
HAL Id: tel-00720022
https://theses.hal.science/tel-00720022v1

Submitted on 23 Jul 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Models for Programming and Composing
Correct Distributed Systems

Ludovic Henrio

To cite this version:
Ludovic Henrio. Formal Models for Programming and Composing Correct Distributed Systems. Pro-
gramming Languages [cs.PL]. Université Nice Sophia Antipolis, 2012. �tel-00720022�

https://theses.hal.science/tel-00720022v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS

École Doctorale STIC

Sciences et Technologies de l’Information et de la Communication

Formal Models for Programming and Composing

Correct Distributed Systems

Mémoire de Synthèse présenté à l’Université de Nice Sophia Antipolis pour l’obtention d’une

HABILITATION À DIRIGER LES RECHERCHES

Spécialité Informatique

par

Ludovic Henrio

soutenue le 19 Juillet 2012

Jury:

Président du Jury Pr. Michel Riveill Université de Nice-Sophia-Antipolis - I3S, France

Rapporteurs Pr. Gordon Blair Lancaster University, United Kingdom

Dr. Pascal Poizat Université d’Evry Val d’Essonne, France

Pr. Davide Sangiorgi University of Bologna, Italy

Examinateurs Dr. Fabienne Boyer Université Joseph Fourier - LIG, France

Dr. Alan Schmitt INRIA Rennes, France

Invité Dr. Eric Madelaine INRIA Sophia-Antipolis, France

Contents

1 Introduction 7

2 The Active object Programming Model 11
2.1 Introduction . 11
2.2 Overview of languages for active objects and futures . 11

2.2.1 Futures in functional languages . 11
2.2.2 Asynchronous Sequential Processes . 12
2.2.3 AmbientTalk . 12
2.2.4 Creol . 13
2.2.5 JCoBox . 13
2.2.6 JAC . 14
2.2.7 X10 . 15

2.3 A middleware for active objects . 15
2.3.1 Garbage collecting active objects . 15
2.3.2 Fault-tolerance for active objects . 15

2.4 Functional active objects and their mechanised formalisation . 16
2.4.1 A functional dead-lock free active object calculus . 17
2.4.2 Binder techniques . 17
2.4.3 Paper from Science of Computer Programming, Jan 2011 . 19

2.5 Summary and conclusion . 47

3 Composing Distributed Applications 49
3.1 The Grid Component Model: gcm . 49
3.2 Design and structure of non-functional aspects . 73
3.3 Reconfiguring distributed components . 74

3.3.1 Related works . 74
3.3.2 Stopping components . 75
3.3.3 A language for distributed reconfiguration . 76
3.3.4 Concluding remarks . 77

3.4 A semantics for GCM: specification, formalisation and futures . 77
3.4.1 Informal semantics . 78
3.4.2 Paper from FMCO 2009 . 80

3.5 Algorithmic skeletons . 101
3.5.1 Typing algorithmic skeletons . 101
3.5.2 Exception handling in algorithmic skeletons . 101

3.6 Behavioural specification and verification of GCM components . 102
3.6.1 The pNets formalism . 103
3.6.2 A behavioural model for active objects . 106
3.6.3 A behavioural model for GCM . 106
3.6.4 Paper from FACS 2008 . 110
3.6.5 A model for one-to-many communications . 129

3

3.7 Summary and conclusion . 130

4 Current Works, Perspectives, and Conclusion 131
4.1 Dissemination algorithms for CAN: design and formalisation . 131

4.1.1 Context and objectives . 131
4.1.2 M-CAN: an almost-efficient algorithm . 132
4.1.3 An optimal dissemination algorithm . 133
4.1.4 Formalisation of CAN and of dissemination algorithms . 135

4.2 Multi-active objects . 139
4.2.1 Assumptions and Design Choices . 139
4.2.2 Defining Groups . 140
4.2.3 Scheduling Request Services . 141
4.2.4 Dynamic Compatibility . 141
4.2.5 Inheritance . 142
4.2.6 Experimental results . 143
4.2.7 Discussion . 143

4.3 Future works on distributed components . 144
4.4 Conclusion . 145

5 List of Publications 147

6 References 153

A Detailed CV 159
Education and Experience . 159
Students and Teaching . 160
Contracts and Collaborations . 162
Other activities . 164

List of Figures

2.1 Typical ProActive code . 13
2.2 Thread interleaving in JCoBox may lead to unexpected outcomes . 14

3.1 A typical GCM assembly . 51
3.2 Structuring the Non-functional concerns in GCM . 73
3.3 Component behaviour . 78
3.4 Request delegation . 79
3.5 Why first-class futures are necessary inside composites. 80
3.6 Communication between Active objects . 106
3.7 The VERCORS architecture . 108
3.8 A simple composite component in Vercors . 109
3.9 pNet for the composite component from Figure 3.8 . 109
3.10 pNet Architecture for the fault-tolerant application . 129
3.11 Our fault-tolerant application . 129

4.1 M-CAN - Message forwarding . 132
4.2 Principles of our algorithm in two dimensions . 134
4.3 Our algorithm in higher dimensions . 134
4.4 Zone node list (ZNL) definition . 137
4.5 The CAN Peer annotated for parallelism . 140
4.6 The CAN Peer annotated for parallelism with dynamic compatibility . 142
4.7 CAN experimental results . 143
4.8 CAN routing from two corners . 143
4.9 All nodes accessing centre . 143

5

Remerciements

Tout d’abord je tiens à m’excuser de ne pas nommer explicitement avec un petit mot de remerciement
personnalisé chacune des personnes que je remercie ci-dessous, la liste serait surement trop longue bien
qu’incomplète si je tentais de le faire. Sachez néamoins que je pense intensément à chacun d’entre vous
au moment d’écrire ces quelques lignes.

Mes remerciement vont tout d’abord à mes collègues et de façon plus générale à tous les chercheurs
et étudiants avec qui j’ai travaillé pendant ces 10 dernières années. Tout particulièrement je tiens à
remercier les doctorants de l’équipe OASIS, qu’ils aient été officiellement ou non sous ma responsabilité,
car c’est souvent eux qui m’ont apporté de nombreux sujets de recherche et de nouvelles applications
possibles à mes équations qu’ils trouvaient pourtant incompréhensibles en arrivant dans l’équipe. Mon
travail n’aurait souvent que bien peu d’originalité si avec eux nous n’avions aussi intimement lié théorie
et pratique. Bien sûr, je tiens aussi à remercier mes collègues, permanents de l’équipe OASIS, qui ont
accordé beaucoup de confiance au jeune chercheur que j’ai été, et avec qui travailler et surtout échanger
des idées est un réel bonheur quotidien. Mais la recherche ne se situe pas que dans une petite équipe,
et il serait injuste de ne pas mentionner mes collègues étranger avec qui j’ai pu travailler que ce soit au
travers de projets, comme Marco Danelutto, Christian Pérez, et Vladimir Getov pour ne citer qu’eux,
ou simplement par la volonté de travailler ensemble, comme Florian Kammüller. A tous les chercheurs
mentionnés ci-dessus, avec lesquels j’espère poursuivre des collaborations, et spécialement à ceux qui sont
devenus un peu plus que des collègues, je souhaite leur adresser un immense Merci!

Au moment des remerciements on pense aussi à ce qu’il y a eu avant, car ma thèse me semble encore
proche, et je ne serais pas devenu le chercheur que je suis sans les conseils de mes deux directeurs de
thèse, avec qui j’ai toujours des discussions fort intéressantes, bien qu’elles portent sur des sujets de plus
en plus opposés. Une pensée émue me vient pour Isabelle Attali qui nous a quitté tragiquement en 2004
et a su créer cette équipe dans laquelle je me sens vraiment à ma place.

Pour revenir au présent, je remercie aussi très sincèrement mes rapporteurs et tous les membres de
mon jury d Habilitation, qui ont accepté de passer du temps à lire, écouter et évaluer mes travaux.

Et puis la science n’est pas tout dans la vie, malgré la beauté de la recherche il est bon d’aller chercher
un peu de notre bonheur ailleurs et pour cela je remercie énormément tous mes amis pour ces moments
passés ensemble qui font de la vie un tout. Que ce soit à travers une soirée au cinéma, une soirée passée
à jouer entre amis, ou un trail en montagne (qu’il fasse 20 ou 300km), vous m’avez énormément apporté!
Aussi, mes parents et ma famille ont su m’apporter le soutien, la complicité et la tendresse pendant tant
d’années, il me semblerait inconcevable de ne pas avoir une forte pensée pour eux au moment de ces
remerciements. Enfin, mes pensées vont par dessus tout à Marine qui a su m’apporter son support et sa
tendresse pendant ces dernières années, pendant lesquelles nous avons déjà partagé tant de choses.

Chapter 1

Introduction

My works aim at a common practical objective: help
the programmer to write distributed applications that run
correctly. My contribution to this objective is to provide
theoretical models of languages, runtime platforms and al-
gorithms for distributed computing.

Programming distributed applications is a difficult task.
The distributed application developer has to face both con-
currency issues and location-related issues. The program-
ming paradigm I have studied the most is the active object
programming model. The active object paradigm [LS96]
[16] provides a solution for easing the programming of dis-
tributed applications by abstracting away the notions of
concurrency and of object location. Active objects are sim-
ilar to actors [AMST97,Agh86], but better integrated with
the notion of objects. Active objects are isolated entities
that are manipulated by a single thread; they communi-
cate between themselves by asynchronous method invoca-
tions (called requests). Active objects act as the unit of
distribution and of concurrency, naturally abstracting away
communication between remote entities and local availabil-
ity of data. One of the key feature of active object models
is the notion of futures [Hal85]: a future is a placeholder
for an object that is not yet available; this construct is very
convenient for easily expressing concurrent or distributed
programs. We chose to have transparent futures so that the
programmer does not have to explicitly manipulate futures:
if a future object is accessed while the object is not yet avail-
able, the program is stuck. The advantage of this approach
is that while synchronisation between entities is simple, the
programmer does not have to worry about which objects
can be a future, and the result of a remote invocation is
only waited at the moment when it is really needed. Dur-
ing my thesis, I proposed a calculus formalising such active
objects, it is called ASP [16]. Of course, when synchronisa-
tion between remote entities gets more complex, deadlocks
can appear, and in that case the programmer has to worry
about which object is a future or not. In order to detect
such deadlocks, but also to guarantee safety of program ex-

ecution in general, we studied behavioural specification and
verification of distributed applications.

We designed behavioural models for active object based
distributed applications. Our objective is to provide tools
so that the programmer can specify the behaviour of his
programs and verify its correctness. For example he can
verify the absence of deadlocks or the ability of a program
to provide an answer to a given request. We designed first a
generic formal specification language allowing hierarchical
composition of parameterised labelled transition systems,
it is called pNets. The specification of an active object
or component system is obtained by composition of basic
blocks expressing the behaviour of the individual methods
of the application. The behaviour of those methods could
be either computed by static analysis of the source code, or
directly specified by the programmer. In contrast, in our de-
sign of a new specification language called JDC, we studied
the possibility of generating the behavioural specification.
Most of our work on behavioural specification consisted in
automatically generating the behaviour of a complete dis-
tributed application from the specification of pieces of ap-
plicative code. We are able to generate the behaviour of
active objects with futures, asynchronous method invoca-
tions, FIFO service of requests or specific service policies,
. . . The model we generate corresponds to the semantics of
the active objects as specified by the ASP calculus. Then,
from the complete behavioural specification of an applica-
tion expressed as a pNet, we can generate a finite instance
of this model in a language that can be model-checked by
an existing model-checker.

Providing tools and theoretical foundations for program-
ming and verifying active objects is thus one of the key
achievements of my work. I think the properties of ac-
tive objects help the distributed programmer with the writ-
ing of his applications and the verification of their correct-
ness. However, object-oriented programming has its lim-
its in term of code re-usability and of runtime adaptation.
For this, software components have been designed to pro-
vide composition framework raising the level of abstraction

7

compared to objects. Components split the application pro-
gramming into two phases: the writing of basic business
code (in our case, we could write this code as active ob-
jects for example), and the composition phase consisting
in plugging together the basic blocks programmed above.
To scale better and ease the programming of large appli-
cations, we focused on a hierarchical component model, al-
lowing each component to be the composition of other com-
ponents. In the context of the CoreGrid European Network
of Excellence, we designed a component model called GCM
(Grid Component Model); GCM is an adaptation of Frac-
tal [BCL+04] for large scale distributed computing.

By nature, using components to compose applications
restricts a little the expressivity by constraining the pro-
grammer to identify the dependencies between components
statically. While this limits a little the programming model
expressivity, it eases the design of large models and in our
case it provides a static view of the code dependencies. In
our model, components also act as the unit of distribution
and concurrency. This way, the static view of the com-
ponent system is in fact a static view of the distributed
entities in which binding between component interfaces are
the only places where communications occur. Also as a
component is the unit of distribution and concurrency, it
can be safely migrated from a machine to another and the
deployment process consists in stating which component is
placed where. This static view is also crucial to perform
behavioural specification as it becomes trivial to identify
where remote invocations occur (only component interfaces
need to be equipped with the behaviour of asynchronous
method calls), when futures are created, etc. This is why
most of our developments on behavioural specification fo-
cused on distributed components.

The static view enforced by the component models is
quite often too restrictive, as application structure need to
evolve dynamically, in particular when facing changes in
the execution environment. Some component models, in-
cluding the GCM, address these issues of adaptiveness as
a separated concern relatively to the business logic: the
business code of the component does not have to deal with
the structural changes of the component application. Those
structural changes, called reconfiguration of the component
assembly, are programmed separately, and are considered
as non-functional concerns. Both the management and the
enactment of structural changes are triggered at the non-
functional level. This separation of concern increases the
re-usability of applicative code, but also eases the program-
ming of large scale highly adaptive applications. Indeed,
in this context, as adaptation code is separated from busi-
ness code, it is possible to design much smarter and generic
adaptation procedures. Those procedures can even become
smart and generic enough to allow the component system

to take reconfiguration decisions in an autonomous manner;
that is why component programming is a good candidate for
realising autonomic computing. In autonomic computing,
each entity is able to adapt itself to changes in the runtime
environment, or in the quality of service desired. In this
context, we extended GCM with a precise specification and
structural constructs for defining non-functional concerns,
but we also worked at the design and implementation of
correct and distributed reconfiguration procedures.

My contributions are quite theoretical, but I particu-
larly took care that they are also directly applicable to real
middlewares, libraries, languages, or runtime platforms. In-
deed, the results of our theoretical study have often been
applied to the design and implementation of the ProActive1

library, and of the ProActive/GCM component framework.
Most of the time, I rely on a classical programming lan-
guage theory approach, specifying the runtime semantics of
the considered paradigm and proving its properties. What
is important here is that the proven results generally had
a direct impact on the implementation of the middlewares
and platforms implemented in the OASIS team, or in the
design of our behavioural models. In my work, application
and theory have a strong and constant interaction, making
the theoretical parts sometimes less elegant in order to stick
to the real implementation, but also making the implemen-
tation sometimes less efficient in order to guarantee crucial
properties of the programming model. The big challenge
addressed partially here is indeed the guarantee of the cor-
rect program behaviour. Such a guarantee is the composi-
tion of: specification of programming languages and of their
runtime semantics ensuring the correctness of the runtime
platform; and behavioural specification and verification of
the program ensuring the correctness of the application it-
self.

In my work, I designed an active object calculus formal-
ising the notions used in active object languages, this calcu-
lus is called ASP. The ProActive library can be considered
as an implementation of this formal model, and ASP acted
as a strong guide for the implementation of some crucial
features of the ProActive library that is why I actively took
part in the design of some crucial functionalities of this mid-
dleware. Then, after the definition of the GCM component
model, ProActive was extended to provide the reference
implementation of GCM, not only did I took part in the
design of the model and on the way it is implemented, but
we also provided a formal model of the reference implemen-
tation (GCM/ProActive) to be able to prove the properties
of the implementation. The formal model mentioned above
also contributed to the generation of behavioural models

1ProActive [CDdCL06] is a Java library implementing active ob-
ject that was originally developed in the OASIS team

8

for GCM components. Indeed, we quite massively use the
proven properties on the runtime model to choose the right
behavioural model but also to optimise the size or complex-
ity of this model which helps us reduce the state-explosion
problem inherent to the model-checking approach.

As guarantee of correctness is a strong guiding line of
my research, it was natural at some point to try theorem
proving tools. Theorem provers enable the specification of
formal models and the mechanical verification of the prop-
erties of those models. Paper proofs are faster and easier
to write than mechanised ones because the reader is often
easier to convince than a theorem prover and for this rea-
son they are useful as soon as there is not sufficient time
for doing the mechanised proof (or one considers the ef-
fort is not worth it). However, mechanised proofs are a
strong guarantee for the reader of the proof or the user of
the framework: there is no more need to understand the
proof to be convinced that the theorem is true, it becomes
sufficient to understand the theorem and trust the theorem
prover. For these reasons, several aspects of my work have
been formalised in a theorem prover in order to increase the
confidence the reader and the user will have in the proper-
ties of our models. I use the theorem prover Isabelle/HOL
but I am convinced that all the proofs presented here would
have worked if I used another theorem prover with similar
capacities, like Coq for example.

Organisation of the manuscript

This document is organised as follows. I tried to alternate
overviews of some works with more technical aspects in or-
der to provide both an overall view of what we achieved
and some insight on the way we formalise our program-
ming models, applications and execution environments.
The reader should however refer to the papers I cite for
further details on both technical and implementation as-
pects. Among my papers, four of them are included in the
manuscript. They are not necessarily the best ranked jour-
nal and conferences of my publication list, but I chose them
because they are representative of our work in the last years.

Chapter 2 deals with the active object programming
model. It focuses on three points: an overview of active
object languages in Section 2.2, my contribution to some of
the features of the ProActive middleware in Section 2.3, and
our efforts for the mechanised formalisation of a functional
ASP calculus in Section 2.4.

Chapter 3 deals with the composition of distributed ap-
plications. It mainly focuses on the GCM component model

presented in Section 3.1. Our efforts in the design of non-
functional features and adaptation procedures are described
in Sections 3.2 and 3.3. Section 3.4 presents the formalisa-
tion of GCM in Isabelle/HOL. Then a short section (Sec-
tion 3.5) presents our work on behavioural skeletons, a quite
different approach for the composition of distributed or con-
current applications. Finally this chapter finishes with a
long section on the behavioural specification and verifica-
tion of distributed applications, mainly targeted at GCM
components (Section 3.6).

Chapter 4 presents some works in progress and perspec-
tives. It focuses on two contributions that are advanced
enough to obtain first results, but for which the expected
outcome is much greater than the current achievements.
The two main research directions presented in this chapter
are:

• Broadcast for structured peer-to-peer networks: the ob-
jective of this work is twofold. First we aim at de-
signing an efficient broadcast protocol for CAN overlay
networks. Second and most importantly, our objective
is that this protocol is proven correct, and for this we
want to formalise its principles in a theorem prover.
This work is the opportunity for us to bring to the dis-
tributed system community the correctness guarantees
ensured by formal methods.

• Multi-active objects: this is also a promising research
direction aimed at increasing the expressive power of
active objects while retaining their easy programming
model. Such a model extends active objects with local
multi-threading expressed in a much intuitive manner.
This programming model both allows the programmer
to avoid most of the deadlock that can occur in an ac-
tive object program, and also increases the efficiency of
active objects on multi-core architectures.

Finally, this chapter contains a few less advanced research
directions. This chapter also contains a very short overall
conclusion to this document.

Note on citations

In all this document, citations of papers that I co-authored
are of the form [number] (e.g., [1]) whereas citations of other
papers are of the form [AuthorsinitialsYear] (e.g., [AT04]).

9

10

Chapter 2

The Active object Programming Model

2.1 Introduction

The active object model is derived from the Actors model
[AT04,AMST97,Agh86]. Actors and active objects share a
lot of concerns and advantages. A great part of the mech-
anisms designed for one programming paradigm can be ap-
plied, almost straightforwardly, to the other.

The principle of active objects is very simple: An object
is said to be active if it can be deployed on a remote ma-
chine. As a consequence, every call to such an object will
be a remote method invocation; we call such an invocation
a request. An active object is thus an object that treats the
requests it receives, it is an object together with a thread.

To decouple the invocation object from the invoked ob-
ject, contrarily to a classical remote invocation, the invoker
is not blocked waiting for the result instead a future object
is created and represents the result of the remote invoca-
tion.

Futures, first introduced in Multilisp [Hal85] and AB-
CL/f [TMY94] are used as constructs for concurrency and
data flow synchronisation. Futures are language constructs
that improve concurrency in a natural and transparent way.
A future represents a result that has not been computed yet.
When the result is available it can be retrieved (automati-
cally or manually), we then say that the future is resolved.
Frameworks that make use of explicit constructs for creating
futures include Multilisp [Hal85], λ-calculus [NSS06], Creol
[JOY06], SafeFuture API [WJH05], and ABCL/f [TMY94].
In contrast, futures are created implicitly in frameworks
like ASP [10], [16], [1], AmbientTalk [DCMM06], ProAc-
tive [CDdCL06]. In ASPfun [12], [40] we also chose to
provide implicit futures. Usually, in those object-oriented
languages, implicit creation corresponds to asynchronous
method invocation. A key benefit of the implicit creation
is that no distinction is made between synchronous and
asynchronous operations in the program. This way, when
a method invocation is local, usual method invocation is

performed, whether when the accessed object is remote, a
future is immediately obtained.

Additionally, the futures can be accessed explicitly or
implicitly. In case of explicit access, operations like claim
and get, touch are used to access the future [JOY06,
TMY94]. For implicit access, operations that need the real
value of an object (blocking operations) automatically trig-
ger synchronisation with the future update operation. We
say that futures are first class if future references can be
transmitted between remote entities without requiring the
future to be resolved.

2.2 Overview of languages for active

objects and futures

Several programming languages or models rely on some
form of active objects, we review the main ones below. Es-
pecially focusing on languages which have a formalised se-
mantics. But before focusing on active objects, let us first
review the main works on formalisation of futures in the
context of functional languages. Indeed, Futures were first
introduced in Multilisp [Hal85], and thus lead to a lot of
work on their formalisation in the context of functional lan-
guages. We will then review main active object languages
and finish by a couple of languages that are not pure active
objects but also strongly relate the notions of distribution
and concurrency to the notion of objects.

2.2.1 Futures in functional languages

To our knowledge, the first work on formalisation by se-
mantic rules of Futures appeared in [FF99,FF95] and was
intended at program optimisation. This work focuses on
the futures of MultiLisp, that are explicitly created. The
authors “compile” a program with futures into a low-level
program that does explicit touch operations for resolving

11

the future, and then optimise the number of necessary touch
operations.

In a similar vein, λ(fut) is a concurrent lambda calculus
with futures. It features non determinism primitives (cells
and handles). In [NSS06], the authors define a semantics for
this calculus, and two type systems. They use futures with
explicit creation point in the context of λ-calculus; much in
the same spirit as in Multilisp. Alice [NSSSS07] is an ML-
like language that can be considered as an implementation
of λ(fut).

2.2.2 Asynchronous Sequential Processes

The ASP calculus we have defined [1] is a distributed ac-
tive object calculus with futures; the ProActive library [CD-
dCL06] can be considered as its reference implementation.
The ASP calculus formalises the following characteristics of
active objects:

• asynchronous communications, by a request-reply
mechanism;

• futures; in ASP, futures are transparent objects: their
creation and access is implicit, futures are also first-
class: they can replace transparently any other objects
and can be communicated as result or parameter of re-
mote method invocations;

• sequential execution within each process, each object is
manipulated by a single thread;

• imperative objects, i.e. each object has a state and there
is an operation for updating it.

ASP’s active objects are quite similar to actors and en-
sure the absence of sharing: objects live in disjoint activi-
ties. An activity is a set of objects managed by a unique
process and a unique active object. Active objects are acces-
sible through global/distant references. They communicate
through asynchronous method calls with futures. ASP is a
non-uniform active object model: some of the objects are
not active, in which case they are only accessible by a single
active object, they are part of its state. Non-uniform active
object models are much more efficient as they require much
less communications and much less concurrent threads than
models where each object would be active.

Our main result consists in a confluence property and
its application to the identification of a set of programs be-
having deterministically. This property can be summarised
as follows:

• Future updates can occur at any time without any con-
sequence on the result of the computation,

• Execution is only characterised by the order of requests,
and even more precisely by the order of request senders:
To characterise uniquely an execution, it is sufficient to
consider, for each activity, the ordered list of identifiers
of the activities that have sent a request to this activity.

• Consequently, programs communicating over trees are
deterministic.

The ASP calculus has been first designed during my
thesis [49]. It leaded to several other publications, [1], [10],
[16].

The impact of this formalisation on the development of
the ProActive library is a strong achievement of this work.
For example, thanks to this work, “automatic continua-
tion”, i.e. first class futures à la ASP have been imple-
mented and massively used.

The code snippet shown in Figure 2.1 gives a typical
example of a simple ProActive piece of code. It creates a
new active object of type A on the JVM identified by Node1.
All calls to that remote object will be asynchronous, and the
access to the result might be subject to wait-by-necessity.

The main advantage of ASP is that most code can be
written without caring about distribution and concurrency.
Futures are automatically and transparently created upon
method invocation on an active object. Synchronisation is
due to wait-by-necessity that occurs upon access to a future
that has not been resolved yet. This synchronisation is per-
formed transparently, i.e. there is no construct for explicitly
waiting the result of a request. Wait-by-necessity is always
performed at the last moment, i.e. when a value is really
needed. Futures are also transparently sent between activ-
ities. This way simple programs can be written extremely
easily and rapidly.

Unfortunately, as active object are purely mono-
threaded, ASP’s active objects can easily deadlock: most
recursive asynchronous method calls lead to a deadlock,
which is difficult to avoid when two active objects are in-
volved in a mutually recursive invocation.

2.2.3 AmbientTalk

In AmbientTalk [DCMM06], active objects behave similarly
to ASP’s active objects. However, there is one major differ-
ence between the two models: in AmbientTalk the future
access is a non-blocking operation, it is an asynchronous call
that returns another future. There is no wait-by-necessity
upon a method call on a future, instead the method call
will be performed when the future becomes available, in
the meantime a future represents the result of this method
invocation. This differs from the approach adopted in other

12

A a = (A) ProActive.newActive("A", params , Node1); // active object creation

v = a.bar (...); // Asynchronous call , no wait , v gets a future

o.gee (v); // No wait , even if o is a remote active object and v is still awaited

...

v.f (...); // Wait -by-necessity: wait until v gets its value

Figure 2.1: Typical ProActive code

frameworks where access to a future is blocking. This ap-
proach avoids the possibility of a deadlock as there is no
synchronisation, but programming can become tricky as
there is, according to the programming model specification,
no way to synchronise two processes or to know whether a
computation has finished.

2.2.4 Creol

Creol [JO06,JOY06] is an active object language that exe-
cutes several requests at the same time, with only one ac-
tive at a given time. This is some form of collaborative
multi-threading based on an await operation that releases
the active thread so that another request can continue its
execution. Typically, one would do an await when access-
ing a future so that if the future is not yet available another
thread can continue its execution. In Creol [JO06] future
creation and access is explicit, in particular a specific syn-
tax exists for asynchronous method invocation. Creol is a
uniform active object model where each object is an active
one able to receive remote method invocations. Creol also
ensures the absence of data races, even if request execution
can be interleaved, and the result of computation is less
predictable than in ASP.

De Boer et al. [BCJ07] provided the semantics of an
object-oriented language based on Creol; it features active
objects, asynchronous method calls, and futures. This se-
mantics extends Creol in the sense that it supports first-
class futures, although the future access is still explicit (us-
ing get and await). In the same paper, the authors also
provide a proof system for proving properties related to
concurrency.

The Creol model has the advantage of having less dead-
locks than ASP, because in ASP a request must be finished
before addressing the next one. Indeed, when the result of
a request is necessary in order to finish another one, the
Creol programmer can release the service thread, which is
impossible in ASP. While no data race condition is possible,
interleaving of the different request services triggered by the
different release points makes the behaviour more difficult
to predict (in particular the determinism properties of ASP
cannot be proven in Creol).

Overall, explicit future access, explicit release points,
and explicit asynchronous calls make the Creol program-
ming model richer than ASP, but also more difficult to pro-
gram. Finding a good compromise between expressiveness
and safe program execution is a crucial aspect in the design
of programming languages; we will provide in Section 4.2
another extension of the active object model providing a dif-
ferent tradeoff between expressiveness, efficiency, and ease
of programming.

2.2.5 JCoBox

JCoBox [SPH10] is an active object programming model
implemented in a language based on Java. It integrates
asynchronous and synchronous communications as different
operators, and partitions the object space into “coboxes”,
corresponding to ASP’s activities. Each cobox is respon-
sible for controlling the local concurrency and maintaining
its invariants. Similarly to Creol, in each cobox a single
thread is active at a time, but this thread can be released
and coboxes support collaborative multi-threading.

In Creol [JO06] all objects are active, whereas ASP and
JCoBox are non-uniform active object models: some objects
are active and are invoked by asynchronous remote requests,
other objects are passive and are accessible by a single ac-
tivity (or cobox), they are transmitted by value. References
from a cobox to an active object of another cobox are called
“far references”. Far references can only be used to perform
asynchronous calls (reference!method()), which return fu-
tures. Futures are explicitly created and explicitly accessed,
just as in Creol. await performs a cooperative wait on the
future, whereas get blocks until the value of the future is
received. In JCoBox, contrary to ASP, a cobox may contain
multiple active objects.

Cooperative multi-threading is similar and leads to the
same advantages and drawbacks as in Creol.

Figure 2.2 shows explicit future creation, and explicit
future accesses in JCoBox. When inside an active object
a single thread is active at a time, accessing futures can
lead to deadlock in case of re-entrant requests. The so-
lution proposed by ASP and ProActive is “first-class fu-
tures”: since futures are implicitly created and transpar-
ently transmitted as method parameters and results, the

13

deadlock only occurs if the future is really needed. Alterna-
tively, Creol and JCoBox provide explicit futures and allow
the active thread to suspend itself until a result is returned.
Consider the method foo of Figure 2.2, if one replaces the
await statement by a get, the active object would dead-
lock waiting for bar to be executed. It might seem a safe
programming guideline to systematically perform an await

instead of a get. However, this might lead to unexpected
non-determinism or unexpected results. In JCoBox, ready
threads (i.e. threads that can execute but are suspended)
are dequeued in a FIFO order. In the example, the bar

and the second foo request will then be executed in an un-
predictable order. Depending on when the second foo is
received, the final result returned by the first foo may be
’2’. This happens because ’x’ can be modified by the second
foo request before the return statement of the first.

For the moment, no programming model for distribu-
tion and concurrency that would be easy to program in all
conditions, and each programming model has its own draw-
backs. The great advantage of Creol and JCobox is that
these programming models prevent race-conditions. They
allow interleaving inside an active object so that some dead-
locks can be avoided, but this interleaving is difficult to con-
trol. The concurrency model is powerful enough and easier
to handle than basic threads and locking mechanisms. It is
more complicated than ASP, but also more powerful. We
will provide one alternative programming model featuring
multi-threading for active object in Section 4.2) featuring
another kind of tradeoff between expressiveness, deadlock
prevention, race-condition prevention, and ease of program-
ming.

2.2.6 JAC

JAC [HL06] is an extension of Java that introduces a higher
level of concurrency and separates thread synchronisation
from application logic in a declarative fashion. JAC relies
on a custom pre-compiler and declarative annotations, in
the form of Javadoc comments placed before method head-
ers or inside the code. Objects are annotated as controlled
when their threads are managed and synchronised accord-
ing to JAC’s annotations. JAC relies on compatibility an-
notations stating whether two methods can be executed at
the same time; two methods should be compatible if they
do not access the same variables (or if the access to those
variables has been protected by some locking mechanism).
For example, the following code states that isEmpty can be
safely executed concurrently with lookup and with itself:

/** @compatible lookup(Object), isEmpty () */

public boolean isEmpty () {.....}

@CoBox class SomeClass { // declaring a cobox

int x;

int bar() {

return 0;

}

//sets value of x,

// but may release the thread

int foo(int v) {

x=v;

Fut <int > z=this!bar();

//async. call on itself

...

int res=z.await();

// allows another request to progress

return x+res;

}

}

//in some other class

// (s instance of SomeClass)

a=s!foo(1);

b=s!foo(2);

print(a.get()+’ ’+b.get());

//the output could be either ’1 2’ or ’2 2’!

Figure 2.2: Thread interleaving in JCoBox may lead to un-
expected outcomes

This way methods that can safely be run concurrently
will automatically be. Additional annotations are given for
finer grain or easier control of concurrency and synchroni-
sation (e.g. to wait for a guard to be verified before execut-
ing a method). Exhaustive case study of annotation effect,
in particular in relation with inheritance is also described
in [HL06].

JAC’s async annotation provides some form of active
object behaviour: an asynchronous method is executed in-
dependently of others in a separate thread. The main dif-
ference with classical active objects is that classical active
objects act as a unit of concurrency: they are manipu-
lated with a single thread and enforce the absence of shared
memory between active objects. Stating that all methods
of a class are asynchronous and mutually exclusive would
create some form of active objects, but without the ab-
sence of shared memory enforcement. For example, in ASP
and JCoBox, non-active objects are called passive and are
deeply copied when passed between activities in order to
guarantee the absence of sharing.

We think JAC is a well designed model for declaring sim-
ply powerful concurrency rules, but unfortunately it is not

14

particularly adapted to a distributed environment. Clas-
sical active objects on the contrary provide a better en-
capsulation of data and concurrency but do not provide
concurrency abstractions as powerful as JAC annotations.
We thus think ASP’s programming model is simpler to pro-
gram, has stronger properties and is more adapted to dis-
tribution. We will see in Section 4.2 that we designed also
a multi-active object programming model with annotations
similar but simpler than the ones featured by JAC.

2.2.7 X10

X10 [CGS+05] is a programming language that adopts a
fairly new model, called partitioned global address space
(PGAS). In this model, computations are performed in mul-
tiple places (possibly on various computational units) si-
multaneously. Data in one place is accessible remotely, and
is not movable once created. Computations inside places
are locally synchronous, but inter-place activities are asyn-
chronous. This decouples places and ensures global par-
allelism. While this model seems fundamentally different
from active objects, both can be used to express the same
kind of applications, but more importantly in X10 like in
ProActive, a special care has been put to offer to the pro-
grammer a wide set of so called technical services. Technical
services are non-functional features that are crucial to de-
ploy and run large-scale applications, they typically include
fault-tolerance, security, code migration, deployment on a
wide set of architectures, support for several communica-
tion protocols, etc. Next section will focus on some of the
technical services featured by ProActive (the ones in which
formal background play a major role). Also note that X10
places can host multiple activities, resulting in a similar
service to what multi-active objects offer (see Section 4.2).

2.3 A middleware for active objects

Most of my work on the active object model contributes to
the formalisation of this model, but also to the design of
additional mechanisms specific to this programming model.
Indeed, from the original ASP calculus we designed dur-
ing my PhD thesis, several works have been derived. The
works presented in this section concern technical services,
i.e. functionalities that are not directly part of the pro-
gramming model but play a major role in the support for
programming and running real applications. Even if tech-
nical services are not part of the programming model, they
can be tightly coupled to it as we will show below. All the
practical developments made in the OASIS team were done
in the context of the ProActive Middleware. ProActive is a

Java middleware implementing the active object paradigm.
I consider it as a very useful implementation platform: the
theoretical formalisms that we developed are applicable in
a more general context than the ProActive middleware, but
ProActive gave us the opportunity to show that our algo-
rithms and ideas were working in a real large-scale runtime
environment.

With members of the OASIS team, we designed a couple
of crucial mechanisms specialised to active objects, those
mechanisms are of course inspired by protocols and algo-
rithms existing in the literature, but the reader is referred
to the paper describing each of the mechanism for a com-
parison with related works.

2.3.1 Garbage collecting active objects

In [31] we designed a garbage collection mechanism for Ac-
tive objects. We say that an active object is idle if it does
not serve any request (and has no request to serve in its
request queue). More exactly, an active object can be con-
sidered useless, and thus can be garbage collected, if it is
not serving any request and cannot serve any request in the
future, i.e. if it is only accessible by active objects that are
idle. To garbage collect useless active objects, we build the
reference graph between activities without modifying the
local garbage collector. We identify cycles of idle activities
as cyclic garbage instead of the more common unreachable
strongly connected component. For this the idle activities
reach a consensus stating that they are useless: consider a
connected set of activities, if all of them are idle and agree
on this point, then they can be garbage collected because
they will always be idle and will never receive any request
to serve. This Garbage collector has been implemented in
ProActive by Guillaume Chazarain.

2.3.2 Fault-tolerance for active objects

The results proved formally on the ASP calculus can be of
particular interest when designing protocols for recovering
from faults [EAWJ02]. Indeed, the minimal characterisa-
tion of the execution provided by the properties of ASP
allows the optimisation of the events that have to be stored
to replay the original execution: to enforce a second exe-
cution to occur similarly to a first one, it is sufficient to
remember, for each active object, the ordered list of active
objects that have sent a request to this active object. This
is particularly useful for designing a CIC (communication
induced checkpointing) protocol when checkpoints cannot
be taken at any time. Typically, ProActive is a Java mid-
dleware, and in Java it is impossible to stop a thread and

15

store its current status; thus the only moment when a check-
point can be taken is between two requests. Indeed, at this
moment the applicative state of the object is in general suf-
ficient to restore its execution: execution can be restored
by starting serving the next request.

In a few words, in order to recover after a fault, each pro-
cess stores from time to time its state (when programming
with active objects, the active objects abstracts away the
processes). Such a saved process state is a checkpoint. The
idea in CIC protocols [BCS84] is to force the checkpoints
to happen at some precise point (relatively to communi-
cations), if checkpoints are not conveniently placed, they
cannot be used at recovery because the recovery line would
be inconsistent. In our protocol, we deal with constraints
on the moment when a checkpoint can be taken. When a
checkpoint should be taken for consistency reason (forced
checkpoint), we delay it and place it as soon as possible.
Between the time the checkpoint should be forced, and the
time the checkpoint is really taken we remember the history
of events on all the processes. In our case, this is realistic
because this history is minimal (it is restrained to the list of
request senders for each request queue). This way we man-
aged to keep a low number of checkpoints while ensuring
coherence of the execution upon recovery.

CIC protocols require all the processes to recover upon
a failure. They are convenient for ensuring at low-cost the
fault-tolerance of relatively small systems, but when sys-
tems get bigger message logging protocols are preferred even
if they induce a bigger overhead on non-faulty executions,
because only the failed processes have to restart. We also
proposed a mixed protocol relying on groups of machines,
each group is handled by our CIC protocol, but inter-group
fault-tolerance relies on message logging. This way only the
group that contains a failure restarts, and a good balance
between overhead and recovery time can be found.

To summarise, we used ASP results on confluence, and
a formalisation specific to fault-tolerance for active ob-
jects [29] to design and formalise a CIC protocol for ac-
tive objects. We then designed a mixed protocol between
the previous one and message logging mechanism to bet-
ter adapt to large-scale infrastructures, like Grids. This
work has been realised during the PhD thesis of Chris-
tian Delbé [Del07], and all those protocols have been im-
plemented in the ProActive Middleware and heavily tested
in a large-scale environment [22], [7].

Determinism and characterisation of execution

One of the interesting point of this work is that it relates
determinism and execution characterisation. On this par-
ticular aspect it bridges the gap between two research areas:

language theory and distributed systems. Recent work pub-
lished in the domain of distributed systems [LS11] focuses
on the characterisation of deterministic program execution
from the distributed systems point of view. Unfortunately,
the work of Lu and Scott failed to link the notion of de-
terminism in execution characterisation with the one used
in programming languages theory. Somehow our work on
fault tolerance gives a first idea on how to link those two
worlds: determinism property proved on the calculus could
be used to minimally characterise an execution. Somehow
both [LS11] and our work are just early preliminary re-
sults that could be reused to provide general results unify-
ing the notion of deterministic languages and deterministic
distributed execution. A first step in this direction would
be to use the semantics of the concurrent programming lan-
guage to provide a formal and minimal characterisation of
nondeterministic events logged by rollback-recovery proto-
cols [EAWJ02].

Also, to study a few security aspects related to the active
object programming model, during the thesis of Felipe Luna
del Aguila, we proposed a security extension to the ASP
calculus [18].

2.4 Functional active objects and

their mechanised formalisation

Reasoning on complex calculi is a difficult task, especially
when the language encodes several complementary con-
structs. Indeed, in ASP the coexistence of active objects,
futures, and local objects induce several semantic rules, and
reasoning on them, while not particularly difficult can be er-
ror prone because of the numerous cases to consider. This is
also the case for most of the calculi presented in Section 2.2,
indeed for those calculi that have a semantics formally de-
fined (e.g. Creol, JCoBox), the semantics is defined by a
quite large number of cases for handling each of the runtime
construct of the language. This complexity comes most
probably from the coexistence of concurrency, distribution,
and object-related concerns. In practice paper proofs are
most often valid but still contain numerous small mistakes.
Thus even if most paper proofs are quite convincing, a me-
chanical proof verified by a theorem prover is necessarily
more reliable. Indeed, as the prover verifies the steps of
the proof, to be convinced by a mechanical proof, it is suf-
ficient to check the formalisation of the hypothesis and of
the conclusion and to run the theorem prover to check all
the steps, instead of verifying them by hand. This great
progress in the confidence that can be put on proofs comes
at a price: mechanical formalisation is much more costly in

16

time than paper formalisation. Considering the difficulty
to check proofs and how important it is to have a strong
confidence in the generic proofs ensuring correct behaviour
of a language or a middleware, I think that in quite a lot of
cases it is worth spending the additional time required for
the mechanical formalisation.

Considering the complexity of the task and the time it
should take, we first formalised a simpler version of the
ASP calculus, a functional ASP called ASPfun in the Is-
abelle/HOL theorem prover. This work also allowed us to
prove new results on the functional variant of the calculus,
to show the calculus is confluent, and to study typing.

This contribution follows several other works encoding
in a theorem prover calculi and languages. As promoted by
the POPLmark challenge [ABF+08], we are close to a point
where calculi and languages can be reasonably formalised
inside theorem provers. The closest work to ours is proba-
bly [CLM07] that formalises in Coq a sequential version of
the imperative ς-calculus. On the concurrent side, several
works focus on the π-calculus [RH03, BP07] but no work
studied the coexistence of objects and distribution. That
is why we consider the formalisation in Isabelle/HOL of
ASPfun as a valuable contribution in the domain of mecha-
nised formalisation of languages and calculi.

Up to now, the mechanised formalisation of ASPfun gave
us both the opportunity to study a functional active object
calculus and its properties, and to experiment with binder
techniques in this context. The rest of this section sum-
maries our main contributions related to ASPfun. Then a
publication further detailing those points is included.

2.4.1 A functional dead-lock free active ob-

ject calculus

The first contribution of this work is to provide and for-
malise a new distributed active object calculus. Our for-
malisation encodes:

• A functional active object calculus with futures.
• A type system for active objects.
• The proof that typed objects never dead-lock; more pre-
cisely, we proved both subject-reduction and progress
for well-typed ASPfun terms.

We think this formalisation will allow further investigations
on futures, typing, and active objects paradigms.

ASPfun calculus is an extension of ς-calculus with only
the minimal concepts for defining active objects and futures.
At the root of this extension is the notion of active object,
which is an object to which is attached a request queue and

a thread for treating the requests. We call the set consist-
ing of an active object, its request queue, its service thread,
and all the non-active objects referenced by the active ob-
ject, an activity. Syntactically, the extension only requires
a single new primitive: Active. This primitive encodes the
active object creation, when invoked, a new active object is
spawned and will be able then to treat (remote) invocations
sent to it. An active object encodes quite well the notion
of distribution as each active object is well-separated from
the other active objects: each active object is independent
in terms of data access, and of synchronisation: communi-
cations and synchronisation with an activity is limited to
request sending and reply sending. In ASPfun, field up-
date can also be performed on an active object; in fact it
should be viewed as an activity creation primitive. ASPfun

is distributed in the same sense as ASP: it enables paral-
lel evaluation of activities while being oblivious about the
concrete locations in which the execution of these activities
takes place. The actual deployment is not part of the pro-
gramming language, it is the task of an application deployer
rather than of the application programmer.

The absence of side-effects and the guarantee of progress
make the program easy to reason about and easy to par-
allelise. Compared to previous works on ASP, ASPfun has
the following main originalities:

• The functional nature of the calculus gives us the op-
portunity to give a semantics to the update of an active
object’s field: here a new activity is created with the
updated object, this semantics is coherent with the se-
mantics of update in the functional ς-calculus.

• Also due to the functional nature of ASPfun it is safe to
reply partially evaluated futures, making the semantics
more general. A partial reply is here a request partially
evaluated, i.e. an ASP term that is not completely re-
duced and can continue its evaluation on the caller side.

• We studied typing and proved properties on well-typed
terms.

• We also proved several properties on the calculus, like
the fact that there is no way to create cycle of activities
or futures in ASPfun.

The paper included in this section details the se-
mantics of ASPfun, and the properties we proved.
All the Isabelle files for the ASPfun formalisation
can be downloaded at gforge.inria.fr/scm/viewvc.php/

ASPfun/?root=tods-isabelle or at www-sop.inria.fr/oasis/
Ludovic.Henrio/misc.html.

2.4.2 Binder techniques

One crucial question raised by the formalisation of calculi
and semantics is the representation of binders and variables.

17

Indeed, binder representation plays a major role in the for-
malisation of calculi as shown in the current solutions pro-
posed to the POPLmark challenge for example. Binders
play a major role in the formalisation of calculi because the
notion of α-conversion (i.e. renaming of bound variables)
makes the representation of terms difficult: one wants at
the same time to represent terms in a way that is concise
and easy to manipulate, but also to equate terms that only
differ by the name chosen for the bound variables. Intu-
itively, a language that has local scopes and parameters –
for example functions λx.fx – needs to refer to the formal
parameters – here x – when they occur inside these scopes.
The natural, human understandable way is to use variables,
like x, to define and denote formal parameters by name, but
variables are not well suited for mechanisations. Variable
capture may occur: a free variable x in a term t may acci-
dentally be “captured” when substituting t inside a scope
where x is bound. To avoid this, we use a consistent renam-
ing, α-equivalence (renaming of bound variables). However,
α-equivalence creates equivalence classes making equality
and proofs of theorems harder to handle. Several ways of
representing binders and variables have been designed.

De Bruijn indices

The solution proposed by N. G. de Bruijn, is to replace each
occurrence of a variable by an integer equal to the num-
ber of binders that have to be crossed to reach the binder
for the considered variable: a variable is replaced by the
distance from its binding scope. For example, the λ-term
λx.x(λy.x y) becomes λ(0(λ1 0)). Unfortunately, substitu-
tion becomes technical because of the “lifting” of indices
when entering a binder, or replacing a term inside binders.

Locally nameless

The de Bruijn method can be refined in order to avoid ma-
nipulation of explicit indices. For this, the principle of lo-
cally nameless representation is to use indices to represent
bound variables, and classical named variables to represent
free (unbound) variables. Open and close operations trans-
late between those representations [ACP+08]. This tech-
nique is attractive as it combines unique representation,
with human understandable expression of specification.

The open operation, written tu, substitutes a term u for
the outermost bound variable, in the term t. For example

(bvar 0λ((bvar 1)(bvar 0)))n = (nλ(n (bvar 0)))

The opposite operation closes a term: given a name, the
closing replaces the occurrence of variables of this name

with an index for a variable bound at the outermost level,
for example:

\n (nλ(n (bvar 0))) = (bvar 0λ((bvar 1)(bvar 0)))

In the locally nameless approach we must use only well-
formed terms, where bound variables are represented by in-
dices. The notion of locally closed terms ensures this e.g.
λ(bvar 2) is not locally closed. Local closure of terms is a
necessary requirement for most theorems. Another prob-
lem arises when reducing a term under a binder. Use-
ful properties should be valid when closing a term under
any fresh variable. We need: ∀x ∈ FV (t).tx → (t′)x =⇒
λ(t) → λ(t′). The drawback of this proposition is that it
is sensitive to the set of free variables, that may vary in
an unexpected way. In other words, the property written
above is too strong and cannot be verified because FV (t)
varies during reduction. The approach of cofinite quantifi-
cation [ACP+08] should be used: we abstract over the set
of free variables FV(t), and let fresh variables range over
the complementary of an existentially quantified finite set
L:∃L finite.∀x /∈ L This set can then be instantiated
appropriately, when handling proofs.

Nominal techniques

Another approach, proposed by Urban based on Pitts’
work on nominal logic [Pit03], is called nominal technique
[Uea06]. Here, terms are identified as a set bijective to all
terms factorised by α-equivalence. The classical hypothe-
sis, “there is a fresh variable” for a term t is replaced by
“there is a finite support for x”: the set of atoms used in
t is finite, and infinitely many “fresh” atoms are available.
Unfortunately, we cannot use the Isabelle/HOL package for
nominal techniques as it is, because our terms contain fi-
nite maps, and while it is trivial that finite maps guarantee
finite support, such a reasoning is not yet supported by the
Isabelle/HOL package for nominal techniques.

Higher order abstract syntax

In HOAS binders are directly represented by binders of the
meta-level [RH03]. The encoding is more direct than in the
other approaches, but HOAS is restricted when it comes to
meta-level reasoning [HMS01].

Binder techniques and ASPfun

As shown in the paper included in this section we experi-
mented both with de Bruijn indices and with locally name-
less notations. A precise comparison can be found in the

18

included paper. To summarise, locally nameless allowed us
to reason at a higher level of abstraction, with more precise
distinction between bound and free variables, and relieved
us from the burden of having to prove a lot of technical
small lemmas involving indexes. Unfortunately, additional
lemmas are also required on the locally nameless side, in-
volving reasoning on cofinite quantification, on the link be-
tween bound and free variables, fresh variables, and renam-
ing. Those new lemmas bring more precision to the theory,
but the gain in time for the mechanised formalisation is
questionable, especially in our case, where the formalisa-
tion of binders is not at all a major concern of the calculus.
However, as stated earlier the objective of the mechanised
formalisation is to my mind a much greater confidence in the
properties proved, and locally nameless techniques induce
a more natural notation for writing the theorems and the
semantics of the calculus; consequently, locally nameless in-
crease the readability of the proved properties and thus the
confidence an external reader will have of those properties.
This is to my mind the main reason why switching from
de Bruijn notations to locally nameless techniques enriched
our formalisation.

2.4.3 Paper from Science of Computer Pro-

gramming, Jan 2011

This paper details our works on ASPfun, it defines the cal-
culus, its semantics, its typing. It also presents our formal-
isation in Isabelle/HOL including two different binder rep-
resentations, and their comparison in the context of mech-
anised formalisation.

19

20

Science of Computer Programming 77 (2012) 823–847

Contents lists available at SciVerse ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

ASPfun: A typed functional active object calculus

Ludovic Henrio a, Florian Kammüller b,c,∗, Bianca Lutz c

a CNRS – I3S – Univ. Nice Sophia-Antipolis – INRIA, Sophia-Antipolis, France
b Middlesex University, London, UK
c Technische Universität Berlin, Germany

a r t i c l e i n f o

Article history:

Received 10 November 2009

Received in revised form 31 October 2010

Accepted 28 December 2010

Available online 12 January 2011

Keywords:

Theorem proving

Object calculus

Futures

Distribution

Typing

Binders

a b s t r a c t

This paper provides a sound foundation for autonomous objects communicating by remote

method invocations and futures. As a distributed extension of ς-calculus we define

ASPfun, a calculus of functional objects, behaving autonomously and communicating by a

request-reply mechanism: requests are method calls handled asynchronously and futures

represent awaited results for requests. This results in an object language enabling a concise

representation of a set of active objects interacting by asynchronous method invocations.

This paper first presents the ASPfun calculus and its semantics. Then, we provide a type

system for ASPfun which guarantees the ‘‘progress’’ property. Most importantly, ASPfun has

been formalised; its properties have been formalised andproved using the Isabelle theorem

prover and we consider this as an important step in the formalization of distributed

languages. This work was also an opportunity to study different binder representations

and experiment with two of them in the Isabelle/HOL theorem prover.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents a functional active object language featuring asynchronous method calls and futures; it has
been formalised in the Isabelle/HOL theorem prover. ASPfun (asynchronous sequential processes) is an extension of the
ς-calculus [1] where objects are distributed into several activities, and activities are the units of distribution. Communica-
tions toward activities are asynchronous (remote) method calls; and futures are identifiers for the result of such
asynchronous invocations. A future represents an evaluation-in-progress in a remote activity. Futures can be transmitted
between activities as any object: several activities may refer to the same future. The calculus is said to be functional because
method update is realised on a copy of the object: there is no side-effect. The paper also studies a type system for active
objects. Typing is a well-studied technique [2]; we prove here a classical typing property, progress, in unusual settings,
distributed active objects.

We mechanically proved properties about ASPfun and, since the calculus is abstract, our semantics and mechanisation
can be a basis for the analysis of related languages. Distributed active objects represent an abstract notion of concurrently
computing and communicating activities. Clearly, finding a combination of objects and concurrency is not new as a notion
— related notions are summarized in the following paragraph — but providing a fully formalized and mechanized calculus
including typing for this combination is. Mechanical proofs, though more difficult to perform, are more reliable because
they should contain no errors. This article shows that theorem proving techniques can handle distributed features of
programming languages. Our work is an important step toward the mechanisation of calculi for distributed computing.
The calculus is a model for distributed frameworks relying on active objects or on actors as explained below.

∗ Corresponding author at: Middlesex University, London, UK.

E-mail addresses: Ludovic.Henrio@inria.fr (L. Henrio), f.kammueller@mdx.ac.uk, flokam@cs.tu-berlin.de (F. Kammüller), sowilo@cs.tu-berlin.de

(B. Lutz).

0167-6423/$ – see front matter© 2011 Elsevier B.V. All rights reserved.

doi:10.1016/j.scico.2010.12.008

mailto:sowilo@cs.tu-berlin.de
http://dx.doi.org/10.1016/j.scico.2010.12.008
http://dx.doi.org/10.1016/j.scico.2010.12.008
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:Ludovic.Henrio@inria.fr
mailto:f.kammueller@mdx.ac.uk
mailto:flokam@cs.tu-berlin.de

824 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

Object and distribution: the active object model

The underlying principle for distribution considered in this paper originates from Actors [3,4]. Our calculus provides a

model of computations that are distributed in the same way as the actor or the active object paradigm. In these paradigms,

distributed computation relies on absence of sharing between processes allowing them to be placed on different machines.

Those models feature asynchronous RMI-like communications. We detail below some characteristic distributed languages

adhering to these principles.

Principles of actors are the following. Each actor is an independent functional process, i.e., an object together with its

own thread. Actors interact by asynchronous message passing. They receive messages in their inbox and process them

asynchronously. Instead of having an internal state, actors can change their behaviour, i.e., their reaction to received

messages. Actors are some form of active objects. Our approach is to take distribution and parallelism notions similar to

actors but fit them into a calculus of classical objects. This article introduces a formalisation, both on paper and in a theorem

prover, of actor paradigms in the context of ς-calculus.

From the original actor paradigm [5,6,4], several languages have been designed. Some languages directly feature actors,

distributed active objects (like the ProActive [7] library), or other derived paradigms. The calculus ASPfun provides a simple

model for such languages.

The ASP calculus [8,9] provides understanding and proofs of confluence for asynchronous distributed systems; it is a

formalisation of the active object model. In ASP, active objects communicate in an actor-like manner. Additionally, ASP uses

future objects, i.e., objects for which the real value is being calculated. Syntactically, the ASP calculus is an extension of the

impς-calculus [1,10] with two primitives (Serve and Active) to deal with distributed objects.

An active object is similar to an actor in the sense that it has a request queue (corresponding to the actor’s mailbox),

it does not share memory with other active objects, and active objects communicate by messages. For active objects,

communications take the form of a remote method invocation that will be treated asynchronously. We call activity the set

consisting of an active object, its request queue, the set of normal (also called passive) objects known by the active objects,

and the set of results the active object has computed. Each active object has a single thread; only this thread is allowed to

access the active object and the passive ones.

Proactive [7] is a Java middleware for distributed computing. It is based on the notion of active objects and is considered

as an implementation of the ASP calculus. It is particularly designed for large scale distributed computations (clusters, Grids,

or cloud computing). Deployment is based on the notion of virtual nodes and deployment descriptors: when an activity is

created, it is associated with a virtual node, and a deployment descriptor file associates virtual nodes to real machines.

As active objects do not share memory they provide a good abstraction of location. Finally, an active object is uniquely

associated to a location and an application thread (even if several active objects can be placed on the same machine in

practise). Active objects act as the unit of both concurrency and distribution. In ProActive, the programmer only cares about

splitting its computation into independent active objects that will run in parallel; then the localisation aspect is delegated

to a different role: the deployer. It is a key feature of the programming language and the middleware to guarantee that the

program behaves the same whatever physical locations are chosen to deploy the active objects.

Also, the Creol [11] language features futureswith (multi)-active objects; distribution principles in Creol are quite similar

to ASPfun except that Creol is an imperative language with a more complex semantics. Johnsen et al. [11] also advocate the

active object paradigm as a model of distributed computation: ‘‘The Creol model targets distributed objects by a looser

coupling of method calls and synchronization.’’ The mechanised formalisation of an active object language is a major

contribution of this paper. Such a formalisation will increase the confidence in the properties of this programming model

and our understanding of distributed computation.

Contribution

We define in this paper ASPfun, a calculus of functional active objects with futures. It formalises the notion of active

objects presented in the previous paragraph. For example, the behaviour of ProActive active objects follows quite faithfully

the semantics of ASPfun, and thus properties proved here can be transferred to this context. Compared to imperative ASP,

ASPfun investigates the typing of active objects and ensures progress properties in a functional context.

The language, its type system, and all properties have been completely formalised (http://gforge.inria.fr/scm/viewvc.

php/ASPfun/?root=tods-isabelle) and proved in Isabelle/HOL [12]. This formalisation is approximatively 14000 lines, only

10% dealing with the language definition, and the rest dealing with the proof of ASPfun properties. We also believe that the

formalisation of a calculus like ASPfun in a theorem prover will be helpful in the future design of distributed languages and

can provide a reliable basis for proofs using paradigms such as distributed objects, futures, remote method invocations,

actors, or active objects. Our main contributions are:

• A functional active object calculus with futures and its properties. We illustrate the expressiveness of the calculus on a

couple of examples.

• A type system for active object languages.

• An investigation on how to provide a type-safe calculus featuring active objects and futures, where typing ensures

progress.

http://gforge.inria.fr/scm/viewvc.php/ASPfun/?root=tods-isabelle
http://gforge.inria.fr/scm/viewvc.php/ASPfun/?root=tods-isabelle
http://gforge.inria.fr/scm/viewvc.php/ASPfun/?root=tods-isabelle
http://gforge.inria.fr/scm/viewvc.php/ASPfun/?root=tods-isabelle
http://gforge.inria.fr/scm/viewvc.php/ASPfun/?root=tods-isabelle
http://gforge.inria.fr/scm/viewvc.php/ASPfun/?root=tods-isabelle
http://gforge.inria.fr/scm/viewvc.php/ASPfun/?root=tods-isabelle
http://gforge.inria.fr/scm/viewvc.php/ASPfun/?root=tods-isabelle
http://gforge.inria.fr/scm/viewvc.php/ASPfun/?root=tods-isabelle

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 825

Table 1

ASPfun syntax.

s, t ::= x Variable

| [lj = ς(xj, yj)tj]
j∈1...n (∀j, xj #= yj) object definition

| s.li(t) (i ∈ 1 . . . n) method call

| s.li := ς(x, y)t (i ∈ 1 . . . n, x #= y) update

| Active(s) Active object creation

| α Active object reference

| fi Future reference

• A formalisation of those features in a theorem prover, that will allow further investigations on futures, typing, and active

objects paradigms.
• A comparison of different techniques for representing binders together with two implementations of our framework

using two different techniques.

ASPfun is the first calculus to our knowledge to feature those characteristics, however each of those characteristics exists

in some distributed programming language, and sometimes in other calculi. In this context, the main contribution of this

paper is the formalisation of these features as a single calculus, but mainly themechanised formalisation of this calculus in a

theorem prover. This paper will provide a complete description of our formalisations, an analysis of the technical decisions

that we have taken to represent distributed objects in Isabelle/HOL, and an overall conclusion on the techniques we used

and the tools we provide.

This article is organised as follows. Section 2 presents ASPfun and its semantics. Two examples illustrate the calculus in

Section 3. Section 4 gives first properties of the calculus focusing on well-formed configurations and on the impossibility

to create cyclic dependencies. Section 5 provides a type system for ASPfun ensuring both subject-reduction and progress.

Some details on the formalisation in Isabelle/HOL and on the major proofs are given in Section 6; this section particularly

details binder representation. Section 7 discusses alternative semantics we could have chosen. Finally, Section 8 details our

position relatively to existing distributed languages and calculi and Section 9 concludes by a summary of our achievements

and a discussion of the properties of ASPfun as presented in this paper.

2. Syntax and semantics

This section presents the ASPfun calculus. We first define its syntax and explain its principles. Then, we give a small-step

operational semantics for the calculus.

2.1. Syntax

We use three sets of identifiers: the labels of ς-calculus methods (li), the activities (α, β, . . .), and the futures (fi). Like

in ς-calculus in ASPfun every term is an object either given by its definition or returned by a term evaluation. The syntax

of ASPfun includes object definition, method invocation, and method override inherited from ς-calculus. An object consists of

a set of labelled methods. A method is a function with two formal parameters: one represents self, i.e., the object in which

the method is contained, the other, which is new in ASPfun, is an actual parameter given at invocation time. Object fields are

considered as degenerate methods not using the parameters. A method call is addressed to an object and receives an object

as parameter. A method update acts on an object providing a new value for one method possibly defining it. ς-calculus

terms are identified modulo renaming of bound variables.

One of the basic principles of ASPfun is to perform a minimal extension of the syntax of ς-calculus. ASPfun programs only

use one additional primitive, Active, for creating an active object. The syntax of ASPfun is shown in Table 1; the static syntax

(the programs) consists of only underlined constructs; future and active object references are created at runtime.

While the syntactic extension of ς-calculus is minimal, the semantics, that we will define in the following, is (almost)

entirely new. For example, in Table 2, only the two first rules are an adaptation of ς-calculus’ semantics; all the others are

specific to ASPfun.

2.2. Informal semantics of ASPfun

The semantics of the local object calculus is similar to the one of Abadi and Cardelli [1]. A method invocation reduces to

the method body where formal parameters are replaced by actual ones: [l = ς(x, y)a].l(b) reduces to awhere x is replaced

by [l = ς(x, y)a] and y is replaced by b. A method update returns a new object replacing the original method by the one on

the right side of ‘:=’. We focus now on the distributed features of ASPfun.

A configuration is a set of activities. Each activity possesses a single active object, which is a ς-calculus term. Activating an

object, Active(s), means creating a new activity with the object s to be activated becoming an active object. It is immutable.

The activity is the unit of distribution. A request sent to an activity is an invocation to the active object; it is processed by

826 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

Table 2

ASPfun semantics.

call
li ∈ {lj}

j∈1...n

E
[

[lj = ς(xj, yj)sj]
j∈1...n.li(t)

]

→ς E
[

si{xi ← [lj = ς(xj, yj)sj]
j∈1...n, yi ← t}

]

update
li ∈ {lj}

j∈1...n

E
[

[lj = ς(xj, yj)sj]
j∈1...n.li := ς(x, y)t

]

→ς E

[

[li = ς(x, y)t, lj = ς(xj, yj)s
j∈(1...n)−{i}

j]

]

local
s →ς s′

α[fi &→s ::Q , t] :: C →‖ α[fi &→s′ ::Q , t] :: C

active
γ /∈ (dom(C) ∪ {α}) noFV(s)

α[fi &→E[Active(s)] ::Q , t] :: C →‖ α[fi &→E[γ] ::Q , t] :: γ [∅, s] :: C

request

fk fresh noFV(s) α)= β

α [fi &→E[β.l(s)] ::Q , t] :: β[R, t ′] :: C →‖ α [fi &→E[fk] ::Q , t] :: β
[

fk &→t ′.l(s) ::R, t ′
]

:: C

self-request

fk fresh noFV(s)

α [fi &→E[α.l(s)] ::Q , t] :: C →‖ α [fk &→t.l(s) :: fi &→E[fk] ::Q , t] :: C

reply
β[fk &→s ::R, t ′] ∈ α[fi &→E[fk] ::Q , t] :: C

α[fi &→E[fk] ::Q , t] :: C →‖ α[fi &→E[s] ::Q , t] :: C

update-AO
γ /∈dom(C)∪{α} noFV(ς(x, y)s) β[R, t ′]∈α[fi &→E[β.l:=ς(x, y)s] ::Q , t] ::C

α[fi &→E[β.l := ς(x, y)s] :: Q , t] :: C →‖ α[fi &→E[γ] :: Q , t] :: γ [∅, t ′.l := ς(x, y)s] :: C

α β

. . . β .l(s) . . .

active object

activity

request queue

. . . f
k

 . . .

t

. . .

. . .

. . .

. . .

. . .

t'

t'.l(s)

configuration
activity reference

future reference

Fig. 1. Example configuration in ASPfun with two activities.

the activity. The set of requests processed by an activity is called request queue by similarity with the active object model

but, here, as the calculus is functional, requests can be treated in an unordered fashion. Indeed, as we do not have any side

effects, the order of execution of request has no influence on the result.

Fig. 1 illustrates the basic concepts of ASPfun. It shows a configuration consisting of two activities. In each activity an

ellipse represents the active object, and each rectangle is a request (i.e., maps a future identifier to a term being evaluated).

In ASPfun, all the requests can be evaluated in parallel.

Every message sent toward an activity is a method call to the activate object. Such a remote method invocation (also

called request) is asynchronous: the effect of this method call is — both — to create a new request in the request queue

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 827

of the destination and to replace the original method invocation by a reference to the result of the created request. A

reference to a (promised) result is called a future. In ASPfun, futures are entities that can be passed to other activities, e.g.,

as arguments or results of requests; several activities may use the same future. Trying to access the result referenced by

a future (e.g., invoking a method on it) is not possible until the future has been received. The current term of any request

(even partially evaluated) can be returned at any moment: the current term for the request replaces the corresponding

future. This operation is called a reply. We chose to allow replies with a partially evaluated term because it fits well with

the functional nature of the calculus; but we will see in Section 7 that a more classical semantics returning only requests

entirely evaluated also guarantees progress. Future values must be stored forever because future references can spread over

the activities and, without a mechanism for counting the future references, it is impossible to know if a future reference still

exists in the system. A garbage collection mechanism for future would detect whether a future is still referenced; garbage

collection of futures is not studied in this paper.
Fig. 1 can also be considered as an illustration of a method call: the configuration consisting of the first line of the request

queues is transformed into the configuration consisting of the second lines of the request queues, the reference to the activity

β is lost, and the reference to the future fk is created together with a request computing fk in β .
Reduction can occur in any request of any activity. The only restriction is that an object cannot be sent to another activity

(e.g., as a request parameter) if this object has free variables, otherwise such variables would escape their scope and the

moved object would be meaningless. To better understand this restriction, suppose one tries to evaluate the sub-term

ς(x, y)remoteObject.send(y), which is the body of a method. Sending y first would be meaningless as this variable is bound

by ς(x, y) and it would mean nothing in the remote object. We force to perform evaluation steps until the sent terms have

no more free variables; in the example we would wait until the method is invoked with a parameter. Fortunately, the type

system ensures that a term typed in an empty environment has no free variable, which is sufficient to guarantee that remote

method invocations can be performed at some point of the reduction.
It is difficult to give a natural semantics to the update of an active object. Indeed the usual field update that directly

modifies the value of an object field would create an additional way of communicating with an active object by changing its

status without performing a method invocation. The functional nature of the calculus (updating an object creates a copy)

oriented us toward the following solution: a method update on an active object creates a new activity with the method

updated.
Proving confluence for ASPfun would lead to numerous technical difficulties and is out of the scope of this paper.

Informally, depending on the execution, the set of created activities and the number of requests may vary, but the result of

the computation is always the same. For example, depending on the order of execution an activity creation may precede

or succeed a term duplication thus creating one or two activities. But if two activities are created, they are equivalent, and,

as no side effect exists in ASPfun, the two activities will always behave the same. A similar reasoning can be applied to the

possibly duplicated requests. This explains why the calculus is confluent in the sense that it always produces equivalent

results.
As a tiny example of the semantics Active([l = ς(x, y)[]]).l([]) first creates an activity with the object [l = ς(x, y)[]],

then performs a remote invocation on the method l of this activity (which creates a future), and finally replies replacing

the future by the result of the invocation, []. More formally, assuming Active([l = ς(x, y)[]]).l([]) is being evaluating inside

activity α for calculating the value for a future f0 (notations will be detailed in the next section):

α [(f0 !→Active([l = ς(x, y)[]]).l([])), . . .]→‖ α [(f0 !→β.l([])) . . .] ‖ β [∅, [l = ς(x, y)[]]]

→‖ α [(f0 !→f1) . . .] ‖ β [(f1 !→[]), [l = ς(x, y)[]]]

→‖ α [(f0 !→[]) . . .] ‖ β [(f1 !→[]), [l = ς(x, y)[]]]

We consider this work as a reliable basis for further studies on stateless objects, giving a semantics for autonomous

services, which in case they are stateless can be implemented such that they never dead-lock (i.e., they always progress).

ASPfun can also represent component-like distributed systems interacting by invocation of services: an active object exposes

its methods to the external world and holds references to required external services provided by other active object.

2.3. Small-step operational semantics

The semantics of ASPfun necessitates the definition of some structures that are used for the dynamic reduction. First,

we define a configuration C as an unordered set of activities: a configuration is a mapping from activity identifiers to

activities. Each activity is composed of a request queue (mapping from future identifiers to terms) and an active object

(term). Configurations are identified modulo reordering of activities and of requests inside an activity.

C ::= αi[(fj !→sj)
j∈Ii , ti]

i∈1...p where {Ii} are disjoint subsets of N

As futures are referenced from anywhere, two requests must correspond to two different futures; uniqueness is ensured

in this paper by indexing futures over disjoint families. We use the term local semantics to refer to the semantics expressing

the execution local to each activity, where an activity is the unit of distribution. Abadi and Cardelli [1] present various

ς-calculi that only consider objects and their manipulation as primitive; local semantics of ASPfun (two first rules of Table 2)

is just an adaptation of this work. More precisely, local semantics of ASPfun extends ς-calculus with a second parameter for

methods.

828 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

Classicallywe define contexts as expressionswith a single hole (•). E[s] denotes the term obtained by replacing the single

hole by s.

E ::= • | [li = ς(x, y)E, lj = ς(xj, yj)t
j∈(1...n)−{i}

j] | E.li(t) |

s.li(E) | E.li := ς(x, y)s | s.li := ς(x, y)E| Active(E)

For a better integration with the distributed calculus, we choose a small-step semantics (→ς) for the ς-calculus. It is
composed of the two first rules of Table 2; one invokes a method (using the invoked object as first parameter), the other

updates a method, i.e., it creates a new object where one method is replaced by a new one.
To simplify the reduction rules, we let Q , R ::= (fij $→sij)

j∈1...np range over request queues and identify mappings modulo

reordering: α[fi $→ si :: Q , b] :: C is a configuration containing the activity α which contains a request fi $→ si, where C is

the remainder of the configuration that cannot contain an activity α. Now, α[Q , s] ∈ C means: α is an activity of C with

request queue Q and active object s: α[Q , s] ∈ C ⇔ ∃ C ′. C = α[Q , s] :: C ′. Similarly, (fi $→s) ∈ Q stands for: a request of

Q associates s to the future fi. The empty mapping is ∅; the domain of a mapping is dom; e.g., dom(C) is the set of activities

defined by C . Predicate noFV(s) is true if s has no free variables (the only binder being ς this definition is classical). The

parallel reduction →‖ on configurations is defined in Table 2.
Classically, the substitution s{x ← t} is capture avoiding (renaming is performed to avoid free variables in t to be captured

by binders in s), whereas the replacement of • by a term in a context is not.

• local performs a local reduction inside an activity: one step of the reduction →ς is performed on one request.
• active creates an activity; the term s passed as argument to the Active primitive becomes the active object. The newly

created activity receives a fresh activity identifier γ . Initially, the newactivity has an empty request queue, and γ replaces

the activation instruction Active(s) thus allowing future invocations to this activity.
• request sends a request from the activity α to the activity β with α *= β . A new request is created at the destination

invoking the method l on the active object (t ′); a fresh future fk is associated to this request, and replaces the invocation

on the sender side. Freshness is defined classically: fk is fresh in C if ∀ α[Q , t]∈ C, fk /∈ dom(Q).
• self-request is the request rule when the destination is the sender, α = β . The semantics of this rule is similar to the

preceding one but, as the request queue is modified on both the sender’s and the receiver’s side, it would be difficult to

express a single simple rule for the two cases.
• reply updates a future: it picks the request calculating a value for the future fk and sends the current value of this request

(s) to an activity that refers to the future. The request may be only partially evaluated meaning a reply to a request

is enabled as soon as the method invocation is performed. Returning partial replies can have the effect to duplicate

computation and will be further discussed in Section 7. Necessarily, noFV(s) holds because, as an active object and a

transmitted parameter have no free variables, a request value never has free variables. This time, the structure of the rule

avoids introducing a separate rule for α = β .
• update-AO updates amethod of an activityβ[R, t ′]. It creates a new activitywhose active object performs a (local) update

on t ′: t ′.l := ς(x, y)s. It requires that the new method definition for l has no free variable.

The requirement noFV(s) for the communicated terms is necessary. Indeed, communicating a term with free variables

would cause variables to escape the scope of their binder as explained in Section 2.2. In Section 7, wewill discuss the choices

that have been made in the ASPfun semantics and the alternative possibilities.

2.4. Basic ς-calculus datatypes

For reasons of completeness of this paper, we introduce here the definitions of standard datatypes in the ς-calculus [1]
that are used in this paper. They give a good illustration of encoding of basic datatypes in ς-calculus.

Booleans and conditional

true = [if = ς(x, y)x.then(y), then = ς(x, y)[], else = ς(x, y)[]]

false = [if = ς(x, y)x.else(y), then = ς(x, y)[], else = ς(x, y)[]]

if b then c else d = ((b.then := ς(x, y)c).else := ς(x, y)d).if([])

In the third line above, x, y /∈ FV (c) ∪ FV (d); [] denotes the empty object. The definition shows how — similar to λ-calculus

— the functionality of the constructor is encoded in the elements of the datatype: when b is true its method if delegates to

the method then, filled with term c , when false, if delegates to else, executing term d.

Lists

c :: l = [hd = ς(x, y)c, tl = ς(x, y)l,mty = false]

hd l = l.hd

tl l = l.tl

〈〉list = [hd = ς(x, y)[], tl = ς(x, y)[],mty = true]

l = 〈〉list = l.mty

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 829

In the first line above, x, y /∈ FV (c) ∪ FV (l); [] denotes again the empty object. Lists are encoded as accumulation of first

elements in the head field hd; the predicate judging emptiness of a list is an abbreviation for the third fieldmty that always

tracks whether a list is empty or not.

3. Examples

This section illustrates the ASPfun calculus with two examples, one focusing on futures, and the other showing a few less

conventional features of the calculus.

3.1. A broker

The following example illustrates some of the advantages of futures for the implementation of services. The three

activities hotel α, broker β , and customer γ are composed by ‖ into a configuration (to improve readability, ‖ separates

the different activities in the examples). Here, the customer γ wants tomake a hotel reservation in hotel α. He uses a broker
β for this service by calling amethod book provided in the active object of the broker.We omit the actual search of the broker

β in his database and instead hardwire the solution to always contact some hotelα. That is, themethod book is implemented

as a call ς(x, date)α.room(date) to a function room in the hotel α. Also the internal administration of hotel α is omitted; its

method room just returns a constant bookingreference. Initially, only the future list of the customer γ contains a request

for a booking to broker β; the future lists of α and β are empty. The following steps of the semantic reduction relation →‖

illustrate how iterated application of reduction rules evaluates the program.

γ [f0 %→β.book(date), t]
‖ β[∅, [book = ς(x, date)α.room(date), . . .]]
‖ α[∅, [room = ς(x,date)bookingreference, . . .]]

The following step of the semantic reduction relation →∗
‖ creates the new future f1 in β by rule request, this call is reduced

according to local, and the original call in the client γ is replaced by f1.

γ [f0 %→f1, t]
‖ β[f1 %→α.room(date), . . .]
‖ α[∅, [room = ς(x,date)bookingreference, . . .]]

The parameter x representing the self is not used but the call to α’s method room with parameter date creates again

by rule request a new future in the request queue of the hotel activity α that is immediately reduced due to local to

bookingreference.

γ [f0 %→f1, t]]
‖ β[f1 %→f2, . . .]
‖ α[f2 %→bookingreference, . . .]

Finally, the result bookingreference is returned to the client by two reply-steps: first the future f2 is returned from the broker

to the client γ and then this client receives the bookingreference via f2 directly from the hotel α.

γ [f0 %→bookingreference, t]
‖ β[f1 %→f2, . . .]
‖ α[f2 %→bookingreference, . . .]

The example is intentionally simplified to focus on the flow of control given by the requests, replies, and the passing on of

the futures: the booking reference can flow directly to the customer γ possibly without passing by the broker β . This shows

that futures allow the implementation of efficient communication flows. The example further illustrates how futures can

be employed to provide some confidentiality. The broker β does not need to give away his data base of hotel references: he

can instead return just a reference to the result of his negotiations; the booking reference.

3.2. A service provider

We illustrate how ASPfun can be used to implement a (generic) service detailing on the control structure and the service

administration while abstracting the actual service content. Eventually, we use the informal description ‘‘some function on

client_data’’ to denote the final function representing the service.Whatwe are interested in is the global service architecture.

Wewant to showhow the active object update—generating a newobject on update— can be employed efficiently to support

creation and delegation of service objects. The service scenario uses three active objects: a client, a server, and a service.
A client object can be any object having some data that is passed to the service by a request. Furthermore, each client

can be started by supplying a corresponding server s. The method start generates a service request with the client’s data on

its request queue. The server object is defined below. Note that the method invocation s.serve(x.data) accepts as parameter

x.data due to our extension of the parameter-less ς-calculus.1

client ≡ [data = ‘‘some data’’, start = ς(x, s)(s.serve(x.data)), . . .]

1 In the ς-calculus the parameter has to be simulated by updating a separate field in the object.

830 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

On the other side, the service is an object for which a new instancewill be generated for the client’s use. Such a new instance

is created by server objects below by updating the field client_data of a service object which automatically creates a new

active object representing the service for the client.

service ≡ [client_data = ‘‘some data’’, actual_service = ‘‘some function on client_data’’, . . .]

A server object generates an individual service personalised by the client’s data by instantiating an active object representing

the basic service. Initially, the field base_service contains the empty object but during initialisation this will be updated.

server ≡ [base_service = [], serve = ς(x, d) (x.base_service).client_data := d]

3.2.1. Initialisation

We first describe how the service is initialised. The ASPfun program initialising the system is a base object that has a

method init. The initial configuration will be defined in Section 4.3. It contains a single activity with a unique request. In our

case, this request is the activation of the init object and the corresponding call Active([init = . . .]).init.

Now, init needs to start clients that know this server. We can use the following ASPfun object to start one client,

Active(client).start(Active(server.base_service := Active(service)))

where ‘‘client’’, ‘‘server’’, and ‘‘service’’ are the abbreviations given before. For several clients being started in the initmethod,

we need some iterator construct.We define amap function for amethod name f as follows. This function applies themethod

f on each object of a list of objects lwhile using s as a second parameter to all these calls. It returns a list of objects (which is

itself an object). The operator :: is the list constructor, 〈〉list the empty list, hd and tl give first element and rest of a list, and

l = 〈〉list is the empty-list predicate. We, furthermore, use the let and if-then-else construct presented in Section 2.4.

mapf = ς(x, (s, l)) if l = 〈〉list then 〈〉list
else (hd l).f (s) :: (x.mapf (s, tl l)) end

Now, we use the following list of n + 1 occurrences of client activations,

Λ = 〈Active(client.data := d0), . . . , Active(client.data := dn)〉

where the di denote the different data items of the clients. Summarising, the definition of the user program is as follows.

Active([init = ς(x, y)

let Λ = . . .

S = Active(server.base_service := Active(service))

in x.mapstart((S, Λ)),

mapstart = . . .]).init

This user program sent as the only request in the initial activity α sets the server into action.

3.2.2. Server in action

In this section,we showhow the serverworks. Let us first show the configuration after initialisation; theActive commands

have all been evaluated; the evaluation of the activation list Λ has created client instances γi, i ∈ {0, . . . , n}; the evaluation

of S in init has

• created a service object σ by evaluating Active(service),

• created a server object Σ by evaluation of Active(server.base_service := σ),

• sent start requests to all client objects γi by evaluating themapstart invocation putting Σ .serve(γi.data) on their request

queues.

Note thatwe choose to evaluate first the innermost service activation, then S itself, beforewe pass it tomapstart. This leads to

the particular service architecture we have in mind; a different order creates several servers ultimately producing the same

results (see remark on confluence in Section 2.2) but it would be less economical. The obtained configuration additionally

contains an activity ι for the initialiser object with a single served request (init) and another α for the initial configuration.
[

γ0[f0 %→Σ .serve(γ0.data), [. . .]],

. . .

γn[fn %→Σ .serve(γn.data), [. . .]],

Σ[∅, [base_service = σ ,

serve = ς(x, d) (x.base_service).client_data := d]],

σ [∅, service],

ι[f ′ %→[〈f0, . . . , fn〉], [init = . . . ,mapstart = . . .]],

α[f %→f ′, []]
]

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 831

Client Client Client

server

service service

Y0
Y1

Yn

σ'

σ'

σ'σ

fn+3 Σ.serve(dn)

Σ

σ.client_data :=Y1.data

∅ ∅

Fig. 2. Server in action.

Evaluating the request of the first client γ0, the above configuration reduces to one in which the server Σ holds one request

for creating a service for γ0.
[

γ0[f0 !→fn+1, [. . .]],

. . .

Σ[fn+1 !→(σ .client_data) := γ0.data, [. . .]],

σ [∅, service], . . .
]

Next, evaluation of future fn+1 creates a new service object σ ′ for this service call with the first client’s data γ0.data injected

as client_data in σ ′ while Σ ’s request queue now holds the activity reference σ ′ in future fn+1.
[

γ0[f0 !→fn+1, [. . .]],

. . .

Σ[fn+1 !→σ ′, [. . .],

. . .

σ ′[∅, [client_data = γ0.data,

actual_service = ‘‘some function on client_data’’]], . . .
]

The rule reply returns the activity reference σ ′ as a result to the client γ0 by future fn+1.
[

γ0[f0 !→σ ′, [. . .]],

. . .

Σ[fn+1 !→σ ′, [. . .],

. . .

σ ′[∅, [client_data = γ0.data,

actual_service = ‘‘some function on client_data’’]], . . .
]

Now, the client γ0 has access to its service σ ′ in a personal instantiation. The client may call at leisure the services of σ ′—

using this reference to his ‘‘personalised’’ service. The following calls of the other clients γ2, . . . , γn all have a similar effect.

For each of them a new instance of the first service object σ is automatically created by the semantics of update. All clients

finally receive an activity reference and all have been served by the same serverΣ . The server in action is illustrated in Fig. 2

depicting the moment just when the second client’s service call is launched to the server.

As a further extension to this example, we could consider programming a central registry for the service objects. To this

end, we just change the init method of the base object to make a final update to a local field registry to store the result of

832 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

Table 3

The nocycle property.

α[Q , E[β]] ∈ C

α knowsC β

α[fi "→E[β] :: Q , t] ∈ C

fi knowsC β

α[Q , E[fk]] ∈ C

α knowsC fk

α[fi "→E[fk] :: Q , t] ∈ C

fi knowsC fk

nocycle(c) ⇔ ∃r. r knows+C r

the activation map to all clients.

[init = ς(x, y)

let Λ = . . .

S = Active(server.base_service := Active(service))

in x.registry := (x.mapstart(S, Λ)),

registry = 〈〉list,

mapstart = . . .]

With this changed base object, the call to init has exactly the same effect as before. Only as a final step, is the base object

updated to keep the results list of all the created client objects (and thereby also of the services).

4. Properties of ASPfun

This section presents twomajor properties of ASPfun: the semantics is well-formed; and reduction does not create cycles

of futures and activity references.

4.1. Well-formed configuration

To show correctness of the semantics, we define a well-formed configuration as referencing only existing activities and

futures; then we prove that reduction preserves well-formedness.

Definition 4.1 (Well-Formed Configuration). A configuration C is well-formed, denotedwf (C), if and only if for all α, fi, s, Q ,

and t each of the following holds:

α[Q , E[β]] ∈ C ∨ α[fi "→E[β] :: Q , t] ∈ C ⇒ β ∈ dom(C)

α[Q , E[fk]]∈C ∨ α[fi "→E[fk] ::Q , t] ∈ C ⇒ ∃ γ , R, t ′. γ [R, t ′]∈C ∧ fk∈dom(R)

We have shown that, starting from a well-formed configuration, the reduction shown in Table 2 always reaches a well-

formed configuration.

Property 1 (Reduction Preserves Well-Formedness).

(s →‖ t ∧ wf (s)) ⇒ wf (t)

This can be considered as a correctness property for the semantics of ASPfun: no ill-formed configuration can be created

by the reduction.

4.2. Absence of cycles

Informally, ASPfun avoids blocking method invocations because a not fully evaluated future can be returned to the caller

at any time. The natural question arises whether there is the possibility for live-locks: a cycle of communications (here, a

cycle of replies in fact) in which no real progress is made apart from the actual exchange of communication. However, we

can show that, given a configuration with no cycle, any possible configuration that may be derived from there has no cycle

either. The cycles we consider are formed of activity references and futures.

We say that an activity or a future knows another one if it holds a reference to it. An activity holds a reference if it has

this reference inside its active object. A future holds a reference if the request computing this future contains this reference.

Table 3 shows the rules defining the knowsC relationship for a configuration C together with the nocycle property where

knows+C is the transitive closure of knowsC (r knows+C r ′ ⇔ r knowsC r ′ ∨ ∃r ′′.(r knowsC r ′ ∧ r ′′ knows+C r ′)). It is necessary

to interleave references to futures and activities in the definition of knowsC because, for example, a reference from an active

object becomes a reference from a future when a request rule is evaluated.

We proved that the reduction defined in Table 2 maintains the absence of cycles for a well-formed configuration.

Theorem 1. Reduction does not create cycles:

nocycle(C) ∧ wf(C) ∧ C →‖ C ′ ⇒ nocycle(C ′)

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 833

α β

E[β .l(s)]

ι

. . .

E
0

[γ].l(s)

. . .

. . .

. . .

E
0

[γ]

E
2

[fi]

γ

. . .

. . .

E
1

[f
k

]

1
2

3

4

5

6

Fig. 3. A cycle of future and activity references.

The theorem relies on the fact that domains of request queues are disjoint, which is enforced by the definition of a

configuration in ASPfun. Absence of cycles ensures that there are no live-locks related to the distributed aspects of ASPfun,

i.e., no infinite cycle of replies. Live-locks that can exist in ASPfun are inherited from ς-calculus: they are either infinite loops

inside a ς-calculus term or infinite sequences of method calls (distributed or not).

Fig. 3 shows cycles of futures and activity references. We have two cycles, one consisting of the arrows numbered

{1, 2, 4, 5}, another one is formed by the arrows {3, 4, 5, 6}.

Absence of cycle limits the expressiveness of the language (no cross-references), but this restriction is inherited from

the functional nature of the language. Indeed, functional languages have no references, whereas active objects and futures

create some kind of references; preventing cycles and modification is necessary to keep the functional nature of ASPfun.

4.3. Initial configuration

This section shows how a reasonable initial configuration can be built from a program. In a usual programming language,

a programmer does not write configurations but usual programs invoking some distribution or concurrency primitives (in

ASPfun Active is the only such primitive). This is reflected by the ASPfun syntax given in Section 2.1. A ‘‘program’’ is a term

s0 given by this static syntax (it has no future or active object reference and no free variable). In order to be evaluated,

this program must be placed in an initial configuration. The initial configuration has a single activity with a single request

consisting of the user program:

initConf(s0) = α[f0 !→s0, []]

This configuration is well-formed, and the activity α will never be accessible. Consequently, any reachable configuration is

well-formed.We also see that the initial configuration has no cycles, and Theorem1ensures that any reachable configuration

has no cycles.

Property 2. Any configuration reachable from an initial configuration is well-formed and has no cycles (→∗
‖ is the reflexive

transitive closure of →‖).

initConf(s0) →∗
‖ C ⇒ wf(C) ∧ nocycle(C)

5. Typing active objects

This section provides a type system for ASPfun. Starting from a ς-calculus basic type system, we first define typing for

the Active primitive; then we define type-checking rules for an ASPfun configuration. After the classical subject-reduction

property, we show that the type system ensures type uniqueness, well-formedness of configurations, and more importantly

progress. We will see that typing ensures that no method can be invoked on a term that is unable to handle it; the semantics

ensures that no invocation or update on a future or an activity can be indefinitely blocked.

5.1. A local type system

We first adapt the simple type system that Abadi and Cardelli [1] devised as Ob1. Object types are of the form [li : Bi!

Di]
i∈1...n. The syntax of ASPfun is extended by adding type information on both variables under the binder (ς(x, y) becomes

ς(x:A, y:B)). As highlighted in [1], adding type information on the binders ensures type uniqueness.

Table 4 defines the typing of local ASPfun terms as presented in 2.1. It is an adaptation of the typing of Ob1 in [1]. A, B, and

D range over types. The variable T represents a type environment containing type assumptions for variables and is identified

834 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

Table 4

Typing the local calculus.

Val x
x :A :: T ⊢ x :A

Type Object

A = [li : Bi!Di]
i∈1...n ∀i ∈ 1 . . . n, xi :A :: yi :Bi :: T ⊢ ti : Di

T ⊢ [li = ς(xi : A, yi : Bi)ti]
i∈1...n : A

Type Call
T ⊢ s : [li : Bi!Di]

i∈1...n

j ∈ 1 . . . n T ⊢ t : Bj

T ⊢ s.lj(t) : Dj

Type Update
A = [li : Bi!Di]

i∈1...n T ⊢ s : A

j ∈ 1 . . . n x :A :: y :B :: T ⊢ t : Dj

T ⊢ s.lj := ς(x : A, y : B)t : A

Table 5

Typing configurations.

Type Active
〈Γact, Γfut〉, T ⊢ a : A

〈Γact, Γfut〉, T ⊢ Active(a) : A

Type Activity Reference
β ∈ dom(Γact)

〈Γact, Γfut〉, T ⊢ β : Γact(β)

Type Future Reference
fk ∈ dom(Γfut)

〈Γact, Γfut〉, T ⊢ fk : Γfut(fk)

Type Configuration
dom(Γact) = dom(C) dom(Γfut) =

⋃

{dom(Q) | ∃ α, a. α[Q , a] ∈ C}

∀ α[Q , a] ∈ C .

{

〈Γact, Γfut〉, ∅ ⊢ a : Γact(α) ∧

∀ fi ∈dom(Q). 〈Γact, Γfut〉, ∅ ⊢ Q (fi) : Γfut(fi)

⊢ C : 〈Γact, Γfut〉

modulo reordering. Its extension by a new assumption stating that the variable x has type A is denoted by x :A :: T . We now

authorise :: to update a mapping entry: (x : A) :: T associates the type A to x even if an entry for x existed in T . The first rule

of Table 4 accesses the type environment. Type Object describes how an object’s type is checked from its constituents: an

object of type [li : Bi!Di]
i∈i...n is formed from bodies ti of types Bi using self parameter xi of type A and additional parameter

yi of type Bi. When a method lj is invoked on an object s of type [li : Bi!Di]
i∈i...n the result s.lj(b) has type Dj provided s has

type Bj (Type Call). A method update requires that the updated object has the same type as self in the new method (Type

Update).

In [1], additional rules ensure that the typing environment is well-formed.We simplified it here by defining environment

as a mapping. Also, a rule for correct formation of object types is introduced in [1] mainly ensuring that there is no infinitely

nested object type. This last assumption has been omitted here as it did not seem necessary and, indeed, the properties

shown below have been mechanically proved without any additional assumptions on type formation.

5.2. A type system for ASPfun

The type system for ASPfun is based on an inductive typing relation on ASPfun terms; it is defined in Table 5. From local

typing (Table 4), in addition to types of variables, we need to refer to types for futures and activities. Thus, we add a pair of

parameters 〈Γact, Γfut〉 in the assumptions of a typing statement: we write 〈Γact, Γfut〉, T ⊢ x : A instead of T ⊢ x : A.

These parameters consist of a mapping Γact from activities to the type of their active object and another one Γfut from

future identifiers to the type of the corresponding request value. Thus, we first adorn each rule of Table 4 with those two

additional parameters.

Then, we add to these rules the three first rules of Table 5 that define the local typing of ASPfun. These rules allow the

typing of references to activities and futures and define typing of the Active primitive: the type of an activated object is the

type of the object.

The last rule of Table 5 incorporates into a configuration the local typing assertions. This rule states that a configuration

C has the configuration type 〈Γact, Γfut〉 if the following conditions hold.

• The same activity names are defined in C and in Γact;

• the same future references are defined in the activities of C and in Γfut;

• for each activity of C , its active object has the type defined in Γact;

• and each request has the type defined in Γfut for the corresponding future.

Similarities can be found between typing of activity or future references and reference types [2]. A closer work seems to be

the typing rules for futures [13].

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 835

5.3. Basic properties of the type system

Let us start by a couple of simple properties of the typing system. First, type-uniqueness existing for Ob1 is also verified

by our type system.

Property 3 (Unique Type). Each expression in ASPfun has a unique type.

〈Γact, Γfut〉, T ⊢ a : A ∧ 〈Γact, Γfut〉, T ⊢ a : A′ &⇒ A = A′

Well-typed configurations are well-formed. Indeed, if an activity or a future is referenced in the configuration, it must

have a type and thus be defined in Γact or Γfut, and also in the configuration.

Property 4 (Typing Ensures Well-Formedness). ⊢ C : 〈Γact, Γfut〉 ⇒ wf (C).

5.4. Subject reduction

Subject reduction ensures that reduction preserves the typing relation. Therefore, it is often also called preservation. We

prove subject reduction of ASPfun with respect to the type system given in the previous section.
We prove first the subject reduction property for the local reduction:

Property 5 (Local Subject Reduction).

〈Γact, Γfut〉, T ⊢ t : A ∧ t →ς t ′ ⇒ 〈Γact, Γfut〉, T ⊢ t ′ : A

Then, we prove subject reduction for the full typing relation of configurations.

Theorem 2 (Subject Reduction).

⊢C : 〈Γact, Γfut〉 ∧ C →‖ C ′ ⇒ ∃ Γ
′
act, Γ

′

fut
. ⊢C ′

: 〈Γ ′
act, Γ

′

fut
〉

where Γact ⊆ Γ ′
act, and Γfut ⊆ Γ ′

fut
.

Note that activities and futures may be created by the reduction and thus the typing environment may have to be

extended.

5.5. Progress and absence of dead-locks

Finally, we can prove progress for well-typed configurations. Progress states that any expression of the language is either

a result or can be reduced. In ASPfun, we prove progress for each request of a configuration. A term is a result, i.e., a totally

evaluated term, if it is either an object (like in [1]) or an activity reference.

isresult (s) ⇔ ∃li, ti, A. s = [li = ς(xi : A, yi : B)ti]
i∈1...n ∨ ∃α, s = α

The type system is useful for ensuring that every accessed method exists on the invoked object. In fact, local typing

ensures progress of local reduction. Typing for configurations extends the typing relation to distributed objects ensuring

for example that a method invocation on a future will be possible once the result is returned. Absence of dead-locks for

the distributed semantics is only ensured by the functional nature of ASPfun, by the absence of loops, and by the particular

semantics of the calculus. A first notion of progress can be proved: for a correctly typed configuration, either all requests are

reduced to a future, or the configuration can be reduced.

Property 6. ⊢ C : 〈Γact, Γfut〉 ∧ α[fi /→s :: Q , t] ∈ C ⇒ isresult(s) ∨ ∃C ′ . C →‖ C ′.

More precisely, we can prove that the request that is not yet reduced to a result, i.e., the term s in the theorem above,

can be reduced. Unfortunately, as already shown in [1], ς-calculus does not ensure that a reduced term is different from

the source one, but this is an issue related to the local reduction which is not the concern of this paper. We proved that, on

the distributed side, the term really always progresses and that no reduction loop is induced by the distributed features of

ASPfun. We can reformulate the preceding theorem:

Theorem 3 (Progress).

nocycle(C) ∧ ⊢ C : 〈Γact, Γfut〉 ∧ α[fi /→s :: Q , t] ∈ C ⇒ isresult(s) ∨ ∃ C ′ . C →‖ C ′

where C ′ can be chosen to verify: α[fi /→s′ :: Q , t] ∈ C ′ ∧ (s′ 0= s ∨ s →ς s) .

By proving progress, we also show that ASPfun is dead-lock free: as any term that is not already a result must progress,

this ensures the absence of dead-lock.
As configurations reachable from the initial configurations have no cycle, a variant of the progress theorem can be stated

by replacing the nocycle hypothesis by the reachability from a well-typed initial configuration:

Property 7 (Progress from Initial Configuration). Let s0 be a static term; if it is correctly typed (in an empty environment), then

each request of any configuration C obtained from s0 is either reduced to a value or can be further reduced; more formally:

initConf(s0) →∗
‖ C ∧ 〈∅, ∅〉, ∅ ⊢ s0 :A ∧ α[fi /→s :: Q , t]∈C ⇒ isresult(s) ∨ ∃C ′. C →‖ C ′

where C ′ can be chosen to verify: α[fi /→s′ :: Q , t] ∈ C ′ ∧ (s′ 0= s ∨ s →ς s) .

836 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

6. Formalisation in Isabelle/HOL

The interactive theorem prover Isabelle/HOL [12] offers a classical higher order logic (HOL) as a basis for the modelling

of application logics. Inductive definitions and datatype definitions can be written in a way close to programming language

syntax and semantics. Semantic properties over datatypes can be expressed in a clear manner using primitive recursion

which is supported by powerful proof automation using rewriting techniques. Nevertheless — unlike model checking or

other fully automated proof techniques — the expressivity of HOL comes at a price: the user has to find the gist of proofs

concerning his application logics himself even if simple simplification steps are handled automatically.

In this section we will give an outline of the mechanisation of ASPfun, its syntax, semantics, type system, and proofs in

Isabelle/HOL. To this end, we begin Section 6.1 by introducing finite maps, a useful extension of Isabelle/HOL we created for

representing objects.We also discuss in somedetail different techniques for representing binderswhen formalising language

meta-theory—necessary for the subsequent experience report. We then describe in Section 6.2 important aspects of our

proofs in amanner independent of the actual Isabelle/HOL representation.We give details on the Isabelle/HOL formalisation

using de Bruijn indices in Section 6.3. For defining the operational semantics of the local object calculus, we adapted the

semantics for the ς-calculus defined in [14] in order to use reduction contexts. We also proved in Isabelle/HOL that both

models are equivalent or, more precisely, that both small step semantics express exactly the same reduction.

In a constant attempt to improve the Isabelle/HOL mechanisation, we have updated the ASPfun mechanization with a

different binder technique: we replaced the classical de Bruijn indices by a locally nameless representation that provides

a more natural representation of formulae by variable names [15]. The experience of having thus performed the entire

formalisation of ASPfun twice enables us to provide a profound comparison of the two representation techniques in

Section 6.4.

6.1. Tools for programming languages and semantics

6.1.1. Finite maps: deep versus shallow

The embedding of the language ASPfun into Isabelle/HOL needs to be deep enough to reason about the language and its

semantics while also being shallow enough, i.e., using enough basic concepts of HOL to facilitate reasoning and simulation of

examples. Finite maps are a primitive feature we needed to formalise; this feature is defined closely to the HOL type system

to reduce the depth of our embedding.

An object in the ς-calculus is a finite unordered list of named elements that is recursive in its self-parameter: objects are

finite maps. To enable primitive recursive definitions of functions on terms we need a recursive datatype for objects. The

inbred recursion of objects forces us to use a primitive function type to represent these object maps. Thus, we use HOL’s

primitive map type to define finite maps α⇒f β by coercing their domain α to be in the type class finite of all finite types.

We derive the following induction scheme from the induction rule for finite sets using a domain isomorphism between

finite maps and finite functional relations. If a property P is valid for the empty finite map and it is, furthermore, preserved

when an element is added to the finite map by updating the map, then the property is true for all finite maps. Note, that for

the general function type ⇒ such an induction does not hold.

! P empty;∧
x (F:: α ⇒f β) y . ! P F; x /∈ dom F " #⇒ P (F(x $→ y))

" #⇒ P F

The brackets !. . . " indicate the conjunction of meta-level hypotheses of a rule. The additional type judgement α⇒f β

coerces F to be an fmap.

6.1.2. Binder representation

The formalisation of programming languages in rigorous frameworks, like theorem provers, has revealed some crucial

issues summarised in the POPL-mark challenge [16] a set of benchmarks for the mechanisation of language meta-theory.

The problem of the representation of binders is there identified as a central problem to the challenges. We discuss in this

section the main techniques for representing variable binders laying the ground for the following formalisations.

Problem statement. The representation of binders has already been recognised by Bruijn [17] in the Automath project as

a major problem when mechanising languages. Intuitively, a language that has local scopes and parameterisation — for

example functions λx.fx — need to refer to the formal parameters — here x — when they occur inside these scopes — here

x occurs in the context f . The natural, human understandable way is to use variables, like x, to define and denote formal

parameters by name but variables are neither well-suited for mechanisations nor proofs. For example, variable capture

may occur, that is, a variable occurring free in a term t may accidentally be ‘‘captured’’ when substituting t inside a scope

where x is the name of a bound variable. For example, in (λx.xy)[λz.x/y], the free variable x in λz.x could be captured by

the substitution. To avoid this, we use a consistent renaming. Formally, α-equivalence justifies such renamings. However,

α-equivalence creates classes of equivalent terms with equal denotation which complicates the semantics. In particular,

when fresh variables are a prerequisite inside semantic rules, the choice of α-conversions inside a term predisposes the

choice of fresh variables creating an interference that obstructs compositional reasoning.

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 837

De Bruijn indices. The classical solution, proposed by N.G. de Bruijn, is to replace each occurrence of a variable by an integer

equal to the number of binders that have to be crossed to reach the binder for the considered variable. In other words,

a variable is replaced by the distance from its binding scope. Note, the same ‘‘variable’’ may be represented by different

integers. For example, the lambda term λx.x(λy.x y) in de Bruijn notation is λ(0(λ1 0)); x is once represented as 0, once as

1. The ‘‘nominality’’ of terms is abstracted—semantic denotation becomes unique but substitution becomes very technical

because of the ‘‘lifting’’ of indices when entering a binder or replacing a term under binders. Then a term that has to be

substituted at nesting depth n into another term needs to add n to all its indices representing free variables. To this end, one

first defines a ‘‘lift’’ operation that performs this addition and the substitution then uses lift.

Locally nameless representation. Already at the time of first devising his concept of indices, de Bruijn [17] suggested an

alternative where indices represent bound variables (written bvar i) and classical named variables represent free (unbound)

variables (written fvar x); open and close operations translate between those representations. This technique, known as

locally nameless representation, has since recently attracted wide attention [15]. It seems very attractive as it combines

unique representation provided by de Bruijn indices with human understandable expression of specification of theorems

using names—avoiding manipulation of explicit indices, in terms, semantics, and lemmata.

The open operation, written tu, substitutes a term u for the outermost bound variable in the term t . For example

λ(bvar 0 λ((bvar 1)(bvar 0)))n is equal to n λ(n (bvar 0)). The opposite operation closes a term: given a name, the closing

replaces the occurrence of variables of this name with an index for a bound variable, such that the variable is bound at the

outermost level of the term.

A drawback of the locally nameless approach is that we need to take explicit care that we do include only well-formed

terms, i.e., only bound variables are represented by indices. The notion of locally closed terms ensures this. E.g., λ(bvar 2)
is not locally closed. Ensuring that we manipulate only locally closed terms will have to be added as prerequisite to our

propositions when dealing with locally nameless representation. Another problem arises when reducing a term under

a binder. Here, we should close the term under a fresh variable (to keep the term locally closed). Formally, we need:

∀x /∈ FV (t).tx →(t ′)x %⇒ λ(t)→λ(t ′). The drawback of this approach is that it is sensitive to the set of free variables, that

may vary in an unexpected way. Here, the approach of cofinite quantification [15] is an important step forward. The basic

idea is to abstract over the set of free variables FV(t) and to let a fresh variable be taken among the complementary of an

existentially quantified finite set L, the proposition above becomes: ∃L finite.∀x /∈ L.tx → (t ′)x %⇒ λ(t)→ λ(t ′) . This set L
can then be instantiated appropriately when handling proofs.

Nominal techniques. Another approach, proposed by Urban and et al. [18] based on work on nominal logic by Pitts [19], is

called nominal techniques. Here, terms are identified as a set bijective to all terms factorised by α-equivalence. Instead of

using substitution, nominal logic uses permutations of atomic names. Permutations are built from elementary name swaps:

e.g., (a, b) · t replaces all occurrences of a by b and vice versa in t . Permutations are only applicable if there are fresh atoms

available. This is expressed by keeping track of the support set (fresh atoms). The classical hypothesis, ‘‘there is a fresh

variable’’ for a term t is replaced by, ‘‘there is a finite support for x’’, i.e., the set of atoms used in t is finite, and infinitelymany

‘‘fresh’’ atoms are available. Unfortunately, the Isabelle/HOL package implementing nominal techniques cannot be used as it

is — in our case — because we use finite maps in our implementation; consecutively the recursive datatype defining ASPfun

syntax is a bit more complex than the usual simple recursive construction. While it is trivial that a finite map containing

terms of finite support has a finite support, such a reasoning is not yet supported by Urban’s package.

Higher order abstract syntax. Another technique for formalising binders is Higher Order Abstract Syntax (HOAS) in which

binders of applications are directly represented by binders of themeta-level, e.g., [20,21]. Therefore, by contrast to the above

sketched approaches, HOAS is often also called the direct encoding. For example, in Isabelle/HOL, we would use the HOL λ-

abstraction to encode object-level binders. This approach has advantages in terms ofmechanisations: reductions are usually

performed automatically but it is restricted when it comes to meta-level reasoning. Sometimes, ‘‘meta-theoretic properties

involving substitution and freshness of names inside proofs and processes, cannot be proved inside the framework and

instead have to be postulated’’ [22].

6.2. Crucial aspects of the proofs

This section details some of the parts of the formalisation that seem the most important to us, it gives proof sketches,

and is not much coupled with Isabelle/HOL.

6.2.1. Finiteness

When considering language semantics we often implicitly assume finiteness of programs and configurations. In fact, the

implicit assumption is worth mentioning: for programs it grants induction over the recursive datatype of ς-terms, and for

configurations, it permits the assumption that there are always fresh activity and future names available. Our formalisation

relies on this assumption. We particularly highlight the fact that it becomes necessary to show progress. For example, to

create a new activity one must find a fresh identifier. We have shown that initial configurations and configurations reduced

from them are all finite: they have a finite number of activities and futures.

838 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

6.2.2. Absence of cycles

Proving the absence of cycles (Theorem 1) required us several steps. We first defined a datatype for future or activity

reference and then specified the knowsC and knows+C relations defined in Section 4.2. In order to handle the proofs, we

refine the knows+C relation by remembering the list of intermediate activities: r knows+C (L) r ′ iff r knows+C r ′ passing by the

references in L.
We first prove lemmata relating cycles, knows+C , and paths. E.g., if r knows+C (L) r ′ and C ′ is obtained from C by just

modifying the request corresponding to fk, then r knows+
C ′ (L) r

′ provided fk /∈ L and fk #= r . A similar lemma exists for

activity references. Consequently, it is sufficient to prove that no cycle is created by the activities and requests modified by

the considered reduction. We also show that, when r knows+C (L) r ′, L can be chosen to include neither r nor r ′.
Themain proof of absence of cycles is a long case analysis on the reduction rules that uses lemmata presented above,well-

formedness of the initial configuration, and shows that if there is a cycle in the obtained configuration, there was necessarily

one in the original configuration. As an example, we detail the main argument for the request rule referring to the rule of

Table 2 with C1 being the source configuration and C2 the obtained one. One can first note that, as the source configuration

is well-formed by hypothesis, only fi may refer to fk in C2. Second, if fk knowsC2 r then either β knowsC1 r or fi knowsC1 r . We

only have to show that ∃L.fk knows+C2 (L) fk. By contradiction and induction on the length of L, length 0 is impossible because

β or fi would know fk in C1 which would not be well-formed. For greater lengths, L = L′#r , and necessarily r = fi as shown

above. Thus, fk knows+C2 (L′) fi, where fk /∈ L and fi /∈ L. Consequently, fi knows+C2 (L′) fi or β knows+C2 (L′) fi as the request for fk is

only built from the request for fi and the active object of β (t ′.l(s) in Table 2). Since fk /∈ L and fi /∈ L, and only fi and fk have

been modified between C1 and C2: fi knows+C1 (L′) fi or β knows+C1 (L′) fi. As fi knowsC1 β , in either case there would be a cycle

from fi in C1, which is contradictory.
Fig. 3, page 833 illustrates this case of the proof. It considers the case of a request from α to β creating the future fl and

the reference depicted by the arrow 6. Additionally, suppose a cycle is created: arrows 3, 4, 5, 6 in the figure, we consider

the sub-case where this cycle was created because of a reference in the active object in β . We decompose the cycle into

fl knows+C2 (L′) fi, with L′ consisting of the arrows 3, 4, 5 on the figure, plus arrow 6 (fiknowsC2 fl). Then, necessarily, before

the reduction fi was involved in a cycle passing by β and by the path consisting of the arrows 1, 2, 4, 5, which shows the

contradiction.

6.2.3. Typing and subject reduction

Subject reduction is handled in two phases, each proved by case analysis: one for local and one for distributed reduction.

We detail below a few useful lemmata. The first lemma states that any term that has a type in an empty environment has

no free variable:

〈Γact, Γfut〉, ∅ ⊢a :A ⇒ noFV(a)

Conversely, a term without free variable can be typed in an empty environment (in fact, below we could prove A = A′ but

this was not useful):

〈Γact, Γfut〉, T ⊢a :A ∧ noFV(a) ⇒ ∃A′.〈Γact, Γfut〉, ∅ ⊢ a : A′

Both preceding properties are necessary to show that for an activated object or a new request a type can be found.

〈Γact, Γfut〉, ∅ ⊢E[a] :A ∧ 〈Γact, Γfut〉, ∅ ⊢a :B ∧ 〈Γact, Γfut〉, ∅ ⊢b :B ⇒ 〈Γact, Γfut〉, ∅ ⊢ E[b] :A

This lemma is both crucial and interesting because it relates contexts and typing. As our reduction relies on the use of

contexts, this lemma is decisive for the proof of subject reduction, Theorem 2.

6.2.4. Proving progress

Proving progress relies on a long case analysis on the reduction rules. We focus first on one crucial argument: how

can the absence of free variable be ensured in order to communicate an object between two activities. Each request can

be typed in an empty environment (for variables); thus it does not have any free variable, and thus each sub-term of

a request that is not under a binder has no free variable. We prove that one can reduce at least the part of the request

under the evaluation context F , where F ::= • | F .li(t) | F .li := ς(x, y) s | Active(F). If one replaces E by F in the semantics,

this prevents reduction to occur inside the binders. Indeed, in F the term in the position of the hole has no free variables:

〈Γact, Γfut〉, ∅ ⊢F [a] :A ⇒ noFV(a) .

Considering the other arguments of the proof, the absence of cycles ensures that an application of a reply rule cannot

return a future value which is the future itself, in which case the configuration would be reducible but to itself. This ensures

that no live-lock exists in the distributed semantics even if the local one can create live-locks. Of course, the proof also

massively uses the fact that well-typed configurations are well-formed.

6.3. The formal model in Isabelle/HOL with de Bruijn indices

This section presents a first version of the formalisation of ASPfun, its syntax, and a few theorems in Isabelle/HOL; this

version relies on de Bruijn indices. The main objective of this section is to give a real feel for the Isabelle/HOL formalisation

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 839

and outline themain steps of the formalisation process.We use here the de Bruijn representation for the syntax of ASPfun but

the major part of the formalisation process is similar for the locally nameless representation presented in the subsequent

section.

6.3.1. Syntax

The formalisation of functional ASP is constructed as an extension of the base Isabelle/HOL theory for the ς-calculus [14].

The term type of the ς-calculus is represented by an Isabelle/HOL datatype definition called dB. In this datatype definition,

objects are represented as finite maps Obj (Label ⇒f dB) type. We formalised finite maps in the first argument of Obj
using the abstract concept of axiomatic type classes. As discussed in Section 6.1.1, it is crucial to have finite maps as a basic

Isabelle/HOL type to be able to employ the recursive datatype construction here. The second argument of the constructor

Obj is a type annotation. The resulting datatype for basic terms of ASPfun is then as follows. Variables are represented by

de Bruijn indices. A given index has two entries: one for self, and the other for the parameter as defined by the datatype

Variable.

datatype Variable = Self nat | Param nat

datatype dB = (*The typed ASPfun datatype*)
Var Variable (*Variable - deBruijn index*)

| Obj "Label ⇒f dB" type(*Objects map labels to terms, and have a type*)
| Call dB Label dB (*Call a l b calls meth l on a with param b*)
| Upd dB Label dB (*Upd a l b updates meth l of a with body b*)
| Active dB (*Creates an active object*)
| ActRef ActivityRef (*References an active object - dynamic syntax*)
| FutRef FutureRef (*References a future - dynamic syntax*)

The type of configurations relies on partial functions expressed by the constructor ⇒| .

futmap = FutureRef ⇒| dB
configuration = ActivityRef ⇒| (futmap × dB)

6.3.2. Reduction contexts in Isabelle

In our model we developed a simple mechanisation of a reduction context using again the datatype construct as follows:

datatype general_context = (*a general context is a term with a hole*)
cHole

| cObj FmapLabel type general_context
| cCallL general_context Label dB
| cCallR dB Label general_context
| cUpdL general_context Label dB
| cUpdR dB Label general_context
| cActive general_context;

Isabelle/HOL internally generates rules for a datatype specification most notably induction rules for recursive types and

injectivity rules for the constructors. Pattern matching facilitates case analysis proofs crucial for reasoning with complex

languages.
This representation of contexts by a specific datatype constructor exploits the power of the efficient datatype feature

of Isabelle while at the same time finding a first class representation of the syntactical concept of ‘‘context’’. For the use

of contexts we define an operator to ‘‘fill’’ the ‘‘hole’’ enabling a fairly natural notation of E↑t for E[t] (remember this

substitution is not ‘‘capture avoiding’’ contrary to the variable substitution).

consts Fill :: [general_context, dB] ⇒ dB ("↑")

We use this simple function to illustrate the definition of functions in Isabelle/HOL. Functions over datatypes may be

defined in a particularly efficient way in Isabelle/HOL using primitive recursion. Efficient means, in this context, that proofs

involving these operators may be mostly solved automatically using automatic rewriting techniques provided in Isabelle.

The semantics of theFill operator is described by the following set of equations— again, this substitution is, unlike variable

substitution, not ‘‘capture avoiding’’.

primrec

Fill cHole x = x
| Fill (cObj f T E) x = Obj ((FLmap f)((FLlabel f) $→ (Fill E x))) T
| Fill (cCall E l) x = Call (Fill E x) l
| Fill (cUpdL E l (y::dB)) x = Upd (Fill E x) l y
| Fill (cUpdR (y::dB) l E) x = Upd y l (Fill E x)
| Fill (cActive E) x = Active (Fill E x)

The rest of this section intensively use this operator and thus illustrates its usefulness.

840 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

6.3.3. Semantics

The parallel semantics of ASPfun is given as an inductive relation over this type of configurations encoding the reduction

relation →‖ (see Table 2). To give some flavor of the expression of the semantic, we depict only the rule request; this rule

is a crucial one for the calculus, and it gives a representative idea of the other semantic rules. This rule is part of an inductive

definition for the reduction relation →‖ on configurations. An inductive definition in Isabelle/HOL defines a set, here the

relation →‖, by a set of simple rules. The set defined by an inductive definition is the least set that is closed under those

rules.

request:
! ∀ D ∈ dom C. fk /∈ dom(fst(the (C D))); C A = Some(m’,a’);

m’(fi) = Some(E↑(Call(ActRef B) l s)); C B = Some(mb, t’); noFV s; A&= B "

'⇒ C →‖ C(A)→ (m’(fi)→ E↑(FutRef(fk))), a’))(B)→ (mb(fk)→ (Call t’ l s)), t’))

Assumptions are enclosed in Isabelle/HOL’s meta-logic brackets !", and conclusion is placed after'⇒. Additionally, a partial

function admits adom operator defining the domain of the function, and a partial function returns eitherNone, if the function
is not defined for this value, or Some(x) if the function is defined and returns x. C(A)→ x) represents the partial function

Cwhere A is now given the value x.
The above code for the request rule in Isabelle clearly corresponds to the following rule of the semantics of ASPfun. As

one can notice, themain differences in Isabelle are that, first the definition ‘‘fresh’’ has been directly encoded in the rule, and

second a few assumptions were used to decompose the source configuration, e.g., C A’ = Some(m’,a’) states that the

activity A of configuration C is defined by the couple m (the request queue) and a (the active object). Even with these minor

differences, it is easy to see that both rules express the same behaviour.

request

fk fresh noFV(s) α &= β

α [fi)→E[β.l(s)] ::Q , t] :: β[R, t ′] :: C →‖ α [fi)→E[fk] ::Q , t] :: β
[

fk)→t ′.l(s) ::R, t ′
]

:: C

6.3.4. Typing and progress

We skip the description of the proofs related to well-formedness and decide to focus on typing. We first define the

following datatypes for object type and configuration type and a constant typing for typing judgements. The syntactic

sugar: CT, E ⊢ a : A abbreviates (CT, E, a, A) ∈ typing.

datatype type = Object (Label ⇒f (type × type))
datatype Ctype = TConfig (ActivityRef ⇒| type)(FutureRef ⇒| type)
typing :: [Ctype, ((type× type) list), dB, type] ⇒ bool

Themost remarkable point in the signature above is the use of (type×type) list instead of finitemaps from variables to

types (cf. Section 6.4). A list is sufficient because of the use of de Bruijn indices: the depth in the list represents the de Bruijn

index; and a couple of types is necessary because one represents the type of self, and the other represents the parameter

type.
Then this relation typing is defined using an inductive definition. The rules of the inductive definition are exactly the

typing rules for ASPfun introduced in Section 5. For comparison we show just the rule Type Call.

! Tconf, env ⊢ a : A; l ∈ dom A; A!l=(B,T);Tconf, env ⊢ b : B "

'⇒ Tconf, env ⊢ (Call a l b) : T

The operator! selects a type fieldl in an object typeA. Typing for configurations is also defined as presented in Section 5.We

completely proved in Isabelle/HOL all the theorems presented in this paper. Theorems are expressed similarly in Isabelle as

in the paper version. Below is the subject reduction theorem (Theorem2). Note that, as'⇒ can only be used at the top-level,

−→ is used to denote implication inside formulae:

theorem Csubject_reduction: ⊢ C: CT '⇒ (∀ C’. C →‖ C’ −→ ∃ CT’. ⊢ C’: CT’)

The theorem progress_ASP_init_conf below is a particular instance of the progress theorem employing the

previous results that all reachable configurations are finite and have no cycles; it corresponds to Property 7.

theorem progress_ASP_init_conf:
! init_config a →‖ C; TConfig empty empty, [] ⊢ a : T; A∈ dom C; fi∈ C.RA "

'⇒ (isresult C.FA<fi>) ∨

(∃ C’. (C →‖ C’) ∧(C’.FA<fi>&=C.FA<fi>∨ C.FA<fi> →ς C.FA<fi>))

6.4. Locally nameless representation

The main advantage of the de Bruijn representation is also its biggest handicap: indices instead of variables get rid of

α-conversion problems but are very technical. An unwelcome effect of the lifting and substitution functions, necessary

for index handling, is that there are many lemmata that are hard to find and difficult to prove. Their difficulty is not

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 841

their theoretical depth but that they merely shuffle indices—a facility easy for a machine and hard for a human mind. An

illustrative example is the following lemma subst_subst proving how two substitutions can be swapped.

i < j + 1 !⇒

t[lift v i,lift s’ i / Suc j][u[v,s’/j],s[v,s’/j]/i] = t[u,s/i][v,s’/j]

The locally nameless representation, on the other hand, is closer to paper style notation due to the use of named free

variables in addition to indices. The price to pay for the gained understandability are additional concepts. Consequently,

new hypotheses in rules and theorems arise. We believe that both representations have their merits and their weaknesses

as we will point out in the following exposition of the locally nameless representation of ASPfun.

6.4.1. Basic constructs

The only difference of the locally nameless representation to the de Bruijn representation concerning the terms is the

addition of named free variables. This new type fVariables is conveniently chosen to be the type string. The datatype of

terms stays the same (it is named term now instead of dB)—only the constructor Var is replaced by two new constructors

Bvar and Fvar, the former taking an index and the latter a free variable. Also at the level of configurations there is not

much difference: the type of configurations actually stays the same. In the parallel semantics, the only difference is in the

rule local where local terms need to be locally closed in order to be reduced according to the local semantics. The main

differences in the locally nameless semantic definition is in the reduction relation for the evaluation of the objects. Here, the

new concept of named variables is supported by operations for opening and closing of terms.

Opening and closing

Opening is a form of substitution; it corresponds to an instantiation of a bound variable with a given subterm. While the

following definition’s core part is the first clause, the others just pass the recursion into the term structure. This first clause

replaces a bound variable if nmatches the index of the parameter. Due to the two parameter types of our terms, we always

open with a pair of terms and replace depending on whether the bound is Self or Param, by the first or second element of

the pair, respectively.

primrec

open :: [nat, term, term, term] ⇒ term ("{_ → [_,_]} _")
and

open_option :: [nat, term, term, term option] ⇒ term option
where

open_Bvar: {k→[s,p]}(Bvar b) =
(case b of (Self i) ⇒ (if (k = i) then s else (Bvar b))

| (Param i) ⇒ (if (k = i) then p else (Bvar b)))
| open_Fvar: {k→[s,p]}(Fvar x) = Fvar x
| open_Call: {k→[s,p]}(Call t l a) = Call({k→[s,p]}t) l ({k→[s,p]}a)
| open_Upd : {k→[s,p]}(Upd t l u) = Upd({k→[s,p]}t) l ({(Suc k)→[s,p]}u)
| open_Obj : {k→[s,p]}(Obj f T) = Obj(λl.open_option(Suc k) s p (f l)) T
| open_Act : {k→[s,p]}(Active a) = Active ({k→[s,p]} a)
| open_ARef: {k→[s,p]}(ActRef g) = ActRef g
| open_FRef: {k→[s,p]}(FutRef f) = FutRef f
| open_None: open_option k s p None = None
| open_Some: open_option k s p (Some t) = Some ({k→[s,p]}t)

Let us only describe the most characteristic of the other clauses: open_Obj. Recursive opening inside the object is defined

by mapping a function (λl. ...) on all its methods (most of them being undefined, None). This explains why we use two

mutually recursive functions open and open_option, one of them accepting Some term or None. The function applied to

each member method is the recursive application of open but with Suc k as index, because we entered a binder (similarly

to what we would do for de Bruijn method).

Open is usually used to replace the outermost binder, i.e., {0 →[s,p]} t abbreviated by t[s,p]. For example, one

crucial rule of our semantics of objects is to evaluate calls to an object’s method [lj $→ς(x, y)t, . . .].lj(p) to the body with

substituted parameters: t[o/x, p/y], where o = [lj $→ ς(x, y)t, . . .]. In locally nameless representation, it is expressed by

t[o,p].
To abstract a variable, close is defined as a primitive recursive function of type [nat, fVariable, fVariable,

term] ⇒ term. As close corresponds to a method abstraction we chose the syntax {_ ←[_,_]} _. Its definition uses

identical patterns with open; we thus only show the decisive case for Fvar.

close_Fvar: {k ← [s,p]}(Fvar x) = (if x = s then (Bvar (Self k))
else (if x = p then (Bvar (Param k)) else (Fvar x)))

Similarly to open, most of the time we will close the variable indexed by 0; we thus abbreviate {0 ←[s,p]} t by

σ[s,p] t.

842 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

Opening and closing efficiently convert between free and bound variables. Remember, however, that the coexistence of

free and bound variables necessitates to restrict propositions to terms without ‘‘unbound bound variables’’: preconditions

generally restrict propositions to locally closed terms.

The predicate lc formalises local closure:

inductive lc :: term ⇒ bool
where

lc_Fvar: lc (Fvar x)
| lc_Call: ! lc t; lc a " "⇒ lc (Call t l a)
| lc_Upd: ! lc t; finite L; ∀s p. s /∈ L ∧ p /∈ L ∧ s &= p −→ lc (u[Fvar s,Fvar p])"

"⇒ lc (Upd t l u)
| lc_Obj: ! finite L; ∀l∈dom f. ∀s p. s /∈ L ∧ p /∈ L ∧ s &= p

−→ lc (the(f l)[Fvar s,Fvar p]) "

"⇒ lc (Obj f T)
| lc_Act: lc a −→ lc (Active a)
| lc_ARef: lc (ActRef g)
| lc_FRef: lc (FutRef f)

An explicit substitution operator with syntax [x →s] t replaces a free variable x by a term s in a term t. The structure

of its primitive recursive definition is similar to open and close but the decisive Fvar case is as follows.

subst_Fvar: [z → u](Fvar x) = (if (z = x) then u else (Fvar x))

Although we use open for a ‘‘substitution’’ in the semantics, the substitution above is better suited for free variables for

example in renaming lemmata.

6.4.2. Cofinite quantification

One problem when changing from a bound to a free variable is the need for fresh variables. Whenever we have a rule

which uses a newly introduced variable name, we need to find a fresh name. For example, suppose that t is a subterm under

a binder. To make it locally closed, we need to instantiate the top-level bound variable of t: t[s,p], but to keep the original

term t (and close the term later with s and p), we need s and p fresh. Technically, we can use a function FV collecting the

free variables of a term and add the additional premise x /∈ FV(t)whenever a fresh variable name x is required. This way

of formalising can be described as the ‘‘exists-fresh’’ approach [15]. Unfortunately, the ‘‘exists-fresh’’ approach leads to very

clumsy proofs: intuitively,we need to prove statements for a set of free variables differing from the ones given as hypotheses.

In recent work by Aydemir et al. [15], a more sophisticated technique called cofinite quantification is introduced that eases

the proofs involving such rules. The basic idea (cf. Section 6.1.2) is to abstract from sets of free variables FV (t), but instead
consider some arbitrary finite set L, i.e., assuming a ‘‘cofinite set’’ of variable names. Since L is arbitrary, it can be chosen

later as a convenient set bigger than the set of free variables. Any naïve way using simply locally nameless representation

without using cofinite induction in the semantic definition would lead to unsolvable proof obligations for some theorems.

Thus the semantics of our calculus in the locally nameless representation is expressed by rules of the form:

Cofinite-update-LN

finite L ∀x y. x&=y ∧ x, y/∈ L −→ ∃t ′′.t [x, y]
= t ′′ ∧ t ′ = ς [x, y]t ′′ lc o

o.l := t →ς o.l := t ′

6.4.3. Semantics and proofs

When comparing the techniques, two criteriamust be considered: how easy it is towrite the formalisation, and how easy

and convincing it is to read it. Locally nameless terms are definitely easier to read as they use named variables instead of de

Bruijn indices. However, in the specification of the syntax and semantics we often encounter some technical overhead due

to the new constructors for named free variables. Moreover, we need to establish the well-formedness of terms by adding

predicates lc to the premises of the reduction rules. Fortunately, the additional lc condition mainly states that substituted

terms correspond to correct ς-calculus terms. We have seen an example in the previous section when considering the

semantic rule Cofinite-update-LN for the local update on objects.

Let us focus on the reduction inside binders. Specifying that any field can be reduced in de Bruijn notation leads to the

rule:

Obj: !s →ςt; l ∈ dom f""⇒ Obj (f (l +→ s)) T→ςObj (f (l +→ t)) T

This is very similar to the paper version. The locally nameless version is less straightforward: we need cofinite

quantification:

Obj: ! l ∈ dom f; finite L; lc (Obj f T);
∀s p. s/∈L ∧ p/∈L ∧ s&=p−→ ∃t’’. t[Fvar s,Fvar p] →ς t’’ ∧ t’ = σ[s,p] t’’) "

"⇒ Obj (f(l +→ t)) T →ς Obj (f(l +→ t’)) T

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 843

Additional requirements refine what is meant by ‘‘reduce under the binder’’; in fact the difficulty is tomake the sub-term

under the binder locally closed before reducing it, which somehow refines the intuitive notion of (correct) reduction under

binders.
The essential relations of the calculus, reduction and typing, are not more readable in the locally nameless versions

compared to the de Bruijn incarnations. In both formalisations, the introduction of syntactic sugar can bring some rules

very close to a paper version. However, the more restrictive reduction relation for locally nameless variables is closer to the

version found on paper, as it does not apply to terms with dangling indices.
Concerning proofs, the notable benefit comes from the explicit distinction between the variable types,which can improve

readability and ease reasoning for many lemmata, especially the basic lemmata and confluence proofs, more cases being

proved automatically.
Concerning typing, the locally nameless formalisation improves the understandability of proofs but at the price of rather

technical lemmata for renaming. We are not able to observe a major improvement in the complexity of the major proofs

but, for the most part, there is no notable burden either. The proof principles are similar for either variable representation.

6.4.4. Overall comparison with the de Bruijn approach

The clear advantage of the locally nameless formalisation is the handling of free variables. The de Bruijn version did not

allow reasoning about free variables for a very simple reason: it is not possible to express free variables. More precisely,

unbound de Bruijn indices could sometimes simulate free variables, but such a solution is unsatisfactory because the intent

of a free variable is different from a dangling index. Moreover, the explicit distinction between bound and free variables

eases the handling of either kind of variable and enhances the readability of proofs and formalisations.
Cofinite quantification, freshness, and renaming are the major reasons for additional and technical proofs in the locally

nameless representation, and all of these items are required for the reasoning about named free variables. The locally

nameless rules are more complex than their de Bruijn counterparts because the locally nameless representation introduces

new concepts and is precise about well-formedness and closure. This initial formal overhead is paid back by a natural

notation in theorems and by improvement for interactive proofs. Overall, the locally nameless technique allows a more

precise formalisation, avoids proving obscure lemmata on substitution and lifting, and leads to a more natural notation

for terms but at the price of additional non-trivial requirements in semantic and typing rules, and additional non-trivial

concepts.

6.5. An experience in the formalisation of calculi and semantics

The entire development takes around 14000 lines of code for each of the two representations. Among those lines less

than 10% are necessary for the formalisation of the languages and the properties, and most of the development concerns

the proof of the properties and the intermediate lemmata. The development time is difficult to evaluate but is above one

man-year for the two formalisations.
The most difficult and crucial step is certainly the definition of the right model for the calculus, its semantics, but also

for the additional constructs used in intermediate lemmata. Of course, the structure and difficulties of the proofs are highly

dependent on the basic structures on which the formalisation relies.
Even if the length and formof the proof is not optimal, the development for formalising such a theory is really consequent;

and it becomes difficult to keep a proof minimal and well-structured when it grows to several thousands of lines in length.

Handling simplification steps in such a complex and rich theory becomes tricky. Additionally, making modular proofs for

subject reduction and equivalent properties is difficult in a theorem prover because useful lemmata are tightly coupledwith

the numerous and complex hypotheses involved by the case analysis; for example it is difficult to specify a lemma that will

be used in case the request rule has been applied, because such a lemma would have numerous and complex hypotheses.
However, globally, we consider that the formalisation of ASPfun is of reasonable size, and provides a set of constructs

relatively easy to use. We think this formalisation can be used efficiently to prove new properties on distributed object

languages.

7. Discussion and alternative semantics

Reduction contexts. There are different ways of specifying at which point(s) of a term a reduction can occur. A convenient

and classical technique for this is to use reduction context (a term with a hole). Reduction occurs at the position of the

hole, and the definition of the contexts define the possible reduction points. The most operational semantics generally

reduce innermost terms and implement a call by value formethod parameters. Themost general semantics, like the classical

semantics of λ-calculus, allows reduction to occur at any point in the term.
Because it gives the most general results, we chose the general semantics where any part of the terms can be reduced.

In particular, we allow the reduction to occur inside binders. This is similar to the general semantics of ς-calculus,

as in Definition 6.2.1 of [1] or even example page 62 showing a reduction inside binders. Then for their ‘‘operational

semantics’’, in Section 6.2.4 of [1], Abadi and Cardelli [1] use reduction contexts that do not allow reduction inside binders:

F ::= • | F .li(t) | F .li := ς(x, y) s | Active(F). In ASPfun, these reduction contexts would avoid using the noFV requirement in

the reductions. We chose to specify the most general semantics—allowing reduction inside binders.

844 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

Properties and proofs presented in this paper are also valid for reduction contexts (replacing E by F), and reformulating

our results for reduction contexts would be trivial. Indeed all the properties are trivially easier to verify for the reduction

with F except progress (all of them are more general for E than for F). But, progress was proved using exactly this reduction

context. Consequently progress is also verified by the reduction context semantics.

Communicating non-closed terms. In our semantics we prevented terms with free variables to be communicated in order

to avoid variables to escape their binders. Technically, all communication rules require the communicated term s to verify

‘‘noFV(s)’’. To avoid this requirement in the semantics an alternative semantics could be provided to communicate free

variables without entailing shared memory; but this is out of the scope of this paper, see [23] for example.

Optimising parallel evaluation. A few drawbacks could be found in the semantics given in this paper if a real programming

language was to be implemented exactly as specified in Table 2. Indeed a straightforward implementation of our semantics

could allow some inefficient execution paths especially because too many communications or computations could occur if

no optimisation is done.

First, it seems unreasonable to create in practice as many threads as there are requests in an active object: using a thread

pool seems a much better implementation choice.

Additionally, the most critical inefficient point is the possibility to return a future partially evaluated, i.e., the result for a

request partially computed. This can result in the computation being done twice which is, in general, not efficient. However,

the properties proved here allow enough variation on the semantics to make it usable in practise. In our critical example,

it is possible to restrict the reply rule to only return completely evaluated futures. Then, if one picks a request, there is no

more any guarantee that it can evolve, but the absence of cycle ensures that some request in the configuration can always be

reduced. Some intermediate reductions have to be added to guarantee the progress property: we first reduce the request(s)

calculating the future value before returning the future and progressing. Finally, returning only completely evaluated futures

leads to a more efficient semantics, and still ensures a (weaker) form of progress.

8. Related works and positioning

Distributed languages: Actors and objects

Actors [5] is a widely used paradigm for programming distributed autonomous entities and their interactions by

messages. They are rather functional entities but their behaviour can be changed dynamically giving them a state.

Agents and Artifacts with simpA, concentrating on the higher level of modelling concurrent agent based systems, also

feature a calculus [24]. Although the formalisation is based on Featherweight Java, the agent concept of Agents and Artifacts

resembles ASPfun’s activities but the calculus has no type system and proofs. ASPfun framework may be used to provide

formal support to this work.

Obliq [25] is based on the ς-calculus; it expresses both parallelism and mobility. It relies on threads communicating

with a shared memory. Like in ASPfun, calling a method on a remote object leads to a remote execution but this execution is

performed by the original thread. Øjeblik, e.g., [26], a subset of Obliq, equally differs from ASPfun by thread execution. The

authors investigate safety of surrogation meaning that objects should behave the same independent of migration.

The distributed object calculus by Jeffrey [27] is based on a concurrent object calculus by Gordon et al. [28] extended

with explicit locations. The main objective is to avoid configurations where one object at one location is being accessed

by another. A type system enforces these restrictions. Because migrating objects can carry remote calls, in order to ensure

subject-reduction, Jeffrey introduces serialisable objects, which are non-imperative. Compared to our calculus the most

decisive difference is that activities abstract away the notion of location and are remotely accessible thanks to a request queue.

The concept of futures somehow explicitly supports mobility and serialisation.

Futures

Futures have been studied several times in the programming languages’ literature originally appearing in Multilisp [29]

and ABCL [30].

λ(fut) is a concurrent lambda calculus with futures. It features non-determinism primitives (cells and handles). Niehren

et al. [13] define a semantics for this calculus and two type systems. They use futures with explicit creation point in the

context of λ-calculus; much in the same spirit as in Multilisp. Alice [31] is an ML-like language that can be considered as an

implementation of λ(fut).

In [32], the authors provide a language with futures that features ‘‘uniform multi-active objects’’: roughly each method

invocation is asynchronous because each object is active. Thus, compared to ASPfun, the calculus has no Active primitive. Each

object has several current threads, but only one is active at each moment. Each object holding a future may block waiting

for the future, or it may use the await construct to release the current thread and activate a new one. In this framework,

futures are also explicit: aget operation retrieves their value. The authors also provide an invariant specification framework

for proving properties. This work also formalises the Creol language [11]. Indeed, Creol has exactly the same notion of

uniformmulti-active objects, and of a single thread active at a time. Johnsen et al. [11] also provide a type system specifying

behavioural interfaces, and a semantics for Creol inMaude. Also note that [33] provide amodel of Creol’smulti-active objects

with futures but they focus on the definition of interfaces and on a safety property on promises (a generalisation of futures).

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 845

To summarize, the main difference between Creol and ASPfun are that future creation and access is explicit in Creol, all Creol

objects are active, and the functional nature of ASPfun.

ASP [9] is an imperative distributed object calculus; it is based on the ςimp-calculus [1]. It features asynchronous method

calls and transparent futures. No instruction deals directly with futures. Activities in ASP are mono-threaded: one request is

served at each moment, and a primitive can be used to select the request to serve. Some confluence properties for ASP have

been studied in [9,8]. ProActive [7] is an implementation of the ASP calculus.

Dedecker et al. [34] suggest a communication model, called AmbientTalk, based on an actor-like language and adapted

to loosely coupled small devices communicating over an ad-hoc network. The communication model is quite similar to

the ASP calculus but with queues for message sending, handlers invoked asynchronously, and automatic asynchronous

calls on futures. The resulting programming model is slightly different from ASP and ASPfun because there is no blocking

synchronisation in AmbientTalk. In AmbientTalk, the flow of control might be difficult to understand for complex

applications, because one can never ensure that a future has been returned at a precise point of the program. AmbientTalk

should be dead-lock free but, unfortunately, as no formalisation of the language has been proposed to our knowledge,

this has not been formally proved. Our framework could be relatively easily adapted to prove the absence of dead-locks

in AmbientTalk by transferring our progress property.

Concerning analysis of programs with futures, Cansado et al. [35] proposed an automatic way to generate a model of a

component application with futures in order to verify its correct behaviour. Note that the objective of our paper is quite

different because we aim here at proving generic properties of languages that handle futures whereas [35] aim at proving

properties of a specific application. However, generic properties proved in ASPfun for the programming model are directly

used in the verification approach to know that the specifiedmodel fits the reality but also to optimise verification procedures

by using generic properties of the language.

Mechanical proofs for calculi

One of the greatest contributions of this work is the formalisation of the ASPfun language, its semantics, and type system

plus the proof of safety and progress in an interactive theorem prover. We believe that in the discipline of language

development the application of mechanical verification is particularly relevant even if it comes at the price of intensive and

partly cumbersomework. Related works from the viewpoint of mechanised language verification is the formalisation of the

imperative ς-calculus in the theoremprover Coqmost prominently using a co-inductive definition and higher order abstract

syntax byCiaffaglione et al. [21]. However, theydonot consider concurrency or distribution.With respect to concurrency, the

formalisation of the π-calculus in Isabelle/HOL by Roeckl and Hirschkoff [20] is related. There, higher order abstract syntax

is employed. More recent work by Bengtson and Parrow [36] uses nominal techniques in Isabelle/HOL for the formalisation

of the π-calculus. The authors prove many standard results concerning bisimulation and congruence of the calculus. In

recent work, they formalised their own generalisation of the π-calculus, the Psi-calculus [37]. Concerning mechanisation of

calculi, their solution to model binding sequences for nominal datatypes in Isabelle/HOL is interesting because it also shows

that generalisations of the nominal package in Isabelle/HOL are necessary and possible (see Section 6.1.2). Unfortunately the

design of the π-calculus is too far from ASPfun for this formalisation to be directly useful in our case. Moreover, no objects

are introduced neither in the π-calculus nor in its extensions. Ridge [38] works on a formalisation of concurrent OCaml

in Isabelle/HOL. However, he concentrates on concurrency using abstraction techniques to improve automation of concrete

algorithm proofs and has not formalised objects at all. The originality of our approach lies in the formalisation of distribution

concerns and futures.

Positioning

Futures have been formalised in several settings generally functional-based [13,32,39]; those developments rely on

explicit creation of futures by thread creation primitives in a concurrent setting. They are gettingmore andmore used in real

life languages; for example, explicitly created futures are also featured by the java.util.concurrency library. ASP’s [8,

9] particularities are: distribution, absence of shared memory, and transparent futures, i.e., futures created transparently upon

a remote method invocation.

This paper presented a distributed evaluation of the functional ς-calculus using transparent futures and active objects.

It can also be seen as a study of the functional fragment of ASP. That is why we consider this calculus as complementary

to the preceding ones. Futures can be passed around between different locations in a much transparent way; thanks to

its functional nature and its type-system, this calculus ensures progress. Progress for active objects means that evaluation

cannot lead to dead-locks. ASPfun is called ‘‘functional’’ because objects are immutable. In ASPfun, activities are organised in

an actor-like manner. That is why we consider our language as a form of ‘‘functional actors’’ or ‘‘functional active objects’’.

The main novelty of ASPfun is that it is simple enough to allow for a mechanised specification and mechanised proofs of

typing properties.

In comparison to the first presentation of the ASPfun-calculus at the FOCLASA-workshop [40], the current paper better

illustrates the semantics and further demonstrates the use of the functional update to personalise services (see Section 3).

Moreover, this paper gives a precise description of the Isabelle/HOL formalisation comparing the two different approaches

we have implemented for binders (see Section 6). In particular, the second implementation using the concept of locally

nameless representation with its recent concept of cofinite induction is an independent contribution. We consider that the

846 L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847

major contribution of this paper is the mechanical formalisation, and the precise definition of formalisation tools that can

be re-used to mechanically formalise other properties or languages.
Beyond the scope of this paper is a recent prototypical implementation of the ASPfun-calculus in the concurrent language

Erlang [41] intended for the practical exploration of privacy concerns in distributed systems. In a second conceptual paper

we show that the functional update of ASPfun can be used to implement a hiding mechanism for private data enabling the

enforcement of an information flow property [42].

9. Conclusion

We presented a functional calculus for communicating objects and its type system. This work can be seen both as a

distributed version of ς-calculus and as an investigation on the functional fragment of ASP. The particular impact of this

work relies on the fact that it has been entirely formalised andproved in the Isabelle theoremprover. The functional nature of

ASPfun shouldmake it influence directly stateless distributed systems like skeleton programming [43]. Our approach could be

extended to study frameworks where most of the services are stateless, and the state-full operations can be isolated (access

to a database), e.g., workflows and SOA. Our formalisation in a theorem prover should also impact other developments in

the domain of semantics for distributed languages.

A calculus of communicating objects

The calculus is an extension of ς-calculus with only the minimal concepts for defining active objects and futures.

Syntactically, the extension only requires one new primitive: Active creates a new activity from a term. The absence of side-

effects and the guarantee of progress make the program easy to reason about and easy to parallelise. ASPfun is distributed in

the same sense as ASP: it enables parallel evaluation of activities while being oblivious about the concrete locations inwhich

the execution of these activities takes place. The actual deployment is not part of the programming language and should be

provided by an application deployer rather than by the application programmer.

Well-formed terms and absence of cycle

We proved that ASPfun semantics is correct: no reference to non-existing activities or futures can be created by the

reduction. Also, no cycle of future or activity references can be created. Thus, starting from an initial configuration, we

always reach a well-formed configuration without cycle.

A type system for functional active objects

We extended the simple type system for ς-calculus: Active returns an object of the same type as its parameter; activities

are typed like their active objects; and futures are typed like the request calculating their value. The type system ensures

progress and preservation. Preservation states that the types are not changed during execution. Progress states that a

program does not get stuck. In ASPfun, this is due to the following facts:

• The type system plus the subject reduction property ensure that all method calls will access an existing method.
• Well-formedness ensures that all accessed activities and futures exist.
• Absence of cycles prevents cycles of mutually waiting synchronisations and infinite loops of replies.
• As partially evaluated futures can be replied, any chosen request can be reduced.
• All operations are defined for both local and active objects avoiding ‘‘syntactical’’ dead-locks like updating a method of

an activity.
• Terms under evaluation contexts can be safely communicated between activities.

A formalisation in Isabelle/HOL. The formalisation adds the necessary quality assurance to a language development where

rules and properties are intricate while the need for verification is as worthwhile as imperative. The formalisation is

relatively long. It involves the definition of several constructs commonly encountered in the semantics for distributed

languages (reduction contexts, references, typing, futures, . . .) that we think can be re-used in other developments, at least

in the domain of semantics for distributed languages.
In practiceweprovided two formalisations: one uses de Bruijn indices, and the other uses locally nameless representation

for representing variables. Those two approaches have been precisely compared.
The overall framework provides, to our mind, a good basis for the formal study of distributed object languages with

futures.

Can we find a better progress property?

Let us analyse the limitations of the progress property.
First, though a reduction is possible, the reduced term can sometimes be identical to the original one. The absence of

cycle ensures that such a situation can only occur in the local semantics. This is inherent to the ς-calculus and is out of the

scope of this paper.
Second, the reduction can occur in any chosen request but not at any chosen place. Indeed, we can only ensure that points

specified in restricted reduction contexts can be reduced. (See the definition of F in Section 6.2). This is a consequence of

the fact that objects can only be sent between activities if they do not have free variables that otherwise would escape their

binder. This restriction seems both natural and safe.

L. Henrio et al. / Science of Computer Programming 77 (2012) 823–847 847

Future works. Additional properties could be proved on ASPfun. First of all a proof of confluence for ASPfun could be a good
follow-up to this work. ASPfun is also a good basis to study security or fault-tolerance concerns. More generally, we think
that our mechanised formalisation is a good tool to prove properties on communication optimisations and protocols in the
context of languages for distributed systems. We also aim at providing a formalisation of an imperative distributed object
calculus, like ASP, and further mixing functional and imperative activities.

References

[1] M. Abadi, L. Cardelli, A Theory of Objects, Springer-Verlag, New York, 1996.
[2] B.C. Pierce, Types and Programming Languages, MIT Press, 2002.
[3] G. Agha, Actors: A Model of Concurrent Computation in Distributed Systems, MIT Press, Cambridge, MA, USA, 1986.
[4] G. Agha, I.A. Mason, S.F. Smith, C.L. Talcott, A foundation for actor computation, Journal of Functional Programming 7 (1997) 1–72.
[5] C. Hewitt, P. Bishop, R. Steiger, A universal modular actor formalism for artificial intelligence, in: IJCAI’73: Proceedings of the 3rd International Joint

Conference on Artificial Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1973, pp. 235–245.
[6] G. Agha, An overview of actor languages, ACM SIGPLAN Notices 21 (1986) 58–67.
[7] D. Caromel, C. Delbé, A. di Costanzo,M. Leyton, ProActive: an integrated platform for programming and running applications on grids and P2P systems,

Computational Methods in Science and Technology 12 (2006) 69–77.
[8] D. Caromel, L. Henrio, B. Serpette, Asynchronous and deterministic objects, in: Proceedings of the 31st ACMSIGPLAN-SIGACT Symposiumon Principles

of Programming Languages, ACM Press, 2004, pp. 123–134.
[9] D. Caromel, L. Henrio, A Theory of Distributed Objects, Springer-Verlag, 2005.

[10] A.D. Gordon, P.D. Hankin, S.r.B. Lassen, Compilation and equivalence of imperative objects, in: Proceedings FST+TCS’97, in: LNCS, Springer-Verlag,
1997.

[11] E.B. Johnsen, O. Owe, I.C. Yu, Creol: a type-safe object-oriented model for distributed concurrent systems, Theoretical Computer Science 365 (2006)
23–66.

[12] T. Nipkow, L.C. Paulson, M. Wenzel, Isabelle/HOL—A Proof Assistant for Higher-Order Logic, in: LNCS, vol. 2283, Springer-Verlag, 2002.
[13] J. Niehren, J. Schwinghammer, G. Smolka, A concurrent lambda calculus with futures, Theoretical Computer Science 364 (2006) 338–356.
[14] L. Henrio, F. Kammüller, Amechanizedmodel of the theory of objects, in: 9th IFIP International Conference on Formal Methods for Open Object-Based

Distributed Systems, FMOODS, in: LNCS, Springer, 2007.
[15] B. Aydemir, A. Charguéraud, B.C. Pierce, R. Pollack, S. Weirich, Engineering formal metatheory, in: POPL’08: Proceedings of the 35th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM, New York, NY, USA, 2008, pp. 3–15.
[16] B.E. Aydemir, A. Bohannon, N. Foster, B. Pierce, J. Vaughan, D. Vytiniotis, G. Washburn, S. Weirich, S. Zdancewic, M. Fairbairn, P. Sewell, The poplmark

challenge, Web-site, 2008.
[17] N.G.D. Bruijn, Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the church-rosser

theorem, Indagationes Mathematicae 34 (1972) 381–392.
[18] C. Urban, et al. Nominal methods group, Project funded by the German Research Foundation (DFG) within the Emmy-Noether Programme, 2006.
[19] A.M. Pitts, Nominal logic, a first order theory of names and binding, Information and Computation 186 (2003) 165–193.
[20] C. Roeckl, D. Hirschkoff, A fully adequate shallow embedding of the π-calculus in isabelle/hol with mechanized syntax analysis, Journal of Functional

Programming 13 (2003) 415–451.
[21] A. Ciaffaglione, L. Liquori, M. Miculan, Reasoning about object-based calculi in (co)inductive type theory and the theory of contexts, JAR, Journal of

Automated Reasoning 39 (2007) 1–47.
[22] F. Honsell, M. Miculan, I. Scagnetto, pi-calculus in (co)inductive-type theory, Theoretical Computer Science 253 (2001) 239–285.
[23] A. Schmitt, Safe Dynamic Binding in the Join Calculus, in: R. Baeza-Yates, U. Montanari, N. Santoro (Eds.), Proceedings of IFIP TCS 2002, in: IFIP, vol. 96,

Kluwer, Montreal, Canada, 2002, pp. 563–575 (This is the original version that was accepted for publication, before the page cut requested for the
final version. This version contains additional examples).

[24] A. Ricci, M. Viroli, G. Piancastelli, Simpa: an agent-oriented approach for programming concurrent applications on top of java, Science of Computer
Programming 76 (2011) 37–62. Selected papers from the 6th International Workshop on the Foundations of Coordination Languages and Software
Architectures—FOCLASA’07.

[25] L. Cardelli, A language with distributed scope, in: POPL’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, ACM, New York, NY, USA, 1995, pp. 286–297.

[26] S. Briais, U. Nestmann, Mobile objects ‘‘must’’ move safely, in: B. Jacobs, A. Rensink (Eds.), FMOODS, in: IFIP Conference Proceedings, vol. 209, Kluwer,
2002, pp. 129–146.

[27] A. Jeffrey, A distributed object calculus, in: ACM SIGPLAN Workshop Foundations of Object Oriented Languages.
[28] A.D. Gordon, P.D. Hankin, S.B. Lassen, Compilation and equivalence of imperative objects, in: Proceedings FST+TCS’97, in: LNCS, Springer-Verlag, 1997.
[29] R.H. Halstead Jr., Multilisp: a language for concurrent symbolic computation, ACM Transactions on Programming Languages and Systems (TOPLAS) 7

(1985) 501–538.
[30] A. Yonezawa, E. Shibayama, T. Takada, Y. Honda, Modelling and programming in an object-oriented concurrent language ABCL/1, in: A. Yonezawa,

M. Tokoro (Eds.), Object-Oriented Concurrent Programming, MIT Press, Cambridge, MA, 1987, pp. 55–89.
[31] J. Niehren, D. Sabel,M. Schmidt-Schauß, J. Schwinghammer, Observational semantics for a concurrent lambda calculuswith reference cells and futures,

Electron. Notes Theor. Comput. Sci. 173 (April) (2007) 313–337.
[32] F.S. de Boer, D. Clarke, E.B. Johnsen, A complete guide to the future, in: R.D. Nicola (Ed.), ESOP, in: Lecture Notes in Computer Science, vol. 4421,

Springer, 2007, pp. 316–330.
[33] E. Abrahám, I. Grabe, A. Grüner, M. Steffen, Behavioral interface description of an object-oriented language with futures and promises, Journal of Logic

and Algebraic Programming 78 (2009) 491–518.
[34] J. Dedecker, T.V. Cutsem, S. Mostinckx, T. D’Hondt,W.D. Meuter, Ambient-oriented programming in ambienttalk, in: D. Thomas (Ed.), ECOOP, in: LNCS,

vol. 4067, Springer, 2006, pp. 230–254.
[35] A. Cansado, L. Henrio, E. Madelaine, Transparent first-class futures and distributed component, in: International Workshop on Formal Aspects of

Component Software, FACS’08, in: Electronic Notes in Theoretical Computer Science (ENTCS), Malaga, 2008.
[36] J. Bengtson, J. Parrow, Formalising the pi-calculus using nominal logic, in: Proc. of the 10th International Conference on Foundations of Software

Science and Computation Structures, FOSSACS, in: LNCS vol. 4423, 2007, pp. 63–77.
[37] J. Bengtson, M. Johansson, J. Parrow, B. Victor, Psi-calculi: mobile processes, nominal data, and logic, in: LICS’09: Proceedings of the 2009 24th Annual

IEEE Symposium on Logic In Computer Science, IEEE Computer Society, Washington, DC, USA, 2009, pp. 39–48.
[38] T. Ridge, Operational reasoning for concurrent caml programs andweakmemorymodels, in: K. Schneider, J. Brandt (Eds.), Theorem Proving for Higher

Order Logics, TPHOLs’07, in: LNCS, vol. 4732, Springer, 2007.
[39] C. Flanagan, M. Felleisen, The semantics of future and an application, Journal of Functional Programming 9 (1999) 1–31.
[40] L. Henrio, F. Kammüller, Functional active objects: typing and formalisation, in: 8th International Workshop on the Foundations of Coordination

Languages and Software Architectures, FOCLASA’09, in: ENTCS, vol. 255, Elsevier, 2009, pp. 83–101. Satellite to ICALP’09.
[41] A. Fleck, F. Kammüller, Implementing privacy with erlang active objects, in: 5th International Conference on Internet Monitoring and Protection,

ICIMP’10, IEEE, 2010.
[42] F. Kammüller, Using functional active objects to enforce privacy, in: 5th Conf. on Network Architectures and Information Systems Security, SAR-SSI,

2010.
[43] M. Cole, Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel programming, Parallel Computing 30 (2004) 389–406.

46

2.5 Summary and conclusion

In this chapter we described our development on distributed
object calculi, and more specifically on the formalisation
and the implementation of the active object programming
model. This work led both to classical proofs on paper,
but also to mechanised proofs with an increased reliability.
These contributions have been the opportunity to formalise
several crucial concepts of the active object programming
model: objects, first class futures, request/replies mecha-
nism, typing, remote method invocations. The coexistence
of those notions provide a rich calculus expressing quite
precisely the programs that can be written in active object
programming, like in the ProActive library.

We reviewed some of the practical impact of those theo-
retical developments, but the influence of this work is prob-
ably wider. First, we will see in Section 4.2 how this model
can be extended to express multi-active objects. Also, one
of the crucial consequence of this formalisation is the de-
sign of future update strategies and their implementation
in the ProActive library as shown in [45]. However, this
work on future updates was omitted in this chapter, be-
cause it will be presented in Section 3.4 in the context of
the GCM component model where it has been mechanically
formalised. Indeed, in order to prove runtime properties on
the applications programmed in GCM, we chose a semantics
for GCM components à la active objects, we will see that
this semantics has some similarities with ASP, while being
more general. This more general context gave us a good
opportunity to formally specify and prove the properties of
one of the future update protocols that we implemented in
ProActive.

Next chapter will first present the GCM components,
and then several works we realised for formally specifying
and verifying the properties of both the component model,
and the applications programmed in GCM/ProActive.

47

48

Chapter 3

Composing Distributed Applications

Object-orientation provides a programming model that
is limited in terms of re-usability and dynamic adaptation
of the programmed applications. Indeed, nicely written ob-
jects specify very well the interfaces they provide to the
other objects, but on the other hand they do not spec-
ify precisely what other objects they use. More globally,
object-oriented programming would benefit from better ar-
chitectural informations, this would provide a higher-level
view of the program structure, which would ease the pro-
gram design and analysis, but also its dynamic adaptation.

In this chapter, I will review our work related to compo-
sition of applications, mainly in the domain of component
models, but also with behavioural skeletons. Those highly
structured composition models are a good opportunity for
the use of formal methods, as shown by the existence of
several conferences dedicated to formal methods for com-
ponent models (FMCO, FACS, . . .)

3.1 The Grid Component Model:

gcm

Component models provide a structured programming
paradigm, and ensure a very good re-usability of programs.
Indeed in component applications, dependencies are defined
together with provided functionalities by the means of pro-
vided/required ports; this improves the program specifica-
tion and thus its re-usability. Some component models and
their implementations additionally keep a trace at runtime
of the component structure and their dependencies. Know-
ing how components are composed and being able to mod-
ify this composition at runtime provides great adaptation
capabilities: the application can be adapted, e.g. to evolu-
tion in the execution environment, by changing some of the
components taking part in the composition or changing the
dependencies between the involved components. We call re-
configuration the actions consisting in changing at runtime

the component structure, by adding or removing compo-
nents in the system, or by changing the way components
are bound together.

In distributed systems, reconfiguration takes even more
importance as the structure of components can also be used
at runtime to discover services and use the most efficient ser-
vice available. Also, as some distributed components will
naturally migrate from one location to another, they will
change their execution environment. Again, reconfigura-
tion is quite often necessary in order to adapt components
to different execution environments. Several effective dis-
tributed component models have been specified, developed,
and implemented in the last years [CF05,Obj06,BBB+07]
ensuring different kinds of properties to their users. We
also took part in the design and implementation of one of
them, the Grid Component model [9] described in the paper
included in Section 3.1. This paper also provides a compar-
ison of the main distributed component models; I will thus
not present a section dedicated to generic purpose related
works on component models here. GCM has been proposed
in the CoreGrid Network of Excellence, it is an extension
of the Fractal component model [BCL+04,BCS04] to bet-
ter address large-scale distributed computing. GCM builds
above Fractal and thus inherits its hierarchical structure,
the enforcement of separation between functional and non-
functional concerns, its extensibility, and the separation be-
tween interfaces and implementation. The main extensions
provided by GCM are the following:

• GCM supports collective communications: one-to-
many, many-to-one, but also many-to-many. For ex-
ample GCM defines multicast interfaces allowing a sin-
gle port to be connected to several, with the possibil-
ity that one message emitted from a multicast port
is broadcasted to all the ports connected to it. Such
multicast interfaces must be attached a policy defining
the way message arguments are distributed among the
many destination ports.

• GCM also comes with a support for autonomic as-
pects and better separation between functional and

49

non-functional concerns: more precisely, in GCM non-
functional concerns can also be defined as a component
assembly.

Those extensions required to extend the architecture de-
scription language (ADL1), and also the API of Fractal to
take into account the aspects mentioned above. The defini-
tion of the GCM has been standardised as a set of 4 ETSI
standards dealing with deployment aspects, but also speci-
fying GCM architecture description language, and the API
for manipulating components at runtime.

Figure 3.1 shows a GCM assembly and introduces most
of the terminology used to describe GCM components and
their composition. Among the notions presented in the fig-
ure only multicast interfaces and gathercast interfaces are
specific to GCM. We will see in Section 3.2 that we also
refined the structure of the membrane of GCM components
in order to better structure and adapt the component man-
agement aspects.

A reference implementation for GCM

ProActive/GCM is a reference implementation of the GCM
component model that has been implemented during the
GridComp European project. It is based on the ProActive
Java library and relies on the notion of active objects. It is
important to note that each component corresponds at run-
time to an active object and consequently each component
can easily be deployed on a separate JVM and can be mi-
grated. Of course, this implementation relies on design and
implementation choices relatively to the purely structural
definition provided by the model. Section 3.4 will provide a
possible semantics for GCM components that is more gen-
eral than the reference implementation but still allowed us
to prove properties on ProActive/GCM.

One of the main advantage of using active objects to
implement components is their adaptation to distribution.
Indeed, by nature active objects provide a natural way to
provide loosely coupled components. By loose coupled com-
ponent, we mean components responsible for their own state
and evaluation, and only communicating via asynchronous
communications. Asynchronous communications increase
and automate parallelism; and absence of sharing eases the
design of concurrent systems. Additionally, loose coupling
reduces the impact of latency, and limits the interleaving be-
tween components. Finally, independent components also
ease the autonomic management of component systems, en-
abling systems to be more dynamic, more scalable and eas-
ily adaptable to different execution contexts. That is why

1the ADL is a domain specific language dedicated to the definition
of components: from an ADL component description, a new compo-
nent system can be instantiated.

we think that a distributed component system should rely
on loosely coupled components communicating via asyn-
chronous communications, and not sharing any memory.
That is thus the reason why we think active objects are
particularly adapted to implement a distributed component
model.

We also provided a framework for interconnecting
ProActive/GCM and CCA components in [4]. This study
allowed us to show that GCM model fits quite well with
CCA notions, and more generally to study how to make
different component models interoperable.

Discussion: granularity of the component model

A general issue when designing a component model is the
foreseen granularity of the components: “what is the size
of a component?” In the case of a hierarchical component
model like GCM, this question can be refined into “what is
the size of a primitive component?” When addressing dis-
tribution aspects of a component model, the same question
arises again, but becomes more complex: “what is the re-
lation between the unit of composition (the primitive com-
ponent) and the unit of distribution?”.

Fractal does not impose any granularity for the compo-
nents, but the existence of composite bindings and some
of the features of the model suggest a rather fine grained
implementation: a primitive component should contain a
small number of objects. Like Fractal, the GCM does not
enforce precisely any granularity of the component systems.
However, in order to allow GCM primitive components to
be the unit of distribution for a GCM implementation, we
consider that GCM components would probably have a
coarser granularity than Fractal ones. Overall, the GCM
has been conceived with a granularity that is somehow in
middle between small grain Fractal components and very
coarse grain component models, like CCM where a compo-
nent is of a size comparable to an application. Somehow,
GCM has been conceived thinking of components of the size
of an MPI process, though it can be used in a much finer
or coarser grain way.

This difference of granularity between Fractal and the
GCM partially explains why some of the features that could
be implemented by a small Fractal component and are
highly used in a Grid setting have been defined as first
class citizens in the GCM. For example, multicast inter-
faces could be express in Fractal by binding components
that perform the broadcast, but such components would be
too small to be used as the unit of distribution. Also the
structure of non-functional aspects that we proposed for
the GCM (see Section 3.2) is somehow influenced by the
foreseen component granularity.

50

primitive
component

primitive
component

bindingmembrane

server interface

client interface
multicast interface

gathercast interface

content

a composite component

Figure 3.1: A typical GCM assembly

In ProActive/GCM the primitive components (and the
composite ones too) have this intermediate size: they con-
tain an activity, i.e. an active object, its dependencies, re-
quest queue, and thread.

Paper from Annals of Telecommunication,

2009

This paper presents the GCM component model, it is one
of the strong results of the CoreGrid Network of Excellence.
Several partners contributed to the definition of the com-
ponent model, and to the following article.

51

52

Ann. Telecommun. (2009) 64:5–24

DOI 10.1007/s12243-008-0068-8

GCM: a grid extension to Fractal for autonomous
distributed components

Françoise Baude · Denis Caromel · Cédric Dalmasso ·

Marco Danelutto · Vladimir Getov · Ludovic Henrio ·

Christian Pérez

Received: 30 July 2007 / Accepted: 16 July 2008 / Published online: 17 December 2008
© Institut TELECOM and Springer-Verlag France 2008

Abstract This article presents an extension of the

Fractal component model targeted at programming ap-

plications to be run on computing grids: the grid com-

ponent model (GCM). First, to address the problem

of deployment of components on the grid, deployment

strategies have been defined. Then, as grid applications

often result from the composition of a lot of parallel

(sometimes identical) components, composition mech-

anisms to support collective communications on a set

of components are introduced. Finally, because of the

constantly evolving environment and requirements for

grid applications, the GCM defines a set of features

intended to support component autonomicity. All these

aspects are developed in this paper with the challenging

F. Baude · D. Caromel · C. Dalmasso · L. Henrio (B)
INRIA Sophia-Antipolis, I3S, Univ. de Nice
Sophia-Antipolis, CNRS, INRIA, Sophia Antipolis, France
e-mail: ludovic.henrio@inria.fr

F. Baude
e-mail: francoise.baude@inria.fr

D. Caromel
e-mail: denis.caromel@inria.fr

M. Danelutto
University of Pisa, Pisa, Italy
e-mail: marcod@di.unipi.it

V. Getov
Harrow School of Computer Science,
University of Westminster, London, UK
e-mail: V.S.Getov@westminster.ac.uk

C. Pérez
INRIA/IRISA, Rennes, France
e-mail: christian.perez@inria.fr

objective to ease the programming of grid applications,

while allowing GCM components to also be the unit of

deployment and management.

Keywords Distributed components ·

Autonomous components · Adaptable components ·

Collective communications · Grid component model

1 Introduction

Grid computing raises a lot of challenges for program-

ming models because it consists in programming and

running applications running over large-scale hetero-

geneous resources that evolve dynamically. The grid

component model (GCM) addresses the characteristic

challenges in terms of programmability, interoperabil-

ity, code reuse, and efficiency. Programming large-scale

distributed systems as grids can be considered as a

matter of distributed services deployment and further

integration. In this paper, we advocate the idea that a

hierarchical and distributed software component-based

approach is an effective solution to this.

1.1 Objectives

The research challenges dealt with by the GCM are,

thus, the support at the application level for heterogene-

ity, large-scale distribution, and dynamic management

and adaptivity by means of a component model to

provide a high programmability of grid applications.

Programmability deals with the expressive power

of the language mechanisms that are offered to the

programmers and what is the burden for them to

6 Ann. Telecommun. (2009) 64:5–24

effectively use those mechanisms. A short overview of

current proposed grid frameworks makes us believe

that it is in the programmability dimension that re-

sides the greatest divergence between those solutions.

Schematically, these solutions range

– From low-level message-passing [for example, mes-

sage passing interface (MPI)] remote procedure

call (RPC)- or remote method invocation (RMI)-

based traditional parallel and distributed prog-

ramming models—simply ported to tackle grid

issues—by which the program itself dictates and

orchestrates the parallelism and distribution of

computing and communicating entities [24]

– To solutions in which the orchestration or choreog-

raphy of the set of parallel and distributed entities is

guided from the extern of these entities, not neces-

sarily in a centralised manner by using for example

workflow languages and programming [23]

We think that these two categories are not exclusive

because the spectrum of applications that could benefit

from running on grids is not closed. The purpose of

the GCM is to reconcile those two extreme points of

view: a component approach allows both explicit com-

munications between distributed entities like in MPI

and high-level management of the distribution of those

entities and their interactions, like in workflows. GCM

mainly focuses on the programmability of end-user grid

applications, but is also suited to program tools and

middleware in the computing grid context: those can

be designed and implemented as GCM components

featuring specific services.

So, we aim at proposing a solid and adequate par-

allel and distributed programming model laying the

foundation for building any form of grid application.

Its qualities must be those of expressiveness, extensi-

bility, solid theoretical foundation and suitability for

optimisation and competitive implementations. In light

of this, we selected the Fractal component model as the

starting point for offering a versatile yet structured and

tractable grid programming model.

1.2 Approach and contribution

A general issue when designing a component model is

the advised granularity of the components: “what is the

size of a component?” This issue is often overridden in

the presentation of a component model, but is crucial

to understand the decisions taken in such a design. In

the case of a hierarchical component model like Fractal,

this question becomes “what is the size of a primitive

component?”, or “what is the unit of composition?”

Fractal does not impose any granularity for the compo-

nents, but the concept of binding component [10] and

some of the features of the model suggest a fine-grained

implementation: a primitive component is assimilated

to one or a few objects.

The granularity of the component model is, to our

mind, a crucial aspect because it influences the ex-

pressive power and the overhead of the component

architecture: a fine-grain system increases the ability to

compose components but generally entails additional

cost to manage a larger number of entities and to make

them interact.

When addressing distribution aspects of a compo-

nent model, the same question arises again, but be-

comes more complex: “what is the relation between the

unit of composition (the primitive component) and the

unit of distribution?” Like Fractal, the GCM does not

enforce precisely any granularity of the components.

However, in order to allow GCM primitive components

to be also the unit of distribution for a GCM imple-

mentation, we consider that GCM component imple-

mentations would probably have a coarser granularity

than Fractal ones. This difference in the advocated

component granularity partially explains why some of

the highly used features in a grid setting as collective

communication mechanisms have been defined as first-

class citizens in the GCM. For example, multicast com-

munication could be expressed in Fractal by relying on

binding components, but such components would be

too small to be used as the unit of distribution. In brief,

in GCM, each component is subject to distribution.

Compared to other component models, the GCM

has been conceived around a component granularity

that is somehow in middle between small grain Fractal

components and very coarse grain ones, like those sug-

gested by CORBA component model (CCM) where a

component is of a size comparable to a full-fledged ap-

plication. Somehow, GCM has been conceived thinking

of components of the size of a process (i.e., one or a

few threads per primitive component), though it can be

used in a much finer or coarser grain way.

To address the challenges expressed above, the

GCM is a specification taking the following approach.

Distribution concerns are specified at the composition

level by specific entries in the Architecture Description

Language (ADL) relying either on a controlled or on

an automatic mapping between computing resources of

the infrastructure and primitive components. Many-to-

one and one-to-many communications are key mech-

anisms for optimising communications in a large-scale

environment; they are also key programming constructs

for distributing computations and synchronising their

results. This paper also studies the effective combina-

tion of one-to-many and many-to-one interfaces: the

Ann. Telecommun. (2009) 64:5–24 7

MxN problem. Finally, heterogeneous dynamic large

infrastructures require the adaptation of the applica-

tion and its management to be totally distributed and,

consequently, preferably autonomous. For this, GCM

extends Fractal with controllers as components, and

with the definition of interfaces for autonomicity, to

enable the autonomous control to be designed as a

component-based system.

The point of view we adopt here is close to Fractal:

we are not tied to any programming language; however,

like in Fractal, we reuse the terminology of object-

oriented programming. Components are thought of as

autonomous service entities exchanging messages or

requests according to precisely defined ports (named

interfaces in Fractal).

1.3 Foundations

The GCM has been defined by the CoreGRID

European Network of Excellence gathering researchers

in the area of grid and peer-to-peer technologies. It

relies on the following aspects inherited from existing

works:

– Fractal as the basis for the component architecture:

We summarise the characteristics we benefit from

Fractal in Section 2.1.

– Communication semantics: GCM components

should allow for any kind of communication seman-

tics (e.g., streaming, file transfer, event-based)

either synchronous or asynchronous. Of course,

for dealing with high latency, asynchronous com-

munications will probably be preferred by most

GCM frameworks.

1.4 Outline

This paper starts with an overview of existing com-

ponent models that can be used in the area of grid

computing, in Section 2. Among the central features of

the GCM, this article will focus on the most innovative

ones:

– Support for deployment: distributed components

need to be deployed over various heterogeneous

systems. The GCM defines deployment primitives

for this. Deployment aspects will be developed in

Section 3.

– Support for one-to-many, many-to-one and many-

to-many communications: often, grid applications

consist of a lot of similar components that can be

addressed as a group, and that can communicate

together in a very structured way. The GCM also

intends to provide high-level primitives for a better

design and implementation of such collective com-

munications which will be detailed in Section 4.

– Support for non-functional adaptivity and auto-

nomic computation: the grid is an highly evolving

environment, and grid applications must be able

to adapt to those changing runtime conditions. For

this reason, we propose to allow for both recon-

figuration of the component control aspects, and

autonomic computation support. Adaptivity and

autonomicity in the GCM will be presented in

Section 5.

2 Other distributed component models

This section reviews the main component models; it

first briefly presents what peculiar and interesting fea-

tures the Fractal abstract component model provides,

consequently arguing why we selected it as the basis for

the GCM. Next, we review some other software com-

ponent models that are targeted at the programming of

distributed applications, or even of middleware, taking

into account constraints raised by distribution.

2.1 Fractal

Fractal [10] is a general component model which is in-

tended to implement, deploy and manage (i.e. monitor,

control and dynamically configure) complex software

systems, including in particular operating systems and

middleware. Among Fractal’s peculiar features, below

are those that motivated us to select it as the basis for

the GCM.

– Hierarchy (composite components can contain sub-

components), to have a uniform view of applica-

tions at various levels of abstraction

– Introspection capabilities, to monitor and control

the execution of a running system

– Reconfiguration capabilities, to dynamically config-

ure a system

To allow programmers to tune the control of reflective

features of components to the requirements of their

applications, Fractal is defined as an extensible system.

Fractal comes with a formal specification. It can be

instantiated in different languages such as Java and C.

In addition, the Fractal specification is a multi-level

specification, where, depending on the level, some of

the specified features are optional. That means that

the model allows for a continuum of reflective features

or levels of control, ranging from no control (black-

boxes, standard objects) to full-fledged introspection

and intercession capabilities (including, e.g., access and

8 Ann. Telecommun. (2009) 64:5–24

manipulation of component contents, control over

components life-cycle and behaviour, etc.).

Fractal already has several implementations in dif-

ferent languages. The GCM is not tied to Fractal’s

reference implementation (Julia), which is not targeted

at distributed architectures. Dream is a library built us-

ing Julia Fractal components targeting distribution, but

specifically aimed at building message-oriented middle-

ware, and not grid applications or even grid middleware

as we intend to do.

To sum up, it is because of its extensible and hier-

archical nature that Fractal has been chosen as the basis

for the definition of the GCM. Fractal does not con-

strain the way(s) the GCM can be implemented, but it

provides a basis for its formal specification, allowing us

to focus only on the grid-specific features. Eventually,

platforms implementing the GCM should constitute

suitable grid programming and execution environ-

ments. ProActive offers one such implementation [5].

2.2 Distribution-aware component models

This section focuses on some of the main distributed

component models and on what is missing in these

models in order to fully support a structured approach

to grid programming, underlying the necessity for an

innovative and new component model.

Let us first focus on two commonly known models

for a component-oriented approach [38] to distributed

computing: the common component architecture (CCA)

[3, 12] and the CCM [33].

– CCA has been defined by a group of researchers

from laboratories and academic institutions com-

mitted to specifying standard component architec-

tures for high performance computing. The basic

definition in CCA states that a component “is a

software object, meant to interact with other com-

ponents, encapsulating certain functionality or a

set of functionalities. A component has a clearly

defined interface and conforms to a prescribed

behaviour common to all components within an

architecture.” Currently, the CCA forum maintains

a web-site gathering documents, projects and other

CCA-related work (www.cca-forum.org) including

the definition of a CCA-specific format of compo-

nent interfaces (Babel/SRPC Interface Description

Language) and framework implementations (Ccaf-

feine, Xcat)

– CCM is a component model defined by the

Object Management Group, an open membership

for-profit consortium that produces and maintains

computer industry specifications such as CORBA,

UML and XMI. The CCM specifications include a

Component Implementation Definition Language;

the semantics of the CCM; a Component

Implementation Framework, which defines the

programming model for constructing component

implementations, and a container programming

model. Important work has been performed to

turn the CCM in a grid component model, like

GridCCM [18].

In recent years, the US-based CCA initiative

brought together a number of efforts in component-

related research projects, with the aim of developing

an interoperable GCM and extensions for parallelism

and distribution [9]. However, the CCA model is non-

hierarchical, thereby making it difficult to handle the

distributed and possibly large set of components form-

ing a grid application [22] in a structured way. Indeed,

hierarchical organisation of a compound application

can prove very useful in getting scalable solutions for

management operations pertaining to monitoring, life-

cycle, reconfiguration, physical mapping on grid re-

sources, load-balancing, etc. Unfortunately, the CCA

model is rather poor with regards to managing compo-

nents at runtime. It means a CCA component per se

does not have to expose standard interfaces dedicated

to non-functional aspects as it is the case for Fractal,

and consequently, GCM components. This makes it

hard to realise certain features, for instance, dynamic

reconfiguration based on observed performance or fail-

ures. However, some implementations of the model,

like, e.g. XCAT, can provide some additional com-

ponents (like an application manager) dedicated to

manage the non-functional aspects of a CCA-based

application. However, this has to be considered as an

additional and optional feature, not defined by the

component model, so it prevents interoperability be-

tween CCA components running onto different plat-

forms. Consequently, we think that the GCM is a richer

programming model than CCA and allow the effective

design and management of distributed applications at a

grid scale.

CCM presents the same limitations than CCA with

the exception that CCM handles quite well the hetero-

geneity of resources. In CCM, the ADL is able to deal

with distributed resources but it is outside the scope

of the specifications to describe how such a descrip-

tion has been generated. However, this task requires

a high level of knowledge of the application structure,

as well as the resource properties. This approach is not

satisfactory for grids where resources are provided dy-

namically. Hence, while CCM has some very interest-

ing features for grids—in particular because CCM has

http://www.cca-forum.org

Ann. Telecommun. (2009) 64:5–24 9

been designed for distributed applications—it appears

as a model where distribution is too coupled to the

resources for grid applications.

Even if CCA and CCM components can fit into

a distributed infrastructure, they are not designed as

being distributed per se, and possibly parallel entities

to be mapped onto a set of grid resources, nor having

the capability to self-adapt to the changing context.

By contrast, the Enterprise Grid Alliance effort [40] is

an attempt to derive a common model adopting grid

technologies for enhancing the enterprise and busi-

ness applications. The model, which is aligned with

industry-strength requirements, strongly relies on com-

ponent technology along with necessary associations

with component-specific attributes, dependencies, con-

straints, service-level agreements, service-level objec-

tives and configuration information. One of the key

features that the EGA reference model suggests is the

life-cycle management of components which could be

governed by policies and other management aspects.

The level of this specification, however, is very coarse-

grain, focusing on system integration support rather

than providing an abstract model and specification for

grid programming, which is the main goal of GCM.

Most of grid-oriented component models use com-

ponents to wrap complete, possibly parallel, applica-

tions. This is sufficient to build new grid-wide HPC

applications, e.g. multi-disciplinary ones, by composi-

tion of a few separate software modules. This also

means that a such components must not be considered

as the unit of distribution, but as a coarse-grain unit

wrapping a full-fledged software exposed as a grid ser-

vice, to be composed with a few others. On the con-

trary, a GCM primitive component is a well delimited

unit of distribution and management at the scale of the

grid, and a GCM composite component is a suitable

abstraction to hierarchically handle at once any sort

of distributed and parallel composition, including ones

that may be formed of a very large set of software

units spread all over the grid and running in parallel.

Of course, this does not prevent a primitive GCM

component to itself wrap a legacy, e.g. MPI, parallel

application, but in this case, it is clear that the resulting

set of parallel processes, probably co-located on the

same cluster of machines, is under the management

responsibility of the primitive component itself.

In terms of grid middleware, there have been a

few platforms such as ICENI [21] that enable users

to build grid applications out of software components.

On several platforms, applications running on the grid

are interconnected by some kind of collective bind-

ing mechanisms, notably in Xcat and ICENI. How-

ever, most of the component-oriented platforms that

we are aware of support components at application

level only without any componentisation at the runtime

environment level. Instead, the design of ICENI fol-

lows the classical service-oriented architecture (SOA)

approach [20]. Obviously, a side-effect of such SOA-

based approaches is the strong importance given to in-

teroperability through, for example, the WSDL-based

exportation of the component interfaces. Interoperabil-

ity is also recognised as a key aspect of the GCM,

in order to be capable of loosely connecting external

applications based upon any kind of technology to a

GCM-based one [19].

One of the exceptions among the existing

component-oriented platforms is the GRIDKIT proj-

ect [15]. In GRIDKIT, the middleware itself is designed

as components, derived from OpenCOM. In addition,

the GRIDKIT team identified the need for support

of multiple complex communication paradigms, non-

functional (horizontal) services, autonomicity and re-

configuration. The GCM addresses these concerns but

at a different level by providing corresponding support

as an integral part of the component model itself so

that GCM-based grid middleware and applications

can benefit from those features. Thus, an interesting

perspective could be to adopt the GCM in future

versions of the GRIDKIT middleware in order to

benefit from these advanced features both at the com-

ponent model level and at the middleware one. GCM

has already proved to be efficient for conceiving a grid

runtime support inside the CoreGRID project [13].

Compared to related works, GCM originality lies in

its adopted model, at the level of components them-

selves, for deployment, collective communications,

adaptivity and autonomicity.

3 Deploying components

GCM applications are primarily designed to be run on

grids, that is to say on a complex and dynamic distrib-

uted system. Hence, a major question is how to express

the mapping of the components on the resources. Grid

environments usually provide job schedulers whose

task is to compute when and where to launch an

application. However, job schedulers are system-level

entities: as such, they are only able to deal with simple

jobs such as sequential jobs and MPI-like jobs for the

most advanced. It is far behind the current state of

the art of the schedulers to deal with complex struc-

tures such as a hierarchy of distributed components.

Hopefully, grid environments also provide information

services. Hence, it is possible to imagine a dedicated

10 Ann. Telecommun. (2009) 64:5–24

deployment service that can take care of selecting ad-

equate resources for an application.

Component models usually enable the description of

the initial structure of an application thanks to some

ADL. However, for distributed platforms, ADL files

include the name of the resources. It is well suited for

a particular deployment of an application on a known

set of resources. However, it is inappropriate to have to

change these files each time the application is deployed

on a different platform, whereas the application archi-

tecture and implementation did not change. Therefore,

the explicit mentioning of the name of resources inside

an ADL is not well suited to describe a grid application.

The GCM provides two strategies, a simple and a

more advanced one, to deal with this issue. The first

strategy is based on the virtual node concept. It aims

at enabling a logical grouping of the components on a

virtual infrastructure. The second strategy aims at not

presenting any infrastructure concept to the applica-

tion. The remainder of this section presents them.

3.1 Controlled mapping through virtual nodes

A first strategy for supporting deployment is to rely

on virtual nodes. Virtual nodes are abstractions allow-

ing a clear separation between design infrastructure

and physical infrastructure. This concept already exists

both in the standard Fractal ADL and the ProActive

middleware. Virtual nodes can be used in the ADL

and they can abstract away names, but also creation

and connection protocols. Consequently, applications

remain independent from connection protocols and

physical infrastructure. A virtual node contains one

or more nodes. A node represents a location where a

component can be created and executed. This can be

a single physical machine (a host), or, in the case of a

multi-processor/multi-core machine, a single processor

or a single core within a machine.

The virtual-node element, in ADL files, offers dis-

tributed deployment information. To better specify the

deployment constraints on a component, the standard

Fractal ADL has been extended. The cardinality at-

tribute has been added to the virtual-node element. In

addition to this element, the GCM adds the possibility

to export and compose virtual nodes in the export-

edVirtualNodes element. We will describe how these

elements can be used to control the component/virtual-

node mapping in ADL files.

The syntax is similar to the Fractal ADL, features

specific to the GCM are:

• Virtual nodes have a cardinality: either single or

multiple. Single means the virtual node in the de-

ployment descriptor should contain one node; mul-

tiple means the virtual node in the deployment

descriptor should contain more than one node. For

example, the following element in a component de-

finition indicates that we want to create the compo-

nent in the virtual node client-node which contains

one node.

<virtual-node name="client-node"

cardinality="single"/>

• Virtual nodes can be exported and composed. Ex-

port and compose allow, respectively, to rename

and merge virtual nodes. This extends re-usability

of existing components. When exported, a virtual

node can take part in the composition of other

exported virtual nodes. The following composition

code creates a new virtual node named client-

node, composed from two virtual nodes, client1 and

client2, defined in components c1 and c2.

<exportedVirtualNodes>

<exportedVirtualNode

name="client-node">

<composedFrom>

<composingVirtualNode component="c1"

name="client1"/>

<composingVirtualNode component="c2"

name="client2"/>

</composedFrom>

</exportedVirtualNode>

</exportedVirtualNodes>

Then, mapping from virtual nodes to the infrastruc-

ture is defined in separate files, called deployment de-

scriptors. Those files describe the real infrastructure

and the way to acquire resources; we do not detail

the format of deployment descriptors here, see [5].

Components are deployed on a node included in the

virtual node that is specified in their definition; it has to

appear in the deployment descriptor unless this virtual

node is exported.

A component will be instantiated on the node asso-

ciated to the virtual node given in its ADL (modulo

the renaming entailed by exportation). In case several

components use the same virtual node with a multiple

cardinality, we do not specify on which node we create

each component.

3.2 Automatic mapping to the infrastructure

Deployment descriptors provide a mean for expert

programmers/deployers to control how a particular ap-

plication is deployed on a set of resources. Another

Ann. Telecommun. (2009) 64:5–24 11

abstraction step is needed to further decouple an appli-

cation from the resources. The underlying idea is to let

a programmer specify its component assembly within

a model without any resource concept, i.e. without

any knowledge on the physical architecture. Then, an

automatic deployment process is needed to derive a

mapping of the components to the available resources.

This section reviews the needed steps to achieve such

an automatic mapping. It shows that most steps are

already provided by current grid environments and

details what is still needed.

Overview. Starting from a description of an appli-

cation and a user objective function, the deployment

process is responsible for automatically performing all

the steps needed to start the execution of the appli-

cation on a set of selected resources. These steps are

illustrated in Fig. 1. The logical order of the activities is

fixed (submission, discovery, planning, enactment, ex-

ecution). Some steps have to be re-executed when the

application configuration is changed at run-time. More-

over, the steps in the gray box, that interact closely, can

be iterated until a suitable set of resources is found.

The following describes the activities involved in

the deployment of an application. This process only

takes as input a file describing the components of the

application, their interactions, and the characteristics of

the required resource.

Application description. The application may be de-

scribed in a variant of Fractal ADL, which contains

several kinds of data: the description of the component

types and their implementations, as well as information

to guide the mapping of the application onto resources.

It may consist of the resource constraints, characteris-

tics that resources (computational, storage, network)

must possess to execute the application; the execution

platform constraints, software (libraries, middleware

systems) that must be installed to satisfy application de-

pendencies; the placement policies, restrictions or hints

for the placement of subsets of application processes

(e.g. co-location, location within a specific network

domain, or network performance requirements), and

the resource ranking, an objective function provided by

the user, stating the optimisation goal of application

mapping. Resource ranking is exploited to select the

best resource, or set of them, among those satisfying

the given requirements for a single application process.

Resource constraints can be expressed as unitary re-

quirements, that must be respected by a single module

or resource (e.g. CPU rata), and as aggregate require-

ments, that a set of resources or a module group must

respect at the same time (e.g. all the resources on the

same LAN, access to a shared file system); some place-

ment policies are implicitly aggregate requirements. As

of today, there is no standard format for describing

the constraints, the placement policies, or the resource

ranking.

Resource discovery. This activity finds the resources

compatible with the execution of the application. Re-

sources satisfying unitary requirements can be discov-

ered, interacting with grid information services [16].

Then, the information needed to perform resource

selection (that considers also aggregate requirements)

must be collected for each suitable resource found.

Existing grid technologies are quite satisfactory with

respect to this point, but co-allocation support in grid

scheduler is still quite uncommon.

Deployment planning. When information about avail-

able resources is collected, the proper resources that

will host the execution of the application must be

selected, and the different parts of each component

Fig. 1 Deployment process for automatic mapping

12 Ann. Telecommun. (2009) 64:5–24

have to be mapped on some of the selected resources.

This activity also implies satisfying all the aggregate

requirements within the application. Thus, repeated

interaction with the resource discovery mechanisms

may be needed to find the best set of resources, also

exploiting dynamic information.

At this point, the user objective function must

be evaluated against the characteristics and available

services of the resources (expressed in the resource

description schema). When appropriate, a resource

ranking is established to find a suitable solution.

An abstract deployment plan is computed by gath-

ering the deployment schema of all application com-

ponents. The abstract plan is then mapped onto the

resources, and turned into a concrete plan, identifying

all the services and protocols that will be exploited in

the next phase on each resource, in order to set up and

start the runtime environment of the application. This

step is probably the most challenging one as it requires

advanced algorithms (heuristics) to compute a plan, as

the problem is generally NP-hard.

Deployment enactment. The concrete deployment

plan developed in the previous phase is submitted to

the execution framework, which is in charge of the

execution of the tasks needed to deploy the applica-

tion. This service must ensure a correct execution of

the deployment tasks while respecting the precedences

described in the deployment plan. At the end of this

phase, the execution environment of the application is

ready to start its actual execution. This step is nowadays

quite well mastered.

Application execution. The deployment process for

adaptive grid applications does not finish when the

application is started. Several activities have to be

performed while the application is active. The whole

application life-cycle must be managed, in order to

support new resource requests for application adap-

tation, to schedule a restart if a failure is detected,

and to release resources when the normal termination

is reached. These monitoring and controlling activities

are mediated by the autonomic part of the components,

which performs some dynamic deployment action.

3.3 Discussion

This section has presented two deployment strategies

for a grid application: one strongly driven by the user

and a much more automatic one. The first deployment

strategy provides a mechanism to capture some topo-

logical constraints of the mapping of the component

hierarchy to the resources. The application can map its

elements to the virtual nodes independently of the real

resource names: the application is portable. Moreover,

the mapping of the virtual nodes to the physical nodes

appears at the level of current grid schedulers.

The second deployment strategy aims at providing

an automatic mapping of the application on the re-

sources. It requires to extend ADL with constraints

and placement policies, as well as some more advanced

schedulers. This strategy should lead to a real auto-

nomicity of components. It seems a prerequisite for

adaptivity and autonomicity as discussed in Section 5.

Both strategies have been validated through pro-

totypes, the first in ProActive/GCM, the second in

ADAGE [28] and GEA [17]. They run on top of vari-

ous environments, from cluster-like environments (ssh,

batch, etc) to grid environments such as Globus.

4 Supporting M to N communications

To meet the specific requirements and conditions of

grid computing for multiway communications, multicast

and gathercast interfaces give the possibility to manage

a group of interfaces as a single entity, and expose

the collective nature of a given interface. Multicast

interfaces allow to distribute method invocation and

their parameters to a group of destinations, whereas,

symmetrically, gathercast allow to synchronise a set

of method invocations toward the same destination.

Solutions to the problem of data distribution have

been proposed within PaCO++/GridCCM [18]; these

solutions can be seen as complementary to the basic

distribution policy specified in this section.

4.1 Collective interfaces

In pure Fractal, collective bindings could be performed

using composite bindings,1 which would accept one

input and a collection of output, or a collection of

inputs and one output. Collective interfaces allow GCM

components to perform operations collectively on a

set of components without relying on intermediate

components. The objective is to simplify the design of

component-based applications and ensure type com-

patibility in a direct manner. Of course, the model still

allows for the use of explicit binding components, in

case of specific requirements for inter-component com-

munications, for instance when binding interfaces of

incompatible types. Though the alternative relying on

composite binding could have a similar behaviour to the

1In Fractal, a composite binding is a communication path com-
posed of a set of primitive bindings and binding components.

Ann. Telecommun. (2009) 64:5–24 13

collective interfaces, we consider collective interfaces

better adapted to the GCM as explained below.

First, we think that, for design purposes, the collec-

tive nature of the connection should be attached to the

definition of the component, not to its binding. This also

allows control of the collective behaviour at the level

of the component containing the interface, not in an

external component.

Second, suppose collective interfaces would be

implemented by additional components, possibly be-

longing to composite bindings. As in GCM, the com-

ponent is the unit of distribution, the question of the

localisation of the additional components implement-

ing the collective behaviour arises. The best choice

would probably be to allocate the binding at the same

place as one of the functional components they bind,

depending on the nature of the interface; in the GCM,

this choice is made clear by the design of the collec-

tive interfaces. Moreover, if such binding components

would be distributed, they would need to be instru-

mented with remote communication capabilities which

would make them bigger and less efficient than collec-

tive interfaces.

Here again, the granularity of the envisioned compo-

nent model plays a crucial role: making the component

the unit of distribution and mobility requires primitive

components to encapsulate code for managing those

aspects. This makes such components inadequate for

encoding basic features like collective interfaces. In-

deed, it would be inefficient to attach to interfaces, or to

composite binding implementing collective communi-

cation, the code necessary to manage local threads and

mobility, for example.

Preliminary remark. In the sequel, we use the term list

to mean ordered set of elements of the same type (mod-

ulo sub-typing). This notion is not necessarily linked to

the type List in the chosen implementation language; it

can be implemented via lists, collections, arrays, typed

groups, etc. To be more precise, we use List<A> to

mean list of elements of type A.

The notion of collective interface is not linked

to any communication semantics: communication be-

tween components can be implemented for example by

message passing, remote procedure calls, or streaming.

However, we present the particular case of remote

method invocations in the remaining of this section

because of its richer implications on typing of inter-

faces and on the component composition. Experiments

on the implementation of collective communications

for components interacting by asynchronous remote

method invocations have been conducted over the

ProActive middleware, and proved to be quite efficient

and convenient to program distributed applications [7].

However, the notions of multicast and gathercast in-

terfaces are clearly also adapted to other communica-

tion semantics, the consequence on type compatibility

between interfaces can be inferred from the case pre-

sented in this section.

4.2 Multicast interfaces: 1 to N communications

Multicast interfaces provide abstractions for one-to-

many communication. First, we will define this kind

of interface, next we will detail the needed update for

interface signature and at the end of this section we will

address the distribution of parameters and invocations.

Multicast interfaces can either be used internally to

a component to dispatch an invocation received by the

components to several of its sub-entities or externally

to dispatch invocations emitted by the component to

several clients.

4.2.1 Definitions

A multicast interface transforms a single invoca-

tion into a list of invocations.

A single invocation on a multicast interface is trans-

formed into a set of invocations. These invocations

are forwarded to a set of connected server interfaces

(Fig. 2). The semantics concerning the propagation of

the invocation and the distribution of parameters are

customisable. The result of an invocation on a multicast

interface—if there is a result—is a list of results. Invo-

cations on the connected server interfaces may occur in

parallel, which is one of the main reasons for defining

this kind of interface: it enables parallel invocations.

For example, in a composite component, a multicast

internal client interface transforms each single invoca-

tion into a set of invocations that are forwarded to

bound server interfaces of inner components.

Fig. 2 Multicast interfaces

14 Ann. Telecommun. (2009) 64:5–24

To support multicast interfaces, we need to

extend the type system of Fractal by adding the

String getFcItfCardinality () method to

the InterfaceType interface. The interface type is

extended for dealing with new cardinalities: the

getFcItfCardinality() method returns a string

element, which is convenient when dealing with more

than two kinds of cardinalities. The type factory

method createFcItfType is extended with the

String cardinality parameter.

The BindingController also needs an extension

to support only removing of some bound inter-

face: void unbindFcMulticast(String name,

Object itf). This specification does not make any

assumption about the communication paradigm used to

implement the multicast invocations [31, 35].

4.2.2 Automatic data distribution

The signature of multicast interface can be different

from the single interfaces it is bound to. We detail

this typing issue and its relation with data distribution

in this section and the following. This section focuses

on a simple view where the parameters that are to be

distributed are lists, and thus, the distribution can be

performed automatically: lists are distributed element-

wise, and other elements are kept as non-splittable.

Consequently, we provide in this section two basic dis-

tribution policies for parameters: broadcast consists in

sending the same parameters to each of the connected

server interfaces and scatter is only available for lists; it

strips the parameter so that the bound components will

work on different data.

Returned result. For each method invoked and return-

ing a result of type T, a multicast invocation returns an

aggregation of the results: a list<T>.

For instance, consider the signature of a server

interface:

public interface I {

public void foo();

public A bar();

}

A multicast interface may be connected to the server

interface with the above signature only if its signature

is the following (recall that List<A> can be any type

storing a collection of elements of type A):

public interface J {

public void foo();

public List<A> bar();

}

In that case, we say that I is the type of the multicast

interface on the server side, i.e. the type of the server

interfaces the multicast can be bound to, and J is the

type on the client side, i.e. the type of the mutlicast

interface itself.

Where to define multicast interfaces? Collective inter-

faces are defined in the ADL; two new cardinalities—

multicast and gathercast—has been added to Fractal

specification. The cardinality of an interface can be

single, collection, multicast, or gathercast.

Where to specify parameters distribution? The ADL

files are not the right place to specify the parameter

distribution because distribution is too dependent on

the implementation. Thus, the best place to specify

distribution policy is inside the interface definition,

e.g. using annotations in the case of Java. In addition,

we propose to specify and modify the distribution

policy in a dedicated controller, named CollectiveIn-

terfacesController. The policy for managing the

interface is specified as a construction parameter

of the CollectiveInterfacesController. This policy is

implementation-specific, and a different policy may be

specified for each collective interface of the component.

How to specify the distribution of parameters into a set

of invocations? Remember we focus on two possible

data distribution basic policies: broadcast and scatter.

In the broadcast mode, all parameters are sent without

transformation to each receiver. In the scatter mode,

however, many configurations are possible, depending

upon the number of parameters that are lists and the

number of members of these lists. In the automatic

distribution policies, parameters to be scattered are of

type list<T> on the client side, and of type T on the

server side. Parameters to be broadcasted must be of

the same type on the client and on the server side. A

general solution in the case of a single parameter to be

distributed is to perform as many invocations as there

are elements in the list.

When several parameters are to be distributed, there

is not a single general solution. We propose to define,

as part of the distribution policy, the multiset2 F of the

combination of parameters, where each element f j ∈ F

is such that, f j ∈ [1..k1] ×[1..k2] × .. × [1..kn], where

n is the number of formal parameters of the invoked

method which are to be scattered, and ki, 1 ≤ i ≤ n the

number of values for each scattered actual parame-

ter. This multiset allows the expression of all the pos-

2A multiset is a set where the number of occurrences of each
element matters.

Ann. Telecommun. (2009) 64:5–24 15

sible distributions of scattered parameters, including

Cartesian product and one-to-one association. The car-

dinal of F also gives the number of invocations which

are generated, and which depends on the configuration

of the distribution of the parameters.

As an illustrative example, the Cartesian product of

n parameters is expressed as follows:

{(i1, . . . , in)|∀l ∈ [1..n], il ∈ [1..kl]}

One-to-one association is expressed as follows when

k1 = k2 = . . . kn:

{(i, . . . , i)|i ∈ [1..k]}

The number of occurrences in the multiset is useful

when several identical calls have to be produced, e.g.

to duplicate the computation in order to tolerate the

failure of some of the clients.

To summarise, for automatic data distribution in

multicast interfaces:

• If the return type of the function is T on the server

side, it must be list<T> on the client side.
• For each parameter, if the type of the parameter is

list<T> on the client side and T on the server side,

then this parameter is scattered, the combination

of scatter modes is defined by an external function;

else, if the type of the parameter is T on both client

and server side, the parameter is broadcasted.

4.2.3 Defining complex distribution policies

This section releases the strict constraints on typing

for multicast interfaces given in the preceding section

by relying on user-defined distribution or aggregation

functions and involving constraints on the resulting

typing of multicast interfaces. In the general case, dis-

tribution policies may depend on the number of bound

components, but for simplicity, we will not explicitly use

this parameter in this section. The constraints specified

in this section should be used when type checking the

bindings between components involved in the multicast

interface.

Aggregating results. The constraint of having lists as

results for multicast invocations may be relaxed by pro-

viding an aggregation mechanism that performs a re-

duction. Until now, we have defined a basic aggregation

function, which is concatenation, but any function can

be used for aggregating results, leading to the following

typing constraint (relate to Fig. 3 for name convention):

If the returned type of the multicast interface is

of type S, on the left side (i.e. if S is the type of

Fig. 3 General case of type conversion through a multicast
interface

the client interface), and of type T, on the right

side (i.e. if T is the type of the server interfaces

the multicast is connected to), then the multi-

cast interface should be attached an aggregation

function of type:

List<T> → S

Section 4.2.2 discussed the simplest case where S =

List<T> and the aggregation function is the identity.

Depending on the operations performed by this

last function, it might be necessary to synchronise the

achievement of the different calls dispatched by the

multicast operation. For example, it is impossible to

return the maximum of all results before waiting for all

of them to be arrived at the multicast interface.

Here are a few examples illustrating different possi-

ble aggregations of results for a multicast interface:

• The result is the sum of the results computed for

each of the n calls distributed to the destination

components:

n integers are summed into one integer;

the signature of the aggregation function is:

List<int> → int. The multicast interface

has the return type: int.

• The multicast interface returns the result given by

the majority of calls.

n results are reduced to a single one plus

an occurrence count. The signature of the

aggregation function becomes: List<T> →

(T,int). The multicast interface returns a

(T,int).

• n pieces of an array are gathered into one single

array to be returned.

The signature of the aggregation function

is: List<Array<A>> → Array<A>. The

multicast interface has the return type:

Array<A>.

16 Ann. Telecommun. (2009) 64:5–24

Distributing parameters. This generalisation could

also be applied to the distribution of invocation para-

meters. In Section 4.2.2, if an argument of a call toward

a multicast interface is of type S, then the type of the

argument received on one of the bound interfaces is

either S (argument broadcasted as it is) or T if S is of

the form List<T>. More generally, we can have any

transformation of argument type through the multicast

interface:

If the arguments of the multicast interface (i.e. the

parameters of the call) are of type Si, 1 ≤ i ≤ n on

the client side (left part of Fig. 3), and of type Ti,

1 ≤ i ≤ n on the server side (right part of Fig. 3),

then the multicast interface should be attached a

distribution function returning a list of parameter

sets to be sent, its type should be:

S1..Sn → List <(T1, ..,Tn)>

We provide a few examples illustrating different

possible type conversions for arguments of a multicast

interface (the last two being the ones already presented

in Section 4.2.2):

• Blocks of an array to be dispatched differently de-

pending on the number of destination components

in parallel (N):

One call with parameter of type Array<A>

becomes N calls with parameter of type

Array<A> containing pieces of the origi-

nal array. Distribution function is of type:

Array<A> → List<Array<A>>.

• Scatter:

One call with parameter of type List<A>

becomes length(List < A >) calls with para-

meter of type A. Distribution function is of

type: List<A> → List<A>.

• Broadcast: same invocation replicated to N compo-

nents in parallel:

One call with parameter of type A becomes

N calls with parameter of type A. Distribution

function is of type: A → List<A>.

4.2.4 Distribution of invocations

Once the distribution of the parameters is determined,

the invocations that will be forwarded are known. A

new question arises: how are these invocations dis-

patched to the connected server interfaces? This is

determined by a function, which, knowing the number

of server interfaces bound to the multicast interface and

the list of invocations to be performed, describes the

dispatch of the invocations to those interfaces.

Consider the common case where the invocations

can be distributed regardless of which component will

process the invocation. Then, a given component can

receive several invocations; it is also possible to select

only some of the bound components to participate in

the multicast. In addition, this framework allows us to

express naturally the case where each of the connected

interfaces has to receive exactly one invocation in a

deterministic way.

4.3 Gathercast interfaces: M to 1 communications

Gathercast interfaces provide abstractions for many-

to-one communications. Gathercast and multicast in-

terface definitions and behaviours are symmetrical [4].

Gathercast interfaces can either be used internally to

a component to gather the results of several compu-

tations performed by several sub-entities of the com-

ponent or externally to gather and synchronise several

invocations made toward the component.

4.3.1 Definition

A gathercast interface transforms a set of invoca-

tions into a single invocation.

Gathercast interfaces gather invocations from multi-

ple source components (Fig. 4). A gathercast interface

coordinates incoming invocations before continuing the

invocation flow: it may define synchronisation barriers

and may gather incoming data. Return values are redis-

tributed to the invoking components.

For example, in a composite component, a gathercast

internal server interface transforms a set of invocations

coming from client interfaces of inner components into

Fig. 4 Gathercast interface

Ann. Telecommun. (2009) 64:5–24 17

a single invocation from the component to the external

world.

For synchronisation purposes, gathering operations

require knowledge of the participants (i.e. the clients of

the gathercast interface) in the collective communica-

tion. As a consequence, bindings to gathercast interfaces

are bidirectional links; in other words: a gathercast

interface is aware of which interfaces are bound to it;

this should be realised by the binding mechanism.

4.3.2 Synchronisation operations

Gathercast interfaces provide one type of synchronisa-

tion operation, namely message-based synchronisation

capabilities: the message flow can be blocked upon

user-defined message-based conditions. Synchronisa-

tion barriers can be set on specified invocations, for

instance, the gathercast interface may wait—with a

possible timeout—for all its clients to perform a given

invocation on it before forwarding the invocations. It

is also possible to define more complex or specific

message-based synchronisations, based on the content

and number of the messages, or based on temporal

conditions, and it is possible to combine these different

kinds of synchronisations.

4.3.3 Automatic data aggregation and redistribution

This section details the parameter gathering and result

redistribution that can be performed automatically by a

gathercast interface.

Gathering parameters. The gathercast interface aggre-

gates parameters from method invocations. Thus, the

parameters of an invocation coming from a gather-

cast interface are actually lists of parameters. If, on

the client side, invocations are on the form void

foo(T), then the generated invocations necessarily

have the type void foo(list<T>) on the server

side. In other words, if the client interfaces connected

to the gathercast are of type void foo(T), then

the gathercast (server) interface itself is of type void

foo(list<T>).

Redistributing results. The distribution of results for

gathercast interfaces is symmetrical with the distribu-

tion of parameters for multicast interfaces, and it raises

the question: where and how to specify the redistribu-

tion?

The place where the redistribution of results is spec-

ified is similar to the case of multicast interfaces: the

redistribution is configured through metadata informa-

tion for the gathercast interface. This could, for ex-

ample, be specified through annotations or be inferred

from the type of interface.

The way redistribution is performed is also similar to

multicast interfaces. It also necessitates a comparison

between the client interface type and the gathered

interface type. If the return type of the invoked method

in the client interfaces is of type T and the return type

of the bound server interface is List<T>, then results

can be scattered: each component participating in the

gather operation receives a single result (provided the

result is a list of the same length as the number of par-

ticipants). Otherwise, results should be broadcasted to

all the invokers and the return type must be identical on

the client and the server side. A redistribution function

can also be defined as part of the distribution policy of

the gathercast interface, it is configurable through its

collective interface controller.

4.3.4 Defining complex distribution policies

The symmetric of multicast interfaces general specifi-

cation can be defined for redistribution of results for

gathercast interfaces and aggregation of parameters of

calls toward a gathercast interface. For example, the

constraint of having lists as parameters for gathercast

invocations may be relaxed by providing a reduction

function and verifying at connection type the type

compatibility between the reduction function and the

bound interfaces.

4.4 The MxN problem

The support of parallel components raises the concern

of efficient communications between them. This section

focuses on the MxN problem, i.e., efficient commu-

nication and exchange of data between two parallel

programs, consisting, respectively, of M and N enti-

ties. In the GCM, such a pattern can be straightfor-

wardly realised by binding a parallel component with

a gathercast internal server interface to a component

with a multicast internal client interface. However, ef-

ficient communications between two parallel compo-

nents requires direct binding so as to support direct

communications between the involved inner compo-

nents on both sides; this mechanism is called MxN

communications. End users expect to have MxN com-

munications to provide performance scalability with the

parallelism degree. Whereas Sections 4.4.1 to 4.4.3 fo-

cus on data distribution and establishment of bindings,

Section 4.4.4 discusses synchronisation of such parallel

components.

18 Ann. Telecommun. (2009) 64:5–24

4.4.1 Principles

A naive and not optimised solution for MxN coupling

is shown in Fig. 5. The respective output of the M inner

components is gathered by the gathercast interface;

then, this result is sent as it is to the multicast interface;

finally, the message is scattered to the N inner compo-

nents connected to the multicast interface, so data are

redistributed by the multicast interface.

Obviously, this naive solution creates a bottleneck

both in the gathercast and in the multicast interfaces.

Efficient communications require some forms of direct

bindings between the inner components according to

the redistribution pattern, like that shown by the arrow

of Fig. 5 drawn between an arbitrarily chosen pair

of inner components from both sides. In the general

case, implementing such direct bindings requires to re-

place the couple gathercast + multicast interfaces by M

multicast interfaces plus N gathercast interfaces. Each

inner component on the left-hand side is responsible

for sending its own data to all the concerned compo-

nents; on the right-hand side, each inner component

is responsible for gathering the messages it receives

and performing its piece of the global synchronisation.

This creation of additional collective interfaces avoids

the bottleneck occurring in the single gathercast or

multicast interface. We show below how such an op-

timisation can be implemented in the case of a specific

but classic scenario.

4.4.2 Example of a direct binding

This section illustrates a way to ensure the M-by-N op-

timisation in a particular case that is relatively frequent.

It both illustrates the possibility for multicast and gath-

ercast interfaces to enable optimised communications

and it shows the necessity for highly parameterisable

Fig. 5 Gathercast to multicast

collective interface. Indeed, optimised communication

patterns are simply performed by connecting additional

gathercast and multicast interfaces, parameterised de-

pending on the data distribution and the topology.

Suppose two composites CM and CN, composed

of M and N components, respectively, must exchange

data by blocks, as shown in Fig. 6. For the sake of

simplicity, we suppose that each of the M inner compo-

nents send data of size d and each of the N components

must receive data of size d′ (M × d = N × d′).

We denote Mi, 0 ≤ i < M the inner components of

CM, and symmetrically, N j, 0 ≤ j < N the inner com-

ponents of CN. Consequently, considering the data to

be exchanged as an interval of size d × M = d′ × N,

each component exchanges the data in the following

range:

Mi produces [d × i, d × (i + 1)[

N j consumes [d′
× j, d′

× (j + 1)[

Bindings. Each of the Mi components will have its

client interface turned into a multicast client inter-

face with the same signature (called IMi). Symmetri-

cally, each of the N j components will have its server

interface turned into a gathercast server interface

(called IN j). The direct bindings that must occur

should ensure the direct communication between com-

ponents having to transmit data. Components are con-

nected if there is an intersection between the range

of data sent by one and the range that must be re-

ceived by the other. Bindings are formally defined

as follows: IMi is to be bound to IN j iff ∃l ∈ [d × i, d ×

(i + 1)[s.t. l ∈ [d′ × j, d′ × (j + 1)[. In a more construc-

tive manner, one can specify the indices of the client

components:

IMi must be bound to all the IN j

s.t.
((

d/d′
)

× i
)

− 1 < j <
(

d/d′
)

× (i + 1)

Fig. 6 Communications resulting from an MxN direct binding

Ann. Telecommun. (2009) 64:5–24 19

Communications. We define now what elements are

directly sent from one inner component of CM to the

inner components of CN. Each Mi has to send to N j

the elements in the global range:

[d × i, d × (i + 1)[∩[d′
× j, d′

× (j + 1)[

which is necessarily non-empty if Mi is connected to N j.

This set logically represents the intersection between

the produced data and the consumed one.

4.4.3 Using controllers to set up MxN bindings

This section defines a possible configuration phase for

coupling two parallel components, in a MxN manner

in a very general setting. It relies on the existence of

controllers (called coupling controllers, that could be

associated to collective controllers) both at the level

of parallel components (Fig. 6) and at the level of the

inner ones.

When binding two parallel components, both

coupling controllers exchange information about their

respective collective interfaces (cardinality, data dis-

tribution pattern, size and type of data. . .) and the

reference of internal components attached to this col-

lective port. Relevant information is then passed to

the coupling controllers of the inner components so

as to configure them correctly. Once configured, the

direct communication (data redistribution and synchro-

nisation) is straightforward: every inner component is

aware of the components it communicates with, as well

as data distribution information.

This controller-based approach is suitable to imple-

ment the redistribution described in the example above

(Section 4.4.2). In this case, controllers just have to

exchange the cardinality of their respective interfaces

(M and N), and the references to the inner compo-

nents. Controllers create and configure interfaces in

the inner components accordingly to the formulas of

Section 4.4.2.

4.4.4 Synchronisation issues

Additionally to the data redistribution, the gathercast–

multicast composition plays a synchronisation role. In-

deed, in Fig. 5, thanks to the gathercast interface, the

computation can only start on the right-hand side when

all the inner components on the left-hand side have

sent their output. The introduction of the gathercast

interfaces on the right-hand side (Fig. 6) moves this

synchronisation behaviour to the N inner components.

If the MxN direct communication pattern is such that

each of the N processes receives data from all the M

processes, then the behaviour of the system with direct

bindings is equivalent to the original one. Else per-

forming the same synchronisation as the not optimised

version requires all the clients to send a message to all

the gathercast interfaces, some of them being only syn-

chronisation signals. However, global synchronisation

is not required by all the applications, and in this case,

more optimisation is possible: if only data redistribution

is important, then only bindings for transmitting data

must be carried out.

4.5 Collective interfaces and hierarchy

Let us conclude this section by a study on the influence

of hierarchy on the notion of collective interfaces. Ba-

sically, the existence of composite components entails

the existence of internal interfaces, allowing collective

interfaces to act internally to a component and collec-

tively on the content of a composite component.

Except for this, the existence of collective interfaces

is not related to hierarchy at the level of the compo-

nent model. However, at the applicative level, com-

position of hierarchy and collective operation allows

the programmer to easily design complex component

systems, like hierarchical master–slave for example. To

summarise, the impact of collective interfaces associ-

ated with hierarchy is that any component of a system

can be considered as, and transformed into, a parallel

component in a very natural manner.

5 Adaptivity and autonomicity

To provide dynamic behaviour of the component con-

trol, we propose to make it possible to consider a con-

troller as a sub-component, which can then be plugged

or unplugged dynamically. As in [37], we promote the

idea to adopt a component-oriented approach to ex-

press the control part of a component. On the con-

trary, in the Julia Fractal implementation, for instance,

control part is expressed in an object-oriented fash-

ion. Adaptivity of a component in an open and large-

scale system as a computing grid can be a complex

task to orchestrate and implement. So, relying on a

component-oriented approach for the control part can

ease its design and implementation, thus increasing the

component adaptation ability.

Additionally, autonomicity is the ability for a com-

ponent to adapt to situations, without relying on the

outside. Several levels of autonomicity can be imple-

mented by an autonomic system of components. The

20 Ann. Telecommun. (2009) 64:5–24

GCM defines four autonomic aspects, and it gives a

precise interface for each of these four aspects. These

interfaces are non-functional and exposed by each

component.

5.1 A refinement of Fractal for non-functional

adaptivity

In component models as Fractal, or Accord [29], for

example, adaptation mechanisms are triggered by the

control, also named non-functional (NF), part of the

components. This NF part, called the membrane in

Fractal and GCM, is composed of controllers that im-

plement NF concerns. Interactions with execution en-

vironments may require complex relationships between

controllers. Examples of use-cases include changing

communication protocols, updating security policies,

or taking into account new runtime environments in

case of (mobile) components running on mobile devices

interconnected to the core computing grid.

In this section, we focus on the adaptability of the

membrane. Adaptability means that evolutions of the

execution environment have to be detected and acted

upon; this process may imply interactions with the en-

vironment and with other components. Our purpose in

the GCM definition with respect to adaptivity is not to

provide adaptive algorithms but to offer the support

for implementing them as part of the control part of

the components, and even more, the possibility to plug

dynamically different control strategies, i.e. to adapt the

control part itself to the changing context.

In the GCM, we want to provide tools for adapting

controllers. This means that these tools have to manage

(re)configuration of controllers inside the membrane

and the interactions of the membrane with membranes

of other components. For this, we provide a model and

an implementation, applying a component-oriented ap-

proach for both the application (functional) and the

control (NF) levels. Applying a component-oriented

approach to the non-functional aspects allows them

to feature structure, hierarchy and encapsulation. The

same method has been followed or advocated in [26,

32, 36, 37].

The solution adopted in the GCM is to allow, like

[32, 37], the design of the membrane as a set of com-

ponents that can be reconfigured [14]. Baude et al. [8]

goes more into details and describes a structure for the

composition of the membrane, its relationships with the

content of the component and an API for manipulating

it. Note that it does not seem reasonable to implement,

like in AOKell, the membrane as a composite GCM

component: due to the distributed nature of GCM

(implying that a GCM component would, in general,

involve a much higher overhead than a Fractal one),

having to cross an additional composite component

boundary to switch into or from the control part of a

GCM component would involve a sensible overhead.

So, we came to the idea of having the component-based

system defining the non-functional features be totally

diluted in the membrane of the component containing

the functional code (called the host component in this

case).

In order to be able to compose non-functional as-

pects, the GCM requires the NF interfaces to share the

same specification as the functional ones: role, cardi-

nality and contingency. For example, in comparison to

Fractal, the GCM adds client non-functional interfaces

to allow for the composition of non-functional aspects,

reconfigurations and component re-assembling at the

non-functional level. To summarise, the GCM is pro-

vided with the possibility to implement as components

(part of) the membrane and, thus, benefit from strong

component structure and reconfiguration capabilities.

A small example. Figure 7 illustrates the structure of

the membrane using components. In the figure, two

non-functional components are assembled in the com-

ponent’s membrane, but more importantly, the mem-

brane can rely on client non-functional interfaces, both

internal to allow connection to inner components, and

external to allow connections with other components,

dedicated to the management and monitoring of the ap-

plication, for example. This both gives a structure to the

non-functional concerns of the component Comp and

allows the reconfiguration at the non-functional level,

in order to adapt it to the changes in the environment.

Life-cycle issue. This new structure for controllers

raises the following question: “What is the life-cycle of

a component used inside the membrane?” In Fractal,

invocation on controller interfaces must be enabled

Fig. 7 A composite with pluggable controllers

Ann. Telecommun. (2009) 64:5–24 21

when a component is (functionally) stopped, and ob-

viously, for changing the bindings of a component,

this component must be stopped. In other words, a

controller of a Fractal component is an entity that does

not follow the classical life-cycle of a component, in

particular, it can never enter a stop state. Consequently,

GCM components cannot adhere to this specification;

otherwise, their membrane could not be reconfigured.

The solution we propose consists in a more com-

plex life-cycle for component controllers, allowing to

separate partially the life-cycle states of the membrane

and of the content. When a component is functionally

stopped (which corresponds to the stopped state of the

Fractal specification), invocation on controller inter-

faces are enabled and the content of the component

can be reconfigured, whereas, when a component is

stopped, only the controllers necessary for configura-

tion are still active (mainly binding, content, and life-

cycle controllers), and the other components in the

membrane can be reconfigured. Thanks to the new

component architecture defined, two kinds of reconfig-

uration are possible: reconfiguration of the functional

inner component system, following the idea of hierar-

chical autonomic decision paths [1], and reconfigura-

tion of the membrane itself when the adaptation is done

along the NF properties of the host component.

5.2 Autonomic components

GCM supports all the mechanisms needed to imple-

ment autonomic components, as stated in the previous

sections. In particular, the availability of membrane

components, as well as the possibility to hierarchically

compose new components from simpler, existing ones,

can both be exploited to support different autonomic

management features. More in detail, two distinct kinds

of autonomic management are considered as first-class

citizens in GCM:

– The one taking care of simply adapting the single

component to the changing conditions of the com-

ponent“external” environment; a notable example

could be the one wrapping component interaction

mechanisms in such a way that the interactions can

be performed using secure communication mecha-

nisms rather than insecure ones. This is the kind of

self-configuring, adaptation autonomic behaviour

expected from components aware of the fact they

can live in secure or insecure frameworks.

– The one taking care of adapting the component in-

ternal behaviour to match external, non-functional

requirements; a notable example could be the

one adjusting the parallelism degree of a parallel

composite component in such a way that a non-

functional performance contract is kept satisfied

during the execution of the composite component

activities. This is again a kind of self-configuring

and self-healing autonomic behaviour [27].

In order to provide autonomic component manage-

ment, GCM programming model supplies two different

facilities to the GCM user/programmer. On the one

hand, GCM provides all those mechanisms needed

to implement the autonomic managers. These mecha-

nisms include the ability to implement membrane as

components discussed in the previous section. How-

ever, they also include some lower-level mechanisms

that can be used to “sense” both the component exe-

cution environment and some component internal fea-

tures of interest for the autonomic management. As

an example, mechanisms are provided to “introspect”

features of the component related to its implemen-

tation. An autonomic manager supposed to control

component performance must be enabled to test com-

ponent response/service time, for instance. Therefore,

some mechanisms are supplied within GCM that allow

to probe such values. The set of mechanisms of this

type provided to the autonomic manager programmers

define, de facto, the kind of managers implementable in

the GCM framework.

On the other hand, a methodology aimed at support-

ing autonomic component managers is provided, such

that programmers of the manager components do not

have to rewrite from scratch each one of the managers

included in the components. Such a methodology can

be basically stated as a set of guidelines and rules to be

adopted when programming the autonomic component

managers, of course. In order to be more effective,

GCM also provides the autonomic manager program-

mers with a set of autonomic manager skeletons/design

patterns that can be easily customised properly sup-

plying the skeleton/design pattern parameters. These

manager patterns capitalise on the experiences coming

from the software engineering autonomic management

research track, as well as all the experience acquired in

the algorithmic skeletons and design pattern areas.

Following this approach, the GCM autonomic man-

ager programmer can pick up one of two ways:

– He/she can customise a (composition of) auto-

nomic manager skeleton(s) by providing proper

parameters, and therefore, he can get very rapidly

a complete manager whose behaviour (modulo the

provided parameters) has already been tested, de-

bugged and proven correct.

22 Ann. Telecommun. (2009) 64:5–24

– In case the provided manager skeletons do not

fit user requirements, he/she can go through the

complete (re-)writing of a new autonomic manager,

exploiting the provided API to access component

internal features, as well as component environ-

ment features, and implementing his own auto-

nomic policies.

In [2], it has already been outlined how autonomic

manager skeletons (called “behavioural skeletons” to

distinguish them from the classical “algorithmical skele-

tons” that are only related to the functional compu-

tation features) can be designed in GCM that can

autonomically take care of the performance issues of

notable parallel component compositions. Behavioural

skeletons abstract common autonomic manager fea-

tures, leaving the autonomic manager programmer the

possibility to specialise the skeleton to implement the

particular autonomic manager he has in mind. More in

detail, behavioural skeletons aim to describe recurring

patterns of component assemblies that can be (either

statically or dynamically) equipped with correct and

effective management strategies with respect to a given

management goal. Behavioural skeletons help the ap-

plication designer to (1) design component assemblies

that can be effectively reused and (2) cope with man-

agement complexity by providing a component with an

explicit context with respect to top-down design (i.e.

component nesting).

Parallelism management can be designed and pa-

rameterised in the same way as classical, functional

algorithmical skeletons abstract common features of

parallelism exploitation patterns, leaving the program-

mers the possibility to model their own parallel com-

putations by providing suitable skeleton parameters,

including, in the general case, sequential code parame-

ters completely specifying the actual computation to be

performed.

Technically, because the membrane components are

still under development, the behavioural skeletons dis-

cussed in [2] have been currently implemented as inner

components of composite components. An implemen-

tation of behavioural skeletons based on membrane

components can now be considered; it will exploit sev-

eral useful membrane component features, such as the

ability to implement client interfaces.

6 Summary and conclusion

In this paper, we presented the key features of a

grid-oriented component model: the GCM. Relying on

Fractal as the basic component structure, the GCM

defines a set of features which are necessary to turn

the Fractal model into a grid compliant one. GCM is

more than a small extension of Fractal: it provides a

new set of component composition paradigm through

multicast and gathercast, addresses the issue of distrib-

uted component deployment and provides support for

autonomous components. Overall, the GCM can be

considered as a component model on its own. Confor-

mance to the GCM can be summarised as follow:

– Support for deployment of components, either re-

lying on deployment descriptors, or featuring an

automatic mapping to the infrastructure

– Possibility to collectively compose and target sets of

components: existence of multicast and gathercast

interfaces

– Support for autonomic components: possibility

to design membranes as component systems, to

compose (i.e. bind together) non-functional fea-

tures possibly distributed over several components

and support for self-adaptation of the compo-

nents to both evolving environments and evolving

requirements

GCM has been used in different settings showing

the effectiveness of this approach. First, a prototype of

the ProActive implementation of the GCM has already

been used to build and deploy over a grid a numeri-

cal computation application for electromagnetism [34].

Moreover, in the context of the common component

modeling example (CoCoME), GCM components have

been modeled and specified, and a prototype imple-

mentation has been realised [11]. The CoCoME con-

sists of a point-of-sale example featuring distribution,

asynchronism and collective communications.

Interoperability between GCM and other standards

or component models has been demonstrated, first

through effective interactions between CCA and GCM

components [30], and second by the possibility to ex-

pose component interfaces as web services [19].

The CoreGRID Institute on Grid Systems, Tools,

and Environments has been working on a methodol-

ogy for the design and implementation of a generic

component-based grid platform [13] collating the in-

novative efforts of a number of partners from several

European countries. The research activities and results

show that the GCM can be used to implement a grid

runtime environment. GCM has been proved to be ad-

equate to implement development, deployment, moni-

toring and steering tools. As a result, the grid integrated

development environment and the component-based

integrated toolkit, based on the GCM, provide a frame-

work that enables rapid development of grid applica-

tions and the transparent use of available resources at

Ann. Telecommun. (2009) 64:5–24 23

runtime. These achievement show the adequacy of the

GCM for developing not only grid applications but also

a grid runtime and environment.

The experiences mentioned above allow us to evalu-

ate the GCM relatively to the objectives given in the

introduction. First, the hierarchical aspect is really a

key feature to better address scalability in practice.

Second, expressiveness of the collective interfaces is

generally adequate as showed by the programming of

SPMD-like interactions, but the specification of distri-

bution policies is still to be improved. Indeed, allowing

the GCM implementation to reach the expressiveness

of the distribution policies described in Sections 4.2.3

and 4.3.4, and thus allowing real program to express

simply complex distributions, is still a real challenge.

Finally, we also showed the adequacy of the GCM to

express autonomic adaptations [2, 6]. Thus, we estimate

that the GCM greatly improves expressiveness, scala-

bility and adaptivity of grid applications, even if the

model and its implementation are still to be improved.

One difficulty that has been encountered several times

is the management of distributed asynchronous com-

ponents and, in particular, the problem of stopping

such components; however, some solutions have been

recently suggested for this problem [25, 39].

References

1. Aldinucci M, Bertolli C, Campa S, Coppola M, Vanneschi
M, Zoccolo C (2006) Autonomic grid components: the GCM
proposal and self-optimising ASSIST components. In: Joint
workshop on HPC grid programming environments and com-
ponents and component and framework technology in high-
performance and scientific computing at HPDC’15, Paris,
June 2006

2. Aldinucci M, Campa S, Danelutto M, Dazzi P, Kilpatrick
P, Laforenza D, Tonellotto N (2008) Behavioural skele-
tons for component autonomic management on grids. In:
Danelutto M, Frangopoulou P, Getov V (eds) Making grids
work. CoreGRID. ISBN 978-0-387-78447-2

3. Armstrong R, Gannon D, Geist A, Keahey K, Kohn S,
McInnes L, Parker S, Smolinski B (1999) Toward a com-
mon component architecture for high-performance scientific
computing. In: Proceedings of the 1999 conference on high
performance distributed computing, Amsterdam, 12–14 April
1999

4. Badrinath B, Sudame P (2000) Gathercast: the design and im-
plementation of a programmable aggregation mechanism for
the Internet. In: Proceedings of IEEE international confer-
ence on computer communications and networks (ICCCN),
Las Vegas, 16–18 October 2000

5. Baduel L, Baude F, Caromel D, Contes A, Huet F, Morel M,
Quilici R (2006) Grid computing: software environments and
tools, chap. Programming, deploying, composing, for the grid.
Springer, Heidelberg

6. Baude F, Henrio L, Naoumenko P (2007) A component
platform for experimenting with autonomic composition. In:

First international conference on autonomic computing and
communication systems (Autonomics 2007). ACM Digital
Library (invited paper)

7. Baude F, Caromel D, Henrio L, Morel M (2007) Collec-
tive interfaces for distributed components. In: CCGrid 2007:
IEEE international symposium on cluster computing and the
grid. ISBN 0-7695-2833-3, pp 599–610

8. Baude F, Caromel D, Henrio L, Naoumenko P (2007) A
flexible model and implementation of component controllers.
In: CoreGRID workshop on grid programming model, grid
and P2P systems architecture, grid systems, tools and envi-
ronments, Crete, 12–13 June 2007

9. Bertrand F, Bramley R, Damevski KB, Kohl JA, Bernholdt
DE, Larson JW, Sussman A (2005) Data redistribution and
remote method invocation in parallel component architec-
tures. In: Proceedings of the 19th international parallel and
distributed processing symposium: IPDPS, Denver, 3–8 April
2005

10. Bruneton E, Coupaye T, Leclercq M, Quéma V, Stefani JB
(2006) The fractal component model and its support in java.
Softw Pract Exp 36:11–12 (Special Issue on Experiences with
Auto-adaptive and Reconfigurable Systems)

11. Cansado A, Caromel D, Henrio L, Madelaine E, Rivera M,
Salageanu E (2007) A specification language for components
implemented in GCM/ProActive. LNCS series. Springer,
Heidelberg

12. CCA forum (2005) The common component architecture
(CCA) forum home page. http://www.cca-forum.org/

13. CoreGRID Institute on Grid Systems, Tools, and Environ-
ments (2008) Design methodology of the generic component-
based grid platform. Deliverable D.STE.07

14. CoreGRID, Programming Model Institute (2006) Basic
features of the grid component model (assessed). De-
liverable D.PM.04. http://www.coregrid.net/mambo/images/
stories/Deliverables/d.pm.04.pdf

15. Coulson G, Grace P, Blair G, Mathy L, Duce D, Cooper C,
Yeung WK, Cai W (2004) Towards a component-based mid-
dleware framework for configurable and reconfigurable grid
computing. wetice 00:291–296. ISSN 1524-4547. doi:http://doi.
ieeecomputersociety.org/10.1109/ENABL.2004.69

16. Czajkowski K, Kesselman C, Fitzgerald S, Foster I
(2001) Grid information services for distributed resource
sharing. HPDC 00:0181. doi:http://doi.ieeecomputersociety.
org/10.1109/HPDC.2001.945188

17. Danelutto M, Vanneschi M, Zoccolo C, Tonellotto N,
Orlando S, Baraglia R, Fagni T, Laforenza D, Paccosi A
(2005) HPC application execution on GRIDs. Future Gener
Grids 263–282

18. Denis A, Perez C, Priol T, Ribes A (2004) Bringing high
performance to the corba component model. In: SIAM
conference on parallel processing for scientific computing,
San Francisco, 25–27 February 2004

19. Dünnweber J, Baude F, Legrand V, Parlavantzas N, Gorlatch
S (2006) Invited papers from the 1st CoreGRID integ-
ration workshop, Pisa, Novembre 2005, chap. Towards
automatic creation of web services for grid component
composition. Volume 4 of CoreGRID series. Springer,
Heidelberg

20. Furmento N, Hau J, Lee W, Newhouse S, Darlington J (2004)
Implementations of a service-oriented architecture on Top of
Jini, JXTA and OGSI. In: AxGrids 2004, no. 3165 in LNCS.
Springer, Heidelberg, pp 90–99

21. Furmento N, Lee W, Mayer A, Newhouse S, Darlington
J (2002) Iceni: an open grid service architecture imple-
mented with jini. SC 00:37. ISSN 1063-9535. doi:http://doi.
ieeecomputersociety.org/10.1109/SC.2002.10027

http://doi.ieeecomputersociety.org/10.1109/SC.2002.10027
http://doi.ieeecomputersociety.org/10.1109/SC.2002.10027
http://www.cca-forum.org/
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf
http://www.coregrid.net/mambo/images/stories/Deliverables/d.pm.04.pdf
http://doi.ieeecomputersociety.org/10.1109/ENABL.2004.69
http://doi.ieeecomputersociety.org/10.1109/ENABL.2004.69
http://doi.ieeecomputersociety.org/10.1109/HPDC.2001.945188
http://doi.ieeecomputersociety.org/10.1109/HPDC.2001.945188

24 Ann. Telecommun. (2009) 64:5–24

22. Gannon D (2002) Programming the grid: distrib-
uted software components. http://citeseer.ist.psu.edu/
gannon02programming.html

23. Gannon D, Fox G (2006) Workflow in grid systems meeting.
Concurrency & computation: practice & experience vol 18,
issue 10 (Based on GGF10 Berlin meeting)

24. Getov V, von Laszewski G, Philippsen M, Foster I (2001)
Multiparadigm communications in java for grid computing.
Commun ACM 44(10):118–125. ISSN 0001-0782. doi:http://
doi.acm.org/10.1145/383845.383872

25. Henrio L, Rivera M (2008) Stopping safely hierarchi-
cal distributed components. In: Proceedings of the work-
shop on component-based high performance computing
(CBHPC’08), Karlsruhe, 14–17 October 2008

26. Herault C, Nemchenko S, Lecomte S (2005) A component-
based transactional service, including advanced transac-
tional models. In: Advanced distributed systems: 5th
international school and symposium, ISSADS 2005, revised
selected papers, no. 3563 in LNCS

27. Kephart JO, Chess DM (2003) The vision of autonomic
computing. Computer 36(1):41–50. ISSN 0018-9162. doi:
http://dx.doi.org/10.1109/MC.2003.1160055

28. Lacour S, Pérez C, Priol T (2005) Generic application
description model: toward automatic deployment of appli-
cations on computational grids. In: 6th IEEE/ACM inter-
national workshop on grid computing (Grid2005). Springer,
Seattle

29. Liu H, Parashar M (2004) A component based programming
framework for autonomic applications. In: 1st IEE int. con-
ference on autonomic computing (ICAC), New York, 17–18
May 2004

30. Malawski M, Bubak M, Baude F, Caromel D, Henrio L,
Morel M (2007) Interoperability of grid component models:
GCM and CCA case study. In: CoreGRID symposium in
conjunction with Euro-Par 2007, CoreGRID series. Springer,
Heidelberg

31. Mayer A, Mcough S, Gulamali M, Young L, Stanton J,
Newhouse S, Darlington J (2002) Meaning and behaviour
in grid oriented components. In: Third international work-
shop on grid computing, GRID, vol. 2536 of LNCS,
pp 100–111

32. Mencl V, Bures T (2005) Microcomponent-based component
controllers: a foundation for component aspects. In: APSEC.
IEEE Computer Society, Piscataway

33. OMG.ORG TEAM (2005) CORBA component model,
V3.0. http://www.omg.org/technology/documents/formal/
components.htm

34. Parlavantzas N, Morel M, Getov V, Baude F, Caromel D
(2007) Performance and scalability of a component-based
grid application. In: 9th int. worshop on java for parallel and
distributed computing, in conjunction with the IEEE IPDPS
conference

35. Partridge C, Menedez T, Milliken W (1993) Host anycasting
service. RFC 1546

36. Seinturier L, Pessemier N, Coupaye T (2005) AOKell:
an aspect-oriented implementation of the fractal specifi-
cations. http://www.lifl.fr/∼seinturi/aokell/javadoc/overview.
html

37. Seinturier L, Pessemier N, Duchien L, Coupaye T (2006) A
component model engineered with components and aspects.
In: Proceedings of the 9th international SIGSOFT sympo-
sium on component-based software engineering, Västerås,
June 2006

38. Szyperski C (1998) Component software: beyond object-
oriented programming. ACM/Addison-Wesley, New York.
ISBN 0-201-17888-5

39. Tejedor E, Badia RM, Naoumenko P, Rivera M, Dalmasso C
(2008) Orchestrating a safe functional suspension of gcm
components. In: CoreGRID integration workshop. Inte-
grated research in grid computing

40. Thome B, Viswanathan V (2005) Enterprise grid alliance–
reference model v1.0

http://www.lifl.fr/~seinturi/aokell/javadoc/overview.html
http://www.lifl.fr/~seinturi/aokell/javadoc/overview.html
http://citeseer.ist.psu.edu/gannon02programming.html
http://citeseer.ist.psu.edu/gannon02programming.html
http://doi.acm.org/10.1145/383845.383872
http://doi.acm.org/10.1145/383845.383872
http://dx.doi.org/10.1109/MC.2003.1160055
http://www.omg.org/technology/documents/formal/components.htm
http://www.omg.org/technology/documents/formal/components.htm

3.2 Design and structure of non-

functional aspects

In Fractal, each component is made of two parts: the con-
tent that contains the code or sub-components dealing with
the functional code of the application, and the membrane
that contains the objects managing the non-functional (NF)
aspects. In order to better design the non-functional as-
pects but also to better adapt non-functional features at
runtime, we proposed to organise the membrane as a com-
ponent system. A first version of this work was suggested in
the definition of GCM, then the model was refined during
Paul Naoumenko’s PhD thesis [30, 39], [3].

In Fractal, the AOKell [SPC05,SPDC06] framework al-
ready allows the design of NF features as a component sys-
tem, in a non-distributed setting. In AOKell, non-functional
concerns are expressed as components and can be composed
using the Fractal API. However, NF components cannot
be distributed, neither collaborate with object controllers.
Moreover, the membrane is designed and executed as a
composite component entailing one additional level of in-
direction for requests toward the membrane components.
Following AOKell developments, Julia’s Fractal implemen-
tation moved towards components in the membrane; their
approach is similar to the one of AOKell.

Control microcomponents from the Asbaco project [MB05]
are specific components using a control API different from
Fractal’s, and requiring a specific ADL language. Micro-
components are very simple components that do not sup-
port hierarchy, and thus provide efficiency at the expense
of expressiveness of the NF aspects. No reconfiguration of
microcomponents is allowed.

Compared to the preceding approaches, we proposed a
componentisation of the component membrane such that
the NF features can be composed in the same way and with
the same expressing power as functional composition.

First, in order to allow NF aspects to be connected in
the same way as functional ones, we added the possibility
to have NF client interfaces in GCM components. Indeed
Fractal components provide functional client and server in-
terfaces, and only server NF interfaces. Thanks to our new
NF client interfaces, NF interfaces can be bound together
and components can be interconnected also for triggering
NF actions. This enhances the re-usability of components
since cooperation of NF features of different components
can be configured, and even reconfigured dynamically.

Second, we allowed components to be part of the mem-
brane, we extended both the API to allow components to
be added in the membrane, connections to be performed be-
tween membrane components, and more generally between

NF interfaces of components. We also proposed an exten-
sion to the GCM ADL to allow the definition and manage-
ment of componentised membranes. A complete definition
of the new API can be found in [3]. This API has been
implemented as part of ProActive/GCM.

Membrane

component 1

Membrane

component 2

Figure 3.2: Structuring the Non-functional concerns in
GCM

The new membrane structure enabled by our framework
is shown in Figure 3.2. The figure illustrates also the dif-
ferent kind of bindings existing between NF interfaces; one
can notice that there are many more different kinds of bind-
ings for the NF aspects than for the functional aspects. For
example, the two client interfaces of the “Membrane com-
ponent 2” are connected in a very different way: one is
connected to the inside of the composite component, and
the other is connected to the outside world, finally a third
connection for client interface is illustrated by the connec-
tion between “Membrane component 1” and “Membrane
component 2”.

From this implementation and in relation with the Bionets
European project, we experimented our new architecture
for creating and managing at runtime autonomic compo-
nents. The design of autonomic components revealed easier
with our approach. Even more importantly, we were able
to make the management of the components itself evolve at
runtime. We were able for example to plug different adap-

73

tation strategies at runtime, for example depending on the
execution context or on the requirements of the application.

GCM components revealed to be nicely adapted to the
programming of autonomic entities, first thanks to the low
coupling between components offered by active objects, but
also the new design of the membrane makes it easy to pro-
gram decentralised decision systems as bindings between
components responsible for the management of the system
can be changed at design time and at runtime. This makes
component management more adaptive and re-usable.

The component structure of membranes raises a fre-
quent question: ”if the membrane can contain components,
what about the membrane of those components? At which
level of management will componentisation stop?”. In Mi-
crocomponents and AOKell this level is explicitly limited:
microcomponents are very simple and cannot be managed
by components, while in AOKell one further level of man-
agement exists but with limited capacities. In our case, we
envision that a component can be arbitrarily big and we
think that such a limit should depend on the application;
thus we do not enforce a strong limit on the maximum man-
agement level but at some point the application designer
will instead choose that a membrane is only composed of
objects, which gives a limit to the management hierarchy.

Since their creation, componentised membranes have
been reused in the GCM developments, in particular during
the PhD of Cristian Ruz [Ruz11,RBS11] for realising MAPE
(Monitor – Analyse – Plan – Execute) autonomicity loops.
This framework provides a very modular framework for the
autonomic management of applications.

3.3 Reconfiguring distributed compo-

nents

By nature, GCM inherits from Fractal reconfiguration ca-
pacities. The component structure is known at runtime
and can be introspected and modified dynamically. Mainly,
Fractal and GCM provide capacities for adding and re-
moving components inside a composite component, and for
changing bindings between components. However, those
reconfiguration capacities could be better adapted to dis-
tributed loosely coupled components.

As underlined in [Hil04], maintaining integrity during
reconfiguration and adaptation is crucial. More precisely,
in order to be reconfigured, a component assembly should
reach a state where components are stopped, and consid-
ered as easily reconfigurable. In most implementations of
Fractal it is necessary to stop the target components (but

not the whole application) before reconfiguring them. Stop-
ping a component can then be hierarchical (stopping all
sub-components) or not, depending on the implementation.

In the case of GCM/ProActive, components behave asyn-
chronously as they consist of active objects with futures.
We provided an algorithm to stop a ProActive/GCM com-
posite component together with all its subcomponents. The
difficulty in this task is to synchronise several active objects
which provide only weak synchronisation capacities. Ad-
ditionally a stopped component cannot perform any more
operations which can easily lead to a dead-lock during the
stopping process. It is a very challenging task to design
a protocol to stop a GCM component subsystem in a safe
manner and without deadlock. We tried to address this
challenge with Marcela Rivera in [37], and that will be
briefly presented in section 3.3.2.

Once the component has been stopped, existing Frac-
tal/GCM primitives for reconfigurations could be applied,
however, those primitives are rather low-level. Different
approaches can be adopted for designing a reconfiguration
language for distributed components.

First, in [4] we designed GScript, a scripting language
for CCA and GCM components. It provides a scripting
language for high-level orchestration and interaction with
distributed components. GScript programs can trigger re-
configuration of GCM components by direct invocation on
the adequate component interfaces. They can also trigger
any action, including computation, on any port of a CCA
assembly.

Then, we designed a reconfiguration language closer to
GCM [38], it is an extension of FScript [DLLC09, DL06]
dedicated to distributed components. It allows the dis-
tributed interpretation of reconfiguration scripts. Overall
we consider it greatly increases the capacities of FScript
in the context of distributed components by providing the
functionalities necessary to turn a centralised script inter-
pretation into a distributed one, where script for reconfigu-
ration can be interpreted in several components of the sys-
tem, in a parallel and distributed manner.

3.3.1 Related works

In [RP03], the authors provide a framework for dynamic
component reconfiguration on Microsoft .NET environ-
ment. Their reconfiguration capacities are limited to three
basic operations: adding a component, removing a compo-
nent, and setting its attributes. The goal of this work is to
find an algorithm able to reconfigure an application with-
out disrupting the service. Their proposal consists in re-
configuring an application if its components don’t interact

74

and if there are no pending transactions. However, they
do not have an algorithm for stopping the system. The
algorithm blocks the communications in order to reach a
reconfigurable state.

The CASA approach [MG05b] also provides a frame-
work for enabling the development and the execution of
autonomic applications. In this framework Mukhija and
Glinz propose a sequence of steps for dynamic replacement
of some components of a system [MG05a]. The adaptation
policy is defined by a contract written in XML. CASA takes
care of resource allocation, application-level adaptation, but
also lower-level service adaptation. This process doesn’t
apply to our kind of components, but rather to object-like
entities. The communications that go out of the component
to be stopped are marked in our algorithm, which would not
be possible if required interface were not clearly identified
as in CASA. As identified by [CS02], we use dependency in-
formations (in our case provided by the component model)
to efficiently stop and reconfigure the system.

In the context of component models, in [LP04] the au-
thors presents a component-based programming framework.
In this framework the applications can be autonomically
reconfigured to manage the dynamism and uncertainty of
the applications and the environment. They enable the de-
scription of the dynamic replacement / addition / deletion
of components, and the change of interaction relationships.
Autonomic composition and evolution is expressed as a list
of rules. Expressing autonomicity of component systems as
adaptation rules is a quite classical approach. By contrast,
our contribution here is simply to provide a high-level recon-
figuration language that can be used as the effect of rules;
in our work, we make this language adapted to distribution

The works mentioned above do no support hierarchi-
cal components. On the other side, hierarchical component
models like SOFA [HB07] or Fractal [BCL+04] have great
advantages concerning management and design of compo-
nent systems. We focus on such hierarchical models that
already provide the basic primitives for reconfiguration to
increase the safety and the possibilities offered by reconfig-
uration in those distributed component frameworks.

In [TBN+08] an alternative way of safely stopping a
component system is proposed, also for GCM. It builds on
a language for specifying the sequence required to stop a
component system. This sequence is implemented by the
assembler, who is aware of the behaviour of the complete
system. On the contrary, the algorithm presented in the
next section is independent of the component topology, and
does not require any specification from the programmer or
the assembler.

Let us now focus on languages for expressing dynamic
evolution of component systems. We focus on the two clos-
est works: FScript and GScript.

FScript [DL06] is a domain-specific language to program
dynamic reconfigurations of Fractal architectures. FScript
directly triggers actions on the non-functional interfaces of
Fractal components. FScript programs can easily navigate
inside, and reconfigure a Fractal assembly. Each instruction
results in one or several invocations on component inter-
faces, which can either introspect components or reconfig-
ure them. For navigation, FScript uses the FPath notation.
The expressivity of FScript is close to Fractal. In FScript
for example it is not possible to add new interfaces to an
existing component because the Fractal model forbids it.

GScript is a scripting language we presented in [4]. It
provides generic primitives for component configuration and
for triggering communications towards components. Its
main advantage is its generic nature, and its particular sup-
port for Grid deployment. Unfortunately, it is not partic-
ularly targeted at GCM and does not feature specific con-
structs like FScript. That is why we chose in [38] to design
an extension of FScript targeted at the distributed execu-
tion of the reconfiguration scripts.

3.3.2 Stopping components

Considering components are active objects treating incom-
ing requests and replying by means of futures our objective
is to stop a component with all its subcomponents. Then
the subsystem will be in an adequate state to be recon-
figured safely: neither communications, nor any local exe-
cution will be interleaved with the reconfiguration process.
Additionally, to guarantee that no computation is being
performed in the subsystem, we require that all the inner
components of the stopped components are stopped with an
empty request queue. This last condition delays the even-
tual stop of the subsystem but guarantees that it will not
be stopped in the middle of some crucial operations. Also,
without this condition, the stopping protocol becomes much
more difficult to design, if it ever exists ...

If the system cannot be stopped safely, the algorithm
never finishes but does not block, this keeps the integrity
of the system and lets it run normally. It is always possible
to add a non-safe stopping algorithm based on a timeout
to stop any system, but as safety is lost we do not consider
such a solution as reasonable.

Our algorithm relies on the following assumptions rela-
tively to the component model:

• Components do not share memory, and there is no
shared component, i.e. component hierarchy is a tree.

• Components communicate by asynchronous requests
which can be remote method calls or any other asyn-
chronous communication.

75

• All communications are performed using the bindings
defined by the component structure, and respecting
component hierarchy: a component can only commu-
nicate with components at the same level of hierarchy
or with its parent or children.

• The communication mechanism can be instrumented by
adding information to every message.

The reached state is sometimes called quiescent state in
the literature: it is a state where the inner components of
the stopped component have a minimal internal state and
will not trigger any new communication or computation.

We refer the reader to [37], [73] for details on the algo-
rithm, but we explain its principles below.

We call master the component to be stopped, at the
end this component will be stopped, and all its inner com-
ponents (if it has some) will be stopped with an empty
request queue.

A first phase of the stopping protocol consists, for the
master component in marking all outgoing requests. This
phase stops when the master has no more reference to a fu-
ture corresponding to a non-marked request. Consequently,
at the end of this phase, each request sent by (or through)
the master to the outside world will either be finished or
marked. This marking algorithm allows the identification
of re-entrant requests: each marked request may have to
be treated to ensure that the component can be stopped
consequently, each request issued during the treatment of a
marked request is marked too, and in the second phase, the
composite component serves no request coming from the
outside, except marked ones.

In the second phase each inner component should be
stopped with an empty request queue, this is done by some
form of two phase commit. Each component signals when it
is ready to be stopped, i.e. it has no request to serve and is
idle. However a component that was ready might become
non-ready if it receives a request from another non-ready
component. At the end, when all the sub-component are
ready, they will not have any more request to serve, and
the master with all its subcomponents can be stopped in
order to be safely reconfigured.

We experimented this algorithm on two case studies,
trying to stop different components. While experimentally
we verified its good behaviour, and we are convinced that
probably no dead-lock and no live-lock exist in the system,
the component system will be stopped safely, no formal
proof of the correctness of the algorithm has been written.
We however highlighted the properties of the algorithm and
explained informally in [37] why they are verified. Consid-
ering the complexity of the algorithm proving formally its
correctness is a real challenge.

3.3.3 A language for distributed reconfigu-

ration

We also designed a framework dedicated to the reconfigura-
tion of distributed components, and in particular to the re-
configuration of GCM components. When studying the ade-
quacy of languages dedicated to the reconfiguration of com-
ponents to the GCM, we realised that FScript was close to
be adequate but was too much centralised. Indeed, FScript
provides the primitives that are necessary to reconfigure a
component system made of Fractal or GCM components,
but the reconfiguration scripts were designed to be inter-
preted in a centralised manner.

In a distributed component model, it seems more reason-
able to allow the distributed interpretation of scripts: sev-
eral composite components can be responsible for reconfig-
uring their subcomponents independently. This distributed
approach allows parallelism, and thus allows reconfigura-
tion procedures to be run on large-scale infrastructures. It
is also better adapted to program autonomic adaptation
procedures, as each component can embed the adaptation
scripts necessary for its adaptation and trigger them auto-
nomically, when needed.

For this, our approach was quite simple but really effec-
tive, it is based on two extensions of the FScript framework.

A controller for reconfiguration

We added a non-functional port, localised in several
(possibly all) components. This port is able to in-
terpret reconfiguration orders. We called the non-
functional object able to interpret reconfiguration scripts a
ReconfigurationController and embedded it inside the
membrane of the desired components.

This controller embeds itself an instance of the FScript
interpreter and provides a method loadScript for loading
reconfiguration (sub)scripts, and executeAction for trigger-
ing a reconfiguration action.

Note that stopping a component does not stop the mem-
brane and thus a stopped component can still interpret re-
configuration scripts and be reconfigured.

A primitive for distributed reconfiguration

We extended FScript with primitives for triggering the re-
mote execution of reconfiguration scripts. The primitive
remote_call triggers the execution of a reconfiguration ac-
tion on a remote component. The target component is given
by its node, specified as a FPath expression.

76

Upon remote script invocation, if no remote interpreter
is available then one is automatically created by calling the
setInterpreter method on the remote reconfiguration con-
troller. After this call, the target component becomes in
charge of the interpretation of the reconfiguration. Then
the calling interpreter can continue the execution of its local
script. Each reconfiguration script then runs independently.

We also defined some helper functions that extend the
FScript language and revealed to be interesting in the con-
text of a distributed interpretation of reconfigurations. The
most interesting function is a function evaluate that takes
as argument a string that contains a FPath and evaluates
it locally. This function allows the programmer to pass an
FPath as an argument of a remote script interpretation and
interpret it at the destination side (instead of the caller side
if the FPath was not embedded in a string).

3.3.4 Concluding remarks

Those works leaded to very few formal developments even if
the algorithm has been specified in a relatively formal way
allowing it for example to be easily encoded and verified
on a specific example with a model-checker. However the
general proof of validity of this algorithm involves too many
(simple) cases and steps to be convincing by hand, it is also
too complex and relies on too many notions to be encoded
easily in a theorem prover. Additionally, theorem provers
are not particularly suited to encode this kind of algorithm,
where each component has a state, and the decision pro-
cess is a complex stateful procedure. Note however that we
recently made some form of progress on the verification of
distributed protocols/algorithm but in a different context,
as we will show in Section 4.1.

Note that in our reconfiguration framework, when the
reconfiguration action finishes, no automatic notification is
triggered; it is not possible to know automatically whether
a remotely invoked script succeeded or not. However, call-
backs can be used to return the status of the remote script,
and further synchronisation primitives could also be added
to the language to synchronise the different reconfiguration
controllers. One could note that we loose part of the guar-
antees of FScript by our extension: in FScript it is possi-
ble to rollback a failed reconfiguration script. In our ap-
proach we wanted the reconfiguration to be efficient and
the synchronisation between scripts to be lightweight, that
is why we did not provide any distributed rollback mech-
anism. However, if consistency of the reconfiguration is
necessary, it is still possible to interpret a reconfiguration
procedure inside a single script interpreter.

Those contributions have been implemented in the
ProActive/GCM framework, together with several use-
cases like CoCoME [5] which showed that our approach was

effective. Our extension of FScript has been adopted as the
basis for a language for the reconfiguration of GCM com-
ponents: GCMScript.

3.4 A semantics for GCM: specifica-

tion, formalisation and futures

In this section we will review the efforts that we made
around GCM to give it a semantics, and to prove prop-
erties on the component systems. First, one can notice that
neither Fractal nor GCM give any semantics (neither formal
nor informal) to the behaviour at runtime of components.
However, to be able to prove properties on the execution of
component applications, one must rely on some well defined
semantics for the underlying programming language and/or
middleware.

The first work we did in that domain relied directly
on the ASP calculus. It demonstrates how we can go
from asynchronous distributed objects to asynchronous dis-
tributed components, including collective remote method
invocations (group communications), while retaining deter-
minism [26]. It simply consists in expressing the way active
objects can be instantiated from the definition of a com-
ponent system (either keeping the hierarchical structure or
flattening the composition). It expresses quite well the ac-
tive object instantiation of components featured by ProAc-
tive/GCM and relies on a translation from an ADL into an
ASP term.

However we think this work did not enable direct reason-
ing on the component model and on the component system.
That is why we provided a semantics for GCM components,
directly in terms of component behaviour. It relies on no-
tions closed to Actors and active objects to ensure loose
coupling of components, and to give them a data-flow ori-
ented synchronisation.

We need a model for distributed components, and think
it should be based on one key principle: Components are
the unit of concurrency. More precisely, similarly to ac-
tive objects, components only communicate by sending re-
quests or results for those requests, and requests are sent
along bindings. We say that this model is asynchronous
because requests can be treated in an asynchronous man-
ner thanks to the introduction of futures (place-holders for
request results). In order to prevent other communications
or concurrency to occur, we require that components do not
share memory, as explained above this also makes our model
adapted to distribution. From a computational point of
view, components are loosely coupled: the only strong syn-
chronisation consists in waiting for the result of a request,

77

and can be performed only when and where this result is
really needed thanks to the use of futures.

We thus consider the GCM model, where communica-
tion is chosen to be a request / reply mechanism with fu-
tures. Our objective is to provide a programming model
more general than the one adopted in ProActive/GCM,
but more precise than the purely structural GCM defini-
tion. ProActive/GCM can then be considered as a possible
implementation of our model where components are imple-
mented as active objects. However our semantics is more
general for several reasons: first it does not rely on the
notion of objects, and primitive components are just de-
fined by their behaviour, second primitive components do
not need to be mono-threaded, as it is the case for active
objects. Overall our model does not deal explicitly with
states or object manipulation, or with the programming of
basic business code. Instead it composes the behaviour of
the primitive components by giving a semantics to the com-
munications and to the composition.

3.4.1 Informal semantics

We presented in [41] a component semantics and its formal-
isation based on the idea that interaction between compo-
nents is limited to communications, and more precisely to a
request/reply mechanism. We present below the principles
of this semantics. Its formalisation in Isabelle/HOL is then
presented in a paper included below.

Communication

The basic communication paradigm we consider is asyn-
chronous message sending: upon a communication the mes-
sage is enqueued at the receiver side in a queue. To prevent
shared memory between components, messages can only
transmit parameters which are copied at the receiver side;
no object or component can be passed by reference.2 This
communication semantics is similar to requests in an ac-
tive object models and actors. We call requests messages
sent between components. References to components can-
not be passed between components, for example, method
parameters cannot contain references to components. More
precisely, only non-functional features should be able to ma-
nipulate component and interface references, but we do not
describe them for the moment.

2To be precise, only futures are passed by reference, because their
value will be finally transmitted by a copy semantics.

Returning results

We call our component model asynchronous because com-
munication does not trigger computation on the receiver
side immediately, it just enqueues a request. However
such a mechanism can be implemented with synchronous
or asynchronous communications. Like in ASP, we con-
sider here that enqueueing a request is done synchronously
but the receiver component is always ready to enqueue a
request. This has the great advantage to ensure causal or-
dering [CBBM+96] of messages. To allow for transparent
asynchronous requests with results, we use transparent first-
class futures à la ASP. Remember this means that futures
are created automatically, can be transmitted between com-
ponents, and are subject to wait-by-necessity.

Primitive component behaviour

Request queue

Result list

In
c
o
m

in
g

R
e
q
u
e
s
ts

Request

service

End of

service

Results returned to other components

Request sent

Results received from other components

Figure 3.3: Component behaviour

The primitive components encapsulate the business
code, thus in our model we consider they can have, inter-
nally, any behaviour. They will serve requests in the order
they wish, providing answer for all the requests they receive.
They can call other components by emitting a request on
one of the client interfaces. However, each primitive compo-
nent must always be able to accept a request (that will just
be enqueued in its request queue), and to receive a result
(that will replace a future reference by the received value).

Figure 3.3 illustrates a primitive component and its be-
haviour. A primitive component consists of a request queue,
a content, a membrane, and a result list. Its content con-
tains the business code that serves the requests; requests
arrive from the server interfaces on the left and are emitted
by the client interface on the right. An incoming request is

78

enqueued immediately; it is always associated with a future
identifier. Later this request is served and treated by the
component content, possibly emitting new requests to the
clients. When the service is finished and a value is calcu-
lated for the result, this value is stored in the result list: the
future for the request now has a value, which is the newly
calculated result. The calculated value can itself contain
references to other futures. Later, the result will be sent
from the result list to the components that hold a refer-
ence to the corresponding future. As future references can
spread in all the components, including requests, results,
and current component states, received results are used to
update future references in all parts of the component. In
principle, like in ASP, future values can be returned at any
time, however we performed a study of different strategies
for returning future values and formally specified some of
them (see Section 3.4.2).

In our model, a given thread manipulates a single com-
ponent, but nothing prevents our components from being
multi-threaded, and a component can serve several requests
at the same time.

Composite component behaviour

i 1
i 2

R
e
q
u
e
s
t(
f)

f

f'=f

f'Request(f')

Figure 3.4: Request delegation

The behaviour of the primitive components is highly
parameterised because they contain the application logic.
By contrast, composite components have a predefined be-
haviour because they are only used as composition tools and
the programmer expects them to only transmit the requests
according to the specified composition. Composite compo-
nents serve requests in a FIFO order, delegating request
to the bound components or to the external ones. Glob-
ally, a request emitted by the client interface of a primitive
component will be sent unchanged to the server interface of
the primitive component that is bound to it, following one
or several binding (several bindings are used when several

composite components are crossed). The composite com-
ponent performs almost no computation: it only delegates
calls immediately.

The delegation of requests from a composite component
to its sub-component is illustrated by Figure 3.4. Consider
one request (associated with the future f). Suppose the re-
quest has been received from the outside of the composite,
i.e., it was received on an external server interface. There is
necessarily an internal client interface matching this exter-
nal one. Handling the requests consists in sending another
request from the internal client interface matching the in-
terface that receives the request (i1). This request is sent
to the interface bound to i1, i2 in the figure; this inter-
face necessarily belongs to an inner component. This new
request corresponds to a future f ′, and the result for the
first one is just a reference to f ′, denoted f = f ′ in the fig-
ure. In case the request was received from the inside of the
composite, the mechanism is similar: the request received
at the internal server interface is delegated to the matching
external client interface, through the composite component
request queue.

An alternative approach would consist in implementing
a delegation mechanism allowing a component to delegate
the calculation of a result to another component, like han-
dlers of [NSS06]. More precisely, with delegation, a compo-
nent could state that it is a role of another component to
give the answer for a request (f in the example) instead of
stating that the result of the request is known but is another
future (f = f ′ in the example). However, we did not choose
this technique in order to avoid introducing a new mecha-
nism, but also to ensure that the component calculating a
value for a given future will not change along time.

Mono-threaded components

While our specification allows multi-threading (or cooper-
ative multi-threading à la Creol), the ProActive/GCM im-
plementation of the component model is single-threaded as
it relies on active objects à la ASP. As in active objects,
this can create deadlocks in case of cycle of dependencies
between requests (sort of re-entrance problem).

Also in ProActive/GCM, composite themselves are ac-
tive objects, and inside composites first-class futures are
necessary to avoid an almost systematic deadlock. Indeed,
in a first ProActive/GCM implementation first-class futures
were not activated by default, and the component applica-
tions almost systematically deadlocked.

To understand the reason of this synchronisation prob-
lem, consider the example component of Figure 3.5. In this
example, a request Foo() arrives in the composite compo-
nent from the left. The request is delegated to the sub-
component that is a primitive. The primitive performs a

79

Foo()

{

 CI.Bar().getF();

}

i 1
i 2

f''

R
e
q
u
e
s
t(

f)
:

F
o
o
()

f

f'=f

f'Request(f'):

Foo()

Request(f''):

Bar()

Figure 3.5: Why first-class futures are necessary inside com-
posites.

call on its client interface (Bar request), and accesses the
result (getF method call). The call on the client inter-
face passes through the composite again to be sent to an-
other component. Consider now the case where the com-
posite is an active object without first-class futures. The
service of request Foo() in the composite consists in re-
turning the result of the call delegated to the primitive, in
Java, the method Foo of the composite simply performs a:
return Primitive.Foo(); As futures are not first class,
the composite is stuck waiting for the result of this invoca-
tion and cannot handle the request Bar(). Both the prim-
itive and the composite components are stuck. If on the
contrary futures are first-class, the composite can return
the future corresponding to the delegated Foo request to
the invoker, and consequently serve the Bar request, send-
ing it to an outside component. This real-life example shows
the importance of first-class futures in our context. Con-
sequently, and thanks to the properties we proved on ASP,
first-class futures are now activated by default in ProActive.

3.4.2 Paper from FMCO 2009

We wrote a formal version of the semantics described above
in [41]. This semantics was specified in Isabelle/HOL and
extended in [44] to specify a given future update strategy
and prove its properties. In a formal semantics the mo-
ment when the reply rule is applied can be unspecified,
allowing a future value to be sent at any time. However,
in the context of a real implementation a protocol should
specify when future values are to be returned. We call such
a protocol a future update strategy.

The main future update strategies, first mentioned in [1]
were precisely defined and experimented during Muham-
mad Khan PhD thesis [45]. One strategy was then speci-

fied in Isabelle/HOL [44] and proved to be correct and com-
plete. The article below [43] presents the formalisation in Is-
abelle/HOL of the GCM component structure that allowed
us to perform all those proofs. Additionally to the structure
this article shows that it is possible to reason on component
structure of components at runtime with our framework. It
is important to note that comparatively to GCM our spec-
ification misses the collective interfaces (one-to-many and
many-to-one), the collection interfaces of Fractal, and the
non-functional structure. Those could be added in the fu-
ture, but already we showed that our model was sufficient
to formalise crucial proofs on the component framework.
The reader is referred to the article below for a study of
the closest related works on the specification of component
models.

The formalisation of the GCM component model in
Isabelle/HOL is available at: www-sop.inria.fr/oasis/

Ludovic.Henrio/misc.html

Our definition of components being both precise and
formalised, we expect it to be a strong guide and a reliable
basis for both component system implementations and the
proof of their properties.

80

A Framework for Reasoning on Component

Composition

Ludovic Henrio1, Florian Kammüller2, and Muhammad Uzair Khan1

1 INRIA – CNRS – I3S – Université de Nice Sophia-Antipolis
{mkhan,lhenrio}@sophia.inria.fr

2 Institut für Softwaretechnik und Theoretische Informatik – TU-Berlin
flokam@cs.tu-berlin.de

Abstract. The main characteristics of component models is their strict
structure enabling better code reuse. Correctness of component compo-
sition is well understood formally but existing works do not allow for
mechanised reasoning on composition and component reconfigurations,
whereas a mechanical support would improve the confidence in the ex-
isting results. This article presents the formalisation in Isabelle/HOL of
a component model, focusing on the structure and on basic lemmas to
handle component structure. Our objective in this paper is to present
the basic constructs, and the corresponding lemmas allowing the proof
of properties related to structure of component models and the handling
of structure at runtime. We illustrate the expressiveness of our approach
by presenting component semantics, and properties on reconfiguration
primitives.

Keywords: Components, mechanised proofs, futures, reconfiguration.

1 Introduction

Component models focus on program structure and improve re-usability of pro-
grams. In component models, application dependencies are clearly identified by
defining interfaces (or ports) and connecting them together. The structure of
components can also be used at runtime to discover services or modify compo-
nent structure, which allows for dynamic adaptation; these dynamic aspects are
even more important in a distributed setting. Since a complete system restart
is often too costly, a reconfiguration at runtime is mandatory. Dynamic replace-
ment of a component is a sensitive operation. Reconfiguration procedures often
entail state transfer, and require conditions on the communication status. A
suitable component model needs a detailed representation of component orga-
nization together with precise communication flows to enable reasoning about
reconfiguration. That is why we present here a formal model of components
comprising both concepts.

This paper provides support for proving properties on component models in a
theorem prover. Our objective is to provide an expressive platform with a wide
range of tools to help the design of component models, the creation of adapta-
tion procedures, and the proof of generic properties on the component model.

F.S. de Boer et al. (Eds.): FMCO 2009, LNCS 6286, pp. 1–20, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

2 L. Henrio, F. Kammüller, and M.U. Khan

Indeed most existing frameworks focus on the correctness or the adaptation of
applications; we focus on generic properties.

In this context, introduction of mechanised proofs will increase confidence in
the properties of the component model and its adaptation procedures. We start
from a formalisation close to the component model specification and implemen-
tation; then we use a framework allowing us to express properties in a simple
and natural way. This way, we can convince the framework programmer and the
application programmer of the safety of communication patterns, optimisations,
and reconfiguration procedures.

We write our mechanised formalisation in Isabelle/HOL but we are convinced
that our approach can be adapted to other theorem provers. The generic meta-
logic of Isabelle/HOL constitutes a deductive frame for reasoning in an object
logic. Isabelle/HOL also provides a set of generic constructors, like datatypes,
records, and inductive definitions supporting natural definitions while automat-
ically deriving proof support for these definitions. Isabelle has automated proof
strategies: a simplifier and classical reasoner, implementing powerful proof tech-
niques. Isabelle, with the proof support tool Proofgeneral, provides an easy-
to-use theorem prover environment. For a precise description of Isabelle/HOL
specific syntax or predefined constructors, please refer to the tutorial [20].

We present here a framework that mechanically formalizes a distributed hi-
erarchical component model and its basic properties. We show that this frame-
work is expressive enough to allow both the expression of component semantics
and the manipulation of the component structure. Benefiting from our experi-
ences with different possible formalisations, and from the proof of several compo-
nent properties, we can now clearly justify the design choices we took and their
impact1. The technical contributions of this paper are the following:

– formal description in Isabelle of component structure, mapping component
concepts to Isabelle constructs,

– definition of a set of basic lemmas easing the proof of component-related
properties,

– additional constructs and proofs to ensure well-formedness of component
structures,

– proposal for a definition of component state, and runtime semantics for com-
ponents communicating by asynchronous request-replies,

– application to the design and first proofs about component reconfiguration.

The remainder of the paper is organised as follows. Section 2 gives an overview
of the context of this paper: it positions this paper relatively to related works
and previous works on the formalisation of the GCM component model, which
is also described in Section 2.2. Section 3 presents the formalisation of the com-
ponent model in Isabelle/HOL highlighting design decisions and their impact on
the basic proof infrastructure. We then summarize a semantics for distributed
components with its properties, and present a few reconfiguration primitives in
Section 4.1. Section 5 concludes and presents future directions.

1 The GCM specification framework is available at

www.inria.fr/oasis/Ludovic.Henrio/misc

file://localhost/Users/lhenrio/tmp/www.inria.fr/oasis/Ludovic.Henrio/misc

A Framework for Reasoning on Component Composition 3

2 Background

Component modelling is a vast domain of active research, comprising very ap-
plied semi-formal approaches to formal methods. In this section, we first give an
overview of the domain, starting from well-known approaches, summarizing some
community activities, and focusing on the most relevant related works. Then we
present the GCM component model and existing formalisation of GCM. Finally
we position this paper relatively to the other approaches presented here.

2.1 Related Work

Some well-known component models like CCA [11] are not hierarchical – their
intent is the efficient building, connecting and running of components but they
neglect structural aspects. We rather focus on hierarchical component models
like Fractal[6], GCM[4], or SCA[5].

Recent years have shown several opportunities for the use of formal methods
for the modelling and verification of component-based applications as shown in
several successful conferences like FMCO, FOCLASA, or FACS.

For example, in [8, 9] the authors investigate the use of formal methods to
specify interface adaptation and generation of interface adaptors, based on be-
havioural specification of interfaces to be connected. Also, in [10, 3] the authors
focus on the verification of the behaviour of component-based application. They
provide tools to specify the behaviour of a component application, and check that
this application behaves correctly. Their model is applied to the GCM component
model too but they prove properties of specific applications whereas we formalise
the component model itself. In [18], the authors present a comprehensive formal-
isation of the Fractal component model using the Alloy specification language.
Additionally, the consistency of resulting models can be verified through the au-
tomated Alloy Analyzer. These contributions are close to our domain but focus
on the use of formal methods to facilitate the development and ensure safety of
component applications, while our aim is to provide support for the design of
component models and their runtime support.

SCA (Service Component Architecture) [5] is a component model adapted
to Service Oriented Architectures. It enables modelling service composition and
creation of service components. FraSCAti [21] is an implementation of the SCA
model built upon Fractal making this implementation close to GCM. It pro-
vides dynamic reconfiguration of SCA component assemblies, a binding factory,
a transaction service, and a deployment engine of autonomous SCA architecture.
Due to the similarity between FraSCAti and GCM, our approach provides a good
formalisation of FraSCAti implementation. There are various approaches on ap-
plying formal and semi-formal methods to Service Oriented Architectures (SOA)
and in particular SCA. For example, in the EU project SENSORIA [1] dedicated
to SOA, they propose Architectural Design Rewriting to formalize development
and reconfiguration of software architectures using term-rewriting [7].

Creol [15, 16] is a programming and modelling language for distributed sys-
tems. Active objects in Creol have asynchronous communication by method calls

4 L. Henrio, F. Kammüller, and M.U. Khan

and futures. Creol also offers components; the paper [12] presents a framework
for component description and test. A simple specification language over commu-
nication labels is used to enable the expression of the behaviour of a component
as a set of traces at the interfaces. Creol’s component model does not support
hierarchical structure of components. In [2], the authors present a formalisation
of the interface behaviour of Creol components. Creol’s operational semantics
uses the rewriting logic based system Maude [19] as a logical support tool. The
operational semantics of Creol is expressed in Maude by reduction rules in a
structural operational semantics style enabling testing of model specifications.
However, this kind of logical embedding does not support structural reasoning.

2.2 Component Model Overview

Our intent is to build a mechanised model of the GCM component model [4], but
giving it a runtime semantics so that we can reason on the execution of compo-
nent application and their evolution. Thus we start by describing the concepts
of the GCM which are useful for understanding this paper. We will try in this
paper to distinguish clearly structural concepts that are proper to any hierar-
chical component model and a runtime semantics that relies on asynchronous
requests and replies. Structurally, the model incorporates hierarchical compo-
nents that communicate through well defined interfaces connected by bindings.
Communication is based on a request-reply model, where requests are queued at
the target component while the invoker receives a future. The basic component
model has been presented in [13] and is summarized below.

Component Structure. Our GCM-like component model allows hierarchical
composition of components. This composition allows us to implement a coarse-
grained component by composition of several fine-grained components. We use
the term composite component to refer to a component containing one or more
subcomponents. On the other hand, primitive components do not contain other
components, and are leaf-level components implementing business functionality.
A component, primitive or composite, can be viewed as a container comprising
two parts. A central content part that provides the functional characteristics
of the component and a membrane providing the non-functional operations.
Similarly, interfaces can be functional or non-functional. In this work and in the
following description, we focus only on the functional content and interfaces.

The only way to access a component is via its interfaces. Client interfaces
allow the component to invoke operations on other components. On the other
hand, Server interfaces receive invocations. A binding connects a client interface
to the server interface that will receive the messages sent by the client.

For composite components, an interface exposed to a subcomponent is referred
to as an internal interface. Similarly, an interface exposed to other components
is an external interface. All the external interfaces of a component must have
distinct names. For composites, each external functional interface has a corre-
sponding internal one. The implicit semantics is that a call received on a server

A Framework for Reasoning on Component Composition 5

!"#$#%#&'
()$!)*'*%

+)$!),#%'-()$!)*'*%

!"#$#%#&'-
()$!)*'*%

.

./

0%1

0%1/

[N.itf,N ′.itf ′] ∈ bindings

23%'"*45

0*%'"14('
67'$8"4*'9

6+)*%'*%9

0*%'"*45

0*%'"14('

Fig. 1. component composition

!"#$"%&'#$"$"

!"%$(&%'

)*
+
,
-
.*
/

!
"
#
$
"
%
&%

01"+$&.,*'234"56'

7%"48.*/'4"#$"%&%9 :
$
&'
/
,
.*
/
'

!
"
#
$
"
%
&%

;"48"4'

)*&"4<5+"

=(."*&

)*&"4<5+"

Fig. 2. component structure

external (resp. internal) interface will be transmitted – unchanged – to the cor-
responding internal (resp. external) client interface.

The GCM model allows for a client interface to be bound to multiple-server
interfaces. For the moment, in our model, we restrict the binding cardinality
such that bindings connect a client to a single server. Note that several bindings
can anyway reach the same server interface.

Figure 1, shows the structure of a composite component. The composite com-
ponent contains two primitive subcomponents N and N ′. The binding (N.itf,
N ′.itf ′) connects the client interface itf of subcomponent N to the server inter-
face itf ′ of subcomponent N ′.

Communication Model. Our GCM-like components use a simple communi-
cation model relying on asynchronous request and replies, as presented in [13].
Communication via requests is the only means of interaction between compo-
nents. We avoid shared objects or component references, and use a pass-by-copy
semantics for request parameters. A component receives the requests on its ex-
ternal server interface. The received requests are then enqueued in the request

queue, which holds the messages until they can be treated.
Our communication model is asynchronous in the sense that the requests are

not necessarily treated immediately upon arrival. Requests are only enqueued
at the target component, then the component invoking the request can con-
tinue its execution without waiting for the result. Enqueuing a request is done
synchronously but the receiver is always ready to receive a request. To ensure
transparent handling of asynchronous requests with results, we utilise futures.
Futures are created automatically upon request invocation and represent the re-
quest result, while the treatment of the request is not finished. Once the result of
the computation is available, the future is replaced by the result value. Futures
are first class objects: they can be transferred as part of requests or results.

Figure 2 gives the internal structure of a component. Incoming requests are
enqueued in the request queue. The requests are dequeued by the execution
threads, when computed; the results are placed in the results list.

6 L. Henrio, F. Kammüller, and M.U. Khan

Component Behaviour. In our model, the primitive components represent
the business logic and can have any internal behaviour. Primitive components
treat all the requests they receive, choosing a processing order and the way
to treat them. On the other hand, the behaviour of a composite component is
more restricted: it is strictly defined by its constituent subcomponents and the
way they are composed. A composite component serves its requests in a FIFO
manner, delegating them to other components bound to it. A delegated request
is delivered unchanged to the target component. Once the service of a request
is finished, the produced result is stored in the computed results for future use.
It can then be transmitted to other components, as determined by the reply
strategy [17, 14].

2.3 Positioning

This paper provides formalisation of hierarchical components and their structure.
At our level of abstraction, this structure is shared by several component levels
like Fractal, GCM, and SCA. However most implementations of SCA (except
FraSCAti) do not instantiate the component structure at runtime. By contrast,
to allow component introspection and reconfiguration at runtime, we consider a
specification where structural information is still available at runtime. This en-
ables adaptive and autonomic component behaviours. Indeed, component adap-
tation in those models can be expressed by reconfiguration of the component
structure. For example, reconfiguration allows replacement of an existing com-
ponent by a new one, which is impossible or very difficult to handle in a model
where component structure disappears at runtime.

Most existing works on formal methods for components focus on the support
for application development whereas we focus on the support for the design and
implementation of component models themselves. To our knowledge, this work
is the only one to support the design of component models in a theorem prover.
It allows proving very generic and varying properties ranging from structural
aspects to component semantics and component adaptation.

A formalisation of our communication model along with the component se-
mantics appear in [13]. An extended version of the formal semantics is presented
in [14], providing formalisation of one particular reply strategy. Other possible
strategies are discussed in [17]. Compared to our previous works, this paper relies
on the experience gained in specification and proof and demonstrated in [13, 14]
to design a framework for supporting mechanised proofs for distributed compo-
nents. In particular this paper focuses on the handling of component structure,
on a basic set of lemmas providing valuable tooling for further proof, and the
illustration of the presented framework to prove a few properties dealing with
component semantics and reconfiguration.

3 Formalisation of Component Model in Isabelle/HOL

Our component model is a subset of the GCM component model, but with a pre-
cisely defined structure and semantics. It incorporates hierarchical components

A Framework for Reasoning on Component Composition 7

that communicate via asynchronous requests and replies. We start with formalis-
ing the structure of our components. Based on the structure defined, we present
some of the various infrastructure operations that allow us to manipulate the com-
ponents for proving properties. Then we formalise additional constructs to define
component’s state and request handling, and correctness of a component assem-
bly. Finally we provide a set of very useful lemmas dealing with component struc-
ture and component correctness.

3.1 Component Structure

As we have seen in Section 2.2, a component in our model can either be a
composite or primitive. A composite component comprises one or more subcom-
ponents. On the other hand, a primitive component is a leaf-level component
encapsulating the business logic.

datatype Component = Primitive Name Interfaces PrimState

| Composite Name Interfaces (Component list) (Binding set) CompState

The above Isabelle/HOL datatype definition for Components has two construc-
tors Primitive and Composite. We present below the various elements that
make up the structure of our components.

Name: Each component has a unique name. We use this name as the compo-
nent identifier/reference.

Interfaces: Each component has a number of public interfaces. All commu-
nication between components is via public interfaces. An interface can be either
client or server and by construction a component cannot have two interfaces
with the same name.

Subcomponents: Composite components have a list of subcomponents, given
by the Component list parameter. Primitive components do not have subcom-
ponents.

Bindings: In composite components, a binding allows an interface of one
component to be plugged to an interface of a second component. (N1.i1,

N2.i2)∈bindings if the interface i1 of component N1 is plugged to the in-
terface i2 of N2 where N1 or N2 can either be component names or This if the
plugged interface belongs to the composite component that defines the binding.

State: All components, primitive or composite have an associated state.
Component state is discussed in more detail in Section 3.3.

Design decisions. In the Isabelle/HOL formalisation we chose to include the
name of the component into the component itself. Like for interfaces, a first
intuitive approach could be rather to define subcomponents as mappings from
names to components. There are, however, major advantages to our approach.
When we reason about a component we always have its name, which makes
the expression of several semantic rules and lemmas more natural. The main
advantage of maps is the implicit elegant encoding of the uniqueness of Name(s).
As mentioned before, Name(s)are used as component references. Unfortunately,
this advantage of maps is quite low in a multi-layered component model because

8 L. Henrio, F. Kammüller, and M.U. Khan

a map can only serve one level. As we want component names to be unique
globally, a condition on name uniqueness is necessary.

Subcomponents are defined as lists rather than finite sets because lists come
with a convenient inductive reasoning easing proofs involving component struc-
ture. Of course it is easy to define an equivalence relation to identify components
modulo reordering. On the contrary the bindings of a component are defined as
a set because no inductive reasoning is necessary on bindings, and sets fit better
to the representation of this construct.

Having a formalisation of component structure alone, although useful, is not
sufficient. An adequate infrastructure needs to be developed to help in reasoning
on the component model. The next section describes some of the infrastructure
operations that allow us to manipulate components inside component hierarchies.

3.2 Efficient Specification of Component Manipulation

This section provides various operations that allow us to effectively manipulate
components. These include operation for accessing component fields, mecha-
nisms for traversing component hierarchies, and means for replacing and up-
dating components inside the hierarchical structure. All these operations are
primitive recursive functions enabling an encoding in Isabelle/HOL using the
primrec feature. Using this feature has great advantages for the automation of
the interactive reasoning process. Automated proof procedures of Isabelle/HOL,
like the simplifier, are automatically adapted to the new equations such that
simple cases can be solved automatically. Moreover, the definitions themselves
can use pattern matching leading to readable definitions.

Field access. We define a number of operations for accessing various fields. These
include the function getName that returns the Name of the component.

primrec getName:: Component ⇒ Name where

getName (Primitive N itf s) = N |

getName (Composite N itf sub b s) = N

Similarly, we define getItfs , getQueue, and getComputedResults for getting
interfaces, request queues and replies. Requests and replies are part of the com-
ponent state described in Section 3.3.

Accessing component hierarchy. In order to support hierarchical components,
we need a number of mechanisms to access components inside hierarchies. These
range from simply finding a suitable component inside a component list to up-
dating the relevant component with another component. The most useful of
these operations are detailed below.
cpList: returns a list of all subcomponents of a component recursively. It uses
the predefined Isabelle/HOL list operators # for constructing lists and @ for
appending two lists. Note that the following primitive recursive function is mu-
tually recursive and needs an auxiliary operation dealing with component lists.

A Framework for Reasoning on Component Composition 9

primrec cpList:: Component ⇒ Component list and

cpListlist:: Component list ⇒ Component list

where

cpList (Primitive N itfs s) = [(Primitive N itfs s)] |

cpList (Composite N itfs subCp bindings s) =

(Composite N itfs subCp bindings s)#(cpListlist subCp) |

cpListlist [] = [] |

cpListlist (C#CL) = (cpList C)@ cpListlist CL

CpSet: gives a set representation of the cpList of a component. This allows us
to write properties in a much more intuitive way, for example, quantifying over
sub-components is easily written as ∀ C’∈ CpSet(C). Note however that a few
proofs require to stick to the CpList notation; indeed when switching to cpSet
construct, one cannot reason on the coexistence of two identical components.

constdefs :: Component ⇒ Component set

cpSet C == set (cpList C)

getCp: allows for retrieving a given component from a component list based on
the component Name. The constructors Some and None represent the so-called
option datatype enabling specifications of partial functions. Here, a component
with the given name might not be defined in the list – this is nicely and efficiently
modelled by a case distinction over the option type. Note the definition of ^ as
an infix operator synonymous for getCp. This so-called pretty printing syntax
of Isabelle supports natural notation of the form CL^N= Some C’.

primrec getCp:: Component list ⇒ Name ⇒ Component option where

getCp [] N’ = None |

getCp (C#CL) N’ = if (getName C=N’) then Some C else (CL^N’)

changeCp CL C: written CL<-C replaces the component in the list CL that has
the same name as C by C; it does nothing if there is no component with the given
name.

primrec changeCp::Component list⇒ Component⇒ Component list where

changeCp [] C = [] |

changeCp (C#CL) C’ = if getName C=getName C’ then C’#CL else C#(CL<-C’)

removeSubCp C N: removes the subcomponent of C with name N but does
nothing if there is no subcomponent with this name. Note, here the use of a
case switch supporting again pattern matching in Isabelle/HOL definitions.

primrec removeSubCp:: Component ⇒ Name ⇒ Component where

removeSubCp (Primitive N itf s) N’ = (Primitive N itf s) |

removeSubCp (Composite N itf sub b s) N’ = (case sub^N’ of

None => (Composite N itf sub b s) |

Some C => Composite N itf (remove1 C sub) b s)

Similar operations are needed for dealing with requests and results. This includes
operations for building lists of all referenced requests inside a component (and

10 L. Henrio, F. Kammüller, and M.U. Khan

its subcomponents), finding a result for a given future inside a component hier-
archy, etc. In all we provide almost 30 functions and predicates to help express
structured component specifications efficiently.

Design decisions. It is crucial for the reasoning process whether one chooses
lists or sets to represent various parts of the specified component structure. As
we have seen above the basic infrastructure we have built up to handle our
hierarchical components is mainly based on lists. Consequently, we can define
operations over components and their constituents by primitive recursion and
thereby decisively improve automated support. However, sets come with a more
natural notation. Often set theoretic properties can be simply decided by boolean
reasoning that poses no problems for logical decision procedures integrated in
Isabelle/HOL, and Isabelle/HOL comes with numerous lemmas for reasoning
on sets. On the other side, inductive reasoning on finite sets is less convenient
than on lists. In places where we want to combine the merits of both worlds, the
CpSet function provides a convenient translation.

3.3 Component State

Our component model shall not only allow structural reasoning on hierarchical
components but also reasoning about dynamic component state. While the pre-
ceding sections provided a good formalisation valid for any hierarchical compo-
nent model, we now define component state in order to support communication
by request and replies. Those constructs are used to define our component se-
mantics, as shown in Section 4.1. Let us first focus on the high level definition of
states which provide the constructs relating the component structure with the
dynamic semantics2. We show below the two types of component states (for com-
posite and primitive components) used in the definition of Component presented
in Section 3.1.

record CompState = record PrimState =

Cqueue:: Request list Pqueue:: Request list

CcomputedResults:: Result list PcomputedResults:: Result list

PintState:: intState

behaviour:: Behaviours

Each state contains a queue of pending requests, and a list of results computed by
this component. Additionally, primitive components have an internal state and
a behaviour for encoding the business logic, see below. We use the Isabelle/HOL
record type constructor here; it automatically defines field projection as func-
tions, e.g. for a Compstate s, (Cqueue s) accesses its request queue. Note that
uniqueness of fields identifier required us to add a ’C’ or ’P’ prefix to fields of
component states to distinguish them.

The definition of the component state relies on the definitions of requests
(characterized by a future identifier, a parameter, and a target interface), and
results (characterized by the future identifier and its value).

2 The real definition of component states contains additional fields; only the fields of

interest for this paper are shown here.

A Framework for Reasoning on Component Composition 11

record Request = record Result =

id::Fid fid::Fid

parameter:: Value fValue:: Value

invokedItf:: Name

An interesting construct is the representation of component behaviour. Each
primitive component has an internal state. A behaviour specifies how a primitive
component passes from an internal state to another. It is defined as a labeled
transition system between internal states of a component:

typedef Behaviours={ beh::(intState × Action × intState) set.

(∀ s s’. ((s,Tau,s’)∈ beh −→ (set (PRqRefs s’)⊆set (PRqRefs s))

∧ PcurrentReqs s’ = PcurrentReqs s)) ∧

. . . }

The type Behaviours is defined as a set of triples (internal state, action, internal
state). In our case actions are: internal transition (Tau, shown here), request
service, request emission, result reception, and end of service which associates a
result to a request. More than the precise definition of our actions, it is interesting
to focus on the way behaviour can be defined and further refined by constraints.
Additional rules are specified to restrain the possible behaviours, preventing
incorrect transitions to occur; for example, we forbid replying to a non-existing
request. In the piece of code above we require conditions on the internal state
before and after an internal transition: the set of referenced futures can only be
smaller after an internal transition, and the set of currently served requests is
unchanged. More complex conditions are imposed for other actions.

Design decisions. Isabelle/HOL extensible records are the natural choice for
representing states, requests, and results. They are better suited than simple
products because they support qualified names implicitly. We did, however, not
use the additional extension property of records which is similar to inheritance
known from object-orientation. It could have been used to factor out the shared
parts of primitive and composite components but this is not worthwhile – prop-
erties specific to the shared parts are few. Hence, there is practically no overhead
caused by duplicating basic lemmas. The use of lists for requests and results is
important for the efficient specification and proof of structural properties (see
the design decisions in the previous section). The definition of behaviours in
the internal state of primitive components uses an Isabelle/HOL type definition.
This way, we can encapsulate the predicate defining the set of all well-formed
behaviours into a new HOL type. These constraints are thereby implicitly car-
ried over and can be re-invoked by using the internal isomorphism with the set
Behaviours.

3.4 Correct Component

We presented the structure of our components in Section 2.2, while the various
constructs designed to manipulate hierarchical components appear in Section 3.2.

12 L. Henrio, F. Kammüller, and M.U. Khan

However, we only reason on a subset of all possible components that can be
constructed according to the described component structure. We refer to this
subset of components as correct components. Correct components are not only
well-formed, but they adhere to some additional constraints. The various well-
formedness rules along with the correctness constraints are presented in the
following.

We start with specifying the structure of a well-formed component. A com-
posite component is considered as correctly structured if it passes the criteria
specified by the function CorrectComponentStructure given below.

primrec CorrectComponentStructure :: Component ⇒ bool where

CorrectComponentStructure (Composite N itfs sub b s) =

((∀ b∈ bindings.(GetQualified(src b) (Composite N itfs sub b s =

Some ! kind=Client,cardinality=Single")
∧ (GetQualified(dest b)(Composite N itfs sub b s) =

Some! kind=Server,cardinality=Single"))
∧ NoDuplicateSrc b

∧ distinct (map getName sub)

∧ (∀ Q∈ set (Cqueue s). (invokedItf Q)∈ dom itfs

∧ kind (the (itfs (invokedItf Q))) = Server)

A composite component has a correct structure if: each binding only connects
an existing client interface to another existing server interface; each client in-
terface is connected only once; all subcomponents have distinct names; and all
requests in the request queue of the composite refer to existing server interfaces.
A primitive component has a correct structure if it follows the last requirement
plus a couple of constraints relating its behaviour with its interfaces.

constdefs CorrectComponent :: Component ⇒ bool

CorrectComponent c == CorrectComponentStructure c ∧ distinct(RqIdList c)

∧ (ReferencedRqs c) ⊆ (set(RqIdList c))

∧ distinct (map getName (cpList c))

∧ (∀ f∈ set (RqIdList c). snd f ∈ set(map getName(cpList c)))

A correct component is a correctly structured component that also has uniquely
defined request identifiers (RqIdList c gives all requests computed by c and
its subcomponents), and all future referenced by the components should cor-
respond to an existing request. Finally, names of all components in the com-
position should be unique. This differs from the well-formedness requirement
which only requires the names of all direct subcomponents to be unique. The
requirement of checking correct future referencing throughout the composition
hierarchy is stronger than what is needed for most proofs, and can at times be
relaxed resulting in a weaker correctness requirement CorrectComponentWeak.
CorrectComponentWeakList gives similar constraints but for a list of compo-
nents. Using CorrectComponentWeak eases proofs involving component
hierarchy because if a component verifies CorrectComponentWeak then all its
subcomponents also verify it.

A Framework for Reasoning on Component Composition 13

constdefs CorrectComponentWeak:: Component ⇒ bool

CorrectComponentWeak c == CorrectComponentStructure c

∧ distinct (RqIdList c) ∧ distinct (map getName(cpList c))

constdefs CorrectComponentWeakList:: Component list ⇒ bool

CorrectComponentWeakList CL == (CorrectComponentStructureList CL)

∧ distinct (RqIdListList CL)∧ distinct (map getName (cpListlist CL))

3.5 Basic Properties on Component Structure and Manipulation

In this section, we present a few properties that we proved. They deal with
the constructs presented in Section 3.2, and are unrelated to our definition of
states presented in the last section. Those lemmas are the basic building blocks
on which most of our proofs rely. On the set of more than 80 lemmas dealing
with cpSets and cpLists, we focus on the most useful and significant ones. In
particular, we choose to show rather lemmas dealing with the cpSet construct
because it is a higher-level one and thus reasoning on sets of components is
often preferable, when possible. Note however that most of the proofs dealing
with distinctness of component names will rather use cpLists.

We start by an easy lemma quite heavily used and very easy to prove. It states
that C is always in cpSet(C) (it is proved by cases on C).

lemma cpSetFirst: C ∈ cpSet C

The set of components inside a composite one can be decomposed as follows. It
can be separated into the composite itself plus all the components in the cpSet
of each sub-component.

lemma cpSetcomposite:

cpSet (Composite N itfs sub b s)={Composite N itfs sub b s}

∪ {C.∃ C’∈set sub. C∈ cpSet C’}

This lemma is proved by an induction on lists of subcomponents. Conversely, we
can prove that, if a component is in the cpSet of a subcomponent of a composite,
it is in the cpSet of the composite. We also present a more general variant of
this lemma stating that if C’’ is inside C’ and C’ is inside C then C’’ is inside C.

lemma cpSetcomposite_rev:

! C∈ set sub; C’∈ cpSet C " =⇒ C’∈ cpSet (Composite N itfs sub b s)

lemma cpSetcpSet: !C’’∈ cpSet C’;C’∈cpSet C" =⇒ C’’∈ cpSet C

Although those two lemmas are very easy to prove (by induction on the compo-
nent structure), they are massively used in the other proofs.

Another theorem almost automatically proved by Isabelle, but exceedingly
useful is the following one. It gives another formulation of the getCp construct.

lemma getCp_inlist: CL^N=Some C =⇒ C∈ set CL ∧ getName C=N

14 L. Henrio, F. Kammüller, and M.U. Khan

It is used to relate hypotheses in which a component name occurs and the com-
ponent name, or the component structure. The reverse direction holds only if
the component names inside CL are distinct as shown by the next lemma.

lemma getCpIdistinct:

! distinct (map getName CL); getName C=N; C∈ set CL" =⇒ CL^N=Some C

As the tools provided for the distinct construct in the Isabelle/HOL framework
are a little weaker than for manipulating sets and lists, this proof is slightly
longer and less automatic but still quite simple. Finally, the next lemma relates
the changeCp primitive with the getCp one for the case that the name of the
accessed component and the name of the changed one are different.

lemma upd_getCpunchanged: N #= getName C’=⇒(CL <- C’)^N = CL^N

Impact of design choices. As a consequence of the mapping between component
structure and Isabelle’s structural support, it has been relatively easy to prove
properties of component structure by automatic steps plus induction on the
component structure. Consequently, the basic proofs on component sets and
lists were relatively easy to handle: approximately 700 lines of code for the 80
lemmas dealing with component sets, component lists, and request identifiers,
including the getCp, getRecSubCp, and changeSubCp primitives. By contrast,
the proofs dealing with the semantics or correctness are generally much longer
(several hundreds of lines per proof). However, the structural lemmas presented
above are heavily used in the other proofs and strongly facilitate them.

3.6 Properties on Component Correctness

Based on the infrastructure for structural reasoning on the composition structure
of components, we can now prove properties on the correctness of component
structure presented in Section 3.4. The properties logically relate the degree of
correctness of the structure. We present some of these lemmas here.

The lemma CorrectCompWeak establishes the relationship between
CorrectComponent and CorrectComponentWeak.

lemma CorrectCompWeak: CorrectComponent C =⇒ CorrectComponentWeak C

CorrectComponentListComp establishes the correctness of the list of subcompo-
nents given that the parent composite component is correct. Similarly, a member
of a weakly correct component list is also weakly correct.

lemma CorrectComponentListComp:

CorrectComponentWeak (Composite N itfs subCp bindings s)

=⇒ CorrectComponentWeakList subCp

lemma CorrectComponentListComp_rev:

!CorrectComponentWeakList CL; C∈ set CL" =⇒ CorrectComponentWeak C

A Framework for Reasoning on Component Composition 15

As a consequence, and as mentioned in Section 3.4, weak correctness entails
weak correctness of subcomponents. Those lemmas imply that, when proving
properties by induction, relying on weak correctness is very convenient as weak
correctness can be used as the hypothesis of the recurrence hypothesis.

lemma SubComponent_CorrectComponentWeak:

!C’∈cpSet C; CorrectComponentWeak C" =⇒ CorrectComponentWeak C’

The following property expresses a condition entailed in CorrectComponentWeak.
C^^N returns the first subcomponent of C having the name N. If C is a weakly cor-
rect component, then there is a single component with that name, and thus the
following hold:

lemma getRecSubCp_getName:

!CorrectComponentWeak C; C’∈ cpSet C" =⇒ C^^(getName C’) = Some C’

The proof of this property depends on properties on distinct names, and on the
lemmas shown in this section and the preceding one.

Impact of design choices. The proofs in Isabelle/HOL are, for the most part of
the correctness lemmas, almost automatic: unfolding the definitions, the proofs
are mostly solved by applying the automatic tactic auto. Yet, these lemmas are
important because they precisely relate different correctness conditions and con-
sequently clarify subsequent proofs. They also entail properties of composition-

ality, i.e. what are the properties of a composite with respect to its constituents.
Other properties, like getRecSubCp getname are harder to prove. Their proofs

rely strongly on the provided infrastructure for structured components presented
earlier in this section. Feasibility and readability of the proofs at the correctness
level depends decisively on this clearly structured support with lemmas. Often
the amount of automated proof work can be increased by adding our basic
lemmas to the simplification sets of Isabelle/HOL.

4 Components at Runtime

4.1 Semantics

The formal semantics of our component model is given by a number of reduction
relations defined by a set of inductive rules. These reduction relations along with
the formal semantics of our component model appear in [13]; they were infor-
mally summarized in Section 2.2. This section illustrates the usefulness of the
presented framework to specify and prove properties on the semantics by focus-
ing on one reduction rule and one property. A smoothly working infrastructure of
well-designed structural definitions and accompanying lemmas are prerequisite
for mechanically proving properties over a structured component semantics.

We define a reduction relation S ! C →R C′,RL stating that in the com-
ponent system S, a given component C reduces to a component C′. The list
RL is used for specification of reply strategy that is not detailed here. We show
below one specific communication rule CommChild, illustrated in Figure 3, and
encoding the delegation of requests to a contained subcomponent.

16 L. Henrio, F. Kammüller, and M.U. Khan

!"#$%&%'(#$")

#*+,-"#$

!"

#"$#

[f, v, itf]

'(#
'(#$

[f ′, v, itf ′]

.+,/0(,

1.2

N0

[f ′
!→ N0]

!"%&'()*+'&*%#,&%-..%#/+/&'*%)0%1

[This.itf,N’.itf’] ∈ bindings

Fig. 3. CommChild rule

CommChild:

! Cqueue s= R#Q; " src=This(invkItf R), dest=N’.i2 #∈ bindings;

f’/∈set (RqIdList S) ; subCp^N’ = Some C’$ =⇒

S# Composite N itf sub b s→R Composite N itf

(sub<-(C’←"id=f’, parameter=(parameter R),invokedItf=i2#)) b

(s"Cqueue:=Q,CcomputedResults:=CcomputedResults s @

["fid=id R,fValue=(0,[f’])#]#),
(f,N)#(map (λ id.(id,N’)) (snd(parameter R)))

The rule expresses request delegation between a composite component N and one
of its subcomponents N ′. The request R (shown as its constituents [f, v, itf] in
Figure 3) that has been sent to the parent N is dequeued from its request queue.
A new future f ′ is created and added to the result list (CcomputedResults) of
the parent as the result for this request R. A new request (shown as its con-
stituents [f ′, v, itf ′]) is enqueued in the subcomponent N ′. In the Isabelle code
snippet, we use the shortcut notation ← for the enqueue operation. The target
subcomponent is determined using the bindings: if This.itf is bound to N ′.itf ′

then the request is sent to the interface itf ′ of the subcomponent N ′, where itf

is the external interface of N by which the request had arrived before. Note the
use of the getCp primitive: subCp^N’=Some C’ ensures that subcomponent of
name N’ exists and is C’. Also the changeCp primitive (<-) is quite useful here
to update the subcomponent by enqueueing a new request to it.

Let us conclude this section by showing a property we proved in our framework
that deals with component semantics. The following lemma shows that the set
of names of components inside a component is unchanged by reduction.

lemma red_names_eq: !S#c1→R c2, RL; CorrectComponentWeak c1$
=⇒ getName ‘ (cpSet c2) = getName ‘(cpSet c1)

The proof is approximately 60 lines long, it is done by analysis on the reduction
rule. It relies on a few lemmas relating names with reduction rules, and on most
of the lemmas presented in Section 3. A crucial auxiliary lemma is the following
one that is purely structural and unrelated with our semantics.

A Framework for Reasoning on Component Composition 17

lemma upd_names_eq:

!CL^(getName c2)= Some c1; getName‘(cpSet c2)=getName‘(cpSet c1)"
=⇒ getName‘(cpListset CL) = getName‘(cpListset (CL<-c2))

4.2 Reconfiguration

Reconfiguration represents all the transformations of the component structure
or content that can be handled at runtime. We consider here mainly structural
reconfiguration, which includes changes of the bindings, and of the content of a
component. For example replacement of a primitive component by a new one is
a form of reconfiguration that allows evolution of the business code.

In Fractal or GCM, configuration primitives are bind/unbind to manipulate
bindings, add/remove to change the set of subcomponent of a composite com-
ponent; also it is possible to start/stop a component.

Our framework enables reasoning on reconfiguration primitives and behaviour
of a reconfigured component system. We illustrate below a few encodings of re-
configuration primitives and some theorems that can be proved in Isabelle/HOL
thanks to our framework.

We illustrate reconfiguration capacities of our approach by defining two re-
configuration primitives and proving two related lemmas. But beforehand, we
define the notion of complete component.

Completeness. Similarly to [6], we say that a composite component is complete if
all interfaces of its sub-components and all its internal interfaces are bound. This
can be easily defined in Isabelle by the following primitive recursive predicate.

primrec Complete::Component⇒ bool where

Complete (Primitive N itf s) = True |

Complete (Composite N itf sub bindings s) =

(∀ C∈set sub. allExternalItfsBound C bindings) ∧

(allInternalItfsBound (Composite N itf sub bindings s) bindings) ∧

(CompleteList sub)

Here, allInternalItfsBound C b checks that all external interfaces of C are
bound by bindings b, and allExternalItfsBound C b that all internal inter-
faces of C are bound by bindings b. Finally, similar to cpListlist in Section
3.2, CompleteList recursively checks that all subcomponents are complete.

As there is no notion of optional interface in our model, this definition is really
straightforward. For a complete component, any request emitted by a component
will arrive at a destination component.

Unbind primitive. The unbind primitive removes one of the bindings defined by
a composite component.

primrec unbind:: Component⇒Binding⇒Component where

unbind (Primitive N itf s) b = (Primitive N itf s) |

unbind (Composite N itf sub bindings s) b =

(Composite N itf sub (bindings-{b}) s)

18 L. Henrio, F. Kammüller, and M.U. Khan

Of course, un-binding does not maintain completeness, and this can be proved
in our framework.

lemma unbinding_incomplete:

!b∈bindings; CorrectComponentStructure (Composite N itf sub bindings s)"
=⇒ ¬ Complete (unbind (Composite N itf sub bindings s) b)

This lemma is proved in only 35 lines of simple Isabelle/HOL code, thanks to
the properties presented in Section 3.5. The proof can be sketched as follows.
CorrectComponentStructure imposes that in bindings src b is connected only
once, thus, in bindings-{b}, src b is not connected anymore. Now, src b can
be either This N if b connects an internal client interface to a sub-component,
or of the form CN.N if it connects a sub-component to another interface. In the
first case, the new component does not ensure allInternalItfsBound anymore,
and in the second case, it is allExternalItfsBound that is not true for the
component with name CN; note that CorrectComponentStructure ensures the
existence of such a component.

Component replacement. Let us now introduce a reconfiguration primitive that
would automatically maintain completeness.

primrec Replace:: Component⇒Name⇒Component⇒Component where

Replace (Primitive N itf s) N1 C = (Primitive N itf s) |

Replace (Composite N itf sub binds s) N1 C = addSubCp (removeSubCp

(Composite N itf sub ((λb.RenameBinding b N1 (getName C))‘binds) s) N1) C

This primitive maintains completeness of a correct component as expressed in
the following lemma:

lemma replace_complete:

!sub^(getName C’)=None; sub^N’=Some oldC; getItfs oldC=getItfs C’;

Complete C’; Complete (Composite N itf sub bindings s);

CorrectComponentStructure C’;

CorrectComponentStructure (Composite N itf sub bindings s)"
=⇒ Complete (Replace (Composite N itf sub bindings s) N’ C’)

This lemma requires that all involved original components are correct and com-
plete, that the replaced component is in the composition, but not the replace-
ment one, and that those two components have the same interfaces. A similar
lemma proving CorrectComponentStructure for the result of the replacement
operation is also proved.

Of course, the replace primitive can be expressed by lower level reconfiguration
operations, i.e. an unbind, remove, add, bind sequence. A lemma equivalent to
the preceding one could also be proved. Such a lemma would be more general
but a little more complex to express because it would need to relate the set of
unbound bindings, the set of re-bound ones, and the component involved in the
add-remove operations.

A Framework for Reasoning on Component Composition 19

5 Conclusion

This paper presented the logical machinery of a mechanized framework for reason-

ing about structured component systems; especially targeting distributed compo-

nents. We have first illustrated and motivated the specification of components and

the provided proof infrastructure. Furthermore, we have shown this machinery in

action by showing how reconfiguration of components can be formally specified,

and how properties over component structure and reconfiguration can be han-

dled. This paper also illustrated our approach by showing the specification of a

semantics for components, and associated proofs. Overall, the developed frame-

work consists of more than 4000 lines, including almost 300 lemmas and theorems,

approximately 500 lines for defining the component model and its semantics, and

1800 lines focusing on properties specific to future registration which were not pre-

sented here. As usual with mechanised proofs, the main difficulty is the choice of

the right structures providing the suitable level of abstraction. Some proofs are

lengthy and technical but no major difficulty was encountered.

In contrast to existing works, our approach focuses on increasing confidence in

global properties of component models. For this, we provide a framework and ap-

ply it to prove generally valid results. The established infrastructure of structured

components with asynchronous communication provides an elegant abstraction

from implementation detail while fully preserving the communication structure

and defining a precise semantics. One limiting factor of our framework is that a

precise semantics for components had to be chosen to allow mechanised proofs.

Overall we have developed a reliable basis for the mechanical proofs of proper-

ties of hierarchical component models, and we have shown its adequacy to deal

with first proofs entailing reconfiguration, or component semantics. We addi-

tionally provide subsequent support for distributed components communicating

by asynchronous requests with futures.

A promising follow up project would be to analyse information flows based on

this model, or properties entailing component synchronisation at reconfiguration

time. More generally we expect to prove properties on reconfiguration that will

entail reasoning simultaneously on component execution and on evolution of

component structure. This would show the correctness of complex adaptation

procedures that can be applied in autonomous component systems.

References

[1] Sensoria – software engineering for service-oriented overlay computers (2005)
[2] Ábrahám, E., Grabe, I., Grüner, A., Steffen, M.: Behavioral interface description

of an object-oriented language with futures and promises. Journal of Logic and
Algebraic Programming 78(1-2), 491–518 (2008)

[3] Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Behavioural
models for distributed fractal components. Annales des Télécommunications
64(1-2), 25–43 (2009)

[4] Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V., Henrio, L., Pérez,
C.: GCM: A Grid Extension to Fractal for Autonomous Distributed Components.
Annals of Telecommunications (2008) (accepted for publication)

20 L. Henrio, F. Kammüller, and M.U. Khan

[5] Beisiegel, M., Blohm, H., Booz, D., Edwards, M., Hurley, O.: SCA service compo-
nent architecture, assembly model specification. Technical report (March 2007),
www.osoa.org/display/Main/Service+Component+Architecture+

Specifications

[6] Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal Component Model. Techni-
cal report, ObjectWeb Consortium (February 2004),
http://fractal.objectweb.org/specification/index.html

[7] Bruni, R., et al.: Service oriented architectural design. In: Barthe, G., Fournet, C.
(eds.) TGC 2007 LNCS, vol. 4912, pp. 186–203. Springer, Heidelberg (2008)

[8] Cámara, J., Salaün, G., Canal, C., Ouederni, M.: Interactive Specification and
Verification of Behavioural Adaptation Contracts. In: Ninth International Confer-
ence on Quality Software, pp. 65–75 (August 2009)

[9] Canal, C., Poizat, P., Salaün, G.: Synchronizing behavioural mismatch in soft-
ware composition. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS,
vol. 4037, pp. 63–77. Springer, Heidelberg (2006)

[10] Cansado, A., Madelaine, E.: Specification and verification for grid Component-
Based applications: From models to tools. In: Formal Methods for Components
and Objects, pp. 180–203 (2009)

[11] CCA-Forum. The Common Component Architecture (CCA) Forum home page
(2005), http://www.cca-forum.org/

[12] Grabe, I., Steffen, M., Torjusen, A.B.: Executable interface specifications for test-
ing asynchronous creol components. Technical Report Research Report No. 375,
University Of Oslo (July 2008)

[13] Henrio, L., Kammüller, F., Rivera, M.: An asynchronous distributed component
model and its semantics. In: de Boer, F.S., Bonsangue, M.M., Madelaine, E. (eds.)
FMCO 2008. LNCS, vol. 5751, Springer, Heidelberg (2009) (to appear)

[14] Henrio, L., Khan, M.U.: Asynchronous components with futures: Semantics and
proofs in isabelle/hol. In: Proceedings of the Seventh International Workshop,
FESCA 2010. ENTCS (2010) (to appear)

[15] Broch Johnsen, E., Owe, O.: An asynchronous communication model for dis-
tributed concurrent objects. In: Proceedings of the Software Engineering and For-
mal Methods, SEFM 2004, Washington, DC, USA, pp. 188–197. IEEE Computer
Society Press, Los Alamitos (2004)

[16] Broch Johnsen, E., Owe, O., Yu, I.C.: Creol: a type-safe object-oriented model for
distributed concurrent systems. Theor. Comput. Sci. 365(1), 23–66 (2006)

[17] Khan, M.U., Henrio, L.: First class futures: a study of update strategies. Research
Report RR-7113, INRIA (2009)

[18] Merle, P.B., Stefani, J.B.: A formal specification of the Fractal component model
in Alloy. Research Report RR-6721, INRIA (2008)

[19] Meseguer, J.: Conditional reqriting logic as a unified model of concurrency. Journal
of Theoretical Computer Science 96, 73–155 (1992)

[20] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. In: Isabelle/HOL. LNCS, vol. 2283, Springer, Heidelberg
(2002)

[21] OW2.Consortium. FraSCAti, Open SCA middleware platform (2009),
https://wiki.objectweb.org/frascati/Wiki.jsp?page=FraSCAti

http://www.cca-forum.org/
https://wiki.objectweb.org/frascati/Wiki.jsp?page=FraSCAti
http://fractal.objectweb.org/specification/index.html

3.5 Algorithmic skeletons

With Mario Leyton, we performed several works on the for-
malisation of algorithmic skeletons.

Algorithmic skeletons (skeletons for short) are a high
level programming model for parallel and distributed com-
puting, introduced by Cole in [Col91]. Skeletons take ad-
vantage of common programming patterns to hide the com-
plexity of parallel and distributed applications. Starting
from a basic set of patterns (skeletons), more complex pat-
terns can be built by nesting the basic ones. All the non-
functional aspects regarding parallelisation and distribution
are implicitly defined by the composed parallel structure.
Once the structure has been defined, programmers com-
plete the program by providing the application’s sequential
blocks, called muscle functions. Here is an example algo-
rithmic skeleton: farm(pipe(∆1,∆2)). This skeleton consist
in a farm of skeletons (that can be replicated to be able to
treat a stream of input data), treatment of an input consists
in executing a sequence of two instructions ∆1 and ∆2, that
can be muscle functions or other skeletons.

Mario Leyton has developed two different algorithmic
skeleton frameworks: Calcium featuring distributed com-
putation, and Skandium dedicated to multi-core program-
ming. During those works, we worked together at the formal
specification of the new features of the skeleton frameworks.
We worked on a type system for algorithmic skeletons, on
exception handling for skeletons, and on the specification
of the compilation of algorithmic skeletons into lower-level
skeletons easier to interpret efficiently. The last work was
published in Mario Leyton’s PhD thesis [Ley08] and is not
presented here.

Our skeletons include task parallel skeletons: seq for
wrapping execution functions; farm for task replication;
pipe for staged computation; while/for for iteration; and
if for conditional branching. There are also data parallel
skeletons: map for single instruction multiple data; fork
which is like map but applies multiple instructions to mul-
tiple data; and d&c for divide and conquer.

3.5.1 Typing algorithmic skeletons

In [35] we designed a type system for skeletons. It specifies
the way types are transmitted between muscle functions:
depending on their semantics, different skeleton patterns
impose typing rules on their sub-elements. Typically a pipe
skeleton, pipe(∆1,∆2), imposes the return type of ∆1 to be
the input type of ∆2; also the input type of the pipe is the
one of ∆1 and its return type is the one of ∆2.

We specified in this work a big step operational seman-
tics for algorithmic skeletons, and typing rules for skeletons,
those typing rules express types transmitted between sub-
skeletons as explained above. We then proved the classical
and crucial subject-reduction property: types are preserved
during reduction. This shows the correctness of our type-
system.

On the practical side, we extended our Java skeleton
libraries with type annotations, using Generics. The type
enforcements are ensured by the Java type system, and re-
flect the typing rules introduced in the theoretical section.

Overall, this work relieves the programmer from rely-
ing on type-casts at the entry of each muscle functions,
which is the classical way of writing skeletons, at least in
Java. Thus compared to existing frameworks, in our skele-
ton libraries type errors can be detected when composing the
skeleton programs. We removed type-casts at the entrance
of muscle functions, thus ensuring the absence of type-cast
errors at these points during execution.

3.5.2 Exception handling in algorithmic

skeletons

In [46] we designed a model for the management of excep-
tions in algorithmic skeletons. In our model, exceptions can
be raised and handled at each level of the skeleton nesting
structure.

Each skeleton can be attached handlers capable of catch-
ing errors and return regular results, else they can raise the
exception to be handled by the parent skeleton. We pro-
vide the programmer with an API for attaching handlers to
skeletons. Additionally, the raised exceptions are dynam-
ically modified to reflect the nesting of skeleton patterns
instead of the nesting of method calls of the skeleton inter-
preter.

We extended the semantics for skeletons published in
[Ley08] with exception handling. The semantics works
as follows. The skeleton program ∆2 is transformed into
a lower level representation formed of instructions, with
its corresponding muscle functions and exception handlers.
Transforming high-level skeletons to lower-level constructs
is a standard methodology in many skeleton frameworks
such as P3L, Lithium, Muesli, QUAFF, etc. On these lower-
level instructions the parallel semantics is expressed, by op-
erations on instruction stacks. The reduction of a skeleton
consists in evaluating a set of stacks: the first instruction of
each stack is evaluated until a result is obtained, then the
result is passed to the next instruction of the task. Then,
when an exception is raised by a muscle, the surrounding

101

skeleton either handles the exception and produces a regu-
lar result, or raises the exception to the parent skeleton.

We applied this approach to the Skandium library. In
order to produce understandable stack traces, the skele-
ton nesting is remembered during the interpretation of the
skeleton program. First the programmer can now attach ex-
ception handlers to skeletons. Second, we intercepted the
stack trace output so that the output trace produced in
case of uncaught exception expresses the nesting of skele-
tons that raised the exception instead of a Java trace ref-
erencing code not written by the programmer and without
any information on the skeleton nesting.

These works on algorithmic skeletons were a very nice
opportunity to show the complementarity between formal
methods, and language and middleware implementation.
They allowed us to contribute to the algorithmic skeleton
community with extensions that revealed both useful for
the programmer, and formally specified and proved safe.

3.6 Behavioural specification and

verification of GCM components

Safety of component-oriented and object-oriented
applications

Distributed systems have by nature a complex behaviour.
Even if the programming methodology entailed by active
objects is way simpler that RMI-style of programming, bugs
are still more frequent in any distributed applications than
in sequential ones. Indeed, even if the programming models
we presented in the previous sections of this document pre-
vent data race-conditions, race-conditions between commu-
nications can still exist as in any distributed system and,
except for functional active objects, deadlocks cannot be
prevented in the general case. The complex interleaving
of communications makes the reasoning on a distributed
system difficult, even when the system is built from well
separated components.

Our objective is to guarantee the safe execution of dis-
tributed applications, for this we provided tools to verify the
behaviour of distributed active objects and GCM compo-
nents. This work is complementary with the formalisation
of the GCM presented in Section 3.4 or the formalisation
of active objects presented in Chapter 2: while Section 3.4
presented a framework to prove property on the compo-
nent model, and its behaviour at runtime, our behavioural
specification allows the programmer to prove the correct
behaviour of his/her applications, most probably relying on

the properties proved on the component model. For exam-
ple, the fact that futures in ASP can be returned at any
time without changing the result of the computation allows
us to generate a behavioural model where the future up-
dates is delayed as much as possible in order to reduce the
interleaving between future updates and the other actions,
and thus to minimise the size of the system to verify.

Related work

The closest work to ours are the frameworks dedicated to
the verification of behavioural properties on component ap-
plications, we focus below on a detailed comparison with
two approaches: SOFA and Symbolic Transition Systems.
A more exhaustive study of related works and positioning
can be found in our journal paper [8] or in [Mad11].

The SOFA system [BHP06] is a development and veri-
fication framework for large-scale distributed software sys-
tems based on hierarchical components. It uses behaviour
protocols [PV02] to specify interactions between compo-
nents in terms of ordering of method invocation events. The
behaviour compliance and consent relations are defined on
behaviour protocols based on their trace semantics, allow-
ing reasoning on substitutability and compositional com-
patibility. The frame protocol defines the behaviour of
a component. In a composite component, the behaviour
is constructed from frame protocols of its subcomponents,
and checked for compliance with the composite frame pro-
tocol. For a primitive component, the Java implementa-
tion may be checked for compliance with a model checking
tool [PP06].

Symbolic Transition Systems (STS) [PRS06,PR06], are
structures akin to our pNets. In the STSLib toolset,
there is a dedicated specification language (with abstract
data types) for distributed components, that are mod-
elled by STS, themselves mapped to LOTOS programs that
can be model-checked with the CADP verification toolset
[GLM02]. STS do not use the distinction between required
and provided ports (or interfaces), whereas it is one of the
main building blocks of our component systems. In fact,
communication is not based on the classic notion of method
calls, but on messages in which both parties (emitter and re-
ceiver) must agree in order to communicate. Although this
adds expressivity to the language, it also has an impact on
the asynchrony of the system. The protocols are expressed
in terms of STS. On the implementation side, the two ap-
proaches are quite different: the implementation of STS
simulates the synchronisation vectors that can be expressed
in the specification, whereas in our approach, we write only
the synchronisation vectors corresponding to the semantics
of the ASP calculus (and of the ProActive library). Our

102

specification language is more independent from the mid-
dleware, it allows us to express complex synchronisations
that cannot happen in ProActive. This allows us to reason
on efficient, expressive, and proved communication mecha-
nisms. Overall, even if pNets formalism is approximately
at the same level of abstraction as STS, in our approach,
the programmer is rather exposed to a higher-level com-
position framework, closer to his usual programming and
composition concerns.

Objectives and contribution

In this work, we focused on the behavioural specification of
active object and GCM applications in order to be able to
verify their behaviour. The behavioural model we generate
is expressed in the pNets formalism [8] that we designed
and that is described in Section 3.6.1. pNets serves as a
low level semantic framework for expressing the behaviour
of various classes of distributed languages, and as a common
internal format for our tools.

Our verification tool is called Vercors3. It is a platform
that assists the programmer in the specification and the ver-
ification of his application. It provides tools for specifying
an application behaviour: from the behaviour of each ser-
vice method of the primitive components and a description
of the application architecture, the platform is able to gen-
erate the behaviour of the whole application. We generate
automatically the behaviour for asynchronous communica-
tion, queues, futures, and component composition based on
the ADL.

Then, from the behavioural model of the application, we
are able to verify its properties. The properties we aim at
verifying range from absence of deadlocks, to reachability of
some actions, and to “any” temporal property (safety, live-
ness) specific to the application. Our approach consists in
specifying the property to be verified as regular µ-calculus
formula [Koz85] or more recently as MCL (Model Checking
Language) logics [MT08] formula. Currently, properties are
verified using the CADP toolbox [GLM02], but other veri-
fication engines can be considered.

In the future, we would like to specify these properties at
a higher-level, which would be subject to the same abstrac-
tions as the tools we provide to the programmer. This en-
compasses first push-button properties that can be verified
automatically on each application like absence of dead-lock.
Second, generic properties easy to generate from our tools
like reachability of an event: the reception of a communica-
tion, the emission of a result, . . . should also be considered.
Also, we should provide support for the expression of more
complex properties; they must be expressed with the same

3http://www-sop.inria.fr/oasis/index.php?page=vercors

abstractions (names, range for parameters, ...) as in the
specification tools, which is not yet the case.

The following of this section describes a simple version
of the pNets formalism (Section 3.6.1), and then shows how
we used it to express behaviour of active object-based (Sec-
tion 3.6.2) and component-based (Section 3.6.3) applica-
tions. Then we include an article on the modelling of first-
class futures (Section 3.6.4), consequently we will not fo-
cus on futures in the other sections. Finally, this section
presents our recent work on a behavioural model for group
communications and multicast interfaces in Section 3.6.5.

3.6.1 The pNets formalism

Our work on behavioural specification and verification re-
lies on the pNet model as an intermediate specification lan-
guage: pNets allow the specification of parameterised hier-
archical labelled transition systems: classical labelled tran-
sition systems can be combined hierarchically, and parame-
terised by some variables. From such a specification, several
verification techniques can be envisioned. In most cases, we
chose a finite instantiation domain for the parameters of the
pNets, and generated a flat finite labelled transition system
on which we can prove the properties of the application
by state-of-the art model-checkers. We describe below the
principles and the semantics of pNets in a slightly simplified
way compared to our previous descriptions [8].

Syntax and notations

In the following definitions, we extensively use indexed
structures (maps) over some countable indexed sets. The
indexes will usually be integers, bounded or not. Such an
indexed family is denoted as follows: ai∈I

i is an indexed
family of ai. Such a family is equivalent to the mapping
(i &→ ai)

i∈I . To specify the set over which the structure
is indexed, indexed structure are always denoted with an
exponent of the form i ∈ I (arithmetics only appear in the
indices). For example ai∈{3} is the mapping with a single
entry a at index 3; exceptionally, such mappings with only
a few entries will also be denoted (3 &→ a) in the following.
When this is not ambiguous, we shall use abusive vocabu-
lary and notations for sets, and typically write “indexed set
over J” when formally we should speak of multi-sets, and
still better write “x ∈ Ai∈I

i ” to mean ∃i ∈ I. x = Ai. An

empty family is denoted [] = ai∈∅
i .

103

Term algebra

Our models rely on the notion of parameterised actions. We
leave unspecified the constructors of the algebra that will
allow building actions and expressions used in our models,
let us denote Σ the signature of those constructors. Let TP
be the term algebra of Σ over the set of variables P . We
suppose that we are able to distinguish inside TP a set of ac-
tion terms (over variables of P) denoted AP (parameterised
actions), a set of expression terms (disjoint from actions)
denoted EP , and, among expressions, a set of boolean ex-
pressions (guards) BP . For each term t ∈ TP we define
fv(t) the set of free variables of t. For α ∈ AP we also
suppose that there is a function iv(α) that returns a subset
of fv which are the input variables of α, i.e. the variables
newly defined by reception of their value during the action
α.

We also allow countable indexed sets to depend upon
variables, and denote IP the set of indexed sets using vari-
ables of P . There must exist an inclusion relationship ⊆
over the indexed sets of IP , with the natural guarantee
that this operation ensure set inclusion when one replaces
variables by values. In practice we will mostly use intervals
for which the upper bound depends on the variables of P .

For example the actions of Milner’s Value-passing CCS

[Mil89] correspond to the following algebra: terms are τ ,
a(x) for input actions, a(v) for output actions. Then
fv(a(x)) = iv(a(x)) = {x}, whereas iv(a(x)) = ∅.

The pNets model

A pLTS is a labelled transition system with variables; a
pLTS can have guards and assignment of variables on tran-
sitions. Variables can be manipulated, defined, or accessed
inside states, actions, guards, and assignments. A pLTS is
formally defined as follows.

Definition 1 (pLTS) A parameterised LTS is a tuple
pLTS ! 〈P, S, s0, L,→〉 where:

• P is a finite set of parameters, from which we construct
the term algebra TP , with the parameterised actions AP ,
the parameterised expressions EP and the boolean ex-
pressions BP .

• S is a set of states; each state s ∈ S. Variables of s are
global to the pLTS.

• s0 ∈ S is the initial state,
• L is the set of labels of the form 〈α, eb, (xj := ej)

j∈J〉,
where a ∈ AP is a parameterised action, eb ∈ BP is
a guard, and the variables xj ∈ P are assigned the ex-
pressions ej ∈ EP . variables in iv(α) are assigned by the
action, other variables can be assigned by the additional
assignments.

• → is the transition relation →⊆ S × L× S

pNets are constructors for hierarchical behavioural
structures: a pNet is formed of other pNets, or pLTSs at the
bottom of the hierarchy tree. Message queues can also ap-
pear in leaves of a pNet system. A composite pNet consists
of a set of pNets exposing a set of actions, each of them
triggering internal actions in each of the sub-pNets. The
synchronisation between global actions and internal actions
is given by a synchronisation vector : a synchronisation vec-
tor synchronises one or several internal actions, and exposes
a single resulting global action.

Definition 2 (pNets) A pNet is a hierarchical structure
where leaves are pLTSs (or queues defined below):

pNet ! pLTS | Queue(M) | 〈P,L, pNeti∈I
i ,SVk∈K

k 〉

where

• P is a finite set of parameters, from which we construct
the term algebra TP , with parameterised actions AP .

• L ⊆ AP is the set of labels of global actions of the pNet.
• I ∈ IP is the set over which sub-pNets are indexed.
• SVk∈K

k is a set of synchronisation vectors (K ∈ IP).

∀k ∈ K,SVk = αj∈Jk

j → α′
k

Each synchronisation vector verifies: α′
k ∈ L, Jk ∈ IP ,

Jk ⊆ I, and ∀j∈Jk. αj ∈Sort(pNetj).

For each pNet, we define a function sort (Sort : pNet →
AP). The sort of a pNet is its signature: the set of actions
a pNet can perform, that is to say the set of labels of its
transitions, more formally:

Sort(〈P, S, s0, L,→〉) = L Sort(〈P,L, pNeti∈I
i ,SVk∈K

k 〉) = L

Sort(Queue(M)) = {?Q Mi|Mi ∈ M}∪{!Serve Mi|Mi ∈ M}

Queues

We also define a particular pNet calledQueue(M); it models
the behaviour of a FIFO queue. It can be considered as
an infinite pLTS with a set of actions depending on the
chosen term algebra and of the set of enqueue-able elements
M ⊆ TP . We suppose then that the term algebra has two
specific constructors ?Q and !Serve such that for all set
of variables P , ∀Mi ∈ M. !Serve Mi ∈ AP∧?Q Mi ∈ AP .
Then the queue pNet offers the following actions:

L = {?Q Mi|Mi ∈ M} ∪ {!Serve Mi|Mi ∈ M}

Whenever pNets will be encoded by (ultimately finite)
automata structures for model-checking, pNet Queues will

104

naturally be represented by finite automata. However,
in order to be able to address more general approaches,
and in particular specific model-checking algorithms for un-
bounded channels, we keep a high-level representation of
queues. From our abstract queues, we will be able to gener-
ate both regular representation (for unbound queues), and
finite representation (for explicit-state model-checking).

Families of pNets

We define a constructor for a pNet made of an indexed

family of pNets.
←−−−−−→
PN i∈I

i (P) takes a family of pNets indexed
over a set I ∈ IP and produce a global pNet. The syn-
chronisation vectors for this family will be expressed at the
level above, consequently we “export” all the possible syn-
chronisation vectors that the family could offer, only some
of them will be used.

←−−−−−→
PNi∈I

i (P) ! 〈P, SV, PN i∈I
i , {αj∈J

j → αj∈J
j |αj∈J

j ∈ SV }〉

where SV = {αj∈J
j | J⊆I ∧ ∀j ∈ J. αj ∈ Sort(PNj)}

This supposes that the elements of SV belong to the term
algebra and more precisely are action terms.

In fact, what we show here is a version of pNets that
is convenient for providing a concise formal definition of
both pNets themselves and the component specification in
terms of pNets. In practice it is not reasonable to define all
the possible synchronisation vectors possible inside a family,
and only the used ones are instantiated. In [8], we defined a
version of pNets closer to what we use in practice where the
families are flattened in the enclosing pNet. Though more
efficient this notation was more complex, that is why a sim-
pler definition is presented here. The two representations
provide anyway the same expressive power.

An operational semantics for pNets

To give a semantics to pNets, we need a unique valuation
domain D. This domain could consist in a countable in-
stantiation domain for each variable, but not necessarily,
the only constraint we have on D is that it should be pos-
sible to decide whether a boolean expression in D is true,
and to decide whether two expressions have the same value
(e.g. when two action labels are the same). In fact we could
remove the last hypotheses and instead check whether True
is a possible value of a boolean expression in the rules below
(or whether two expressions can have the same value) but
this would make the semantics more complex. If we choose
a finite domain for each variable and if each pLTS has a
finite set of states, the semantics of the pNet will be a finite
LTS that can be used in a model-checker.

We let φ = {xj → Vj |j ∈ J} be a valuation function
where xj range over variables of the considered pNet (each
variable must be given a value), and Vj ∈ D. Such a valua-
tion acts as a store, maintaining a mapping from variables
to values. For a term t ∈ TP , tφ ∈ D is the value of the term
replacing each variable by their values given by φ. A valua-
tion can be applied to expressions, actions, or even indexed
sets. In all cases, the variables are replaced by their value
and the new expressions are evaluated. The set of valuation
functions, Φ, allows the precise definition of the state-space
to be considered for the behaviour of the system: only val-
uation functions such that φ ∈ Φ are considered. We define
an update operator + on valuations, where φ1 + φ2(x) is
φ2(x) if it is defined, or φ1(x) else.

Note that variables are used locally to each pNet/pLTS,
it is thus possible to use qualified names to avoid collision
of variable names in the valuation, thus we consider that
variable names are unique.

Consider a pNet pNetand an initial valuation φ0 ∈ Φ
associating a value to each variable of the pNet. The se-
mantics of pNet is given by a LTS (or possibly a pLTS if D
contains variables) where:

• states are hierarchical composition of product states of
the sub-pNets, more precisely states are S(pNet) where:

S(〈P, S, s0, L,→〉) = {(s, φ)|s ∈ S ∧ φ ∈ Φ}

S(〈P,L, pNeti∈I
i ,SVk∈K

k 〉) =

{〈si〉
i∈Iφ|∀i ∈ I. si ∈ S(pNeti), φ ∈ Φ}

S(Queue(M))={(Mjφj)
j∈[1..n]|n ∈ N ∧ ∀j. (Mj ∈ M ∧ φj ∈ Φ)}

• labels are {αφ|α ∈ Sort(pNet), φ ∈ Φ};
• the initial state is the composition of initial states of

sub-pNets, the initial state is S0(pNet) where:

S0(〈P, S, s0, L,→〉) = (s0, φ0)

S0(〈P,L, pNet
i∈I
i ,SVk∈K

k 〉) = 〈S0(pNeti)〉
i∈Iφ0

S0(Queue(M)) = []

• and transitions are !pNet" such that:

φ ∈ Φ k ∈ Kφ

α
j∈J
j → α ∈ SVk ∀j ∈ Jφ. φj ∈ Φ ∧ sj

αjφj
−−−→ s

′
j ∈ !pNetj"

∀i ∈ Iφ \ Jφ. s′i = si

〈si∈Iφ
i 〉

αφ
−−→ 〈s′i

i∈Iφ
〉 ∈ !〈P,L, pNet

i∈I
i ,SV

k∈K
k 〉"

φ∈Φ s
〈α, eb, (xj:=ej)

j∈J 〉
−−−−−−−−−−−−−→ s

′ ∈→ iv(α)={x′
i| i∈K}

∀i∈K.Vi∈D φ
′=φ+ {x′

i→Vi|i∈K}
ebφ

′=True φ
′′={xj →ejφ

′|j∈J}

(s, φ)
αφ′

−−→ (s′, φ′ + φ
′′) ∈ !〈P, S, s0, L,→〉"

n ∈ N ∀j ∈ [1..n+ 1].Mj ∈ M ∧ φj ∈ Φ

(Mjφj)
j∈[1..n] ?Q Mn+1φn+1

−−−−−−−−−−→ (Mjφj)
j∈[1..n+1] ∈ !Queue(M)"

n ∈ N ∀j ∈ [1..n].Mj ∈ M ∧ φj ∈ Φ

(Mjφj)
j∈[1..n] !Serve M1φ1−−−−−−−−→ (Mj+1φj+1)

j∈[1..n−1] ∈ !Queue(M)"

105

Proxy

Queue

Body

Body

Proxy

Counter

Client Role Server Role

!o.request

Proxy[pp].

?response
(val)

getValue(val)

!getValue(val)
serve

response(c, val)

?Counter[c].call

!Counter[c].

?Proxy[pp].
[c]

(〈pp, c〉,M(˜arg))

Proxy[pp].

[pp]

getValue(c, val)

request(c)

?Counter[c].
response(val)

?request

?caller.request(f,M(˜arg))

(caller, f,M(˜arg))

!caller.response(f, val)

!o.request(〈pp, c〉,M(˜arg))

Figure 3.6: Communication between two active objects [8]

The most complicated part of the semantics is the way vari-
ables are dealt with in the pLTS: only input variables, and
assigned variables are allowed to change value in the valu-
ation function. This also applies (indirectly) to the queue
where the valuation used in the action is in the Serve case
constrained by the source state, and unconstrained in the
case of a Q transition.

3.6.2 A behavioural model for active objects

Based on pNets, we first defined a behavioural model for
active objects. This model is crucial because it gives a rep-
resentation, on the form of pNets of most of the features of
ASP:

• Request queues, using Queues of pNets, and then in-
stantiated by queues of finite length. In our verified
applications, a queue of small length (typically 1 or 2)
is sufficient to verify the properties of interest; we also
verify that the limit of the queue is never reached to
ensure that all the behaviours are explored.

• A body serving requests one after the other, and calling
an appropriate method.

• Service methods are supposed to be specified by the
programmer, they define the business code of the ac-
tive object. Of course, an abstract behaviour of the
active object should be specified in order to limit the
state-space to be explored; it should however be precise
enough to allow the verification of all the properties of
interest. In particular it should at least contain all the
synchronisations between active objects, i.e. request
calls and future accesses.

• Futures are encoded as proxies, and dedicated commu-
nications to return the future values are specified by the
synchronisation vectors. In most of our developments,
first-class futures were not considered but Section 3.6.4

details our investigations on the treatment of first-class
futures in our tools.
For dealing with futures, we create a family of prox-
ies synchronised first on an initialisation phase upon
method call, then with the return of the result at re-
quest completion, and finally with the access to the fu-
ture value upon a wait-by-necessity.

Figure 3.6 illustrates the main pNets involved in the active
object behavioural model. It also shows the synchronisation
occurring between those different pNets (each synchronisa-
tion vector roughly corresponds to one arrow in the draw-
ing). The oval shape is used to represent synchronisations
involving more than two processes.

Except for service methods, we defined how to generate
automatically and generically those pNets. We are in the
process of formally specifying those pNet generators (in the
context of components as described below), but also we have
implemented a significant part of those generators. This
way we are able to specify a pNets model for an application
made of active objects à la ASP.

Then abstractions are applied on the data domains,
yielding a finitary model. Finally the model is encoded
using a combination of several input formalisms from the
CADP toolset [GLMS11]: the Fiacre language [BBF+07]
provides syntax for data types and expressions, definition
of LTS, and a form of composition of processes by synchroni-
sation on channels; the EXP and SVL languages [GLMS11]
support the hierarchical encoding of our pNets, and the
scripting of the various verification tasks. More details on
the way we perform those generation and verification steps
can be found in [42].

3.6.3 A behavioural model for GCM

In this section we describe how we build behavioural mod-
els for GCM components. First building models for hier-
archical component systems like GCM allows us to adopt

106

a compositional approach, at least from the model specifi-
cation point of view: we generate models hierarchically in
each component. Even more, if the interface behaviour is
further specified, that is to say if the context in which the
component will be used is explicitly stated, the behaviour
of each component can be generated and reduced, allowing
us to envision the exhaustive verification of larger systems.

In the following we first explain how the structural infor-
mations provided by a component oriented approach help
the construction of behavioural models. Then we briefly
present the Vercors platform. Finally, we explain the princi-
ples of behavioural model generation for components based
on an example of composite component.

Inference vs. generation of behavioural specifica-
tion

We sketched above how to build the behaviour of an ac-
tive object. But building such a model relies on several
informations that could be either given by the program-
mer or inferred from the program. Those informations are
the behaviour of service methods, the identification of ac-
tive objects, future objects and future access points, and
the definition of finitary domain for the instantiation of
each variable. Three approaches can be envisioned for ob-
taining those informations: direct specification of the be-
haviour, static analysis of source code (Java in the case of
GCM/ProActive), or writing code in a language dedicated
to program specification from which both the program code
and the behaviour can be generated.

In general, a specific static analysis or annotations are
necessary to know which objects in a program are active,
and where futures can be created or awaited. Deciding
which objects are active objects or contain a future is in
general not decidable. Finding wait-by-necessity instruc-
tions is also not decidable, but an over-approximation of
the set of wait-by-necessity instructions is sufficient in our
case, and for most analyses. Note however that this infor-
mation is syntactically given in less transparent languages
like Creol or JCoBox where asynchronous method calls and
future access have a specific syntax.

GCM components provide a convenient abstraction level
for behavioural specification. As GCM components ab-
stract away distribution, asynchronous remote communi-
cation are necessarily statically identified: they follow com-
ponent bindings. References to active objects are stored in
client interfaces, are thus futures are created upon access to
those client interfaces. We thus instantiate one queue and
one body per component, and one family of future proxies
per method of each client interface.

Consequently, in a component model, building a be-
havioural semantics only relies on finitary abstractions of
each variable, and on the behaviour of service methods for
each method of each service interface of a primitive com-
ponent that includes future access specification. Note that,
as shown in Section 3.4.1, the behaviour of composite com-
ponents can be automatically generated: they only dele-
gate requests to sub-components or to external components.
They also return directly futures as results of the requests
they serve.

Concerning the finite abstract domain of variables, in
general we rely on the direct input of the programmer for
those domains, even if we could provide tools to help infer-
ring those domains, e.g. inferring the domain of a variable
from the domain of other ones.

JDC: a language for the specification of component
systems

We investigated the possibility to design a new program-
ming language from which it would be possible to gener-
ate GCM components with a guaranteed behaviour. It is
called JDC for Java Distributed Components specification
language. It consists of a structural specification language
close to an ADL, and of a behavioural specification lan-
guage for writing the business code. Then pNets speci-
fying the component behaviour can be generated from the
JDC code, and then verified. On the other side, application
skeletons can be generated from the behavioural specifica-
tion. Those skeletons being then filled in with details of
the application logic that have not been verified. The idea
is that some of the details of the application logics have to
be abstracted away for the verification, and provided the
properties of interest are not dependent on those details, it
is possible to guarantee the correct behaviour of the compo-
nents. In general, the specification should feature the same
communication patterns, and the same components and re-
mote invocations, but the part of the data and control flow
dependencies that are not related to the properties of inter-
est can be abstracted away, and filled later by the (Java)
programmer. Some dynamic integrity checks can also be
generated to check that the Java code written by the pro-
grammer does not break the proven properties. More details
on JDC can be found in [34].

The JDC language has not been implemented yet,
mainly due to the difficulty of implementing a new lan-
guage and because the Vercors team focused on the design
and implementation of a graphical interface for specifying
both the component structure and the service method be-
haviours. This interface also provides integration with the
model-checking tools.

107

In practice: the Vercors platform

In practice, for specifying the behaviour of service methods,
while the construction of pNets by static analysis has been
studied in the past [Bou04], in our recent examples we speci-
fied by hand, as (p)LTSs, the behaviour of the service meth-
ods. However, the solution we promote is the specification
in Vercors of the behaviour based on UML 2 State Machine
diagrams, from which we will generate the adequate pNet.
This method is currently being implemented and promoted
in the Vercors platform, it also comes with a variant of
UML component diagrams for specifying GCM component
architectures. The graphical tool allowing to specify GCM
components and their behaviour based on UML is called
VCE.

Figure 3.7 shows the architecture of the Vercors plat-
form, it illustrates the previous paragraphs and provides an
overall view of the Vercors environment. From a VCE spec-
ification, our objective is to generate automatically pNets,
and from the specification of the instantiation domain for
each variable of the pNets we generate a finite model that
can be model-checked. From the specification, we can also
generate the component architecture that can be completed
and executed in the GCM implementation. Even though all
those generation phases are not entirely implemented, in
our last case study [47], half of the behavioural model have
been automatically generated, and we expect to be able to
generate automatically whole component specifications very
soon.

Figure 3.7: The VERCORS architecture

Behavioural specification of components: an illus-
trative example

Figure 3.8 shows a composite component as can be drawn
in the Vercors platform. The component has two sub-
components, A and B, bound together and to the composite

component. Type annotations are attached to each inter-
face, they define the signature of each method of the inter-
face.

Figure 3.9 shows the pNets structure corresponding to
the composite component of Figure 3.8. It illustrates the
structure of the pNets we generate for specifying the be-
haviour of a composite component. We use it here to illus-
trate how we are able to generate behavioural models for
GCM components.

Two sub-pNets represent the behaviour of sub-
components A and B. A queue pNet receives ?Q m0(f,arg)
requests where f is the future corresponding to the request
and arg the value passed as argument. Serve* commu-
nications allow the body to retrieve those requests, which
will then be treated by the Deleg m0 pNet, this pNet re-
ceives Call communications from the body and delegates
the request to an inner component (here, A); during this
process, a future proxy is created by the proxy manager
PMf(S), the proxy (PF1 m0[q]) is responsible for receiv-
ing the reply when A has finished the request treatment
and for forwarding this result to the outside of the compos-
ite component: R m0(q,val) that becomes R m0(f,val).
Note that this proxy encodes some basic form of first class
future: the future q corresponds to the same result as the
future f. This situation also corresponds to the Figure 3.4
of Section 3.4.

Similarly, requests emitted by the inner components ar-
rive in the queue4, they are then delegated to the outside
world by a similar mechanism: a Deleg m pNet delegates
the call, and creates a future proxy, which will be respon-
sible for sending back the result to the appropriate inner
component. Here again the proxy manages the fact that
both the future q and the future fa (or fb) represent the
same result.

Finally, note the proxy structure we adopt: there is one
proxy manager CPM* for each method of each client inter-
face (proxy managers are both indexed over interfaces and
over methods). Then each of those managers itself manages
a family of proxies CProxy*. Performing model-checking
on (the behaviour of) those structures then requires a pre-
cise definition and optimisation of the number and size of
those families.

All the communications expressed above, but also the
communication channels between the different inner com-
ponents – requests Q m3 and the corresponding replies
R m3 – can be automatically generated and correspond to
synchronisation vectors of the pNet of the composite. Dif-
ferent boxes are expressed as pLTSs, except of course inner
components that are pNets. Those pLTSs are not shown

4we drew two Queue boxes, but they represent the same element

108

m2: Ty2 −> Ty

m1: Ty1 −> Ty

m2: Ty2 −> Ty

m1: Ty1 −> Ty

m3: Ty3 −> Ty4

m4: Ty5 −> Ty6

m0: Ty3 −> Ty4

Figure 3.8: A simple composite component in Vercors

A B

Composite Example2

CProxy m4[p]

?R m4(p, val)

CProxy m2[p]

CProxy m1[p]
?R m1(p, val)

?R m2(p, val)

!Q m1(p, arg)

!Q m2(p, arg)

!Q m4(p, arg)

Body

Deleg m

Deleg m0
CPM m4PMf(S)

PF1 m0[q]

!Q m1(fa, arg)
!Q m2(fa, arg)

CPM m1

CPM m2

!Activ m4(fb, p)

!Q m4(fb, arg)

!Call m0(f, arg)
!GetProxy m0(f)

Serve *(f)

!Activ m0(f, q)

!R m0(q, val)

?Q m0(f, arg)

!R m0(f, val)

!Activ m2(fa, p)

!Activ m1(fa, p)

!Q m3(arg)
?R m3(val)

∀m in {m1,m2,m4}
!GetProxy m(f)
?R GetProxy m(p)

!Call m(f, arg)
∀m in {m1,m2,m4}

!GetValue m1(fa, p, val)
!GetValue m2(fa, p, val)

!GetValue m4(fb, p, val)
Queue

Queue

!Q m0(q, arg)

!Call m0(q, arg)

?R GetProxy m0(q)

Figure 3.9: pNet for the composite component from Figure 3.8

109

here for conciseness of this section. Similarly, we are able
to generate communication specific aspects, queues, bodies,
and future proxies for GCM components.

Overall, from the specification of service methods and
the description of the component architecture, we are able
to generate a pNet specifying the behaviour of a component
assembly. Then, from finite instantiation domains for future
proxies, queue length, . . . we are able to generate a finite
behavioural model that can then be model-checked to verify
the correct behaviour of a GCM application. more details
on the size of the systems we are able to verify and the
optimisation techniques we rely on can be found in [42]

3.6.4 Paper from FACS 2008

The paper presented in this section focuses on the represen-
tation of futures in our behavioural model. More precisely
the contribution presented in this paper is twofold. First,
we provide a static representation for futures, this consists
mainly in an abstraction suitable for the static analysis of
programs with futures. Second, we use our behavioural
models to detect local deadlocks in a component system
with first class futures. Additionally, this paper provides
an extension to the interface definitions with annotations
on the arguments that can contain a future; this enables
the behavioural verification of components with first-class
futures but also avoids deadlocks in some cases by enforcing
additional synchronisations.

110

Transparent First-class Futures and

Distributed Components

Antonio Cansado, Ludovic Henrio, Eric Madelaine

INRIA Sophia Antipolis, CNRS - I3S - Univ. Nice Sophia Antipolis
2004, Route des Lucioles, BP 93, F-06902 Sophia-Antipolis Cedex - France

Email :First.Last@sophia.inria.fr

Abstract

Futures are special kind of values that allow the synchronisation of different processes. Futures are in
fact identifiers for promised results of function calls that are still awaited. When the result is necessary
for the computation, the process is blocked until the result is returned. We are interested in this paper
in transparent first-class futures, and their use within distributed components. We say that futures are
transparent if the result is automatically and implicitly awaited upon the first access to the value; and that
futures are first-class if they can be transmitted between components as usual objects. Thus, because of
the difficulty to identify future objects, analysing the behaviour of components using first-class transparent
futures is challenging. This paper contributes with first a static representation for futures, second a means
to detect local deadlocks in a component system with first class futures, and finally extensions to interface
definitions in order to avoid such deadlocks.

Keywords: Hierarchical components, distributed asynchronous components, formal verification,
behavioural specification, model-checking, specification language.

1 Introduction

This paper provides a model for reasoning about futures in the context of distributed

components. We define here a framework allowing us to find which components can

be blocked on an access to a future, and extend the specification of component

interfaces in order to avoid some of these blocked states.

Our approach consists of specifying statically a behavioural model for distributed

systems with futures, in order to apply model-checking techniques on it. This ap-

proach can relate to [14,10], but in this paper we focus on the modeling of futures

that were not taken into account in previous work in this domain. In our previ-

ous works [3,2] we gave behavioural models for active objects and asynchronous

distributed components such as the GCM (Grid Component Model [4]), however,

futures were local, i.e. they were not sent between activities (we call activity a unit

of distribution). The behavioural models, as in this paper, are based on an inter-

Electronic Notes in Theoretical Computer Science 260 (2010) 155–171

1571-0661/$ – see front matter © 2009 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.12.036

http://www.elsevier.com/locate/entcs

mediate language that we call Parameterized Networks of Synchronised Automata

(pNets) [2].

The remainder of this section reviews related works on futures, defines the con-

text of our work, and our contribution. In Section 2 we provide an abstraction

suitable for static analysis of programs with futures, as well as behavioural models

for futures. In Section 3 we apply the behavioural model to an example and show

some properties that can be checked. Section 4 builds on definitions useful for de-

tecting blocked components. Finally, in Section 5 we suggest an extension for the

definition of component interfaces that can prevent some deadlocks.

1.1 Futures

Futures [13,18,16] provide synchronisation for concurrent or parallel languages. A

future is an “object” that can be filled or not. Accessing a future blocks if the

future is not filled, and returns the encapsulated object otherwise. Explicit futures

are typed: a (static) type “Future” exists and futures are statically identified as

the objects with this type, they can only be accessed by a getValue method. In

this paper we are rather interested in transparent futures. Transparent futures are

accessed like the object they encapsulate, so futures and non-future objects are

manipulated in the same way. Futures have some kind of proxy that automatically

blocks the program when accessing the object if the future is not filled. This renders

a data-driven synchronisation in a mechanism called wait-by-necessity.

The first question is: “when are futures created?”. The answer depends on

the programming language. Generally, futures are created by an explicit construct

which delegates a thread for computing the future value, this construct is named

future in Multilisp [13,11], and thread in [16]. In AmbientTalk [9], ProActive [5],

and ASP [6], futures are created automatically upon a remote method invocation.

In ProActive and ASP, there is no syntactic difference between a local method call

(which may or may not create a future), and a remote method call (which creates a

future). This means futures are implicit and their creation depend on the data-flow;

synchronisation is also implicit and occurs on strict access to a future.

Another question is: “Which are the blocking operations on a future?”. Whereas

in a local setting most of the languages agree on the definition of a strict access to

an object, in a distributed setting things get more complex. The question above

boils down to: “Is transmitting a future to a remote object a strict operation?”. In

ASP and ProActive, we consider that futures can be transmitted between remote

activities because we proved that this property had no influence on the possible

execution paths, except that it can avoid some dead-locks [6]. We call such futures

first class futures because they can be manipulated as first class objects.

As an interesting related work, [8] provides a language with futures that features

“uniform multi-active objects”: roughly, each method invocation is asynchronous

because each object is active; each object has several current threads, but only

one is active at each moment. However, their futures are explicit: a get operation

retrieves their value. The authors also provide an invariant specification framework

for proving properties on such multi-active objects with futures.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171156

Our point of view in this paper is to build a behavioural model for futures à

la ASP calculus, but more generally the proposed model applies to any kind of

transparent first-class futures featuring wait-by-necessity mechanism.

1.2 Components and Futures

Components are software entities with interfaces (or ports); those interfaces are

connected together by bindings. In GCM, there are two kinds of components:

primitive components that implement some behaviour in Java, and composite com-

ponents that compose other components. The composites are in fact dispatchers of

services: the composite dispatches the received requests to the bound interfaces.

If communications occurring over the bindings are synchronous, then the in-

terfaces can be accessed as usual objects, having methods with parameters and a

return type. When components are connected asynchronously, one must find a way

to create a channel for the objects returned by the components. Futures can be

used as identifier of the asynchronous invocations over components. Indeed, futures

provide some kind of transparent channels that correspond to the original bindings,

but taken in the opposite direction: from the server to the client.

But components and futures get more related when considering static analysis.

Indeed, in an asynchronous component model like the GCM, only invocations on a

component create a future. Thus, the components allow the static identification of

future creation points, and thus a finer static analysis.

1.3 Components as an Abstraction for Distribution

Components relieve us from a difficult analysis task: in a distributed object-oriented

language with implicit futures, it is difficult to identify the communication and the

creation points of futures. Indeed, asynchronous method calls are syntactically simi-

lar to synchronous ones, and distinguishing one from the other can only be the result

of a static analysis step which is by nature imprecise, consequently identifying the

points where futures are created is also difficult. In a distributed component model

like the GCM, however, the only method invocations that are asynchronous are the

ones performed on interfaces. The topology of distribution and communication is

directly given by the component structure.

Unfortunately, although the component model provides a good abstraction for

distribution and specifies which calls are asynchronous, the flow of futures is still

hard to approximate. In other words, the component abstraction tells us where

futures are created but not where they can go. The dynamic and transparent

nature of futures implies that each result and each parameter of an invocation may

contain a future; thus the only safe assumption for parameters and results is that

any object received can be a future, and every field of this object can itself be a

future. This leads to a very imprecise approximation of the synchronisation in the

system; this over-approximation can always be improved by static analysis (when

the system is closed), or by specification, as illustrated in Section 5.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171 157

1.4 Contribution

Transparent first-class futures provide a natural and efficient data-flow synchroni-

sation where a result is awaited only when it is necessary. However, providing a

model of programs using transparent first order futures is challenging. The contri-

bution of this paper is first to give a static representation of transparent first-class

futures, second to characterise how access to futures can block components indefi-

nitely, third to use the previous results to identify local deadlocks, and finally extend

the definition of interfaces to avoid some blocked states.

2 A Static Representation for Futures

The objective of this section is to give a behavioural model for transparent first-

class futures, this model is intended at the static verification of the behaviour of

components. We assume that the accesses to the component interfaces and the

creation point of futures are given in the functional behaviour of the component

(Body). We start this section by a brief definition of the pNets model, and of its

(static) graphical representation on which we build our models.

2.1 Informal Description of pNets

The pNets model, formally defined in [2], is a generalisation of Nets [1]. It synchro-

nises a (potentially infinite) number of processes by means of N-ary synchronisation

vectors. The parameters set a symbolic representation of the system.

A pNets takes the form of a hierarchy of processes; each process encodes a

particular Sort of the pNet. The Sort of a pNet can be filled with a parameterized

LTS (pLTS) satisfying a Sort inclusion condition, or with another pNet.

In this paper we use a static subset of pNets in which synchronisation vectors

don’t change. A pNet is depicted by a set of boxes, and their synchronisations are

given by arrows that express the synchronisation vectors; the direction of the arrow

is an abstraction of the data-flow. For N-ary synchronisation, we use a synchroni-

sation vector with an eclipse in the middle.

The pLTSs are represented by states (circles), and transitions (arrows). The

transitions encode the actions that a process can perform in a given state.

A label with !act and ?act denote actions of emition and reception of act resp.

An action act is a visible action without synchronisation; however, this action may

be the result of synchronising other actions within inner pNets.

Moreover, within the behavioural model we adopt the following notation:

• call(fid,M(args)) is a method call M, with parameters args, which result should

update the future fid.

• response(fid,val) is the result of a method call; it updates the future fid with

the value val.

• forward(fid,val) is the message forwarding the value val of the future fid.

• getValue(fid,val) is the access to the future fid; the body accesses the future

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171158

fid and receives from the proxy the value val.

• serve(M) is the request to serve a method M from the queue.

• pNets(C) is the behavioural model of component C.

• Proxy(fid) is the proxy dealing with the future fid.

• Body is the (user) functional behaviour of the component.

• Queue is the request queue of the component.

2.2 Representing Futures

In the examples below, we will use a Java-like language à la ProActive, where

creation of futures are method calls on some required interfaces (named itf here),

i.e. all future creations are of the form f=itf.foo(), resulting in a future stored

in the variable f. We call future update the operation consisting in replacing a

reference to a future by the value that has been calculated for it.

The representation of a future must allow the contained object to be accessed,

i.e. to synchronise futures. We call waitFor the primitive allowing the update of a

future to be awaited (this primitive has also been named touch or get [11]). When

futures are transparent, this waiting operation is automatically performed upon an

access to the content of the future. We describe in this section what behavioural

model can be created for this kind of futures. For the moment, we consider that

futures cannot be passed between remote entities, and thus the future is necessarily

accessed by the same entity that created it (at another point of the execution).

The objective of this part is already to be able to provide a model for the

following piece of code:

f=itf.foo(); // creation of a future

if (bool) f.bar1(); // wait-by-necessity if bool is true

f.bar2(); // wait-by-necessity only if bool is false

In here, if f.bar1() is executed, then f must be filled; in this case f.bar2()

will be necessarily non-blocking. Otherwise, f.bar2() may or may not be blocking

depending if the future f is already filled by the time the call is performed. Note

that it is much simpler when futures are explicit, i.e. if futures are typed.

In this work we formalise the abstract domain of a future. The previous example

shows that futures are filled transparently at any time. Thus, whenever it is not

statically decidable whether an object is a future or a value, it must be assumed

as a future. This is an over-approximation that will, at least, include all possible

synchronisations a variable may trigger. Therefore, static analysis of a program

with futures requires the set of abstract values to be multiplied by two.

Indeed, statically each variable is either known to contain a value which is not

a future, or, equivalently, a filled future, ranging in the domain of the usual static

domain for values; or the variable may be a future, and when the future will be filled

its value will range in the domain of the usual static domain for values. Note that an

object that is not a future is semantically equivalent to a filled future. In abstract

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171 159

interpretation [7] it would be easy to construct a lattice for this new abstract domain:

suppose without futures, the abstract domain is a lattice (D,≺), then the new

abstract domain taking futures into account is the lattice D′ = D∪ {fut(a)|a ∈ D}

equipped with the order ≺
′ built such that if a ≺ b, then a ≺

′ b, a ≺
′ fut(b),

and fut(a) ≺
′ fut(b). Indeed the abstract value a gives more information than

fut(a). To summarise, statically, the value for our objects are either “filled” or

“potentially non-filled”; these abstract values are composed with the usual abstract

values required for the analysis.

In the ProActive middleware, the example above creates a proxy in the first line,

and all calls to the future stored in f would go through the proxy object, leading, if

necessary, to a wait-by-necessity. For our model, the idea is the same: the variables

have the “classic” static abstract domain, and the augmented lattice is taken into

account by an additional automaton with the behaviour of a proxy. Initially, the

proxy is in an empty state where the object can only be filled with a value, so any

access to the variable will be blocking. In general, two instances of the same method

call have two different futures, so the proxies are parameterized by the instance of

method call. In Fig. 1 we show a first model on how two components communicate.

The action call(f,M(args)) puts the request in the server’s queue, and initialises

the local proxy. The call contains the identifier of the future to be updated, f .

Once computed, the value of f is updated (response(f,val)).

Client Role

serve
(f,$\mathcal(M)$)

Body

Proxy

Queue

Server Role

Body

Proxy(f)

?call ?response
val

!getValue(val)

getValue
(f ,val) response(f ,val)

!call(f ,(M))

call(f ,(M))

Fig. 1. Communication between two Active Objects

2.3 A Model for Transparent First Class Futures

We now extend the previous model to allow futures to be transmitted in a non-

blocking manner. Futures can be transmitted in the parameters of a method call,

or in the return value of a method call. Because of that, a future in an activity may

have been created locally or by a third-party. In both cases, the activity is aware

of the future identifier. The references of futures known by a component are local.

Only when synchronising the components the references must match the data-flow.

In pNets, synchronisation vectors allow us to synchronise different labels which we

use to link the future references. This technique allows us to create the behavioural

model for each component independently.

On the practical side, different future update strategies can be designed for

propagating the values that should replace future objects. Despite having differences

in performance, the update policies have equivalent behaviour, proved using ASP

in [6]. This leaves freedom to choose any update policy. In this paper we use this

result applied in the behavioural model.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171160

Let σC be a valid execution on component C, pNets(C) the behavioural model

of C, and fid a future, then the model is built such that:

Property 1 if getValue(fid,val) in σC, then Proxy(fid) is in pNets(C)

As a consequence, the model has a proxy dealing with every future a component

may receive. Due to imprecision of the abstraction, the component may even have

proxies for futures that would never exist at run-time. However, any synchronisation

is considered within the model.

Property 2 if the value of fid is computed, then all proxies of fid are updated

eventually

Property 2 is true even for proxies that don’t exist at run-time. The property is

guaranteed by construction: (i) the proxy that creates fid initially synchronises with

the remote method call. The proxy then waits for the result (value of fid). When

the value of fid is updated, the proxy forwards the value of fid to all components

to which the local component sent the reference fid. (ii) all other proxies of fid are

initially in a state in which they are ready to receive the value of fid; this guarantees

they will also be able to be updated. When the proxy is updated, it forwards the

value of fid to all components to which the local component sent the reference fid.

In fact, a proxy forwards the value of a future to all components it has sent the

reference to synchronously. Therefore, each proxy only needs one port “forward”

for each future, independently of the number of components to which it sent the

reference.

Property 3 the update of proxies that do not exist at run-time has no influence in

the behavioural model

Depending on the data-flow, some components will receive the value of fid,

though the reference fid was not transmitted. In this case, the reference fid is also

unknown to the given component, and thus the content of the future is innaccessible,

i.e. the business part of the component is not affected.

Sending a future as a method call parameter

In Fig. 2, the Client performs a method call M1 on Server-A, and creates a

Proxy(f) for dealing with the result. Then the Client sends the future to a third

activity (Server-B) in the parameter of the method M2(f). From Server-B’s point

of view, there is no way of knowing if a parameter is (or contains) a future, so every

parameter in a method call must be considered as a potential future. Server-B

includes, therefore, a proxy for dealing with the parameter f of the method call

M2. For the sake of comprehension, however, in the figure the identifiers for futures

already match the data-flow.

Retransmit a future received as a method call parameter

The previous example is extended such that Server-B transmits the future f to

Server-C. This is partially depicted in Fig. 3. The proxy in Server-B, after receiv-

ing the value of the future (?forward(val)), forwards the value to the components

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171 161

Client

Server−B

Server−A

Body

Queue Body
serve(M2(f))

(f ,val)
forward

!call(f ,M1)

Proxy(f)

?response
val

!forward(val)

?call

call(f ,M1)

response(f ,val)

!call(M2(f)) call
(M2(f))

(f ,val)
getValue

(f ,val)
getValue

!getValue(val)

val
?forward

Proxy(f)

val
!getValue

Fig. 2. Transmitting a future as method call parameter

it has sent the future reference.

Server−C

Server−B

Queue Body
serve(M2(f))

?forward
val

!forward
val

val

Proxy(f)

val
?forward

call(M3(f))

(f ,val)
forward

getValue(f ,val)

!getValue

Fig. 3. Retransmitting a future as method call parameter

Returning a future

In Fig. 4 an activity (Server-B) creates a future f2 and then transmits f2 to the

Client within the result of the method call M1(args). The behavioural model is

slightly different to the one in ASP: instead of returning a future, there is a proxy

on the server put in charge of forwarding the concrete value once it is known; no

value or future is sent to the Client in the meanwhile. Using this mechanism,

the behavioural model of the Client is the same no matter whether Server-B

returns a value or a future. Moreover, Client remains as usual; the result of the

method call M1(args) has a proxy Proxy(f1) dealing with the result. It is up

to the proxies of the Client and the Server-B to synchronise in order to match

the expected behaviour. Concretely, the action with the response to the Client

(response(f1,val)) is synchronised with the forward action (forward(f2,val))

of the Proxy(f2); it will then update the Proxy(f1). If the Client accesses the

future, then it synchronises with its local proxy, Proxy(f1).

2.4 Summary: How to Build a Future Proxy?

We showed in this section that it is possible to specify the behaviour of proxies for

futures providing a good approximation of the future flow is given. To summarise:

• Each proxy finishes by providing a !getValue transition allowing the access to

the future value.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171162

Client

Server−B Server−A

Proxy(f1)Body

Queue

response
(f1,val)

Queue

Body
response
(f2,val)

Queue

!forward
(f2,val)(f1,val)

getValue

(f1,M1(args))
!call

!forward

?response
val

val

Proxy(f2)

?call

call
(f2,M2(args))

serve
(f ,M(args))

Body

Fig. 4. Transmitting a future as a result for a method call

• At the future creation point (i.e. on the caller side of a remote method invocation),

a proxy starts by two transitions ?call for synchronising with the remote call,

and ?response for synchronising with the response.

• In the other activities that can receive the future, the proxy starts a single tran-

sition ?forward for receiving the forwarded future value

• If the activity may send the future to another one, then the !getValue transition

is preceded by a !forward one.

• Proxies that are used for transmitting a future reference as the value of another

future are slightly different: they need no !getValue because they simply forward

the value they receive as the value for another future. Assigning a future refer-

ence to another future is directly ensured at a higher-level, that is to say by the

composition itself. This ensures that the behavioural model is still compositional

as no name of an externally created future exist in the proxy.

3 Illustrative Example

Consider a component system like in Fig. 5. It contains a component A that requests

some services of B, and stores the return value in a variable f . Component A does

not access the return value f immediately; instead, it forwards f to the component

E, and possibly forwards f to the component F. Finally, A accesses f . Component

B is a composite component that wraps a primitive component C. C, when serving

the method foo(), requests a service to D by means of its wrapper, B, and returns.

Fig. 5. Going through a composite thanks to first-class futures in ProActive

In GCM/ProActive, this would instantiate 6 active objects; one per primitive

component (A, C, D, E, F), plus one per composite component (B). The active object

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171 163

for B mediates services: requests coming from the composite’s server interfaces are

dispatched to a subcomponent, requests coming from its subcomponents client in-

terfaces are dispatched towards an external component. For that it makes extensive

use of first-class futures; it serves a request, performs a remote method call, creates

a future for holding the result, and then sends back the future to the caller. In

other words, B delegates the requests it receives to components C and D, returning

the future corresponding to the delegated method call.

3.1 Behavioural Model

Fig. 6 shows the model created for the system above. Components E and F have

similar behaviours. Components B and C are synthesised by the pNets model BC

depicted in Fig. 7 (which is as well a model for a composite component). In this

example, we index each future by the name of the component that created it.

BC DA

E

F

Proxy(fA)

Body

Queue

Body

Body

Queue

(fA,val)
?forward

(fA,val)
?forward

(fA,val)
forward

call(fA,foo)

response(fA,val)

!call(fA,foo)

response(fBC,val)

call(fBC,foo)

getValue(fA,val)

(fA,val)
getValue

val
?forward

Proxy(fA)

val
!getValue

call(hoo(fA)) call(gee(fA))

?call(hoo(fA))

Fig. 6. pNets model of Fig. 5

In the pNets model of A, futures are forwarded to several activities; a fu-

ture is sent as parameter of the method calls to E and F in call(gee(fA)) and

call(hoo(fA)) resp. A proxy is created in each callee with the identifier (fA)

matching the proxy of the caller, i.e. Proxy(fA). Proxy(fA) in pNets(A), after

receiving the concrete value, will forward the value to both activities E and F. This

is seen as an action forward(fA,val). As a remark, the update of Proxy(fA) in

F is done no matter whether the component is called or not, however if the call is

never performed the proxy is unreachable (its identifier is unknown).

Fig. 7 shows the behaviour of components B and C. Component B creates the

proxies Proxy(fB1) and Proxy(fB2) for the calls foo and bar resp. B does not

access the proxies, so the responses of the calls are forwarded directly by the proxies.

The same models applies for component C. It creates a proxy Proxy(fC) when

calling bar. C returns the future fC , so Proxy(fC) is the one forwarding the value

it receives as a response to B.

3.2 Properties

In terms of behaviour, the value of f has no impact on the control flow, thus it is

abstracted to a single abstract representative dot. It is the proxy that takes care

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171164

B

C

BC

Proxy(fB1) Proxy(fB2)

Body

Queue

Queue

Body

response
(fB1,val)

!forward

?response
val

val

Proxy(fC)

?call
bar

!forward
(fB2,val)

?response
(fC,val)

response
(fC,val)

!forward
(fC,val)

?response
(fB1,val)

!call(fC,bar)

call

?response
(fB2,val)

!call
(fB2,bar)

!forward(fC,val)

(fB1,foo)

!response
(f ,val)

?call
(f ,foo)

Fig. 7. pNets model of components B and C

Fig. 8. Components B and C

of the abstract values filled and non-filled, meaning that we only care if the future

has been filled or not and when it is accessed. We used the CADP [12] toolbox for

generating the state-space and for the verification; the complete LTS for the system

has: 12 labels, 575 states and 1451 transitions; when minimised using branching

bisimulation 52 states and 83 transitions remain. Some properties can be found

using alternation-free µ-calculus formulas [15]:

System is deadlock-free. As the program never terminates, we proved in

CADP that, on the global-state space, every state has at least one successor.

All futures are necessarily updated. This is proved by stating that the call

on itfB.foo() in component A will update all futures within a finite number of

actions. In pNets, this is (see Fig. 9): starting in a state where call(fA,foo) is

performed, all leading traces will perform the future updates along the transmitting

chain. More precisely, as no future is returned until a real value is known, when

D computes the value, the components of the chain (D, B, and C) reply. Those

response messages follow all the chain leading to A. Finally, A forwards the value

to E and F (forward(fA,val)).

ANYANY ANY ANY ANYANY

call
(fa,foo)

response response
(fBC,val) (fC,val)

response
(fB1,val)

response
(fA,val) (fA,val)

forward

Fig. 9. Automaton representing the traces where futures are updated

System deadlocks if the composite does not support first-class fu-

tures. Suppose that the programming language does not support the transmission

of futures, which implies that a method call must return a value (if any). Fig. 10

shows a modified version of the composite B with this behaviour. When the compo-

nent B receives a request ?call(f,foo), the Body of B should: call the component

C (action !call(fB1,foo)), access the return value (action getValue(fB1,val)),

and then return the value of fB1 (action !response(f,val)). The value of fB1 is

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171 165

computed by component C on a service that must go through component B. There-

fore, this value will never get computed as component B is blocked synchronising on

getValue(fB1,val). Such a scenario systematically results in deadlocks.

B

Proxy(fB1) Proxy(fB2)

!response
(f ,val)

?response
(fB1,val)

Body

Queue

?response
(fB2,val)

!call
(fB2,bar)

?call
(fC,bar)

!response
(fB2,val)

?call
(f ,foo)

!call
(fB1,foo)

getValue
(fB1,val)

getValue
(fB2,val)

Fig. 10. pNets model of a composite without first-class futures

System deadlocks if itfB.foo() is synchronous The deadlock is similar to

the previous one; if foo() is synchronous, then this call blocks component B until

the result is known. What it means is that a synchronous call cannot trigger a flow

that goes through a composite twice. This is a common pitfall for inexperienced

programmers with GCM/ProActive that we can fortunately detect in our models.

4 Identifying Blocked Components

This section shows how to detect whether there are components blocked infinitely on

a future access. We investigate definitions and properties adequate for this purpose

based on ASP.

It is easier to start with the example of Fig. 11. A Client queries for some

data. This data is properly formatted by the QueryManager and then forwarded

to the Database. Once the Client creates the future d, it inserts a new entry into

the table t with data from d; this is a method call performed directly towards the

Database. The system may deadlock, though, due to a race condition on access to

the Database. If the Client accesses the Database before the QueryManager does,

the Database will access the future d – thus block –, but d will never be updated

because the Database itself must update this future. The behavioural model of the

previous section is enough to detect this problem.

Fig. 11. Race condition in GCM / ProActive

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171166

right. Using the same analysis over the

complete system, no deadlock is found:

indeed, some part of the system is con-

stantly doing some work, i.e., in the global state-space every state has at least one

transition. What we need is a finer grain definition of blocked component.

In ASP, synchronisations happen upon access to a future and when serving a

request from the request queue. In the following we consider components that

serve requests in a FIFO order, and thus no synchronisation on a request is made.

Therefore, all deadlocks in a system must be related to access to a future. More

precisely, there must be at least a future that is accessed and that is never updated.

This gives us a starting point for defining what is a (non)-blocking future.

We refine the behavioural model in order to observe the accesses to futures in

detail: first, there is a visible, non-synchronised action waitFor(f) signalling that a

component wants to synchronise on the content of a future; and then a synchronised

action getValue(f,val) where the component effectively retrieves the content of

the future.

Unfortunately, due to an unfair scheduler, a subsystem (e.g. the Ping-Pong)

could interact indefinitely while some components never progress. In this case, once

the action waitFor(f) is performed, the action getValue(f,val) is reachable but

not inevitable. Therefore, we impose some kind of fairness in traces. We use the

definition of fair reachability of predicates as given by Queille and Sifakis [17].

Definition 4.1 A sequence is fair iff it does not infinitely often enable the reacha-

bility of a certain state without infinitely often reaching it.

Finally, we are able to define a non-blocking future and a non-blocking component.

Definition 4.2 A future f is non-blocking iff, under the fairness hypothesis, if each

time the action waitFor(f) is performed, then the action getValue(f,val) is

eventually reached.

Definition 4.3 A distributed component is non-blocking iff every future it accesses

is non-blocking.

Moreover, if a distributed component system is non-blocking, and synchronisa-

tions are only due to future access, then the system is deadlock-free. In other words,

if the system deadlocks and synchronisations are only due to access to futures, then

there is at least one component blocked waiting for a future.

The main advantage of our approach is that it can be encoded in a model-

checker, and thus we can ensure that every needed future reference is updated; in

other words the program will have the expected behaviour: all the object accesses

of the program will occur.

Now, suppose the database example

runs in parallel with two components that

run continuously as the figure on the

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171 167

contains a single thread; (ii) all method invocations are restricted to calls on client

interfaces; and (iii) all future creation points are restricted to results of these method

calls on client interfaces.

This removes some of the imprecision of the static analysis. Nevertheless, a

source of ambiguity remains in open environments: a parameter (or any subfield)

received in a method call may be either a future or a value due to transparency

of first-class futures. This section suggests an extension to the Interface Descrip-

tion Language (IDL) to improve the precision of analysis and specification, we also

explain how this extension prevents the occurrence of some deadlocks.

5.1 Principles

In order to be safe, the behavioural model must be an over-approximation of the

implementation, including a proxy not only for futures, but also for variables or

parameters which may be a future. Such imprecision is due to the undecidable

nature of static analysis, and to the transparent nature of futures.

Moreover, for the database example of Fig. 11, one would like to offer means

to correct the deadlock. For this, one can enforce further synchronisation on the

Client side in order to guarantee that the Database always receives a value instead

of a future. Up to now the only way to ensure such a synchronisation is to insert

a call to the waitFor() primitive within the code of the Client. Nevertheless, from

the server side, i.e., the Database, one does not know this information. Thus, the

behavioural model for the Database still expects a future; the unneeded traces will

only be pruned when synchronised with the environment.

The IDL used in the GCM specifies the interface signatures, but is insufficient

to deal with transparent first-class futures. Based on the interface signature, one

does not know whether method parameters are futures or not. Moreover, there is

no way of controlling which parameters cannot be futures. Typing futures would

solve the issue, however, we would lose all the good properties shown in Section 2.2.

One way is to specify within the IDL which parameters (or fields) cannot be futures

(i.e. marking them as strict value); the other parameters are allowed to be futures

or not. Note that this is less restrictive than typing because some parameters can

still be either a value or a future.

In an open system this information cannot be inferred by static analysis. It is a

contract on futures that affects both client and server: client interfaces must ensure

that method parameters match the interface specification; server interfaces assume

– and may test – that method parameters agree with the interface specification.

The contract also decreases the non-determinism in the server behaviour.

It is true that by the use of strict parameters there is less concurrency; compo-

nents may enforce further synchronisations before performing remote invocations.

On the other hand, behavioural models are more precise and closer to real execu-

tions; the programmer can specify parameters that are known to be non-futures.

5 Extending the Interface Definition

By switching from an object-oriented to a component-oriented design, we make

the application topology and dependencies explicit because: (i) every component

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171168

5.2 Interface Specification

The difficulty is finding, statically, a proper abstraction for the parameter struc-

ture. In theory, every subfield of every parameter may be a future. Therefore a

static representation of arbitrary types is impractical. Here we suggest a relatively

precise approximation; marking a field as strict value, recursively, means that all its

subfields (known at runtime during serialisation) are strict values as well. Similarly,

not marking a field implicitly means that, recursively, all its subfields (except the

marked ones) may be futures.

In the example of Fig. 11, an easy solution to the deadlock mentioned before is

to force value-passing of d. Based on Java 1.5 Annotations the specification of the

interface DB would look like:

interface DB {

Data query(Query q);

void insert(Table t,

@StrictValue Data d);

}

On the practical side, if d is still a non-filled

future by the time the method insert(t, d)

is invoked, the invocation is halted until the

future is updated. This way, the system is

guaranteed to be non-blocking.

To implement this in ProActive, we would have to modify the Meta-Object-

Protocol (MOP). The MOP will:

(i) on the client side: during serialisation any parameter marked as strict value

will enforce an explicit synchronisation on the related object; the overhead is

payed only for methods with annotated futures.

(ii) on the server side: during deserialisation any parameter marked as strict value

can be checked not to be a future; to avoid overhead, one may assume that

the sender respects the contract because it was previously checked during seri-

alisation. Moreover, the affected parameters will never block because they are

guaranteed to be concrete values.

6 Conclusion

Throughout this paper we studied how to model transparent first-class futures in

distributed components, as well as some necessary properties in order to avoid

deadlocks related to futures. To our knowledge, the only previous work providing

static reasoning on futures is [8], and focused on invariant proofs for explicit futures.

We provides here behavioural static models for transparent futures that can be

detailed as follows:

A Model for Transparent First-Class Futures. We defined an abstraction and a

model for futures and their behaviour (synchronisation, update). This model ex-

presses the flow of future references and future values. It extends our previous works

by giving behavioural models for transparent first-class futures, relying heavily on

the properties proved in the ASP-calculus.

A Framework for Detecting Blocked Components. Thanks to our model we are

able to detect components indefinitely blocked on future access using model-checking

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171 169

techniques. This way, futures for which a value will never be computed can be

identified. Our model greatly helps the programmer to find synchronisation issues

in concurrent programs with futures.

Rich-Interfaces. Finally, we showed that the Interface Description Language of

GCM can be improved in order to specify synchronisation on futures at the interface

level. This lifts some synchronisation from the behaviour up to the interface level,

which yields more precise behavioural models and avoids some deadlocks.

An alternative model for futures would consider global references to further

optimise the state-space. The properties on confluence inherited from ASP allows

us to update all references of a future synchronously without other impact than

generating traces with less interleaving. This effectively avoids the propagation of

values found in our model, however it requires inter-procedural static analysis, so it

does not allow the model to be built independently.

References

[1] A. Arnold. Finite transition systems. Semantics of communicating sytems. Prentice-Hall, 1994.

[2] T. Barros, R. Boulifa, A. Cansado, L. Henrio, and E. Madelaine. Behavioural models for distributed
Fractal components. Annals of Telecommunications, accepted for publication, 2008. also Research
Report INRIA RR-6491.

[3] T. Barros, L. Henrio, and E. Madelaine. Verification of distributed hierarchical components. In
International Workshop on Formal Aspects of Component Software (FACS’05), Macao, Oct. 2005.
ENTCS.

[4] F. Baude, D. Caromel, C. Dalmasso, M. Danelutto, V. Getov, L. Henrio, and C. Pérez. Gcm: A grid
extension to fractal for autonomous distributed components. Annals of Telecommunications, accepted
for publication, 2008.

[5] D. Caromel, C. Delbé, A. di Costanzo, and M. Leyton. ProActive: an integrated platform for
programming and running applications on grids and P2P systems. Computational Methods in Science
and Technology, 12(1):69–77, 2006.

[6] D. Caromel and L. Henrio. A Theory of Distributed Object. Springer-Verlag, 2005.

[7] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Conf. Record of the Fourth Annual ACM SIGACT-
SIGPLAN Symp. on Principles of Progr. Languages, pages 238–252, Los Angeles, CA, 1977. ACM
Press, New York.

[8] F. de Boer, D. Clarke, and E. B. Johnsen. A complete guide to the future. In ESOP, pages 316–330,
2007.

[9] J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt, and W. D. Meuter. Ambient-oriented
programming in ambienttalk. In D. Thomas, editor, ECOOP, volume 4067 of Lecture Notes in
Computer Science, pages 230–254. Springer, 2006.

[10] F. Fernandes and J. Royer. The STSLIB project: Towards a formal component model based on
STS. In Proceedings of the Fourth International Workshop on Formal Aspects of Component Software
(FACS’07), Sophia Antipolis, France, September 2007. To appear in ENTCS.

[11] C. Flanagan and M. Felleisen. The semantics of future and an application. Journal of Functional
Programming, 9(1):1–31, 1999.

[12] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. European Association for Software
Science and Technology Newsletter, 4:13–24, Aug. 2002.

[13] R. H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM Transactions
on Programming Languages and Systems (TOPLAS), 7(4):501–538, 1985.

[14] ISO: Information Processing Systems - Open Systems Interconection. LOTOS - a formal description
technique based on the temporal ordering of observational behaviour. ISO 8807, Aug. 1989.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171170

[15] R. Mateescu. Efficient diagnostic generation for boolean equation systems. In Tools and Algorithms
for Construction and Analysis of Systems, pages 251–265, 2000.

[16] J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda calculus with futures. Theoretical
Computer Science, 364(3):338–356, Nov. 2006.

[17] J. Queille and J. Sifakis. Fairness and related properties in transition systems – a temporal logic to
deal with fairness. Acta Informatica, 19(3):195–220, July 1983.

[18] A. Yonezawa, E. Shibayama, T. Takada, and Y. Honda. Modelling and programming in an object-
oriented concurrent language ABCL/1. In A. Yonezawa and M. Tokoro, editors, Object-Oriented
Concurrent Programming, pages 55–89. MIT Press, Cambridge, Massachusets, 1987.

A. Cansado et al. / Electronic Notes in Theoretical Computer Science 260 (2010) 155–171 171

Write

Commit

Read

Body

Proxy
_Read[c]

_Commit[c]

Proxy

Proxy
_Write[c]

Slave[k]

Queue

CO

CO

CO

Body

Queue

Read

AC_f

Call_*R_*

Group Manager

Proxy Manager

Activate_*

BC

BC

BC

Master

Write

Q Write(fid,b)

Q Read(fid)

R Write(fid)

R Read(fid,b)

Serve *

Q commit(?)

R ACGet(f)

R ACSet
ACSet(f)

ACGet

Q Read()

Q Write(b)

Figure 3.10: pNet Architecture for the fault-tolerant application

3.6.5 A model for one-to-many communica-

tions

The example presented in Section 3.6.3 was following a se-
mantics à la GCM but had no example of architectural
features specific to GCM. However, we recently focused on
the handling of group communications [42] and multicast
interfaces [47] in pNets.

In particular, in [47] we focused on the verification of
a fault-tolerant application based on replication and con-
sensus. To illustrate our approach, we choose a simple dis-
tributed application featuring fault-tolerance by replication.
Though the fault-tolerance properties we address are not
outstanding, we think this application is a good opportunity
to investigate on the use of model-checking to ensure safety
of fault-tolerant applications. This article provides a model
for one-to-many communication, but also studies the mod-
elling of faulty processes, and investigates the use of model-
checking for verifying fault-tolerance from an application

BFT Composite

Good

Slave1

Good

Slave3

Good

Slave2

Bad

Slave1

Master

Read(fid)

Write(fid, b)

Write,

Commit,

Read

Error

Figure 3.11: Our fault-tolerant application

point of view. Our purpose is not to prove that a fault-
tolerance protocol is correct but to understand whether it
is possible to represent all the aspects of a complete compo-
nent application communicating by request-replies, and at
the same time reason about the fault-tolerance of this entire
application. Our application consists of a Master compo-
nent replicating data to be stored on several workers. The
master updates the worker value, and gathers replies from
workers to retrieve the stored value. If enough non-faulty
workers are instantiated, and enough identical replies are
returned to the master, the stored value can be retrieved.

From a behavioural modelling point of view, this arti-
cle required us to provide a model for multicast interfaces
where capabilities of pNets’ synchronisation vectors were
fully used and allowed one component to broadcast a re-
quest to several others, or one component to provide a re-
ply that would reach the right index in a group of futures.
We had to represent richer future proxies that were able to
handle a list of results, and to provide a result as soon as
some of them were resolved.

Figure 3.11 shows the architecture of our application
as a GCM component system. Figure 3.10 shows the struc-
ture of the pNet we defined for representing this application,
and for which we verified the behaviour by model-checking.
Note that Slave[k] is a family of pNets representing all
the slaves of the application, and which will be targeted by
the multicast: the one-to-many synchronisation vector is
symbolised by the circled BC. On the other side, the mas-
ter asynchronously collects results from the different slaves,
represented by the circled CO on the concerned synchroni-
sation vectors.

129

Apart from the specification of a model for multicast
interfaces with futures, this article was also the opportunity
for us to investigate the use of distributed model-checking
for verifying the properties of systems with a large number
of states.

To summarise and to illustrate the kind of properties
we are able to verify, we proved by model-checking that
our application consisting of 1 master and 4 slaves (3 good
ones and bad one) behaves correctly: 1) it answers to Read
and Write requests: we proved both reachability and (fair)
inevitability of termination of services, 2) the answers are
correct in the sense that the read value is the value that has
been written, 3) for this it relies on the slaves for storing the
data (the master only performs a consensus), and 4) enough
good slaves have been instantiated and the NotBFT error,
signalling that a consensus could not be reached, cannot be
raised.

In this work, we did not model reconfiguration and adap-
tation, but we design our specification in such a way that
those aspects can easily be added to the model in the fu-
ture: each element that can be modified by reconfiguration
has a representation in our behavioural model.

3.7 Summary and conclusion

In this chapter we have mainly shown the efforts we have
done in the design of a component model for large-scale
computations. This model has been implemented, relying
on the ProActive middleware, and provided a reference im-
plementation for the GCM component model. This imple-
mentation has been a good starting point for experiment-
ing and designing more advanced features of our compo-
nent model: we proposed both a better structure for non-
functional concerns, and improved reconfiguration capabil-
ities, specialised for distributed components.

Our component model has been given an operational
semantics inspired from the request/reply nature of ASP
communications but much more general, as the behaviour
of primitive components is highly parameterisable. This
operational semantics was mechanised in the Isabelle/HOL
theorem prover and allowed us to prove the correction of a
strategy for updating futures.

Having such a framework to study the properties of
the component model is a crucial point. It allows us to
study the properties of our implementation and to prove
the correctness of some design-choices. It also formalises
and proves the properties the ProActive/GCM programmer
can rely on. And finally, properties and formal specifica-
tion justify the choices made when building the behavioural

model of a component assembly. Those properties are thus
also useful for ensuring the correctness of our behavioural
verification approach.

Overall, the distinction is clear between theorem prov-
ing or paper proofs on one side that allow proving generic
properties on the model and its implementation, and be-
havioural specification techniques on the other side that
allow proving the correctness of a given GCM application.

One of the next steps we envision is the formalisation
of the interplay between our formalisation of the compo-
nent model, and the behavioural specification we build. In-
deed, we plan to formalise the behavioural semantics of
GCM components; this means formally specifying the se-
mantics of pNets, and the translation of component sys-
tems into pNets. Then we will be able to prove formally
the equivalence between the operational semantics of our
component model, and its behavioural semantics. Finally
this will prove the correctness of the behavioural semantics
relatively to the GCM specification, but should also allow
us to further and more precisely use theorem proving tech-
niques to help the behavioural verification of application
correctness.

Further future works, in particular dealing with compo-
nent system descriptions and component system reconfigu-
rations will be presented in Section 4.3.

130

Chapter 4

Current Works, Perspectives, and

Conclusion

In this chapter I review a few of our current research
topics that are the most promising. Section 4.1 presents
our work on the design and formalisation of dissemination
algorithms for CAN peer-to-peer networks, and Section 4.2
presents a programming model for multi-threaded active
objects. Section 4.3 reviews some other research directions
which are still at an earlier stage. Finally, Section 4.4 con-
cludes this document.

4.1 Dissemination algorithms for

CAN: design and formalisation

4.1.1 Context and objectives

In this work, we are interested in Structured Overlays Net-
works (SONs) that emerged to alleviate inherent problems
of unstructured P2P architectures such as scalability, lim-
ited search guarantees,. . . In these systems, peers are organ-
ised in a well-defined topology where resources are stored in
a deterministic location. The underlying geometric topol-
ogy is used by the communication primitives and ensures
their efficiency.

Our aim is to design an efficient (in terms of number
of messages) and correct broadcast algorithm for the CAN
overlay network. We want to use mechanical proofs to en-
sure the correctness of the studied protocols, with a much
higher confidence than paper proofs which rely too often
on “well known” properties or “obvious” steps that could
reveal wrong or under-specified. We expect our framework
to be general enough to study CAN networks by provid-
ing the formalisation of basic building blocks composing
it. However, we are not interested in formalising the whole
CAN protocol but rather we focus on the minimal set of
abstractions needed to reason on communication protocols
for CAN.

Proving properties on distributed algorithms could be
done by specific formalisms for distributed systems, like
TLA+ [Ls03], however we chose a more general theorem
prover to have better support for general reasoning. In-
deed, reasoning on the structure of a CAN requires generic
theorems that will be better supported by a general purpose
theorem prover.

A CAN [RFH+01] is a structured P2P network based
on a d -dimensional Cartesian coordinate space labelled D.
This space is dynamically partitioned among all peers in
the system such that each node is responsible for storing
data, in the form of (key, value) pairs, in a sub-zone of D.
To store a (k, v) pair, the key k is deterministically mapped
onto a point in D and the value v is stored by the node
responsible for the zone comprising this point. The search
for the value corresponding to a key k is achieved by apply-
ing the same deterministic function on k to find the node
responsible for storing the corresponding value. These two
mechanisms are performed by an iterative routing process
starting at the query originator and which traverses its ad-
jacent neighbours (a peer only knows its neighbours), and
so on and so forth until it reaches the zone responsible for
the key to store/retrieve.

We investigated on the existence and optimality of
broadcast algorithm for CAN structured overlay networks.
We look for a broadcast/multicast algorithm that is effi-
cient, in the sense it minimises the number of messages
exchanged between peers while still reaching every peer in
the network. To our knowledge the main proposals for ef-
ficient broadcast in a CAN network, and the closest works
to our, are M-CAN [RHKS01] and Meghdoot [GSAA04].

Another related problem is to perform a multicast in-
stead of a broadcast, that is to say flood only some of the
nodes. M-CAN reduces the problem of multicast to the one
of a broadcast on another CAN network (interlinked with

131

the first one and containing only the nodes to be flooded).
This ensures that an efficient broadcast protocol is suffi-
cient. Our first goal is to design an efficient broadcast algo-
rithm, then we can rely on M-CAN approach to flood only
some of the nodes. However it might be interesting (as in
Meghoot) to provide a multicast algorithm restrained to a
zone of the original network, e.g. an hypercube, in that case
no creation of an additional network is necessary, instead
the broadcast is constrained by an hypercube that should
be covered.

M-CAN [RHKS01] is an application-level multicast
primitive which is almost efficient, but it does not eliminate
all duplicates if the space is not perfectly partitioned and
the dimension is greater than two. The authors measured
3% of duplicates on a realistic example. In a publish/sub-
scribe context, Meghdoot [GSAA04], built atop CAN, also
proposes a mechanism that totally avoids duplicates but re-
quire the dissemination to originate from one corner of the
zone to be covered. Compared to those approach, our al-
gorithm can originate from any node of the CAN and still
remove all the duplicates.

Additionally, no existing dissemination algorithm atop
CAN has been formally specified, and one of our main ob-
jective is this work is to design an algorithm proven correct.

Consequently, our work is also linked to the verifica-
tion of DHT protocols. Borgström et al. [BNOG05] were
interested in the verification of DHT protocols. As such,
they formalised and verified a variant of Chord [SMK+01]
in static settings (i.e. no churn) using CCS, a process al-
gebra. In a subsequent work, Bakshi et al. [BG07] used π-
calculus to prove the correctness properties of Chord in the
pure-join model of the protocol. Zave, in her work [Zav09]
proved the Chord protocol in its two models: the pure-join
and full, using the Alloy analyser. She provides a rigorous
correctness proof of the pure-join model and proved that
the full model of the protocol is indeed not correct using
lightweight verification methods. Pastry [RD01] was also
the subject of a recent verification effort [LMW11], which
focus was to ensure the correctness of Pastry’s algorithm.
The join and lookup protocols were specified using TLA+

and the properties verified using the TLC model checker.
After gaining confidence in their formalisation, the authors
turned to TLAPS, a platform for the development and veri-
fications of TLA+ proofs and came up with a reduction the-
orem which reduces the global Pastry correctness properties
to the invariants of the underlying Pastry’s data structure.

To our knowledge, we are the first ones to formalise and
prove some properties of an abstraction of the CAN overlay
network using a theorem prover. This formalisation efforts
should greatly increase the correctness and understanding
of distributed algorithms for structured P2P networks, and
the confidence one has in their correctness.

4.1.2 M-CAN: an almost-efficient algorithm

Let us first describe the dissemination algorithm proposed
in M-CAN:

1. The source node, sends a message to all of its neighbours
(in Figure 4.1, the grey node I is the source)

2. A node receiving a message from a neighbour along di-
mension i (in a given direction) will forward the message
along dimensions 1. . . (i -1) and to the neighbour in the
dimension i in the opposite direction from which it re-
ceived the message. For instance, in Figure 4.1, node B
will forward the message it received from C in dimen-
sion 1 in the +X direction; C forwards the message in
three directions. Note that there are rules in order to
avoid looping round the back of the space and the mes-
sages have sequence numbers so a node will not forward
an already processed message.

I

Message

Forwarding
directions

Lower corner

A B

C

Avoided
duplicate
message

Figure 4.1: M-CAN - Message forwarding

3. For a perfectly partitioned space, where nodes have
equal sized zones, the previously presented scheme
avoid redundant messages. However, as you can see
in Figure 4.1, nodes A and C should send a message to
B, thus resulting in a duplicate. In order to remove cer-
tain of the duplicates, a deterministic rule can be used

132

between A and C since they known about each other
and they are aware of each other’s coordinates hence
they can use this rule so only one node forwards the
message to E. The idea is that a node only forwards
the message if this node abuts the lowest corner of its
neighbour (the lowest corner is the corner that touches
the propagation direction and minimises all the other
coordinates). In Figure 4.1, only node C forwards the
message to B since it “touches” the lower leftmost cor-
ner of E. However, such a rule only removes duplicates
arising from the first dimension and cannot be applied
in higher dimensions. Indeed, because of the propa-
gation rule, it is impossible to know if a neighbour is
responsible for sending a message or not in a dimension
greater than 1. The authors of M-CAN give the follow-
ing example justifying why their approach is not valid
in higher dimensions:

“Consider a 3-dimensional CAN; if a node
by the application of a deterministic rule de-
cides not to forward to a neighbour along the
second dimension, there is no guarantee that
any node will eventually forward it up along
the second dimension because the node that
does satisfy the deterministic rule might re-
ceive the packet along the first dimension and
hence will not forward the message along the
second dimension.” [RHKS01]

4.1.3 An optimal dissemination algorithm

In their paper, the authors of M-CAN did not manage to
design an algorithm removing all the duplicates, even if they
reached good performances with only 3% of the nodes re-
ceiving duplicates (those nodes generally receive 2 messages
but can receive more). Our algorithm can be considered as
an extension of M-CAN allowing to remove the duplicates
arising in all the dimension, and reaching the optimum of
0 duplicated message. Our algorithm takes the idea of M-
CAN but defines spatial constraints allowing us to remove
duplicates appearing also in dimensions higher than one.

The idea is the following. We use the “corner criteria”
of M-CAN for the first dimension on which everybody for-
wards. For preventing duplicates in the d− 1 other dimen-
sions, we constraint the algorithm to only send messages
to nodes belonging to an hyperplane; each of the node of
the hyperplane will then propagate the message on the first
dimension. In the hyperplane, we can apply recursively our
algorithm in a CAN of dimension d−1. Note that when the
hyperplane becomes a line no duplicate can arise if we just
follow the propagation direction (there is no more corner
criteria).

Overall, if the propagation dimension is the dimension
k, like in M-CAN, the message will be propagated in di-
mensions 1..k − 1 in all directions, and in one direction in
dimension k: a node sends to the opposite direction from
which it received. Then we have a spatial constraints on
dimensions 1..k− 1, and we apply the corner criteria to the
dimensions k+ 1..d (we only send if the sender touches the
minimal coordinates of the receiver in those dimensions).
Except the propagation direction, each dimension is either
constrained by the spatial constraint or by the corner rule.

In the example Figure 4.2, the spatial constraint is the
higher bound of source node I on the X dimension, that is,
X=10. I will only send a message along the vertical axis
to neighbour(s) which intersect the line. For example, on
the downward direction, I only sends a message to D; E
will receive the message on the horizontal direction. Note
here that the authors of M-CAN did not explain how such
duplicates were avoided (there is no figure similar to Fig-
ure 4.2 in M-CAN article). Note here that in case the line
is exactly the node border, we choose deterministically the
side of the node to be taken. The corner rule is to send a
message to a neighbour if the sender’s lower bound on the
other dimension is lower than our neighbour’s. More for-
mally, a node forwards a message if the following conditions
are valid:

• when propagating on X:

Sender.LowerBound(Y) ≤ Neighbor.LowerBound(Y)
< Neighbor.UpperBound(Y)

• when propagating on Y:

Neighbor.LowerBound(X) ≤ 10
< Neighbor.UpperBound(X)

Within the messages, the directions to be covered by
the nodes are pictured by the red circled arrows. In the
horizontal directions, the principle is similar to M-CAN,
we simply added a spatial constraint preventing E from
receiving duplicate messages.

As illustrated in Figure 4.3, this can be generalised to
dimensions greater than 2 and thanks to our additional cri-
teria, we still have no duplicate. In dimension 3 the initia-
tor first sends messages to the nodes intersecting a plane.
In this plane we reduce the problem to the example shown
above (see Figure 4.2), in particular a line constraint is used
and then a 2 dimensional corner rule is applied. Finally
when propagating horizontally, a three dimensional corner
constraint is applied as depicted in Figure 4.3.

We describe below the general algorithm in a less in-
formal way. We give the data structure along with the

133

I

A

E

C

constraint x=10

D

Figure 4.2: Principles of our algorithm in two dimensions

I

constraint x=10
constraint x=10 and y=5

corner

constraint

Figure 4.3: Our algorithm in higher dimensions

full algorithm below (Algorithm 4.1.1), which was imple-
mented1 using Java ProActive [CDdCL06]. We ran a series
of preliminary micro-benchmarks on a static CAN (i.e. no
peer churn) where we varied the number of peers (from 60
to 300) and the number of dimensions (from 2 up to 6).
In every run, we found no duplicate message whatsoever
confirming thus the efficiency of our algorithm. The data

1https://bitbucket.org/lp/eventcloud-efficient-broadcast

structures used in our algorithm are the following:

• zone
def
= (LowerBound, UpperBound); the lower and

upper bound of a peer’s zone

• dimensions
def
= [1 .. D]; the dimensions each peer has

• side
def
= inferior — superior; the inferior/superior direc-

tion on a given dimension

• direction
def
= (dimension, side); the direction on which

the message is received

• constraints
def
= Array[D] of value; An array of val-

ues representing the constraints used to decide to which
neighbours the message is to be forwarded

• message
def
= (direction, constraint, MessageValue); The

broadcast message during propagation

Algorithm 4.1.1 Efficient broadcast algorithm

upon event 〈message〉 on node
for each k≤message.direction.dimension do

if k=D+1 then

side← ∅

else

if k < message.direction.dimension then

side← {inferior,superior}
else

side←message.size
end if

end if

for each s in side do

for each neighbor on dimension k and side s do

for each i in 1 .. k − 1 do

if not (neighbor.LowerBound[i] ≤ message.constraint[i]
< neighbor.UpperBound[i]) then

skip neighbor
end if

end for each

for each i in k + 1 .. D do

if not(node.LowerBound[i] ≤ neighbor.LowerBound[i] <

node.UpperBound[i]) then

skip neighbor
end if

end for each

send 〈constraint=message.constraint, direction=(k,s),
MessageValue=message.MessageValue 〉 to neighbor

end for each

end for each

end for each

end event

When receiving a message this algorithm forwards mes-
sages in all directions lower than the dimension on which the
message has been received; in the dimension on which the
message has been received, the message is only propagated
on the same direction as the reception (not in both sides).

134

As explained above, dimensions lower than the propagating
direction are checked against the constraint, and dimen-
sions higher than the propagating dimensions are checked
against the lowest corner criteria. If the neighbor verifies
all the criteria, the message is sent to it.

This algorithm is initiated by sending a broadcast mes-
sage to an initiator node on a direction made of an artificial
dimension D+1 and any side (this explains the first if con-
dition of the algorithm). The message is associated with a
constraint that should be the lowest corner of the initiator.

Did we loose robustness?

One can argue that having duplicated messages should in-
crease the robustness of the algorithm in case a node fails,
but we argue that there are much more efficient ways of
duplicating the messages than the way imposed by the in-
efficiency of the algorithm. Indeed with the basic algorithm,
some node receive the message once, while other can receive
them an arbitrarily high number of times. For example, a
much better way to ensure robustness would be to perform
another broadcast of the same message with another source
and reversing the dimensions of the CAN (considering the
first one as the last one); this would ensure that each node
receives each message exactly twice (instead of any number
of times), most of the time coming from two different direc-
tions (instead of mostly coming from the same direction).
One could also, based on the optimal algorithm, send an ad-
ditional message to one neighbour, chosen randomly, which
would already better distribute the duplicate messages that
the basic flooding algorithm.

4.1.4 Formalisation of CAN and of dissemi-

nation algorithms

The following presents our mechanised formalisation efforts
done in the context of dissemination algorithms over CAN.
Our objective in this work is to provide a set of defini-
tions and theorems to prove the properties of communica-
tion algorithms over CAN-like networks. This work will
be illustrated by proving a set of properties for a class of
broadcast algorithms. This formalisation has been realised
in Isabelle/HOL2.

A crucial question when formalising a complex structure
like a CAN is which level of abstraction should be used,
and which notions of Isabelle/HOL should represent basic
notions of CAN networks. We represent a CAN by a set
of nodes, a zone for each node, and a neighbouring rela-
tionship, stating whether one node is neighbour of another.

2see: www-sop.inria.fr/oasis/personnel/Ludovic.Henrio/misc.

More precisely, zones are represented by a function Z that
matches each node to a Zone, where a zone is a Tuple set (a
tuple is an array of integers). Note that we abstract away
a few constraints of the CAN protocol:

• Zones in a CAN are rectangular while in our formalisa-
tion a zone is a union of rectangles. Thus our approach
is more general than CAN. Also, in CAN, when a node
leaves the network, a neighbour node will be responsible
for several zones, in that case, a zone becomes a union
of rectangles. Consequently our formalisation is better
adapted to model a dynamic CAN with churn, i.e. the
continuous joining/leaving of nodes.

• We do not relate zones with the neighbouring notion.
Indeed, this aspect did not reveal to be useful in our
proofs, and this approach alleviated us from geomet-
ric reasoning which would be difficult in Isabelle/HOL.
Taking into account geometry will however be necessary
in some cases and we could easily extend our formali-
sation with geometrical concerns. It seems reasonable
to reason on geometry separately, and instead provide
a set of properties of a CAN that are ensured because
of geometrical constraints.

Overall our formalisation does not follow exactly the CAN
protocol but our abstract notions of zones and neighbours
are more general and provides more reasoning flexibility.
In Isabelle, a CAN is defined as follows:

typedef CAN = {(nodes::nat set , Z ::nat=>Zone, neigh-

bours::(nat×nat) set).
finite nodes ∧ finite neighbours ∧
(∀ x y. (x ,y)∈neighbours−→(y,x)∈neighbours)∧ (*symmetric neigb-

horing relationship*)

(∀ x . (x ,x)/∈neighbours) ∧ (*a neigbhor is unique*)

(∀ tup. ∃n∈nodes. tup∈(Z n)) ∧(*every tuple is covered by a node*)

(∀ N∈nodes. ∀ N ′∈nodes. N ,=N ′−→¬intersects (Z N) (Z N ′)) ∧
(*no overlap*)

(∀ N∈nodes. Z N ,={})} (*a zone managed by a node is not empty*)

Additional constraints state that the set of nodes is
finite and that the zones cover the whole space and are
disjunct. We define three auxiliary functions CAN Nodes,
CAN Zones, and CAN neighbours returning each part of a
CAN. We also define a function intersects Z Z’ that checks
whether zone Z intersects zone Z’ : it is true if Z and Z’
have at least one point (tuple) in common. Then we define
NodesInZone C Z, the set of nodes which zones intersect
the zone Z, we say then that “the node N is in Z”.

Then we define a notion of connectivity adapted to
CAN zones. This notion is close to the geometrical notion
of path connectivity but dedicated to the CAN networks.
The idea is that a zone is connected if a message can go
between one node in the zone to another node in the zone
passing only through nodes in the zone. In the context
of a communication protocol, a connected zone allows

135

(indirect) communication between any two nodes of the
zone. We state that a zone is connected if the nodes it
intersects are all connected to one another (there is a
path of neighbours between any two nodes intersecting the
zone). The Isabelle definition of Connected is the following,
it is a function that takes a CAN and a Zone and returns
a bool. It states that if n and n’ are two nodes in zone
Z, then there is a list of nodes (all distinct) starting at n,
ending at n’, only passing by nodes intersecting Z, and for
which each node of the list is neighbour of the previous one.

definition Connected :: CAN⇒Zone ⇒bool where

Connected C Z≡∀n∈NodesInZone C Z . ∀n ′∈NodesInZone C Z .
∃ node-list . node-list !0=n ∧ destination-NL node-list=n ′ ∧ dis-

tinct node-list

∧ (∀ i<length node-list − 1 . node-list !i∈CAN-Nodes C

∧ CAN-neighbour C (node-list !i) (node-list !(i+1))
∧ node-list !i∈NodesInZone C Z)

To reason on CAN structures, we provide several
generic lemmas. They will be used in most further proofs.
The following lemma is particularly useful to us as we will
see that we will reason on paths of messages constrained
inside a zone; it allows us to initiate a path inside a
connected zone. It states that if the zone contains more
than one node, then one can find two nodes, neighbour of
one another, inside the zone:

lemma Connected-exists-neighbour :
[[Connected C Z ; ZoneSize C Z>1]]

=⇒∀ N∈NodesInZone C Z . ∃ N ′∈NodesInZone C Z .
CAN-neighbour C N N ′

Let us conclude this section with an induction principle
that allows one to prove a property related to a zone by
induction on the size of the zone. A trivial induction
lemma would express directly induction on the number of
nodes in the zone on which the property is verified. More
interestingly, one can prove a property by adding one by
one the node belonging to the zone of interest; this allows
some form of structural induction on a CAN zone:

theorem induct-node-zone-2 :
[[P {};∧

Z . (P Z−→(∀N∈CAN-Nodes C . N /∈NodesInZone C Z−→
(∀Z ′.(NodesInZone C Z ′={N}−→ P (Z∪Z ′)))))]]

=⇒ P Z

This theorem states that, if (1) we prove that a property
P is true for an empty zone, and (2) we prove that if P is
true for a zone then it is true for a zone intersecting one
more node; then the property is true for all zones.

Messages and message paths

This section describes the formalisation of messages and of
the path followed by a message. A message is made of four
parts: an identifier for the message (which could represent

also its content), a source node, a destination node, and
the zone to which it must be transmitted:

types Message = nat × nat × nat × Zone

We decided to rely on the notion of zone to be cov-
ered to define a broadcast algorithm, because it seems quite
adapted to the CAN structure. This zone to be covered can
have two purposes depending on the algorithm. First it al-
lows the specification of multicast protocols where only the
nodes in a given zone have to receive the message. Also, as
we are looking for an efficient algorithm that minimises the
number of messages necessary to broadcast the information,
it seems reasonable to split efficiently the zone to be cov-
ered in order to avoid sending a message to the same node
twice. Message-zone,Message-dest, andMessage-source are
functions accessing the first three fields. We also define an
abbreviation <m|x,y,Z> for defining a Message, this allows
us to easily identify messages inside the definitions and lem-
mas.

In the context of CAN, it seems crucial to provide
tools to reason on the path followed by a message. In-
deed, communication inside CAN heavily relies on the
notion of paths. For this, we define a path as a loop-
free set of consecutive messages, and provide tools to
reason inductively on those paths. Consider a message
set msgs, a list of messages forms a valid-path if each
message is sent from the destination node of the previous
message. We only want to reason on paths of finite
length, and also it seems reasonable to reason on the
longest path in a zone. For those reasons, we consider only
loop-free paths: all the elements of the list must be distinct.

definition valid-path:: Message set ⇒Message list ⇒ bool where

valid-path msgs ML ≡ ML ,=[] ∧(∀ i<length ML. ML!i∈msgs) ∧
(∀ i<length ML − 1 . Message-dest (ML!i)=Message-source

(ML!(Suc i)))
∧ distinct ML

The predicate path-inside-zone takes a CAN, a set of
messages msgs, and a zone Z, and returns the set of valid
message paths formed of messages that are entirely inside
zone Z. For this, we check that the origin node of the path
is in zone Z, and that the destination node of each message
of the path is in zone Z.

definition path-inside-zone::CAN⇒Message set⇒Zone⇒Message

list set where

path-inside-zone C msgs Z ≡
{MsgL. valid-path msgs MsgL ∧ source MsgL∈NodesInZone C Z

∧
(∀ i<length (MsgL). Message-dest (MsgL!i)∈ NodesInZone C

Z)}

Specification of a class of broadcast algorithms

From this formalisation of a CAN network, our objective
is to reason about broadcast algorithm. As a first step, we

136

formalised a class of algorithms based on the notion of zone
to be covered. Defining a broadcast in a convincing way
using Isabelle/HOL is not trivial; this is mainly due to the
underlying functional language, similar to λ-calculus, which
is probably not the best language for defining a broadcast
algorithm. We will put an emphasis on the way messages
are processed. Our formalisation is centred around the
specification of messages which are the consequences of
a given message and on the specification of the set of
messages used to broadcast the original message. Then we
define the way messages are broadcasted by an inductive
definition, where messages are “treated” one message after
the other sequentially. In our framework, a Broadcast is a
triple made of a CAN, a message set and an initiator node
constrained by several well-formedness rules as defined
below:

typedef Broadcast = {(can,msgs,initiator).
(∀ x y m Z m ′ Z ′. (<m|x ,y,Z>∈msgs∧<m ′|x ,y,Z ′>∈msgs)−→

(m=m ′ ∧ Z=Z ′)) ∧
(initiator∈CAN-Nodes can)∧
(∀ m s d Z . <m|s,d ,Z>∈msgs −→
(s∈ CAN-Nodes can ∧ d∈ CAN-Nodes can ∧
CAN-neighbour can s d ∧
(s=initiator ∨
(∃ MsgL. valid-path msgs MsgL∧destination MsgL=s∧source

MsgL=initiator))
)) }

The constraints expressed in the above definition
state that: (1) There is a single message between any 2
nodes. (2) The initiator is a node of the CAN. (3) All
messages are exchanged between neighbour nodes of the
CAN, and thus the broadcast pattern respects the CAN
protocol. (4) All messages must be sent by a node that
has been reached by a list of messages originating from
the initiator: valid-path msgs MsgL ∧ destination MsgL
= s ∧ source MsgL=initiator. Requiring the existence
of such a valid path ensures that a broadcast only relies
on messages transmitted from nodes to nodes, and no
message is spontaneously created (except for the origin
of course). We denote <C,M,n> a Broadcast, and define
functions BC-CAN, BC-msgs, and BC-initiator to access
its fields. We can then define a predicate checking whether
a broadcast covers the whole CAN, or more precisely
whether each node of the CAN is either the broadcast
initiator or the destination of a message:

definition Coverage:: Broadcast⇒bool where

Coverage BC ≡ ∀ n∈CAN-Nodes (BC-CAN BC).
(n=BC-initiator BC ∨ (∃ m s Z . <m|s,n,Z>∈BC-msgs

BC))

From those definitions, we expect to prove coverage for
some specific broadcast algorithm, but also study their op-
timality. We focus on broadcast algorithms that rely on
zones to be covered by the consequence of a message. The

Zone 3

Zone 2

Zone 1

M

M

M

Node 2

Node 1

(initiator)

Node 3

Figure 4.4: Zone node list (ZNL) definition

idea is that each message is given a zone and the messages
that are triggered by this message must cover this zone, but
should not pass by nodes outside this zone. Then the broad-
cast algorithm will be entirely characterised by a function
that, given a node N receiving a message and the zone Z to
be covered by the message returns a list of couples (Zone,
Node), that we call ZNL (Zone-Node list). Each couple
(Zi, Ni) of the ZNL consists of Zi a sub-zone of Z and Ni a
neighbour of N belonging to Zi: the message is forwarded
to Ni that is now responsible for covering Zi. The zone Zi

must be connected as defined in the previous section, else
it would be impossible to cover it while staying inside Zi.
Given a node and zone, we define the set of ZNLs that en-
sure an optimal broadcast: Set−of−Optimal−ZNL. The
definition (omitted here) guarantees optimality by the fact
that no two nodes receive the same message and no node be-
longs to two different zones. Of course, the partition should
also cover the whole space. For the moment our objective
is not to show if such a partition of zones is easy to build,
nor to prove its existence but we explain informally below
how to build such a zone. Figure 4.4 illustrates the notion
of ZNL for the first step of the broadcast: the message to
be broadcasted is sent from the initiator. We split the zone
to be covered into 3 zones, 3 messages will be sent to three
nodes belonging to each zone and which are neighbours of
the initiator. Each node will be responsible for broadcasting
the message within its zone.

The following definition specifies the set of messages
of a broadcast algorithm based on a ZNLmap, which is a
function that given a node and zone returns an optimal
ZNL. The inductive definition of the broadcast is of the
form BC-msgs C Mid init znlmap msgs ML where C is
the CAN network, Mid is the message identifier, init is
the initiator node, and znlmap is the ZNLmap used by
this instance of the algorithm. The inductive definition

137

works as follows. It takes one by one messages in ML, the
list of message to be treated. Once treated, the message
is put inside the set msgs. At the end, ML is the empty
list, and msgs contains all the messages of the broadcast.
Here processing a message consists in computing the
messages that are consequences of this message thanks to
the znlmap function, and putting them in the “message to
be treated” list. Then the original message can be con-
sidered as treated and be put in the set of treated messages.

inductive

ZNL-BC-msgs::CAN⇒nat⇒nat⇒ZNLMapping⇒Message

set⇒Message list⇒bool

for C :: CAN and Mid ::nat and init :: nat and

znlmap::ZNLMapping where

BC-step: [[ZNL-BC-msgs C Mid init znlmap msgs (M#ML);
M=<Mid ′ | s,d ,Z>;
ML ′=map

(λZN . let Z ′=fst ZN in let N ′=snd ZN in

<Mid ′|d ,N ′,Z ′−CAN-Zones C N ′ >)
(znlmap Z d)]] =⇒

ZNL-BC-msgs C Mid init znlmap (insert M msgs)
(ML@ML ′)

The rule above treats one message M=<Mid’|s,d,Z>; it
computes the messages the node d has to send by produc-
ing a message for each member of the list znlmap Z d. The
list of produced messages is pushed in the list of messages
to be treated. There exists a similar rule (not shown here)
for computing the messages sent by the initiator node.
These rules are applied iteratively treating one message
after the other. At the end, the list of messages to be
treated is empty, and the fourth argument contains the list
of messages of the broadcast. Those rules illustrate how we
suggest to define the message propagation; note that even
for a broadcast algorithm that would not rely on coverage
zones, the inductive structure of the message set definition
would be similar.

Here some design choices have been made in the way
messages are computed. While treating messages one af-
ter the other seems adapted to Isabelle/HOL, this of course
does not correspond to the parallelism that occur in a real
system, but this is quite classical and has no consequence
as long as we do not want to evaluate the time needed to
broadcast the message. More important is the fact that the
messages to be treated are totally ordered (they are rep-
resented as a list), this total ordering is artificial and one
could improve the representation by defining an equivalence
relation allowing messages to be re-ordered. However the
list is a good structure to reason inductively on the mes-
sages and to allow rules to be applied iteratively. As total
ordering was a too strong relation, the treated messages
are defined as a set instead of a list. Note that a set is
considered as sufficient as it is easy (e.g. thanks to a mes-
sage cache) to prevent the same message to be sent twice
between the same nodes.

We can prove that the set of messages generated by an
optimal ZNL constitutes a valid broadcast, as stated by
the theorem below.

theorem ZNL-BC :
[[ZNL-BC-msgs C Mid init znlmap Finalmsgs []; init∈CAN-Nodes

C ;
∀ N Z . znlmap Z N ∈ Set-of-Optimal-ZNL C N Z]]=⇒

(C , Finalmsgs, init)∈Broadcast

Note that we consider the last step of induction, when
the list of messages to be treated is empty ([]). Also,
we require that for each zone and node, znlmap verifies
set-of-Optimal-ZNL. Finally we prove coverage for this
broadcast.

theorem coverage-ZNL:
[[ZNL-BC-msgs C Mid init znlmap Finalmsgs []; init∈CAN-Nodes

C ;
∀ N Z . znlmap Z N ∈ Set-of-Optimal-ZNL C N Z]]=⇒

Coverage (<C , Finalmsgs, init>)

Discussion

The current specification and proofs consist of more than
2500 lines of Isabelle, for more than 100 lemmas and the-
orems. Most of the code is dedicated to proofs, but our
framework requires a lot of different notions, and the defi-
nitions amount for more than 10% of the code.

Our specification provides a convenient level of abstrac-
tion for reasoning on communication algorithm while ab-
stracting away most of the geometrical concerns. The struc-
tured network represented is slightly more general than a
pure CAN: in a CAN zones are necessarily hypercubes,
whereas ours could be in principle any tuple set, for ex-
ample a union of hypercubes. We prefer relying on a less
restrictive definition of the structure in order to see which
properties of our algorithm are verified in those conditions
and also to better adapt to node churn. Later additional
requirements on the structure can be added to prove further
properties, e.g. a broadcast algorithm may only be efficient
if the zones are hypercubes.

It is important for us to have a formalism for expressing
the CAN broadcast that is easy to understand. Although
the specification we showed here is inductive and thus not
in a classical form for a broadcast algorithm, we think it is
clear enough to be convincing, and that it is easy to extract
an algorithm from it. This way of expressing a broadcast
algorithm is not as natural as one would expect because a
form of event-based formulation of the algorithm (“when a
message M is received, send messages M1, M2, and M3”)
would be more adapted. However, such an event-like for-
mulation is not well supported in Isabelle/HOL. Provid-
ing new abbreviations for expressing message transmission
more easily is outside the scope of our work for the moment.

138

The obvious next steps of this work, after polishing and
finishing generic proofs of our framework will be to experi-
ment our optimal algorithm on a large-scale basis, but also
to mechanically prove its correctness and efficiency, based
on our Isabelle/HOL framework.

4.2 Multi-active objects

As mentioned in the overview of active object languages,
Section 2.2, existing frameworks for active objects suffer
from some weaknesses, in particular:

• Deadlocks can occur upon re-entrance of requests or
mutually recursive requests: ASP’s active objects are
almost systematically deadlocked in this case (except
when first-class futures are sufficient to avoid dead-
locks), while Creol and JCoBox rely on cooperative
thread release (await statements) to prevent such dead-
locks; but cooperative multi-threaded might introduce
an interleaving of threads difficult to control.

• Active objects are in general inefficient on multi-core
machines. Indeed, active objects unify the notion of
thread, of location, and of objects, consequently there
is a single thread manipulating the active object at each
moment. Consequently, at deployment one has two
choices, either there is one active object per machine,
and thus a single active thread per machine which is
inefficient, or there are several active objects per ma-
chine and thus several active threads on each machine,
but then those objects do not share memory and thus
communication between objects in the same machine is
inefficient.

In fact, JCoBox proposes a shared immutable state that
can be used efficiently on multi-core architectures but as the
distributed implementation is still a prototype, it is difficult
to study how an application mixing local concurrency and
distribution would behave.

In order to overcome those limitations, we propose an
active object language efficient on multi-core machines, on
which deadlocks due to re-entrance can easily be avoided.
Our programming model also provides a precise control over
concurrency. We call this programming model multi-active
objects. This language adapts concurrency annotations à
la JAC [HL06] to an active object language à la ASP (see
Section 2.2 for the description of the different frameworks).
We explain below the principles of our framework, while
illustrating it on the implementation of a CAN network
based on active objects.

Our CAN example provides three operations: join, add,
and lookup. When a new peer joins another one already in

the network, the joined peer splits its key-space and trans-
fers the associated data to the joining peer. The add op-
eration stores a key-value pair in the network, and lookup
retrieves it. Each peer is implemented by an active object.
Usually, a CAN provides other operations which are not
particularly interesting here and are thus omitted.

4.2.1 Assumptions and Design Choices

To overcome the limitations of active objects with regard
to parallel serving of requests, we introduce multi-active
objects that enable local parallelism inside active objects
in a safe manner. For this the programmer can annotate
the code with information about concurrency by defining a
compatibility relationship between concerns. For instance,
in our CAN example we distinguish two non-overlapping
concerns: one is network management (join) and another
is routing (add, lookup). For two concerns that deal with
completely disjoint resources it is possible to execute them
in parallel, but for others that could conflict on resources
(e.g. joining nodes and routing at the same time in the same
peer) this must not happen. Some of the concerns enable
parallel execution of their operations (looking up values in
parallel in the system will not lead to conflicts), and others
do not (a peer can split its zone only with one other peer
at a time).

In the RMI style of programming, every exposed opera-
tion of an object might run in parallel, thus methods belong-
ing to different concerns could execute at the same time in-
side an object. A classic approach to solve this problem is to
protect all the data accesses, by using synchronised blocks
inside methods. While this approach works well when most
of the methods are incompatible with each other, this all-
or-nothing behaviour becomes inefficient in case there is a
more complex relationship between methods.

By nature, active objects materialise a much safer model
where no inner concurrency is possible. We extend this
model by assigning methods to groups (concerns). Then,
methods belonging to compatible groups can be executed
in parallel, and methods belonging to conflicting groups will
be guaranteed not to be run concurrently. This way the ap-
plication logic need not to be mixed with low-level synchro-
nisations. The idea is that two groups should be made com-
patible if the methods of one group do not access the same
data as the methods of the other group, or if concurrent ac-
cesses are protected by the programmer, and if methods of
one group can be executed in any order relatively to methods
of the other group. Overall, the programmer has the choice
of either setting compatibility between only non-conflicting
groups in a simple manner, or protecting the conflicting
code by means of locks or synchronised blocks for the most
complex cases.

139

We assume here that the programmer defines groups and
their compatibility relations inside a class in a safe man-
ner. Of course dynamic checks or static analysis should be
added to ensure, for example, that no race condition ap-
pear at runtime. However, we leave such an extension to
the framework for future works, and decide to focus for the
moment on the programming model itself.

We start from active objects à la ASP, featuring trans-
parent creation, synchronisation, and transmission of fu-
tures. We think that the transparency featured by ASP
and ProActive helps writing simple programs, and is not an
issue when writing complex distributed applications. How-
ever, this choice is not crucial here, and the principles of
multi-active objects could as well be applied to an active
object language with explicit futures. We also think that
ASP, like JCoBox, features non-uniform active objects that
reflects better the way efficient distributed applications are
designed: some objects are co-allocated and only some of
them are remotely accessible. In our current implementa-
tion and model, only one object is active in a given activity
but our model could easily be extended to multiple active
object per activity.

To illustrate our approach, we describe below a possible
design methodology for transforming an active object into
a multi-active object. Without annotations, a multi-active
object behaves similarly to an active object, no race con-
dition is possible, but no local parallelism is possible. If
some parallelism is desired, e.g. for efficiency reason or be-
cause dead-locks appeared, each remotely invocable method
can be assigned to a group and two groups can be declared
as compatible if no method of one group accesses the same
variable as a method of another group. In that case, method
of the two groups will be executed in parallel and without
respecting the original order, meaning the groups can only
be declared compatible if additionally the order of execu-
tion of method of one group relatively to the other is not
significant. If more parallelism is still required, the pro-
grammer has two non-exclusive options: either he protects
the access to some of the variables by a locking mechanism
which will allow him to declare more groups as compatible,
or he realises that, depending on runtime conditions (invo-
cation parameters, object’s state, . . .) some groups might
become compatible and he defines a compatibility function
allowing him to decide at runtime which request executions
are compatible.

We now describe in details the multi-active objects
framework we designed and implemented.

4.2.2 Defining Groups

The programmer can use an annotation (Group) to define a
group and can specify whether the group is selfCompatible,

@DefineGroups ({

@Group(name="join", selfCompatible=false)

@Group(name="routing", selfCompatible=true)

})

public class Peer {

...

@MemberOf("join")

public JoinResponse join(Peer other) { ...

}

@MemberOf("routing")

public void add(Key k, Serializable value)

{ ... }

@MemberOf("routing")

public Serializable lookup(Key k) { ... }

}

Figure 4.5: The CAN Peer annotated for parallelism

i.e., two requests on methods of the group can run in par-
allel. The syntax for defining groups in the class header
is:

@DefineGroups ({

@Group(name="uniqueName" [, selfCompatible=

true|false])

[, ...] })

Compatibilities between groups can be expressed as
Compatible annotations. Each such annotation receives a
set of groups that are pairwise compatible:

@DefineRules ({

@Compatible ({"groupOne", "groupTwo", ...})

[, ...] })

Finally, a method’s membership to a group is expressed
by annotating the method’s declaration with MemberOf.
Each method belongs to only one group. In case no mem-
bership annotation is specified, the method belongs to an
anonymous group that is neither compatible with other
groups, nor self-compatible. This way, if no method of a
class is annotated, the multi-active object behaves like an
ordinary active object.

@MemberOf("nameOfGroup")

Figure 4.5 shows how these annotations are used in the
Java class implementing a CAN peer in which adds and
lookups can be performed in parallel – they belong to the
same self-compatible group routing. Since there is no com-
patibility rule defined between the groups, methods of join
and routing will not be served in parallel. To fully illustrate

140

our annotations, suppose that monitoring was a third con-
cern independent from the others; declaring it would require
to add the following lines:

... @Group(name="monitoring",

selfCompatible=true)

...

@DefineRules ({

@Compatible ({"join", "monitoring"})

@Compatible ({"routing", "monitoring"})

})

We chose annotations as for defining parallel compatibil-
ity because these are strongly dependent on the application
logic, and in our opinion, should be written at the same
time as the application.

4.2.3 Scheduling Request Services

In ASP, AmbientTalk, etc. requests are served one by one,
and if no particular service policy is specified, they are
served in a first come first served order. In multi-active
objects, even though we focus on increasing the parallelism
inside active objects, we also provide guarantees on the or-
der of execution.

A first policy, called FIFO policy, serves the requests in
the order that they arrive, and provided that the first re-
quest in the queue is compatible with the currently served
ones, it will be served in parallel with them. However, this
solution does not always ensure maximum parallelism in-
side multi-active objects. Consider the following example.
Inside a CAN peer there are two concurrent add opera-
tions running and there are two requests in the queue: join
and monitor (member of the group monitoring). Using the
FIFO logic presented above, we would not be able to start
any more requests until the two adds finish. However, the
monitor request is compatible with all the others, and it
could be safely executed before join, concurrently with adds.
This leads us to an optimised policy for scheduling the re-
quest services: a request can be served in parallel if it is
compatible with all running requests and all the requests
preceding it in the queue. This policy ensures maximum
parallelism while maintaining the relative ordering of non-
compatible requests.

4.2.4 Dynamic Compatibility

Sometimes it is desirable to decide the compatibility of some
requests at run-time, depending on the state of the active
object, or the parameters of the requests. For this reason
we extend the groups with the notion of a group-parameter.
This parameter is common to all methods belonging to the

group (they might have other parameters as well). For in-
stance, in Figure 4.6, all methods belonging to the routing
group of the CAN application have the key they act on as
a parameter. The group-parameter is identified by its type
(parameter="someType"), and in case a method has several
parameters of this type, the leftmost one is chosen. For ex-
ample the routing group can be given a parameter of type
Key.

@Group(name="routing", selfCompatible=true ,

parameter="Key"),

We considered that choosing a single parameter of the
methods belonging to a group was the simplest and most
convenient solution. Of course, if several parameters of a
method are needed to decide compatibility, they can be
wrapped in a single object.

Then, a condition can be added to a compatibility rule
in the form of a compatibility function. A compatibility
function takes as input the common parameters of the two
compared groups, and returns true or 0 if the methods
are compatible (false or any other integer otherwise). The
syntax for a dynamic compatibility rule is:

@compatible {{"group1","group1"},

condition="SomeCondition"}

Compatibility functions are resolved at runtime, based on
how they were defined:

1. as a method of the parameter – if SomeCondition is of
the form someFunc. In this case the comparator func-
tion call is of the form param1.someFunc(param2) where
param1 is the parameter of one request and param2 is the
parameter of the other.

2. in another object – if SomeCondition is of the
form [REF].someFunc. The condition is a method
that is invoked with both parameters as arguments
(someFunc(param1, param2)). [REF] can be either this

if the method belongs to the active object itself, or a
class name if it is a static method.

Additionally the result of the comparator function can
be negated using “!” as a prefix to SomeCondition, e.g.
condition="!equals".

If there is a single order of group parameters for which
the compatibility function exists then this function is called.
Otherwise, the order of parameters is unspecified and any
function of the right name and signature is called, this is
why, in that case, the compatibility method should be sym-
metrical. Sometimes the decision of compatibility may not
depend only on the parameters, but also on the state of
the active object. If the compatibility function is a method
of the active object, it can then access its fields; in that

141

@DefineGroups ({

@Group(name="routing", selfCompatible=true ,

parameter="Key"),

@Group(name="join", selfCompatible=false)

})

@DefineRules ({

@Compatible ({"routing", "join"},

condition="!this.isLocal") })

public class Peer {

...

@MemberOf("join")

public JoinResponse join(Peer other) {

... //split the zone of the peer (into ’

myNewZone ’ and ’otherZone ’)

... // create response for the joining

peers with ’otherZone ’ and its data

synchronized (lock) { myZone = myNewZone;

}

return response;

}

@MemberOf("routing")

public void add(Key k, Serializable value)

{ ... }

private boolean isLocal(Key k){

synchronized (lock) { return myZone.

containsKey(k); }

}

}

Figure 4.6: The CAN Peer annotated for parallelism with
dynamic compatibility

case mutual exclusion with the currently executing threads
should be ensured by the programmer. If one group have no
common parameter, the compatibility function must have
one less argument. In case both groups have no parameter
the compatibility function has to be either a static method
or a method of the active object, with no argument.

As an example, we show below how to better parallelise
the execution of joins and routing operations in our CAN
use-case. During a join operation, the peer which is already
in the network splits its key-space and transfers some of the
key-value pairs to the peer which is joining the network.
During this operation, ownership is hard to define. Thus a
lookup (or add) of a key belonging to one of the two peers
cannot be answered during the transition period, as the
result would be non-deterministic. Operations that target
“external” keys, on the other hand, could be safely executed
in parallel with a join. Figure 4.6 shows how to modify the
peer based on this last remark, more precisely:

• The function isLocal checks whether a key belongs to
the zone of the peer. Note that this method relies on

a synchronized statement to ensure that the threads
running the application logic and the ones evaluating
the request compatibilities will not conflict.

• The key, the common parameter of add and lookup, was
added as a parameter to the group of routing opera-
tions.

• A compatibility rule was added that allows joins and
the routing operations to run in parallel in case the key
of these operations is not situated in the zone of the
peer.

Adding a self-compatibility rule

Note that since we did not define a condition for self-
compatibility, the parallel routing behaviour remains un-
changed. However, if we would want to guarantee that
there is no overtaking between routing requests on the same
key, then it is sufficient to state that the group routing is
selfcompatible only when the key parameter of the two
invocations is not equal, which is declared as follows:

@Group(name="routing",selfCompatible=true ,

parameter="Key",condition="!equals")

4.2.5 Inheritance

It would be infeasible to re-declare compatibility informa-
tion every time a class is extended. Therefore we designed
our annotations to have an inheritance behaviour similar to
Java classes: implicitly, parallel behaviour is inherited with
the logic, but the programmer can add or override defini-
tions in the subclass if necessary.

More precisely, groups defined in a class will persist
throughout all of its subclasses, and may not be re-declared.
However, subclasses may define new groups. The member-
ship of a method is inherited, unless the method is overrid-
den. In this case the membership has to be re-declared as
well. When overriding methods in subclasses, their mem-
bership can be set to any group defined in the class or the
super classes; but it can also be omitted, resulting in mu-
tual exclusion with everyone else. Compatibility functions
can be overridden in subclasses, but it might be reasonable
to declare compatibility functions final as their correctness
strongly depends on the exact behaviour of the served re-
quests, and overriding these compatibility functions allows
a sub-class to change the compatibility between existing
groups.

142

 0

 100

 200

 300

 400

 500

 4 32 64 128 256

 1

 2

 3

R
u

n
ti
m

e
 (

s
)

of peers

All from two (single-active)

All from two (multi-active)

Speedup

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 32 64 128 256

 2

 4

 6

 8

 10

 12

 14

 16

S
p

e
e

d
u

p

of peers

Centre from all (single-active)

Centre from all (multi-active)

Speedup

Figure 4.7: CAN experimental results

4.2.6 Experimental results

We extended the ProActive library with multi-active ob-
jects presented above.3 Then we conducted several experi-
ments including the parallelisation of CAN peers. We mea-
sured the benefits of lookup request parallelisation in the
following situations:

• “All from two” (Figure 4.8) – In this scenario, we added
an equal number of key-value pairs to all the peers in the
network. We then used two peers, located at opposite
corners of the CAN overlay to lookup all those values.
Each corner sends lookup requests one after the other.
However, the results are all awaited at the end thanks
to the use of futures. This experiment gives an insight
about the overall throughput of the overlay.

3available at: www-sop.inria.fr/oasis/Ludovic.Henrio/java/

PA_ma.zip

Figure 4.8: CAN routing
from two corners

Figure 4.9: All nodes ac-
cessing centre

• “Centre from all” (Figure 4.9) – In this test case, all
the peers lookup concurrently a key situated in a peer
at the centre of the CAN. This experiment highlights
the scalability of a peer under heavy load.

Figure 4.7 shows the execution times and speedup for
several sizes for the two scenarios, both scenarios achieve
significant speedup. However, the gain in the first sce-
nario is smaller because the lookups are issued from the
two corners in sequence; the sequential sending of the ini-
tial lookups limits the quantity of parallel lookups present
at the same time in the network. On the contrary, in the
second case, the active object version has a bottleneck be-
cause the centre peer can only reply to one request at a
time whereas those requests can be highly parallelised with
our model. These speedups are achieved by just adding
a few simple annotations to the class declaration without
changing any of the implemented logic.

4.2.7 Discussion

Active objects have been extended with annotations to al-
low and control multi-threaded execution inside them. The
annotations can be written from a high-level point of view
by declaring compatibility relations between the different
concerns an active object manages. Relying on those anno-
tations, request services can be scheduled such that par-
allelism is maximised while preventing two incompatible
requests from being served in parallel. We showed that
multi-active objects outperform simple active objects, and,
in another experiment, we showed that multi-active objects

143

greatly reduce the number of lines dedicated to local con-
currency. Overall we think multi-active object provide a
good compromise between efficiency and easy writing of
both concurrent and distributed objects. Multi-active ob-
jects provide the efficiency of local concurrency while ben-
efiting from the easiness of distribution provided by active
objects.

In the future, we plan on conducting further experi-
ments on multi-active objects but also extending the pro-
gramming model with better support for local concurrency.
We wrote an operational semantics for multi-active objects,
and proved on paper the first correctness properties of the
model. Next steps could include the extension of the mech-
anised formalisation presented in Section 2.4 to model and
prove properties of multi-active objects, but also the adap-
tation of determinism properties of ASP to multi-active ob-
jects, those new properties would necessarily be weaker but
would allow a precise identification of the sources of non-
determinism in our new programming model.

4.3 Future works on distributed

components

The preceding sections presented current and future works,
both in the domain of the active object programming model,
and in a relatively new direction for me: the verification of
distributed systems. Without the aim of giving an exhaus-
tive list of research directions, I want to cite here a few of
them related to distributed components.

Verification of reconfiguration procedures

Until now we almost never used our behavioural models for
the verification of reconfiguration of component systems.
Whereas most of the structure for performing such verifica-
tions are already available in our behavioural models, the
state-space of a reconfigurable component system seems in
general too big for allowing model-checking. However, our
recent results provided us with better tools for harnessing
this state-space explosion problem. Already the fact that we
have been able to run distributed model-checking allowed
us to verify bigger systems, also our recent works on verifi-
cation of group of components required us to face systems
with higher number of components. Thus it seems reason-
able now to be able to specify and verify reconfiguration
procedures on simple systems.

Also concerning component reconfiguration, our seman-
tics for GCM (see Section 3.4) seems a good basis to study
the properties of the reconfiguration of distributed compo-
nents. Proving generic properties (either mechanically or on

paper) of distributed reconfigurable components would be a
useful tool in the design, implementation, and optimisation
of our component middleware.

Also a promising research direction consists in consider-
ing higher-level reconfiguration primitives (like the replace-
ment of a component by an equivalent one, or the duplica-
tion of a component) than the ones proposed by Fractal’s
API. Then properties of those primitives could be proved,
probably based on the generic properties mentioned above.
Those properties could be use to provide an optimised (i.e.
smaller) behavioural model and then allow us to verify real-
size applications.

Considering the fact component reconfiguration is a cor-
nerstone of the autonomic framework developed in the OA-
SIS team, being able to prove generic properties, but also
application-related properties on such an evolving, auto-
nomic application would be of particular interest to us.

parameterised ADLs

In GCM, its implementation, and our behavioural models,
we deal with large-scale infrastructures in terms of groups of
distributed components interconnected by collective inter-
faces. Communications between large groups of distributed
components involve multicast and gathercast interfaces.

However, first the tools we have for defining families of
similar components in the GCM (e.g. inside the ADL) are
quite weak. More generally, we miss high-level abstractions
for defining topologies of components (e.g. rings, matrices,
etc.), and for their connections. These abstractions will
have first to be be reflected at language and middleware
level, typically in the component architecture description
language (ADL) and in the middleware API: once generic
topologies can be defined in the ADL, there must be a way
to instantiate them at deployment time, depending on the
quantity of machines available, or of the desired size for the
system.

Similarly, the specification platform must also reflect
those features, for example as new graphical constructs in
the Vercors environment. Then the semantics of those con-
structs will be given in terms of parameterised model gener-
ation. For this the pNet model, by its parameterised nature
is particularly well adapted.

One very appealing direction of this work could be the
combination with the emerging research on component sys-
tem reconfiguration. In the case of high-level group topolo-
gies, specific reconfiguration primitives should be defined
that could bring more confidence in the safe behaviour of
the application. Typically one could define what is required
to safely insert a new component in a ring topology and

144

reconnect the bindings to guarantee a proper behaviour.
Proving the correctness of such reconfiguration procedures
will most probably rely on the semantics of GCM we defined
in Section 3.4, and this work could be a good opportunity
to tighten the links between our mechanised models and our
behavioural models of GCM components.

4.4 Conclusion

This document presented most of my research achievements
over the past six years. Most of those works have been re-
alised in collaboration with researchers, PhD students, and
interns of the OASIS team. Also some of them were the
result of joint works with researcher of other universities.
My research domain is mostly focused on distributed and
concurrent computing, and more particularly on program-
ming languages and their application to programming and
execution environments. More recently, our works on peer-
to-peer systems were more situated in the domain of dis-
tributed systems, and their theoretical foundations.

The overall objective of my work is to enforce the cor-
rect execution, but also to ease the programming of dis-
tributed applications. To reach this goal, I first presented
my contributions in the domain of active object languages
and the related execution environments. This gives to the
programmer a language with strong guarantees, and also
where writing programs is relatively easy. We also identified
some weaknesses of this programming model and presented
an improvement of the model called multi-active objects.

While active objects are adequate basic constructs for
writing independent pieces of an application, some pro-
gramming models are better adapted for the composition
of those pieces of applications. Consequently, we came
up with a composition model for distributed applications
based on distributed software components. The GCM is a
component model adapted to the composition of large-scale
distributed applications, and its reference implementation,
ProActive/GCM, illustrates well that those components are
well-adapted to the composition of active objects.

With active objects, and even more with components,
the programming model enforces a well-identified structure
on the application that helped us in the specification and
the verification of its correct behaviour. Finally through
several works, in the domain of fault-tolerance and of peer-
to-peer systems for example, I also contributed to the cor-
rectness of the execution environment for those applica-
tions. All those aspects contribute to my mind to an en-
vironment where distributed applications can be written
easily and executed safely.

I think that my work illustrates well the interplay be-
tween theoretical foundations and practical system imple-
mentation. The models presented in this document have all
been designed with the constraint to be as close as possible
to a real language, API, or middleware. For this reason,
those models were sometimes less nice and bigger than the
ones usually found in theoretical developments. Also our
results are sometimes not as strong as they would be if
they were strictly focused on theory, but most of them are
constrained by their direct applicability. They are also con-
strained by the compromise the programmer is willing to
accept so that his programming and execution environment
is both correct and efficient. Overall, most of the theoretical
models presented in this document have been implemented,
or have been written as a formalisation of an already exist-
ing implementation.

Our works on algorithmic skeletons illustrate well this
interplay between theory and practice on a relatively small-
scale whereas our achievements on active objects and com-
ponents involve much bigger contributions. Consequently,
in the domain of active objects and component oriented
programming, the relation between theory and practice is
more expressed by numerous links rather than by articles
mixing theoretical results and their direct applications.

145

146

Chapter 5

List of Publications

Most of my publications are available at http://www.inria.fr/oasis/Ludovic.Henrio.
In almost all my papers, authors are ordered alphabetically, or alphabetically by institution.

Book:

[1] Denis Caromel and Ludovic Henrio. A Theory of Distributed Objects. Springer-Verlag, 2005.

Book Chapters:

[2] Maciej Malawski, Marian Bubak, Françoise Baude, Denis Caromel, Ludovic Henrio, and Matthieu Morel. Interoperability
of grid component models: GCM and CCA case study. In Thierry Priol and Marco Vanneschi, editors, Towards Next
Generation Grids: Proceedings of the CoreGrid Symposium, pages 95–105. Springer US, 2007. 10.1007/978-0-387-72498-
0 9.

[3] Francoise Baude, Denis Caromel, Ludovic Henrio, and Paul Naoumenko. A flexible model and implementation of com-
ponent controllers. In Making Grids Work – Post-Proceedings Selected Papers From The Coregrid Workshop On Grid
Programming Model, Grid And P2p Systems Architecture, Grid Systems, Tools And Environments, June 2007, pages
31–43. Springer US, 2008. 10.1007/978-0-387-78448-9 3.

[4] Maciej Malawski, Tomasz Gubala, Marek Kasztelnik, Tomasz Bartynski, Marian Bubak, Francoise Baude, and Ludovic
Henrio. High-level scripting approach for building component-based applications on the grid. In Making Grids Work –
Post-Proceedings Selected Papers From The Coregrid Workshop On Grid Programming Model, Grid And P2p Systems
Architecture, Grid Systems, Tools And Environments, June 2007, pages 309–321. Springer US, 2008. 10.1007/978-0-387-
78448-9 25.

[5] Antonio Cansado, Denis Caromel, Ludovic Henrio, Eric Madelaine, Marcela Rivera, and Emil Salageanu. The Common
Component Modeling Example: Comparing Software Component Models, volume 5153 of Lecture Notes in Computer
Science, chapter A Specification Language for Distributed Components implemented in GCM/ProActive. Springer, 2008.
http://agrausch.informatik.uni-kl.de/CoCoME.

147

Journals:

[6] Isabelle Attali, Denis Caromel, Carine Courbis, Ludovic Henrio, and Henrik Nilsson. An integrated development envi-
ronment for Java Card. Computer Networks, 2001.

[7] Françoise Baude, Denis Caromel, Christian Delbé, and Ludovic Henrio. Un protocole de tolérance aux pannes pour objets
actifs non préemptifs. Technique et Science Informatiques, 2006.

[8] Tomás Barros, Rabéa Ameur-Boulifa, Antonio Cansado, Ludovic Henrio, and Eric Madelaine. Behavioural models for
distributed fractal components. Annales des Télécommunications, 64(1-2):25–43, 2009.

[9] Françoise Baude, Denis Caromel, Cédric Dalmasso, Marco Danelutto, Vladimir Getov, Ludovic Henrio, and Christian
Pérez. GCM: a grid extension to fractal for autonomous distributed components. Annales des Télécommunications,
64(1-2):5–24, 2009.

[10] Denis Caromel, Ludovic Henrio, and Bernard P. Serpette. Asynchronous sequential processes. Inf. Comput., 207(4):459–
495, 2009.

[11] Françoise Baude, Virginie Legrand, Ludovic Henrio, Paul Naoumenko, Heiko Pfeffer, Louay Bassbouss, and David
Linner. Mixing Workflows and Components to Support Evolving Services. International Journal of Adaptive, Resilient
and Autonomic Systems (IJARAS), 1(4):60–84, 2010.

[12] Ludovic Henrio, Florian Kammüller, and Bianca Lutz. ASPfun : A typed functional active object calculus. Science of
Computer Programming, In Press, Corrected Proof:–, 2011.

Conferences and Workshops:

[13] Isabelle Attali, Denis Caromel, Carine Courbis, Ludovic Henrio, and Henrik Nilsson. Smart Tools for Java Cards. In
Josep Domingo-Ferrer, David Chan, and Anthony Watson, editors, Smart Card Research and Advanced Applications.
Kluwer Academic Publishers, September 2000. Proceedings of the IFIP Fourth Working Conference on Smart Card
Research and Advanced Applications (CARDIS 2000), HP Labs, Bristol, UK.

[14] Denis Caromel, Ludovic Henrio, and Bernard Serpette. Context inference for static analysis of java card object sharing.
In Proceedings e-Smart 2001. Springer-Verlag, 2001.

[15] Ludovic Henrio and Bernard Paul Serpette. A parameterized polyvariant Byte-Code verifier. In Actes des journées
JFLA, Chamrousse, France, January 2003.

[16] Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette. Asynchronous and deterministic objects. In Proceedings of
the 31st ACM SIGACT-SIGPLAN symposium on Principles of programming languages (POPL), pages 123–134. ACM
Press, 2004.

[17] Ludovic Henrio, Bernard Paul Serpette, and Szabolcs Szentes. Algorithmes et complexités de la réduction statique
minimale. In Actes des journées JFLA, Sainte-Marie-de-Ré, France, January 2004.

[18] Isabelle Attali, Denis Caromel, Ludovic Henrio, and Felipe Luna Del Aguila. Secured information flow for asynchronous
sequential processes. In 3rd International Workshop on Security Issues in Concurrency (SecCo’05), Electronic Notes in
Theoretical Computer Science, San Francisco, USA, August 2005. Elsevier.

[19] Laurent Baduel, Françoise Baude, Denis Caromel, Ludovic Henrio, Fabrice Huet, Stéphane Lanteri, and Matthieu Morel.
Grid components techniques: Composing, gathering, and scattering. In Coupled Problems 2005, Computational Methods
for Coupled Problems in Science and Engineering, an ECCOMAS Thematic Conference, Santorini, Greece, may 2005.

[20] Tomás Barros, Ludovic Henrio, and Eric Madelaine. Behavioural models for hierarchical components. In Proceedings of
SPIN’05. Spinger Verlag, 2005.

148

[21] Tomás Barros, Ludovic Henrio, and Eric Madelaine. Verification of distributed hierarchical components. In International
Workshop on Formal Aspects of Component Software (FACS’05), Macao, October 2005. Electronic Notes in Theoretical
Computer Science (ENTCS).

[22] Françoise Baude, Denis Caromel, Christian Delbé, and Ludovic Henrio. A Hybrid Message Logging-CIC Protocol
for Constrained Checkpointability. In Proc. of the 11th International Euro-Par Conference, volume 3648 of LNCS.
Springer-Verlag, 2005.

[23] Alessandro Basso, Alexander Bolotov, Artie Basukoski, Vladimir Getov, Ludovic Henrio, and Mariusz Urbanski. Specifi-
cation and verification of reconfiguration protocols in grid component systems. In Proceedings of the 3rd IEEE Conference
On Intelligent Systems IS-2006. IEEE Computer Society, 2006. long version published as a CoreGRID Technical Report,
TR-0042.

[24] Sébastien Bezinne, Virginie Galtier, Stéphane Vialle, Françoise Baude, Mireille Bossy, Viet-Dung Doan, and Ludovic
Henrio. A fault tolerant and multi-paradigm grid architecture for time constrained problems. application to financial
option pricing. In 2nd IEEE International Conference on e-Science and Grid Computing. IEEE, December 2006.

[25] Antonio Cansado, Ludovic Henrio, and Eric Madelaine. Towards real case component model-checking. In 5th Fractal
Workshop, Nantes, France, July 2006.

[26] Denis Caromel and Ludovic Henrio. Asynchonous distributed components: Concurrency and determinacy. In Proceedings
of the IFIP International Conference on Theoretical Computer Science 2006 (IFIP TCS’06), Santiago, Chile,, August
2006. Springer Science. 19th IFIP World Computer Congress.

[27] Jeyarajan Thiyagalingam, Nikos Parlavantzas, Stavros Isaiadis, Ludovic Henrio, Denis Caromel, and Vladimir Getov.
Proposal for a lightweight generic grid platform architecture. In Proceedings of CompFrame 2006, Component and
Framework Technology in High-Performance and Scientific Computing, Paris, France, June 2006. IEEE.

[28] Françoise Baude, Denis Caromel, Ludovic Henrio, and Matthieu Morel. Collective interfaces for distributed components.
In CCGrid 2007: IEEE International Symposium on Cluster Computing and the Grid, May 2007.

[29] Françoise Baude, Denis Caromel, Christian Delbé, and Ludovic Henrio. Promised messages: Recovering from inconsistent
global states. In ACM SIGOPS conference Principles and Practice of Parallel Programming (PPoPP). Poster, 2007.

[30] Françoise Baude, Ludovic Henrio, and Paul Naoumenko. A Component Platform for Experimenting with Autonomic
Composition. In First International Conference on Autonomic Computing and Communication Systems (Autonomics
2007). Invited Paper. ACM Digital Library, Oct 2007.

[31] Denis Caromel, Guillaume Chazarain, and Ludovic Henrio. Garbage collecting the grid: a complete dgc for activities.
In Proceedings of the 8th ACM/IFIP/USENIX International Middleware Conference, Newport Beach, CA, November
2007.

[32] Ludovic Henrio and Florian Kammüller. A mechanized model of the theory of objects. In 9th IFIP International
Conference on Formal Methods for Open Object-Based Distributed Systems (FMOODS), LNCS. Springer, June 2007.

[33] Antonio Cansado, Ludovic Henrio, and Eric Madelaine. Transparent first-class futures and distributed component. In
International Workshop on Formal Aspects of Component Software (FACS’08), Malaga, Sept 2008. Electronic Notes in
Theoretical Computer Science (ENTCS).

[34] Antonio Cansado, Ludovic Henrio, and Eric Madelaine. Unifying architectural and behavioural specifications of dis-
tributed components. In International Workshop on Formal Aspects of Component Software (FACS’08), Malaga, Sept
2008. Electronic Notes in Theoretical Computer Science (ENTCS).

[35] Denis Caromel, Ludovic Henrio, and Mario Leyton. Type safe algorithmic skeletons. In Proceedings of the 16th Euromicro
International Conference on Parallel, Distributed and network-based Processing, Toulouse, France, February 2008.

[36] Denis Caromel, Ludovic Henrio, and Eric Madelaine. Active objects and distributed components: Theory and imple-
mentation. In Frank de Boer and Marcello Bonsangue, editors, FMCO 2007, number 5382 in LNCS, pages 179–199,
Berlin Heidelberg, 2008. Springer-Verlag.

149

[37] Ludovic Henrio and Marcela Rivera. Stopping safely hierarchical distributed components: application to gcm. In
CBHPC ’08: Proceedings of the 2008 compFrame/HPC-GECO workshop on Component based high performance, pages
1–11, New York, NY, USA, 2008. ACM.

[38] Boutheina Bannour, Ludovic Henrio, and Marcela Rivera. A reconfiguration framework for distributed components. In
SINTER Workshop Software Integration and Evolution @ Runtime. ACM, 2009.

[39] Françoise Baude, Ludovic Henrio, and Paul Naoumenko. Structural reconfiguration: An autonomic strategy for gcm
components. In International Conference on Autonomic and Autonomous Systems, pages 123–128, Los Alamitos, CA,
USA, 2009. IEEE Computer Society.

[40] Ludovic Henrio and Florian Kammüller. Functional active objects: Typing and formalisation. In Proceedings of the
International Workshop on the Foundations of Coordination Languages and Software Architecture (FOCLASA). Elsevier,
2009.

[41] Ludovic Henrio, Florian Kammüller, and Marcela Rivera. An asynchronous distributed component model and its seman-
tics. In Frank S. de Boer, Marcello M. Bonsangue, and Eric Madelaine, editors, Formal Methods for Components and
Objects, 7th International Symposium, FMCO 2008, Sophia Antipolis, France, October 21-23, 2008, Revised Lectures,
volume 5751 of Lecture Notes in Computer Science, pages 159–179. Springer, 2009.

[42] Rabéa Ameur Boulifa, Ludovic Henrio, and Eric Madelaine. Behavioural models for group communications. InWCSI-10:
International Workshop on Component and Service Interoperability, 2010.

[43] Ludovic Henrio, Florian Kammüller, and Muhammad Uzair Khan. A framework for reasoning on component composi-
tion. In FMCO 2009, Lecture Notes in Computer Science. Springer, 2010.

[44] Ludovic Henrio and Muhammad Uzair Khan. Asynchronous components with futures: Semantics and proofs in is-
abelle/hol. In Proceedings of the Seventh International Workshop, FESCA 2010. ENTCS, 2010.

[45] Ludovic Henrio, Muhammad Uzair Khan, Nadia Ranaldo, and Eugenio Zimeo. First class futures: Specification and
implementation of update strategies. In Post-Proceedings Selected Papers From The Coregrid Workshop On Grids,
Clouds and P2P Computing August 31, 2010, August 2010.

[46] Mario Leyton, Ludovic Henrio, and José M. Piquer. Exceptions for algorithmic skeletons. In 16th Int. European
Conference on Parallel and Distributed Computing (Euro-Par 2010), 2010.

[47] Rabéa Ameur Boulifa, Raluca Halalai, Ludovic Henrio, and Eric Madelaine. Verifying safety of fault-tolerant distributed
components. In International Symposium on Formal Aspects of Component Software (FACS 2011), Lecture Notes in
Computer Science, Oslo, Sept 2011. Springer.

[48] Ludovic Henrio, Fabrice Huet, Zsolt István, and Gheorghen Sebestyén. Adapting active objects to multicore architec-
tures. In ISPDC. IEEE Computer Society, 2011.

Thesis:

[49] Ludovic Henrio. Calcul d’Objets Asynchrones : Confluence et Déterminisme. PhD thesis, Université de Nice Sophia-
Antipolis, 2003. http://www-sop.inria.fr/oasis/Ludovic.Henrio/these.

150

Reports, Deliverables ...

[50] Ludovic Henrio. Analyses de partage pour applications javacard. Rapport de DEA, septembre 2000.

[51] Denis Caromel, Christian Delbé, Ludovic Henrio, and Romain Quilici. Brevet ”dispositif et procédé asynchrones et
automatiques de transmission de résultats entre objets communicants”, Nov 2003. le 26 11 2003, No FR 03 138 76.

[52] Denis Caromel, Ludovic Henrio, and Bernard Serpette. Asynchronous sequential processes. Research Report, INRIA
Sophia Antipolis, 2003. RR-4753.

[53] Ludovic Henrio, Bernard Serpette, and Szabolcs Szentes. Implementation and complexity of the lowest static reduction.
Research Report, INRIA Sophia Antipolis, 2003. RR-5034.

[54] Françoise Baude, Denis Caromel, Christian Delbé, and Ludovic Henrio. A fault tolerance protocol for ASP calculus :
Design and proof. Research Report, INRIA Sophia Antipolis, June 2004. RR-5246.

[55] T. Barros, L. Henrio, and E. Madelaine. Behavioural models for hierarchical components. Technical Report RR-5591,
INRIA, June 2005.

[56] F. Baude, D. Caromel, L. Henrio, and M. Morel. Collective interfaces for a grid component model, proposed extensions
to the fractal component model. Technical report, Internal technical report, CRE France Telecom R&D, Nov 2005.

[57] Rosa M. Badia, Olav Beckmann, Sofia Panagiotidi, Denis Caromel, Ludovic Henrio, Marian Bubak, Maciek Malawski,
Vladimir Getov, Stavros Isaiadis, Jeyarajan Thiyagalingam, and Vladimir Lazarov. Lightweight grid platform: Design
methodology. Technical report, Institute on Grid Systems, Tools and Environments, Jan 2006. CoreGRID Technical
Report, TR-0020.

[58] Alessandro Basso, Alexander Bolotov, Artie Basukoski, Vladimir Getov, Ludovic Henrio, and Mariusz Urbanski. Spec-
ification and verification of reconfiguration protocols in grid component systems. Technical report, Institute on Pro-
gramming Model (WP3), May 2006. CoreGRID Technical Report, TR-0042.

[59] F. Baude, V. D. Doan, L. Henrio, P. Naoumenko, and partners VTT, TUB, UBasel, CreateNet, SUN, Nokia of the
BIONETS consortium. Specification of service life-cycle. Technical Report D.3.2.1, BIONETS IP Project Delivrable
from the Requirement and Analysis workpackage (3.2), Dec. 2006.

[60] F. Baude, L. Henrio, and partners VTT, TUB, UNIHH of the BIONETS consortium. Service architecture require-
ment specification. Technical Report D.3.1.1, BIONETS IP Project Delivrable from the Requirement and Analysis
workpackage (3.1), July 2006.

[61] Françoise Baude, Denis Caromel, Ludovic Henrio, Matthieu Morel, and Paul Naoumenko. Fractalising fractal controller
for a componentisation of the non-functional aspects. 5th Fractal Workshop in conjunction with ECOOP’20 – poster,
July 2006.

[62] D. Caromel, C. Delbé, and L. Henrio. Promised consistency for rollback recovery. Technical report, INRIA, Sophia
Antipolis, 2006. Technical report n RR-5902.

[63] CoreGRID, Programming Model Institute. Basic features of the grid component model (assessed). Technical report,
CoreGRID, Programming Model Virtual Institute, 2006. Deliverable D.PM.04, http://www.coregrid.net/mambo/
images/stories/Deliverables/d.pm.04.pdf.

[64] CoreGRID Programming Model Virtual Institute. Programming models for the single gcm component: a survey, Sep.
2006. Deliverable D.PM.06.

[65] Ludovic Henrio and Florian Kammüller. A formalization of the theory of objects in Isabelle/HOL. Rapport de recherche,
INRIA, 2006. RR-6079.

[66] OASIS team and other partners in the CoreGRID Programming Model Virtual Institute. Proposals for a grid component
model. Technical Report D.PM.02, CoreGRID, Programming Model Virtual Institute, Feb 2006. Responsible for the
delivrable.

151

[67] OASIS team and other partners in the CoreGRID Programming Model Virtual Institute. Survey of advanced component
programming models. Technical report, CoreGRID, Programming Model Virtual Institute, Oct. 2006. Deliverable
D.PM.05, CoreGRID, Programming Model Institute.

[68] Françoise Baude, Ludovic Henrio and partners TUB, UBASEL, CN, SUN, NOKIA, VTT, TI of the BIONETS consor-
tium. Specification of service evolution. Technical report, BIONETS IP Project Delivrable from the Autonomic Service
Life-Cycle And Service Ecosystems WP (3.2), Aug 2007. http://www.bionets.eu/docs/BIONETS_D3_2_2.pdf.

[69] Ludovic Henrio, Florian Kammüller, and Henry Sudhof. Aspfun: A functional and distributed object calculus semantics,
type-system, and formalization. Research Report 6353, INRIA, 11 2007.

[70] OASIS team and other partners in the CoreGRID Programming Model Virtual Institute. Innovative features of gcm
(with sample case studies): a technical survey. Technical report, CoreGRID, Programming Model Virtual Institute,
Sep. 2007. Deliverable D.PM.07.

[71] Marco Aldinucci, Sonia Campa, Massimo Coppola, Marco Danelutto, G. Zoppi, Alessandro Basso, Alexander Bolo-
tov, Francoise Baude, Hinde Bouziane, Denis Caromel, Ludovic Henrio, Christian Pérez, Jose Cunha, Classen Michael,
Philipp Classen, Christian Lengauer, J. Cohen, S. Mc Gough, Natalia Currle-Linde, Patrizio Dazzi, Nicola Tonellotto,
Jan Dünnwebber, Sergei Gorlatch, Peter Kilpatrick, Nadia Ranaldo, and Eugenio Zimeo. Proceedings of the program-
ming model institute technical meeting 2008. Technical Report TR-0138, Institute of Programming Model, CoreGRID
- Network of Excellence, May 2008.

[72] Françoise Baude, Ludovic Henrio, Paul Naoumenko, and Heiko Pfeffer. Graph-Based Service Individual specification:
Creation and Representation. Technical report, BIONETS IP Project Delivrable from the Autonomic Service Life-Cycle
And Service Ecosystems WP (3.2), Jan, revised June 2008. http://www.bionets.eu/docs/BIONETS_D3_2_3.pdf.

[73] Ludovic Henrio and Marcela Rivera. An algorithm for safely stopping a component system. Research Report RR-6444,
INRIA, 2008.

[74] J. Lahti, Ludovic Henrio, K. Ville, F. Laura, Daniele Miorandi, David Linner, Heiko Pfeffer, and Françoise Baude. Ad-
vanced service life-cycle and integration. Technical Report D.3.2.4, BIONETS IP Project Delivrable from the Autonomic
Service Life-Cycle And Service Ecosystems WP (3.2), June 2008.

[75] David Linner, Heiko Pfeffer, Stephan Steglich, Françoise Baude, Ludovic Henrio, and Paul Naoumenko. Service probes
implementation and evaluation. Technical Report D.3.4.1, BIONETS IP Project Delivrable from the Service Probes
WP (3.4), June 2008.

[76] Françoise Baude, Ludovic Henrio, Paul Naoumenko, Daniele Miorandi, and Janne Lathi and. Evaluating the fitness of
service compositions. Technical Report D.3.2.5, BIONETS IP Project Delivrable from the Autonomic Service Life-Cycle
And Service Ecosystems WP (3.2), September 2009.

[77] Muhammad Uzair Khan and Ludovic Henrio. First class futures: A study of update strategies. Technical report, INRIA
a CCSD electronic archive server based on P.A.O.L [http://hal.inria.fr/oai/oai.php] (France), 2009. RR-7113.

[78] Heiko Pfeffer, Louay Bassbouss, Paul Naoumenko, Daniele Miorandi, David Lowe, Mihaela Ion, and Lahti Janne. Bio
inspired service creation and evolution. Technical Report D.3.2.6, BIONETS IP Project Delivrable from the Autonomic
Service Life-Cycle And Service Ecosystems WP (3.2), December 2009.

[79] Francesco Bongiovanni and Ludovic Henrio. Mechanical Support for Efficient Dissemination on the CAN Overlay
Network. Research Report RR-7599, INRIA, April 2011. Also accepted at CFSE 2011.

152

Chapter 6

References

[ABF+08] Brian E. Aydemir, Aaron Bohannon, Nate Foster, Benjamin Pierce, Jeff Vaughan, Dimitris Vytiniotis, Geoff
Washburn, Stephanie Weirich, Steve Zdancewic, Matthew Fairbairn, and Peter Sewell. The poplmark challenge.
Web-site, 2008.

[ACP+08] Brian Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie Weirich. Engineering
formal metatheory. In POPL ’08: Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 3–15, New York, NY, USA, 2008. ACM.

[Agh86] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT Press, Cambridge, MA,
USA, 1986.

[AMST97] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. A foundation for actor computation. Journal
of Functional Programming, 7(1):1–72, 1997.

[AT04] Gul Agha and Prasanna Thati. An algebraic theory of actors and its application to a simple object-based
language. In Essays in Memory of Ole-Johan Dahl, volume 2635, pages 26–57, 2004.

[BBB+07] Michael Beisiegel, Henning Blohm, Dave Booz, Mike Edwards, and Oisin Hurley. SCA service component
architecture, assembly model specification. Technical report, March 2007. www.osoa.org/display/Main/

Service+Component+Architecture+Specifications.

[BBF+07] B. Berthomieu, J.P. Bodeveix, M. Filali, H. Garavel, F. La ng, F. Peres, R. Saad, J. Stoecker, and F. Vernadat.
The syntax and semantics of Fiacre. In Rapport LAAS 07264 Rapport de Contrat Projet OpenEmbeDD, Mai
2007.

[BCJ07] Frank S. De Boer, Dave Clarke, and Einar Broch Johnsen. A complete guide to the future. In Proc. 16th
European Symposium on Programming (ESOP’07), volume 4421 of LNCS, pages 316–330. Springer, 2007.

[BCL+04] Eric Bruneton, Thierry Coupaye, M. Leclercp, V. Quema, and Jean Bernard Stefani. An open component
model and its support in java. In 7th Int. Symp. on Component-Based Software Engineering (CBSE-7), LNCS
3054, may 2004.

[BCS84] D. Briatico, A. Ciuffoletti, and L. Simoncini. A distributed domino-effect free recovery algorithm. In Proceedings
of the Fourth International Symposium on Reliability in Distributed Software and Databases, pages 207–215.
Citeseer, 1984.

[BCS04] Eric Bruneton, Thierry Coupaye, and Jean Bernard Stefani. The Fractal Component Model. Technical report,
ObjectWeb Consortium, February 2004. http://fractal.objectweb.org/specification/index.html.

[BG07] Rana Bakhshi and Dilian Gurov. Verification of peer-to-peer algorithms: A case study. Electronic Notes in
Theoretical Computer Science, 181:35–47, June 2007.

153

[BHP06] T. Bures, P. Hnetynka, and F. Plasil. Sofa 2.0: Balancing advanced features in a hierarchical component model.
In Software Engineering Research, Management and Applications, 2006. Fourth International Conference on,
pages 40–48. IEEE, 2006.

[BNOG05] J. Borgström, U. Nestmann, L. Onana, and D. Gurov. Verifying a structured peer-to-peer overlay network:
The static case. In Global Computing, pages 250–265. Springer, 2005.

[Bou04] Rabéa Boulifa. Génération de modèles comportementaux des applications réparties. PhD thesis, University of
Nice - Sophia Antipolis – UFR Sciences, December 2004.

[BP07] J. Bengtson and J. Parrow. Formalising the pi-Calculus using Nominal Logic. In Proc. of the 10th International
Conference on Foundations of Software Science and Computation Structures (FOSSACS), volume 4423 of LNCS,
pages 63–77, 2007.

[CBBM+96] Charron-Bost, Bernadette, Mattern, Friedemann, and Gerard Tel. Synchronous, asynchronous, and causally
ordered communication. Distributed Computing, 9:173–191, 1996. 10.1007/s004460050018.

[CDdCL06] D. Caromel, C. Delbé, A. di Costanzo, and M. Leyton. ProActive: an integrated platform for programming and
running applications on grids and P2P systems. Computational Methods in Science and Technology, 12(1):69–77,
2006.

[CF05] CCA-Forum. The Common Component Architecture (CCA) Forum home page, 2005. http://www.cca-
forum.org/.

[CGS+05] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. Von Praun, and V. Sarkar.
X10: an object-oriented approach to non-uniform cluster computing. In Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and applications, pages 519–538.
ACM, 2005.

[CLM07] A. Ciaffaglione, L. Liquori, and M. Miculan. Reasoning about object-based calculi in (co)inductive type theory
and the theory of contexts. JAR, Journal of Automated Reasoning, 39:1–47, 2007.

[Col91] M. Cole. Algorithmic skeletons: structured management of parallel computation. MIT Press, Cambridge, MA,
USA, 1991.

[CS02] Xuejun Chen and Martin Simons. A component framework for dynamic reconfiguration of distributed sys-
tems. In CD ’02: Proceedings of the IFIP/ACM Working Conference on Component Deployment, pages 82–96,
London, UK, 2002. Springer-Verlag.

[DCMM06] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, and Wolfgang De Meuter. Ambient-oriented program-
ming in ambienttalk. In Proceedings of 20th European Conference on Object-oriented Programming (ECOOP).
Springer, 2006.

[Del07] Christian Delbé. Tolérance aux pannes pour objets actifs asynchrones - protocole, modèle et expérimentations.
PhD thesis, Université de Nice-Sophia Antipolis, January 2007.

[DL06] Pierre-Charles David and Thomas Ledoux. Safe dynamic reconfigurations of fractal architectures with fscript.
In Proceeding of Fractal CBSE Workshop, ECOOP’06, Nantes, France, 2006.

[DLLC09] Pierre-Charles David, Thomas Ledoux, Marc Léger, and Thierry Coupaye. Fpath and fscript: Language support
for navigation and reliable reconfiguration of fractal architectures. Annals of Telecommunications, 64:45–63,
2009. 10.1007/s12243-008-0073-y.

[EAWJ02] E N Mootaz Elnozahy, Lorenzo Alvisi, Yi-Min Wang, and David B Johnson. A survey of rollback-recovery
protocols in message-passing systems. ACM Computing Surveys, 34(3):375–408, 2002.

[FF95] Cormac Flanagan and Matthias Felleisen. The semantics of future and its use in program optimization. pages
209–220, 1995.

154

[FF99] Cormac Flanagan and Matthias Felleisen. The semantics of future and an application. Journal of Functional
Programming, 9(1):1–31, 1999.

[GLM02] H. Garavel, F. Lang, and R. Mateescu. An overview of CADP 2001. European Association for Software Science
and Technology (EASST) Newsletter, 4:13–24, August 2002.

[GLMS11] H. Garavel, F. Lang, R. Mateescu, and W. Serve. Cadp 2010: A toolbox for the construction and analysis of
distributed processes. In TACAS’11, volume 6605 of LNCS, Saarbrücken, Germany, 2011. Springer, Heidelberg.

[GSAA04] A. Gupta, O.D. Sahin, D. Agrawal, and A.E. Abbadi. Meghdoot: content-based publish/subscribe over P2P
networks. In Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware, pages 254–
273. Springer-Verlag New York, Inc., 2004.

[Hal85] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic computation. ACM Transactions on
Programming Languages and Systems (TOPLAS), 7(4):501–538, 1985.

[HB07] Petr Hnětynka and Tomáš Bureš. Advanced features of hierarchical component models. In Alice Kelemenova,
Dusan Kolar, Alexander Meduna, and Jaroslav Zendulka, editors, Information Systems and Formal Methods,
pages 3–10, Opava, Czech Republic, 2007. Selesian University in Opava.

[Hil04] I. Hillman, J.; Warren. An open framework for dynamic reconfiguration. In Software Engineering, 2004. ICSE
2004. Proceedings. 26th International Conference on, pages 594–603, 23-28 May 2004.

[HL06] M. Haustein and K.P. Lohr. Jac: declarative java concurrency. Concurrency and Computation: Practice and
Experience, 18(5):519–546, 2006.

[HMS01] Furio Honsell, Marino Miculan, and Ivan Scagnetto. pi-calculus in (co)inductive-type theory. Theoretical
Computer Science, 253(2):239–285, 2001.

[JO06] Einar Broch Johnsen and Olaf Owe. An Asynchronous Communication Model for Distributed Concurrent
Objects. Software & Systems Modeling, 6(1):39–58, August 2006.

[JOY06] Einar Broch Johnsen, Olaf Owe, and Ingrid Chieh Yu. Creol: a type-safe object-oriented model for distributed
concurrent systems. Theoratical Computer Science, 365(1):23–66, 2006.

[Koz85] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 40, 1985.

[Ley08] Mario Leyton. Advanced Features for Algorithmic Skeleton Programming. PhD thesis, Université de Nice -
Sophia Antipolis – UFR Sciences, October 2008.

[LMW11] Tianxiang Lu, Stephan Merz, and Christoph Weidenbach. Towards Verification of the Pastry Protocol Using
TLA+. In FMOODS/FORTE, pages 244–258, 2011.

[LP04] H. Liu and M. Parashar. A component based programming framework for autonomic applications. In First
International Conference on Autonomic Computing (ICAC’04), 2004.

[LS96] R. Greg Lavender and Douglas C. Schmidt. Active object: an object behavioral pattern for concurrent pro-
gramming. In Pattern languages of program design 2, pages 483–499. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1996.

[Ls03] L. Lamport and Safari Tech Books Online (Online service). Specifying systems: The TLA+ language and tools
for hardware and software engineers, volume 14. Addison-Wesley, 2003.

[LS11] Li Lu and Michael Scott. Toward a formal semantic framework for deterministic parallel programming. In
Proceedings of 25th Intl. Symp. on Distributed Computing (DISC), Rome, Italy, 2011. ACM.

[Mad11] Eric Madelaine. Specification, Model Generation, and Verification of Distributed Applications. PhD thesis,
Université de Nice Sophia-Antipolis, September 2011. Habilitation à diriger des Recherches.

155

[MB05] V. Mencl and T. Bures. Microcomponent-based component controllers: A foundation for component aspects.
In APSEC. IEEE Computer Society, Dec. 2005.

[MG05a] A. Mukhija and M. Glinz. Runtime adaptation of applications through dynamic recomposition of components.
In Systems Aspects in Organic and Pervasive Computing - ARCS 2005, pages 124–138. Springer Berlin /
Heidelberg, 2005.

[MG05b] Arun Mukhija and Martin Glinz. The casa approach to autonomic applications. In Proceedings of the 5th IEEE
Workshop on Applications and Services in Wireless Networks, ASWN 2005, pages 173–182. IEEE Computer
Society, 2005.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989. ISBN 0-13-114984-9.

[MT08] R. Mateescu and D. Thivolle. A model checking language for concurrent value-passing systems. In K. Sere
J. Cuellar, T. S. E. Maibaum, editor, FM’08, volume 5014 of LNCS. Springer, Heidelberg, 2008.

[NSS06] Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda calculus with futures. Theo-
retical Computer Science, 364(3):338–356, November 2006.

[NSSSS07] Joachim Niehren, David Sabel, Manfred Schmidt-Schauß, and Jan Schwinghammer. Observational semantics for
a concurrent lambda calculus with reference cells and futures. In 23rd Conference on Mathematical Foundations
of Programming Semantics, ENTCS, New Orleans, April 2007. Accepted.

[Obj06] Object Management Group, Inc. (OMG). CORBA Component Model Specification, omg headquarters edition,
April 2006. http://www.omg.org/cgi-bin/apps/doc?formal/06-04-01.pdf.

[Pit03] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computation, 186:165–
193, 2003.

[PP06] P. Parizek and F. Plasil. Model checking of software components: Combining java pathfinder and behavior
protocol model checker. In Proceedings of 30th IEEE/NASA Software Engineering Workshop (SEW-30). IEEE
Computer Press, april 2006.

[PR06] P. Poizat and J.C. Royer. A Formal Architectural Description Language based on Transition Systems and
Modal Logic. Journal of Universal Computer Science, 12(12), 2006.

[PRS06] P. Poizat, J.C. Royer, and G. Salaun. Bounded Analysis and Decomposition for Behavioural Descriptions of
Components. In FMOODS, LNCS 4037, 2006.

[PV02] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE Transactions on Software
Engineering, 28(11), nov 2002.

[RBS11] C. Ruz, F. Baude, and B. Sauvan. Flexible Adaptation Loop for Component-based SOA applications. In 7th
International Conference on Autonomic and Autonomous Systems (ICAS 2011). IEEE Explorer, 2011. Best
paper awarded.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, Distributed Object Location and Routing for Large-Scale
Peer-To-Peer Systems. In Int. Conference on Distributed Systems Platforms (Middleware), November 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A Scalable Content-
Addressable Network. In Proceedings of the 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), pages 161–172. ACM, 2001.

[RH03] C. Roeckl and D. Hirschkoff. A fully adequate shallow embedding of the π-calculus in isabelle/hol with mech-
anized syntax analysis. Journal of Functional Programming, 13:415–451, 2003.

[RHKS01] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Application-level multicast using content-addressable
networks. Networked Group Communication, 2001.

156

[RP03] Andreas Rasche and Andreas Polze. Configuration and dynamic reconfiguration of component-based appli-
cations with microsoft .net. In Proceedings of the Sixth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC’03), page 164, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[Ruz11] Cristian Ruz. Autonomic Monitoring and Management of Component-Based Services. PhD thesis, University
of Nice-Sophia Antipolis, Jun 2011.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. In Proceedings of the 2001 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM), pages 149–160, New
York, NY, USA, 2001. ACM.

[SPC05] L. Seinturier, N. Pessemier, and T. Coupaye. AOKell: an Aspect-Oriented Implementation of the Fractal
Specifications, 2005. http://www.lifl.fr/~seinturi/aokell/javadoc/overview.html.

[SPDC06] L. Seinturier, N. Pessemier, L. Duchien, and T. Coupaye. A component model engineered with components
and aspects. In Proceedings of the 9th International SIGSOFT Symposium on Component-Based Software
Engineering (CBSE’06), Lecture Notes in Computer Science. Springer, June 2006.

[SPH10] Jan Schafer and Arnd Poetzsch-Heffter. Jcobox: Generalizing active objects to concurrent components. ECOOP
2010–Object-Oriented Programming, pages 275–299, 2010.

[TBN+08] E. Tejedor, R. Badia, P. Naoumenko, M. Rivera, and C. Dalmasso. Orchestrating a safe functional suspen-
sion of gcm components. In CoreGRID Integration Workshop 2008, Integrated Research in Grid Computing
Hersonissos-Crete, Greece, April 2008.

[TMY94] Kenjiro Taura, Satoshi Matsuoka, and Akinori Yonezawa. Abcl/f: A future-based polymorphic typed concur-
rent object-oriented language - its design and implementation. In Proceedings of the DIMACS workshop on
Specification of Parallel Algorithms, pages 275–292. American Mathematical Society, 1994.

[Uea06] C. Urban and et al. Nominal methods group, 2006. Project funded by the German Research Foundation (DFG)
within the Emmy-Noether Programme.

[WJH05] Adam Welc, Suresh Jagannathan, and Antony Hosking. Safe futures for java. SIGPLAN Not., 40(10), 2005.

[Zav09] Pamela Zave. Lightweight verification of network protocols: The case of chord. Unpublished, http://www2.
research.att.com/~pamela/chord.pdf, 2009.

157

158

Appendix A

Detailed CV

Education and Experience

since 2005 Associate Scientist at CNRS – CR1 since 2009
OASIS Team - joint project INRIA/CNRS/I3S/Univ. of Nice Sophia Antipolis

2004 - 05 Research fellow at the University of Westminster:
1 year Teaching at Harrow School of Computer Science

Research in the “Distributed and High Performance Computing” department.
Keywords: components, Grid, non-functional aspects, reconfiguration.

2003 - 04 Temporary teaching and Research assistant:
1 year University of Nice Sophia-Antipolis at ESSI (computer science engineer school)

Research at INRIA Sophia-Antipolis - OASIS team (INRIA/CNRS/I3S/Univ.
of Nice Sophia Antipolis)

2001 - 03 Ph.D in Computer Science: University of Nice Sophia-Antipolis
3 years defended the 28th of November 2003 in Sophia Antipolis

Subject: Asynchronous Object Calculus: Confluence and Determinacy
Advisor: Denis Caromel UNSA, IUF
Co-advisor: Bernard Paul Serpette INRIA Sophia Antipolis
Reviewer: Luca Cardelli Microsoft research, Cambridge

Ugo Montanari Universita di Pisa
Elie Najm ENST, Paris

Jury members: Gérard Boudol (president) INRIA Sophia Antipolis
Gilles Kahn INRIA

Keywords: Parallelism, concurrency, object calculus, confluence, distribution.

2000 Research internship at INRIA Sophia Antipolis - OASIS project
5 months Static analysis of Java Card Object Sharing.

keywords: Security, Java Card, static analysis, typing.

1999 - 00 Master Degree in Computer Science: “Programming : semantics proofs and
languages”. University of Paris 7.

1999 Research internship at INRIA Sophia Antipolis - OASIS team
4 months Interactive testing of Java Card Applications.

keywords: static analysis, Java Card, tests.

1996 - 99 Polytechnique School
159

Students and Teaching

Advised PhD Students

• Marcela Rivera: “Reconfiguration and Life-cycle of Distributed Components : Asynchrony, Coherence and Verification”
(Dec 2006 - Dec 2011).
PhD advisors: Denis Caromel and Ludovic Henrio
Scientific advisor: Ludovic Henrio
Summary: For component programming, but even more specifically in distributed and Grid environments, components need

to be highly adaptative. A great part of adaptativeness relies on dynamic reconfiguration of component systems. We introduce

a new approach for reconfiguring distributed components with the main objective to facilitate the reconfiguration process and

ensure the consistency and coherence of the system. First, before executing a reconfiguration it is necessary that the components

is a coherent and quiescent state. This is done to avoid inconsistency in the reconfiguration process. To achieve this, we design

an algorithm for stopping a component in a safe manner and reach this quiescent state. This was realized by implementing a

tagging and interception mechanism that adds informations to the requests and manipulates their flow in order to decide which

of them must be served before stopping the component. Additionally, for triggering the reconfiguration tasks, we extended the

FScript language to give it the capability of executing distributed reconfiguration actions, by delegating some actions to specific

components. To achieve this objective, we defined an additional controller inside the management part of the components. We

tested our implementation over two GCM/ProActive based applications: the CoCoME example and the TurnTable example.

• Muhammad-Uzair Khan: “A Study of First Class Futures: Specification, Formalisation, and Mechanised Proofs”
(Oct 2007 - Feb 2011)
PhD advisors: Denis Caromel and Ludovic Henrio
Scientific advisor: Ludovic Henrio
Summary: Futures enable an efficient and easy to use programming paradigm for distributed applications. A future is a
placeholder for result of concurrent execution. Futures can be “first class objects”; first class futures may be safely transmitted
between the communicating processes. Consequently, futures spread everywhere. When the result of a concurrent execution is
available, it is communicated to all processes which received the future. In this thesis, we study the mechanisms for transmitting
the results of first class futures; the ’future update strategies’.

We provide a detailed semi-formal specification of three main future update strategies adapted from ASP-Calculus ; we then use

this specification for a real implementation in a distributed programming library. We study the efficiency of the three update

strategies through experiments. Ensuring correctness of distributed protocols, like future update strategies is a challenging task.

To show that our specification is correct, we formalise it together with a component model. Components abstract away the

program structure and the details of the business logic; this paradigm thus facilitates reasoning on the protocol. We formalise

in Isabelle/HOL, a component model comprising notions of hierarchical components, asynchronous communications, and futures.

We present the basic constructs and corresponding lemmas related to structure of components. We present formal operational

semantics of our components in presence of a future update strategy; proofs showing correctness of our future update strategy

are presented. Our work can be considered as a formalisation of ProActive/GCM and shows the correctness of the middleware

implementation.

• Paul Naoumenko: “Designing non-functional aspects with components” (Oct 2006 - Jul 2010)
PhD advisors: Françoise Baude and Ludovic Henrio
Scientific advisors: Françoise Baude and Ludovic Henrio
Summary: In this thesis we considered programming models for large-scale and distributed applications that are deployed in

dynamic ever-changing environments, like the Grid. To maintain their function with minimal involvement of human operators,

those applications must provide self-adaptive capabilities. We ground our research on the autonomic computing paradigm, which

proposes to design applications as compositions of autonomic elements. Those are software entities exposing two parts: a business

part, and a management part, with managers in charge of supervising the business part by reacting to environmental changes.

160

Managers have the possibility to implement complex management strategies: additionally to the supervision of the business part,

they can contact managers from other autonomic elements involved in the application, and collaborate with them in order to

elaborate adequate reactions. Strategies of managers can be dynamically updated. We propose to design distributed autonomic

applications using a component-oriented model: the GCM (Grid Component Model). GCM components are distributed by

essence and the model features as a part of its specification separation of concerns (GCM components have a business part

and a management part), hierarchical structure, and dynamic reconfiguration. Our contribution is twofold.First, we extend the

management part of GCM components, giving the possibility to include managers that correspond to the vision of autonomic

computing. Thanks to newly introduced architectural elements, the managers are able to supervise the business part of GCM

components. They can also contact managers of other components and collaborate with them. A GCM component with self-

adaptive capabilities should be easy to produce: we suggest a development process to design and implement the management part

separately from the business part, and then integrate both parts inside one unified software entity. We modify the Architecture

Description Language to statically describe GCM component assemblies according to the new development process. We included

the previously presented extensions in the reference implementation of GCM.

• Alessandro Basso: “Integrating formal reasoning into a component-based approach to reconfigurable distributed sys-
tems”. Univ. of Westminster. (Feb 2006 - Mar 2010)
PhD advisors: Alexander Bolotov, Vladimir Getov and Ludovic Henrio
Scientific advisors: Alexander Bolotov
Summary: Grid systems were born out of necessity, and had to grow quickly to meet requirements which evolved over time,
becoming today’s complex systems. Even the simplest distributed system nowadays is expected to have some basic functionalities,
such as resources and execution management, security and optimisation features, data control, etc. The complexity of Grid
applications is also accentuated by their distributed nature, making them some of the most elaborate systems to date. It is often
too easy that these intricate systems happen to fall in some kind of failure, it being a software bug, or plain simple human error;
and if such a failure occurs, it is not always the case that the system can recover from it, possibly meaning hours of wasted
computational power.

The difficulty of Grid systems to deal with unforeseen and unexpected circumstances resulting from dynamic reconfiguration

is related to the fact that Grid applications are large, distributed and prone to resource failures. This research has produced a

methodology for the solution of this problem by analysing the structure of distributed systems and their reliance on the environment

which they sit upon. It is concluded that the way that Grid applications interact with the infrastructure is not sufficiently

addressed and a novel approach is developed in which formal verification methods are integrated with distributed applications

development and deployment in a way that includes the environment. This approach allows for reconfiguration scenarios in

distributed applications to proceed in a safe and controlled way, as demonstrated by the development of a prototype application.

Additionally to the PhD students mentioned above, I have been unofficially but strongly involved in the scientific advisement
of the following PhD students, all those collaborations resulted in published papers:

• Christian Delbé (2003-2007): “Tolérance aux pannes pour objets actifs asynchrones - protocole, modèle et
expérimentations”

• Mario Leyton (2005-2008): “Advanced Features for Algorithmic Skeleton Programming”
• Francesco Bongiovanni (2008-2012): Design, Formalisation and Implementation of Overlay Networks; Application to
RDF Data Storage”.

Internship Students
• Master 2: Paul Naoumenko : “A component-oriented approach for adaptive and autonomic computing: application to
situated autonomic communications” (2006)

• Master 2: Muhammad Uzair Khan : “A Fault-tolerance Mechanism for Future Updates” (2007)
• Master 2 + Enseirb: Boutheina Bannour: “Langage de Reconfiguration pour Composants Distribués” (2008)
• Master 1: Sona Djohou: “Outils pour la preuve formelle de propriétés ASP” (2008)

PhD Committees
• Yann Hodique - Univ. des Sciences et Technologies de Lille (jury member): “Sûreté et optimisation par les systèmes de
types en contexte ouvert et contraint” (2007).

161

Teaching

• Java Card Programming (48h - Master 2),
• Java Card Security (8h - Master 2),
• System programming (54h - ESSI 2nd year),
• C language (42h - ESSI 3rd year)
• Introduction to Programming – C++ (66h - Univ. of Westminster - first year)
• Object Oriented Software Development – Java (44h - Univ. of Westminster - first year)
• Semantics of Distributed and Embedded Systems (21h, Master 1 - 2009-2011)
• Distributed Systems: an algorithmic approach (20h, Master 2 - 2009-2011)

Contracts and Collaborations

I have been significantly involved and took responsibilities in the following projects:

NoE CoreGrid

Type: European Network of excellence FP6
Title: The European Research Network of Excellence on Foundations, Software Infrastructures and Applications for large
scale distributed, GRID and Peer-to-Peer Technologies
Dates: 2005-2009
Personal responsibility: Coordination of deliverables, local responsible for a work-package (programming models)
Partners: ERCIM (France). CETIC (Belgium), IPP-BAS (Bulgaria), CNR-ISTI (Italy), CNRS (France), TUD (The
Netherlands), EPFL (Switzerland), FhG (Germany), FZJ (Germany), USTUTT (Germany), ICS-FORTH (Greece), INFN
(Italy), INRIA (France), KTH (Sweden), MU (Czech R.), PSNC (Poland), STFC (UK), SICS (Sweden), SZTAKI (Hungary),
QUB (UK), WWU Muenster (Germany), UNICAL (Italy), UWC (UK), UCHILE (Chili), UCO (Portugal), UCY (Cyprus),
Univ. Dortmund (Germany), UCL (Belgium), Univ. of Manchester (UK), UNCL (UK), Univ. Passau (Germany), Univ.
Pisa(Italy), HES-SO (Switzerland), Univ. of Westminster (UK), UPC (Spain), VUA (The Netherland), ZIB (Germany),
CYFRONET (Poland), Univ. of Innsbruck (Austria)

Summary The CoreGrid Network of Excellence (NoE) aims at strengthening and advancing scientific and technological excellence in
the area of Grid and Peer-to-Peer technologies. To achieve this objective, the Network brings together a critical mass of well-established
researchers (161 permanent researchers and 164 PhD students) from forty-one institutions who have constructed an ambitious joint
programme of activities. This joint programme of activity is structured around six complementary research areas that have been
selected on the basis of their strategic importance, their research challenges and the recognised European expertise to develop next
generation Grid middleware, namely:

• knowledge and data management;
• programming models;
• architectural issues: scalability, dependability, adaptability;
• Grid information, resource and workflow monitoring services;
• resource management and scheduling;
• Grid systems, tools and environments.

162

IP BIONETS

Type: European IP FP6
Title: Bio-inspired Networks and Services.
Personal responsibility: Coordination of deliverables, local responsible for a workpackage
Dates: 2006-2011
Partners: CREATE-NET (Italy), University of Basel (Switzerland), TUB (Germany), University of Passau (Germany),
Budapest University of Thechnologie and Economics (Hungary), Nokia Corporation, VTT (Finland), INRIA (France),
National and Kapodistrian University of Athens (Greese), Telecom Italia. London School of Economics and Political Science
(UK). Sun Microsystems Spain.

Summary The motivation for BIONETS comes from emerging trends towards pervasive computing and communication envi-

ronments, where myriads of networked devices with very different features will enhance our communication and tool manipulation

capabilities. Traditional communication approaches are ineffective in this context, since they fail to address several new features: a

huge number of nodes including low-cost sensing/identifying devices, a wide heterogeneity in node capabilities, high node mobility, the

management complexity, the possibility of exploiting spare node resources. Nature and society exhibit many instances of systems in

which large populations are able to reach efficient equilibrium states and to develop effective collaboration and survival strategies, able

to work in the absence of central control and to exploit local interactions. We seek inspiration from these systems to provide a fully

integrated network and service environment that scales to large amounts of heterogeneous devices, and that is able to adapt and evolve

in an autonomic way. BIONETS overcomes device heterogeneity and achieves scalability via an autonomic and localised peer-to-peer

communication paradigm. Services in BIONETS are also autonomic, and evolve to adapt to the surrounding environment, like living

organisms evolve by natural selection. Biologically-inspired concepts permeate the network and its services, blending them together, so

that the network moulds itself to the services it runs, and services, in turn, become a mirror image of the social networks of users they

serve. This new paradigm breaks the barrier between service providers and users, and sets up the opportunity for ”mushrooming” of

spontaneous services, therefore paving the way to a service-centric ICT revolution.

FUI CloudForce

Type: Programme d’Investissements d’Avenir - FUI
Dates: 2012-2014
Personal responsibility: Task coordinator
Partners: France Télécom, ActiveEon, Armines, Bull, eNovance, eXoINPT/IRIT, INRIA, OW2, peergreen, PetalsLink,
Télécom Paris Tech, Télécom Saint Etienne, Thalès Communication, Thalès Services, Univ. Joseph Fourier/LIG, Univ. de
Savoie/LISTIC, UShareSoft.

Summary CloudForce project will provide a software engineering platform for developing, deploying, and administrating collab-

orative cloud applications. It targets especially infrastructures with multiple IaaS. The project will also provide a PaaS platform

compatible with multiple Iaas for deploying, orchestrating, benchmarking, self-managing, and provisioning applications.

Associate Team SCADA

Type: INRIA - Associate team
Dates: 2012-2014
Personal responsibility: Project coordinator
Partners: OASIS, NIC-Labs (Chile).

Summary Besides a formal collaboration between NIC Labs and OASIS team, the aim of the project is to contribute to programming

models and languages for programming, running and debugging parallel and distributed applications. For this we will contribute both

from at theoretical and practical perspectives to the design of languages, and their implementation and formalisation. In this project

163

we will focus on composition models allowing to put together individual sequential code into complex applications featuring parallelism

and distribution. More precisely we focus on two such composition models: algorithmic skeletons and software components.

I also participated to the following projects: GCPMF (ANR - 2006-2008), GridCOMP (EU FP6-Strep - 2006-2009), Reseco
(Stic-Amsud - 2006-2009), MCorePHP (ANR blanc international - 2010-2012).

Other activities

• Program committee: FMOODS/DAIS 2003 Student Workshop, FOCLASA 2009 to 2012, FESCA 2009 to 2012, Sophia
Antipolis Formal analysis local workshops.

• Reviews for many other conferences, and for the following journals: SCP, TCS, MSCS, TOPLAS, ComSIS

164

Formal Models for Programming and Composing

Correct Distributed Systems

Abstract

My research focuses on distributed programming models, more precisely using objects and components. In
this area, I provided tools easing the programming of large-scale distributed applications and verifying their
correct behaviour. To facilitate the programming of distributed applications, I contributed to the design and the
development of languages with a high level of abstraction: active objects, algorithmic skeletons, components.
To verify correction of the behaviour of an application, I have contributed to the creation of tools for specifying
and verifying behavioural distributed applications. My work aims to provide a strong model of programming
languages, libraries, and runtime environments provided to the developer, and to guarantee the safe behaviour
of distributed applications.

During my thesis, I developed the ASP calculus for modelling the behaviour of active objects and futures. Since,
we created a functional version of this calculus and formalised it in Isabelle/HOL. I also strongly contributed
to the definition of a distributed component model - the GCM (Grid Component Model) -, to its formalisation,
and to its use for programming adaptive or autonomous components. Finally, I contributed to the specification
and behavioural verification of programs based on active objects and components, in order to ensure their safe
execution. Currently we are working both on a multi-threaded extension of the active object model, better
suited for multi-core machine, and on the use of formal methods to design and prove the correction of an
algorithm for broadcast on CAN-like peer-to-peer networks (Content Addressable Network). This manuscript
provides an overview of all these works.

Modèles Formels pour la Programmation et la Composition de
Systèmes Distribués Corrects

Résumé

Mes travaux de recherche portent sur les modèles de programmation distribuée, principalement par objets et
composants. Dans ce domaine, j’ai travaillé à fournir des outils facilitant la programmation d’applications
distribuées à large échelle et vérifiant la correction de leur comportement. Pour faciliter la programmation
d’applications distribuées je me suis intéressé à la mise au point de langages avec un fort niveau d’abstraction:
objets actifs, squelettes algorithmiques, composants. Afin de vérifier la correction du comportement d’une appli-
cation j’ai collaboré à la mise au point d’outils de spécification et de vérification comportementales d’applications
distribuées. Mes travaux ont pour but de fournir un modèle formel des langages de programmations, des bib-
liothèques, et des environnements d’exécution fournies au programmeur afin de garantir un comportement sûr
des applications distribuées.

Ma thèse m’a permis de mettre au point le calcul ASP modélisant le comportement des objets actifs et des
futurs. Depuis, nous avons créé une version fonctionnelle de ce calcul que nous avons modélisé en Isabelle/HOL.
Aussi j’ai fortement contribué à la définition d’un modèle à composants distribués – le GCM (Grid Component
model)–, à sa formalisation et à son utilisation pour programmer des composants adaptables ou autonomes.
Enfin, j’ai contribué à la spécification et la vérification comportementale des programmes utilisant des objets
actifs et des composants afin de garantir la sûreté de leur exécution. Actuellement, nous travaillons à la fois à une
extension multi-threadée du modèle à objets actifs mieux adaptée aux machines multi-cœurs, et à l’utilisation
de méthodes formelles pour mettre au point et prouver la correction d’un algorithme de diffusion pour réseau
pair-à-pair de type CAN (Content Adressable Network). Ce manuscrit fournit une vue d’ensemble de tous ces
travaux.

