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Abstract 
 

MALEK, Abdel Salam. Online Fabric Defect Detection by Image Processing 

Technology  

(Under the direction of Prof. Dr. DREAN Jean-Yves and Prof. Dr. BIGUE Laurent) 

 

The purpose of this thesis is to automate the online detection of weaving defects by a 

computerized system based on image processing software. Obviously, fabric inspection 

has an importance to prevent the risk of delivering inferior quality product. Until recently, 

the visual defect detection is still under taken offline and manually by humans with many 

drawbacks such as tiredness, boredom and, inattentiveness. Usually, after the produced 

fabric is doffed from the weaving machines, it is batched into large rolls and sent to the 

inspection department. A skilled stuff rolls the fabric at high speed on the inspection 

machine under sufficient light to identify all defects. Besides the mentioned drawbacks, the 

lag time exists between defect creation and detection causes more second choice fabric. 

Fortunately, the continuous development in computer technology introduces the online 

automated fabric inspection as an effective alternative.  

The described method in this thesis represents an effective and accurate approach to 

automatic defect detection. It is capable of identifying all defects. Because the defect-free 

fabric has a periodic regular structure, the occurrence of a defect in the fabric breaks the 

regular structure. Therefore, the fabric defects can be detected by monitoring fabric 

structure. In our work, Fast Fourier Transform and Cross-correlation techniques, i.e. linear 

operations, are first implemented to examine the structure regularity features of the fabric 

image in the frequency domain. To improve the efficiency of the technique and overcome 

the problem of detection errors, further thresholding operation is implemented using a level 

selection filter. Through this filter, the technique is able to detect only the actual or real 

defects and highlight their exact dimensions.  

A software package such as Matlab or Scilab is used for this procedure. It is 

implemented firstly on a simulated plain fabric to determine the most important parameters 

during the process of defect detection and then to optimize each of them even considering 
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noise. To verify the success of the technique, it is implemented on real plain fabric 

samples with different colours containing various defects. Several results of the proposed 

technique for the simulated and real plain fabric structures with the most common defects 

are presented. Finally, a vision-based fabric inspection prototype that could be 

accomplished on-loom to inspect the fabric under construction with 100% coverage is 

proposed. Eventually, based on the methodologies employed in this thesis, it provides a 

promising stage for the development of an automated online defect detection system.     
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1.  

 
 

In the manufacturing process, if the cost and just-in-time delivery represent the two 

lines of the right angle, the quality should be the hypotenuse that completes the right 

triangle of the process. It means that the quality is the most important parameter despite 

the increase in one or both of the other parameters (geometrical fact). Scientifically, a 

process quality control means conducting observations, tests and inspections and thereby 

making decisions which improve its performance. Because no production or manufacturing 

process is 100% defect-free (this applies particularly where natural materials, as textile 

ones, are processed), the success of a weaving mill is significantly highlighted by its 

success in reducing fabric defects. 

For a weaving plant, in these harsh economic times, first quality fabric plays the main 

role to insure survival in a competitive marketplace. This puts sophisticated stress on the 

weaving industry to work towards a low cost first quality product as well as just-in-time 

delivery. First quality fabric is totally free of major defects and virtually free of minor 

structural or surface defects. Second quality fabric is fabric that may contain a few major 

defects and/or several minor structural or surface defects [1]. The non-detected fabric 

defects are responsible for at least 50% of the second quality in the garment industry (this 

figure is the result of many years of practical experience), which represents a loss in 

revenue for the manufacturers since the product will sell for only 45%-65% the price of first 

quality product, while using the same amount of production resources.  

Although quality levels have been greatly improved with the continuous improvement 

of materials and technologies, most weavers still find it necessary to perform 100% 

inspection because customer expectations have also increased and the risk of delivering 

inferior quality fabrics without inspection is not acceptable. The key issue, therefore, is how 

and under what conditions fabric inspection will lead to quality improvement. To address 

this issue, we have to differentiate between online and offline inspection systems. Online 

system provides figures from current production, and is located directly on or in the 

production line while, offline system is located after the production line. Until recently, the 

fabric inspection is still undertaken offline and manually by skilled staff with a maximum 

accuracy of only 60%-75%.  



Chapter 1 

 
Online Fabric Inspection by Image Processing Technology Page - 24 - 

The modern weaving Industry faces a lot of difficult challenges to create a high 

productivity as well as high-quality-manufacturing environment. Because production 

speeds are faster than ever and because of the increase in roll sizes, manufacturers must 

be able to identify defects, locate their sources, and make the necessary corrections in 

less time so as to reduce the amount of second quality fabric. This in turn places a greater 

strain on the inspection departments of the manufacturers. Due to factors such as 

tiredness, boredom and, inattentiveness, the staff performance is often unreliable. The 

inspector can hardly determine the level of faults that is acceptable, but comparing such a 

level between several inspectors is almost impossible. Therefore, the best possibility of 

objective and consistent evaluation is through the application of an automatic inspection 

system. 

From the early beginning, the human dream is to improve the manufacturing 

techniques to achieve optimum potential benefits as quality, cost, comfort, accuracy, 

precision and speed. To imitate the wide variety of human functions, technology was the 

magic stick that advanced humanity from manual to mechanical and then from mechanical 

to automatic. The rare existence of automated fabric inspection may be attributed to the 

methodologies, which are often unable to cope with a wide variety of fabrics and defects, 

yet a continued reduction in processor and memory costs would suggest that automated 

fabric inspection has potential as a cost effective alternative. The wider application of 

automated fabric inspection would seem to offer a number of potential advantages, 

including improved safety, reduced labour costs, the elimination of human error and/or 

subjective judgement, and the creation of timely statistical product data. Therefore, 

automated visual inspection is gaining increasing importance in weaving industry.  

An automated inspection system usually consists of a computer-based vision system. 

Because they are computer-based, these systems do not suffer the drawbacks of human 

visual inspection. Automated systems are able to inspect fabric in a continuous manner 

without pause. Most of these automated systems are offline or off-loom systems. Should 

any defects be found that are mechanical in nature (i.e., missing ends or oil spots), the lag 

time that exists between actual production and inspection translates into more defective 

fabric produced on the machine that is causing these defects. Therefore, to be more 

efficient, inspection systems must be implemented online or on-loom. 

The application of digital image-processing is useful in textile manufacturing and 

inspection. In last two decades, it has proven to be the most promising, rapid and reliable 
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solution for the future development of an online automatic fabric defect detection. 

Considerable efforts have been done to develop and/or improve the task of online 

automatic fabric defect detection. This task, generally, differs from many other industrial 

inspection tasks in that the product is usually in web form. It also requires very high-

resolution imaging to enable defects as small as a single missed thread, a fine hole or 

stain to be detected. Plain fabric Inspection still presents a considerable challenge, on 

account of the variable nature of the weave. As all fabrics consist of a main unit known as 

fabric repeat (a set of threads appears frequently along both of warp and weft directions), 

therefore frequency analysis based (Fourier transform) methods present a possible way to 

characterise the weave. 

The described method in this thesis represents an effective and accurate approach to 

automatic defect detection. It is capable of identifying all defects. Because the defect-free 

fabric has a periodic regular structure, the occurrence of a defect in the fabric breaks the 

regular structure. Therefore, the fabric defects can be detected by monitoring fabric 

structure. Fourier Transform gives the possibility to monitor and describe the relationship 

between the regular structure of the fabric in the spatial domain and its Fourier spectrum in 

the frequency domain. Presence of a defect over the periodical structure of woven fabric 

causes changes in its Fourier spectrum. By comparing the power spectrum of an image 

containing a defect with that of a defect-free image, changes in the normalized intensity 

between one spectrum and the other means the presence of a defect.  

The fabric defect could be simply defined as a change in or on the fabric 

construction. Only the weaving process may create a huge number of defects named as 

weaving defects. Most of these defects appear in the longitudinal direction of the fabric 

(the warp direction) or in the width-wise direction (the weft direction). The yarn represents 

the most important reason of these defects, where presence or absence of the yarn 

causes some defects such as miss-ends or picks, end outs, and broken end or picks. 

Other defects are due to yarn defects such as slubs, contaminations or waste, becoming 

trapped in the fabric structure during weaving process. Additional defects are mostly 

machine related, and appear as structural failures (tears or holes) or machine residue (oil 

spots or dirt). Because of the wide variety of defects as mentioned previously, it will be 

gainful to apply the study on the most major fabric defects. The chosen major defects are: 

hole, oil stain, float, coarse-end, coarse-pick, double-end, double-pick, irregular weft 

density, broken end, and broken pick. 
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A software package written for Scilab or Matlab is used for this procedure. It is 

implemented firstly on a simulated plain fabric, containing the same major defects 

mentioned previously, to understand the behaviour of the frequency spectrum, determine 

and optimize the most important detection parameters. To verify the success of the 

technique, it is implemented on real plain fabric samples containing various defects such 

as stains, floats, holes, coarse threads, miss-threads, and irregular density.  

As the technique is fast and corresponds to the speed of the weaving machine, it 

could be used for online fabric defect detection. A prototype has been developed to 

examine the technique in real-time (during the production of the fabric on the weaving 

machine) that is the main object of this thesis. 
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2.1. Issues related to fabric quality 

We cannot imagine a world without textiles. Their primary function is to clothe, 

protect, embellish and insulate the human body. In textile industry, quality is a topical 

issue. Therefore, all companies promote quality as the central customer value and 

consider it to be a critical success factor for achieving competitiveness [2, 3]. To do that, 

the modern weaving industry deploys high-speed looms, as shown in figure (2.1), to 

produce the highest quality fabrics in the shortest amount of time possible. In addition, 

quality assurance systems have been developed in the aim of providing the client with a 

high level of trust in the producer’s capacity to maintain permanently the product 

specifications according to standards and original technical design [4, 5].  

 

 

Figure 2.1: Modern (air-jet) looms 

Based on quality aspects, fabrics are classified into first and second quality products. 

First quality fabric is totally free of major defects and virtually free of minor structural or 

surface defects. While, second quality fabric may contain a few major defects and/or 

several minor structural or surface defects [1]. The justification for fabric defects could be 

ascribed to the fact that no production or manufacturing process is 100% defect-free which 

applies particularly where natural materials, as textile ones, are processed [6]. Moreover, it 

is very difficult to perform 100% first quality products while in weaving process; it is an 
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impossible task (in spite of using modern weaving technology). Thus, the utmost priority of 

all weaving mills is to reduce the presence of weaving defects in the final product at early 

stages of the production process to insure an optimized economical viability [4, 7]. For 

manufacturers, some false positives (rejecting good products) are more forgivable than 

false negative (missing defective products) [8, 9].  

There are several reported works [1, 10, 11, 12, 13, 14, 15, 16, 17] discuss the 

influence of fabric defects on textile industry. Most of these works discussed the effect 

from commercial aspects. Beside a considerable extra cost due to defect detection 

process, it is found that, defects are responsible for nearly 85% of the defects found in the 

garment industry which represents a loss in revenue for manufacturers since the second 

quality product will sell for only 45%-65% the price of first quality fabric.  

It is, however, worthwhile to recall that fabric defects are loosely separated into two 

types [14]; one is global deviation of colour (shade). The other is local textural irregularities 

which is the main concern for our study. The process at which these defects are detected 

is called fabric inspection.  

2.2. Fabric inspection 

Product inspection is an important aspect in modern manufacturing industries such 

as in case of electronics, automotive and medical industries. This process is a preventive 

one that could be broadly defined as the process of determining if a product deviates from 

a given set of specifications [23]. Mainly, fabric defect detection has two distinct 

possibilities [13]. The first one is the product or end (offline) inspection in which the 

manufactured fabric has to be inspected through fabric inspection machines [18, 24]. The 

second possibility is the process inspection (online) in which the weaving process (or its 

parameters) can be constantly monitored for the occurrence of defects. Our survey 

focuses on both methods to explain the procedure, the advantages, and the drawbacks as 

well of each one. 

2.2.1. Visual (Traditional) fabric inspection 

Fabric like many intermediate products is available in a web form (continuous rolls) 

where a typical fabric web is 1.5-2 meter wide. In addition, defects to be detected by 

inspection are numerous and present complex appearance [4]. Consequently, industrial 
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web inspection [25] has extremely high requirements and is most challenging as compared 

to other inspection problems. As it is a textured web, the concept of fabric inspection 

consists of grading the materials based on their overall texture characteristics such as 

material isotropy, homogeneity and coarseness [13] or the severity of its defects [14, 26]. 

Traditionally, this procedure must performed by well-trained (expert) human 

inspectors [16, 21, 27]. The existing methods of fabric inspection vary from mill to mill [26, 

28]. In few mills, trained labours pull the fabric over a table by hand. As shown in figure 

(2.2), most mills have power driven inspection machines where the manufactured fabric 

rolls are removed from the weaving machines and unrolled on an inspection table (under 

adequate light) at a relatively higher speed of 8-20 meters per minute [13, 16, 28, 29, 30, 

31]. 

 

Figure 2.2: Visual (traditional) fabric inspection 

When the inspector notices a defect on the moving fabric, he stops the machine, 

records the defect and its location, and starts the motor again. For each inspected fabric 

roll, the number of defects per meter length is calculated and the fabric is classified. The 

early detection of repetitive defects and extraordinary defect rate is left to the operators or 

so called (roving inspectors) [11, 12, 13, 28]. During the control, if the operator notices an 

extraordinary defect rate or repeating defects, these roving inspectors warns the 

production department so that appropriate measures can be taken to decrease the defect 
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rate. Bowling et al. [32] proposed the use of two inspectors on the same machine when 

inspecting the fabric as another procedure to decrease this rate. 

2.2.2. Drawbacks of visual fabric inspection 

Typically, the inspection process relies strictly on the human eye and is done after 

the fabric formation process. According to the poet Alexander Pope “to err is human; to 

forgive divine”. This may be the slogan in the morale sphere, but, modern manufacturing is 

unforgiving of error.  A key fact: that even with the best-designed man-machine interface, 

the probability of human error cannot in practice be reduced to zero [33]. In addition, the 

visual inspection has worked well for many years in part because the amount of data has 

been small and manageable [34]. Lastly, with the modern weaving machines, the 

production speeds and consequently productivity are faster than ever. The experiments 

show that the error rate begins to rise rapidly as information output approaches about 8 

bits/s [33, 35]. Therefore, the traditional visual inspection method has no ability to cope 

with today requirements.  

Although humans can do the job better than machines [24] in many cases, the visual 

inspection suffers from many drawbacks. It is found that, each surveyed article [1-149] 

contains only some of them. Because these drawbacks represent the main arguments for 

the advent of another robust inspection method, they can be gathered, summarize and 

discriminated as follows:  

1. Human experts are difficult to find or maintain in an industry. 
2. Human requires training and their skills take time to develop. 
3. In some cases visual inspection tends to be tedious or difficult, even for the best-

trained experts. 
4. Human is slower than the machines which means that inspection is a time 

consuming task. 
5. Human inspectors fatigue over time (get tired quickly). Therefore, visual fabric 

inspection is extremely tiring task, and, after a while, the sight cannot be focused 
(the maximum period of concentration is 20-30 min). However, the operator 
inevitably misses small defects and sometimes even large ones with the number of 
meters of the inspected fabric.  

6. Human inspectors have to deal with an extensive variety of defects (there are 
almost 50 different kinds of flaws) either due to mechanical malfunction of the loom, 
or due to low-quality fibers and spreads. 
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7. Human inspectors make mistakes because inspection is unreliable when the fabric 
of 1.6-2 meters width is unfolded at a speed of 20 m/min. It is difficult for humans to 
keep up with these hard conditions. Because their efficiency is based on experience 
and even in a well-run operation, the reproducibility of a visual inspection will rarely 
be over 50% while the maximum detection efficiency is about 70%-80%. 

8. The inspector can hardly determine the level of faults that is acceptable, while 
comparing such a level between several inspectors is almost impossible. 

9. It is a subjective method that difficult to reproduce result. 
10. The grading process is slow and varies from mill to mill. 
11. Usually, there is an absence of feedback to support processes for corrective 

measures. 
12. The low quality control speed when compared to the production speed offers a 

major bottleneck in the high-speed production lines. 
13. It is extremely difficult to achieve100% fabric inspection with this traditional method. 
14. Labour-intensive and more floor space required i.e. there is an expense of manual 

inspection, which is essentially a non-value added activity. 
15. Traditional visual fabric inspection is cost-intensive. Even, through the incidence of 

serious weaving faults can be reduced by the use of modern weaving technology, 
fault detection in many plants still continues to create considerable extra cost (which 
increases with the labour cost). 

16. Moreover, the problem of the visual inspection does not correspond only to the 
undetected defects but also, it changes the mechanical properties of the fabric 
under inspection. For instance, the fabric dimensions (longitudinally and width-wise) 
usually changed due to the applied tension on fabric roll during the inspection 
process. Both are not good for the customers because they pay for false materials. 
Moreover, the shrinkage takes place after the spreading of the fabric in cutting 
departments increases the probability of producing second quality garment either 

due to poor assembling (sewing) quality or incorrect size. 

Because of these vast drawbacks and in order to increase accuracy, attempts are 

being made to replace manual visual inspection by automated one that employs a camera 

and imaging routines to insure the best possibility of objective and consistent evaluation 

for fabric quality.  
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2.2.3. Automated fabric inspection 

Automatic inspection systems are designed to increase the accuracy, consistency 

and speed of defect detection in fabric manufacturing process to reduce labour costs, 

improve product quality and increase manufacturing efficiency [1-148]. At ITMA’ 97 in 

Hannover [36], the first automatic fabric inspection machine based exclusively on a laser 

scan system was presented to world specialists. In the last two decades, there have been 

several key developments in automated visual inspection technique for fabric defects 

where new approaches such as an ultrasonic imaging system [37] and laser-optical 

systems [38, 39] have been proposed. But, the main common alternative to human visual 

defect detection is the use of a computer vision system to detect differences between 

images acquired by a camera [4, 40]. In this process, the fabric is inspected with the 

resolution that is achieved by an inspection person at a distance of one metre from the 

fabric [10].   

Unser et al. [41, 42] described Texture as the term used to characterise the surface 

of a given object or phenomenon. From the optical point of view, a fabric has the property 

of a texture. Therefore, fabric detection can be considered as a texture segmentation and 

identification problem. This means that texture analysis plays an important role in 

automatic visual inspection of surfaces [3, 14, 25, 28, 40, 43, 44, 45, 46, 47, 48, 49].   

Handle et al. [45] defined defects as either non-textured or different textured patches 

that locally disrupt the homogeneity of a texture image (An image is said to have a uniform 

texture when it gives an almost homogeneous visual impression). Since fabric faults 

normally have textural features which are different from original fabric features, automated 

defect detection in textured materials is simply performed by identifying the regions that 

differ from a uniform background [4, 9, 14, 25, 43, 44, 45, 48]. Industrial web materials like 

fabrics take many forms but there is a remarkable similarity in visual inspection automation 

requirements [6, 13]. The operation of an automated visual inspection system can be 

broken down into a sequence of processing stages: image acquisition, feature extraction, 

comparison, and decision. It is important to note that the success of an automatic-

inspection system relies on the approach used. 
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2.2.4. Online automated fabric inspection 

It is called also real-time fabric inspection where production and production control 

work together or in real time. The need for this vision system stems from the fact that 

fabric inspection with present methods (offline) is an inadequate task: thousands of off-

quality fabric meters will be produced before the problem is recognized. Thereby, the main 

object of this vision system is to detect the defects at an early manufacturing stage in order 

to prevent foreseeable fabric defects in mass production or at least to insure a corrective 

action during the process. If the inspection system is agreed to be online, we have to 

explain why it should be automated. Beside the high cost, low accuracy and very slow 

performance of human visual inspection, the slow fabric manufacturing speed (0.3-0.5 

meters per minute) [13] is insufficient to keep a human inspector occupied and human 

inspection is therefore uneconomical. Also, the relatively hostile working environment near 

the weaving machines is not suitable for human inspection.  

Behera et al. [26] have described the real-time defect detection system as an 

intelligent optical head assembled on a loom to acquire and analyze a huge number of 

images while the fabric is being produced. Frank and Ding [50] defined the process of 

online detection as input and output signals. The output of the fault detection system may 

be simply an alarm signal that takes two values, high for defect and low for defect-free or, 

more sophisticatedly, knowledge of faults such as location, spectrum or amplitude. Some 

researchers [4, 26, 51] determined the essential requirements for an online automated 

inspection system to be reliable as follows: 

1. The system must operate in real-time with good results, 
2. It must reduce escape rates, 
3. It must reduce false alarms, 
4. It must be robust and flexible. Thus, it should adapt itself automatically and achieve 

consistently high performance despite irregularities in illumination, marking or 
background conditions and, accommodate uncertainties in angles, positions, etc., 

5. It must be fast and cost efficient, 

6. The system must be simple to operate and maintain.  
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2.2.5. Advantages of online automated fabric inspec tion 

Honestly, and before discussing the advantages of an online automated inspection 

system, one should mention the drawbacks. Behera [10] has mentioned the correlation 

between both of production and inspection speeds. Moreover, the production speed 

determines the inspection system so that it is not always possible to take full advantage of 

maximum throughput speed of the inspection system. Due to their computational costs, 

very few available practical systems represent another drawback [45].  

To refute these arguments, we should admit that the low speed of an online 

automated inspection system will not disrupt its continuous development since the need 

for effective quality measurement is more important than ever and there is a need for a 

comprehensive, consistent way to establish the quality of fabrics.  Financially, Nickolay et 

al. [6] have shown that the investment in automated fabric inspection system is 

economically attractive when reduction in personnel cost and associated benefits are 

considered.  Also, Zhang et al. [22] explained that recent advances in imaging technology 

have resulted in inexpensive, high quality image acquisition, and advances in computer 

technology allow image processing and pattern recognition to be performed quickly and 

inexpensively. In addition, the use of online automated systems reduces the total cost 

through the reduction in inspection labour costs, rework labour and scrap material.  

Therefore, an efficient online automated product inspection is a key factor for the 

increase of competitiveness of the textile and clothing industry [18, 24]. Let us mention 

now extra advantages of online automated visual inspection [10, 14, 16, 17, 25]:  

1. the results of such a system are reliable, reproducible and free from the subjective 
deficiencies of the manual fabric inspection, 

2. The system can increase the efficiency of production lines and improve quality of 
product as well, 

3. A good system means lower labour cost (the labour of the machine also operates 
the inspection system), 

4. shorter production time, 
5. Minimum floor space. 
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2.3. Image processing and fabric inspection 

2.3.1. Introduction 

Malamas et al. [51] define the image processing operations as which transform an 

input image to another one having the desired characteristics (measurements). In 

particular, image analysis is related to the extraction and measurement of certain image 

features (e.g. lines, and corners) and transforms these image features to numbers, 

vectors, character strings, etc. Of late, intelligent image processing systems are used to 

control automatically the running production processes such as online fabric inspection. 

The automatic inspection process [28, 34, 48, 52] consists of essentially two steps or 

phases; learning or training phase and detecting or testing phase. Within the first phase, 

the system is trained on surface images or image regions which are void of defects. The 

extreme values of the features are calculated and used for constructing a simple classifier. 

During the second phase, only the features of interest are considered. These features 

have the values of which exceed their own scattering thresholds. Thereby, defect 

inspection is possible by partitioning a test image into sub windows and calculating the 

sufficient statistics of each one. If the sufficient statistic set within a window does not agree 

with that of the original training texture, then it is concluded that, there is a defective 

region. 

Until very recently, machine vision was applied almost exclusively to the inspection of 

engineering components. As fabric inspection has proven to be one of the most difficult of 

all textile processes to automate, it has taken decades for image processing technology to 

develop a practical, consistent and reasonably commercial system to the market. The next 

part summarizes the challenges or the difficulties during the development of a machine 

vision system for online fabric defect detection.  

2.3.2. Challenges and difficulties  

Automated visual inspection of web materials is very complex task and the research 

in this field is widely open. Yet, based on vast research work [4, 13, 18, 19, 20, 24, 45, 48, 

53], the implementation of an online automated visual inspection system for fabric defect 

detection may suffer from next difficulties:  
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1. The task is particularly challenging due to the large number of fabric defect classes. 
2. There are inter-class similarity and inter-class diversity of defects. 
3. Also, the characterization of defects in textured materials is generally not clearly 

defined. 
4. There is enormous variety of fabric patterns. 
5. There are stochastic (random) variations in scale. 
6. The compatibility with standard production lines and economical justification are not 

solved. 
7. The problem of quantifying visual impressions in complex situations (as in fabric 

manufacture). 
8. This task has extremely high data flow. 
9. It suffers from noise influence. 
10. Unfortunately, most of the used algorithms are computationally complex for online 

applications. 
11. Finally, due to the environment and the nature of weaving process, there is stretch 

and skew of fabric texture/defects predominantly. 

2.3.3. Components of online fabric defect detection  system 

Because the uses of machine vision are so diverse, specific components can vary 

from one system to another according to the application domain that is the basic factor 

determines the requirements for the design and development of a successful machine 

vision system. Consequently, the system is related to the accomplished tasks 

environment, speed, etc. Essentially, an automatic inspection system has basically two 

main units: The first one is the image acquisition unit which is usually an input source, 

optics, lighting, a part sensor, a frame grabber. The second is the processing unit that has 

a PC platform, inspection software, digital I/O and a network [18, 24, 26, 51, 54, 55, 56]. 

We will cover these components in brief as possible in the next part.  

2.3.3.1. The camera 

It forms the digital image of the fabric so that the maximum level of contrast between 

the defects and their background is achieved [26]. Mainly, there are two common types of 

scanning techniques employed for the fabric inspection; line and area scan cameras. 

Table (2.1) introduces some of the principle differences between the two types. This table 

is built based on our knowledge and some articles [31, 57, 58, 59]. 
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Table (2.1):  A comparison between line and area scan cameras 
 

Line scan camera Area scan camera (CCD ) 

It utilizes a system of linear array 

photo-sensors 

It utilizes a system of area array 

photo-sensors 

The resolution in the vertical direction 

is a function of the velocity of object 

(fabric) movement and the scan rate 

at which the camera is operating 

The inspection resolution in both 

directions is independent of the object 

speed 

It provides a very high resolution It provides a high resolution 

It can inspect a large width of fabric in 

the single line scan 

It inspects only a determined width of 

fabric 

A transport encoder is always required 

to ensure synchronization of the 

camera scan rate with the transport 

velocity 

The usage of transport encoders is 

optional 

It does not generate complete image 

at once 
It generates complete image at once 

It requires an external hardware to 

build up the images from multiple line 

scans 

It does not require any external 

hardware to build up the images. 

The cost of a line scan camera is very 

high 

It is less expensive and commonly 

used. 

Generally, one needs several pixels in order to detect a defect. On non-structured 

surfaces (or pre-processed images), the minimal number of pixels needed for a safe 

detection of a defect is 4 pixels. For a classification of various defect types more pixels are 

necessary. A minimum for each classification is 12 pixels and for a more precise 

classification about 30 pixels are necessary [18]. The required number of cameras to scan 

the fabric continuously for deviations is calculated depending on its width [10]. The system 

generally has several cameras positioned in a row in order to cover the total web width 

with an overlap by about 5% in order to capture the entire width without gaps [18]. Finally, 

Leon [60] determined three main problems that cause optical systems to fail acquiring 

images of sufficient quality: unsuitable illumination, limited depth of focus, and visibility 

problems. 
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2.3.3.2. The lighting system  

Lighting is a major issue for many machine vision and image acquisition systems 

where the illumination type and level has a drastically effect on the image quality [13, 61]. 

Fundamentally [20], a fabric image from a camera depends on two factors, illumination 

and the way in which the textile reflects that illumination. Behera [10] determined three 

basis for the choice of an illumination type during fabric inspection; the fabric density, 

defect types and stage in which the inspection is carried out. Moreover, some fabric 

defects can be better recognised in transmitted light while other faults can be better in 

reflective light. The illumination module is designed in either reflect or transmit the light.  

Some researchers [10, 13, 43, 62, 63] mentioned four common types of lighting 

schemes (configurations) used for visual inspection i.e. front, back, fiber-optic, and 

structured. The front lighting is used for enhancing surface texture and determining 

variation in shade or colour. The backlighting can be used to enhance the structure of 

translucent fabrics. It eliminates the shadow and glare effects. As it provides uniform 

illumination, it is also possible to employ fiber optic illumination for the fabric inspection. 

However, it is most expensive to realize and is not economical for 6-8 feet wide textile 

webs.  

On the other hand, Anagnostopoulos et al. [18] defined the dark field which are 

illumination as the largest significance method for the detection of surface damage 

because it reacts very sensitively to any changes of the surface smoothness. Moreover, 

the use of infrared technologies (wave length 800–950 nm) has the additional advantage 

that the employees that work in the area of the inspection system are not bothered by the 

flashing and through the use of infrared filters in front of the cameras interfering light can 

be suppressed. Defects that do not have an edgy kind of surface damage can be detected 

with the extra use of a diffused bright field light. This lighting is based on fluorescent lights 

and is implemented in the flash (photo) technology. While to maintain a constant (within 

1%) level of illumination, Roberts et al. [59] proposed a fuzzy logic control scheme to be 

used by the illumination controller.  
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2.3.3.3. The transport encoder  

It is used [59] to provide master timing pulses for the camera. The wheel of the 

transport encoder is in direct contact with fabric winder. In case of line scan cameras, the 

resolution of the transport encoder (i.e. number of pulses per revolution) determines the 

pixel resolution. The line scan cameras can acquire crisp images at any speed by slaving 

camera scan rate to transport velocity.  

2.3.3.4. The frame grabbers 

Their old object was to convert the pixel data coming from the camera into a digital 

image. But nowadays, with digital cameras, frame grabbers are only memory buffers. 

Pang et al. [58] mentioned that as it is expensive to use one frame grabber unit per 

camera, all web inspection systems, such as the one used for fabric, have to cope with the 

multiple camera inputs. Some systems do this by using some kind of video multiplexer unit 

between the camera and the frame grabber. This permits parallel processing of image 

pixel data if the system is equipped with the multiple processors.  

2.3.3.5. The image processing unit 

The global object of the processing unit is to understand the construction of the 

inspected fabric to decide in real time whether it has a defect or not. Kumar [13] classified 

the functions of the processing unit in three main categories; defect detection and 

classification, camera illumination and control, and system control. In case of high speed 

(offline) inspection, a single general processing unit is insufficient to process high volume 

of image data. Therefore most systems use a single separate processor for each individual 

camera [58]. In addition, most industrial applications inspection systems must process 10-

40 Mpixels/s per camera, thus requiring dedicated hardware for at least part of the system 

[64]. 
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2.4. Algorithms of automated fabric defect detectio n   

2.4.1. Introduction 

After an image of the fabric under inspection is being captured by the acquisition unit, 

it passes through a sequence of many processes as usual in the image processing 

technique. This procedure may contain many processes such as image enhancement, 

restoration, segmentation, feature extraction and recognition. All of these stages are 

carried out by an adequate algorithm through the processing unit of the system. 

Consequently, if the processing unit is to be considered as the head of the human, the 

used algorithm is the brain. Therefore, the core of an automated inspection system for 

fabric defect detection needs a robust detection algorithm. Due to rapidly decreasing cost 

of sensing and computing power, several new algorithms have been proposed in the last 

years. The next part of our survey discusses the most important implemented algorithms 

for automated fabric defect detection. For better understanding, it is gainful to start with a 

modified classification for these various used approaches. 

2.4.2. Automated fabric defect inspection classific ation 

For the two past decades, interesting surveys relevant to automated fabric inspection 

have been published. It is admitted that all surveys interpreted the task of detecting 

defects as a texture analysis problem [1-149]. Obviously, based on the used approaches 

(algorithms) till the date of publishing, each survey subtracted its classification. Despite the 

fact that this work is to be considered as a wealth, one should not only confine himself to, 

but also, use the numerous last available research works to describe an improved 

classification. With reference to several survey papers [4, 9, 13, 14, 23, 26, 28, 45, 50, 51, 

65, 66], we will categorise the texture analysis problem into six approaches according to 

the used algorithm; structural approaches, statistical approaches, spectral approaches, 

model-based approaches, combination of computational methods, and finally, comparative 

studies.  In fact, statistical approaches are very popular. The following part of the literature 

presents in brief as possible an idea about these approaches while Table (2.2) 

summarizes our modified classification.  
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Table (2.2): Modified automated fabric defect inspection classification 
 

Approach Methods References 

Structural approaches [9][13][14] 

Statistical 

approaches  

1 Gray level thresholding [13][14][22][67] 

2 Cross-correlation [13][14] 

3 Statistical moments [24][43] 

4 Multilevel thresholding [26]  

5 Histogram properties [9][22][26][69]  

6 Rank-order functions [13][70][71]  

7 Fractal dimension [13][14][20][24][26][72][73] 

8 Edge detection [13][14][20][41][74]  

9 
Morphological 

operations 
[13][14][70][75][76]  

10 Eigenfilters or (ICA) [13][41][77][79]  

11 Co-occurrence matrix [9][13][14][24][28][46][80][81][89]   

12 Local linear transforms [13][14][42][83]  

13 
Artificial neural 

networks 

[9][13][14][15][34][47][51] 

[84][85][86][87][88][89][90][91][92] 

[93][94] [95][96][97][98][99]   

14 
Autocorrelation 

function 
[22][41][65][100]  
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2.4.2.1. Structural approaches 

Structural approaches assume that the textures are composed of primitives [13, 14]. 

These primitives can be as simple as individual pixels, a region with uniform gray levels, or 

line segments. Consequently, the main objects of these approaches are firstly to extract 

texture primitives, and secondly to model or generalise the spatial placement rules. The 

placement rules can be obtained through modelling geometric relationships between 

primitives or learning statistical properties from texture primitives [9, 14]. However, these 

approaches were not successful on fabric defect detection, mainly due to the stochastic 

variations in the fabric structure (due to elasticity of yarns, fabric motion, fiber heap, noise, 

etc.) which poses severe problems in the extraction of texture primitives from the real 

fabric samples [13, 14]. 

2.4.2.2. Statistical approaches 

They measure the spatial distribution of pixel values [9, 14] while their main object 

[13] is to separate the image of the inspected fabric into the regions of distinct statistical 

behaviour. An important assumption in this process is that the statistics of defect-free 

regions are stationary, and that these regions extend over a significant portion of 

inspection images [13, 14]. Based on the number of pixels defining the local features, 

Mahajan et al. [14] classified these approaches into first order, second order and higher 

order statistics. The first order statistics estimate properties like the average and variance 

of individual pixel values, ignoring the spatial interaction between image pixels, second 

and higher order statistics on the other hand estimate properties of two or more pixel 

values occurring at specific locations relative to each other. Clearly, the use of statistical 

approaches is well distinguished in the field of computer vision and has been extensively 

applied to various tasks. The most used approaches are: 

2.4.2.2.1. Gray level thresholding approach 

Studies of fabric defect detection have been based primarily on gray level statistical 

approaches [22].These approaches are direct and simple mean to detect high contrast 

fabric defects. The principle depends on the signal variation (peak or trough) due to the 

presence of high contrast defect. Moreover, it compares the gray level of each image area 

with a reference threshold. If its gray level is greater than the threshold, this area has a 

defect and otherwise, it is a defect-free one. Stojanovic et al. [67] have developed a fabric 
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inspection system that uses thresholding, noise removal followed by local averaging to 

identify eight categories of defects with 86.2% accuracy and 4.3% of false alarm. The 

advantages of such a technique [13, 14] lie in its ease of implementation. Otherwise, it fails 

to detect the defects which appear without altering mean gray level in defect-free areas.  

2.4.2.2.2. Normalized cross-correlation approach 

Normally, correlation is used to locate features in one image that appear in another 

one and the correlation coefficient can generate a correlation map for defect declaration. 

The cross-correlation function provides a direct and accurate measure of similarity 

between two images. Any significant variation in the value of this measure indicates the 

presence of a defect [13, 14].  

2.4.2.2.3. Statistical moments approach  

Mean, standard deviation, skewness and kurtosis provide statistical information over 

a region while the values are used for image segmentation. In these techniques, rather 

large windows are preferred, so that a statistical sample is gathered. Abouelela et al. [43] 

proposed a method of obtaining texture features directly from the gray-level image by 

computing the moments in local regions. The used algorithm has successfully segmented 

binary images containing textures with iso-second order statistics as well as a number of 

gray level texture images. Due to the influence of non-uniform illumination conditions on 

the image, statistical moments reveal the necessity of a pre-processing step to correct the 

image illumination in-homogeneities. The main advantage of these techniques is their 

computational simplicity [24].  

2.4.2.2.4. Multilevel thresholding approach 

This approach is applied mainly to inspect uni-coloured fabrics without consideration 

of texture where, the defective regions are segmented perfectly by using two thresholding 

methods. Rather than the fact that threshold approach is subjective, it has other 

limitations; one should ensure that all imaging conditions are always constant and that the 

non-defective fabric samples are all identical. Moreover, dust particles, lint, and lighting 

conditions on the test sample may introduce false alarms [26]. 
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2.4.2.2.5. Histogram properties approach 

Histogram analysis is done rather than a point-to-point analysis. Since different 

images usually become more comparable to one another after histogram equalization, 

since their brightness and contrast are more similar, equalization is usually performed. In 

many cases, histogram equalization provides an image with structural detail that is more 

discernible to the human eye than original image areas where small brightness gradients 

exist. Thus, Zhang and Bresee [22] used histogram equalization that reassigns gray level 

values of pixels to achieve a more uniform gray level distribution in an image. During this 

process, individual pixels retain their brightness order, but a more flattened histogram is 

produced so the brightness and contrast of images are altered. Also, Thilepa [69] applied 

noise filtering, histogram and thresholding techniques using Matlab to detect fabric defects 

with 85% overall efficiency. Despite their simplicity, histogram techniques have proved 

their low cost and high detection accuracy [9, 26]. 

2.4.2.2.6. Rank-order functions approach 

An image rank-function is a simple statistical approach for defect detection based on 

histogram analysis. It is given by the sequence of gray levels in the histogram when this 

sequence is sorted in the ascending order [13]. There exists 1:1 correspondence between 

the rank function and the related histogram, which does not exist between histogram and 

the image. Therefore the histogram and the rank function provide exactly the same 

information. However, rank functions are used instead of histograms due to the existence 

of very efficient definition of rank distances which can be efficiently computed.  

The median filter and other rank-order filters [70] like minimum or maximum are the 

best known examples of order statistics based filers. These nonlinear filters are especially 

useful because of their robustness toward the modifications of the image local properties. 

The use of local information gives also the possibility of performing other operations like 

adaptive modifications of local histograms. Harwood et al. [71] found that, local rank-order 

correlations of images with Laws’ masks could perform better than the basic convolutions, 

for suitable image and mask sizes. These more robust measures of correlation are less 

sensitive to local random pattern and grey-scale variabilities which are everywhere 

apparent in large textured images. 

The fabric texture information regarding spatial distribution and orientation, etc., is 

not uniquely determined from the knowledge of rank-order functions. Due to such 
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drawbacks the approaches based on rank-order functions or classical histogram analysis 

have failed to generate any further interest for fabric defect detection. 

2.4.2.2.7. Fractal dimension approach 

Fractal image analysis or fractal dimension (FD) can be used occasionally to 

discriminate between texture defective areas [24, 26, 72, 73]. Conci and Proença [72] 

implemented the differential box counting method with few modifications so as to minimize 

computational complexity and to enhance efficiency. The detection accuracy was 96% for 

eight types of fabric defects [13, 14, 26, 72]. Based on a wide variety of methods for fractal 

dimension (FD) evaluation, some drawbacks have been found. In many cases, this 

method does not cover all possible (FD) ranges for textiles, that is, any value from 2.0 to 

3.0, therefore it is not applicable to many types of textiles. Moreover, the method has a 

poor efficiency and high false alarms rate [13, 14, 20, 24].  

2.4.2.2.8. Edge detection approach 

Edge detection is a traditional technique for image analysis. The distribution of edge 

amount per unit area is an important feature in the textured images. The amount of gray 

level transitions in the fabric image can represent lines, edges, point defects and other 

spatial discontinuities. Thus these features have been largely employed for conformity 

testing, assembly inspection and fabric defect detection. It is mainly suitable for plain 

weave fabrics imaged at low resolution. But, the difficulty in isolating fabric defects with the 

noise generated from the fabric structure results in high false alarm rate and therefore 

makes them less attractive for textile inspection [13, 14, 20, 41, 74]. 

2.4.2.2.9. Morphological operations approach 

The mathematical morphology helps describing the geometrical and structural 

properties of an image [70]. Moreover, morphological image processing has relevance to 

conditioning, labelling, grouping, extracting, and matching operations on images [75]. For 

instance, this approach can filter out the periodic structure of fabric in the optical domain 

by inserting a Fourier lens after proper spatial filtering (in this case, it is only suitable to 

detect the defects of periodic structures). Since the morphological operations are one of 

the ideal tools for removing noise, the technique can be profitably exploited for noise 

removal in spatially filtered images of fabrics. Mallik-Goswami and Datta [75] illuminated 

the inspected fabric by a collimated laser beam to obtain its diffraction pattern while the 
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spatially filtered noisy image is recorded by a CCD camera and converted to a binary one. 

The noise is then removed using suitable morphological operations with a critically 

selected structuring element. However, the presented experimental results are on obvious 

defects [13]. Kwak et al. [76] described the development of an automated vision system to 

identify and classify visual defects on leather fabric. The defects are identified through a 

two-step segmentation procedure based on thresholding and morphological processing 

with an overall classification accuracy of 91.25%. The practical utility of this approach is 

limited as most of the commonly occurring fabric defects will be missing from the binary 

image generated from the simple thresholding operation [14]. 

2.4.2.2.10. Eigenfilters or Independent Component A nalysis approach 

The eigenfilter-based approaches are useful in separating pair-wise linear 

dependencies, rather than higher-order dependencies, between image pixels [13]. As 

these filters are of particular interest because they adapt automatically to the class of 

texture to be treated, Unser and Ade [41] suggested a flexible texture inspection system 

based on the evaluation of a sequence of local textural features. The measured energy at 

the output of eigenfilters bank is considered. Their system presents accurate defect 

detection with an extremely low probability of false alarms. 

Monadjemi [77, 78] introduced the usage of structurally matched eigenfilters to 

overcome the practical drawbacks of traditional approaches which require an extensive 

training stage. The proposed algorithm reconstructs a given texture twice using a subset of 

its own eigenfilter and a subset of a reference banks, and measures the reconstruction 

error as the level of novelty. The improved reconstruction is generated by structurally 

matched eigenfilters through rotation, negation, and mirroring. Sezer et al. [79] developed 

a new methodology for defect detection based on the independent component analysis 

(ICA). This method extracts the feature from the non-overlapping sub-windows of texture 

images and classifies a sub-window as defective or non-defective according to Euclidean 

distance between the feature obtained from average value of the features of a defect free 

sample and the feature obtained from one sub-window of a test image. (ICA) has very low 

real time computational requirements, since the online part of the computations involves 

just a simple matrix multiplication. It gives good detection results with 96-97%.  
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2.4.2.2.11. Gray level co-occurrence matrix approac h 

The co-occurrence matrix is one of the most popular statistical texture analysis tools 

for fabric defect detection [9, 13]. It is known also as the spatial gray-level dependence 

[14, 80]. The principle is based on repeated occurrences of different grey level 

configurations in a texture. The co-occurrence matrix contains information about the 

positions of pixels having similar gray level values [24]. These second order statistics 

approximate the probability distribution function of the given texture [28]. To do that, [9] it is 

accumulated into a set of 2D matrices, each of which measures the spatial dependency of 

two gray-levels, given a displacement vector. Texture features, such as energy, entropy, 

contrast, homogeneity, and correlation, are then derived from the co-occurrence matrix. 

Harlick et al. [46] derived 14 features from the co-occurrence matrix and used them 

successfully for characterization of textures. However, only two of these features have 

been used for the defect detection on fabrics. Balakishnan et al. [81] developed a vision 

system to identify and classify fabric defects (FDICS) using the co-occurrence matrix with 

a total cost around $ 5,300. Other research works [82, 83] proposed the gray level co-

occurrence matrix approach as a base to develop an automated fabric inspection system. 

Despite it is very popular and many studies exploited it as highly accurate technique, 

the co-occurrence matrix features suffer from many drawbacks [9, 13, 14, 24]. It is time 

consuming while there is no generally accepted solution for optimising the displacement 

vector. In addition, the number of gray levels is usually reduced in order to keep the size of 

the co-occurrence matrix manageable. For a given displacement vector, a large number of 

features can be computed, which implies dedicated feature selection procedure. Moreover, 

this technique is computationally expensive for the demands of a real time defect 

inspection system. Finally, the portioning of co-occurrence space and the description of 

multi-pixel co-occurrence are inefficient, which should be addressed to achieve the best 

possible performance for online fabric inspection. 

2.4.2.2.12. Local linear transforms approach 

This approach is closely related to filter bank analysis methods. It gives a statistical 

justification for the extraction of texture properties by means of convolution operators 

(masks). These masks may be considered as local detectors of elementary structures 

such as defects. Several popular bi-dimensional transforms such as Discrete Cosine 

Transform (DCT), Discrete Sine Transform (DST), Karhunen-Loève (KL), or Discrete 
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Hadamard Transform (DHT) can be used for the extraction of local texture properties [13, 

14, 73].  

The important information in most fabric textures is contained in higher order 

relationships among image pixels. Therefore, Unser [42] proposed a method which gives 

an access to higher order statistical information by means of simple histogram or moment 

computation along selected axes in the space of pixel values in a specified 

neighbourhood. He derived optimal and sub-optimal linear operators for texture analysis 

and classification.  

2.4.2.2.13. Artificial neural-networks approach 

Artificial neural-networks are among the fastest and most flexible classifiers used for 

fault detection due to their non-parametric nature and ability to describe complex decision 

regions composed of a number of similar elementary processing units (neurons) 

connected together into a network [9, 13, 14, 84, 85, 51]. These neurons are arranged in 

layers with the input data initializing the processing at the input layer. The processed data 

of each layer passes through the network towards the output layer. It has been used for 

many years in the manufacturing industry for monitoring and control mainly because of 

their ability to learn patterns in data from experience (not from explicit mathematical 

models of the data). It is applied when the underlying mathematical models are too 

complex or too costly to be determined by traditional means. For small problems neural 

networks work quite well. However, they do not scale well to massive datasets [34]. 

The problem of fabric defect segmentation using feed-forward neural networks (FFN) 

has been investigated in [86]. Recently, Shi et al. [87] described an adaptive image 

segmentation method based on a simplified pulse- coupled neural network (PCNN) for 

detecting fabric defects. They introduced a new parameter called the deviation of the 

contrast (DOC) to describe the contrast difference in row and column between the 

analyzed image and a defect-free image of the same fabric. Castilho et al. [88] 

implemented a real- time fabric defect detection based intelligent techniques. They used 

Neural networks (NN), fuzzy modelling (FM) to obtain a clearly classification for defect 

detection. The experimental results stated that (NN) has a faster performance. The used 

algorithms can be easily online implemented and may be adapted to industrial applications 

without great efforts. They also proposed new methods for determining threshold values 

for fabric defect detection using feed- forward neural networks. Behera and Mani [89] used 
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back propagation based neural network coupled with the (DCT) technique to characterize 

and classify woven fabric defects. The method has a comparatively high prediction error in 

one or two cases due to the insufficient information about the particular defect from the 

coefficients of that defect. Furferi and Governi [90] described an artificial vision inspection 

(AVI) system for real-time detection and classification of raw material defects. This system 

based on an artificial neural network (ANN) approach with 90% detection reliability and an 

adequate computational time. Many other research works [15, 47, 91, 92, 93, 94, 95, 96, 

97, 98, 99] implemented also (ANN) approach to detect automatically the fabric defects. 

2.4.2.2.14. Autocorrelation function (ACF) approach   

Autocorrelation is a technique that combines all parts of an image and may be used 

to characterize repetitive structures [22]. It measures the correlation between the image 

itself and the image translated with a displacement vector. As autocorrelation measure 

regular textures, it exhibit peaks and valleys. Autocorrelation function is closely related to 

the power spectrum of the Fourier transform [9]. Tolba and Abu-Rezeq [100] applies a self-

organizing feature map (SOFM) to detect and classify automatically the textile defects. 

They first extracted feature vectors from the one-dimensional autocorrelation function 

(ACF). This extracted feature is immune to both continuous variations in the illumination 

intensity and noise as a result of the noise-rejection property of the (ACF). Then, they used 

the two-point correlation function to compute the probability of finding a given difference in 

feature values for any randomly chosen pair of points within the feature space [65].  

2.4.2.2.15. Local binary patterns (LBP) approach 

Usually, a simple local contrast measurement is calculated as a complement to the 

(LBP) value in order to characterise local spatial relationships. The (LBP) operator is 

computationally simple, gives good performance in texture classification and is relatively 

invariant with respect to changes in illumination and image rotation [77]. For instance, 

Ojala et al. [101] described the local binary patterns as a shift invariant complementary 

measure for local image contrast. It uses the gray level of the centre pixel of a sliding 

window as a threshold for surrounding neighbourhood pixels. Its value is given as a 

weighted sum of thresholded neighbouring pixels. 
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2.4.2.2.16. Optimal filter design approach 

It concerns the determination of a filter that provides the largest discrimination 

between two textures [24]. Zhang and Bresee [22] considered two approaches to detect 

and classify knot and slub defects: statistical and morphological methods. The 

classifications were made on the basis of either gray level statistics or morphological 

operations. The autocorrelation function was used to identify fabric structural-repeat units 

to carry out either statistical or morphological computations. They first equalized all 

acquired images histogram to obtain more clearly identifiable Autocorrelation maxima and 

minima. In addition, the images are more comparable after equalization since their 

contrast and brightness are more closely similar.  

2.4.2.3. Spectral approaches 

Based on spatial-frequency domain features which are less sensitive to noise and 

intensity variations than the features extracted from spatial domain, spectral approaches 

occupy a big part of the latest computer vision research work. It simulates the human 

vision system where the psychophysical research has indicated that human visual system 

analyzes the textured images in the spatial frequency domain. Spectral approaches 

require a high degree of periodicity thus, it is recommended to be applied only for 

computer vision of uniform textured materials like fabrics. For automated defect detection, 

such approaches are developed to overcome the efficiency drawbacks of many low-level 

statistical methods. Therefore, these approaches were rendered as a robust solution for 

online fabric defect detection. The primary objectives [14] of these approaches are firstly to 

extract texture primitives, and secondly to model or generalise the spatial placement rules. 

In the following part, a survey of the most popular spectral approaches is presented. 

2.4.2.3.1. Fourier analysis (transforms) approach 

Fourier analysis is a global approach that characterizes the textured image in terms 

of frequency components. Fourier techniques have desirable properties of noise immunity, 

translation invariance and the optimal characterization (enhancement) of the periodic 

features [13, 14, 102]. They can be used to monitor the spatial-frequency spectrum of a 

fabric and compare the power spectrum of an image containing a defect with that of a 

defect-free one. When a defect occurs, the fabric regular structure is changed, so that the 

corresponding intensity at some specific positions of the frequency spectrum will also 
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change which could signify the presence of a defect. Many researchers [1, 16, 68, 103, 

104, 105, 106, 107, 108] proposed a simulated fabric model to understand the relationship 

between the fabric structure in the image space and that in the frequency space.  

To implement Fourier analysis for fabric defect detection, various methods are 

available; Optical Fourier Transforms (OFT) obtained in optical domain by using lenses 

and spatial filters can be used, but most techniques, digitally implemented, are derived 

from Discrete Fourier Transforms (DFT) and/or its Inverse (IDFT) which recovers the 

images in the spatial domain: classic Fast Fourier Transforms (FFT) or Windowed Fourier 

Transforms (WFT) versions which have the ability to localize and analyze the features in 

spatial as well as frequency domain. 

As they are very popular approaches, a huge research work based on Fourier 

transforms was developed to obtain an effective fabric defect detection systems. Tsai and 

Heish [109] detected fabric defects using a combination of DFT and Hough transform. The 

line patterns of any directional textures in the spatial-domain image are removed by 

detecting the high-energy frequency components in the Fourier-domain image by using a 

one-dimensional (1D) Hough transform, setting them to zero, and finally back-transforming 

to a spatial-domain image. In the restored image, the homogeneous-line region in the 

original image will have an approximately uniform gray level, whereas the defective region 

will be distinctly preserved. Based on a global image reconstruction scheme using the 

Fourier transform, Tsai and Huang [102] presented a global approach for the automatic 

inspection of defects in randomly textured surfaces as sandpaper. In the restored image 

obtained by IFT, the homogeneous region in the original image has an approximately 

uniform gray level, and yet the defective region will be distinctly preserved. 

Because OFT is relatively easy to implement and fast [13], Mallik-Goswami and Datta 

modulated the luminous intensities of the zero- and the first-order diffraction patterns by 

the existence of fabric defects [75]. Therefore, Castelliniet al. [110] developed a defect 

detection system using the measurements of the first- and the zero-order intensities. Also, 

Ciamberlini et al. [111] developed an optical configuration for fabric defect detection based 

on OFT. Through this system, the examination of the Fourier pattern relative to a set of 

selected samples of cotton and wool fabric shows, in the case of defective fabric, the 

increase of light intensity between the main peaks.  
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The DFT and OFT based techniques are suitable for both global and local defects. 

Furthermore, The DFT based approaches are not effective in the fabric images in which 

the frequency components associated with the homogenous and defective regions are 

highly mixed together in Fourier domain. It is due to the difficulty in manipulating the 

frequency components associated with homogenous regions without affecting the 

corresponding components associated with the defective regions. The relevant limitation to 

OFT approach is the laser beam diameter employed to generate the image of the moving 

fabric. It cannot be too large relative the spacing of weft and warp yarns in the fabric. 

Consequently, multiple optical systems are required to cover the width of fabric, which is 

very costly and complex [13].  

Moreover, Fourier transform is known to be a computationally expensive method. For 

instance, the time of two-dimensional DFT is proportional to the square of the image size. 

Therefore, in order to reduce the computation time, FFT is used. It is a discrete Fourier 

transform with some reorganization that can save an enormous amount of time. In this 

case, the computational time is proportional to 2N2 log2 N for [1, 16], while providing 

exactly the same result. 

Chan and Pang [1] used DFT and IDFT to extract seven significant characteristic 

parameters from the central spatial frequency spectrums. These parameters are then 

applied using FFT to detect fabric defects [16, 83, 107]. In addition, Cardamone et al. [112] 

used FFT to analyse the woven fabric construction. He et al. [113] used Fourier Transform 

to develop an oblique scanning method which scans the fabric surface on a running air-jet 

loom to estimate the fabric fluctuation in the cloth fell during weaving. Mallik-Goswami and 

Datta [114] used a joint transform correlator technique which is an extension of Fourier 

transform analysis and is extremely useful for real time pattern recognition to identify fabric 

defects. Based on FT Perez et al. [115] presented an automated analysis system for 

defect detection in the print process of flocked fabrics with repetitive patterns. Ralló et al. 

[104] developed and tested a fully automatic system to inspect a variety of fabrics and 

defects. The method is achieved by applying Fourier analysis to the image of the sample 

under inspection, without considering any reference image so that, no prior information 

about the fabric structure or the defect is required. The extracted structural features are 

used to define a set of multi-resolution band-pass filters, adapted to the fabric structure, 

that operate in the Fourier domain. Inverse Fourier transformation, binarization, and 

merging of the information obtained at different scales lead to the output image that 



Review of Literature 

 
Ph.D. thesis – Abdel Salam MALEK Page - 55 -

contains flaws segmented from the fabric background. Based on FT, Weng and Perng 

[116] detailed a reliable and computationally efficient two-dimensional (2-D) convolution 

mask to detect irregularities and defects in a periodic two-dimensional signal or image. 

2.4.2.3.2. Gabor filters approach 

The classical way of introducing spatial dependency into Fourier analysis is through 

the windowed Fourier transform. If the window function is Gaussian, the windowed Fourier 

transform becomes the well-known Gabor transform, which can arguably achieve optimal 

localisation in the spatial and frequency domains [9, 14, 117]. Researchers have 

suggested that computer vision systems utilize Gabor filters to more closely mimic the 

texture recognition abilities of human brains [118, 119]. Images captured by the retina are 

decomposed into several filtered images, each containing varying intensities over a narrow 

band of frequency and orientation. The neurons in the brain are individually tuned to a 

particular combination of frequency and orientation, which denotes a channel. These 

channels, therefore, closely resemble Gabor functions.  

Kumar and Pang [30] developed a multi-channel filtering technique based on 

Bernoulli's rule of combination for integrating images from different channels. Physical 

image size and yarn impurities are used as key parameters for tuning the sensitivity of the 

proposed algorithm. The achieved results show that the algorithm developed is robust, 

scalable, and computationally efficient for the detection of local defects in textured 

materials.    

The fabric defect detection uses optimal Gabor filter has been demonstrated in [120]. 

Whereas, many inspection systems using a bank of symmetric and asymmetric Gabors 

filters has been detailed in [44, 109, 121, 122, 123, 124, 125, 126, 127]. The main 

drawback of this approach comes from the non-orthogonality of Gabor functions which 

results in many correlations of features between the scales.  

2.4.2.3.3. Optimized Finite Impulse Response (FIR) filters approach 

Some fabric defects that produce very subtle intensity transitions may be difficult to 

detect using above-mentioned spectral approaches. A potential solution to detect such 

defects is to employ optimal finite impulse response (FIR) filters. A FIR filter has generally 

more free parameters than an IIR filter or a Gabor filter and thus offers added advantage 

of computational ease. Therefore, it offers a large feature separation between the defect-
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free and the defective regions of the filtered image [13, 25, 128]. The biggest advantage of 

FIR filters is that they can implement any impulse response, provided it is of finite length.  

Kumar [128] emphasized on smaller spatial masks, as compared to those from 

optimal Gabor filters, and demonstrated fabric defect segmentation with optimal FIR filters 

as small as 3 × 3 or 5 × 5 mask size. Also, Kumar and Pang [25] proposed a linear FIR 

filter with an optimized energy separation. They investigated the approach performance 

with the size variation of both optimal and smoothing filters. They concluded that the size 

of optimal filter has appreciable effect on the performance for the defect detection. These 

filters can be used to supplement the performance of the existing inspection systems that 

fail to detect a class of specific defects. 

2.4.2.3.4. Wigner distributions approach 

The Wigner distribution function is Fourier-like but offers better co-joint resolution 

than Gabor or difference of Gaussians for co-joint spatial and spatial- frequency image 

representation. This algorithm is effective when implemented for online fabric defect 

detection but its computation time is prohibitive. However its utility for unsupervised fabric 

inspection, in simultaneously detecting defects from a large number of classes, is yet to be 

demonstrated. The major drawback of this technique [13] is the presence of interference 

terms between the different components of the image.  

2.4.2.3.5. Wavelet analysis (transform) approach 

The concept of wavelet analysis was proposed in 1982 by Jean Morlet, a French 

engineer working on seismological data for an oil company, to reach automatically the best 

trade-off between time and frequency resolution [66]. With multi-resolution analysis, and 

other space frequency or space scale approaches, the wavelet transform is now 

considered as a standard tool in image processing. A wavelet function is a compact, finite 

duration signal that can form by dilation an orthonormal basis for the signal subspace.  

Thereby, it can be used for fabric defect detection. Mainly, wavelet transform is explored 

for image compression applications due to its ability to avoid the drawbacks resulted from 

the other spectral approaches such as Wigner distributions or Gabor functions [13, 24, 66]. 

It employs short windows at high frequencies and long windows at low frequencies [40].   

In the recent past, the use of wavelets has increased enormously in various problems 

related to computer vision [65, 129]. For instance, to achieve the best performance in 
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fabric defect detection, a design of adaptive orthonormal wavelet bases has been shown in 

[49]. Dorrity et al. [11, 12] developed a real-time fabric defect and control system based on 

fuzzy wavelet analysis. Tsai and Hsiao [130] detailed with some experimental results an 

approach based on selective wavelet coefficients to reconstruct the fabric image. It 

enhances the defects to be detected by thresholding in another step. Recently, Sari-Sarraf 

and Goddard [131] developed a fabric defect detection system to detect defects as small 

as 0.2 inches with an overall detection rate of 89 %. 

The articles [17, 40, 129, 132, 133, 134, 135] may interpret the contribution of 

wavelet transform in automated fabric defect detection. But, after surveying of numerous 

wavelet-based research works, Truchetet and Laligant [66] concluded that, wavelet cannot 

solve all the problems and that there are still a lot of limitations inherent to wavelet 

transform. Also, it suffers from either image components interference or features 

correlations between the scales [13].  

2.4.2.4. Model-based approaches 

Model-based texture analysis methods try to capture the process that generated the 

texture. They try to model the texture by determining the parameters of a pre-defined 

model [51]. Particularly, model-based approaches are suitable for fabric inspection when 

the statistical and spectral approaches have not yet shown their utility [13, 14, 28, 136]. 

These approaches often require that the image features at different levels of specificity or 

detail match one of possible many models of different image classes. This task is very 

difficult and computationally intensive if the models are complex and if a large number of 

models must be considered [51]. The most used three models will be discussed in the 

following part. 

2.4.2.4.1. Gauss Markov Random Field (GMRF) model a pproach 

As the brightness level at an image point is dependent on the brightness levels of the 

neighbouring points unless the image is simply random noise, Markov random fields use a 

precise model of this dependence.  They are able to capture the local (spatial) contextual 

information in an image. These models assume that the intensity at each pixel in the 

image depends on the intensities of only the neighbouring pixels. The theory provides a 

convenient and consistent way for modelling context dependent entities such as pixels, 
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through characterising mutual influences among such entities using condition MRF 

distribution [9, 13, 14, 29]. 

Cohen et al. [136] used the Gaussian Markov random field to model the texture 

image of a non-defective fabric. The image of the fabric patch to be inspected was 

partitioned into non-overlapping windows of size N * N, where each window was classified 

as defective or non-defective on the basis of a likelihood-ratio test of size x. The test was 

recast in terms of the sufficient statistics associated with the model parameters. Fabric 

defect detection results using a similar approach have also been shown in [31, 136]. 

Őzdemir and Erçil [31], Baykut et al. [28, 29] implemented GMRF based defect detection 

system. They showed that the fifth-order GMRF based defect detection scheme runs at 

about 10 times faster than that based on Karhunen Loeve (KL) transform.  

2.4.2.4.2. Poisson’s model approach 

The stochastic models of some randomly industrial textured materials are based on 

the nature of the manufacturing process [13]. One example of such material is the fibrous, 

non-woven material used for air filtration that is manufactured through adhesive 

technology. Brzakovic et al. [19] investigated the problem of defect detection in such 

randomly textured surfaces. It was shown that the difference between the theoretical 

estimated model and actual measurements from the defect-free images is within 10 %. 

Thus a statistical hypothesis testing between these two measurements can also be used 

to detect the fabric defects. 

2.4.2.4.3. Model-based clustering approach 

The problem of locating possible clusters in a data set (image) is a recurrent one with 

a long history. Campbell et al. [117, 137] combined image-processing techniques with a 

powerful new statistical technique to inspect denim fabrics. The approach employs model-

based clustering to detect relatively faint aligned defects. In order to assess the evidence 

for the presence of a defect, Bayesian information criterion (BIC) is used. 

2.4.2.5. Combination of computational methods  

From the previous survey, one may conclude that it is rather difficult to perform a 

robust individual approach that detects all fabric defects with high accuracy. It is mainly 

due to the fact that each technique has some advantages but, in the same time its 
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drawbacks. Therefore, many researchers combined two or more different approaches to 

give better results, than either one individual one. The main object is to minimize the 

computational complexity and enhance the detection capability. 

For instance, Sari-sarraf and Goddard [131] described an online automated fabric 

defect detection system with 100% coverage. The relatively low cost system is 

synchronized with the loom motion and produces high quality fabric images with either 

front or back lighting. The acquired images were then processed by a segmentation 

algorithm that combines wavelet transform, image fusion, and the correlation dimension. 

The approach overall detection rate under realistic conditions was found to be 89%, with 

0.2 in. minimum defect size and a false-alarm rate of 2.5%. Rösler [48] used a combination 

of two statistical approaches; histograms and co-occurrence matrices to develop a real 

fabric defect detection system. About more than fifty defective samples were recognizable 

up to 95%. These defects were unicoloured with a size larger than 1 mm2. Haindle et al. 

[45] presented a fast multi-spectral texture defect detection method based on the 

underlying three-dimensional spatial probabilistic image model. The model first adaptively 

learns its parameters on defective samples and subsequently checks for texture defects 

using the recursive prediction analysis. This method has promising results whereas fails to 

inspect highly structured textures due to limited low frequencies modelling power of the 

underlying probabilistic model. Chen and Libert [138] to developed a real-time automatic 

visual inspection (AVI) system for high speed plane products. The implemented algorithm 

combines the connected component labeling, the moment calculation and the pattern 

recognition. This system is flexible so that inspection algorithms are reusable and new 

algorithms can easily be evaluated regardless of its hardware. Han and Xu [63] presented 

an efficient and effective novel approach to detect the small fabric defects based on a 

combination between template matching methods and judgment threshold. The method 

learns from statistical information of fabric surface to modify the template.  

Jianli and Baoqi [139] combined discrete wavelet transform and back-propagation 

neural network to develop feasible approach for the recognition of fabric defects. Latif-

Amet et al. [140] described an effective algorithm that combines concepts from wavelet 

theory and co-occurrence matrices to detect fabric defect. Mak and Peng [141] extracted 

fabric defects using a pre-trained Gabor wavelet network. Then texture features are used 

to facilitate the construction of structuring elements in subsequent morphological 

processing to remove the fabric background and isolate the defects. A new classification 
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scheme [142] is devised in which different features, extracted from the gray level 

histogram, the shape descriptors, and co-occurrence matrices, are employed. These 

features are classified using a Support Vector Machines (SVM) based framework. 

Stojanovic et al. [53] implemented simple and fast binary and statistical algorithms in 

combination with neural networks to improve fabric inspection process for reduced number 

of defect classes under real industrial conditions, where the presence of many types of 

noise is an inevitable phenomenon. 

2.4.2.6. Comparative studies for different approach es 

Due to the huge number of fabric defect detection algorithms and techniques, the 

need of effective methods to compare between these approaches is very important than 

before. The comparative studies have a vital importance and may be considered as a 

research guide. This guide enables the researchers to learn and understand the 

differences between the various used algorithms or approaches based on its feasibility and 

reliability.        

Fatemi-Ghomi et al. [65] evaluated a variety of different methods for texture 

segmentation based upon wavelets. The two-point correlation function was proposed as 

performance measure. They found that, this function is a useful tool appropriate for both 

the visualization of the presence (or lack of) structure in any feature space of high 

dimensionality. Further, the two-point correlation function can be used as a tool for 

choosing the best features to be used in the detection process. Also, Zhang and Bresee 

[22] studied and compared two software approaches for detecting and classifying knot and 

slub defects in solid-shade, unpatterned woven fabrics. The approaches were based on 

either gray level statistics or morphological operations. The autocorrelation function was 

used for both methods to identify fabric structural repeat units, and statistical or 

morphological computations were based on these units. It was found that, both methods 

exhibited similar performance. While due to the gray level approach was more noise 

tolerant, fewer defect-free specimens were falsely determined as defective.  

Bodnarova et al. [143] developed a comparative study to examine the suitability of 

four different detecting algorithms. Gray level co-occurrence, normalized cross-correlation, 

texture-blob detection and spectral approaches were applied in this study. The correlation 

approach appeared to be the most promising method for a real time, high accuracy defect 

detection algorithm. Conci and Proença [4, 20, 144] compared the Sobel edge detection 
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with those based on thresholding and fractal dimension and found it both robust and fast 

method to detect twelve fabric defects. They found that the use of fractal dimension 

method gives the most reliable results because it correctly detects all defect types with 

only 2% false alarms while it is faster than the other approaches. Ozdemir and Erçil [31] 

compared six texture algorithms: MRF, KLT, 2D lattice filters, Laws filters, Co-occurrence 

matrices, and FFT, for fabric defect detection. They concluded that, the 9th order MRF 

model gives the best results.  

Cuenca and Cámara [145] developed a new texture descriptor based on semi-cover 

concept and a simplified local measure. They evaluated their method by comparing it with 

Co-occurrence Matrix, Histogram, Gabor Filters, Wavelets transforms and Fractal 

Dimension algorithms. The results showed a similar or superior performance to more 

complex approaches but with greatly saving computational cost. Finally, Vergados et al. 

[73] detailed a description of the state of the art techniques for texture segmentation as 

well as an evaluation of experimental research and results on the basis of selected 

algorithms suitable for real-time applications. They concluded that the efficiency of the 

various methods is strongly related to the nature of the inspected image while an algorithm 

for real-time applications should be specially designed on the basis of fast computational 

approaches. 
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2.5. Summary of literature review 

From our survey, it is concluded that the need for a comprehensive, consistent way 

to produce first quality or defect-free fabrics has an utmost priority than ever. To insure this 

quality level, we must perform 100% inspection. But, due to the huge drawbacks of the 

traditional visual offline systems, it is an impossible task. Consequently, the online 

automated fabric inspection is presented as a robust alternative. Such system must 

operate in real-time, produce a low false alarm rate, and be flexible to accommodate 

changes in the manufacturing process easily.  

The research work relevant to the automation of fabric defect detection is very vast 

and diverse. It is reasonable to believe that, the results of an automated inspection system 

rely on its implementation where, the better approach for defect detection is related to the 

expected defect types. Mainly, all researchers consider this task as texture segmentation 

and identification problem. In this review, the texture analysis problem is categorised into 

six approaches according to the used algorithm; statistical, structural, spectral, model-

based approaches, combination of computational methods, and finally, comparative 

studies. The used algorithm is the core of all approaches. It should be fast and designed 

on a basis to process the data in a way that minimizes computational complexity and 

enhances the detection capabilities. 

For each approach, the basic principles and methodologies along with their 

advantages and drawbacks are discussed. Surprisingly, it was found from the different 

studies that, a perfect approach that detects all fabric defects does not exist yet. Moreover, 

because the used systems are still to be considered as very expensive, only few 

automated fabric inspection systems are currently available in the market. 

In fact, the ability of structural approaches to detect fabric defects is very restricted 

mainly due to the stochastic variations in the fabric structure. Besides, despite they are 

very popular, simple-order statistics based approaches (e.g. classical histogram, 

morphological operations, gray level statistics, and gray level thresholding) often yield 

inadequate results and relatively invariant with respect to changes in illumination and 

image rotation. On the other hand, methods based on higher-order statistics, (e.g. co-

occurrence matrices or artificial neural networks) are extremely time consuming or do not 
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scale well to massive datasets. In addition, Model-based approaches are very difficult and 

computationally intensive especially where a large number of models must be considered. 

It is also notable that, spectral approaches simulate the human vision system and 

render heralded methods for automated fabric defect detection. But as a result of the non-

orthogonality of Gabor functions, when applying Gabor filters there are many correlations 

of features between the scales. Wigner distributions suffer from the presence of 

interference terms between the different components of an image. Moreover, wavelets 

cannot solve all problems and there are still a lot of limitations inherent to wavelet 

transform. Also, wavelet transform-based techniques suffer from either image components 

interference or features correlations between the scales. 

Therefore, it is reasonable to find an approach that combines most advantages with 

lower drawbacks to be implemented as the base of constructing an effective and accurate 

method to detect automatically fabric defects during the manufacturing (weaving) process. 

In our thesis, Fast Fourier Transform (FFT) is the selected approach. As one of the 

spectral approaches, it corresponds to the fabric high degree of periodicity and the speed 

of the weaving machine as well. Also, it is simple, fast and has low computational 

complexity.   
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3.1. Research methodology  

It is desirable to have a generalized system for online automated fabric inspection 

that should be able to cope with the wide variety of fabrics and defects. As mentioned 

previously, the task of fabric inspection is a texture segmentation and identification 

problem and therefore, fabric defects can be detected by monitoring its structure. By 

considering the periodic nature of woven fabrics, the image in the Fourier domain is 

decomposed into its sinusoidal components. Consequently, it is easy to examine or 

process certain frequencies of the image corresponded to the geometric structure in the 

spatial domain. Therefore, we can implement Fourier transform to study the construction 

characteristics of a spatial domain image for the woven fabric. This algorithm is simple, 

fast and has an optimized computational complexity and noise sensitivity as well. 

3.2. Research objectives 

The global objective of our research is to prove that an automated online defect 

detection system based on image processing technique introduces a robust alternative to 

traditional offline human-based systems. The achievement of this general goal means that 

the following other sub-objectives have been consequently achieved:  

1. Improving the fabric quality level by detecting all defects immediately during the 
production to reduce the cost and meet the manufacturers’ needs. 

2. Elimination of human drawbacks such as errors and/or subjective judgement. 
3. Creating a timely statistical product data that enables the manufacturers to design 

and improve the mill future plans. 
4. Increasing the manufacturer’s credibility.  
5. Designing and developing a robust tool for scanning the textile images. 
6. Developing a methodology to extract defect features from various fabrics using Fast 

Fourier Transform and cross-correlation techniques. 
7. Identifying and optimizing the main parameters which affect on defect detection 

process. 
8. A computer demonstration of a sequence of steps from the pre-processing through 

the final detection. 
9. Design and construct a system to demonstrate the utility of the developed 

methodology. 
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10. Testing the developed system online or in real-time to generate the knowledge base 
for the expert system and to provide real time unsupervised adaptive capabilities to 
make the system more robust. 

3.3. Research approach  

To achieve the objectives of this research, the following tasks are carried out: 

1. Development of a fabric defect map to determine the most major defects which 
should be considered during the pre-processing step.  

2. Acquisition or generation of a sufficiently large fabric database or images with and 
without defects at different resolution levels. 

3. Development of a suitable procedure using a software package (Scilab or Matlab) 
to implement the proposed technique (fast Fourier transform and the cross-
correlation).  

4. Training the technique firstly on the simulated fabric images containing the chosen 
major defects to understand the behaviour of the frequency spectrum, determine 
and optimize the most important detection parameters. 

5. Test and verify the success of the technique using real plain fabric samples 
containing the same simulated defects.  

6. Design and development of a prototype to examine the technique in real-time 
(during the production of the fabric on the weaving machine) that is the main object 
of this thesis. 

7. Generate knowledge base for the expert system to provide online adaptive 

capabilities to improve the system efficiency. 
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4.1. Fabric defects 

4.1.1. Introduction 

Despite the fact that huge efforts have been done on developing and demonstrating 

the importance of automatic fabric defect detection, an adequate description for woven 

fabric defects is rarely carried out. This neglected point gains an increasing importance 

with the reality that automatic defect detection is mainly an electronic object than a textile 

one. It necessitates, firstly, a brief discussion to explain what is meant by a fabric defect 

and what are its different types and reasons.   

A fabric is a flat structure consisting of fibrous materials, either natural or man- made. 

It is well known that, according to the technologies used during manufacturing, there are 

various kinds of fabrics such as woven, knitted and nonwovens. We will deal exclusively 

with the woven fabrics that are produced by weaving (i.e. interlacing according to a 

determined repeat or pattern) two perpendicular elements: warp and weft threads. The 

warp represents the threads placed in the fabric longitudinal direction, while the weft 

represents the threads placed in the fabric width-wise direction. The weave pattern or 

basic unit of the weave is periodically repeated throughout the whole fabric area with the 

exception of the edges. The plain weave is the most made weave in the world. It is 

relatively inexpensive, easy to weave and easy to finish. Therefore, we choose this 

structure as the fabric type on which our study will be implemented.   

4.1.2. Definition and sources 

The fabric defect could be simply defined as an abnormality in or on the fabric 

construction. The term construction here refers to both of yarn spacing (fabric density i.e. 

number of threads per unit length in both of warp and weft directions) and yarn interlacing 

(fabric structure). When there is any undesired abnormality inside the fabric construction 

during the manufacturing process, it results in a mechanical defect. As the woven fabric is 

a finished product of many accumulated manufacturing processes starting from the fibre, it 

can show various kinds of defects ascribed to the processes which follow one another till 

the realization of the fabric. Therefore, the source of the fabric defect has a vital 

importance to differentiate between and/or explain these defects.  
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Figure 4.1:  Flow chart of woven fabric defects based on its source 

Figure 4.1 illustrates a flow chart of woven fabric defects based on their source. From 

this figure, it is understood that, the defective product found after each manufacturing 

process is the total sum of raw material defects and the defects attributed to the process 

itself. 

4.1.3. Types and reasons 

As it is called woven, should any defect assigned to the weaving operation represent 

the first reason of woven fabric defects. Therefore, most defects in fabric occur while it is 

woven on the loom. Some of these fabric defects are visible, while others are not. 

However, some fabric defects may be rectified during weaving and after weaving while 

others are not. The following tables summarize the most common fabric defects, their 

reasons and degree of severity as well.  The tables are constructed on the base of defect 

direction or the area where the defects are extended.   

According to the mentioned base, the most common fabric defects are presented in 

the following three tables where tables (4.1), (4.2) and (4.3) present the most common 

fabric defects appearing in more or less extended areas, warp and weft directions.  In 

addition, figures (4.2), (4.3), (4.4) and (4.5) illustrate the defects of each table respectively. 
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Table (4.1-a): The most common defects appear in more or less extended areas 
 

Defect type  Definition Reasons Severity 

Floats 

A portion of a yarn in a 
fabric that extends or 

floats, unbound, over two 
or more adjacent ends or 

picks 

It is caused by 
missing of 

interlacement of two 
series of threads 

Major fabric 
defect 

Weft 
curling 

A twisted weft thread 
appears on the surface of 

the fabric 

It is caused by 
inserting a highly 

twisted weft thread or 
when the weft thread 
is running too freely  

Minor fabric 
defect 

Slubs A local uneven fabric 
thickness 

It is caused by an 
extra piece of yarn 
that is woven into 

fabric. It can also be 
caused by thick 

places in the yarn or 
by fly waste being 

spun in yarn during  
the spinning process 

Minor/Major 
fabric defect 

Holes A fabric area free of both 
of warp and weft threads 

It is a mechanical 
fault caused by a 

broken machine part 

Major fabric 
defect 

Oil stains A fabric area contains oil 
spots   

It is caused by too 
much oiling on loom 
parts or from other 
external sources 

Minor/Major 
fabric defect 

Stitching 

A common fabric fault in 
which the ends and the 
picks are not interlaced 
according to the  correct 

order of the pattern 

As the main purpose 
of the loom is to 

interlace two sets of 
threads according to 
the correct order of 

the pattern, This 
defect is a result of 

any undesired motion 
of the main or 
auxiliary loom 

mechanisms such 
as: shedding, 
picking….etc. 

Major fabric 
defect 

Rust stains 
/ Dirt 

A fabric dirty area or when 
it contains stains 

Stains are caused by 
lubricants and rust. 
Most of the stains 

can be traced back to 
poor maintenance 

and material handling 

Minor/Major 
fabric defect 
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Figure 4.2: The defects of the first part of table (4.1-a) 
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Table (4.1-b): The most common defects appear in more or less extended areas 
 

Knots 

A fabric place where two 
ends of yarn have been 

tied together and the tails 
of the knot are protruding 

from the surface 
 

It is caused by tying 
spools of yarn ends 

together 

Minor fabric 
defect 

Temple 
marks / Pin 

holes 

Marks or holes along 
fabric selvage 

It is caused by the 
temples or pins 

which hold the fabric 
while it processes 

through tenter frame 
 

Minor fabric 
defect 

Snag 
A thread segment or 

group of fibres pulled from 
its normal pattern 

It is created due to 
the friction between 
the fabric and sharp 

or rough objects 
 

Minor fabric 
defect 

Tear 

Damaged fabric portions 
differ from holes in that it 
has a random un even 

shape 

It is created due to 
the friction between 
the fabric and sharp 

or rough objects 
 

Major fabric 
defect 

Gouts 

A local uneven fabric 
thickness differs from 
slubs in that they are 

characterized by a lumpy 
appearance while slubs 

generally are symmetrical 

It is caused by 
masses of 

accumulated short 
fibre (fly) being 

drawn undrafted into 
the filling yarn during 
the spinning process 

 

Major fabric 
defect 

Weft snarls 
A short length of three fold 

weft yarn of which two 
folds are inter-twisted 

It is caused due to 
insufficient twist 

setting which 
increasing the 

possibility of yarn 
severe rubbing 

between the shuttle 
and the box front 

plate 
 

Minor fabric 
defect 

Moiré 

presence of wavy areas in 
a periodical sequence, 
where crushed and the 

uncrushed threads reflect 
light differently that affects 

the fabric appearance 
 

It is caused due to a 
different compression 

of weft and/or of 
warp threads 

Major fabric 
defect 
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Figure 4.3: The defects of the second part of table (4.1-b)  
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Table (4.2):  The most common fabric defects appear in warp direction 
 

Defect type Definition Reasons Severity 

Miss-end 
A warp thread is absent in 

the fabric for a short or 
long distance 

It is due to incorrect 
warping or by a 

broken warp thread 
that never replaced 

by another one 

Major fabric 
defect 

Warp 
stripes 

One or more faulty 
threads giving rise to 

zones of different aspect 

It is caused by 
scraping or rubbing 

between warp 
threads and some 
parts of production 
machines or due to 
inaccurate reeding 

Major fabric 
defect 

Tight/Slack 
warp thread  

A warp thread or pieces of 
warp thread which are 

tighter or slacker than the 
other pieces/threads 

It is caused due to 
the incorrect tension 

applied on warp 
threads 

Major fabric 
defect 

Double-
ends 

Two ends threaded in the 
same place of one  

It is caused by 
incorrect warping or 

by a broken end 
wound on another 

and  takes the 
behaviour of one 

thread 

Major fabric 
defect 

Coarse-end  

A warp thread or pieces of 
warp thread which are 
coarser than the other 

pieces/threads 

It is caused due to 
the presence of a 

warp thread that has 
different count 

(coarser thread) than 
the other warp 

threads 

Major fabric 
defect 

Smash 
Many ends or warp 

threads are consequently 
broken  

It is caused by a 
 wrong timing of 
shedding, soft 

picking, insufficient 
checking of shuttle in 

the boxes, severe 
slough off, and 

damaged or broken 
picking accessories  

Major fabric 
defect 

Open reed 

It is conspicuous on 
fabrics that use different 
colored threads on wrap 
and weft where, the wrap 

threads is held apart, 
exposing the filling ones 

It is caused due to 
the bent reed wires 

leaving a crack in the 
fabric  

Major fabric 
defect 
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Figure 4.4: Some defects of table (4.2)  
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Table (4.3):  The most common fabric defects appear in weft direction 
 

Defect type  Definition Reasons Severity 

Miss-pick 
A weft thread is absent in 

the fabric for a short or 
long distance 

It is caused by 
incorrect picking or if 
the weaver restarted 

the loom after any 
stoppage without 

adapting the position 
for the new insertion 

 

Minor/Major 
fabric defect 

Irregular 
pick 

density 

A jammed or  opened area 
formed in the fabric due to 

uneven pick density 
(number of picks per inch) 

It is a mechanical 
fault caused by an 
irregular beating up 

force  
 

Major fabric 
defect 

Double-
picks 

Two weft threads take the 
same place of one thread 

It is caused by 
incorrect picking   

 

Major fabric 
defect 

Coarse-
pick 

A weft thread or pieces of 
weft thread which are 
coarser than the other 

pieces/threads 

It is caused due to 
the presence of a 

weft thread that has 
different count 

(coarser thread) than 
the other weft 

threads 
 

Major fabric 
defect 

Starting 
mark   

(Weft bars) 

 
 

A visual light/dark effect in 
weft direction 

 
 

It is caused by a 
higher or lower weft 
density caused by 

the weaving machine 

Major fabric 
defect 

Tight/Slack 
weft thread  

A weft thread or pieces of 
weft thread which are 

tighter or slacker than the 
other pieces/threads 

It is caused due to 
the incorrect tension 

applied on weft 
threads 

 

Major fabric 
defect 

Skew / Bias  

When the weft threads are 
not square or 

perpendicular with warp 
threads 

It is caused due to 
the variation of the 
beating up force 
value after the 

insertion of weft 
threads   

 

Minor fabric 
defect 
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Figure 4.5: Some defects of table (4.3) 

Because of the wide variety of defects as mentioned previously, it is too difficult to study 

all defect types, therefore, it is gainful to detect firstly the most famous fabric defects and 

then apply the procedure to detect all possible fabric defects. The chosen famous defects 

are: hole, oil stain, float, coarse-end, coarse-pick, double-end, double-pick, irregular weft 

density, miss-end, and miss-pick. These defects represent all possibilities regarding the 

expected defect type, size, direction i.e. warp direction, weft direction and/or both (as an 

area). In the same time, the defects are randomly distributed through all fabric images 

whereas the defects exist in the top, bottom, right or left side of the image. 
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4.2. Fabric images 

4.2.1. Image quality 

In fact, because the main global object of this thesis is to detect fabric defects using 

image processing technology, the digital image of the inspected object (the fabric) 

represents the core of our work. As far as possible, good-quality images must be used. 

Such a quality facilitates a correct feature extraction which consequently enhances the 

analysis stage. To do that, we should serve some vital criterions. Moreover, to prevent 

acquiring blurry fabric images, the following points should be considered: 

1. High resolution. 
2. Suitable format. 
3. High contrast. 
4. Minimum noise. 
5. Focused. 

6. Free of rotation. 

The most important parameter that should be adapted to set-up an adequate 

acquisition of fabric images is the resolution. We can refer to the resolution of an image 

either by the size of one pixel or the number of pixels per inch (ppi). In fact the term (dpi) 

which means dots per inch are commonly used than (ppi) although it is not 100% 

technically correct. It is well known that the lower the image resolution, the less information 

is saved about that image and therefore available for the later processing. Moreover, 

higher resolution means more saved information but also larger memory size required to 

store and process the image. As human vision is approximately 300 dpi at maximum 

contrast, the scanning of fabric images in our thesis begins from 300 dpi resolution to 

simulate human vision. After that, the resolution level will be increased gradually till we 

obtain the optimum one.  

Once an image is captured, it can be saved in various formats. One main difference 

between these formats is whether the information used to describe the image is 

compressed with a lossy algorithm (to save space) or saved uncompressed (or with a 

lossless compression algorithm) where the file size is large but all the information is 

retained. Format such as ‘jpeg’ is not recommended to use because it is basically a lossy 

one. It means that to reduce the file size, some image data is actually thrown away. In the 
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contrary, ‘bmp’ or ‘tif’ formats do not compress the image. Thus, we are choosing between 

a highly compressed image (small size, low quality), or a less compressed image (larger 

size, higher quality). TIFF ‘tif’ is a lossless format providing an acceptable size. In our 

thesis, all images are stored in ‘tif’ format. 

After choosing the image format, there are two possibilities to store it either in 

coloured or grayscale. Coloured scale images usually have a large size which needs a 

large hard disk size to be stored and processed especially with the huge number of 

acquired images. On the other hand, a grayscale image does not suffer from such 

drawback. In our trials it was found that a 500 × 500 coloured fabric image scanned at 

1000 dpi resolution has a size of 552 kilobytes. The required memory size for the same 

image is reduced to only 176 kilobytes if it is stored in grayscale.  

Often, grayscale intensity is stored as an 8-bit integer giving 256 possible different 

shades of gray from black (0) to white (255). These images are very common, in part 

because much of today's display and image capture hardware can deal with it easily. In 

addition, grayscale images are entirely sufficient for many tasks. We assumed and verified 

that with 256 shades in the grayscale there were enough increments to make fine 

distinctions between target objects and backgrounds.  

In fact, all above mentioned parameters to capture a high quality image are mutually 

interrelated so that each one affects the others. Broadly, fabric images should be clear and 

focused to obtain sharp pixels. In addition, by applying a correct fine-tuning for lighting 

settings, we can produce a good image with minimal loss in clarity while the time and 

complexity of processing operations will be avoided as well. Actually, it is not easy due to 

the expected vibration during the running of weaving machines. In addition, as fabric units 

(threads) are orthogonally set, we should keep the same property in the acquired fabric 

image. But because of the material elasticity and the tension of the weaving machine 

parts, it is very difficult to maintain.   

Later, we will discuss in details some parameters such as image resolution, noise 

and rotation to explain the different settings for each one. Moreover, we will give 

arguments for the choice of these settings and to present the implemented procedure to 

adapt and/or optimize each one.  

Before applying the detection technique on real fabric images, it is gainful to 

implement it firstly on synthetic images.  So, we will simulate various plain fabric images to 
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determine and optimize the most important detection parameters. The synthetic 

(simulated) images comprise firstly an image free of defects. From this image will simulate 

the other images which contain the most major defects such as holes, stains, floats, 

coarse threads and miss-threads defects. The used procedure to simulate the plain 

structure images with and without defects will be presented in the next part.  

4.2.2. Synthetic (simulated) images 

As mentioned previously, the woven fabric is composed of a main basic unit which is 

repeated in both directions (warp and weft) to cover all fabric area except the selvedge. 

Therefore, we should first construct or build the repeat of the simple plain structure. Some 

basic assumptions should be considered when constructing such repeat: 

1. It comprises of two warp threads and two weft threads with four points of 
intersections or interlacing (two in each directions).  

2. Both warp and weft threads have the same count i.e. the same diameter. 
3. These threads are perpendicular on each other. 
4. As the applied tension on both warp and weft threads is not the same (it is higher in 

warp direction than the other one), the warp spacing (number of warp threads per 
unit length) is higher than weft spacing (number of weft threads per unit length).  

5. Because both words ‘weft’ and ‘warp’ begin by the same letter, we will use ‘x’ and 
‘y’ to refer to the two sets of threads respectively.  

6. Consequently, as shown in figure (4.6), Sx and Sy represent the length and the width 
of the repeat basic unit respectively. While Øx and δx are the weft thread diameter 
and the distance between two neighbouring weft threads. Also, Øy and δy are the 
warp thread diameter and the distance between two neighbouring warp threads.  

7. The dimensions of the previous settings in pixels are:   Sx = 38,  Sy = 32,  Øx = 14,  
δx = 6, Øy = 14, δy = 2 pixels respectively. From these dimensions, it is notable that 

δx > δy and consequently Sx > Sy.  
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1- Using concatenation principle:  

This method is implemented based on two facts. The first one is that an image could 

be represented as a matrix whereas the process of joining one or more matrices to make a 

new one is defined as image concatenation. The second fact is that Matlab is a matrix-

based computing environment where all input data is stored in the form of a matrix or a 

multidimensional array.  

By considering:  

ƒ(x)= the image of the repeat unit is a two dimensional matrices of pixel data,  

g(x)= the repetition image of the plain structure, 

h(x)= the concatenated image of A and B (the plain fabric image), 

Thus h = [ƒ g] is the horizontally concatenation while  

        h = [ƒ; g] is the vertically concatenation. 

  

2- Using the convolution mask: 

Broadly, convolution is a mathematical operation on two functions ƒ(x) and g(x), 

producing a third function h(x) which is a modified version of one of the original functions. 

Mathematically, linear convolution is defined as follows: 

 

( ) ( ) ( ) ( )daaxgafxgxf −=⊗ ∫
∞

∞−
,   ⊗ ⊗ ⊗ ⊗ denotes the convolution.                   (1) 

In discrete convolution, the integral is replaced by summation, the integration variable 

becomes an index while each displacement takes place in discrete increment.  

To implement this theory in simulating a plain fabric structure in the spatial domain, 

the plain fabric image h(x, y) is described as a convolution of a basic unit ƒ(a, b) by a 

pattern of repetition g(x, y).  

 



Chapter 4 

 
Online Fabric Inspection by Image Processing Technology 

 
Page - 86 - 

( ) ( ) ( )yxgbafyxh ,,, ⊗=                                                                          (2) 

At each point (x, y), the convolution is the computation of weighted sums of the image 

pixels with the convolution mask, which is shown as follows: 

( ) ( ) ( )byaxgbafyxh
y

b

x

a

−−= ∑∑
==

,,,
00                                   (3)

 

To calculate the dimensions of the resulted image, let ƒ(a, b) and g (x, y) are 

images of size A x B and C x D.  The size of h(x, y) will be N x M where: 

N=A+C-1 and   

M=B+D-1 

The result of convolution mask is shown in Figure (4.8). Whereas (d) represents the 

gray level image of the plain woven fabric in the spatial domain. Such image is a defect-

free image of size 500 x 500 pixels.  

 

 

   ⊗      =   

                (a)      (b)                      (c)                                                (d) 

Figure 4.8: (a) basic unit, (b) convolution mask, (c) basic unit repetition, (d) simulated 
image of the defect-free plain fabric 

4.2.3. Creating defects 

Using any method of the previously used to simulate the defect-free plain fabric 

image, we can generate different images with defects. The chosen defects in our thesis 

have directional dependence or not. Also, it should be major defects and randomly located 
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inside the images. Figures from (4.9) tell (4.22) illustrate simulated plain fabric contain 

various weaving defects. All images are in grayscale and have size 500 x 500 pixels. 

 

 

  +    =   

Figure 4.9: Hole 
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Figure 4.10: Stain 

 

 

 

  +    =   
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Figure 4.11: Miss-pick 

 

 

 

  +    =   

Figure 4.12: Miss-end 
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Figure 4.13: Double-pick 

 

 

 

  +    =   
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Figure 4.14: Double-end 
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Figure 4.15: Weft-float 
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Figure 4.16: Warp-float 
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Figure 4.17: Coarse-pick 
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Figure 4.18: Coarse-end 
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Figure 4.19: Thin pick 
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Figure 4.20: Thin end 
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  +    =   

Figure 4.21: Irregular weft density 

 

 

 

  +    =   

Figure 4.22: Irregular weft density 

4.2.4. Real images 

The step of capturing different images of plain fabric structure represents one of the 

most important steps in our work. Obviously, after applying the procedure of defect 

detection on simulated fabric images, we should examine it on different images of real 

plain fabric. This step should prove the success and the utility of the implemented 

technique which is the main object of our work. The first fabric snapshot was made by a 

2D camera with a sensor of a relatively low resolution (1.2 Megapixels). The objective lens 

was installed at 50 cm at normal incidence of a plain fabric sample with size 20 x 20 cm2. 

In addition a halogen lamp is used as a lighting system. The image was captured in 256 

grey levels and stored in an image matrix of size 500 x 500 pixels as shown in figure 

(4.23). 
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Figure 4.23: The first captured image  

It is found that the appearance of the captured image is quite different from that of 

the simulated one. Moreover, the core of Fast Fourier Transform principle is fabric 

periodicity while the image does not show any. Also, the contrast and the resolution should 

be in general as possible as of the simulated image.  

To do that, we used a flat scanner to capture various plain fabric samples containing 

different types of defects. Firstly, we examined three different resolution levels 175, 375 

and 700 dpi) to determine the minimum level which should be considered. Such level was 

determined as 300 dpi. Then, it was increased gradually by a step of 100 dpi till 1200 dpi 

as a maximum resolution. Finally after acquiring all fabric samples at different resolutions 

and in 256 gray levels, the images are stored as usual in matrices of size 500 x 500 pixels. 

Figure (4.24) shows real image of the defect-free plain fabric whereas figures from (4.31) 

tell (4.36) show real images contain different defects.  

 

 

Figure 4.24: Real image of the defect-free plain fabric 
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Figure 4.25: Hole and stain 

 
 
 

                
Figure 4.26: Miss-pick and miss-end 

 

 

                

Figure 4.27: Double-pick and double-end 
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Figure 4.28: Warp-float and coarse-pick 

 

 

                

Figure 4.29: irregular weft densities 

 

                

Figure 4.30: Tear and contamination 



Experimental setup 

 
Ph.D. thesis – Abdel Salam MALEK Page - 95 - 

 

 

Figure 4.31: Snarl 

Because the previous images were captured from different fabric samples, there are 

slight appearance differences in between. This will not affect the detection process as 

each image containing a defect will be compared with a reference one free of defects 

captured from the same fabric sample. Also, due to the nature of fabric structure, there are 

some images containing defects such as tear, snarl and contamination do not exist in the 

images of simulated fabrics.  
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4.3. Defect detection technique  

4.3.1. Background knowledge 

Our basic tool will be the Fourier transform. From an image expressed in the direct 

space, in spatial coordinates, Fourier transform gives an image in the Fourier space which 

is a frequency space: in this space, the coordinates are spatial frequencies. Please note 

that contrary to well known 1D situation of temporal signals (for instance audio signals), 

the Fourier space in our case has nothing to do with time. We deal with spatial 

frequencies, not temporal frequencies. 

According to Fourier theorem, any signal can be represented by the sum of sine and 

cosine waves with various amplitudes and frequencies. The tool to do that is well known 

as Fourier Transforms (FT). The input of the transformation represents the image spatial 

domain while the output of the transformation represents the image in the Fourier or 

frequency domain where each point represents a particular frequency contained in the 

spatial domain image. The important property is that regular spatial pattern information 

becomes obvious in Fourier-transformed images.  

4.3.2. Description of the used algorithm 

4.3.2.1. Fourier transform  

FT transforms the image encoded as luminance values of pixels. Because such 

values are spatially sampled, we use Discrete Fourier Transform (DFT), the digital 

implementation of Fourier transform. Sampled image does not contain all frequencies 

forming the original image, before its acquisition. In order to lose as little information as 

possible, Shannon theorem must be fulfilled: the sample frequency must twice as much as 

the higher frequency of interest. 

DFT transforms an M×N image into another M×N image.  Without loss of generality, 

we will consider square images, of size N×N. (spatial domain) In our application, ƒ(x,y) 

is the gray level at pixel coordinates (x,y) in the original image of size N×N. For 
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frequency variables a,b = 0, 1,...., N −2, N -1, the Discrete Fourier 

Transform F(a,b) is expressed by:  

( ) ( ) ( ) Nbyaxj
N

y

N

x

eyxfbaF /2
1

0

1

0

,, +−
−

=

−

=

×= ∑∑ π
                                           (4) 

Where the exponential term is the basis function corresponding to each point F(a,b) 

in the Fourier frequency domain. Thus, F(0,0) represents the DC-component of the 

image which corresponds to the average luminance while F(N-1,N-1) represents the 

transform at the highest frequency. It is shown that F(a,b) is periodic, with period N×N. 

It is clear from the above equation that the value of F(a,b) is a complex number which 

means that it can be put in the following form: 

 

( ) ( ) ( )yx
yx

ffjeffFbaF ,,, θ=
                                                            (5)

 

It is essentially here referring to some of the most frequently used terms when 

implementing Fourier transform. For instance, the value of the modulus in the previous 

equation │F(fx,fy)│is known as Fourier or frequency spectrum of ƒ(x,y) whereas, the 

value │F(fx,fy)│
2 

is called the power spectrum of ƒ(x,y). The utility of Fourier spectrum 

comes from our ability to plot it easily in a 2D plane.  

In our case, one of the most important advantages of the frequency spectrum 

appears during the online detection of fabric defects or during the weaving process. It is 

well-known that the produced fabric moves forward as a result of the take-up mechanism 

of the weaving machine. As mentioned previously, the magnitude of Fourier spectrum is 

an absolute value i.e. it does not change due to the fabric movement for distances x1 in x 

direction and/or y1 in y direction. This means that, the frequency spectrum only changes if 

fabric structure changes and consequently is suitable for online automated inspection. 

Chan and Pang [1] explained mathematically such principle through the next form:  
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( ) ( ) ( ) Nffj
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                           (6)
 

Another important property of 2DFT is its ability to restore the processed image from 

the frequency domain to its spatial domain. This is usually done using Inverse Discrete 

Fourier Transform (IDFT). Thus, in similar way to the previous equation, the Fourier image 

can be re-transformed to the spatial domain using (IDFT) as follows:  
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=

−

=

×= ∑∑ π

                                     (7) 

What is important here is that the pronounced difference between DFT and IDFT is 

the sign of the exponential function and the normalization term 
2

1
N

 in the inverse 

transformation.  

Despite its numerous advantages, DFT has an important drawback: its long 

computation time. One-dimensional DFT has N2 complexity. This can be reduced to (N 

log2 N) if we employ the Fast Fourier Transform (FFT), which provides the same 

results. FFT is a discrete Fourier transform with some reorganization that can reduce the 

complexity of the DFT and save an enormous amount of time. Similarly, the complexity of 

two-dimensional DFT is proportional to 2N3 while using FFT reduces it to (2N2 log2 N). 

Therefore, during our application, we will implement FFT.   

Figure (4.32) is the first entrance in our thesis to understand the behaviour of the 

frequency spectrum when implementing FFT on fabric images. Figures (4.32-a) and (4.32-

b) present the images of the defect free simulated and real plain fabric in the spatial 

domain, while figures (4.32-c) and (4.32-d) show its Fourier frequency spectrum as 

intensity functions respectively. 
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                        (a)                                                                               (b) 
 
 

                                  
 

                        (c)                                                                    (d) 

Figure 4.32: FFT implementation on simulated and real plain fabric images 

As it is anticipated, the simulated structure presents the regularity of the structure in 

its ideal and optimum level. The value of each point in the frequency spectrum determines 

the amplitude of the corresponding frequency. In addition, the vertical and horizontal lines 

corresponding to the warp and weft threads in the original images can be identified. 
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4.3.2.2. Feature extraction (Cross correlation tech nique) 

As mentioned in the review part, by considering the periodic nature of woven fabric, it 

is possible to monitor and describe the relationship between the regular structure of the 

fabric in the spatial domain and its Fourier spectrum in the frequency domain. Presence of 

a defect over the periodical structure of woven fabric causes changes in its Fourier 

spectrum. By comparing the power spectrum of an image containing a defect with that of a 

defect free image, the shifts in the normalized intensity between one spectrum and the 

other could signify the presence of a defect. 

In our thesis, we derived our implemented procedure from references [1, 16 and 

109]. The basic principle is to compute a set of textural features in a sliding window (sub-

image). Then, we search for the significant local deviations in the feature values from the 

entire image. These textural features are seven and were extracted from the weft and 

warp diagrams of Fourier frequency spectrum of the sub-image as shown in Ref. [1 and 

109].  

As the information about weft yarns appears in the vertical direction fy while the 

information about warp yarns appears in the horizontal direction fx, the seven features are 

extracted as follows: 

 

( )0,01 FP =
                                                                                                               (8) 
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                                                                                                         (9)

 
 

13 xfP =
                                                                                                                    (10) 

 

( )∑
=

=
1

4

0
0,

x

xi

xi

f

f
fFP

                                                                                    (11) 

 

( )15 ,0 yfFP =
                                                                                                    

(12)
 



Experimental setup 

 
Ph.D. thesis – Abdel Salam MALEK Page - 101 - 

16 yfP =
                                                                                                                        (13) 

( )∑
=

=
1

7

0
,0

y

yi

yi

f

f
fFP

                                                                                  (14) 

Where feature P1 represents the image average light intensity that characterizes the 

fabric structure (density) irregularity. Features P2, P3 and P4 are for detecting changes in 

the vertical or warp direction, whereas P5, P6, P7 detect changes in the horizontal or weft 

direction. The features P4 and P7 analyse the region between the central peak (first 

harmonic frequency) and first peak because higher harmonic frequency components are 

significantly distorted in real environment.  

Then, the average feature correlation coefficient of a fabric image free of defects is 

calculated. We have then reference figures. After that, a possibly defective image is 

scanned: we sample it in sub-images of determined size and step. Again, the average 

feature correlation coefficient of each sub-image is also calculated. If the calculated value 

of the sub-image feature correlation coefficient is smaller than that of the defect-free 

image, it means that this sub-image has a defect. For instance, we can represent it on the 

original image with a red overlay.  

An image of simulated fabric containing a defect (stain) is chosen to illustrate the 

variation in the coefficient of feature correlation as shown in figure (4.33). In addition, 

figure (4.34) shows the defective area inside the image while it is surrounded by red 

squares. Each one represents a sub-image of smaller average correlation coefficient than 

that of the defect-free image.  
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Figure 4.33: Variation of feature correlation due to the presence of a defect 

 

Figure 4.34: Detected defect (stain) 

 

4.3.2.3. Modification made 

The implementation of all researchers using FFT and/or cross-correlation (sliding 

window) to detect woven fabric defects was found to be very similar. The obtained results 

were usually poor with various false alarms. Also, regardless the rare high quality 

simulated image (only one article), the images of the real fabric had always poor quality. In 

addition, there are fuzziness and confusion during the mathematical calculations of some 

important detection factors such as the coefficient of feature correlation. Moreover, there 

was no answer to different important questions related to the parameters which should be 

considered during defect detection. For instance, what are these parameters? Is it possible 

to optimize them? What about noise? 

In our thesis, the major improvement or modification is that we introduce a 

comprehensive study fabric defect detection using FFT and cross-correlation to obtain 

robust detection results, remove any confusion and answer the previous questions as well. 

To do that, we first determine the most important parameters during the process of defect 

detection and then optimize each of them even considering noise. Also, major 

mathematical modifications and improvements should take place to minimize as possible 

the false alarms and to obtain acceptable results of the process of defect detection. 
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4.3.3. Strategy of implementation 

The explained basic algorithms and technique require robust strategy to be 

implemented.  Figure (4.35) presents the flow-chart of this strategy along with the different 

steps. Such strategy revolves around the detection principle that describes textures in 

fabric images by a series of features derived from their fast Fourier transform at different 

levels of resolution. The defect-free image contains only one texture. It means that its all 

defect-free sub-images will contain the same important or significant information as the 

original image. Otherwise, the sub-image has a defect.  

The input images are first cropped into many sub-images. Each of these images is 

Fourier-transformed and then a set of local statistical measures (features) is computed as 

local energies (peak values) which represents the first step. These values correspond to 

the power contained in a certain frequency range in the image.  

The previous procedure is implemented firstly on the simulated fabric images to 

determine and optimize the most important detection parameters. Then, it is implemented 

on different images of real fabric which contain the same pre-determined defects of 

simulated images. The object here is to prove the utility of the technique to detect defects 

in case of a real fabric and in case of a simulated one.  

To improve the credibility of the technique and overcome the problem of detection 

errors, a second step is implemented using a level selection filter. Through this filter, the 

technique is able to detect only the actual or real defects and highlight its exact 

dimensions.  

In all previous steps all used images have pre-determined defects. We need to obtain 

unsupervised defect detection in which any defect should be highlighted regardless it is 

considered in the training stage or not. Therefore, several images containing some random 

defects will be used to confirm the ability of the technique in the unsupervised conditions. 

The last step is to examine the technique during the weaving process i.e. in real 

conditions. In addition, the detection results could be used to develop daily reports of 

defective products or any other quality reports. Also, we can mark the selvedge of fabric 

roll at a place parallel to the existed defect as usual. 

This strategy is summarized in the next flow-chart whereas some steps have to be 

introduced with more details to describe how it actually takes place. The next part of the 
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4.3.4. Reliability of detection technique  

The reliability of our defect detection technique is very important as it determines the 

performance or the efficiency of the system. In this thesis, we will use the false alarm rate 

to characterize such reliability. As we mentioned before, the false alarm (positive false) 

occurs when our technique highlights a fabric or image area and/or considers it as a defect 

while it is not. Moreover, the negative false occurs when the technique fails to highlight an 

existing defect. Both cases decrease the reliability of the implemented technique. Thus, 

the false detection rate we will be used in order to express the success of our technique. 

False detection rate will be calculated as the total number of images containing false 

results divided by the total number of processed images. Usually, insufficient detection 

reliability is obtained due to two main reasons:  

1. The first reason is related to the implemented technique itself. Each detection 
technique has its own key factors or parameters which have great influence if they 
are not well set or fine tuned on the technique global reliability. In next parts, we will 
study these parameters and the method to adapt and optimize each one to obtain - 
as possible - perfect detection. 

2. The second reason is related to the surrounding conditions or environment. For 
instance, the poor illumination and/or machine vibration during weaving process 

usually results in noisy images which increases the detection errors.  

Another effective solution to increase the technique reliability rather than what is 

mentioned above could be obtained by implementing a further filter. It is considered as a 

second threshold step to decide exactly whether the inspected fabric (image) has a defect 

or not.  Because such filter represents a part of our detection technique body, we explain 

its principle in the following separate part.  

4.3.5. Level selection filter 

For the sake of clarity, implementation of the level selection filter will be described 

considering the actual graphical output of our program. During the process of defect 

detection, as explained before, if there is a defect, it will be highlighted by overlapping red 

square overlays. Each square corresponds to the test of one sub-image. The main 

drawback is always the positive falses (to reduce negative falses, we lower the threshold). 

To avoid this problem, a level selection filter is proposed to be implemented.  
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We are supposed to get redundant information, provided that original images are 

sampled with overlapping sub windows. With a proper choice of the sample step, each 

pixel appears in four sub-images. Our filter consists in counting in how many defective 

sub-windows the pixel appears. It can appear from 0 times to 4 times. Therefore, we can 

obtain 4 levels: 

 

Level 1: an area is scanned and consequently counted one time. 

Level 2: an area is scanned and consequently counted two times. 

Level 3: an area is scanned and consequently counted three times. 

Level 4: an area is scanned and consequently counted four times. 

 

Figure (4.36) illustrates the principles of this filter where two sub-images are 

overlapping. 

 
 

 
Figure 4.36: The principle of the filter 

Based on the filter, fine tuning takes place to determine the degree of accuracy for 

defect detection.  For instance, if level 4 is considered, we are sure that the area has a 

defect while level 1 could be considered as false alarm. The area in level 3 is to be 

considered also as a defect whereas the area in level 2 needs more training to decide if it 

will be considered as a defect or not. 

The main advantage of this filter is to reduce the detection errors where only one 

sub-window out of four appears defective: such area will be considered as defect-free. In 

addition, the highlighted area surrounding each defect will be optimized.  Figure (4.37) 



Chapter 4 

 
Online Fabric Inspection by Image Processing Technology 

 
Page - 108 - 

shows the implementation of the filter on a simulated fabric image containing a stain while 

figure (4.38) illustrates the colour map of the filter result. Each sub-image has different 

colour. The overlapping between two or more sub-images results in another different 

colour (usually darker). Thus, the higher the level of overlapping, the higher probability of 

detect existence. From this figure, it is obvious that the stain has an exact highlighting.   

 

    

Figure 4.37: The filter applied on simulated fabric exhibits a stain  

 

Figure 4.38: The colour map of the filter result  

We can also modify the filter so that the area which contains the defect is only 

highlighted as shown in Figure (4.39). In this figure, only levels 3 and 4 are considered. 
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Figure 4.39: The filter modified results 

4.3.6. Software package 

Our proposed algorithm, technique and their all optimizations were accomplished 

during this study by implementing several Matlab and Scilab scripts (see appendixes).  

4.3.7. Stages of implementation 

In our thesis, the procedure of performing the proposed defect detection technique 

passes through three stages or phases to ensure robust final results. These stages are:  

4.3.7.1. Training stage 

It is known also as the learning phase. Within this first stage, an inspection of fabric 

image without any defects takes place. We will use simulated fabric images because the 

features and the periodicity of the structure are extremely pronounced. The main object 

here is to calculate the feature important parameters (for instance, its extreme values or 

peaks). Then, these values are used to choose the first threshold. 

4.3.7.2. Testing stage  

It is the phase when looking for defects. During this phase, several fabric images 

having pre-determined defects are used. The procedure of defect detection is 

implemented to highlight the well known existing defects. In addition, only the features of 

interest (the seven features) are calculated. The amount by which these features lie below 
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the value of the chosen threshold in the training stage is considered as a measure of the 

defect. Rather than it is used in the beginning of this stage as an evidence for the 

existence of defects, simulated images are simultaneously used for later optimization of 

the factors which affect the detection process. Then these optimized values are used (with 

another fine tuning) for real fabric images (containing defects and free of defects) to show 

the success of the technique  

4.3.7.3. Unsupervised stage 

In the two previous stages, we use images containing pre-determined defects. It 

means that the severity, the dimension and the orientation of all defects are well known. 

But as fabric defects are generated randomly and dynamically, a perfect robust automation 

of visual inspection process requires unsupervised defect detection. In our thesis, the term 

(unsupervised defect detection) refers to the detection of unknown class of defects for 

which there is no training. Therefore, in this stage the object is to detect all types of defects 

regardless their size or position inside the fabric. Also, the technique will be examined with 

plain fabrics of different colours rather than with a white fabric. In addition, both simulated 

and real fabric images could be used during the implementation.    

4.3.8. Main defect detection parameters  

As stated before, one of the basic modifications created through our research work is 

the determination and optimization of the factors or parameters which affect the defect 

detection process. It has been found after the first few attempts of implementation that 

some parameters have a direct effect on the success of the technique. These parameters 

are considered as parts or steps of our Matlab scripts. Image acquisition resolution, the 

size of the sub-image, the step at which the sub-image scans the main fabric image and 

the threshold of features correlation coefficient are examples for these direct parameters. 

In addition, there are other important parameters such as the required time for detection 

and the defect type which have indirect effect on the process. It is not considered as a part 

of Matlab scripts but it affects to great extent on the global performance of our technique.   

This part of our thesis helps us developing an appropriate method for choosing 

parameter settings and fine-tuning the performance of the used algorithm. Such 

parameters along with its optimization methods are demonstrated as follows: 
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4.3.8.1. Acquisition resolution 

It is well known that we cannot obtain high quality products from poor raw material. 

The digital image of the fabric is to be considered as the raw material of our whole work. 

The importance of this parameter stems from: 

1. The image resolution is responsible for demonstrating the statistical features 
differences. For instance, the statistical features of the defective region (especially 
in case of minor defects) of low resolution images can not show significant 
difference with respect to neighbouring area. To avoid this problem, the image 
resolution should be high enough. 

2. It determines also the total number of sub-images required to scan the whole image 
area and consequently the time of inspection. 

3. It determines also the minimum defect size that could be detected. 
4. This item in relation to fabric width determines the number of cameras required for 

online detection systems. 

Figure (4.40) shows a comparison between two small fabric images of 100 x 100 

pixels. Each image contains the same minor defect (fine contamination). The aim of this 

figure is to discriminate many differences resulting from the variation of resolution level. 

For example, the structure periodicity, the defect rational area with respect to the total area 

of the image, the defect background and the total number of structure repeat units. 

 

Figure 4.40: Effect of acquisition resolution of fabric image  

Although we started to acquire the fabric at 175 dpi during our first trials, the actual 

minimum level of resolution during our research work is set to 300 dpi (the resolution of the 

human eye). Then to optimize the acquisition resolution, we will increase the acquisition 

resolution of the same fabric sample by a step of 200 dpi to 1300 dpi. Once we obtain an 

appropriate resolution level, it will be fine tuned where we will study the resolution around 

this level with a step of only 100 dpi.  
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4.3.8.2. Sub-image size 

This parameter may be considered as the most important one because it represents 

from one hand the segmentation stage in our image processing procedure, whereas from 

the other hand, we found during our first trials that it has a great effect on the technique 

performance. The next criteria present some critical considerations during the 

determination and/or optimization of the suitable sub-image size: 

1. Both minimum and maximum size (in pixels) which we have to start with. 
2. The relationship between the size in warp direction and that of weft direction. 
3. How can we move between the minimum and maximum sizes?  

4. What about defect type?   

In fact and during our first trials, we had to start from where others ended (logical 

scientific consideration). In Ref. [109] the size of 50 x 50 pixels was determined to detect 

fabric defects. Therefore, it is estimated that this value could be considered as an average 

for the sub-image size (although with such mentioned values there are many detection 

errors). In addition, the average equals to (N/10) where N=500 pixels. Consequently, both 

minimum and maximum values could be considered as functions of N so that the 

maximum value is N/5 and the minimum is N/15. The decision has been made based on 

approximately doubling and halving the average value. Also, when the sub-window size is 

out of those selected limits, the performance of defect detection is very poor.  

The relation between the size in warp and that in weft direction is another important 

factor during the sub-image selection. In fact, there are two possibilities: either they are 

equal or not. It is mentioned before in the literature review part that Fourier transform is a 

basically power of two transform. Thus, the image sizes in both directions should be equal 

to obtain good results. During our first trials, we implemented some different sizes in both 

directions but we obtain many detection errors rather than the huge number of resulted 

images.  

As the higher and lower limits of the sub-window that scans the main image are 

determined in warp and weft directions, the step of movement between each two 

successive sizes has also to be determined. The main purpose is to prevent any loss of 

image information during this stage (segmentation process). To do that, the main image 

should be sub-imaged so that the difference between sizes is an equal integer in both weft 

and warp directions. Finally, the suitable sub-mage size will be optimized for each defect 

type and then for all types simultaneously.  
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All previous criteria are used to optimize automatically the suitable sub-window size 

through the following steps: 

1. We first implement our technique on the reference (free of defect) image to locate 
the limits where the suitable size in weft direction exists. It is determined according 
to the calculation results of both sub-window size and feature correlation coefficient. 
The same step is done in warp direction. 

2. We draw the relation between the two limits to obtain the area of intersection. All 
points of such area represent suitable sub-window sizes.  

3. The previous two steps are created for the image containing a defect to obtain and 
draw also the area of intersection between the limits of suitable sizes in warp and 
weft directions. 

4. The last step is for more certainty where we calculate the ratio between the values 

obtained in case of the image containing a defect and the reference one.     

Figure (4.41) illustrates the colour plot that gives the area of intersection in case of 

reference image and the image containing a defect (the stain has always been chosen). In 

addition, figure (4.42) illustrates the ratio between the sizes of the two images.   

 

Figure 4.41: Optimization of sub-window size for a simulated image exhibiting a stain 
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Figure 4.42: The ratio between the image containing a defect and the reference image  

4.3.8.3. Scanning step 

Our object during scanning the main fabric image is to cover the whole area of the 

image. This could be achieved for all step values from 1x1 pixels till those values when the 

scanning step is equal to the sub-image size. From first trials, it was found that the chosen 

step has a great effect on the detection results. In addition, there is a significant 

relationship between the values of scanning step and sub-image size. Logically, the 

optimization here means the choice of the higher step value to minimize the total time of 

the detection process and the intensive overlapping as well. In addition, the step limits 

during the optimization are related to the limits of sub-window size. Therefore, for each 

defect type, the scanning step and the sub-image size will be optimized simultaneously. In 

addition, the lower step limit equals to the minimum sub-window size while its higher limit 

cannot exceed for sure the maximum sub-window size. Also, we will study the relationship 

between the two parameters to determine mathematically (if it is possible) the shape of 

this correlation.    
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4.3.8.5. Feature correlation coefficient value 

This parameter assesses how good a set of features is for implementing our 

technique. It is estimated that the maximum used value should be smaller than 1.0 (the 

case of exact correlation). In our literature review, it was found that the value of coefficient 

correlation changes according to each defect type and/or size so that various values are 

used to ensure good results. In addition, such a value changes also when detecting 

defects of simulated and/ or real fabric images. Thus, different coefficient correlation 

values (0.7, 0.75, 0.8, 0.85, 0.9, 0.95 and 0.99) are used during the optimization of this 

parameter. As it is found that very fine tuning has no effect on detection credibility, the step 

between each two used coefficient values is 0.05. Our object as usual is to define only one 

value suitable for all detection circumstances.  

4.3.8.6. Defect type and size 

In our thesis we started firstly to detect major defects in simulated and then real 

fabric images. All above mentioned parameters will be optimized for each individual defect. 

The second step is to determine the possible minimum number of values to detect all 

defect types. Moreover, we look forward to achieve unsupervised defect detection by the 

end of our thesis. With this detection level, the technique proves its utility to detect all 

fabric defect types regardless the location inside the fabric (image) or the size which 

represent the global goal of our thesis. Another important advantage is achieved by 

determining the smallest (finest) defect size during the detection process to indicate the 

ability of our technique.       

4.3.8.7. Detection time 

Feasibility of the considered technique depends on the time it requires. Although we 

will implement the technique for online inspection where fabric production speeds are slow 

when compared with those of offline inspection. Detection time still represents an 

important parameter in our study. Certainly, the detection time for each case study is 

different and depends also on the used PC. Studying the influence of each discussed 

parameter on the total detection time is useful during the optimization. This parameter is 

the base to select one value from different suitable values during the detection process.  
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4.4. Online detection 

4.4.1. Proposed prototype 

A prototype is proposed to examine the technique in real time (on the weaving 

machine). The fabric images are acquired under a source of sufficient illumination by one 

or more cameras. The camera is synchronized to the fabric motion and used to acquire 

high-resolution, vibration-free images of the fabric under construction. A central processing 

unit (computer) is employed for processing the acquired images using our software. The 

results of the processing are used to detect and characterize fabric defects. Also, it is used 

to take actions for reporting and correcting these defects to replace or remove these parts 

from the production line. The prototype has to be robust. Thus, it should adapt 

automatically and achieve consistently high performance despite irregularities in 

illumination and accommodate uncertainties in angles, positions etc. The following figure 

(4.44) shows the schematic of the proposed vision prototype while figure (4.50) shows 

such prototype in reality. 

 
 

Processing Unit
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Digital camera

Fabric m
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Figure 4.44: The schematic of the vision prototype 
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Figure 4.45: The vision prototype on reality 

Our online defect detection technique is evaluated through the shown prototype 

which gathers fabric images continuously using a line scan camera. The camera is a 

DALSA P2-2X-06K40. It is a CameraLink line scan with 6000 pixels. We use it with a 

ZEISS PLANAR T 1,4/50 lens. This camera (with its objective lens) has an ability to 

acquire a 1, 2288 meter image wide at 254 dpi (100 microns) resolution. Various images of 

woven plain fabric are gathered from a Dornier rapier loom under a proper illumination 

halogen unit with corresponding accessories and high-performance PC (Intel Xeon-based) 

which enables scalability concerning fabric production speed and width.  

As shown in figure (4.45), the camera is installed in the middle of the loom at 10cm 

distance from the fell of the cloth and 75 cm in height of the loom with 90° angle against 

the produced fabric. In addition, the camera and lighting unit are delivered in a stable 

frame. The housing also contains modules for the synchronisation of the camera and 

lighting as well as video signal adapters for the fibre optic transfer. 

The scan speed is around 1000 lines/second while the scanning line is around 

300mm wide. Fabric surface images are obtained at a resolution of 1000 dpi along the 

scanning line. Images are digitized with 500 X 500 pixels and stored in a computer as 8-bit 

grayscale data for image analysis. 

The next chapter of the thesis introduces the results of the experimental setup.  
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5.1. Introduction 

In this chapter we present and discuss the various experiments which have been 

performed to ascertain our proposed procedure effectiveness. Basically, it comprises two 

main parts; the first one deals with the results of defect detection for simulated fabric.  The 

second part presents the results of detection for real fabric. Obviously, both have inter-

similarity. Moreover, the results of defect detection in simulated fabric are to be considered 

as entrance to detect and optimize the most important parameters which affect the 

detection performance in case of real fabric.  

It is well known that the results of the experiments when implementing the technique 

are images (either the defects are detected or not). Because the total number resulted 

from each experiment is huge (more than 350000 images that is impossible to display in 

this chapter), we have to quantify the parameter’s effectiveness with its influence on global 

recognition performance as well. For each detection parameter, one figure gathering the 

detection results is presented. This figure also compares the detection results for all defect 

types. Finally, few images will be presented when needed either to confirm and/or to 

display an idea particularly if the text alone is not enough. 

5.2. Defect detection for simulated fabric 

It is expected that detection results and consequently the optimization of various 

detection factors for simulated structure are better than that of real structure. Such relative 

ease is due to the ideal or perfect periodicity of these structures. The main difficulty (for 

both structures) arises from the influence between the detection parameters to the extent 

that we cannot study and optimize each one without referring to one or perhaps more than 

other detection parameters. In addition, we should always put into our consideration that 

detection of simulated defects is not an object itself but it helps us understanding the 

behaviour of the detection technique and gives indications to what should take place for 

real detection.  
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5.2.1. Optimization of sub-image size 

The size of the sub-image which scans the main fabric image is very important. This 

size determines the minimum possible defect size that could be detected by our technique. 

To optimize the size with which we can obtain 100% detection rate for all defect types we 

summarize firstly the detection results for all sizes from the minimum to the maximum 

levels mentioned in the experimental setup. The reason to do that is the huge results 

obtained at each size whereas we need to precise only one tight suitable range for all 

defects. Inside this range it is expected to find the best sub-window size which will be re-

optimized in a second step. 

Figure (5.1) gathers for various samples (reference defect-free samples and 

defective samples) the evolution of the correlation coefficient vs. sub-image dimensions. 

From this figure it is found that relevant sub-image dimensions vary between 

approximately 45x45 pixels and 70x70 pixels according to the defect size and direction. 

For instance, for small defects such as holes and floats this area is around 50x50 pixels 

that is close to the lower determined limit. In addition, the defects existing in fabric weft 

direction have areas of intersection around 60x60 pixels which is near to the higher 

determined limit. Up to this point, besides determining a narrow range contains the best 

sub-image size for all defect types, It is meaningful also to show that the defect size and 

direction have an influence on this size and consequently on the detection performance. 

Secondly, to determine the value at which the sub-image size for each defect type is 

set during the implementation of the technique, we will study the detection rate at each 

point starting from 50x50 pixels till 65x65 pixels. Also, other sizes smaller than the chosen 

level such as 33x33 and 40x40 pixels are included while again other values larger such as 

70x70, 80x80 and 90x90 pixels are also included. This wide range covers all possibilities 

especially we cannot neglect the sizes outside the pre-optimized range due to its valuable 

detection results. 

All detection results for all defect types are gathered in Figure (5.2). For each defect 

type we draw the relation between the detection rate percentage and the implemented 

sub-image sizes during the detection process. It is essential to re-emphasize that we 

cannot always get 100% as maximum detection rate at a certain size because other 

parameters remained fixed and were not optimized at this point. Therefore, we look for the 

the sizes at which the implemented technique gives best results. At these sizes the defects 
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are completely detected but the results of the other detection parameters should not be 

considered. From figure (5.2) it is found that the values of the sub-image which gives 

higher detection rate are as follows: 

1. From 57x57 pixels up to 60x60 pixels for holes, stains, miss-picks, double-picks, 
coarse-picks and the open-picks (irregular weft density). 

2. From 50x50 pixels up to 53x53 pixels for miss-ends, double-ends, weft and warp-
floats coarse-ends and the jammed-picks (irregular weft density). 

3. Some defects such as holes, stains and coarse-picks are easily to be detected at 
various sizes outside these limits. 

4. Irregular weft density (jammed-picks) is only detected at 50x50 pixels. Otherwise, 
the detection rate is zero. 

5. Weft and warp-floats are hardly detected mainly due to their small sizes (it is the 
nature of such defects). It is only detected at small values of sub-window sizes 
which emphasize the relationship between the defect size and the value of the 
scanning parameters. 

When the sub-image has small size, there will not be enough textural information to 

separate such image into different categories of interest. While very large sub-image sizes 

may have objects belonging to several different categories that is resulted in confusion and 

consequently detection errors. Moreover, the highlighting quality around the defect 

corresponds also to the relation between the sub-image size and the defect size. So that 

when the sub-image size is either too small and/or too large than the defect size, it results 

in very bad detection performance.  
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Figure 5.2: Effect of sub-image size on defect detection rate for simulated fabric 
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Besides what is mentioned above, it is found that the longitudinal defects such as 

miss-ends and double-ends are hardly detected than the defects exisist in weft direction. 

In addition, most detection errors (more than 95%) which decrease the detection rate are 

negative false alarms (there is no highlighting for the defect) that occurs especially when 

the sub-window size is set to high values. It is mainly due to the absence of actual 

variation in the periodical effect of Fourier spectrum which consequently results in only 

variation of the maximum and minimum values of Fourier frequency as shown in figure 

(5.3). This sketch presents a comparison between Fourier frequency of a defect-free 

image and that of a longitudinal defect to illustrate the change of maximum and minimum 

Fourier frequency values due to the presence of such defect type. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: Effect of longitudinal defect on Fourier frequency 

Eventually, there is no sub-image size allows detection of all defect types. Therefore, 

it is useful to use more than one size (two sizes are enough) to improve the overall 

detection rate and to enable the technique to detect all defects simultaneously particularly 

the defects of small sizes. Therefore, the sub-image will be set to 50x50 pixels and 60x60 

pixels to detect all defects in case of simulated fabric. 
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5.2.2. Optimization of scanning step  

Scanning step represents the second important factor influencing the defect 

detection process. The importance of the scanning step stems from its role in covering the 

whole area of the fabric image. Therefore, it is also closely related to the size of the sub-

image. Rationally, the sub-window size and the scanning step determine the highlighting of 

detected defects. For instance, when both of them are small, the defect highlighting is not 

correct so that a part of the defects is only highlighted. In addition, in some cases, some 

regions inside the fabric image (usually besides the edges) are not scanned and 

consequently are not highlighted if they contain a defect. This occurs when a part of the 

last sub-window lies outside the main image either because of its size and/or the value of 

the scanning step. The value of feature calculations for this sub-image is then equal to 

zero and will not be compared with the defect-free one. These regions shall not be taken 

into account. Thus, not only the scanning parameters are coherent but also the size of the 

main fabric image and for sure the defect size as mentioned previously. 

The detection time is another important factor related to the value of the scanning 

step (although it is not a detection parameter). For the same sub-window size, the higher 

the value of the scanning step, the lower the detection time required to scan the main 

fabric image and the lower overlapping around the detected defect (if there is any).  

Actually there are many possibilities when choosing the scanning step value. It 

begins from 1x1 pixels up to (the sub-window size -1) x (the sub-window size -1) pixels 

(please note that we deal only with integers as mentioned in experimental setup). Our 

proposed technique will be implemented while the scanning step value varies between two 

limits; 15x15 pixels and 50x50 pixels (see the experimental setup). Between the two 

intervals the scanning step is set to 15x15, from 20x20 up to 30x30 successively, 35x35, 

40x40, 45x45 and finally 50x50 pixels respectively. These values emphasize the area of 

interest while the outliers are not forgotten. Defect detection rate at each step value for all 

defect types is calculated. Figure (5.4) summarizes and compares these results for all 

defect types simultaneously. 
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Figure 5.4: Effect of scanning
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From this figure (5.4) it can be concluded that the scanning step has less influence 

on the detection results than the sub-image size. As mentioned before, it is quite difficult to 

discuss each parameter separately. Also, there is no step value at which the detection rate 

is 100%. This means that we will choose the step value that corresponds to the sub-

window size which gives perfect detection. It is found that the values of the scanning steps 

which gives the best detection rate are as follows: 

1. For the defects (holes, stains, miss-picks, double-picks, coarse-picks and the open-
picks (irregular weft density)) which are detected when the sub-window size is set to 
57x57 pixels up to 60x60 pixels, the scanning step values which give higher 
detection rate are between 28x28 pixels and 30x30 pixels.  

2. For the defects (miss-ends, double-ends, weft and warp-floats coarse-ends and the 
jammed-picks (irregular weft density)) which are detected when the sub-window 
size is set to 50x50 pixels up to 53x53 pixels, the scanning step values which give 

higher detection rate are between 25x25 pixels and 27x27 pixels.  

From these results it is found that the scanning step is approximately half of the sub-

image size which gives a satisfactory result. From one hand it insures an optimum 

overlapping and defect highlighting whereas from the other hand the detection time still 

remains within the acceptable limits. 
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5.2.3. Optimization of feature correlation coeffici ent  

The feature correlation is the judge who sentences whether the sliding sub-window 

contains a defect or not. After the optimization of sub-window size and scanning step, it is 

found that the optimized values are intermediate i.e. are not very high or low. This provides 

enough textural information so that at many coefficient values it is easy to extract these 

seven features and then calculate their average for each sub-image. 

To optimize the coefficient of feature correlation, the detection technique is 

implemented while it is set to 0.7 and 0.99 as minimum and maximum limits whereas in 

between it is increased by a step of 0.05. As usual the detection rate at each coefficient 

value is calculated to find the feature correlation coefficient which gives the higher 

detection rate (certainly the other detection parameters are considered during this choice). 

The same work is repeated for all defect types where all results are presented in figure 

(5.5).  

Generally, it is found that for all defects the lower the correlation coefficient threshold, 

the lower the detection rate. Then defect detection performance is improved with the 

increment of coefficient value till it reaches its maximum value. After that and with the 

continuous increment of the correlation coefficient value, the detection performance 

remains at its optimum level for some defect types and/or decreases for other defect 

types. Moreover, the defects of detection difficulties such as floats still have the lower 

detection rate at all coefficient correlation values. In addition, the detection rate for defects 

in weft directions such as miss-pick and double-picks is always higher than that of defects 

in warp direction as usual. The only exception is the irregular weft density (jammed-picks) 

which shows lower detection performance because it is detected at lower sub-window 

sizes. These sizes are not suitable for all values of correlation coefficient due to the 

presence of detection errors. For such a defect type, the suitable maximum size which 

provides accepted level of detection is 50x50 pixels.      

Also, it is found that scanning step has no relationship with the coefficient of feature 

correlation. It means that there is no relationship between the correlation coefficient and 

the overlapping of sliding windows. 
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Figure 5.5: Effect of feature c
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It is found also that at lower (and sometimes higher) values of correlation coefficients 

the detection rate is low. At lower values, there are negative false alarms (highlighting) 

particularly at higher scanning steps and small sub-window sizes whereas positive false 

alarms exist at high correlation coefficient vales especially at lower scanning step values 

as shown in the example of figure (5.6). This point is very important when implementing 

the level selection filter to avoid positive false alarms. This result introduces a primary 

solution to minimize the positive detection errors by setting the coefficient of feature 

correlation to the lower possible value at which the implemented technique provides the 

maximum detection rate. 

 

         
Correlation coefficient = 0.7            Correlation coefficient = 0.95              Correlation coefficient = 0.8 

Sub-window size = 55x55 pixels       Sub-window size = 55x55 pixels        Sub-window size = 55x55 pixels 

Scanning step = 30x30 pixels            Scanning step = 20x20 pixels             Scanning step = 30x30 pixels 

(Negative false alarm)                (Positive false alarm)                (Correct detection) 

Figure 5.6 Effect of correlation coefficient on detection errors 

 

Finally, for all defect types, it is found that when the feature correlation coefficient is 

set to 0.8 while the sub-window size and the scanning step are set to their previously 

optimized values the detection rate is 100%. 
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5.2.4. Effect of noise 

To simulate the real weaving circumstances (loom noise,vibrations,..etc.), it is 

estimated when capturing fabric images that we may obtain noisy images. Thus during our 

research work four different levels of random Gaussian noise are added on all simulated 

images during the implementation of our procedure. To add these four levels, the noise 

index is set in our developed Matlab script to 0.001, 0.0025, 0.005, and 0.01 respectively. 

We aim to illustrate the ability of the detection technique to detect fabric defect even under 

the presence of noise. Surprisingly, It is found that the adding noise to the simulated fabric 

images has no effect on defect detection results. Moreover, defect highlighting is exactly 

the same at all noise levels i.e. the same regions of the image are highlighted by the same 

red squares. The reason for such important result is that the similarity between the image 

background and the nature of the added noise (both has white colour or nature). 

To know if detection result changes when the noise level increases, we choose three 

images containing three different defect types (hole, coarse-pick and coarse-end). These 

defects represent the possible sizes and directions of fabric defects. Then we applied the 

detection procedure on these images whereas the noise level is increased 10 times 

compared to the higher level used during the previous step. Surprisingly again, we 

obtained the same results which prove that all added noise levels have no effect when 

detect fabric defects in case of simulated images. Figure (5.7) illustrates the detection 

results when applied the increased noise level on the images contain the chosen defect 

types. Actually, it is important to understand that it is not a must to receive the same 

detection results for real fabric images when adding noise. This is because defect 

detection in case of simulated structure is easier than that of real structure. 

As the most important defect detection parameters of our technique are optimized, 

we have to prove the utility of these optimized factors together to detect all defects with 

100% detection rate. Figure (5.8) shows the success of the technique in detecting all 

defect types in case of simulated plain structure when all parameters are set to their 

optimized values (the sub-window size is set to 50x50 and 60x60 pixels, the scanning step 

is set to 25x25 and 30x30 pixels, and the feature correlation coefficient is set to 0.8). 
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Figure 5.7 Effect of increasing the noise level on detection results 
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Figure 5.8: The implementation of the detection technique after optimization on simulated 
fabric images containing defects 
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5.3. Optimization of level selection filter 

One problem of defect detection is the detection errors (either positive or negative 

false alarms). Whereas using the optimized value for each detection parameters during the 

implementation of the technique results in perfect detection, the technique in such case 

has only restricted values when implemented.  Thus, we should improve the ability of the 

technique to overcome the unpredicted situations. To do that, a wide-range of values for 

each parameter should be available for the user to obtain 100% detection and increase the 

global ability as well.  

Fortunately, it is found that most detection errors are positive false alarms where 

there are some sliding windows (do not contain any defect) are highlighted as defective 

regions. A primary step to avoid these errors is the reduction of feature correlation 

coefficient as explained during the optimization of this factor. Our main proposed solution 

to achieve such object is implementing the level selection filter. It has four possible levels 

of tuning. The filter is implemented on all simulated fabric images containing the twelve 

defect types. The values of detection parameters are set to the same settings of the 

optimization. The percentage of defect detection rate is calculated for each defect type and 

each selection level. Table (5.1) and figure (5.9) present the results of filter optimization. 

From the detection results it is found that: 

1. For defects like hole, double-pick, coarse-pick and irregular weft density (open-
picks), defect detection rate is to be considered as approximately constant. It 
means that the detection of these defects is accurate and has the lower detection 
errors.  

2. For defects as stain, miss-pick, miss-end, double-end, wet-floats, warp-floats and 
coarse-end, the detection rate is decreased with the continuous increment of the 
implemented filter level. Most of these defects have relatively low detection rate (in 
general) before implementing the filter. In addition, the filter does not consider some 
defective highlighted areas especially when increasing the selection level. This 
transfers the correct detection to negative false alarms and accordingly reduces the 

detection performance. 
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Table (5.1):  Optim
 

Ser. Defect type 

1 Hole  
2 Stain  
3 Miss -pick  
4 Miss -end 
5 Double -pick  
6 Double -end 
7 Weft -float  
8 Warp-float  
9 Coarse -pick  
10 Coarse -end 
11 Jammed -picks 
12 Open-picks  

Average  
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1. The reduction in defect detection rate for all defects mentioned above when 
implementing the fourth selection level is approximately 50% from its original 
detection rate. 

2. As weft and warp-floats has usually the lower detection rate, when implement the 

fourth selection level their detection rate tends to zero. 

To summarize the effect of implementing our proposed filter on defect detection 

performance of simulated fabric, the percentage of global or overall detection rate for all 

defect types at each selected level is calculated and presented as shown in figure (5.10). 

 

Figure 5.10 Effect of filter levels on the overall detection of simulated fabric 

From this figure it is clear that the overall detection performance is decreased when 

the filter selection level increased. This means that the implementation of such filter has no 

advantage in improving the detection process for simulated fabric images. Otherwise, it 

restricts the ability of the technique. The only advantage that may be gained is the 

highlight improvement around the detected defects as shown in figure (5.11) which 

illustrates the implementation of the third selected level on all simulated defect types 

included in our thesis. Please note that fabric defects could be highlighted by four different 

colours; each of them refers to one level of the filter. Therefore, fabric defects in figure 

(5.11) are highlighted by two colours; the blue refers to the third selected level while the 

red colour refers to the fourth level. 
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Figure 5.11: Implementation of the filter’s third selected level on simulated fabric defects 
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5.4. Conclusion of defect detection for simulated f abric  

From all previous results of defect detection for simulated fabric it is concluded that: 

 

1. Generally, the results are satisfactory and illustrate the potential of utility and 
applicability of our procedure to detect all simulated fabric defects. 

2. From a large number of experiments that we performed, we established that for 
various simulated fabric, the optimized values of various detection parameters 
suitable to calculate FFT, the average of the seven extracted features and 
consequently provides perfect detection rate are: 

3. The sub-image size is set to 50x50 and 60x60 pixels. 
4. The scanning step is set to 25x25 and 30x30 pixels. 
5. The feature correlation coefficient is set to 0.8. 
6. Within reasonable limits compatible with our application, the noise has slight effect 

on defect detection rate for all defect types at all values of detection parameters. 
7. Increasing the sliding sub-window size improves the detection performance 

because it provides sufficient area for feature calculations till the limit after which 
the performance is decreased due to interference with textures of neighbouring sub-
windows which is results in positive false alarms. 

8. There is a relation between the size of the main image, the sub-image size, the 
scanning step and the defect size. These parameters should be adapted together to 
obtain a perfect detection rate. 

9. The optimum scanning step is usually equal to half of the optimum sub-image size. 
10. Fabric defects existing in weft (warp) direction are hardly detected when compared 

with the defects existing in warp directions. 
11. The detection errors usually occur when the detection parameters are set to values 

close to the outliers of each one (very small and/or big values). 
12. Generally, the main part of detection errors is positive false alarms. 
13.  The level selection filter does not improve the detection performance when 

implemented on simulated fabric. In the contrary, it reduces the detection rate 

especially at higher selection levels.   
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5.5. Defect detection for real fabric 

Obviously, defect detection of real fabric is the main object of our research work. 

Therefore, all previous work is considered as a preparation stage for such object. As 

shown in the previous part, our proposed technique proved its utility to detect all simulated 

fabric defects. Now, we have to verify the success of the technique in reality. The 

procedure of defect detection is implemented on various samples of real plain fabric 

contain approximately the same defects as the simulated structure. The previous work will 

not be exactly repeated but the optimized detection parameters will be fine tuned for the 

real plain structure. Other important factors will be included in this part; the resolution at 

which the fabric should be scanned to capture images as close as possible to the 

simulated fabric images. It is mainly to clear the structure periodicity that plays a vital role 

in our technique. Also, detection time should be measured to indicate the suitability of the 

technique for online fabric inspection. We begin firstly by the optimization of image 

resolution. 

5.5.1. Optimization of scanning resolution 

If fabric image is the raw material which will be processed using the detection 

technique to obtain the detected defects as a final product, the quality of the raw material 

(fabric image) determines the quality and the performance of the final product (defect 

detection). Acquisition resolution is an essential factor to obtain the optimum quality level 

for captured fabric image. To decide what is the resolution level that should be considered 

when capturing fabric image during online defect detection, various fabric images 

containing the same defects as in case of simulated are captured at different resolution 

levels. As stated in the experimental setup, these resolution levels are 300, 500, 700, 900, 

1000, 1100 and 1200 dpi. At each level, the global detection rate for each defect type is 

calculated where detection parameters are set to the same values during the optimization 

of simulated fabric detection. The relationship between the detection rate percentage and 

the resolution level for each defect type is drawn. Figure (5.12) collects and summarizes 

such relationship for all defect types. 
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Figure 5.12: Optimization of scanning resolution for real fabric 
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From this figure it is found that at low resolution levels the detection rate is very low. 

In addition, the global detection rate for all defect types increases when the level of image 

resolution is increased till certain limit where the detection rate decreases. It is a result of 

improving the appearance of fabric periodicity which becomes sufficiently pronounced in 

the scanned images (please, do not forget the dependency of our implemented technique 

on such periodicity). Moreover, the statistical features of the defective region at low 

resolution do not show significant difference with respect to neighbouring area. To avoid 

this problem, the image resolution should be sufficient enough (usually high). There are 

two causes to explain the decreasing in detection rate at very high resolutions: 

1. The fabric threads occupy a big part of the sub-image which decreases the total 
number of intersections between these threads that consequently decreases the 
appearance of structure periodicity. 

2. Some very small yarn imperfections (they are not fabric defects) begin to show 
textural differences with respect to the defect-free region which increases the 

detection errors. 

The optimum resolution level which ensures maximum overall detection rate varies 

according to the defect type. For instance, this level is 1000 dpi for most defect types 

whereas defects such as stain (particularly if it has big size) has a lower optimum level 

(700 dpi) and defects like miss-pick has a higher optimum level (1100 dpi). Rationally, the 

optimum level variation indicates and explains to some extent why the various fabric 

defects do not show the same difficulties during the detection process.  

Although the detection performance of most fabric defects decreases after the 

optimum resolution level, it does not have the same behaviour for some other defects. 

Detection rate remains constant at the same value for defects as miss-picks and irregular 

weft density (open-picks). Moreover, in case of warp-floats, the detection rate increases 

continuously and does not show the usual relationship with resolution level.  

Therefore, the suitable resolution which provides the higher detection rate for all 

defect types simultaneously is 1000 dpi. At such high resolution level, there are some 

positive false alarms besides the detected defects. This draw-back could be avoided as 

follows: 

1. Fine tuning of the optimized detection parameters. 
2. Decreasing (if it is possible) the value of feature correlation feature. 

3. Implementing the level selection filter as it is developed mainly for this purpose. 
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In the next part of the chapter we illustrate how the proposed solutions are 

implemented to obtain the best possible defect detection for real fabric. Finally, it is 

important to remind that the importance of scanning resolution is not restricted only to its 

contribution in improving the process performance but also it is used to calculate the total 

number of digital cameras required to cover the whole fabric width when it is produced on 

the weaving machine. Such calculations are presented at the end of the chapter. 

5.5.2. Optimization of sub-image size 

To determine the effective size of the random sub-image which scans the acquired 

fabric image (at 1000 dpi), the optimized detection parameters for simulated fabric are 

used. Thus, defect detection rate is calculated for real fabric images containing the same 

defect types as those present in simulated fabric. In fact, all possible sizes between the 

maximum optimized value 60x60 pixels and 50x50 pixels are considered. The object is to 

study the detection behaviour to find out whether the optimized sub-window sizes are 

suitable for real fabric inspection or not. Figure (5.13) shows the relation between 

detection rates at those sub-image sizes for all defect types.  

From this figure it is found that the maximum detection rate is increased when 

compared with that of simulated fabric. Actually, it is due to the exclusion of outlier values 

of various parameters and thus the very low detection rates are also excluded. Therefore, 

we can obtain 100% detection (at least twice) for all defects. Always, such perfect 

detection exists near the outliers while in-between there is significant variation. 
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Figure 5.13: Effect of sub-window size on defect detection rate for real fabric (at all values 
of the other detection parameters considered during the optimization) 
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It is found also that most defects are perfectly detected when the size of the sub-

image is set to 50x50 pixels. But only, defects in weft direction are perfectly detected when 

this size is set to 60x60 pixels. Two defect types (holes and double-ends) are detected in 

both previous cases. These results resemble that of simulated defect detection which 

means that the defects in weft direction need larger size of sub-image to be detected. 

Such sizes provide sufficient textural information to enable the implemented technique to 

discover the frequency variations due to the presence of the defect even if it is coherent 

only to frequency magnitude as explained in case of simulated fabric. 

Finally, weft-floats have the lower detection rate because on one hand, they are 

small defects and on the other hand, they exist in weft directions. Both difficulties reduce 

the global detection rate at all sub-window sizes. With the fine-tuning of the other detection 

factors, their detection rate is improved. 

5.5.3. Optimization of scanning step 

It was shown in simulated fabric defect detection, that the optimum scanning steps 

are located between 20x20 and 30x30 pixels. It was shown also that the step size is 

related to the optimized step size where the step size is approximately half of the sub-

window size. As that optimized size for real fabric either 50x50 or 60x60 pixels, it is 

rationally expected that the optimized step size lies between 25x25 and 30x30 pixels. 

Therefore, the detection technique is implemented on the real fabric images as usual 

where the scanning step is set to the précised values. The detection rate is calculated for 

all defect types and all results are gathered in figure (5.14). 

From this figure it is found that the detection rate for all defects at all scanning steps 

has increased with respect to that of simulated fabric. As stated before, we look for the 

step size which corresponds to the best optimized sub-image size and insures (together) 

100% detection rate. Therefore, when the scanning step is set to 28x28 it is found that the 

detection rates for most defects (holes, stains, miss-picks, double-picks, weft-floats, 

coarse-picks, irregular jammed-picks and irregular open-picks) are optimum. Some of 

these defects could be detected correctly with other scanning-steps such as 30x30 pixels. 
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Figure 5.14: Effect of scanning step on defect detection rate for real fabric 
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But, we choose the suitable size for the higher number of defects to minimize as 

possible the required number of values when implementing our technique. It is found also 

that the other defects (miss-ends, double-ends, coarse-ends and warp-floats) are correctly 

detected when the scanning step is set to 25x25 pixels. It is clear from the previous results 

that the relationship between both of scanning sub-image size and step has remained the 

same as the random sub-image should scan the main fabric image with an overlapping 

step equivalent to almost half of its size. Moreover, the defects in warp direction still need 

lower scanning values to ensure correct detection. 

5.5.4. Optimization of feature correlation coeffici ent 

The coefficient of feature correlation is optimized for real fabric defect detection 

based on the following important results: 

1. Our defect detection technique is implemented successfully on all simulated defect  
types when the correlation coefficient is set to only one value (0.8). 

2. Detection of real fabric defects requires an acquired fabric image at high resolution 
level (1000 dpi). 

3. Although all defects are detected when implementing the detection procedure, each 
parameter should be set to only few values to ensure good results. We need a wide 
range of values for each factor to have a flexible detection algorithm and/or 
technique to cope with the real time variations even if we will choose only one or 
two of them for each parameter. 

4. The errors of real fabric defect detection almost occur as positive false alarms 

which could be reduced by decreasing the value of feature correlation coefficient. 

Therefore, the technique is implemented on the real fabric defects as usual. The 

various other parameters are set to the optimized values from simulated inspection. The 

feature correlation coefficient is set to 0.8 and the lower values (0.75 and 0.7) to find out 

another lower correlation coefficient value besides 0.8 to improve the detection 

performance. Figure (5.15) illustrates the detection rate al the three values. 
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Figure 5.16: The implementation of the technique on real fabric images  
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5.5.5. Effect of noise 

Adding different noise levels to simulated fabric images had no effect on defect 

detection. The same statement maintained correct even with increasing the added noise 

10 times than the maximum added level.  But, as we discuss defect detection for real 

fabric, we have to study such factor again. Thus, the four different levels of random 

Gaussian noise are added on all acquired real fabric images during the implementation of 

our procedure. In addition, the various detection parameters are set to their last optimized 

settings. Table (5.2) and figure (5.17) illustrate the detection results when applying these 

different noise levels on the images containing all defect types.  

For all defect types, it is found that the two lower levels of applied or added noise to 

the real fabric images have no effect on defect detection results. Moreover, the 

intermediate noise level has a subtle effect on the detection performance for only few 

defects. Such noise level has no influence on the detection rate of most defects in weft 

direction such as miss-picks, double-picks, coarse-picks and weft-floats. The two higher 

added levels began to affect significantly defect detection rates. The only exception is also 

the defect in fabric weft direction. 

Actually, there are many methods to remove the noise from the acquired fabric image 

[149]. One of these methods could be implemented to enhance the image quality before 

implementing our detection technique. Moreover, the acquisition tools of the system 

should be designed and adapted to avoid or at least reduce such expected noise to the 

lowest possible level. For instance, this part of online detection system should not be 

connected directly to the body of the weaving machine to prevent the vibrations resulting 

from the different moving parts of the machine (as shown in our proposed online 

prototype).     

The important conclusion from the above results is that the defect detection 

technique is able to detect real fabric defects even under the presence of some noise.  
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5.6. Detection time for real fabric defect detectio n 

After optimization of all detection parameters as illustrated previously, the detection 

time required to implement our defect detection technique on real fabric images is 

measured. In fact, such time has a relative importance as it depends on the hardware of 

the used system. For instance, the PC that is used to implement the technique. In addition, 

there are other means to reduce the required time. But measuring the time at this stage is 

important to give an indication the capability of our proposed technique to detect real fabric 

defects in a short time even with a normal PC (its specification mentioned in the 

experimental setup). In addition, we should calculate if the measured time corresponds to 

the speed of the modern weaving machines or not.  

Usually there are two optimized values for each main detection parameter. Thus, all 

values provide two levels; maximum level which includes all maximum parameter's values 

and minimum level that includes the lower optimized values. Therefore, when measuring 

the time required to implement the technique, we obtain also two values of time for each 

defect type; the maximum and minimum measured time. Table (5.3) and figure (5.18) 

present and compare between the measured times for all defect types at the two 

mentioned levels. Each value presented is the average measured time when implementing 

the technique 10 times. 

From these results, it is found that there is no significant difference between the 

maximum and the minimum measured times. This means that any tuning applied to the 

technique settings has no influence on the time needed to implement the technique. It is 

found also that defect type has no influence on this time. Broadly, such time is around 0.7 

second for all defect types. During this time, an image of 500 x 500 pixels acquired at 1000 

dpi is scanned which is equivalent to 1.27 cm of fabric. Consequently, the detection 

technique is able to inspect at least one meter of fabric each minute. Industrially, high 

speed weaving machines run at 1000 picks/min while most plain fabrics are produced at 

25-30 picks/cm weft density. This means that the productivity of the weaving machine is 

33-40 cm/min. Therefore, the speed of the technique is 2-3 times the machine productivity. 

Which means that it is fast and consequently could be implemented for the online fabric 

inspection. 
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5.7. Optimization of level selection filter 

As presented before, fabric images should be acquired at high resolution to ensure 

high performance of defect detection. With this high resolution, all defects are detected but 

unfortunately with some positive errors. These errors are reduced through the optimization 

of all important settings of the implemented technique. Also, using another lower value of 

feature correlation coefficient besides the original one improved significantly the detection 

results. But, we are still in need of avoiding definitively the presence of any detection 

errors to increase the technique credibility and flexibility as well. Such object could be 

obtained by implementing the level selection filter. 

Nevertheless the implementation of such filter for simulated defect detection did not 

give encouraging results. On the contrary, the detection performance has been reduced 

especially when the implemented level is increased. But, the obvious positive detection 

errors in real defect detection impose the need for such filter. Therefore, the four filter’s 

levels are implemented on all real fabric images containing the usual studied defect types. 

The technique settings are set to the same range of values used during optimization. The 

percentage of defect detection rate is calculated for each defect type and each selection 

level. Table (5.4) and figure (5.19) present the detection results of all filter levels. From the 

detection results it is found that: 

1. Generally, implementing the first and second filter’s levels for most defects has no 
influence on detection rates. These rates are increased when implementing the 
third level while they are decreased again when the fourth level is implemented.  

2. There was no effect for the application of any level of the filter on some defects 
such as miss-picks and miss-ends. 

3. When increasing the filter selected level, the detection rate is slightly improved for 
some defects (holes, stains, double-picks, double-ends and irregular jammed-picks) 
whereas the improvement is pronounced for other defects (weft-floats, warp-floats, 

coarse-picks, coarse-ends and irregular open-picks).  
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Table (5.4):  O

Ser. Defect type 
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To summarize the effect of implementing the four filter’s levels on the detection 

performance of real fabric, the average percentage of the global or overall detection rate 

for all defect types at each selected level is calculated and presented as shown in figure 

(5.20). 

 

 

Figure 5.20: Effect of filter levels on the overall detection of real fabric 

From this figure it is clear that the overall detection performance increases when the 

filter selection level increase till the third level. Tuning the filter to the fourth level 

decreases the detection rate again while such decreased value provides detection 

performance better than the obtained results before implementing the filter. Decreasing the 

detection rate is the result of neglecting some parts or areas of sub-images containing real 

defects. At this selected level, the filter begins to produce negative detection errors rather 

than avoiding the positive errors.  

Again and as mentioned in simulated defect detection, the filter improves the 

highlighting around the detected defects that is another obtained advantage as shown in 

figure (5.21) which shows the implementation of the third selected level on all real defect 

types included in our thesis. In this figure, fabric defects are highlighted by two colours; the 

blue refers to the third selected level while the red colour refers to the fourth level. 
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Figure 5.21: Implementation of the filter’s third selected level on real fabric defects 
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5.8. Unsupervised defect detection  

In all previous stages, our technique succeeded in detecting the pre-determined 

defects either when implemented for simulated or real defect detection. Thus, the 

dimension and the orientation of all defects inside the images were well known. The object 

at this situation was confined to distinguish the presence of these defects which is 

considered as a training stage for our technique. Because fabric defects are generated 

randomly and dynamically distributed, a perfect robust automation of visual inspection 

process requires unsupervised defect detection which refers to the detection of unknown 

class of defects for which there is no training. Therefore, to verify the success of the 

technique in detecting all defect types and sizes, the procedure of defect detection is 

implemented on various images of real plain fabric. Moreover, it will be examined on 

images acquired for plain fabric of another colour (black) rather than with a white or gray 

fabric.  

5.8.1. Unsupervised defect detection for gray fabri c  

Rationally, we begin the unsupervised defect detection with a fabric that has a gray 

or white colour to cope with the same fabric background as in the training stage. To 

implement the detection technique, various samples of a real plain fabric were captured by 

a flat scanner at the same previous conditions (with 1000 dpi resolution in 16-bit grey 

levels and stored in an image of size 500 x 500 pixels). These images are scanned by a 

random sub-image of sizes 50x50 and 60x60 pixels. The scanning step is set to 25x25 

and 28x28 pixels. The coefficient of feature correlation is set to 0.75 and 0.8.  

Figure (5.22) shows the success of the technique in detecting all existing defects in 

case of real white or gray plain fabric whereas figure (5.23) shows the implementation of 

the third filter’s level on the same fabric images. It is found that the technique introduces a 

successful approach for automated fabric inspection. The detected defects have great 

differences when compared with those have been studied in previous stage. For instance, 

some defects exist in weft and warp directions simultaneously. Other defects have either 

very small and/or large size. In addition, the defects are detected correctly even the same 

acquired image has various separated minor defects.  
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Figure 5.22: Unsupervised implementation of detection technique on gray fabric 
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Figure 5.23: Implementation of the third selected level on unsupervised gray fabric defect 
detection 



Chapiter 5 

 
Online Fabric Inspection by Image Processing Technology 

 
Page - 162 - 

5.8.2. Unsupervised defect detection for black fabr ic 

Rationally, the white plain fabric is chosen in our study because on one hand the vast 

part of the raw woven fabric exits in such form. On the other hand the real fabric images 

should have the same appearance as the simulated images. During the unsupervised 

defect detection for white fabric, the difficult in detection stems from the change of fabric 

defects (either in size, direction or the orientation) inside the acquired image. When fabric 

colour varies, extra difficulties are added to defect detection process. Therefore, the 

technique success in detecting any existing defects even when fabric colour is changed 

introduces more certainty to the ability and flexibility of our approach in automated fabric 

inspection.   

To do that, various black fabric samples are acquired at the same optimized 

resolution (1000 dpi) as usual. The technique inspects the acquired images while its 

settings are set to the optimized values. Figure (5.24) illustrates the success of the 

technique to detect all defects. From this figure it is clear that the detected defects show 

new differences when compared with those studied in either training and/or unsupervised 

stages. The figure (5.24) presents also the results of implementing the third level of the 

selection filter that improved the highlighting of each detected defects. 
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Figure 5.24: Unsupervised defect detection for black fabric  
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5.9. Conclusion of detection for real fabric 

From the results of training and unsupervised stages of real fabric defect detection it 

is concluded that: 

1. For automated fabric inspection, fabric images should be acquired at 1000 dpi to 
ensure perfect defect detection. 

2. Besides such resolution level, it is found that the technique settings should be 
optimized and adapted to values suitable to calculate FFT, the average of the seven 
extracted features and consequently provides the best possible detection rate as 
follows: 

3. The sub-image size is set to 50x50 and 60x60 pixels. 
4. The scanning step is set to 25x25 and 28x28 pixels. 
5. The feature correlation coefficient is set to 0.75 and 0.8. 
6. Only the higher noise levels have an influence on defect detection for real fabric 

while our technique shows no sensitivity to low and intermediate noise levels. 
7. As in simulated defect detection, there is a relation between the size of the main 

image, the sub-image size, the scanning step and the defect size. These 
parameters should be adapted together to obtain a perfect detection rate. For 
instance, the optimum scanning step is usually equal to half of the optimum sub-
image size. 

8. The detection errors mostly occur as positive falses where defect-free fabric area is 
highlighted as a defect. These errors are finally avoided through: 

9. Setting the detection parameters to its optimized values. 
10. Reducing the value of the feature coefficient correlation to the lower possible limit. 
11. Implementing the level selection filter.    
12. The speed of the proposed approach (technique) is 2-3 times the machine 

productivity. Which means that it is fast and consequently could be implemented for 
the online fabric inspection.  

13. Eventually, the results are satisfactory and illustrate the potential of utility and 

applicability of our procedure to detect all real fabric defects. 
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5.10. Online defect detection results  

 Our online defect detection technique is evaluated through the developed prototype 

which is described in the chapter of experimental setup. The prototype grabs fabric images 

continuously using one line scan camera that, with the provided optics, has an ability to 

acquire a 1.2288 meter wide image at 254 dpi (100 microns) resolution.  

When we optimized the resolution level at which real fabric images should be acquired 

to ensure optimum defect detection, it was found that such optimum level was around 

1000 dpi. Therefore, to obtain such high resolution from the used system its ability is 

increased four times which consequently reduces the captured fabric width to 0.30 meter 

approximately. In such a case, the online defect detection system needs several (five) 

cameras located in one row in order to cover the entire fabric width (1.5 meters). But we 

prefer to design a more secure system with one extra camera to cope with the 5% 

overlapping necessary to prevent any acquisition gaps (fabric area which would have not 

been acquired).  

In our research work, the various images of woven plain fabric are digitized with 500 X 

500 pixels and stored in a computer as 8-bit grayscale data. Actually, the first pre-

processing is implemented on the acquired fabric images to normalize them, to correct the 

inhomogeneous lighting conditions, to remove the noise and finally to convert the acquired 

digital (RGB) images to grayscale images. After this pre-processing step, our defect 

detection procedure is implemented for final evaluation. Moreover, a number of fabric 

images are firstly acquired to provide the reference (defect-free) image. 

During such implementation, the main defect detection parameters are set to their 

optimized values. It means that the fabric images are scanned by a random sub-image of 

sizes 50x50 and 60x60 pixels with 25x25 and 28x28 pixels scanning steps. In addition, the 

coefficient of feature correlation is set to 0.75 and 0.8.  

It is found that our online automated fabric inspection prototype is capable of identifying 

the existing fabric defects. Figures (5.25) and (5.26) illustrate the success of implementing 

the prototype in reality on two different types of plain fabric. 
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Defect-free image 
 

 
 

                               
  
          Fabric image containing double-end            Fabric image containing a small stain 
 
            Correlation coefficient = 0.75                         Correlation coefficient = 0.75 
            Sub-window size = 60x60 pixels                    Sub-window size = 50x50 pixels 
            Scanning step = 28x28 pixels                        Scanning step = 25x25 pixels 
 

Figure 5.25: Online defect detection results (1)   
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                 Fabric image containing hole                     Fabric image containing knot 

 
                 Correlation coefficient = 0.8                        Correlation coefficient = 0.75 
                 Sub-window size = 60x60 pixels                 Sub-window size = 60x60 pixels 
                 Scanning step = 28x28 pixels                     Scanning step = 28x28 pixels 
 

Figure 5.26: Online defect detection results (2) 

Obviously, the implementation of the level selection filter is a user choice because as 

we mentioned before it is developed to improve the technique credibility. Therefore, the 

system can be configured to fit the requirements of the user. Finally, the smallest defect to 

be identified is determined according to the resolution of the camera (1000 dpi) as well as 

the algorithm parameters. Thus, the overall detection rate of our presented approach is 

found to be 100% with a localisation accuracy of 1.2 mm. 
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6.1. Conclusions 

The starting point of our thesis is the fabric inspection as a part of surface inspection. 

The aim of this study is the development of an efficient automated fabric inspection (defect 

detection) method that could be implemented online. Through the review part of our thesis, 

it is concluded that: 

1. The need for a comprehensive, consistent way to produce first quality or defect-free 
fabrics has an utmost priority than ever.  

2. To ensure this quality level, we must perform 100% inspection. But, due to the huge 
drawbacks of the visual offline systems, it is an impossible task. 

3. The continuous development in computer technology introduces the online 
automated fabric inspection as an effective alternative. Such system must operate 
in real-time, produce lower possible detection errors.  

4. As the work relevant to this object is vast and diverse, we improved the existed 
classifications for the automated fabric inspection approaches. Through our 
improved classification, the texture analysis problem is categorised into six 
approaches according to the used algorithm. These are statistical, structural, 
spectral, model-based approaches, combination of computational methods, and 
finally, comparative studies. 

5. Unfortunately, with these huge implemented approaches, the perfect approach 
does not exist yet. Each of them has some advantages while at the same time, it 

has also its drawbacks.   

Therefore, the second point was to choose the suitable approach that could be 

implemented to achieve the principle objective of the thesis. In industrial applications 

however, a compromise between accuracy, speed, and practicality was of interest. In 

addition, dealing with high resolution images requires fast algorithms to compensate their 

heavy data processing. Therefore, we proposed the Fast Fourier Transform (FFT) 

approach. The choice was based on the following considerations: 

1. It is an approach that combines most advantages with lower drawbacks to be 
implemented as the base of constructing effective and accurate online automated 
fabric defect detection.  

2. Moreover, such an algorithm, as one of the spectral approaches, corresponds to the 
fabric high degree of periodicity and the speed of the weaving machine as well.  

3. In addition, the described algorithm is extremely simple which makes it easy to 
understand. Still it performs quite well in the difficult problem of high dimensional 

data analysis, such as surface defect image detection. 
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The implementation of this algorithm takes place through the technique of cross-

correlation, i.e. linear operations. They examine the structure regularity features of the 

fabric image in the Fourier domain using a random sub-image scans the main fabric 

image. To ensure the success of the technique, following rational steps are considered: 

1. We developed a fabric defect map. From this map, twelve defect types are 
determined as the major defects which should be considered during the pre-
processing step. 

2. We developed simulated plain fabric images either free of defects or containing 
these twelve defect types. The objective of this step is to understand the behaviour 
of the technique and to determine and then optimize the most important factors or 
parameters which affect on the process.  

3. To verify the success of the technique in reality, it is then implemented on real fabric 

images containing the same defects types as in case of simulated images.  

From the implementation of the technique on both simulated and real fabric images 

we have discovered that: 

1. The results of defect detection were satisfactory and illustrated the potential of utility 
and applicability of our procedure to detect all fabric defects. 

2. From a large number of experiments that we have performed, we discovered that 
the important detection parameters which affect the detection results are the size of 
the random sub-image which scans the main image, the scanning step and the 
feature correlation coefficient threshold. We succeeded in optimizing each 
parameter and obtained 100% detection rate for all defects. 

3. Besides these parameters, image resolution represents an important parameter for 
automated real fabric inspection. It is found that fabric images should be acquired at 
1000 dpi to ensure perfect defect detection. Experimentation also revealed that at 
such high resolution level, real fabric images have sufficient true symmetry when 
compared with simulated images.  

4. For simulated fabric structure, the added noise has slight effect (even when such 
added level is very high) on defect detection rate. 

5.  For real fabric structure, only higher noise levels have an influence on defect 
detection for real fabric while our technique shows no sensitivity to low and 
intermediate noise levels. The high added noise develops and adds higher 
confusion to the image features which is resulted in detection errors. This confusion 
is not pronounced in simulated images due to the similarity between the image 
background and the nature of the added noise (both has white colour or nature).  

6. Furthermore, it is found that there is a relation between the size of the main image, 
the sub-image size, the scanning step and the defect size. These parameters 
should be adapted together to obtain a perfect detection rate. For instance, the 



Conclusions and Future Work 

 
Ph.D. thesis – Abdel Salam MALEK Page - 173 - 

optimum scanning step is usually equal to half of the optimum sub-image size. In 
addition, fabric defects exist in weft direction are hardly detected when compared 
with the defects exist in warp directions. 

7. The detection errors mostly occur as positive false alarms (defect-free fabric area is 
highlighted as a defect). We succeeded in avoiding these errors through: 

a. Setting the detection parameters to their optimized values. 
b. Reducing the value of the feature correlation coefficient threshold to the 

lower possible limit. 
c. Implementing the level selection filter that is developed particularly for this 

object.  
8. This level selection filter does not improve the detection performance when 

implemented on simulated fabric. In the contrary, it reduces the detection rate 
especially at higher selected levels. But, when implemented for real defect detection 
the detection rate is significantly improved especially when the third level is 
selected.  

9. The technique is implemented also for unsupervised real defect detection. All 
existing defects larger than 1.2 mm are 100% detected regardless their types 
and/or orientation inside the acquired fabric image of different colours.  

10.  It is found that the speed of the technique is 2-3 times the machine productivity. 
Which means that it is fast and consequently could be implemented for the online 

fabric inspection.  

In summary, the concept of implementing fast Fourier transform and cross-correlation 

(sliding window) technique simultaneously looks very promising to detect the structural 

defect of plain weaves in grey levels. In addition, though a real-time automated system 

that could be used for fabric inspection is rarely constructed, the results of this study could 

provide a strong foundation upon which to carry out further research into the use of fast 

Fourier transform and cross-correlation for online automated fabric inspection 
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6.2. Contributions  

The main contributions of this study are divided into the following two main parts: 

6.2.1. Theoretical contributions 

1. The main theoretical contribution is without a doubt optimising fast Fourier 
transform and the principle of cross-correlation to be suitable for online automated 
fabric inspection.   

2. Development of a suitable procedure using a software package, Matlab and Scilab, 
to implement the proposed technique.  

3. Improving and describing an improved classification for the automated fabric 
inspection approaches. Through this improved classification, the texture analysis 
problem is categorised into six approaches according to the used algorithm.  

4. Development of a fabric defect map to determine the major defects which should be 
considered during the pre-processing step. 

6.2.2. Practical contributions 

1. The main practical contributions of this thesis is implementing and testing the 
proposed approach on huge number of simulated and real fabric images to prove its 
utility.  

2. To do that, we constructed and simulated automatically various plain fabric images 
(either free of defects or contain the major fabric defects). 

3. In addition, we acquired or generated a sufficiently large real fabric database or 
images with and without defects at different resolution levels. 

4. To avoid the detection errors and obtain 100%detection rate, a level selection filter 
is developed and implemented. 

5. Finally, we designed and developed a prototype to examine the technique online or 
in real-time (during the production of the fabric on the weaving machine). 
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6.3. Future work 

This thesis illustrated an effective automated fabric inspection technique which was 

applied on plain fabric through various procedures. Meanwhile, there are some essential 

aspects where the method’s performance can be enhanced. We therefore propose the 

next points as possible outlines for further work. 

1. While this work provided a new avenue to inspect and detect fabric defects either 
online and/or offline, the application of such inspection has yet to be expanded to 
other fabric structures such as twill and satin, and in addition, to some other 
patterns such as striped and checked fabrics. Broadly, the ultimate goal would be 
improve the approach to prove its utility for all fabrics despite their structure, colour 
and any other characteristics. 

2. With more understanding of the relation between of Fourier transform and fabric 
properties we can try to implement the algorithm to study some other fabric 
characteristics rather than defects. For instance, fabric thickness, yarn spacing, 
fabric appearance and wrinkles.   

3. Another interesting way in which this rigorous framework could be continued is the 
combination with other approaches or algorithms which would expand this study 
into other areas of textiles that has no obvious periodical structures, in particular to 
nonwovens. With this development, the approach ability will be improved to cope 
with any general surface inspection application. 

4. Finally, the continuous developing and testing of our proposed approach provides 
various robust results which could be used to generate the knowledge base for an 
expert system. Such a system deals with many fabric surface quality aspects. This 
step can improve the capabilities to develop an online unsupervised robust system 

which rarely exists in textile industry. 
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The study of feature correlation   

 

close all  

clear all  

  

load RedFeatCorr_4p.tif.mat  

  

if (exist('maxSubImageSizeX')==0)  

    sizes=size(FeatCorrRef);  

    [minFeatCorrRef,Tmp]=min(FeatCorrRef,[],3);  

    BufY=sum(minFeatCorrRef,1);  

    minSizeY=1;  

    while (BufY(minSizeY)<0.01)  

        minSizeY=minSizeY+1;  

    end  

    maxSizeY=sizes(1);  

    while (BufY(maxSizeY)<0.01)  

        maxSizeY=maxSizeY-1;  

    end  

    BufX=sum(minFeatCorrRef,2);  

    minSizeX=1;  

    while (BufX(minSizeX)<0.01)  

        minSizeX=minSizeX+1;  

    end  

    maxSizeX=sizes(1);  

    while (BufX(maxSizeX)<0.01)  

        maxSizeX=maxSizeX-1;  

    end  

    clear minFeatCorrRef  

else  

    maxSizeX=maxSubImageSizeX;  

    minSizeX=minSubImageSizeX;  

    maxSizeY=maxSubImageSizeY;  

    minSizeY=minSubImageSizeY;  

end  

minSizeX  

maxSizeX  

minSizeY  

maxSizeY  
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figure  

subplot(121) 

FeatCorrRef2D=FeatCorrRef2D(minSizeY:maxSizeY,minSi zeX:maxSizeX);  

imshow(FeatCorrRef2D);  

axis xy  

[BufTmp,Tmp]=min(FeatCorrRef2D,[],2);  

[minFeatCorrRefY,locYRef]=min(BufTmp,[],1);  

[BufTmp,Tmp]=min(FeatCorrRef2D,[],1);  

[minFeatCorrRefX,locXRef]=min(BufTmp,[],2);  

locXRef=locXRef+minSizeX  

locYRef=locYRef+minSizeY  

colormap(jet)  

axis 'on'  

colorbar  

set(gca,'XTick',1:10:maxSubImageSizeX)  

set(gca,'XTickLabel',minSubImageSizeX:10:maxSubImag eSizeX+minSubImageSizeX-1)  

set(gca,'YTick',1:10:maxSubImageSizeY)  

set(gca,'YTickLabel',minSubImageSizeY:10:maxSubImag eSizeY+minSubImageSizeY-1)  

subplot(122)  

%[minFeatCorr,Tmp]=min(FeatCorr(minSizeY:maxSizeY,m inSizeX:maxSizeX,:),[],3);  

FeatCorr2D=FeatCorr2D(minSizeY:maxSizeY,minSizeX:ma xSizeX);  

imshow(FeatCorr2D);  

axis xy  

[BufTmp,Tmp]=min(FeatCorr2D,[],2);  

[minFeatCorrY,locY]=min(BufTmp,[],1);  

[BufTmp,Tmp]=min(FeatCorr2D,[],1);  

[minFeatCorrX,locX]=min(BufTmp,[],2);  

locX=locX+minSizeX  

locY=locY+minSizeY  

colorbar  

colormap(jet)  

axis 'on'  

set(gca,'XTick',1:10:maxSubImageSizeX)  

set(gca,'XTickLabel',minSubImageSizeX:10:maxSubImag eSizeX+minSubImageSizeX-1)  

set(gca,'YTick',1:10:maxSubImageSizeY)  

set(gca,'YTickLabel',minSubImageSizeY:10:maxSubImag eSizeY+minSubImageSizeY-1)  

  

Height=maxSizeY;  

Width=maxSizeX;  
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for k=1:Height-minSizeY+1;  

    for l=1:Width-minSizeX+1;  

        ratio(k,l)=FeatCorr2D(k,l)/FeatCorrRef2D(k, l);  

    end  

end  

  

figure  

imshow(ratio,'InitialMagnification','fit')  

axis xy  

colorbar  

colormap(jet)  

axis 'on'  

set(gca,'XTick',1:10:maxSubImageSizeX)  

set(gca,'XTickLabel',minSubImageSizeX:10:maxSubImag eSizeX+minSubImageSizeX-1)  

set(gca,'YTick',1:10:maxSubImageSizeY)  

set(gca,'YTickLabel',minSubImageSizeY:10:maxSubImag eSizeY+minSubImageSizeY-1)  
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Fourier ex_Malek 

 

clear all  

close all  

N=500;  

  

Nom_MonImRef='4a.tif';  

MonImRef=imread(Nom_MonImRef);  

imshow(MonImRef);  

MonInfo=imfinfo(Nom_MonImRef);  

if (~(strcmp(MonInfo.ColorType,'grayscale')))  

    disp(['transformer d''abord le fichier' Nom_Mon ImRef ' en grayscale'])  

    return  

end  

MonImSizeX=MonInfo.Width;  

MonImSizeY=MonInfo.Height;  

  

figure  

imshow(imadjust(MonIm));  

figure  

imshow(histeq(MonIm));  

figure  

imshow(MonIm);colormap(jet)  

MaFFT=abs(fft2(MonImRef));  

figure  

imshow(MaFFT,[0 10000]);  

figure  

imshow(fftshift(MaFFT),[0 10000]);  

vRef=FourierMalek(MonImRef);  

  

Lettre=['d'];  

Nb_Fichiers=length(Lettre)  

for Index_Fichier=1:Nb_Fichiers  

Nom_MonIm=['4' Lettre(Index_Fichier) '.tif'];  

MonIm=imread(Nom_MonIm);  

MonInfo=imfinfo(Nom_MonIm);  

if (~(strcmp(MonInfo.ColorType,'grayscale')))  

    disp(['transformer d''abord le fichier' Nom_Mon Im ' en grayscale'])  

    return  
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end  

imshow(MonIm);  

 

for IndexTimes= [15:15 20:30 35:35 40:40 45:45 50:5 0];  

            StepX=(IndexTimes);  

            StepY=(IndexTimes);  

  

minSubImageSizeX=33;  

minSubImageSizeY=33;  

maxSubImageSizeX=100;  

maxSubImageSizeY=100;  

  

for SubImageSizeX=minSubImageSizeX:1:maxSubImageSiz eX 

for SubImageSizeY=minSubImageSizeY:1:maxSubImageSiz eY 

    close all  

    clear Buf1 Buf2  

    

[Buf1,Buf2]=fourier_ex_Malek_subimage(single(MonImR ef),single(MonIm),SubImage 

SizeX,SubImageSizeY,StepX,StepY);  

    FeatCorrRef(SubImageSizeY,SubImageSizeX,1:lengt h(Buf1))=Buf1;  

    FeatCorr(SubImageSizeY,SubImageSizeX,1:length(B uf2))=Buf2;  

    FeatCorrRef2D(SubImageSizeY,SubImageSizeX)=min( Buf1);  

    FeatCorr2D(SubImageSizeY,SubImageSizeX)=min(Buf 2);     

    disp([SubImageSizeY SubImageSizeX])  

    subplot(121)  

    imshow((min(FeatCorrRef,[],3)))  

    %plot(Buf1)  

    %colorbar  

    %colormap(jet)  

    subplot(122)  

    imshow((min(FeatCorr,[],3)))  

    plot(Buf2)  

    title(['FeatCorr SubImageSizeX: ' num2str(SubIm ageSizeX) ' SubImageSizeY: ' 

num2str(SubImageSizeY)])  

    colorbar  

    colormap(jet)  

    pause  

end     

end  

figure  
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imshow(min(FeatCorrRef(minSubImageSizeY,minSubImage SizeX,:),[],3))  

colorbar  

figure  

imshow(min(FeatCorr(minSubImageSizeY,minSubImageSiz eX,:),[],3))  

colorbar  

OutputFile=['FeatCorr_' Nom_MonIm '.mat']  

FullCommand=['save ' OutputFile ' FeatCorrRef FeatC orr FeatCorrRef2D FeatCorr2D 

Nom_MonIm Nom_MonImRef minSubImageSizeX minSubImage SizeY maxSubImageSizeX 

maxSubImageSizeY'];  

eval(FullCommand)  

RedOutputFile=['RedFeatCorr_' Nom_MonIm '.mat']  

FullCommand=['save ' RedOutputFile ' FeatCorrRef2D FeatCorr2D Nom_MonIm 

Nom_MonImRef minSubImageSizeX minSubImageSizeY maxS ubImageSizeX 

maxSubImageSizeY'];  

eval(FullCommand)  

end  

end  
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Fourier function 

 

function v=FourierMalek(MonIm)  

MaFFT=abs(fft2(MonIm));  

SumColon=sum(MaFFT);  

[col_max,loc_col_max]=max(SumColon(2:uint16(length( SumColon)/2)));  

fx=loc_col_max;  

SumRow=sum(MaFFT');  

[row_max,loc_row_max]=max(SumRow(2:uint16(length(Su mRow)/2)));  

fy=loc_row_max;  

v(1)=abs(MaFFT(1,1));  

v(2)=abs(MaFFT(fx,1));  

v(3)=fx;  

v(4)=sum(abs(MaFFT(1:fx,1)));  

v(5)=abs(MaFFT(1,fy));  

v(6)=fy;  

v(7)=sum(abs(MaFFT(1,1:fy)));  
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The sub-image 

 

function A=SubImage(MonIm,sizeX,sizeY,origX,origY)  

A(:,:)=MonIm(origY:origY+sizeY-1,origX:origX+sizeX- 1);  

 

 

 

 

 

 

 

The random sub-image 

 

function [A,origX,origY]=SubImageRand(MonIm,sizeX,s izeY)  

sizes=size(MonIm);  

MonImSizeX=uint16(sizes(2));  

MonImSizeY=uint16(sizes(1));  

origX=uint16(floor(rand*(MonImSizeX-sizeX-1))+1);  

origY=uint16(floor(rand*(MonImSizeY-sizeY-1))+1);  

A(:,:)=MonIm(origY:origY+sizeY-1,origX:origX+sizeX- 1);  
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Fabric defect detection 

 

 

clc  

clear all  

close all  

N=500;  

  

Nom_MonImRef='4a.tif';  

MonImRef=imread(Nom_MonImRef);  

imshow(MonImRef);  

MonInfoRef=imfinfo(Nom_MonImRef);  

if (~(strcmp(MonInfoRef.ColorType,'grayscale')))  

    disp(['transformer d''abord le fichier' Nom_Mon ImRef ' en grayscale'])  

    return  

end  

MonImSizeX=MonInfoRef.Width;  

MonImSizeY=MonInfoRef.Height;  

figure  

imshow(imadjust(MonIm));  

figure  

imshow(histeq(MonIm));  

figure  

imshow(MonIm);colormap(jet)  

MaFFT=abs(fft2(single(MonImRef)));  

figure  

imshow(MaFFT,[0 10000]);  

figure  

imshow(fftshift(MaFFT),[0 10000]);  

vRef=FourierMalek(single(MonImRef));  

  

Lettre=char('b', 'c', 'd', 'e', 'f', 'g', 'h', 'i',  'j', 'k', 'l', 'o', 'p');  

close all  

Nb_Fichiers=size(Lettre,1)  

for Index_Fichier=1:Nb_Fichiers  

    k=1;  

    VarPart=Lettre(Index_Fichier,k)  

    k=k+1;  

    while (k<=size(Lettre,2)),  

        if (strcmp(Lettre(Index_Fichier,k),' ')==0)  
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            VarPart=[VarPart Lettre(Index_Fichier,k )];  

            k=k+1;  

        else break  

        end  

    end  

    Nom_MonIm=['4' VarPart '.tif'];  

    MonImOrig=imread(Nom_MonIm);  

    MonInfo=imfinfo(Nom_MonIm);  

  

   NoiseLevels=[0.0000 0.001 0.0025 0.005 0.01];  

   for IndexNoise=1:length(NoiseLevels)  

        NoiseLevel=NoiseLevels(IndexNoise);  

        NOfNoiseLoops=1;  

        for IndexTimes=1:NOfNoiseLoops  

            MonIm=imnoise(MonImOrig,'gaussian',0,No iseLevel);  

            imwrite(MonIm,[Nom_MonIm '_n' num2str(N oiseLevel) '_#' 

num2str(IndexTimes) '.bmp']);  

            MonIm=imread([Nom_MonIm '_n' num2str(No iseLevel) '_#' 

num2str(IndexTimes) '.bmp']);  

            MonInfo=imfinfo(Nom_MonIm);  

            if (~(strcmp(MonInfo.ColorType,'graysca le')))  

                disp(['transformer d''abord le fich ier' Nom_MonIm ' en 

grayscale'])  

                return  

            end  

  

            for IndexTimes=[33:33 40:40 50:50 60:60  70:70 80:80 90:90 100:100];  

                SubImageSizeX=(IndexTimes);  

                SubImageSizeY=(IndexTimes);  

                SubImageSizeX=SubImageSizeY;              

                

            for IndexTimes= [15:15 20:20 25:30 35:3 5 40:40 45:45 50:50];  

            StepX=(IndexTimes);  

            StepY=(IndexTimes);  

  

SubImage1=SubImageRand(single(MonImRef),SubImageSiz eX,SubImageSizeY);  

            vRef=FourierMalek(SubImage1);  

            figure  

            subplot(221)  

            imshow(SubImage1,[0 255])  
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            MaFFT=abs(fft2(single(SubImage1)));  

            subplot(223);  

            imshow(MaFFT,[0 5000]);  

            

SubImage2=SubImage(single(MonIm),SubImageSizeX,SubI mageSizeY,300,300);  

            v2=FourierMalek(SubImage2)  

            subplot(222)  

            imshow(SubImage2,[0 255])  

            MaFFT=abs(fft2(single(SubImage2)));  

            subplot(224);  

            imshow(MaFFT,[0 5000]);  

  

            k=1;  

            Xred=1;  

            for l=1:StepX:MonImSizeX-SubImageSizeX  

                Yred=1;  

                for m=1:StepY:MonImSizeY-SubImageSi zeY 

                    

SubImage_k=SubImage(MonImRef,SubImageSizeX,SubImage SizeY,l,m);  

                    v(k,:)=FourierMalek(double(SubI mage_k));  

                    k=k+1;  

                    Yred=Yred+1;  

                end  

                Xred=Xred+1;  

            end  

            mean_v=mean(v,1);  

            for k=1:length(v)  

                 

                Buf=corrcoef(v(k,:),mean_v);  

                FeatCorrRef(k)=Buf(1,2);  

            end  

            figure  

            min(FeatCorrRef)  

            plot(FeatCorrRef)  

            minYFeatCorr=0.50;  

            axis([1 length(v) minYFeatCorr 1]);  

            figure  

            plot(v)  

  

            clear v;  
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            k=1;  

            MonImSizeX=MonInfo.Width;  

            MonImSizeY=MonInfo.Height;  

            Xred=1;  

            for l=1:StepX:MonImSizeX-SubImageSizeX  

                Yred=1;  

                for m=1:StepY:MonImSizeY-SubImageSi zeY 

                    SubImage_k=SubImage(MonIm,SubIm ageSizeX,SubImageSizeY,l,m);  

                    v(k,:)=FourierMalek(double(SubI mage_k));  

                    Buf=corrcoef(v(k,:),mean_v);  

                    FeatCorr(k)=Buf(1,2);  

                    ImFeatCorr(Yred,Xred)=FeatCorr( k);  

                    k=k+1;  

                    Yred=Yred+1;  

                end  

                Xred=Xred+1;  

            end  

            figure  

            min(FeatCorr)  

            plot(FeatCorr)  

            axis([1 length(v) minYFeatCorr 1]);  

            figure  

            plot(v)  

            figure  

            imagesc(ImFeatCorr)  

            colormap(jet(256));  

            colorbar  

            %LimFeatCorr=1-((1-min(FeatCorrRef))*10 )  

            LimFeatCorr=1-(mean(FeatCorrRef)*50)  

             

         LimFeatCorrs=[0.70, 0.75, 0.80, 0.85, 0.90 , 0.95, 0.99];  

          

         for IndexFeatCorr=1:length(LimFeatCorrs)  

         LimFeatCorr=LimFeatCorrs(IndexFeatCorr);  

         NOfFeatCorrLoops=1;  

                         

            MonImDefaut(:,:,1)= MonIm;  

            MonImDefaut(:,:,2)= MonIm;  

            MonImDefaut(:,:,3)= MonIm;  

            figure  
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            Xred=1;  

            for l=1:StepX:MonImSizeX-SubImageSizeX  

                Yred=1;  

                for m=1:StepY:MonImSizeY-SubImageSi zeY 

                    origY=m;  

                    origX=l;  

                     

                    if (ImFeatCorr(Yred,Xred)<LimFe atCorr)  

                        MonImDefaut(origY:origY+Sub ImageSizeY-

1,origX:origX+1,1)=255;  

                        MonImDefaut(origY:origY+1,o rigX:origX+SubImageSizeX-

1,1)=255;  

                        MonImDefaut(origY:origY+Sub ImageSizeY-

1,origX+SubImageSizeX-2:origX+SubImageSizeX,1)=255;  

                        MonImDefaut(origY+SubImageS izeY-

2:origY+SubImageSizeY,origX:origX+SubImageSizeX-1,1 )=255;  

  

                        MonImDefaut(origY:origY+Sub ImageSizeY-

1,origX:origX+1,2)=0;  

                        MonImDefaut(origY:origY+1,o rigX:origX+SubImageSizeX-

1,2)=0;  

                        MonImDefaut(origY:origY+Sub ImageSizeY-

1,origX+SubImageSizeX-2:origX+SubImageSizeX,2)=0;  

                        MonImDefaut(origY+SubImageS izeY-

2:origY+SubImageSizeY,origX:origX+SubImageSizeX-1,2 )=0;  

  

                        MonImDefaut(origY:origY+Sub ImageSizeY-

1,origX:origX+1,3)=0;  

                        MonImDefaut(origY:origY+1,o rigX:origX+SubImageSizeX-

1,3)=0;  

                        MonImDefaut(origY:origY+Sub ImageSizeY-

1,origX+SubImageSizeX-2:origX+SubImageSizeX,3)=0;  

                        MonImDefaut(origY+SubImageS izeY-

2:origY+SubImageSizeY,origX:origX+SubImageSizeX-1,3 )=0;  

                    end  

                    Yred=Yred+1;  

                end  

                Xred=Xred+1;  

            end  

            imshow(MonImDefaut)  
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            if not(exist('NoiseLevel'))  

                NoiseLevel=0  

            end  

   

             imwrite(MonImDefaut,['Defaut_' Nom_Mon Im '_' num2str(SubImageSizeX) 

'x' num2str(SubImageSizeY) 'x' num2str(LimFeatCorr)  '_s' num2str(StepX) '_n' 

num2str(NoiseLevel) '_#' num2str(IndexTimes) '.tif' ]);  

            clear MonImDefaut;  

            close all  

            end    

            end  

          end  

       end  

    end  

end 
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The implementation of the level selection filter  

 

clc  

clear all  

close all  

N=500;  

  

Nom_MonImRef='4a.tif';  

MonImRef=imread(Nom_MonImRef);  

imshow(MonImRef);  

MonInfoRef=imfinfo(Nom_MonImRef);  

if (~(strcmp(MonInfoRef.ColorType,'grayscale')))  

    disp(['transformer d''abord le fichier' Nom_Mon ImRef ' en grayscale'])  

    return  

end  

MonImSizeX=MonInfoRef.Width;  

MonImSizeY=MonInfoRef.Height;  

figure  

imshow(imadjust(MonIm));  

figure  

imshow(histeq(MonIm));  

figure  

imshow(MonIm);colormap(jet)  

MaFFT=abs(fft2(single(MonImRef)));  

figure  

imshow(MaFFT,[0 10000]);  

figure  

imshow(fftshift(MaFFT),[0 10000]);  

vRef=FourierMalek(single(MonImRef));  

  

Lettre=char('b', 'c', 'e', 'f', 'g', 'h', 'i', 'j',  'k', 'l', 'o', 'p');  

 

close all  

Nb_Fichiers=size(Lettre,1)  

for Index_Fichier=1:Nb_Fichiers  

 

    k=1;  

    VarPart=Lettre(Index_Fichier,k)  

    k=k+1;  

    while (k<=size(Lettre,2)),  
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        if (strcmp(Lettre(Index_Fichier,k),' ')==0)  

            VarPart=[VarPart Lettre(Index_Fichier,k )];  

            k=k+1;  

        else break  

        end  

    end  

    Nom_MonIm=['4' VarPart '.tif'];  

    MonImOrig=imread(Nom_MonIm);  

    MonInfo=imfinfo(Nom_MonIm);  

  

   NoiseLevels=[0.0000 0.001 0.0025 0.005 0.01];  

    

   for IndexNoise=1:length(NoiseLevels)  

        NoiseLevel=NoiseLevels(IndexNoise);  

        NOfNoiseLoops=1;  

        for IndexTimes=1:NOfNoiseLoops  

            MonIm=imnoise(MonImOrig,'gaussian',0,No iseLevel);  

            imwrite(MonIm,[Nom_MonIm '_n' num2str(N oiseLevel) '_#' 

num2str(IndexTimes) '.bmp']);  

            MonIm=imread([Nom_MonIm '_n' num2str(No iseLevel) '_#' 

num2str(IndexTimes) '.bmp']);  

            MonInfo=imfinfo(Nom_MonIm);  

            if (~(strcmp(MonInfo.ColorType,'graysca le')))  

                disp(['transformer d''abord le fich ier' Nom_MonIm ' en 

grayscale'])  

                return  

            end  

            for IndexTimes=50:60;  

                SubImageSizeX=(IndexTimes);  

                SubImageSizeY=(IndexTimes);  

                SubImageSizeX=SubImageSizeY;                

            for IndexTimes=25:30;  

               StepX=(IndexTimes);  

               StepY=(IndexTimes)        

SubImage1=SubImageRand(single(MonImRef),SubImageSiz eX,SubImageSizeY);  

            vRef=FourierMalek(SubImage1);  

            figure  

            subplot(221)  

            imshow(SubImage1,[0 255])  

            MaFFT=abs(fft2(single(SubImage1)));  

            subplot(223);  
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            imshow(MaFFT,[0 5000]);  

            

SubImage2=SubImage(single(MonIm),SubImageSizeX,SubI mageSizeY,300,300);  

            v2=FourierMalek(SubImage2)  

            subplot(222)  

            imshow(SubImage2,[0 255])  

            MaFFT=abs(fft2(single(SubImage2)));  

            subplot(224);  

            imshow(MaFFT,[0 5000]);  

  

            k=1;  

            Xred=1;  

            for l=1:StepX:MonImSizeX-SubImageSizeX  

                Yred=1;  

                for m=1:StepY:MonImSizeY-SubImageSi zeY 

                    

SubImage_k=SubImage(MonImRef,SubImageSizeX,SubImage SizeY,l,m);  

                    v(k,:)=FourierMalek(double(SubI mage_k));  

                    k=k+1;  

                    Yred=Yred+1;  

                end  

                Xred=Xred+1;  

            end  

            mean_v=mean(v,1);  

            for k=1:length(v)  

 

                Buf=corrcoef(v(k,:),mean_v);  

                FeatCorrRef(k)=Buf(1,2);  

            end  

 

            clear v;  

            k=1;  

            MonImSizeX=MonInfo.Width;  

            MonImSizeY=MonInfo.Height;  

            Xred=1;  

            for l=1:StepX:MonImSizeX-SubImageSizeX  

                Yred=1;  

                for m=1:StepY:MonImSizeY-SubImageSi zeY 

                    SubImage_k=SubImage(MonIm,SubIm ageSizeX,SubImageSizeY,l,m);  

                    v(k,:)=FourierMalek(double(SubI mage_k));  

                    Buf=corrcoef(v(k,:),mean_v);  
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                    %Buf=corrcoef(v(k,:)./mean_v.*[ 1:7],[1:7]);  

                    FeatCorr(k)=Buf(1,2);  

                    ImFeatCorr(Yred,Xred)=FeatCorr( k);  

                    k=k+1;  

                    Yred=Yred+1;  

                end  

                Xred=Xred+1;  

            end  

            figure  

            min(FeatCorr)  

            plot(FeatCorr)  

            axis([1 length(v) minYFeatCorr 1]);  

            figure  

            plot(v)  

            figure  

            imagesc(ImFeatCorr)  

            colormap(jet(256));  

            colorbar  

            LimFeatCorr=1-(mean(FeatCorrRef)*50)    

            LimFeatCorrs=[0.8]  

         for IndexFeatCorr=1:length(LimFeatCorrs)  

         LimFeatCorr=LimFeatCorrs(IndexFeatCorr);  

         NOfFeatCorrLoops=1;  

             

            MonImDefaut(:,:,1)= MonIm;  

            MonImDefaut(:,:,2)= MonIm;  

            MonImDefaut(:,:,3)= MonIm;  

            MonImDefautMask=zeros(size(MonIm),'uint 8');  

            figure  

            Xred=1;  

             

            for l=1:StepX:MonImSizeX-SubImageSizeX  

                Yred=1;  

                for m=1:StepY:MonImSizeY-SubImageSi zeY 

                    origY=m;  

                    origX=l;  

                   

                     if (ImFeatCorr(Yred,Xred)<LimF eatCorr)               

MonImDefautMask(origY:origY+SubImageSizeY,origX:ori gX+SubImageSizeX)=MonImDefaut

Mask(origY:origY+SubImageSizeY,origX:origX+SubImage SizeX)+1;  
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                    end     

                Yred=Yred+1;     

                end  

                Xred=Xred+1;     

            end  

            imshow(MonImDefaut)  

            if not(exist('NoiseLevel'))  

               NoiseLevel=0  

            end  

for l=1:size(MonImDefautMask,1)  

    for m=1:size(MonImDefautMask,2)  

           if MonImDefautMask(l,m)==1  

               MonImDefaut(l,m,2)=255;  

           end  

            if MonImDefautMask(l,m)==2  

               MonImDefaut(l,m,2)=255;  

               MonImDefaut(l,m,3)=255;  

           end  

           if MonImDefautMask(l,m)==3  

               MonImDefaut(l,m,1)=255/2;  

               MonImDefaut(l,m,2)=255/3;  

           end  

           if MonImDefautMask(l,m)==4  

               MonImDefaut(l,m,1)=255;  

           end  

    end  

end         

             imwrite(MonImDefaut,['Defaut_' Nom_Mon Im '_' num2str(SubImageSizeX) 

'x' num2str(SubImageSizeY) 'x' num2str(LimFeatCorr)  '_s' num2str(StepX) '_n' 

num2str(NoiseLevel) '_#' num2str(IndexTimes) '.tif' ]);  

         end   

            clear MonImDefaut;  

            close all  

          end    

        end  

      end  

    end  

end   
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La qualité des tissus est définie par la quantité et le type de défauts apparaissant à la 

surface de celui-ci. La qualité est primordiale, car elle influence à la fois l’aspect et les 

propriétés mécaniques des tissus, que ce soit pour des applications en habillement ou des 

applications industrielles. Afin de mesurer cette qualité, les tissus sont inspectés de 

manière visuelle au cours d’une opération appelée visite, afin de compter à la fois le 

nombre de défauts, mais aussi de déterminer leurs types (fausse duite, défaut de 

rentrage, tâche…) et leurs tailles. La visite est une opération qui est longue et fastidieuse, 

la rendre automatique serait une grande avancée.  

Le présent travail de thèse a donc pour but d’automatiser la détection des défauts de 

tissage, à l’aide d’un système informatisé fondé sur le traitement d’image. La visite du 

tissu ayant une importance primordiale pour prévenir le risque de livrer un produit 

défectueux, la visite automatique devrait permettre une inspection totale et ainsi réduire ce 

risque. Jusqu’à présent, cette tâche est la plupart du temps effectuée manuellement par 

un opérateur ou une opératrice qui  inspecte visuellement le tissu, ce qui induit de 

nombreux inconvénients, tels que la fatigue, l’ennui et l’inattention. 

Le processus habituel de visite est le suivant : lorsque la machine à tisser a produit 

une longueur de tissu donné, ce dernier est prélevé de la machine à tisser puis assemblé 

avec des tissus provenant d’autres machines pour former un rouleau de longueur 

compatible avec l’opération de visite. Puis ces rouleaux sont dirigés vers le département 

d’inspection.  Un opérateur de visite qualifié inspecte à grande vitesse le tissu se déroulant 

sur la table de visite rétro éclairée. A chaque défaut, le déroulement du tissu est 

interrompu, le défaut physiquement repéré sur le bord du tissu et identifié manuellement 

dans l’ordinateur de la table de visite. Cette opération étant effectuée post tissage, le 

temps de latence entre le tissage et la détection des défauts est long, donc la rétroaction 

sur la machine à tisser souvent tardive avec le risque de généré une quantité de tissu 
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défectueuse importante. Avec une telle pratique, on estime que près de 25 % des défauts 

ne sont pas détectés. Afin d’être plus efficace, l’inspection doit se faire en ligne de manière 

automatique et si possible directement sur la machine  à tisser. Les développements 

importants et continus des technologies informatiques devraient rendre l’inspection 

automatique possible et ainsi avoir une alternative efficace à l’inspection manuelle. 

Le travail développé au cours de la thèse propose une approche efficace et précise 

pour la détection automatique des défauts. Ce système, fondé sur l’analyse d’image, est 

capable d’identifier tous les types de défauts susceptibles d’être présents dans les tissus. 

La structure du tissu, de par sa fabrication, est périodique par répétition de l’armure 

(dessin d’entrecroisement). L’apparition d’un défaut dans le tissu entraîne la destruction de 

cette périodicité. De ce fait, le défaut de tissage peut être détecté par la surveillance en 

continu de la structure du tissu pendant le tissage. 

Le transformée de Fourier donne la possibilité de suivre la structure du tissu et de 

décrire la relation existante entre la structure du tissu, le domaine spatial et le spectre de 

Fourier dans le domaine des fréquences. La présence d’un défaut dans la structure 

périodique du tissu va provoquer des modifications dans son spectre de Fourier. En 

comparant le spectre de puissance d’une image, contenant un défaut et d’une image 

exempte de défauts, les changements de l’état de l’intensité normalisée entre les deux 

images pourraient signifier la présence d’un défaut. 

Dans notre travail, les techniques de transformée rapide de Fourier et la corrélation 

croisée sont d’abord mises en œuvre, afin d’examiner les caractéristiques de régularité de 

la structure de l’image du tissu dans le domaine fréquentiel. Dans un deuxième temps, afin 

d’améliorer l’efficacité de la technique et d’éviter le problème d’erreur de détection, une 

opération de seuillage a été implémentée en utilisant un filtre de sélection de niveau. Au 

moyen de ce filtre, la technique mise en place est capable de détecter uniquement les 

défauts réels et de mettre en évidence leurs dimensions exactes. L’ensemble de cette 

procédure a été implémenté au moyen du progiciel Matlab ou Scilab.  

Puis l’ensemble des procédures a été mis en œuvre sur un tissu simulé, afin de 

comprendre le comportement du spectre de fréquences, de déterminer et d’optimiser les 

paramètres de détection les plus importants. Dans toutes ces procédures, le niveau de 

bruit a bien sûr été pris en compte. L’efficacité des procédures ayant été testée sur des 

tissus simulés dans un premier temps, elles ont été appliquées aux tissus sortant de 
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machines à tisser. Ainsi, des échantillons contenant divers défauts ainsi que des 

échantillons écrus, unis ou de diverses couleurs ont pu être testés. Les techniques 

proposées ont aussi dans ces divers cas montré leur efficacité. Par ailleurs, eu égard au 

temps de traitement d’une image, il a été démontré que ce temps est compatible  avec 

une inspection en temps réel directement  sur machine à tisser tournant à plus de 

1000cps/min. 

En conclusion, un prototype fondé sur un dispositif de vision pour l’inspection des 

tissus sur métier à tisser en temps réel est proposé. Cette inspection pourrait être 

effectuée à 100 %. L’ensemble des procédures et méthodologies proposées dans le 

travail de thèse offre des perspectives prometteuses, quant à la détection des défauts en 

ligne. 
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