MINISTÈRE DE LA PRODUCTION INDUSTRIELLE

MÉMOIRES
POUR SERVIR À L'EXPLICATION
DE
LA CARTE GÉOLOGIQUE DÉTAILLÉE DE LA FRANCE

LES ZONES
ULTRADAUPHINOISE ET SUBBRIANÇONNAISE
ENTRE L'ARC ET L'ISÈRE

PAR
REYNOLD BARBIER,
INGÉNIEUR-géOLOGUE N. N. N.,
DOCTEUR EN SCIENCES,
CHEF DE TRAVAIL À LA FACULTÉ DES SCIENCES DE STRASBOURG,
DÉTACHÉ À L'ÉCOLE NATIONALE SUPÉRIEURE DU PétROLE,
COLLABORATEUR ADJOINT AU SERVICE DE LA CARTE GÉOLOGIQUE DE LA FRANCE

PARIS
IMPRIMERIE NATIONALE

1948
ERRATA.

<table>
<thead>
<tr>
<th>PAGES</th>
<th>LIGNE</th>
<th>AU LIEU DE</th>
<th>LIBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Note infrapag. 1ère ligne.</td>
<td>en voûte</td>
<td>en voûte.</td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>(113 et 114)</td>
<td>(113 et 114)</td>
</tr>
<tr>
<td>18</td>
<td>16</td>
<td>sud-ouest-nord-ouest.</td>
<td>sud-ouest-nord-est.</td>
</tr>
<tr>
<td>19</td>
<td>33</td>
<td>paléoglaphique.</td>
<td>paléogéographique.</td>
</tr>
<tr>
<td>28</td>
<td>19</td>
<td>197</td>
<td>197</td>
</tr>
<tr>
<td>33</td>
<td>16</td>
<td>L'étude de...</td>
<td>l'étude du...</td>
</tr>
<tr>
<td>37</td>
<td>5 de la légende de la figure.</td>
<td>texte</td>
<td>textes (calendrier)</td>
</tr>
<tr>
<td>43</td>
<td>4</td>
<td>fig. 59</td>
<td>fig. 58</td>
</tr>
<tr>
<td>46</td>
<td>12</td>
<td>corallière</td>
<td>corallière.</td>
</tr>
<tr>
<td>47</td>
<td>12</td>
<td>fig. 12</td>
<td>fig. 12</td>
</tr>
<tr>
<td>49</td>
<td>9</td>
<td>fig. 9</td>
<td>fig. 9</td>
</tr>
<tr>
<td>53</td>
<td>Dernière.</td>
<td>fig. 59.</td>
<td>fig. 58.</td>
</tr>
<tr>
<td>63</td>
<td>18</td>
<td>calcheïtes</td>
<td>calcheïtes.</td>
</tr>
<tr>
<td>103</td>
<td>4 de la légende de la figure.</td>
<td>glauconium.</td>
<td>glauconium.</td>
</tr>
<tr>
<td>109</td>
<td>6</td>
<td>Prabasien.</td>
<td>Prabasien.</td>
</tr>
<tr>
<td>110</td>
<td>Avant-dernière.</td>
<td>nappé de...</td>
<td>nappé de...</td>
</tr>
<tr>
<td>110</td>
<td>8</td>
<td>nappé.</td>
<td>nappé.</td>
</tr>
<tr>
<td>114</td>
<td>11 de la légende de la figure.</td>
<td>relais.</td>
<td>relais.</td>
</tr>
<tr>
<td>120</td>
<td>7 de la légende de la figure.</td>
<td>Feuillons.</td>
<td>Feuillons.</td>
</tr>
<tr>
<td>133</td>
<td>98</td>
<td>Motioire.</td>
<td>Motioire.</td>
</tr>
<tr>
<td>133</td>
<td>19</td>
<td>subactinum</td>
<td>subactinum.</td>
</tr>
<tr>
<td>160</td>
<td>16</td>
<td>avec digestion.</td>
<td>avec la digestion.</td>
</tr>
<tr>
<td>165</td>
<td>2 de la tête de la figure.</td>
<td>à l'Est de la coté 2002 vers le sud.</td>
<td>à l'Est de la coté 2002 vers le sud.</td>
</tr>
<tr>
<td>164</td>
<td>17</td>
<td>celle du Palt.</td>
<td>côte du Palt.</td>
</tr>
<tr>
<td>165</td>
<td>28</td>
<td>Écrite.</td>
<td>Écrite.</td>
</tr>
<tr>
<td>PAGES.</td>
<td>LIGNE</td>
<td>AU LIEU DE</td>
<td>LIBRE</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>163</td>
<td>6</td>
<td>à instabilité.</td>
<td>à une instabilité.</td>
</tr>
<tr>
<td>170</td>
<td>14</td>
<td>les terrains (pl. VI)</td>
<td>les terrains de la sous-dépétisme (pl. VI)</td>
</tr>
<tr>
<td>170</td>
<td>25</td>
<td>(p.)</td>
<td>(p. 45).</td>
</tr>
<tr>
<td>174</td>
<td>7</td>
<td>xix</td>
<td>mais.</td>
</tr>
<tr>
<td>174</td>
<td>8</td>
<td>en.</td>
<td>en.</td>
</tr>
<tr>
<td>178</td>
<td>Avant-dernière.</td>
<td>se resse</td>
<td>se resse</td>
</tr>
<tr>
<td>196</td>
<td>19</td>
<td>un peu</td>
<td>un peu.</td>
</tr>
<tr>
<td>204</td>
<td>15</td>
<td>plageage</td>
<td>plageage</td>
</tr>
<tr>
<td>215</td>
<td>87</td>
<td>plageage</td>
<td>plageage</td>
</tr>
<tr>
<td>209</td>
<td>Avant-dernière.</td>
<td>pourra faire</td>
<td>pourra faire</td>
</tr>
<tr>
<td>218</td>
<td>6 de la légende de la figure.</td>
<td>c donné</td>
<td>c donné</td>
</tr>
<tr>
<td>219</td>
<td>5 de la légende de la figure.</td>
<td>champoungant le</td>
<td>champoungant le</td>
</tr>
<tr>
<td>219</td>
<td>11</td>
<td>non signé</td>
<td>non signé</td>
</tr>
<tr>
<td>246</td>
<td>Dernière du texte.</td>
<td>Fyls. véritable, dépôt</td>
<td>Fyls. véritable, dépôt</td>
</tr>
<tr>
<td>268</td>
<td>Au n° 16.</td>
<td>55.</td>
<td>55.</td>
</tr>
<tr>
<td>269</td>
<td>Au n° 98.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>Au n° 124.</td>
<td>Moret (L.), foudrois.</td>
<td>Moret (L.), foudrois.</td>
</tr>
<tr>
<td>271</td>
<td>Au n° 155.</td>
<td>24.3</td>
<td>décembre</td>
</tr>
<tr>
<td>271</td>
<td>Au n° 155.</td>
<td></td>
<td>décembre</td>
</tr>
<tr>
<td>276</td>
<td>Au n° 26.</td>
<td>coup</td>
<td>coup</td>
</tr>
<tr>
<td>276</td>
<td>Au n° 33.</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>276</td>
<td>Au n° 33.</td>
<td>des divers.</td>
<td>des divers.</td>
</tr>
<tr>
<td>277</td>
<td>Au n° 41.</td>
<td>241</td>
<td>241</td>
</tr>
<tr>
<td>279</td>
<td>Au N. B.</td>
<td>paléogique</td>
<td>paléogique</td>
</tr>
<tr>
<td>281</td>
<td>Dernière.</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>281</td>
<td>Deux dernières.</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>290</td>
<td>Bas.</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>293</td>
<td>En bas.</td>
<td>Parisien</td>
<td>Parisien</td>
</tr>
<tr>
<td>295</td>
<td>15</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>295</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Ici encore on voit les...
Ici encore, on voit les...
LES ZONES
ULTRADAUPHINOISE ET SUBBRIANÇONNAISE
ENTRE L'ARC ET L'ISÈRE
MINISTÈRE DE L'INDUSTRIE ET DU COMMERCE

MÉMOIRES
POUR SERVIR À L'EXPLICATION
DE
LA CARTE GÉOLOGIQUE DÉTAILLÉE DE LA FRANCE

LES ZONES
ULTRADAUPHINOISE ET SUBBRIANÇONNAISE
ENTRE L'ARC ET L'ISÈRE

PAR
REYNOLD BARBIER,
INGÉNIEUR-GÉOLOGUE E. N. S. P.,
DOCTEUR EN SCIENCES,
CHARGÉ DE TRAVAIL À LA FACULTÉ DES SCIENCES DE STRASBOURG,
DÉTACHÉ À L'ÉCOLE NATIONALE SUPERIEURE DU PÉTROLE,
COLLABORATEUR AU SERVICE DE LA CARTE GÉOLOGIQUE DE LA FRANCE

PARIS
IMPRIMERIE NATIONALE
1948
À ma Fiancée,

À mes Parents,
À mon Frère,
en filial et fraternel témoignage
daffectation et de reconnaissances.
A mon Maître le Professeur Maurice Gignoux,

Membre de l'Institut,
Professeur à la Faculté des Sciences de l'Université de Grenoble,
Professeur honoraire à la Faculté des Sciences de l'Université de Strasbourg,
Collaborateur principal au Service de la carte géologique de la France,

respectueux hommage de profonde gratitude.

A mon Maître et ami Daniel Schoegans,

Membre de conférences à la Faculté des Sciences de l'Université de Strasbourg,
dédouble à l'École Nationale Supérieure du Pétrole,
Chef du Département géologique de la Régie autonome des Pétroles,
Collaborateur adjoint au Service de la carte géologique de la France,

cordial hommage de reconnaissance.

PRÉFACE.

«Pour la Patrie, par la montagne.»

Dessin de Cari Alain Français.

Naturaliste par vocation dès mon plus jeune âge, mais plutôt tourné vers la Zoologie par mon passé de jeune collectionneur d'insectes, c'est au moment où je venais d'opter pour la Botanique que l'imprévuosité convaincante de mon Maître D. Schoegans m'entraîna vers la Géologie, puis, grâce à la confiance que M. le Professeur Gignoux voulaient bien me témoigner, vers la géologie alpine.

M. Gignoux, L. Moret et D. Schoegans, venaient de renouveler complètement la stratigraphie des zones internes des Alpes au sud et à l'est du Pelvoux, créant leurs zones subbriunançoise et ultradauphinoise. Et grâce à ces découvertes qui avaient singulièrement éclairé bien des points obscurs de la stratigraphie et de la tectonique de nos Alpes françaises, allant du connu à l'inconnu, ils commençaient à s'attaquer à la région nord du Pelvoux en profitant des données stratigraphiques nouvellement élaborées dans les régions plus méridionales.

Renonçant avec beaucoup d'abnégation à poursuivre ces passionnantes recherches vers le nord, ils ont accepté de m'en confier l'étude et mon plus grand souhait serait de n'avoir pas été trop inférieur à ma tâche et de ne pas avoir trop déçu leur si bienveillante confiance.

Ce travail fut amorcé en 1938, époque heureuse encore où tout était si facile. Puis ce fut l'interruption du service militaire et de la guerre et je ne pus le reprendre qu'au cours de l'été 1941. Mais, dès cet été-là, surtout les suivants, à combien de difficultés ne se heurtait-on pas : difficultés de logement, de ravitaillement et de circulation, car la bicyclette
LES ZONES ULTRA-DAUPHINOISE ET SUBBRIANCONNAISE.

avait dû remplacer la motocyclette, si utile sur le terrain. Les leviers sur le terrain étaient néanmoins terminés en 1943; tout travail de ce genre était, du reste, impossible en 1944. Mais les événements marquaient maintenant à pas de géant et d'autres devoirs s'imposèrent momentanément : je partis alors comme engagé volontaire et j'eus ainsi la joie de participer à la libération de l'Alsace — bercé loin de mon pays natal — où j'avais passé de si belles années, à Strasbourg, avant la guerre. Rendu à la vie civile en mars 1945, je pouvais me remettre enfin à la tâche et achever ce travail mené au milieu de tant de vicissitudes. Aussi me sera-t-il plus facile d'y travailler, pour les imperfections que comporte à coup sûr cet ouvrage, des conditions si défavorables au milieu desquelles il a dû être édité.

Mais si une telle entreprise est difficile, il est toutefois possible de bien vouloir, à des titres divers, m'y aider. En toutes circonstances, j'ai toujours trouvé en M. le Professeur Gignoux l'appréciation le plus sûr, la plus durable et paternelle compréhension qui m'empêcheraient de perdre courage dans les moments difficiles, mais aussi des conseils toujours si pertinents et un dévouement si constant, notamment dans le travail ardu de la mise au point de mon texte, dans lequel il m'a si puissamment aidé: je lui en suis infiniment reconnaissant.

A Grenoble également, j'ai toujours été reçu avec la plus grande bonne grâce par M. le Professeur Moret, qui, par ses indications fondées sur une profonde connaissance de nos Alpes, m'a éclairé sur bien des points.

Mon patron à l'École du Pétrole, D. Schneegans, a suivi avec une amicale compréhension l'avancement de cet ouvrage et je lui suis redevable de bien des conseils et de nombreuses remarques qui m'ont été d'un précieux concours dans l'achèvement de ce travail.

Je suis également très reconnaissant à M. le Professeur Ch. Jacob, membre de l'Institut, de l'intérêt qu'il a bien voulu manifester à mon travail et de l'aide matérielle puissante dont je lui suis redevable.

Je remercie M. E. Baguin, Directeur du Service de la Carte géologique de la France, qui a bien voulu porter à mes travaux un intérêt plein de sollicitude et accepter de faire paraître ce travail dans la belle série des Mémoires du Service.

PRÉFACE.

En voulant bien m'accepter, dès le début de mon travail, parmi les collaborateurs du Service de la Carte, il a ainsi mis à ma disposition des moyens matériels qui m'ont été d'un précieux secours.

A côté de lui, je ne veux pas oublier M. J. Goguel, Directeur-adjoint, qui m'a toujours accueilli si cordialement au Service de la Carte.

Mais je n'oublie pas non plus ceux qui furent mes initiateurs à la Faculté des Sciences de Strasbourg et envers lesquels j'ai contracté une grande dette de reconnaissance : M. le Professeur J. de Lapparent, membre correspondant de l'Institut, pour la pétrographie, M. le Professeur G. Dubois pour la géologie, ainsi que M. L. Guillaume pour les travaux pratiques.

Je ne veux pas manquer, non plus, d'exprimer ma gratitude à ceux qui m'ont accueilli, réfugié, dans leur laboratoire de Toulouse, durant deux années, avec une si chaleureuse et cordialité : M. le Professeur Mengaud et M. G. Astre. Je tiens également à remercier ici, bien vivement, M. le Professeur Castéra qui, après le départ de M. le Professeur Mengaud, a toujours si aimablement mis à ma disposition les moyens de travail de son laboratoire.

Toute ma reconnaissance va, enfin, à M. Chabrol, chef des Travaux graphiques du Service de la Carte, qui a présidé avec un grand soin à l'impression de ce mémoire.

Les leviers ont été entièrement exécutés sur les beaux plans directs au 1/20.000e du Service géographique de l'Armée, qui permettent une grande précision dans le détail. Malheureusement, la publication d'une carte à cette échelle était entraînée des frais exorbitants. J'ai donc dû effectuer une réduction de mes travaux au 1/50.000e. Les contours y perdent forcément de leur précision, mais on y gagne une vue d'ensemble plus nette. Une nouvelle difficulté surgirait alors, toutes les cartes à cette échelle n'étant pas encore publiées. Elle a cependant pu être surmontée, en recourant, dans la partie nord-ouest, à une réduction du 1/20.000e. Malgré une petite imprécision dans le recueil des différentes feuilles, cette solution a néanmoins permis l'établissement de ce fond topogra-
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

...phique pour lequel je tiens à remercier l'Institut Géographique National.

Signalons enfin que les figures ont presque toutes été dessinées d'après des photographies dont plusieurs ont été très obligeamment mises à ma disposition par M. le Professeur Gignoux, ce dont je tiens à le remercier bien vivement.

LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE ENTRE L'ARC ET L'ISÈRE.

INTRODUCTION.

I

SCHÉMA STRUCTURAL OROGRAPHIQUE ET HYDROGRAPHIQUE DU SEGMENT DE L'ARC ALPIN COMPRIS ENTRE LE PELVOUX ET LE MONT-BLANC.

L'orographie du segment de l'arc alpin compris entre le Pelvoux et le Mont-Blanc est essentiellement conditionnée, ainsi que l'avait déjà noté Ch. Lory (4 a) (1), par l'allongement dans le sens de la chaîne des diverses zones de faciès : il y a donc un parallélisme à peu près complet entre les unités géologiques et morphologiques (2).

Cette structure particulière retentit également sur l'hydrographie. Si, en effet, les vallées principales sont transversales (vallée de l'Arc ou Maurienne, haute vallée de l'Isère ou Tarentaise), leurs affluents principaux sont, eux, généralement allongés dans le sens de l'arc alpin, mouulant ainsi leur réseau hydrographique sur la struture géologique où alternent, en bandes nord-sud, les terrains durs et les terrains tendres.

 Aussi, venant de l'ouest et après avoir passé les chaînes subalpines et le sillon subalpin, rencontre-t-on une série d'unités géologiques succes-

(1) Les numéros entre parenthèses se rapportent aux ouvrages cités dans la liste bibliographique placée à la fin du volume.

(2) Pour plus de détails sur la morphologie de ces régions en voudra bien se reporter aux ouvrages récents de R. Blanchard (165) et H. Onde (146).
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

1. LES MASSIFS CRISTALLINS EXTERIERS. — Ces massifs, formés de roches cristallines et cristallophyllennes très résistantes à l'érosion, sont les plus élevés de nos Alpes et sont tout hérités de pics et d'aiguilles.

Le plus externe est la chaîne de Belledonne prolongée, au nord, par le massif des Aiguilles Rouges. Puis, un peu en retrait, vient une série de massifs distincts : le Pelvoux et sa dépendance des Grandes-Rousses, le Grand Châtélard au niveau de l'Arc, enfin le Mont-Blanc.

2. LA COUVERTURE DES MASSIFS CRISTALLINS EXTERIERS OU ZONE DAUPHINOISE. —
Ici dominent les terrains marnieux représentant surtout le Lias. Facilement entaillés par l'érosion, ils ont donné naissance à une région fortement déprimée par rapport aux massifs cristallins. Une série d'affluents sensiblement perpendiculaires aux deux grandes vallées de l'Arc et de l'Isère y ont creusé leur lit.

3. LA ZONE ULTRADAUPHINOISE. — Cette unité n'est, en somme, que la partie la plus orientale de la précédente. Mais les terrains y diminuent d'épaisseur et les variations latérales de faciès y établissent une transition avec ceux de la zone subbriantonnaise.

Elle s'en distingue morphologiquement par la longue cuesta du Flysch des Aiguilles d'Arves, surplombant la dépression de la zone dauphinoise et constituant un des traits les plus caractéristiques de la morphologie de cette région.

4. LA ZONE SUBBRIANÇONNAISE. — Une série de bandes de terrains divers, dont nous verrons plus loin le détail, ont été groupées dans cette unité, caractérisée par des faciès intermédiaires entre ceux des deux zones qui l'encadrent. L'hétérogénéité des matériaux y a déterminé une série de crêtes et de talwegs sensiblement nord-sud eux aussi, et, par conséquent, perpendiculaires aux deux vallées principales.

5. LA ZONE BRIONNAISE. — Cette unité correspond à la cordille
briannonnaise, mais, dans notre région, la couverture mésozoïque a presque complètement disparu, laissant largement affleurer le Houiller. C'est pour cette raison qu'elle est souvent dénommée, ici, «zone houillère briannonnaise». L'homogénéité du matériau houiller y détermine des coups peu individualisées et très monotonnes.

Elle est suivie, à l'est, de la zone des schistes listrés, dont je ne rappelle la position que pour mémoire.

II

DÉLIMITATION DU SUJET ET DÉFINITIONS.

La région étudiée groupe toutes les unités comprises entre la zone dauphinoise à l'ouest et la zone briannonnaise à l'est. Elle est limitée, au nord, par la vallée de l'Isère et, au sud, par celle de l'Arc, qu'elle déborde légèrement vers le sud-est (fig. 1).

J'y ai reconnu le prolongement des deux zones définies, plus au sud, par M. Gignoux, L. Moret et D. Schneeegans : la zone ultradauphinoise à l'ouest et la zone subbriannonnaise à l'est.

1. La zone ultradauphinoise ou des Aiguilles d'Arves.— La zone ultradauphinoise, telle qu'elle a été définie, au sud du Pelvoux, par M. Gignoux, L. Moret et D. Schneeegans (143 et 148), correspond à la partie la plus orientale de la zone dauphinoise, où les faciès, moins épais, forment une transition vers ceux de la zone suivante.

Cette zone est, de plus, le siège d'une tectonique un peu spéciale, aboutissant à la formation «d'écailles parautochtones». Pour ces deux raisons, nous considérerons comme ultradauphinoise, dans notre région, la zone des Aiguilles d'Arves caractérisée par ses faciès et surtout par son Flysch, et surtout découlant, au nord de l'Arc, en une vaste écaillée chevauchant la zone dauphinoise autochtone.

Bien développée au sud de l'Arc, la zone ultradauphinoise disparaît au droit du Nièlard, un peu au sud de l'Isère, laminée entre l'autochtone et les nappes subbriannonnées (10).

2. La zone subbriannonnaise. — Deux sous-zones, présentant des faciès bien particuliers et nettement opposés, ont dû être distinguées à l'intérieur de ce domaine subbriannonnaïs :

a. La sous-zone ou nappe des Brèches de Tarentaise.— Le terme de nappe de l'Embrunnois, donné à cette zone par E. Haug (88), puis H. Scheller (101), ne peut être conservé, comme on le verra plus loin (p. 35). J'ai donc repris, pour la désigner, le terme ancien de zone des Brèches de Tarentaise.

Cette première sous-zone subbriannonnaise, la plus externe des deux, est caractérisée :

— par ses faciès de cordillère : Lias ceralien, lacune postlisanique, brèches jurassiennes, lacune anténummulite ;
— par l'importance qu'y ont revêtue les plissemements anténummulitiques, ainsi qu'en témoigne la transgression du Flysch sur tous les termes de la série, y compris le cristallin.

Cette unité n'affleurant qu'en Tarentaise, je la désignerai par le nom de «cordillère turine».

Les différences qui s'y révèlent d'ouest en est dans le Lias et surtout dans le Nummulitique m'ont obligé à diviser, à son tour, cette nappe en deux digitations :

a. Une digitation du Nièlard, du nom du Mont Nièlard à l'ouest de Saint-Jean-de-Belleville, un peu au sud de l'Isère, qui en est le sommet le plus représentatif. C'est la plus externe des deux digitations. Elle disparait rapidement au nord et au sud, et se trouve entièrement comprise entre l'Arc et l'Isère.

b. Une digitation de Moitié, du nom de la ville de Moitié en Tarentaise. Elle est surtout développée au nord de l'Isère, en dehors de notre

(10) Il n'est pas impossible, cependant, que la zone distincte, par H. Scheller, à la basse teraire de sa nappe de l'Embrunnois (101), et caractérisée par la présence de schistes de la Bouches, en constitue encore un réseau au nord de l'Isère.
région, où elle a été étudiée en détail par H. Scholler (101 et carte géologique au 1/50,000, feuille Bourg-Saint-Maurice).

Un faisceau de plus particuliers a dû être distingué à la bordure interne de cette unité : c'est le faisceau de Salins (du nom de la localité voisine de Moûtiers). Mais, seules, des raisons d'ordre tectonique ont motivé cette séparation, car la série stratigraphique de ce faisceau est identique à celle du reste de la digitation. II y a donc une seule unité stratigraphique, la digitation de Moûtiers, séparée en deux unités tectoniques distinctes : le faisceau de Moûtiers et celui de Salins.

Très développée au sud de l'Isère, où elle chevauche directement la zone dauphinoise, la sous-zone des Brèches de Tarantaise se lamine vers le sud et disparaît, entre l'Arc et l'Isère, au Cirque de Valbuche.

B. La sous-zone ou nappe du Pas du Roc. — J'ai conservé, pour désigner cette unité, le terme employé par D. Schneegans (111), tiré du défilé du Pas du Roc dans la vallée de l'Arc, un peu en aval de Saint-Michel-de-Maurienne.

Cette sous-zone, interne par rapport à la précédente, est caractérisée :
- par des faciès qui ne sont plus du tout ceux d'une cordillère et se rapprochent déjà beaucoup de ceux du Subbriançonnais de l'Ubaye-Embrunais, plus internes encore ;
- par l'amplitude beaucoup moindre des plissements autoanumuliques (le terme le plus bas sur lequel on observe la transgression lutétienne est le Crétacé inférieur).

Cette unité a dû, elle aussi, être divisée en deux zones de faciès différents, qui sont en même temps deux unités tectoniques distinctes :

a. La digestion de la Grande Moenda, du nom des Aiguilles de la Grande Moenda, à mi-chemin entre l'Arc et l'Isère, qui en sont le sommet le plus élevé.

Cette digestion s'oppose aux unités voisines par des faciès relativement profonds. Paléogéographiquement, elle représente donc un «sillon» entre des «cordillères». Elle n'affleure qu'au nord de l'Arc et jusqu'à proximité de l'Isère (Longefoy).

b. La digestion du Perron des Encombres, du nom de son massif principal, situé un peu au nord de l'Arc. Elle a joué le rôle d'un «seuil» jusqu'au Callovo-oxfordien, où elle présente du reste encore des brèches (brèches du Télégraphe), malgré l'approfondissement général des faciès à cette période.

Très développée au sud de l'Arc et au niveau de celui-ci, cette unité se rétrécit vers le nord et disparaît, complètement laminée, dans la région de Saint-Martin-de-Belleville, au sud de l'Isère, qu'elle n'atteint pas.

Notons enfin que, dans cette sous-zone du Pas du Roc, les terrains les plus récents (Malma à Nummulitique) ne sont connus, en place, qu'à l'état de lambeaux, dans la région de Gitazelen. Mais la plus grande partie se trouve, en écaillés très morcelées et laminées, le long de la bordure ouest de la sous-zone du Pas du Roc; ils en représentent la couverture découlée et refoulée à l'ouest : c'est ce que j'appellerai la «zone des écaillés externes» de la nappe du Pas du Roc.

3. La zone des GYPSES. — Cette unité a été définie, en 1927, par M. Gigoux et L. Moré (139). Elle consiste, comme son nom l'indique, en une longue bande de gypse triasique injecté entre les unités dont nous venons de parler et la zone houillère briannonnaise. Elle jaillit ainsi une très importante surface de chevauchement : c'est une vaste cicatrice correspondant à la partie interne du Subbriançonnais et au flanc inverse de la couverture mésozoïque de la zone houillère, complètement laminées et dont il ne reste que quelques «bloques klippen» emballés dans les gypses.

III

L'ÉVOLUTION DES IDÉES SUR LA STRUCTURE GÉOLOGIQUE DE LA RÉGION ÉTUDIÉE.

Les travaux concernant notre région sont extrêmement nombreux et je n'ai pas l'intention d'en donner une liste complète que l'on peut
trouver ailleurs (73, 81, 83 et 110). D’autre part, au début des divers chapitres, figurera un historique détaillé de chaque époque.

Je voudrais donc simplement, ici, essayer de dégager les grandes lignes du développement de la géologie dans la région qui nous occupe. Après les témoignages du début, j’y distinguerai trois grandes périodes, dominées, la première par le nom de Ch. Lory, la deuxième par celui de W. Kilian, la troisième, enfin, par ceux de mes maîtres M. Gignoux, L. Moret et D. Schneegans, auxquels il faut ajouter celui de H. Schüller pour la Tarentaise.

A. Les premières recherches.

C’est de Saussure qui, dès 1796 (1), attira surtout l’attention sur la géologie des Alpes, bientôt suivi de quelques autres, en particulier le géologue dauphinois Dolomieu qui fut un des premiers à se rendre compte de l’importance que revêtent, dans les Alpes, les refoulements et les chevauchements et auquel L. Moret vient de consacrer une très vivante étude (171). Pour eux, la plus grande partie des Alpes de Savoie appartiennent aux formations primitives. Mais en 1803, Héricart de Thury (2) montre que beaucoup de terrains sont, en réalité, plus récents : il est le premier à ranger le terrain anthracifère dans le primaire.

Peu après, en 1808 (3), Brochant de Villiers, dans sa remarquable étude sur la Tarentaise, établit définitivement que les terrains anthracifères ne sont pas primitifs et il les attribue au terrain de transition, intermédiaire entre les terrains primitifs et les terrains secondaires. En 1821, Buckland (4) montre que la plupart des couches attribuées au terrain de transition appartiennent au secondaire. En 1823, un de ses compatriotes, Backwell, va même plus loin encore (5) : il n’y a plus, pour lui, de terrain de transition ; les calcaires doivent être rangés dans le Lisas et les terrains à anthracite dans le Houiller.

Puis ce fut l’affaire de Petit-Cœur, qui eut de si funestes répercussions sur les progrès de la geologie des Alpes. C’est en 1828 qu’Elie de Beaumont (6) découvrit à Petit-Cœur, en Tarentaise, des couches à fossiles liasiques qui lui parurent interstratifiées avec des couches à végétaux houillers. Il en tira la conclusion que les données paléontologiques n’avaient pas un caractère aussi absolu qu’on le pensait et que des végétaux attribués au Houiller avaient pu persister jusqu’au Lisas. Et, pendant de nombreuses années, des discussions s’engagèrent. Certains auteurs, à la suite d’Elie de Beaumont (Brounaiart, Sismonda, Dufrénoy, Sc. Gras), pensent que les couches sont bien régulièrement interstratifiées : les uns en font du Lisas et les autres du Houiller. Mais Voltz, dès 1830, estime que cette juxtaposition est, en fait, due à des causes tectoniques. Cette opinion fut encore défendue, entre autres, par A. Favre en 1841, Agassiz en 1844, d’Orbigny en 1852 et Murchison en 1854.

Malgré cela, l’argument tectonique ne prévaut pas tout de suite et l’on voit encore, en 1854 et 1855, Sc. Gras (9 et 11) ne pas admettre les actions mécaniques ni dans le cas de Petit-Cœur, ni dans l’interprétation générale des Alpes qu’il donne dans son mémoire. Très méfiant à l’égard des données paléontologiques à la suite des discussions de Petit-Cœur, il ne veut se baser que sur la stratigraphie. Mais, ne tenant pas compte de la tectonique, il admet, dans sa coupe de la Grave à Oulx, que les terrains, en série continue, forment un vaste synclinal dont le Houiller fossile du Massif du Chardonnet occupe l’axe. Ceci l’amène à ranger tous les autres niveaux, inférieurs pour lui, dans son terrain anthracifère qu’il divise en anthracifère inférieur et anthracifère supérieur, celui-ci subdivisé en quatre étages. Cette classification est encore bien schématique, mais il est cependant intéressant de noter qu’au moins pour la vallée de l’Arc, ces subdivisions correspondent déjà, en gros, à nos zones actuelles. L’anthracifère inférieur est l’équivalent de la couverture des massifs cristallins et dans son anthracifère supérieur, le premier étage correspond au Flysch, le deuxième au mésozoiq de la nappe du Pas du Roc et le troisième à la zone houillère briançonnaise. Mais il n’est pas fixé sur l’âge des terrains et semble admettre que l’on a affaire à du Houiller où auraient vécu des fossiles liasiques.

De son côté, Sismonda, en 1848 et 1855 (8 et 12), avait donné deux listes de fossiles provenant de la célèbre «grosse pierre des Encombres» : l’existence du Lisas dans notre région était ainsi démontrée. Mais il
LES ZONES ULTRAUDAUNHOISE ET SUBBRIANÇONNAISE.

considère encore la série comme isocynale : les zones daunhoise, ultra-
daunhoise et subbriannçonnaise appartiennent, pour lui, au terrain
anthracifère inférieur (Lias) et la zone houillère briannçonnaise au «ter-
rain anthracifère supérieur, représentant la partie inférieure de l’«oxford-
chyan».

B. L’époque de Ch. Lory.

Toutes ces données sont encore bien confuses, car on manque toujours
du fil directeur permettant d’interpréter correctement les faits observés,
en accordant à la tectonique le rôle primordial qu’elle joue dans les
Alpes, rôle passé, jusque-là, à peu près complètement inaperçu.

Dans son étude de la coupe du Villard d’Arèse à Névache (13 et 15),
Ch. Lory fait déjà intervenir plusieurs faiblesses pour expliquer certaines
anomalies apparentes. Mais Sc. Gras conteste encore l’existence de
tels accidents (14). Ch. Lory distingue là trois niveaux principaux :
des schistes argilo-calcaires à Bédenmides (Lias autochôme), des grès à
anthracite (Flysch des Aiguilles d’Arves et Houiller briannçonnais), enfin
des calcaires compacts (calcaires du Lias et du Dogger subbriannçonnais
et calcaires du Trias briannçonnais).

En 1859, A. Favre (17) rattache, pour la première fois, les gypses
et carnqueux du Keuper, bientôt suivi par Ch. Lory (18).

Mais, c’est en 1860, qu’ont eu lieu les deux découvertes paléontolo-
giques les plus importantes pour la stratigraphie de notre région :
celte des calcaires à grandes Nummulites de la vallée de l’Arc, par Pillet et
Coche (22), et, peu après, celle des couches à *Aeicula contorta* du Rhétien
par l’Abbé Vallet (28).

Ces données nouvelles permettent alors à Ch. Lory d’établir définitive-
ment la distinction entre les grès du Flysch datés par les Nummulites
et les grès houillers à anthracite datés par leur flore. Grâce à elles, il
peut également montrer que la coupe de l’Arc n’est pas une série régu-
lière d’étages superposés, mais forme, au contraire, une série renversée
où le Flysch occupe l’axe d’un vaste synclinal (23).

Il en tire la conclusion que «les caractères pétrographiques des diffé-
rents étages suivis jusqu’aux gisements de fossiles sont un guide bien

plus sûr que les apparences de superposition» (28). Après un voyage
dans le Jura (24), il montre également l’importance du rôle joué par la
tectonique qui doit permettre d’expliquer toutes les contradictions ap-
parentes entre les données stratigraphiques et paléontologiques (Petit-Cœur).

Aussi la réunion extraordinaire de la Société géologique de France,
qui eut lieu l’année suivante (1861) en Maurienne, marqua-t-elle,
grâce à Ch. Lory, la fin de l’affaire de Petit-Cœur : la géologie alpine
se trouvait ainsi définitivement libérée des erreurs d’interprétation qui
eu avaient freiné jusqu’alors le développement.

Ch. Lory donna, à cette occasion, une coupe remarquablement pré-
cise du versant nord de l’Arc (30).

Au-dessus du Trias (quartzes, gypses, dolomies, schistes bariolés),
on connaît désormais le niveau repère du Rhétien si caractéristique et si
précieux. Et le Lias, pour la première fois, est divisé en Lias inférieur,
formé de calcaires compacts, et en Lias supérieur, formé de «schistes
argilo-calcaires». Enfin, au-dessus, ce sont les calcaires à Nummulites,
puis les «schistes oardoisés et gris», attribués à l’Eocène.

En 1866, Ch. Lory (37) divise les Alpes en quatre grandes zones
séparées par de grandes failles. La première correspond à la zone daun-
hoise et aux terrains mésozoiques ultraudaunhois : elle est limitée, à
l’est, par une grande faille passant à la limite occidentale du Flysch
des Aiguilles d’Arves, alors que la troisième correspond à la «zone
houillère briannçonnaise». La quatrième, enfin, groupait la zone des
schistes lustrés et une partie de la zone briannçonnaise.

Ch. Lory estime, en effet, que les «traits fondamentaux, primor-
diaux, de la structure des massifs de montagne sont presque toujours
des failles» (57). Ces failles sont en général verticales, mais leur plan
peut cependant être plus ou moins incliné, expliquant alors les renver-
sements de terrains, comme ceux du massif des Écônes (38). Pour
lui, ce sont les forces verticales qui prédominent (45) et «ce est moins
dans des refoulements d’ensemble que dans les affaissements locaux,
combinés avec la différence de flexibilité des couches» qu’il faut recher-
cher l’explication des phénomènes (46).

INTRODUCTION.
C. L'époque de W. Kilian.

Ch. Lory, à qui la géologie alpine doit tant, s'était trouvé, à la fin de sa vie, un peu dépassé par les idées nouvelles.

Ce fut Marcel Bertrand qui montra, tout d'abord, la voie nouvelle qui allait permettre de si grands et si rapides progrès, grâce au fils directeur des charriages permettant de déchiffrer, enfin, le véritable style tectonique des Alpes.

En 1884, il étendait aux Alpes de Glaris, les conclusions de Gosselet sur le bassin houiller franco-belge; il définit, pour la première fois, la notion de charriage et écrit : «sur une région déjà plissée est venue glisser et s'étendre une masse de terrains plus anciens entraînant avec elle un «lambeau de poussée». Il ajoute qu'on ne constate pas seulement le plissement, mais aussi l'écoulement et le déversement du centre de la zone plissée» (47, p. 330).

Enfin, quelques années plus tard, il parlera encore de ces «grands plis couchés qui se déroulent, s'allongent, forment de larges traînées au-dessus des couches plus récentes et simulent de véritables coulées de terrains sédimentaires, rappelant presque les coulées de basalte» (49, p. 700). Ces phrases sont extrêmement intéressantes à rappeler, alors que de nombreux auteurs cherchent, aujourd'hui, à expliquer la formation des nappes par cette «tectonique d'écoulement», dont M. Bertrand semble bien avoir déjà eu l'intuition.

Aussi W. Kilian, à la suite de ses études sur les plis de la Grande Mocand, montre-t-il, dès 1890, le rôle prépondérant des phénomènes de plissement dans les zones alpines (50, 52, 53), réagissant ainsi contre l'idée de Ch. Lory, de la prépondérance des failles.

Malgré cela, il tenta toujours de freiner un peu l'ardeur de P. Termier, promoteur enthousiaste de la théorie des nappes, qu'il poussa à l'extrême. Il est intéressant, pour nous, de noter que c'est surtout sur l'étude du Flysch des Aiguilles d'Arves qu'il s'est appuyé pour cela.

En effet, lorsque P. Termier décrit la région briaconnaise comme un paquet de nappes superposées (68), c'est sur l'autochtone du flysch, démontrée par la présence, dans son conglomerat de base, de galets de granite du Pelvoux, que W. Kilian s'appuie pour réfuter ses arguments (69). À la suite d'une nouvelle note de P. Termier (75), il reprend encore la même démonstration et conclut : «la zone sècène (des Aiguilles d'Arves) est indubitablement autochtone» (76). On sait aujourd'hui, et l'on verra plus loin, que chacun des deux auteurs avait en partie raison, comme il arrive souvent en pareil cas.

Mais c'est surtout par des études stratigraphiques détaillées que W. Kilian fournit une très importante contribution à la connaissance de la région qui nous occupe. Dès 1890, il apporte une grosse somme de faits nouveaux qu'il développe, ensuite, dans son gros ouvrage sur les Alpes occidentales, publié en collaboration avec J. Révil (73, 77, 79).

Je ne serai, ici, que de rappeler brièvement les faits les plus importants, renvoyant, pour plus de détails, à l'histoire de chaque étage.

W. Kilian précise la stratigraphie du Trias, en montrant que les «calcaires du Briaconnaiss» appartennent à cet étage et non au Lias, comme le pensait encore Ch. Lory (56). Il découvre les faciès corallien du Lias (54 et 55) et attire l'attention sur un niveau de brèches qui existe dans cet étage et qu'il dénomme «Brèches du Télégraphe» (56). Il établit la distinction qui existe entre ces dernières et les brèches nummulitiques, notamment au Niard (56). Il démontre, de même, que les conglomerats de Grève-Tête sont nummulitiques et non trinuclaires, comme le voulait Ch. Lory (56). C'est à lui aussi que l'on doit la découverte des marbes en plaquettes de la vallée de l'Arc, qu'il attribuait, du reste, au Jurassique supérieur (71 et 72).

A cette même période appartient J. Boussac qui, dans son étude magistrale du Nummulitique alpin, parue en 1912 (78), a étudié le Flysch des Aiguilles d'Arves et donné quelques coupes et descriptions intéressantes notre région. En se basant sur la célèbre coupe de «la Madeleine», près du Col du Lautaret, il considéra que le caractère principal de la zone des Aiguilles d'Arves est d'être charriée et de chevaucher partout l'autochtone. Il décrivit, cependant, dans la vallée de l'Arc, le contact du Flysch sur son substratum comme normalement transgressif. Il y a donc contradiction entre ces deux observations, car ce n'est pas sur un
lambeau de Lias décollé que repose le Flysch, mais sur un ensemble se rattachant, par le pli-faille du Mont Charrin, à l’autochtone.

Enfin, en 1913, ce fut M. Gignoux qui, en découvrant de petites Nummulites près de Villarellemont dans la vallée de l’Arc, apporta la preuve réelle de l’âge nummulitique du Flysch des Aiguilles d’Arves. On verra, en effet, que le Flysch des Aiguilles d’Arves n’appartient pas à la même unité que les calcaires à grandes Nummulites du Bocchet ayant cependant, jusqu’ici, servi à les dater.

D. Les travaux récents.

Au début de cette période, on en est encore à la conception de Ch. Lory, d’un Lias toujours séparé en « Lias calcaire » et « Lias schisteux ». C’est principalement sur ce point que de nouveaux et importants progrès vont maintenant être réalisés. En effet, grâce aux études qu’ils ont entreprises au sud du Pelvoux, M. Gignoux, L. Moret, et D. Schneeegans ont pu établir une stratigraphie détaillée entièrement nouvelle des régions comprises entre les zones dauphinoise et briançonnaise, où ils ont été amenés à distinguer deux nouvelles unités : les zones subbriançonnaise et ultradauphinoise (143 et 148).

Cherchant, ensuite, à prolonger vers le nord les idées nouvelles établies plus au sud, ces auteurs publièrent une série de notes fixant de façon détaillée la stratigraphie de notre nappe du Pas du Roc (131, 135). Ils estimèrent, en effet, que le « Lias calcaire » de Ch. Lory et W. Kilian correspondait, en réalité, au Lias et au Dogger et que leur « Lias schisteux » représentait une série jurassique supérieure et créta-ccée.

H. Schelleer, de son côté, avait montré l’existence, au nord de l’Isère, d’une zone à facies de cordillère qu’il rattachait encore à la « zone de l’Embrunais » de E. Haug ; une épaisse série considérée jusqu’ici comme basique y était attribuée au Nummulitique (101).

M. Gignoux et L. Moret considèrent alors la zone du Flysch des Aiguilles d’Arves, prolongement septentrional de leur zone ultradauphinoise, comme une nappe dont le chevauchement s’amortit vers le sud, et la zone du Pas du Roc comme la continuation, vers le nord, de leur zone subbriançonnaise (143 et 149).

PREMIÈRE PARTIE.

STRATIGRAPHIE.

Partant des étages les plus anciens pour remonter aux plus récents, je décri-
rai, pour chacun d'eux, les variations qui l'affectent dans les zones de faciès
successives d'ouest en est.

Les deux unités limitant notre domaine, zone dauphinoise à l'ouest et
zone briaçonnaise à l'est, ne seront pas traitées ici, bien qu'elles aient dû
être figurées, sur la carte qui accompagne ce mémoire, en bordure des zones
étudiées. Les faits nouveaux découverts dans la première ont déjà été signalés
dans trois notes préliminaires (169, 170 et 178) et feront l'objet d'une étude
ultérieure plus détaillée. Quant à la zone briaçonnaise, je la laisserai de
côté, n'ayant pas de faits nouveaux à apporter à sa stratigraphie.

TERRAINS MÉTAMORPHIQUES.
(Schistes cristallins antéhouillers.)

1. Harcouges.

Dans notre région on n'avait signalé jusqu'ici que deux affleurements de
terrains métamorphiques : l'un à Hautecour au nord de Molières, l'autre à
Villarly près de Saint-Jean-de-Belleville.

Ils ont été d'ici surtout par W. Killian et J. Révil (73 et 77), et le premier
a été étudié plus récemment par E. Roch (90).
II. Les affleurements.

a. Digitation du Niéard.

1° Villary. — Une lentille minuscule de schistes cristaillins affleure juste au nord du pont de la route de Saint-Jean-de-Belleville, sur le ruisseau du Golet, à 600 mètres à l’ouest-sud-ouest du village. La roche est un micaschiste, caractérisé par sa teinte verte due à l’abondance de la chlorite, et par son aspect très brillant dû au mica blanc (77).

W. Kilian et J. Révil avaient d’abord rattaché ce terrain au Permien. Mais, P. Termier ayant reconnu que « ce type n’existe pas dans le Permien de la Vanoise » (77), ils le rapportèrent finalement à la série métamorphique antéhouillère. L’examen de l’affleurement n’apporte pas grande précision, les terrains étant trop bouleversés. Néanmoins, ces micaschistes sont liés à des grès et schistes houillers non métamorphiques ; on ne voit donc pas très bien pourquoi on les considérerait comme du Permien métamorphique, puisque le Houiller ne l’est pas.

2° Cirque de Valfrech : j’ai retrouvé là des micaschistes chloriteux absolument identiques à ceux de Villary et qui étaient restés inaperçus. Ils forment, au fond du cirque, une étroite lame sud-ouest-nord-ouest d’environ 4 kilomètres de long. Là aussi il faut considérer ces micaschistes comme antéhouillers, car on trouve dans cette région à la fois du Permien et du Houiller non métamorphiques.

b. Digitation de Moissier : le petit massif d’Hautecour.

Les micaschistes de la région d’Hautecour avaient été également attribués à la série antéhouillère par W. Kilian et J. Révil (73 et 77). E. Roch (90) n’a pas rapporté à cette série que les roches cristallines du petit massif de Rochechouart (garnier à mica blanc ou gneiss granulitique, zones d’amphibolites, le tout criblé de filons de quartz). Il considère, au contraire, les micaschistes comme du Houiller métamorphique.

Mais son unique argument est l’absence de Houiller normal entre ces micaschistes et le Permien ; or cette lacune peut très bien provenir d’un lamination, ce qui n’aurait rien d’étonnant dans une région aussi bouleversée. En réalité, comme nous le verrons plus loin, Permien et Houiller non métamorphiques existent dans cette unité. E. Roch signale d’ailleurs que les mica-
LES ZONES ULTRA DAUPHINOISE ET SUBBRIANÇONNAISE.

Nummulites de Montbricher, pour que l'attribution de cette série de schistes et grès au Houiller ne fût plus mise en doute.

II. LES ZONES DE FACÉS.

A. Zone ultra dauphinoise.

Il semble qu'on doive attribuer au Houiller la base des schistes de la Bagnaxe dont on verra plus loin que la masse principale est à rapporter au Permien (163 et p. 93).

Au-dessous des schistes duns des schistes de la Bagnaxe dont on verra plus loin que la masse principale est à rapporter au Permien (163 et p. 93).

Au-dessous des schistes duns des schistes de la Bagnaxe dont on verra plus loin que la masse principale est à rapporter au Permien (163 et p. 93).

Au-dessous des schistes duns des schistes de la Bagnaxe dont on verra plus loin que la masse principale est à rapporter au Permien (163 et p. 93).

Au-dessous des schistes duns des schistes de la Bagnaxe dont on verra plus loin que la masse principale est à rapporter au Permien (163 et p. 93).

Au-dessous des schistes duns des schistes de la Bagnaxe dont on verra plus loin que la masse principale est à rapporter au Permien (163 et p. 93).

Ce terrain affleure dans le flanc ouest du Mont du Fux, de la Pointe de Plan Goutau et du Mollard des Berufs, dans le substratum du Flysch des Aiguilles d'Arves. Il est surtout bien net dans le ravin des Gétives (fig. 9) et à la cote 1989 où il forme, à mi-pente, un arrachement bien visible de loin, au-dessus (à l'est) du Lac du Loup, au nord-est de Montlaimont.

B. Zone subbriannonnaise.

1° Définition du Niéard. — Près de Villard affleurent, avec les micacites dont nous venons de parler, des schistes noirs ou grès, luisants, avec des plaquettes gréceuses et psammitiques et quelques dalles de grès qui, par leur faciès, doivent être rattachés au Houiller, ainsi que l'avaient déjà proposé W. Kilian et J. Réwil (77). Il en est de même pour les divers affleurements de schistes noirs micacés, alternant avec de rares dalles gréceuses, que l'on rencontre dans la région du chalet du Fux (vallée du NantBrun) et en partie signées par W. Kilian et J. Réwil, ainsi que par H. Scheller et E. Roch.

Par contre, j'ai été amené à rapporter au Flysch les schistes noirs indiqués par ces derniers auteurs, au flanc sud-est du Niéard, comme se rapportant au Houiller. Ces schistes sont, en effet, identiques à ceux qui sont liés aux brèches à grandes Nummulites que j'y ai découvertes; ils contiennent, comme eux, quelques rares galets, en général cristallins.

2° Définition de Moîtiers. — Dans cette unité, on connaît le Houiller en différents points. Il ne présente rien de particulier; il est constitué par des alternances de schistes noirs à nica détritique, de grès gris ou noircâtres très micacés avec, par places, de petites couches d'anthracite (101).

Dans la région de Moîtiers existent également des couches analogues, près du Villard, au nord de l'Iseire (90) et surtout dans la région de Fontaine-le-Puits, au sud de celle-ci, où l'on a exploité autrefois de l'anthracite (127). A côté de ce Houiller normal, E. Roch a décrit également un Houiller métamorphique; mais nous avons vu plus haut, qu'il s'agit là, en réalité, de schistes cristallins antehouillers (p. 18).

b. Nappe du Pas du Roc.

Les deux dégagements de cette nappe sont complètement décollées au niveau des gypse du Trias et l'on n'y rencontre aucun terme inférieur à ces derniers.

III. CONCLUSIONS. — PALÉOGÉOGRAPHIE.

En l'absence complète de fossiles, le Houiller n'a pu être daté, ici, que par sa position stratigraphique et ses analogies lithologiques avec le Houiller fossilifère des unités voisines (zones dauphinoise et briannonnaise).

Dans nos deux zones, il semble être, comme dans le domaine briannonnais, en continuité avec le Trias par l'intermédiaire du Permien; dans ce cas, même dans la zone ultra dauphinoise, on n'atteindrait pas encore la région du Trias transgressif et discordant sur le socle primaire (cristallin et synclinaux ouvriers), région qui est celle des masses cristallins externes. STRATIGRAPHIE.
LES ZONES ULTRA-DAUPOINSE ET SUBBRIANÇONNAISE.

Comme dans le reste des Alpes, le Houiller est présent, dans notre région, par des sédiments continentaux (plantes et lits charbonneux) très homogènes sur de vastes étendues, témoignant ainsi de l'uniformité des conditions de sédimentation durant cette période d'érosion intense de la chaîne herbéro-niéenne.

Signalons enfin que le Houiller, en particulier dans la nappe des Brèches de Tarentaise, où l'on en connaît les termes supérieurs (Permien) et inférieur (schistes cristallins), paraît être beaucoup moins épais que dans le Briançonnais, où se sont produits, à cette époque, des phénomènes de subsidence très importants.

PERMIEN.

I. HISTORIQUE.

A l'ouest de la zone houillère briançonnaise, où ce terrain est conservé dans un certain nombre de bandes synclinales, des affleurements permien ont été décrits que près de Moutiers, dans le petit massif d'Hautecourt en particulier (90).

Ailleurs, les schistes verts et violets du Permien avaient été attribués, par W. Kihm, soit au Trias supérieur (ouest du Col de Vailhuc), soit au Trias moyen (près du hameau du Bois, un peu au sud de l'Isère). Plus récemment, H. Scheller et E. Roch (91) les avaient rapportés, dans le substratum du Flysch des Aiguilles d'Arvés, à leurs « schistes de la Bagnaz » considérés comme représentant le Trias moyen et supérieur.

II. L'ÈRE DES SCHISTES DE LA BAGNAX.

Ces schistes ont été ainsi dénommés du nom de la montagne de la Bagnaz, au nord de l'Isère, donc en dehors de la zone étudiée. Mais tous les auteurs, et spécialement H. Scheller et E. Roch, en ont vu le prolongement dans les schistes bariolés qui affluent, au sud de l'Isère, à la bordure ouest du Flysch des Aiguilles d'Arvés. Il est donc probable que les conclusions valables, pour ce terrain, au sud de l'Isère, le sont également au nord dans la localité-type :

c'est pourquoi je leur conserve, même au sud de l'Isère, leur nom de « schistes de la Bagnaz ».

M. Bertrand (96) les avait attribués au Trias supérieur. Mais ayant constaté leur passage aux quartzites du Trias inférieur, il avait dû les étendre aussi au Trias moyen. C'est pourquoi H. Scheller et E. Roch (99) avaient établi une distinction entre deux catégories de schistes bariolés :

— les « schistes de la Bagnaz » attribués au Trias moyen et supérieur et caractéristiques de leur zone des Aiguilles d'Arvés (zone des Aiguilles d'Arvés s. str. et zone des Brèches de Tarentaise);

— les « schistes de Villarlery », toujours liés au Rhétien, représentant le Trias supérieur seul, et considérés comme caractéristiques de leur zone du Galibier (équivalent, ici, à notre zone du Pas du Roc).

STRATIGRAPHIE.

23

L'attribution au Trias des « schistes de la Bagnaz » a dû reposer — au moins en partie — sur l'analogue apparente qu'ils présentent avec les « schistes de Villarlery », bien datés par leur rapport avec le Rhétien fossile.

En réalité, l'étude du substratum du Flysch des Aiguilles d'Arvés m'a montré qu'il s'agit là de deux niveaux bien distincts présentant des caractères lithologiques tout à fait différents.

a. Au point de vue stratigraphique.

1. Les schistes de la Bagnaz montrent toujours, à leur partie supérieure, un passage progressif aux quartzites du Trias inférieur, en général par l'intermédiaire des classiques grès grossiers et conglomerats à petits galets de quartz.
LES ZONES ULTRA-DAUPHINOISE ET SUBBRIANÇONNAISE.

rose ou blanc à faciès « verrucano ». A leur base, au contraire, ils passent insensiblement à des schistes noirs représentant, probablement, le Houiller (p. 20) : c'est au-dessus du Lac du Loup, à l'est de Montaîmont, que ces faits peuvent être observés avec le plus de netteté (fig. 2).

2. J'ai pu mettre en évidence l'existence, dans le substratum du Flysch des Aiguilles d'Arves, de dolomies du Trias moyen et d'argiloïdes du Trias supérieur tout à fait typiques (p. 28) : les schistes de la Bagnaz ne peuvent donc représenter le Trias moyen et supérieur.

b. Au point de vue lithologique.

1. Les schistes de Villarlé sont normalement compacts, à cassure conchoïdale, et ne prennent une allure schisteuse que par laminage. Leur cassure et leur surface sont toujours ternes : leur teinte, toujours claire, peut être jaune, verte ou bleue de vin ; leur patine, jaune ou rousse, est tout à fait analogique à celle des « dolomies-capucins » du Trias. Enfin des analyses (1) y ont révélé la présence de 15 % de kaolinite, à côté de faibles proportions d'autres produits argileux, le reste de la roche étant siliceux (pas d'éffervescence aux acides). Les schistes de Villarlé ne sont donc pas, à proprement parler, des schistes, mais bien des argiloïdes, qui n'acquièrent l'allure schisteuse qu'à la suite d'actions mécaniques.

2. Les schistes de la Bagnaz, au contraire, sont toujours bien feuilletés et présentent des surfaces luisantes ; leur teinte, toujours foncée, va du vert au bleu, mais n'est jamais jaune ; leur patine est ordinairement noireâtre ; ils contiennent souvent des paillettes de mica visibles à l'œil nu ; ils ne font pas effervescence aux acides.

Les analyses ont montré qu'ils ne contiennent aucune trace d'argile. La courbe obtenue est, par contre, identique à celle de la série (155, p. 8, pl. II). Mais, de plus, deux échantillons pris, l'un dans le substratum du Flysch des Aiguilles d'Arves (zone ultra-dauphinoise), l'autre, près de Saint-Martin-de-Belleville (zone briançonnaise) ont donné des courbes absolument identiques.

(1) Ces analyses ont été effectuées à l'École Nationale supérieure du Pétrole, au moyen de la méthode des courbes de déshydratation par C. L. Alexanian, auquel je tiens à exprimer, ici, tous mes remerciements.

III. LES ZONES DE FACÈS.

—

A. Zone ultra-dauphinoise.

Le Permien est, ici, représenté par les schistes de la Bagnaz, comme nous venons de le voir. Ceux-ci ailleurent en divers points dans le substratum du Flysch des Aiguilles d'Arves ; c'est-à-dire dans le bassin ouest de la crête formée par le Flysch), depuis le Cirque du Châtel, au sud, jusqu'au Nézard, au nord.

B. Zone subbriânnoise.

a. Nappe des Brèches de Tarentaise. — Le Permien est représenté par des schistes verts ou violets ordinairement très foncés, rappelant tout à fait les schistes de la Bagnaz.

Mais ces schistes n'avaient été reconnus comme permien que dans la région de Moûtiers, sans doute à cause de la présence, en ce point, des terrains plus anciens du petit massif d'Hautecœur.

Ensuite, qu'au fond du Cirque de Valbuche, le passage aux quartzites triasiques s'établirait par un épaiss niveau de grès pis-de-vin souvent tachés de blanc.

b. Nappe du Pas du Roc. — Je rappelle que les terrains antétriassiques sont entièrement inconnus dans cette unité, en raison du décollement général qui en affecte la série au niveau des gypses du Trias supérieur.
IV. Conclusions. — Paléogéographie.

Pas plus que dans les unités voisines, le Permien n’est fossile ou : il est donc uniquement daté par sa position stratigraphique.

Les schistes de la Bagnas, attribués jusqu’ici au Trias moyen et supérieur, appartiennent, en réalité, au Permien. Cette étage est donc déjà bien représenté dans la zone ultradauphinoise, alors qu’on n’en connaît que de très rares affleurements dans la zone dauphinoise (Allèves) ; ce sont, en outre, déjà des schistes verts et violets très analogues à ceux de la zone briônoisienne.

Comme dans le domaine briônoisien, on a affaire à des dépôts continentaux, plus ou moins désertiques, correspondant à la fin de la période d’érosion qui termine l’orogénèse hercynienne.

TRIAS.

1. Historique.

Individualisant pour la première fois le Trias, A. Favre, en 1859, rapporte au Keuper les gypses et argileuses (17). L’année suivante, la découverte, par l’abbé Vallet, des couches à Anisulus contortus, en Maurienne, permet d’y attribuer au Trias les gypses, argileuses et schistes bariolés qui se montrent constamment inférieurs à ces couches rhétiques (18).

Puis, en 1861 (58), W. Kilian détaille la stratigraphie de la série triasique, en montrant qu’elle est formée de cinq termes :
5. Schistes lits et verdâtres ;
4. Argileuses et gypses supérieurs ;
3. Marbres phyllitiques et calcaires dolomitiques ;
2. Argileuses et gypses inférieurs, niveau connu uniquement au sud de l’Arc (1) ;
1. Quartzites.

1 Ainsi que le notait déjà W. Kilian, le niveau inférieur de gypses et argileuses fait défaut en Maurienne et Tarentaise. C’est que cette région, tout de suite après l’épisode généralisé des quartiers, est enfermée de l’ouest, par une mer qui n’atteint pas l’arc briônoisien, mais y est simplement bordée de lagunes où se déposent les gypses inférieurs. L’inverse,

STRATIGRAPHIE.

Cette série fut encore précisée, plus tard, par le même auteur en collaboration avec J. Révy (73 et 77).

Il est intéressant de noter que cette stratigraphie (qui lui permet de rattacher au Trias les calcaires du Briônoisien attribués, par Ch. Lory, au Lias) fut établie dans la vallée du Nant Brun, en amont du chalet du Fux ; or, si W. Kilian a « raisonnablement », c’est sur une figure fausse, car le début de la série qu’il pensait être normale et continue appartient à la nappe des Brèches (quartzites et dolomies de la rive gauche), alors que le sommet (gypse et argileuses, schistes rouges de la rive droite) appartient à la nappe du Pas du Roc (digitation de la Grand-Moenda).

Enfin, c’est en 1838 que M. Gignoux découvrit, au Mont Charvin, au sud de Saint-Jean-de-Maurienne, des plantes (Equisetites arenacea) permettant d’attribuer au Keuper les schistes qui les contiennent (98). Ceux-ci ne forment malheureusement qu’une lentille au milieu des gypses, mais tout porte à croire qu’ils sont inférieurs à ces derniers.

II. La série stratigraphique.

Les quartzites présentent de grandes analogies avec ceux des régions plus internes mais sont généralement moins épais. Partout où les rapports normaux des terrains ont été conservés, on les voit passer au Permien. Ils représentent donc bien ici, comme partout dans les Alpes, le Trias inférieur.

Les calcaires et dolomies ne forment que de petits affleurements, la plupart du temps en contacts anormaux avec les terrains voisins. Il n’y a jamais été trouvé de fossiles. Mais le passage aux quartzites peut être observé en divers endroits : ces terrains représentent donc le Trias moyen.

Les gypses et argileuses sont, presque toujours, au service tectonique anormal. Ceci vient de leur grand plasticié qui, au cours de l’orogénèse alpine, leur a permis d’être injectés au milieu des autres terrains, très souvent le long des lignes de décollements majeurs. C’est là un des aspects des phénomènes de la tectonique sialique désormais classiques après les études de M. Gignoux (107).

au centre, se produit au Trias supérieur, où un rejet de la chaîne violacéenne isolée, à l’est, la mor alpine. Celui-ci se maintient dans le domaine briônoisien, jusqu’au sommet du Trias ainsi que l’a montré E. Schneegans (148). Mais elle est hérétique, dans notre région, c’est-à-dire à l’approche de la chaîne, de lagunes où se déposent les gypses, argileuses et argilites qui présentent, du reste, des transitions aux facies marins, en allant vers l’est.
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

Mais leur position stratigraphique normale se trouve entre les calcaires et dolomies du Trias moyen et les argilolites du Trias supérieur.

Les argilolites bariolées, souvent désignées par le terme, impropre, de «schistes» de Villarly (p. 24), passent, vers le bas, aux cargnuelles et, vers le haut, au Rhiétien : il n'y a donc pas de doute qu'elles représentent le Trias supérieur.

III. LES ZONES DE FACÈS.

A. Zone ultradauphinoise.

Dans les terrains formant le substratum du Flysch des Aiguilles d'Arves et qui s'étendent à l'ouest de celui-ci, on ne connaissait que le long affleurement des schistes de la Bagnoz (15 de la Feuille de Saint-Jean-de-Maurienne au 1/80,000), dont j'ai montré plus haut qu'ils représentent, en réalité, le Permien (p. 29). Enfin, une lentille de quartzites avait été mentionnée par H. Scheffler et E. Roch au sud-ouest de la Pointe du Fuz.

a. Les quartzites. — Seul l'affleurement précédent avait jusqu'ici été signalé.

En fait, ce terrain se montre, sous le Flysch, en de nombreux points, depuis le Coin du Châtel jusqu'à Crève-Tête, mais n'y forme jamais, étant donné les complications tectoniques, que de petites lames plus ou moins isolées.

Ce sont des quartzites massifs ou en gros bancs, à patine roulée, blanches (ravin de Cétives) ou plus souvent verdâtres; ils deviennent, vers la base, plus grossiers, souvent arkosiques et contiennent même parfois de petits galets de quartz rose (ouest du Coin du Châtel). C'est par ces couches ou par des plaquettes siliceuses vertes que le passage s'établit aux schistes verts ou violents du Permien. Mais ils ne montrent pas, ici, de passage aux dolomies.

Ils ne diffèrent donc pas énormément des vrais quartzites des zones plus internes, bien qu'ils prennent parfois un aspect plus voisin du grès; mais ils semblent, surtout, être beaucoup moins épais.

b. Les dolomies. — Ce terrain n'avait jamais été signalé dans cette zone. Et de fait, il n'y forme qu'un seul affleurement un peu important, près des chalets de l'Alpelette, au sud et sud-ouest du Coin du Châtel.

Ce sont des dolomies souvent un peu saccharoides, gris-chaire, parfois blan-

châtres, ou encore noires et pseudobrèchiques; la patine est jaunâtre ou rousse, rappelant celle des « dolomies capucins ».

Malheureusement, il ne s'agit que d'une lentille dont la partie inférieure est en contact anormal avec des gypses ou des schistes violents du Permien et la partie supérieure recouverte par le Flysch transgressif. On n'y trouve pas de fossiles et ce n'est que par analogie avec les terrains des zones voisines que l'on peut les attribuer au Trias moyen.

c. Les gypses. — Au nord de l'Arc, les gypses ne sont pas en position stratigraphique normale; ils forment un coussinet à la base de la grande écaill e ultradauphinoise des Aiguilles d'Arves.

Mais, plus au sud, dans la coupe du ruisseau de l'Alpelette, près de Montandré et au sud de l'Arc où le décollement de l'Ultradauphinois sur l'autochtonie est de plus en plus amorti, les gypses se trouvent toujours affleurer au-dessous des argilolites et il semble bien que ce soit là leur position stratigraphique normale. Dans ce cas, les schistes et gypse à *Equisetites arenacea* du Mont Charvin, au sud de Saint-Jean-de-Maurienne, étudiés par M. Gignoux (96), ne pourraient que leur être inferieurs et les gypses appartiendraient alors au Keuper.

Enfin, signalons que, ça et là, on rencontre, avec les gypses, des cargnuelles, mais en très petits affleurements.

d. Les argilolites. — Le Trias se termine par des argilolites, toujours en relation, vers le haut, avec le Rhiétien.

Elles forment, sur la rive droite de l'Arvan, au sud de Saint-Jean-de-Maurienne, une bande continue, bien visible à cause de ses teintes vives, à la base du Lias. C'est, ici, une roche bien compacte, à pâte fine et cassure plus ou moins conchoïdale; on y rencontre souvent de petits cubes de pyrite. La teinte est principalement bleue de vin, mais peut aussi être grise ou jaunâtre.

Près du hameau de Gévoaude, dans la vallée de l'Arvan, au sud de Saint-Jean, on peut observer la coupe suivante dans le talweg du ruisseau de Créit, en amont de la route :

3. Lias : alternances de bancs calcaires de 10 à 30 centimètres avec des lits de marnes grises : dans les chouifs, une *Arbœth*;

2. Rhiétien : peu net; plaquettes calcaires alternant avec de petits lits marneux (10 à 15 mètres);
LES ZONES ULTRADAUPHINOISE ET SUBBRIANNCOISE.

1. Trias supérieur : argilolithes jaune clair alternant avec quelques bancs de calcaires dolomitiques : 10 à 15 mètres.
 — argilolithes lie de vin à patine jaunâtre : 20 à 30 mètres.
 — argilolithes gris-clair à patine également jaunâtre, avec nombreux petits cubés de pyrite : 30 à 40 mètres.

On peut aussi voir une bonne coupe de ces niveaux dans la vallée de l'Arc, près de l'échaillon. En partant du sentier qui monte, à l'est du village, sur les gypses, pour aller vers la chambre de mise en charge de la conduite de l'usine hydroélectrique, on observe successivement les argilolithes violacés, puis vert, clair à patine ocre (en particulier dans la partie ouest de la fouille) ; enfin, au milieu de cette fouille, on passe à des plaquettes de calcaire noir à patine jaune-olivâtre qui doivent représenter le Béchien (fig. 6).

Vers le nord, les argilolithes ne forment plus que de petits affleurements au Plan du Sapey (à l'ouest de la crête de Coin Lognan) et à l'ouest du Coin du Chaté. Ces sont des argilolithes bariolées rendus schistouses par écrasement, vert, clair et lilas, à surfaces ternes et patine rousse. À la partie supérieure, quelques bancs de dolomies jaune clair s'y trouvent intercalés, qui n'existaient pas au sud de l'Arc.

B. Zone subbrianncoise.

L'étude du Trias de cette zone est intéressante par les variations de faciès que l'on y observe d'ouest en est, non seulement par rapport à l'ultradauphinois, mais encore entre les diverses unités subbrianncoises elles-mêmes (fig. 5).

1° Décroissance du Nédiard. — On ne connaissait guère, dans cette région, que les quartzites qui font saillie au fond du Cirque de Valbiche et les quartzites et dolomies de la vallée du Nant Brun, signalées par W. Kilian (56).

Les quartzites sont du type classique, massifs ou en gros bancs blancs, blancs à patine roulée.

Leur passage au Permien est surtout bien visible dans le fond du Cirque de Valbiche. Les quartzites blancs bien typiques forment une petite voûte renversée dans le mamelon dominant, au sud, le château de Valbiche (fig. 56). Ils affleurent encore au nord-ouest du replat formant la partie supérieure du

mamelon. En partant de là, et en se dirigeant vers l'est, on a une bonne coupe montrant bien le passage progressif de l'un à l'autre :

1. Quartzites compacts, blancs, en gros bancs ;
2. Grès blancs, plus ou moins grossiers, présentant, par places, des taches lie de vin ;
3. Grès lie de vin à taches blanches ;
4. Grès violets avec intercalations de schistes de même teinte ;
5. Schistes violets foncé.

Les quartzites, souvent laminés, sont assez épais et paraissent bien dépasser une cinquantaine de mètres. Le passage aux dolomies du Trias moyen est assez brusque et se fait en général par l'intermédiaire de dolomies un peu sableuses, à patine rousse. C'est ce que l'on observe, en particulier, dans le petit verrou qui barre la vallée du Nant Brun, au sud du château du Fuz, près de la cote 1432, où W. Kilian avait déjà fait cette observation (56).

Les dolomies accompagnent souvent les quartzites, principalement dans les environs du château du Fuz. On peut, dans la paroi nord du verrou dont nous venons de parler, relever la coupe suivante (fig. 3) :

3. Dolomies et calcaires dolomitiques gris souvent pseudocréatiques, en gros bancs : 30 mètres ;
2. Dolomies un peu sableuses, à cassure finement cristalline, jaune clair, à patine rousse : 10 mètres ;
1. Quartzites blancs, massifs.

Trias supérieur. — Je n'ai rencontré nulle part d'argilolithes dans cette unité. Mais il est possible que cela tienne à des raisons d'ordre tectonique. Quelques
les zones ultradauphinoise et subrhônalaise.

Lambeaux de gypses et argilites se montrent en différents endroits, mais toujours en position anormale.

2° Digitation de Montiers. — Les «schistes de la Bagnaze» devant être rapportés au Permien (p. 93), le Trias supérieur serait alors sans doute représenté par le faciès de «dolomines amygdalières à schistes rouges» décrits par H. Scheufler (101) et que cet auteur rapproche des «schistes de Villarly».

Les gypses y sont également représentés. Au-dessous, on rencontre les niveaux habituels de dolomies et de quartzites qui ne présentent rien de bien particulier et ont été décrits, au nord de l'Iseire, par H. Scheufler et E. Roch (92 et 101).

b. Nappe du Pas du Roc.

Le décollement majeur qui s’est produit dans cette unité, à la faveur des gypses et argilites, fait que Trias moyen et inférieur y sont totalement incomuns.

Il semble bien que les argilites forment un niveau supérieur aux gypses et marquent la transition aux argilites et dolomies.

2° Argilites et dolomies supérieures. — Dans la digitation de la Grande Moenda, les argilites dominent encore au Trias supérieur, mais sont déjà accompagnées de dolomies qui l’emporteront dans la digitation voisine, plus interne.

La coupe la plus typique est celle que l’on peut observer dans les plis situés entre les Aiguilles de la Grande Moenda et le Col du Bonnet du Prêtre (fig. 4).

A la cote 950/4 on observe, en effet, la succession suivante :

7. Argilolites compactes, jaunes à traces vertes et patine rousse : 2 mètres ;

6. Argilolites brunâtres : 1 mètre ;

5. Alternances de dolomies rousses et d’argilolites schisteuses, violettes : 10 mètres ;

4. Argilolites feuilletées, violettes, à patine rousse et terne : 10 mètres ;

3. Dolomies jaunes en gros bancs : 5 mètres ;

2. Dolomies grises : 2 mètres ;

1. Cargenues.

Il s’agit donc, ici encore, d’argilolites barriolées, mais auxquelles se joignent, déjà, d’importantes intercalations de bancs dolomitiques.

Fig. 4. — Coupe le long de la rive ouest à 0 à 0,5 entre les Aiguilles de la Grande Moenda et le col du Bonnet du Prêtre.

On observe successivement, en série inversée :

Capronelles (T6), dolomies (T5 et T2) et argilolites (T3) en alternances de ces deux roches (T7), Trias supérieur ; schistes, calcaires et dolomies du Rhétoire (R) ; calcaires du Lin supérieur (L1 et L2) ; masses schisteuses marnoclastiques du Lin moyen (L3).
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

en moyenne; elles alternent avec des lits souvent laminés d'argilolites vert clair rendues en général schisteuses par écrasement. Ce terrain paraît bien atteindre 4 à 5 mètres, mais il est fréquemment réduit par laminage.

Un terme de passage entre ce faciès et celui de la Grande Moenda existe dans la partie externe de la digression du Perron des Encombres. On peut, en particulier, l'observer le long des deux sentiers — malheureusement en très mauvais état — qui serpentent dans la paroi dominant au nord le Torrent de Claret; l'inférieur montant à la petite maison forestière située au pied de la grande falaise de la Croix des Têtes, l'autre vers les cotés 2182 et 2202 pour rejoindre au nord le Col du Bonhomme.

On a là des dolomies gris clair à patine blanchâtre ou jaune, en gros bancs irréguliers, alternant avec de petits niveaux d'argilolites lie de vin, violacées ou vertes, et, plus bas, un niveau de quelques mètres d'argilolites violettes. Il y a donc encore là un niveau important d'argilolites sans dolomies; et d'autre part on retrouve les teintes violacées qui n'existent plus à l'est.

G. Zone des Gypses.

Cette zone est formée d'une accumulation très importante de gypses et argilolues en situation tout à fait anormale et dans lesquels on retrouve des lambeaux de roches appartenant aux unités plus internes, disparues par étreintement, et dont elle ne représente plus qu'une vaste scratrice.

Elle forme, à la limite de la zone briiançonnaise, de grands placages dans le flanc est des crêtes marquant la bordure orientale de la nappe du Pas du Roc. Il s'agit de grands amas de gypse généralement blanc et de argilolues de caractère tout à fait banal et dont la position stratigraphique ne peut pas être précisée ici. Ce n'est que par comparaison avec les unités voisines que l'on peut les attribuer au Trias supérieur.

IV. CONCLUSIONS. — PALÉOgéOGRAPhIE.

 Avec le Trias, nous voyons, pour la première fois, apparaître de nettes variations de faciès d'ouest en est. Mais ces variations ne sont pas encore en relation avec l'orogénèse alpine. Elles sont dues à la présence, sur l'emplACEMENT des massifs cristallins externes, de la chaîne «vindéciennienne», résultant de mouvements hercyniens posthumes. Ces mouvements se sont sans doute produits
durant le Permien qui y fait presque complètement défaut, et se sont traduits par la transgression directe du Trias sur le socle cristallin à coins synclinaux houillers.

C'est cette chaîne qui, au Trias, a séparé la «mer germanique» de la mer alpine. Cette séparation n'a du reste pas été complète, au moins au Trias moyen, où l'on retrouve partout des dolomies et des calcaires dolomitiques. Au Trias supérieur, par contre, une zone à faciès lagunaires marque la déclivité orientale de la chaîne avant que l'on n'atteigne, à l'est, la zone briiançonnaise à régime franchement marin (calcaires du Briiançonnais) représentant le Trias moyen et supérieur (148).

STÉRATIGRAPHIE.

Fig. 5. — Coupe schématique montrant les variations latérales de faciès dans le Trias supérieur.

On remarquera que les faciès deviennent plus en plus marins (dolomies) en allant vers l'est, où, effectivement, les faciès marins se manifestent, dans le Briançonnais, jusqu'au sommet du Trias supérieur. Les faciès sont, en conséquence, d'autant plus lagunaires (argilolites) que l'on se rapproche, à l'est, de l'aire de l'orogénèse «vindéciennienne».

C'est à cette zone lagunaire qu'appartiennent nos deux unités, subbriiançonnaise et ultradauphinoise. Il est intéressant de noter qu'elles nous montrent les mêmes variations d'ouest en est. On n'a, en effet, dans la zone ultradauphinoise que des argilolites; mais celles-ci se trouvent déjà accompagnées de dolomies dans la partie externe de la nappe du Pas du Roc (dégitation de la Grande Moenda); et elles sont à peu près totalement remplacées par les dolomies dans la partie interne (dégitation du Perron des Encombres) (fig. 5).
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

On sait que des faits analogues existent dans l'Ubaye, où D. Schneegans a observé le passage latéral des argilolithes subbriannonnaises, aux calcaires à Diplopoires du Briançonnais (148).

II. LES ZONES DE FACÉS.

A. Zone ultradauphinoise.

a. Au sud de l'Arc et jusqu'à la hauteur d'Hermillon, le Rhétien est, comme dans l'autochtonie, à peu près indistinct.

C'est ce que montre bien la fouille de la chambre de mise en charge de la conduite de l'usine hydroélectrique de Saint-Jean-de-Maurienne (fig. 6).

Il y a, d'ailleurs, passage insensible entre ces divers terrains. Et c'est le deuxième, fort mince, qui doit représenter le Rhétien dont il possède, en particulier, la patine caractéristique.
B. Zone subbriannonnaise.

a. Nappe des Brèches de Tarentaise.

1° Diggitation de Moûtiers. — Je n’ai rencontré le Rhétien, dans cette unité, que dans le faisceau de Solain. Il s’agit du petit affleurement qui se trouve au bord de l’Isère, rive gauche, au niveau de la passerelle de bois cotée 488, à 2 kilomètre environ en amont de Moûtiers.

Ce sont surtout des dolomies à patine jaune avec quelques bancs plus calcaires, gris et des schistes noirs; je n’y ai pas rencontré de véritables larnachelles.

Plus au nord, H. Scheffer a décrit, dans cette zone, un Rhétien analogue, mais accompagné de larnachelles.

2° Diggitation du Niéard. — Les terrains anténummulitiques y sont en général fort disloqués et je n’ai pu y retrouver le Rhétien qu’au Niéard lui-même.

Il ne présente, ici, rien de très particulier. Le meilleur affleurement se trouve dans la partie sud-ouest du petit massif, au sud de la cote 5475, au sommet des falaises formées par les calcaires subverticaux du Lias. Ce sont, comme dans les unités plus internes, des alternances de bancs de calcaire noir, souvent larnachelle, à patine olivâtre, de schistes noirs et de bancs dolomitiques à patine rousse.

b. Nappe du Pas du Roc.

1° Diggitation de la Grande Moenda. — La meilleure coupe se trouve entre les Aiguilles de la Grande Moenda et le Col du Bonnet du Prêtre, dans l’éperon coté 5624. On y observe la série suivante, renversée (fig. 4):

3. Argiloëtes du Trias supérieur;
2. Dolomies grises à patine jaune, avec intercalation de schistes noirs et de quelques bancs de calcaires coquilliers, formant le Rhétien: 10 mètres;
1. Calcaire bléuté, massif (10 mètres) et calcaire saphique gris avec niveaux calcais (5 mètres) qui représentent la base du Lias.

2° Diggitation du Perron des Écaoumbre. — D’importants affleurements de Rhé-
III. LA FAUNE RÉTIENNE.

Les couches rétiennes sont presque partout fossilières, ce qui en fait un bon repère stratigraphique. Mais elles le sont plus spécialement dans la digitation du Perron des Encombres, à laquelle appartient le gisement du Pas du Roc, en aval de Saint-Michel-de-Maurienne, dans la vallée de l’Arc.

Fig. 7. — La carrière du Pas du Roc
(vue prise, vers le nord, au bord de la route de Saint-Michel, à l'entrée de la carrière).

Les couches rétiennes (H) intermédiaires, en cône renfermé, avec les calcaires du Lias inférieur (L) et les dolomies expulsées à l'âge d'anglohème verte du Trias supérieur (T).

Les fossiles les plus fréquents sont les suivants :
- Avicula contorta Portl. (se rencontre à peu près partout);
- Terobrataula gregaria Suess. (rive gauche du Pas du Roc, flanc est de l'arête Croix des Têtes-Perron des Encombres);
- Dimyopis instauriata Emm.;
- Rhabdophyllia sp. (polyphyletique, en partie du flanc est de l'arête Croix des Têtes-Perron des Encombres, spécialement au Col du Bonhomme).

A côté de ces espèces courantes, de nombreuses autres ont été citées autrefois.

STRATIGRAPHIE.

Près du hameau de la Serpolière, l'Abbé Vallet avait signalé :
- Trochus Valleti Stopp.;
- Turbo Pilleti Stopp.;
- Cerithium Stoppani Winckl.;
- Myophoria inflata Emm.;
- Anomia Schaaffhausen Winckl.

L’Abbé Stoppani (26 et 27) avait, d’autre part, donné une importante liste d’espèces provenant surtout du Pas du Roc et contenant, en plus des précédentes :
- Chemnitzia Valleti Stopp.;
- Turbo Chomousseti Stopp.;
- Cardita Austriaca v. Haer.;
- Mytilus siliquolo Quenst.;
- Myophoria incerta Stopp.;
- Avicula gregaria Stopp.;
- Avicula inauriculata Schaaff.;
- Lima subglobula Stopp.;
- Petenia Valoniensis Defr.;
- Petenia Masuloughe Stopp.;
- Petenia Hohii d’Orb.;
- Plicatula Archiaci Stopp.;
- Spiriferina Mönnsteri Suess.

Enfin, sur la rive gauche du Pas du Roc, l’Abbé Vallet avait découvert des couches à débris de poissons, dans lesquelles firent signalés :
- Aerodus minimus Ag.;
- Spherochus sp.;
- Hydorus sp.;
- Sargodons sp.;
- Gyropleis inauriculata Ag.

Cette faune, devenue classique, réunit donc à la fois le type «sonabé» à bivalves et bonebeds et le type «carpatique» à Térébratules.
IV. CONCLUSIONS. — PALÉOGÉOGRAPHIE.

Le Rhétien marque le début de l'envasissement par la mer du domaine alpin, qui, après le régime continental du Permien-Houiller, la brève submersion du Trias moyen et le régime lagunaire du Trias supérieur, va rester immédiatement jusqu’au Tertiaire. Ceci à l'exception des zones où vont s'ériger les cordillères qui, périodiquement, seront exondées.

Dans le domaine externe, cette transgression sera plus rapide et réalisera, presque d'embâcle, le faciès qui va régner pendant le Lias : c'est ainsi que, dans l'épaisse série marno-calcaire de la couverture des massifs cristallins externes, le Rhétien reste peu individualisé, ou est même tout à fait indistinct.

Le même fait s'observe d'ailleurs encore dans l'Ultradeuphinois externe, où le Rhétien demeure peu net (Échaillon).

Mais dans le Subbriégeois, il n'a, au contraire, malgré des variations de détail, des caractères bien nets et une grande homogénéité d'ensemble : lunachelles à *Acastola conusa*, couches à *Terentia gregaria* et, plus rarement (Pas du Roc), bonebeds à débris de poissons, alternant avec des schistes noirs. La présence de microbrèches dans la digitation du Perron des Encombres montre qu'ici la sédimentation est encore néritique, alors qu'elle était, dès le début, vaseuse dans les zones dauphinoises et ultra-dauphinoises.

Enfin, on sait que cette transgression s'est étendue aussi au domaine briégeois, où les affleurements en sont, cependant, assez rares, en raison des érosions postérieures qui ont affecté la cordillère briégeois, et l'ont presque partout fait disparaitre.

LIAS.

I. HISTORIQUE.

C'est la découverte du célèbre gisement des Encombres qui permit, pour la première fois, d'attribuer avec certitude au Lias les puissantes assises calcaires du massif du Perron des Encombres et du Pas du Roc. Elle fut faite en 1848 par Sionvoda qui donna à ce moment une première liste de fossiles (8), suivie bientôt d'une seconde, en 1855 (12). Le gisement n'y est pas indiqué avec précision, mais Ch. Lory, puis W. Kilian admirent déjà qu'il s'agissait de la célèbre "grosse pierre des Encombres", gros bloc détaché de la pente et gisant au fond du vallon des Encombres, près du point coté 1750 entre les confluents des ruisseaux de Varlossière et du Vallon (fig. 59). Comme nous le verrons, ce gisement a livré de nombreux fossiles du Charmouthien-Tourrangien.

En 1861 (39), dans la couche qu'on donne de la vallée de l'Arc, Ch. Lory distingue un Lias inférieur calcaire et un Lias supérieur schisteux.

Puis en 1890, W. Kilian (54 et 55) signale la présence d'un faciès coralligène dans le Lias du Nébard (au-dessus de Saint-Jean-de-Belleville) et dans celui de la vallée de l'Arc, en aval du Pas du Roc. Il revient à nouveau sur cette découverte dans son importante étude de 1891 (56), où il signale, de plus, la présence d'un niveau de brèche calcaire intercalé dans le Lias : c'est la fameuse "brèche du Télégraphe", du nom du fort du Télégraphe qui domine le défilé du Pas du Roc au sud-ouest de Saint-Michel-de-Maurienne. Ceci lui permet de distinguer, entre le Lias de type dauphinois à sédimentation entièrement vaseuse et le type briégeois entièrement bréchique, un "type intermédiaire" où, malgré l'apparition de brèches (fort du Télégraphe), la grande division en Lias calcaire et Lias schisteux subsiste : ce type intermédiaire correspondait à notre zone du Pas du Roc.

Mais, à la suite des études effectuées par lui au sud du Perville, M. Gignoux pensa que la brèche du Télégraphe devait appartenir au Dogger (133). Il confirme cette opinion, avec L. Moret, dans une note de 1936 où ces deux auteurs donnèrent une interprétation toute nouvelle de la stratigraphie de la zone du Pas du Roc (135). Pour eux, en effet, le "Lias calcaire" de Ch. Lory et W. Kilian représente, à la fois, le Lias inférieur et le Dogger, séparés par une mince vire schisteuse de Lias supérieur; et leur "Lias schisteux" est, à son tour, attribué au Callovien-Oxfordien. Cette opinion fut soutenue également, la même année, par L. Moret et D. Schneegans pour la région de Saint-Martin-de-Belleville (Tarentaise).

Ajoutons enfin qu'en 1936, Mme Y. Gubler et D. Schneegans avaient précisé la stratigraphie du Lias du Mont Nébard près de Saint-Jean-de-Belleville (136).

II. LES ZONES DE FACIÈRES.

C'est avec le Lias qu'apparaissent les principales variations de faciès permettant de préciser la paléogéographie de notre région. Car, avec l'établisse-
ment délimité de la mer dans le géosynclinal alpin, commencent les premiers mouvements embryonnaires de l’orogénèse alpine : la naissance des cordillères marquées par des hauts fonds délimitant des fosses et des sillons profonds.

A. Zone ultradauphinoise.

a. Caractères lithologiques.

Cette unité correspond à la partie tout à fait orientale du domaine dauphinois, mais déjà plus ou moins décollée en « écaill e parautochtones ». Les faciès y sont donc encore généralement très voisins des faciès vaseux dauphinois.

Les différences y sont cependant très accusées à proximité de Saint-Jean-de-Maurienne. J’ai, en effet, montré récemment, dans une note préliminaire (176), que le petit massif cristallin du Grand Châtelard a constitué, au Lias inférieur, un « dôme » émergé. Le Lias inférieur calcaire y fait donc complètement défaut : c’est le Lias moyen qui est directement transgressif sur le Trias ou le Cristallin, sur lesquels il débute par des brèches calcaires.

Au contraire, la série ultradauphinoise, décollée sur les terrains précédents, présente des caractères analogues à ceux du reste de la zone dauphinoise. C’est au sud de l’Arc, où l’écaill e ultradauphinoise s’émerge avant de se rabattre à la zone dauphinoise par le pli-faîle du Mont Charvin (53), que la série s’observe avec le plus de netteté.

Sur la rive droite de l’Arvan, on voit se dresser une importante falaise de marno-calcaires dominant les argiloïdes du Trias supérieur et correspondant au Lias inférieur calcaire. Vers le haut, la série devient plus schisteuse et détermine le replat d’Albiez ; elle monte, dans l’axe du syndinal de Villargondran, jusqu’aux schistes à micas saléniens.

Plus au nord, j’ai pu mettre en évidence une bande importante de Lias dans le substratum du Flysch des Aiguilles d’Arves, à l’est de Montpascal. Ce sont des marno-calcaires alternant avec des schistes argileux noirs ; quelques niveaux sont entièrement schisteux. On y observe le passage au Rhétien, lui-même en rapport avec les argiloïdes du Trias supérieur (coupe de la Forêt des Ravières, entre Montpascal et le Coin du Châtel) : il s’agit donc bien de

B. Zone subbriançonnaise.

a. Nappe des Brèches de Taravaine.

1° La digestion de Montiers. — 1. Caractères lithologiques. — Dans son étude sur la région de Montiers, E. Roch rapporte encore au Lias, comme ses précédentes, la puissante série de calcaire et brèches caractéristiques de cette nappe subbriançonnaise externe (90). Or, il semble bien que ce terrain doive être rapporté au Nummulitique, comme l’a fait H. Scheller (101). Au sud de l’Isère, le vrai Lias n’affleure qu’en petites lames isolées dont on ne peut tirer aucune précision stratigraphique. Au nord de cette rivière, par contre, H. Scheller a pu y décrire deux niveaux principaux (101) :

2. Un calcaire cristallin blanc, à silex, de 100 à 200 mètres d’épaisseur;
1. Des calcaires gris et noirs, finement spatulés, de quelques dizaines de mètres.

2. Faune et âge. — Le niveau supérieur ne renferme que très peu de fossiles : Polyplhées, Enotères, débris d’Echinodermes et spicules de Spongiales, un Penten

STRATIGRAPHIE. 45

Lias. Mais les complications tectoniques et le manque de fossiles ne permettent pas d’y établir de stratigraphie détaillée.

b. Faune et âge.

Les fossiles rencontrés dans cette zone sont très peu nombreux. À l’est du hameau de Gévoula (dans la vallée de l’Arvan, au sud de Saint-Jean-de-Maurienne), j’ai trouvé une Aritéte ; il s’agit donc bien du Lias inférieur. De la même région, W. Kilian et J. Révil ont cité (73) : Aritéte sp., Bolommites elongatus, Zeilleria cf. mutisianolus.

D’autre part, ces mêmes auteurs ont signalé la présence de Harpoceras cf. aulome dans les schistes à micas de Villargondran ; la série schisteuse monte donc jusqu’à l’Aalenien. Mais il est très difficile d’établir des limites précises dans cette épaisse suite de terrains si monotonous.

Enfin, un peu partout, et même dans la bande de Lias à l’est de Montpascal, on rencontre des Pentacrinés.

Le niveau inférieur a fourni : Gryphaea arcuata Lam., sa variété obliqua Goldf. et Poema Helbii d'Orb. Il représente donc, en gros, le Lias inférieur, sans que l'on puisse préciser davantage.

Le cirque qui existe au centre de ce petit massif est entièrement formé de brèches jurassiques, en position synclinale, le Lias s'affaillant sur le pourtour.
Le Rhétien, qui permet de définir la série vers le bas, y apparaît en trois points : à l'angle nord-est, au milieu du plan est et vers le milieu du plan sud-ouest.
Cette dernière point que les rapports avec les terrains supérieurs sont le plus clair, la série étant bien continue dans les falaises où les couches sont subverticales et de direction nord-sud.

3. Calcaire gris spathique, à patine jaunâtre, contenant des rognons de silex. Ce niveau présente d'assez nombreux fossiles plus ou moins silicaïfés, mais en général assez mal conservés (Bivalves, débris d'Ammonites peu déterminables, mais appartenant à des formes sinémurienennes, Aristote en particulier) : 35 à 50 mètres ; 4. Calcaire gris clair, grossièrement spathique, à patine très claire, gris blancâtre.
Si le début est spécialement net ici, la série est malheureusement interrompue vers le haut. Mais la partie supérieure peut être étudiée ailleurs, en particulier le long de l'arête descendant de la Pointe du Niéard (2558 m) vers l'ouest. Au-dessus de la lune de cargneules qui sépare les terrains du Niéard du Fysh des Aiguilles d'Arves sous- jacent, on peut observer la succession suivante (en reprenant la même notation que dans la coupe précédente) : 2. Calcaire gris bleue foncé, compact, à cassure esquilleuse ; 3. Calcaire gris, spathique, à patine brunâtre et rognons silex noirs, irréguliers, contenant des Bélémnoïtes, des Pentacrinés et Gryphaea arcuata Lam. : 50 mètres (ce niveau est en partie étiré et ne se présente pas sous son épaisseur normale) ; 4. Calcaire gris bleuté grossièrement spathique et parfois même très finement bréchique, à patine gris clair ou blancâtre : 30 à 40 mètres ; 5. Calcaire marneux très clair, gris crème ou blanc, très finement crétacé, à patine blancâtre, contenant de nombreux Polyplacophores souvent mal conservés, recristallisés. L'épaisseur de ce terrain peut difficilement être évaluée. C'est, en effet, le dernier terme connu du Lias et il se montre partout raviné par les brèches jurassiques ; il ne semble cependant guère dépasser 40 à 50 mètres.

Ces terrains reprennent ailleurs qu'au Niéard lui-même, spécialement vers le sud, entre le château du Fux et la Pointe du Fux (2824 m), dans le petit massif côté 2551. Les couches y sont d'auteurs extrêmement disloquées et la stratigraphie n'aurait pu y être établie. Mais les calcaires spathiques à silex (niveau d'au-dessous précédentes) y montrent trois fossilifères, et contiennent de côtés Bélémnoïtes et de Pentacrinés d'assez nombreux débris d'Ammonites...
LES ZONES ULTRA DAUPHINOISE ET SUBBRIANÇONNAISE.

nites silicifiées de petite taille. Ce sont des formes sinémuriennes, en particulier des Aréctites, malheureusement non déterminées spécifiquement.

2. Âge et faune. — En dehors des espèces citées plus haut, le Lias du Nièlard a fourni des fossiles à diverses reprises. Je laisse de côté, pour l'instant, ceux qui ont été recueillis dans les brèches et sur lesquels je reviendrai plus loin (p. 67).

W. Kilian a recueilli dans le flanc du petit massif (79) :
- Gryphaea arcuata Lam.
- Bélemnites brevis d'Orb.
- Aréctites correl Giebel.
- Aegoceras sp.
- Nautilus sp.

Ces fossiles, qui appartiennent au Sinémurien, proviennent de calcaires noirdâtres correspondant certainement à notre niveau 3 (p. 47).

Le même auteur a donné une liste de fossiles recueillis dans le flanc sud du massif, près d'Orgentail :
- Foraminifères abondants.
- Polyplaires (Calomorphites ?)
- Cédras (radiolaires).
- Pentaceras sp.
- Mégulanites (Zeilleria numismalis) Lam. sp.
- Lima sp.
- Lamellibranches divers.
- Nerina sp.
- Bélemnites sp.

Ces fossiles se trouvent dans les calcaires clairs zoogènes à Polyplaires, qui sont certainement l'équivalent de notre niveau 5 (p. 47). La présence de Zeilleria numismalis doit donc être attribuable à cet horizon au Charmouthien.

H. Schüller a également cité un Deroceras recouvert près d'Orgentail par E. Roch (101). Malheureusement, le niveau d'origine n'en est pas précisé. D'autre part, la répartition de ce genre, du Lotharingien au Domérien (153), n'apporte aucune précision sur l'absence d'une détermination spécifique.

Les fossiles recueillis par W. Kilian confirment donc mes propres observations et l'on peut dès lors préciser la stratigraphie du Lias de la digitation du Nièlard de la façon suivante (les numéros se rapportent aux horizons distingués dans nos coupes) :

Charmouthien (et Tournien ?) : calcaires clairs, finement cristallisés et zoogènes (Polyplaires) vers le haut, à Zeilleria numismalis (5); grossièrement sphatiques vers le bas (4).

Sinémurien : calcaires gris, finement sphatiques, à rognons de silex, fossilières (Aréctites) (3).

Hetangien : calcaire compact, gris-bleu (1) et calcaire gris-bleu, sphatique, à Bélemnites (1).

b. Nappe du Pas du Roc.

C'est essentiellement d'après les variations de faciès du Lias que j'ai été amené à distinguer dans cette nappe deux digitations (fig. 9).

1° Digitation de la Grande Moënda. — 1. La série stratigraphique. — Les faciès sont totalement différents et attestent une sédimentation vaseuse beaucoup plus profonde que dans l'unité précédente ; cette digitation correspond donc à un premier « sillon », à l'est de la cordillère tarine.

Les meilleures coupes de base de cette série sont celles que l'on peut étudier entre le col du Bonnet du Prêtre et les Aiguilles de la Grande Moënda, où le Trias supérieur et le Rhétien sont représentés et fournissent un précieux repère (fig. 4 et fig. 94). A la cote 2694, on observe d'est en ouest, une série renversée qui comprend, après les argiloïdes du Trias supérieur et le Rhétien :

1. Calcaire sphatique gris avec nuées lits calcahisteux : 5 mètres.
2. Calcaire gris foncé, compact, à casse esquilleuse et patine grisé-chiar, massif ou en très gros bancs, avec quelques lentilles siliceuses vers le haut. Les seuls fossiles rencontrés à ce niveau sont des Poecia, peu déterminables : 10 mètres.

L'ensemble de ces deux terrains forme un niveau résistant qui détermine une petite corniche très caractéristique au-dessus du Rhétien.

3. Épisode sérée monoton formée d'alternances de dalles de calcaire gris à patine brunâtre et de calcahistes plus ou moins argileux ou très finement gréseux suivant les niveaux.
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

Le long de l’arête qui, de la cote 3700, se dirige vers le sud-ouest, on peut relever, après le dernier ailleurement de Trias, une coupe qui est plus complète vers le haut. Les couches y sont malheureusement fort étirées, mais j’y ai trouvé un niveau fossilière, à fragments d’Ammonites, d’ailleurs très laminées et peu déterminables spécifiquement. La succession des terrains est la suivante, d’ouest en est :

1. Rhétien ;
2. Calcaire gris noir, en gros bancs avec, par places, des zones silici-euses : 15 mètres ;
3. Calcaire spathique, noir, à patine brunâtre : 5 mètres ;
4. Calcais alternant avec des dalles régulières de calcaire gris un peu marneux, contenant par places des Ammonites laminées (Ariétites) : 15 mètres ;
5. Épaisse suite de couches analogues au niveau précédent (alternances de dalles calcaires et de lits calcaisites). Ce terrain peut être, soit un peu gréseux, soit au contraire, marneux, ce qui détermine une succession de petites crêtes et de petits talwegs allongés dans le sens des bancs ;
6. Schistes noirs très argileux et très tendres, en minces feuilletés sou- vent gaufrés ou striés par laminage. Ce niveau est extrêmement plastique et joue un grand rôle dans l’architecture des plis de cette série, se laminant presque complètement par endroits pour former ailleurs des accumulations bien supérieures à son épaisseur réelle ;
7. Dalles de calcaire gris un peu gréseux à surfaces ondulées, présen- tant parfois des trénées silici-euses, alternant avec des calcaisites durs, gréseux, à patine jaunâtre. Ce terrain, beaucoup plus résistant, se traduit par un barre rocheuse dans la topographie.

2° Âge et faune. — Les fossiles sont peu nombreux, mais la présence du niveau fossilière à Ammonites sinémuriennes nous permet d’attribuer à l’Hettangien la barre calcaire inférieure comprise entre ce niveau et le Rhétien. Et, par comparaison avec la digitation du Perron des Encombres, on doit rapporter à l’Aalenien la série des schistes tendres noirs (6) surmontée d’une barre calcaire correspondant au Dogger (7). En conséquence, l’épaisse suite de calcaires et marneux qui s’intercale entre ces deux terrains et ne peut être

STRATIGRAPHIE.

divisée lithologiquement, représente le Sinémurien (gisement fossilière), le Charmouliien et le Touricien. Et la série stratigraphique s’établit ainsi :

3. Aalenien : schistes noirs très tendres : 150 à 200 mètres ;
4. Sinémurien-Charmouliien-Touricien : dalles de calcaire gris-bléuté alternant avec des lits marneux : 950 à 350 mètres ;

3° Les variations de faciès. — Mais la série ainsi établie n’est pas absolument constante à l’intérieur même de la digitation. A l’est, comme à l’ouest, elle présente des variations de faciès, d’ailleurs assez analogues. Dans la région de Saint-Jean-de-Belleville comme dans l’échelle de la Pointe de la Dent à l’ouest de Saint-Martin-de-Belleville, le Lias se compose bien encore de trois termes ; mais l’inférieur est un niveau de calcaires spathiques à silex rappelant celui du Lias inférieur et moyen du Pas du Roc (digitation du Perron des Encombres), et beaucoup plus épais que l’Hettangien du massif de la Grande Moenda. Il peut, en effet, atteindre 100 mètres et englober sans doute au moins la partie inférieure du Sinémurien.

Le Lias moyen, lui, conserve à peu près les mêmes caractères. Quant à l’Aalenien, il est toujours caractérisé par ses schistes noirs, très argileux et tendres, quoique parfois un peu plus calcaires vers l’est (pointe de la Dent),

4° Digitation du Perron des Encombres. — 1. La série stratigraphique. — Nous retrouvons ici une division en deux du Lias, ainsi que l’avaient indiqué M. Gigon et L. Moret (35) ; le Lias supérieur, plus ou moins schisteux, détermine une petite « vierge » entre les calcaires clairs, massifs, du Dogger et le Lias inférieur et moyen, formés de calcaires gris ou noirs, spathiques, à gros rognons de silex (fig. 8).

Au Pas du Roc, la coupe s’établit de la façon suivante, au-dessus du Rhétien :

1. Calcaire en gros bancs, noir bléuté, assez grossièrement spathique, à patine gris-jaunâtre ; on observe, par places, des débris esquil- liers et, vers le haut, quelques rognons de silex noir : 5 à 6 mètres ;
2. Calcaire massif ou en gros bancs, gris-bléuté, finement spathique, à cassure esquilleuse ; patine grise, flammée de jaune ou jaune verdâtre à la base : 15 mètres ;
3. Calcaire massif, finement spathique, à gros nodules de silex très irréguliers et faisant saillie sur les surfaces altérées : 20 mètres;
4. Calcaires et calcaires en dalles et plaquettes irrégulières, noirs, finement spathiques ; patine jaunâtre, souvent avec tranchées lie de vin : 15 mètres;
5. Calcaire gris-noir, cristallin, massif, à patine bleutée ou jaunâtre.

Les trois premiers niveaux représentent le Lias inférieur et moyen, le quatrième le Lias supérieur et le cinquième le début du Dogger.

La « grosse pierre des Encombres » appartiennent aussi à la digitation du Perron des Encombres.

Fig. 8. — La paroi ouest du versant du Prie du Roc.
(vue prise de la route, à proximité du tunnel de la voie du chemin de fer, vers le nord).

La série, renversée, comprend, de bas en haut : les marais-calcaires calcaires (C), le grès noir calcaire du Bogger (Bm) séparée de celle du Lias inférieur et moyen (Lm) par une vase correspondant au niveau calcaires du Lias supérieur (Ls). Au sommet, blanches (B) et dénommée du Trias supérieur (T).

Il s’agit d’un énorme bloc de près de 50 mètres de long, échoué de la paroi de calcaire du Lias au flanc est de la croupe cotée 508, entre les Ruissiares du Vallon et de Varlois, qui gît au pied des éboulis, à la limite des alluvions du ruissseau des Encombres (fig. 9). C’est sa face est qui est surtout fossili-
LES ZONES ULTRAURBINOISE ET SUBBRIANÇONNAISE.

3. Calcaire gris, finement spathique, en bancs irréguliers de 10 à 30 centimètres, à gros rognons de silex noir, à patine blanchâtre, allongés dans le sens des bancs.

On ne peut avoir ici d'indications précises sur les épaisseurs des deux niveaux calcaires, puisque les couches qui les encadrent, Rhétien d'une part et Lias supérieur de l'autre, n'affleurent pas en ce endroit ; mais l'épaisseur totale en est généralement, dans la région, d'une soixantaine de mètres.

La photo montre une coupe du repli antiformal avec le Rhétien et les décombres du Tête supérieur au centre (Fig. 10). La partie inférieure de ce repli donne un panorama sur le secteur.

On voit donc que le niveau fossilifère de la « grosse pierre des Encombres » se trouve à la limite inférieure d'un petit niveau schisteux, peu épais et souvent complètement laminé, dans la masse des calcaires à silex. La partie inférieure de ce nivel se trouve dans le ，

Enfin, dans la forme est du massif de la Croix des Têtes j'ai découvert un niveau fossilifère dans le Lias supérieur (158) (fig. 10). Le gisement se trouve à 300 mètres au nord-nord-est de la côte 2015 et la coupe du Lias y est la suivante, au-dessus du Rhétien :

1. Calcaire en gros bancs assez grossièrement spathique, noir-bleuté, à patine jaunâtre ou roussie ; ce niveau contient de très nombreuses Blemmites et quelques Lamellibranches généralement mal conservés (Pecten) 4 à 6 mètres.

2. Calcaire gris, finement spathique, massif ou en gros bancs, à nodules de silex irréguliers : 15 mètres.

3. Calcaire en gros bancs avec très nombreux et gros rognons de silex, spathique et parfois même finement microbréchique, gris-bleu, à patine jaunâtre : 30 mètres.

4. Calcaire spathique gris, en dalles et plaquettes alternant avec des calcaires lithifères irréguliers, souvent finement spathiques, gris ou noirs, en lits plus ou moins épais ; patine jaunâtre à traitées de vin : 15 mètres. L'un des lits du sommet de ce niveau renferme une faune astériorale.

5. Calcaires massifs, compacts, de couleur claire, grise, crème ou légèrement mauge, à patine grise à traitées roses : 150 mètres ; le passage au niveau précédent se fait par des bancs de plus en plus minces à traitées siliceuses : 10 mètres. Ce niveau représente le début du Dogger.

Mais le gisement fossilifère le plus riche est celui de la « grosse pierre des Encombres », découvert en 1848 par A. Sismonda (18). W. Kilian et J. Rédin en ont donnée la liste d'espèces suivante :

- *Teuthopus Sismondae* Bellardi.
- *Blemmites elongatus* Mill.
- *Rhacophyllites niauxiensis* Reyn.
- *Lycoceras fimbriatum* Sow.
- *Aegoceras (Ambergoceras) capricornu* Schlot.
- *Aegoceras (Dactyloceras) annulatum* Sow.
- *Amathhines margaritatus* Mont., var. *nuda* Qu.
- *Diceroceras Dorei* Sow.
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

Descerus Pocchioli Mem.
Harpoceras Normannianum Opp. (→ Ams. rudens amalthei Qu.).
Harpoceras (Gromovoceras) retractirostratia Opp.
Harpoceras (Gromovoceras) Bertrandii Kil.
Harpoceras Ruthenianis Reynes.
Polymorphites (Microceras) polymorphus costatus Qu.
Polymorphites clamovarii Sov.
Chocoetia andalucia d’Orb. (→ Scalaris linnea Qu.).
Pleurodemys liatina Schübl.
Pleurodemys ambigua Sov.
Myconechna danae Munst.
Pleurodemys liatina Schübl.
Pleurodemys (Lyoniaria) unialisis Rom.
Leptoceras singularis Goldf. (→ Cardites multistriatus Phil.).
Lucina liatina Ag.
Venus bombae Qu.
Ceratites Muensteri Ziet.
Arca secura Dumort.
Astarea cf. Volzi Goldf.
Limna (Placoceras) gigantea Sow.
Limna acuticosta Goldf.
Geretia hylida Sow.
Geretia conica Sow.
Geretia Phile d’Orb.
Hippopodium ponderosum Sow.
Oxytoma Sinemurianus d’Orb. (→ Anc. innuouënsis autor, non Sow. sp.).
Harpax laevigatia d’Orb.
Pesten (Chlamys) prissi Schloth.
Gryphaea crypta Lam.
Spiriferina vornecosa de Buch.
Spiriferina tumida Eiat.
Spiriferina vornecosa de Buch.
Rhynochonella Dalmani Dum.
Rhynochonella Brises Gemm. var. blemmites Qu.

Ces espèces, en particulier les ammonites, sont presque toutes charmeu-

STRATIGRAPHIE.

thiennes (Ammoceras margaritaceum, Deroceras Donoei). Quelques formes tour-
ciennes les accompagnent cependant déjà (Dustyloceras annulatum).
Enfin, le gisement de la Croix des Têtes (p. 54) m’a fourni les espèces suivantes :

Graphoceras (Ludwigia) connovum S. Buckm.
Ludwigia radus S. Buckm.
Graphoceras (Ludwigia) cornu S. Buckm.
Somnius cf. spinus S. Buckm.
Pasciornoceras inferneus Rom.
Haplocaloceras mundum S. Buckm.
Loriceras opalinum Rein. var. complutum Rein.
Nausiarius sp.
Pterodimorphism sp.

Cette faune appartient, comme on le voit, essentiellement à la zone à G. conostrum de l’Aléthien supérieur, et rappelle tout à fait celle décrite dans l’Ubaye par D. Schneegans (148, p. 80).

2° L’âge des terrains. — Des coupes et des listes de fossiles qui précèdent, on peut donc déduire que le Lias de la digitation du Perron des Encornes est formé de deux niveaux principaux : calcaire à silex à la base (1), calcahistes et schistes au sommet (2); et les divers points fossilières permettent d’y faire les coupures suivantes :

2. Aléthien : calcahistes et schistes contenant au sommet une faune à G. conostrum (Croix des Têtes).
1e. Terres : calcaires gris à silex, en bancs irréguliers, débutant par un petit niveau de calcahistes noirs à Belemnites (valon des Encornes).
1b. Charmouthien — Sinémurien : calcaires gris à silex, massifs, terminés au sommet par un hardground à Ammonites charmouthiennes (« grosse pierre des Encornes ») et contenant, plus bas, des Aréites (Pas du Roc).
1a. Rétalangien : par comparaison avec l’Ubaye, on peut attribuer à cet étage la base des calcaires qui sont, ici aussi, « flammés de vert et jaunes » et passent directement au Rhétien fossilisé (143 et 148).
Les variations de faciès. — Les faciès du Lias subissent de légères variations d’est en ouest. C’est dans la partie occidentale du massif de la Croix des Têtes que ces variations peuvent le mieux être étudiées, en particulier le long du petit sentier forestier (malheureusement en très mauvais état et difficile d’accès) qui gravit la paroi cotée 2209, à 1 kilomètre au nord-ouest du sommet de la Croix des Têtes.

Comme dans le vallon des Encombres, on retrouve deux niveaux de calcaires à silex, l’inférieur massif, le supérieur bien lité, séparés par un petit horizon de calcaisistes plus ou moins marneux, noirs, à fossiles toarcien (Grammoceras toarcense). Mais l’ensemble est beaucoup plus épais et doit atteindre, lorsqu’il n’y a pas d’éboulis ou de laminage, 80 à 100 mètres. Il en est de même pour le niveau supérieur schisteux qui représente sans doute aussi, l’Aalenien : les calcaires y sont beaucoup plus marneux, très noirs, et atteignent 40 à 50 mètres d’épaisseur.

On voit donc que, dès la partie occidentale de la digitation des Encombres, on assiste à une variation latérale de faciès avec augmentation d’épaisseur qui annonce déjà la digitation de la Grande Moenda.

III. Conclusions. — Paléogéographie.

Avec le Lias, c’est la transgression amorcée au Rhétien qui se généralise et s’amplifie.

Mais c’est aussi l’apparition des premiers mouvements embryonnaires de la chaîne qui retentissent immédiatement sur la sédimentation. Celle-ci, assez uniforme et généralement encore nérétique au Rhétien, accuse maintenant les premiers mouvements par des alternances de faciès nérétiques marquant des hauts-fonds et de faciès vasseux correspondant aux sillons qui les séparent.

Dans le domaine dauphinois, ce sont les énormes accumulations de calcaires marneux et de schistes tendres de l’avant-fosse alpine, venant recouvrir d’un épais manteau les massifs cristallins externes, dont ils formeront l’essentiel de la couverture. Mais ces massifs, dernière survivance de la «chaîne viniédicienne», n’ont en général pu être tout de suite submergés et le Lias inférieur peut faire défaut dans leur couverture directe (Grand Châtéard) (109).

Plus à l’est, la zone ultradeauphinoise n’est encore guère individualisée et le Lias y conserve son faciès uniformément vasseux (substratum du Flysch des Aiguilles d’Arves). Aussi, dans la région de Saint-Jean-de-Maurienne, son Lias s’oppose-t-il vivement au Lias incomplet de la couverture du Grand Châtéard.

Il en va tout autrement dès que l’on aborde, avec la zone subbriannnoise, la région des nappes. Car dans son unité la plus externe, la nappe des Brèches de Tarentaise, nous voyons déjà apparaître les faciès franchement nérétiques des calcaires zoogènes du Niard et de la digitation de Motiers, dont l’épaisseur, par surcroît (100 à 150 m) est infinie par rapport aux centaines et même milliers de mètres de l’avant-fosse dauphinoise. Ainsi, dès le Lias, s’amorce déjà la future «cordillère tarine».

Enfin, dans la nappe du Pas du Roc, la digitation du Perron des Encombres, la plus interne, forme également un haut-fond avec son Lias inférieur et moyen constitué par des calcaires à silex, relativement peu épais (40 à 60 m) et son Lias supérieur calcaisistes très réduit (5 à 20 m). Mais la digitation de la Grande Moenda montre déjà l’existence, entre la cordillère tarine et le haut fond des Encombres, d’un sillon plus profond, à sédimentation vasseuse dans l’ensemble, et qui donne naissance à une série beaucoup plus épaisse avec,
au-dessus des 30 mètres de la petite corniche hettangienne, les 300 mètres de schistes et calcaires plus ou moins marneux du Lias inférieur et moyen et les 150 mètres de schistes noirs très tendres du Lias supérieur.

Et déjà se dessine le schéma paléogéographique dont nous allons suivre l'évolution au cours des temps secondaires. Nous sommes à la lisière orientale de l'avant-fosse, dans une région où les faciès moins épais et souvent néritiques traduisent le relèvement du fond vers la cordillère briaonnaise. Toutefois, ce n'est pas à une remontée régulière et progressive que nous avons affaire, mais bien à une alternance de faciès néritiques, et de faciès plus profonds, de hauts-fonds, de cordillères, séparés par des sillons : cordillère de la Grande Moenda, haut fond des Encombres.

Ce dernier semble bien correspondre à la digitation de Piolit dans l'Ubaye. Ainsi s'établirait la liaison avec le sud du Pelvoux, où la partie orientale du Subbriançonnais montre encore une série de rides et de sillons : cordillère des Sénalans, sillons de Draguonaq, hauts-fonds du Morgon annonçant l'approche de la cordillère briaonnaise.

DOGGER.

I. HISTORIQUE.

Dans le substratum du Flysch des Aiguiettes d'Arves, le Dogger n'est connu que vers le sud, en dehors de la région étudiée ici, sous le Col Lombard situé juste au sud des Aiguiettes d'Arves. La série y est fossilifère, du Tournaisien à l'Oxfordien (79), et le Dogger y est représenté par des calcaires marneux qui surmontent les schistes à migrés ascléniens.

Dans la zone subbriançonnaise, c'est M. Gignoux qui, le premier, a soupçonné l'existence du Dogger dans la série du Pas du Roc (132). Peu après, en 1936, cette façon de voir était confirmée dans une note en collaboration avec L. Moret (135), où ces auteurs montraient qu'une partie du "Lias calcaire" de Ch. Lory et W. Kilian appartenait en réalité au Dogger.

La même année, L. Moret et D. Scheneegans faisaient des observations analogues en Tarentaise (131). Ces auteurs rapportaient également au Dogger les brèches du Télégraphe, mais nous verrons plus loin que j'ai été amené à les rattacher à l'Oxfordien (p. 71). Il en est de même pour les brèches du Niéard;

II. LES ZONES DE FACIÈRES.

Digitation de Mottier. — Nous venons de voir que, si l'on parallélise les brèches du Niéard et celles du Télégraphe, il n'y a pas de Dogger proprement dit dans la digitation du Niéard.

Dans la digitation de Mottier alligne, près du hameau du Bois, un peu au sud d'Aigueblanche, une lentille de calcaire cristallin du Lias, exploité dans deux carrières au nord de la chapelle Saint-Jacques. L'escarpement situé au-dessous de cette chapelle est formé de calcahistes gris à patine brune ou jaunâtre passant aux calcaires (dans la partie ouest de la carrière sud), par l'intermédiaire de quelques bancs de calcaires dolomitiques à patine jaunâtre. Ces couches rappellent beaucoup celles décrites par H. Schodder au nord de l'Isère et attribuées par lui au Jurassique moyen : elles en sont probablement l'équivalent. Elles ne peuvent en tout cas pas être attribuées au Trias supérieur, comme l'a fait E. Roch (90), car elles n'ont ni le faciès du Trias supérieur proprement dit, ni même celui des "schistes de la Bagnaz", que j'ai, du reste, rattaché au Permien (p. 29).

b. Nappe du Pas du Roc.

1er Digitation de la Grande Moenda. — Le Dogger, bien que n'étant pas très nettement caractérisé dans cette unité, peut cependant y être individualisé.

Ce sont des calcaires généralement un peu gréseux, en bancs irréguliers, alternant avec des calcahistes également un peu gréseux, secs et durs. Les bancs et dalles calcaires présentent parfois des trabées siliceuses. Leur teinte est grise et leur patine brunâtre.

Ces calcaires forment généralement une corniche au-dessus des schistes noirs très tendres du Lias supérieur. Vers le haut, ils passent insensiblement aux
couches à Cancellophyges nettement marne-calcaires qui s'en distinguent très bien. Mais la limite exacte n'est pas toujours très aissée à préciser dans les régions où l'érosion ne la fait pas apparaître avec netteté dans la morphologie.

En partant de la côte 2700, sommet des Aiguilles de la Grande Moenda, et en longeant l'arête qui se dirige vers le sud-ouest, on observe la coupe suivante :

1. Marno-calcaires bleutés, en bancs réguliers, alternant avec des calcélastes marneux également bleutés.
2. Dalles ondulées de marno-calcaires finement gréseux alternant avec des calcélastes durs, gréseux, de teinte grise, à patine brunâtre ou jaunâtre, avec parfois des tranchées silicieuses jaunâtres : 50 mètres.
3. Schistes argileux noirs très tendres formant une dépression : 100 mètres.

Le premier terrain correspond à la base des couches à Cancellophyges du Callovien et le troisième au Lias supérieur. C'est le second qui représente le Dogger, aminci, localement, par étirement et laminage, mais dont l'épaisseur normale, entre la Grande Moenda et la Pointe du Vallon, peut être estimée à une centaine de mètres. Aucun fossile n'y a été trouvé et son âge n'est déduit que de sa position stratigraphique.

2° Détail de la Terrasse des Encombres. — 1. Caractères lithologiques. — C'est dans la coupe du Pas du Roc que le Dogger se présente avec le plus de netteté. Il y forme, en effet, entre la série plus tendre des couches à Cancellophyges et la petite vire schisteuse du Lias supérieur, une puissante barre de calcaire massif d'une centaine de mètres au Pas du Roc, mais qui atteint au moins 150 mètres dans le massif de la Croix des Têtes (fig. 8).

Il est donc très bien individualisé morphologiquement, en une barre massive et homogène où il n'est pas possible de faire de séparation et ceci d'autant moins qu'il n'y a pas été trouvé de fossiles suffisamment caractéristiques.

Au défilé du Pas du Roc, dans la falaise qui domine la route, rive droite, on observe la coupe suivante d'ouest en est :

11. Calcaire gris clair légèrement violacé à Polyptères et radiolaires d'oursin : 15 mètres.

9. Calcaire massif et compact, à cassure irrégulièr, gris taché de violace, plus ou moins spathique par places : 90 mètres.
8. Calcaire gris clair, à taches fines de vin, grossièrement spathique : 15 mètres.
7. Calcaire gris-noir, très finement cristallisé, à cassure esquilleuse et patine jaunâtre : 4 mètres.
6. Calcaire gris et be de vin, grossièrement spathique, à cassure irrégulière et patine gris-jaunâtre : 16 mètres.
5. Calcaire gris-noir, finement spathique, à cassure esquilleuse et nombreuses veinules de calice : 10 mètres.
4. Calcaire gris à plages violacées, à cassure irrégulière, grossièrement spathique par places : 8 mètres.
2. Calcaire massif gris-noir, spathique, à patine bleutée ou jaunâtre : 5 mètres.
1. Lias supérieur : calcaires spathiques en dalles irrégulières alternant avec des calcélastes : 15 mètres.

Ici, le Dogger se montre donc fréquemment spathique, toujours massif ou en gros bancs, et de teinte générale assez foncée, mais à patine claire.

Le niveau supérieur de calcaires clairs à Polyptères et radiolaires d'oursins est surtout bien visible en trois points, peu éloignés, en aval du défilé du Pas du Roc. Tout d'abord, dans le rocher de la rive gauche de l'Arc, sur lequel s'appuie le Pont Pallier, en face du passage à niveau du Plan des Sausses. La surface du rocher montre de belles sections de Polyptères déjà signalées par W. Kilian en 1894 (54, 55 et 56).

Près de l'usine de Calypso, à l'entrée de la gorge de la Valloirette, rive gauche, on remarque également ce même niveau de calcaire clair, légèrement marné, qui, outre les Polyptères, contient de très grosses radiolaires d'oursins dont on observe de nombreuses sections.

Enfin, près du four à chaux ruiné situé rive droite de l'Arc, à mi-chemin entre le tunnel et le Plan des Sausses, existe un petit escarpement dominant la voie ferrée et qui est dû à la présence du Dogger du flanc ouest du synclinal de la Valloirette (fig. 34). Ce sont, au-dessus des marno-calcaires du Callovien des calcaires clairs et compacts contenant de nombreux polyptères (Calamophyllia en particulier).
a. Les variations de faciès. — L'aspect du Dogger est très varié dans le détail, à l'intérieur même de la digestion.

Dans les massifs de la Croix des Têtes et du Perron des Encombres, la masse entière du Dogger devient claire, créme ou plus généralement mauge. L'ensemble est très massif, sauf la base où quelques gros bancs établissent le passage à l'Aldérien fossilifère (p. 55). De plus, l'épaisseur de ces calcaires atteint ou même dépasse 150 mètres. Je n'y ai rencontré que des Polypiers; W. Kilian y avait signalé le genre Inostrana.

Fig. 12. — Groupes schématiques montrant les variations latérales de faciès du Dogger.

De droite à gauche : calcaires massifs, souvent propres, du thème est du quaternaire de la Yalchirrië; calcaires en bancs, à minces lits siliceux, de l'anticlinal de la Yerpolée; dalles de marno-calcaires finement gréseux, alternant avec des calcaires gréseux de la digestion de la Grande-Moenda.

Dans l'anticlinal de Saint-Martin-de-la-Porte, il n'est plus massif, mais en gros bancs, et dans celui de la Yerpolée il est en bancs beaucoup plus minces à lits siliceux.

On voit donc que, lorsqu'on se dirige vers l'Ouest, les caractères du Dogger tendent à se rapprocher de ceux qu'ils ont dans la digestion de la Grande-Moenda.

Il en est de même lorsque on se dirige vers le nord. En effet, au nord du grand affleurement gypseux des Etovières sous lequel disparaît la série du Perron des Encombres, et jusqu'à Gitamelon, ce n'est plus aux calcaires massifs à Polypiers qu'on a affaire, mais à des calcaires en bancs assez peu épais, irréguliers, à trainées siliceuses.

III. Conclusions. — Paléogéographie.

Le Dogger n'a pu être daté que par sa position stratigraphique entre l'Aldérien fossilifère et les couches à Camarophyllum calloviense.

Durant cette période, les diverses zones de sédimentation gardent, en gros, les caractères que nous leur avons vu acquérir au Lias.

Dans la zone duaphinoise et ultradeuphinoise, la sédimentation reste terrienne, avec des marno-calcaires noirs souvent difficiles à distinguer du Lias (73, 77).

Dans la zone des brèches de Tarantaise, le Dogger, comme le Lias supérieur, fait défaut, au moins dans la digestion du Nièard. Il est difficile de savoir si ces terrains ne se sont pas déposés ou s'ils ont été enlevés par des érosions postérieures à leur dépôt. Il faut cependant remarquer que l'on n'a jamais signalé d'éléments pouvant appartenir à ces niveaux dans les brèches jurassi ques qui ravinent, partent, le Lias moyen.

Le sillon de la Grande-Moenda persiste, ainsi que le montrent les calcaires et calcaiches un peu gréseux représentant le Dogger et qui sont bien différents des calcaires massifs à Polypiers du Pas du Roc et de la Croix des Têtes. Ces derniers indiquent la persistance d'un «seuil» ou haut-fond dans la digestion des Encombres.

Enfin, vers le sud, il y aurait, comme au Lias, raccord avec le Subbriançonnais de l'Ubaye par l'intermédiaire de la digestion de l'Édêt dont le Dogger rappelle beaucoup celui du Pas du Roc (145 et 148).

CALLOVIEN ET OXFORDIEN.

I. Histoire.

J'étudierai simultanément ces deux étages, qui forment un même ensemble, principalement sistiens, et correspondant, en gros, dans la nappe du Pas du Roc, au «Lias siliceux» de Ch. Lory et W. Kilian.

Il en est de ce terrain comme du précédent : si l'Oxfordien était connu depuis longtemps dans la zone ultradeuphinoise par le célèbre gisement du

APPENDICE.
Col Lombard, près des Aiguilles d’Arves, découvert par W. Kilian en 1893 (62), il n’avait pas été identifié dans les zones plus internes.

Comme pour le Dogger, c’est à M. Gignoux, L. Moret et D. Schneegans que l’on doit cette distinction dans la nouvelle interprétation stratigraphique de la zone du Pas du Roc qu’ils ont donnée en 1936 (134 et 155).

II. Les zones de faciès.

1. Nappes des Brèches de Tarasconaise.

1° DCipitation de Moûtiers. — Au sud de l’Isère, on ne trouve aucun affleurement de terrain intermédiaire entre le Lias et l’épaisse série nummulitique. Au nord de l’Isère, par contre, existent, entre ces deux niveaux, des brèches, qui ont été rapportées au Dogger par H. Scheller (104). Étant donné l’identité des séries stratigraphiques des deux digitations, ces brèches sont certainement du même âge que celles du Niéard, oxfordiennes si on les parallélise avec les brèches du Télégaphre proprement dites.

2° DCipitation du Niéard. — 1. Caractères lithologiques. — Au Mont Niéard, à l’ouest de Saint-Jean-de-Belleville, existe un puissant niveau de brèches calcaires compris entre le Lias et le Nummulitique.

Ces brèches à ciment calcaire ; les éléments sont anguleux, de 20 à 30 centimètres en moyenne, et proviennent de tous les terrains inférieurs de la série : dolomies triasiques, calcaires rhétiens, calcaires noirs spathiques sinémuriens et calcaires clairs, coralliens, du Lias moyen ; il faut cependant noter l’absence d’éléments cristallins ; l’épaisseur totale est de 100 à 150 mètres.

Ces brèches sont donc lithologiquement tout à fait analogues aux brèches du Télégaphre proprement dites, ainsi que l’avait déjà noté W. Kilian.

2. Position stratigraphique des brèches du Niéard. — Ces brèches constituent la partie centrale du petit massif du Niéard. Le Lias, lui, en forme le pourtour et c’est là que l’on peut observer, de façon très nette, le contact des brèches sur le Lias. À leur base, les brèches reposent toujours sur le terme le plus clair que l’on connaisse dans le Lias sous-jacent, les calcaires blancs, coralliens, du Charmouthien.

STRATIGRAPHIE.

La surface des calcaires est irrégulière et le contact avec les brèches extrêmement tranché (pl. I, fig. 1). Il n’y a donc pas passage d’un terme à l’autre, mais bien transgression des brèches sur le calcaire. Il ne semble du reste pas y avoir de grande discordance angulaire. Cette limite s’observe très bien dans la parcelle nord et nord-est du massif, partagée entre les calcaires clairs à la base et les brèches plus foncées vers le haut.

A leur sommet, ces brèches sont à leur tour ravinées par les conglomerats du Flysch qui s’en distinguent par leurs éléments bien roulés et la présence de très nombreux galets de roches cristallines. Cette transgression se fait, elle, avec une très forte discordance angulaire (p. 95).

Les brèches du Niéard constituent donc l’unique terme qui existe entre le Charmouthien et le Lutétien. Elles sont, de plus, comprises entre deux surfaces de transgression: la leur à la base, celle du Flysch au sommet.

3. Âge et faune. — Ch. Leroy a, le premier, signalé des fossiles dans ces brèches, en particulier :

Bolomastus cf. parvisusus Schloeth.
Gryphaea aranata Lam. (citée sous le nom de G. Cymbium).

W. Kilian y a ensuite noté la présence des espèces suivantes :

Bolomastus sp.
Gryphaea aranata Lamk.
Arctites ornis Giebel.

Ces fossiles sont sinémuriens ou charmouthiens (B. parvisusus). Or, nous avons vu précédemment que les calcaires à Gryphaées sinémuriens et les calcaires zoogènes charmouthiens forment des niveaux bien nets que l’on observe en place dans la série basique, toujours inférieure aux brèches. Mais, d’autre part, W. Kilian indiquait que l’on trouvait ces fossiles « dans le ciment de la brèche et aussi dans les fragments de calcaire noirâtre qu’elle contenait » (79. p. 67). Il n’y a donc pas de doute que ces fossiles appartiennent au niveau de la brèche. Si certains sont réellement « dans le ciment », c’est qu’ils s’y trouvent en quelque sorte à l’état de galets : ils ne peuvent donc pas dater la brèche. H. Scheller en était déjà arrivé à la même conclusion et avait admis le remaniement de ces fossiles (104).

Les observations sur le terrain confirment pleinement cette façon de voir : les éléments de calcaires à Gryphaées sinémuriens sont abondants dans la
brèche. Mais, pas plus que mes prédécesseurs, je n’ai pu trouver de fossiles qui soient réellement contemporains de la brèche et puissent la datier.

Seule, l’identité lithologique existant entre ces brèches et celles du Télégraphe et la proximité de ces deux formations, permettent de penser, jusqu’à preuve du contraire, qu’elles doivent être contemporaines (Oxfordien).

1. Nappe du Pas du Roc.

1° Digitation de la Grande Moënda. — Au-dessus des calcaires du Dogger existe une importante série très monolithe, formée de marno-calcaires et de calcisables plus ou moins tendres, gris foncé, à patine gris-bleu, de 200 à 250 mètres d’épaisseur.

Généralement axiale, ce terrain présente cependant, vers la base, un niveau qui se montre parfois fossilifère: j’y ai reconnu, près de la Pointe de la Lévrierie, quelques Ammonites très écrasées, mais dans lesquelles on reconnaît néanmoins un Perisphinctes et, sur la rive droite du vallon de Varloisière, entre les cotes 2930 et 2939, un bel exemple de Cencellophyes. En ce dernier point, quelques bancs un peu plus grossiers présentant des surfaces microbéchiques, où l’on rencontre des articles de Céridoides (Balanocerasus subterne Ag.) et des Apysclites.

À sa partie supérieure, cette série devient plus siliceuse et finit par passer à des calcaires foncés peu ou pas calcaires, avec quelques très rares dalles de grès fin. Ce niveau schisteux atteint environ 300 mètres d’épaisseur.

Il y a ainsi, dans cette unité, passage progressif entre une série inférieure marno-calcaire et une série supérieure schisteuse : les brèches du Télégraphe, qui les séparent dans la digitation du Perron des Encornets, manquent complètement ici. Cette unité garde donc encore, au Callovo-oxfordien, comme au Lias et au Dogger, son caractère de « sillon ».

2° Digitation du Perron des Encornets. — 1. La série stratigraphique. — Les brèches du Télégraphe, reconnues comme appartenant à un niveau supérieur au Lias, avaient été ensuite considérées comme un facès latéral des calcaires coralliens du Dogger. Or, il n’en est rien : ces terrains forment deux niveaux bien distincts, toujours séparés par un horizon généralement très épais de marno-calcaires bleutés ; et les brèches sont à leur tour surmontées par un niveau schisteux de grande épaisseur.

L’épaisse série schisteuse existant au-dessus du Dogger (l’ancien « Lias schisteux » de Ch. Lory et W. Killian) comprend donc trois termes successifs (fig. 13) :

- 3. La série schisteuse, composée de schistes noirs, luisants, peu ou pas calcaires, avec de rares dalles de grès fins brunités et quelques très rares hanches microbéchiques ; l’épaisseur est de 500 à 600 mètres. Ce terrain peut être facilement observé le long de la route de Valloire, au sud du tunnel du Télégraphe et, à Tarentaise, dans la région de Gitalamel.

- 2. Les brèches du Télégraphe (pl. I, fig. 2) sont bien connues depuis W. Killian (56 et 75). Ce sont des brèches à ciment calcaire et débris anguleux de tous les terrains inférieurs, des dolomies triasiques aux calcaires à Polyptères du Dogger, dont la taille est, en général, moyenne (50 à 30 cm.), la roche pouvant localement devenir microbéchique ; on n’y rencontre jamais d’éléments cristallins. L’aspect anguleux des débris indique qu’il s’agit sans doute d’une brèche sous-marine dont les fragments ont été cimentés sur place sans être entraînés au loin et transformés en galets. Son épaisseur varie beaucoup, dans le flanc est du synclinal de la Valloirette, elle est de 50 à 80 mètres, mais elle est bien plus faible dans le flanc ouest : ce fait semble annoncer la
Les zones ultradauphinoise et subbriançonnaise.

disparition des brèches vers l’ouest, disparition qui est du reste effective dans la digitation de la Grande Moënda.

Le contact de base (sur le terme suivant, 1) est généralement très tranché. Au sommet, il y a, au contraire, passage progressif à la série schieuse par l’intermédiaire d’une zone à intercalations de cherts et grès dans les brèches. Ces faits peuvent être observés le long de la route de Valloire, au sud du tunnel du Télégraphe; mais, mieux encore, un peu au sud du Perron des Encombres, le long du sentier qui, du Col du Bonhomme, se dirige vers le sud et recoupe la barre rocheuse formée par les brèches entre les deux séries schieuses plus tendres.

1. La série marno-calcaire (ou couches à Cancellaphyes), épaisse suite de marno-calcaires alternant avec des calcaires à pois marneux : la teinte est gris foncé, et la patine, claire, gris-bléue; le contact avec les calcaires du Dogger ne montre presque aucune transition. On y remarque, surtout vers la base, quelques *Cancellaphyes*. Ce terrain, très uniforme, atteint 150 à 200 mètres. C’est à la sortie aval du défilé du Pas du Roc, à l’ouest de Saint-Michel qu’on peut étudier ces couches le plus facilement : leur épaisseur y est beaucoup augmentée du fait de leur position dans l’axe du synclinal de la Valloire.

9. L’âge des terrains. — La série marno-calcaire a fourni des *Cancellaphyes* et quelques Ammonites (*Perisphinctes*), malheureusement en trop mauvais état pour que l’on puisse en tirer un renseignement précis sur l’âge de ces couches.

Celles-ci, par contre, se montrent tout à fait analogues aux couches à *Cancellaphyes* décrites dans l’Ubaye par D. Schneeegans et dans lesquelles cet auteur a trouvé des Ammonites calloviennes (*Perisphinctes subhebræicus, Macrolepidites sp.*).

Or, on sait que, de toutes les unités de la Maurienne, la digitation du Perron des Encombres est celle qui se rapproche le plus du Subbriançonnais de l’Ubaye (p. 161). Il est donc naturel de voir dans ces couches à *Cancellaphyes* l’équivalent de celles de l’Ubaye. La seule objection est l’épaisseur beaucoup plus considérable de ce niveau en Maurienne. On pourrait donc penser que nos couches à *Cancellaphyes* débutent déjà au Bathomen, mais on n’en a pas actuellement de preuves paléontologiques; d’autre part, le même accroissement d’épaisseur existe aussi pour l’Oxfordien : nous considérerons donc les couches à *Cancellaphyes* comme calloviennes.

La série schisteuse n’a, jusqu’ici, fourni aucun fossile, mais ses caractères lithologiques sont tout à fait analogues à ceux décrits dans l’Oxfordien des unités voisines; en particulier à l’est du Pelvoux, dans la fenêtre de l’Argentiére et la digitation du Piolit (*1.43*) et dans le Subbriançonnais de l’Ubaye (*1.48*).

La place qu’il occupe dans la série stratigraphique et les analogies qu’il présente avec les unités voisines permettent donc de considérer ce terrain comme représentant l’Oxfordien.

Les brèches du Télégraphe n’ont jamais fourni, dans cette digitation, de fossiles permettant de les dater avec précision. Mais nous avons vu que si leur contact est assez tranché sur la série marno-calcaire, il y a, au contraire, passage progressif à la série schieuse oxfordienne. Les brèches du Télégraphe doivent ainsi être considérées comme représentant la base de l’Oxfordien.

On ne doit donc plus accorder au terme de «brèches du Télégraphe» la signification stratigraphique très générale que lui attribuait W. Kilian. On sait, du reste, que bien des brèches considérées autrefois comme des «brèches du Télégraphe» basiques ont été récemment rapportées à d’autres niveaux, notamment au Grecéci supérieur, dans le Briançonnais (*86, 87 et 109*).

III. Conclusions. — Paléogéographie.

Dans le Subbriançonnais de Maurienne et Tarentaise, le Callovio-oxfordien est typiquement représenté par trois termes : couches à *Cancellaphyes* calloviennes, brèches du Télégraphe et série schieuse oxfordienne (digitation du Perron des Encombres). Mais dans la digitation de la Grande Moënda, les brèches font défaut, alors qu’elles sont seules représentées dans la cordillèreTarine (Ndéard).

Ainsi, après la sédimentation méritique ou peu profonde du Dogger, on voit apparaître brusquement de tout autres conditions de sédimentation. Sauf dans la cordillère Tarine, on assiste, en effet, à l’envahissement de toutes nos zones par des faciès vaseux rappelant ceux de l’avant-fosse dauphinoise et correspondant à des apports terrigènes considérables, mais toujours très fins. La monotonie de ces terrains sur de grandes épaisseurs dénote, en outre, d’importants phénomènes de subsidence. Cet enfoncement est continu dans
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

les zones externes (dauphinoise et ultradauphinoise), ainsi que dans le sillon de la Grande Moenda. Mais, dans la digitation du Perron des Encornets, il se trouve interrompu par une tendance momentanée à l'émergence se traduisant par la présence des brèches du Télégraphe; ainsi, malgré les conditions nouvelles de la sédimentation, cette unité retrouve, pour un temps, son caractère de haut-fond, si net au Lias et au Dogger.

Au milieu de cette subsidence généralisée, seule la cordillère tarine forme, de façon continue, un « seuil » plus ou moins émergé qui se démantèle en donnant naissance, sur place, aux brèches du Nièrard, alors que ce même épisode n'est que d'assez courte durée dans la nappe du Pas du Roc (brèches du Télégraphe).

Vers le sud-est, cet envahissement des faciès vaseux de type dauphinois se poursuit encore dans la Subbriantonnaise de l'Ubaye : le Callovo-oxfordien y est cependant moins épais, et la cordillère des Séolanes, comme la cordillère tarine, est marquée par des brèches. Plus à l'est, cette transgression généralisée ne paraît pas avoir atteint le faîte de la cordillère briantonnaise, où le Callovo-oxfordien fait complètement défaut.

JURASSIQUE SUPÉRIEUR.

I. HISTORIQUE.

On ne connaît, jusqu'à présent, dans la zone ultradauphinoise, aucun terme intermédiaire entre l'Oxfordien (Col Lombard) et le Nummulitique (Flysch des Aiguilles d'Arves) et, dans la série de la nappe des Brèches de Tarentaise, il existe une lacune allant des brèches oxfordiennes au Lutétien (Nièrard).

Au contraire, il existe dans la nappe du Pas du Roc des termes intermédiaires, Jurassique supérieur, Crétacé inférieur et supérieur, qui viennent compléter cette série.

Mais ces termes sont refoulés au front de la nappe du Pas du Roc dans les "écailles externes", à l'exception de quelques lambeaux denués en arrière et que l'on retrouve dans la région de Gitameuron au sud de Saint-Martin-de-Belleville (p. 136).

En 1912, W. Kilian et J. Révil (79, p. 227) signalent également la présence d'un "lambeau analogue de calcaires roses dont les relations tectoniques seraient à préciser, près de Saint-Martin-de-la-Porte, au nord de l'Arc. Bien que l'indicité de l'affleurement manque un peu de précision, il s'agit sans doute du bloc klippe situé au nord de la route, entre Saint-Martin-de-la-Porte et le hameau de La Porte, complètement emballé dans les gypse de la "zone des gypse". C'est également dans cette région et dans cette position tectonique que L. Moret a découvert en 1939, des blocs klippe similaires (101).

Enfin, en 1936, M. Gignoux et L. Moret (135) signalent la présence du Jurassique supérieur dans le synclinal de la Valloiretette, mais surtout au sud de Valloire et, en 1937, dans le ravin du Ruisseau des Moulins entre Albanne et Albannette (139).

II. LES ZONES DE FACIÈS.

a. Les écaillles externes de la nappe du Pas du Roc.

Le seul affleurement connu au nord de Valloire est celui du Ruisseau des Moulins, entre Albanne et Albannette, déjà signalé par M. Gignoux et L. Moret. Il s'agit d'un beau calcaire marmorin de teinte claire, blanche ou roseâtre, localement veiné de vert, compact ou finement cristallisé; de nombreuses veines de calcite lui donnent parfois un aspect amygdalé rappelant un peu celui du marbre de Guillestre. On n'y rencontre que des fossiles indéterminables, débris de gros Lamellibranches et sections de radiolaires d'Oursins.

Ce lambeau de calcaires est malheureusement dans une position tectonique telle qu'il est fort difficile de préciser ses relations stratigraphiques exactes avec les terrains voisins, essentiellement des marbres en plaquettes du Crétacé supérieur.

b. Les lambeaux synclinaux de la région de Gitameuron.

A l'ouest du hameau de Gitameuron, entre le ruisseau de la Moenda et celui de l'Arpont, existent des lambeaux de roches diverses.
Les zones ultradauphinoise et subbriignonnaise.

Les roches, accompagnées de gypse et carrières du Trias, avaient été considérées par L. Motet et D. Schneegauss (131) comme des klippes provenant d'écaillés plus internes, à la suite de l'interprétation qu'avaient donnée du Niéard ce dernier et Mrm Y. Gubler (135 et 136).

Les calcaires clairs qui affluent ici avaient été rattachés au Liass, par comparaison avec les faciès coralliens du Liass du Niéard. Mais nous versons que le Niéard est, en fait, enraciné à l'ouest de la nappe du Pas du Roc. De plus, ces calcaires sont tout à fait différents des calcaires grossièrement spatulues ou blancs et coralliens du Liass du Niéard (p. 56).

Les calcaires du Gitamélon, en effet, sont de teinte lilas très claire, compacts et finement recristallisés, ce qui ne permet pas d'y retrouver, au microscope, d'organismes déterminables; je n'y ai pas rencontré non plus de gros fossiles et notamment aucun de ces Polyploras pourtant si abondants dans les calcaires lusiques blancs du Niéard.

Même si ils sont, de plus, liés à des marbres en plaquettes et même, près de la cote 2078, à des schistes et conglomerats du Flysch (p. 106).

Il y a donc tout lieu de considérer ces manchette de roches diverses comme occupant une position synclinale, mais un peu excentrique, du fait de la violence des actions tectoniques qui ont fortement tralé le flanc oriental du synclinal sur la masse plastique de l'Oxfordien (p. 155). Ces calcaires doivent être rapportés au Jurassique supérieur, qui existe déjà dans les écailles externes et que nous allons retrouver maintenant dans la zone des Gypse.

c. Les blocs-klippes de la zone des Gypse.

Entre l'Arc et le Col des Encombres on rencontre, dans la zone des Gypse, de nombreux blocs de roches diverses complètement emballés dans la masse même des gypse.

Un peu à l'ouest du hameau de la Porte (p. 73), au nord-ouest de Saint-Michel, existe une grosse lentille de calcaire blanc, compact, à grain très fin, liée à du Crétacé supérieur et inférieur. Cette roche présente, au microscope, de très nombreuses Calpionelles qui ne permettent pas de doute sur son attribution au Jurassique supérieur.

Sur le flanc oriental de la Croix des Têtes, entre la cote 1499 et le Ruisseau de Saint-Martin, affleure une grande lentille de calcaires clairs et compacts qui sont à nouveau liés à des marbres en plaquettes et qui doivent également être attribués au Jurassique supérieur; à l'angle que fait le sentier montant du

Stratigraphie.

moulin de la Chaudanne, près de la cote 1499, ces calcaires amygdalaires et de teinte rosée ont tout à fait l'aspect classique du « marbre de Guillestre ».

Enfin, sur le flanc oriental de l'arête allant du Perron des Encombres, au col du Bonhomme, affluent deux grandes lentilles de calcaires entièrement emballés dans les gypse et carrières et liées, elles aussi, à des marbres en plaquettes. Ce sont des calcaires marmoréens blancs passant à des calcaires compacts de teinte lilas très claire. Les uns et les autres sont finement recristallisés; on ne peut donc pas y distinguer au microscope d'organismes déterminables. Mais leur analogie avec les précédents permet de les rapporter, eux aussi, au Jurassique supérieur.

III. Conclusions. — Paléontologie.

Les affleurements de Jurassique supérieur, dans la zone étudiée, sont peu nombreux et toujours dans une position tectonique complexe. On n'en connaît jusqu'à présent, au nord du Pelvoux, ni dans la zone dauphinoise ni même dans la zone ultradauphinoise.

Partout ailleurs, le Jurassique supérieur est constitué par des calcaires massifs de teinte claire, dans lesquels se rencontrent des Calpionelles, lorsque les actions tectoniques n'ont pas produit une recristallisation complète de la roche effaçant toute structure préexistante.

Après la sédimentation vasuée accompagnée de subsidence du Callovo-oxfordien, on assiste, au Jurassique supérieur, à une stabilisation du fond marin avec établissement d'un régime pelagique (calcaires très purs à Calpionelles). Seules les cordillères restent individualisées; celle des Éoléennes dans l'Ubaye présente des faciès coralliens, alors que le Jurassique supérieur fait, au contraire, totalement défaut dans la cordillère blanche. Celle-ci a donc pu être émergée durant cette période; on n'a, en effet, jamais signalé, jusqu'ici, d'éléments de roches susceptibles de représenter cet étage dans les conglomerats du Flysch.

Crétacé.

I. Histoire.

Les affleurements de Crétacé les plus anciennement connus dans notre région sont ceux de la vallée de l'Arc. Les marbres en plaquettes situés au Col de l

L’affleurement le plus important, celui qui est situé sur la rive gauche de l’Arc, entre la gare de Montricher et l’usine de Saint-Félix avait été signalé dès 1903 par W. Kilian (71). L’année suivante (72), avec J. Révill, il en reconnaissait également la présence près de Claret, sur la rive droite de l’Arc. Mais ils attribuaient ce terrain au Jurassique supérieur. Ce n’est qu’en 1936 que M. Gignoux et L. Moret (103) y reconnaissent la présence de Rosalines et les attribuent au Crétacé supérieur.

Le Crétacé inférieur, lui, fut découvert pour la première fois par L. Moret et D. Schneegans, en 1936 (131), dans la région de Gitanom, près de Saint-Martin-de-Belleville (Tarentaise).

II. Les zones de faciès.

1° Nappes du Pas du Roc.

1° Les écailles externes. — 1. Le Crétacé inférieur est caractérisé par des alternances :
- de calcaires gris rappelant parfois les marbres en plaquettes;
- de dalles de calcaire gris, à grain fin, présentant souvent une bande siliceuse médiane, régulière et généralement noire;
- de bancs souvent épais de microbrèches à ciment calcaire gris-beige et de calcaire grossièrement spathique.

Ce terrain affleure sur la rive gauche de l’Arc, près de l’usine de Saint-Félix, en particulier dans les lacs du sentier montant de l’usine vers le « Plan de la Bretagne » et Montricher (fig. 38). Depuis W. Kilian, il avait été attribué au Lias, sans doute à cause de la présence des zones siliceuses.

Sur la rive droite de l’Arc, dans les rochers à l’entrée du torrent du Claret, entre celui-ci et la Charvinière, le Crétacé inférieur est particulièrement net et présente les mêmes caractères.

On le retrouve à peu près identique dans les gorges du torrent de Saint-Julien : mais si l’on a toujours les dalles de calcaires à zones régulières de silice noir et des calcaires gris, les bancs de microbrèches y sont beaucoup moins développés. Il en est de même vers la cote 1505 et dans un affleurement nord-sud, visible le long du sentier allant de Montemis au chalet de la Pénière.

Ce terrain doit être attribué au Crétacé inférieur, par analogie avec les régions voisines, et parce qu’il est constamment inférieur aux marbres en plaquettes du Crétacé supérieur. Y a-t-il, d’autre part, recoupé une Dorsale à l’ouest de la Charvinière, dans une dalle de calcaire gris à grain fin, près de Claret. Enfin, il est tout à fait analogue au Crétacé inférieur connu dans le Subbrianncais du sud du Pelvoux, et notamment à celui de la série d’Auncelle, dans la digitation de Piodit.

3. Le Crétacé supérieur est formé de plaquettes de calcaire à grain très fin, contenant de nombreux foraminifères, et en particulier des Rosalines, lorsqu’il n’est pas recristallisé. Sa teinte, toujours claire, est grise, crème, vert très clair et, très rarement, rosée. La patine en est généralement gris-jaunâtre, également claire.

Ce sont, par conséquent, bien là les caractères classiques des « marbres en plaquettes » définis dans le Brianconnaïs. Il faut cependant noter que la roche est en général dans notre région un peu plus massive, dans l’ensemble, que dans les zones plus internes, ce qui peut parfois faire confondre, à première vue, ces marbres en plaquettes avec du Jurassique supérieur laminé.

Ce terrain affleure assez largement sur les deux rives de l’Arc. Il disparaît rapidement au nord, mais se prolonge très loin au sud, vers Valloire et le Gali- ber, où M. Gignoux et L. Moret en ont décrit plusieurs affleurements (134).

3. La limite entre le Crétacé inférieur et le Crétacé supérieur. — Le contact est le plus souvent tectonique et ne nous apprend rien. Mais, à l’ouest de l’usine de Saint-Félix, sur la rive gauche de l’Arc, il peut être observé en différents points : le Crétacé supérieur y débute par un conglomerat généralement peu épais.

Ce conglomerat affleure au pied d’un des rochers situés un peu au sud-ouest du premier grand virage que fait, vers le sud, le sentier allant de Saint-Félix à Montricher : on voit là, très nettement, sa position à la base des marbres en plaquettes et sur le Crétacé inférieur (fig. 38).

Mais ce conglomerat est surtout visible vers l’extrémité du canal de suite de l’usine de Saint-Félix ; il affleure largement sur la berge gauche de l’Arc, où ses surfaces sont plus ou moins polies et se prolonge, en arrière, dans l’encar-
pensent boisé, entre un lanéu de Crétacé inférieur et la masse des marbres en plaquettes qui se développe largement vers l'ouest. C'est un conglomerat calcaire, à pâle fine, grise, parfois un peu schisteuse, emballant des blocs divers généralement bien roulés; mais il ne contient pas d'éléments cristallins. Il se distingue donc des brèches du Télégraphe par le fait que les éléments sont roulés, et des conglomerats nummulitiques par son ciment uniquement calcaire et l'absence d'éléments cristallins.

a) La région de Gitamelon. — Le Crétacé inférieur existe, avec les mêmes caractères que ceux que nous venons de décrire, au nord de Gitamelon dans le vallon des Encombres. Il affleure à mi-pente, au-dessus des moraines où passe le chemin allant à Saint-Martin-de-Belleville et sous la zone des Gypses.

C'est là que L. Moret et D. Schmeegans, qui l'avaient signalé pour la première fois (13), ont également trouvé une Dauwia; il n'y a pas, ici, de Crétacé supérieur, mais seulement des plaquettes de calcaire alternant avec les dalles à silex et les dalles de microbrèche.

Le Crétacé supérieur est représenté dans les lanéaux syncinénaux, à l'ouest de Gitamelon, par deux petits affleurements de marbres en plaquettes de teinte vert clair ou crème, situés, tous deux, entre le Ruisseau de l'Arpont et le col coté 2978.

b) La zone des Gypses.

Diverses klippes emballées dans les gypses contiennent du Crétacé.

Le Crétacé inférieur, toujours avec des caractères analogues, forme une laménoyée dans les gypses à l'est du rocher coté 1759, un peu au nord de Gitamelon.

Le long de la route de Saint-Martin-de-la-Porte à la Porte, dans l'encaque du verrou du Pas du Roc, on rencontre des calcahètes et des dalles à zones silicées qui doivent aussi appartenir au Crétacé inférieur.

Le Crétacé supérieur, avec le faciès typique des marbres en plaquettes, généralement de teinte verte, affleure, lui, en de nombreux points entre l'Arc et le Col des Encombres, parmi les blocs-klippes emballés dans les gypses.

Il est intéressant de noter que ces terrains, provenant d'une zone plus interne, se rapprochent davantage du type classique des marbres en plaquettes du Briançonnais. D'autre part, les teintes rouges, qui sont extrêmement rares dans la zone du Pas du Roc, sont ici beaucoup plus fréquentes, montrant que l'on se rapproche des zones émergées de la cordillère briançonnaise.

III. Conclusion. — Paléontographie.

Le Crétacé est, jusqu'à présent, inconnu au nord du Pélvoux, dans la zone dauphinoise et ultradauphinoise. Il semble, néanmoins, que son absence doit être due plutôt aux érosions postérieures qu'à une érosion durant cette période. Car l'avant-fosse alpine dont on a pu établir l'existence, à cette époque, au sud du Pélvoux, devait aussi se prolonger, vers le nord, par-dessus l'emplacement actuel de ce massif, ainsi que l'ont indiqué M. Gignoux et L. Moret (143).

Le Crétacé fait également défaut dans la cordillère tarine, c'est-à-dire dans la partie la plus externe du domaine subbrianconnais. De même que pour le Jurassique supérieur, il est difficile de savoir si ce terrain s'est déposé ici comme dans la cordillère des Éolanes (Ubaye) et a été enlevé ensuite par l'érosion, ou s'il y a eu émersion de la cordillère tarine à cette époque (10).

Nummulitique.

I. Histories.

L'ensemble du Nummulitique du nord du Pélvoux, avait, jusqu'ici, été considéré comme ne formant qu'un seul et même Flysch des Aiguilles d'Arves. J'ai, au contraire, été amené à le cendrer en trois zones dont nous allons voir successivement l'historique.

1. Le Flysch des Aiguilles d'Arves (s. str.).

En 1838, E. de Beaumont, étudiant la coule de Saint-Jean-d'Arves à Bonneville, avait signalé, au passage, l'existence de « fragments calcaires pétris de corps marins » dans les conglomerats de base du Flysch, mais sans en tirer de conséquences (7).

En 1854 et 1855, Sc. Gras (9 et 14) fait du Flysch des Aiguilles d'Arves

(1) Dans une note récente (179), H. Schaller vient d'indiquer la présence de Crétacé supérieur probable dans la région de Vélines, au nord-est de Modèles [note ajoutée en cours d'impression].
LE DEUXIÈME ÉTAGE DE SON ANTHRAÇIFÈRE SUPÉRIEUR. MAIS, À LA SUITE DE L’AFFAIRE
DE PETIT-COUR (P. 8), IL SEMBLE ADMETTRE QUE SON TERRAIN ANTHRAÇIFÈRE REPRÉSENTÉ
DU HOULIFON ONT ÉTÉ ÉCRÉVUS DES FOSSILES ISSUS.

EN 1857, CH. LORY, REPRENANT LA COUPE DE LA GRÈVE À OULX (13) ÉTUDE PAR
SC. GRAS, GROUPE ENCORE LES GRÈS DU FLYSCH ET CEUX DU MASSIFS DU CHARDONNET
DANS LE MEME ÉTAGE, CES GRÈS À ANTHRAÇIFIRES.

CE N’EST QUE DEUX ANS PLUS TARD, EN 1859, QUE CH. LORY DONNA TOUTE SA VA-
LEUR À L’OBSERVATION D’É. DE BEAUMONT EN REPRENANT L’ÉTUDE DE LA MÊME COUPE
(20). IL CONSTATA, EN EFFET, QUE LES GALET CAŁIČRES PETRIS D’ENTROQUEAVE PRO-
VÉNANT DES COUCHES ISSUES IMMÉDIATEMENT INFÉRIEURS. CES CONGLOMÉRATS,
DIRECTEMENT TRANSGRESSIFS SUR LE LIAS SITUÉS, NE POURVAIENT DONC ÊTRE QUE
POST-FLYSCHE.

TROIS MOIS APRÈS, CETTE OPINION TROUVA UNE ÉCLOTTANTE CONFIRMAISON DANS LA
DÉCOUVERTE DES CAŁIČRES À GRANDES NUMMULITES DE LA VALLEE DE L’ARC PAR PILLET
ET COCHE; DÉCOUVERTE RELATÉE AU JANVIER 1860 PAR CH. LORY DANS UNE LETTRE À
HÉBERT (22) ET QUI LUI PERMET DE SÉPARER DÉFINITIVEMENT LE FLYSCH TERTIÈRE
DES GRÈS HOULIFON À ANTHRAÇIFE.

AU MOIS DE MAI SUIVANT, CH. LORY REVIENT SUR CETTE IMPORTANTE DÉCOUVERTE
ET INTERPRÈTE LA COUPE DE L’ARC COMME UN VASTE SYNCLINAL DONT LE FLYSCH OCCupe
L’AXE; IL NOTE DÉJÀ LA RESSEMBLANCE EXISTANT ENTRE CE FLYSCH ET LE NUMMULITIQUE
DE LA RÉGION D’ORCIÈRES (23).

EN 1866, LE MEME AUTEUR, DANS SON ESSAI SUR LA STRUCTURE GÉOLOGIQUE DE LA
PARTIE DES ALPES COMPRIS ENTRE LE MONT-BLANC ET LE MONT-VEY (37) DIVISE LES
ALPES EN QUATRE ZONES LIMITÉES PAR DES GRANDES FAILLES. LA LIMITE OCCIDENTALE DU
FLYSCH EST INTERPRÉTÉE COMME UNE GRANDE FAILLE QUE L’ON SUIT DU VALAIN AU
PELVEX, CE QUI PARAIT EN CONTRADICTION AVEC LES OBSERVATIONS PRÉCÉDENTES CON-
CLUANT À LA TRANSGRESSION DU FLYSCH SUR SON SUBSTRATUM.

W. KILIAN ET J. REVI, EN 1904, CONSIDÉRÉNT AUSSI LE FLYSCH COMME UNE
LARGE SYNCLINAL (73).

POUR W. KILIAN, LA LIMITE OUEST DU FLYSCH EST UN CONTACT NORMAL TRANSGRESSIF
SUR LE LIAS AUTOCHTHON (69 ET 76), CONTRAIRE À CE QUE PENSE P. TERNIER
(68 ET 75) POUR LEQUEL LE FLYSCH DES AIGUILLES D’ARVES EST CHARRÉ.

J. BOUSSAC, EN 1912 (78), LAISSE PLANER LA MÊME ÉQUIVOQUE QUE CH. LORY
AU SUJET DE CETTE LIMITE DU FLYSCH. POUR LUI, EN EFFET, LE CRÉPUSCLE PRINCIPAL DE
LA ZONE DU FLYSCH DES AIGUILLES D’ARVES EST CHEVAUCHER PORTANT L’AUTOCHTHON.
MAIS, DANS LA VALLEE DE L’ARC, IL DÉCRIIT LA PARTIE INFÉRIEURE DU FLYSCH COMME UN
CONGLOMÉRAT BRÈCHE DE LA BASE DU NUMMULITIQUE TRANSGRESSIF ET DISCORDANT
SUR LE LIAS ET AJOUTE MEME « LE CONTACT EST TRÈS NET ET RÉGULAR SUR LE LIAS,
ONT IL CONTIENT, À SA BASE, BEAUCAUP DE FRAGMENTS ROMAIN ».

IL S’ÉTIENT DÉJÀ INDIVIDUALISÉ, ICI, UN FLYSCH CALCARE AU-DESSUS DES CONGLO-
MÉRATS DE BASE.

MAIS, NI CH. LORY, NI SES SUCCESSEURS NE SE TÉNENT APRES QUE LE FLYSCH DES
AIGUILLES D’ARVES ET LES CALCARES À GRANDES NUMMULITES DU BOCHEZ APPARTE-
NENT PAS À LA MÊME UNITÉ TECTONIQUE. CES CALCARES NE PRÉOVAIENT DONC NUL-
MENT L’ÂGE TERTIÈRE DU FLYSCH DES AIGUILLES D’ARVES ET C’EST M. GIGAUQUEX
QUI A APPORTÉ LA PREUVE EN 1913, PAR SA DÉCOUVERTE DE PETITES NUMMULITES
DANS LES CONGLOMÉRATS DE BASE DU FLYSCH, PRÈS DU PONT DE VILARDIÈRE (86).

NOTONS ENFIN QU’À LA SUITE DE J. BOUSSAC (78) ET E. HUG (88), LA LIMITE
OUEST DU FLYSCH DES AIGUILLES D’ARVES FUT CONSIDÉRÉE COMME UNE SURFACE DE
CHEVAUCHEMENT PAR TOUS LEURS SUCCESSEURS; C’EST EN PARTICULIER L’INTERPRÉTATION
ADMISSABLE SUR LA CARTE DE LA SAVOIE DE L. MORET (95) ET SUR LA FEUILLE DE SAINT-
JAN-DÉ-MAURIENNE AU 1/50 000 (3° ÉDIT.).

3. LE FLYSCH DE LA DIGITATION DU NÉCLARD.

DANS SA SUBLDIVISION EN ZONES DES ALPES FRANÇAISES, CH. LORY AVAIT, EN 1866
(37), Distingué DANS SA DEUXIÈME ZONE (QUI CORRESPONDAIT À PEU PRÈS À L’ULTRA-
CAMPNOISAINS ET AU SUBBRIANÇONNAIS) DEUX SECTIONS : L’UNE AU SUD, OÙ AFFLU-
ENT LA PLUPART DES GRÈS TERTIERS, L’AUTRE, AU NORD, QUI S’ÉTENDAIT DU VALAIN
À LA RÉGION DE MOITIERS. DANS CETTE DERNIÈRE, PREQUE TOUS LES TERRAINS SONT
RAPPORTÉS AU TRIAS ET NOTAMMENT LE FLYSCH DE CRÈVE-TÊTE, PRÈS SAINT-JÉAN-DÉ-
BILLE, QU’IL CROYAIT INFÉRIEUR AUX COUCHES RHETISSIÉES DE VILLARHY.

MAINTS, EN 1891, W. KILIAN ÉTABLIT LA DISTINCTION, AU NÉCLARD, ENTRE LES BRÈCHES
CALCAIRES QUI RAPPORTENT À CES BRÈCHES DU TÉLÉGRAPHE BISAN TES ET LES CONGLO-
MÉRATS À GALET CRISTALLIN QUI RACONTENT CE NUMMULITIQUE; IL EN CONCLUT, À
ÊTRE À L’ÂGE TERTIÈRE DES CONGLOMÉRATS DE CRÈVE-TÊTE.

TOUTS SES SUCCESSEURS ONT CONSERVÉ CETTE OPINION ET CONSIDÉRÉ LE FLYSCH DE
LA DIGITATION DU NÉCLARD COMME LE PROLONGEMENT SEPTENTRIONAL DU FLYSCH DES
AIGUILLES D’ARVES.

3. LE FLYSCH DE LA DIGITATION DE MOITIERS.

CE TERRAIN À AFFLURE QUE TRÈS PEU AU NORD DE L’ISÈRE. IL EST SOUTOUT DÉVELOPPÉ
AU NORD DE CELLE-CI, OÙ IL A ÉTÉ ÉTUDE EN DÉTAIL PAR H. SCHÖFFLER, AUQUEL ON
Voudra BIEN SE REPORTER POUR PLUS DE DÉTAILS (104).
apparaissent comme une simple lentille, un épisode spongine local, dans une masse lutétienne à faciès Flysch ; l’autre tectonique, et ces calcaires constituerait alors, « une écaille jalonnant une surface de discontinuité tectonique dans la masse même du Flysch ».

II. Les zones de faciès.

A. Zone ultradauphinoise : le Flysch des Aiguilles d’Arves.

4. Flysch gréseux : ce Flysch est caractérisé par l’alternance de gros bancs de grès, en général assez grossiers, contenant parfois même de petits galets, et alternant avec des lits schisteux plus tendres ; c’est pourquoi les parois qu’il constitue ont un aspect rugueux caractéristique et identique à celui des grès d’Aumot. Un niveau de quelques mètres de schistes noirs et de calcaires gris-noir s’intercale, à sa partie supérieure, entre les grès : il contient de nombreuses petites Nummulites et des Orthophragmines (Albanien) (p. 88).

Son épaisseur est de l’ordre de 800 à 1 000 mètres. On ne retrouve ce niveau sur la rive droite de l’Arc, que dans un petit repli synclinal, au nord de Saint-Julien. Il se développe largement, au contraire, au sud de l’Arc, à partir de la Combe du Bochet et jusqu’au sommet de la montagne du Pas du Roc.

2. *Flysch calcaire* : dans ce niveau, dominent les calcisches marneux gris-noir en cassure, toujours ternes et présentant une patine gris-beige, puis jaunâtre. Son épaisseur est de 400 mètres. Rive droite, il se développe de part et d’autre de Villardelmont, et rive gauche, du hameau des Ressas à celui des Moulins.

1. Grès et conglomérats de base : cet horizon, assez variable dans le détail, se compose de grès plus ou moins grossiers passant à des conglomérats très polygéniques (nombreux goulots de roches cristallines), à éléments généralement très roulés. Au sommet de la barre inférieure, située à 200 mètres en aval du Pont de Villardelmont, j’ai recueilli, après M. Gignoux (80), quelques petites *Ammusulina* dans une mince couche de calcaire gréseux ; les exemplaires recueillis sont malheureusement en mauvais état et peu déterminables.

J. Boussac et les auteurs qui l’ont suivi n’ont considéré comme conglomérat de base que la petite barre d’une dizaine de mètres qui repose sur le Lias en aval du Pont de Villardelmont et ressort si nettement dans la topographie. Mais, en fait, le complexe de schistes, grès et conglomérats de base s’étend 300 mètres plus loin à l’est, jusqu’à une nouvelle barre formée de grès plus ou moins grossiers passant, par places, à des conglomérats (fig. 36). Vers le nord, cet horizon, de 200 à 300 mètres d’épaisseur, devient beaucoup plus conglomératique et forme un ensemble beaucoup plus homogène ; il ne s’agit donc pas, pour ce niveau, d’une brusque diminution d’épaisseur au passage de l’Arc, mais simplement d’une réduction des conglomérats au profit des schistes et grès par variation latérale de faciès.

Cette série typique de la vallée de l’Arc est donc constituée, au-dessus de ses conglomérats de base, par une sorte de « trilogie prinhonienne » : Flysch calcaire, Flysch gréseux, Flysch schisteux.

b. Les variations de faciès. — Vers le nord, cette série type de la vallée de l’Arc présente des variations latérales de faciès.

La principale consiste dans la disparition du Flysch calcaire, envahi par les faciès siliceux des schistes et grès. Et cela d’une façon absolument insensible. Mais dans la région du Grand Coin, à l’ouest de la Grande Moënda, et au Col de Valbuche, les schistes ne sont presque plus calcaires et il y a déjà beaucoup

STRAITIGRAPHIE.

85

de grès, généralement assez fins et en petites dalles et plaquettes. Il subsiste néanmoins encore quelques dalles calcaires, quoique fortement chargées de grains de quartz : ce sont elles qui contiennent, en divers points, de petites *Ammusulina* (Pointe de la Combe des Hortières au nord de Montéden, où le Flysch est encore nettement calcaire, Col du Bonnet du Prêtre et Col de Valbuche). Ces calcaires gréseux, qui existaient déjà dans le Flysch calcaire de la vallée de l’Arc, permettent d’affirmer qu’il s’agit bien là d’une simple variation latérale de faciès.

La deuxième se produit vers le nord, dans le niveau de base du Flysch (1), où les conglomérats se développent au détriment des schistes et grès. Ceux-ci y étaient encore très puissants dans la vallée de l’Arc ; au Coin du Châtel, on contraires, il n’y a plus de schistes, mais seulement des conglomérats alternant avec de gros bœufs de grès ; plus au nord enfin, les grès sont localisés à la partie supérieure, le reste n’étant formé que de conglomérats. L’épaisseur en même temps s’accentue et atteint 400 mètres vers le Cheval Noir.

Enfin, l’imposante barre rocheuse des conglomérats de base est scindée en deux par une vire correspondant à un horizon schisteux très constant et bien délimité, qui n’était pas individualisé plus au sud.

c. Le contact de base. — Si ce contact a presque toujours été interprété dans les granges synthétiques comme une surface de chevauchement, il est curieux de noter qu’au même moment et souvent de la part des mêmes auteurs, en particulier Ch. Lory, puis J. Boussac — les études de détail le décrivaient comme un contact stratigraphique (p. 80).

Les conglomérats forment, à la limite occidentale du Flysch, une véritable « cuesta » dominant les molles ondulations de la zone d’auphinèse. Les éboulis sont très importants au pied de cette barre rocheuse et gênent beaucoup l’observation. Il existe cependant, entre l’Arc et l’Isère, quelques points où le contact de base du Flysch est bien net.

La rive droite de l’Arc offre l’affleurement le plus classique qui est aussi l’un des plus nets. Il se situe à 200 mètres en aval du Pont de Villardelmont, sur lequel la route de Modane traverse l’Arc, à 3 kilomètres environ à l’est de Saint-Jean. La base du Flysch comporte un niveau de conglomérat bien cimenté, résistant, d’une dizaine de mètres d’épaisseur, se traduisant dans la
topographie, par une barre rocheuse saillante surplombant, à l'est, les marne-calcaires ravinés du Lias (fig. 36).

Un petit sentier de chèvres monte en lacets sous la falaise et sur le Lias plus ou moins recouvert d’êboulis. Mais, au dernier virage, le plus dévéré, que fait ce sentier près de la barre rocheuse avant de s’en écarter, le contact Flysch-Lias peut être observé au bas de la paroi; il en est de même tout en bas du rocher, à l’endroit où le sentier s’en écarte pour la première fois (pl. II).

La base est formée par les marne-calcaires noirs, schisteux, très tendres du Lias. Puis, presque insensiblement, l’on se trouve dans les calcaires et callochistes gris ayant à peu près la même teinte et le même aspect que ceux du Lias dont ils ne se différencient guère que par leur plus grande dureté. Mais l’on est bien déjà dans le Flysch, car quelques rares galets de roches cristallines apparaissent déjà; un mètre plus haut, les galets deviennent très nombreux et l’on a affaire, alors, à un véritable conglomerat.

Il est donc impossible, ici, d’admettre un contact anormal entre ces deux formations, contact qui devrait être souligné par une zone de broyage, ou tout au moins un plan de glissement visible. Et ceci d’autant plus qu’il s’agit du contact d’un terrain très résistant (conglomerat de base du Flysch) sur un terrain tout à fait tendre (callochistes marneux du Lias).

Ce contact est, du reste, si manifestement stratigraphique et non tectonique, que J. Boussac lui-même, pour qui, cependant, le Flysch des Aiguilles d’Arves était chârié, l’a néanmoins décrit comme transgressif (78, p. 225).

2. Ruisseau de l’Alpette.

Le contact entre le Flysch et son substratum est également très net dans le Ruisseau de l’Alpette, au sud-est des chalets de l’Alpette: on y voit les conglomerats du Flysch encroûter la surface des calcaires dolomitiques du Trias, particulièrement rive droite, à une cinquantaine de mètres en aval du sentier qui traverse le talweg et conduit aux chalets Prudent, de l’autre côté du Grand Crêt.

À l’est de Montpascal et sur le versant ouest du Coin du Châtel, la petite maison forestière dite de Bon Attrait est située à la lisière d’une large zone d’êboulis; mais, en prenant le sentier qui se dirige, vers le nord-est, en direction de la montagne des Coinds, on sort très rapidement des êboulis et le sentier est alors entaillé dans les schistes siliceux violets du Permien et, un peu plus loin, dans le Flysch.

Toute cette zone est très ravinée et très éboulée, et le contact de base du Flysch presque partout recouvert. J’ai cependant pu l’observer à une centaine de mètres au nord-est de la maison forestière et quelques mètres au-dessus du sentier.

![Fig. 14. - Le contact de base du Flysch des Aiguilles d’Arves au nord-est de la maison forestière Bon Attrait.](image)

1, schistes siliceux violets du Permien ; 2, livrée à ciment calcaire gris entaillée des débris de schistes sous-jacents, recouverts d’un lit de schistes grès sableux ; 3, dalles irrégulières de calcaires plus ou moins gréseux, à enduit schisteux gris clair, alternant avec des bancs de conglomerats à ciment calcaire et quelques bancs gréseux ; 4, gris fin en gros bancs.

La coupe s’établit de la façon suivante (fig. 14) :

5. Grès fins en gros bancs.

4. Congloméra- t à ciment calcaire, en dalles minces, très irrégulières et parfois gréseuses, avec enduit schisteux laissant gris-clair; galets très variés de taille moyenne : 20 mètres.

1. Schistes violet, parfois micaéés, du Permien, éventant verts environ 1 mètre au-dessous du Flysch.

Il y a donc bien contact stratigraphique, puisque les éléments du substratum se trouvent remaniés dans la base du Flysch.

4. Ravin des Céteaux.

Ce ravin se trouve au nord-est de Montaimont, au-dessus du Lac du Loup et dans le flanc occidental du Mont du Fuz.
Les Zones Ultradauphinoise et Subbriéonnaise.

La partie basse est entaillée dans les schistes noirs probablement bouillers, surmontés par les schistes violents du Permien, qui passent eux-mêmes, par l'intermédiaire de grès grossiers à faciès "verruccanes", à des quartzites blancs ou verdisâtres du Trias. Ceci juste au-dessus du sentier qui relie les cotes 1859 au nord et 179 au sud (fig. 9).

Un peu au-dessus du sentier, les quartzites, très résistants, forment une barre qui surplombe, rive gauche, le talweg lui-même : c'est à la partie supérieure de ce rocher qu'a lieu le contact avec le Flysch (pl. I, fig. 3).

Ce Flysch est formé de dalles et plaquettes irrégulières, calcaires, avec enduit schisteux gris, ou finement gréseuses, emballant des blocs de roches variées, de tailles très diverses. A côté des roches cristallines, du Rhétien et du Lias, ce sont, vers la base, les galets de quartzites, verts ou blancs, qui dominent; et ces bancs de base, plus calcaires, encrûtent nettement la partie supérieure des quartzites. Il y a donc bien transgression du Flysch sur les quartzites triasiques.

5. Pic de Mottet. — A mi-distance entre la Pointe de Retè (830) et le Pic de Mottet (583), à l'ouest du Nièvre, se trouve un nouvel affleurement très typique (pl. III).

A 850 mètres au nord-est de la cote 583, au flanc de la croupe de Flysch, et à la limite des éboulis très épais qui en masquent la base, un rocher fait saillie dans la pente.

La partie inférieure est constituée par des calcaires dolomitiques à patine jaune du Trias, sur lesquels reposent, en discordance, les couches subhorizontales du Flysch. Ici encore, ce dernier vient, et de façon très nette, encruster les surfaces des calcaires dolomitiques d'un enduit calcaire ou schisteux à petits débris roulets de roches diverses; et les conglomerats à gros éléments ne commencent, là aussi, qu'un ou deux mètres plus haut.

d. Le niveau fossilifère d'Albannez(1). — A l'ouest du village d'Albannez, on aperçoit, dans l'abrupt boisé qui domine les prairies recouvrant le glaciaire, une clairière allongée nord-sud laissant apparaître une barre rocheuse; celle-ci est surmontée d'un replat glaciaire où se trouve le hameau de la

(1) Étant donné l'importance de ce gisement au point de vue stratigraphique, il est qu'il soit beaucoup plus proche du petit bannier de la Plagne, je le désignerai sous le nom de "Albannez", du nom du village voisin, beaucoup plus facilement repérable sur les cartes.

Stratigraphie.

Plagne. C'est dans cette falaise, située juste au-dessous de la cote 1950 et figurée sur le plan directeur, que se trouve le point fossilifère.

La barre rocheuse est affectée d'une petite faille est-ouest passant à l'extrémité sud de la clairière. Au sud de cette cassure, elle est entièrement formée de "Flysch grisâtre", c'est-à-dire de grès en gros bancs alternant avec des lits de schistes noirs; au nord, au contraire, elle comporte des conglomerats et des calcaires à petites Nummulites. À l'extrémité nord de la clairière, on peut relever la coupe suivante, de haut en bas (fig. 15):

4. Grès en gros bancs alternant avec des lits de schistes siliceux noirs.
3. Calcaire noir à patine bleutée entièrement pétrifié, par places, de petites Nummulites noires; 2 mètres.
2. Conglomerats à ciment calcaire, avec de gros grains de quartz, en gros bancs atteignant 1 mètre; petites Nummulites et Orthocystes: 3 mètres.
1. Schistes argileux gris-noir plus ou moins calcaires, et petites dalles de calcaires marneux sans fossiles, masqués, vers le bas, par des éboulis.

A cet endroit, le pendage des couches, qui était très faible, s'accentue et devient nord : les grès s'abaissent (le long d'un petit sentier qui va dans cette direction) et calcaires et conglomerats s'abouchent sous les grès.
LES ZONES ULTRA-DAUPHINOISE ET SUBBRIANÇONNAISE.

Ce gisement est donc indéniablement interstratifié à la partie supérieure du Flysch gréseux qui existe au-dessous de lui, bien que le passage en soit masqué ici, et qui reprend au-dessus, comme l'indique la coupe précédente.

3° L'âge du Flysch des Aiguilles d'Arves. 1° La base du Flysch. — Le début du Flysch ne peut pas être daté de façon très précise; les seuls fossiles que l'on y connaisse (Villafranchien) sont de petites Nummulites en très mauvais état, non déterminables spécifiquement.

M. Gignoux ayant montré récemment (133 et 134) que le Flysch des Aiguilles d'Arves constituait le prolongement, vers le nord, de «Nummulitique autochtonique» du sud-est du Pelvoux, il paraît logique, a priori, d'admettre que le premier débuta, comme le second, au Priabonien.

Mais on sait que le Lutétien marin est connu vers l'ouest jusque dans les chaînes subalpines des Bornes et des Bauges où il a été étudié par L. Moret (181). Il semblerait alors que la mer lutétienne ait débordé largement, au nord du Pelvoux, jusque sur l'emplacement de ces massifs subalpins, ainsi que l'ont admis en particulier L. Moret (181) et M. Gignoux (167, fig. 118). Dans ce cas, le Flysch des Aiguilles d'Arves aurait dû débuter dès le Lutétien. Il faut cependant noter que l'on connaît aussi, dans ces mêmes massifs, du Lutétien supérieur lacustre (Sougéy, Arrache, Roc-de-Chère, Entrevetres). Ces dépôts continentaux accompagnés d'érosion témoignent d'une régression qui a pu être locale, mais qui a pu également s'étendre, vers l'est, jusqu'à la zone du Flysch des Aiguilles d'Arves.

Enfin, j'ai montré qu'au niveau de l'Arc le Flysch des Aiguilles d'Arves forme, au-dessus des grès et conglomerats de base, une sorte de «trilogie priabonienne» : Flysch calcaire, Flysch schisteux, Flysch gréseux. Il semble donc que seuls les conglomerats de base pourraient, à la rigueur, représenter le Lutétien. Il est, du reste, à noter qu'ils sont défaut dans le Pelvoux, où les calcaires à petites Nummulites sont directement transgressifs sur le Cristallin. L'étude du passage de la série typique du Flysch des Aiguilles d'Arves à celle du Nummulitique du Pelvoux pourra, peut-être, fournir quelques précisions à ce sujet, ainsi que l'étude du Nummulitique que j'ai récemment découvert dans la couverture du Grand Châtelard, près de Saint-Jean-de-Maurienne (169 et 175).

2° La partie supérieure du Flysch. — Le Flysch est, au contraire, très bien daté à son sommet par le gisement d'Ablanne (p. 88). La présence, en ce point, de petites Nummulites et d'Orthophragmides montre bien que le Flysch des Aiguilles d'Arves est encore priabonien à sa partie tout à fait supérieure; il n'a donc que l'Oligocène.

3° Comparaisons avec les régions voisines : l'âge des complexes détritiques terminaux du Nummulitique autochtonique et parautochtonique. — On sait que l'âge de ces formations a donné lieu à maintes discussions.

J. Boussac avait attribué les grès d'Annot à l'Oligocène sans preuve paléontologique précise (78).

Mais d'autre part, M. Lugeon en Savoie (84) et L. Moret en Savoie (85), ayant découvert des Orthophragmides dans les grès de Taveyanaz, concluaient à l'âge priabonien de ce terrain.

Plus récemment, A.-F. de Lapparent, en raison des affinités indo-européennes des faunes de mollusques des schistes priaboniens, admet que la partie supérieure au moins des grès d'Annot devait être oligocène (145 bis).

Enfin, à la suite de la découverte d'un Orbitoïde et de petites Nummulites par S. Deh dans les grès d'Annot (123 bis et 123), L. Bertrand rapporte à nouveau les grès d'Annot à l'Oligocène (123 et 124).

L. Moret a montré qu'en réalité les arguments paléontologiques de ces deux auteurs n'étaient pas convaincants et que toutes ces formations détritiques terminales forment un même ensemble stratigraphique malgré les termes divers sous lesquels elles sont désignées suivant les régions : «grès de Taveyanaz» en Savoie et en Savoie, «grès du Champesa» au sud du Pelvoux, «grès d'Annot» dans les Alpes méridionales. Il a démontré, d'autre part, que l'âge priabonien de ces formations s'accorde beaucoup mieux avec l'histoire générale des Alpes (129 et 130).

Le Flysch des Aiguilles d'Arves étant considéré maintenant comme le prolongement septentrional des grès du Champesa et des grès d'Annot (133 et 134), on voit qu'il s'intègre dans ce vaste ensemble de formations détritiques. La découverte des couches à Orthophragmides et à petites Nummulites d'Ablanne, à leur partie supérieure, vient donc confirmer les vues de L. Moret sur ces complexes gréseux : chaque fois, en effet, que ces terrains peuvent être datés avec précision, c'est au Priabonien qu'ils doivent être rapportés.

1. Conclusions. — La remarquable continuité des conglomerats de base, à la limite occidentale du Flysch des Aiguilles d'Arves, entre l'Arc et l'Ileure, suggérait déjà, si elle ne l'imposait, l'idée que le contact de base de ce Flysch devait être stratigraphique. Les diverses coupes étudiées plus haut nous
montrent qu’en effet le Flysch est bien transgressif, à l’ouest, sur les terrains sous-jacents.

Le Flysch des Aiguilles d’Arves est typiquement constitué par une sorte de "trilogie priabonienne" : Flysch calcaire, Flysch schisteux, Flysch gréseux. Mais, au-dessous de ces trois termes, il débute par un puissant niveau de grès et conglomerats, formation de piedmont dont les éléments proviennent, sans doute, en majorité, de la zone des massifs cristallins externes.

Le Flysch des Aiguilles d’Arves est peut-être priabonien dès la base, de même que le « Nummulitique autochtone » du sud-est des Pelvoux, dont il est le prolongement septentrional, et ainsi que sembleraient l’indiquer les petites Nummulites de Villarclèlement. Il est en tout cas priabonien jusqu’au sommet, comme le montrent les couches à petites Nummulites et Orthophragmiques d’Albanne. Il faut enfin noter que le dépôt du Flysch des Aiguilles d’Arves a été accompagné de phénomènes de subsidience très importants, puisque ce terrain atteint 2 000 mètres d’épaisseur.

B. Zone subbriannçonne.

a. Nappe des Brèches de Tarentaise.

Cette unité, caractérisée surtout par sa série stratigraphique qui est celle d’une cordillère, le « cordillère tarière », comporte un Flysch très épais, intermédiaire à tous points de vue entre celui des Aiguilles d’Arves et celui de la nappe du Pas du Roc. De tous les terrains de la série, c’est le Nummulitique qui diffère le plus d’une des digitation à l’autre.

1° Digitation du Niéard. — 1. Stratigraphie. — Les faciès dominants sont les conglomerats. La série type peut s’établir de la façon suivante (fig. 15) :

3. Flysch schiste-gréseux : schistes siliceux noirs avec calcaire de grès fins, à aspect de "Flysch noir" : 200 mètres environ. En amont du hameau de la Saussière, dans le vallon de la Platière, j’y ai recueilli de petites Nummulites. Le point fossilière se trouve au bord du sentier, 50 mètres environ à l’est du ruisseau qui descendent du chalet de Nantsoudry (cote 1 930).

2. Conglomérats et grès en gros bancs : les grès sont en général assez grossiers, de teinte grise, et passent souvent insensiblement aux conglomerats; ceux-ci ont généralement un ciment gréseux et contiennent des galets bien roulés de diverses roches, où dominent les roches cristallines, mais où l’on retrouve également tous les éléments de la série sous-jacente. Ce niveau a de 300 à 500 mètres d’épaisseur.

1. Conglomérats : vers la base, il n’y a plus que des conglomerats, formant encore parfois de gros bancs, mais où la stratification disparaît le plus souvent. Le ciment est gréseux, mais parfois presque absent, tout les galets y sont jointifs : les roches cristallines y dominant, plus spécialement des micaschistes chloriteux donnant leur teinte verte aux conglomerats. Ce fait s’observe en certains points du Niéard et près du Col de Valboeuf. Enfin, tout à fait à la base de cette formation, se rencontrent de nombreux éléments enlevés à son substratum direct, comme nous lisons le voir plus loin. Ces conglomerats ont de 500 à 700 mètres d’épaisseur.

2. Les couches à grandes Nummulites du Niéard. — Sur le versant sud-ouest du massif du Niéard, à l’ouest de Saint-Jean-de-Belleville, affluent des schistes et conglomerats à grandes Nummulites qui ne sont qu’un faciès latéral et local, à la base des conglomerats du Flysch.

Les affleurements isolés situés au nord de la cote 2 475 sont presque uniquement constitués par des conglomerats qui ravinent les brèches secondaires du Niéard. Au contraire, la pente située au-dessus de la cote 2 475 et au-dessus des falaises lisières, est essentiellement formée de schistes dans lesquels on rencontre, par places, des galets de roches diverses, surtout cristallines, parfois d’assez grande taille. Ces schistes passent, localement, à des calcédoxistes et conglomerats plus ou moins calcaires : c’est dans ces derniers que j’ai découvert des couches fossilières du Lutétien.

A 150 mètres environ au sud-ouest de la cote 2 475, existe une petite source : c’est là que se trouve le point fossilière. A partir du Lias qui forme une falaise abrupte un peu plus bas, on peut relever la couche suivante (fig. 16) :

4. Schistes noirs, silicieux, remontant jusque vers la cote 2 475.

3. Schistes noirs et calcédoxistes gris à patine jaune-clair, alternant avec des brèches calcaires à gros grains de quartz; les éléments proviennent surtout du Trias et du Lias, quelques-uns, cependant, sont cristallins; les calcédoxistes gris sont petits de petites Nummulites noires et les brèches calcaires à grains de quartz contiennent de nombreuses Nummulites de grande taille (jusqu’à
LES ZONES ULTRAUDAUFNOISE ET SUBRAUNOISE.

2 cm de diamètre) se rapportant sans doute à N. perforatus; ce niveau a environ 10 mètres d'épaisseur.

2. Schistes noirs et plaquettes gréseuses brunes contenant de gros galets épars de roches cristallines; ce terrain, qui a 25 à 30 mètres d'épaisseur, vient encastrer à sa base les couches redressées du Lias en un contact manifestement transgressif.

1. Calcaires massifs clairs et calcaires gris, spathiques, du Lias en couches subverticales.

Fig. 16. — Coupe du point fossilifère hâtique du Mont Norier.

1, calcaires basiques très redressés; 2, série de schistes noirs et plaquettes gréseuses renfermant de gros galets de roches cristallines; 3, complexe de schistes noirs, de calcaires grès à petits jaunes clairs et de hachures calcaires à gros graviers de quartz dioritique renfermant de grandes et petites Nummulites; 4, schistes noirs siliceux.

Ainsi, ces schistes forment bien la base du Flysch, puisqu'ils sont transgressifs sur son substratum et ils ne peuvent alors être interprétés que comme un faciès latéral des conglomérats. Ils contiennent d'ailleurs de nombreux galets, même là où ils ne forment pas véritablement un conglomérat : il s'agit donc bien, là aussi, d'une formation transgressive. On les voit au reste passer, vers l'est de l'affleurement, aux conglomérats typiques.

3. Le contact de base. — Le contact de ce Flysch sur son substratum est net en de nombreux points, et il ne peut y avoir de doute que ce Flysch forme bien la couverture de la série de la diagenèse du Niéierz.

Massif du Niéierz.

Les conglomérats du Flysch ont été presque partout enlevés par l'érosion et il n'en reste plus que de petits placages reposant, presque partout, sur les brèches secondaires dont elles encroûtent les surfaces (fig. 20). A côté des galets cristallins très nombreux, on y rencontre des éléments divers de la série sous-jacente : calcaires spathiques, calcaires à Polykios, calcaires à silex et à Gryphées du Lias, dolomies jaunes du Trias. Je rappelle que c'est d'ailleurs ici que W. Kilian avait établi, pour la première fois, une distinction entre les brèches secondaires et nummulitiques.

Massifs du Fuz et de Valluche.

Entre la Pointe du Mont du Fuz et la Pointe de Valluche affluent, à la cote 2719, des schistes violets du Permien qui forment une grande trainée violette dans la paroi dominante, au sud, le vallon qui descend de la Pointe du Mont du Fuz vers le Nant Brun. Le contact, ici encore, est manifestement stratigraphique entre ces schistes et le Flysch qui débute par des conglomérats presque uniquement formés d'éléments de ces schistes violets (fig. 21).

D'autre part, dans le flanc est de la Pointe de Valluche, une lame allongée de quartzites blanc du Trias affleure également au milieu du Flysch qui vient encastrer les surfaces et dont les conglomérats contiennent aussi de nombreux éléments vers la base ; là encore, le contact est stratigraphique (fig. 21).

Cirque de Valluche.

Les micaschistes affleurant au fond du cirque (p. 18) sont tout à fait identiques à ceux que l'on rencontre en très grande quantité dans les galets du Flysch ; ils arrivent même à y être presque le seul élément en certains points, notamment au-dessous et à l'est du Col de Valluche.

Mais il y a plus : à l'extrémité sud de la lentille de micaschistes, au nord-est de la cote 339, existe un lambeau de Flysch qui vient reposer, en transgression, sur les micaschistes, et dont les conglomérats, formés à peu près uniquement de galets de ces derniers, arrivent presque à se confondre avec eux.

2. Dîuction de Moulinet. — Dans cette unité, affleure un puissant complexe de calcaires gréseux ou microbréchiques, de schistes et de conglomérats dont la stratigraphie, établie au nord de l'aire par H. Scholler, ne peut guère être précisée, au sud de celle-ci, en raison de la violence des actions tectoniques. L'âge en a été très discuté : rapportées autrefois en grande partie au Lias, cette série a été attribuée, par H. Scholler au Nummulitique (101).
Il n’y a malheureusement jamais été trouvé de Nummulite, mais nous avons vu plus haut que les séries stratigraphiques des deux digitations de Moulins et du Niéard sont extrêmement voisines. Or, dans la digitation du Niéard, le seul terrain pourvant, par son épaisseur et sa position stratigraphique, se rapprocher de ce complexe, est incontestablement le Flysch, daté, là, par les grandes Nummulites du Niéard à la base et les petites Nummulites du vallon de la Platière à la partie supérieure.

En raison de ces analogies, il semble donc bien que l’on doive, jusqu’à preuve du contraire, considérer aussi cette série comme nummulitique dans la digitation de Moulins.

Mais ce terrain, moins conglomerétique dans l’ensemble, est assez différent, lithologiquement, du Flysch de la digitation du Niéard. C’est une des principales raisons qui m’ont amené à séparer en deux digitations la zone des Brèches de Tarentaise, si bien caractérisée, d’autre part, par ses faciès de cordiller.

3° Conclusions. — Paléogéographie. — A partir du Cirque de Valbuche, on voit affleurer largement, vers le nord, un Flysch dont la seule analogie avec le Flysch des Aiguilles d’Arves est sa grande épaisseur (1,000 m. environ), mais présentant des caractères lithologiques tout à fait différents, bien que ces deux terrains aient, jusqu’ici, été confondus.

La grande prédominance des conglomerats dans ce terrain montre qu’il appartient encore à la cordiller teraine dont le démantèlement a fourni beaucoup plus d’éléments grossiers que l’on n’en observe dans les zones voisines. Et, de fait, ce Flysch est bien en rapport stratigraphiques normaux avec le reste de la série du Niéard, sur lequel il se montre très nettement transgressif en divers points.

Ce Flysch est bien daté par les couches lutétiennes à grandes Nummulites du Niéard et les petites Nummulites du vallon de la Platière.

Il n’en est pas de même pour la puissante série terminale de la digitation de Moulins. Mais les analogies qu’elle présente avec le Flysch de la digitation du Niéard, permettent de penser, malgré l’absence de fossiles, qu’elle représente également le Nummulitique, comme l’a admis II. Schoeller : c’est, jusqu’à preuve du contraire, ce qui a été admis ici.

b. Nappes du Pas du Roc.

Dans cette unité, le Nummulitique, comme le Crétacé, se rencontre en deux positions bien différentes. Vers l’ouest, ces deux terrains décollés du reste de la série ont donné naissance à un empilement «d’écaillés externes» (p. 7). Vers l’est, seuls quelques lambeaux ont été conservés, dans une position synclinaire, dans la région de Gitamelon, au sud de Saint-Martin-de-Belleville.

1° Les écaillés externes. — Le Nummulitique, voisin d’une écaillée à l’autre, n’est cependant pas identique, mais diffère surtout par les couches de base. Les écaillées de Montdenis et de Clairat (1 et 2) sont entièrement situées au nord de l’Arc, celle du Bochet (3) est à cheval sur la vallée ; enfin celles de Montricher et d’Albanne n’affectent qu’au sud de l’Arc et la dernière, seule, se continue au sud de Valloire. Enfin, toutes ces écaillées se reliaient et sont d’autant plus internes qu’elles sont plus méridionales (pl. VI).

4. L’écaillée de Montdenis. — Cette écaillée n’affecte pas au village même, mais elle atteint son maximum de développement dans la partie nord du grand plateau glaciaire de Montdenis. Elle ne se prolonge plus au sud de l’Arc, mais se poursuit, par contre, très loin vers le nord où l’on en retrouve des lambeaux dans le Cirque de Valbuche et même dans le vallon d’Orgentil, au sud du Niéard.

Les couches de base.

Les couches de base sont formées, soit de calcaires blancs, soit de conglomerats avec des passages des uns aux autres. Mais, les terrains de toutes ces écaillées étant très plissés, ces couches n’apparaissent généralement qu’en lentilles au travers du Flysch qui les surmonte. La coupe qui en donne la meilleure idée est celle que l’on peut relever, au nord de Montdenis, entre la petite barre rocheuse de la cote 335 et le gros mamelon surmonté d’une croix, situé un peu au sud-ouest. A partir de la cote 335, en se dirigeant vers le sud-est, on rencontre successivement :

A. Brèches très polygéniques, avec quelques éléments cristallins et ciment graisseux parfois assez grossier, formant le petit escarpement voisin de la cote 335.

3. Plaquettes de calcisites graisseux bruns, donnant un petit replat et en partie masquées par les terrains de surface : 10 mètres.

2. Par passage inesensible, grès calcaire bleuté, en gros bancs et avec gros grains de quartz, contenant quelques fragments de petites Nummulites : 5 mètres ; ce niveau forme un petit rocher.

Les couches de base sont formées, soit de calcaires blancs, soit de conglomerats avec des passages des uns aux autres. Mais, les terrains de toutes ces écaillées étant très plissés, ces couches n’apparaissent généralement qu’en lentilles au travers du Flysch qui les surmonte. La coupe qui en donne la meilleure idée est celle que l’on peut relever, au nord de Montdenis, entre la petite barre rocheuse de la cote 335 et le gros mamelon surmonté d’une croix, situé un peu au sud-ouest. A partir de la cote 335, en se dirigeant vers le sud-est, on rencontre successivement :

A. Brèches très polygéniques, avec quelques éléments cristallins et ciment graisseux parfois assez grossier, formant le petit escarpement voisin de la cote 335.

3. Plaquettes de calcisites graisseux bruns, donnant un petit replat et en partie masquées par les terrains de surface : 10 mètres.

2. Par passage inesensible, grès calcaire bleuté, en gros bancs et avec gros grains de quartz, contenant quelques fragments de petites Nummulites : 5 mètres ; ce niveau forme un petit rocher.
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

1. Dalles et plaquettes gréseuses brunes, alternant avec des schistes noirs liasants et quelques dalles plus calcaires, grises; ces couches plus tendres, assez épaissest, déterminent le petit col où passe le sentier allant de la Pointe de la Combe-des-Hortières vers la cote 2953 et se trouvent en grande partie masquées par le glaciaire.

Les niveaux 1 et 3 représentent du Flysch piné syndiagonallement entre les couches de base 3 et 4.

Dans la partie nord du col émerge, de ce Flysch, un petit rocher présentant la coupe suivante de l’ouest à l’est :

3. Dalles gréseuses brunes alternant avec des dalles calcaires et des schistes noirs.

2. Calcaire blanc, très recristallisé par places, contenant de petites et grandes Nummulites et passant insensiblement, dans la partie est du rocher, à un conglomerat à ciment gréseux qui contient surtout des débris du calcaire clair sous-jacent.

1. Passage au Flysch formé de dalles calcaire et de calcais-chistes, gréseux et noyés par places, de teinte ocre avec enduit gris ou verdâtre.

Le rocher est donc encadré de Flysch; mais le contact, à l’ouest, paraît bien être anormal, alors qu’il est normal vers l’est.

Enfin, le gros mamelon portant la croix, au sud du petit col où passe le sentier, montre :

2. Des calcais-chistes gréseux ocre, des plaquettes calcaires crème, des schistes à enduit gris-jaune ou verdâtre clair qui forment un placage sur le rocher.

1. Conglomérats à ciment grossièrement gréseux, clairs, à éléments variés, comprenant peu de galets cristallins et de nombreux galets de calcaire compact, clair, de teinte lias, blanche ou grise; dans ce calcaire, je n’ai pas pu trouver de microfaune identifiable; il provient soit de bancs calcaires analogues à ceux qui voisinent avec les conglomerats de base, soit peut-être du Malm.

Il existe donc, dans ces couches de base du Nummulitique, à la fois des conglomerats et des calcaires, qui ne sont que des faciès latéraux et entre lesquels existent, effectivement, des passages (deuxième coupe).

STRATIGRAPHIE.

On retrouve encore ces conglomerats de base dans le flanc sud-ouest de la cote 9198 et près des sentiers allant de la cote 9191 au chalet de la Périère et au chalet Barbey; ils y présentent des caractères tout à fait voisins.

De même, des niveaux de calcaire blanc analogue à celui de la deuxième coupe se retrouvent en divers points en allant vers le nord. Mais ces couches contiennent de petits alluvions rocheux isolés dont on ne peut voir les relations exactes avec les terrains voisins. Ils sont, le plus souvent, entièrement recristallisés et l’on n’y trouve plus trace de fossiles; il semble néanmoins qu’ils appartiennent aux couches de base du Nummulitique, comme les calcaires d’Orgentil.

Les calcaires d’Orgentil.

Dans la pente sud-ouest du Nièlard, à peu près à mi-chemin entre les chalets d’Orgentil et la Pointe du Nièlard, se trouve une petite barre rocheuse qui émerge du clouët, très développées en cet endroit. Elle est formée d’un calcaire blanc très pur, un peu scabreux par recristallisation. Toute structure y est, en général, complètement oblitérée par cette recristallisation, mais il y a néanmoins découvert une section équatoriale, parfaitement reconnaissable, de grande Nummulite qui en fixe l’âge Lutétien. Ce n’est donc pas, comme on pourrait le penser à priori, un bloc de Liassic, glissé de la faille supérieure.

Ce calcaire passe, d’ailleurs, à sa partie supérieure, à un Flysch présentant tous les caractères du Flysch des côteaux de Montlouis. Mais ces rapports avec le Flysch sont pour ainsi dire visibles dans la pente au nord des chalets d’Orgentil; là existe un autre rocher de calcaire nummulitique, dont on peut voir très nettement le passage au Flysch grâce au pendage des couches (76° S.-E) et à l’érosion d’un petit talweg qui a débouché les éboulis à l’ouest du rocher.

En venant de l’ouest, on observe la coupe suivante :

3. Flysch extrêmement varié dans le détail et formé d’allure de grès compacts, fins, de teinte claire, gris-jaune, de calcais-chistes verts et ocre, à enduit vert clair, de schistes noirs ou verdâtres, de calcais-grès bien lithisés et de lits calcaires plus épais à patine ocre.

2. Calcaire gris clair à patine ocre : 5 mètres; cette coupe de passage est bien visible dans le petit talweg et au pied du gros rocher.

1. Calcaire blanc, massif, formant le rocher principal.
Le Flysch.

Le Flysch est extrêmement varié dans le détail et a subi des actions tectoniques très violentes : aussi n’est-il pas possible de faire, à l’intérieur de ce terrain, des coupures présentant un réel intérêt stratigraphique.

Il est formé d’une succession de couches interstratifiées parmi lesquelles se rencontrent surtout :
- des calcéchistes et dalles de calcaires gréseux gris-bleu, à patine brune ;
- des calcéchistes gris, quelquefois blancs ou verts, à enduit vert clair ou ocre, rappelant les marbres en plaquettes ;
- des schistes noirs ou vert foncé alternant avec des plaquettes gréseuses brunes ;
- enfin des calcaires gréseux gris à patine brune et gros grains de quartz ; ce sont ces bancs, nettement interstratifiés au milieu des couches précédentes, qui contiennent, en divers points, et particulièrement le long de la Côte de Lancheton au nord de Montdenis, de petites Nummulites.

Ces couches sont spécialement nettes et bien développées le long de cette Côte de Lancheton. On les retrouve avec le même aspect et ces mêmes teintes si caractéristiques au Cirque de Valbouche et dans le vallon d’Orgentail. Elles sont également bien visibles, à l’est de Montdenis, et dans la gorge du Torrent de Saint-Julien, où leur teinte ocre, dominante ici, fait un contraste saisissant avec les couches gris-noir du Flysch des Aiguilles d’Arves qu’elles chevauchent.

2. L’écaillle de Claret. — Cette écaillée, débitée en plusieurs lambeaux successifs, a son maximum de développement entre le chemin montant de Claret à Tourmentiat et le torrent de Claret. Elle est principalement formée de Crétacé inférieur et supérieur et comporte également des lamelles de Flysch, dont l’une est en contact stratigraphique avec le Crétacé.

Le Nummulitique est représenté ici par un flysch schisto-gréseux, formé de schistes noirs et de grès en bancs plus ou moins épais, assez clairs ; ce Flysch passe, vers la base, à un conglomerat assez puissant, à ciment gris, très polygénique, avec éléments cristallins. J’y ai recueilli, au sud de la cote 1083, une petite Nummulite, à l’endroit ou les conglomerats sont transgressifs sur le Crétacé inférieur (fig. n°3).

3. L’écaillle du Bochet. — Cette unité n’est constituée que par du Nummulitique, formé de trois niveaux principaux : Flysch schisto-gréseux, Flysch calcaire et, à la base, les célébres calcaires à grandes Nummulites dits de Montricher.

Malgré cette appellation ancienne, je l’ai désignée sous le nom « d’écaillée du Bochet », parce qu’elle est proche du village de ce nom et que le Pont du Bochet, près de la gare de Saint-Julien-Montricher, s’appuie, d’une gauche, sur les terrains qui la composent. Au contraire, le village de Montricher est bien plus éloigné et se trouve sur le domaine de l’écaillée suivante à laquelle j’ai pour cette raison, donné son nom. Le Flysch schisto-gréseux est formé de schistes noirs peu ou pas calcaires, alternant avec des grès fins, parfois même quartzeux, noircâtres ; vers le haut, on observe le passage à des grès clairs, très micacés, en gros bancs se débitant en éléments anguleux ; ces grès clairs, à surfaces luisantes, sont très caractéristiques de ce Flysch ; c’est aux environs de Montricher que l’on peut le mieux les observer.

Le Flysch calcaire est constitué par des dalles de calcaire gris à grain fin, avec parfois quelques alternances de calcéchistes ; on y rencontre des Globigerines (103). Ce terrain forme l’éperon sur lequel s’appuie, d’ailleurs, le pont du Bochet près de la gare de Saint-Julien-Montricher, où il enveloppe la lentille de calcaire à grandes Nummulites située un peu plus haut dans le versant. Ce Flysch affleure à nouveau au nord de l’Arce, dans la partie basse du torrent du Claret.

Les calcaires à grandes Nummulites.

Ces calcaires affleurent, comme nous venons de le voir, dans l’éperon dominant, au sud, le Pont du Bochet. Une importante carrière y a été ouverte autrefois pour alimenter l’usine voisine en pierre à chaux.

Ces calcaires forment une lentille qui semble s’arrêter très rapidement vers le bas, car elle n’a pas été rencontrée dans le tunnel de l’usine passant juste au-dessous de l’éperon. Vers le haut, elle se prolonge un peu plus et se trouve recoupée par la route du Bochet à Montricher : une carrière d’empierrement a été ouverte en ce point. Au-dessus, elle disparaît très vite en biseau au milieu du Flysch.

Ces conditions ne sont pas très favorables à une étude stratigraphique détallée, car les diverses couches sont souvent laminées et disparaissent même par places ; pour ces mêmes raisons, les épaisseurs indiquées ici ne sont que très...
7. Schistes noirs luisants, alternant avec des dalles de grès noirs-très fins ou même quartziteux : Flysch schisto-gréseux.
6. Calcaire gris, à grain fin, en dalles régulières contenant des Foraminifères : Flysch calcaire ; ce niveau, bien développé au Pont du Bochet, se lame complètement vers le haut.
5. Schistes tendres de teinte claire, jaune, grise ou verdâtre : 5 mètres.
4. Calcaire glauconieux vert foncé, à petites Nummulites : 2 à 3 mètres.
3. Calcaire massif, gris, à petites Nummulites : 2 mètres.
2. Calcaire massif, gris, teinté de vert clair, à petits cubes de pyrite, avec petites Nummulites et nombreux rostrers de Belemnites (1) : 2 à 3 mètres.
1. Calcaire grénu blanc et calcaire crème, zoogène, à Lithothamnium et N. millepaup. Ce niveau, peu épais dans la carrière supérieure, au bord de la route, est, au contraire, très développé dans l'ancienne carrière de l'usine du Pont du Bochet, où il forme la plus grosse masse du calcaire et peut atteindre une cinquantaine de mètres d'épaisseur : c'est ce niveau qui avait été exploité autrefois comme pierre à chaux.

La base de la coupe n'est nulle part visible dans cette écaillée. Mais il est probable que ces calcaires, comme ceux de l'écaillée de Montlénis constituent, ici aussi, la base du Nummulitique.

Enfin, j'ai retrouvé, au nord de l'Arc, une petite lentille de calcaires à grandes Nummulites (une section de N. millepaup atteint 6 centimètres de diamètre) noyée dans le Flysch, dans la partie haute du Torrent de Claret.

4. L'écaillée de Montricher. — C'est sur le domaine de cette écaillée qu'est bâti le village de Montricher. Entre le cimetière et la route qui descend vers l'Arc, existent deux bosses rocheuses entre lesquelles passe un chemin se dirigeant vers l'ouest. Les roches résistantes qui se marquent ainsi brusquement dans la topographie sont des conglomerats qui, vers l'ouest, viennent chevaucher le tronçon est-ouest de la route. Ceci, pour respecter l'ordre de superposition des couches dont les pendages sont très faibles (fig. 18) :

7. Schistes noirs avec quelques dalles de grès fin gris : c'est le début du Flysch schisto-gréseux assez masqué par la végétation et l'altération superficielle, mais bien net dans les tranchées creusées au sommet.
6. Calcaires marneux noirs, en petits bancs irréguliers, et calcisches de même teinte ; ce terrain s'étend sur le sommet jusqu'à la petite dépression où passe la route et comporte, en son milieu, un niveau de calcisches noirs formant un petit replat ; l'ensemble fait environ 3 à 4 mètres ; la coupe est interrompue au passage de la route et reprend de l'autre côté par des grès passant aux conglomerats de base.

(1) Ces rostres sont probablement remaniés. Mais, comme le faciès dans lequel on les trouve n'est pas du tout détritique, L. Morel pense qu'ils pourraient peut-être aussi appartenir au genre terciare Hypoconostyla Mun. Ch.
LES ZONES ULTRA DAUPHINOISE ET SUBBRIANÇONNAISE.

5. Dalles de grès grossiers clairs, alternant avec des schistes gris-clair, satinés : 5 mètres (couches affleurant au sud du virage).

6. Grès grossiers, gris clair, en grosses dalles : 1 mètre (couches affleurant à la partie supérieure de la tranchée de la route à l’ouest du virage).

3. Gros bancs de 1 mètre à 1 m. 40 de conglomérats à éléments assez gros à la base et fins au sommet, à ciment calcaire bleuté avec gross grains de quartz : 3 mètres.

2. Dalles de grès calcaire gris bleu alternant avec des schistes un peu calcaires, bleutés également : 1 mètre ; ce niveau affleure dans le bas de la tranchée de la route.

1. Conglomérats très polygéniques, à éléments généralement bien roclis, mais sans galets cristallins ; ce ciment est calcaire à la base et devient gréseux vers le haut ; ce niveau est très massif et forme un gros rocher non stratifié dont le contact avec les grès précédents a été quelque peu broyé du fait de la tectonique ; son épaisseur est d’environ 5 mètres.

Près du cimetière, on retrouve le même terrain. Les éléments y sont en général anguleux et ne sont bien roclis que par places. Ce sont des quartzites et dolomies du Trias, des calcaires à silex du Lias, des calcaires clairs, zoogènes, du Dogger ; mais, là non plus, on ne rencontre pas de roches cristallines. Si bien que cette roche arrive parfois à ressembler à la brèche du Télégraphe, avec laquelle W. Killian avait dû la confondre, car il signalait sa « brèche du Télégraphe » basique dans sa coupe entre le Pont du Bochet et l’usine de Saint-Félix (1). Mais ici le ciment est toujours plus ou moins gréseux contrairement à ce que l’on observe dans les vraies brèches du Télégraphe. Il est intéressant de noter, d’autre part, que les roches qu’on y retrouve en galets, sont celles de la nappe du Pas du Roc et ne semblent pas venir de très loin, en raison de l’absence de galets cristallins.

Nous avons donc ici une série bien complète, débutant par les conglomérats et grès de base, pour continuer par du Flysch calcaire (6) passant lui-même au Flysch gréseux (7). Là encore, les épaisseurs indiquées ne peuvent avoir une valeur absolue en raison des étiements dont il n’est pas toujours facile de discerner l’importance relative.

(1) A moins qu’il ne s’agisse du congloméré situé entre le Crétacé inférieur et le Crétacé supérieur (voir p. 77).

5. L’échelle d’Albane. — Cette échelle est la seule à se prolonger vers le sud, et c’est sur son domaine que se trouvent les villages d’Albane et d’Albannette. L’éperon des Porlains, à l’ouest de l’usine de Saint-Félix, est constitué principalement par des marnes en plisquées. Ceux-ci sont compris entre le Crétacé inférieur, que j’ai individualisé près de l’usine, à l’est, et le Flysch calcaire à l’ouest. Il semble bien qu’il y ait là une série normale. Malheureusement, le contact entre le Flysch calcaire et les marnes en plisquées, qui paraît bien se faire sous forme d’un passage progressif, n’est jamais très nettement visible sur le terrain, en raison de la végétation ou des éboulis.

Fig. 18. — Coupe du Nummulitique de l’échelle de Montricher, passant par la route 185, un peu au nord du village ; la partie droite de la figure représente la tranchée de la route.

1. Flysch schistos-gréseux chevauché par les terrains suivants ; 2. conglomérats ; 3. gros bancs de grès et de conglomérats alternant avec des schistes ; 4. calcaires marno-creusiers et calcaires ; flysch calcaire ; 5. schistes noirs et dalles de grès ; 6. flysch schisto-gréseux.

Mais une autre coupe qui, pour n’être pas toujours très accessible, est cependant bien nette, est celle qu’offre le Ruisseau des Moulins entre le Pont du Fay (1927) et la route de Montricher à Albano. En descendant le long du ruisseau, dans le fond de la petite gorge, on observe la coupe suivante :

4. Schistes noirs, luisants, avec quelques bancs de grès fins ; ce terrain, qui représente le Flysch schisto-gréseux (localement plus schisto que gréseux), débute juste en aval du Pont des Moulins, où il chevauche le Flysch des Aiguilles d’Arves, et se prolonge jusqu’un peu en amont du confluent du Ruisseau de Frelon et du Ruisseau des Moulins. Très plastique, il est extrêmement plissé dans tous les sens et il n’est guère possible d’en évaluer l’épaisseur.
3. Passage progressif à des calcaires tendres alternant avec des dalles plus calcaires : c'est le Flysch calcaire.

2. Un peu en amont du Pont du Fay apparaissent, dans cette série de dalles calcaires et de calcais, des teintes vertes et jaune clair caractéristiques du Crétacé supérieur. Le passage du Flysch au Crétacé supérieur est très visible et nettement progressif : il n'y a là ni conglomerat, ni brèche tectonique, ni zone de broyage.

1. Jusqu'au pont, on observe des schistes et calcais gris ou vert-jaunâtre, et, dans le golfe rocher qui domine le pont au sud, des calcaires crèmes ou verdâtres à grain fin : nous sommes là dans le Crétacé supérieur typique qui se prolonge, au sud, vers Alonna et Albannette.

On a donc bien encore, dans cette unité, du Flysch schisto-gréseux (plus schistes que gréseux) (4) et du Flysch calcaire (3). Mais, lors la base, on observe une continuité de sédimentation entre le Flysch calcaire et les marbres en plaquettes du Crétacé supérieur. Ce fait n'est pas isolé : il a, en effet, déjà été noté en Ubaye par D. Schneegans (1/8). Il s'accorde bien, par ailleurs, avec l'idée d'une « série compréhensive », groupant le Crétacé et le Flysch à l'est du Pelvoux, idée qui a été admise encore récemment par M. Gignoux et L. Moret (1/37). Et nous verrons que l'écaille d'Albanne est précisément la seule à se prolonger jusque vers ces régions (p. 137).

2° Région de Gitanelon.

Au sud-ouest du hameau de Gitanelon, près de Saint-Martin-le-Belleville, j'ai trouvé, liés aux copeaux de Crétacé, des lambeaux de terrain que je considère comme nummulitiques.

Rivière droite du Risouans de l'Argent, au sud-ouest du hameau, affleure une lentille de calcaires verts du Crétacé supérieur. Mais, vers la base, on observe un rocher formé d'un gros banc de brèches et d'un bloc de conglomerat présentant des surfaces à enduit vert-jaune, satiné ; ce lambeau de Nummulitique n'a pu, en raison de son exiguité, être noté sur la carte.

Au col 2078, entre Gitanelon et la chaîne de Varlossière, apparaît à nouveau un lambeau de terrain que l'on peut surtout étudier dans un entonnoir (sans doute dû au voisinage du gypse). Ce sont des bancs de conglomerats-brèches avec enduits satinés jaune-verdâtre, et comprenant des éléments de roches diverses, dolomies et quartzites du Trias, calcaires du Lias, mais peu ou pas de roches cristallines. Ces couches sont accompagnées de schistes noirs à patine brun foncé, généralement sans dalles gréseuses. Dans le col lui-même, elles s'intercalent sous les terrains récents — éboulis et glacière — à l'exception de quelques blocs de brèche qui en émergent encore.

Mais ils se prolongent au sud du col, dans le sommet de la pente, où, plus bas, ils sont à nouveau masqués par les éboulis. Ce sont toujours des schistes noirs et quelques bancs de conglomerats, avec enduit caractéristique jaune ou verdâtre ; les galets de quartiers y dominent.

Enfin, sur le versant sud du vallon de Varlossière, affleure également, et dans une situation identique, une lentille formée de terrains analogues.

Il est à noter que ces schistes noirs se distinguent très bien de l'Ordovicien qui entoure complètement ces divers lambeaux : aussi bien par leur position que par leur aspect, ces schistes ne peuvent appartenir qu'au Flysch. Mais ce sont surtout les conglomerats qui, par tous leurs caractères, et notamment l'enduit schisteux jaune-verdâtre recouvrant leurs surfaces, sont tout à fait identiques aux conglomerats des écaillés externes (plus spécialement celle de Montlans). Il faut aussi noter que les roches cristallines, comme dans les écaillés externes, y font défaut ou y sont rares et que les galets appartiennent surtout aux roches de la nappe du Pas du Roc : calcaires à silex du Liass, en particulier.

Donc, malgré l'absence de fossiles, les analogies lithologiques permettent néanmoins d'attribuer ces terrains au Nummulitique, ce qui n'a rien d'invoi-sembliable au point de vue tectonique, comme nous le verrons plus loin.

3° Âge et faune du Nummulitique de la nappe du Pas du Roc.

1. L'écaille du Rochet : les calcaires à grandes Nummulites (dis de Montricher). — Depuis sa découverte en 1859 par Pillet et Coché, relatée par Ch. Lory (22 et 23), ce gisement a donné lieu à la publication de nombreuses listes de fossiles.

La première est due à Archiac et se trouve dans une étude de A. Favre (34).

Elle a été reprise ensuite, avec quelques additions, par Ch. Lory (29). En 1877, de la Harpe, donne une nouvelle liste d'espèces (46 bün) et en 1806, ce furent W. Kilián et J. Révil (73 et 74). Peu après, J. Boussac revit ce (1) Malheureusement la liste complète des déterminations de Ficher qu'ils annonçaient pour la dernière partie de leur ouvrage est restée inédite comme celle-ci.
LES ZONES ULTRA DAUPHINOISE ET SUBBRIANÇONNAISE.

gisement (77 bis et 78). Enfin, celui-ci fut encore étudié en 1929 par M. Gignoux et M. Moret (103).

De toutes ces listes et des observations que j'ai pu faire moi-même, on peut conclure, en tenant compte de la révision des Nummulites alpines par J. Boussoz, que ce gisement a fourni les espèces suivantes (les indications entre parenthèses renvoient aux travaux que nous venons de citer):

1. Les calcaires grénois blancs ou gris (niveaux 1, 2 et 3 de la p. 102).

- Nummulites miclceopus Boubée.
 (J. Boussoz; — N. Dufrennoy in d'Archiac, considérée par de la Harpe comme "une variété déprimée de N. complanata"; — N. complanata in d'Archiac, de la Harpe, Kilian et Révill (forme B); probablement aussi — N. Tkshatchefi in Kilian et Révill (forme A). Lutétien.

 Cette espèce, très remarquable par sa grande taille (j'ai recueilli une section de 6 centimètres dans les calcaires de la rive droite de l'Arc), est très fréquente.

- Nummulites perforatus Denys de Montfort.
 (J. Boussoz; — N. perforatus in d'Archiac; — N. Lucasana in de la Harpe, Kilian et Révill; — N. aturia in Kilian et Révill). Lutétien.

- Nummulites aturian Leym.

- Nummulites globulus Leym.
 (In d'Archiac sous le nom de N. Ramondi Def.; de la Harpe considère cette détermination comme "sans valeur" dans la bouche d'Archiac et se rapportant à toute forme petite et globuleuse; il pourrait cependant s'agir réellement de N. globulus). Lutétien.

- Nummulites distans Deshayes.
 (Citée avec doute par d'Archiac; N. Tkshatchefi in Kilian et Révill pourrait aussi en être la forme A). Lutétien.

- Assilina expansa J. de G. Sowerby.

- Orthophragmina discus Rutim. (in J. Boussoz). Lutétien.

 Lutétien à Oligocène. Je n'ai pas retrouvé cette forme et il y a peut-être eu confusion avec la suivante.

STRATIGRAPHIE.

Pycnodonta Archiaci Bellardi.

J'ai récoltê, dans les calcaires blancs, de nombreux fragments d'une espèce appartenant certainement au genre Pycnodonta; il est probable qu'il s'agit de P. Archiaci considérée par J. Boussoz comme intermédiaire entre P. voisiarla du Crétacé supérieur et P. Bulgarii du Préholocène supérieure et de l'Oligocène. Lutétien, Anversien.

Chlamys subtruncata d'Archiac.

J'ai recueilli un pedicellens portant 10 grosses côtes lisses, tout à fait identique aux figurations de cette espèce; celle-ci débutait, alors, dès le Lutétien, bien que J. Boussoz ne la signale qu'à partir de l'Anversien.

Leuchostronum.

(In J. Boussoz, M. Gignoux et L. Moret) Fréquent.

Polyoperae.

(M. Gignoux et L. Moret). Assez fréquents, mais peu déterminables.

On voit donc que l'ensemble de cette faune appartient, sans aucun doute possible, au Lutétien. C'est pourquoi certaines déterminations doivent être considérées comme erronées, en particulier :

- N. variolarius Lam.
 (— N. variolarius Sow. in d'Archiac et de la Harpe). Priabonien.

- N. planulatus Lam.

- Orbitoides submedius d'Arch.

(In d'Arch; les Orbitoides étant cantonnés dans le Crétacé supérieur, il s'agit sans doute d'une confusion avec les Orthophragmines du niveau suivant).

2. Les calcaires verdâtres glaucineux (niveau 4 de la coupe de la p. 102).

D'Archiac et J. Boussoz ont cité, dans un "calcaire verdâtre", N. miclceopus Boubée (— N. Dufrennoy in d'Archiac). Mais il s'agit sans doute là de la teinte verdâtre que prennent parfois les calcaires blancs.

Au contraire, le niveau glaucineux proprement dit est toujours supérieur aux calcaires blancs. De plus, on n'y rencontre jamais que de petites Nummu-
lites et des Orthophragmées que M. Gignoux et L. Moret (193) considèrent comme ayant des affinités praiobiennes.

Enfin, bien qu’avec un certain doute, W. Kilian et J. Révil (73) y avaient signalé la présence de *N. Turnaueri*, synonyme de *N. Bouillii* de la Harpe, du Praiobien. Il est donc probable que ces calcaires glanconiens marquent le passage au Praiobien, dont le premier terme serait le « Flysch calcaire » comme dans le Flysch des Aiguilles d’Arves.

9. Les autres écailles. — La faune des autres écailles n’est, de loin, pas aussi abondante : c’est que les calcaires y sont presque toujours remplacés par des conglomérats ou qu’ils se trouvent être très recristallisés, toute trace d’organisme étant alors, en général, complètement oblitérée.

Les seuls fossiles sont des Nummulites, le plus souvent en mauvais état. J’ai cependant pu, dans les conglomérats de base de l’écaille de Montdenis, déterminer *N. perforatus* du Lutétien. Ailleurs, ce sont, le plus souvent, de grandes Nummulites peu déterminables (écaille de Montdenis, calcaire d’Orgelet), mais que leur taille permet de rapporter néanmoins au Lutétien. La présence de *N. perforatus* dans l’écaille de Montdenis et de la faune lutétienne de la vallée de l’Arc dans celle du Bochet, permet donc de faire débuter au Lutétien le Nummulitique de la nappe du Pas du Roc. Il est probable que les calcaires zoogènes et les conglomérats appartiennent seuls à cet étage ; le Flysch calcaire qui les surmonte en général est sans doute déjà praiobien.

Enfin, je rappelle que seule fait exception l’écaille d’Albanne où l’on observe un passage continu des marbres en plaquettes au Flysch en une série «compréhensive». Aucun fossile n’y a encore été trouvé.

Après une série stratigraphique très régulière et sans lacune, troublée seulement à l’est par la formation des brèches du Télégraphe, nous voyons persister, au Nummulitique, des conditions de sédimentation analogues.

On observe, en effet, vers l’est, un passage progressif du Crétacé supérieur au Flysch (écaille d’Albanne). Vers l’ouest, le Nummulitique débute bien au Lutétien, par une transgression. Mais celle-ci a lieu sur un substratum très peu plissé, le terrain le plus ancien sur lequel elle se produit étant le Crétacé inférieur (écaille de Clarez). D’autre part, la sédimentation y est calme et peu profonde comme en témoignent les calcaires zoogènes à grandes Nummulites ; et, lorsque ces calcaires passent à des conglomérats, ceux-ci sont peu épais et résultent du remaniement du substratum immédiat ou voisin (absence presque complète de galets cristallins, éléments souvent mal roulés).

III. Conclusions générales sur le Nummulitique au Nord de Pelvoux.

L’ensemble du Flysch de notre région avait été interprété jusqu’ici comme une seule et même formation : le Flysch des Aiguilles d’Arves. Mais chacune des trois grandes zones de faciès ressortant de l’étude des terrains antérieurs au Nummulitique subsiste encore durant cette période. Chacune a donc son Nummulitique propre : Flysch des Aiguilles d’Arves (s. str.) pour la zone ultradauphinoise, Flysch du Néclard (puis de Modiers) pour la zone des Brèches de Tarentaise (cordillère taurine) ; enfin, Flysch des écailles externes pour la zone du Pas du Roc (fig. 19).

Il y a donc, au Nummulitique, encore trois zones de sédimentation bien distinctes :

Dans la zone ultradauphinoise, le Flysch des Aiguilles d’Arves est caractérisé par son énorme épaisseur (environ 2 000 m.), témoignant de phénomènes de subsidence importants et par sa série composée, typiquement, d’une sorte de trilogie praiobiennes au-dessus d’un épais conglomérat de base. D’autre part, ce Flysch se montre transgressif sur tous les autres termes de la série, du Permien à l’Oxfordien (et son prolongement méridional atteint même le Cristallin du Pelvoux). La mer tertiaire est donc venue recouvrir une région fortement plissée par les mouvements anténummulitiques et profondément érodée ensuite (contact Flysch-Permien au nord de l’Arc ou Flysch-Cristallin dans le Pelvoux). A côté d’éléments résultant d’un remaniement sur place du substratum (qui dominent en général au début de la formation), c’est donc des zones antérieurement plissées et énergiques de l’ouest que sont venus les galets et conglomérats de base, entrainés à la mer, par les cours d’eau et y formant un véritable dépôt de piedmont, puisqu’on ne connaît plus de telles formations conglomératiques vers l’est (zone du Pas du Roc).

J’ai montré que le Flysch des Aiguilles d’Arves est praiobiien jusqu’à sa partie supérieure (Albanne). A sa base, il n’a jusqu’ici été rencontré que de
petites Nummulites (Villardé, 1870). L'existence du Lutétien marin dans les zones subalpines (Bauges, Bornes) incite à penser que le Flysch des Aiguilles d'Arves a pu commencer à se déposer dès cette époque. Dans ce cas, ce sont les conglomerats de base, inférieurs à la « trilogie préliodienne » constituée par le reste de la série, qui pourraient être lutétiens (171).
DEUXIÈME PARTIE.

TECTONIQUE.

D'ouest en est, de l'avant-pays à la région des nappes, se succède une série d'unités tectoniques correspondant, le plus souvent, aux zones de faciès que nous venons d'étudier et de définir. Et, de même que chacune de ces zones possédait une stratigraphie particulière, de même ces unités ont chacune leur style tectonique et leur histoire orogénique propre.(1)

1. LA ZONE ULTRADAUPHINOISE OU DES AIGUILLES D'ARVES.

Telle qu'elle a été définie précédemment (p. 4), cette zone, qui se rapproche beaucoup par les faciès, ceux du Lias en particulier, de la zone dauphinoise, s'en distingue surtout par le grand développement qu'y prend le Nummulitique, en l'espèce le Flysch des Aiguilles d'Arves. Elle en est, de plus, séparée au nord, dans la région étudiée, par une surface de chevauchement très nette (soulignée par une épaisse lame de gypse) qui en fait une vaste écaillé parautochtone.

A. Les limites de la zone.

Cette zone chevauche ainsi, à l'ouest, la couverture autochtone des massifs cristallins externes, tandis qu'à l'est elle est à son tour chevauchée par les unités subbriançonnaises : nappe du Pas du Roc au sud et nappe de Brèches de Tarentaise au nord.

(1) Pour toute cette deuxième partie, se reporter aux planches V à VIII.
a. La limite occidentale.

Cette limite est soulignée, comme je le vins de l’indiquer, par une puissante extrusion de gypse qui vient partout s’étaler sur les terrains autochtones, Lia schisteux, Lia calcare ou Nummulitique.

Au nord de l’Arc, cette bande de gypse débute près de l’Échaillon et de Montandré, s’étale largement à l’est de Montvernier (Crêt de la Baisse) et passe ensuite un peu à l’est de Montpascal. À l’est de Montaimont, elle est en grande partie masquée par des dépôts glaciaires : elle aboutit dans la région du Lac du Loup, puis se rapproche des escarpements de Flysch du Mollard des Beuf et, en plusieurs points, atteint le pied des escarpements nord du Pic du Mottet et du nord-est du massif du Nièard.

Au sud de l’Arc, cette bande de gypse se suit très bien : elle correspond à la basse vallée de l’Arran, puis va former le noyau du "pli-faille" du Mont Chavin. Dans cette région, les placages de gypse sur l’autochtone rappellent tout à fait l’étalage du gypse au Crêt de la Baisse, à l’est de Montvernier.

b. La limite orientale.

Cette limite n’apparaît pas sur la feuille de Saint-Jean-de-Maurienne au 1/50.000e; elle passerait à l’intérieur de la grande bande encadrée, attribuée au seul Flysch des Aiguilles d’Arves.

Or, toute la partie orientale de cette zone est, en réalité, constituée par des écailles de Grésacé et de Flysch appartenant à la nappe du Pas du Roc. Et plus au nord, à partir du Cirque de Valbucea, c’est le Flysch de la nappe des Brèches de Tarentaise qui relaisse progressivement celui des Aiguilles d’Arves. J’ai montré plus haut les raisons stratigraphiques de ces divisions. On voit maintenant qu’il y ajoute des raisons d’ordre tectonique.

Au nord de l’Arc, cette limite passe près de Tourmente, et gagne obliquement la Côte du Lanchet, au nord de Monténis, puis va du Col du Bonnet-du-Prêtre à celui de Valbucea, dans la vallée ouest du Mont du Fux; de là, elle descend à l’est de la crête de Flysch des Aiguilles d’Arves (Pointe de Plan-Coutaz, Mollard des Beufs, Roche Noire); elle passe ensuite un peu à l’est du Cheval Noir et du Pic de Mottet; enfin, son extrémité septentrionale n’est plus limitée par le Flysch, mais par le Lias du massif du Nièard, qui, finalement, vient reposer directement sur l’autochtone. Nos deux limites se rejoignent donc ici : la zone du Flysch des aiguilles d’Arves vient disparaître, par laminage, entre l’autochtone et le Nièard (terrains mésozoïques de la nappe des Brèches de Tarentaise) et ne reparaît plus vers le nord.

TÉCNOLOGIE

B. LA CONSTITUTION GÉOLOGIQUE DE LA ZONE DES AIGUILLES D’ARVES.

Cette zone comprend deux parties principales : d’une part, le Flysch des Aiguilles d’Arves proprement dit, tel qu’il a été défini plus haut (c’est-à-dire en séparant de l’ancienne zone du Flysch les écailles externes de la nappe du Pas du Roc et le Flysch de la nappe des Brèches de Tarentaise); d’autre part, le substratum de ce Flysch.

a. Le Flysch des Aiguilles d’Arves.

Nous avons vu que ce Flysch se présente avec son maximum d’épaisseur et de régularité au niveau de l’Arc.

Il semble bien qu’ici la nappe du Pas du Roc, en venant chevaucher le Flysch des Aiguilles d’Arves, en ait respecté l’épaisseur totale, au moins à peu de chose près. La masse du Flysch elle-même a, du reste, été fortement malmenée, comme en témoigne sa parfaite régularité, qui apparaît également sur la rivière de l’Aire. Il ne présente, en effet, jamais de très petits plis de détail et l’ensemble de sa masse est simplement basculée à 45° en moyenne à l’est. Ceci provient bien qu’il ne s’agit que d’une écaille parautochtonique n’ayant subi qu’un faible déplacement, et non d’une véritable nappe chevauchée à grande distance. À cet égard, la comparaison entre la coupe de l’Arc et celle de l’Isère, à la cluse de Pont Stéan, entre Moûtiers et Aigueblanche, est très significative. Cette dernière, qui entaille profondément la nappe des Brèches de Tarentaise, montre un Flysch extrêmement plissé, qui offre un contraste frappant avec la grande régularité des couches du Flysch des Aiguilles d’Arves dans la vallée de l’Arc, simplement affecté d’un pendage à très constant.

Au nord de l’Arc, et bien que de plus en plus laminé par les nappes subbriançonnaises, le Flysch conserve toujours cette même disposition régulière, avec plongement moyen de 30 à 45° à l’est, sauf vers le Cheval Noir, peu avant sa disparition complète par laminage.

Au sud de l’Arc, il semble en être de même jusqu’aux abords du Pelvoux. Là, le Flysch se décolle de son substratum (Côte-Plaine) et, à l’est du massif,
il est même parfois presque complètement laminé entre le front des nappes et le noyau rigide du massif cristallin.

2. Le substratum du Flysch.

Le Flysch étant parfaitement isocinal et plongeant constamment à l’est, son substratum n’apparaît qu’à sa bordure occidentale qui correspond à un contact de transgression, comme je l’ai montré plus haut (p. 85).

Ce substratum, à son tour, nous l’avons vu, chevauche l’autochtonie par l’intermédiaire d’une lame de gypse continue, depuis le Nédiard au nord, jusque près du Mont Falcon au sud : mais à partir de là il semble y avoir accord avec l’autochtonie par l’intermédiaire de la pli-faille du Mont Chavin.

Bien qu’il n’y ait pas la moindre solution de continuité dans la grande bande de Flysch, son substratum, lui, comporte deux zones, qui différent stratigraphiquement et surtout tectoniquement.

Au point de vue tectonique, il semble bien, comme l’ont montré W. Kilian et J. Révil (73) et comme l’indique la Feuille de Saint-Jean-de-Maurienne au 1/50,000°, que les terrains soient pliés en un synclinal dont l’axe serait occupé par l’Oxfordien. Cette disposition, en tout cas, existe au nord de l’Arc, où les argilites lie de vin du Trias supérieur existent d’une part près de la chambre de mise en charge de l’usine électrochimique de Saint-Jean-de-Maurienne, et d’autre part, à la chapelle du hameau de Greny, ne faisant, entre ces deux bandes triasiques, qu’un Lias calcaire replié sur lui-même.

L’importance de la tectonique anténummulitique ressort déjà nettement du fait de cette disposition synclinaire antérieure au Nummulitique, grâce à laquelle ce dernier est transgressif sur tous les termes de son substratum, depuis le Trias à Greny, au nord de l’Arc, jusqu’à l’Oxfordien du Col Lombard, au sud des Aiguilles d’Arves.

Ce qui la différencie le plus de la zone sud, c’est un caractère tectonique; il n’y a pas, ici, de décollement au niveau du Trias et l’on connaît tous les termes de la série jusqu’au Houllet.

Mais, d’autre part, les terrains de cette zone présentent des caractères stratigraphiques un peu différents de ceux de la zone sud et qui la rapprochent des zones plus internes.

Le Trias supérieur montre, en effet, des alternances de bancs dolomitiques et d’argilites bariolées, et non plus seulement ces dernières. Le Rhétien est beaucoup plus typique, avec des alternances de calcaires à débris, de schistes, de dolomies et également d’argilites grises à patine rouge. Le Lias, par contre, où alternent des bancs calcaires et des lits marneux, rappelle tout à fait le Lias autochtone. C’est le niveau le plus élevé qui apparaisse ici.

Quant aux termes inférieurs de la série, dolomies et quartzites du Trias, schistes rouges du Pernien, s’ils rappellent ceux de la zone subbriannnoise, ils n’ont pas une signification paléogéographique aussi nette que celle du Lias : si donc cette zone se rapproche, par certains caractères, du Subbriannnoise, son Lias marneux et épais l’apparente bien plus à la zone sud et, par conséquent, à la zone dauphinoise.

J’ai montré plus haut (p. 85) que le Flysch est transgressif sur tous ces terrains jusqu’au Pernien (maison forestière Ben-Attrait, à l’est de Montpascal). Les mouvements anténummulitiques ont donc atteint dans cette unité une amplitude encore plus grande, comme en témoigne la disposition des terrains; ceux-ci, au lieu de former un pli relativement simple comme dans la zone sud, sont débités en lames où les contacts anormaux sont fréquents. Mais ce fait est également attribuable, dans une certaine mesure, à la tectonique postnummulitique.

C. Les diverses phases orogéniques.

Comme partout où existe le Flysch, on peut distinguer au moins deux grandes phases de plissemens : l’une anti- et l’autre post-nummulitique.
LES ZONES ULTRADAUPHINOISE ET SUBLAURIANNOISE.

a. La tectonique anténummulitique. — Au sud de l'Arc, elle a simplement eu pour effet, semble-t-il, de ployer les terrains en un vaste pli synclinal.

Au nord de l'Arc, au contraire, son action a été beaucoup plus violente, puisqu'elle a fait jaillir le substratum profond et en a permis l'érosion, avant le Nummulitique, au moins jusqu'au Permien. Mais, de plus, nous avons vu que ces terrains proviennent d'une zone un peu plus interne que ceux du sud. Le grand synclinal de la zone sud était donc suivi vers l'est, dès avant le Nummulitique, d'une zone anticlinale très accusée, puisque son nez a pu être érodé jusqu'au Permien.

Cette zone, anticlinale dans l'ensemble, comprendrait plusieurs plis sans doute déjà anténummulitiques. Vers l'ouest, elle débute par un anticlinal dont — à part une minee bande de Rhétien et de Trias supérieur, à l'est de Montplaisir — il ne reste guère que la grande bande de gypse qui sépare la zone nord à l'est de Herrmillon, de la zone sud et, plus au nord, de l'autochtonie. Puis vient un synclinal liasique, bien marqué dans le flanc ouest du Coin du Châtel et de la Crête de Coin Lognan, et se terminant obliquement vers le Lac du Lupp. Il est suivi enfin, par un deuxième anticlinal, le seul de ces plis dont on puisse affirmer qu'il soit anténummulitique, puisque ce n'est qu'ici qu'on observe la transgression directe du Flysch sur les dolomies et quartztites du Trias ainsi que sur les schistes permians. Cet anticlinal qui, comme le synclinal liasique, débute dans le talweg du ruisseau de l'Alpette, au sud du Coin du Châtel, se prolonge, lui, jusqu'à l'extrémité nord de la zone (pl. VI).

Les deux zones ayant donc déjà été plissées avant le Nummulitique, la zone nord plus vivement que la zone sud, il est probable que le rapprochement de ces deux zones était déjà, sinon complètement réalisé, du moins fortement amorcé dès cette époque, ce qui explique qu'elles se reliaient actuellement du nord au sud.

b. La tectonique postnummulitique. — Nous avons vu que le Flysch présente une très grande régularité; il n'est jamais affecté de plus importants, mais simplement basculé, avec un pendage en général assez faible, vers l'est. D'autre part, sauf à proximité du Pelvoux, le Flysch n'est jamais décollé de son substratum : chaque fois que le contact est bien visible, il est normalement transgressif.

A la tectonique postnummulitique peuvent donc surtout être imputés deux faits principaux :

— le basculement du Flysch vers l'est ;
— le décolllement du Flysch et de son substratum en une vaste écaill para-autochton, ultradauphinoise.

Nous avons vu plus haut que le chevauchement de la zone ultradauphinoise sur l'autochtonie se fait par l'intermédiaire d'une lame de gypse. Il est donc probable que ce décollement a été préparé, dès avant le Nummulitique, par l'existence d'un vaste anticlinal, faisant suite, à l'ouest, au synclinal du Col Lombard, où déjà les gypses s'accumulaient, prêts à crever leur couverture plastique de Lias ; occasion qui leur a été offerte lors de l'avancée des nappes venues surcharger et pousser vers l'est cette zone du Flysch.

Enfin, il est probable que si le relais nord-sud des deux zones du substratum est dû en partie à un rapprochement anténummulitique, il est également imputable aux poussées alpines proprement dites.

On sait, en effet, et cela se vérifie très bien en Maurienne et Tarentaise, que les poussées ont été de plus en plus violentes vers le nord : c'est à ce fait que doit être attribué le laminage de l'écaill para-autochton des Aiguilles d'Arves, grâce auquel, à l'ouest de l'Isère, c'est la nappe des Brèches de Tarentaise qui est directement en contact avec l'autochtonie. Il est donc normal que les terrains ultradauphinois qui sont conservés soient originaires de zones de plus en plus internes en allant vers le nord, c'est-à-dire qu'ils aient été entraînés de plus en plus loin vers l'ouest par l'avancée des nappes.

Mais cela ne s'est pas traduit par l'individualisation d'écailles ultradauphinoises distinctes : le Flysch se poursuit, toujours homogène, du sud au nord. Il connaît seulement une variation progressive de faciès sans doute en rapport, du reste, avec la nature de son substratum : le «Flysch calcaires» de la vallée de l'Arc, passe à un faciès schisto-gréseux lorsque, vers le nord, ce ne sont plus les roches marno-calcaires qui dominent dans son substratum, mais les quartzites du Trias et les schistes silexiques du Permien.

D. CONCLUSIONS.

La zone des Aiguilles d'Arves a donc connu deux phases principales de plissements.

La phase anténummulitique a plissé son substratum en un vaste synclinal, celui du Col Lombard, encadré de deux anticlinaux ; à l'ouest, l'anticlinal
du Mont Charvin, arrière du futur décollement; à l'est, la zone anticinale complexe qui deviendra la zone nord.

La phase postnummulitique a amené le décollement de l'ensemble en une vaste écaillée parautochtone en provoquant l'éclatement de l'anticlinal du Mont Charvin et le basculement de la masse du Flysch vers l'est, sans que cette masse soit affectée de plus analogues à ceux qui existent, par exemple, dans le Flysch de la nappe des Brèches de Tarentaise. Cette phase a, de plus, provoqué, au moins en partie, le relai nord-sud des deux zones du substratum du Flysch : la zone nord, plus interne, a été entraînée plus loin, par l'exagération, vers le nord, des poussées alpines qui aboutissent au laminage complet, au niveau du Niéard, de l'écaillée parautochtone, formée par la série ultradauphinoise.

II. LA NAPPE DES BRÈCHES DE TARENTAISE.

Cette unité est nettement caractérisée au point de vue paléogéographique : c'est ce que j'ai appelé la « cordillère tarine ». Le grand développement qu'il prend le Flysch avait fait qu'elle avait été confondue, jusqu'ici, avec la zone du Flysch des Aiguilles d'Arves (p. 4).

A. LES LIMITES DE LA NAPPE.

Cette nappe, largement développée au nord de l'Isère, où elle correspond à la « nappe de l'Embrunaise » de H. Schoeller, se lamina complètement, vers le sud, au niveau du Cirque de Valbuche.

a. La limite occidentale : l'unité apparaît brusquement dans le Cirque de Valbuche, un peu au nord du Col du Bonnet-du-Prêtre : c'est donc là que débutent ses deux limites ouest et est. Jusqu'au Niéard, la limite ouest de la nappe est naturellement la même que la limite est de la zone des Aiguilles d'Arves qu'elle vient chevaucher. Plus au nord, la nappe chevauche directement l'autochtone et sa limite ouest passe au Col du Golet, dans le flanc ouest de Crève-Tête, dans le ravin du Sécheron et au hameau du Bois près d'Aigue-blanche, au niveau de l'Isère.

b. La limite orientale : depuis le Cirque de Valbuche, cette limite suit le cours du Nant Brun jusqu'au chalet du Fuz, contourne la croupe cotée 3263 et 3253, à l'ouest du chalet de la Golette, passe ensuite près des chalets de la Perrière, dans le vallon de la Platière, à l'ouest du hameau de la Sauce, et aux chalets d'Orgeval. Puis elle suit le bas des escarpements est du Niéard et descend obliquement vers Villarlery. A partir de là, elle correspond à la base de la lame de gypse du faisceau de Salins, lame que l'on suit de Villarlurin, jusqu'à Monfort et Notre-Dame-du-Pré.

c. Les limites entre les trois subdivisions de la nappe (p. 5). — Les digitations du Niéard et de Moutiers se reliaient du sud au nord et n'ont de limite commune qu'entre Villarlery et l'Isère ; cette limite y est soulignée par des injections de cargneules et passe par Novalaix, le Villaret et la profonde entaille topographique du Lac de la Coche; puis elle descend à l'est du hameau du Bois, où la digitation du Niéard disparaît, laminée entre celle de Moutiers et l'autochtone.

Le faisceau de Salins apparaît à proximité de la localité de ce nom. Il est, ici, essentiellement constitué par des gypse et le Houiller de Fontaine-le-Puits et de Villarlurin. Ces terrains sont plaqués sur le Flysch du faisceau de Moutiers et les caprices de l'érosion y ont sculpté des contours torts complexes. La limite des deux faisceaux passe ensuite par Moutiers (faubourg Saint-Alban), la rive gauche de l'Isère, et les Nantieux, à l'est de la Pomblière.

B. LA DIGITATION DU NIÉARD.

a. La constitution géologique de l'unité. — La digitation du Niéard comporte deux parties principales, assez intégrales : un noyau essentiellement mésozoïque et paléozoïque et une couverture nummulitique qui l'enveloppe.

1. La couverture nummulitique : le Flysch. — C'est le Flysch qui constitue la plus grande partie de cette unité, sauf en ce qui concerne le massif du Niéard, où n'en sont conservés que des lambeaux plaqués sur les terrains mésozoïques, sur lesquels le Flysch est transgressif et nettement discordant.

Bien que constituée surtout par des conglomerats, cette épaisse série s'est cependant comportée comme une masse plastique, qui a entraîné dans ses replis des lambeaux du noyau paléozoïque et mésozoïque sous-jacent. C'est ce qui indique bien les deux lames de quartzites triasiques et de schistes violents qui apparaissent au milieu de la masse du Flysch dans le massif de la Pointe de Valbuche et de la Pointe du Mont du Fuz (fig. 21).
les Flyschs de ces deux zones : c'est ce qui explique qu'on les ait jusqu'ici confondues en une seule et même unité.

2. *Le substratum du Flysch.* — C'est surtout dans la bordure orientale de la zone qu'apparaît ce substratum, sous la poussée plus directe de l'unité suivante, la nappe du Pas du Roc. Et plus particulièrement dans les trois points suivants :

- au fond du Cirque de Valbuche, où existe un petit massif de quartzites en série renversée, recouvert, à l'est, de grès et schistes rouges du Permien, puis d'une lame de micacisches chloritoïdes, antéhouillers (fig. 31) ;
- dans le petit massif coté 252, entre le Mont du Fux et le vallée du Nant Brun, où apparaissent des lames de terrains divers, extrêmement ciselées, allant du Houlouvaux les brèches jurassiques ;
- dans le massif du Nielard, essentiellement formé d'un grand syncinal de brèches jurassiques, tout autour duquel apparaissent des terrains plus anciens, principalement le Liassic.

b. *Les différentes phases orogéniques.* — La présence du Flysch va nous permettre, ici encore, de distinguer deux phases orogéniques principales.

1. *La tectonique anténummulitique.* — Le Nummulitique est directement transgressif sur tous les terrains de la série, depuis les micacistes du Cirque de Valbuche jusqu'aux brèches jurassiques du Nielard représentant le terme le plus élevé, avant la grande lacune anténummulitique.

Cette transgressio du Nummulitique est très nette en de nombreux points que j'ai déjà signalés plus haut (p. 94). La transgression a lieu :

- sur les micacistes antéhouillers, dans le fond du Cirque de Valbuche ;
- sur les schistes violets du Permien et les quartzites du Trias dans le massif de Valbuche, dans le banc ouest de Crève-Tête et dans le ravin du Sécheron, au sud du village du Bois ;
- sur le Liassic et les brèches jurassiques, dans le massif du Nielard.

Ainsi, d'abord avant le Lutétien, et postérieurement au Jurassique, sans qu'il soit permis de préciser davantage, des plissements très intenses avaient déjà affecté profondément cette région. Mais les affleurements de terrains primaires
et secondaires sont trop peu continus pour qu'il soit possible d'y individualiser de façon nette les plis anténummulitiques.

Il est cependant évident que c'est de cette phase de plissement que datent :

- la disposition en série renversée des terrains du Cirque de Valducque, puisque c'est sur le terme le plus ancien, les micacésistes antéhouillers, que se fait la transgression nummulitique;
- l'existence, dans les massifs de la Pointe de Valducque et du Mont du Fux, d'anticlinaux qui ont permis, ainsi qu'à Crève-Tête, la transgression du Flysch sur le Permien et le Trias;
- certains plis du Niéard et notamment les plis anticlinaux de la face sud-ouest du massif, puisque le Nummulitique y est à la fois transgressif sur les divers terrains du Lias et sur les brèches jurassiques ; il en est de même à l'extrémité nord-est du massif.

2. La tectonique postnummulitique.— Ce qui caractérise cette tectonique postnummulitique, c'est, d'une part, la multiplicité des plis qui contraste violemment avec la régularité des couches du Flysch des Aiguilles d'Arves ; et, d'autre part, la direction générale sud-est-nord-ouest de ces plis, direction oblique par rapport à la limite occidentale de la nappe. Et, en effet, le long de cette limite, tous les plis se trouvent tour à tour successivement. Ces faits ressortent de façon particulièrement nette sur la carte structurale (pl. VI).

L'anticlinal du Mont du Fux est le plus évident de ces plis ; c'est lui qui chevauche directement le Flysch des Aiguilles d'Arves, depuis le Cirque de Valducque, au sud, jusqu'à la rive droite du Torrent de la Platière, près de la cote 2371, au nord. Au sud, le Flysch qui l'envoûpe, uniquement représenté par le niveau inférieur de conglomerats, ne se distingue pas de celui de l'anticlinal de Valducque qui sera défini plus loin. Mais, entre les Pointes de Valducque et du Mont du Fux, son noyau est marqué par l'affaissement des schistes violents du Permien (cote 2719).

Le synclinal du Ruisseau du Fux est marqué par une bande de schistes gris, terme supérieur du Flysch, en contact anormal entre les deux unités voisines ; cette bande débute, au sud, contre les schistes permiens de la cote 2719, s'élargit au passage du Ruisseau du Fux et se rétrécit ensuite pour rejoindre le contact de base de la nappe dans l'arête sud-est du Mollard des Bœufs.

La zone de Valducque-Chenal Noir est formée au sud par l'anticlinal de Valducque, au fond du cirque du même nom, où il débute et dont le noyau est constitué par des micacésistes, du Permien et des quartzites du Trias. Ces derniers se
prolongent par la lamine anticlineaire située dans le flanc est de la Pointe de Val-
buché. Puis notre zone, très resserrée sous le chevauchement de l'écaill-
e anticlinale des Monts (voir plus loin), s'épanouit à nouveau très largement
zest le nord pour aller constituer la moitié orientale du massif du Cheval
Noir.

Elle est accidentée, dans cette région, par une série de replis, qui ne laissent
plus reparaître le substratum du Flysch. C'est, en particulier, le noyau anti-
clinale de conglomérats de base qui apparaît si nettement entre les cotes 2561
et 2557, entre le Mollard des Boufs et le chalet de la Platière, limité au sud,
par la bande de schistes du *syngénial du Raissem du Fuz*, et au nord, par le
contact de base de la nappe. Puis c'est la belle charniere anticlinale que cessi-
ient les grès et conglomérats dans la paroi située au nord de la cote 25417,
sur la rive droite du Torrent de la Platière; ce deuxième repli anticlinal se
prolonge au nord par une bande de conglomérats de base qui chevauche le
petit anticlinal précédent et vient s'ennoyer sous la moitié orientale du Cheval
Noir, dont elle forme le noyau; elle repartit, au niveau de contact de base de
la nappe, à l'est du Pic du Mottet.

Enfin, au-dessus de ce noyau de conglomérats de base, ce sont les grès
conglomérats, puis les schistes et grès supérieurs, qui affluent seuls, et très
largement, dans le flanc est du Cheval Noir. Les grès et conglomérats, débutent
dans le Torrent de l'Épovrontaine et celui du Fuz, se rétrécissent beaucoup
un peu au sud du chalet de la Platière et s'épanouissent ensuite largement
auprès du Cheval Noir. Ici, divers plis les affectent qui ne laissent pas reparaître les
conglomérats de base, mais qui sont, au contraire, soulignés par deux bandes
synchyliaires de schistes et grès supérieurs bien visibles, dans la haute paroi
dominant, au sud, le vallon d'Orgentil. Notre zone recoupe ensuite obliquement
le contact de base de la nappe, entre le Cheval Noir et le massif du Niéard,
sous lequel elle doit être en partie laminée.

L'écaill anticlinale du chalet des Monts — Massif du Niéard — Crève-Tête
debute dans le talweg du Nant Brun, entre le chalet du Fuz et le Cirque du
Niéard, par un noyau de terrains divers très discoïdes qui se prolonge, vers
le nord-ouest, dans le petit massif coté 25517, entre la Pointe du Mont du Fuz
et le chalet des Monts. Au nord de ce dernier, elle comporte un large affleure-
ment de schistes noirs identiques aux schistes lutétien du Niéard; c'est là
un faciès latéral des conglomérats de base qui n'existe pas dans les plis préce-
demment décrits. Cette unité est ensuite complètement laminée, au sud-ouest
du chalet de la Platière, sous la poussée de la nappe du Puis de Roc, poussée

si violente que les gypses bordant la nappe ont été partiellement injectés dans
des schistes lutétien plastiques qu'ils chevauchent.

Notre écaille se poursuit par les schistes et grès à petites Nummulites et les
conglomérats de base qui affluent entre les chalets de Nantsoudry et de la
Perrière et qui, au sud-ouest des chalets d'Orgentil, chevauchent en contact
anormal les schistes et grès de l'unité précédente.

Enfin, elle s'épanouit largement dans le massif du Niéard, où son flanc
inverse a été complètement laminé. Le noyau mésozoïque et paléozoïque de ce
massif se lamine également vers le nord, où il n'est plus représenté que par des
quartzites triasiques et des schistes permien, au nord du Col du Golet, et
par le petit affleurement de micaschistes dits de Villarly. Au contraire, sa cou-
verture nummulitique, peu importante au Niéard lui-même, où elle n'est re-
présentée que par quelques bandeaux restés plaqués sur les terrains plus an-
ciens, se développe très largement pour former le massif de Crève-Tête; là,
des replis s'agissent, difficilement déchiffrables, expliquant la très grande épaisseur
du Flysch dans ce massif.

Enfin, l'unité se termine, elle aussi, en biseau, le long du contact de base
de la nappe, un peu au sud du village du Bois, laminée entre l'autochône
et la digression de Moutiers juste avant d'atteindre l'île.

Cette écaille représente donc une série de replis plus ou moins nord-sud,
obliques par rapport aux limites des grandes unités : axes anticycloniques du chalet
du Fuz au sud et du Niéard au nord, alternant avec les axes synclinaux de la
Platière au sud et de Crève-Tête au nord (pl. VI).

C. Conclusions. — La digression du Niéard a donc connu, elle aussi, deux
phases principales de plissements :

Une phase anticyclonitique très intense, puisque le Lutétien est trans-
gressif sur tous les terrains de la série, y compris les micaschistes autochônes.

Une phase postrumainitique, violente également, ayant affecté l'ensemble
de nombreux plis qui passent souvent à des écailles se chevauchant les unes
las autres.

Mais l'étude des plissements nous a également révélé diverses particularités
tectoniques intéressantes :

— la digression du Niéard présente de très nombreux plis passant fréquem-
ment à des écailles par éclatement de la charnière suivi d'un laminage gé-
néralement intense du flanc inverse.
C. LE FAISCEAU DE MOÛTIERS.

Je rappelle que la digitation de Moûtiers se subdivise en deux zones tectoniques différentes : le faisceau de Moûtiers et le faisceau de Salins (p. 5).

J’ai déjà indiqué que le faisceau de Moûtiers correspond à la terminaison méridionale de la « nappe de l’Embrunais » de H. Schellier, dont les versants s’arrêtent à la limite sud de la feuille de Bourg-Saint-Maurice au 1/50 000. Mais j’en ai étudié le prolongement vers le sud, afin d’établir le record avec les travaux de cet auteur. Je n’insisterai donc ici que sur le prolongement méridional de cette unité, renvoyant, pour le reste, à l’important ouvrage de H. Schellier (1901).

Du fait de la disparition en biseau de la digitation du Nièvre au sud de l’Isère, c’est le faisceau de Moûtiers, qui, de l’Isère à la frontière italienne, chevauche partout l’autochtonie. Vers le sud, il se termine en biseau vers Novallay, près de Saint-Jean-de-Belleville. Enfin, sa limite orientale reste sur la rivière gauche du Donon de Belleville, du Donon de Bozel (près de Salins), puis de l’Isère.

2. La constitution géologique du faisceau. – Comme dans l’unité précédente, il existe ici une épaisse couverture de Flysch séparée de son substratum par une grande lacune s’étendant du Jurassique au Lutétien.

1. Le Flysch. – H. Schellier a attribué au Nummulitique une épaisse série comportant surtout des grès et des conglomerats (p. 93), et a pu établir quatre couches successives (1 000). Ce terrain se poursuit vers le sud avec des caractères analogues. Cependant, les complications tectoniques ne m’ont pas toujours permis d’y individualiser les autres niveaux de H. Schellier. Il semble, de plus, que, vers le sud, il y ait un développement de plus en plus grand des brèches et des conglomerats.

2. Le substratum du Flysch. – Il comporte tous les étages successifs, d’où les roches cristallines antéchouillérées d’Hautecour, jusqu’aux brèches et céle-

On observe successivement, d’ouest en est :

I. La zone des dépôts antéchouillés, sur laquelle s’est posée (II).
II a. La digitation du Nièvre, mousse son Flysch

II b. Le faisceau de Moûtiers, séparé de l’unité par les terrains plus anciens de son moyens, au nord de Châtelard dans le petit massif d’Hautecour, ou

II c. Le faisceau de Salins, le long du massif de la Frontière, enfin

III. La nappe du Prat de Vie (digitation de la Granne (couches 5 et 6), formant le superintendent de la Combe

IV. La zone des Eclats avec ses shavés-du- IDictionary

V. La nappe de Bressanone avec son Muller

N.B. – Les coupes ont été disposées dans leur ordre méridional, exceptées en haut et non en bas de la planche.
COUPES EN SERIE
ENTRE
SAINT JEAN DE BELLEVILLE ET MOUTIERS

Fig. 29. — Coupes en série entre Saint-Jean-de-Belleville et Moutiers.

On observe successivement, d'ouest en est :

I. La couche dépôtosédimentaire, sur laquelle les couches de la couche de la couche de calcaires, en passant du nord ouest au sud ouest.

II. La couche de calcaires, avec sa couche d'océans, en passant du nord ouest au sud ouest.

III. La couche de calcaires, avec sa couche d'océans, en passant du nord ouest au sud ouest.

IV. La couche de calcaires, avec sa couche d'océans, en passant du nord ouest au sud ouest.

V. La couche de calcaires, avec sa couche d'océans, en passant du nord ouest au sud ouest.

N.B. — Les coupes ont été disposées dans leur ordre normal de superposition topographique et technique. Ainsi, à l'inverse du système de projection habituel, les coupes en plus méridionales se trouvent-elles être en haut et non en bas de la planche.
schistes du Jurassique. Un des principaux terrains est formé par l'épais niveau des calcaires rognons du Lias connus sous le nom de "calcaires de Villette".

1. Les diverses phases orogéniques. — Ici encore la présence du Flysch permet de distinguer deux phases de plissement, l'une antérieure et l'autre postérieure à son dépôt.

1. La tectonique anténummulitique. — Ainsi que l'a déjà montré H. Scheller, le Flysch est transgressif sur tous les termes de la série depuis le Houiller (101, p. 274). Il semble bien qu'il le soit également sur les terrains anciens d'Hautecour : mais la complexité de cette zone ne permet pas de l'affirmer. Quoi qu'il en soit, cette unité présente, comme la précédente, des plissements anténummulitiques et postjurassiques très accentués.

2. La tectonique postnummulitique. — La phase alpine proprement dite a provoqué la formation, dans cet ensemble, de toute une série de plis dont les charnières sont parfois conservées, mais ont aussi, fréquemment, éclaté, passant ainsi à des écailles. H. Scheller les a longuement décrites pour la feuille de Bourg-Saint-Maurice au 1/50.000°. Je vais donc simplement énumérer les accidents distingués par H. Scheller d'est en ouest et les suivre, vers le sud, dans la région qui nous occupe.

Le synclinal du Roignais se prolonge par la bande de Flysch qui passe au sud-est de Villette. Elle se poursuit, assez étroite, sur la rive gauche de l'Ièvre et vient s'enrouler sous la nappe du Pas du Roc, au sud-est de la Pombière.

L'anticlinal complexe de la Portetta-Combe de la Novo se prolonge par les importants affleurements de calcaires du Lias de Villette, puis s'ennoie rapidement sous le Flysch.

La zone du synclinale de la Pointe de l'Echelle-Pepon. Cette zone complexe comprend la large bande synclinale de Flysch qui passe entre Centron et Montgirard, puis divers replis à l'ouest. Ces replis anticlinaux deviennent de plus en plus importants vers le sud où ils se prolongent par les calcaires du Lias des Étroits de Saix (prolongement de l'affleurement de Montgirard), puis de la Pombière, enfin, plus à l'ouest, par le noyau primaire d'Hautecour. Ces nombreux plis et écailles sont soulignés par des lames synclinales de Flysch et la zone anticlinale d'Hautecour, qui ne dépasse pas l'Ièvre vers le sud.

La zone du synclinale du Crêt du Roy n'atteint pas la limite sud de la feuille de Bourg-Saint-Maurice.
Les plis et les imbrications du Quaternaire, de la Bagnax et des schistes triasiques se répartissent en deux zones qui se prolongent très inégalement au sud :

1. La zone du Quaternaire comporte surtout du Flysch aux alentours du Lac du Saut. Elle se poursuit vers le sud sous la forme d’une grosse masse de Flysch affectée de divers plis qui ne laissent presque jamais reparaître le substratum. Cette bande chevauche directement l’autochône, au niveau de l’Isère, qui y a entaillé la cluse de Pont-Séran, entre Moûtiers et Aigueblanche ; c’est ce que l’on peut appeler le synclinial de Pont-Séran, limité à l’ouest par son contact avec l’autochône, à l’est par les terrains anciens d’Hautecour. C’est la seule unité qui se prolonge au sud de l’Isère ; à l’ouest, elle vient passer en arrière de la digitation du Nièlard qu’elle chevauche ; à l’est, elle est chevauchée à son tour, directement, par la nappe du Pas du Roc. Elle se termine en biseau, par laminage, près de Novallay.

Le Flysch n’y laisse apparaître son substratum qu’en de rares endroits. Ce sont quelques lambeaux : de Lié à Saint-Nicolas (près du Bois) et dans la région de Novallay, de carnegne au nord du Villaret.

2. La zone de la Bagnax et la zone des schistes triasiques bien développées au nord, se laminent vers le sud, avant d’atteindre l’Isère où on ne les retrouve plus. Ceci montre bien l’importance de la coupure tectonique existant entre le faisceau de Moûtiers et celui du Nièlard.

3. Conclusions. — Les conclusions que nous pouvons formuler se rapprochent beaucoup de celles que nous avons énoncées pour l’unité précédente. Ici, également, deux phases de plissements se succèdent :

— une phase anténummulistique qui a fortement plissé les terrains, amenant le Flysch à reposer sur tous les termes de la série, depuis le Houiller ;
— une phase postnummulistique très violente qui a provoqué dans cette unité de nombreux plis dont les charnières sont parfaitement conservées, mais qui passent de manière égale et même à des imbrications isolinées.

De plus, l’étude des plissements de cette région permet de faire diverses observations intéressantes, en ce qu’elles montrent les différences existant entre les deux digitations que j’ai été amené à distinguer, chacune d’elles étant bien homogène stratigraphiquement (nous l’avons vu plus haut) et tectoniquement :

— la direction des plis est ici sud-ouest-nord-est, et non plus, comme dans la digitation du Nièlard, sud-est-nord-ouest.

2. Il en résulte que les plis, tronqués obliquement à la limite occidentale de la nappe, le sont en sens inverse dans les deux unités. Dans le faisceau de Moûtiers, ils sont tronqués vers le sud et non vers le nord : ainsi en est-il de la zone de la Bagnax et de la zone des schistes triasiques, qui, bien développées au nord, n’atteignent pas l’Isère. L’individualisation tectonique très nette de ces deux unités est donc soulignée par la disparition, vers le sud, des deux zones les plus externes de la digitation de Moûtiers.

D. LE FAISCEAU DE SALINS.

Au sud de Moûtiers, entre le Flysch du faisceau de Moûtiers qui forme le versant occidental de la vallée du Dron de Belleville et la digitation de la Grande Moënda dont la limite passe de Villarly à Villarluin, apparaît un faisceau de lames isolinées de terrains divers, Houiller, Permien et Trias, qui se prolongent au nord, par Salins, sur la rive gauche de l’Isère.

Ce faisceau de Salins constitue ainsi tectoniquement une unité intermédiaire entre la nappe des Brèches de Tarentaise et la nappe du Pas du Roc. La question se pose donc de savoir à laquelle des deux on devait la rattacher, stratigraphiquement.

1. Le rattachement du faisceau de Salins à la digitation de Moûtiers. — Le faisceau de Salins est essentiellement constitué par des terrains peu typiques, mais n’affleurant pas dans la nappe du Pas du Roc, du fait du décalage général de la série de cette nappe au niveau des gypses du Trias (Houiller, Permien, quartzites et dorolites du Trias inférieur et moyen) et affleurant, au contraire, plus ou moins largement, dans la nappe des Brèches de Tarentaise (Hautecour, en particulier) ; c’est donc à cette deuxième unité qu’il paraitrait, à priori, le plus logique de la rattacher.

Deux données stratigraphiques sont venues, en effet, confirmer cette hypothèse :

— sur la rive gauche de l’Isère, un peu en amont de Moûtiers, affleure une lame de conglomerats et Flysch tout à fait identique au Nummulitique de la digitation de Moûtiers et bien différent de celui de la nappe du Pas du Roc ;
— dans le prolongement nord de ce faisceau qui constitue la « bande occidentale du Houiller » de H. Schoeller (p. 247), existe un calcaire cristallisé blanc que cet auteur a considéré comme pouvant appartenir soit au Lias soit au Trias (101, p. 331). Mais D. Schneegers (renseignement verbal)
pense qu'il s'agit là d'un calcaire basique du type « calcaire de Villette » connu dans la digitation de Moûtiers.

Il n'y a donc pas de doute que le faisceau de Salins appartenne à la nappe des Brèches de Tarentaise, par son Lias, et par son Nummulitique, de même que par le fait qu'il est presque uniquement formé de terrains inférieurs au Trias gypseux, terrains inconnus dans la nappe du Pas du Roc. Identique stratigraphiquement, il ne s'en distingue qu'au point de vue tectonique.

b. La constitution géologique du faisceau. — Il n'y a pas, ici, d'opposition, comme dans le faisceau de Moûtiers, entre un substratum et une couverture de Flysch qui l'enveloppe. Il n'y a que des lames isolinées de divers terrains, où prédominent les quartzites et les calcaires dolomitiques du Trias, entre Salins et la Pombie, et le Houiller au sud (Fontaine-le-Puits) et au nord (Aime) ; le Permien, le Lias et le Nummulitique ne forment que des lambeaux très peu importants.

c. Les diverses phases orogéniques. — La trop faible importance du Nummulitique ne permet pas de reconstituer dans cette unité, une tectonique anténummulitique qui a sans doute dû être identique à ce qu'elle a été dans le reste de la nappe. Ce qui caractérise, au contraire, ce faisceau, c'est l'extrême violence de la tectonique alpine proprement dite, qui a entraîné la disparition presque complète de la couverture nummulitique et la prédominance des terrains anciens et notamment du Houiller.

d. Le style tectonique. — Ce faisceau s'oppose nettement au précédent par son style tectonique.

Ailer qu'aux dans le faisceau de Moûtiers nous avions affaire à des plus souvent bien conservés, il n'y a, ici, plus trace de charnières ; et ce sont les termes inférieurs de la série qui prédominent et non plus le Flysch. On ne retrouve plus qu'une succession fort complète de lames isolinées et très redressées de terrains divers, presque toujours séparés par des contacts anormaux (fig. 92).

Nous n'avons donc plus affaire à un style souple, comme dans le faisceau de Moûtiers, mais à un style rappelant déjà celui du syndénorium de Feissans. C'est que nous sommes, en effet, dans la portion la plus interne de la nappe des Brèches de Tarentaise, au contact direct de la nappe du Pas du Roc.

e. Conclusions. — Le faisceau de Salins correspond donc à la portion la plus orientale de la nappe des Brèches de Tarentaise, puisqu'il chevauche partout le faisceau de Moûtiers, fait qui est particulièrement net pour le Houiller de Fontaine-le-Puits.

S'il s'en distingue très nettement au point de vue tectonique, il doit néanmoins être rattaché, stratigraphiquement, à la digitation de Moûtiers.

Pénétré entre le faisceau de Moûtiers, dont le déplacement a été d'amplitude relativement faible, et la nappe du Pas du Roc, qui, au contraire, a déferlé au moins jusqu'aux klippes de Savoie (p. 98), les terrains du faisceau de Salins se sont trouvés complètement écrasés entre ces deux nappes, l'une « cassante » et l'autre plastique : c'est de là que provient le style isodinal que nous lui voyons actuellement.

Ce style, qui rapproche celui des pays de racines, n'est donc probablement, en fait, qu'un « style d'écrasement ». Il n'en reste pas moins que si des éléments de la nappe des Brèches de Tarentaise étaient découverts ultérieurement dans les Préalpes avec ces nappes plus internes, c'est dans le faisceau de Salins, qu'ils pourraient être enracinés.

III. LA NAPPE DU PAS DU ROC.

Cette unité occupe maintenant, avec ses divers éléments, tout l'espace compris entre la nappe du Briançonnais (ici « zone houillère ») bordée, de Valloire à Brives, par la longue cintrice de la zone des Gyspes, et les unités qui viennent d'être décrites. La nappe du Pas du Roc vient chevaucher du nord au sud, toutes les unités les unes après les autres, des plus internes aux plus externes, par suite du laminage de la nappe des Brèches de Tarentaise. Ce sont successivement : les faisceaux de Salins et de Moûtiers, la digitation du Nièlard, et enfin, le Flysch des Aiguilles d'Arves (pl. VII).

A. LA CONSTITUTION GÉOLOGIQUE DE LA NAPPE ET DES DIVERS ÉLÉMENTS TECTONIQUES.

La physismonis tectonique particulière de cette unité provient, d'une part, de la composition lithologique de la série qui la forme et, d'autre part, de l'existence de deux grands décollements, qui se sont produits à la faveur de deux niveaux plastiques : les gyspes du Trias et la partie supérieure de l'Oxfordien.

a. Le décallement au niveau des gyspes du Trias. — Dans toute la nappe un décallement complet et parfait de la série s'est produit au niveau le plus plus-
tique, le Trias gypseux. La série se trouve donc tronquée en bloc vers le bas, et le terme le plus ancien qui soit conservé, à part le gypse, est le Trias supérieur (argiloïdes et dolomies à patine rousse)...

b. Le décollement à la partie supérieure de l'Oxfordien. — Ce décollement, complet, s’est produit à la partie supérieure de l’Oxfordien dont on retrouve quelques lambeaux entraînés avec les termes supérieurs. La série, déjà tronquée vers le bas, l’est donc à nouveau vers le haut et — si l’on excepte les petits lambeaux synclinaux de Gitameon (p. 7) — aucun des terrains supérieurs à l’Oxfordien (Jurassique supérieur, Crétacé, Nummulitique) ne s’y retrouve plus.

Il existent cependant, mais ont été entraînés au front de la nappe en une série « de écailles externes » qui, elles, ne montrent pas de termes inférieurs à l’Oxfordien : elles représentent donc bien la couverture décollée de la nappe du Pas du Roc (p. 7).

c. La constitution lithologique de la nappe. — Nous avons vu, plus haut, que la nappe comporte deux séries stratigraphiques différentes, celle de la diigung de la Grande Moenda et celle de la diigung du Perron des Encombres. Ces deux zones de sédimentation ont donné naissance, chacune, à une unité tectonique particulière, auxquelles s’ajoutent les « écailles externes ».

Ces « écailles externes » formées par la couverture décollée des deux unités précédentes, comportent surtout, outre les calcareux clairs du Jurassique supérieur et le Crétacé inférieur, peu représentés, des marbrures en plaquettes du Crétacé supérieur et du Flysch dans lequel font saillie les calcaires et conglomerats de base. Mais il n’est actuellement possible de distinguer, dans ces écailles, la part qui revient à chacune des deux diinctions, puisqu’il n’y a pratiquement pas de terrain commun à la nappe et aux écailles.

Le faisceau du Perron des Encombres est formé par la superposition de deux ensembles principaux : à la base, les calcaires du Lias et du Dogger, formant une même barre rocheuse, à peine divisée par la petite vire du Lias supérieur ; au sommet, l’épaisse série schisteuse du Callovien et de l’Oxfordien où s’intercale la barre plus résistante des brèches du Télégraphe.

Le faisceau de la Grande Moenda ne comporte qu’une barre calcaire beaucoup moins importante, uniquement formée, au-dessus du Trias supérieur et du Rhétien, par le Lias inférieur. En effet, le Lias moyen est marne-calcaire, le Lias supérieur épaiss et schisteux et le Dogger n’est pas uniquement calcaire, mais également calcaischiaste ; enfin, les brèches du Télégraphe n’existent plus ici. Aussi l’ensemble a-t-il essentiellement une allure schisteuse (où les divers termes de la série sont parfois difficiles à individualiser) qui contraste vivement avec les séries des unités voisines.

B. Les écailles externes.

Il y a là, en avant du noyau mésozoïque de la nappe du Pas du Roc, toute une série d’écailles qui se relaient, l’ensemble formant une longue bande à la limite orientale du Flysch des Aiguilles d’Arves. C’est la raison pour laquelle ces écailles, essentiellement composées de Flysch, avaient été confondues jusqu’ici avec le Flysch des Aiguilles d’Arves.

Au sud de l’Arc, les écailles disparaissent presque par éclatement, un peu au nord d’Albanne. L’érosion du Torrent des Moulins, entre Albanne et Albannette, les fait affleurer largement, alors qu’au col 1957, au sud des chalets de la Turro, elles sont de nouveau laminées.

Au nord de l’Arc, leur limite occidentale passe très près de la Rua, puis à l’est de Tourmentié. On la retrouve, très nette, au fond de la gorge du Torrent de Saint-Julien, au nord-ouest de Montdénis. De là, elle gagne obliquement la Côte de Lanchet, puis revient vers l’est, au col 1550, près de la Cime de la Seia.

À l’est, la limite passe par le Torrent de Claret, entaillé dans les gyspes qui les bordent à l’est, puis gagne le Torrent de Saint-Julien, près de la maison forestière Barbel, et rejoint obliquement le même col 1550.

On n’a plus affaire, ici, qu’à l’écaille de Montdénis, qui se prolonge encore vers le nord, en une étroite bande jusqu’au Col du Châtelet, où elle est complètement lamine. Elle reparaît ensuite dans le Cirque de Yalbuche et se lame à nouveau, pour ne reparaître localement qu’au nord des chalets de la Perrière et dans le vallon d’Orgenti, où elle disparaît définitivement.

b. Les limites des divers écailles. — L’écaille de Montdénis, la plus externe de toutes, atteint son maximum de largeur un peu au nord de ce village ; elle existe seule au nord, se lame vers le sud, près de la Rua, et ne dépasse pas l’Arc, vers le sud (pl. VI).

L’écaille de Claret, qui lui fait suite à l’est, affleure surtout dans les pentes
dominant ce hameau. Elle se lame assez rapidement vers le nord, près du chalet Barbol, et vers le sud, où, rive gauche de l'Arc, on ne peut lui attribuer que le petit lambeau de Crétacé supérieur, au sud du Pont du Bochet.

L'échelle du Bochet est surtout développée rive gauche de l'Arc : c'est à elle qu'appartiennent la céladre lentille de calcaires à grandes Nummulites, dits de Montricher. Elle se lame rapidement au sud, près de ce village. Au nord, elle se prolonge sur la rive droite du Torrent de Claré, par une étroite bande de Flysch.

L'échelle de Montricher sur laquelle est bâti le village de ce nom, ne dépasse pas l'Arc vers le nord, et disparait vers le sud; elle est caractérisée par ses conglomerats de base.

L'échelle d'Albana est surtout représentée, aux abords de ce village, par des marbres en plaquettes. Elle se prolonge, au nord, par le Crétacé supérieur et inférieur de l'usine de Saint-Félix qu'accompagne du Flysch calcaire et du Flysch gréseux, mais ne dépasse pas l'Arc. C'est elle seule qui se prolonge ensuite au sud, vers Valleire.

c. La constitution géologique des diverses échelles. — Ces échelles sont surtout composées de Flysch débutant par des calcaires ou des conglomerats à grandes Nummulites. Au-dessous, on connaît également du Crétacé supérieur et inférieur et, dans l'échelle d'Albana, un lambeau de Jurassique supérieur.

L'échelle de Montdenis est surtout formée de son Flysch spécial, bien reconnaissable (p. 199). Mais, au nord de Montdenis, apparaît largement le substratum formé de Crétacé inférieur, où alternent des dalles calcaires à lits de silex et quelques bancs de microbrèches. Le Flysch débute, sur lui, par des conglomerats formant relief, comme le Crétacé, au milieu du Flysch moins résistant. Il en est de même pour les calcaires de base, qui apparaissent en petites lentilles à divers endroits, notamment dans le vallon d'Orgentil (p. 99).

L'échelle de Claré comporte une série de lames alternées de Flysch, de marbres en plaquettes et de Crétacé inférieur qui ressort nettement aux affleurements, en raison de la dureté de ses calcaires et de ses microbrèches, en particulier, au nord-ouest de Claré. Les contacts sont presque toujours anormaux. Néanmoins, entre la Huà et la Charrimière, on observe de façon très nette un contact stratigraphique des conglomerats de base du Flysch sur les bancs redressés du Crétacé inférieur (fig. 37).

Les échelles du Bochet et de Montricher, enveloppées de Flysch gréseux et de Flysch calcaire assez peu résistants, se traduisent surtout, dans la topographie,
beaux exemples dans la zone subalpine, notamment dans la Bocheine où ils revêtent un aspect si spectaculaire (143, fig. 9 et pl. 1-B), se retrouvant ici, bien que de façon très amortie, dans la présence d’un conglomerat-brèche à la base des marbres en plaqettes de la vallée de l’Arc, reposant sur le Crétacé inférieur (Saint-Félix). On sait que de tels faits s’observent également dans le Subbrioullanois de l’Ubaye (148), avant d’atteindre la zone du Briançonnais où le Crétacé inférieur fait défaut et où le Crétacé supérieur est transgressif, le plus souvent par l’intermédiaire de puissantes brèches de base, sur des terrains beaucoup plus anciens (Malm à Trias).

Ces mouvements anémissiennes se sont donc étendus à l’ensemble du domaine alpin, même s’ils ont, localement, été de faible amplitude.

3. La tectonique anténummulitique. — Ces mouvements sont beaucoup moins violents que dans les unités précédentes : nous sommes dans le sillon succédant, à l’est, à la cordille turine et les mouvements qui ont affecté celle-ci s’amortissent progressivement d’ouest en est dans les diverses écailles.

Les écailles de Montdenis et de Clarat montrent, en effet, un Nummulitique transgressif sur le Crétacé inférieur.

L’écaille d’Albanne, au contraire, est marquée par un passage progressif entre le Flysch calcaire et les marbres en plaqettes.

3. La tectonique postnummulitique. — Les mouvements alpins propres dits ont été comme partout très violents. C’est ce que prouvent :

— le décollement, du noyau mésozoïque, de tous les terrains supérieurs à l’oxfordien et leur refoulement au front de la nappe du Pas du Roc ;
— le tronçonnement de cette couverture, décollée en une succession d’écailles se relayant du nord au sud, des plus externes aux plus internes.
— le replissement, à l’intérieur de chaque écaille, des terrains qui la composent, en une série de plus secondaires plus ou moins aigus. Tels sont : dans l’écaille de Clarat, les plis, poussés souvent jusqu’au décollement, qui font affleurer le substratum du Flysch ; dans l’écaille du Bochet, le repli anticlinal des calcaires à grandes nummulites ; dans l’écaille de Montricher, le décollement faisant apparaître les conglomerats de base ; enfin, dans l’écaille d’Albanne, le plissement anticlinal de l’usine de Saint-Félix, à noyau de Crétacé inférieur.

c. Conclusions. — Les écailles externes de la nappe du Pas du Roc montrent donc, grâce à la présence du Crétacé et du Flysch, l’existence de trois phases de plissement :

— la phase anténummulitique, d’ailleurs de faible amplitude (conglomerat de base du Crétacé supérieur reposant sur le Crétacé inférieur) ;
— la phase postnummulitique, très amortie, puisque le terme le plus ancien sur lequel le Flysch soit transgressif est le Crétacé inférieur. Vers l’est, ces mouvements anténummulitiques ne se sont même plus fait sentir, puisqu’il y a continuité, dans l’écaille d’Albanne, entre le Crétacé supérieur et le Nummulitique.
— la phase postnummulitique, qui a tout d’abord décollé complètement cette couverture nummulitique, créassée et jurassique, de son substratum oxfordien et l’a, d’autre part, tronçonnée en une série d’écailles. Ces deux faits correspondent, nous le verrons plus loin, à deux mouvements successifs distincts.

C. La digitation de la grande Moenda.

A la digitation définie plus haut, correspond un faisceau de plus particuliers, bien individualisés et nettement distinct des autres unités tectoniques qu’il chevauche à l’est ou qui le chevauchent à l’est.

a. Les limites de la digitation. — Cette unité apparait brusquement entre la digitation du Perron des Encombres et les écaillies externes, entre la Cime de la Sica et la Pointe du Vallon, au nord de Montdenis.

Sa limite occidentale est jalonnée par une lame de cargneules et de gypse qui passe au Col du Châtelard, au Col du Bonnet du Prêtre, puis dans le talweg du Nant Brun qu’elle traverse ensuite au sud-ouest du hameau de la Saute. La bande de gypses et cargneules cesse alors d’être individualisée et la limite avec la nappe des Brèches de Tarentaise passe dans le flanc est du Nièlard, puis descend obliquement vers Villarly et Villarhumin. Plus au nord, dans la région située entre le Daron de Bozel et l’Isère, que j’ai étudiée en compagnie de D. Schoggins (164), on peut la suivre, par Montfort, jusqu’au 4e de Notre-Dame-du-Pré où notre digitation disparaît.

La limite orientale part évidemment du même point, puis se dirige obliquement vers l’est, près des chalets de Varlissière et elle rejoint la zone des Gypse, un peu au nord de Gitanelon, par suite de la disparition de la
digitation du Perron des Encombres. Elle se maintient sur la rive droite du ruisseau des Encombres, puis du Donon de Belleville. A partir de là jusqu'à Brèthes et même plus au nord, elle est limitée à l’est par cette zone de Gypses.

Vor le sud, la digitation de la Grande Moenda disparaît complètement, comme je viens de l’indiquer; mais un témoin en reste sous la forme d’une longue bande de gypses et cargneules séparant les écailles externes de la digitation du Perron des Encombres : c’est ce que j’ai appelé la « cavité de Saint-Félix », du nom de l’usine qui se trouve, rive gauche de l’Arc, sur le passage de cette zone de gypses et cargneules en situation anormale.

b. La constitution lithologique de la digitation. — Cette digitation comporte deux éléments lithologiques principaux, en dehors du Trias, remarquable par ses couleurs vives :

— un complexe surtout schisteux, très important, qui s’étend du Lias moyen à l’Oxfordien, où les limites des divers terrains sont souvent difficiles à déterminer. Ce sont surtout le Lias supérieur plus schisteux, plus tendre, et le Dogger plus calcaire, donc plus résistant, qui se marquent dans la topographie et différencient un peu cette série monotone très épaisse;

— une barre rocheuse correspondant au Lias inférieur calcaire et au Rhétien : c’est ce niveau qui forme tous les sommets augeus et, en particulier, la Pointe de la Dent, à l’ouest de Saint-Martin-de-Belleville.

c. Les plissements. — Comme je l’ai indiqué plus haut, tous les terrains supérieurs à l’Oxfordien manquent et tous les autres sont concordants : on ne peut donc faire de distinction entre plusieurs phases de plissement. Il est, du reste, probable que, dans cette série très plastique, la violence de la phase plissée a fait disparaître toute trace de tectonique plus ancienne.

Schématiquement, la structure de cette digitation est assez simple et comporte une longue zone synclinaire encadrée par deux zones anticlines qui s’allongent toutes nord-sud.

1° La zone anticlinales occidentale. — Cette zone assez continue comprend, cependant, divers éléments plus ou moins indépendants.

Le pli disharmonique du massif de la Grande Moenda.

La paroi située entre le Col du Bonnet du Prêtre et les Aiguilles de la Grande Moenda présente de curieux plis d’écrits dès 1890 par W. Kilian (5a).
Il s'agit là, en somme, d'un vaste pli disharmonique affectant le flanc normal (est) d'un anticlinal dont on ne voit pas ici d'éléments du flanc inverse. Mais un décrolement s'est produit, dans cette série, au niveau du Lias supérieur très plastique; et tandis que les termes supérieurs sont demeurés peu plissés, les terrains inférieurs, à l'est, se sont plissés séparément en une sorte de faux anticlinal, lui-même affecté de plusieurs replis (fig. 24 à 27).

Fig. 45. — Téctonogramme schématique des plis dicharmoniques du massif de la Grande Moudra.

Le bloc est orienté de façon à montrer les plis comme ils se présentent sur le territoire dans le parié verticale du Cirque de Vallée (voir fig. 57). On note l'opposition entre la partie supérieure de la série peu plissée, à gypser (Doggie et Calcaire- caillasse) et la partie inférieure affectée de deux pseudo-anticlinaux du Trias, le décalaminé étant dû à la pression, et les deux couches plastiques du Lias moyen et supérieur.

Aussi la paroi présente-t-elle sur sa face nord deux pseudo-synclinaux de Trias (1), séparés par deux pseudo-anticlinaux de Lias moyen qui sont extrêmement nuls : la continuité des couches qui se lit si bien sur la paroi ne permet pas d'admettre une autre interprétation (fig. 57). Et c'est ce

Fig. 46. — Schémas donnant un des modes de formation possible des plis du massif de la Grande Moudra.

I : Fissures des Aquifères d'Avre;
II : Lame de gypser et argileuses;
III : Décantation de la Grande Moudra.

Les quatre premiers schémas montrent la décantation en moment de la phase d'évolution par gravité : la formation des replis aurait été déterminée par un glissement plus rapide de la partie inférieure de la décantation dû à la lame de gypser et argileuses. Le schéma du bas représente les replis dans leur position actuelle, après redressement de l'ensemble à 45° déterminé par la croissance des sels cristallins externes.

le Trias comme formant un anticlinal, alors que sa position en pseudo-synclinal se poursuit évidemment encore dans ce versant (fig. 61). Cet ensemble disparaît très rapidement aussi bien au nord qu'au sud.
Le pseudo-anticlinal de la Pointe de Praz-Begnay.

Le flanc ouest de ce sommet présente une disposition analogue à celle que nous venons de décrire et montre une bande de Trias dans une position qui paraît à priori anticlinale. Mais il s’agit à nouveau d’un pseudo-anticlinal : le pli ne s’enracine pas dans le flanc de la montagne, mais s’enracinerait vers l’ouest, ainsi que le montre très bien la fermeture nord, d’allure périsyndicale et non périanticlinale (fig. 54, dernière coupe, en haut et à droite).

Fig. 57. — Schéma donnant une autre interprétation des plus de la Grande Mouenda : les épis, au lieu de se produire dans la partie fossetale de la désintégration, comme dans la figure précédente, se correspondraient à un frontement local de la désintégration durant la phase d’écoulement.

L’anticlinal « Croix des Taurues-Villarly ».

Sur l’autre rive du Nant Brun, séparée du pli précédent par un contact anormal passant dans le lit du ruisseau, débute une zone anticlinale où, à côté d’un peu de Trias, dominent surtout les calcaires à silex, assez épais, du Lias inférieur.

On suit cette zone anticlinale où s’observent divers replis de détail, dans la coupe cotée 255, à l’ouest du chalet de la Grotte. Elle traverse le ruisseau de la Platière, un peu en amont du hameau de la Sauce, et gagne le flanc est du Niéard, où les calcaires du Lias inférieur plongent parallèlement à la pente, affleurent largement. De là, elle passe à Villarly, où elle est soulignée par les argilités haliotides du Trias ou « schistes de Villarly ». Elle traverse ensuite le Boron de Belleville et on la revoit près de Villar-lurin, marquée par les calcaires du Lias inférieur et les argilités du Trias supérieur. J’ai encore retrouvé celles-ci sur la rive droite du Boron de Bozel, derrière la ferme Sécheron, entre les Frasnes et Melphé, sur la route de Salins à Brèdes ; mais notre zone anticlinale n’est plus nettement individualisée.

2° La zone synclinale. — Cette zone synclinale centrale comporte deux éléments principaux qui se relaient au niveau de la Pointe de la Dent, à l’ouest de Saint-Martin-de-Belleville.

Le synclinial de la Lévière, qui débute, au sud, dès la Pointe du Vallon (c’est-à-dire dès l’apparition de la désintégration de la Grande Mouenda) a son axe formé par le Callovio-oxfordien.

De la Pointe du Vallon, le pendage des couches lui fait écrire un Y vers l’est, au passage du vallon de Varbossière. Puis le Callovio-oxfordien remonte aux Aiguilles de la Grande Mouenda, et forme ensuite l’arête qui rejoint la
LES ZONES ULTRAALPINOISE ET SUBRÉGISSONNAISE.

Mais ici le terme le plus élevé est le Lias supérieur : le Dogger et le Callovsoxfordien sont désormais absents et la zone synclinale est formée de replis qui s’intercalent, en général, que le Lias moyen et le Lias supérieur, affleurant en une série de bandes alternant d’ouest en est. Vers le nord, à partir de Saint-Laurent-de-la-Côte, des lames de gypse soulignant évidemment des contacts anormaux, s’insinuent également au milieu de ces terrains.

Cette unité se prolonge, au delà du Dorum de Bozel, par le synchronarium de Feissans, qui montre une succession de lames isoclines, entre le Lias moyen.

3° La zone anticlinaire orientale. — Le principal élément de cette zone, qui marque le redressement des couches vers l’est, est le petit massif de la Pointe de la Dent, à l’ouest de Saint-Martin-de-Belleville.

Cet anticlinal de la Pointe de la Dent, dont le cœur est marqué par le Rhétien, est formé par les calcaires à silex du Lias inférieur redevenus très épais (p. 51).

La forme topographique du massif paraît étrange à première vue, car on ne voit apparenter qu’une grosse barre calcaire dominante, au nord, le ruisseau descendant de la Pointe de la Planche. Le sommet lui-même présente des couches verticales qui disparaissent brusquement au nord. Cela s’explique en fait très aisément : l’axe de l’anticlinal s’enfonce brutalement au nord sous le Lias moyen, et, vers le sud, c’est par laminae que les calcaires disparaissent. D’abord ceux du flanc normal, car vers Plancheon le Lias moyen du flanc normal repose directement sur le Lias supérieur du flanc inverse (fig. 28 et 29).

Enfin, en face des Priôts, les calcaires se séparent avant d’être chevauchés, plus au sud, par la digitation du Perron des Encombres.

d. Conclusion. — L’absence totale de Nummulitique ne permet pas de distinguer les deux phases de glissements, que nous avons étudiées dans les unités plus externes. Mais nous savons, par l’étude des écailles externes (p. 140), que la tectonique antigénoine s’est très amoindrie dans le domaine de la nappe du Pas du Roc. On peut donc admettre que les l’lacs que nous venons de décrire datent des mouvements alpins proprement dits et sont donc postnummulitiques.

De l’étude de ces plis, deux faits principaux sont à retenir :

— l’existence des charnières régulières comme dans le massif de la Grande Mocena ou celui de Praz-Bepouy, ou écrasées comme dans l’anticlinal de la Pointe de la Dent ;
— l’aspect isocinal de l’ensemble de ce faisceau où, sauf exceptions locales, les couches plongent toutes vers l’est, quelle que soit leur disposition anticlinales ou synclinale ; ce qui donne l’impression, non pas de terrains ayant pu se plisser librement, comme c’est le cas pour les charnières, mais, au contraire, de terrains écrasés tous ensemble sous une même poussée.

À première vue, ces deux faits paraissent incompatibles. Ils peuvent cependant être expliqués par le jeu de deux phases de glissements différents, ayant chacune un style tectonique propre :

— une phase d’écrassement, pendant laquelle la barre de calcaire du Lias a pu se plisser en souple, au milieu dans la cédile plastique et donner des charnières régulières comme celles que l’on observe encore ;
— une phase d’écrassement, qui a resserré et laminé les charnières primitivement régulières, comme c’est le cas pour l’anticlinal de la Pointe de la Dent, et qui a aussi comprimé la masse des autres terrains, piquant les synclinaux et imprimant à l’ensemble cette structure isocline qui est déjà presque, au contraire, celle d’un pays de racines et qui s’accuse encore vers le nord, dans la région de Feissans.

D. LA DIGITATION DU PERRON DES ENCOMBRES.

À la digitation qui a été définie plus haut par sa stratigraphie particulière, correspond un faisceau de plis nettement individualisé et séparé des autres unités par des surfaces de chevauchement importantes.
a. Les limites de la digitation.

Au niveau de l'Arc, cette unité existe seule entre les écailles externes et la zone des Gypses, car la digitation de la Grande Moënda n'y est plus représentée que par la cicatrice de Saint-Félix.

1° La limite occidentale. — Cette limite est marquée au sud, là où manque la digitation de la Grande Moënda, par la lame de gypses et rugueuses de la cicatrice de Saint-Félix.

Au sud de l'Arc, elle passe à la Centrale électrique de Saint-Félix, monte vers le Beau Mollard, puis contourne, à l'est, Albanne et Albannette, pour remonter aux châteaux de la Turra et redescendre ensuite vers le Villard : ces indentations correspondent à des traversées de ravins est-ouest creusées dans une série plongeant isodéralement à l'est.

Au nord de l'Arc, notre limite passe par le torrent de Clarat, puis recoupe obliquement le valon du torrent de Saint-Julien vers la maison forestière et les châteaux Barbol, pour rejoindre le col côté n°550, à l'ouest de la Cime de la Scia : à partir de là, la limite qui était jusqu'alors commune avec les écailles externes, le devient avec digitation de la Grande Moënda ; et son tracé se replie franchement à l'est, avec l'apparition de cette unité nouvelle, pour rejoindre la zone des Gypses un peu au nord de Gitamelon, où la digitation des Encombres disparaît, laminée entre celle de la Grande Moënda et la zone des Gypses.

2° La limite orientale. — La digitation est constamment chevauchée à l'est par la zone des Gypses.

Au nord de l'Arc, cette limite passe d'abord dans le versant oriental du versant du Pas du Roc, puis gagne obliquement le flanc est du massif Croix des Têtes-Perron des Encombres : elle descend ensuite vers le château de Maubec, pour monter vers la Cime Noire et redescendre dans le talweg du ruisseau des Encombres, où elle se maintient jusqu'vers Gitamelon ; là, elle passe sur la rive droite ; enfin, c'est entre Gitamelon et les Priots que les deux limites se rejoignent par suite du laminage complet de la digitation.

Au sud de l'Arc, la limite précise est masquée par des dépôts glaciaires, puis passe un peu à l'est du tunnel du Télégraphe et recoupe obliquement l'arête du Télégraphe, pour descendre vers la Valloirette près du village du Cell.
LES ZONES ULTRA-DAPPHINOISE ET SUB-BRIANÇONNAISE.

L'anticlinal de la Serpolière présente une charnière régulière à l'ouest d'un hameau. Mais vers le nord, dans la paroi située au-dessus du torrent de Clare, entre les cote 926 et 1818, des complications viennent frôler le pli est traversé par un contact anormal et le deuxième anticlinal apparait vers l'ouest, souillé par le Trias supérieur affluent près de la cote 1818.

Au nord, la structure se simplifie : il n'y a plus qu'un anticlinal couché vers l'ouest et dont le flanc inverse est partout lamié. Il traverse le torrent de Saint-Julien, en amont des chalets Barbel et remonte vers l'ouest pour aller former le Cime de la Secla. Là, il disparaît complètement par suite de la brusque apparition, en ce point, de la digitation de la Grande Moenda.

Le synclinal de la Valloire. — Je déciderai séparément le synclinal proprement dit, formé de la masse schisteuse callovio-oxfordienne, puis le flanc inverse du synclinal, dont les calcaires du Lias et du Dogger déterminent une crête très nettement individualisée dans la topographie (Perron des Encombres).

Deux terrains composent cette masse schisteuse : la séries marno-calcaire du Callovien et la série schisto-gréseuse de l'Oxfordien, séparées par le barre des brèches du Télégaphor. Cette succession est bien visible, notamment dans le versant oriental de la côte qui joint la Croix des Têtes au Perron des Encombres, où la série est complète (fig. 13).

Cette disposition s'observe, vers le nord, jusqu'à la disparition de la digitation. Sans au nord du Perron des Encombres, où, localement, il y a contact direct entre l'Oxfordien de la Cime Noire et les gypse et carguelles de la côte des Gypses.

Vers l'ouest, au contraire, c'est l'Oxfordien qui repose, en contact anormal, sur le Dogger de l'anticlinal de la Serpolière : couches de Calcitephyrae et brèches du Télégaphor ont donc été laminés dans cette région.

Au nord de la Pointe du Vallon, le synclinal est traversé obliquement par la brusque apparition de la digitation du Grand Moenda : notre synclinal se rétrécit alors, jusqu'à disparaître complètement près de Gismelo.

Vers le sud, l'Oxfordien disparait au niveau des replis de la Croix des Têtes et l'on n'observe plus alors, jusqu'à l'Arc, que les couches marno-calcaires calloviciennes, sans deute par suite du reliquat d'axe du synclinal.

Le synclinal du Ruiseau Sec ne laisse affleurer, lui aussi, que le Callovien.

Fig. 30. — Coupe de la faille d'Est entre Saint-Aubain et Saint-Martial de Mauriceau.

Les coupes sur le planche suivante montrent que l'anticlinal de la Serpolière est disposé en deux replis, le premier, au centre de la carte, est décalé vers l'ouest du second, situé en bordure du plateau. Le moment de la faille semblait être fixé par le fait que la dérivation de la route de la Grande Moenda passe exactement en avant du bord du plateau.}

II. — Le déplacement est surtout senti au nord, où les replis de la Grande Moenda se prolongent au-delà de la faille. Au sud, les replis sont moins accusés et se réduisent à un repli complexe, qui a pour effet de déplacer le plateau de la Grande Moenda vers le nord. Le répétitif de la faille est considéré comme une zone de tension axiale de la faille de Saint-Martial sur l'arc de la faille de Saint-Martin, qui sert de support à la déformation de la faille de la Valloire.
LES ZONES ULTRA DAUPHINOISE ET SUBBRIAISONNAISE.

Il ne constitue, du reste, qu'une branche secondaire du synclinal de la Valloirette, provoquée par l'anticlinal de Saint-Martin-de-la-Porte.

L'anticlinal de Saint-Martin-de-la-Porte forme, au milieu de cette masse schisteuse qui l'enveloppe, une magnifique charnière très régulière constituée par la barre des calcaires du Dogger et du Lias, et dont le noyau s'ouvre jusqu'au Trias.

Le flanc inverse du synclinal de la Valloirette. Les schistes tendres, profondément ravinés, formant l'axe du synclinal, sont partout dominés, à l'est, par une importante ligne de crêtes (Croix des Têtes, Perron des Encombres). Celle-ci est constituée par l'imposante barre des calcaires très résistants du Dogger et du Lias; il s'y ajoute, dans le versant est de cette ligne de crêtes, le Rhétien et le Trias supérieur.

Fig. 37. — Tectonogramme très schématique des replis de la Croix des Têtes et de la déchirure de Saint-Martin.

La coupe schématique est ici le Dogger. Contourné au nord, vers le Perron des Encombres et, au sud, vers le Pas du Roc, les terrains du flanc inverse du synclinal de la Valloirette ont été déchirés, au milieu du Trias de Saint-Martin, par une violente poussée qui les a refoulés vers l'ouest et formés en plusieurs replis formant le sommet de la Croix des Têtes. Seul un petit lambeau de Dogger est resté collé entre les deux brèves de la déchirure (voir fig. 40).

Au nord de la Croix des Têtes, la disposition des terrains est régulière, sauf au niveau de la Cime Noire, où la barre calcaire disparaît momentanément, laissant alors la zone des Gypses chevaucher directement l'Öxfordien.

Enfin, près de Gitamelon, quelques lambeaux de terrains supérieurs à l'Öxfordien sont conservés dans une position synclinales, mais un peu excentrique; ceci s'explique par le fait que les calcaires du flanc inverse ont été traités, vers l'ouest, sur les schistes callovo-oxfordiens de l'axe du synclinal qu'ils viennent chevaucher.

La barre calcaire disparaît enfin au nord de Gitamelon, sous le chevauchement de la zone des Gypses.

Au niveau de l'Arc, on retrouve ce flanc inverse barrant la vallée : c'est le verrou glaciaire du Pas du Roc, profondément enlisé en une courte chaise par le cours actuel de l'Arc. Les assises y sont très régulières, et la série, du Dogger au Trias supérieur, peut facilement être étudiée (figs. 40 et 44).

Mais dans le massif de la Croix des Têtes qui domine le versant nord de la vallée de l'Arc, les complications interviennent.

TECCTONIQUE.

Au premier plan, série schiste-provençale enfouie (Ox), puis la barre des brèches du Télégrippe (Ou).

Au deuxième plan, la grande faille terminale du sommet de la Croix des Têtes. La vitesse correspond au plan de pénétration synclinal de marais-calcaires collodium (C) dans la masse calcaire du Dogger (Dx).

Entre le verrou du Pas du Roc et le massif de la Croix des Têtes, notre barre calcaire a été sectionnée par la déchirure du torrent de Saint-Martin, dont la lèvre supérieure s'est refoulée vers l'est et formée en un certain nombre de replis formant le sommet du massif lui-même (fig. 31).

Ces replis sont essentiellement constitués par la barre de calcaires zoogènes du Dogger, deux fois repliée sur elle-même, c'est pourquoi le Dogger paraît, a priori, si anormalement épais dans ce sommet. Le pilier principal est l'anticlinal
Les zones ultradauphinoises et subbriançonnaises.

de la Croix des Têtes, souligné par son noyau de Liás (cote 3015) et de Trias qui se rattachent très nettement, à l'est, aux mêmes terrains du reste du plateau inverse du synclinale de la Valleyroite. Tout à fait au sommet du massif, une petite vire de marne-calcaire callovien souligne un petit synclinale, contre-coup de l'anticlinal précédent (fig. 32 et 33).

Enfin, au niveau de l'Arc, existe un dernier petit accident, la faille du Plan des Sauzenes, qui sépare le Dogger du Pont Pallier de celui des fosses à chaux du Plan des Sauzenes (fig. 34).

1. Les plus au sud de l'Arc. — Au sud de l'Arc, nous retrouvons le prolongement de tous ces plis.

L'anticlinal de la Serpentière est en grande partie masqué par des chouliets et du glacis dans le bois du Fay. Cependant, au bord de l'Arc, son noyau reparaît juste en face du confluent du torrent de Saint-Martin, sous la forme de domonias du Trias supérieur, encadrées du Rhétien, puis de Liás inférieur. Plus au sud, il est complètement masqué et ne repart pas.

Le synclinal du Ruisseau Sec, qui se resserrait déjà au nord de l'Arc, continue encore à se pincer au sud, où le Callovien n'apparaît plus et où l'axe du synclinal n'est plus occupé que par le Dogger replié sur lui-même. Puis un relèvement d'axe très rapide se produit et le synclinal se vide même de son Dogger.

ehr-157. Tectonique.

Cet anticlinal reparaît néanmoins plus au sud, vers Albanne et dans le rocher de l'Echereche, par suite d'un abaissement d'axe (fig. 46). Mais ici la structure est compliquée de nombreux décolllements et un lambeau de Callovien est même resté picé au nord-est d'Albanne, vers la cote 299, sur le chemin de la Fontaine de l'Echaillon.

L'anticlinal de Saint-Martin-de-la-Porte s'ouvre de nouveau jusqu'aux gypse et calcaires du Trias, qui se voient très bien au-dessus du Pont Pallier (fig. 39). Il se prolonge ensuite par les affleurements de dolomies et argilites du Trias supérieur que l'on retrouve jusque dans le couloir de Roche-Rousse, au nord-ouest d'Albanne. Un ennoyage très brusque se produit alors et l'on n'a plus, dans le fond de la gorge de la Valleyroite, que du Liás où le pli anticlinal cesse d'être réellement individualisé.

Fig. 34. — La faille du plan des Sauzenes, dans la vallée de l'Arc.

Coupé schématique montrant l'existence d'une faille entre les couches callovienne redressées, affleurant près du Pont Pallier et le Dogger recoupé, affleurant sous une marno-calcaire du plan des Sauzenes et à l'ancien fer à chaux.

Fig. 35. — Le synclinal de la Valleyroite, très resserré au passage de l'Arc, s'ouvre au contraire vers le sud et laisse apparaître des terrains plus récents, au-dessus de la série marno-calcaire callovienne, seule représentée dans la cluse du Pas du Roc, où sa grande épaisseur s'explique du fait de sa position synclinaire. Dans le versant ouest de la côte du Fort du Télégraphe, apparaît, au milieu du Callovien, une barre rocheuse : ce sont les brèches du Télégraphe qui, vers le sud, vont s'ouvrir en un V dont les deux branches enserrent le noyau synclinalformé par la série schisteuse de l'Oxfordien (fig. 47).

Le flank inverse du synclinal de la Valleyroite se prolonge ici, toujours représenté par la barre des calcaires du Liás et du Dogger. Mais celle-ci est débitée en un certain nombre de petites « écaillles du Télégraphe » qu'il serait trop long.
de décrire en détail mais dont les coupes servies donnent une bonne idée (fig. 35). L'ensemble, du reste, se laminne rapidement entre le reste du synclinal.

Fig. 35. — Coupes en série des écaillès du Télégraphe.

Ces coupes montrent les accidents tectoniques qui affectent, au sud de l'Arc, le flanc inverse du synclinal de la Valtroïrette et le délibent en une série de petites failles. Malgré cela, la disposition synclinaire des écaillès reste très discernable, en particulier en ce qui concerne les bords du Télégraphe formant un V qui se referme, vers le bas, dans l'axe du synclinal.

V. R. — C'est pour représenter cette disposition tectonique, et rendre la succession des coupes plus claire, qu'elles ont été figurées dans leur ordre de superposition topographique (les coupes de la vallée de l'Arc en bas, celles de la crête du Télégraphe en haut). Mais, à l'inverse du système de projection usuel, les coupes du haut se trouvent être aussi les plus méridionales.

de la Valtroïrette et la zone des Gypses. Aussi le Lias et le Dogger ne dépassent-ils pas, vers le sud, le tunnel du Télégraphe, et les gypses viennent alors directement en contact avec l'Oxfordien du noyau synclinal.

C. Conclusions. — Les lambeaux de Flysch de la région de Gitamelon sont évidemment beaucoup trop réduits pour qu'il soit possible de distinguer deux phases tectoniques antérieures et post-nummulitiques. Mais nous savons, par l'étude des écailles externes, que les mouvements anté-nummulitiques ont été de faible amplitude. On peut donc rapporter, sans hésitation, la formation des plis que nous venons d'étudier, à la phase post-nummulitique, ou phase alpine proprement dite, comme pour la digitation de la Grande Moanda.

Mais, comme pour la digitation de la Grande-Moanda également, on est frappé ici encore, de la coexistence et de la superposition de deux styles tectoniques différents, dus à l'action de deux mécanismes ayant joué successivement, mais tous deux pendant les mouvements alpins :

— une phase d'écoulement, durant laquelle ont pris naissance les plis à charnières régulières du massif de la Croix des Têtes ; or ces plis ne peuvent s'expliquer que par un plissement en souplesse de la barre calcaire du Lias et du Dogger,

— une phase d'armement qui a resserré l'ensemble de la masse antérieurement plissée et lui a imprimé sa disposition isocinale et fortement redressée.

IV. LA ZONE DES GYPSES.

Cette unité, si particulière, forme une mince bande séparant de la zone briànçoise les unités subbriançonaises que nous venons d'étudier.

A. Le tracé de la zone.

Cette étroite bande suivie vers le nord, à partir de Valtroïrette, correspond tout d'abord au talweg de la Valtroïrette ; puis elle reçoit obliquement la crête du Télégraphe, où ses termes tendres déterminent le Col des Trois Croix. Elle passe alors à l'est de la crête du Télégraphe, puis au Pas du Roi, et enfin, dans le versant oriental du massif du Perron des Encombres (fig. 43, 44 et 50). Mais au-delà est partout masquée par des termes recents, éboulis et glaciaires. Notre zone vient aboutir alors justement à l'ouest du Petit Col des Encombres et descend ensuite dans les talwegs du ruisseau de Maubec, puis du...
ruisseau des Encombres. À partir de Gitamelon, elle se maintient sur le versant oriental du vallon des Encombres.

Elle repasse en partie sur la rive gauche, près de Saint-Martin-de-Belleville (Pointe de Bailleul), puis demeure dans le versant est du vallon du Deron de Belleville, gagne la forêt de Villfurin et atteint ainsi Brèdes. De là, enfin, elle se prolonge vers Hauteville, au delà duquel elle cesse d'être nettement individualisée.

B. LA CONSTITUTION LITHOLOGIQUE DE LA ZONE.

Comme son nom l'indique, la roche dominante dans cette zone est le gypse du Trias supérieur, qu'accompagnent parfois des cargeuses, surtout dans le massif du Perron des Encombres. Ce gypse est naturellement en situation tout à fait anormale, ce qui est, d'ailleurs, presque toujours le cas pour cette roche si plastique (107).

Cette situation anormale est encore soulignée par la présence de lentilles de roches diverses complètement emballées dans la masse des gypses et n'ayant plus elles-mêmes de relations avec la zone d'où elles proviennent : c'est ce que M. Gignoux et L. Moret ont appelé des « blocs-klippes » (139).

Ces blocs sont formés de roches variées que nous avons mentionnées dans la deuxième partie : calcaires dolomitiques du Trias, calcaires à silex du Lias, et surtout marbres clairs du Jurassique supérieur et marbres en plaquette du Crétacé supérieur.

Tout ces roches ressemblent déjà à celles des zones plus internes que celles étudiées jusqu'ici. En particulier, les calcaires clairs du Malo à Calpinetella alpina y ont un aspect se rapprochant beaucoup plus de ceux du Briançonnais et ils présentent localement le faciès « marbre de Guillemot » (bloc-klippe de la Chaudanne, près de la cote 1499) ; enfin, les marbres en plaquettes sont, eux aussi, plus voisins de ceux du Briançonnais et prennent assez souvent des teintes rouges que l'on ne rencontre pour ainsi dire pas dans la zone du Pas du Roc, où je ne connais que des teintes rosées (ouest de l'usine de Saint-Félix) ; ces teintes rouges annoncent déjà l'approche de la cordillère briançonnaise.

C. CONCLUSIONS : LA SIGNIFICATION TECTONIQUE DE LA ZONE DES GYPSES.

Cette zone, avec ses gypses en situation tout à fait anormale emballant des roches variées différentes de celles des zones qui l'encadrent, se présente donc comme une vaste cicatrice. M. Gignoux et L. Moret, qui l'ont définie en 1937 (139), ont montré qu'elle correspondait, en particulier, au flanc inverse de la zone houillère dont la couverture mésozoïque a presque entièrement disparu, le Houllet étant, le plus souvent, en contact direct avec les gypes.

Mais il y a plus. En effet, si l'on compare notre région avec l'Ubaye, on voit que c'est la dégénérescence du Perron des Encombres, la plus interne de la Maurienne, qui se rapproche le plus de celle du Piolit, la plus externe de l'Ubaye. Il semble donc bien qu'en allant du sud vers le nord, on observe entre l'Ubaye et la Savoie, le même phénomène qui existe dans cette dernière région : le relais, vers le nord, d'unités de plus en plus externes. Entre l'Arc et l'Ise, se succèdent ainsi, au front des nappes : la dégénérescence du Perron des Encombres, la dégénérescence de la Grande Mouna, la nappe des Brèches de Tarentaise.

Cette interprétation est, de plus, confirmée par le fait que, dans les nappes de l'Ubaye, on ne connaît rien qui rappelle la nappe des Brèches de Tarentaise : les unités les plus externes des nappes de Savoie manquent donc dans celles de l'Ubaye.

Mais, inversement, il manque en Savoie, entre la dégénérescence du Perron des Encombres et la zone houillère briançonnaise, toutes les unités de l'Ubaye, sauf la plus externe ; et les nappes des Brèches de Tarentaise et du Pas du Roc constituent alors un Subbriançonnais externe, par rapport auquel les nappes de l'Ubaye-Embrunaises forment un Subbriançonnais interne, les deux se relevant et s'excluant du nord au sud, à l'exception du jalon commun : Piolit-Perron des Encombres. Et, de même qu'en Ubaye D. Schneeqam a montré que l'on observait un passage progressif, d'une unité à l'autre, entre les domaines briançonnais et subbriançonnais interne (148), de même nous voyons ici, dans ce Subbriançonnais externe apparaître le jalon intermédiaire de la nappe des Brèches de Tarentaise. On doit donc posséder aussi l'ensemble des intermédiaires paléogéographiques ayant existé entre la cordillère briançonnaise et l'autochtonie, tous ceux, en tout cas, qui ont été conservés : nappes de l'Ubaye-Embrunaises, du Pas du Roc, des Brèches de Tarentaise, et ceinture autarchontique des Aiguilles d'Arves qui se relie au Nummulitique autarchontique du sud du Pelvoux.

La véritable signification de la zone des Gypse avec ses lambeaux de roches internes apparaît donc clairement : c'est une vaste cicatrice correspondant à tout le Subbriançonnais interne, donc au nappes de l'Ubaye-Embrunaises, qui au nord du Pelvoux, ont coulé au loin vers l'ouest, par dessus les unités subbriançonnaises externes et ont finalement été détachées de leurs racines.
V. CONCLUSIONS.

A. Continuité des mouvements tectoniques.

Une première conclusion se dégage de l'étude tectonique de notre région, c'est la grande continuité qu'y présentent les mouvements tectoniques que l'on peut déceler à tous les étages, bien qu'avec des amplitudes évidemment très variables.

C'est, sans doute, à un «rejet» de la chaîne «vindéienne» que sont dues les variations de faciès que nous avons notées dans le Trias supérieur. Et c'est, ensuite, de mouvements presque constants que provient la différenciation du domaine alpin en une série de zones de faciès allongées dans le sens de la chaîne.

Différenciation provoquée par un jeu d'abaissements et de surrections plus ou moins pousés, avec paroxysme surréctonnaux dans la cordillerre tarnine (brèches liasiques du Grand Fond, brèches jurassiques du Niéard, lacunes post-liasique et lacune anténummulitique) et passagèrement, dans la digitation du Perron des Encombres (brèches du Télégraphe). Plus tard encore, malgré l'individualisation des faciès à partir du Molin, des mouvements se produisent encore au Crétacé inférieur (microbrèches) et les mouvements anténummulitiques se traduisent par l'existence de brèches à la base du Crétacé supérieur (Saint-Félix).

Les mouvements vont ensuite en s'accentuant et deviennent extrêmement violents, avant le Lutétien, dans la zone des Aiguilles d'Arves et dans celle des Brèches de Tarentaise, où ils donnent lieu, cette fois-ci, à des plis très accentués suivis d'une phase d'érosion, avant le dépôt du Nummulitique qui se trouve alors être transgressif sur toute la série, jusqu'en Permien dans la zone des Aiguilles d'Arves, et même, jusqu'aux schistes cristallins antévolvaniens dans la zone des Brèches de Tarentaise. Mais ces mouvements s'amortissent, très rapidement, vers l'est, où l'on a seulement une série de rides à Lutétien transgressif, alternant avec des sillons à «série compréhensive» Crétacé-Eocène.

Puis, ce sont les mouvements de surnivection des zones internes qui déboussinent et se traduisent, dans notre région, par la sédimentation détritique du Flysch.

accompagnée d'une subsidence particulièrement marquée dans la zone du Flysch des Aiguilles d'Arves, extrêmement épais.

Enfin, tous ces mouvements préparatoires aboutissent à la phase paroxysmale alpine, provoquant la surnivection complète de la chaîne, avec la mise en place des nappes, suivie de la surnivection des massifs cristallins externes.

On voit donc que l'on a beaucoup plutôt affaire à instabilité presque constante, accompagnée de plissements de plus ou moins grande amplitude, et d'ailleurs très variable d'ouest en est, qu'à une succession de phases nettement individualisées et séparées par des périodes de calme absolu. Le découpage en phases correspond ainsi à une schématisation, mais dont il faut se rendre compte qu'elle est telle, c'est-à-dire incomplete, comme toute schématisation. C'est, du reste, à de semblables conclusions qu'avaient déjà abouti M. Gignoux et L. Moret (143, p. 273).

B. Zones de faciès et zones tectoniques.

J'ai montré plus haut que les différentes zones de faciès, au nord du Pelve- voux, ont été déterminées par des mouvements orogéniques de même direction que les mouvements paroxysmaux de la phase alpine (bien qu'avec une amplitude beaucoup moindre); c'est la raison pour laquelle les zones de faciès s'allongent déjà dans le sens de l'axe alpin.

Ainsi voyons-nous une série de crêtes et de sillons, où alternent les faciès méritiques et profonds, se constituer dès le Lias et se développer jusqu'au Jurassique : bordure orientale du géosynclinal dauphinois (zone des Aiguilles d'Arves), cordillère tarnine (zone des brèches de Tarentaise), sillon de la Grande Moenda et haut fond du Perron des Encombres (zone du Pas du Roc).

Cette différenciation qui semble avoir connu un temps d'arrêt au Jurassique supérieur et au Crétacé où les faciès s'uniformisent, reprend ensuite avec les mouvements avant-coureurs anténummulitiques. Mais il y a alors simplification et deux zones seulement s'individualisent : à l'ouest, une zone à mouvements tectoniques violents, suivis d'une érosion faisant affleurer le noyau primaire et même le cristallin (zone des Aiguilles d'Arves et zone des Brèches de Tarentaise); à l'est, une zone à tectonique peu accentuée suivie d'une érosion qui ne descend pas au-dessous du Crétacé inférieur (zone du Pas du Roc), zone à l'est de laquelle les actions tectoniques anténummulitiques sont même localement nulles («série compréhensive» du Crétacé-Eocène de l'écaillle d'Albanne).
LES ZONES ULTRA-DAUPHINOISE ET SUB-BRIANÇONNAISE.

Enfin, dans la phase paroxysmale, la violence des actions tectoniques est telle que l'on aboutit à des sectionnements tectoniques des zones de faciès : faisceau de Salins séparé du reste de la digitation de Moutiers, décrolement des « écailles externes » de la zone du Pas du Roc, celle-ci séparée elle-même de son substratum au niveau du Trias gypseux.

Il y a donc bien superposition des zones tectoniques aux zones de faciès, mais seulement jusqu'à la phase paroxysmale, où l'extrême violence des poussées a pu débiter une même série stratigraphique en plusieurs unités tectoniques. Et nous arrivons ainsi à des conclusions analogues à celles formulées par D. Schneegeans à la suite de ses études dans l'Ubaye (148).

On a donc, en définitive, une succession de phases orogéniques, toutes orientées dans la même direction, qui ont provoqué l'allongement des zones de faciès dans le même sens que les zones tectoniques, celui de l'arc alpin. Mais les effets ne s'en superposent pas toujours complètement : d'où l'existence de deux zones principales à la phase anténummulitique contre quatre à la phase embryonnaire et l'éclatement des séries stratigraphiques, à la phase paroxysmale, en plusieurs unités tectoniques.

C. LA DISPOSITION EN FESTONS DES UNITÉS TECTONIQUES.

La superposition des zones tectoniques aux zones de faciès n'est donc réelle qu'en première approximation : zone des Aiguilles d'Arves donnant l'écaille des Aiguilles d'Arves, cordillère tarine aboutissant à la nappe des Brèches de Tarentaise, zone du Pas du Roc déterminant la nappe du même nom.

Mais si cette superposition était parfaite, les unités tectoniques seraient comparables à des cylindres bien régulés se poursuivant d'un bout à l'autre de la chaine, ou, au moins, aussi longtemps que se poursuivent les zones de faciès.

Or il n'en est rien et les unités tectoniques forment, au contraire, comme l'ont montré M. Gignoux et L. Morel, « des festons » qui se relayent, comme se relayaient les vagues le long d'un rivage ou au front d'une coulée de matière visqueuse (145). Remarque faite également par D. Schneegeans dans l'Ubaye (148). Ceci s'observe de même dans notre région, ainsi qu'un simple coup d'œil sur notre carte schématique permet de s'en rendre compte (pl. VI). Toutes les unités et sous-unités constituent une série de festons se relayant les uns les autres, des plus internes aux plus externes : digitation du Perron des Encombres, digitation de la Grande Moenda, écailles externes de la nappe du Pas du Roc, faisceau de Salins et faisceau de Moutiers, digitation du Nidard.

D'où peut donc résulter une telle disposition ? En partie « de la forme des obstacles opposés à l'arrachement des nappes par l'avant-pays et de l'inégalité distribution des forces dynamiques sur les différents secteurs de la chaîne en formation » (148).

Mais ces festons sont dus aussi, et pour une grande part, à la nature de la série stratigraphique qui les compose, aux caractères lithologiques du matériel dont ils sont formés. Ainsi la nappe des Brèches de Tarentaise, dont la série forme un bloc stratigraphique lié au substratum cristallin dont elle n'a pu se détacher et auquel elle doit son style de « nappe cassante », disparaît elle, vers le sud, sous la nappe du Pas du Roc et les nappes sub-briannonnaises internes (Ubaye-Embrunais). Celles-ci, en effet, grâce à la plasticité de leur matériel et au décollement complet qui les affecte au niveau du Trias gypseux, ont pu déborder au loin et l'ont masquée partout où l'érosion ne les a pas suffisamment érodées pour la faire réapparaître. Ainsi encore les écailles externes ont-elles pu se découler du reste de la série du Pas du Roc, grâce à la présence du niveau plastique de l'Oxfordien.

D. LE STYLE TECTONIQUE DES DIVERSES UNITÉS.

Nous voyons maintenant que les unités distinguées entre l'Arc et l'Isère possèdent non seulement leur série stratigraphique particulière, mais aussi un style tectonique propre à chacune d'elles.

a. L'écaille des Aiguilles d'Arves.

Cette unité est caractérisée par l'énorme masse du Flysch des Aiguilles d'Arves, plongeant régulièrement à l'est et déterminant, à l'ouest, une imposante cuesta qui domine la dépression laissée de la zone dauphinoise autochône (pays d'Arves au sud, bassin du Begeon au nord).

Vers l'ouest, on voit ce Flysch repérer transgressivement sur un substratum qui a été affecté par des mouvements anténummulitiques de grande amplitude (Flysch transgressif sur tous les termes de la série, du Permien, au nord, à l'Oxfordien du Col Lombard, au sud).

Maiis, abstraction faite de ces phénomènes anténummulitiques, le style tectonique de cette unité est extrêmement simple ; il s'agit, en somme, d'un vaste pli-faille paraautochône dont le flanc est, seul, est conservé, tandis qu'à
LES ZONES ULTRAUPHINOISE ET SUBBRIANÇONNAISE.

l'ouest il y a chevauchement de cette unité ultradauphinoise sur la zone dauphinoise autochôtne, par l'intermédiaire d'une épaisse lame de gypse.

Le Flysch des Aiguilles d'Arves reposant transgressivement sur des terrains antérieurement plissés, il est du reste probable qu'il n'y a pas eu, à proprement parler, en ce qui le concerne, de «bloc inverse», lors de l'éclatement de la charnière anticlinale du Mont Charvin à la phase paroxysmale. Il y aurait simplement eu chevauchement, suivant un plan très incliné sur l'horizontale et injecté de gypse, du compartiment est sur le compartiment ouest (fig. 6a).

b. LA NAPPE DES BRÈCHES DE TARANTAISE.

Cette unité est caractérisée (175):

- par l'amplitude considérable qu'y ont pris les mouvements anténummulitiques : le Flysch est, en effet, transgressif sur tous les terres de la série, y compris les schistes cristallins antéhouillers;
- par l'absence de niveaux plastiques susceptibles de provoquer d'amples décollements dans la série stratigraphique, comme c'est le cas pour la nappe du Pas du Roc, en particulier.

Il en résulte la formation d'une sorte de bloc stratigraphique homogène, où tous les terres sont plus ou moins directement liés les uns aux autres par le Flysch.

Aussi, cette unité est-elle caractérisée par un style de nappe cassante, style essentiellement déterminé par le jeu, en profondeur, de coins cristallins, dont la couverture sédimentaire est toujours restée plus ou moins solidaire.

Certains de ces coins ont même été assez violemment «éjectés» par les mouvements alpins, pour affleurer aujourd'hui au milieu des replis de leur couverture; tels sont le petit massif d'Hautecour et les lames cristallines du Cirque de Valbuche et de Villary.

Mais l'homogénéité de ce «bloc stratigraphique» n'a cepenant pas empêché le froulement de la couverture sédimentaire en plis superficiels plus ou moins accentués, l'ensemble restant néanmoins lié à son substratum cristallin : c'est surtout au nord de l'Isère que de tels plis sont bien développés.

c. LA NAPPE DU PAS DU ROC.

A l'inverse de la précédente, ce qui caractérise cette unité, c'est le sectionnement de sa série stratigraphique par deux décollements majeurs (175):

- décollement au niveau du Trias gypseux, qui a complètement séparé la

partie supérieure de la série de son substratum, et lui a permis de s'épancher au loin, lors des mouvements paroxysmaux de l'orogénèse alpine;

- décollement au sommet de la série schisteuse de l'Oxfordien ayant entrainé la formation des «écaillès externes» par les terrains les plus élevés, Malin, Crétacé et Nummulitique.

Aussi, à l'opposé de la nappe des Brèches de Tarantaise, la nappe du Pas du Roc est-elle caractérisée par une tectonique souple et non plus cassante, par une tectonique d'écoulement, grâce à laquelle elle a pu s'épancher très loin vers l'ouest, par-dessus les unités précédentes.
TROISIÈME PARTIE.

DESCRIPTION GÉOLOGIQUE

des

PRINCIPAUX ITINÉRAIRES.

Les levés, effectués entièrement sur le fond topographique des beaux plans directeurs au 1/50,000e, m’ont obligé à parcourir les moindres replis de terrain de cette région fort accidentée. Mais une description aussi détaillée m’aurait entraîné beaucoup trop loin et la réduction au 1/50,000e des levés qui accompagne ce mémoire pourra y suppléer pour ceux qui n’hésiteraient pas à gravir les crêtes et à descendre aussi dans le fond des ravins. Les points les plus importants ont, du reste, déjà été étudiés dans les deuxième et troisième parties.

Je me bornerai donc à décrire maintenant les itinéraires facilement accessibles par les routes ou les sentiers, indiquant simplement, à l’occasion, les variantes plus difficiles d’accès, mais présentant pour nous un intérêt particulier.

CHAPITRE PREMIER.

LA VALLÉE DE L’ARC ET LE VERSANT MAURIENNAIS.

I. LA VALLÉE DE L’ARC DE SAINT-JEAN À SAINT-MICHEL-DE-MACHIENNE.

La vallée de l’Arc, si facilement accessible par la ligne et la route de Modane, et qui offre de si magnifiques panoramas géologiques est, de toute évidence, le lieu idéal pour aborder l’étude de notre région.
LES ZONES ULTRA-DAUPHINOISE ET SUBBRIANÇONNAISE.

A Saint-Jean-de-Maurienne, nous sommes encore dans la zone dauphinoise. Vers l'avant, l'Arc entaille par égypé chéribourg le massif cristallin du Grand Château, dont les parois abruptes se dressent à l'ouest de la ville. C'est le dernier des massifs cristallins externes, partout entouré de sa couverture sédimentaire (169 et 170), profondément entaillée par la rivière. Aussi la vallée s'élargit-elle brusquement à Saint-Jean, où elle est encombrée de nombreux cônes de dejection emboîtés, issus des affleurements de la rive gauche (Arvan et torrents de la région de Jarrier), qui, localement, ont refoulé le lit de l'Arc vers le nord.

Etant donné les facilités de circulation dans cette vallée, on pourra facilement l'étudier, par petites courses, au départ de Saint-Jean ou de Saint-Michel, sans être obligé de s'en tenir rigoureusement à l'itinéraire proposé.

1. La zone ultra-dauphinoise.

La limite occidentale de la zone ultra-dauphinoise est soulignée par une épaisse lame de gypse chevauchant les terrains (pl. VI).

Au sud de l'Arc, elle affleure largement dans la basse vallée de l'Arvan où les anas de gypse sont activement exploités sur les deux rives. À l'est de cette rivière, les revêtements blancs de gypse, visibles de loin, sont surmontés par le escarpement du Lias inférieur couronné, à sa partie supérieure, par les molles ondulations du plateau d'Albece, déterminées par les schistes tendres du Lias supérieur. Vers le nord, ceux-ci sont très profondément ravinés par le Riezule, qui a donné naissance, vers le bas, à plusieurs cônes de dejection emboités. On pourra, en suivant les facettes de la route de Villarodin à Albece-le-Jeune, étudier ces cônes de dejection et, plus haut, les schistes du Lias supérieur, plus spécialement les schistes à marnes d'Auzouret, datés par Harpoceras cf. austense (p.)

Enfin, c'est dans la paroi rocheuse, malheureusement inaccessible, dominant à l'est le ravin du Riezule, que passe le contact de base du Flyuch des Aiguilles d'Arves.

Au nord de l'Arc, la limite des zones dauphinoise et ultra-dauphinoise passe dans le ravin de Montandré, qui limite, à l'est, le promontoire cristallin de l'Echaillon (cote 848).

Les gypses, ici encore, se voient de loin : ce sont eux qui forment la croupe aride dominent le village de l'Echaillon. Puis, jusqu'en peu en aval du Pont de Villarcélement, où la route traverse l'Arc, se dressent les escarpements noircards du Lias.

En prenant le sentier se dirigeant à l'est de l'Echaillon, on traversera, après les gypses, les argiloblès du Très supérieur, puis le Rhôtain qui affleure au niveau de la chambre de mise en charge de l'usine électro-métallurgique de Saint-Jean (p. 16 et fig. 6).

Le contact de base du Flyuch des Aiguilles d'Arves, difficilement observable au sud de l'Arc, est, au contraire, très accessible sur la rive droite : c'est l'affleurement dit du Pont de Villarcélement (fig. 36). À 900 mètres en aval du pont, se dresse une petite barre rocheuse formée essentiellement de conglomerats de la base du Flyuch reposant transgressivement sur les marneux schisteux et les marne-calcaires du Lias. C'est à la partie supérieure de cette petite barre qu'on a récoltées de petites Nummulites (p. 85).

LA VALLÉE DE L'ARC ET LE VERSANT MAURIENNAIS.

Fig. 36. — Panorama du versant nord de la vallée de l'Arc au bout de Villarcélement : le contact du Flyuch des Aiguilles d'Arves sur son substratum.

Les couches transgressives du gypse et conglomerats de la base du Flyuch (Fez) sur le Lias (L.) Fez, flyuch calcaire ; Fc, schistes schisteux.

Le village de Villarcélement est bâti sur un vaste cône de déjection sérénne du Torrent de Saint-Julien, entaillé en bâtoncel, au-dessous du village, par le cours actuel de l'Arc (A4).

Au-delà, et jusqu'au niveau de la paroi de Saint-Julien-Montricher, on reste dans le Flyuch des Aiguilles d'Arves.

Les couches de base du Flyuch débutent à la petite barre de conglomerats du Pont de Villarcélement, mais se poursuivent encore, à l'est, sous forme de conglomerats, grès et schistes, que l'on voit affleurer le long du sentier de Villarcélement à Grecy : ces couches se terminent, à l'est, par une nouvelle barre de grès et conglomerats, bien indiqués sur les cartes topographiques, au nord du Pont de Villarcélement.
Les zones ultradauphinoise et survienonnaise.

Le Flysch calcaire vient ensuite avec ses grandes plaques de calcaristes gris-bleu terne donnant une topographie à formes relativement douces.

Le Flysch schisteux, au contraire, bien plus résistant à l'érosion, donne lieu à de hauts escarpements (Pointe de Char d'Osset, entre Villarcérom et Saint-Julien). Ses schistes noirs peu ou pas calcaires, et se débitant en feuilles minces et régulières, sont activement exploités comme ardoises, aussi bien ici que sur la rive gauche.

Le Flysch gréseux, dernier terme de la série, n'affecte, au nord de l'Arc, qu'à la faveur d'un petit repli synclinal dessinant une belle carrière, dans la paroi rocheuse de la rive gauche du torrent de Saint-Julien, à la sortie de la

Fig. 37. — Le côté de déjection anciien du Bochet sur la rive gauche de l'Arc (vue prise du sommet de Tamonta à l'ouest de la Ria d'en haut).

Le côté ancien (Alt) porte le karstique du Bochet. Il se montre profondément entaillé par le ruisseau actuel de l'Arc et par les torrents affluents. La hauteur du talus d'érosion atteint jusqu'à 4 mètres.

Il gorge. Mais il affecte beaucoup plus largement dans le versant sud de l'Arc, au-dessus du hameau du Bochet.

On aperçoit du reste, de loin, dans la Combe du Bochet, ses alternances de gros bancs de grès et de marnes schisteux lui donnant son aspect rubané caractéristique qui rappelle tout à fait celui des grès d'Annecy, dont il est, d'ailleurs, l'équivalent (p. 91).

Notons enfin que le village de Saint-Julien est bâti sur un vaste côté de déjection ancien profondément entaillé par l'Arc et dans lequel vient s'emboiter le côté récent du torrent de Saint-Julien. De même, rive gauche, le village du

La Vallée de l'Arc et le Versant Mauriniens.

Bochet se trouve aussi sur un côté de déjection ancien entaillé à la fois par l'Arc et par son affluent de la combe du Bochet (fig. 37).

b. Les écailles externes de la nappe du Pas du Roc.

Au nord de l'Arc, le versant est en grande partie recouvert d'éboulis mêlés de glacier qui masquent presque complètement les terrains sous-jacents. Le panorama de la plaine IV permettra cependant de repérer, même à distance, les bandes de Crétacé inférieur et supérieur et du Flysch formant les écailles de Clare et du Bochet. Les sentiers montant du hameau de la Ria à Tourmentié permettent d'étudier un petit affleurement isolé de Flysch vers le bas de l'escarpement et, surtout, de voir en détail le contact du Flysch charriés des écailles externes sur le Flysch des Aiguilles d'Arves.

Ce contact se produit à l'endroit où le talweg nord-sud remontant de Saint-Julien recoupe le sentier, un peu avant d'atteindre le replat glaciaire de Tourmentié. On y observe successivement :

1. Avant le talweg, sur une vingtaine de mètres : des schistes brun-jaune ou vert clair, à enduit bissant, avec quelques bancs finement gréseux, et des bancs gréseux plus grossiers et même conglomeratiques, gris, verts ou jaune clair à enduit bissant vert ou ocre et contenant de grandes Nummulites (N. perforatus).

2. De part et d'autre du talweg : des schistes analogues alternant avec des dalles, de gros bancs de calcaire compact, crème, à cassure anguleuse ; 10 mètres. Toutes ces roches sont plus ou moins écrasées.

3. Enfin, des schistes gris-bleu, buisants, alternant avec des dalles finement gréseuses et psammitiques souvent étirées en amandes, puis quelques bancs de grès plus épais, toujours en alternance avec des schistes foncés. Le terrain affleure tout le long du sentier jusqu'au bord du replat glaciaire et se relie à la masse de Flysch qui s'étend vers l'ouest.

Le dernier niveau (3), n'est autre que la fin du Flysch des Aiguilles d'Arves, représentée ici par le "Flysch schisteux".

Les deux premiers, au contraire, sont des éléments du Flysch de l'écaillle de Mombets, caractéristiques par leurs teintes vert clair et ocre et par la présence de grès et conglomerats à grandes Nummulites.

Dans les rochers situés à l'ouest de la Charreimière (au nord du village de
Claret), on verra un beau contact de transgression du Flysch sur les couches redressées du Crétacé inférieur (fig. 2). C'est en ce point qu'une Duvall a été recueillie dans le Crétacé inférieur (p. 77). Mais c'est dans les rochers situés au nord-ouest de Claret que l'on rencontrera les plus beaux affleurements de ce Crétacé inférieur avec ses microbrèches, sescalcaires à zones siliceuses noires et ses calcaires. Les affleurements de Crétacé supérieur sont plus difficiles d'accès, mais on trouvera aux abords de la Charvinière de nombreux débris de marbes au pléthysques dans les éboulis.

Le versant sud de l'Arc grâce, en particulier, à la route de Montricher, pourra être beaucoup plus facilement étudié.

Le Pont du Bochet s'appuie, rive gauche, sur un éperon rocheux formé de calcaire gris à grain fin représentant le Flysch calcaire de l'écaillu du Bochet.

Mais la meilleure coupe est celle qu'offre le sentier allant de la route du Bochet à l'usine de Saint-Félix. Après être resté un certain temps dans les éboulis, le sentier aboutit à l'éperon rocheux dominant le Pont du Bochet. On y rencontre, tout d'abord, le même Flysch calcaire qui emmêle la lentille de calcaire à grandes Nummulites formant l'arête de l'éperon. On verra encore à cet endroit l'ancienne carrière qui a alimenté l'usine du Bochet en pierre à chaux. Avant d'atteindre la carrière entaillée dans les calcaires nummulitiques blancs, on notera au passage, après le Flysch calcaire, le petit niveau de schistes tendres clairs et les calcaires verts, glauconieux, à petites Nummulites (p. 105). Un petit détour nous permettra de mieux étudier ces couches et d'y recueillir de nombreuses fossiles : il suffit, pour cela, de prendre le sentier rejoignant la route de Montricher, au point où elle recoupe la lentille de calcaires lutétiens : là une petite carrière pour emmêler permettra de recoller facilement des calcaires blancs à grandes Nummulites, de grosses huîtres (Pleurodon) et des restes de Bélemnites (voir p. 107).

Signalons également, bien visible au bord de la route, 150 à 200 mètres à l'ouest de cette petite carrière, le contact du Flysch charrié sur le Flysch des Aiguilles d'Arroc. A l'ouest de la carrière, dès que l'on a quitté les calcaires lutétiens, on trouve sans transition (il y a étrangement local du Flysch calcaire) dans un Flysch formé de schistes noirs à dalles brunâtres de grès fins, parfois quartziteux, littéralement « broué » (couches extrêmement plissées dans le détail avec étrangement en amande des bancs durs) : c'est le Flysch schisto-gréseux de l'écaillu du Bochet, premier élément charrié en venant de l'ouest. Puis, dans le virage de la route situé juste à l'est du petit pont franchissant le Ruisseau de la Cula, ce Flysch vient chevaucher, brusquement, les alter-

nances de gros bancs de grès et de lits de schistes noirs donnant la grande regularité (plongement de 25° à 30° à l'est) contractée violemment avec l'aspect chaotique du terrain précédent : nous sommes ici dans le « Flysch gréseux », terme supérieur du Flysch des Aiguilles d'Arrois, particulièrement net dans le talweg du ruisseau.

En reprenant notre sentier où nous l'avons laissé, nous quittons bientôt les calcaires blancs lutétiens pour traverser quelques mètres de Flysch calcaire. On passe ensuite, très rapidement, au Flysch schisto-gréseux avec ses schistes noirs et ses bancs de grès clair micacés. Le sentier se maintient longtemps dans ce terrain. Un peu avant d'atteindre l'éperon des Pertuis dominant le pont de chemin de fer, on retombe dans le Flysch calcaire : nous avons quitté l'écaillu du Bochet pour atteindre l'écaillu d'Albâne. Mais la limite entre ces deux unités, passant au milieu du Flysch schisto-gréseux, identique d'une écaillu à l'autre, ne peut pas être précisée ici comme aux abords de Montricher. En arrivant à l'éperon lui-même, on se trouve brusquement dans les marbres en pléthysques du Crétacé supérieur. Malheureusement, ses éboulis masquent le point de contact entre les deux terrains et il n'est pas possible de se rendre compte de la nature exacte de leur limite commune. Mais, plus au sud, dans la gorge du Ruisseau des Moulins, on observe un passage progressif d'un terrain à l'autre (p. 105).

Signalons, en passant, que les plus beaux points de vue pour l'étude du panorama du versant nord de l'Arc sont cet éperon des Pertuis et l'éperon des calcaires à grandes Nummulites, d'où a été prise la vue de la planèche IV. L'éperon des Pertuis porte un petit replat glaciaire, mais les marbes en pléthysques peuvent être étudiés dans les escarpements nord du replat. Les faciès du sentier descendant sur l'usine de Saint-Félix serpentent dans un terrain nouveau, formé de dalles calcaires à zones siliceuses noires, de calcaires et de bancs de microbrèches : nous sommes dans le Crétacé supérieur. Le contact avec le Crétacé supérieur est bien visible dans un rocher situé un peu au sud-ouest du premier lacet que fait le sentier vers le sud. La série étant renversée, le Crétacé inférieur du rocher repose sur les marbres en pléthysques sous-jacents par l'intermédiaire d'un mince conglomerat à ciment calcaire. Ce même conglomerat s'observe, du reste, en aval de l'usine, à l'extrémité du canal de suie (p. 77 et fig 38).

Signalons aussi que tout en bas, un peu au sud de la maison du garde de l'usine, on traverse des schistes noirs à bancs de grès fins quartzeux représentant sans doute un minuscule lambeau d'Oxfordien. Enfin, entre
176 LES ZONES ULTRA DAUPHINOISE ET SUBRIO-CONNAISE.

la maison et le Ruisseau des Moulins, le petit éperon est formé par les gypse de la "catatrice de Saint-Félix" emballant un lambeau de marbres en plaquettes du Crétacé supérieur.

c. La nappe du Pas du Roc ("catatrice de Saint-Félix et digitation du Perron des Encantos") et la zone des Gypses.

A l'est des "écaillès externes", le mésozoïque de la nappe du Pas du Roc débute par une bande de gypses et de cargnèules, bien visibles au-dessus de l'usine et occupant la place prise, plus au nord, par la digitation de la Grande Moenda, dont elle est, en somme, la "catatrice" vers le sud.

Fig. 35. — Coupe schématique montrant les relations des divers terrains au voisinage de l'usine de Saint-Félix.

De gauche à droite : petit lambeau isolé de flysch (G); en noir, lambeau de gypse de la "catatrice de Saint-Félix" (O), lambeau de sables et grès fine evidémence; (C), marnes à zones siltacées, calcaires étaux et calcisédières du Crétacé inférieur; (O), marnes en plaquettes du Crétacé supérieur débordant par un murs lit de conglomérat (Ce); enfin, (C), flysch étaux; (G), extrémité d'un canal de fuite de l'usine où sont remanés les conglomérats.

Au nord de l'Arc, elle occupe le fond du ravin du torrent de Clarét dont elle a, certainement, facilité le creusement; on peut y voir de loin les taches blanches des gypse, surtout la rive gauche du torrent.

Le massif de la Croix des Têtes est presque partout difficile d'accès, la base des falaises étant occupée par d'importants cônes d'éboulis, superposés aux mêmes aux vastes cônes de déjection des divers torrents issus de ce massif. Mais l'action violente de l'érosion sur ces parois abruptes les a si bien sculptées qu'elles sont très lisibles à distance, au moins pour les grandes lignes : repli anticlinaux parfaitement dessinés par les barres rocheuses du Lias et du Dogger et vastes synclinaux schisteux de Callovien. Cette région

LA VALLÉE DE L'ARC ET LE VERSANT MAURIENNAIS. 177

pourra donc facilement être étudiée à l'aide du panorama de la planche IV et des descriptions déjà données plus haut (p. 149).

Le versant sud de l'Arc, au contraire, ne présente pas de cônes de déjection importants et ne trouve être ainsi d'un accès plus aisé.

La rive peut facilement être suivie en amont de l'usine de Saint-Félix. Après avoir dépassé les gypse de la catatrice de Saint-Félix, on voit appa-
transition aux dolomies capucin du Trias supérieur. Enfin, on peut également atteindre par ici le vaste éperon rocheux descendant d’Albano (Croc de Pralogman). Il est formé de calcaires gris foncés, bien liés, représentant le Dogger, mais avec un faciès déjà différent du faciès zoogène que nous verrons plus à l’est. Ce Dogger est très épais, car il occupe le fond du synclinal du Rieu Sec.

Pour étudier la suite de la coupe jusqu’à la vallée de la Valloirette, il est nécessaire de reprendre la grande route et de franchir l’Arc au Pont Pallier, près du Plan des Sauses. La partie orientale de l’éperon de la Croix de Pralogman est formée par les calcaires à silex du Lias, suivis du Rhétien et des dolomies capucin du Trias supérieur, puis de gypse, bien visibles de loin et qui marquent l’axe de l’anticlinal de Saint-Martin-de-la-Porte. Dans le flanc oriental de l’anticlinal, le Trias supérieur et le Rhétien sont masqués par les éboulis. L’éperon qui vient ensuite comporte successivement du Lias inférieur, du Lias supérieur et du Dogger (fig. 39). Ce Dogger préserve, à sa partie supérieure, un niveau de calcaires clairs à Polypiers, bien connus depuis W. Kilian, et qui forment le petit verrou rocheux sur lequel s’appuie, rive gauche, le Pont Pallier. Ce même niveau à Polypiers et grosses radiaires d’œufs peut aussi être facilement étudié à l’entrée de la gorgue de la Valloirette (p. 63).

Au bord de la route, un peu à l’est du Pont Pallier, affluent, en un miniscule pointement, des marno-calcaires calloviens, très resserrés, prolongement de ceux qu’on voit affleurer à l’ouest de l’usine de Calypso. Mais, un peu plus loin et de l’autre côté de la route, la dernière maison est bâtie sur un nouveau pointement rocheux, formé par des calcaires zoogènes du Dogger, prolongement, vers l’ouest, de ceux qui affluent au bord de la voie ferrée, près des anciens fours à chaux. Cette réapparition du Dogger ne peut s’expliquer que par le passage entre les deux pointements rocheux de Calypso et de Dogger de la faille du Plan des Sauses (fig. 34).

Enfin, nous arrivons au pied de l’imposant «verrou glacial» du Pas du Roc, qui barre la vallée en aval de Saint-Michel et n’a été entaillé que vers le sud, en un étroit défilé, par le cours actuel de l’Arc. Au-dessus de la petite barre de Dogger à Polypiers des anciens fours à chaux, s’élève un talus, en grande partie recouvert d’éboulis, formé par les marno-calcaires calloviens repliés sur eux-mêmes dans le fond du synclinal (synclinal de la Valloirette); puis se resse la failaise rocheuse dans laquelle on distingue facilement, entre les bancs calcaires du Dogger et du Lias inférieur (en série renversée),

la vire déterminée par les calcaires du Lias supérieur; au-dessus, on aperçoit même, par endroits, le Rhétien et le Trias supérieur (fig. 40). Dans la partie médiane de ce flanc ovest du verrou, le Dogger est activement exploité pour la chaux grasse dans une carrière située au pied de la falaise supérieure.

En suivant la voie, puis la route, dans le défilé du Pas du Roc, on peut étudier, de près cette fois-ci, les marno-calcaires calloviens (près du tunnel).

G, silex de marno-calcaires calloviens; Jm, barre calcaire du Dogger; L, vire calcaire du Lias supérieur; Lr, barre calcaire du Lias inférieur; R, Rhétien; Te, dolomies du Trias supérieur.

Puis la grosse barre de Dogger (p. 62), la vire du Lias supérieur qui aboutit ici juste en aval du petit ouvrage militaire appuyé à la paroi, et les calcaires à silex du Lias (p. 51); enfin, juste en amont du défilé, au nord, c’est l’ancienne et célèbre carrière du Pas du Roc avec son Rhétien fossilifère (dans le fond) et ses dolomies capucin du Trias supérieur (p. 33 et fig. 7).

Au sud de l’Arc, après les calcaires du Dogger de la basse gorge de la Valloirette, affluent très largement les marno-calcaires calloviens, exploités à leur partie inférieure, en amont, pour la chaux hydraulique; on peut faci-
lement accéder à cette rive par le pont de l'usine à chaux située dans le fond du défilé. De la vallée, on pourra observer le versant au-dessous du Fort du Télégraphe, et y voir apparaître les brèches du Télégraphe dans l'axe du synclinal (fig. A1). En amont de la gorge, on atteint les calcaires du Dogger activement exploités pour la chauss grasse. Ces calcaires forment un gros bloc plus ou moins isolé en une sorte de verrou secondaire : c'est qu'ils sont presque complètement étirés vers le haut et vers le sud (on ne les a pas rencontrés dans le tunnel de la nouvelle conduite de l'usine de Calypso). Après cet étirement local, ils reprennent, plus haut, leur épaisseur normale, dans la crête du Télégraphe.

Fig. 4.1. — Le versant nord de l'entrée du fort du Télégraphe.
(vue prise un peu au nord de la chapelle de Fou Beourre sur la nouvelle route de la Villette.)

Au premier plan, sommet du verrou du Pas du Roc (croix). En arrière, le synclinal de la Vallière, dont le flanc droit apparaît sous forme d'une barre de sable du Dogger (D), dans le fond de la gorge. Au-dessus, épaisse série des noires calcaires milliaries repliée sur elle-même dans l'axe du synclinal marqué par les terminaisons en V des brèches du Télégraphe (B). Enfin, flanc inverse du synclinal ; D, Dogger ; L, Lias supérieur ; I, lias inférieur ; B, Béthien ; Ta, Trias supérieur.

Nous avons ainsi traversé, d'ouest en est, toute la zone étudiée. Malheureusement, l'unité formant notre limite orientale, la zone houillère briënnonnaise est, ici, entièrement masquée par les dépôts quaternaires. Mais il suffisait, cependant, d'atteindre Saint-Michel, pour voir affleurer les grès et schistes houillers dans la ville elle-même.

Tous les terrains précédents remontent obliquement à la partie supé-

La vallée de l'Arc et le versant maurensais.

risure du verrou. Mais, vers le nord, ils sont chevauchés par la zone des Gypse, dont les gypse forment presque tout le flanc oriental du verrou. Un magnifique exemple de phénomènes de dissolution dans les gypse se présente là : le Ruissel de la Grolle, qui descend de Rouanne, disparaît entièrement dans un vaste entonnoir, au pied de l'escarpement gypseux et le spectacle en est particulièrement impressionnant au moment de la fonte des neiges. L'eau ne repart plus : elle doit, plus bas, se diffuser dans les alluvions, car elle ne donne pas lieu à une résurgence apparente. Signalons enfin, dans la pente, la présence d'un bloc-klippe de marbres en plaquettes complètement emballés dans les gypse, mais qui serait plus facile à atteindre par le haut (fig. 4.4).

Pour étudier le prolongement, vers le nord, des couches du Pas du Roc, il faut revoir sur nos pas et prendre la route de Saint-Martin-de-la-Porte. Nous traversons ainsi (vers l'ouest, puis vers l'est) un vaste cône d'éboulis et de glaciaire, issu des vastes étendues couvertes de quaternaire, à l'est des massifs de la Croix des Têtes et du Perron des Encombres, à la faïe d'une interruption de la barre rocheuse du Pas du Roc, au sud-ouest de la Villette. La route passe alors dans l'encoche du verrou limitant, au nord, le verrou du Pas du Roc (1, 3). La barre rocheuse du Pas du Roc (Trias à Dogger) se lamine brusquement ici, et seule la zone des Gypse dépasse l'encoche vers le nord.

La route est entaillée dans les gypse formant une croupe aride où fait saillie un bloc-klippe, complètement emballé dans les gypse et formé par un calcaire blanc très pur, à Calpionelles, du Jurassique supérieur, et des marbres en plaquettes du Crétacé supérieur accompagnés de quelques débris de roches diverses (calcaires à zones silexèuses du Crétacé inférieur, en particulier).

Enfin, dans la région du hameau de la Porte, affleurent partout, sous le revêtement de dépôts quaternaires (Agl), des pointements rocheux isolés de calcaires à silex du Liass, réunis, sur la carte, en un seul affleurement. Plusieurs blocs, dont un fossilifère au nord du hameau, ont été mis à nu par les facettes de la nouvelle route montant à la Villette.

De Saint-Martin-de-la-Porte, on peut également prendre le sentier qui remonte le long du Torrent de Saint-Martin. On aboutit ainsi à une barre rocheuse : c'est la réapparition de la barre de Dogger du Pas du Roc, après sa disparition momentanée due, sans doute, à un étiement local. Mais l'extrémité nord de la falaise est, à son tour, brusquement tronquée par les car-}

Alpin.
dans les sommets de la Croix des Têtes : c'est la déchireure de Saint-Martin (p. 154), grâce à laquelle les argiles de la zone des gypse viennent reposer directement sur le Callovien du synclinal de la Valloirette, sauf en un point, à l'entrée des gorges du Torrent de Saint-Martin, où une petite lentille de Dogger est restée pinçée entre les deux (fig. 52).

Fig. 52. - La lentille de Dogger de l'entrée de la gorges du Torrent de Saint-Martin.

Lentille de Dogger (l), assise encadrée de quelques bancs de terrains divers (Bl, Blaisite ; Tr, Trias supérieur ; Br, Beocène), isolé au milieu de la déchireure de Chartre entre les argiles de la zone des Gypse (Te) et les calcaires callovien du synclinal de la Valloirette (C).

Ces derniers reposent directement l'un sur l'autre vers le haut suivant une ligne de contact anormal (9) (voir fig. 31).

II. LA RÉGION AU SUD DE L'ARC : SAINT-MICHEL, LE FORÊT DE TÉLÉGRAPHE, VALLOIRE, ALBANS, MONTRECHEZ.

Ce circuit peut s'effectuer dans la journée, si l'on profite des cars montant le matin à Valloire ou au Galibier et des trains du soir à la gare de Saint-
Julien-Montricher. Mais cet itinéraire pourrait aussi être étudié par tronçons à partir de la vallée et de Valloire, ce qui donnerait plus de temps et permettrait de mieux profiter du charmant séjour qu’offre cette dernière localité.

a. De Saint-Michel au tunnel du Télégraphe. — On reste durant toute la montée dans la zone briançonnaise dont on arrive au passage, le Houiller, du reste banal et recouvert très souvent par des dépôts quaternaires. On en profitera pour déchiffrer, à distance, la paroi orientale de l’arête du Télégraphe (fig. 44), où les terrains, en série inverse, vont des dolomies triasiques (à la base), au Dogger (au fort). Vers le sud, on notera l’interruption de ces couches par le Callovien qui traverse obliquement l’arête pour apparaître sur ce versant.

A l’est du tunnel du Télégraphe, après les chalets du Sapey, on quitte le quaternaire et la route recoupe la “zone des Gypses”, puis passe le long d’un important escarpement formé par les brèches du Télégraphe. Au pied de ces rochers, affleure une mince bande de schistes noirs oxfordiens se prolongeant jusqu’au tunnel. Dans le dernier virage, à l’est de celui-ci, affleure une petite lentille de marbres en plaquettes appartenant encore à la zone des Gypses. Les brèches du Télégraphe forment l’arête du tunnel au-dessus duquel elles présentent de magnifiques polis glaciaires (pl. I, fig. 2). L’extrémité du tunnel se trouve dans les schistes oxfordiens.

b. Du tunnel au fort du Télégraphe, la route offre une coupe intéressante (une autorisation militaire est nécessaire pour circuler à proximité du fort). Peu après le tunnel, un contact anormal, souligné par des cargeules, ramène les brèches du Télégraphe au niveau de la route où elles forment un petit éperon rocheux ; nous sommes là dans le domaine des petites “décapées du Télégraphe”, dont la carte et les coupes (fig. 35) donneront une idée suffisante. Étant au fort, on en profitera pour étudier le magnifique panorama du massif de la Croix des Têtes et du Perron des Encombres (fig. 43).

c. Du tunnel du Télégraphe au hameau du Col et à Valloire. — La route recoupe d’abord les schistes noirs oxfordiens, puis les brèches du Télégraphe et à
nouveaux l'Oxfordien. Mais, après le marnon cotto 1667, le haut du versant est occupé par la zone des gypses, dont les éclats blancs, rebondissent jusqu'à la route et qui recoupe finalement celle-ci au niveau du Crétacé du Méleze.

En descendant un peu le long du versant par un petit sentier, juste au nord du Crétacé du Méleze, on recoupera la série complète du Callaux-oxfordien : schistes noirs oxfordiens, brèches du Télégraphe très peu épissées ici, enfin marno-calcarires calvoiens (fig. 45).

Fig. 45. — La série Callaux-oxfordien en coupe-bas de la route de Valloire, au nord du Crétacé du Méleze, près du village du Col.

C, marno-calcarires calvoiens; Be, brèches du Télégraphe; Ox, série schisteuse oxfordienne, chevauchée vers le haut par la zone des gypses (fg) juste au-dessus de la route de Saint-Michel à Valloire.

Ensuite, et jusqu'à Valloire, la route reste dans le quaternaire (Gl et AGI). On en profitera pour édifier le panorama de l'autre versant qui montre, très nettement, le chevauchement de la zone du Pas du Roc sur l'écaillée d'Albanèse et de celle-ci sur le Fylich des Aiguilles d'Arves (fig. 46).

La vallée de la Valloirette est très large. Nous sommes dans la « vallée suspendue » que n'a pas encore atteinte l'érosion régressive ayant si profondément entaillé la « gorge de raccommodement » de la basse Valloirette qui débute un peu en aval du Villard.

LA VALLÉE DE L'ARC ET LE VERSANT MAURIENNIS.

Le Ruissel du Villard montra, en amont du passage du chemin, rive droite surtout, des carapeules marquant le chevauchement de la digitation du Perron des Encombres. Le reste du talweg est entaillé dans les schistes, calcaires et grès du Fylich de l'écaillée d'Albanèse, et, vers le haut, un gros rocher clair, visible de loin, correspond à une lentille de marbres en plaquettes emballée dans le Fylich (fig. 46).

Fig. 46. — Versant est de la vallée de la Valloirette dans la région du Villard (vue prise de la route d'altitude à Saint-Michel au plus au sud du village du Col).

On observe de gauche à droite, le Fylich des Aiguilles d'Arves 6a; il est chevauché, suivant la ligne 91, par une des écailles externes de la monte de Pas du Roc, celle d'Albanèse (6, Rylich; Ox, Crétage supérieur). Cette unité est rencontrée à son tour, suivant la ligne 92, par la digitation du Perron des Encombres ; Ox, lombes oxfordiennes du marnon noir; Jm, Dogger; Jt, Lias inférieur calcaire; Tc, carapeules triques; Gl, dépôt avoupiques.

e. Du Villard à Albanèse, deux sentiers peuvent être pris (fig. 46). Le chemin normal, par le bas, qui rencontre les carapeules de base de la digitation du Perron des Encombres, un peu au nord du Villard, puis, à nouveau, un peu au sud d'Albanèse. Entre les deux, le sentier recoupe d'abord des calcaires clairs du Dogger, puis se maintient dans les calcaires à silex du Lias, planant presque parallèlement au versant.

L'autre sentier est plus intéressant, mais plus long. Il quitte le chemin
principal au sud du Villard et monte tout de suite à flanc dans le glaciaire recouvert de prairies et de boisquets. Il traverse ensuite le torrent du Villard où l'on verra le Flysch de l'écaillée d'Albanne. Près du chalet de la Route, un petit crochet permettra d'atteindre la tache claire des marbres en plaquettes chevauchées par les carrières de base de la digitation du Perron des Encornures. De là, on peut monter, vers le nord, jusqu'au Lias et au Dogger du Rocher de l'Écheronnaise. Vers l'ouest, ceux-ci s'interrompent brusquement et font place à un lambeau de schistes noirs oxfordiens constituant le « Manélon noir » (1898) : ces schistes sont injectés de carrières à la partie est (13g).

Le cal situé à l'ouest du Manélon noir est déterminé par le passage des carrières, ainsi que l'indiquent, sous le quartierneau, les entonnoirs de dissolution. A l'ouest du cal, une petite bosse de schistes calcaires et grès fins, clairs, représente le Flysch charrié de l'écaillée d'Albanne contrastant violemment avec les gros bancs de grès du Flysch des Aiguilles d'Arve qui forment le reste de la pente : ici encore, le contact entre le Flysch charrié et le Flysch des Aiguilles d'Arve est bien net. En redescendant sur Albanette, on retrouve le Flysch charrié et les carrières près des chalets Grapiz, puis les marbres en plaquettes, juste avant d'atteindre Albanette.

f. D'Albannette à Albanne, deux chemins s'offrent à nous pour traverser le vaste cirque glaciaire encombré de moraines, masquant presque entièrement les terrains sous-jacents.

Le chemin du bas reste dans le glaciaire jusqu'au talweg du Ruisseau des Moulinis, entaillé dans les marbres en plaquettes du Crétaçé supérieur (Moulinis cotés 1351). En continuant ce sentier au delà du talweg, on observe bientôt un très beau contact anormal. Un gros bloc de calcaire du Dogger plus ou moins broyé et recristallisé par les actions tectoniques (nombreuses veines de calcaire) et appartenant à la digitation du Perron des Encornures, repose, au bord du sentier, sur les marbres en plaquettes, de l'écaillée d'Albanne. Le sentier reste ensuite dans les marbres en plaquettes, tandis que la barre de Dogger se maintient un peu plus haut ; elle le recoupe un peu plus loin et l'on observe, à nouveau, le même contact anormal entre les deux terrains. Jusqu'à Albanne, on ne quitte plus les moraines.

Le sentier du haut rencontre également les marbres en plaquettes, bien visibles surtout, rive droite, aux moulinis supérieurs (156g). Mais, rive gauche, on observe aussi des schistes noirs ou grès, luisants, avec dalles de grès très fin ou même quartziteux, qui représentent sans doute un lambeau d'Oxfordien, entrainé avec les marbres en plaquettes. Sur la même rive, un peu en amont, les deux terrains viennent chevaucher un éperon rocheux de calcaires marmoréens clairs du Malm.

A l'ouest d'Albanne, on aperçoit une barre rocheuse dans une clairière allongée au milieu de la pente boisée : c'est le point fossifère d'Albanne dans la partie tout à fait supérieure du Flysch des Aiguilles d'Arves (p. 88). Le plus simple est d'y accéder directement à travers les prairies, puis les bois.

La descente sur la vallée de l'Arc peut s'effectuer par deux itinéraires différents.

g. D'Albanne au Pont Pallier. — On traverse d'abord la base de la digitation du Perron des Encornures, fortement laminée et débitée en lames de terrains divers (Trias à Callovien) injectées par les carrières de base, prolongement sud de la cicatrice de Saint-Félix. Les couches redeviennent ensuite plus régulières avec un fort pendage vers la Valloirette : le sentier reste à proximité de l'axe de l'anticlinal (A. de Saint-Martin-de-la-Porte), dont les termes sont presque partout masqués par les chouifs, sauf vers le bas, où repassent les gypses dans les derniers facets du chemin (fig. 39).

Durant la descente, on jouera d'une très belle vue sur le versant ouest de l'arête du Télégraphe qui permettra, en particulier, de se rendre très bien compte de la disposition en V des brèches du Télégraphe dans l'axe du synclinal de la Valloiret (fig. 47). Plus bas, on aura aussi une belle vue sur le versant du Pas du Roc (fig. 40).

h. D'Albanne à Montricher. — Les dépôts morainiques sont extrêmement importants et ne laissent apparaître que de faibles pointements des roches sous-jacentes, qui dominent les carrières (cicatrice de Saint-Félix) et les marbres en plaquettes (écaillée d'Albanne).

À proximité de la route de Montricher sur le Ruisseau des Moulinis (1336), on observe, de façon très nette, le contact entre le Flysch charrié et le Flysch des Aiguilles d'Arves. Au sud du ruisseau, la tranche de la route recoupe des schistes et grès très plissés, avec ébrèchements en amande des bancs durs : c'est le Flysch schisto-gréseux des écaillées externes. Puis les couches viennent, un peu avant le pont, chevaucher d'épais bancs de grès assez grossiers, avec alternances de niveaux de schistes noirs : c'est le Flysch gréseux, terme supérieur du Flysch des Aiguilles d'Arves, localement très redressé par la poussée des nappes (60° à 70°).
LA VALLÉE DE L'ARC ET LE VERSANT MAURIENNAIS.

En descendant le talweg du Ruisseau des Moulins, on pourrait observer le passage continu, en «série compréhensive», du Crétacé supérieur au Flysch de l’écaill e d’Albanne (p. 105).

Aux abords de Montrichard, divers pointements rocheux apparaissent sous le manteau meublé. La meilleure coupe qu’ils offrent est celle que l’on peut relever juste au nord du village (p. 101 et fig. 18). Dans la fosse rocheuse située au nord du cimetière, on verrà avec netteté le chevauchement des conglomerats de base de l’écaill e de Montrichard sur le Flysch schisteux de l’écaill e du Bochet.

La descente permettra d’observer à nouveau le Flysch calcaire et le Flysch schisto-gréseux de l’écaill e du Bochet, puis les calcaires lutécien s (p. 101). Enfin, le chevauchement du Flysch des écaill es sur le Flysch des Aiguilles d’Arves pourra aussi être étudié en deux points : près du premier grand lacet que la route fait vers le nord (cote 1138), et après la carrière de calcaires lutécien s (p. 174). Jusqu’au Pont du Bochet, la descente se termine dans le quaternaire (AGL).

III. LE CHÂTEL, LE COIN DU CHÂTEL ET LA MAISON FORESTIÈRE «BOY ATTRAIT».

Montpascal, Montvernier.

L’intérêt de ce parcours qui peut être effectué dans la journée, surtout si l’on a un véhicule permettant d’atteindre le Châtel ou Montvernier, est de permettre d’étudier la zone nord du substratum du Flysch des Aiguilles d’Arves (p. 110). Une grande partie du trajet s’effectue dans la zone dauphinoise qui ne fait plus partie de la région étudiée et ne sera pas conséquemment décrite. Mais elle figure cependant sur la carte accompagnant ce travail et, pour la partie basse, on pourra se reporter à l’ouvrage de M. Gignoux et L. Moret (193).

On monte par Hermillon et le Châtel. Au-dessus de ce village, un sentier franchit la haute barre de Nummulitique, pour arriver aux pentes douces et recouvertes de moraines de Montbéranger et de Saint-Jacques (176).

Pendant la montée, on notera, dans les pentes situées à l’est, les taches blanches des gypses de base de l’écaill e ultra-dauphinoise, puis, au-dessus, les grandes pentes abruptes formées par la corniche résistante des grès et conglomerats de base du Flysch des Aiguilles d’Arves, surmontée par les pentes plus douces du Flysch lui-même.

Que l’on monte par Saint-Jacques ou Montbéranger, on rencontre, chevu-
ment des gypses de base de l'Ultradauphinois repose sur le Lias schisteux autochthone.

La descente s'effectue ensuite par Montpascal et Montvernier, et l'on rejoint l'Arc à Pontamafrey, après avoir pu étudier, au passage, le Nummulitique autochthone (174) et la classique coupe de Montvernier décrite par M. Gignoux et L. Moret (193) et, plus récemment, par R. Perrin et M. Roubault (157).

IV. SAINT-JULIEN, MONTENENS, POINTE DE VALLOX, TOURMENTÉ, SAINT-JULIEN.

Ce circuit peut se faire dans la journée, surtout si l'on peut être à pied d'œuvre à Saint-Julien.

La montée s'effectue dans le Flysch des Aiguilles d'Arces : le sentier gravit, tout d'abord, le versant est de la Pointe de Char d'Osse formée par les schistes ardoisiers noirs et les grès du Flysch schisteux (pour voir le passage au Flysch calcaire, il faudrait monter jusqu'à l'oratoire du Crêt des Bornes). On notera, en montant, la charnière synclinale du Flysch gréseux, à la sortie, rive gauche, des gorges du torrent de Saint-Julien.

Au point où notre sentier s'écarte, vers le nord, des escarbures rocheux, il traverse le haut d'un vaste cirque d'éboulis qui devenait une menace pour le village de Montenens. Le Servico des Eaux et Forêts a heureusement pu enrayer le mal, en déviant, par un tunnel, le Torrent de Saint-Julien qui rongeait les bas des éboulis, en reboissant les éboulis eux-mêmes, et en creusant un canal de drainage au-dessus du village.

Les pentes de tout ce cirque de Montenens sont couvertes de moraines et les terrains sous-jacents ne forment que quelques pointements isolés.

Pendant la montée, on jouira d'une vue magnifique sur le versant occidental du Massif du Perron des Encroumes-Croix des Têtes, dont on distinguera, même à distance, les éléments principaux (fig. 88).

Au nord de Montenens, on traverse un ruissseau dont le lit est encombré de dépôts de tuf importants (cote 1740). Peu après, on sort du glacis pour recouper une bande de schistes et calcaires gris ou jaunâtres et de grès clairs représentant le Flysch de l'échelle de Montenens : cette coupe, très variée dans le détail, doit être formée d'une série de lames isochnales de divers niveaux, très lomariées, car nous sommes tout près de la surface de chevauchement de l'échelle. L'éperon rocheux où le sentier fait un angle droit vers le nord (cote 1964 du 1/50.000), est formé par un complexe
LA VALLÉE DE L’ARC ET LE VERSANT MAURINIEN.

...de dalles et plaquettes de calcaire gris-bleu, compact, à trabées siliceuses et patine claire et de quelques bancs microbréchiques, rapporté au Crétacé inférieur par analogie avec l’écaillle de Clarét. Le sentier longe ensuite le flanc est de la croupe déterminée par ces calcaires et recoupe un affleurement de conglomerats à ciment grisâtre assez grossier, clair, à galets de roches très variées, parmi lesquels des galets cristallins : ce sont les conglomerats de base du Flysch de l’écaillle de Montdenis.

Arrivé à proximité du Ruisseau de la Pénéière, il faut revenir vers le sud pour pouvoir étudier les calcaires et conglomerats de base du Flysch, dont une coupe a été donnée plus haut (p. 97). Ensuite, on suivra la Côte de Lancketom, où l’on verra de près le Flysch de l’écaillle de Montdenis, très varié dans le détail, mais où dominent les teintes ocre et vertes ; on rencontrera également plusieurs niveaux de calcaires gréseux à petites Nummulites (points F de la carte).

On descendra alors vers les chalets du Barbol, en longeant la longue arête de Dogger qui va de la Cime de la Scia vers le Ruisseau de Saint-Julien. À mi-pente, on observera un curieux rehaussement des couches affectées, localement, d’un plongement sud-ouest.

Des chalets Barbol, un sentier permet de gagner le fond de la gorge. On se trouve, là, au pied des escarpements de l’antérieure du Serpentine (Trias à Dogger). Le bas du versant est occupé par des carapules, alors qu’affleurent, rive gauche, des silex et grès du Flysch : la limite entre la nappe du Pas du Roc et les écaillles externes passe donc ici exactement dans le lit du torrent. En continuant à descendre le long de ce dernier, on aboutit à la maison forestière du Barbol. Ici encore, on observe la même limite entre le Flysch qui occupe le fond du talweg en amont de la maison forestière et le Trias supérieur de la dégénérescence du Perron des Encombres, bien visible juste en face (est) de la maison forestière.

Le sentier longe ensuite le lit du torrent, soit sur les alluvions, soit sur les moraines qui tapissent la pente est. L’autre versant présente, au contraire,
un escarpement de calcaires en plaquettes ou en dalles, de calcais et calcaires-
microbrèches : c'est le Crétacé inférieur de l'écaill de Clarée, que l'on peut faci-
lement atteindre dans la falaise de cette roche à l'entrée des étroites et profondes
gorges qui l'entourent à l'est de Montdenis.

De l'entrée des gorges jusqu'au sud de Tourmentié, le chemin reste dans
edespâts dépôts morainiques que les affluents du Torrent de Saint-Julien ne
réalisent pas à l'écart du substratum. En divers points, et notam-
ment à l'est de Tourmentié, on pourra y observer de belles formations de
chezennes de

Soit de Montdenis, soit de Tourmentié, on peut à nouveau atteindre le
fond de la gorge du torrent de Saint-Julien par le sentier qui réunit les deux
villages et traverse le torrent sur le pont coté 1399. Les versants sont tapiss-
és de dépôts morainiques, entamés jusqu'au substratum seulement au fond
de la gorge. En aval du pont n'affleurent que les schistes calcaires et
microbrèches de l'Aiguilles d'Arves (Flachsch calcique). Mais, en amont, on voit nettement affleu-
ner, au-dessus de ce Flachsch, les schistes calcaires de teinte générale crème
de l'Aiguilles de Moncenis ; c'est le contact du Flachsch charrié sur le
Flachsch des Aiguilles d'Arves. Ce contact se prolonge en amont et recoupe
la gorge un peu après l'angle droit vers l'est dessiné par le talweg. Le Flachsch
charrié contient, rive gauche, des breches et conglomerats calcaires à graminées
Nanofossiles (G de la carte). Plus en amont encore, le torrent entaille le Flachsch,
puis le Crétacé inférieur, en une gorge de plus en plus resserrée et qui finit
par devenir impraticable. Cette course, de toute façon, ne devra être effec-
tuée qu'en plein été, lorsque la neige est entièrement fondue et que les
eaux sont basses.

Après le replat glaciaire de Tourmentié, au point où le chemin descend
sur le versant nord de l'Arc, on verra, à nouveau, le contact du Flachsch charrié
sur le Flachsch des Aiguilles d'Arves, érigé décrit (p. 173), et on rejoindra ainsi
Saint-Julien.

V. SAINT-MICHEL, PERRON DES ENCOMBRES, COL DE BOMPION, SAINT-MICHEL.

Cette course peut se faire dans la journée, mais à condition de partir très
tôt, car la montée est longue et l'on profitera, ainsi, de la fraîcheur du matin.
On monter tout d'abord dans des pentes herbeuses coupées de boque-
taux, qui sont entièrement recouvertes de dépôts quaternaires, dépôts

recouvrant sans doute partout le Houiller briouannais visible seulement
plus haut, dans les pentes du Mont Brequin, ou, vers le nord, à partir de
de la maison forestière de la Chapoux. Les routes de Saint-Michel et de Saint-
Martin-de-la-Porte sont carrossables jusqu'au village de la Villette ; la nouvelle
route en construction permettra même de monter plus haut encore en voiture
d’evoiter ainsi ce début de course en terrain montagneux.

Au-dessus de la Villette, de l'ancien sentier ou de certains lacets de
la nouvelle route, on a une belle vue sur le versant oriental du massif de
de la Croix des Têtes. À l'ouest du Mollard, on aperçoit très bien les
gypses et argiles de la zone des gypses chauvants directement le Callovoisien
du syncinal de la Valloire et, un peu en amont, l'escarpement rocheux formé
par un gros bloc-classe du Jura supérieur accompagné d’une lame de marbres
en plaquettes et en partie masqué par les bois.

Plus haut dans la pente, on aperçoit les falaises de Dogger de la Croix
des Têtes et, à leur base, l'implantation du gisement fossile de la zone
périodique de l'Opalinus de la Chaudanne (p. 54), qu’un sentier traversant le Torrent de Saint-Martin au moulin de
de la Chaudanne permettrait, du reste, d’atteindre.

Plus au nord, s'étend un vaste espace triangulaire occupé par un chaos
de blocs énormes ; il s'agit là d'un vaste glacisement de terrain déterminé sans
doute à la fois par l'absence, en profondeur, de la barre calcaire du Trias-
Lias-Dogger due à la déchirure du Torrent de Saint-Martin (fig. 34), et par
de la morphologie de dissolution se produisant dans les gypses qui occupent
le bas du versant (fig. 49).

Pendant toute cette montée, on notera facilement, même à distance, les
grandes lignes de la structure du versant oriental du massif Croix des Têtes-
Peron des Encombres (fig. 49).

Pour étudier de plus près les pentes du Perron des Encombres, il faudra natu-
rellement quitter les sentiers et se guider d’après la carte. Je n’indiquerai
que l’itinéraire le plus facile et permettant, en même temps, de faire le plus
possible d’observations.

De la maison forestière de la Chapoux, on continuera le même sentier pour
atteindre le Petit Col des Encombres. Le Houiller donne lieu, ici, à quelques
traces de dépôts, tels les charbons, en particulier au sud du col,
ette aux chalets de la Lechaire, un peu plus bas, que des plantes herbacées
oivent été trouvées ailleurs (p. 19).

Dans la paroi est de l'Iseran (2 610), on remarquera les schistes
violets du Permien (extrémités sud du syncinal de Saint-Martin-de-Belle-
LA VALLÉE DE L'ARC ET LE VERSANT MAURIENNAIS.

Au milieu des schistes et grès bruns ou noirs du Houiller. Dans le versant nord du col, on remarquera les énormes entonnoirs de dissolution creusés dans les gypses de la zone des Gypses et dont certains atteignent ou même dépassent 100 mètres de diamètre.

Du Petit Col des Encombres, on monte facilement au sommet du Perron des Encombres (883 m). On traverse d'abord les gypses, puis les calcareux de la zone des Gypses. La pente ensuite, devient plus raide et, la série étant renversée, la base en est formée par les dolomies capucin du Trias supérieur (se signalant de loin par leur teinte claire), curieusement pliées et qui font

![Diagram](image)

Fig. 50. — Panorama du haut vallon du Torrent de Sainte-Julien

(vue prise, à l'est du sommet de la Croix des Trèves, au-dessous de la route)

À gauche, l'une des ouvertures externes de la nappe du Pas du Roc, l'entrée de Chast (au, Bouch; Ci. Crétacé inférieur), échancrée, à l'est, par la dégustation du Perron des Encombres suivant la ligne 8. Dans cette unité on observe successivement : l'olivier de la Serpentine, dont le Doigav est formé de la Pointe du Vallon; le synclinal de la Vallouise et la roche calcaire calcaire (1); enfin, la face inverse du synclinal de la Vallouise, dont les roches denses (calcaires du Lias et du Doigav, Lécrin), forment le sommet du Perron des Encombres avec du Rhétien (3) et des dolomies du Trias supérieur (7).

Le tour du massif (fig. 50). Ce Trias est bordé, à sa partie supérieure, d'un liseré de Rhétien et l'on reste, ensuite, jusqu'en haut, dans les calcaires à silex du Lias inférieur. Du sommet, on jouira d'une vue splendide aussi bien proche (sur le reste de la zone étudiée) que lointaine (à l'ouest, Bellefontaine et les Grandes Rousses; au sud, les Aiguilles d'Arves et le Pelvoux: à l'est, la Vanoise; au nord enfin, le Mont-Blanc).

On rejoint alors le Col du Bonhomme, en suivant la crête qui prolonge
le sommet vers le sud. On retraverse ainsi le Lias inférieur, le Rhétien et le Trias supérieur, pour tomber, à la faveur d’un contact anormal, sur une barre de Dogger prenant l’arête en écharpe (cote 2697). Puis, jusqu’au Col du Bouhomme, on reste dans le Trias supérieur et le Rhétien.

Du col, un sentier descend le long du versant ouest que l’on peut ainsi étudier en détail après en avoir eu déjà la vue d’ensemble lors de la course précédente (fig. 48). Par là, également, on peut atteindre la Croix des Têtes et en observer de près les replis (fig. 35). En descendant à l’ouest de la Croix des Têtes, le long de l’arête, on aperçoit une très belle vue sur le bassin de réception du Torrent de Saint-Julien (fig. 50).

Du Col du Bouhomme à la maison forestière de la Chapouze, la descente pourra être faite par le sentier. Après le Rhétien affleurant au col, on traverse les dénommées capucin du Trias supérieur chevauchées vers le bas par les car- gneules et les gypses de la zone des Gypses dans lesquels sont emballés deux énormes blocs-klippes; ceux-ci sont formés de calcaires massifs, clairs, du Jurassique supérieur, accompagnés de lambeaux de marbres en plaquettes, que l’on pourra très bien étudier à l’endroit où le sentier traverse le talweg. En ce point, un autre sentier permettra d’atteindre, à flanc, le deuxième bloc-klippe situé plus au nord, mais où les roches sont tout à fait analogues. La fin de la descente s’effectuera dans les gypse qui disparaissent vers le bas, sous le glaciaire malé d’éboulis (Agl). Le sentier aboutit alors à la maison forestière de la Chapouze, d’où l’on empruntera, pour la descente, le même itinéraire qu’à la montée.

CHAPITRE II.

LA VALLÉE DE L’ISÈRE ET LE VERSANT TARIN.

1. LES ENVIRONS DE MOÎTIERS, SALINS ET BRIDES.

Toute cette région est composée essentiellement de lames isoclines de terrains variés qu’il serait oiseux de décrire en détail et que l’on pourra facilement étudier en se rapportant à notre carte. Étant donné le grand nombre et la facilité d’accès des routes et chemins, cette étude pourra être effectuée par de petites courses aux environs de ces trois localités, sans qu’il soit nécessaire de décrire plus spécialement certains itinéraires.

En aval de Moîtières, l’Isère traverse, dans la cluse de Pont-Séran, l’épais complexe détritique terminal de la digitation de Moîtières, prolongement méridional de la série attribuée, par H. Schellin, au Nummulitique (p. 95).

Au nord de la ville, les lacets de la route permettront d’observer facilement le noyau de la digitation formant le petit massif d’Hautecoeur et dont les terrains (Cristallin à Lias) sont débités en nombreuses lames isoclines.

A l’est, les pentes dominant la rive gauche de l’Isère sont formées de terrains appartenant au faîsceau de Salins et qui sont également sous forme de lames isoclines de Houiller, de Permien et de Trias, auxquelles s’ajoutent une lame de conglomerats et de Flysch rattachant nettement ce faîsceau à la digitation précédente au point de vue stratigraphique (p. 133).

Ces terrains se prolongent jusqu’au confluent des Borens de Belleville et de Boed (Houiller de Villarbin). De là, jusqu’à Brèdes, la vallée est entièrement dans les terrains de la digitation de la Grande Mornia. Ce sont encore des lames isoclines principalement formées de Lias inférieur calcaire et de Lias moyen plus marneux, entre lesquelles s’injectent des gypse et des cargneules. A l’ouest de Brèdes, tous les terrains sont du reste masqués par une épaisse masse de gypse glissée de la soule des Gypses, qui occupe le haut du versant. Enfin, au nord de Brèdes, des brèches calcaires rappelant les brèches du Télégraphe, forment un affleurement isolé dont il est difficile de préciser les relations avec les terrains voisins : c’est, sans doute, un petit copeau de la digitation des Encombres, ramené à la surface par le double jeu de la tectonique et de l’érosion.

II. MOÎTIERS, FONTAINE-LE-POTS, SAINT-JEAN-DE-BELLEVILLE.

Pour faire cette course avec le plus de profit, le mieux est de ne la faire que dans un sens, soit que l’on couche à Saint-Jean, soit que l’on utilise le car pour l’un des trajets.

Jusqu’à Villarly, la montée s’effectue dans le flanc est de la grande masse de Flysch de la digitation de Moîtières qui culmine à la Pointe du Cuchet (1678). Mais, contre ce Flysch, viennent s’appliquer, au long de la pente, des terrains appartenant au faîsceau de Salins (gypse et Houiller) et dans lesquels le jeu de l’érosion a entraîné de multiples indentations. Ce Houiller a donné
lieu, autrefois, à de petites exploitations de charbon, notamment au lieu-dit «la Charronnerie», au sud de Fontaine-le-Puits (137).

Pendant la montée, on pourra observer, même à distance, et grâce aux profonds ravins qui l'entourent, le versant opposé de la vallée. On y verra un emplacement de lames lissées de la digestion de la Grande Moënda injectées de gypses et surmontées par la zone des Gypses où font saillie les «bloques-klippes» de dolomies triassiques. Et le versant se termine vers le haut par les molles ondulations du Heuhlter briénois.

Vers Villary, les faisceaux de Salins et de Moïsiers disparaissant par laminaire, on retrouve la digestion de la Grande Moënda, dont les terrains ne sont visibles, sous le manteau morainique, que dans le talweg du rivage du Goët et dans l'escarpement situé au nord du village (marne-calcaires et calcaires du Trias inférieur et moyen, Rhiétien et argiloîdites du Trias supérieur dites «schistes de Villary»).

Au Pont du Goët, affluent, rive gauche, les célèbres «micachistes de Villary», qui représentent la première apparition du noyau de la digestion du Néard, dont la couverture nummulitique forme le massif de Crève-Tête (p. 18). Rive droite, ils sont rapidement chevauchés par les calcaires du Lias inférieur de la digestion de la Grande Moënda.

Jusqu'à Saint-Jean, la route reste dans le glaciaire. On en profitera pour jeter un coup d'œil vers le nord, et observer la nette coupure topographique qui sépare la Pointe du Cachet de l'arête de Crève-Tête. Coupure due à la présence de carénuelles peu résistantes et qui traduit magnifiquement la limite entre la digestion du Néard à l'ouest et celle de Moïsiers à l'est.

III. SAINTE-JEAN-DE-BELLETILLE, MONT NÉARD, VALLEY D'ORGENTIL,
DEUX NANTS.

Pour effectuer cette course, il sera bon de partir de bonne heure, afin de disposer de plus de temps et de pouvoir ainsi profiter de la fraîcheur matinale pendant la montée qui est assez longue.

On monte par le sentier qui passe au hameau de la Roche, tirant son nom du gros rocher de calcaire du Lias inférieur situé juste au-dessous et qui domine Saint-Jean à l'ouest. Le sentier traverse ensuite la forêt de Champfleur; mais jusqu'à toute la pente est recouverte de dépôts glaciaires. Dans les bois, le sentier recoupe l'extrémité d'une bande de calcaires à silex du

LA VALLÉE DE L'ISÈRE ET LE VERSANT TARIN.

Lias inférieur, puis un affleurement d'argiloîdites du Trias supérieur : tous ces terrains appartiennent encore à la digestion de la Grande Moënda.

Pour atteindre le Néard, il faut, au sortir de la forêt, quitter le sentier et monter en direction des rochers situés à l'extrémité ouest du bois, où l'on trouvera une piste permettant de franchir la barre rocheuse. Celle-ci est composée de calcaires blancs massifs du Lias de la digestion du Néard, sur lesquels repose les argiloîdites du Trias supérieur, un lambeau de Rhiétien et les calcaires à silex du Lias de la digestion de la Grande Moënda; dès ce point, on se rend très bien compte que la digestion du Néard est chevauchée par celle de la Grande Moënda, en avant de laquelle elle s'ennuie. En longeant

Fig. 54. — Le versant sud-ouest du massif du Néard (vue prise au nord du chalet du Motet).

A gauche, Flysch des Aiguilles d'Arves (P.A), chevauché par la digestion du Néard par l'intervalle d'une bande de calcaires ; au-dessous, on observe les calcaires du Lias forment falaise (I), surmontée, par gauche, par les brèches jurassiennes (B); enfin, à droite, les calcaires du Lias sont recouverts, en descendant, par les couches intermédiaires à grandes Nummulites (G), fossilifères au point F.

le petit escarpement rocheux qui fait suite, à l'ouest, à ces calcaires lissi-ques, on rencontre successivement des conglomerats et schistes noirs du Flysch, des dolomies triassiques, un lambeau de Rhiétien, puis, à nouveau, le Lias avec ses calcaires gris finement schistiques à Bélémmites, ses calcaires clairs grossièrement schistiques et ses calcaires zoongènes (niveaux 1, 4, 5 sur la coupe de la page 56), pour aboutir enfin aux brèches jurassi- ques qui forment la plus grande partie du flanc du massif.

Jusqu'en son milieu, cette paroi est n'est formée que de brèches jurassi- ques. Les éboulis et le glaciaire s'étendant au-dessous ne permettent pas de voir le contact avec les terrains de la digestion de la Grande Moënda qui
occupent tout le reste du versant. Dans le haut du ruisseau de Doray, on peut cependant observer un petit affleurement isolé de brèches jurassiennes chevauché par des carnegues, elles-mêmes en rapport, un peu plus au nord, avec les terrains de la digitation de la Grande Moenda. Ceux-ci ont, d'ailleurs, un plongement est très accusé, comme ceux de la digitation du Niéard, et il est bien net, ici encore, que les seconds chevauchent les premiers.

Vérifiez le milieu du flanc oriental, une échancrure dans la barre rocheuse permet d'accéder facilement dans le petit cirque situé à l'intérieur du massif. Les parois en sont presque exclusivement constituées par les brèches jurassiennes sur lesquelles l'érosion a néanmoins conservé quelques lambeaux de conglomerats du Flysch : c'est ici que W. Killian établit, pour la première fois, la distinction entre ces deux formations détritiques (p. 81).

À l'extrémité sud-ouest du massif, affleurent des schistes noirs qui avaient été attribués au Houiller, en réalité, ils forment le prolongement du large plongeant de l'Utélien de la cote 2475 (p. 81). Plus à l'est, on en voit encore un lambeau isolé (cote 2060), directement chevauché par les calcaires à silex du Lias inférieur de la digitation de la Grande Moenda. C'est par cet angle sud-est qu'il sera le plus facile d'accéder au gisement des brèches à grandes Nummulites (point D près de la cote 2475) dont la coupe a déjà été donnée plus haut (p. 93 et fig. 16).

Pour l'étude du flanc sud-ouest, il faut mieux redescendre et suivre le pied de la paroi. On pourra ainsi observer successivement tous les niveaux du Lias de la digitation du Niéard (voir les coupes des pages 46 et 47).

C'est également dans ce versant qu'apparaissent, au milieu des éboulis, trois pointements rocheux composés essentiellement de calcaire blanc, massif, recristallisé (calcaire d'Orgentié), passant à des schistes et calcaire gris et ocre. C'est dans les calcaires de la barre médiane que j'ai trouvé une grande Nummulite : par leur faciès, ces affleurements se rattachent à l'écaillie de Montdenoi, la plus occidentale des écaillles externes de la nappe du Pas du Roc (p. 99).

En longeant ce versant, on aboutit à l'arête reliant la Pointe du Niéard (555m) et le Pic de Mottet (583m). On y observera la chevauchement du Lias du Niéard sur l'extrémité du Flysch des Aiguilles d'Arres, par l'intermédiaire d'une lame de carnegues. En descendant le long du versant nord de cette arête, on rencontrera, après les schistes du Flysch, les conglomerats de base (déjà très réduits par laminage) et les divers éléments du substratum du Flysch : dolomies et quartzites triasiques, schistes rouges permiens. On
Fig. 72. — Panorama de la région comprise entre Cézery-Tête et les Aiguilles de la Grande-Monde, vu du Roc de la Lune, au-dessus (E) de Saint-Louvent-de-la-Côte (d'après un cliché de M. Gignoux).

Des lisières au premier plan, on observe successivement:

1. Zone dépôtique: en fond, vers la droite, massif cristallin externe (massif du Gran Villin), en avant, Lias antéobiocline appuyant à la lettre de la profonde déclivité topographique qui sépare le Nièvre du Cézery-Tête, 12h.

2. Zone sédimentaire: le Vézère au-dessus des Aiguilles d'Arve opposées, vers la gauche, où il forme la Pointe de Pisse Denis (Dolomie basique) et le Mollaret des Brands (conglomérats de l'Isère).

3. Dignité de la Nièvre: dans le massif du Nièvre, en avant, à la base, la Lias calcaire (L.), puis les breches juraques (L.) sur lesquelles sont conservées quelques plages de conglomérats mésomorphiques (C). Ailleurs on ne voit affleurer que le Flysch (L.).

4. Dignité de la Grande-Monde: c'est elle qui forme les pentes au-dessus du Nièvre, puis le massif compris entre le Nant Bruy et le Dernier de Bellong (Grande-Monde, Pointe de la Dente). Le terrain dominant est le Lias moyen, marneux, profondément raviné, ainsi que le Lias supérieur plus tendre en creux (L., La ou Lais). Le Lias inférieur calcaire (Lai) apparaît par pièces, notamment à la Pointe de la Dente. Enfin, dans le lisanit, affleurent les terrains supérieurs, Bogg (Lai), Callovien (C) et Oxfordien (Dh).

V. Zone du Gypse: en rue le relief dans la Pointe de Bellon où les gypses forment un vaste plaine le long de la pointe (C). Vers la droite, elles se prolongent au pied de l'orécorépament d'où la rue a été peinte.

VI. Zone jurassique intermédiaire: c'est elle qui occupe le tout premier plan avec du Beullier à gauche (12h) et, à droite, le Roc de la Lune, couvert par un lambeau de quartzites tectiques (C).
observera également les injections de gypse dans l'autochtonie (fig. 80). C'est aussi par ici qu'il sera le plus facile d'accéder au flanc nord du Pic du Mottet, pour y étudier la transgression du Flysch des Aiguilles d'Arves sur les dolomies triasiques (p. 88 et pl. III).

Le retour se fait par le sentier qui longe le fond du vallon d'Orgenti. Pendant la descente, on aura une vue d'ensemble sur le flanc sud du Nièrd et l'on pourra également voir, de loin, les principaux éléments constitués de la haute paroi dominant le vallon au sud : on notera, en particulier, à l'est du sommet du Cheval Noir, le chevauchement du Flysch de la digitation du Nièrd sur celui des Aiguilles d'Arves formant le sommet lui-même (837). Au fond du Vallon, on remarquera une moraine récente dont le vallum est très net.

IV. LA VALLÉE DU NANT BREF : SAINT-JEAN-DE-BELLEVILLE, LA SAUCE,
 LE VALLON DE LA PLATIÈRE,
 LE CHALET DU PEC, LE CIRQUE ET LE COL DE VALBUCHE.

Cette course ne peut être utilement effectuée en une journée, qu'à condition d'avoir un véhicule (auto ou moto) pour monter jusqu'au hameau de la Sauce, ou au moins une bicyclette pour gagner du temps à la descente, comme je l'ai fait bien souvent, faute de carburant. A défaut, il serait préférable de réserver une course spéciale au Cirque de Valbuche.

a. De Saint-Jean-de-Belleville à la Sauce. — La route, carrossable jusqu'à Deux-Nants, et même, à la rigueur, jusqu'au hameau de la Sauce, reste tout le temps dans les dépôts morainiques : seuls les talwegs permettent d'observer le Lias moyen et le Lias supérieur de la dégénérescence de la Grande Maudia. Ce sont ces mêmes terrains que l'on aperçoit dans le versant opposé, à l'exception de l'arête rocheuse de la Pécue de la Dent (737) formée par les calcaires de silex du Lias inférieur (p. 158).

b. Le vallon de la Platèire. — A l'ouest de la Sauce, le sentier reconnait un éperon rocheux de teinte claire. Ce sont les tas anciens dont certaines surfaces sont couvertes d'empreintes de feuilles : grandes feuilles plates, sans doute d'aulnes (?) et aiguilles de pin (Pinus sylvestris) ; ces dernières indiqueraient un climat peut-être un peu plus chaud que celui de la période actuelle.
LES ZONES ULTRA-DAUPHINOISE ET SUBBRIANÇONNAISE.

Sur la rive opposée, se dresse une barre de calcaires à silex du Lias inférieur, bordée, vers le haut, d'argilo-lites du Trias supérieur, dont la tache rouge, visible de loin, est surmontée de marne-calcaires du Lias moyen : tous ces terrains appartiennent encore à la dégénération de la Grande Moenda.

Après avoir traversé des dépôts morainiques, le sentier passe au sud-est du chalet de Nantsoudry, sur des conglomerats, puis des schistes du Flysch de la dégénération du Niéard : ce Flysch contient, là, des grès à petites Nummulites (P de la carte).

On peut ici, faire un crochet et remonter le ruisseau de la Combe Noire : on traversera les conglomerats et grès du Flysch du Niéard dans les éboulis, pour atteindre, ensuite, les conglomerats de base du Flysch des Aiguilles d'Arves, séparés des précédents par une bande de schistes du Flysch, qui rend le chevauchement du Flysch du Niéard sur celles des Aiguilles d'Arves particulièrement net, dans le versant sud du Cheval Noir (fig. 53). Les fonds de talweg montrent des moraines récentes au valtum très bien marqué (spécialement celle qui barre le vallon descendant de la Roche Noire) et dont certaines retenait encore de petits lacs.

En reprenant notre sentier, nous remonterons des chalets de la Platière à ceux de Plan Coutaz : on traverse d'abord les conglomerats de base du Flysch du Niéard, puis, aux chalets de Plan Coutaz, les grès et conglomerats, dans lesquels on verra une très belle charnière antérieure dans la paroi située juste au sud de ces chalets. Plus haut, le vallon est barré par une moraine récente s'appuyant sur un versant de conglomerats du Flysch. On atteindra ainsi le Flysch des Aiguilles d'Arves, chevauché par celui du Niéard ; ce contact est très visible dans le versant nord de la Pointe du Mont du Fuz (fig. 54).

LA VALLÉE DE L'UISÈRE ET LE VERSANT TARIN.

des Aiguilles d'Arves, chevauché par celui du Niéard ; ce contact est très visible dans le versant nord de la Pointe du Mont du Fuz (fig. 54).

Au nord du col 2363, s'étend un vaste affleurement de schistes noirs rapportés au Flysch par comparaison avec les terrains du Niéard (p. 264). En plusieurs endroits, ils sont injectés de gypses provenant sans doute de la grosse lame gypseuse qui forme, ici, la base de la dégénération de la Grande Moeda, suivant un processus analogue à celui déjà observé à l'ouest du Niéard (fig. 59). Les terrains de la dégénération de la Grande Moenda occupent tout le triangle situé entre le Nant Brun et le vallon de la Platière ; ils ne présentent rien de particulier et sont souvent recouverts d'éboulis et de glaciaire.

Du chalet du Fuz, on remontera le talweg descendant de la Pointe du Mont du Fuz (1824). On y trouvera un glaciaire récent dont les vallums morainiques, indiquant les stades successifs de retrait, barrent le vallon à diffé-
rentes hauteurs. De plus, dans le versant sud, à la cote 2719, on verra de près la lame de schistes violets du Permien faisant un pointement anticinal (anticinal du Mont du Fux), au milieu des conglomerats de base du Flysch (p. 266).

De cette région, on pourra également étudier à distance le versant oriental du Nant Brun entièrement formé par la dégénérescence de la Grande Moenda. Depuis la Pointe de la Dent, ce versant est occupé par des sérries plus ou moins marneuses bien difficiles à distinguer de loin (Lias supérieur à Oxfordien). Mais sous la Pointe de Praz-Bignay, apparaît un pilier noir, terminé au nord par une belle charnière et dont le cœur est occupé par des argileuses. Ce pilier paraît, a priori, anticinal; il s'agit en réalité d'un pseudo-anticinal, comme le montre l'étude de la charnière qui dessine une sorte de périsynclinal autour de son noyau triasique et comme on peut l'établir par comparaison avec les plans de la Grande Moenda (fig. 46).

Au sud du chalet du Fux, on traverse du glacis récent à vallums moriniques plus ou moins bien marqués, d'où émergent deux verrous. Le premier montre le contact entre les dolomies et les quartzites du Trias, déjà noté par W. Kühn (p. 31, fig. 3). Le deuxième est constitué par des calcaires du Lias et des dolomies triasiques. L'escarpement au-dessus de la rive gauche du Nant-Brum montre ensuite des argileuses et des gypses et un petit lambeau de schistes violets du Permien. Puis, chevauchant ces derniers, on rencontre des schistes et des calcaires gris et ocre, caractéristiques du Flysch de l'Écluse de Montedimis, dont ils constituent une réapparition locale qui se prolonge, du reste, encore vers le sud, où elle disparaît sous les dépôts quaternaires.

Dans le fond du cirque, le substratum du Flysch réapparaît dans l'anticinal de Valbuche.

L'escarpement qui domine, au sud, le petit bassin alluvial du chalet de Valbuche, est formé de quartzites présentant une belle charnière anticinale. Ce n'est, en réalité, qu'un repli de détail dans une série renversée, car les quartzites sont surmontés, vers l'est, de grès et schistes du Permien (le contact entre les deux est stratigraphique, p. 31), puis d'une lame de micacochistes chloritiques, anté-houillers, que l'on recoupe en prenant le sentier montant vers la cote 2863 (fig. 56).

LA VALLÉE DE L'ISÈRE ET LE VERSANT TABÈS.

En se dirigeant vers le Col du Bonnet du Prêtre, on arrivera dans la bosse située au nord-est de la cote 2593; on y observera le contact de transgression des conglomerats de base du Flysch sur les micacochistes anté-houillers (p. 95), les conglomerats souvent presque uniquement formés de galets de micacochistes sous-jacents, sont parfois difficiles à séparer de ces derniers, à première vue.

Dans la cote 2393, on remarquera le chevauchement du Permien de la dégénérescence du Néolith sur le Flysch des Aiguilles d'Arves. Puis, en restant à peu près à la même altitude, on atteindra, à droite, le Col de Valbuche : tout le long de ce trajet, on suivra le chevauchement des conglomerats du Flysch de la dégénérescence du Néolith sur les schistes et grès du Flysch des Aiguilles d'Arves, qui traverse obliquement le Col de Valbuche. Notons, en passant, qu'au Col du Bonnet du Prêtre, et à celui de Valbuche, on rencontre des grès calcaires à petites Nummulites dans le Flysch des Aiguilles d'Arves (point F de la carte).

Fig. 55. — Le versant ouest du Col de Valbuche.

On voit ici la réapparition des conglomerats du Flysch de la dégénérescence du Néolith sur les schistes (b), puis les conglomerats du bas (k) du Flysch des Aiguilles d'Arves. Les formations plus anciennes du niveau schisteux consistent très loin, dans la topographie, entre les deux barres rocheuses des grès et conglomerats.

Du Col de Valbuche, on aura une belle vue sur le versant ouest du Mont du Fux, dans lequel se lit très bien la surface de chevauchement de la nappe des Brèches de Tarentaise sur le Flysch des Aiguilles d'Arves; les conglomerats de la dégénérescence du Néolith forment le sommet et sont séparés de ceux des Aiguilles d'Arves par un passage schisteux appartenant encore à cette dernière unité (fig. 55). Cette coupe avait été interprétée, par J. Boussac, comme un synclinal de conglomerats, dont l'axe était occupé par des schistes (78, fig. 87).

En redescendant du col, on pourra faire un crochet par le vallon qui échancre le versant oriental de la Pointe de Valbuche. Là encore, on verra de belles ma-
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

Les zones récentes avec stades de retrait successifs, et, entre les cotes 2337 et 2333, on pourra étudier de près une lame antéculinaire de quartzites au milieu des conglomérats du Flysh (prolongement septentrional de l'anticlinal de Valbuche). Vers le sud, cette lame émerge des marnes récentes en un petit vallon où les quartzites sont accompagnées de cœurs de dolomies triasiques et d'un lambeau de conglomérats du Flysch.

De tous les points du Cirque de Valbuche, on aura une belle vue sur la paroi nord de l'arête reliant les Aguilles de la Grande Moësa au Col du Bonnet du Prêtre et dans laquelle on distingue très nettement, même de loin, les deux "pseudo-dosysthénax" de Trias pris dans la masse des marnocalcaires du Liass moyen (fig. 36).

La descente s'effectuera par le sentier longeant le Nant Brun. On n'y fera pas d'observations nouvelles, car entre le chalet du Fux et la Saute, le sentier reste dans les dépôts marniques.

V. DE SAINT-JEAN À SAINT-MARTIN-DE-BELLEVILLE.

Les affleurements sont très peu nombreux le long de cette route, les varets étant presque partout recouverts d'un épais manteau de dépôts marniques.

 Aussi pourront-ils, pendant ce trajet, observer également le varet est de Donon de Belleville, où, malgré le revêtement glaciaire, on apercevra dans le bas quelques affleurements de Liass moyen et supérieur de la déjection de la Grande Moësa; plus haut, les taches blanches des gypse de la zone des Gypsé et, au-dessus de Planvillard et de Saint-Laurent-de-la-Côte, les escarpements rocheux d'un énorme "bloc-klippe" de dolomies triasiques, emballé dans les gypse; enfin, le haut du varet est occupé par le Houiller brianconnais (Béanger, Montagne de Cherferie).

Jusqu'au Pont de la Combe (1019), où l'on traverse le Donon de Belleville, on ne rencontre que des affleurements de marno-calcaires du Liass moyen ou de schistes marneux, noirs, du Liass supérieur. En amont du Pont du Nant Brun, on observe également une injection locale de gypse, dernier rappel des nombreuses lames gypseuses de la région de Feissans.

Le Liass se prolonge ensuite dans la Pointe de Dulliat (2042), où il est chevauché par un énorme placage de gypse appartenant à la "zone des Gypsé", sous lesquels on observe, au nord, du Liass moyen et supérieur, et, au sud (La Gitte), des calcaires à silex du Liass inférieur.

LA VALLÉE DE L'ISÈRE ET LE VERSANT TARIN.

Du Pont de la Combe à Saint-Martin, on monte s'effectue dans les marnes. A l'est du hameau des Frênes, on passe au pied d'un escarpement dont les terrains (quartzites en haut, calcaires et dolomies en bas et schistes permiers au nord) appartiennent déjà à la zone brianconnaise : c'est la terminaison septentrionale du synclinial de Saint-Martin-de-Belleville si largement développé dans la Pointe de l'Oullette, au sud de Saint-Martin. Au-dessus, tout le reste de la pente est occupé par le Houiller brianconnais, recouvert en grande partie d'un manteau marnique, mais dont on verra un petit affleurement, au bord de la route, à la traversée du Nant Benolt (au-dessous de Villarabout).

VI. LA VALLÉE DES ENCOURSES : SAINT-MARTIN-DE-BELLEVILLE,

GÎTEKELLY, LE PETIT COUL DES ENCOUBES.

Cette course est assez longue et il faudra partir très tôt de Saint-Martin, si l'on veut l'effectuer utilement dans la journée.

a. De Saint-Martin-de-Belleville à Gitanelon. — L'itinéraire débute dans la zone du Briannéon. A l'est du pont du Doron de Belleville (1339), affluent, au bord du chemin, des schistes et gres gris ou noirs du Houiller, et, au delà du pont, on traverse les schistes bariolés, puis les grès verdâtres du Permien. Ce Permien se développe largement vers le sud, où il est bordé à l'est, d'une puissante barre de quartzites triasiques très redressées (Oullette). Ce sont ces bandes nord-sud de terrains permé-triasiques apparaissant à la bordure occidentale de la zone houillère briannonnaque qui constituent le synclinial de Saint-Martin-de-Belleville. Après la croupie du village du Châtedar, occupée par une belle marne, le chemin croise une lave de calcaires (probablement seulement en partie trissique) constituant ici le dernier élément briannonnaque.

Au-delà, en effet, une grosse masse de gypse, prolongeant, vers le sud, le grand placage de la Pointe de Dulliat, recouvre obliquement la vallée : c'est la zone des Gysper. Jusqu'à Gitanelon, ces gysper occupent la plus grande partie du varett est de la vallée, au-dessus du chemin.

Mais entre la côte 1468 et le hameau des Priots, un nouveau terrain apparaît dans l'escarpement dominant le chemin. Il s'agit d'un complexe de calcaires à zones silexiques noires, de calcachites et de bancs de microbrèches du Crétacé inférieur, où L. Moret et D. Schneegans ont recueilli une Duvalina (134).
LA VALLÉE DE L'ISÈRE ET LE VERSANT TARIN.

Cette lame est complètement isolée entre les gypses qui la chevauchent et le glaciaire ou les snouths qui en masquent la base; il n'est donc pas impossible qu'elle constitue un «block-klippe» de la zone des gypses, mais elle peut être également considérée comme le prolongement, vers le nord, des lambeaux synclinaux de Gitamelon.

En montant, on pourra, même à distance, observer les traits principaux de la structure du versant occidental entièrement formé, comme la gorge elle-même, par la digitation de la Grande Moenda.

Le point le plus intéressant de ce versant ouest est l'anticlinal de la Pointe de la Dent, constitué essentiellement par les calcaires à silex du Lias inférieur, avec un petit noyau de Rhétien n'atteignant que dans l'arête terminale. Les calcaires du flanc normal, flexueux, épousant la surface topographique, ce qui en agrandit démesurément la largeur d'affleurement; le flanc inverse est, au contraire, en partie laminé vers le bas (fig. 28 et 29) et les calcaires du Lias inférieur du flanc normal viennent, ainsi, directement au contact des schistes noirs du Lias supérieur du flanc inverse (ièrement complet des calcaires du Lias inférieur et des marno-calcaires du Lias moyen).

Plus au sud, ce versant ne présente rien de très particulier et les terrains qui le composent alors sont difficiles à distinguer de loin. Les autres, seule, la bande de Dogger séparant le Calléa-ou-jardens de la partie haute (Pointe de Praz-Beynaux), se signale, à distance, par des escarpements rocheux (cote 2371 à l'ouest des Prieux, cotes 1763 et 1765 de part et d'autre du Buiseau de l'Étroit).

b. La région de Gitamelon. — Le haut du versant sud de la vallée est toujours occupé par le synclinal de Saint-Martín-de-Belleville : bandes de quartzites délimitant de puissantes barres rocheuses, et Permien donnant une pente douce où se voient de loin les teintes rouges et vertes de ses schistes; enfin, vers le bas, se prolonge la lame calcaire rencontrée déjà à l'ouest du Châteaulard.

Jusqu'au replat du village occupé par des dépôts glaciaires (nos sommes ici à la limite de la «vallée suspendue» et de la «gorge de raccordement»), le reste de la pente est occupé par les gypses de la zone des Gypses dans la masse desquels apparaissent deux block-klippes : le premier de Crétacé supérieur, le second de quartzites triasiques et de schistes permien.

Les terrains affleurant aux environs de Gitamelon appartiennent à la digitation du Perron des Encembres qui se termine ici en biseau, entre la digitation...
de la Grande Moënda à l’ouest et la zone des Gypses à l’est. Dans les faciès du chemin venant des Priôts, on voit apparaître les premiers éléments de cette nouvelle unité : schistes noirs oxfordiens passant aux brèches du Télégraphe (surmontées d’une petite lentille de quartzites appartenant déjà à la zone des gypses); ces brèches forment le sommet de ce « verrou » glaciaire barrant la vallée (cote 1 750) et affleurant en falaise au-dessous (ouest) du village (fig. 57). Les schistes oxfordiens, extrémité septentrionale du synclinal de la Vallye.

LA VALLÉE DE L’ISÈRE ET LE VERSANT TARIN.

affleurements de calcaires massifs, clairs, du Jurassique supérieur. Pour étudier les autres lamination synclinale (Crétacé et Flysch accompagnés d’injections de gypses et cagneules), il faudrait remonter, au sud, le talweg montant au col coté 9758.

Le chevauchement de la digitation du Perron des Encombres sur celle de la Grande Moënda se voit de loin dans l’arête prolongeant, à l’est, celle de la Grande Moënda : à l’escarpement du Dogger de la digitation de la Grande Moënda succède, en effet, vers l’est, un replat déterminé par l’Oxfordien chovuant, puis, jusqu’au niveau de la Moëneta, le chevauchement a lieu sur les dalles calcaires et les calcaires du Dogger de la digitation de la Grande Moënda se distinguant bien des schistes noirs oxfordiens par leur patine blanche, bleue. Enfin, dans l’escarpement bordant à l’est le talweg du ruisseau des Encombres, le chevauchement a lieu, à 900 mètres au nord de la passe-relle (cote 1 540), sur les marines schisteuses et marne-calcaires du Lias moyen de la digitation de la Grande Moënda; si l’aspect des deux terrains est voisin, le critère est simple : aux bancs de calcaires et marne-calcaires du Lias, font suite, brusquement, les dalles gréseuses de l’Oxfordien, très plissées près du chevauchement.

c. De Gitamelen au confluent du ruisseau de Moutere. — Le versant oriental de la vallée ne présente rien de très particulier. On y observe toujours, vers le haut, les quartzites triasiques et le Permien du synclinal de Saint-Martin-de-Belleville qui s’abaissent fortement : la lame inférieure de calcaire forme, ainsi, une barre rocheuse située tout au bas du versant (cote 1 870). La zone des gypses accuse le même mouvement : elle descend au fond du talweg où les dépôts quaternaires divers ne laissent presque plus affleurer les gypses. Ceux-ci, au contraire, s’étendent très largement, au sud, sur l’autre versant, où ils forment un énorme pliage occupant, avec des cagneules, tout le flanc oriental de croupe de la Cime Noire (1 692).

Le versant occidental de la vallée est formé par le prolongement nord du flanc inverse du synclinal de la Valleuvette qui formait c’est, plus au sud, les arêtes du Télégraphe et du Perron des Encombres. Dans la croupe cotée 2 125, au sud de Gitamelen, on observe une série renversée régulière dont les divers terrains pourront être détaillés, même à distance. Au contraire, au sud du vallon de Varois, au versant nord de l’éperon est encore régulier, son versant sud est affecté de nombreux contacts anormaux de détail.

C’est du versant est de cette croupe rocheuse que s’est détachée la célèbre
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

«Grosse Pierre des Encombres», gisant maintenant au fond du talweg et qui a fourni une si riche faune du Lias moyen (p. 55 et fig. 58).

Enfin, au sud du Ruisseau du Vallon, tous ces terrains se laminent et la zone des Gypses chevauche directement l’Oxfordien du synclinal de la Vallière (versant oriental de la Cime Noire).

![Image](image.png)

Fig. 58. — La «Grosse Pierre des Encombres» (d’après un cliché M. Gignoux).

En bas, le calibre bloc de calcaire limique fossilifère (Charmouthien-Turonien). Plus haut, la Lias calcaire en place (Sc), surmonté d’un peu de Trias (T). Le hache indique le point d’où a été détaché le bloc (voir fig. 50).

Au fond, à droite, on voit le silex oolithique du synclinal de la Vallière et la coupe du banc inverse de calcaire.

Même lettre que les figures précédentes.

d. **Le ruisseau de Maubec : la monce à Petit Col des Encombres. —** Dès le bas du talweg, on traverse, rive gauche, les quartzites triasiques du synclinal de Saint-Martin-de-Belleville formant la plus grande partie de la croupe du versant opposé. La pente est ensuite tapissée par des éboulis. Les quartzites se prolongent dans les escarpements situés à l’est du chalet de Maubec, mais ils sont souvent laminés et passent au Permien, si bien que la limite avec ce terrain, s’étendant largement vers l’est, est un peu imprécise. Plus à l’est, enfin, ce sont, à partie de vue, les croupes monolones du Houiller briannonnais.

LA VALLÉE DE L’ISÈRE ET LE VERSANT TARIN.

A l’ouest des escarpements de quartzites, les lacs du sentier croisent une lame de schistes gris et grès noirs du Houiller chevauchant directement la zone des Gypses, creusés d’énormes entonnoirs de dissolution, dont certains atteignent 100 mètres de diamètre à leur partie supérieure.

Le Petit Col des Encombres, où nous rejoignons l’itinéraire venu de Maurienne (p. 196), est occupé par un repli de Houiller encadré par les schistes gris et grès grossiers plus ou moins laminés de la base du Permien formant deux petits replis synclinaux. Enfin, le synclinal de Saint-Martin-de-Belleville se termine par un vaste repli synclinal de Permien dans le versant sud-est du Rocher du Peronnet.

De cette région, on a une belle vue sur le versant est du Parc des Encombres (fig. 59). La teinte claire des dolomies du Trias supérieur est un bon repère ; elles dessinent, autour du versant nord du massif, une belle fermeture d’allure périgordinoise (mais si s’agit en réalité d’une série renversée), avant que tous ces terrains ne disparaissent, momentanément laminés, sous la zone des Gypses (versant est de la Cime Noire).

Le retour se fera par le même itinéraire, le seul facilement praticable.

VII. **Le massif des Aiguilles de la Grande Moneva,**

PAR SAINT-MARTIN-DE-BELLEVILLE, GUILHIVAL ET LE VALLON DE VARLOSSIÈRE.

Cette course peut également être effectuée dans la journée en partant suffisamment tôt.

De Saint-Martin au confluent du ruisseau de Varlossière et du torrent des Encombres, le trajet est le même que dans l’itinéraire précédent.

Le fond du talweg, ainsi que le bas des versants, sont ensuite recouverts d’alluvions ou d’éboulis empêchant toute observation au bord du sentier. On en profitera pour déchiffrer de loin les principales lignes de la structure des versants.
La Vallée de l'Isère et le Versant Tarin.

Au nord, dans l'arête reliant la cote 2134 aux Aiguilles de la Grande Moenda, on observera successivement l'Oxfordien de la digitation du Perron des Escorniers (au nord des chalets de Valtemière) venant chevaucher la barre rocheuse de Dogger par laquelle débutait la digitation de la Grande Moenda ; puis les schistes noirs oxfordiens et les marno-calcaires callovien, ces derniers formant les Aiguilles elles-mêmes (2700 m).

Le versant sud montre un très large développement de l'Oxfordien du synclinial de la Vallière, qui occupe toutes les crêtes jusqu'au versant est de la

![Diagramme](image)
les terrains formant le prolongement méridional du pli disharmonique de la Grande Moënda (fig. 60). La barre de Dogger que nous avons vue au sud du ruisseau, se prolonge au nord (versant est du Ruisseau de la Jarre) et remonte jusqu'à proximité du sommet des Aiguilles de la Grande Moënda ; cette bande de Dogger est donc très continue et limite, à l'est, l'aire des plis disharmoniques.

Le reste de la série (Trias à Lias supérieur) s'est, en effet, décollé au niveau du Lias supérieur extrêmement plastique, pour se plisser indépendamment des terrains supérieurs (Dogger et Callovo-oxfordien). Ce sont les schistes tendres du Lias supérieur qui ont déterminé le creusement du vallon de la Jarre : ils se poursuivent vers le nord et sont très largement développés dans le versant sud du Cirque de Valbuche : là, ils se sont accumulés, permettant ainsi le plissement disharmonique (p. 342). A l'ouest du talweg du ruisseau de la Jarre, on traverse les marnecalcaires et marnes du Lias moyen, où certains passages plus calcaires donnent lieu à de petites arêtes. Ces couches sont fossilières au sud-ouest des Aiguilles (point F, voir p. 50), et se développent largement dans la paroi sud du Cirque de Valbuche, où elles ont joué le même rôle que le Lias supérieur, celui d'une masse plastique s'accumulant au point de décrolement.

Le Rhéovina et le Trias se sont alors trouvés refoulés et plissés avec la masse plastique du Lias moyen et supérieur. Le Trias supérieur, avec ses argilolites rouges caractéristiques (« schistes de Villarly »), affleure largement près du chalet de la Jarre. Mais la pente montant au nord, il se bifurque par suite d'un repli « pseudo-anticlinal » du Lias moyen qui le sépare en deux « pseudo-anticlinaux » extrêmement nets dans la paroi sud du Cirque de Valbuche (fig. 60). Ces deux replis pourront aisément être étudiés de près, si l'on monte dans la pente herbeuse d'accès facile, même en dehors des sentiers.

On se dirigera ainsi vers le Col du Bonnet-du-Prêtre. Entre celui-ci et la cote 2684 se produit un nouveau « pseudo-anticlinal » du Lias moyen, suivi à l'ouest d'une bande de Trias par laquelle s'enracinent les deux replis pseudo-anticlinaux (fig. 60).

En amont du chalet de la Jarre, affleure une épaisse lame de carrières marquant la base de la digitation de la Grande Moënda ; elle passe, au nord, au Col du Bonnet-du-Prêtre, qui doit son nom à la forme aplanie, en ce point, un rocher de carrières. Au col même, elle vient chevaucher directement le Flysch des Aiguilles d'Arves, fossilière à cet endroit (calcaires gréseux à petites Nummulites, point F de la carte).
QUATRIÈME PARTIE.

CONCLUSIONS GÉNÉRALES.

CHAPITRE PREMIER.

LES RAPPORTS ENTRE LA RÉGION ÉTUDIÉE ET LES RÉGIONS VOISINES.

I. LE RACCORD AVEC LES RÉGIONS MÉRIDIONALES.

A. LE PROLONGEMENT DE LA ZONE ULTRA-DAPPHINOISE (1).

2. La limite occidentale de l’écaille des Aiguilles d’Arves. — Cette limite est, tout d’abord, très nette au sud de l’Arc : là, en effet, le chevauchement sur l’autochtones continue à se faire par une épaisse lame de gypse, bien représentée sur la feuille de Saint-Jean-de-Maurienne au 1/80 000e. Mais, dans la région de Saint-Jean-d’Arves, ce décallement passe à un simple anticlinal par le « pli-faîlle du Mont Charrin », décrit par W. Kilian et J. Revid. La série mésozoïque ulra-dapphinoise vient donc, dans cette région, se rattaché directement à la zone dapphinoise par un vaste pli paramontagneux.

(1) Pour ce chapitre, se reporter à la carte schématique de la plaque VII.
LES ZONES ULTREADAPHINOISE ET SUBBRIANÇonnaise.

Plus au sud, la limite entre les zones dauphinoise et ultreadaphinoise demandait encore à être précisée. Peut-être repérerait-elle sous la forme des lentilles gypseuses indiquées par les feuilles de Saint-Jean-de-Maurienne et de Briançon. Peut-être aussi n'est-elle plus marquée tectoniquement, et ne se manifeste-t-elle que par des variations latérales de faciès. On sait, en effet, qu'à l'est de la Grave, apparaissent des terrains à faciès plus néritiques que ceux de la zone dauphinoise proprement dite (143) : il peut donc y avoir la passage progressif d'une zone à l'autre. Et ce sont ces deux zones qui viennent alors, conjointement, former la couverture du massif du Pelvoux.

b. La limite occidentale du Flysch des Aiguilles d'Arvès. — Cette limite est bien indiquée par les feuilles au 1/80,000° de Saint-Jean-de-Maurienne et de Briançon.

Au nord, le Flysch est partout transgressif sur son substratum par l'intermédiaire de ses conglomérats de base (p. 85). Il semble bien en être de même, plus au sud, jusqu'au niveau des Aiguilles d'Arvès, où s'inscrivent les conglomérats.

Mais à partir des Aiguilles d'Arvès, il semble qu'il y ait décollement du Flysch sur son substratum : ce contact y a, en effet, été décrit comme anormal par W. Kiian et J. Révol (73), et, plus récemment, par M. Gignoux et E. Raguin (143).

Enfin, plus au sud encore, M. Gignoux a montré que le Flysch des Aiguilles d'Arvès venait se raccorder avec le « Nummulitique autochtone » du sud-ouest du Pelvoux (133, 134, 143).

Il y a donc bien continuité du Flysch des Aiguilles d'Arvès vers le sud. Les décollements existant à sa base, au nord-est du Pelvoux, sont simplement dus à l'articulation qui se produisait entre la zone où le Flysch est transgressif sur la série sédimentaire ultreadaphinoise, au nord, et celle où il repose directement sur le cristallin, au sud.

B. Le prolongement de la nappe des Brèches de Tarantaise.

Bien développé au nord de l'Isère, cette unité disparaît complètement, à l'affleurement, avant d'atteindre l'Arc. Il est donc fort difficile de se prononcer sur sa continuation possible vers le sud.

Cette disposition peut être attribuée, en dehors des arguments d'ordre tectonique, au fait qu'il n'est pas certain que la cordillère tarinee, bien développée

CONCLUSIONS GÉNÉRALES.

en Tarantaise, ait été aussi nettement individualisée tout le long de la chaîne. Si donc on ne la retrouve pas vers le sud, cela peut simplement tenir à une variation de faciès dans cette direction, où rien ne rappellerait plus la cordillère tarinee.

Si, au contraire, cette disparition de la nappe des Brèches de Tarantaise n'était due qu'à des causes tectoniques, on devrait pouvoir en retrouver l'équivalent vers le sud. Étant donné le rôle très important joué par le substratum cristallin dans cette nappe, il semblerait alors que ce fût dans le massif du Mercantour, où on retrouve la mer et le lagon de l'Arc, ainsi que l'avait admis D. Schneegans (148).

C. Le prolongement de la nappe du Pas du Roc.

a. Les écailles externes. — Au moins jusque vers la Haute-Parée, près de Bonnevueil, il faut séparer du Flysch des Aiguilles d'Arvès, comme plus au nord, un éboulis de Nummulitique et de Crétacé qui doit être rattaché à la nappe du Pas du Roc et constitue le prolongement méridional des écailles externes de cette nappe.

Mais, dès Valloire, la nappe au moins n'est plus limitée à cette région externe (chapelle Sainte-Thècle en particulier). Il semble donc bien qu'en allant vers le sud, la séparation entre la série mésozoïque et sa couverture nummulitique et crétacée soit moins complète, que ces deux éléments tendent à rester indissolubles. Cela paraît être le cas au niveau du Galibier. Cependant M. Gignoux (renseignements verbaux) a observé, dans la partie orientale du Flysch, des injections de cœlologne qui marqueraient la persistance, vers le sud, des écailles externes, séparées par ces cœlolognes, du Flysch des Aiguilles d'Arvès.

b. La limite occidentale de la nappe. — La digitation de la Grande Moenda ne dépassant pas l'Arc vers le sud, nous n'avons plus affaire, ici, qu'à celle du Perton des Encombres.

La limite est de cette unité paraît correspondre, en gros, à la ligne de chevauchement notée GG sur les feuilles de Saint-Jean-de-Maurienne et de Briançon au 1/80,000°. Mais cette question équivalait également demanderait à être reprise en détail.

c. La limite orientale de la nappe. — Cette limite semble être correctement indiquée, sur les feuilles de Saint-Jean-de-Maurienne et de Briançon au
LES ZONES ULTRA-DAUPHINSOISE ET SUBBRIANÇONNAISE.

1/50.000e, par la ligne de chevauchement de la zone briantonnaise notée III.

D. LE RACCORD AVEC LES NAPPE DE L'Ubaye ET LE PROLONGEMENT DE LA "ZONE DES GYPSES".

En 1938, M. Gignoux et L. Moret d'une part (145), D. Schneegans d'autre part (163), ont confirmé l'idée émise par ce dernier, dès 1935, sur la position de la nappe du Pas du Roc par rapport à celles de l'Ubaye : la nappe du Pas du Roc se prolonge par le Col de Vallouse et la fenêtre de l'Argentière pour aller rejoindre, dans l'Ubaye, la digitation de l'Éclat.

C'est donc l'unité la plus interne du Subbriançonais de la Maurienne qui correspond à la plus externe de l'Ubaye, et seul ce château Polit-Perron des Écombres semble subsister entre les deux à l'affleurement.

Mais, au nord également, a dû exister un Subbriançonais interne établissant le raccord entre les faciès encore très externes de la nappe du Pas du Roc et la cordillère briantonnaise proprement dite. Comme je l'ai montré plus haut (p. 160), c'est dans la "zone des Gypses" qu'il faut voir, vers le nord, le prolongement de ce Subbriançonais interne, équivalent des nappes de l'Ubaye. Mais ces unités, très plastiques, ont été complètement laminées dans leur écoulement vers l'ouest, jusqu'aux klipps de Savoie et seule subsiste aujourd'hui cette "ciricatrice" de la zone des Gypses, pour en rappeler l'existence et la zone d'origine et d'enracinement (175 et 176).

II. LE RACCORD AVEC LES RÉGIONS SITUÉES AU NORD DE L'ISÈRE.

Cette région a été étudiée, récemment, de façon très minutieuse, par H. Schollcr (Feuille de Bourg-Saint-Maurice au 1/50.000e). Plusieurs zones, soit avec D. Schneegans (164), soit seul, m'ont permis d'établir le raccord entre la zone d'étude de H. Schollcr et le sud de l'Isère (163).

A. LA ZONE DES ARSEILLES D'ARVEL.

Je ne fais que rappeler pour mémoire cette unité. On a vu plus haut, en effet, qu'après avoir été bien développée vers le sud, elle s'est retournée de plus en plus vers le nord et finit par disparaitre complètement, par laminage, au droit du Mont Néier, un peu au sud de l'Isère.

Les nappes viennent alors directement chevaucher l'autochtone et notre unité ultra-dauphinoise ne reparait plus.

Tout au plus pourrait-on considérer comme une dernière réapparition de cette unité, la zone distinguée par H. Schollcr à la bordure externe de sa "nappe de l'Embrunais" (101) et caractérisée par la présence des "schistes de la Bagnas".

B. LE PROLONGEMENT DE LA NAPPE DES BRÈCHES DE TARANTELA.

Je rappelle que l'élément le plus externe de cette unité, la digitation du Néier, disparaît tectoniquement un peu au sud de l'Isère : on n'en trouve plus trace vers le nord.

a. Le faisceau de Motiers. — Cette unité, apparaît un peu au sud de l'Isère, dans la région de Villarly, se développe rapidement vers le nord : c'est elle qui va constituer la "nappe de l'Embrunais", de H. Schollcr, dont les limites ont été figurées de façon très précise par cet auteur.

Il s'ensuit donc que le petit massif cristallin d'Hauteau, près de Motiers, ne saurait être considéré, ainsi que le voulait E. Rch., comme étant dans le sillage du Mont Blanc dont il serait la continuation directe (90). Il appartient, en réalité, on le voit, à une unité beaucoup plus interne, la nappe des Brèches de Tarantele dont il constitue le noyau (175).

b. Le faisceau de Salins. — La limite orientale de cette unité passe, au nord-est de Motiers, sur la rive gauche de l'Isère. À partir de la Pombière, le faisceau est essentiellement représenté par une lame de Houiller qui chevauche partout le Nummulitique du faisceau de Motiers. La limite est donc facile à suivre : elle se maintient sur la rive gauche de l'Isère et va rejoindre, au sud-est de Villette, la limite externe de la "bande occidentale du Houiller" de H. Schollcr.

La limite orientale suit, du Doron de Bozel (Melple) à Montfort et Notre-Dame-du-Pré, la bande de gypses formant la base de la digitation de la Grande Moenda (nappe du Pas du Roc). Puis, par l'intermédiaire de calcaires du Trias, on rejoint le "synclinal triasique d'Aime" de H. Schollcr.

La "bande occidentale du Houiller" et le "synclinal triasique d'Aime" de H. Schollcr appartiennent donc pas à la zone briantonnaise, comme le

CONCLUSIONS GÉNÉRALES.

In plus vers le nord et finit par disparaitre complètement, par laminage, au droit du Mont Néier, un peu au sud de l'Isère.

Les nappes viennent alors directement chevaucher l'autochtone et notre unité ultra-dauphinoise ne reparait plus.

Tout au plus pourrait-on considérer comme une dernière réapparition de cette unité, la zone distinguée par H. Schollcr à la bordure externe de sa "nappe de l'Embrunais" (101) et caractérisée par la présence des "schistes de la Bagnas".

B. LE PROLONGEMENT DE LA NAPPE DES BRÈCHES DE TARANTELA.

Je rappelle que l'élément le plus externe de cette unité, la digitation du Néier, disparaît tectoniquement un peu au sud de l'Isère : on n'en trouve plus trace vers le nord.

a. Le faisceau de Motiers. — Cette unité, apparaît un peu au sud de l'Isère, dans la région de Villarly, se développe rapidement vers le nord : c'est elle qui va constituer la "nappe de l'Embrunais", de H. Schollcr, dont les limites ont été figurées de façon très précise par cet auteur.

Il s'ensuit donc que le petit massif cristallin d'Hauteau, près de Motiers, ne saurait être considéré, ainsi que le voulait E. Rch., comme étant dans le sillage du Mont Blanc dont il serait la continuation directe (90). Il appartient, en réalité, on le voit, à une unité beaucoup plus interne, la nappe des Brèches de Tarantele dont il constitue le noyau (175).

b. Le faisceau de Salins. — La limite orientale de cette unité passe, au nord-est de Motiers, sur la rive gauche de l'Isère. À partir de la Pombière, le faisceau est essentiellement représenté par une lame de Houiller qui chevauche partout le Nummulitique du faisceau de Motiers. La limite est donc facile à suivre : elle se maintient sur la rive gauche de l'Isère et va rejoindre, au sud-est de Villette, la limite externe de la "bande occidentale du Houiller" de H. Schollcr.

La limite orientale suit, du Doron de Bozel (Melple) à Montfort et Notre-Dame-du-Pré, la bande de gypses formant la base de la digitation de la Grande Moenda (nappe du Pas du Roc). Puis, par l'intermédiaire de calcaires du Trias, on rejoint le "synclinal triasique d'Aime" de H. Schollcr.

La "bande occidentale du Houiller" et le "synclinal triasique d'Aime" de H. Schollcr appartiennent donc pas à la zone briantonnaise, comme le
voulait cet auteur. Ils représentent, en réalité, le prolongement septentrional du faisceau de Salins appartenant encore à la nappe des Brèches de Tarentaise, dont il constitue la bordure orientale.

C. LE PROLONGEMENT DE LA NAPPE DU PAS DU ROC.

Les « écailles externes » et la digitation du Perron des Encornets ont disparu complètement au sud de l'Isère et du Doron de Bozel : on ne les voit plus reparaître vers le nord.

La digitation de la Grande Moenda. — La limite occidentale de l'unité est la même que la limite orientale du faisceau de Salins. Rappelons qu'elle est généralement soulignée par une bande de gypses, et passe à Montfort, Notre-Dame-du-Pré et Longefoy.

La limite orientale est soulignée par la présence des gypses de la « zone des Gypses » qui la chevauchent. Elle passe à Brides, la Thuile, Hauteville, à l'est de Notre-Dame-du-Pré, enfin à Longefoy.

Au nord du Doron de Bozel, la digitation de la Grande Moenda forme le séninorum de Feissons qui va en se rétrécissant vers le nord et disparaît finalement à Longefoy, laminé entre la nappe des Brèches de Tarentaise et celle du Briançonnaise.

D. LE PROLONGEMENT DE LA ZONE DES GYPSES.

Elle forme une bande assez large, qui, de Brides, se dirige vers Hauteville, passe à l'est de Notre-Dame-du-Pré, puis se laminne entre le dernier village et le Nant Thieret, à l'ouest de Longefoy. Elle disparaît alors définitivement : nous avons vu, en effet, que le « synclinal triasique » qui pourrait sembler, « à prêter, en être le prolongement, a une toute autre signification (p. 227).

III. L'ENRACINEMENT DES KLIPPES DE SAVOIE.

Considérées comme lambeaux de recouvrement dès 1884, par M. Bertrand, les klipps de Savoie furent tout d'abord étudiées par E. Haug et M. Lugeon qui y distinguèrent « la superposition d'au moins trois nappes indépen-

dantes (1). L'existence de ces nappes fut encore admise par E. Haug en 1935 (88), ainsi que par L. Morlot en 1934 (121).

C'est donc sur ce schéma que je m'étais appuyé, dernièrement, pour étudier les rapports entre les klipps de Savoie et la zone subbriançonnaise en Tarentaise (176). Or, dans une note adressée à la Société géologique de France durant l'impression de ce mémoire, et sur laquelle je reviendrai plus loin, M. Lugeon considère que « la subdivision en trois seules unités des klipps de Savoie demande un profond remaniement » (177). Pour cet auteur, en effet, les six nappes ultra-helvétiques actuellement distinguées par les géologues suisses dans les Préalpes romandes et en Chablais devraient se retrouver, au moins en partie, dans nos klipps. Ceci ne change rien aux rapprochements qui peuvent être faits entre la zone subbriançonnaise et les klipps de Savoie ; rapprochements basés essentiellement sur des considérations stratigraphiques. Mais il est évident que des homologies plus poussées ne pourront être faites avec fruit que lorsque les klipps auront été à nouveau étudiées en détail à la lumière des nouvelles interprétations suisses et que l'on saura quelles sont exactement les nappes qui les composent.

A. LES RAPPORTS ENTRE LA NAPPE DU PAS DU ROC ET LES KLIPPES DE SAVOIE.

Le premier fait qui s'impose est la différence existant entre les séries des Annees et de Sulens et celles, très particulières, de la zone des Aiguilles d'Arves et, plus encore, de la zone des Brèches de Tarentaise (2), ou cordillère larine avec leurs lacunes et leur absence de Crétaçé. Or j'ai montré plus haut (p. 165) que ces deux unités ne sont pas seulement caractérisées par leurs séries stratigraphiques, mais aussi par leur style tectonique. La première est une sorte de vaste écaille parautochtone et la deuxième une nappe cassante restée liée à son socle cristallin. Il est donc vraisemblable d'admettre que ni l'une ni

(2) La similitude des termes de « nappe des Brèches de Tarentaise » et de « nappe de la Brèche » ne doit pas prêter à confusion et faire penser à une parenté possible entre ces deux unités dont les série stratigraphiques sont fort différentes ainsi qu'il ressort des études récentes de W. J. Schroeder (150). Il y aurait du rester là une impossibilité tectonique, puisque la nappe des Brèches de Tarentaise est inférieure à celle du Pas du Roc qui semble devoir être rapprochée de l'Ultrahelvétique, comme on le verra plus loin.

CONCLUSIONS GÉNÉRALES. 229

APPEL.
Les zones ultradauphinoise et subbrianchoise.

L'autre n'a jamais dû dépasser l'emplacement actuel des massifs cristallins externes et, dans ces conditions, il n'est pas étonnant de ne pas en retrouver d'éléments dans les klippes de Savoie.

Au contraire, les terrains les plus caractéristiques des klippes : Nummulitique, Crétacé, Lias et Trias présentent de grandes analogies avec ceux de notre zone du Pas du Roc.

Le Nummulitique y est constitué surtout par un flysch débutant par les conglomerats à grandes Nummulites du Bouchet. Il semble donc très voisin du flysch de la nappe du Pas du Roc débutant soit par des calcaires soit par des conglomerats à grandes Nummulites.

Le Crétacé comporte divers niveaux. Mais le plus caractéristique est le Néocomien à zones sileuses. L. Moret (121) avait déjà insisté sur la ressemblance de ce terrain avec celui des nappes de l'Ubaye (série d'Ancelle, dans la digitation de Piohl). Or, depuis, ce terrain a été retrouvé en Tarentaise, près de Saint-Martin de Belleville par L. Moret et D. Schneegans (131) et par moi-même dans la vallée de l'Arc (p. 76).

Le Lias et le Trias présentent, eux aussi, de grandes analogies avec ceux de la nappe du Pas du Roc : Lias supérieur schisteux, Lias inférieur avec calcaires à silex et Trias caractérisé par des gypses et argileuses et surtout par des argilites rouges que l'on retrouve dans la digitation de la Grande Moenda.

En venant de l'ouest, c'est donc la nappe du Pas du Roc qu'il faut atteindre pour trouver réuni un ensemble de terrains à faciès analogues à ceux des klippes. J'ai montré plus haut que la tectonique souple de la nappe du Pas du Roc, et le décollement général de sa série au niveau des gypses triasiques, a certainement pu lui permettre de s'écouler jusqu'à l'emplacement actuel des klippes (p. 166).

R. Les rapports entre les klippes de Savoie et les Préalpes charaissiennes et romandes.

Les parallélismes anciennement admis étaient les suivants (E. Haug, 88 ; L. Moret, 121) :

Nappe supérieure : Préalpes médiévales ;
Nappe moyenne : Nappe du Niesen ;
Nappe inférieure : Nappe ultrahelvétique.

CONCLUSIONS GÉNÉRALES.

Mais les travaux des géologues suisses, en particulier ceux de M. Lugon et M. Gugger (156), ont prouvé que le flysch des différentes nappes préalpines n'est pas toujours du même âge et qu'en particulier le flysch du Niesen est entièrement maestrichtien. Le flysch des klippes débutant au Lutétien, il s'ensuit que la nappe du Niesen n'est pas représentée dans l'arc chablinois, pas plus dans les Préalpes valaisannes qu'en haute-Savoie, ni dans les klippes des Annes et de Sulems (ibid., p. 51). Dans sa note récente (177), M. Lugon écrit à nouveau : « il n'y a pas la moindre trace de la nappe de flysch crétagé du Niesen dans les Annes et Sulems et en déduit que les klippes appartiennent donc entièrement à ce qui est compris entre l'Ibérie et la nappe du Niesen, donc à l'Ulthéhelvétique. Les six nappes actuellement distinguées par les géologues suisses dans l'Ulthéhelvétique (de haut en bas : nappes de Meilleret, de Bex-Laubhorn, d'Arveyes, du Mont-Bovin, de la Tour d'Anzeinde et de la Plaine Morto) se retrouveraient donc, au moins en partie, dans les Klippes. D'après M. Lugon, la partie inférieure des klippes correspondrait aux nappes de la Plaine Morto et de la Tour d'Anzeinde, le flysch conglomeratique du Bouchet à celle de Meilleret et la partie supérieure triasique et linsique à celle de Bex-Laubhorn (177).

Si les klippes de Savoie s'enracinent bien dans la zone du Pas du Roc pour les raisons que j'ai indiquées plus haut, le problème de l'enracinement des unités supérieures se trouve reposé d'une façon nouvelle. De fait, les homologations de E. Haug (88) sont actuellement remises en question par les géologues suisses qui semblent revenir à un enracinement beaucoup plus oriental des Préalpes médiévales.

Il n'est pas dans mon intention de reprendre ce très gros problème qui dépasserait le cadre de ce travail et demandera certainement encore de nombreuses études détaillées, avant que l'on puisse arriver à le résoudre de façon satisfaisante. Il n'en reste pas moins que subsistent les similitudes de faciès frappantes existant entre les Préalpes médiévales et les zones brianchonaise et subbrianchonaise, similitudes qui avaient été à l'origine des conceptions de E. Haug (88) et qui ont encore été soulignées récemment par M. Gugger (167).

Aussi, le fait que la zone du Pas du Roc serait à homologuer avec l'Ulthéhelvétique n'est-il peut-être pas suffisant pour en revenir à un enracinement très interne, peut-être même «autre-alpin» des Préalpes médiévales. J'ai montré plus haut le rôle très important joué par la «zone des Gypses», vaste «cicatrice» correspondant à la partie interne du Subbrianchonais et sans doute aussi à la couverture mésozoïque de la zone houillère brianchonaise, qui ont
dû déferler au loin et être ainsi complètement séparées de leurs racines elles-mêmes complètement laminées (p. 160). Il y a donc certainement place pour enraciner des unités supérieures à la nappe du Pas du Roc.

Une autre conséquence de l'homogénéisation de la nappe du Pas du Roc à l'Ultrahévélique, si elle se confirme, serait que le « bord pennique frontal », n'aurait plus en France la même valeur qu'en Suisse. Dans ce pays, en effet, l'Ultrahévélique est, par définition, externe par rapport au « bord pennique frontal », alors qu'en France celui-ci est considéré comme formant la limite entre « autochtone » et le « pays des nappes » (143), la nappe du Pas du Roc est interne par rapport à lui.

Du reste, plus on avance dans la connaissance de ces problèmes et plus ils deviennent complexes. M. Gignoux et L. Moret ont insisté sur le fait que les grandes unités tectoniques ne sont pas «des cylindres bien réglés» se poursuivant d'un bout à l'autre de la chaîne, mais au contraire des festons fortement limités (143, p. 58). On a vu plus haut que c'est à des conclusions analogues que j'ai abouti à la suite de ce travail (p. 164). Dans sa note récente, M. Lagron admet, lui aussi, que les masses préalpines ne sont pas des «plus ou moins étirées mais qu'il s'agit de masses complètement étrangères les unes aux autres» (177). D'autre part, M. Lagron et E. Gagebin ont montré qu'il s'est également produit des différenciations au cours de la sédimentation, notamment en ce qui concerne le Flysch du Niesen qui «ne serait déposé dans une fosse sédimentaire étroitement localisée» (156, p. 51).

Basées de sédimentation localisées, unités tectoniques en festons limités, et pouvant même «lunger leurs amarrers» au cours de leur mise en place par gravité, nous sommes loin des conceptions parfois trop «géométriques» qui ont souvent présidé aux essais de synthèse dans les Alpes. Aussi n'est-ce que par une longue suite de travaux de détails élaborés en étroite collaboration par les géologues des pays intéressés, que ces problèmes passionnants, mais ardus pourront être heureusement résolus. Souhaitons que les frontières artificiellement créées par les hommes dans ce magnifique domaine forment un «tout» inséparable, ne constituent plus, à l'avenir, des barrières trop souvent infranchissables.

IV. LE PROBLÈME DE LA ZONE DU PETIT-SAINT-BERNARD.

Ce problème, approfondi par H. Scholler (191), était en dehors de mon sujet. Je ne l'ai donc pas repris et je pense que sa solution définitive dema-
mise en place des nappes de notre région: une phase d'écoulement par gravié qui aurait permis à la zone du Petit-Saint-Bernard de venir chevaucher la nappe des Brèches de Tarentaise, comme nous venons de le voir; et une phase de compression en arrière des massifs cristallins externes nouvellement jaillis, durant laquelle on peut parfaitement envisager qu'aurait pu se produire le pincement de la zone du Petit-Saint-Bernard entre les deux nappes qui l'en
cadrent.

Sans qu'il y ait là, bien entendu, une preuve décisive en faveur de cette
hypothèse, il faut cependant remarquer qu'elle est tout à fait en accord avec
la tectonique générale de la région. C'est du reste pour elle, qu'après P. Ter
mier, E. Krauss a pris parti dans sa récente synthèse alpine (1 456 bis et 1 366 bis).

**B. Les séries de la zone du Petit-Saint-Bernard et du Mont Jovet
ne sont pas identiques.**

Dans ce cas, il y aurait lieu de rechercher, pour la zone du Versoys, une
origine plus externe. On peut envisager plusieurs hypothèses.

a. **La zone du Petit-Saint-Bernard correspondrait en synclinial triasique du bord
externe de la nappe du Briançonnais** de H. Scheller, ainsi que l'avait envisagé
ce dernier (1 011, p. 376). Ces deux unités se rejoignaient, en effet, sur le terrain où
elles sont dans la même position tectonique. Mais j'ai montré (p. 297) que ce
synclinial triasique est, en réalité, le prolongement du faîteau de Salins
appartenant lui-même à la nappe des Brèches de Tarentaise. Cette hypothèse
est donc à rejeter.

b. **La série du Petit-Saint-Bernard serait le prolongement de la nappe du Pas du
Roc avec apposition latérale de métamorphisme.** — Cette idée est suggérée par la
similitude apparente des séries schistes des Lias du Petit-Saint-Bernard et de
celui des Évian-Salins (dégagement de la Grande Moulina). Dans ce cas, les
variations latérales de faciès et l'apparition du métamorphisme seraient bien
rapides.

Mais, surtout, si l'on admet, comme je l'ai fait plus haut, que les Préalpes
médianes s'enracinent dans la zone subbriannonnaise (Nappe du Pas du Roc), il
y a là, je crois, une impossibilité. On ne voit pas, en effet, comment les Pré-
alpes médianes qui se prolongent très loin vers le nord jusqu'au lac de Thuon
(et même plus loin encore avec les «klipes»), sans montrer le moindre méta-

CONCLUSIONS GÉNÉRALES.

**C. La série du Petit-Saint-Bernard formerait un feston indépendant intermé-
diaire entre la nappe de Pas du Roc et la zone houillère briançonnaise.** — Tectoni-
quement cette hypothèse serait très plausible, on aurait là la même disposition
en feston que pour la nappe des Brèches de Tarentaise qui, elle aussi, disparaît
complètement vers le sud. Et l'on pourrait alors, comme l'avait proposé
H. Scheller (1 011), envisager que ce feston se prolonge vers l'est par les noyaux
des nappes simploniques qui semblent occuper une position tectonique ano-
loque. Mais, jusqu'à présent, dans les unités voisines, rien ne laisse prévoir au
point de vue paléogéographique, l'existence d'une fosse atteinte par le métamor-
phisme entre la zone du Pas du Roc et la cordillère briançonnaise. Et ceci
d'autant moins que j'ai montré qu'il devait exister entre ces deux unités un
chaînon intermédiaire de «Subbriannonnais interne» équivalent à celui de
l'Ubaye-Embrunais, mais qui a disparu au loin vers les Préalpes, ne laissant ici
que la longue «cieatrice» de la zone des Gypses.

V. APERÇU SYNTHÉTIQUE DES RÉSULTATS ACQUIS.

C'est en 1929 que R. Haug publiait sa grande synthèse des Alpes occiden-
tales (88). On sait que le point capital de cet ouvrage, en ce qui concerne
notre région, fut de montrer que les Préalpes ne devaient pas être des
éléments «auto-alpins», provenant de la zone de l'Ivraie et du Canavese,
comme le pensaient la plupart des géologues suisses, mais qu'elles devaient
s'enraciner, en réalité, dans la zone penninique externe.

Cette manière de voir, si longtemps admise, est actuellement remise en
question par les géologues suisses (p. 33). De plus les études détaillées entre-
prises en France ces dernières années ont apporté diverses modifications au
schéma structural adopté par R. Haug.

Cet auteur, en effet, groupait en une seule et même unité tout ce qui est
compris entre la zone dauphinoise et la nappe du Briançonnais (ici «zone
houillère») et en faisait sa «nappe de l'Embrunais ou des Aiguilles d'Arves»,
dont l'homogénéité résulte, écrivait-il, de «l'existence, de l'Ubaye au Préalpin,
du Nummulitique transgressif, qui débute presque partout par des formations
détritiques ou calcaires appartenant au niveau à Nummulites perforatus et mille-
conçue, d'âge Lutétien. Or ce niveau manque dans les deux zones voisines, dans l'autochtone et dans la zone du Briançonnais (ibid.).

Mais la diversité des séries secondaires, ainsi englobées artificiellement dans une seule et même unité, n'avait pas échappé à l'auteur, qui écrivait également : « la nappe de l’Embrunais, qui ne fait qu’un avec la nappe du Niesen, est, en ce qui concerne les faciès des terrains secondaires, tout à fait remarquable par son hétérogénéité » (ibid., p. 238).

Hétérogène, cette unité ne l’était pas seulement par les séries mésozoïques, mais également par son Nummulitique, contrairement à ce que pensait E. Haug et ainsi que nous l’avons montré plus haut.

Les travaux de M. Gignoux, L. Moret et D. Schneegans au sud et à l’est du Pelvoux, ont fait de cette « zone de l’Embrunais », la zone subbriançonnaise, après en avoir séparé la « zone du Galibier » (s. str.) et la « zone du Flysch de l’Embrunais » (Flysch à Helmnhouloise), pour les rattacher à la zone briançonnaise.

Au nord du Pelvoux, la zone formant la « nappe de l’Embrunais ou des Aiguilles d’Arves » de E. Haug, était divisée en deux parties :

— une zone subbriançonnaise ou du Pas du Roc, comprenant la partie la plus interne (moins celle du Galibier, s. str. rattachée à la nappe briançonnaise);

— une « nappe du Flysch des Aiguilles d’Arves », dont M. Gignoux avait montré le raccordement, au sud, avec le Nummulitique autochtone du sud-est du Pelvoux, et dont il faisait, par suite, de l’ultraudaphinoïde; D. Schneegans y voyait la prolongation vers le sud, de la région étudiée par H. Schueller en Tarentaise.

M. Gignoux et L. Moret avaient, de plus, montré le sens et l’importance, en Maurienne, de la « zone des Gypses », à la limite entre la zone subbriançonnaise (nappe du Pas du Roc) et la zone briançonnaise (ici « zone houillère »).

Depuis, on a vu plus haut que la séparation du Flysch des Aiguilles d’Arves d’écailles à Flysch débutant au Lutétien (Le Bochet-Montricher), accompagné de Crétacé inférieur et supérieur, a permis d’établir la limite précise entre les deux domaines subbriançonnaïses et ultraudaphinoïdes. Cette limite est également celle qui sépare un pays autochton (et parautochtone) d’un pays de nappes proprement dit, c’est-à-dire qu’elle correspond au « bord pennique frontal ».

CONCLUSIONS GÉNÉRALES.

A l’ultraudaphinoïde appartiennent le Flysch des Aiguilles d’Arves et le substratum sur lequel il repose à l’ouest transgressivement, et non par contact onormal, comme on l’avait admis jusqu’ici.

Mais, de plus, j’ai pu établir que la zone du Flysch des Aiguilles d’Arves n’est pas en continuité avec la « zone de l’Embrunais » de H. Schueller en Tarentaise, mais qu’il y a bien là deux unités distinctes :

— à l’ouest, une zone des Aiguilles d’Arves (s. str.), qui se lamine vers le nord et ne dépasse pas l’Isère;

— à l’est, une zone des Brèches de Tarentaise, qui, très développée en Tarentaise, se lamine vers le sud, entre l’Isère et l’Arc.

La première n’est pas une nappe proprement dite, comme on le pensait jusqu’ici, mais simplement une vaste écaille parautochtone appartenant au domaine ultraudaphinoïde. La seconde, au contraire, constitue une nappe et appartient au domaine subbriançonnaïse.

Ce dernier était donc, à son tour, hétérogène et composé de deux nappes principales : celle des Brèches de Tarentaise et celle du Pas du Roc. Mais ces deux unités n’étaient pas encore un cadre assez souple pour y faire entrer tout l’ensemble des faits observés et elles ont dû, chacune, être divisées en deux digestions : du Niéard et de Moëtiers pour la première, de la Grande Moëndu et du Perron des Encombres pour la seconde. A cela s’ajoutent des complications tectoniques et chacune de ces deux nappes subbriançonnaïses compte encore une unité supplémentaire dont l’individualité n’est plus stratigraphique, mais seulement tectonique : le faisceau de Salins pour la nappe des Brèches de Tarentaise et les « écailles externes » pour celle du Pas du Roc.

On voit, dès lors, quelle est, en réalité, la grande complexité de cette « zone de l’Embrunais », dans laquelle E. Haug englobait, très artificiellement, parce qu’on ne les connaissait pas alors avec assez de détails, des séries stratigraphiques bien différentes et des unités tectoniques fortement individualisées. C’est pourquoi cette dénomination de « zone de l’Embrunais ou des Aiguilles d’Arves », n’a pu être maintenue.

L’ensemble de ces faits peut être résumé dans le tableau suivant, où les unités figurent dans leur succession normale d’ouest en est, de haut en bas :
LES ZONES ULTRA DAUPHINOISE ET SUBBRIANÇONNAISE.

Autochtone... Zone dauphinoise (ouverture des massifs cristallins externes).

Parautochtone. Zone ultradauphinoise (Écailles des Aiguilles d’Arves).

> Chassement penique frontal.

- Nappe des Brèches de Tarentaise.
- Écailles externes.
- Pas du Roc.
- Zone des Gypses.

Zone briâonnaise (zone houiller briâonnaise).

PAYS DES NAPPE.

Zone sub-

briâonnaise.

Nappe du

DIGITATION DU NIFARD.
DIGITATION DE MONTIERS ET FAISCEAUX DE SAINIS.
DIGITATION DE LA GRANDE MEUNAIS.
DIGITATION DU PERRON DES ETREMBERS.

CONCLUSIONS GÉNÉRALES.

se traduisent par le fait que le Trias est, dans cette région, discordant sur des synclinaux houillers, piqûres dans le substratum cristallin.

Le Houiller et le Permien ne sont connus, dans notre région, que dans la zone ultradauphinoise (substratum du Flysch des Aiguilles d’Arves) et dans la nappe des Brèches de Tarentaise. Or, dans l’une comme dans l’autre de ces deux unités, il semble y avoir passage continu du Houiller au Permien, puis au Trias. Ainsi, même dans la zone ultradauphinoise, on ne serait pas encore dans le domaine de la « chaîne vindélicienne », marqué par le discordance du Trias sur son substratum.

II. LA PÉRIODE EMBRYONNAIRE.

Durant cette période, vont se déposer, du Trias au Nummulitique, les sédiments qui feront, pour la plus grande part, les matériaux constitutifs de la chaîne.

A. LE DÉBUT DE LA PÉRIODE EMBRYONNAIRE : L’ÉTABLISSEMENT DU RÉGIME Mavin.

Les sédiments qui serviront à l’édification de la chaîne, étant tous d’origine marine, le début de cette période sera donc marqué par l’établissement progressif du régime marin succédant au régime continental du Permien-houiller.

Cet envahissement progressif du domaine alpin par la mer durera tout le Trias et ne deviendra complet qu’avec le Rhétien.

Le Trias moyen, avec ses dolomies et calcéries dolomitiques fort épais dans le Briançonnais, indique une première invasion vers l’est du bras de mer occidental à faciès germanique, par dessus la « chaîne vindélicienne », momentanément plus ou moins submergée.

Le Trias supérieur, enfin, est marqué par une régression momentanée de la mer et l’établissement d’un régime lagunaire (schistes bariolés, gypse et argileuses), sur l’emplacement de la « chaîne vindélicienne », alors que le régime marin franc persiste encore dans le Briançonnais († 48), notre région constituant un terme de transition entre les deux.

Ce passage progressif d’ouest en est des faciès lagunaires aux faciès marins...
Les zones ultradauphinoise et subbriacoïnaise.

Ces caractères se retrouvent encore dans la zone ultradauphinoise des Aiguilles d’Arves, qui n’en est, en somme, que la portion la plus orientale.

Dans le domaine subbriacoïnais, au contraire, nous avons affaire à une zone uniformément moins profonde, mais où se dessine une succession de rides séparées par des sillons, résultat des premiers mouvements embryonnaires.

 Avec la zone des Brèches de Tarentaise, nous voyons s’individualiser une région de hauts-fonds qui ne forment encore qu’un seul, mais aboutiront, plus tard, à une cordillère, la cordillère tarinse. Ce sont des calcaires clairs, marnoïens et zoogènes, bien connus en Tarentaise, au Mont Nédrard, et sous le nom de calcaires de Villette. Ces caractères s’accentuent même sur l’axe de la cordillère où le Lias présente déjà des brèches (Aiguille du Grand Fond, au nord de l’Aiguille (101). La zone du Pas du Boe correspond, dans sa partie occidentale (dipitation de la Grande Moenda), à un sillon à Lias épais et marneux limitant, à l’est, le seul de la zone des Brèches de Tarentaise. Dans sa portion orientale, au contraire (dipitation du Perron des Encombres), elle forme un nouveau sillon, au Lias inférieur, des calcaires à silex relativement peu épais, et au Lias supérieur, un niveau schisteux très réduit.

Dans l’Ubaye-Embrunais, il y a lieu de noter que la dipitation de Piedil présente à peu près les mêmes caractères que celle du Perron des Encombres montrant bien que ces deux unités sont extrêmement voisines.

Enfin, plus à l’est (la cordillère des Sénalenès n’étant pas encore individualisée), on rencontre un nouveau sillon, le sillon de Dronnais, suivi de faciès de plus en plus nérétiques à l’approche de la cordillère briançonnaise (148).

b. La période du Dogger.

Les zones que nous venons de voir s’individualiser au Lias gardent encore les mêmes caractères qui iront en s’accentuant.

L’avant-fossée dauphinoise montre un Dogger qui reste toujours très marneux, bien que le Bajocien y soit un peu plus calcaire.

Dans la zone ultradauphinoise aussi, les faciès marneux persistent dans la partie la plus externe (zone sud, à l’ouest du Col Lombard, en particulier). Mais il semble qu’ils apparaissent déjà des faciès plus nérétiques dans la partie orientale de la zone (écailles à la base du Flysch entre les Aiguilles d’Arves et le Col du Lauraret).
CONCLUSIONS GÉNÉRALES.

Dans la cordillère turine, le Dogger n’est pas représenté, si l’on admet le parallélisme entre les brèches du Niéard et celles du Télegraphe (Oxfordien). De toute façon, le Lias supérieur fut déjà défaut. Mais il est bien difficile de savoir s’il y a eu érosion ou simplement enlèvement des terrains nouvellement déposés par des érosions postérieures.

Le niveau de la Grande Moenda est occupé par un facies relativement profond de dalles calcaires alternant avec des calcaîres, tandis que, sur le seuil du Perra de l’O originate, se déposent des calcaires massifs à Polyptères que l’on retrouve également dans la digression de Piolh.

c. La période callovo-oxfordienne.

Cette période marque un changement complet et généralisé dans la sédimentation : l’envahissement de tout le domaine subbriançonnais par la mer.

Dès la limite se constituant une série de rides et de sillons allongés dans le sens de la chaîne et dans lesquels alternent les facies vearis et tertiaires. Les coupes perpendicularées au grand axe d’allongement de ces zones montrent successivement, d’avant en arrière :

- La zone ultra-déposée (bordure orientale de la zone subbriançonnaise) avec ses facies vacans très épais ;
- La base-fond de la zone des Brèches de Tarentaise ou Cordillère turine avec des calcaîres connexes (Niéard) et même des brèches (Aiguilles du Grand Fond, au nord de l’Isère);
- Le niveau de la Grande Moenda avec ses facies vacans rappelant ceux de la zone ultra-déposée mais beaucoup moins épais.

Enfin, le base-fond du Perra de l’O originate avec ses calcaires à silex de faille épaisse.

Jusqu'à la limite de l'Oxfordien, ces caractères paléontologiques persistaient et même s'exacerbaient : présence de loculicoles dans la cordillère turine (Niéard) et dans la zone du Perra de l’O originate (séries du Télegraphe), dont laquelle le Dogger est formé de calcaires aussi ou partie connexes en partie vacans : absence de brèches et de calcaires massifs et connexes dans le sillon de la Grande Moenda, ainsi que dans la zone ultra-déposée.

Peu après déposent les sédiments du Jurassique supérieur et du Crétacé, probablement sur toute l’étendue de ces différentes unités. Mais il n’est pas possible de préciser ce point, car alors intervient le phénomène anomalosé qui affectant très fortement la zone ultra-déposée et la cordillère turine et qui sont suivis d’une évolution entamant profondément la couverture sédimentaire jusqu’à ne laisser subsister aucune trace des terrains sus-jacents à l'Oxfordien (Oxfordiens du Gol Lombard pour la zone ultra-déposée, jurassiques du Niéard pour la cordillère turine) et même à décaper, par places, le sous-crétacé.

Dès l’Oxfordien, ces phénomènes s’atténuent au contraire beaucoup.

De ces phénomènes dépendent naturellement les répertoires du Nummulitique avec sa subsurface : alors qu’il est plus dense et les fortes fonctions discordantes (jusqu’au Jérusalem en Chine de Valabre) dans la zone des Aiguilles d’Arves et la cordillère turine, il est, dans le sillon du Perra du Roc, transgressif mais peu discordant (jusqu’au Crétacé inférieur dans l’Oxfordien de Valabre) et même dans, avec le Crétacé supérieure une série concrétionnelle (séries de Lilium), où différences correspondant sans doute à une série de nouvelles rides et de nouvelle sillon à la fin du Crétacé et au début de l’Oxfordien.

Enfin, s’ils laissent aussi des différences d’épaisseur considérable que l’Oxfordien extrait le sillon du Pas du Roc, relativement stable et celles des Aiguilles d’Arves disparaissant des phénomènes de subsidence pouvant en Nummulitique d’y déposer n’auraient.

E, Écuve de la zone du Pas du Roc, dans la zone des Aiguilles du Rove, Fq, Fc, Fg représentent les grès et conglomerats de jaren et les mythes, calcaires, schistes et pérus : Gr, Crétacé supérieur ; C, Crétacé inférieur ; J, Jurassic supérieur ; Os, Oxfordien ; Br, brèches du Télegraphe et du Niéard ; Ch, Callovoium, J, Dogger, L, Lias supérieur et inférieur ; T, Trix et Rhéien ; P, Permien-Rouillier ; Gr, sous-crétacé. 19.
Les zones ultradauphinoise et subbriannnoise.

dauphinoise et l'extension à cette zone des faciès vaseux de l'avant-fosse. Ce phénomène est dû à un mouvement général de subsidence auquel n'échappe qu'incomplètement la cordillère tarine.

Dans l'avant-fosse dauphinoise, les faciès vaseux ont évidemment continué de régner. Mais le seul affleurement caractérisé paléontologiquement est la bande oxfordienne ultradauphinoise du Col Lombard.

La cordillère tarine elle-même n'a pas résisté complètement à cette invasion marine et la présence de la mer s'y est traduite par la formation de brèches (Mont Néard, Aiguille du Grand-Fond), résultant du démantèlement sur place de la crête précédemment formée, dont les éléments, rapidement cementés, ont gardé des arêtes vives.

Dans la zone du Pas du Roc, la submersion est accompagnée de subsidence, comme en témoignent les grandes épaisseurs des calcaires colloïdiens et des schistes oxfordiens. Mais la nature de haut-fond de la digitation du Perron des Encombres reparti néanmoins dans les brèches du Télégraphe qui séparent ces deux étages et ne se retrouvent pas dans la digitation de la Grande Moenda.

Vers l'est, enfin, dans les unités plus internes de l'Ubaye-Embrunais, ce terrain diminue d'épaisseur et finit par faire complètement défaut sur la faîte de la cordillère briannnoise, après avoir été représenté dans la cordillère des Sétolanes, comme dans la cordillère tarine, par une masse de brèches sous-marines.

d. La période du Jurassique supérieur.

Dans la zone étudiée, cet étage n'est représenté que par quelques lambeaux isolés, toujours décollés : on ne peut donc pas observer les rapports stratigraphiques de ce terrain avec les autres terrains de la série.

Le Jurassique supérieur est inconnu dans la couverture des masses cristallines externes, de même que dans le substratum des Aiguilles d'Arves. Mais il peut s'agir là, non pas d'une absence de dépôt, mais d'une érosion au moment des mouvements anténummulitiques, car la mer à Calpionelles semble bien s'être étendue à l'ensemble du domaine alpin dans lequel elle marqua, par l'uniformité de ses dépôts, une période de stabilisation dans l'orogénèse alpine.

Dans la cordillère tarine, cet étage fait également défaut. On n'a pas signalé jusqu'ici, d'éléments susceptibles de se rapporter au Malm dans les congo-

CONCLUSIONS GÉNÉRALES.

méraux du Nummulitique. Il est cependant possible que l'absence de ce terrain soit due aux érosions postérieures aux plissements anténummulitiques. Le Malm étant connu dans la cordillère briannnoise, il semble que ce terrain aurait dû aussi se déposer à l'emplacement de la cordillère tarine.

Dans la nappe du Pas du Roc, existent des lambeaux de calcaires cherts, qui, par leur faciès, rappellent tout à fait le Malm de l'Ubaye-Embrunais.

e. La période créatique.

Ici encore, nous n'avons affaire, dans notre région, qu'à des lambeaux très fragmentaires, ne nous donnant que des reseignements incomplets; le passage du Malm au Crétace inférieur, en particulier, n'a pas pu y être observé.

Le Crétace inférieur avec sa sédimentation variée et ses microbrèches, marque une reprise, du reste de faible amplitude, des mouvements qui s'étaient interrompus durant le Malm. Avec le Crétace supérieur, au contraire, s'étendre sur tout le domaine alpin, le régime pelagique de la mer à Rosalines indiquant un envahissement général et uniforme d'une région momentanément stable.

Le Crétaque est, jusqu'à présent, inconnu de la zone ultradauphinoise et dans la zone des Brèches de Tarentaise. Mais on sait qu'au sud du Pelvoux, on connaît le Crétaque, avec des variations latérales de faciès progressives, dans toutes les unités d'ouest en est. La mer créatique a donc dû également envahir toute la région correspondante au sud du Pelvoux, et l'absence du Crétaque dans la zone des Aiguilles d'Arves et la cordillère tarine est peut-être due à la grande amplitude qu'y ont pris les mouvements anténummulitiques et au jeu des érosions ayant suivi ces mouvements.

Dans la nappe du Pas du Roc, il y a continuité entre le Crétaque inférieur et le Crétaque supérieur, la limite étant cependant parfois marquée par un petit niveau de brèches (Saint-Félix).

Enfin, vers l'est, le Crétaque inférieur est encore bien représenté dans les nappes de l'Ubaye, avant que l'on atteigne le domaine du Crétaque supérieur transgressif avec la cordillère briannnoise.

C. LA FIN DE LA PÉRIODE CRETAQUIEUSE :

LES MOUVEMENTS AVANT-CORRECS ANTIÉNUMMULITIQUES ET LA SÉDIMENTATION DU FLYSCH.

Des mouvements d'une amplitude considérable vont se produire mainte-
Les zones ultradauphinoise et subbriantonnaise.

...nant dans notre région, plus particulièrement dans les zones des Aiguilles d'Arves et des Brèches de Tarentaise.

On peut qualifier ces mouvements d'anténummulitiiques, en entendant par là qu'ils sont antérieurs à la transgression nummulitique dans la région considérée, et non pas nécessairement antérieurs au Nummulitique, donc crétaçés, puisque l'Éocène inférieur fait généralement défaut.

La transgression nummulitique étant priabonienne dans les Pelvoux et lutétienne dans la zone subbriantonnaise, il est probable que ces mouvements, même s'ils ont débuté au Crétacé supérieur, se sont encore étendus à l'Éocène inférieur : c'est la raison pour laquelle ils sont parfois désignés sous le nom de mouvements anténummulitiques (1).

a. La zone des Aiguilles d’Arves.

L'intensité des mouvements anténummulitiques a été très grande dans cette région où ils provoquèrent, en même temps qu'une surrection généralisée, de nombreux plis, encore en partie discernables actuellement, ainsi que l'indique la transgressivité du Flysch sur tous les termes de son substratum, du Permien à l'Oxfordien.

Au sud de l’Arc, le matériel souple du substratum du Flysch, a, dès cette époque, été affecté de deux plis principaux, l’un, anticalin, où se sont amassés des gypse, et qui, durant la phase alpine proprement dite, donnera lieu au décrolement de base de la zone ultradauphinoise; l'autre, synclinal, souligné par l'Oxfordien du Col Lombard et qui se prolonge, dans le Liass, jusqu'à la vallée de l'Arc (Villargondran).

Au nord de l'Arc, ces plissements ont été beaucoup plus violents et le Flysch se montre transgressif sur tous les éléments du substratum, jusqu'au Permien. Nous sommes, en effet, là, dans une zone plus interne (p. 119).

Venant de l’est, la mer nummulitique s’est alors attaquée à cette zone et l’a peu à peu submergée, cependant qu’au début les fleurettes déversèrent à la mer les éléments rocheux, arrachés aux terres émergées de l’ouest (massifs cristallins externes), donnant lieu à la formation des épis conglomeratiques et grès de base du Flysch véritable, dépôt de pisolithes.

(1) On sait que E. Argand (82) estima qu’il y avait « synergie » entre ces plissements anténummulitiques et les plissements heramiens qui ont affecté les Montagnes Rocheuses du Basien. Tout dernierement, G. Richter a repris également ce terme de « plissements heramiens pour les Alpes françaises et la région pyrénéo-provençale » (147).
(écailles de Montdenis et de Claret), il n'en est plus ainsi dans les unités orientales. Là, au contraire (écaill[e d'Albanne), existe un passage progressif du Crétacé supérieur au Nummulitique en une série compressive traditionnant l'amortissement, vers l'est, des mouvements anténummulitiques si intenses à l'ouest.

La zone du Pas du Roc forme donc le chaînon intermédiaire entre les zones précédentes caractérisées par la violence des mouvements anténummulitiques et les zones plus internes où, entre les cordillères submergées seulement au Lutétien, on observe dans les sillons intermédiaires, une continuité de sédimentation du Crétacé au Nummulitique (148).

III. LA PÉRIODE PAROXYSMALE :
LES PLISSEMENTS ALPINS PROPREMENT DITS.

Les plissemens alpins ne se sont pas produits de façon brusque et rapide, mais ont été progressifs et se sont étendus sur une longue période. Aussi allons-nous, en ce qui concerne notre région, tenter de les décomposer le plus possible.

Nou arriverons ainsi à nous faire une idée plus précise de la façon dont les diverses unités constituant cette région ont pu se mettre en place et occuper les positions où nous les trouvons aujourd'hui.

Il est évident qu'un tel essai d'interprétation et de synthèse comporte une part d'hypothèse imprécise. Mais, basé sur les observations de détail des chapitres précédents, cet essai me paraît, néanmoins, pouvoir être tenté (fig. 62).

A. LA MISE EN MARCHE DES NAPPES.

Le resserrement considérable du géosynclinal alpin provoqué par les premiers mouvements paroxysmaux, a eu pour premier effet la surrection des zones les plus internes.

Mais nous avons vu qu'au même moment (Plioléonien) des phénomènes de subsidence très importants continuaient à affecter les zones plus externes (zone des Brèches de Tarentaise, et, surtout, zone des Aiguilles d'Arves). Ainsi a dû se produire, tout d'abord, un jeu de bascule entre les zones internes, déjà en surrection et les zones externes affectées de subsidence.

CONCLUSIONS GÉNÉRALES.

C'est alors que, les mouvements de compression et de surrection s'accentuant dans les zones internes, les énormes masses plastiques nouvellement exondées eu tendance à se déverser et à s'accroître vers les dépressions occidentales, où les phénomènes de subsidence régnent sans doute encore au début de la surrection des zones orientales.

B. LA MISE EN PLACE DES DIVERSES UNITÉS.

Le mécanisme de mise en place n'a pas été le même pour toutes les unités que constituent notre région. Les mouvements ayant débuté tout d'abord dans les zones internes, et n'étant propagés qu'ensuite vers les plus externes, refoulant de plus en plus loin vers l'ouest la mer alpine, c'est par les unités les plus orientales que nous commencerez.

On sait que l'interprétation de la mise en place des nappes par gravité, peut-être pressentie par M. Bertrand dès 1884 (p. 12), puis entrevue par H. Sartor (63) et M. Lugeot, a été reprise récemment, en France, par L. Merei dès 1938 (148), ainsi que par M. Bignoux et D. Schneegans (143, 148 et 158) et, en Suisse, par M. Lugeot et E. Gagné (159, 156).

Pour une telle interprétation puissante être envisagée, deux conditions doivent être réalisées. Tout d'abord, l'existence de faits d'observation montrant que la nappe a été effectivement le siège d'une tectonique souple et que des décollements importants peuvent expliquer l'écoulent à grande distance de cette masse plastique, ainsi libérée de son adhésion initiale à son substratum. Mais il faut aussi qu'une déclivité ait existé sur laquelle un tel écoulent ait pu se produire par simple gravité.

1. La nappe du Pas du Roc. — Ces conditions, nous les trouvons parfaitement réalisées dans la nappe du Pas du Roc (175 et 176).

J'ai montré plus haut combien l'existence d'une tectonique souple est évidente dans cette nappe et magnifiquement illustrée par les belles charnières du massif de la Croix des Têtes, dans la vallée de l'Arve (pl. IV) et celles du massif des Aiguilles de la Grande Meonda (fig. 56).
LES ZONES ULTRAUDAUPHINOISE ET SUBBRIANÇONNAISE.

J'ai, d'autre part, indiqué l'importance capitale qu'y ont jouée les décollements. Principalement, le décollement majeur du Trias gypseux qui a complètement libéré la masse de la nappe de son substratum et l'en a séparée d'une façon si parfaite que l'on ne retrouve plus le moindre lambeau de ce substratum dans la nappe actuelle.

Enfin, nous venons de voir (p. 248) qu'un jeu de basculement a dû exister entre les zones internes dont la surcroissance débutait, alors que les zones externes étaient encore affectées de subsidence : ainsi a dû se trouver réalisé le plan incliné sur lequel les nappes ont pu s'écouter par simple gravité. Comme pour les nappes de l'Ubaye, c'est donc bien par le jeu d'une « tectonique d'écoulement » que la nappe du Pas du Roc a dû se mettre en place.

Quelle a pu être l'avancée maximale de la nappe ? Il est difficile d'en préciser vers le sud, où l'on n'en retrouve aucun témoignage à l'ouest de la région étudiée. Toute trace en a disparu, là, par suite de la surcroissance des massifs cristallins externes et des érosions postérieures, comme c'est le cas, plus au nord, sur l'emplACEMENT du Mont Blanc.

Mais au nord, nous avons vu que les klippes de Savoie doivent correspondre au moins en partie à la nappe du Pas du Roc et à ses « écaillés externes » : elles en constituent le témoin le plus occidental, éloigné de 35 kilomètres environ de ses racines apparentes.

2. Les nappes subbriannonnaises internes (Ubaye-Embrunaises). — On sait que c'est d'une façon analogue que les nappes de l'Ubaye-Embrunaises se sont mises en place. Mais, vers le nord, on en perd presque complètement la trace : seule la vaste cicatrice de la « zone des Gypses », entre la nappe du Pas du Roc et celle du Briançonnais, marque encore la trace des nappes subbriannonnaises internes, prolongement septentrional des nappes de l'Ubaye-Embrunaises (p. 169).

Ces nappes ont dû être affectées, au nord de l'Arc, d'une tectonique tout à fait analogue à celle de la nappe du Pas du Roc. Mais, « rampant leurs anarres », si l'on peut ainsi s'exprimer, ces nappes ont dû décliner par-dessus la précédente jusqu'au Chablis, ne laissant plus dans notre région, comme trace de leur emplacement primitif, que la longue cicatrice de la zone des Gypses.

b. La nappe des Brèches de Tarentaise : tectonique de « nappe cassante ».

C'est par un processus bien différent, au contraire, qu'a dû se faire la mise en place de la nappe des Brèches de Tarentaise (175 et 176). Car la différence capitale existant entre cette nappe et les précédentes, est, précisément, l'absence de ces décollements de grande envergure qui caractérisent les unités plus internes. Et nous voyons toute la couverture sédimentaire liée, au contraire, en un bloc stratigraphique, à son substratum cristallin : l'ensemble reste toujours solitaire.

Pendant que les unités plus internes déferlaient par-dessus la nappe des Brèches de Tarentaise, le resserrement croissant du géosynclinal alpin faisait rejoindre les « coins cristallins » du substratum, aboutissant ainsi à un style de nappe cassante. Style essentiellement déterminé par le jeu de ces « coins » se chevauchant les uns les autres, la couverture sédimentaire en restant plus ou moins solidaire et ne faisant que se friser en plis relativement peu importants, lui permettant simplement de s'adapter aux mouvements de son substratum. Seul, le chevauchement des unités plus internes a pu ensuite modifier plus ou moins la disposition de ces plis.

Il est bien évident qu'un tel type n'a pas permis l'écoulement de la nappe. Aussi, son chevauchement sur les unités plus externes n'a-t-il pas été de grande envergure. La nappe des Brèches de Tarentaise n'a jamais dû dépasser l'emplacement actuel de Belledonne et du Mont Blanc : aucune trace, en effet, ne semble s'en retrouver dans les klippes de Savoie et il en est probablement de même du Chablais.

c. L'écaillé des Aiguilles d'Arves.

Nous n'avons plus affaire ici à une nappe, et le contre-coup des mouvements alpins s'est simplement, vers le sud, accentué les plis anténummulitiques préexistants dans le substratum du Flysch des Aiguilles d'Arves et plus spécialement l'anticlinal du Mont Chavin. Sa charnière, où s'étaient accumulés les gypse ensanglants, a éclaté sous le poids des nappes, donnant naissance à un « pli-faille », puis, plus au nord, à un décollement de cette unité ultradauphinoise sur la zone dauphinoise aboutissant, finalement, au laminage complet de l'unité un peu au sud de l'Isère.

Il va de soi qu'un tel style n'a pu amener qu'un déplacement restreint de cette unité venue chevaucher la zone dauphinoise, mais n'ayant pas déferlé à longue distance comme les nappes précédentes. Elle n'a donc pu donner lieu à des masses en recouvrement lointaines et l'on n'en retrouve aucune trace dans les klippes de Savoie.
C. LA SURRECTION DES MASSIFS CRISTALLINS EXTERIENS.

Toutes les unités sont désormais en place. Mais un fait nouveau va encore intervenir : la sucession des massifs cristallins externes.

Comme l’avait admis L. Moret, dès 1938 (143) et comme l’ont à nouveau indiqué, récemment, M. Luçon et E. Gagnepain (156), il est impossible de concevoir la mise en place des nappes par gravité, au delà des massifs cristallins externes, sans admettre que la sucession de ces massifs a été postérieure à cette phase d’écoulement des nappes.

Au surplus, on sait qu’à l’est de ces massifs, on observe, dans les différentes unités tectoniques, de forts pendants est. Ces pendants pourraient être dus au franchissement des massifs cristallins par les nappes. mais on conçoit difficilement quelles forces auraient pu avoir pour résultat de permettre à ces nappes de submerger et de déborder largement à l’est un tel obstacle.

Au contraire, cette allure isocinale à plongement est s’explique très bien, si l’on admet comme postérieure à la mise en place des nappes la sucession de ces massifs. Les derniers mouvements paroxismaux de la phase alpine auraient ainsi eu pour effet une compression tangentielle généralisée, amenant la sucession des massifs cristallins externes et l’écrasement, contre ces butoirs nouvellement jaillis, de toutes les unités plus orientales (unités externes dauphinoises ou ultra-dauphinoises, nappes ou racines de nappes éculées au loin), leur imprimant alors cette structure isocinale si nette que nous leur voyons aujourd’hui.

IV. LA FIN DE L’OROGÈNÈSE ALPINE.

La phase paroxismale de l’orogénèse alpine est terminée. Seuls se produisent encore maintenant quelques mouvements attardés. Mais ils ne peuvent être étudiés dans notre région où le terrain le plus récent est encore prisanien (gisement d’Albanne, au sommet du Flysch des Aiguilles d’Arves) et, par conséquent, antérieur à la phase paroxismale.

Pour pouvoir suivre la fin de cette orogénèse, il faudra alors s’adresser aux régions plus externes où, en bordure de la chaîne émergée, d’autres sédiments se déposaient dans lesquels elle a pu s’inscrire et où nous pouvons aujourd’hui la déchiffrer (172).
Fig. 6a. — Schéma de la mise en place des nappes en Terentiaine.

A. Phase d'écrasement par gravité.
1. Les nappes, mises en marche par la surcroissance des zones internes, s'écrasent vers la dépression occidentale du Piemont des Aiguilles d'Arves (en pointillé).
2. L'écrasement des nappes internes provoque le décrochement de boucles dans les unités anténappies en une scissure d'intercalation.
3. L'opposition entre les nappes internes et la nappe des Bédences de Terentiaine s'accentsue : les premières continuent à s'écraser en compresse, perdant plus ou moins leurs relations avec leur substratum ; la seconde, au contraire, déterminée par un soulèvement local du socle, qui reste en connexion avec ses couronnes, prend un style de nappe cassante.
Les nappes internes isolent le noyau des masses cristallines externes dont elles entourent la convexité en une nouvelle nappe (I). L'ensemble de ces nappes s'étale ensuite, jusqu'à l'emplacement actuel des klippes de Savoie.

B. Phase de recroissance des masses cristallines externes.
A. Les masses cristallines externes se soulevèrent, entrainant avec eux les nappes qui les recouvrent et boudinant à 45° toutes les unités qui les bordent à l'est.
B. La disposition actuelle des unités.
C. Après la surcroissance des masses cristallines externes, l'érosion a fait complètement disparaître les nappes qui les recouvraient, séparant ainsi les klippes de Savoie, à l'ouest, de leurs escarnes en Terentiaine, à l'est.
CONCLUSIONS GÉNÉRALES.

Enfin, c'est l'érosion qui s'attaque à la chaîne, la ronge, en entraîne les débris à la mer et dont l'œuvre a donné les montagnes que nous connaissons aujourd'hui avec les entailles profondes de leurs grandes vallées burinées par les glaciers, puis par les torrents et rivières actuels.

Cette érosion, qui a joué très violamment dans la zone des massifs cristallins externes après leur surrection, les a découpés de la plus grande partie de leur couverture, faisant ainsi apparaître leur socle cristallin, mais elle a aussi, a fortiori, enlevé complètement les ances charriés qui les avaient recouverts, et séparé ainsi définitivement les lambeaux de recouvrement de leurs racines (fig. 62).

Ainsi, nous avons entravé la fin de l'orogénèse hercynienne; puis nous avons assisté à la longue et patiente élaboration de la chaîne alpine durant la phase embryonnaire, où les premiers mouvements, que l'on appelle pour cette raison précoces, ont déjà déterminé la répartition des faciès suivant de longues bandes orientées dans le sens de la chaîne et sans lesquelles aujourd'hui tout déchiffrement de l'orogénèse alpine serait impossible. Nous avons observé ensuite l'amplitude qu'ont revêtu les mouvements anténummulitiques, principalement dans une région intermédiaire entre les domaines dauphinois et subbriantonnais, la zone des Aiguilles d'Arves et celle des Brèches de Tarentaise.

Puis nous avons vu se dérouler la phase paroxysmale et nous avons pu, après le premier resserrement du géosynclinal alpin ayant provoqué l'ébranlement initial des nappes, distinguer deux phases principales dans ces mouvements: l'une de mise en place par gravité des nappes formant une masse plastique s'écoutant au loin; l'autre de compression tangentielle ayant provoqué la surrection définitive des massifs cristallins externes et l'écrasement, contre eux, de tout ce qui les bordait à l'est, surimposant ainsi un style isocinal à pendages est très redressés, au style coudé, à belles charnières régulières, de la phase précédente.

Enfin, des plissements attardés se produisent encore. Mais ils ne peuvent être étudiés qu'en bordure de la chaîne, où l'on retrouve des terrains déposés postérieurement aux mouvements de la phase paroxysmale. Et l'histoire de la chaîne alpine s'achève, alors, par le jeu d'une érosion implacable qui vient démanteler l'œuvre si laborieusement érigée.

Ainsi se termine, pour nous, le déroulement de cette orogénèse qui a donné naissance à la magnifique chaîne que nous connaissons aujourd'hui, si merveilleusement sculptée par une érosion qui doit, hélas, la conduire au tombeau.
c'est-à-dire à la mer par où tout commence et où tout s'achève. Mais à une allure heureuse presque imperceptible pour nous autres, passagers d'un jour emportés dans le tourbillon du monde, disparus aussitôt qu'apparus, sans que rien ait eu le temps d'évoluer beaucoup sur cette terre, dont la face a pourtant si souvent changé d'aspect, comme je viens d'essayer de le retracer pour une de ses parcelles, infime, certes, mais peut-être un peu privilégiée...
LES ZONES ULTRA DAUPHINOISE ET SUBBRIANÇONNAISE.

Attribution au Crétacé inférieur, connu seulement à Giton, de calcaires considérés jusqu’ici comme basiques, dans la vallée de l’Arc.

Mise en évidence d’un conglomerat-brecque à la base du Crétacé supérieur de la vallée de l’Arc (Saint-Félix).

Division de l’ancien Flysch des Aiguilles d’Arves en trois zones distinctes :
- Flysch des Aiguilles d’Arves (s. str.), partout transgressif et non décollé sur son substratum comme on l’avait admis jusqu’ici, et composé, au-dessus des grès et conglomerats de base, d’une colore de « triologie priabonienne » (vallée de l’Arc). Découverte, à son sommet, du niveau fossile priabonien d’Albâne.
- Flysch de la nappe des Brèches de Tarentaise surtout gréseux et conglomeratique, daté, à la base, par les couches à grandes Nummulites lutétiannes du Niéard; ce Flysch est transgressif sur les brèches jurassiques du Niéard.

Mise en évidence de plusieurs zones et sous-zones de faciès d’où est :
- zone ultra dauphinoise dont les faciès vasseux très épais rappellent encore ceux de la zone dauphinoise;
- zone subbriantonnaise dont les faciès forment une transition entre les précédents et ceux de la zone briantonnaise; elle est subdivisée en :
 - sous-zones des Brèches de Tarentaise, caractérisée par ses faciès de cordillère (cordillère turine);
 - sous-zones du Pas du Roc, divisées en une digitation de la Grande Moenda à faciès vasseux, ayant constitué un « sillon » entre les deux unités qui l’encaissent; et une digitation du Perron des Encombres à faciès de haut-fond jusqu’au Malm.

B. TECTONIQUE.

Mise en évidence de plusieurs unités tectoniques, se superposant, en partie, aux zones de faciès précédentes. Ce sont, d’où est :
- l’écaille ultra dauphinoise des Aiguilles d’Arves;
- la nappe des Brèches de Tarentaise, divisée à son tour en : digitation du

APPENDICE.

Niéard (celui-ci par conséquent enraciné à l’ouest de la nappe du Pas du Roc), digitation de Moûtiers (dont le petit massif cristallin d’Hautecouz forme le noyau), faisceau de Salins;
- la nappe du Pas du Roc, divisée en : écaillés externes (et lambeaux synclinaux de Giton), digitation de la Grande Moenda et digitation du Perron des Encombres;
- la nappe des Gypses, avec ses blocs-klippes de roches diverses noyées dans les gypses.

Etude détaillée des plus de ces diverses unités et du « style tectonique » propre à chacune d’elles :
- décollé en « écaille paraschooite » de la zone ultra dauphinoise;
- style de « nappe cassante » de la zone des Brèches de Tarentaise, due à la constitution particulière de sa série en un « bloc stratigraphique » lié au socle cristallin (Cirque de Valbuche, petit massif d’Hautecouz);
- « tectonique d’encaissement » de la nappe du Pas du Roc, due à la plasticité des terrains qui la composent, et à l’existence de deux décollements majeurs, au niveau de l’Oxfordien (décollé des « écailles externes ») et au niveau du Trias gypseux (décollement complet de l’ensemble de la série, lui permettant de déferer au loin);
- la zone des gypses, vaste « cicatrice » correspondant à la partie la plus interne du Subbriantonnaise.

Etude des divers mouvements tectoniques :
- mouvements précurseurs de la période embryonnaire (Trias à Crétacé), provoquant la différenciation en zones de faciès allongées dans le sens de la chaîne;
- mouvements avant-coureurs anténummulitiques, surtout développés dans la zone ultra dauphinoise (Flysch des Aiguilles d’Arves transgressif sur tous les termes de son substratum jusqu’au Permien), et dans la zone des Brèches de Tarentaise (Flysch transgressif sur tous les termes inférieurs jusqu’au Cristallin (Valbuche);
- mouvements alpins de la phase paraoyamale, aboutissant à la mise en place des nappes, suivie de la surcroissance des massifs cristallins externes, déterminant le basculement, vers l’est, de toutes les unités plus internes.
LES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE.

Enfin, étude, dans le cadre général de la chaîne alpine, des relations de de toutes ces unités avec celles des régions voisines :

— région septentrionale étudiée par H. Scheller (fouille de Bourg-Saint-Maurice au 150.000²);

— région méridionale : zones ultradauphinoise et subbriançonnaise à l'est et au sud du Pelvoux;

— problème de l'enracinement des klippes de Savoie.

BIBLIOGRAPHIE.

On pourra également consulter pour la bibliographie de la région étudiée : le « Répertoire de la Bibliographie géologique du Sud-Est de la France » (81, 83, 110), et l'ouvrage de W. Kihm et J. Béruit (173); pour celles des régions voisines, les ouvrages de M. Guenin et L. Moret (143), D. Sennert (148) et H. Scheller (101).

ABBREVIATIONS.

C. R. S. G. F. Comptes-rendus sommaires de la Société géologique de France.
M. G. G. F. Mémoire du Service de la carte géologique de France.
T. L. G. Travaux du Laboratoire de géologie de Grenoble.

1. — 1779-1796. Sennert (W.) — Voyage dans les Alpes précédé d'un essai sur l'His-

toire naturelle des environs de Genève. (4 vol., Genève.)

2. — 1863. HSBART de TREVY. — Mémoire sur l'anthracite.....

(Journal des Mines, t. XIV, n° 81.)

3. — 1868. BUSCHART de VILLERS. — Observations géologiques sur des terrains de transition qui se rencontrent dans la Faucigny et autres parties de la chaîne des Alpes.

(Journal des Mines, t. XXIII, n° 137.)

5. — 1883. BICKFORD (B.) — Travels comprising observations made during a residence in the Faucigny and various parts of the Gruyère and Pennine Alps in the Switzerland, in the years 1890, 1891 and 1892.

(2 vol., London.)

10. — 1855. Gras (Sc.). — Analyse des travaux publiés jusqu'à ce jour en langue française, anglaise et italienne sur les terrains anthracifères des Alpes. (B. S. G. F., 3e série, t. XII, p. 636.)

15. — 1858. Loy (Ch.). — Réponse aux observations de M. Gras touchant les gisés à anthracite du Briançonnais. (B. S. G. F., 3e série, t. XVI, p. 87.)

18. — 1859. Loy (Ch.). — Note sur une carte géologique du Dauphiné et sur quelques points de la géologie de cette province. (B. S. G. F., 3e série, t. XVI, p. 87.)

BIBLIOGRAPHIE.

19. — 1859. Loy (Ch.). — Note sur l'anomalie stratigraphique de Petit-Cœur, en Tarentaise. (B. S. G. F., 3e série, t. XVII, p. 805.)

20. — 1859. Loy (Ch.). — Note sur les gisés de la Maurienne et du Briançonnais. (B. S. G. F., 3e série, t. XVII, p. 91.)

22. — 1860. Loy (Ch.). — Nouveaux documents sur les gisés de la Maurienne et des Hautes-Alpes. (Lettre à M. Hébert.) (B. S. G. F., 3e série, t. XVIII, p. 177.)

24. — 1860. Loy (Ch.). — Sur les reversements de stratification dans le Jura et les Alpes. (B. S. G. F., 3e série, t. XVIII, p. 876.)

25. — 1860. Loy (Ch.). — Note sur la constitution stratigraphique de la Haute-Maurienne. (B. S. G. F., 3e série, t. XVIII, p. 31.)

29. — 1861. Loy (Ch.). — Compte-rendu des excursions de la Société géologique de Savoie. (B. S. G. F., 3e série, t. XVIII, p. 705.)
262 LEZ ZONES ULTRA.DAPHNOISE ET SERRBIANCONNAISE.

33. — 1863. — Rolland-Binder. — Note sur les régions de Saint-Jean-de-Maurienne, Modane, Bardonnèche, Briançon. (Soc. savoisien d'Ét. min.)

34. — 1861. — Valley (L’Abbe). — Études sur l’Infralitique de Matrigné et de la Maurienne. (Mon. Ac. Savoie, 2e série, t. V.)

35. — 1864. — Lorth (Ch.). — Essai d’une nouvelle explication de l’anomalie de Petit-Gour, en Tarentaise. (B. S. G. F., 2e série, t. XXII, p. 48.)

36. — 1866. — Lorth (Ch.). — Essai sur la structure géologique de la partie des Alpes comprise entre le Mont Blanc et le Mont Víno. (B. S. G. F., 2e série, t. XXIII, p. 389.)

37. — 1866. — Lorth (Ch.) et l’Abbé Valley (P.). — Carte géologique de la Maurienne et de la Tarentaise (Savoie). (B. S. G. F., 2e série, t. XXIII, p. 389.)

38. — 1867. — Lorth (Ch.). — Note sur les sismicités des affleurements de failles dans les Alpes. (B. S. G. F., 2e série, t. XV, p. 335.)

40. — 1871. — Lorth (Ch.) en collaboration avec MM. Piller et Valley. — Carte géologique du département de la Savoie, à l’échelle du 1/50,000. (Lit. Perrin, Chambéry.)

41. — 1872. — Lorth (Ch.). — Notes sur quelques faits de la structure des massifs centraux des Alpes. (B. S. G. F., 3e série, t. I, p. 397.)

42. — 1874. — Lorth (Ch.). — Étude sur l’orphographie des Alpes du Dauphiné et de la Savoie considérée dans ses rapports avec la structure géologique de ces montagnes. (Ann. G. A. F., 1re année.)

BIBLIOGRAPHIE.

1877. — Huret (ser. à). — Note sur les Nummulites des Alpes occidentales. (Soc. lat. Se. nat., Bourg.)

1881. — Lorth (Ch.). — Sur les schistes cristallins des Alpes occidentales et sur le rôle des failles dans la structure géologique de cette région. (B. S. G. F., 3e série, t. IX, p. 659.)

1881. — Lorth (Ch.). — Comptes-rendus des réunions de la Société géologique de France dans le département de l’Isère. (B. S. G. F., 3e série, t. IX, p. 659.)

1881. — Lorth (Ch.). — Observations sur le rôle des failles dans la structure géologique des Alpes occidentales. (C. R. A. S., t. XCVII, p. 881.)

1889. — Lorth (Ch.). — Communication sur le double pli des Alpes de Glaris. (B. S. G. F., 3e série, t. XI, p. 14.)

1885. — Lorth (Ch.). — Aperçu sommaire sur la structure géologique des Alpes occidentales. (Notice Géomol. et env., XIV Comp., Ass. fr. av. Sciences, Mâconville, Æcé.)

1887. — Bertrand (M.). — L’état témoin du Beossois (Var), Analogie avec le bassin houiller franco-belge et avec les Alpes de Glaris. (B. S. G. F., 3e série, t. XV, p. 667.)

1890. — Kelly (W.). — Contribution à la connaissance géologique des chaînes alpines entre Modène (Savoie) et Barcelonnette (Basses-Alpes). (C. R. A. S., t. XXI, p. 63.)

1890. — Kelly (W.). — Évolution tectonique des Alpes occidentales. (C. R. Soc. nat. Évre, mai.)

1890. — Kelly (W.). — Note sur deux phases orogéniques peu connues de l’histoire des Alpes françaises. (Ball. Soc. nat. Évre, 17 mars.)

1890. — Kelly (W.). — Sur la découverte de la Lias coralligène en Savoie. (C. R. Soc. nat. Évre, novembre.)
LES ZONES ULTRA-DAUPHINOISE ET SUBBRIANÇONNAISE.

55. — 1890.... KELLEN (W.). — Sur un calcaire corallique du Lias. (C. R. S. G. F., 15 décembre.)

58. — 1891.... KELLEN (W.). — Sur l'allure tournante des plus isoclines, dans les montagnes de la Savoie. (B. S. G. F., 3e série, t. XIX, p. 115.)

60. — 1893.... KELLEN (W.) et Révié (J.). — Sur la bande synclinales nummulitique des Aiguilles d'Arves. (B. S. G. F., 3e série, t. XXI, p. 86.)

67. — 1896.... Hauy (E.). — Observations sur la division des Alpes occidentales en zones et sur certains points de la tectonique des zones externes. (B. S. G. F., 3e série, t. XXIV, p. 34.)

BIBLIOGRAPHIE.

69. — 1899.... KELLEN (W.). — Sur certains points de la structure des Alpes françaises (à propos d'une hypothèse récente). (B. S. G. F., 3e série, t. XXVII, p. 16.)

70. — 1903.... Termier (P.). — Les montagnes entre Briançon et Vallouise. (M. C. G. F.)

71. — 1903.... KELLEN (W.). — Découverte de calcaire à Gliophyères du jurassique supérieur dans la vallée de l'Arc. (B. S. G. F., 4e série, t. III, p. 448.)

72. — 1904.... KELLEN (W.) et Révié (J.). — Découverte de schistes luisants et de marbres en pente de la vallée de l'Arc. (M. C. G. F.)

73. — 1904.... KELLEN (W.) et Révié (J.). — Études géologiques dans les Alpes occidentales. Contribution à la Géologie des chaînes intérieures des Alpes françaises. T. 1 : Description orographique et géologique de quelques parties de la Tarentaise, de la Maurienne et du Briançonnais septentrional. (M. C. G. F.)

75. — 1907.... Termier (P.). — Sur la nécessité d'une nouvelle interprétation de la tectonique des Alpes franco-italiennes. (B. S. G. F., 4e série, t. VII, p. 175.)

77. — 1908.... KELLEN (W.) et Révié (J.). — Études géologiques dans les Alpes occidentales. Contribution à la Géologie des Alpes françaises. T. 2, 1er fasc. : Description des terrains qui prennent part à la constitution géologique des zones intra-alpines françaises (terrains antijuuraicaux). (M. C. G. F.)

78. — 1911.... Bonnet (L.). — Études paléoontologiques sur le Nummulitique alpin. (M. C. G. F.)
LES ZONES ULTRAAUPHINOISE ET SUBBRIANÇONNAISE.

78. — 1912. — Bonnaud (J.). — Études stratigraphiques sur le Nummulitique alpin. (M. C. G. F.)

BIBLIOGRAPHIE.

LES ZONES ULTRA-DAUPHINOISE ET SUBBRIANÇONNAISE.

105. — 1939. — Guinoël (M.) et Moret (L.). — Observations à propos de deux notes récentes de géologie alpine : grès singuliers du Col du Bonhomme (Savoie) et Trims à Equestites du Briançonnais. (C. R. S. G. F., 1er-21 janvier.)

BIBLIOGRAPHIE.

120. — 1939. — Seneck (O.). — La subdivision de la zone du Pflysch au sud de la Maurienne. (C. R. A. S., 16 août.)

LES ZONES ULTRA-DAUPHINOISE ET SERRBIANÇONNAISE.

(C. R. A. S., 18 novembre.)

(C. R. S. G. F., 4 février.)

(C. R. S. G. F., 16 décembre.)

196. — 1936... Bearn (L.). — Sur l'âge de grès d'Auvet dans les Alpes-Maritimes françaises-italiennes.
(C. R. S. G. F., 3 juin.)

197. — 1936... Casseron (A.). — Le faisceau bouiller de Moutiers. Tectonique et morphologie.
(Allier, Géomorph.)

199. — 1936... Monster (L.). — Sur l'âge des complexes détritiques qui terminent la série nummulitique subalpine.
(C. R. S. G. F., 20 janvier.)

200. — 1936... Monster (L.). — L'âge des complexes détritiques terminaux de la Nummulitique subalpine envisagé du point de vue de la structure générale des Alpes.
(C. R. S. G. F., 3 février.)

201. — 1936... Monster (L.) et Scannacchii (D.). — Éléments nouveaux sur la structure de la zone du Pas du Roc, entre l'Arve et l'Isole.
(C. R. S. G. F., 30 novembre.)

(2e éd., Masson, Paris.)

203. — 1936... Guissoz (M.). — La prolongement de la zone du Flysch des Aiguilles d'Arves à l'est du Pelvoux.
(C. R. S. G. F., 26 novembre.)

204. — 1936... Guissoz (M.). — Tectonique et stratigraphie du Nummulitique à l'est du Pelvoux.
(B. S. G. F., 5e série, t. VI.)

BIBLIOGRAPHIE.

(C. R. S. G. F., 21 décembre.)

136. — 1936... Guissoz (M.) et Scannacchii (D.). — Constitution géologique de la montagne du Nièvd à l'est de Saint-Jean-de-Belleville (Tarentaise).
(C. R. S. G. F., 4 mai.)

136bis. — 1936... Kees (E.). — Der Abhang des Gebirges; Band 1: Der alpine Einfang.
(Verlag, Berlin.)

(C. R. S. G. F., 8 juin.)

(C. R. S. G. F., 29 juin.)

139. — 1937... Guissoz (M.) et Monster (L.). — Géologie et morphologie de la vallée de la Vallee (Vanoise), du col du Gibiere à Saint-Michel-de-Maurienne.
(Biv. Géog. alpine, t. XXV.)

(C. R. S. G. F., 12 avril.)

(C. R. S. G. F., p. 979.)

142. — 1938... Monster (L.). — Présentation d'un film cinématographique en couleurs sur le formation géologique des Alpes françaises.
(Bull. Soc. Sci. Dombuy, t. LVIII.)

(T. G. G., t. XXI.)

144. — 1938... Guissoz (M.) et Monster (L.). — Remarques complémentaires à notre « Description géologique du Bassin supérieur de la Durance ».
(T. G. G., t. XXII.)
LES ZONES ULTRA-DAUPHINOISE ET SUBBRIANÇONNAISE.

146. 1938. Oxer (H.). - La Maurienne et la Tarentaise. Étude de géographie physique. (Arch. ad., Grenoble.)

149. 1939. Guineau (M.) et Morin (L.). - Essai de racordement entre les unités du front pyrénées de la chaîne alpine en France et en Suisse, à propos d'une carte récente de R. Staub. (C. R. S. G. F., 6 novembre.)

152. 1940. Lemer (M.) et Scemembeign (D.). - Sur le diastrophisme alpin. (C. R. S. G. F., 15 janvier.)

BIBLIOGRAPHIE

163. 1943. Bazin (R.). - Observations géologiques dans la région de Mollieres-Savoy. (C. R. S. G. F., 1er juin.)

TABLE DES FIGURES.

1. — Carte structurale schématique de la région située au sud du Pelvoux. 3
2. — Coupe du ravin des Gétives au nord-est de Moutainville 23
3. — Coupe du verrou rocheux situé au sud du chalet du Fex. 31
4. — Coupe le long de l'arête cotée 2664 entre les Aiguilles de la Grande Morsa et le Col du Bouquet du Péler 33
5. — Couches schématiques montrant les variations latérales de faciès dans le Tréme supérieur 35
6. — Fumée de la chambre de maïs en charge de la conduite de l'airiné électrothermalique de Saint-Just-Maurienne 37
7. — La carrière du Pas du Roc 40
8. — Le parc ouest du verrou du Pas du Roc 53
9. — Emplacement d'où a dû se détacher la « Grosse Pierre des Encourbes ». 53
10. — Le gisement inférieur du massif de la Croix des Têtes 54
11. — Couches schématiques montrant les variations latérales de faciès du Lias dans les différentes unités 59
12. — Couches schématiques montrant les variations latérales de faciès du Dogger 64
13. — Coupe de l'arête nord de la Croix des Têtes 69
14. — Le contact de base du Flysch des Aiguilles d'Arves au nord-est de la maison forestière « Bon aîné » 87
15. — Coupe du gisement fossilifère priabonien d'Allanche 89
16. — Coupe du point fossilifère inférieur du Mont Nédiard 94
17. — Stratigraphie de la partie supérieure de la brachiopode calcaire à grandes Nummulites du Bochet 103
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Coupe du Nummulitique de l'éolide de Montzieux</td>
</tr>
<tr>
<td>19.</td>
<td>Coupes schématiques montrant les variations de faciès du Flysch dans les différents unités.</td>
</tr>
<tr>
<td>20.</td>
<td>Coupe séries dans le massif du Nièvre</td>
</tr>
<tr>
<td>22.</td>
<td>Coupes en série entre Saint-Jean-de-Belleville et Montiers</td>
</tr>
<tr>
<td>23.</td>
<td>La transgression nummulitique sur le Crétacé inférieur dans l'éolide de Clairvaux.</td>
</tr>
<tr>
<td>25.</td>
<td>Tectonogramme schématique des plis diachroniques du massif de la Grande Moenda.</td>
</tr>
<tr>
<td>27.</td>
<td>Schéma donnant une autre interprétation des plis de la Grande Moenda.</td>
</tr>
<tr>
<td>28.</td>
<td>Le versant sud-est de la Pointe de la Dent.</td>
</tr>
<tr>
<td>29.</td>
<td>Tectonogramme très schématique montrant la disposition des couches dans l'antérior déssymétrique de la Pointe de la Dent.</td>
</tr>
<tr>
<td>30.</td>
<td>Coupes de la vallée de l'Arc entre Saint-Jean et Saint-Michel-de-Maniennes.</td>
</tr>
<tr>
<td>31.</td>
<td>Tectonogramme très schématique des replis de la Croix des Têtes et de la déchirure de Saint-Martin.</td>
</tr>
<tr>
<td>32.</td>
<td>Le sommet de la Croix des Têtes.</td>
</tr>
<tr>
<td>33.</td>
<td>La cote 2915 dans la paroi méridionale de la Croix des Têtes.</td>
</tr>
<tr>
<td>34.</td>
<td>La faille du plan des Saussies, dans la vallée de l'Arc.</td>
</tr>
<tr>
<td>35.</td>
<td>Coupes en série des écailles du Télégraphe.</td>
</tr>
<tr>
<td>36.</td>
<td>Panorama du versant nord de la vallée de l'Arc en avril de Villarsémont : le contact du Flysch des Aigüilles d'Arve sur son substratum.</td>
</tr>
<tr>
<td>37.</td>
<td>Le cône de déjection ancien du Rochet sur la rive gauche de l'Arc.</td>
</tr>
<tr>
<td>38.</td>
<td>Coupe schématique montrant les relations de divers terrains au voisinage de l'univers de Saint-Féli.</td>
</tr>
</tbody>
</table>

Table des figures.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.</td>
<td>Le versant ouest du versant du Pas du Roc.</td>
</tr>
<tr>
<td>41.</td>
<td>Le versant nord de l'arête du Mont du Télégraphe.</td>
</tr>
<tr>
<td>42.</td>
<td>La lentille de Daguer de l'arête du site du terrier de Saint-Martin.</td>
</tr>
<tr>
<td>43.</td>
<td>Panorama des versants est et sud du massif Croix des Têtes-Perron des Encombres.</td>
</tr>
<tr>
<td>44.</td>
<td>Le défilé du Pas du Roc vu de l'amont.</td>
</tr>
<tr>
<td>45.</td>
<td>La série calcaire-ferrienne.</td>
</tr>
<tr>
<td>46.</td>
<td>Versant est de la vallée de la Vallerette dans la région du Villarsémont.</td>
</tr>
<tr>
<td>47.</td>
<td>Panorama du versant ouest de l'arête du Mont du Télégraphe.</td>
</tr>
<tr>
<td>49.</td>
<td>Panorama du versant est du massif Croix des Têtes - Perron des Encombres.</td>
</tr>
<tr>
<td>50.</td>
<td>Panorama du haut valleyn du Torrent de Saint-Julien.</td>
</tr>
<tr>
<td>51.</td>
<td>Le versant sud-ouest du massif du Nièvre.</td>
</tr>
<tr>
<td>52.</td>
<td>Panorama de la région comprise entre Crève-Tête et les Aigüilles de la Grande Moenda.</td>
</tr>
<tr>
<td>53.</td>
<td>Le versant sud du Chaval Noir.</td>
</tr>
<tr>
<td>54.</td>
<td>Le versant nord de la Pointe du Mont du Fuz.</td>
</tr>
<tr>
<td>55.</td>
<td>Le versant ouest du Col de Vallerette.</td>
</tr>
<tr>
<td>57.</td>
<td>Panorama de la région comprise entre Crève-Tête et les Aigüilles de la Grande Moenda.</td>
</tr>
<tr>
<td>58.</td>
<td>La «Grosse Pierre des Encombres»</td>
</tr>
<tr>
<td>59.</td>
<td>Le versant est du Perron des Encombres.</td>
</tr>
<tr>
<td>60.</td>
<td>Panorama du versant sud du massif de la Grande Moenda.</td>
</tr>
<tr>
<td>61.</td>
<td>Schéma montrant les corrélations de faciès entre les diverses unités.</td>
</tr>
<tr>
<td>62.</td>
<td>Schéma de la mise en place des nappes en Tarentaise.</td>
</tr>
</tbody>
</table>
TABLE DES PLANCHES HORS-TEXTE.

PLANCHE I. — Fig. 1. — Le contact transgressif des brèches jurassiennes sur les calcaires du Lias au Niézel.
Fig. 2. — Un aspect des brèches du Télégraphe.
Fig. 3. — Le contact de base du Flysch des Aiguilles d’Arves dans le ravin des Gétives, au nord-est de Montaimont.

II. — Le contact de base du Flysch des Aiguilles d’Arves en aval du Pont de Villarchimont dans la vallée de l’Arc.

III. — Le contact de base du Flysch des Aiguilles d’Arves dans le versant ouest du Pic de Montet.

IV. — Panorama du versant nord de la vallée de l’Arc, entre Saint-Jean et Saint-Michel-de-Maurienne (Savoie).

V. — Coupe en série des zones ultradauphinoise et subbriannçonnaise entre l’Arc et l’Isère.

VI. — Carte structurale détaillée des zones ultradauphinoise et subbriannçonnaise entre l’Arc et l’Isère.

VII. — Carte structurale schématique des zones ultradauphinoise et subbriannçonnaise entre le Pelvoux et le Mont-Blanc.
Carte géologique au 1/50,000e des zones ultradauphinoise et subbriannçonnaise entre l’Arc et l’Isère.

N. B. — Les planches IV, V, VI et VII, ainsi que la carte géologique, se trouvent en pochette à la fin du volume.
TABLE DES MATIÈRES.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Préface</td>
<td>ix</td>
</tr>
<tr>
<td>INTRODUCTION.</td>
<td></td>
</tr>
<tr>
<td>I. — Schéma géographique et hydrographique du secteur de l'arc alpin compris entre le Puyvex et le Mont-Blanc.</td>
<td>1</td>
</tr>
<tr>
<td>II. — Délimitation du secteur et dénominations</td>
<td>4</td>
</tr>
<tr>
<td>III. — L'évolution des réseaux sur la structure géologique de la région étudiée.</td>
<td>7</td>
</tr>
<tr>
<td>A. Les premières recherches</td>
<td>8</td>
</tr>
<tr>
<td>B. L'époque de Ch. Lory</td>
<td>10</td>
</tr>
<tr>
<td>C. L'époque de W. Kilian</td>
<td>12</td>
</tr>
<tr>
<td>D. Les travaux récents</td>
<td>14</td>
</tr>
<tr>
<td>PREMIÈRE PARTIE.</td>
<td></td>
</tr>
<tr>
<td>STRATIGRAPHIE.</td>
<td></td>
</tr>
<tr>
<td>Terrains métamorphiques (schistes cristallins antéogriffins).</td>
<td></td>
</tr>
<tr>
<td>I. — Historique</td>
<td>17</td>
</tr>
<tr>
<td>II. — Les affleurements</td>
<td>18</td>
</tr>
<tr>
<td>b. Desiguration de Moutiers ; le petit massif d'Hautecour.</td>
<td></td>
</tr>
<tr>
<td>III. — Conclusions</td>
<td>17</td>
</tr>
<tr>
<td>ALES.</td>
<td>18</td>
</tr>
</tbody>
</table>
I. — HISTORIQUE

II. — LES ZONES DE FACIÉS
 A. Zone ultradauphinoise
 B. Zone subbrianchonnaise
 a. Nappe des Brèches de Taravaine
 b. Nappe du Pas du Roc

III. — CONCLUSIONS. — PALÉONTOGRAPHIE

TABLE DES MATIÈRES.

I. — HISTORIQUE

II. — LES ZONES DE FACIÉS
 A. Zone ultradauphinoise
 a. Au sud de l'Arc
 b. Au nord d'Hermillon
 B. Zone subbrianchonnaise
 a. Nappe des Brèches de Taravaine
 b. Nappe du Pas du Roc
 c. Digitation de Motiers
 d. Digitation du Nélad
 b. Nappe du Pas du Roc
 a. Digitation de la Grande Morena
 b. Digitation du Perron des Encornens

III. — LA FEUILLÈRE ÉBONIÈRE

IV. — CONCLUSIONS. — PALÉONTOGRAPHIE

I. — HISTORIQUE

II. — LES ZONES DE FACIÉS
 A. Zone ultradauphinoise
 b. Caractères lithologiques
 c. Faune et âge
 B. Zone subbrianchonnaise
 a. Nappe des Brèches de Taravaine
 b. Digitation de Motiers
 c. Digitation du Nélad
 d. Nappe du Pas du Roc
 e. Digitation de la Grande Morena
 f. Digitation du Perron des Encornens
 b. Faune et âge

C. Zone des Gypses

IV. — CONCLUSIONS. — PALÉONTOGRAPHIE
LES ZONES ULTRAUDAUPHINOISE ET SUBBRIANÇONNAISE.

I. — HISTORIQUE .. 60

II. — LES ZONES DE FACIES ... 61
 b. Nappes du Pas du Roc :
 1° Détroit de la Grande Moenda ;
 2° Détroit du Perron des Escamiers :

III. — CONCLUSIONS. — PALÉOGÉOGRAPHIE 65

CALCAIRES ET RHEIDEN.

I. — HISTORIQUE .. 65

II. — LES ZONES DE FACIES ... 66
 a. Nappes des Béchtes de Tarantaise :
 1° Détroit de Motiers ;
 2° Détroit du Nélad : 1. Caractères lithologiques ;
 3. Position stratigraphique des bêchtes du Nélad ;
 3° Faune et âge ; 4. Conclusions.
 b. Nappes du Pas du Roc :
 1° Détroit de la Grande Moenda ;
 2° Détroit du Perron des Escamiers : 1. La série stratigraphique ;
 2. L'âge des terrains.

III. — CONCLUSIONS. — PALÉOGÉOGRAPHIE 71

JURASSIQUE SUPÉRIEUR.

I. — HISTORIQUE .. 79

II. — LES ZONES DE FACIES ... 80
 a. Les écailles externes de la nappe du Pas du Roc.
 b. Les lambeaux synclinaux de la région de Gitanebou.
 c. Les blocs-klippes de la zone des Gypses.

III. — CONCLUSIONS. — PALÉOGÉOGRAPHIE 75

TABLE DES MATIÈRES

I. — HISTORIQUE .. 75

II. — LES ZONES DE FACIES ... 76
 a. Nappes du Pas du Roc :
 1° Les écailles externes : 1. Le Crétoce inférieur ; 2. Le
 Cretacé supérieur ; 3. La limite entre le Cretacé inférieur
 et le Cretacé supérieur ;
 3° La région de Gitebou.
 b. La zone des Gypses.

III. — CONCLUSIONS. — PALÉOGÉOGRAPHIE 79

NÉOGENÈSE.

I. — HISTORIQUE : 1. Le Flysch des Aiguilles d'Arves ; 2. Le Flysch de la
 stratigraphie du Niérad ; 3. Le Flysch de la stratigraphie de Motiers ;
 4. Le Flysch de la
 nappe du Pas du Roc .

II. — LES ZONES DE FACIES ... 83
 A. Zone ultradauphinoise : le Flysch des Aiguilles d'Arves 83
 a. Stratigraphie ;
 c. Le contact de base : 1. Ville de l'Arve ; 2. Villeneuve de la Rupture ;
 d. Le niveau fossilifère d'Allanès.
 e. L'âge du Flysch des Aiguilles d'Arves : 1. La base du Flysch ;
 2. La partie supérieure du Flysch ; 3. Comparaison avec les
 régions voisines : l'âge des complexes détritiques terminaux du
 Nummulitique autochtone et parasynthèses.
 f. Conclusions.

B. Zone subbriannonnaise .. 99
 a. Nappe des Béchtes de Tarantaise :
 1° Détroit du Niérad : 1. Stratigraphie ; 2. Les couches à
 grandes Nummulites du Niérad ; 3. Le contact de
 base.
 2° Détroit de Motiers.
 3° Conclusions. — Paléogéographie.
 b. Nappes du Pas du Roc :
 1° Les écailles externes : 1. L'écaille de Montencher ;
 2. L'écaille de Charet ; 3. L'écaille de Bocet ;
 4. L'écaille de Montencher ; 5. L'écaille d'Allanès.
DEUXIÈME PARTIE.

TECTONIQUE.

I. — LE ZONE ULTRA-DAUPHINOISE ET DES AUXILLES D'ARVES

A. Les limites de la zone
 a. La limite occidentale
 b. La limite orientale

B. La constitution géologique de la zone des Aiguilles d'Arves
 a. Le Flysch des Aiguilles d'Arves
 b. Le substratum du Flysch : 1. Zone sud ; 2. Zone nord

C. Les diverses phases orogéniques
 a. La tectonique anténummulitique
 b. La tectonique postnummulitique

D. Conclusions

II. — LA NAPPE DES BRICHES DE TAVERNAIS

A. Les limites de la nappe
 a. La limite occidentale
 b. La limite orientale
 c. La limite entre les trois faiseaux de la nappe

B. Le faîsceau du Nidard
 a. La constitution géologique du faîsceau : 1. La couverture nummulitique : le Flysch ; 2. Le substratum du Flysch
 b. Les diverses phases orogéniques : 1° La tectonique anténummulitique ; 2° La tectonique postnummulitique
 c. Conclusions
TROISIÈME PARTIE.

DESCRIPTION GÉOLOGIQUE DES PRINCIPAUX ITINÉRAIRES.

CHAPITRE PREMIER.

LA VALLÉE DE L’ARC ET LE VERSANT SÉTIENNE.

I. — LA VALLÉE DE L’ARC DE SAINT-JEAN À SAINT-MICHEL-DE-MONTROND. 169
 a. La zone ultradauphinoise.
 b. Les écaillès externes de la nappe du Pas du Roc.
 c. La nappe du Pas du Roc (Grottière de Saint-Félix et digitation du Petit des Encombres) et la zone des Glyptes.

II. — LA RÉGION AU SUD DE L’ARC : SAINT-MICHEL, LE PONT DU TÉLÉGRAPHE, VALLEROIS, AURANCE, MONTROND. 183
 a. De Saint-Michel au tunnel du Télégraphe.
 b. Du tunnel au fort du Télégraphe.
 c. Du tunnel au Télégraphe au hameau du Col et à Valloire.
 d. De Valloire au Villard.
 e. Du Villard à Albannette.
 f. D’Albannette à Albana.
 g. D’Albana au Pont Pailier.
 h. D’Albana à Montebert.

TABLE DES MATIÈRES.

III. — LE COLLÉT, LE CÔNE DU CRATÈRE ET LA MASSIF FORRESTIERE BON AVALAY, MONTENAUX, MONTROND. 191
IV. — SAINT-JEAN, MONTROND, VALLON DU VALLEIN, TURMOUZETE, SAINT-JEAN. 193
V. — SAINT-MICHEL, PERRON DES ENCOMBRES, COL DU BOUCHERON, SAINT-MICHE. 196

CHAPITRE II.

LA VALLÉE DE L’ISÈRE ET LE VERSANT TAUT.”

I. — LES EXTREMITÉS DE MONTÉRÉ, SALLÈES ET BROS. 200
II. — MÔTIERS, Fontaine-le-Puits, SAINT-JEAN-SUR-VAUCLUSE. 201
III. — SAINT-JEAN-SUR-VAUCLUSE, MONT NÉZARD, VALLEIN D’OUSTELLÉ, DEUX NANTS. 202
 a. De Saint-Jean-sur-Vaucluse à la Saune.
 b. Le vallon de la Platthière.

V. — DE SAINT-JEAN À SAINT-MARTIN-DE-BELLEVUE. 210
VI. — LA VALLÉE DES ENCOMBRES : SAINT-MARTIN-DE-BELLEVUE, GITAMELON, LE PETIT COL DES ENCOMBRES. 211
 a. De Saint-Martin-de-Bellevue à Gitamelon.
 b. La région de Gitamelon.
 c. De Gitamelon au confluent du Arvieux de Mauhec.
 d. Le Ruissel de Mauhec : la montée au Petit Col des Encombres.

VII. — LE MASSIF DES AUBLÉES DE LA GRANDE MOIRE PAR SAINT-MARTIN-DE-BELLEVUE, GITAMELON ET LE VALLON DE VAUCLUSE. 217

QUATRIÈME PARTIE

CONCLUSIONS GÉNÉRALES.

CHAPITRE PREMIER.

LES COUVERTS ENTRE LA RÉGION ÉLEVÉE ET LES RÉGIONS VOISINES.

I. — LE RACCOLT AVEC LES RÉGIONS BÉNÉFIQUES. 223
LES ZONES ULTRAUPHINOISE ET SUBRIANAONNAISE.
A. Le prolongement de la zone ultrauphinoise...
 a. La limite occidentale de l'écluse des Aiguilles d'Arves...
 b. La limite occidentale du Flysch des Aiguilles d'Arves...
B. Le prolongement de la nappe des Brèches de Tarantaise...
 a. Les écaillles externes...
 b. La limite occidentale de la nappe...
 c. La limite orientale de la nappe...
D. Le raccord avec les nappes de l'Ubaye et le prolongement de la...
 a. Géologie...
II. LE RACCORD AVEC LES RÉGIONS SITUÉES AU NORD DE L'Isère...
 A. La zone des Aiguilles d'Arves...
 B. Le prolongement de la nappe des Brèches de Tarantaise...
 a. Le gîte du Modène...
 b. Le gîte du Salis...
C. Le prolongement de la nappe du Pas du Roc...
 a. Géologie...
D. Le prolongement de la zone des Gipsans...
III. L'ÉVOLUTION DES KLIPPE S DE SAVOIE...
 A. Les rapports entre la nappe du Pas du Roc et les klippes de...
 B. Les rapports entre les klippes de Savoie et les Péninsules chablis-
 saines et romandes...
IV. LE PROBLÈME DE LA ZONE DU PETIT-SAINT-BERNARD...
V. APERÇU SYNTHÉTIQUE DES RÉSULTATS MOYEN...

CHAPITRE II.
L'ÉVOLUTION ALTÈRE DU NORD DE LA PETITE.
I. LA FIN DE L'OROGENÉSIE SUBPROVINCIÈRE : LA SÉDIMENTATION CONTINENTALE DE PERMO-
 RUGUILLER.
II. LA PÉRIODE SUBPROVINCIÈRE...
 A. Le début de la période embryonnaire : l'établissement du régime
 marin...
 B. La période embryonnaire : sédimentation marine et mouvements pré-
 curseurs...

TABLE DES MATIÈRES.
291
a. La période lisanque : 1. Le Rhétien ; 2. Le Lias...
b. La période du Dogger...
c. La période callovo-normandiennne...
d. La période du Jurassique supérieur...
e. La période créatique...
G. La fin de la période embryonnaire : les mouvements avant-coureurs
 antéorogeographiques et la sédimentation du Flysch...
a. La zone des Aiguilles d'Arves...
b. La cordillère tarine...
c. La zone du Pas du Roc...
III. LA PÉRIODE PARSONTINE : LES PLISSEMENTS ALPINS PROPREMENT DITS...
a. La mise en marche des nappes...
b. La mise en place des diverses unités...
 a. Les nappes subprovoines intermes (Ubaye-Embaccanais) et la
 nappe du Pas du Roc : tectonique souple d'écaillées par
 gravité...
 b. La nappe des Brèches de Tarantaise : tectonique de "nappe cas-
 sionaire"...
 c. L'écluse des Aiguilles d'Arves...
C. La surcroissance des massifs cristallins externes...
IV. LA FIN DE L'OROGENÈSE ALPINE...

APPENDICE.
SOMMAIRE DES PRINCIPAUX FAITS SOUTenus APORTE À LA SÉDIMENTOLOGIE DE LA RÉGION ÉTUDEE...

BIBLIOGRAPHIE...
TABLE DES FIGURES...
TABLE DES PLANCHES BUS-TEXTE...
TABLE DES MATIÈRES...
PLANCHES 1 À 3
PLANCHE I.

Fig. 1. - Le cailloutis provenant des bédioches jurassiques sur la calcaire du Lias au Valrouch.
La photo montre un bloc éboulé au pied de la pente nord du Mont Néfand dans lequel on distingue trois bien les bédioches jurassiques calcaires (Br) restent, suivant une surface irrégulière (Tr), les calcaires blancs, argileux du Lias (L).

Fig. a. - Un aspect des bédioches du Télégaphre.
La photo représente une des surfaces polies par l'érosion glaciaire dans l'affleurement situé juste au-dessous du tunnel du Télégaphre.
On distingue nettement les divers éléments de la bédioche, permis laquelle on retrouve des témoin de tous les teneurs inférieurs de la série jusqu'au Trias, plus ou moins soyeux dans une microécaille.
Les calcaires à Polyphyes du Beck; Le calcaire gris, fortement pâle et du Lias inférieur; Le, rognon de sable noir du Lias inférieur, Tr, défoliation jaune du Trias supérieur.

Fig. 3. - Le contourn de base du Flysch des Aiguilles d'Arve dans le revêtement de Calcaire, dans la dépôt de Montenvers (voir fig. 4).
En haut à gauche, dalle et plages de calcaires ou faisant gréseuses du Flysch (c) visitent encadrer les quartiers triasiques formant le pare devant à droite (Tr). L'érosion a décapé en partie la surface supérieure des quartiers plus résistants, déterminant une petite ves qui correspond à l'excursion de surface d'érosion des quartiers sur laquelle le Flysch est vrai se déposer (Tr).

PLANÈCHE III.

Fig. 1. - La contourn de base du Flysch des Aiguilles d'Arve en aval du pont de Villers-le-Duc dans le calcaire de l'Arc.
Les gis et conglomerat de base du Flysch forment, en aval du pont de Villers-le-Duc, une série, une petite falaise (voir fig. 10). Notre photo représente le point de ce calcaire vers son extrémité sud.
Au-dessus des débris le pare est stratifié, vers le bas, par les méso-oléaires subaixens noirs et tendres du Lias (L), puis par des calcaires et des calcaires gris parfois légèrement gréseux (Fig). La limite entre ces deux niveaux est assez nettement visible à la seconde provient, en partie, du remaniement du premier. Mais, un peu plus haut, on rencontre de nombreuses grêles calcaires (sables clairs) et on passe ainsi, vers le haut, à un véritable conglomerat, celui qui couvre le sommet de la couche. Tr : Surface de transgression du Flysch sur son substratum calcaire.

Fig. a. - Le même contact, au plus au nord et au de plus près.
Ici encore en vue, les méso-oléaires du Lias (L) surnommés par les calcaires et calcaires gris de la base du Flysch (Fig), dans lequel sont ainsi quelques grêles calcaires (c, d) les conglomerats véritables ne se distinguent qu'un peu plus haut.
Ces deux photos montrent nettement qu'il n'y a pas de continuité entre les deux terrains, mais bien contact stratigraphique.

PLANÈCHE N.

Fig. 1. - Vue générale de l'affleurement.
La pointe est recouverte d'écailles d'ont échappe un petit espace d'écorce te soulevé de dalles jurassiques de Trias moyen très redressée (T), surmontée par les dalles du Flysch à très faible plongement est (c).

Fig. a. - Le même contact au de près.
En haut, dalles du Trias moyen (T) dont la surface supérieure (Tr) est encadrée par les dalles finement conglomeratiques du Flysch (c).

Les zones ultra-dauphinoise et sub-brionnaise entre l'Arve et l'Isère.
R. Barbier
CARTE STRUCTURALE SCHEMATIQUE
DES ZONES
ULTRADAUPHINOISE
ET SUBBRIANÇONNAISE
ENTRE
LE PELVOUX ET LE MONT-BLANC

Reynard BARBER

(Par la nord-est d’après H. Schoeller : feuille de Bourg-Saint-Maurice
au 1:500000. Le reste, en partie d’après les feuillets au
1:200000 : Albertville, St-Jean-de-Maurienne, Briançon.)

1943
PLAN DU IV

Os distinctes remarquables de gauche à droite :
1. LA ZONNE DAUPHINOISE AUTOCHÔNE représentée, tout à l'œil à l'esprit, par les écarts géologiques de la chaîne de Belledonne et, plus en avant, par le petit massif du Granodolomique et le prenant de l'Ubayre, tout deux constitués d'un calcaire résistant (C) et d'une couverture de Tissé et de Lias (C).
2. LA ZONE PARANATURELS DES AIQUILLES D'ARVES du cataclisme de l'Alpine, qui se voit jusqu'en milieu de Lyre (D), en vue du promontoire de l'Ubayre.
3. Un débit prononcé de principes silurien-névrysten (grès et siltiments de base). Le grès de cette zone est caractérisé par un affinement de la scintillation et une base de terre indéfinie vers la base de l'Ubayre (D)

2. LA ZONE DU PASS DU ROC dans laquelle se distinguer :
1. Les ouvertures externes constituées par une série de fosses d'origine plus ou moins turbulente de Fichet (A). De Calcaire supérieur (C) et de Calcaire inférieur (E).
2. L'effondrement latéral massif de la fosse du Pass du Roc et celui qui est directement en contact avec les ouvertures dans les calamité et la fosse de l'Hébrée (A).

3. L'effondrement de la Rosière, un degré en démantèlement de Fichet (A), et de la fosse de l'Hébrée (C), en vue de l'Ubayre (D). Ce dernier massif se décompose en deux blocs de calcaire qui s'éloignent vers le sud de la fosse de l'Hébrée (C), en vue de l'Ubayre (D). Ce dernier massif se décompose en deux blocs de calcaire qui s'éloignent vers le sud de la fosse de l'Hébrée (C).
COUPES EN SERIE DES ZONES ULTRADAUPHINOISE ET SUBBRIANÇONNAISE ENTRE L'ARC ET L'ISÈRE

par

Raymond Bérbéry

I ZONE DAUPHINOISE
- Les schistes
- Les calcaires
- Série de l'Échappat
- Les supérieurs moyens et inférieurs
- Très calcaire

II ZONE ULTRADAUPHINOISE
- Flanc des Aiguilles d'Arves et son enrolement de base
- Les calcaires
- Tufs et argiles, gypses
- Très calcaire, argileux

III ZONE SUBBRIANÇONNAISE
- Nappes des Aiguilles d'Arves
- Les schistes
- Les calcaires
- Les calcaires et argiles

IV ZONE DES GYPSES
- Gypses et argiles

V ZONE BRIANÇONNAISE
- Très calcaire et argileux
- Très calcaire
- Marnes