criteria to compare models for
model selection is also necessary. Model selection assures that our final model
is the most optimized one corresponding to the initial modelling objective.

In this modelling scheme, we put sensitivity analysis before parameterization. Ac-
tually, according to different sensitivity analysis aims, it can be performed after pa-
rameterization, also can be performed again in model validation for model diagnosis.
Generally, sensitivity analysis plays a very important role in model development pro-
cess. We will specify its roles in Chapter[3]

2.3 Limitations and challenges of FSPMs

The application fields of FSPMs are currently restricted to research and teaching
[Le Roux et al.; 2001]. They also have an important role for the other disciplines with
a framework: biomechanical studies of light interception, of root growth, of plant-
environment interactions in heterogeneous environments [Sievénen et al. 2000a].

Due to the detailed description of the plant structure in FSPMs generally at or-
gan level, and sometimes, of the local environment of each organ, the FSPMs tend to
require a large number of parameters and input data. Owing to the large amount of
information they contain about the plant and the number of process they aim at de-
scribing, they also tend to be computationally heavy. Moreover, the complicated and
interacting biophysical processes governing plant growth bring a large amount of un-
certainty into FSPMs: field surveys for collecting data necessary for the development
of models are generally difficult and expensive, though there are now techiniques avail-
able for automated /semi-automated data acquisition like digitizing or high-throughput
phenotyping. In consequence, input data (environmental factors) and experimental
data from which model parameters are estimated are also characterized by great un-
certainty. Finally, modelling complex processes, model parameters estimation and
input data collection all contribute to model uncertainty [Monod et al., [2006], [Wal-
lach et al., 2002]. Good modelling practice requires that the modeler provides an
evaluation of the confidence in the model. Uncertainty analysis (UA) and Sensitivity
analyses (SA) offer valid tools for this evaluation. Actually, sensitivity analysis pro-
vides a possible resolution for most challenges we are facing in functional-structural

modelling, see section[3.4]
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2.4 Introduction to several FSPMs

In our work of sensitivity analysis for FSPMs in this thesis, we mainly applied our
analysis to 3 FSPMs with different levels of complexity, and infer in each case what
information can be drawn from this analysis. The first model is a simple source-sink
model of maize growth, GreenLab (description and parameterization can be found in
[Ma et all |2008|). It is used to specifically study the process of carbon (C) allocation
among expanding organs during plant growth, with simple plant structure, multi-stage
and detailed observations. The second model is the GreenLab model of tree growth
(GL3, applied to poplar tree) characterized by the retroaction of plant functioning
on its organogenesis [Mathieu et al., 2008], which describes tree structural plastic-
ity in response to trophic competition. Lastly, we consider a functional-structural
model, NEMA [Bertheloot et al., [2011a], describing C and nitrogen (N) acquisition
by a wheat plant as well as C and N distributions between plant organs after flower-
ing. This model has the specificity to integrate physiological processes governing N
economy within plants: root N uptake is modeled with high affinity transport systems
(HATS) and low affinity transport systems (LATS), and N is distributed between plant
organs according to the turnover of the proteins associated to the photosynthetic ap-
paratus. C assimilation is predicted from the N content of each photosynthetic organ.
Consequently, this model is more mechanistic but also more complex than the two
previous ones.

In the following of this chapter, we describe more specifically the models concerned
in our work. The description about the general modelling architectures, main model
equations, and parameters with the corresponding value range we used for SA are
given respectively for each model here. The comprehensive details of the model can
be further checked in the references given.

2.4.1 GreenLab model for maize

GreenLab is a functional-structural model that simulates plant development, growth
and morphological plasticity. The model simulates individual organ production and
expansion as a function of the growth cycle (GC). For maize, the growth cycle corre-
sponds to the phyllochron (thermal time in degree days between the appearances of
two consecutive leaves on the main stem)|Ma et al., [2008].

Plant morphogenesis depends on biomass production and allocation to expanding

organs or competing sinks. Biomass production per plant at growth cycle is simplified
according to the following mathematical equation:

0(0) = EG) - Sp- 1 = eap(—5(0) 2.1)

where E(i) is an environmental function at growth cycle i (generally related to
the Photosynthetically Active Radiation), p is a conversion efficiency, A is analogous
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to the extinction coefficient of Beer-Lambert’s Law, .S, is a characteristic surface of
leaves, S(7) is the photosynthesis leaf surface area at GC i. Here A is set to 0.7.

Organs receive an incremental allocation of biomass that is proportional to their
relative sink strengths. The relative sink strength for each type of organ is defined as
a function of its age in terms of GCs:

Po(j) = PofolJ) (2.2)

where o denotes organ type (b: leaf blade; s: sheath; e: internode; f: cob; m:
tassel). P, is the sink strength associated to organ type o. For leaf blade, P, = 1 is set
as a normalized reference. The relative sink strength for the first six short internodes
is K P., with K, an empirical coefficient. f,(j) is an organ type-specific function of
sink variation. A normalization constraint

To—1

Zfoo‘):l 224)

is set, with T, being the maximum expansion duration for organ o.

In the course of organ development, its relative sink strength is assumed to vary
according to a beta function f, given by:

fG) = {go@/Mo 0277.-1)

0(j) = (j+0.5)%(T, — j —0.5)% (2.3)

M, = Z go(j)

The parameters a, and [, vary with organ type. This function is flexible to
describe the shape of the sink variation and parameters can be estimated by inverse
methods.

At a given GC1, d(i) is computed as the sum of the demands of all expanding
organs |[Guo et al., 2006]:

min(i,To—1)
d@) = Y P Y () (2.4)
o=b,s,e j=max(0,i—Tezt+1)

+ Pr-fr(i —15) 4+ P, - fin(i — 21)
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The biomass allocated to the compartment of organs of type o (0 = b, s,¢) at GC'i
is denoted by ¢,(i) and given by:

min(To—1,7)

wi)= Y ns (2:5)

k=maz(0,i—Text+1)

where T,,; stands for the GC at which organogenesis ceases for the whole plant.
Here T.,; = 21. Note that for the cob, the demand for biomass p;(k) is 0 before GC
15, and tassel only expands during two GCs: the 21st and 22nd. The plant life span
is 33 GCs.

Another variable of interest is the accumulated biomass value for each kind of
organ. Let Q,(i) denote the total mass of organs of type o at GC i:

= Z qo(n) (2.6)

We assume each uncertain input parameter has a uniform distribution, and we
use the data from |Guo et al. 2006; Ma et al., [2008| 2007] to set the mean value and
variance of all the parameters as listed in Table[2.1]

Tab. 2.1 : GreenLab Maize: Distribution characteristics for uncertain parameters

Symbol Definition Mean value Uniform distribution
P Sink sheath 0.93 [0.837, 1.023]
P Sink internode 1.63 [1.467, 1.793]
Py Sink cob 162.18 [145.962, 178.398]
P, Sink tassel 1.33 [1.197, 1.463]
ap Beta coefficient 2.65 [2.385, 2.915]
By Beta coefficient 2.35 [2.115, 2.585]
as Beta coefficient 3.5 [3.15, 3.85]

Bs Beta coefficient 1.5 [1.35, 1.65]

Qe Beta coefficient 4.4 [3.96, 4.84]

Be Beta coefficient 0.6 [0.54, 0.66]

af Beta coefficient 2.9 [2.61, 3.19]

By Beta coefficient 2.1 [1.89, 2.31]
Sp Empirical coefficient 0.23 [0.2077 0.253]

o Light conversion efficiency 0.0046 [0.00414, 0.00506]

2.4.2 GreenLab model for poplar tree

As we mentioned before, GreenLab is a functional-structural plant model that simu-
lates plant development, growth and morphology |Cournede et al., [2006]. The plant
growth is discretized with a time step corresponding to the architectural growth cycle,
that is to say the time necessary to set in place new growth units (e.g. one year for a
tree in a temperate climate). Regarding plant architecture, trees are decomposed into
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Fig. 2.1 :

Plant topology after 30 time steps for poplar tree. The yellow organs stand for
dead organs. Each physiological age is represented by a different color, respec-
tively grey, red, yellow and purple for physiological ages 1, 2, 3 and 4
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elementary units called phytomers that are gathered into categories according to mor-
phological properties |[Barthélémy and Caraglio, 2007]. These categories are indexed
by a variable called physiological age, from 1 for the trunk to P, for the small twigs.
P,, is taken as 4 in our test case, which is generally sufficient to describe complex
trees. A time step starts with the appearance of the new organs on the plant, and the
tree architecture remains constant during the whole time step.

Interactions between plant organogenesis and functional mechanisms have been
implemented by linking the number of new organs to the ratio of available biomass
to plant demand. The main equations of the model are given in the following of the
section but a complete description can be read in [Mathieu et al.,[2009]. Note however
that we restrict the study to a theoretical tree (with strong similarities in terms of
behaviour with the poplar tree) and simplify the eco-physiological sub-models for the
sake of clarity.

For the sensitivity analysis, the variable of interest is the amount of biomass pro-
duced at each time step denoted by n. For this study, it is computed with a simple
empirical equation adapted from the Beer-Lambert law:

Sg(n)

Q(n) = Epar(n)uSy(1 —exp " 5) (2.7)

Epar(n) denotes the amount of photosynthetical active radiation received by the
plant during the whole time step n, u = 0.33 is an efficiency simulating the conversion
of light energy into biomass, S, is an empirical coefficient linked to the projected
ground surface,  denotes the extinction coefficient of the Beer-Lambert law. Sg(n)
is the whole leaf surface area of the tree. It is the sum of each individual leaf surface
area. Leaves are assumed to have a constant leaf mass per area e = 0.03g.cm ™2,
allowing to deduce their surfaces from their masses.

The amount of biomass Q(n) will be used for secondary growth and growth of new
growth units and organs at the next time step. The allocation model is a proportional
one, which means that the biomass allocated to an organ is proportional to its sink
strength divided by the plant demand, that is the sum of the organ sink strengths.
The biomass used for the secondary growth is proportional to the number of leaves,
in accordance with the pipe model theory [Shinozaki et al., 1964].

The number of functional buds, ¢.e. the ones that will give birth to new growth
units, and the number of phytomers on each branch depends on the ratio of available
biomass to demand, see [Mathieu et al., 2009] for details . This key variable is corre-
lated to the amount of biomass allocated to new organs denoted by @p(n). Finally,
the tree leaf surface area is given by the equation:

Z o S?QB ZL) (2.8)
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pr and S% denote respectively the sink strength of buds and leaves of physiological
age k, d% denote the demand of the corresponding growth unit and Dg(n) is the
demand of these buds. For this case study, Sg = 1, S; = 1 and S;, = 0.1 denote
respectively the sink strengths for leaves, internodes and layers. They have the same
values for each physiological age.

The plant behaviour is the result of the interactions between organogenesis and
photosynthesis. When there is enough available biomass, the ratio of biomass to de-
mand is high and a lot of organs will appear in the tree. As the demand is proportional
to the number of organs, the increase in the number of leaves induces an increase in
plant demand and consequently a decrease in the ratio of biomass to demand. The
number of new organs will decrease, inducing a low demand and a high ratio of biomass
to demand, and so on. For some combination of the parameters, rhythms may appear
in plant biomass production and topology [Mathieu et al., |2008].We choose such a
case study for this thesis. Fig[2.1] shows the plant topology after 30 years.

Tab. 2.2 : GreenLab poplar tree: Distribution characteristics for uncertain parameters

Symbol Definition Mean value Uniform distribution
(SB)0 Sink blade PA=1 1 [0.9, 1.1]
(Sp)1 Sink blade PA=2 1 (0.9, 1.1]
(Sp)2 Sink blade PA=3 1 0.9, 1.1]
(Sg)3  Sink blade PA=4 1 0.9, 1.1]
(S1)0 Sink Internode PA=1 1 [0.9, 1.1]
(Sp)1 Sink Internode PA=2 1 [0.9, 1.1]
(S1)2 Sink Internode PA=3 1 [0.9, 1.1]
(S1)3 Sink Internode PA=4 1 [0.9, 1.1]
(SL)o Sink Layer PA=1 0.1 [0.09, 0.11]
(Sp)1 Sink Layer PA=2 0.1 [0.09, 0.11]
(SL)2 Sink Layer PA=3 0.1 [0.09, 0.11]
(S1)3 Sink Layer PA=4 0.1 0.09, 0.11]
u Resistance blade 3 [2.7, 3.3]
Sp Empirical coefficient 1.7 [1.537 1.87]

2.4.3 NEMA model for wheat

Optimizing fertilizers’ use in agriculture requires being able to simulate nitrogen use
by plants. Most crop models rely on the idea that a target nitrogen concentration in
tissues can be defined and that plants behave depending on the difference between the
target and the actual nitrogen concentrations. However, such a target has never been
precisely defined. Inputs of nitrogen fertilizers are fundamental to get high-yielding
crops and a production of high quality with the required protein content. This required
a proper understanding of root N uptake regulation and of N determinism on yield
and production. Complex interactions exist between root N uptake, N remobilization
to grains, and photosynthesis, whose regulatory mechanisms remain far from clear.

NEMA, a functional-structural model of N economy within individual plants [Bertht
eloot et al.,|2011a], is developed for wheat after flowering to simulate Nitrogen content
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of each photosynthetic organ and its remobilization following RubisCO turnover. The
turnover depends on light intercepted and a mobile nitrogen pool, which is enriched
by root uptake and nitrogen release from vegetative organs and depleted by grain
uptake and protein synthesis in vegetative organs. It also accounts for the negative
feedback of circulating nitrogen on root uptake, which is formalized following High
Affinity Transport System (HATS) and Low Affinity Transport System (LATS) activ-
ities. Organ nitrogen content and light intercepted determine dry matter production
by photosynthesis, which is distributed between organs according to their respective
demand. This model has the specificity to integrate physiological processes governing
N economy within plants: root N uptake is modeled following the HATS and LATS,
and N is distributed between plant organs according to the turnover of the proteins
associated to the photosynthetic apparatus. C assimilation is predicted from the N
content of each photosynthetic organ.

The NEMA scheme is presented in fig2.2] and all the parameters involved in the
parameters sensitivity analysis are listed in tab2.3|

Organogenesis ADEL-wheat [Fournier et al., 2003 [Bertheloot et al. 2011a].

Distribution of nitrogen (N) : photosynthetic N, mobile N, structural N [Triboi
and Triboi-Blondel, 2002], [Hafsi et al., [2000], [Bertheloot et al., 2008].

Distribution of carbon (C) :(interaction with structural N, photosynthetic N)
->GreenLab [Kang et al., [2008].

Root Absorption [Drouet and Pages, 2007].

Photosynthesis computed from incident radiations, surfaces of each leaf and its
content in photosynthetic N [Evers et al. 2010].

2.5 Concluding remarks

e F'SPMs aim to describe: Plant structural development (organogenesis and geom-
etry), functional growth (biomass accumulation and allocation),and the complex
interactions between both. The complexity of the underlying biological pro-
cesses, especially the interactions between functioning and structure [Vos et al.,
2010], usually brings a lot of difficulties for experiment and modelling.

e Modelling usually follows principal steps. Generally, it includes development of
concepts, experimentation and modelling.

e Sensitivity analysis plays important role to tackle the challenges FSPMs faces,
like parameterization and model verification, and it may inspire new experimen-
tation or adjustment of the model structure.
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Fig. 2.2 : NEMA: Overview of the model of N economy within wheat culms after flowering
(Triticum aestivum L.)
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Tab. 2.3 : NEMA: Model parameters: their symbols, definitions, and units. Organs in-
cluded: grain(g), root(r), and 5 entities(tp): lamina, sheath, internode, peduncle,
chaff.

Symbol Definition Unit

PAR interception(fized value)

Angle between the vertical and the vector

OLa normal to the lamina plan radians
kyertical PAR extinction coefficient for vertical entities m2m—2
Root N uptake (5 parameters)
. B Coefficient for C and N availability effect di ionl
¢ PN on root N uptake 1MENSIonIess
k Constant of the Michaelis-Menten function reflecting _3
™1 HATS activity gm
Rate constant of the linear function reflectin; _
kr.2 LATS activity ¢ gm=?°Cd™!
(§Mremy Minimum threshold of dry matter influx into day—1
r men roots to sustain root N uptake geay
Theoretical maximum root N uptake at _ 1
Ur,maz saturating soil N concentration gm=?°Cd
N fluzes (28 parameters)
1 for grain; 2 for root; 5 for each entity, 25 total for entities
§N §N Relative degradation rates of remobilizable N ora1—1
T Utp for roots, entities t Cd
b p
Relative rate of potential grain N filling ocq-!
v during cell division
Michaelis-Menten constants defining gg~ 1, Jm—2d~1
kip,1, kep,2 photosynthetic N synthesis associated to xylem
influx for entities tp
Proportion coefficient for N influx following dry . .
Prs Ptp,i mass influx into roots, entities tp dimensionless
oNoh Relat.ive rate of phot.osynthetic N.s.ynthesis gg—1°Cd~1
tp,i associated to xylem influx for entities tp
Tissue death and photosynthesis (15 parameters)
8 for each entity, 15 total for entities
ds Proportion of maximum specific N mass at dimensionless
P which tissues die for entities tp
Proportion coefficient linking photosynthesis at
Wip saturating PAR and N mass per unit d-1
photosynthetic area
€tp Photosynthetic efficiency gJ 1
Dry matter fluzes (34 parameters)
4 for grain; 5 for root; 5 for each entity, 25 total for entities
ag,Bg,00, Two paran?eters dete.rmining the sha:pe of the dimensionless
Br,atp,Btp Beta function for grains, roots, entities tp.
SM §M Relative degradation rates of remobilizable oa—1
T tp dry mass for roots, entities t Cd
y ) p
UgI,Uy,Ué\/I,i Relative sink strength of grains, roots, entities tp dimensionless
ttM“CC,ttiv @c¢  Duration during which grains, roots, entities tp °ocd

tttg“CC can accumulate dry mass
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3. SENSITIVITY ANALYSIS FOR FSPM

In this chapter we introduce the basic concepts, the methods and basic steps of sen-
sitivity analysis. Definitions and equations of all algorithms of the SA applied in our
simulation are also given. Since uncertainty analysis (UA) and sensitivity analysis
(SA) always come in tandem, we first introduce the general concept of UA and SA
in sectionf3.1] The form of universal model definition is given in section[3.2] as one
important part of SA, issues about input factors are illustrated in sectionf3.3] To
mark the importance for the aims of SA, section[3.4] explicits this topic and specifies
this issue in our work for FSPM, then we introduce the mathematical description of
the main methods we used in our work: SRC and Sobol’s, especially several mean-
ingful Sobol’s indices in section[3.5 Lastly, the basic steps of SA for FSPM is give in
section 3.6l

3.1 Uncertainty analysis and sensitivity analysis

Most mathematical problems met in social, economic or natural sciences entail the use
of mathematical models. A mathematical model is defined by a series of equations,
input variables, parameters, and state variables to characterize the process being in-
vestigated. The input is subject to many sources of uncertainty including errors of
measurement, absence of information and poor or partial understanding of the driv-
ing forces and mechanisms. This uncertainty imposes a limit on our confidence in the
response or model output, which is generally too complex for an easy appreciation
of the relationship between input factors and output. The understanding of how the
model behaves in response to changes in its inputs, is of fundamental importance to
ensure a correct use of the models.

Good modelling practice requires that the modeler provides an evaluation of the
confidence in the model, possibly assessing the uncertainties associated with the mod-
elling process and with the outcome of the model itself. Uncertainty and sensitivity
analysis offer valid tools for characterizing the uncertainty associated with a model.
The goal of uncertainty analysis is to answer the question ‘what is the uncertainty
in y(z) given the uncertainty in x?’ and the goal of sensitivity analysis is to answer
the question ‘how important are the individual elements of x with respect to the
uncertainty in y(z)?” [Saltelli et al., 2006].

A possible definition of sensitivity analysis is the following: ‘The study of how
uncertainty in the output of a model (numerical or otherwise) can be apportioned
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to different sources of uncertainty in the model input’[Saltelli et al., [2004]. Such
information given by SA may provide some help for model assessment:

e Measurement of model adequacy (e.g.does the model fit observation?)
e Knowledge of model relevance (e.g. is the model-based inference robust?)

e Identification of critical regions in the input space (e.g. which combination of
factors corresponds to the highest risk?)

e Detection of interactions between factors
e Priorities for research and experimentations

e Simplification of model structure [Saltelli et al., [2004].

Thus the definition of sensitivity analysis involves models, model input and model
output. The following sections will present how these parts relate to the nature and
purpose of the model, as well as to the set-up of the uncertainty and sensitivity
analysis.

3.2 Model definition

Before starting sensitivity analysis, we give a definition of what is a ‘model’ in our
practice. A model is represented by a mapping f (a deterministic or stochastic func-
tion) which relates the inputs domain to the output space:

Y:f(Xl,XQ,"' 7Xk) (31)

The input factors (X, Xy, -+, Xj) are supposed to be random variables described by
identified probability distributions which reflect the uncertain knowledge of the system
under analysis, k is the number of factors involved, so we define the k£ dimensional
parameter vector X as one point in the space. Note that the model output Y under
sensitivity analysis is always a scalar value. In the case of dynamic model output, the
output is a vector for one state variable. We shall consider each scalar output value
of the vector in turn. As mentioned in Chapter[2] most of the FSPMs are dynamic
models, the description of the state variables of plant growth evolving by time is the
most important way of model presentation. So SA usually are performed separately
at each calculation time step for FSPMs.

Consider a dynamic model represented by the following mathematical equation:
Y(t) = f(Z,0,1) (3.2)

where Z is the vector of input variables of the model, 6 is the vector of uncertain
parameters and Y (t) is the model output at time ¢, for ¢t € 1,2,---T, the function



3.3. Model inputs 47

f(e) is the phenomenon studied and it is either deterministic or stochastic. The
stochastic aspect of the model will not be discussed in this thesis. However, it is
possible to take into account when making repetitions [Ginot et al., 2006], [Lurette
et al., 2009).

Consider only the input variables and / or uncertain parameters of the model
which we call factors, we note that X, the model equation is written:

Y(t) = f(X,1) (3.3)

Eqn[3.3] corresponds to all our models of interest in this thesis. For FSPMs, simu-
lations are usually computed at a daily time step and the sequential implementation
of sensitivity analysis at each simulation date with one index per parameter per sim-
ulation date. On one hand, it is one of the points we are interested in: the SA indices
evolving by time for factors can imply the stage evolution relating to plant growth
activities. One the other hand, when SA is performed separately at each time step for
FSPMs, it can result in several hundreds of sensitivity indices. It is not easy to identify
the most important parameters based on such a large number of values. Moreover,
this technique has the disadvantage of introducing a high level of redundancy because
of the strong correlations between responses from one time step to the next. Likewise,
intuitively, to screen one parameter, the requirement should be that the sensitivity
response curve is always near zero at all time steps. However, we rarely get this kind
of curve from our analysis. Therefore we devised a methodology that can deal with the
screening of parameters in this dynamic context, which will be discussed in Chapter 5]

For an easier and simpler way of presentation, next in this chapter, for all the math-
ematic description about sensitivity analysis algorithm, we still stick to the concept
that the output is a scalar as in eqnf3.1]

3.3 Model inputs

As we mentioned, we call the input variables and/or uncertain parameters as the
model input factors for SA. What constitutes an input for the analysis depends upon
how the analysis is set up. The inputs are those factors that are allowed to vary in
order to study their effect on the output. An obvious consequence is that the modeller
will remain ignorant of the importance of those factors which have been kept out of the
scope. This is of course a hazard for the modeller, as a factor deemed non-influential
and kept fixed could haunt the results of the analysis at a later stage. Therefore,
to choose a proper input factors group should be dealt with as carefully as possible.
For us, we have gone an ‘expert review process’ for choosing the proper input factors
group. Two objectives were focused: the factors involved in the analysis should not
be too many, or else the analysis will be too complex with heavy computing cost; the
factors should neither be insufficient, or else the risk of of losing important information
will come true.
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Assuming that we have observations and parameters which are estimated from
data now, we might consider the model ‘true’ and run an uncertainty analysis by
propagating the uncertainty in the parameters through the model, all the way to the
model output. One way of doing this is through Monte Carlo analysis, in which we
generate the samples of input according to the random distribution functions of the
input parameters, and derive from the propagations for the model output distribution.

Definition of the distributions Dx,, Dx,, -+, Dx, that characterize the epistemic
uncertainty in factors Xy, Xo, -+, X} is also an important part of a sampling-based
uncertainty and sensitivity analysis. These distributions determine the input uncer-
tainty that affect output Y.

Most of the time, the distributions of input factors are not easy to get. A possible
analysis strategy is to perform an initial exploratory analysis with a rather crude
definition for Dx,, Dx,, -, Dx, and use sensitivity analysis to identify the most
important analysis inputs. Then, resources can be concentrated on characterizing
the uncertainty in these inputs and a second presentation of decision-aiding analysis
can be carried out with these improved uncertainty characterizations |Helton et al.
2006b].

3.4 Purpose of sensitivity analysis

A few heuristic settings for SA, each corresponding to a specific stage or need of the
modelling process, are suggested in [Saltelli and Tarantola, 2002] and [Saltelli et al.|
2004]. As for all the scientific experiments, the first step is to be clear about the aim
of the analysis which can lead to different practice strategies.

Generally, four aims can be classified for SA: Factor Prioritization (FP), Factor
Fixing (FF), Factor Mapping (FM) and Variance Cutting (VC) [Saltelli et al., 2008].

e Factor Prioritization: It is the identification of the most important factors. If
they are fixed to their true values, it would lead to the greatest reduction of the
output variance. This setting can be used for the research prioritization, as it
allows to identify those factors which deserve the most investment of research
attention in order to control the output variance to the minimum.

e Factor Fixing: It is the screening non-influential factors in the model, i.e. identi-
fying those factors that can be fixed at any given value in their domains without
significantly reducing the output variance. This setting is useful for model sim-
plification to resolve the problem of over-parameterization, or when the modeller
has prior beliefs about the importance of some input factors, as it can help in
proving or disproving a given model assumption.

e Variance Cutting: The reduction of the output variance to a lower threshold is
performed by simultaneously fixing the smallest number of input factors. This
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setting could be useful when SA is part of a risk assessment study when a
regulatory authority was to find the width of the impact estimate distribution
too wide. The variance cutting and factor prioritization settings are very similar
to each other, as they both aim at reducing the output variance. However, in
the case of factor prioritization the scope is to identify the most influent factors
one by one, while in the variance cutting setting the objective is to reduce the
output variance down to a pre-established level by fixing the smallest subset of
factors at once [Saltelli et al., 2004].

e Factor Mapping: Finally, the aim of SA can be to study which values of the
input factors lead to model realizations in a given range of the output space,
e.g. above or below an assigned threshold. For example, the analyst wishes to
divide the realizations of the Monte Carlo simulation into two groups, e.g. by
categorizing them as acceptable or non-acceptable. This setting can be carried
out using the Smirnov test and the approach is known as Regionalized Sensitivity
Analysis [Hornberger and Spear} [1981].

FSPMs aim to describe plant structural development (organogenesis and geome-
try), functional growth (biomass accumulation and allocation) and the complex in-
teractions between both. sensitivity analysis provides a possible resolution for most
challenges we are facing in functional-structural modelling;:

e Knowledge Integration. Main integration is about structure and function and
the different time scales into one consistent modelling framework. For knowl-
edge integration, SA can help for identifying important phases, key variables,
important processes regarding some outputs, interaction between processes, be-
tween parameters. It is corresponding to the Factor Priorization: by identifying
the most important factors and interactions between them for the output un-
der analysis, key biophysical processes relating to those factors can be marked;
by identifying the most important function module (group of factors) and the
interaction between modules, the important interactions between processes can

be found.

e Link between models and the real world. It mainly relates to model parameteri-
zation from experimental data which is one of the most important steps in model
design. This challenge is corresponding to Factor Prioritization and Factor Fix-
ing: SA gives some guiding information about the priority of parameters we need
to get from an experiment, the cost of an experiment can be more effectively
arranged by adding more frequent measurements and more accurate study to
the ones with more contribution to the output variables, and vice versa; to sim-
plify the complexity of parameter estimation, we need to cut down the number
of factors for this estimation, and one intuitive idea is to fix the non-influential
factors identified by SA.



50 3. Sensitivity analysis for FSPM

3.5 SA methods

3.5.1 Classification of methods

There are a lot of classification standards for sensitivity analysis methods: accord-
ing to the way how the method works, there are local and global methods [Cacuci,
2003], [Cacuci et al., 2005], |Grievank, 2000]; according to the theoretical background,
there are sampling-based methods [Helton et al., 2006a] and emulators-based meth-
ods |Oakley and O’Hagan| |2004]; according to the purpose of SA, there are qualitative
screening methods like Morris method [Morris| [1991], [Campolongo et al., [2007] [Cam-
polongo and Braddock, |1999] and quantitative ranking methods like Sobol’s method
[Sobol, |1993].

The most common classifications of SA methods distinguish between quantitative
and qualitative methods and between local and global techniques.

e Qualitative methods are aimed at screening, while quantitative techniques can
be designed to give information on the amount of variance explained by each
factor. In general, the choice of which method to use is driven by the computing
cost, as local and qualitative methods are computationally less expensive [Saltelli
et al., 2000].

e In local approaches (known as one-at-a-time, OAT), the effect of a single factor’s
variation is estimated while keeping all the others fixed at their average values.
Yet they cannot include the effect of the shape of the density functions of the
inputs, and they are not model-independent.

e Global approaches estimate the effect on the output of a factor keeping all the
others varying. Generally, global approaches use model independent methods
while not requiring assumptions of additivity or linearity. As a drawback, they
are usually computationally expensive [Cariboni et al., 2007].

Sampling-based approaches to uncertainty and sensitivity analysis are both effec-
tive and widely used [Helton et al.| |2006a], of which an important category of methods
are ‘Variance based” methods. The basic concept for this kind of method is to de-
compose the output variance into the contributions imputable to each input factor.
The most widely used are the FAST (Fourier Amplitude Sensitivity Test, see [Cukier
et al., 1973, 1978; [Koda et al., [1979]), and Sobol’s methods, see [Sobol, 1993]. FAST
method decomposes the output variance V(Y') by means of spectral analysis. Sobol’s
method is based on the same decomposition of variance, which is achieved by Monte
Carlo methods in place of spectral analysis. Since it is based on variance decompo-
sition, the different types of sensitivity indices that it estimates can fulfill different
objectives of sensitivity analysis: factor priorization, factor fixing, variance cutting or
factor mapping [Cariboni et al. [2007]. It is a very informative method but poten-
tially computationally expensive [Helton et al., |2006a]. Besides the first-order effects,
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Sobol’s method also aims at determining the levels of interaction between parameters
[Wu and Cournede, 2010]. Thus in our algorithm research and practice work in this
thesis, we mostly focused on Sobol’s method.

3.5.2 Description of methods

The simplest and most intuitive way to obtain a local sensitivity index is to com-
pute derivatives (see |Grievank, 2000; Tomovic and Vukobratovic, [1972; [Varma et al.|
1999]). The sensitivity of the output Y to a perturbation of an input factor X; is

estimated at a given value X, as

/ oy
Y., =
Xi 8XZ Xi=z]

(3.4)

In situations where Y and X; have different range of uncertainties, a more bal-
anced measure can be obtained normalizing the derivatives by the factors’ standard

deviations:
Oy, oY

X; = v
Lo, 0X;lX=ar

(e

(3.5)

The estimation of these OAT methods can be easily implemented, but they are
informative only if the model is linear/quasi-linear or if the range of uncertainty of
the input factors is small |Cariboni et al., 2007].

The Standardized Regression Coefficients (SRC) method is based on the linear
approximation of the model and Monte Carlo simulations. SRC method can demon-
strate the shape of the probability distribution of every factor. One important index
produced by SRC is the model coefficient of determination R?, which represents the
fraction of the output variance explained by the linear regression model itself. A side
result of the model coefficient of determination (R?) is that it provides an indicator of
the degree of non-linearity of the model. When R? = 1, the system is linear and the
SRCs can totally explain the variance of the output affected by each factor. Even when
models are moderately non-linear (i.e. > 0.9), the SRCs can provide valid qualitative
information. When getting small, the SRCs are no longer reliable sensitivity repre-
sentations. In our practice, we call this model coefficient of determination linearity
index, and use it to assess the non-linearity of the model.

The SRCs are got based on model linear regression. When we make linear regres-
sion for model Y = f(X), the result can be:

k
Y =b+ Y b, X (3.6)

in which k is the number of the factors considered in SA, X; denotes the factors
considered in SA, and b, are the regression indices corresponding to each factor. To
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change these dimensioned coefficients values to the standardized ones, the SRC index
for X; denoted by v, is given by:

(3.7)

in which o, and o, denote respectively the standard deviation in Monte Carlo sim-
ulation for factor X and output Y. Note that if the factors are independent and the
true model is linear, the summation of the squre value of Vx, equals to 1. Then the
following equation holds (see [Draper and Smith| |1981]):

Y () =1 (3-8)

i

> i(7x,)? can therefore be considered as an index of the model linearity. This linearity
of the system is described by the so called ‘model coefficient of determination’, which
is computed as:

R2 — 25:1(3/* - /~Ly)2

Z]dvzl (Y —py)?

where 1, is the mean value of Y in the Monte Carlo simulation, Y is the fitted value
in eqn.(3.6)), Y is the actual value at each run, and N is the total number of runs.

(3.9)

The basic idea of Sobol’s method (see [Sobol, [1993]) is to decompose the function
of eqn.(3.1)) into terms of increasing dimensionality:

FX1, X)) = fot Zfz ) (3.10)

+ Z le XzaXl

1<i<i<k

+ ot fio k(X Xg)

If the input factors are mutually independent then there exists a unique decomposition
of eqn.(3.10]), such that all the summands are mutually orthogonal. The variance of
the output variable Y can thus be decomposed into:

ZV+ Y Vit 4+ Vigk (3.11)
1<i<iI<k

Where V;, Vi, Via i denote the variance of f;, fi, fi2,. .k respectively.

Imagine if we fix factor X; at its midpoint z}, how much would this change the
variance of Y? We indicate the conditioned variance as:

Vx_ (Y|X; = ;) (3.12)
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where the variance is taken over parameter space X_;: a k — 1 dimensional vector of
all factors but X;.

Comparing the variance V' (Y) in eqn., by fixing input factors based on eqn.m7
we say that the smaller the conditional variance becomes, the more important X is,
but it would make much difference where X, is fixed. Further more, for non-linear
models, fixing a factor might actually increase the variance instead of reducing it, also
depending on where it is fixed.

The solution is to average eqn over all possible values of X;, which can be
written:

Ex,(Vx_,(Y[Xi)) (3.13)

From algebra theory, eqnf3.13] can be included in the equation as following:
Ex,(Vx_,(Y]X3)) + Vx,(Ex_, (Y[Xi)) = V(Y) (3.14)

Where Vx,(Ex_,(Y|X;)) is called the main effect of X; on Y, and Ex,(Vx_,(Y]X;))
the residual. Hence a small Ey,(Vx_,(Y|X;)) or a large Vx, (Ex_,(Y|X;)) will imply
that X; is an important factor.

In this approach the first-order sensitivity index 5; for factor X; defined in eqn. (3.1

is given by:

S, = VXZ<EX71(Y|Xl)) _ ‘/;(E—’L(Y|X’L)) (315>

V() V()

where F and V indicate, respectively, the mean an variance operators, ¢ indicates all
possible values of factor X;, —¢ indicates all factors but X;. The inner expectation is
taken at a generic point in the space of variable X;, while the outer variance is over
all possible values of this generic point. According to eqnf3.11] and eqn[3.15] we can
easily refer that S; is a value always between 0 and 1. A high value of S; signals a
significant factor, but not vice versa. We will discuss this question again after all the
main indices are introduced. Usually, S; is used for ‘Factor Priorization’ in SA, the
variables with high value of S; should have more priority for modelling investment.

Intuitively, the higher order sensitivity indexes S;, ;. deduced from eqn/3.11]
should be: v

V(Y)
and we can also easily get the characteristic of all the sensitivity indices including all
the orders:

Sitymniis =

k
1= Z S; + Z Sa+--+S12. .k (3.16)
i=1

1<i<i<k

It is interesting to write equations giving directly the high order indices of interest (as

in eqnj3.15| for S;).
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Take second order for example, given two generic factors X; and X; (i # j), the
following result holds:

V(E(Y|X;, X;)) =Vi+ Vi +Vj (3.17)
in which:
Vi = V(E(Y]X;)) (3.18)
Vi = V(E(Y]X;)) (3.19)
Vii = V(EYI[X;, X;) - ViV, (3.20)

We have dropped the indices of both the F and V operators. Indeed we do not need
them if we accept the convention that the argument conditioning the inner operator,
X; and Xj in this case, is also the set over which we apply the outer operator, i.e.
the variance is taken over X; and Xj, and the average I/ must be taken over all
but (X;, X;). The term V;; is the interaction term between factors X; and X,. So
the second order index 5;; is the index that can describe the portion of the output
variance represented by Vj;:

VIEY|X;, X)) - Vi=V;  VIEX]X;, X))

o vIY) TV

~ S5 —S; (3.21)

Eqnf3.21] gives us a clue that to get the second order index, we must first get the
first order index of each factor involved. The higher order indices follow the same
idea: to compute any higher order index the requirement of all the lower order indices
is necessary. Though in [Saltelli, 2002], a strategy is proposed to make best use of
model simulations so that it would not be so computing cost heavy to get the higher
order indices. Generally, the higher order indices we want to get, the more model
simulations we need, thus the heavier computing cost this brings. In Chapter[5, we
will illustrate a strategy of combining different lower order (typically) indices to avoid
this kind of high order index computing but still get the decomposition of the portions
of variances including them when necessary.

The higher order indices especially the second order ones, provide us with a way to
evaluate the interaction between variables, from which we can deduce the biophysical
interaction processes related to these variables.

Besides first order and high order indices, the total effect index is also frequently
used for ‘factor screening’ [Saltelli et al., 2008] (that is to say to identify the least
influential parameters). To introduce it, we first consider another index called S_;
based on the definition in eqn[3.15] for first order index S;:

VIE(Y|X)  VIB(YIX1, Xo, o, Xit, Xins, o Xi)

Soi=—=; G %0 (3.22)

By analogy with the second order indices, eqnj3.22| should include all terms of any
order that do not include factor X;. As for eqn the sum of all possible sensitivity
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terms must be 1, the difference 1 — S_; must be made up of all terms of any order
that include X;, we call it total order index, and denote it by ST;:

VIE(Y X))

T,=1—
ST, V)

(3.23)

Again, according to the algebraic decomposition of V(Y') in eqn)3.14l we also have:

E_(Vi(Y X))
V(Y)

ST, = (3.24)

Now we go back to the previous remark namely that ‘A high S; index signals
an important variable, but not vice versa.” To process ‘Factor Fixing’, S; &~ 0 is a
necessary but insufficient condition for fixing factor X;. This factor might be involved
in interactions with other factors such that, although its first-order term is zero, there
might be a non-zero higher order term. So it is meaningful to have a total order index
ST; for ‘Factor Fixing’, if ST; = 0, then X; is non-influent; reversely, if X; is non-
influent, the value of ST; must be zero. ST; = 0 (practically ST; ~ 0) is a necessary
and sufficient condition for X; being non-influential.

To sum up, for a given factor X;, we know from the value of first-order Sobol’s
index S; whether a factor is influent at the main effect, while an important difference
between ST; and S; flags an important role of interactions for that factor regarding
output Y. If this is the case, inspection of the second order indices S;; for all ¢ # j
will allow us to identify which factor X; interacts with. Thus, in fact, besides the
first-order effects, Sobol’s method also aims at determining the levels of interaction
between parameters [Wu and Cournede, 2010].

Now we can extend the use of eqnf3.17 to a higher order. And we denote the

variance as V$; . in which ‘s’ is the number of factors included in this variance:

Ve, =V(E(YI|X;

11,82, s

Xigy o5 Xa,)) (3.25)

17

Though we can not directly get the higher Sobol’s index that explains the inter-
actions between parameters as Sj, ;... ;, from eqnf3.25] still it has its own meaning
and it is useful when our objective is to investigate a group of parameters instead
of independent parameters. i g i, TEDTESENtS the variance donated by the set and
subsets of factors {X;,, X;,, -+, X;, }: the variance caused by all the factors in the
sets and all the interactions between these factors. As such, it evaluates the main

effect of the group of factors to the output.

In the case of complex system models that are composed of several sub-models (or
modules), we are interested in the sensitivity of these modules to the model output.
Define the whole parameter space as a set P. Let {Q,Q...€,} be a partition of P



56 3. Sensitivity analysis for FSPM

such that each subset Q; = {X;,, X,,, ..., Xi.}, corresponds to the set of parameters
identified as belonging to the ith module. We denote the first order group index of
subset ; as 5%, and i € {1,2,...,7}, the superscript ‘g’ means group index

Vi o V(E(Y|X217XZQ7 7Xi5))

g 1,02, 0

T V) V(Y)

(3.26)

Similarly, V¢, Lz i will indicate the sum of all indices in the complementary set

Of {2.17 7:2’ e 72.8}) le V—Cil,i27~--7is - lf,lQ,"‘,lk757 Where ip ;é lq fOI" all p € [1, 27 e ,8]7
qg€1,2,--- k—s|. If we define a ‘total effect’ index for subset 2; as in eqn for
one factor:

Ve V(E(Y|Xl17Xl27”' 7Xlk_s))

STY — 1 — ——fbayeids g
. V(Y) V(Y)

(3.27)

In the same way, if we define a second order group index for two subsets €2; and
Q; as in eqn|3.21] for two factors:

g V(EXY,Q))
g V(Y)

S (3.28)

The total effect index ST for subset 2; means all the effects brought by the factors
set {Xi,, Xi,, -+, X, }: in the right side of equf3.16] it is the sum of all the terms of
any order that include at least one factor from the set, including the interactions of
all the subsets of these factors with the other ones that are not in 2.

In this sense, the difference ST; éi —Sgi means the interactions of the factors set with
the ones not belonging to the set. The second order group index Sg)ij specifically indi-
cates the interactions between two subsets of factors. For a complex model in which
subset of factors means the sub-module of the model, Sggzij explains the interaction
between two modules.

The group indices given here 53, STq , 53, - and the difference STg — S, are
useful when the object we consider is a set of factors i.e. factors from one module
in the whole model. We will introduce a full methodology based on these indices in
Chapter [f] for module by module analysis and illustrate this practice in Chapter[7] for
the NEMA model.

3.6 Basic steps of SA for FSPM

Basically, SA of any model has to proceed in an orderly fashion. In practice the
development of SA often proceeds in a loop of activities, because the modelers do
not yet have enough knowledge about the attributes related to the decisions in SA,
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including the range of parameters with uncertainty, lack of experimental data etc.
The steps outlined below are more or less in a logical and chronological order, but
there are numerous reasons to deviate from the sequence that is presented.

1. It is the first step to establish the goal of sensitivity analysis and consequently
to define the form of the output function that answers the question(s). As for
FSPMs in our practice, ‘Factor priorization’ for modelling decision and ‘Factor
fixing’” for model simplification are our two main aims of SA. Most of the time,
what we called here ‘the output of the model’ is actually the state variables
of the model which play a very important role in the model. In our case, we
mostly chose the total biomass production of each growth cycle as the output of
interest for the two GreenLab models: maize and poplar tree, for the reason that
biomass generation and allocation is the main formalism of GreenLab. What’s
more, we also took the ratio of available biomass to total demand for poplar
tree, because it is representative of the level of trophic competition inside the
plant. Thus it allows simulating as well the ontogenetic changes in plant topol-
ogy throughout its growth phases (progressive set up of architecture units) as
architectural plasticity in response to environmental changes. The interactions
between organogenesis and functioning can be detected by looking into this vari-
able with sensitivity analysis. In the case of NEMA model, since it is far more
complicated than the two previous models, the strategy we worked out is a little
different to the one we used for the first two GreenLab models. We will therefore
talk about this strategy called ‘module by module analysis’ in Chapter 5]

2. Nexgt we need to decide which input factors should be included in our analysis,
that is to say, to define the parameter space for sensitivity analysis based on the
objective issue in the first step. At this level, trigger parameters can be defined,
allowing one to sample across model structures, hypotheses, etc. Moreover, in
the case of multi-dimensional maps of factors, define the characterizing param-
eters to represent them in the SA. After we decided the parameter space, it is
to choose a distribution function for each of the input factors as mentioned in
sectionf3.3] In our case, the distribution of parameters is a uniform distribution.

3. Afterwards, we need to choose sensitivity methods or to design the strategy if it
must be the combination of more than one SA methods. There are basically two
classes of SA methods to decide: local methods and global ones. Local methods
cannot include the effect of the shape of the density functions of the inputs,
and they are not model independent but they are really computationally cheap.
Global approaches estimate the effect on the output of a factor keeping all the
others varying. Generally, global approaches use model independent methods
while not requiring assumptions of additivity or linearity. As a drawback, they
are usually computationally expensive [Cariboni et al., 2007]. The Standardized
Regression Coefficients (SRCs) can be viewed as an interesting trade-off between
the local and global method, regarding the advantages and shortcomings of both:
the accuracy of the analysis and the computational cost. The main function of
SRCs we can make use of is the linearity index generalized by the determination
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coefficient. Alternatively, to fulfill our aim of ‘Factor Prioritization setting’ and
‘Factor Fixing setting’ in our SA for FSPMs, we can choose Sobol’s method to
get the index of S; and ST;, because Sobol’s method can fulfill most the aims of
our analysis and can easily get the quantitative parameter interaction evaluation
based on the variance decomposition by S;;.

. After all these preparations, the following is to start the Monte Carlo simulation

sampling of the input factor for the analysis, then to evaluate the model on the
generated sample and produce the output, which contains N (sampling number)
output values.

. Lastly, we analyse the model outputs using the estimators provided by the meth-

ods we chose before and draw our conclusions based on the analysis result.

Concluding remarks

Sensitivity analysis is the study of how uncertainty in the output of a model
(numerical or otherwise) can be apportioned to different sources of uncertainty
in the model input [Saltelli et al.; 2004]. SA involves models, model input and
model output.

Y(t) = f(X,t) corresponds to all our models of interest in this thesis. For
FSPMs, simulations are usually computed at a daily time step and the sequential
implementation of sensitivity analysis at each simulation date with one index per
parameter per simulation date. For an easier and simpler way of presentation,
in all the mathematic description about sensitivity analysis algorithm next, we
still stick to the concept that the output is a scalar as Y = f(Xy, Xo, -+, Xi),
k being the number of uncertain factors.

Most of the time, the distributions of input factors are difficult to obtain. A
possible strategy is to perform an initial exploratory analysis with rather crude
definition for the distribution of the inputs and use sensitivity analysis to identify
the most important inputs; then, resources can be concentrated on characterizing
the uncertainty of these inputs and a second sensitivity analysis can be carried
out with these improved uncertainty characterizations [Helton et al., 2006b].

It is important to be clear about the aims at the beginning of SA: Factor Priori-
tization (FP), Factor Fixing (FF), Factor Mapping (FM) and Variance Cutting
(VC). In our practice, FP and FF is the case. Factor fixing is also called ‘factor
screening’ in some references, which means after identification of the least influ-
ential factors, in the modelling processing that needs us to fix some factors to
their nominal value, they could be fixed.

Determination coefficient R? generated by the SRC method, first order index
S;, second order S;;, total order index ST;, first order group index SS%Z_, total
order index STS%Z_, second order group index ngij given by Sobol’s method are
the indices we mainly focused on in our work.



Part 11

ALGORITHM AND METHODOLOGY
DESIGN






4. AN EFFICIENT COMPUTATIONAL
METHOD FOR GLOBAL SENSITIVITY
ANALYSIS

Sobol’s method decomposes the variance of the output of interest into terms due to in-
dividual parameters but also to interactions between parameters. We are particularly
interested in the later study on interactions between parameters using sobol’s method.
Such information is crucial for models with potentially high levels of non-linearity and
interactions between processes, like plant growth models.

However, the computation of Sobol’s indices relies on Monte Carlo sampling and
re-sampling, whose costs can be very high when model simulation is also expensive.
Especially, for some complicated FSPMs, at organ level, the cost of model simulation
can be very heavy [Sievinen et al., 2000a]. Therefore, it is crucial to not only devise
efficient computing techniques, in order to make best use of model evaluations [Saltelli,
2002, but also to have a good control of the estimation accuracy with respect to the
number of samples.

The objective of this chapter is to study these two aspects. First, we propose a
computing method inspired by [Homma and Saltelli, [1996], which slightly improves
their use of model evaluations, and then derive an estimator of the error of sensitivity
indices evaluation with respect to the sampling size for this generic type of computa-
tional methods. Numerical tests are then shown to illustrate the results. The method
is applied to the functional-structural models we have introduced in Chapter2] when
Sobol’s method is needed. For example, the GreenLab model for tree growth, whose
particularity is the strong level of interaction between plant functioning and organo-
genesis. The simulation result of the new method application to GreenLab tree model
will be presented in Chapter[7]

4.1 Computation of sensitivity indices

4.1.1 General concepts of Sobol’s sensitivity analysis

We recall here the basic concepts of Sobol’s method [Soboll, [1993] to present the original
work about sensitivity analysis indices. The function f(X) = f(X1, Xs,- -+, X}) under
investigation is defined in the k — dimensional cube KF. If the input factors are
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mutually independent then there exists a unique decomposition of f(X):

f(Xla---an) = f0+Zfz z (41)
+ Z le quXl

1<i<I<k

+ o fio k(X X))

The basic idea of Sobol’s method (see [Sobol, 1993]) is to decompose the function
of interest into terms of increasing dimensionality as in eqn., such that all the
summands are mutually orthogonal. The variance of the output variable Y can thus
be decomposed into:

V= ZV—I— Z Vit +Vig ok (4.2)

1<i<i<k

Where V;, Vi, Vi ¢ respectively.

7777777777

In this approach the first-order sensitivity index for factor X; is given by:
Vi (Bx_(Y]X) _ Vi(E_(Y]X)

V(Y) V(Y)
where E and V indicate, respectively, the mean d variance operators, ¢ indicates all
possible values of factor X;, —i indicates all factors but X;. The inner expectation is

taken at a generic point in the space of variable X;, while the outer variance is over
all possible values of this generic point.

S, =

(4.3)

The complementary first order index S_; is given by:

5., = L) (4.4)
The second order sensitivity indexes S;, . ;. are given by:
g, - VD Vo VYD) g g g
The total order effect ST; is instead given by:
ST =1- % (46)

If ST; = 0, then X; is non-influent, so the index ST} is suitable for fixing non-influential
factors. Standard Sobol’s method was proposed in [Sobol, 1993]. In [Homma and
Saltelli, [1996], an improved estimator is presented to compensate the system error,
completed in [Saltelli, |2002], and a computationally efficient design is discussed. This
method will therefore be called Homma-Saltelli method. We then propose an improve-
ment of this method to promote its convergence characteristics.
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4.1.2 Sobol’s computing method and Homma-Saltelli (H-S)
improvement

The standard Sobol’s method for SA was put forward in [Sobol, |1993], and the Monte
Carlo procedure of Sobol’s index was first proposed by [Saltelli et al., [1993]. Let
U= (X;, X}y, -, X;,)and V = (X;,, X},,- -+, X),_.) be a partition of the k random
variables corresponding to the input space. If we define:

Vo= [ [ [ ) fav) Do Dy Dy () dudvde (4.7)

with Dy the probability distribution of random vector U (corresponding to parameter
uncertainty) and Dy the probability distribution of vector V. then:

V(E(Y|U)) = Vu - E(Y) (4.8)

The same argument, if:

Vi = / / / F(u,v)f (W', v) Dy (w) Dy (') Dy (v)du d’ dv (4.9)

then: o

V(E(Y|-U)) =V, — E*(Y) (4.10)
We denote V(E(Y|-U) = V(E(Y|V) to note that V is the complementary vector of
U.

We take s = 1 which represents the computing for first order Sobol’s index. And as
indicated in [Saltelli et al., 2010], ‘radial sampling’ should be applied to achieve better
‘balance design’ in the sampling. We describe as following the numerical implemen-
tation of Sobol’s index computing based on radial sampling. To get the conditional
expectation value for model output Y, we first decide the base sampling dimension
N, then we implement the following steps:

1. Generate a Monte Carlo sampling of dimension N of the input factors according
to their random distributions and form the N x k matrix Uyy (k being the
dimension of the input space) with each row a set of parameters; Uy, is called
the ‘sampling matrix’

Ty o Tyttt Tp)
Ty o i)t Tpe)

Unxk = : . : (4.11)
Tyny ot Tyt T

2. Generate another sampling matrix of dimension N X k, Wy, called the ‘re-
sampling matrix’

Ti(N+1) o TyN+1) = Tp(N+1)
TiN+2) -+ TinN+2) 0 Tp(N+2)

Wik = : . : (4.12)

T1(2N) s Ti2N) s Tp2N)
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3. Define a matrix W}, formed by all columns of Wy, except the i column
obtained from the i** column of Uy,

TyN+1) 0 Ty ot Tp(N+1)
TiN+2) 0 Ty o Tp(N+2)
/ JR—
Wi = , (4.13)
T1(2N) s TNyttt Tp(2N)

4. Compute the model output for each set of input parameters from Uy, and
Wi« (that is to say for each row in Uy, and W}.,), to obtain two column
vectors of model outputs of dimension N: y = f(Unxk), Yr = f(Whr)-

5. The sensitivity indices are hence computed based on scalar products of the above
defined vectors of model outputs.

The applicability of the sensitivity estimates S; to a large class of functions f(X)
is linked to the possibility of evaluating the multidimensional integral associated with
these estimates via Monte Carlo methods. For a given sampling size N tending to oo
the following estimate for the mean value of the output is straightforward:

N
~ 1 .
j=1

where y@ is the model output for a sample point in the parameter space K. The
hat symbol © will be used to denote estimates.

To list the estimator for the standard Sobol’s in [Sobol, [1993], the following nota-
tion will be introduced:

N
— 1 .
V== >yl (4.15)
j=1
1 N
V. — — (/)
V= Nzyﬂ N (4.16)
7=1
1 N
Vo=~ 3 yy) (4.17)
j=1

Then we estimate the output variance by:

~

V=V-J (4.18)

Vi(E-i(Y]X3)) = Vi=Vi- ﬁ)z (4.19)
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VaE(Y|IX_ )R V=V_— [ (4.20)
and finally:
S; = Vi _VizJo (4.21)
v v
. V. V.. _f2
STizl—V:Z:1—V‘+f° (4.22)
v v

As mentioned in [Homma and Saltelli, |1996], to compensate the ‘systematic error’
in standard Sobol’s method, better estimates for the term V;(E_;(Y']X;)) is obtained
by also computing the output of the ‘re-sampling matrix’ Wy, we denote it as

Yr = f(Wyxi). We define %
1 N
2 _ L NT g0y 0)
=5 jEl Y'Yk (4.23)

then the variance estimator is chosen as:

V(B (VX)) ~ Vi = Vi= 7 (4.24)
For the same reason: R _
~ Vi i — 2
g_u_Viza (4.25)
v v
-~ ‘7—i V_i - 2
Spm 1o i (4.26)
v %

In [Saltelli, 2002], a detailed proof of the cheaper computing cost for this method
is given, and one conclusion is that by adding the computational cost of N model
runs, we can get the full set of sensitivity indices (of all orders) for half the cost of the
standard Sobol’s method [Sobol, [1993]. For the Homma-Saltelli method, to estimate
each of the k first order indices, the computing cost is N(k + 2) model runs, with N
model runs for y, N model runs for y and Nk model runs for y’,. The same reasoning
can be applied for ST;, see eqnd.26] In the next section, we propose to adapt the
Homma-Saltelli method in order to slightly improve the use of model evaluations.

4.1.3 A new method to compute Sobol’s indices

The attempt for the work is to promote the computing efficiency and convergence of
Sobol’s method, and the basic idea is to to make the sampling-resampling processing
‘smoother’ by ‘averaging’. In the Homma-Saltelli method, to compute E_;(Y|X;),
model outputs are computed for the N sampling matrix Uy, /N re-sampling matrix
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Tab. 4.1 : Sobol’s Estimator improvement, H-S: Homma-Saltelli method |[Homma and
Saltelli, 1996]- Y= f(Uka:)a Yr = f(Wka)a y/ = f(U]/ka)v le = f(W]/ka)

Variables  H-S Proposed
e /
Vi ymy;ﬁf) %(y( )y 4 YE}%;YIE]; )

2
Do

yOy  LyWyd 4 y( Ny )

Wik and for the changed ith column ‘re-sampling’ matrix (W}, ). The changed ith
column ‘sampling’ matrix Uy, can be defined and made full use of:

Ty 0 Tyw+) ottt Tp)
Ty - TyN+2) 0 Tp(2)
/ —
Unxk = : y : (4.27)
TNy -+ T;2N) st TN

We denote y' = f(Upy,)- Alternatively, y’ can also be used for £_;(Y|X;). Cor-
respondingly, when we average these two ways of computing E_;(Y|X;), then the
outer V;(E_;(Y|X;)) should be inferior, because by doing the averaging, we will get a
more ‘balanced’ simulation architecture. Thus, we obtain the proposed variant Sobol’s
estimator as shown in table/4.1]

The computing cost is mentioned as N (k+2) for the old Sobol’s method to compute
each of the k first order indices [Pagano and Ratto, 2007]. For the estimator proposed
in this paper, we make full use of the 2N samplings, just with Nk more model runs,
that is to say with the computing cost of N(2k + 2) model runs. In order to fairly
compare the efficiency of the two computing methods, we need to ensure the same
number of model evaluations. It is thus obtained if the sampling size in H-S method
and new method obey Ny_g = Npew x2(k+1)/(k + 2).

Based on this new estimator configuration in table[4.T| we now extend this method
to second order index without adding extra model evaluation computing costs.

We rewrite the definition of second order index here:

( (Y| 1) ))_%1_‘/;;2_ ( (Y| 1) ))

e V(Y] V()

— S5, =S,  (4.28)

According to eqnf4.7 and equfd.8] to compute V(E(Y|X;,,X;,)), we can use the
same sampling and re-sampling matrix as in eqnf.11] and eqn[.12] Normally, like
in eqnf4.13] and eqn[4.27) for the first order index computing, we should compute new
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matrices for second order index computing as following:

L1(N+1) [EZ.(1> {Eiu) Lp(N+1)
1 2
, L1(N+2) $i(2) $z’(2) Lp(N+2)
— 1 2
WNXk,i1i2 - (429)
Tq1(2N) $Z.§N) l’iéN) L(2N)
L1 C(ZZ.(N+1) :)Si(N+1) Lp(1)
1 2
, T1(2) JIZ.(N-s-z) xi(N+2) Lp(2)
— 1 2
UNXk,iliQ - (430)
T1(N) J}igzzv) xigzzv) Lp(N)

in which 7; and 75 are the identities of the factors involved in the second order index.
Considering factor set (X;,, X;,) as factor subset u with s = 2, then f(Wy, . .,)
equals to f(u,Vv’) in eqn.. If we use the idea of our proposed new estimator for first
order index mentioned before, the estimators should be:

Vo= %(f(UNXk)f(W]/VXk,ilig) + fWhsci) f (U sk iniy)) (4.31)
and .
Tu = E(f(UNXk)f(U]/VXk,ili2) + f(WNXk)f(W]/VXk,ilig)) (4-32)

However, if we check the matrix for first order as eqnf4.13] and equf4.27)in turn for

it" and i¥* factor respectively:

T mi(NH) :Uiu) Tp(1)
1 2
, T2 mi(N+2) :Ui(g) T(2)
UN ks = ' ? (4.33)
L1(N) xigzw) xi(QN) L (N)
L1(N+1) l‘iu) xi(N+1) Lp(N+1)
1 2
, L1(N+2) l’i(z) l'i(N+2) Lp(N+2)
WNXk,il - ! 2 (434)
T'1(2N) $Z.5N) xiéQN) Lp(2N)
T l’iu) l‘i(N+1> Tp(1)
1 2
, T2 :L’i<2) .Ti(NJrQ) Tp(2)
UN ki ' ? (4.35)
L1(N) .Q:Z.EN) 331.<22N) Lp(N)



68 4. An Efficient Computational Method for Global Sensitivity Analysis

Li(N+1) =+ CUZ.SN-&-l) xiél) st Tp(N+1)

Li(N+2) = JIZ.(N-s-z) Z‘i(z) ot Tp(N+2)
Wiy = : : (4.36)

T'1(2N) tee Ii(zN) Ii(N) s Lp(2N)

We can find that:

f(U]/VXk,il)f(W],VXk,ig) - f(UNXk)f(WJ,VXk,ilig) (4'37)
f(W]/VXk:,il)f(U]/VXk,ig) = f(WNXk)f(U]IVXk,ilig) (4-38)
f(U]IVXk:,il)f(U]/VXk,ig) = f(UNXk)f(U]IVXk,iliz) (4-39)
f(WJ/kau)f(Wleka) = f(WNXk)f(W]/VXk,ilig) (440)

The ‘equal” symbol in all the four equations means according to the Monte Carlo
procedure for Sobol’s index, both sides have the same definition of computing given
in eqn. and eqn.. Take eqn.@: for example, from the left side, matrix Wy, .,
has all the other factors ‘re-sampled’ but factor set (X;,, X;,) comparing to matrix
UNwri,» while from the right side, matrix Wy, ,, has all the other factors ‘re-
sampled” but factor set (X;,, X;,) compared to matrix Uyxy. The difference is that
from the right side, model simulation of matrix Wy, ; ;. adds extra computing cost
when we have finished the first order index computing, while for the left side, all
the matrices involved have already got the model evaluations in the first order index
computing. So actually, by taking the left sides instead of the right sides in the second
order index estimator, we can re-use the full sets of model evaluations necessary for
first order index computing to compute the second order index. As we know that the
computing cost of Sobol’s mainly comes from the model evaluations, in this ‘re-use’
strategy of numerical implementation, 2 x C? * N model evaluations can be saved, as
such to promote the computing efficiency by large.

The test result of the new method for first order index will be given in section[4.3]
Before testing the estimator, we propose a way to evaluate the convergence charac-
teristics of such type of computing methods.

4.2 Error estimation for Sobol’s method

4.2.1 Standard error, probable error

Assume function f(X) = f(z1, 29, ..., rx) under investigation is defined in the k—dimensional
random variable space, Monte Carlo method computing is applied to get the random
distribution of f(X) with N sampling points, then standard error is:

1 L 2 2
o=\ W 223 PX) = 15 (4.41)



4.2. Error estimation for Sobol's method 69

with the distribution mean value

. 1 &
fo= 5 3 40X0) (1.42)
n=1
and its variance N
V() = 3P - (1.3
n=1

In [Homma and Saltelli, [1996], the use of the probable error § corresponding to
the crude Monte Carlo method is computed like:

5f = 0.6745 x o(f) (4.44)

with the population fy having 50% chance of falling in the interval fy £ 0f5. So,
eqnd.41]is the form we adopt for the error estimate.

Before we start for the probable error estimation of .5;’s simulation result, we should
make sure that eqnf4.41] can be applied to our situation: first get the standard error of
the considered variables, then we multiply the factor 0.6745 to get the probable error,
based on the prerequisite that the variables should obey Gaussian distributions.

4.2.2 For Sobol’s formula

Error estimation is of crucial interest to check whether the SA computing has properly
converged. Moreover, it can be used to give confidence bound of the result. Previous
work as in [Homma and Saltelli, [1996] gave interesting results for error estimation,
but the conclusions are based on some restrictive assumptions:

e [t assumes that the problem under analysis is scaled before computing the vari-
ance, so that f¢ is small.

e The variance from foz is neglected based on condition 1), so the variances of 1%
and V; are replace by V and Vj respectively.

We thus perform a more comprehensive error estimation without considering these
two hypotheses.

We take the H-S Sobol’s method for this error analysis. To get the error estimation
for the new computing method proposed in Section.1.3] we simply need to replace
the estimator in table[4.1] with the improved ones, and change the denominator from
N to 2N.
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Error estimation for S;
Result 1: Approximation of the probable error for the computation of S; is given by:

5 (4.45)
~  0.6745 x 0'5;
7Y 2012 S TN
= 06M5x¢@¥)+WC@V)+2%®KXd®
V4 V3

Proof: Here we rewrite the formula for Homma-Saltelli method to compute Sobol’s
indices:

S; = (4.46)

< =
=l
\Ql\.')

Vi—vy
V= f
We need to evaluate the standard error of the four items: oV, oV, 0y? and o f,°.

According to eqn[d.41] for the definition of standard error and eqn{d.14] eqn4.16]
eqnld.15{ eqnld.23| for the computing of fy%, V;, V, and 42 respectively, then:

N
— 1 1 . )\ 2 —2
R § @Oy'ON | 7 4.4

1
N
J

Mz

oyd)] - ((22) (4.48)

ﬂ\

1

i s (4.49)

J=1

-1 1 & o1
7h= =\ 7 2 |09 - R (4:50)

J=1

ZIH

According to eq in appendix, the variance for j/’\g is:

= (o(f2) = @x foxaf) (4.51)

So: ~
o(f3) = (2 fo x 0 fo) (4.52)

and using the equfA.§ giving the variance of a sum of random variables:

oV = \/VV + Ve - 2cov(V, J/%) (4.53)
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Since V and ]/”;2 use the same set of samples, the correlation index p can be ap-
proximated to be 1 here, so:

(V. J3) = 03/Ver\ [Vig = VWi [Vig = oV () (4.54)

Then:

oV~ VP + (0(R)? - 20Vo(})
~ ‘UV—U(]%)‘

SO:

oV = ‘UV - 0(}3)’

L
I (NZ[((W)) )%l —V>

j=1

Q

— 2><ﬁ)><aﬁ)‘

Likewise, for 0S; with V; = V; —~2, and correlation coefficient of V; and 72 set to

AT |07i — 07’ (4.55)

We then use eqn{A.10|given in appendix to estimate the variables of %, but we have

the same problem to get the correlation index of ‘//\; and ‘7, and it is not 1 anymore,
because they don not share the same sample. However, to make sure that we will get
the ‘upper bound’ of the real variance, we consider the least favorable case, obtained
for a correlation of -1, that is to say: cov(V;, V) ~ —cV oV, and then:

~ U 2 A,2 )2 VAP A
55, = \/ (Vi) | ViaV)' | ViloV)(eVy) (4.56)
V2 V4 V3

according to eqnfd.44] about the relationship between probable error and standard
error,So:

55; (4.57)
~  0.6745 x 05,

AR -0 par S ONAT
= 0.6745 x \/(“Vz) L VeV VileV)(ei)

—~ ~

V4 VS



72 4. An Efficient Computational Method for Global Sensitivity Analysis

error estimation for S7T;

Result 2: Approximation of the probable error for the computation of S7T; is given
by:

—~

65T, (4.58)
~  0.6745 x 09T},

—~ 9 —~ ~ —~ ~ ~
S AT LR 3
_ O.6745><\/(0V ) VAOVE G ValoV)oVe)

% V4 Vs
Proof: As we check eqnfd.26, we can get that the error estimation for ST; is similar
as for S;, the difference is changing oV, to oV_; and changing V; to V_; in eqn.errSi,
and we can easily get that:

N
— 1 1 . N2 =2

V= —— | — [(y(a>yr(J)) ] -V, (4.59)

TR\ N 2

so as in eqn[4.55} R o
oV_i=|oV_i— o7’ (4.60)

finally:

5ST; (4.61)

~  0.6745 x 0ST;

% . 2 A2. i 2 =5 4 -~ ~ .
= 0.6745 x \/ (Vo) | VEEV)?  Voi(aV)(oVoy)
V4 V3

4.3 Computational Tests

4.3.1 Analytical functions

To demonstrate the performance of the error estimation and the efficiency of the pro-
posed method, an artificial analytical model with 3 input variables (Ishigami Function)
is considered, as in [Ishigami and Homma), [1990]:

f(X1, Xo, X3) = sinX| + asin® Xy + bX3*sin X, (4.62)
where its input probability density functions (pdf) is as follows:

—r<X;<m

X, < —morX; >m Z:1’2’3

1
pi(Xi) = { 7

from eqnf4.2] the total variance V and partial variances V; can be obtained analytically

as:
a> bt bn® 1
V=o—onout —+—+= 4.
8 * 5 + 18 + 2 (4.63)
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brt  ?r® 1
AL A R 4.64
="t 5 ) (4.64)
2
Vy = = (4.65)
8
V=0 (4.66)

In our test case, the constants in eqn4.63} [4.64], |4.65] [4.66| are given the values a =7
and b = 0.1. We use the ‘Mersenne Twister random number generator’ to get the
random sampling for the 3 input parameters.

4.3.2 error estimation test

The purpose of this test is to examine how the error estimation works in the Monte
Carlo computation of sensitivity with the comparison between the ones computed
analytically from eqnn eqnh respectlvely for (551, 5ST and those obtained by
repeating the computation of SA indices for a number of times (with different seeds

for the MT generator) are denoted by 55’:, 5@*. NbR will denote the number of
repetitions. All the data shown here are calculated using combined data from all runs.
We use the Homma-Saltelli Sobol’s estimator in this test case in order to compare the
error estimation with those obtained in the previous works in [Homma and Saltelli,

1996], denoted by 85, 69T;, .
Since the set of all .S; plus the set of all ST; give a fairly good description of the
model sensitivities, here we only give these two sets of indices for the test.

As shown in table[4.2) -\and table[d.3], we can see that the theoretical upper bound
error estimation 65“ (5STZ is  very effectlve compared to the one we computed by
numerlcal simulations (5Si , (SSTi , while it is much more accurate than the previous
work 55Z o 5S/T; . So the proposed error estimation can be a good indication to
judge the level of accuracy of the SA index computation, according to which we can
find a proper number of sampling (NbS) for SA.

4.3.3 Comparison of H-S and proposed method

We compare the Homma-Saltelli (H-S) method and the proposed new one in table[4.4]
and table[4.5| with the same model evaluation computing cost corresponding to dif-
ferent numbers of samplings as explained in Section[4.1.3] As we mentioned in sec-
tionf[d.1.3] Ny_s = Npew * 2(k + 1)/(k + 2), here k = 3 for our test case, when
Nyew = 1000, then Ny_g = 1600. We can see that, both for S; or ST}, our proposed
new method can provide more stable results, that is to say, it can get the result with
less variance, as also confirmed by our standard error estimation. This result agrees
with our expectation that the complimentary characteristic of the sampling matrix
and re-sampling matrix can help to get a more ‘balanced’ result. Other types of esti-
mators for Sobol indices exist in the literature. In a recent paper [Saltelli et al., 2010],
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Tab. 4.2 : H-S Sobol’s method for §;, same Number of Runs(NbR=100), different Numbers

of Samplings(NbS)
NbS=10
Variables  S;(exact) 6”\1 Bias 53\1‘ (5% 6§i*
X1 0.3138 0.332128893  0.018328893  0.420126891 0.64922391 0.394116208
X2 0.4424 0.576970598 0.134570598  0.441915034  0.799264515  0.459467686
X3 0 -0.047977424  0.047977424  0.368651048 0.40482392 0.329106545
NbS=100
Variables  S;(exact) §, Bias 5§i 5S/Me\f 6§i*
X1 0.3138 0.317898441 0.00409844 0.113155712 0.17496605 0.098588362
X2 0.4424 0.44332627 0.00092627 0.110788108 0.19688452 0.072259899
X3 0 0.014475517  0.014475517  0.126772756  0.129683521  0.082991208
NbS=1000
Variables S; (exact) 5/'\1 Bias &SA'i 55/'1:; 5@ *
X1 0.3138 0.31704138 0.00324138 0.035478791  0.056020475  0.029357167
X2 0.4424 0.44426211 0.00186211 0.034121285  0.062915907  0.029415413
X3 0 0.003420994  0.003420994  0.040333006  0.040555193 0.02417304

the authors compared different types of estimators for ST;, and Jansen’s [Jansen)
1999] estimator is shown to be the most efficient. It would thus be interesting to
adapt the strategy proposed in this paper to other estimators to check whether the
same convergence characteristics can be obtained.

4.4 Discussion

With the objective of an efficient computational method for sensitivity analysis of
functional-structural tree growth models, we proposed a new estimator based on
Homma-Saltelli method to compute Sobol’s indices. This new estimator can be con-
sidered as an effort to improve the efficiency of SA methods for models.

Another problem brought by this sampling-based computing strategy is to get
results as accurate as possible but with as few samples as possible. We generally lack
benchmarks to control the convergence of computing methods. Most of the time we
do not have the analytical result for the sensitivity indices. Therefore, we derived a
theoretical analysis of the error estimation for the sensitivity analysis for the class of
Sobol’s estimators (it can be applied to all the three Sobol’s estimators mentioned in
this paper). An analytical test function is used to test the error estimation, and we
obtained that the error estimation in this paper gives out a better ‘upper bound’ than
the previous works related to this problem. This error estimation directly relates to
the variance of the result, so it can also be used for checking the confidence interval,
which is usually difficult to attain.

The computation method for Sobol indices as well as the error estimation can also
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Tab. 4.3 : H-S Sobol’s method for ST;, same Number of Runs(NbR=100), different Num-
bers of Samplings(NbS)

NbS=10
Variables  ST;(exact) §i Bias 5@ 5Sﬁ:f 557\11-*
X1 0.5574 0.471006778  0.086393222  0.587139075  0.773255643  0.452078804
X2 0.4442 0.433857546  0.010342454  0.470375601 0.80001505 0.419140296
X3 0.241 0.09090012 0.15009988 0.518931875 1.04536509 0.45891867
NbS=100
Variables ST (exact) §i Bias 5§7\} &S'izf JS/CE*
X1 0.5574 0.54219821 0.01520179 0.123465946  0.21247326 0.11183428
Xo 0.4442 0.457708634  0.013508634  0.126828544  0.23284288 0.08433098
X3 0.241 0.238775324  0.002224676 0.1248745 0.26201749  0.114110644
NbS=1000
Variables ST; (exact) §i Bias égi 5Sf:f Jgi*
X1 0.5574 0.55231685  0.00508315 0.038581076  0.067597875  0.037170484
X 0.4442 0.43980209  0.00439791  0.040345109  0.076681373  0.028618586
X3 0.241 0.23869646  0.00230354  0.035262641  0.084598942  0.034681808

Tab. 4.4 : Efficiency comparison of H-S and our new Sobol’s method for S;, with
the same number of model evaluations, H-S method with Number of Sam-
plings(NbS=1600), Number of Runs(NbR=100), new method with Number of
Samplings(NbS=1000), Number of Runs(NbR=100)

H-S

Variables  S;(exact) SA‘l Bias ) ,SA'Z ) ire\f ) SA'i*
X1 0.3138 0.31533298 0.00153298 0.02799958 0.044172429  0.022979037
X2 0.4424 0.44665802 0.00425802 0.027065163  0.049959473  0.020148217
X3 0 -0.000991375  0.000991375  0.031977602  0.031926896  0.018688355
New

Variables  S;(exact) S; Bias 55, ) §Tc\f 65"
X1 0.3138 0.31298693 0.00081307 0.024947723  0.051779454 0.014254
X2 0.4424 0.44600325 0.00360325 0.024195279  0.062443818  0.014995118

X3 0 -0.000171562  0.000171562  0.028633187  0.02861765 0.01049768
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Tab. 4.5 : Efficiency comparison of H-S and our new Sobol’s method for S7;, with
the same number of model evaluations, H-S method with Number of Sam-
plings(NbS=1600), Number of Runs(NbR=100), new method with Number of
Samplings(NbS=1000), Number of Runs(NbR=100)

H-S
Variables  ST;(exact) §7\) Bias (5§ﬁ- (SS?Z-:] 6§ﬁ*
X1 0.5574 0.55433338  0.00306662  0.030524063  0.053367661  0.028061632
Xo 0.4442 0.44145391  0.00274609  0.031846525 0.060492716  0.024130443
X3 0.241 0.24447647  0.00347647  0.027831009  0.066898161 0.02334635
New
Variables  ST;(exact) S/ﬁ Bias 5§7\} JSﬁ:f 5§_ﬁ*
X1 0.5574 0.55543245  0.00196755  0.027455945  0.065578754  0.018760671
X2 0.4442 0.44419771 2.29E-06 0.028548756  0.076191397 0.01669605
X3 0.241 0.23800909  0.00299091  0.024822554  0.089599272  0.022789275

be performed with other types of random number generator which are proved to also
have an important influence on the efficiency of the algorithms [Saltelli et al., 2010],
therefore, same tests were performed with quasi-random generator [Saltelli et al., [2010]
leading to the same conclusions.



5. STRATEGY DESIGN

In the previous chapter, we present our work on the computational issue of Sobol’s
method, which is the first important issue in our thesis. In this chapter, we focus
on the second issue we proposed at the beginning of this thesis: the strategy design
of SA for FSPMs. We first give a general view of this topic in sectionfp.I We
mainly introduce the strategy design in two aspects: non-linearity assessment from
SRC method in section/5.2] and the more general methodology for full SA of complex
biophysical models in section5.3|

5.1 Introduction

A good sensitivity analysis practice does not only needs well designed SA estimators
(as in the previous chapter) but also needs good understanding of how to compre-
hensively use more than one methods to make them be complementary to each other
since different methods tackle different issues of interest. This is what we consider as
‘strategy design’.

Though pointed out in [Saltelli et al., 2004], one property of an ideal sensitivity
analysis method is that it should be ‘model independent’, which means a method
should work regardless of the attributes of the model itself like additive, linear, etc.
However, the strategy design is necessary in our work of sensitivity analysis for FSPMs.
More work needs to be done for exploring how global sensitivity analysis can help in
the parameterization of FSPM, by quantifying the driving forces of the phenomena
described by the models and the relative importance of the described biophysical
processes regarding the outputs of interest.

As we have mentioned in the performance steps of SA in section[3.6] the strategy
design includes:

e To choose a proper sensitivity analysis method to fulfill different aims.

e To combine more than one SA method in order to make best use of each method’s
advantages and to make them complementary to each other.

For the first type of issue, in Chapter3| we have already recalled that:

e Basically we can choose between local methods and global methods. Local meth-
ods cannot include the effect of the shape of the density functions of the inputs,
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and they are not model independent but they are really computationally cheap.
Global approaches estimate the effect on the output of a factor keeping all the
others varying. Generally, global approaches use model independent methods
and do not require assumptions of additively or linearity. As a drawback, they
are usually computationally expensive |[Cariboni et al., [2007]. So it depends on
our knowledge about the properties of the model and the computing cost we can
afford.

The Standardized Regression Coefficients (SRCs) can be viewed as an interest-
ing trade off between local and global method, regarding the advantages and
shortcomings of both: the accuracy of the analysis and the computing cost.
The determination coefficient computed by SRCs can be used in non-linearity
assessment for models.

Alternatively, to fulfill our aim of ‘Factor Prioritization setting’ and ‘Factor
Fixing setting’ in our SA for FSPMs, we can choose Sobol’s method to get
the first order index of S; and total order index ST;. Moreover, with Sobol’s
method, we can get the quantitative parameter interaction evaluation based on
the variance decomposition by S;;. For a given factor X;, the value of first-order
Sobol’s index S; indicates that whether a factor is mainly influent, while an
important difference between ST; (Total order effect) and S; flags an important
role of interactions for that factor in output y(¢). In this case, inspection of the
second order index S;; for all ¢ # j will allow us to identify which factor X;
interacts with.

The group indices given in section.: 5%, ST§. are useful when our objective
is to analyze the effect of a subset of factor (usually factors from one module
or sub-model in the whole model) to the output variance, and the difference
ST&_ - S(gzi means the interactions of the set of factors with those that do not
belong to the set. ngij specifically indicate the interactions between two subsets
of factors.

Complex biological models are uaually characterized by several interacting pro-

cesses with sub-models describing each of them. Most FSPMs are such models. It is
interesting to evaluate the importance of the sub-models (usually ‘function’ modules
corresponding to the biophysical processes they describe) by sensitivity analysis. For
this objective, in practice we need to firstly classify the parameters into different bio-
logical function modules according to the biologist modeller’s expert knowledge, then
to check the joint sensitivity effects of the groups of parameters that belong to those
modules. This is how ‘module-by-module’ analysis for complex biophysical system is
put forward. The strategy design should be divided into several steps for which we
choose different SA methods to fulfill different requirements.

The choice of a proper sensitivity analysis method to fulfill different aims of dif-

ferent sub-steps of the analysis faces the same SA general issues as mentioned before.
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However, module-by-module analysis requires us to make the combination of more
than one SA method in order to make best use of each method’s advantages and to
make them complementary to each other. We will propose a module by module anal-
ysis for complex FSPMs inspired by the strategy in [Ruget et al., [2002] in sections.3]

5.2 Standardized Regression Coefficients (SRC) method and
non-linearity assessment

Plants are known as complex systems with a strong level of interactions and compen-
sations, and one of the aims of FSPMs is to describe and understand this complexity.
As such, non-linearity is expected to play a key role in the study. The knowledge of
the intrinsic non-linearity of the model and of its dynamic evolution throughout plant
growth is very useful for the study of model behavior and properties, to underline the
occurrence of particular biological phenomena or to improve the statistical analysis
when confronting models to experimental data (e.g. statistical properties of estimators
or numerical methods to compute the propagation of errors [Julier et al., [2000]).

As detailed in Chapter 3] the Standardized Regression Coefficients method is based
on a global linear approximation of the model. It provides the model coefficient
of determination R?, which represents the fraction of the output variance explained
by the linear regression model itself. When R? = 1, the system is linear and the
SRCs can totally explain the variance of the output affected by each factor. Even
when models are moderately non-linear (i.e. R?>0.9), the SRCs can provide valid
qualitative information. When it gets small, the SRCs are no longer reliable sensitivity
representations. To be more direct, we call this model coefficient of determination
linearity index, and use it to assess the non-linearity of the model.

The objective of this section is thus to explore the level of linearity of the 3 FSPMs
introduced in Chapter2] which have different levels of complexity, and infer in each
case what information can be drawn from this analysis.

We recall here generally the three FSPMs involved in this work. Firstly a simple
source-sink model of maize growth, which is used to specifically study the process of
carbon(C) allocation among expanding organs during plant growth, with simple plant
structure, multi-stage and detailed observations, secondly the GreenLab model of tree
growth (applied to poplar tree) characterized by the retroaction of plant functioning
on its organogenesis [Mathieu et al., 2008], which describes tree structural plasticity in
response to trophic competition, lastly a functional-structural model, NEMA [Berth-
eloot et al.; 2011a], describing C and nitrogen (N) acquisition by a wheat plant as well
as C and N distributions between plant organs after flowering.

In this study, we follow dynamically the linearity index throughout plant growth.
In the models of the GreenLab type, the output of interest for the SA is the biomass
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production at each GC, and in the NEMA model, grain dry mass, grain N mass and
root N uptake are considered.

The linearity analysis for the biomass production for GreenLab Maize is given in
fig/5.1lb. A non-linear period is denoted by the minimum around GC17. It is a key
step in terms of biophysical processes corresponding to the transition between two
allocation phases, the first one corresponding mostly to leaf area increase and the
second one to grain filling (as illustrated by ﬁg..a showing the biomass allocation
to each type of organ).

For the poplar tree model with retroaction of functioning on organogenesis, fig[5.2la
shows the evolution of the ratio for biomass production to organs’ demand which
is the key variable controlling tree organogenesis. The linearity index is shown in
fig[5.2]b. The initial states show high linearity indices, but these decrease rapidly with
the increasing influence of the trophic competition on organogenesis, particularly the
appearance of the first branch at growth cycle 5. The linearity index stabilizes at
around 0.5, which is quite low, showing the importance of retroaction in the dynamic
system.

For the model of C-N dynamics (NEMA), the evolutions of the linearity indices
for N mass of the grains, their dry mass and the rate of root N uptake are shown in
fig/5.3] If the model is highly linear for the grain dry mass fig[5.3]a, it is not the case
for grain Nitrogen mass fig]5.3]b. For N uptake by root figJ5.3]c, the evolution of the
linearity index is hierachical with a low level of linearity. It seems reasonable when we
consider the complex driving forces for N uptake in the model, involving the function
of the nitrate concentration in the soil modulated by positive and negative feedbacks
of respectively C and N in the plant, on root activity.

Considering the dynamic evolution of the linearity index throughout plant growth
may reveal phases during which linearity is very high, probably showing some stable
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behavior for which the experimental process for parameter estimation could be lighter.
On the contrary, the analysis may show evidence of some moments when a strong
non-linearity occurs. Such moments may be characteristic of very specific biological
phenomena during plant growth as well as the high level of interactions between
parameters, either known by the modeler or unknown, in which case they should
probably be investigated more. For non-linear phases, a special care should be taken
of with respect to the frequency and details of experimental measures.

For example, since the parametric estimation of GreenLab by model inversion
relies on multi-stage observations, the information given by the linearity analysis can
be taken advantage of. For maize, it is important to have detailed and frequent
observations between cycles 14 and 20, while the measurements can be lighter after
cycle 20. For the poplar tree model, the high level of non-linearity is coupled with the
difficulty to get regular observation data (due to the time scale and the inventment
level of experiments). The linearity analysis should thus be coupled with a full SA to
help us define a proper strategy for parameter estimation: for example, in two steps as
proposed by [Letort et al., |2008a] first consider the observed topology as fixed to get
the functional parameters, and then estimate the parameters driving the retroaction
of functioning on organogenesis.

For complex bio-physical models like NEMA, we expect a strong genetic determi-
nant of model parameters. One of the interests of assessing the level of model linearity
is that non-linear phases are characterized by a high level of interactions between pa-
rameters. When model parameters are genetic, understanding and quantifying this in-
teraction is crucial in the objective of using plant models as an intermediate to develop
a predictive capacity from genotype to phenotype [Hammer et al., [2006; Buck-Sorlin
and Bachmann|, 2000] and design ideotypes. If a parameter has little interaction with
others, we can directly concentrate on this trait for the design of ideotypes |Qi et al.|
2010]. If the interaction is strong, it is more complex. If the parameters are strongly
genetically related (determination by the same genes), the model parameterization
should be improved to take into account this fundamental interaction. If they are
not genetically related, breeding strategy should rely on multi-dimensional optimiza-
tion to handle the interacting processes. The next objective of our study is thus to
use Sobol’s method [Sobol, 1993] to explore the interactions between processes and
parameters for this model.

5.3 A methodology for complex biophysical models

Complex biological models are usually characterized by sub-models describing several
interacting processes respectively. Most FSPMs are such models. It is interesting to
evaluate the importance of the sub-models (usually ‘function” modules corresponding
to the biophysical processes they describe) by sensitivity analysis. For the objective,
in practice we need to firstly classify the parameters into different biological function
modules according to the biologist modeller’s expert knowledge, then to check the joint
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sensitivity effects of the groups of parameters that belong to those modules. This is
how ‘module-by-module’ analysis for complex biophysical system is put forward. The
strategy design should be divided into several steps for which we choose different SA
methods to fulfill different requirements.

Our proposed methodology for module by module analysis is inspired by |[Ruget
et al., 2002], in which analysis was made in two steps: first, within each meta-process
(module), the most important parameters are identified; then sensitivity to identified
parameters is calculated taking into account together all meta-processes. A certain
number of parameters (according to empirical information) are selected from each
module for the analysis. The influence of parameters inside their own modules was
studied through response surface methodology, in order to give sensitivity values link-
ing outputs and parameters and to choose the most representative parameter of each
module to use in the intermodule analysis. To do the internal analysis of each module,
they sampled the parameters selected for this module according to their distributions
while fixing the parameters in all the other modules to their mean values, then the
parameter samples are used for the regression surface functions to resolve the indices.
Afterwards, they did the internal modules analysis: using response surface method
with all the parameters selected from each module in the previous step.

However, there are several drawbacks for this strategy:

e There are a lot of limitations for using the regression method. First, strict
requirements have to be fulfilled for the model functions like linear, additive, or
for surface response, the model has to be a continuous system, for FSPMs this
requirement can not always be satisfied. Besides, only second order ‘interaction’
has been found in [Ruget et al., [2002]. The higher order regression for getting
the group interactions from more than two parameters is also a difficult issue
for the surface response method.

e Usually, ‘a certain number of parameters (according to empirical information)
are selected from each module for the inter-module analysis’. It is risky to rely
on such empirical information that may be misleading afterwards, especially
regarding the parameter space issue. There may be some parameters missed at
this step, like the ones that have important effect on the output, for example,
through interactions with the others. And since each module mostly tends to
have different importance in the model, if we decide empirically the number of
parameters selected for each module, it may cause that for some modules we
select not enough parameters and for some modules we select too many. This
decision directly affects the importance evaluation in the final step. So we need
a quantitative standard to choose the proper number of parameters from each
module, even though in the internal analysis of each module, the results we get
should be given in a unified framework to be comparable. With regard to this,
it corresponds to keeping the same sampling space while doing the Monte Carlo
simulations.
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Fig. 5.4 : Mesh grid 3 dimension parameter space. All the samplings for X and Y obey
uniform distribution in [0,1], while fixating Z to its mean value 0.5.

e To consider parameters only in one module, while fixing the other parameters
to their mean values, the SA indices obtained this way can not stand for the
importance of the parameters in the complete space, but to a surface formed
by the fixed values of the parameters in the space. Take the model with the 3
dimension parameter space for example, as shown in fig[5.4] all the samplings for
X and Y follow a uniform distribution in [0,1], while fixing Z to its mean value
0.5, the sampling parameter space is not the cube anymore, it is restricted to the
surface given by the function Z = 0.5. In addition, by fixing the parameters in
the other modules, the interactions between parameters from different modules
will be eliminated even though it may prove to be important.

To make all steps of this ‘module by module analysis’ more quantitatively precise,
we worked out a strategy specifically suitable to the characteristics of FSPMs. It is a
procedure that combines both SRC and Sobol’s method, so that both the advantages
of SRC’s computing efficiency and Sobol’s quantitative analysis can be used.

Stepl: Non-linearity study with SRC  As we mentioned in section[3.5.2] we first
adopt the SRC for our analysis. This step does not concern any module division
issues, because we took into account all the parameters with the uncertainties in the
analysis. Since it is based on linear regression, computing cost is not a problem for us
to get the first approximate overview of the SA for all the parameters. It is necessary
for us to know the information of the basic non-linearity evolving by time step for the
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model, so that we can make an analysis decision qualified by the SRC result for the
next step. And it also helps for checking the basic ranking of the parameters. Though
SRC does not necessarily give out the precisely ‘correct’ ranking of the parameters
especially for the system with low linearity, normally the first overview given by SRC
could be a general background information for the model.

Step2: Group analysis Our objective at this step is to compute the sensitivity
indices of the total set of parameters corresponding to each module of the model. First
we need to make a partition of the parameters with uncertainty, so that each subset
in the partition corresponds to one biological function module of our model. Then we
compute the group indices: S, ST¢ , Sg, - and the difference ST — S, as defined in
section[3.5.2] As far as numerical computing is concerned, we use the similar matrix
definition from section, except when we configure the matrix Uy, and W},
we exchange the corresponding multi-columns of Wy, and Upnyr with the column

identity of iy, 19, - ,1s, where the set of parameter identities {i,2, -+ ,is} includes
all the parameters belong to the module under analysis. We rewrite the matrix here:
Ty 0 Ty ot TR
Ty - Ty o Tp@)
UNXk - . . . 3
i xl(N) ‘ri(N) J:k(N)
TNy cor Tyna) 0t Tp(N4)
Tin42) 0 TypNv+2) 00 Tp(N+2)
WNXk = . . . )
L1(2N) s Ty2N) o Tp(2N)
Ty - l’l.gN-H) xi(2N+1) tee CL’Z.gNH) o Tp()
, B HATC) I CL’Z.gN-s-z) xi(2N+2) cee l’igN-s-z) ot Tp2
Nxk . . . )
TNy o Ii(lzzv) xngN) cee Iigzzv) st TN
Ty(N+1) = ZEi(l) ZL’Z.(l) cee ZL’i(l) st Tp(N+Y)
1 2 s
Tyv+2)y = T.(2) T2 -+ T2 - TpN+2)
! . Zl 7,2 s
Nxk—
Li@2N) = Ii(zv) IZ.(N) cee xi(zv) o Tp2N)
1 2 s

Based on those four matrices and the method in section@, we obtained the Sf’zi,
STg, for each module and S = for each pair of modules. To distinguish from the
sensitivity index of one parameter, we use a superscript ‘g’ to identify the index of
one group (one module) in this step. The computing cost for this step is not so heavy
because there are 5 modules which is much fewer than the number of parameters,
with the sampling number N, the model evaluations we need here is 2N (k + 1) with
k = 5. There are several small steps that relate to how to use the different SA index
generated by Sobol’s method to complete our analysis aims:

e Ranking module’s importance given by Ss%i- Different function modules may
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dominate different main biological processes at different stages. This group
analysis can help us to know the main biological process in plant growth stages.
By this step, the general scheme of the sensitivity distribution among modules
is given. It is necessary to know the percentage of the first order sensitivity each
module takes from the whole model, because it is the background information
of the next step which provids us a quantitative clue for screening parameters.

Identifying the intermodule interactions by computing the difference between
ST§. and S§ for each module. It helps us to locate where the main interactions
exist, and to which extend a module can be studied independently from the
other modules.

Identifying the interactions from pairs of modules by Sé’)i],. It is the specified
information about the interactions inter-modules, so that it indicate us the in-
teractions between biological processes.

Step3: Internal module analysis  The main aim of this step is to identify the
most sensitive parameters in each specific module quantitatively. On one hand we
need to consider each module separately, on the other hand, it is necessary for us to
keep one common analysis framework for all the modules, so that the quantitative
comparison can be possible between modules. So here we choose to make the analysis
with the same sampling points in the same sampling space to make the variance for
each module analysis to be the same. We stick to the improved Sobol’s mentioned in
section[4.1.3] to make the analysis. We rewrite the four matrices used here to make
the basis of the two analysis basis clear:

Ty -0 Ty ot Tp)
Ty 0 Ty o Tp(@)
UN><k =
i xl(N) ‘ri(N) J:k(N)
TNyt Tynpa) 0 Tp(N4)
Tin42) 0 TypN+2) 0 Tp(N+2)
Wka = . .
L1(2N) s Ty2N) o Tp(2N)
‘/L‘l(l) . e xi$+1) PR xk(l)
, $1(2) . e xi%\,+2) “ e xk<2)
Nxk—
TNy o :L’i(zN) ot TN
m
Ty(N+1) = J)i(l) st Tp(N+D)
, Ty(N+2) = .Clil.(g) s Tp(N+2)
Wka =
T{(2N) cee $i£)11V) s TpeN)

In matrices U),, and Wy, the parameter identity i,, means any item in the param-
eters’ identity set {iy, 2, - , s} corresponding to the module we focus on. So actually
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for each module analysis, we used the same sampling and re-sampling matrix: Uy
and Wi, in this case, the output variance would be the same for all the modules,
and the sum of the variance from each module would be equal to the one obtained for
the Sobol’s analysis for the overall model based on the same Uy and Wiyp.

One side advantage is that every module analysis shares the same 2N model eval-
uations of Uy, and Wy, and we simply add the model evaluations for their re-
spective Uy, and Wy .. For example, if we have r modules, and ky, ko, -, k,
are the numbers of parameters for each module, k; + ko + --- + k. = k, k is the
total number of parameters with uncertainty for the computed model. Using the
improved Sobol’s method in section[d.1.3] if we use the strategy in [Ruget et all
2002|, the computing cost would be 2N (ky + 1) + 2N (ke + 1) +--- + 2N (k, + 1) =
2N (k1 +ko+---+k.)+2Nr = 2N (K +7r), instead in our strategy, the computing cost
would be 2N +2Nky +2Nko+---+ 2Nk, =2N(1+ky + ko +---+k,) =2N(K +1),
it can save 2N (r — 1) model evaluations, the most important point is that it keeps
all the independent module analysis being comparable by keeping them in the same
parameter space.

In fact the computing cost for module by module analysis in our strategy is the
same if we make the analysis of the overall model. So why do not we just do the
overall model analysis? Why bother to do this ‘module by module analysis’? Firstly
in |Cariboni et al. 2007], the author pointed out that the choice of most suitable
technique for sensitivity analysis depends on the number of factors of the model and on
the CPU time required to run it. As we cut the whole set of factors into several groups
for the model, for each module when we do the SA, the number of factors is more
appropriate for variance based technique which Sobol’s method belongs to. Secondly
it helps to get the analysis objectives more clearly, especially with the complex model
with large number of parameters. And indeed for the computing cost, to compute
separately module by module or all modules together have the same cost. But by
combining the result of module by module analysis and group analysis, we can save a
lot of higher order SA index computing cost.

e In section3.5.2] we have mentioned that the total sensitivity index ST; is used
for screening parameters: when ST; &~ 0 parameter X; can be screened from the
parameters with uncertainty, which means that the variance of this ith parameter
brings for the output can be ignored. So the module by module analysis in this
step, we first check the index ST; to screen the ignorable parameters in each
module. Based on this strategy, the different indices obtained in the different
modules can be compared together. Then ST; is the quantitative standard to
pick the most important parameters from each module.

e The comparable results of all the modules provide a quantitative standard to
give the percentage of the variance explained by the selected parameters more
precisely.

e Comprehensively consider the result in step 2 ‘group analysis’: if we compute
the sum of each S; from step3 for the parameters in the module, and get the
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Fig. 5.5 : ST&, for one module decomposition scheme. a.The sum of all the S; for the
parameters from one module in Step 3, b.ngi for the module minus a, intra-
module interactions from step 2, C.STgi minus ngi for one module, inter-module
interactions in step 2

difference of it with the ngi (the first order sensitivity of each parameter plus
the interactions between them within the module), for the corresponding module
we will get the inner module interactions, which means the interactions between
the parameters only in the module. Moreover as we mentioned in step 2, the
difference between ST, and S§ for one module stands for the interactions of the
module to the others. These three parts: a. The sum of each S; from step3 for
the module, b. S for the module minus a, c. ST minus S for one module,
composite the ST of one module as shown in ﬁg.

Step4: Overall model analysis  To make a complete sensitivity analysis with the
selected parameters by the steps before. It is a ‘loop’ back to the general SA practice
steps we presented in section[3.6] except that the decision for the input factors has
been made.

5.4 Processing for functional output case

As we mentioned before, functional-structural plant models are dynamic models and
the output of interest evolve with time. Screening methods in sensitivity analysis gen-
erally consider the case that the output is scalar. Although SA could be performed
separately at each time step for FSPMs, in the case of dynamic crop models, simu-
lations are usually computed at a daily time step and the sequential implementation
of global sensitivity analysis at each simulation date can result in several hundreds of
sensitivity indices, with one index per parameter per simulation date. It is not easy
to identify the most important parameters based on such a large number of values.
Moreover, this technique has the disadvantage of introducing a high level of redun-
dancy because of the strong correlations between responses from one time step to the
next one. Likewise, intuitively, to screen one parameter, the requirement should be
that the sensitivity response curve is always near zero at all time steps, which is rarely
the case in our analysis. We therefore devise a methodology to deal with the screening
of the parameters in this dynamic context.



5.4. Processing for functional output case 89

ModuleDMfluxes_OQutputTotalAreaGreen

0.0

0 200 400 600 800 1000

Thermal time after flowering (°Cd)

Fig. 5.6 : NEMA: S; for 35 parameters in module dry mass fluxes (DMflux), with output
of total green area (AreaGreenTotal).

We use here a unitary concept based on the processing of averaging across time.
Some parameters may have the biggest sensitivity indices at some stages for which
the output variance is negligible. For this reason, with an averaging process, we weigh
the sensitivity indices with the output variance at time t. In this way, we select the
parameters that not only have the most important sensitivity at certain time steps,
but also indicate the duration of this effect. We show a result for one module in NEMA
model as example, see fig5.0] and fig[5.7, There are 35 curves of parameter indices
in figf5.6] and few are close to zero through the whole time period, but if we check
the output variance through time, we will see that until thermal time 450°Cd, the
total variance is very small, which means that the parameters dominating this period
should be considered differently from the one dominating the period afterwards.

As such, we define a unitary index for each curve describing the first order and
total order sensitivity averaging through time, and we call it ‘Time Generalized Index
(TGI)’ for parameter with identity i:

TGIS; = > VY (1))Si()

—— (5.1)
2= V(Y (?))
2= VY (1)

T is the total number of time steps, V(Y (¢)) means the output variance at time
step t, S;(t) and ST;(t) means the sensitivity indices evolving with time ¢.
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Fig. 5.7 : NEMA: Total variance of output, for 35 parameters in module dry mass fluxes
(DMflux), with output of total green area (AreaGreenTotal).

TGI1S; and TGIST; are convex combinations of S;(¢) (1 <t < T') so that the same
properties as classical .S; remain the same. For example, if the model is linear, for all
the parameters:

> TGIS; =1 (5.3)

- L V®) e o
TGIST, TG]SZ_EtTﬂV(Y(t))(STZ(t) Si(t)) (5.4)

so it is characteristic of the total level of interaction for parameters.

The TGI helps us to simplify the screening processing, and at the same time,
consider the evolution of the index with time, in order to guarantee that the generalized
index we get can reflect the overall effect of the index on the output.

There has been other works that dealt with this issue. In [Ruget et al., 2002], the
author calculated the average slope of the curve representing the output variable in
relation to the modified input parameters. In [Campbell et al., 2006], the author used
a principal component analysis of output temporal curves, then compute sensitivity
indices of each input on each principal component coefficient; in |[Lamboni et al.
2011] they developed the multivariate global sensitivity analysis method. It allows to
aggregate the different sensitivity indices of the principal component coefficients in
a unique index, called the generalized sensitivity index. Each generalized sensitivity
index explains the influence of the corresponding input on the overall output curve
variability. A comparison with these methods is currently under study.



5.5. Concluding remarks and discussions 91

5.5 Concluding remarks and discussions

The objective of this study is to explore how global sensitivity analysis (SA) can help
the design of complex models in two aspects:

e To choose proper sensitivity analysis method to fulfill different aims.

e To combine more than one SA method in order to make best use of each method’s
advantages and to make them be complementary to each other.

For the first aspect, we specially presented the SRC method and non-linearity
assessment to investigate the intrinsic non-linearity of the model and of its dynamic
evolution throughout plant growth, thus to study model behavior and properties, to
underline the occurrence of particular biological phenomena and hopefully, to improve
the statistical analysis when confronting models to experimental data.

For the second aspect, we developed a methodology for complex biophysical mod-
els: module by module analysis inspired by [Ruget et al., [2002]. In contrast with
previous types of module by module analysis, we proposed a more reliable and effec-
tive strategy of use:

e First, linearity analysis gives us the non-linearity stage information of the over-
all model. This preliminary information is also useful to adapt the following
strategy accordingly.

e Second, group analysis provides the evolution of module importance qulw and
help us check inter-module interactions by ST{ — S§ and SS%U.

e Thirdly, based on the same sampling points, we run the SA module by module,
in order to provide index ST; of each parameter for screening. It is the basic
index for screening procedure but not the only standard. The question of how
many parameters should be selected is decided by comprehensively considering
the results of the first and second steps. Moreover, by analyzing the compo-
sition of ST , we get to know the intra-module and inter-module interaction
quantitatively.

e Finally, we run the SA for the overall model with the parameters selected module
by module and check the parameter sensitivity indices for the overall model.

Conducted simulations using Sobol’s method and an efficient computation tech-
nique derived from [Wu et al.,2011] will be presented in Chapter, and several outputs
of interest are considered specially for NEMA to check how parameter effects change
with the the outputs of interest.

Moreover, since we consider a dynamic system, the evolution of the sensitivity
indices is computed. And when it is related to parameter screening, we proposed
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a time averaging index called TGI to reduce the time dimension of the sensitivity
indices. Though it has not been strictly proven to be valid, it worked very well for
our application. Still it is interesting to try the method in [Campbell et al., 2006] and
[Lamboni et al. [2011] based on principal component analysis to see which method is
more effective and reliable.

Other methods of SA for screening for complex models can also be used, like Morris.
There are references using the combination of Morris method and Sobol’s method for
the analysis of complex models. Though improved by [Campolongo and Braddockl,
1999] and [Cropp and Braddockl, 2002], Morris method can only compute indices up to
second order and there are two indices for one parameter: p which assesses the overall
influence of the factor on the output and o which estimate the ensemble of the factor’s
higher order effect [Campolongo et al.; 2007]. Though it has the advantage that it
can get the coarse screening conclusion with a lower cost of model evaluations, the
two indices for one parameter make it not so convenient to draw overall conclusions.
Since the computing efficiency problem of Sobol’s method got improved the estimator
and hopefully by parallel computing, the Sobol’s method remains the most interesting
for us. That is the reason why we tried to devise a strategy to make full use of its
advantage like ST;, that can help to avoid higher order index computing and to get
the interaction information for parameters. If we can get over the problem of time-
consuming model evaluation, the real convenience of Sobol’s method especially for
quantitative analysis is obvious. In some situation, it might however be necessary to
resort to Morris method.

What we have devised here is our practice for FSPM. It would be interesting to
study how this method can be generalized to other types of complex systems, like
industrial ones |Zio, [2009].
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6.1 Background and objectives

In the plant growth modelling community, many models have been developed fol-
lowing different formalisms to understand plant growth and physiology. Several plant
modelling platforms have been proposed with the objective to ease the development of
methods, with bricks (organogenesis, radiosity module to compute light interception,
graphical tools, etc.) that can be combined.

e L-studio [Feder] and Prusinkiewicz, |1999] and GroIMP |[Hemmerling et al., [2008]
offer integrated environment to develop new models: based on sophisticated for-
malisms and providing the 3D-geometric classes for modelling and visualization.

e OpenAlea [Pradal et al., [2008] is an open source project for plant research. Tt
is developed with Python libraries and tools in plant architecture modelling.
OpenAlea includes modules to analyse, visualize and model the functioning and
growth of plant architecture.

These platforms allow the simulation of models but do not provide enough statis-
tical tools for their analysis and evaluation, thought GroIMP does provide a range of
basic statistical tools applicable to simulated and imported measured structures still
it does not have the tools for sensitivity analysis. On the other hand, there are also
a lot of excellent platforms for sensitivity analysis of generic models like R package
FME [Team, 2009], Open TURNS [Andrianov et al., 2007], SimLab [Saltelli et al.
2004, etc.

The R package ‘Sensitivity’ implements sensitivity analysis methods: linear and
monotonic sensitivity analysis (SRC, PCC, SRRC, PRCC), the screening method
of Morris, and non-linear global sensitivity analysis (the Sobol indices, the FAST
method). The functions of this package generate the design of experiments (depend-
ing on the method of analysis) and compute the sensitivity indices based on the model
inputs and outputs. All sensitivity indices can be estimated with the bootstrap tech-
nique which allows to estimate the bias, and basic bootstrap confidence intervals. Text
and graphical outputs display the results of the analysis. [1]

Lhttp://cran.r-project.org/web/packages/sensitivity/index.html
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Open TURNS E] is a Unix/Linux software, for Treatment of Uncertainty, Risk’N
Statistics in a structured industrial approach. It has three main components :a scien-
tific C++ library including an internal data model and algorithms dedicated to the
treatment of uncertainty; an independent application with a graphical user interface;
a python module with high level operators in the probabilistic and statistical field.
The targeted users are here research centers and the academic community.

SimLab [J|is a didactical software designed for Monte Carlo based uncertainty and
sensitivity analysis. It is a professional tool for model developers to learn and use
global uncertainty and sensitivity analysis techniques. Especially SimLab 3 supports
a set of coding environments such as C, C++, Matlab and Fortran.

The softwares for plant growth mostly focus on the implementation and develop-
ment of plant growth modelling, but rarely on tools for model evaluation, especially for
sensitivity analysis. The mentioned platforms for sensitivity analysis are not specifi-
cally designed for plant or biological models.

Digiplant |[Cournede et all 2006; (Cournede et al., [2011] is a first step towards
integrating the plant growth models development and model evaluation with para-
metric identification on real experimental data. It is a quite flexible and efficient tool.
It has been used for parameter estimation of maize, sugar beet, sunflower, tomato,
grapevine, rice, etc. It provides powerful estimation tools, but has strong limitations
since it is restricted to the GreenLab model.

An objective of the Digiplante team is to develop models of plant growth in in-
teraction with the environment, to improve their predictive capacity, and to compare
different models. Thus, it is of great interest to integrate the models within a gen-
eral platform providing the evaluation and analysis tools. On the platform, the users
develop models in the specific language grammar in order to plug them into the simula-
tion kernel: all mathematical tools relating to model design like parameter estimation,
sensitivity and uncertainty analysis can be shared for every model. PyGMAlion (A
platform for "Plant Growth Models’ Analysis and Identification”) is developed based
on this objective.

6.2 PyGMAlion
We recall here the steps of model design as detailed in section[2.2}

1. The conceptual model (mental work): identifying a system, state variables, in-
puts; writing the different state equations involving model parameters

2http://www.openturns.org/
3 Simlab (2011) Software package for uncertainty and sensitivity analysis. Joint Research Centre
of the European Commission. Downloadable for free at: http://simlab. jrc.ec.europa.eu
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2. Numerical implementation: giving values to inputs, parameters and running
model simulations

3. Mathematical analysis: behavior, limits, stability; parametric sensitivity analy-
sis

4. Parameter identification and model evaluation: ‘fitting’ experimental data; es-
timate the model parameters from experimental data; estimate uncertainty of
the estimated parameters; predictive capacity

5. Model comparison and model selection: computing some information criteria to
compare models

PyGMAlion is a C++ template based framework which embeds the routines for:

e Numerical implementation of models
e Parameter estimation
e Sensitivity and uncertainty analysis

e Model comparison and selection

Thus PyGMAlion is a platform that concerns most steps of the modelling process.
For modelling methodology study, the different mathematic tools can be reused under
the same implementation scheme for different models. From a methodology point of
view, it can be figured out whether the algorithm can be applied to all types of models
or must be adapted for some models with special characteristics. From a modelling
point of view, the integration of the same methodology with different models makes it
possible to compare their performances in order to evaluate how well the models can
achieve our modelling aims like predictive capacity, or the robustness.

6.3 Implementation in PyGMAlion

For plant growth models, we often describe the model as discrete dynamic systems or
with discretized processes of a continuous dynamic system:

Xpi1 = Fo(Xn, Un, P) (6.1)

In which: X, is the vector of state variables (e.g. in GreenLab it stands for masses
of plant components), F,, gives the biophysical laws (e.g. the biomass production and
distribution of the organs, the photosynthesis formalism, etc.); P stands for the model
parameters which are often of genetic origin; U, is the control variables, which are
often environmental conditions like soil water and nitrogen contents, temperature, etc.

In PyGMAlion, a model is implemented as a Class Template Reference:
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PGMA : : Model <StateClass, ParameterClass, EnvironmentClass>

which means that to define a model, you “simply” need:

e to define the 3 classes StateClass, ParameterClass, EnvironmentClass

e to implement a state function describing how to compute X (n + 1) from X (n)

as in eqnf6.1]

We provide a simple example for an equation of the Lotka-Volterra family to
demonstrate how to implement a model in PyGMAlion. The Lotka-Volterra equa-
tions, also known as the predator-prey equations, are a pair of first order, non-linear,
differential equations frequently used to describe the dynamics of biological systems
in which two species interact, a predator and its prey. They evolve in time according
to the pair of equations:

X(n+1)=X(n)+ (aX(n) —bX(n)Y(n))E (6.2)

Y(n+1)=Y(n)—(cY(n)+dX(n)Y(n))E (6.3)

where X is population of preys, Y is the population of predators, n is the time step,
a, b, ¢, d are the parameters representing the interaction of the two species, and E is
ecological environmental factor.

StateClass:

struct LVState
{
double X;
double Y;
LVState ()
{
X =
Y =

_ e
o O

ParameterClass:

struct LVParameters

{
double a;
double b;
double c;
double d;

LVParameters ()
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{
a = 0.1;
b = 0.02;
c = 0.15;
d = 0.03;
+
}
EnvironmentClass:

struct LVEnvironment

{
double E;

LVEnvironment ()

State function (the body of model):

class LVModel: public PGMA::Model<LVState, LVParameters,
LVEnvironment >

{
LVModel () ;
LVState * nextState (PGMA::StatelList<LVState> & list,
const LVParameters & p, const LVEnvironment &env)
{
const LVState & Xn(list.last());
LVState * Xnplusl = new LVState;
Xnplusl->X = (p.a+1)*Xn.X*env.E - p.b*Xn.X*Xn.Yx*
env.E;
Xnplusl1->Y = (-p.c+1)*Xn.Y*env.E + p.d*Xn.X*Xn.Yx*
env.E;
return Xnplusi;
s
s

Beside State, Parameters, Environment, and Model, there exist two other fun-
damental objects: Observer and ObservationList. Observer is a mechanism to save
values or function of State variables during a Simulation. Observer will only be trig-
gered thanks to a Timeline. ObservationList can be understood as a Database in
which we will save these informations.
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An Observer needs a State to Observe and an Observation to save the values
through observerFnc().

class MyObserver: public pgma::0bserver<MyState,
MyParameters>

{

}s

6.4

MyObserver () :pgma: :0bserver <MyState ,MyParameters > ("
MyObserver ") {}

void observeFnc(const MyState & state, const
MyParameters & parameters, Observation & obs)
{
obs.add(state.X, "X");
obs.add(state.Y, "Y");

Sensitivity analysis in PyGMAlion

As we know, sensitivity analysis is processed in several steps:

In the first step, we select an appropriate distribution for the input factors.
These selected distributions will be used in the next step in samplers to generate
random values for the input factors.

In the second step, a set of points is generated in the parameter space obeying
the distributions of the inputs specified in the first step with the samplers.

In the third step, the model is evaluated at the sampled points and a set of model
outputs are produced. In essence, these model evaluations create a mapping
from the space of inputs to the space of outputs. This mapping is the basis for
subsequent uncertainty and sensitivity analysis.

In the fourth step, the results of model evaluations are used as the basis for
uncertainty analysis. One way to characterize the uncertainty is with a mean
value and a variance. Other model output statistics are provided.

In the fifth step, the results of model evaluations are used as the basis for
sensitivity analysis.

Following the logical configurations of the SA practice steps and the PyGMAlion

‘observation’ function for saving state variables, we developed a scheme of sensitivity
analysis in PyGMAlion as shown in fig[6.1}

The SA processing in PyGMAlion is composed of three modules. These mod-
ules cover all the steps summarized above in the SA steps, and are inspired by the
framework proposed in SimLab.
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Fig. 6.1 : PyGMAlion: Sensitivity analysis configuration

e The Pre-Processor module mainly works with samplers. It is in charge of the
first and second steps. Most of the samplers come from Boost EL the standard
C++ library. But when special samplers are needed like Morris sampling, we
implement the samplers within PyGMAlion and add them to the function li-
brary.

e The Model Execution module accomplishes the third step with the simulation
kernel of PyGMAlion.

e The Post-Processor module carries out the fourth and fifth steps. Different
sensitivity index estimators are implemented in this module. Notice that both
inputs and outputs are saved in a data file: the input sampling point are saved
as parameter files, and the outputs are saved in observation list files for the
chosen observation variables of the model as a function of time. So that for the
users, the change of the analysis objective regarding the output of interest only
leads to one command of observation function. It is not necessary to obtain the
model evaluations again.

So far the SA module in PyGMAlion contains SRC, Sobol’s method and Morris
method to fulfill the SA requirements of models with different complexity. The SRC
function generate the SRC index of each model factor and the non-linearity assessment
of the model by giving the determination coefficient R?. The Morris method is for
the qualitative analysis to screen factors. As for the Sobol’s method, we have imple-
mented the classical Sobol’s method [Sobol, [1993], the H-S Sobol’s method [Hommal
and Saltelli, 1996] [Saltelli, 2002] and the new Sobol’s proposed [Wu et al., 2011] in
this thesis. Test cases of the methods on Ishigami function and Lotka-Volterra model
are also given as examples for users. Graphical outputs are also produced to illustrate
the results of the analysis.

4http://www.boost.org/
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APPLICATIONS AND SIMULATIONS






7. METHODOLOGY PRACTICE:
APPLICATION TO FSPMS

In the previous part, we discussed two important issues of SA for FSPMs:

e The computation issue for which we proposed an effective computational method
to evaluate Sobol’s indices and deduced the Monte Carlo simulation error esti-
mation to a good control of the estimation accuracy.

e The strategy design for which we discussed the non-linearity assessment from
SRC method and ‘module by module analysis’ that analyzes the model by func-
tional modules and comprehensively use diverse sensitivity methods to combine
different indices to avoid unnecessary high order index computing but still get
the decomposition of the portions of higher order interaction.

In this chapter, we will present the result of the application of these methodologies
to the three FSPMs with different levels of complexity introduced in section2.4] and
infer in each case what information can be drawn from this analysis.

7.1 GreenlLab maize

We first practice local SA method and its normalized version, then SRC, lastly Sobol’s
method. Our objective is to study the interest of global sensitivity analysis and its last
developments for the GreenLab model, and more generally for a better understanding
of source-sink dynamics and internal driving forces during plant growth.

7.1.1 Local sensitivity analysis and its normalized version

The time evolution of the biomass allocated to each type of organ ¢,(i) (with o = b:
leaf blade; 0 = s: sheath; o = e: internode; 0 = f: cob; 0 = m: tassel) for the mean
values of uncertain input factors is given in fig[7.1]

We perform the local sensitivity analysis and its normalized version (presented in
eqn. and eqn. respectively to the output variables ¢(i) (biomass production at
growth cycle ¢). The results are shown in fig[7.2]
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Fig. 7.1 : GreenLab Maize: biomass allocated to the different types of organs at each GC

We used numerical simulation to get the derivatives of output ¢(7). There are two
ways to compute the standard deviations o, : the first one is through Monte Carlo
simulation, which we used and is more reliable but with heavy computing cost. To
avoid this shortcoming, another possibility is to use the following approximation:

=Y e () 7.

%

Such an approximation is justified when the system is highly linear, which we will
evaluate in the following section.

In fig[7.2] we see the advantage of the normalized version. The pure local SA only
reveals the importance of u. As for Sp, we can not even pick it out from other factors
in the pure local analysis, but with the normalized one, the great contribution of Sp is
more clearly demonstrated from about GC' 12 to the end of plant growth. The basic
knowledge we get from this local analysis is that the factor u contributes the most to
the variance of biomass generation from the beginning to the end.

Note that the point at which we calculate the derivatives is important, it could be
not reliable for systems with parameter-to-output curve with many apices: the values
at these special points are not representative of the whole information of sensitivity
for this parameter. The results could be misleading, and we may miss the important
details of the system. Therefore more reliable methods will be applied in the next
section.
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Fig. 7.2 : (a). Pure local sensitivity of ¢ with respect to the factors listed in table[2.1] as
functions of the growth cycle (absolute values). (b). Normalized local sensitivity
of ¢' with respect to the factors listed in table (absolute values). Y stands for
q(i) and X for the respective factors.

7.1.2

Standardized Regression coefficients

We perform a Standardized Regression method (see section3.5.2)) for the biomass pro-
duction g across time with respect to all the parameters usually obtained by estimation
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from experimental data in GreenLab. The input factors X; being the parameters listed
in table[2.1] and the output function Y being the biomass production at a given GC,
we make a linear regression according to eqnf3.6) and eqn[3.7]

The SRC indices for each parameter evolving with time are shown in fig[7.3] The
sum of SRC indices for all the parameters at each time step Y (7, )* and model
determination coefficient R? are shown in fig[7.4f In Table[7.1] we present the SRC
indices for all the parameters and R? at the classical time steps which stand for
different growth stage for maize.

Note that the SRCs results in fig[7.3] are really close to the squared normalized
local measures, which is not a coincidence: for the linear system, the two should be
equal. Figl7.4] shows a very high R? (most of the time above 0.98) proving that the
SRCs indices are reliable here. The regression analysis could be used as a preliminary
step in SA to save computing time before we really do some more detailed analysis.

The crucial importance of the Radiation Use Efficiency p is demonstrated (SRC
always above 0.6). It shows that a special care should be taken in its determination,
including complementary experiments. The change of light interception can bring
great variance for biomass production. Sp is the parameter that relates to compe-
tition between plants: at the beginning when blade and sheath are forming and the
competition for the light has not start yet, the density does not bring so much vari-
ance. But at the 11th GC when the whole plant is grown and the fruit (cob for maize)
appears, competition becomes dramatical and keeps increasing to the end. Alloca-
tion to blades (characterized by oy, and /3, ) keeps a relative high importance, in the
contrast P, keeps low. Note that for P; which relates to the cob sink strength, the
ranking raises at the last stage of the whole plant growth.

Tab. 7.1 : GreenLab maize: SRC index of all the parameters and R? at selected typical GC
that can stand for growth stages

S;of ¢ 1th 5th 11th 19th 30t
o 0.0797  0.0928 0.0335 0.0017  0.0205
Bo 0.0062 0.0251 0.0156 0.0015 0.0117
o 0.1571  0.1997  0.0736  0.0013  0.0001
Bs 0.0040  0.0220 0.0135 0.0002  0.0000
Py 0.0011  0.0118 0.0178 0.0010 0.0018
Qe 0.0000 0.0015 0.0039  0.0000 0.0000
Be 0.0000  0.0001  0.0009  0.0001  0.0000
P, 0.0000 0.0001  0.0041 0.0017  0.0044

af 0.0000  0.0000 0.0000 0.0004 0.0115
By 0.0000 0.0000 0.0000 0.0003 0.0095
Py 0.0000  0.0000 0.0000 0.0003 0.0927
P, 0.0000 0.0000 0.0000 0.0000 0.0000

m 0.6972 0.6315 0.8150 0.9778 0.8463

R? 0.9453 0.9845 0.9778 0.9863  0.9983
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7.1.3 Variance decomposition-based sensitivity measure: Sobol’s
method

The results of Sobol’s method are similar to those of local and SRC methods due to
the high linearity of the system: the parameters Sp and u take as much as 75%~98%
of the sum for first-order index and the whole first-order sensitivity index contribute
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Fig. 7.5 : GreenLab model for maize:S; and ST; for parameter

to 93%~99% of the system variance. We computed Sobol’s first order index S; and
total order index ST;. The difference between the two indices can show whether the
interaction of this parameter to others contributes significantly to the variance of the
model output. From this point, we can still get that for the most important parameter
i, the first order SA index can totally stand for its sensitivity to the model, which is

shown in fig[7.5

So as one alternative parameter space, we fixed Sp and p to their mean values. In
fig{7.6] we show the two linearity indexes of the system, along with the summation of all
S;. We note that the trends of the three curves agree with each other. The summation
of S; is also characteristic of the system linearity. Actually it can be explained by the
definition of S;: the closer to 1 the sum of the first-order indexes is in eqn[3.16] the
more mutually independent the factors are, and the more linear the system is. In the
new parameter space without Sp and p, the system linearity is weaker, especially from
10th GC to 23th GC, which is the most non-linear stage of the growth, corresponding
to abrupt changes in the allocation dynamics due to cob appearance. Since parametric
estimation for GreenLab relies on multi-stage observations, it seems important not to
miss this crucial period in the experimental data collection.

The first order Sobol’s indices of the new set of parameters are illustrated in fig[7.7]
Note that without the variance contributed by Sp and u, as and «; play the most
important roles in the system during the first 20 GCs. Afterwards the sensitivity
to ay becomes the biggest until the 30th GC, after which the sensitivity to Py rises
drastically while the sensitivities to all the other parameters drop. This trend can be
explained by analyzing maize functioning. At the beginning of maize growth, before
the fruit appears, the factors that control the competition for biomass acquisition must
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Fig. 7.6 : GreenLab maize: The three kinds of linearity indexes with parameter space of Sp
and p fixed

play an important role, and the foliage is also privileged in the early stages of growth.
It explains why the sensitivities to as and a4 are the most important ones. They
correspond to the parameters driving the initial form of the sink variation functions
of sheaths and blades. After the fruit (cob) appearance, it begins to attract biomass.
The influence of oy (that is to say the parameter driving the initial form of the cob sink
function) gets bigger. But its value remains relatively low because during this time
period, the biomass demand of the other organs is still high. So the whole variance of
the system output tends to be shared more uniformly during this stage between most
parameters. Towards the end of the growth, the majority of biomass production is
allocated to the cob and the sensitivity to Py increases drastically.

One thing we are more interested in is the interaction information that SA can
bring us to know more about the source-sink dynamics and internal driving forces
during plant growth. So S; and ST; are compared to see if interactions exist. Take
ayp, for example in fig]7.8f we can see that the interaction for this parameter is active
during the most dynamic growth duration: cob generation and internode expansion.

One more interesting point is that as we explore all the second-order Sobol’s in-
dices, we found that most of the interactions concentrate between «y, and the others,
in which the interaction between a;, and a outmatches by far the others, see fig[7.9]

If we suppose that model parameterization can be linked to plant genes as illus-
trated by |Letort et al [2008b], the understanding of parameter interaction may be
interesting for genetic improvement. FSPM parameters may be linked to plant genes,
and thus may help breeders to design ideotypes. If a parameter has little interaction
with others (like Py ), we can directly concentrate on this trait to improve plant per-
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formance. If the interaction is strong, like for oy, (cf ﬁg, the interaction between ay,
and «; being the most important), it is more complex. If the parameters are strongly
genetically related (determination by the same genes, which for ay, oy is probable since
they are both characteristic of leaf geometry), the model parameterization should be
improved to take into account this fundamental interaction. If they are not genetically
related, breeding strategy should rely on multi-dimensional optimization to handle the
interacting processes [Qi et al., [2010].

7.1.4 Discussion

The most important parameters for plant growth model of maize are p (energetic
efficiency) and Sp(characteristic surface related to competition between plants), which
represent from 75% to 98% of the first-order sensitivity index. During the process of
parameter estimation from experimental data, there is not usually a direct convergence
to the proper set of parameters because of the non-convexity of the generalized least-
square function used as fitting criteria. Moreover, it was shown that the confidence
interval on the estimated parameters might be improved by fixing some parameters
[Guo et all 2006], [Lamboni et al. 2011]. The sensitivity analysis gives us hints on
how to improve the calibration process for Maize: first fix all parameters to reasonable
values from literature, then find estimates of p and Sp, then find simultaneously
new estimates for the set of «, parameters together with © and Sp, and finally find
simultaneously new estimates for the set of sink parameters P,, together with the
set of a, parameters and p and Sp. The sensitivity analysis indicates that fixing f,
parameters is reasonable since their influence is limited.
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Fig. 7.10 : Poplar tree: Oscillation of the ratio of available biomass to organs’ demand
(Q/D). First the ratio increases due to an increase in biomass production at
a constant level of demand. When its value exceeds a threshold, new organs
appear, which leads to an increase in plant demand and hence a decrease of
the ratio. The ratio falls below the threshold, reducing the appearance of new
organs, and a decrease in the demand and so on.

7.2 Poplar tree model with retroaction of functioning on
organogenesis

In fig[7.10] is shown the evolution of the ratio of biomass production to organs’ de-
mand, which is the key variable controlling tree organogenesis in the GreenL.ab model
of tree growth. The sensitivity analysis method was applied to the tree annual biomass
production computed with eqn2.7, As mentioned in [Wu and Cournede] 2009], lin-
earity index is firstly checked before starting global SA. The linearity index is shown
in fig]7.12] The initial states show the high linearity indices, but it decreases rapidly
with the increasing influence of the trophic competition on organogenesis, particularly
the appearance of the first branch at growth cycle 5. At this stage, the biomass pro-
duction is low, because of the small number of leaves (fig. induced by a lower
ratio of biomass to demand(fig[7.10]). The sensitivity index of the model for parameter
1 follows the pattern of biomass production (fig[7.13)).

Due to the exponential negative function, the biomass production is very sensitive
to changes in total leaf surface area when this one is small, but on the contrary, there
is a value beyond which an increase in leaf surface area will induce a very little increase
in biomass production. As the leaf surface area depends on the number of organs, the
biomass production alternates between the phase close to saturation and the linear
phase. In the linear phase, the model is more sensitive to the parameter S,. On the
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Fig. 7.11 : Poplar tree: Number of phytomers of physiological age 4. Their number depends
on the ratio of available biomass to demand.
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Fig. 7.12 : Poplar tree: Evolution of linearity index
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Fig. 7.13 : Poplar tree: Sensitivity indexes for all the model parameters

contrary, in the saturation phase, the model is more sensitive to the parameter u as
illustrated by fig[7.13|

These two parameters are the most important ones regarding biomass production.
As in the study of GreenLab maize, we exclude these two parameters to get closer
insight in the other parameters driving biomass allocation - sink strengths - that
impact plant production through the computation of leaf surface area (eqn., as
shown in fig[7.14] During the youth of the tree, the trunk starts growing and no branch
appears due to the low value of the ratio of biomass to demand. At this point, the
model is mainly sensitive to the parameters of phytomers of physiological age 1 ((Sg)0
and (S7)0 in ﬁg. Then, the ratio of available biomass to demand increases fast,
and several branches appear together. The phytomers of physiological age 4 are the
most numerous in the tree as they correspond to the twigs. Their number increases
till time step 15 and then oscillates (ﬁg, with a period corresponding to that of
the ratio of biomass to demand (fig{7.10). Hence, the model output is sensitive to
their sink strengths ((Sg)3, (57)3 and (S7)3 on fig[7.14)) with the same period, in the
phases corresponding to high levels of /D, when a large number of twigs will appear.
In the phase of low levels of Q/D, the most important parameter is the layer sink
for secondary growth since it corresponds to the largest part of plant demand when
primary growth is restricted.

We inspected 14 parameters related to tree biomass production and allocation, and
follow dynamically the sensitivity indices for 50 years. Note that the computation of
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Fig. 7.14 : Poplar tree: Sensitivity indices when fixing ;1 and S,

such a long period of growth remains quite reasonable for the GreenLab model thanks
to the structural factorization described in [Cournede et al., |2006]. The test case
chosen corresponds to a specific model showing alternating patterns in growth phases
resulting from the complex interactions between functioning and organogenesis. The
sensitivity analysis offered interesting insight in the understanding of this interaction.
Moreover, by using variance-based techniques, an analyst is capable not only of ob-
taining the parameter contribution to the output variance but also of gaining insights
on the model structure by using moment-independent indicators |[Borgonovo, 2006].
Such method provides insights on the influence of the input uncertainty on the output
distribution [Borgonovo, 2007]. So it would be interesting for our future work to gain
insight about the output distribution (in our tree modelling case, for the variables
describing tree height and diameter for example). It should open a new way to deeper
studies on more complex functional-structural plant models.

7.3 Model of C-N dynamics (NEMA)

Basic biological modules are identified: namely in our test case Carbon distribution
(DMflux), Nitrogen distribution (Nflux), Carbon acquisition via photosynthesis (Pho-
tosynthesis), Nitrogen acquisition by roots (RootNuptake), Senescence (TissueDeath).

Several outputs of interest are considered for both intra-module and inter-module
analysis: a) total green area of the plant (AreaGreenTotal), b) total dry mass pro-
duction of the plant (Production), ¢) dry mass of the grains (DMgrains), d) nitrogen
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mass of the grains (Ngrains) and e) root nitrogen uptake (RootNuptake). Moreover,
the evolution of the sensitivity indices are computed for a better investigation of the
dynamics of plant growth. When we aim at screening parameters, we consider the TGI
mentioned in sectionf5.4. The full model involves around 80 parameters. Full model
description can be found in [Bertheloot et al., 2011a]. We used the parameterization
of [Bertheloot et al., 2011b].

We use subscriptions to identify the factors for different plant organs as follows: g
for Grain, r for Root, La for Lamina, Sh for Sheath, In for Internode, Pe for Peduncle,
Ch for Chaff.

As shown in tab[7.2] we present the result summary of our analysis following the
strategy design mentioned in sectionf5.3] We will present the result according to the
different outputs first, then we will make a comparison to see the common points
and differences. Some steps are skipped due to the intermediate conclusions reached,
for example, by the linearity analysis at the first step, we may be able to skip the
interaction analysis, either for the group analysis or for the overall model analysis
based on selected parameters.

Tab. 7.2 : NEMA: List of tables and figure describing the results of SA. Five main outputs
considered, a) AreaGreenTotal, b) Production, ¢) DMgrains, d) Ngrains and e)
RootNuptake, so each output was checked separately. The mark ‘-’ means the
corresponding step was skipped for the output.

a b c d e
Linearity ﬁg ﬁg ﬁg ﬁg ﬁg
58, fig fig fig7.28] fig fig
Group ST3, - 58, fig fig : fig fig
%, i el : s I

tab 37 73]

TGIS;, TGIST; tab[F12J7.13]  tab[714715 tab[f16[7.17  tab[7.21]7.22]

Intra module . W'm
TGISS%i —>"TGIS; tab - tab tab
Inter module TGIST(gZi - TGISS%i tab - - tab tab
S; fig fig fig{7.29 fig fig
Overall model ST; — S; fig fig{7.26) - fig fig
Sij tab - - tab -

7.3.1 Output AreaGreenTotal

As we mentioned in section)5.3], we first applied SRC to check the linearity information
evolving with time as in fig[7.15 Between 374°Cd and 531°Cd, there is one valley
for the linearity, during which the lowest linearity appears at 417°Cd to the linearity
of 0.48. Such a period in which a strong non-linearity occurs may be characteristic of
very specific biological phenomena during plant growth and of high level of interactions
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Linearity: Output AreaGreenTotal
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Fig. 7.15 : NEMA: Linearity: Output AreaGreenTotal, the turn point of linearity starts at
374°Cd and ends at 531 °Cd, the lowest linearity appears at 417 °Cd.

between parameters, either known by the modeler or unknown, in which case they
should probably be investigated more.

We then check the result of group analysis for each module, as shown in fig[7.16],
ﬁg. and ﬁg Fig shows the evolution of the first order group index Ssg)i and
we observe a change in importance ranks of modules around 411°Cd. For ST§ — S¢
in ﬁg@ and ngij in fig , which stand for the inter-module interactions, the peaks
of most of the curves overlap also around 411 °Cd, which is coincides with the lowest
linearity of the model.

Our analysis points out this important stage and guides us for the parameter
selection procedure in the module by module analysis part. After the parameter
selection we can see that the lowest sum of first order S; in fig{7.19| and highest value
of ST; — S; in fig[7.20] still appear at the same stage. After the parameter selection
step, it is important to check if the simplified analysis keeps the same attribute such
as non-linearity period. Moreover, it also helps us focus on the S;; matrix at this
typical time point to know the parameter interaction attribute as shown in tab[7.11]

From fig[7.16] we can see that the first order sensitivity mainly goes to module
DMfluxes and Nfluxes, and for short period of the module Tissuedeath. Fig[7.17 and
fig[7.1§ show that the interactions between modules mainly exist for DMfluxes and
Nfluxes. We also noticed that for the output AreaGreenTotal, the module Photo-
synthesis and RootNuptake contribute little to the variance of the output from the
beginning to the end. Moreover, the inter-module interactions ST§ — Sg for the two
modules are also very low at all stages. This information leads us to screen the param-
eters for output AreaGreenTotal. Thus we do not need to consider the uncertainty
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Fig. 7.16 : NEMA: S7, : Output AreaGreenTotal, module Nfluxes and Tissuedeath domi-
nate the ﬁrst period between 131°Cd and 411.15°Cd, the turning point of the
S¢, for the modules’ ranking change is at 411.15 °Cd, afterwards, the importance
of module DMfluxes increases dramatically, and on the contrary the indices of
Nfluxes and Tissuedeath start to decrease. So module DMfulxes is the most im-
portant module after 411.15°Cd. Module Photosythesis and RootNuptake keep
low sensitivity to system output AreaGreenTotal from the beginning to the end.

from these parameters while performing parameter estimation and the other model
design steps that the number of parameters could be a bottleneck for processing.

As for the third step: internal module analysis, we list the TGI S; and TGI
ST; of all the parameters module by module here to present the whole parameter
selection procedure. The selected parameters from the 5 modules are marked with
grey colour in the tables. From tabl7.3] to tab[r.7] all the parameters are listed by
modules, and besides the TGI S; and TGI ST;, we give out the ranking of each index
intra-module and the ranking of TGI ST; in the overall model. The two types of
intra-module ranking let us see the different positions of each parameter for different
indices. And based on the same sampling points in the parameter space, the indices
can be compared inter-module, so that the overall model ranking can be used here for
the main standard of selection.

We have mentioned before in the group analysis for output AreaGreenTotal that
the parameters belonging to modules Photosynthesis and RootNuptake may be screened
because the Sf and ST{ — S are nearly nil all through the whole time period. It
gets validated when we check the ranking of TGI ST; for the overall model analysis.
The best ranking in these two modules is for parameter wr, 2, whose index is about
0.6%. Moreover, the difference between TGI ST; and TGI S; is less than 0.2%, which
can be neglected in terms of interactions. As such, we can confirm that we can screen
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STQQ-SQg with output AreaGreenTotal
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Fig. 7.17 : NEMA: ST§ — 5% : Output AreaGreenTotal. The first peak of the curves
appears at 127°Cd, but it only lasts for several discrete time points, and then
disappears. We can consider that the appearance of the first peak comes from
the adaptation stage from the zero output period to the beginning of response,
so that the transition period is characterized by a lot of interactions but they
don not last long. The second peak of the curves appears at 411.15°Cd, while
module DMfluxes and Nfluxes share the same trend as the modules with the
largest inter-module interactions.

S_Qg with output AreaGreenTotal

DiMfluxes-Nfluxes
] || ummemay Difluxes-Tissuedeath
61 N == === Nfluxes-Tissuedeath

0.0 4=
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Thermal time after flowering (°Cd)

Fig. 7.18 : NEMA: Ss%ij: Output AreaGreenTotal, the peaks of the three curves appear
between 400 °Cd and 420°Cd. The interaction between module DMfluxes and
Nfluxes is the most important one and lasts for the longest time.
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the parameters of these two modules without any risk.

We stopped the selection procedure at the 12th parameter dy,. It is related to the
computation accuracy issue. If we check the indices after the TGI ST; ranking 12th,
the TGI ST; < 0.65%, TGI S; < 0.48% and TGI ST; — S; < 0.37%. The indices on
one hand are too little for us to consider, on the other hand, their values are close to
the error of computing accuracy, therefore we only selected the first 12 parameter for
the overall model analysis. In tab[7.8, we compare the effect of the analysis before
and after the selection. We can see that after the selection, the abandoned main effect
of all the parameters to the model is 1.9% which only takes about 2% of the overall
main effect 87.3%. So we can be sure that the selected parameters can represent the
whole model by most.

Tab. 7.3 : NEMA: Module:DMfluxes; Output: AreaGreenTotal

Factor TGI S; TGI ST;
Index Intra-Module Index Intra-Module Model
Ranking Ranking Ranking
o)t | 0.012301 4 0.040917 5 7
ag 0.003365 7 0.006452 9 13
By 0.000367 11 0.011586 7 9
tthace | 0.008182 6 0.057255 8 4
oM | 0.018347 3 0.043396 4 5
o 0.012154 5 0.030498 6 8
B 0.061913 2 0.136818 2 2
ttMace | 0.621337 1 0.746507 1 1
oM 1.61E-05 32 0.000332 26 46
oM | 4.99E-05 24 0.000615 22 34
are | 1.01E-05 34 8.09E-05 31 74
BLa 1.8E-05 31 0.002305 13 21
tt}ace | 9 32E-05 20 0.005109 11 16
ol 4.28E-05 27 0.000899 19 30
agi 9.96E-05 19 0.000634 21 33
asp | 3.86E-05 29 0.000151 30 68
Bsn | 0.000176 14 0.002018 15 25
tt%ﬂcc 0.001505 8 0.003112 12 20
oM 0.000159 16 0.000343 25 44
U?Z 0.000169 15 0.000784 20 31
ar, | 8.35E-05 22 0.000324 27 47
Brn | 0.000152 17 0.001302 17 27
tt}ace | 0.000889 9 0.002198 14 22
sl 0.000222 13 0.001416 16 26
a,”fe 3.94E-05 28 3.97E-05 34 81
ape | 2.21E-05 30 5.3E-05 33 77
Bpe 4.84E-05 25 0.000316 28 50
ttMace | 0.000352 12 0.005502 10 15
M 9.16E-05 21 0.001274 18 28
agb 4.31E-05 26 7.17E-05 32 75
acr | 1.44E-05 33 0.000223 29 60
Bcn | 0.000109 18 0.000403 24 41
tté‘i’élcc 0.000833 10 0.008561 8 11
sM. | 5.75E-05 23 0.000511 23 37

As we have concluded in section step 3 that the difference between TGISY, and
Y TGIS,; for each module stands for the intra-module interactions. And obviously,
the difference between TGIST{ and TGIS means the inter-module interactions.
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Tab. 7.4 : NEMA: Module:Nfluxes;Output: AreaGreenTotal

Factor TGI S; TGI ST;
Index Intra-Module Index Intra-Module Model
Ranking Ranking Ranking
Py 0 28 0.000216 16 61
¥ 0.08179 1 0.081467 1 3
P -5.7E-10 29 0.000216 17 62
5£.V 1.02E-07 24 0.00017 19 65
Pra 1.56E-08 27 0.000236 15 59
or?" | 0.009076 3 0.010294 3 10
5[%; 0.023419 2 0.041367 2 6
kra,1 0.000732 5 0.000516 5 36
kra,2 0.000743 4 0.003654 4 17
Pgsp, 1E-06 20 0.000157 20 66
on?" | 2.72E-05 11 3.61E-05 29 82
d5n 0.000106 8 0.000127 23 69
ksh,1 4.16E-06 14 0.000487 8 39
ksh,2 6.47E-06 13 6.3E-05 27 76
Prn, 2.88E-06 16 0.000121 24 70
op? | 3.47E-06 15 4.13E-05 28 80
58| 22805 12 0.00034 11 45
krn,1 6.26E-08 25 0.000195 18 63
kin,2 6.1E-07 21 0.000245 14 58
Pp. 5.63E-07 22 0.000358 9 43
g\;h 2.82E-05 10 0.0001 25 72
Op, 0.000182 7 0.00049 6 38
kpe,1 1.92E-06 18 0.000271 12 56
kpe,2 1.35E-06 19 0.000151 21 67
Pcy, 3.77E-08 26 0.000358 9 43
cerh 8.89E-05 9 0.0001 25 72
5%;; 0.000493 6 0.00049 6 38
kcn,1 1.99E-06 17 0.000271 12 56
kch,2 2.26E-07 23 0.000151 21 67
Tab. 7.5 : NEMA: Module:Photosynthesis;Output: AreaGreenTotal
Factor TGI S; TGI ST;
Index Intra-Module Index Intra-Module Model
Ranking Ranking Ranking

€La 0.000158 3 0.00027 8 57
Wraz2 | 0.004761 1 0.00623 1 14
€Sh 5.73E-05 4 0.000322 5 49
WSh,2 3.21E-05 6 0.000378 3 42
€In 8.14E-07 9 0.000294 6 51
Win,2 3.86E-07 10 0.000178 9 64
€Pe 3.25E-06 8 4.41E-05 10 79
Wpe,2 3.83E-05 5 0.000324 4 48
€Ch 2.72E-05 7 0.000436 2 40
wch,2 | 0.000169 2 0.00028 7 52
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Tab. 7.6 : NEMA: Module:RootNuptake;Output: AreaGreenTotal

Factor TGI S; TGI ST;
Index Intra-Module Index Intra-Module Model
Ranking Ranking Ranking
Ur,maz 0.00134 2 0.002048 3 24
kr 1 0.0003 3 0.002174 2 23
kr,2 4.41E-05 4 0.000521 4 35
BN 0.00169 1 0.003523 1 18
Bo 1.28E-05 5 0.000273 5 55

Tab. 7.7 : Module:Tissuedeath;Output: AreaGreenTotal

Factor TGI S; TGI ST;
Index Intra-Module Index Intra-Module Model
Ranking Ranking Ranking
dra 0.004237 1 0.008199 1 12
dsh 2.36E-05 3 4.96E-05 4 78
drn 5.01E-06 5 2.12E-05 5 83
dpe 2.31E-05 4 0.000276 3 54
dcon 4.89E-05 2 0.000648 2 32

Tab. 7.8 : NEMA: Overall parameter selection analysis;Output: AreaGreenTotal

STGIS; Y SelectedTGIS; Difference

DMfluxes 0.7433 0.735434 0.007866
Nfluxes 0.116733 0.114285 0.002448
Photosynthesis ~ 0.005248 0 0.005248
RootNuptake 0.003386 0 0.003386
Tissuedeath 0.004338 0.004237 0.000101

Overall model 0.873005 0.853955 0.019049
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Table[7.9 shows the decomposition for the intra-module part. Generally, most intra-
module interactions exist in module DMfluxes, which is as high as 8.75% in TGI.
And the total intra-module interactions for all the five modules is 8.79%. Tablel7.10
shows the decomposition for the inter-module part. Corresponding to the conclusion

we drew from fig{7.17] most of the inter-module interaction comes between module
DMfluxes and Nfluxes.

Tab. 7.9 : NEMA: Intra-Module Interaction analysis;Output:AreaGreenTotal

TG’IS& S"TGIS; Intra-Module Interaction

DMfluxes 0.830802 0.7433 0.087502
Nfluxes 0.117132  0.116733 0.000399
Photosynthesis 0.00531 0.005248 6.18E-05
RootNuptake 0.003411 0.003386 2.47E-05
Tissuedeath 0.004348  0.004338 1.04E-05
Overall model  0.961002  0.873005 0.087997

Tab. 7.10 : NEMA: Inter-Module Interaction; Output:AreaGreenTotal

TGISS% ) TGIST& Inter-Module Interaction

DMfluxes 0.830802 0.874785 0.043983
Nfluxes 0.117132 0.15515 0.038019
Photosynthesis ~ 0.00531 0.005408 9.8E-05
RootNuptake 0.003411 0.003518 0.000108
Tissuedeath 0.004348 0.004679 0.000331

After we decided the set of selected parameters, we run the Sobol’s method with the
relatively small number of parameters to evaluate the overall parameter sensitivity.
Fig[7.19) shows the S; and fig[7.20] shows the ST; — S; for the selected parameters.
Factor v from module Nfluxes which stands for the relative rate of potential grain N
filling during cell division and factor ttM?¢ from module DMfluxes which stands for
the duration during which roots can accumulate dry mass are the two most active
factors for the model while output AreaGreenTotal is considered.

For the main effect 5;, these two factors share the same shape at the first stage
before the time point 411.15°Cd with the lowest sum of S; or linearity. Afterwards -y
reaches a peak at around 543 °Cd and then decrease little by little while ¢t} keeps
increasing quasi linearly and surpasses v at around the peak point of 7.

For the interaction distribution presented by fig|7.20], most of the interaction peaks
appear in the period between 374°Cd and 531°Cd, which corresponds to the non-
linearity stage we found in the step 1 linearity analysis. As such, we pick the time
point 411.15 °Cd that proves to be the most important time point (for all the important
transit and interactions, etc). To locate the interactions between parameters at this
most non-linear and interaction-active stage, we present the .S;; matrix as in tab.

As shown in the table, factor 7 is the only one that has relative high interactions

with all the other factors, like the ST; — .S; curve for v (black line) in fig|7.20| reaches
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Fig. 7.19 : NEMA: Selected factors: S;; Output AreaGreenTotal; the lowest sum of .S; of
all the selected factors appears at 411.15°Cd, which means around this point,
the higher order sensitivity should take more part of the system variance.

its maximum at this point. Besides, factor ¢t also has interactions with JZLV;’h,
6N . dra which we can not ignore. The interactions stand for the main part of inter-

module interactions between module DMfluxes (t£2%) and module Nfluxes (UJLVth,
6% ), between module DMfluxes (1t2%) and module Tissuedeath (dr,).

Among all these factors that have interactions with «, ¢ has the strongest in-
teraction 10.97% with . Another typical example is dr,, though the total ranking
of dr, is the last among the selected factors and the absolute value of its TGI S;
is only 0.004, but it still has 12.31% totally of interactions at 411.15°Cd when we
do the overall model analysis with the selected factors. We can see that it has even
higher interactions at 374 °Cd in fig[7.20] Thanks to the comprehensive consideration
of group analysis and module by module analysis before, we can have an appropriate
standard to decide how many factors should be selected for the overall model analysis
in order not to miss such important interactions when the main effect of certain factor
is low but the interaction is strong.

To demonstrate the strategy for the module by module analysis specifically, as an
example, we have presented the related indices of all the parameters with uncertainty
for the NEMA model in this section. In the next sections, for the other model output
of interest, we use the same procedure of parameters selection that we have illustrated
in detail here, so we only list the indices for the finally selected factors, and focus on
the main features for the specified output.



Tab. 7.11 : NEMA: S;; for selected factors at thermal time after flowering 411.15°Cd, output AreaGreenTotal

¥ o) By ttMace oM o Br ttMace opPh N drLa ttMace
v - 0.027509  0.047476  0.038851 0.10968  0.046097 0.056311 0.047124  0.042893 0.01245  0.055861  0.032027
o)t 0.027509 - 0.000967  0.0008  0.003352  7.95E-05 0.003306 -0.00043  0.002496 0.003398  0.000969  0.000381
By 0.047476  0.000967 - -0.00086  -0.00011  -0.00169  -0.00492  -0.00062  0.004646  0.009388  0.003912  3.77E-05
tt)facc 0.038851  0.0008  -0.00086 - -0.00044  -0.00185  -0.00333  0.001642  0.003269  0.003101  0.001038  -0.00013
oM 010968  0.003352 -0.00011  -0.00044 - 0.001966  5.91E-05 0.001801  0.000651  0.002221  0.005045  0.000459
oy 0.046097  7.95E-05 -0.00169  -0.00185  0.001966 - -0.00212  9.12E-05 0.010585 0.017425  0.002878  -0.00038
Br 0.056311  0.003306 -0.00492  -0.00333  5.91E-05 -0.00212 - 0.004816  0.007596  0.008951  0.005149  0.003311
ttMace 0.047124  -0.00043  -0.00062  0.001642  0.001801  9.12E-05  0.004816 - 0.031849  0.054932  0.024656  0.012335
opPh0.042893  0.002496  0.004646 0.003269 0.000651 0.010585 0.007596  0.031849 - 0.000103  0.011705  0.001646
5I7L\7a 0.01245  0.003398  0.009388  0.003101  0.002221  0.017425 0.008951  0.054932  0.000103 - 0.01029  0.000257
dra  0.055861 0.000969 0.003912  0.001038  0.005045 0.002878  0.005149  0.024656 0.011705  0.01029 - 0.001625
ttMace 0.032027 0.000381  3.77E-05 -0.00013  0.000459  -0.00038  0.003311  0.012335 0.001646  0.000257  0.001625 -
7 S; 0516279 0.042822  0.058221  0.042092  0.124683  0.073079  0.079125 ~0.178195 0.117438 0.122515 0.123128  0.051574
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Selected factors ST-S;: Output AreaGreenTotal
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Fig. 7.20 : NEMA: Selected factors: ST; — .S;; Output AreaGreenTotal; the peaks of most
of the curves appear at the period between 375°Cd and 411.15°Cd.
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7.3.2 Output Production

As for the output Production, the linearity shown in fig[7.21] keeps a relatively high
value above 0.86. So things are more or less simplified here, but since it is not typically
quasi-linear (> 0.95) for nearly half of the whole period, to be cautious we still keep
the interaction checking between modules in the group analysis as in fig]7.23] and

fig[7.24] and fig[7.26]

The main information given by fig[7.22is that the first order sensitivity is mainly
shared by modules Photosynthesis, Nfluxes and DMfluxes in order. Furthermore,
there is little effect from module RootNuptake and Tissuedeath, likewise for the inter-
module interactions. The inter-module interactions only concentrate between modules
DMfluxes and Nfluxes as shown in fig[7.23] and fig[7.24] Combining the information
we got from the group analysis with the ST; we get from the intra-module analysis
in our strategy, 12 factors among 83 total for the model were selected as shown in
tab[7.12] The distribution is 8 factors from DMfluxes, 3 from Nfluxes and 1 from
Photosynthesis. In tab[7.13] we can see that the screening processing for the model
has ignored 1.29% of the main effect from 84.8%, which is a very safe amount to
guarrantee the reliability of the results afterwards.

As we can see in ﬁg., in the first period before 465°Cd, wr, 2 (the only factor
selected from module Photosynthesis), 6%, and o (the 2 out of 3 factors from
module Nfluxes) take most portion of the uncertainty. For the last period, tt9° from
module DMfluxes and v from module Nfluxes take the role in change. It corresponds
to what was observed regarding module indices in the group analysis, as shown in
fig[7.22] Again, basic features are kept after the parameter selection.

For interactions between selected factors, the 3 ones v, 3, and ttM ¢ were identified
for this issue as shown in ﬁg, in which ¢t2a° is responsible for most part of the
interaction.
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Linearity: Output Production
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Fig. 7.21 : NEMA: Linearity: Output Production. There is a small slope between 360 °Cd
and 474 °Cd, the drop is from 0.99 to 0.86. Before and after this slope, there
are two flat levels with the linearity around 0.99 and 0.86 respectively.
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Fig. 7.22 :
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NEMA: Sggzl_ Output Production. Module Photosynthesis ranks first from the
beginning to 165°Cd, at which point module Nfluxes surpasses it.

Module

DMfluxes starts to increase steadily at point 341 °Cd with the index 0.08, after
which it crosses with module Photosynthesis at point 423 °Cd with value 0.243
and crosses with module Nfluxes at point 474 °Cd with value 0.36. After these
two crossed points, module DMfluxes gets to dominate the model uncertainty.



7.3. Model of C-N dynamics (NEMA) 129

ST,°%-S,7 with output Production

14
12 ]| =— Diifluxes
............... Nfluxes
.o Photosynthesis
10 4 RootNuptake
— e e == Tissuedeath

STQJQ'S(;Q

0 200 400 600 800 1000

Thermal time after flowering (°Cd)

Fig. 7.23 : NEMA: ST&%i — Sgg)i: Output Production. The negative values are caused by
the computing accuracy limitation. The only interaction is between modules
DMfluxes and Nfluxes. They share the same evolution. At 520°Cd, they reach
the highest value as 0.12.
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Fig. 7.24 : NEMA: Ss%ij: Output Production. The peak value is 0.09 at 520 °Cd.
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Tab. 7.12 : NEMA: Selected factors; Output:Production

Factor TGI S; TGI ST;
Index Intra-Module Index Intra-Module Model
Ranking Ranking Ranking
Module: DMfluxes
U_(]]M 0.010966 6 0.026162 6 9
ag 0.001963 8 0.012057 8 12
Bg 0.001687 9 0.013025 7 11
ttgd“cc 0.013809 5 0.06488 3 4
e 0.016135 3 0.046696 ) 6
ar 0.013812 4 0.051463 4 )
Br 0.04353 2 0.105708 2 2
i eee 0.629453 1 0.768214 1 1
Module: Nfluxes
¥ 0.067811 1 0.098038 1 3
aNph 0.007753 3 0.024685 3 10
zSLjL\?a 0.017416 2 0.034581 2 8
Module: | Photosynthesis
Wra,2 0.010495 1 0.039516 1 7

Tab. 7.13 : NEMA: Overall parameter selection analysis;Output:Production

SSTGIS; > SelectedT'GIS;  Difference
DMfluxes 0.737226 0.731355 0.005871
Nfluxes 0.095379 0.092979 0.002399
Photosynthesis ~ 0.011457 0.010495 0.000962
RootNuptake 0.00332 0 0.00332
Tissuedeath 0.000443 0 0.000443
Overall model 0.847825 0.834829 0.012996

Selected factors §: Output Production

800

Thermal time after flowering (°Cd)

1000

Fig. 7.25 : NEMA: Selected factors S;; Output Production. w2, 5}4\7@ and aiv(fh dominate
the model from beginning to 465°Cd. Afterwards, v and #}%° rank first, the

difference is that v starts decreasing after a short period of increasing and ¢

keeps a steady increase.

t714\/[acc
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Selected factors ST,-S;: Output Production
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Fig. 7.26 : NEMA: Selected factors ST; — S;; Output Production. The difference between
ST; and S; concentrate only for 7, 3, and ttM9¢ which are the first 3 factors
in the overall model ranking (see tab)7.12]).
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Linearity: Output DMgrains

linearity
o

i
L

0.0 1

0 200 400 600 800 1000

Thermal time after flowering (°Cd)

Fig. 7.27 : NEMA: Linearity: Output DMgrains

7.3.3 Output DMgrains

As in fig]7.27] the linearity of the model with DMgrains as the output is always above
0.95, which is high enough for us to take the model as quasi-linear. So we can ignore
the interactions either between the modules or between the parameters in the analysis.
So all the steps related to the interaction analysis are skipped here.

As for the group analysis in fig7.28] we can see the module DMfluxes has the
obvious priority over all the other modules all along time. Module Nfluxes and Photo-
synthesis have the same trend over time. These two sets of curves go through a reverse
change, from 446 °Cd to 629°Cd, which is explained by fig[7.29 the transit is caused
by the decrease in sensitivity of aé‘/[ , &g from module DMfluxes and a small increase
of wrq 2 from module Photosynthesis, 6]LVa from module Nfluxes. Module RootNuptake
and Tissuedeath have little effect upon the output variance.

Considering the group analysis result and the intra-module analysis, we selected
12 factors out of 83 as shown in tab[7.15] Due to the high linearity of the system with
output DMgrains, the selected factors shown in tabJ7.15 have the same ranking for .S;
and ST;. The difference of the sensitivity indices ignored by the selection is 0.089 as
shown in tab[Z.15



7.3. Model of C-N dynamics (NEMA)

133

Fig. 7.28 :

S,,° with output DMgrains
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NEMA: Sgg)i Output DMgrains. Module DMfluxes has the highest first-order

index all the way. Module Nfluxes and Photosynthesis have the same trend.
Module RootNuptake and Tissuedeath nearly have nil sensitivity along the time
period. From 446 °Cd to 629 °Cd, the trend of DMfluxes and Nfluxes, Phosyn-
thesis goes through a reverse change, which indicates a transition period.

Tab. 7.14 : NEMA: Selected factors;Output:DMgrains

Factor TGI S; TGI ST;
Index Intra-Module Index Intra-Module Model
Ranking Ranking Ranking
Module: DMfluxes
U_(I]V[ 0.062628 3 0.048309 4 5
ag 0.262091 2 0.272972 2 2
Bg 0.05951 4 0.05488 3 4
e 0.298627 1 0.298451 1 1
tt-r ace 0.007711 9 0.000449 8 12
ttg/[“Cc 0.017336 5 0.005114 6 9
(e 0.016069 6 0.00701 5 7
(277 oo 0.015578 7 0.001234 7 11
Module: Nfluxes
¥ 0.015428 3 0.006748 2 8
UN’)h 0.020627 2 0.005104 3 10
zﬁi 0.040441 1 0.024408 1 6
Module Photosynthesis
WLa,2 0.074522094 1 0.079008 1 3

Tab. 7.15 : NEMA: Overall parameter selection analysis;Output:DMgrains

STTGIS; > SelectedT’GIS;  Difference
DMfluxes 0.809829 0.739551 0.070278
Nfluxes 0.084324 0.076495 0.007829
Photosynthesis ~ 0.084416 0.074522 0.009894
RootNuptake 0.000765 0 0.000765
Tissuedeath 0.000193 0 0.000193
Overall model 0.979528 0.890568 0.08896
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Fig. 7.29 :

Selected factors S;: Output DMgrains
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NEMA: Selected factors S;: Output DMgrains. a4 starts with the first ranking
with high portion of sensitivity but decrease to nil until 549 °Cd, after which

M
ttg acc

increases until around 0.7 at the end period. The indices of .S; for o

M

g and

Wra,2 meet at 446 °Cd, and those of S; for wr, 2 and tté\/"“cc meet at 629.125°Cd,
between the two points, w2 from module Photosynthesis and 5]LVa from module
Nfluxes rank the first two factors. It is interpreted by the transition period in

module analysis in fig
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Linearity: Output Ngrains
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Fig. 7.30 : NEMA: Linearity: Output Ngrains. The system is linear from the beginning to
494°Cd. After a steady decrease until 748 °Cd with linearity 0.78, the system
basically maintains the same linearity level though with a slight increase.

7.3.4 Output Ngrains

Shown in fig as for the linearity when the system output is Ngrains, the model is
slightly non-linear after 600 °Cd. We followed the same analysis steps as when system
output is AreaGreenTotal.

In fig{7.31, modules DMfluxes and Nfluxes have the complementary trends for S§,
while the other three modules have nearly no effect. Then it is not a surprise that the
main inter-module interaction goes directly between module DMfluxes and Nfluxes as

shown in fig and fig{7.33]

We follow the standard procedure for the parameter selection detailed in sec-
tion[7.3.1] For the output Ngrains, the sensitivity main effect is very concentrated
on 6 factors from two modules: DMfluxes and Nfluxes, as shown in tab[7.16] From
tab[7.17] we can see that even only with 6 factors among 83 for the overall model,
they have already explained the main effect 84.34% of the variance out of 86.37% for
all the 83 factors, with only a loss of 2%.

A similar concentration also appears for the intra-module interaction shown in
tab[Z.I8 and the inter-module interaction shown in tab[Z.19 most intra-module inter-
action only exists in module DMfluxes and the inter-module interaction only happens
between DMfluxes and Nfluxes.
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8,° with output Ngrains
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Fig. 7.31 : NEMA: ngi Output Ngrains. Module Nfluxes has the most important effect to

the system until 685 °Cd, after which DMfluxes gets more and more importance
and Nfluxes effect decreases steadily.
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Fig. 7.32 : NEMA: ST — S, , Output Ngrains. It is obvious that only modules DMfluxes
and Nfluxes have interaction regarding the output Ngrains. Note that the peak
also appears at the transit point 685°Cd between Nfluxes and DMfluxes.
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S, ? with output Ngrains

.20

15 - — DMiluxes-Nfluxes

10 A

g
S!!

.05 4

0.00

-.05 T T T T
0 200 400 600 800 1000

Thermal time after flowering (°Cd)

Fig. 7.33 : NEMA: ngij Output Ngrains

Tab. 7.16 : NEMA: Selected factors;Output:Ngrains

Fact TGI S; TGI ST;
actor ndex  Wmtra-Module [~ Intra-Module  Model
Ranking Ranking Ranking

Module: | DMfluxes

ttg“cc 0.004262 6 0.006578 5 6
aM 0.014819 3 0.02549 3 4
ar 0.011334 4 0.018858 4 )
Br 0.035907 2 0.053437 2 3

ttﬂlacc 0.31217 1 0.438664 1 2

Module: Nfluxes
¥ 0.464929 1 0.553625 1 1

Tab. 7.17 : NEMA: Overall parameter selection analysis; Output:Ngrains

STGIS; > SelectedT'GIS;  Difference

DMfluxes 0.392619 0.378493 0.014126
Nfluxes 0.467102 0.464929 0.002173
Photosynthesis ~ 0.002535 0 0.002535
RootNuptake 0.00142 0 0.00142
Tissuedeath 1.18E-05 0 1.18E-05
Overall model 0.863687 0.843421 0.020266

Tab. 7.18 : NEMA: Intra-Module Interaction analysis; Output:Ngrains

TGISf’2 ) STTGIS; Intra-Module Interaction

DMfluxes 0.446579  0.392619 0.053961
Nfluxes 0.467633  0.467102 0.000531
Photosynthesis ~ 0.002995  0.002535 0.00046
RootNuptake 0.001532 0.00142 0.000112
Tissuedeath 2.02E-05 1.18E-05 8.37E-06

Overall model  0.918759  0.863687 0.055072
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Tab. 7.19 : NEMA: Inter-Module Interaction; Output:Ngrains

TGIngi TGIST& Inter-Module Interaction
DMfluxes 0.446579 0.535207 0.088628
Nfluxes 0.467633 0.542965 0.075332
Photosynthesis  0.002995 0.00439 0.001396
RootNuptake 0.001532 -0.00316 -0.0047
Tissuedeath 2.02E-05 -0.00736 -0.00738

Selected factors S;: Output Ngrains
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Fig. 7.34 : NEMA: Selected factors S; Output Ngrains. Similar transition exists between
factor v from module Nfluxes and factor #%¢¢ from module DMfluxes as in
fig[7.31], which means that the two factors can represent most part of the variance
from these two modules respectively.

Tab. 7.20 : NEMA: S;; for selected factors at thermal time after flowering 685°Cd, out-
put Ngrains. The interaction between v and 9 takes most part of the
interaction between parameters at this time point.

~ tté\/lacc 0'7]}4 ar BT' ttfﬁ%acc

o - 0.005294  0.031051  0.003267  0.021093  0.129051

tty"cc 0.005294 - 0.002653  -0.00193  0.001179  0.006328

oM 0.031051  0.002653 - -0.00089  0.001278  0.009428

[o7% 0.003267  -0.00193  -0.00089 - 0.000261 0.00506

Br 0.021093 0.001179 0.001278 0.000261 - 0.011148
ttMace (0129051  0.006328  0.009428 0.00506 0.011148 -

>7 S 0.189756 0.01352 0.043517  0.00576 0.034959  0.161015
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Fig. 7.35 :

Selected factors ST-S,: Output Ngrains

25

.20 A

ST-S
3

.05 4

0.00

-.05 T T T T
0 200 400 600 800 1000

Thermal time after flowering (°Cd)

NEMA: Selected factors ST; — S; Output Ngrains. v and #2 % have the same
curve shape of the higher order interactions. At 685°Cd, besides the strong
interaction for v and ttﬁw ace B, also cotribute around 10% to the higher order
sensitivity.
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Linearity: Output RootNuptake
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Fig. 7.36 : NEMA: Linearity: Output RootNuptake. The non-linearity is very strong and
presents strong variability.

7.3.5 Output RootNuptake

Generally, the system for output RootNuptake is very non-linear and with strong
variability shown in fig[7.36] The first order sensitivity concentrates on module Root-
Nuptake as for a short period at the beginning and then module DMfluxes as in
fig[7.37 However the interactions between modules are more complicated. By check-
ing 5% in fig[7.38 and Sf—’zij in fig together, two types of inter-module interactions
were identified: DMfluxes and Nfluxes, DMfluxes and Photosynthesis.

The factor selection procedure only cut 0.6% of the first order sensitivity as shown
in tabJ7.22] which means 16 factors out of 83 in total can reflect the main effect of
the system when the output is RootNuptake. By analyzing the selected factors in
tab., intra-module interactions (mainly in DMfluxes as high as 24% when aver-
aging with time) are stronger than inter-module interactions (between 0.11 and 0.14

appropriately) as in tab)7.23| and tab]7.24]

In ﬁg, we can see that parameter #£9° stands for most part of the main effect
of the system, but the interactions between parameters are distributed evenly for the
selected factors as shown in fig[7.41] So it is necessary to check by modules for the
interactions to get more oriented precise insights.
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Fig. 7.37 : NEMA.: Sg Output RootNuptake. Module RootNuptake only dominates one
short perlod at the beginning and module DMfluxes takes the most important
role until the end. As for the main effect, module Nfluxes, Photosynthesis and
Tissuedeath keeps low values all the time.
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Fig. 7.38 : NEMA: STg — Sg Output RootNuptake. Interactions exist among module
DMfluxes, Nﬂuxes and Photosynthesis.
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Fig. 7.39 : NEMA: Sgij Output RootNuptake

Tab. 7.21 : NEMA: Selected factors;Output:RootNuptake

Factor TGI S; TGI ST;
Index Intra-Module Index Intra-Module Model
Ranking Ranking Ranking
Module: DMfluxes
a_f]\/[ 0.0082 5 0.169337 6 6
ag 0.006524 7 0.089024 8 11
Bg 0.003358 8 0.123071 7 7
tghlace 0.024149 3 0.232268 3 3
G 0.012747 4 0.1813 5 5
o 0.007595 6 0.18315 4 4
Br 0.042309 2 0.331893 2 2
i @ee 0.491072 1 0.857027 1 1
e 0.000751 10 0.070719 12 16
il 8.18E-05 22 0.0784 11 14
[77 o 0.000482 11 0.07992 10 13
ttjc‘%fcc 0.001178 9 0.084181 9 12
Module: Nfluxes
¥ 0.007203 1 0.113062 1 8
oleh 0.00126 3 0.075261 3 15
cilyL\(%a 0.002005 2 0.09054 2 10
Module: | Photosynthesis
WLa,2 0.001996381 1 0.101541 1 9

Tab. 7.22 : NEMA: Overall parameter selection analysis; Output:RootNuptake

STTGIS; > SelectedT'GIS;  Difference

DMfluxes 0.600248 0.598448 0.0018
Nfluxes 0.011304 0.010468 0.000837
Photosynthesis ~ 0.002105 0.001996 0.000108
RootNuptake 0.003351 0 0.003351
Tissuedeath 7.08E-05 0 7.08E-05

Overall model 0.617079 0.610912 0.006167
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Tab. 7.23 : NEMA: Intra-Module Interaction analysis; Output:RootNuptake

TGISgi STGIS; Intra-Module Interaction

DMfluxes 0.840487 0.600248 0.240238
Nfluxes 0.01109 0.011304 -0.00021
Photosynthesis ~ 0.003427  0.002105 0.001323
RootNuptake 0.003808 0.003351 0.000457
Tissuedeath 0.00013 7.08E-05 5.93E-05
Overall model 0.858941 0.617079 0.241862

Tab. 7.24 : NEMA: Inter-Module Interaction; Output:RootNuptake

TGIngi TGIST& Inter-Module Interaction

DMfluxes 0.840487  0.981854 0.141367
Nfluxes 0.01109 0.127559 0.116469
Photosynthesis ~ 0.003427  0.087084 0.083657
RootNuptake 0.003808 0.021292 0.017484
Tissuedeath 0.00013 0.009546 0.009416
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Fig. 7.40 : NEMA: Selected factors Si: Output RootNuptake
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Selected factors ST-S;: Output RootNuptake
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Fig. 7.41 : NEMA: Selected factors ST; — .S;: Output RootNuptake
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7.3.6 Comprehensive comparison

Mathematically for sensitivity analysis, the definition of one model for the analysis
includes the equations describing the phenomenon and one scalar output variable. So
when the outputs are different though the equations are the same for our analysis, we
take each case as different mathematical model. That’s the reason why we presented
the results for each output in the previous sections.

Even though from a mathematical point of view the models are different, as for the
modelers, we still hope that from the result of several outputs we can get a common
view for the model. So we listed the selected parameters for all the interesting outputs
we have analyzed in tabl7.25 along together with their rankings corresponding to the
first order index \S; in the overall model.

From tab[7.25] we can see that though with differences, the selected factors that
can take most portion for the variance of the system concentrate on 17 factors out of
83 in total for the model. This conclusion has already helped us a lot to reduce the
number of parameters with uncertainties when doing the parameter estimation.

What’s more, if we check the diversity in details, we can find that the distribution
of the selected factors is 12 out of 34 factors for module DMfluxes, 3 out of 28 factors
for module Nfluxes, 1 out of 5 factors for module Tissedeath, 1 out of 10 factors for
module Photosynthesis and 0 out of 5 for module RootNuptake. And as we used
ST, for the screening, when we check the S; ranking here, we can see that not all
the parameters selected are the ones with the biggest 5;. For example, within the
12 selected factors, f3,, output AreaGreenTotal ranks 21st regarding S; . So as we
mentioned in section[5.3] we can not rely on selecting the factors according to S;
ranking in the intra-module analysis. The right way is to check the S7T; ranking on
the basis of the same sampling points for each module analysis, plus comprehensively
considering the group analysis for each module.

For NEMA model itself, the most important factors set for module Nfluxes are
pretty steady for all the outputs: 1) 7 standing for the relative rate of potential
grain N filling during cell division, 2) JJLV(fh standing for relative rate of photosynthetic
N synthesis associated to xylem influx for entity Lamina, 3) % standing for relative
degradation rates of remobilizable N for entity Lamina, in which ~ rules all the outputs
and most of the time has the very high ranking. v appears to be a crucial factor for
the general NEMA model. For the 28 factors in this module, the sensitivity is very
concentrated on these 3 ones. However, for module DMfluxes, it is not the case.
The 12 factors for DMfluxes have different rankings for different outputs. Generally,
1) ttMace standing for the duration during which roots can accumulate dry mass 2)
tt;‘“cc standing for stands for the duration during which grains can accumulate dry
mass, those two rank among the most important for all the 5 outputs. Secondarily,
1) oM standing for relative sink strength of grains, 2) o standing for relative sink

g T
strength of roots, 3) «,., [, standing for Beta function indices for roots, have also
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noticeable effect for 4 of the outputs. Compared to modules DMfluxes and Nfluxes,
modules Tissuedeath and Photosynthesis tend to have specific important parameters
for different outputs, like dy, (standing for proportion of maximum specific N mass at
which tissues die for Lamina) for output of AreaGreenTotal and w2 (standing for
proportion coefficient linking photosynthesis at saturating PAR and N mass per unit)
specially for output DMgrains.

If we categorize the factors in tab[7.25 by organs, we can see that in the 4 types
of parameters presented in tab[2.3] for module DMfluxes, the ones for organ grain and
root tend to have significant effect for all outputs. The parameter characteristic of
lamina tend to have the control for Nfluxes, Tissuedeath and Photosynthesis.

Tab. 7.25 : NEMA: Summary of selected factors’ S; ranking in overall model for different
outputs. There are 5 main outputs we considered in the analysis, a) AreaGreen-
Total, b) Production, ¢) DMgrains, d) Ngrains and e) RootNuptake. Factors
that are selected for all the 5 outputs are marked in dark grey and for 4 outputs
are marked in light grey. ‘-’ means the factor is not selected for output.

S; ranking a b ¢ d e

Module:DMfluxes

oM 6 8 4 - 5
ag - 12 2 - 8
Bg 21 13 5 - 9
) ace 9 7 1 7 3
i 5 5 - 4 4
ar 7 6 - 5 6
Br 3 3 - 3 2
e 1 1 13 2 1
tt]\/[acc _ _ 8 _ 16
i ace - -9 - 32
tMace - - 10 17
I
tt(f‘?,gcc 17 - - - 15
Module:Nfluxes
v 2 2 11 1 7
agé’” 8 10 7 - 14
6N 4 4 6 - 10
Module:Tissuedeath
dra 1 - - -

Module:Photosynthesis

WLa,2 - 9 3 - 11
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7.4 Conclusions and discussion

In this chapter, we implemented the strategy developed in this thesis to 3 FSPMs
with different levels of complexity, and inferred in each case what information can be
drawn from this analysis.

Firstly we practiced on a simple source-sink model of maize growth, which is used
to specifically study the process of carbon (C) allocation among expanding organs
during plant growth, with simple plant structure, multi-stage and detailed observa-
tions. We first practiced local SA method and its normalized version, then SRC, lastly
Sobol’s method. We studied the interest of global sensitivity analysis and its latest
developments for the GreenLab model. SA helped us to get better understanding of
source-sink dynamics and internal driving forces during plant growth.

Secondly we practiced on the GreenLab model of tree growth (applied to poplar
tree) characterized by the retroaction of plant functioning on its organogenesis, which
describes tree structural plasticity in response to trophic competition. We inspected 14
parameters related to tree biomass production and allocation, and follow dynamically
the sensitivity indices for 50 years. The test case chosen corresponds to a specific model
showing alternating patterns in growth phases resulting from the complex interactions
between functioning and organogenesis.

Lastly we practiced on a functional-structural model, NEMA, describing C and
nitrogen (N) acquisition by a wheat plant as well as C and N distributions between
plant organs after flowering. This model is more mechanistic and more complex than
the two previous ones. Basic biological modules are identified: namely in our test case
Carbon distribution, Nitrogen distribution, Carbon acquisition via photosynthesis,
Nitrogen acquisition by roots, Senescence. Several outputs of interest are considered
for both intra-module and inter-module analysis: a) total green area of the plant, b)
total dry mass production of the plant, ¢) dry mass of the grains, d) Nitrogen mass of
the grains and e) root Nitrogen uptake. Basically, for each output of interest, we did
1) the non-linearity assessment, 2) the analysis of function module rankings, 3) the
intra module analysis, 4) the inter module analysis, and finally 5) the overall model
analysis based on the result of the 4 analyse before.

The real advantage of Sobol’s method was particularly illustrated for the different
steps of our method for module by module analysis, and its application to NEMA.
For the specific analysis of NEMA, an important step has not been fully completed.
It corresponds to the biological diagnosis of the model. Once sensitivity analysis
revealed the importance of some very specific stage of growth, it would be interesting
to really analyze from a biological point of view the processes that make these stages
of interest. From a modelling point to view, being able to show that 17 parameters
out of 83 can explain most of the variance is an important step forward, particularly
for parameterization. However, we should also question why no parameter from the
module of RootNuptake was selected: either the uncertainty of the parameters in
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this module was underestimated, or level of description of the model structure is not
appropriate.
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8. CONCLUSIONS AND PERSPECTIVES

8.1 Contributions

Global sensitivity analysis has a key role to play in the design and parameterization
of functional-structural plant growth models (FSPM) which combine the description
of plant structural development (organogenesis and geometry) and functional growth
(biomass accumulation and allocation). Models of this type generally describe many
interacting processes, count a large number of parameters, and their computational
cost can be important. The general objective of this thesis is to develop a proper
methodology for the sensitivity analysis of functional structural plant models and to
investigate how sensitivity analysis can help for the design and parameterization of
such models as well as providing insights for the understanding of underlying biological

processes. Our contribution can be summarized as follows:

e In order to face the challenge of the computing cost and to meet the necessity of

using Sobol’s indices for the quantitative information about sensitivity of mod-
els, especially the interaction information, we improved a computing method
inspired by [Homma and Saltelli, 1996] so that the model evaluations can be
made best use of. We derived an estimator of the error of sensitivity indices
evaluation with respect to the sampling size for this generic type of computa-
tional methods so that better control of the convergence of the estimations of
Sobol’s indices can be achieved.

We designed a methodology adapted to FSPMs. We first discussed the use of
non-linearity assessment to identify the occurrence of particular biological phe-
nomena, and then processed a strategy to conduct ‘module by module analysis’
in order to comprehensively integrate different SA methods and indices when a
complex biophysical system characterized by the interaction of several processes
described by sub-models/modules is analyzed.

We applied the developed methodology of sensitivity analysis to 3 FSPMs with
different levels of complexity, and inferred in each case what information can
be drawn from this analysis. Better understanding of source-sink dynamics and
internal driving forces during plant growth are achieved. Especially for NEMA
model,‘'module by module analysis’ helped to understanding the model behavior
from the classical simulation approach.
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Homma et

Sobol 1993 o this thesis

Fig. 8.1 : Brief illustration of improved Sobol’s estimator. ‘Sobol 1993’ see [Sobol,
1993],'Homma et Saltelli’ see [Homma and Saltelli, 1996]. Matrices in the frame
of the same line type are involved in one factor index estimation. y: model output
of sampling matrix, yp: model output of re-sampling matrix, y’: model output
of sampling matrix with ith column re-sampled, y’,: model output of re-sampling
matrix with ith column re-sampled.

Computational issue

It is necessary for us to use a precise global sensitivity analysis method like Sobol’s to
locate the quantitative interaction information between parameters. However FSPMs
usually have a large number of parameters and the model evaluation is computation-
ally heavy, so the implementation of the SA strategy faces a great challenge regarding
the computing cost issue. It is crucial to not only devise efficient computing tech-
niques, in order to make best use of model evaluations, but also to have a good error
estimation to check whether the SA computing has properly converged.

Based on the idea of ‘making best use of model evaluations’ and making the
sampling-resampling processing ‘smoother’ by ‘averaging’, we proposed a new Sobol’s
estimator to improve the computing efficiency and convergence of the method. For the
Homma-Saltelli method, to estimate each of the £ first order indices, the computing
cost is N(k + 2) model runs, with N model runs for the initial sampling matrix out-
put evaluation y, N model runs for the initial re-sampling matrix output evaluation
Yr, Nk model runs for the re-sampling matrix generated for conditional variance of
output y». What we proposed is to add the complementary ‘sampling’ matrix y’ into
the evaluation which increases the number of sampling matrices involved for the SA
index for one factor from 3 to 4. With the 4 matrices, when the role of ‘sampling” and
‘re-sampling’ matrices change, we get two sets of SA index evaluations. As in fig[8.1],
the set of matrices within real line frame and dashed line frame are two sets of SA
index evaluations. When we average the two sets of indices, since the sampling gets
more ‘balanced’, a better convergence has been achieved by the improved estimator.
Plus, by adding with Nk more model runs, that is to say with the computing cost of
N(2k + 2) model runs while we make full use of the 2N samplings, two sets of SA
indices estimation can be done, so that some computing cost has been saved. The
computing test on Ishigami function has proved to yield the better performance of
our new Sobol’s estimator.

Previous work as in [Homma and Saltelli, [1996] gave interesting result about error
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estimation, but the conclusions are based on some restrictive assumptions. We also
derived for the generic type of computational methods as illustrated in fig[8.1] an error
estimation of sensitivity indices with respect to the sampling size. It is based on some
rules to compute ‘the moments of functions of random variables’. It allows a detailed
control of the balance between accuracy and computing time and can also be used to
give confidence bounds of the result.

Strategy design

A good sensitivity analysis practice does not only need well designed estimators (which
is one of the thesis objectives as recalled in the previous paragraph), but it also requires
a good understanding of the issues that can be tackled by different methods, and how
these methods can be combined to benefit from their respective advantages. These
considerations underlies the strategy design for SA.

Typically to show how to make best use of SRC for FSPMs, we discussed the non-
linearity assessment based on a side result of SRC: the determination coefficient R?.
The knowledge of the intrinsic non-linearity of the model and of its dynamic evolution
throughout plant growth identified by R? proved to be useful to study model behavior
and properties, to underline the occurrence of particular biological phenomena or to
improve the statistical analysis when confronting models to experimental data.

For complex biological systems which are characterized by several interacting pro-
cesses with sub-modules describing each of them, especially for some FSPMs, the
strategy design should be divided into several steps for which we choose different SA
methods to fulfill different requirements. An interesting point is the evaluation of the
importance of the ‘function’ modules of FSPMs, which means checking the sensitiv-
ity effects of the groups of parameters. This is how ‘module by module’ analysis for
complex biophysical systems is proposed.

In our ‘module by module’ analysis, the following sensitivity indices and some of
their combinations are used. We recall the type of information the different indices
and methods provide:

e Non-linearity index from SRC: The level of non-linearity evolution of the model
and the general view of the model dynamic property.

e Sobol’s first order index S;: The main effect of factor X;, mainly used for ‘Factor
Priorization’.

e Sobol’s total order index ST;: The total effect of factor X;, mainly used for
‘Factor fixing’ or screening.

e The difference between ST; and S;: The sum of interactions of all orders between
X; and the other factors.
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Sobol’s second order index S;;: The interaction between factors X; and Xj;.

First order group indices S : The main effect of the set of factors 2; which
usually gathers the inputs of one module.

Total order group index ST : The total effect of factor set €;.

The difference between ST, S%i and SS%f The sum of interactions of all orders
between factor set €2; and the other sets.

Second order group indices ngij: The interaction between factor sets €2; and €2;.

The proposed strategy follows the steps:

First, linearity analysis gives us the non-linearity stage information of the over-
all model. This preliminary information is also useful to adapt the following
strategy accordingly.

Second, group analysis provides the evolution of module importance Sgi, and
helps us to check inter-module interactions by ST — 57, and S5, .

Thirdly, based on the same sampling points, we run the SA module by module,
in order to provide index ST; of each parameter for screening. It is the basic
index for screening procedure but not the only standard. The question of how
many parameters should be selected is decided by comprehensively considering
the results of the first and second steps. Moreover, by analyzing the compo-
sition of ST§ , we get to know the intra-module and inter-module interaction
quantitatively.

Finally, we run the SA for the overall model with the parameters selected module
by module and check the parameter sensitivity indices for the overall model.

Analyses are conducted using Sobol’s method and the efficient computation tech-

nique derived from [Saltelli, 2002], and several outputs of interest are considered spe-
cially for NEMA to check how parameter effects change with the outputs of interest.

Moreover, since we consider a dynamic system, the evolution of the sensitivity in-

dices is computed. When it is related to parameter screening, we use a time averaging
index called TGI to reduce the time dimension of the sensitivity indices.

SA practice for FSPMs

We implemented the strategy developed in this thesis to 3 FSPMs with different
levels of complexity, and inferred in each case what information can be drawn from
this analysis.
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1. Firstly we practiced on a simple source-sink model of maize growth, which is
used to specifically study the process of carbon (C) allocation among expanding
organs during plant growth, with simple plant structure, multi-stage and detailed
observations. We first practiced local SA method and its normalized version,
then SRC, lastly Sobol’s method. We studied the interest of global sensitivity
analysis and its latest developments for the GreenLab model. SA helped us
to get better understanding of source-sink dynamics and internal driving forces
during plant growth. The following conclusions can be noted:

e The most important parameters for GreenLab maize are p (energetic ef-
ficiency) and Sp (characteristic surface related to competition between
plants). A non-linear period was identified thanks to R? index. It indicates
a key stage in terms of biophysical processes corresponding to the transi-
tion between two allocation phases: the first one corresponding mostly to
leaf area increase and the second one to grain filling.

e The parametric estimation of GreenLab by model inversion relies on multi-
stage observations, so the information given by the linearity analysis can
be taken advantage of. For maize, it is important to have detailed and
frequent observations between cycles 14 and 20, while the measurements
can be less frequent after cycle 20.

e The sensitivity analysis gives us hints on how to improve the calibration
process for maize model: first fix all parameters to reasonable values from
literature, then find estimates of p and Sp, then find simultaneously new
estimates for the set of a, parameters together with p and Sp, and fi-
nally find simultaneously new estimates for the set of sink parameters P,,
together with the set of a, parameters and p and Sp. The sensitivity anal-
ysis indicates that fixing [, parameters is reasonable since their influence
is limited.

e The interaction information given by SA enlightens the source-sink dynam-
ics and internal driving forces during plant growth. Most of the interactions
concentrate between «; and the others, in which the interaction between
ap and ag outmatch by large.

e The understanding of parameter interaction is crucial for genetic improve-
ment. FSPM parameters may be linked to plant genes, and thus may help
breeders to design ideotypes. If a parameter has little interaction with oth-
ers, we can directly concentrate on this trait for the design of ideotypes.
If the interaction is strong, it is more complex. If the parameters are
strongly genetically related (determination by the same genes), the model
parameterization should be improved to take into account this fundamen-
tal interaction. If they are not genetically related, breeding strategy should
rely on multi-dimensional optimization to handle the interacting processes.

2. Secondly we practiced on the GreenLab model of tree growth (applied to poplar
tree) characterized by the retroaction of plant functioning on its organogenesis,
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which describes tree structural plasticity in response to trophic competition. We
inspected 14 parameters related to tree biomass production and allocation, and
follow dynamically the sensitivity indices for 50 years. The test case chosen
corresponds to a specific model showing alternating patterns in growth phases
resulting from the complex interactions between functioning and organogenesis.
The sensitivity analysis offered interesting insight in the understanding of this
interaction:

e Due to the exponential negative function in the production function in
GreenLab, the biomass production is very sensitive to changes in total leaf
surface area when it is small, but on the contrary, there is a value beyond
which an increase in leaf surface area will induce very little increase in
biomass production. In the linear phase, the model is more sensitive to the
parameter S,. On the contrary, in the saturation phase, the model is more
sensitive to the parameter pu.

e In the youth stage of the tree, the trunk starts growing and no branch
appear due to the low value of the ratio of biomass to demand. At this
point, the model is mainly sensitive to the parameters of phytomers of
physiological age 1 ((Sg)0: blade sink and (.S;)0:internode sink). The ratio
of available biomass to demand increases fast, and several branches appear
together. The phytomers of physiological age 4 are the more numerous in
the tree as they correspond to the twigs. Their number increases till time
step 15 and then oscillates. The model output is sensitive to their sink
strengths ((Sp)3, (S1)3 and (S7)3) with the same period.

e In the phases corresponding to high levels of Q/D, a large number of
branches will appear. In the phase of low levels Q/D, the most impor-
tant parameter is the layer sink for secondary growth since it corresponds
to the largest part of plant demand when primary growth is restricted.

3. Lastly we practiced on a functional-structural model, NEMA, describing C and

nitrogen (N) acquisition by a wheat plant as well as C and N distributions be-
tween plant organs after flowering. This model is more mechanistic and more
complex than the two previous ones. Basic biological modules are identified:
namely in our test case Carbon distribution, Nitrogen distribution, Carbon ac-
quisition via photosynthesis, Nitrogen acquisition by roots, Senescence. Several
outputs of interest are considered for both intra-module and inter-module anal-
ysis: a) total green area of the plant, b) total dry mass production of the plant,
¢) dry mass of the grains, d) Nitrogen mass of the grains and e) root Nitrogen
uptake. Basically, for each output of interest, we did 1) the non-linearity assess-
ment, 2) the analysis of function module rankings, 3) the intra module analysis,
4) the inter module analysis, and finally 5) the overall model analysis based on
the result of the 4 analyse before. Some detailed conclusions can be drawn:

e The most important achievement of this practice work for NEMA is that 17
factors out of 83 total can be selected as priority factors for all the 5 outputs
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of interest. It is a big step towards the model simplification of NEMA and
can potentially lead to more optimized work on parameter estimation in
the next modelling step.

e Relying on selecting the factors according to S; ranking in the intra-module
analysis is not appropriate. The right way is to check the ST; ranking
on the basis of the same sampling points for each module analysis, plus
comprehensively considering the group analysis for each module.

e The most important factors for module Nfluxes are fairely steady for all the
outputs: 1) v (relative rate of potential grain N filling during cell division),
2) UJLV;’h (relative rate of photosynthetic N synthesis associated to xylem
influx for entity Lamina), 3) 6% (relative degradation rates of remobilizable
N for entity Lamina), in which 7 rules all the outputs and most of the time
has the very high ranking. v appears to be a crucial factor for the general
NEMA model. For the 28 factors in this module, the sensitivity is very
concentrated on these 3 ones.

e For module DMfluxes, the later statement is not appreciate. The 12 factors
for DMfluxes have different rankings for different outputs. Generally, 1)
tt}ee (the duration during which roots can accumulate dry mass) 2) t£)/%
(the duration during which grains can accumulate dry mass), those two
rank among the most important for all the 5 outputs. Secondarily, 1) O’é\/l
(relative sink strength of grains), 2) o (relative sink strength of roots), 3)

a,, B, (Beta function indices for roots), have also a noticeable effect on 4

of the outputs.

e Compared to modules DMfluxes and Nfluxes, modules Tissuedeath and
Photosynthesis tend to have specific important parameters for different
outputs, like dy, (proportion of maximum specific N mass at which tissues
die for Lamina) for output of AreaGreenTotal and wr, 2 (proportion co-
efficient linking photosynthesis at saturating PAR and N mass per unit)
specially for output DMgrains.

o [f we categorize the factors by organs, for module DMfluxes, the ones for
organ grain and root tend to have a significant effect on all outputs. The
parameter characteristic of lamina tend to have the control over Nfluxes,
Tissuedeath and Photosynthesis.

e The module RootNuptake has very little influence on the 5 outputs of
interest. It questions the modelling part for this module and invites to
work again on the structure and parameterization of this module.

8.2 Discussion and perspectives

Sensitivity analysis (SA) is a fundamental tool in the building, use and understanding
of mathematical models [Saltelli et al., 2008]. Though we have done some work on
this topic in this thesis, a lot more is expected for us to keep improving SA’s role in
FSPMs community.
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Evaluation of the distribution of the inputs

Most of the time, the distributions of input factors are not easy to obtain. A possible
strategy is to perform an initial exploratory analysis with rather crude definition for
the distribution of the inputs and use sensitivity analysis to identify the most impor-
tant inputs; then, resources can be concentrated on characterizing the uncertainty of
these inputs and a second sensitivity analysis can be carried out with these improved
uncertainty characterizations [Helton et al., 2006b|. In this thesis, we have imple-
mented the first step. A study to explore the variability of parameters in a family of
genotypes for the SUNFLO model |Lecoeur et al. 2011] will be implemented in our
future work.

Computational issue

Fighting with computation cost is a key issue in the case of a model with a huge num-
ber of parameters as potentially for FSPMs. Though we have proposed an improved
Sobol’s estimator to achieve better computing efficiency and convergence characteris-
tics compared to its previous version, there is still room for improvement. In a recent
paper [Saltelli et al.; 2010], the authors compared different types of estimators for ST;,
and Jansen’s estimator |[Jansen, [1999] is shown to be the most efficient. It would thus
be interesting to adapt our strategy to make best use of model evaluations to other
estimators to check whether the same convergence characteristics can be obtained. A
proper sampling design is also an important aspect of computational issue. It relates
to the convergence properties of the Monte Carlo simulation [Tarantola et al., 2012].
Thus it is also interesting for us to investigate which type of sampling design is the
most appropriate for our SA practice in FSPM.

Parallel computing

As the main bottleneck of the computing cost is model evaluation for the output
matrices, and model evaluations are actually independent from each other, it would
be interesting to use parallel computing to reduce the computing time for sensitivity
analysis. Efficient exchange of data would still be a challenge. A study on this issue
is in process in the Digiplante team.

Sensitivity analysis and model selection

The estimation of the uncertain parameters from experimental data is an important
step and model performances depend a lot on the accuracy of the parameter estima-
tion ([Butterbach-Bahl et all 2004]; |Gabrielle et al., 2006]; [Lehuger et al. 2009];
[Makowski et al., 2006]). In general, it is impossible to estimate all parameters of
complex models simultaneously [Bechini et al., [2006]. During the process of parame-
ter estimation from experimental data, there is not usually direct convergence to the
proper set of parameters because of the non-convexity of the generalized least-square
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function used as fitting criterion. Moreover, it was shown that the confidence inter-
val on the estimated parameters might be improved by fixing some parameters [Guo
et al., 2006], [Lamboni et al.,|2011]. A common strategy consists in selecting a subset
of parameters to be calibrated using sensitivity analysis, and fixing the others to some
nominal values ([Monod et al. 2006]; [Wallach et al., 2002]).

Parameters fixed as recommended values are treated as constants in models. There-
fore the problem to choose parameters needed to be estimated turns out to be a statis-
tical model selection problem in which candidate models may have different numbers
of parameters. Thus, model selection procedure need to be done after processing pa-
rameter estimation by the help of sensitivity analysis for ‘Factor priorization’ so that
the model can be validated.

Sensitivity analysis with dynamic output and multi-variate outputs

Dynamic functional structural plant models frequently simulate state variables across
discrete time step. The dynamic structure of these models introduces a strong tempo-
ral correlation between the different model outputs. For a discrete-time model, global
sensitivity analysis methods can be applied sequentially at each simulation time step.
The sequential implementation of global sensitivity analysis at each time step can
result in several hundreds of sensitivity indices, with one index per time step. It is
not easy to identify the most important parameters based on such a large number of
values |[Campolongo et al., 2007]. In addition, there is a high level of redundancy from
the discrete-time outputs.

Another problem is that when we analyze one model, usually, there is not only one
model output of interest. Generally there are several variables of interest, as usually in
more general complex systems [Zio|, 2003]. Therefore, one factor has several different
sensitivity indices for the different outputs. It is difficult to consider all the indices
for all outputs for a given factor to evaluate its effect on the whole model.

We used in this thesis a unitary concept based on the averaging across time called
‘Time Generalized Index (TGI)’ to resolve the problem of time dimension redundancy
of the SA indices. Since the final result we obtained in NEMA is that all the analysis
for different outputs of interest underlines the important effect to a relatively similar
set of factors, we did not consider a synthetic index to summarize the indices for all
types of outputs.

In |Campbell et al., 2006], the author used a principal component analysis of out-
put temporal curves, then compute sensitivity indices of each input on each principal
component coefficient; in [Lamboni et al.,[2011] they developed the multivariate global
sensitivity analysis method. It allows to aggregate the different sensitivity indices of
the principal component coefficients in a unique index, called the generalized sensi-
tivity index. Each generalized sensitivity index synthesizes the effects of uncertain
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factors on all the dynamic outputs obtained from dynamic models, and thus explains
the influence of the corresponding factor on all outputs at all time steps. It will be
interesting to use this kind of index for the analysis of a broader range of models.

Deterministic and stochastic models

All the models we considered in this thesis are deterministic models and the methods
we used are mostly appropriate for this type of model. However, in the FSPM mod-
elling community, stochastic models have been widely developed in the past decades
[Kang et al. 2008] |Loi and Cournede, 2008 [Pallas et al. 2011]. They also need
sensitivity analysis to help for the parameter priorization or for model simplification.
There are several references about this issue [Ginot et al., [2006], [Lurette et al., 2009).

Correlated input factors

Though it is not easy to know the correlation between input parameters , it may be
of interest and was not considered in this thesis. In [Saltelli and Tarantola, 2002], the
authors devised a strategy for sensitivity analysis that could work for correlated input
factors, based on the first-order and total-order indices from variance decomposition.
Specially, we will use this strategy to investigate SA of plant models with uncertain
inputs representing genotype parameters |[Buck-Sorlin et al., 2005] in a family linked
through correlation matrix [Letort et al., [2008b].

Influence of the input uncertainty on the output distribution

Sensitivity analysis offers interesting insight for the understanding of the importance
ranking and interactions of factors. Moreover, by using variance-based techniques, an
analyst is capable not only of obtaining the parameter contribution to the output vari-
ance but also of gaining insights on the model structure by using moment-independent
indicators [Borgonovo|, 2006]. Such methods provide indications of the influence of the
input uncertainty on the output distribution [Borgonovo, 2007]. It would be interest-
ing for our future work to gain insight about the output distribution (in our tree
modelling case, for the variables describing tree height and diameter for example).

8.3 To conclude

In this thesis, we attempt to explore and demonstrate the benefit of SA to the FSPM
community in which we still find papers in the recent years processing SA by only
considering local methods [Evers et al., 2007]. The potential use of SA in the plant
modelling process is very interesting, both in terms of model parameterization, but
also as a tool for model diagnosis. An effort to promote the recent methods and
make them easily available in the FSPM community is made through the platform
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PyGMAlion for plant modelling, which is now used in some other plant modelling
groups specifically for SA.
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APPENDIX






A. APPROXIMATION THE MOMENTS OF
FUNCTIONS OF RANDOM VARIABLES

It is possible to approximate the moments of a function f of random variables X,
Y using Taylor expansions, provided that f is sufficiently differentiable and that the
moments of X and Y are finite |Bevington and Robinson, 2003]. Let us denote the
expectations F(X) = ux, E(Y) = uy, and variances V(X) = 0%, V(Y) = 02. We
thus get the following results:

Theorem A.0.1: Suppose Z = f(X), then

B(Z) ~ flux) + T8 53 (A1)
V(Z) = [f'(px)ox]? (A2)
Proof Make the second order Taylor expansion for Z = f(X) at the point of X = p,
get:
2= F(X) = £ + £ )+ TU X 2 4 Ra()

where Ry(X) is the remainder for the second order Taylor expansion, ignore this
remainder, then:

Z = f(p)+ f(p)(X = p) + @(X — )’

Add the expectation calculator to it:

BLFG) + £ (X — )+ 29 (¢ — )

B(Z) ~ ;
= ELA)] + BL (X - ] + B )
= f(u)+ [(WEX —p) + fﬂémE(X — )’
= f(w)+ @02

Make the first order Taylor expansion for Z = f(X) at the point of X = p, get:

7Z = f(X) = f(p) + f(p)(X = p) + Ri(X)
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where R;(X) is the remainder for the first order Taylor expansion, ignore this remain-
der, then:

Z~ f(p)+ f()(X —p)
Add the variance calculator to it:

VI(Z) = V[f(p)+ f ()X — )
= VIf()] + V[ (i)(X — )]
= 0+ fA(wV(X —p)
= [P()V(X)
= [*(u)o”

Theorem A.0.2: suppose Z = f(X,Y), then
E(Z) fux, py) (A.3)

1
if:p:v(,U/Xa ,UY)UE(
fﬂﬂy(ﬂXa MY)COU<X7 Y)

1
Efyy(NXv NY)U)Q/

Q

- - -

V(Z) = [folpx,py)ox]® (A.4)
+ [fy(,anU’Y)UY]Q
+ 2fa(px, i) fy(px, py Jeov(X,Y)

Proof Make the second order Taylor expansion for Z = f(X,Y) at the point of
(px, py ), get:

7 = f(X,Y)
= flux, py) + [felpx, iy ) (X — px) + fy(px, py ) (Y — py)]

+ %[fxoc(ﬂXa 1y ) (X = p1x)® + 2 fay (pix, iy ) (X = px)(Y = py) + fyy(pix, iy ) (Y — py)?]
+ RQ(X, Y)

where Ry(X,Y’) is the remainder for the second order Taylor expansion, ignor this
remainder, add the expectation calculator to it, then:

E(Z) =~ E[f(ux, )]+ Elfo(ux, py)(X — px) + fylpx, py )Y — py)]
+ %E[f:c:c(ﬂX7 1y ) (X = px)® 4 2 fay (i, oy ) (X = px) (Y = poy) + Sy (pix, iy ) (Y = 1)°]

= flpx,py) +0+ %fmz(ﬂX; 1y ) E[(X — px)?] + fay(px iy ) E[(X — px) (Y — py)]
b2 B ) ELY — )

1 1
= flpx,py) + §fm(ﬂxa 1y )ox + fuy(lix, iy )cov(X,Y) + §fyy(/~tx, [iy)oy
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Make the first order Taylor expansion for Z = f(X,Y') at the point of (ux, puy), get:

Z = f(X,Y) = flux, py) + falpx, py )(X — px) + fy(px, py ) (Y — py) + Ri(X,Y)

where R;(X,Y) is the remainder for the first order Taylor expansion, ignor this re-
mainder, add the expectation calculator to it, then:

V(2)

VIf(px, y) + folpx, py ) (X = px) + £y (o, py ) (Y — py)]
VIfa(px, py (X — px) + fy(px, py ) (Y — piy)]
[
[

VIfapx, py )(X — pux)] + 2B fo (px, oy )(X — pux) fy (e, oy )(Y — pay)]
VIfy(px, py) (Y — py)]
F2(px, iy ) V(X — px) + 2fu(px, ) £y (e, iy ) E[(X — pix ) (Y — py)]

F2(px, py )V (Y — py)
f2(px, py)ok + Qfx(ﬂx 1y ) fy(pix s py )eov(X, Y ) + f2(px, py ) oy

In particular,

e if Z= X2, then

BlZ) = 12 + 0% (A5)
V[Z] ~ 4o (A.6)
e and if Z =X+ Y, then:
ElZ] = px £ py (A.7)
V[Z] = 0% + 03 £ 2cov(X,Y) (A.8)
e and if Z = X/Y, then:
px 1 Px My o
FElZ|~— — —cov(X,Y)+ A9
2% 2 con(x, ) + T (A9)
1 2
V2]~ — 0% —2- EX con(X, V) + EX L o2 (A.10)
Hy Hy Y
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