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TORIC VARIETIES: PHYLOGENETICS AND DERIVEDCATEGORIESMATEUSZ MICHA�EK
Streszzenie pray w j�zyku polskimRozmaito±i toryzne: �logenetyka i kategoriepohodneCelem niniejszej pray doktorskiej jest badanie spejalnyh wªasno±irozmaito±i toryznyh. Praa jest podzielona na trzy z�±i. Pierwszedwie z nih s¡ silnie ze sob¡ powi¡zane.W pierwszej z�±i zajmujemy si� gªównie badaniem rozmaito±i al-gebraiznyh zwi¡zanyh z proesami Markowa na drzewah. Z ka»dymproesem Markowa na drzewie mo»na stowarzyszy¢ rozmaito±¢ alge-braizn¡. W zwi¡zku z motywajami biologiznymi, skupiamy si� naproesah Markowa okre±lonyh poprzez dziaªanie grupy. Badamy wa-runki, kiedy uzyskane rozmaito±i s¡ toryzne oraz podajemy ih opis,Twierdzenie 5.63. Przedstawiamy twierdzenia, podaj¡e warunki wystar-zaj¡e do tego, aby otrzymane rozmaito±i byªy normalne, 5.73, jakrównie» podajemy przykªady, gdy nie s¡ one normalne 5.74, 5.75. Jed-nym z gªównyh u»ywanyh narz�dzi jest uogólnienie poj�¢ wtyków isiei, wprowadzonyh w [BW07℄, do dowolnyh grup abelowyh. Wnaszej de�niji siei tworz¡ grup�, De�nija 5.24, która dziaªa na roz-maito±i. Ponadto, przestrze« w której zanurzona jest rozmaito±¢ jestregularn¡ reprezentaj¡ tej grupy.Gªównym otwartym problemem do którego odnosimy si� w tej z�±ijest hipoteza Sturmfelsa i Sullivanta [SS05, Hipoteza 2℄. Stwierdza ona,»e ideaª a�niznej rozmaito±i skojarzonej z modelem 3-Kimury jestgenerowany w stopniu 4. Nasz najsilniejszy wynik dowodzi, »e shematrzutowy zwi¡zany z tym modelem mo»e by¢ opisany poprzez ideaª gen-erowany w stopniu 4, Twierdzenie 12.1. Wraz z Mari¡ Donten�Buryprzedstawiamy sposób generowania wielomianów nale»¡yh do ideaªustowarzyszonego z rozmaito±i¡ dla dowolnego modelu. Dowodzimy,»e nasza metoda generuje aªy ideaª dla wielu modeli wtedy i tylkowtedy, gdy zahodzi hipoteza Sturmfelsa i Sullivanta [SS05, Hipoteza4



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 51℄, Twierdzenie 7.8. Prezentujemy kilka zastosowa«, na przykªad doproblemu identy�kowalno±i w biologii.Druga z�±¢ pray dotyzy rozmaito±i algebraiznyh zwi¡zanyh ztrójwalentnymi grafemi oraz modelem binarnym Jukesa-Cantora. Jestto wspólna praa z Weronik¡ Buzy«sk¡, Jarosªawem Buzy«skim iKaie Kubjas. W przypadku grafu, stowarzyszona rozmaito±¢ mo»e by¢reprezentowana przez póªgrup� z gradaj¡. Badamy zwi¡zki pomi�dzywªasno±iami grafu i otrzymanej póªgrupy. Gªówne twierdzenie 14.1dowodzi, i» pierwsza lizba Bettiego grafu plus jeden jest górnym osza-owaniem na stopie« w którym generowana jest póªgrupa.W ostatniej z�±i badamy kategorie pohodne gªadkih, zupeªnyhrozmaito±i toryznyh. We wspólnej pray z Mihaªem Lasoniem[LM11℄ konstruujemy peªne, silnie wyj¡tkowe kolekje wi¡zek liniowyhdla szerokiej klasy gªadkih, zupeªnyh rozmaito±i toryznyh o lizbiePiarda równej trzy. Wiele pyta« dotyz¡yh jakiego rodzaju kolekjimo»na ozekiwa¢ na rozmaito±iah toryznyh pozostaje otwartyh.Jeden z otrzymanyh wyników pokazuje, »e Pn rozdmuhane w dwóhpunktah nie posiada peªnej, silnie wyj¡tkowej kolekji zªo»onej z wi¡zekliniowyh dla wystarzaj¡o du»ego n. Otrzymujemy niesko«zon¡rodzin� kontrprzykªadów do hipotezy Kinga 19.2. Pierwszy taki kontr-przykªad zostaª skonstruowany przez Hille i Perlinga [HP06℄. OstatnioE�mov podaª tak»e kontrprzykªady dla rozmaito±i Fano [E�℄.Praujemy nad iaªem lizb zespolonyh C. Wszystkie rozmaito±is¡ rozmaito±iami algebraiznymi w sensie [Har77℄.



6 MATEUSZ MICHA�EKStreszzenie i wprowadzenie do z�±i pierwszejMotywaj¡ dla konstrukji rozpatrywanyh w pierwszej z�±i prayjest matematyka stosowana. Zaznijmy od przypomnienia podsta-wowyh wªasno±i ªa«uhów Markowa oraz proesów Markowa nadrzewah. �a«uh Markowa to i¡g zmiennyh losowyh (Xi) speªnia-j¡y okre±lone warunki. Przy ustalonym stanie zmiennej Xi−1 zmiennalosowa Xi jest niezale»na od wszystkih zmiennyh losowyh Xi−j dla
j > 1. Zazwyzaj ªa«uh Markowa jest przedstawiany jako ±ie»ka.Ka»dy wierzhoªek odpowiada zmiennej losowej. ZmienneXi orazXi−1s¡ poª¡zone, jak na rysunku poni»ej.

· X0...
· Xi−1

· Xi...Dla danego ªa«uha Markowa wprowadza si� prawdopodobie«stwawarunkowe, które okre±laj¡ wszystkie wªasno±i ªa«uha. Zaªó»my, »ezmienna Xi mo»e by¢ w ai < ∞ stanah. Ka»dej kraw�dzi ª¡z¡ej
Xi−1 z Xi mo»emy przypisa¢ maierz o wymiarah ai−1 × ai. Kolumnyi rz�dy tej maierzy s¡ oznazone odpowiednio stanami zmiennyhXi−1orazXi. Odpowiednie wpisy w maierzy okre±laj¡ prawdopodobie«stwawarunkowe. Konkretnie, wpis w p-tym rz�dzie i i q-tej kolumnie od-powiada prawdopodobie«stwu, »e Xi jest w stanie p pod warunkiem, »e
Xi−1 jest w stanie q. Otrzymane maierze nazywamy maierzami przej-±ia. Je±li znamy rozkªad zmiennej losowej X0 oraz maierze przej±ia,to mo»emy ªatwo oblizy¢ rozkªady wszystkih zmiennyh losowyhwyst�puj¡yh w danym ªa«uhu Markowa.Konstrukj� t� mo»emy bezpo±rednio uogólni¢ do drzew ukorzenio-nyh. Drzewem ukorzenionym okre±lamy spójny graf, bez ykli, zwyró»nionym wierzhoªkiem. Li±ie drzewa to wierzhoªki, które po-siadaj¡ tylko jednego s¡siada. W�zªy to wierzhoªki, które nie s¡li±¢mi. W pray zasami uto»samiamy li±ie z kraw�dziami z którymi



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 7s¡ one poª¡zone. Dla uproszzenia j�zyka przyjmujemy, »e drzewo jestgrafem skierowanym i wszystkie kraw�dzie s¡ skierowane od korzenia.W poni»szym przykªadzie korze« zostaª oznazony jako ◦.
◦

· ·

· · ·Tak jak w przypadku ªa«uhów Markowa, ka»demu wierzhoªkowiprzyporz¡dkowujemy zmienn¡ losow¡. Mówimy, i» wierzhoªek v1 jestbezpo±rednim przodkiem v2 je±li istnieje kraw�d¹ skierowana od v1 do
v2. Zauwa»my, i» ka»dy wierzhoªek ma dokªadnie jednego bezpo±red-niego przodka, poza korzeniem, który nie posiada przodków. Potom-kami wierzhoªka v nazywamy wszystkie wierzhoªki do któryh istnieje±ie»ka skierowana, zazynaj¡a si� w v. Wªasno±¢ Markowa stwierdza,i» zmienna X jest niezale»na od wszystkih zmiennyh które nie s¡ jejpotomkami, przy ustalonym stanie bezpo±redniego przodka.Proesy Markowa na drzewah s¡ dobrymi modelami dla wielu zjawiskprzyrodnizyh. Sztandarowym przykªadem jest tutaj proes ewoluji.Jednym ze znanyh zaªo»e« jest fakt, i» DNA danego gatunku zale»ytylko od stanu bezpo±redniego poprzednika. Filogenetyka jest nauk¡badaj¡¡ zmiany ewoluyjne. Jej gªównym zadaniem jest opis proesuMarkowa modeluj¡ego ewoluj� gatunków. Przy tym modelu zakªadasi�, »e zmienne mog¡ mie¢ ztery stany odpowiadaj¡e zasadom azo-towym whodz¡ym w skªad DNA: adeninie, ytozynie, guaninie oraztyminie. Stany te oznaza si� literami A, C, G, T . Ozywi±ie, apriori, nie znamy parametrów maierzy przej±ia, ani ksztaªtu drzewa.Jednak»e badaj¡ »yj¡e gatunki mo»emy pozna¢ rozkªad zmiennyhlosowyh przypisanyh li±iom odpowiadaj¡ym tym gatunkom. Bi-ologia teoretyzna przedstawia równie» mo»liwe typy maierzy przej±-ia. W zale»no±i od modelu teoretyznego który wybierzemy, maierzeprzej±ia mog¡ nale»e¢ do ró»nyh przestrzeni liniowyh. Ró»ne mod-ele biologizne s¡ przedstawione w Rozdziale 4. Bardzo interesuj¡yjest fakt, i» modele zaproponowane przez biologów teoretyznyh z�stoposiadaj¡ wªasno±i iekawe z matematyznego punktu widzenia. Dokªad-nie rzez ujmuj¡ pewne przestrzenie maierzy przej±ia s¡ zadane jakomaierze niezmiennize ze wzgl�du na dziaªanie grupy.



8 MATEUSZ MICHA�EKPrzedstawmy jeden z mo»liwyh sposobów rozwi¡zania problemów�logenetyznyh, korzystaj¡y z geometrii algebraiznej. Ustalmy drze-wo T , o którym podejrzewamy, »e mo»e wªa±iwie opisywa¢ proesewoluji. Rozwa»my maierze przej±ia z wolnymi parametrami, którezale»¡ jedynie od wybranego przez nas modelu biologiznego. Do prze-strzeni parametryzuj¡ej dodajemy równie» parametry rozkªadu zmien-nej losowej stowarzyszonej z korzeniem. Dla danyh parametrów obli-zamy rozkªad zmiennyh losowyh stowarzyszonyh z li±¢mi. Otrzy-mujemy odwzorowanie1 π ◦ ψ̂. Jego dziedzina to parametry maierzyprzej±ia oraz zmiennej losowej przypisanej korzeniowi. Obraz od-wzorowania to wszystkie mo»liwe rozkªady zmiennyh losowyh przy-pisanyh li±iom.Przykªad W tym przykªadzie zakªadamy, »e ka»da zmienna mo»emie¢ dwa stany oznazone poprzez 0 oraz 1. Korze« ma dwóh po-tomków. Zmienna losowa przyjmuje warto±¢ 0 z prawdopodobie«stwem
λ0 oraz 1 z prawdopodobie«stwem λ1. Maierze przej±ia maj¡ nast�pu-j¡¡ posta¢.

◦
[

a1 a2
a2 a1

] [
b1 b2
b2 b1

]

· ·Mamy 6 parametrów. Zmienne stowarzyszone z li±¢mi mog¡ by¢ w 4stanah:1) obie w stanie 0,2) lewa w stanie 0, prawa w stanie 1,3) prawa w stanie 1, lewa w stanie 0,4) obie w stanie 1.Otrzymujemy odwzorowanie:
π ◦ ψ̂ : (λ0, λ1, a1, a2, b1, b2) →

(λ0a1b1 + λ1a2b2, λ0a1b2 + λ1a2b1, λ0a2b1 + λ1a1b2, λ0a2b2 + λ1a1b1).Nieh P b�dzie punktem, wyznazonym na podstawie bada« bio-logiznyh, reprezentuj¡ym rozkªad zmiennyh losowyh przypisanyhli±iom. Pragniemy stwierdzi¢ zy punkt P nale»y do obrazu od-wzorowania π ◦ ψ̂. Je±li punkt nie nale»y do obrazu, to mo»emy stwier-dzi¢, i» wybrany model biologizny jest bª�dny lub rozwa»ane drzewonie opisuje ewoluji w sposób prawidªowy. Je±li punkt P nale»y do1Wybór notaji zostanie uzasadniony w kolejnyh rozdziaªah.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 9obrazu, mo»emy pyta¢ o wªókno odwzorowania π ◦ ψ̂ nad punktem
P . Niestety stwierdzenie zy punkt nale»y do obrazu jest w ogólno±ibardzo trudne. Jedna z metod wykorzystuje fakt, i» odwzorowanie
π ◦ ψ̂ jest algebraizne. Rozwa»a si� domkni�ie obrazu w topologiiZariskiego. Jest to a�nizna rozmaito±¢ algebraizna. Problem spro-wadza si� wtedy do opisu ideaªu tej rozmaito±i i stwierdzeniu zy jegogeneratory zeruj¡ si� na punkie P . Elementy wy»ej wymienionegoideaªu nazywane s¡ niezmiennikami �logenetyznymi.Podej±ie przez nas przedstawione mo»e nie by¢ efektywne. Opisideaªu rozmaito±i zadanej przez parametryzaj� nie jest prostym za-daniem. Jednak»e odwzorowania, które rozpatrujemy z�sto posiadaj¡spejalne wªasno±i. Jak zauwa»yli Evans i Speed [ES93℄ rozmaito±istowarzyszone z niektórymi modelami ewoluji s¡ toryzne. Dokªad-niej, istnieje ukªad wspóªrz�dnyh w którym odwzorowanie parame-tryzuj¡e rozmaito±¢ jest zadane jednomianami. Pozwala to na za-stosowanie metod geometrii toryznej przy wyznazaniu ideaªu roz-maito±i.W aªej pray zakªadamy, »e zmienna losowa stowarzyszona z wierz-hoªkiem posiada rozkªad jednorodny. Zaªo»enie to nie jest motywowaneprzez biologi�. Otrzymujemy jednak dzi�ki niemu lepszy opis ma-tematyzny. Z tego powodu zakªadamy, »e przestrze« parametryzuj¡arozmaito±¢ skªada si� tylko z parametrów maierzy przej±ia.Jednym z gªównyh elów pray jest ustalenie przy jakih warunkahz danym modelem jest stowarzyszona rozmaito±¢ toryzna oraz podaniejej opisu. Otrzymane wyniki przedstawiaj¡ bardzo ogóln¡ konstrukj�5.63. Wszystkie de�nije obiektów wyst�puj¡yh w twierdzeniu po-jawi¡ si� w pó¹niejszyh rozdziaªah.Twierdzenie 5.63 Nieh H b�dzie normaln¡, abelow¡ podgrup¡grupy G ⊂ Sn. Zaªó»my, »e H dziaªa w sposób tranzytywny i wolny nazbiorze S o n elementah. Rozwa»my maierze przej±ia nale»¡e doprzestrzeni Ŵ , które s¡ niezmiennize ze wzgl�du na dziaªanie grupy G.Nieh W b�dzie przestrzeni¡ wektorow¡ rozpi�t¡ przez wektory bazoweuto»samiane z elementami zbioru S. Model �logenetyzny dla dowol-nego drzewa T zwi¡zany z przestrzeniami W oraz Ŵ zadaje toryzn¡rozmaito±¢ algebraizn¡.W szzególno±i rozpatrywane przez nas modele zawieraj¡ wszys-tkie modele biologizne o któryh wiadomo, »e s¡ stowarzyszone z roz-maito±iami toryznymi. Badamy równie» wªasno±i otrzymanyh roz-maito±i. Dowodzimy, »e rozmaito±i stowarzyszone z pewnymi mode-lami s¡ normalne 5.73.



10 MATEUSZ MICHA�EKTwierdzenie Modele �logenetyzne zwi¡zane z dowolnym drzewemtrójwalentnym oraz jedn¡ z grup: Z2, Z2 × Z2, Z3 oraz Z4 zadaj¡ roz-maito±¢ normaln¡.Podajemy równie» przykªady rozmaito±i, które nie s¡ normalne 5.75.Nast�pnie badamy dla jakih modeli rozmaito±i stowarzyszone z drze-wami trójwalentnymi o ustalonej lizbie li±i nale»¡ do jednej rodzinypªaskiej. Dla modelu binarnego Jukesa-Cantora fakt ten zostaª udowod-niony w pray [BW07℄. Dla 3-Kimury nie jest on prawdziwy, o wyka-zano w pray [Kub10℄. Oblizaj¡ wielomiany Hilberta wielu roz-maito±i stwierdzili±my, »e wi�kszo±¢ rozwa»anyh modeli nie ma tejwªasno±i.Kolejny, bardzo istotny problem badany w doktoraie dotyzy niezmi-enników �logenetyznyh.De�nija (Drzewo gwie¹dziste) Drzewo gwie¹dziste Kn,1 to drzewoposiadaj¡e jeden w�zeª i n li±i.Dla wielu modeli, w szzególno±i tyh które s¡ gªównym przed-miotem tej pray, wyznazanie niezmienników �logenetyznyh zostaªozredukowane do przypadku drzewa gwie¹dzistego [SS05℄, [AR08℄, [DK09℄.Jednak»e wyznazenie ih nawet w tym szzególnym przypadku jestbardzo trudnym zadaniem. Nie wiemy nawet w jakim stopniu ideaª sto-warzyszonej rozmaito±i jest generowany. Znana hipoteza Sturmfelsai Sullivanta [SS05, Conjeture 1℄ podaje dokªadne górne ogranizeniena ten stopie«. Ciekaw¡ obserwaj¡ jest fakt, i» wy»ej wymienionahipoteza implikuje opis ideaªu jako sumy prostszyh ideaªów. Prezen-tujemy metod� generowania wielu niezmienników �logenetyznyh dladowolnego modelu, dla drzewa gwie¹dzistego 7.2. Stawiamy hipotez�,i» nasza metoda pozwala w peªni opisa¢ ideaª. Dowodzimy, i» w wieluprzypadkah nasza hipoteza jest równowa»na hipotezie Sturmfelsa iSullivanta � Twierdzenie 7.8. Nasz najsilniejszy wynik 12.1 dotyz¡ytego tematu dowodzi sªabszej, teorio zbiorowej wersji [SS05, Hipoteza2℄, o jest wystarzaj¡e z punktu widzenia zastosowa«.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 11Streszzenie i wprowadzenie do z�±i drugiejNieh G b�dzie grafem trójwalentnym. Nieh d b�dzie lizb¡ na-turaln¡. Gªównym przedmiotem naszyh bada« jest podzbiór τ(G)dzbioru wszystkih numerowa« kraw�dzi grafu G za pomo¡ lizb aªko-wityh. Dane numerowanie nale»y do τ(G)d, gdy speªnione s¡ nast�pu-j¡e wrunki:[♥♥℄ (parzysto±¢) suma lizb przyporz¡dkowanyh kraw�dziom za-wieraj¡ym dany wierzhoªek jest parzysta;[+℄ (dodatnio±¢) lizby przypisane kraw�dziom s¡ nieujemne;[△℄ (nierówno±i trójk¡ta) trzy lizby przypisane kraw�dziom za-wieraj¡ym dany wierzhoªek speªniaj¡ warunek trójk¡ta;[°℄ (ogranizenie stopnia) dla dowolnego wierzhoªka suma lizbprzypisanyh kraw�dziom, które go zawieraj¡ nie przekraza
2d.Szzegóªy konstrukji oraz formalne de�nije znajduj¡ si� w Rozdziale 15.Badamy obiekt τ(G) =

⊔
d∈N τ(G)d, który poprzez dodawanie lizbprzypisanym kraw�dziom ma struktur� monoidu. Nazywamy gomono-idem �logenetyznym grafu G. Gªówny wynik tej z�±i to nast�pu-j¡e twierdzenie.Twierdzenie Nieh G b�dzie dowolnym grafem trójwalentnym o pier-wszej lizbie Bettiego g. Monoid τ(G) jest generowany w stopniu onajwy»ej g + 1. Ponadto dla ka»dego g parzystego istniej¡ grafy dlaktóryh podane oszaowanie jest dokªadne.Dla g = 1 oraz g = 3 tak»e istniej¡ grafy, które nie s¡ generowanew stopniu g. Konstruujemy równie» przykªady grafów o nieparzystejlizbie Bettiego g, które nie s¡ generowane w stopniu g− 1. Otwartymproblemem pozostanie pytanie zy istniej¡ grafy o nieparzystym g ≥

5, które nie s¡ generowane w stopniu g. Podajemy tak»e dokªadnestopnie w któryh generowane s¡ monoidy stowarzyszone z grafamitypu g¡sienia z p�telkami przedstawionymi poni»ej.
Figure 1: G¡sienia z p�telkami



12 MATEUSZ MICHA�EKStreszzenie i wprowadzenie do z�±i trzeiejW tej z�±i wszystkie rozwa»ane rozmaito±i algebraizne s¡ gªad-kie. Czytelnikowi zainteresowanemu konstrukj¡ kategorii pohodnejsnopów koherentnyh na rozmaito±i X poleamy pierwsze rozdziaªy[Huy06℄ lub artykuª [C l05℄. Dªu»szym, klasyznym ¹ródªem informa-ji na ten temat jest równie» ksi¡»ka [GM03℄.Struktura i wªasno±i kategorii pohodnej mog¡ by¢ bardzo skomp-likowane i s¡ przedmiotem liznyh bada«. Jeden ze sposobów opisu tejkategorii u»ywa poj�¢ obiektów wyj¡tkowyh. Przedstawy nast�puj¡ede�nije (patrz równie» [GR87℄):De�nija(i) Snop koherentny F na X jest nazywany wyj¡tkowym je±liHom(F, F ) = K oraz Ext i
OX

(F, F ) = 0 dla i ≥ 1.(ii) Ci¡g (F0, F1, . . . , Fm) snopów koherentnyh na X nazywamykolekj¡ wyj¡tkow¡ je±li ka»dy snop Fi jest wyj¡tkowy orazExt i
OX

(Fk, Fj) = 0 dla j < k oraz i ≥ 0.(iii) Kolekja wyj¡tkowa (F0, F1, . . . , Fm) snopów koherentnyh na
X jest silnie wyj¡tkow¡ kolekj¡ je±li Ext i

OX
(Fj, Fk) = 0 dla

j ≤ k oraz i ≥ 1.(iv) (Silnie) wyj¡tkowa kolekja (F0, F1, . . . , Fm) snopów koher-entnyh na X jest peªn¡, (silnie) wyj¡tkow¡ kolekj¡ je±ligeneruje ogranizon¡ kategori� pohodn¡ Db(X) rozmaito±i
X , tzn. najmniejsza triangulowalna kategoria zawieraj¡a
{F0, F1, . . . , Fn} jest równowa»na z Db(X).W tej z�±i doktoratu badamy peªne, silnie wyj¡tkowe kolekje wi¡-zek liniowyh na gªadkih, zupeªnyh rozmaito±iah toryznyh o liz-bie Piarda 3. Wiadomo, »e dla ka»dej gªadkiej rzutowej rozmaito±itoryznej istnieje peªna, wyj¡tkowa kolekja snopów koherentnyh �[Kaw06℄. Jednak»e wiele pyta« w tej dziedzinie pozostaje otwartyh.W szzególno±i nie wiadomo zy istnieje peªna, silnie wyj¡tkowa kolek-ja snopów koherentnyh lub zy istnieje peªna, wyj¡tkowa kolekjazªo»ona z wi¡zek liniowyh. Wiadomo jednak, i» istniej¡ gªadkie rzu-towe rozmaito±i toryzne nie posiadaj¡e peªnej, silnie wyj¡tkowejkolekji zªo»onej z wi¡zek liniowyh, o pierwotnie sugerowaªa hipotezaKinga. Pierwszy kontrprzykªad zostaª podany w pray [HP06℄. W tejz�±i pray pokazujemy, i» Pn rozdmuhane w dwóh punktah nieposiada peªnej, silnie wyj¡tkowej kolekji zªo»onej z wi¡zek liniowyhdla dostateznie du»yh n � Twierdzenie 19.72.Twierdzenie Nieh n > 20. Dowolna silnie wyj¡tkowa kolekjawi¡zek liniowyh na Pn rozdmuhanym w dwóh punktah ma dªugo±¢



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 13o najwy»ej 3n − 2. Ranga grupy Grothendieka wynosi 3n − 1, wi�kolekja ta nie mo»e by¢ peªna.We wspólnej pray z Mihaªem Lasoniem konstruujemy równie» takiekolekje dla szerokiej klasy gªadkih, zupeªnyh rozmaito±i toryznyho lizbie Piarda 3. Rozmaito±i te zostaªy sklasy�kowane przez Baty-reva [Bat91℄ w terminah kolekji prymitywnyh. S¡ to minimalnekolekje promieni wahlarza, które nie tworz¡ sto»ka. Takih kolekjimo»e by¢ 3 lub 5. Przypadek, gdy wyst�puj¡ tylko 3 kolekje jestdobrze zbadany. Zajmowali±my si� gªównie przypadkiem 5 kolekji.Wahlarze takie mo»na dokªadnie sklasy�kowa¢. De�nije terminówwyst�puj¡yh w klasy�kaji znajduj¡ si� w ostatniej z�±i doktoratu.Twierdzenie [Bat91, Theorem 6.6℄Nieh Yi = Xi ∪Xi+1, dla i ∈ Z/5Z,
X0 = {v1, . . . , vp0}, X1 = {y1, . . . , yp1}, X2 = {z1, . . . , zp2},

X3 = {t1, . . . , tp3}, X4 = {u1, . . . , up4},gdzie p0 + p1 + p2 + p3 + p4 = n + 3. Dowolny n-wymiarowy wahlarz
Σ o zbiorze generatorów promieni ⋃Xi oraz pi�iu kolekjah prymi-tywnyh Yi mo»e by¢ opisany z dokªadno±i¡ do symetrii pi�iok¡ta zapomo¡ nast�puj¡yh kolekji prymitywnyh o wspóªzynnikah na-turalnyh c2, . . . , cp2, b1, . . . , bp3 :
v1+· · ·+vp0+y1+· · ·+yp1−c2z2−· · ·−cp2zp2−(b1+1)t1−· · ·−(bp3+1)tp3 = 0,

y1 + · · ·+ yp1 + z1 + · · ·+ zp2 − u1 − · · · − up4 = 0,

z1 + · · ·+ zp2 + t1 + · · ·+ tp3 = 0,

t1 + · · ·+ tp3 + u1 + · · ·+ up4 − y1 − · · · − yp1 = 0,

u1+ · · ·+up4+v1+ · · ·+vp0 −c2z2−· · ·−cp2zp2 −b1t1−· · ·−bp3tp3 = 0.

�W elu odnalezienia peªnyh, silnie wyj¡tkowyh kolekji u»ywali±mymetody pohodz¡ej od Bondala. Polega ona na rozwa»aniu rozpaduphni�ia wi¡zki trywialnej przez odpowiednio wysoki toryzny mor-�zm Frobeniusa. Kolkeja taka nie musi by¢ silnie wyj¡tkowa. Mo»enawet nie zawiera¢ takiej kolekji, o wykazali±my razem z MihaªemLasoniem. Jednak»e dla bardzo wielu rozmaito±i otrzymane w tensposób wi¡zki liniowe stanowi¡ dobry punkt wyj±ia. W nowej prayE�mov [E�℄ wykazaª, »e istniej¡ gªadkie, zupeªne rozmaito±i toryznetypu Fano o lizbie Piarda 3, nie posiadaj¡e peªnej, silnie wyj¡tkowejkolekji wi¡zek liniowyh.



14 MATEUSZ MICHA�EKRésumé en FranaisVariétés toriques: phylogénie et atégories dérivéesL'objetif de ette thèse est d'étudier les propriétés de variétés toriquespartiulières. La thèse est divisée en trois parties, les deux premièresétant fortement liées.Dans la première partie, nous étudions des variétés algébriques as-soiées aux proessus de Markov sur les arbres. A haque proessus deMarkov sur un arbre on peut assoier une variété algébrique. Motivépar la biologie, nous nous onentrons sur les proessus de Markov dé�-nis par une ation de groupe. Nous étudions les onditions pour que lavariété obtenue soit torique, le théorème 5.63. Nous donnons un résul-tat où les variétés obtenues sont normales (f proposition 5.73), ainsique des exemples où elles ne le sont pas (f proposition 5.74 et alul5.75). L'une des prinipales méthodes que nous utilisons est la général-isation des notions de prises et de réseaux introduites dans [BW07℄ àdes groupes abéliens arbitraires. Dans notre ontexte, les réseaux for-ment un groupe dérit à la dé�nition 5.24 qui agit sur la variété. Parailleurs, l'espae ambiant de la variété est la représentation régulièrede e groupe.Le prinipal problème ouvert que nous essayons de résoudre dansette partie est une onjeture de Sturmfels et Sullivant [SS05, Conje-ture 2℄ indiquant que le shéma a�ne assoié au modèle 3-Kimura estdé�ni par un idéal engendré en degré 4. Notre meilleur résultat dit quele shéma projetif assoié peut être dé�ni par un idéal engendré endegré 4 (f théorème 12.1). Ave Maria Donten�Bury, nous proposonsune méthode pour engendrer l'idéal assoié à la variété pour tous lesmodèles. Nous montrons que notre méthode fontionne pour de nom-breux modèles ainsi que pour les arbres si et seulement si la onjeturede Sturmfels et Sullivant est vraie (f proposition 7.8). Nous présen-tons quelques appliations, par exemple au problème d'identi�abilitéen biologie.La deuxième partie onerne les variétés algébriques assoiées auxgraphes trivalents pour le modèle de Jukes-Cantor binaire. Il s'agitd'un travail en ommun ave Weronika Buzy«ska, Jarosªaw Buzy«skiet Kaie Kubjas. La variété assoiée á un graphe peut être représentéepar un semi-groupe gradué. Nous étudions les liens entre les propriétésdu graphe et le semigroupe. Le théorème prinipal 14.1 borne le degréen lequel le semi-groupe est engendré par le premier nombre de Bettidu graphe, plus un.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 15Dans la dernière partie, nous étudions la struture de la atégoriedérivée des faiseaux ohérents des variétés toriques lisses. Dans untravail ommun ave Mihaª Laso« [LM11℄, nous onstruisons une ol-letion fortement exeptionnelle omplète de �brés en droites pour unegrande lasse de variétés toriques omplètes lisses dont le nombre dePiard est égal á trois. De nombreuses questions onernant le typede olletions auxquelles on peut s'attendre sur les variétés toriques deertains types sont enore ouvertes. A e titre, nous prouvons que Pnélaté en deux points ne possède pas de olletion fortement exeption-nelle omplète de �brés en droites pour n assez grand. Cei fournit uneolletion in�nie de ontre-exemples à la onjeture de King 19.2. Lepremier ontre-exemple est dû à Hille et Perling [HP06℄. Réemment,des ontre-exemples ont également été trouvés par E�mov [E�℄ dans leadre des variétés de Fano.Nous allons travailler sur le orps des nombres omplexes C. Toutesles variétés onsidérées sont des variétés algébriques dans le sens de[Har77℄.



16 MATEUSZ MICHA�EKGeneral IntrodutionThe aim of this thesis is to investigate the properties of speial torivarieties. The thesis is divided into three parts. The �rst two of themare strongly related to eah other.In the �rst, main part we study algebrai varieties assoiated toMarkov proesses on trees. To eah Markov proess on a tree onean assoiate an algebrai variety. Motivated by biology, we fous onMarkov proesses de�ned by a group ation. We investigate underwhih onditions the obtained variety is tori, Theorem 5.63. We pro-vide onditions ensuring that the obtained varieties are normal, 5.73,as well as give examples when they are not 5.74, 5.75. One of the maintools we use is the generalization of the notions of sokets and networksintrodued in [BW07℄ to arbitrary abelian groups. In our setting thenetworks form a group, De�nition 5.24, that ats on the variety. More-over the ambient spae of the variety is the regular representation ofthis group.The main open problem that we address in this part is a onjetureof Sturmfels and Sullivant [SS05, Conjeture 2℄ stating that the a�nesheme assoiated to the 3-Kimura model is de�ned by an ideal gener-ated in degree 4. Our strongest result states that the assoiated proje-tive sheme an be generated in degree 4, Theorem 12.1. Together withMaria Donten�Bury we also propose a method for generating the idealde�ning the variety for any model. We prove that our method worksfor many models and trees if and only if the onjeture of Sturmfelsand Sullivant holds, Proposition 7.8. We present some appliations, forexample to the identi�ability problem in biology.The seond part onerns algebrai varieties assoiated to trivalentgraphs for the binary Jukes-Cantor model. It is a joint work withWeronika Buzy«ska, Jarosªaw Buzy«ski and Kaie Kubjas. In aseof the graph, the assoiated variety an be represented by a gradedsemigroup. We investigate the onnetions between properties of thegraph and the semigroup. The main theorem 14.1 bounds the degreein whih the semigroup is generated by the �rst Betti number of thegraph plus one. Due to onnetions with the �rst part muh of theterminology that we use is either a speialization or generalization ofprevious de�nitions. From the one hand, as we are working with graphswith possible loops the notions of leaves, nodes and valeny are moresubtile than for trees. From the other hand, as we are dealing onlywith the binary Jukes-Cantor model, sokets and networks have got avery speial form.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 17In the last part we study the struture of the derived ategory ofoherent sheaves for smooth tori varieties. As a result of a joint workwith Mihaª Laso« [LM11℄ we onstrut a full, strongly exeptional ol-letion of line bundles for a large lass of smooth, omplete tori vari-eties with Piard number three. Many questions onerning what kindof olletions should be expeted on tori varieties of ertain types arestill open. As a ontribution we prove that Pn blown up in two pointsdoes not have a full, strongly exeptional olletion of line bundles for
n large enough. This provides an in�nite olletion of ounterexamplesto King's onjeture 19.2. The �rst suh ounterexample is due to Hilleand Perling [HP06℄. Reently also ounterexamples in the Fano asewere found by E�mov [E�℄.We will work over the �eld of omplex numbers C. All the varietiesonsidered are algebrai varieties in the sense of [Har77℄.
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TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 191. NotationWe present the list of symbols used in the thesis. The de�nitionspresented here are not formal and should be only treated as indiations.Preise de�nitions are given later � we provide the referenes.
Ag a transition matrix assoiated to the ation of g on W ,De�nition 5.1
add the morphism summing elements assoiated to edges ateah vertex, De�nition 5.16
add extension of add to a lattie, De�nition 6.3
add′ the group morphism summing elements assoiated toleaves, De�nition 5.19
bi a bijetion between sokets and networks, De�nition5.29
C a monoid in a lattie
GM the ategory of G-models, De�nition 10.3
GMab the ategory of general group-based models
dege the funtion summing up oordinates in Me, De�nition5.39
degv(ω) De�nition 15.5
D(X) the derived ategory of X , Subsetion 18.1
Db(X) the bounded derived ategory of X , Subsetion 18.1
E the set of edges of a tree, De�nition 4.2
E the set of edges of a graph
fo a morphism that forgets oordinates, De�nition 5.29
fo De�nition 5.55
φ(G), φ(G, n) phylogeneti omplexity of a group, Subsetion 7.1
G a group
G a trivalent graph
GN De�nition 5.13
H an abelian group
Kn,1 the law tree with n leaves, De�nition 3.2
L the set of leaves of a tree, De�nition 4.2
Lab a �nite set of labels
lχ the basis element of Ŵ indexed by a harater of anabelian group, De�nition 5.6
M a lattie of haraters



20 MATEUSZ MICHA�EK
Mdeg a sublattie of ME , De�nition 6.1
Me the lattie with basis elements indexed by haraters,De�nition 5.32
ME,G the lattie with basis elements indexed by pairs of anedge and an orbit, De�nition 5.64
ME the lattie with basis elements indexed by pairs of anedge and a harater, De�nition 5.32
ME,0 sublattie of ME , De�nition 5.40
M̂E,0 sublattie of M̂E , De�nition 5.40
M̂E a sublattie of ME generated by points of P , De�nition5.38
Mgr a lattie, De�nition 15.2
MS the lattie with basis elements indexed by sokets, Def-inition 5.32
MS,0 sublattie of MS with oordinates summing up to zero,De�nition 5.40
N lattie of one parameter subgroups or the set of nodesof a tree
N the set of inner verties of a graph
N the group of networks, De�nition 5.24
O the set of orbits (usually of the adjuntion ation of agroup G on H∗)
wχ a basis element of W indexed by a harater of anabelian group, De�nition 5.2
P an integral polytope, (often representing the variety as-soiated to a model, De�nition 5.34)
P(X)P an projetive tori variety, De�nition 2.7
π De�nition 4.9
Poly the ategory of polytopes in latties, De�nition 10.4
ψ̂ De�nition 4.7
ψ̌ the rational map indued by π ◦ ψ̂, after De�nition 4.9
ψ̃ the morphism of latties indued by ψ̂, De�nition 5.33
pv a projetion onto the vertex v, De�nition 5.16
P(X(T,W, Ŵ )) the projetive variety assoiated to the tree T with amodel distinguished by Ŵ
S a �nite set of states
S the group of sokets, De�nition 5.24
Σ a fan, De�nition 2.25
T a rooted tree
T a trivalent tree
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T an algebrai torusT a real (topologial) torus
τ(G) phylogeneti monoid, De�nition 15.6
V the set of verties of a tree, De�nition 4.2
V the set of verties of a graph
W a vetor spae with basis elements orresponding tostates, De�nition 4.1
Ŵe De�nition 4.4
ŴE De�nition 4.6
W̃E the spae isomorphi to the ambient spae of the varietyrepresenting the model, De�nition 5.31
WL De�nition 4.6
W̃L the ambient spae of the variety representing the model,De�nition 5.31
Wv De�nition 4.4
WV De�nition 4.6
Ŵ the spae of transition matries, De�nition 4.3
X(T,W, Ŵ ) the a�ne variety assoiated to a tree T and a modeldistinguished by Ŵ
Yi primitive olletion, Theorem 19.7
Ŷi olletion of indies in Yi
ZE a lattie with basis elements indexed by edges, De�nition15.2
Z2E the group of networks for the binary Jukes-Cantormodel, De�nition 15.92. Tori varieties � the settingThe study of tori varieties is a relatively new subjet. Howeverits origins an be traed bak even to Newton who had an idea torepresent a polynomial by lattie points. To a monomial in n variables

xa11 · · ·xann =: xa one assoiates a point (a1, . . . , an) ∈ Zn. The followingde�nition will not be used throughout the thesis. However we inludeit to give a reader not familiar with tori geometry �rst foundations.De�nition 2.1 (Newton polytope). Let f =
∑

a∈Nn αax
a be a polyno-mial in n variables. The Newton polytope of f is the onvex hull ofpoints assoiated to monomials xa, suh that αa 6= 0. The de�nitionan be easily extended to Laurent polynomials.To �nd muh more information on Newton polytopes we advise thereader to onsult [Stu98℄. One of the �rst papers where tori varieties



22 MATEUSZ MICHA�EKwere studied in a systemati way is [KKMSD73℄. The authors all torivarieties "toroidal embeddings" and view them as speial ompati�a-tions of the algebrai torus (C∗)n. Classial referene for tori varietiesare [Oda87℄ and [Ful93℄. The latter book fouses more on the torus a-tion. Reently a new, very modern, user friendly book appeared [CLS℄.The point of view on tori varieties presented there is losest to the onefrom this thesis. The reasons why tori varieties have reently beomeso popular are numerous. A few most important are for sure:(i) tori varieties are strongly related to ombinatorial objets,what makes a lot of omputations possible or at least easier,(ii) tori varieties are simple, but fertile enough to provide a goodtesting ground for onjetures, proofs, theorems, examples,(iii) tori varieties appear naturally as simpli�ations of other va-rieties,(iv) tori varieties appear in applied mathematis.This setion ontains well known results. We present the proofs,trying to �nd the easiest and most diret. We hope that, with littlee�ort, the setion an be read by people not familiar with tori geome-try. Details that are skipped an be onsidered as exerises. We avoidreferring to any general theorems, as the theory is, on this level, easyenough to develop from srath. Many ideas presented in this partome from [CLS℄ and [Stu96℄. We will use the setting presented in thissetion throughout the thesis. We enourage the reader familiar withtori geometry to take a look, as often our approah is di�erent fromthe standard one.In modern algebrai geometry a variety is loally desribed as a spe-trum of an algebra. Thus the most important objet onneted to ana�ne algebrai variety is its ideal ontaining all polynomials vanishingon it. Note however that many varieties an be onstruted in a di�er-ent way. Given k polynomials f1, . . . , fk in n variables one an onsiderthe map (f1, . . . , fk) : Cn → Ck. The Zariski losure of the image isan algebrai variety. Furthermore we an generalize this onstrutionassuming that fi are Laurent polynomials. In this ase the domain ofthe map is (C∗)n. Let us start the disussion of tori geometry by in-troduing a�ne tori varieties. In most simple terms the study of a�netori varieties is the study of the ase where all fi are monomials.De�nition 2.2 (A�ne tori variety). Consider k Laurent monomialsin n variables fi = xai , where ai ∈ Zn. An a�ne tori variety is theZariski losure of the image of the map (f1, . . . , fk) : (C∗)n → Ck.Note that we do not require the a�ne tori variety to be normal.This issue will be addressed later. Moreover the a�ne tori varieties



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 23ome with an embedding in the a�ne spae. Realling Newton's ideathe map (fi) an be represented by k points ai ∈ Zn. The geometryof these points is strongly related to the geometry of the a�ne torivariety. We will say that the variety is assoiated to the set of points
{ai}.Proposition 2.3. The ideal of the a�ne tori variety is generated bybinomials. Suppose that the parametrization of the variety is given by
k monomials fi in n variables xi. Let Pi ∈ Zk be a point assoiated to
fi. A binomial yb11 · · · ybkk − yc11 · · · yckk for bi, ci ∈ N is in the ideal if andonly if ∑i biPi =

∑
i ciPi.Proof. The binomials of the given form vanish on the image of the map

(f1, . . . , fk), hene also on the Zariski losure. We will prove that theynot only generate the ideal, but span it as a vetor spae. Fix anyorder on the monomials. Suppose that the ideal is not spanned by thebinomials of the given form. Let g be suh a polynomial in the variables
yi that:

• is in the ideal of the variety,
• is not spanned by binomials of the given form,
• its leading oe�ient is least possible.Let αm(y1, . . . , yk) be the leading oe�ient of g where m is a mono-mial. As g is in the ideal, by substituting yi by fi we get a Laurentpolynomial that is zero on (C∗)n. Hene it has to be equal to zero. Inpartiular the term αm(f1, . . . , fk) has to redue with the term induedby some di�erent monomial βm′(f1, . . . , fk) appearing in g. Thus themonomials m and m′ indue an integer relation between the points Pi.In partiular m − m′ is a binomial of the hosen form. By subtrat-ing α(m−m′) from g we get a polynomial in the ideal with a stritlysmaller leading oe�ient whih gives a ontradition. �The above proposition allows us to desribe the algebra of an a�netori variety.De�nition 2.4 (Semigroup algebra). Let (C,⊕) be a monoid. Themonoid algebra C[C] as a vetor spae is spanned freely by the elementsof C. The multipliation for c1, c2 ∈ C ⊂ C[C] is de�ned as c1c2 :=

c1 ⊕ c2 and extended to C[C] using the axioms of C-algebra.Example 2.5. For the monoid Nn we obtain the algebra of polynomi-als in n variables. For the group Zn we obtain the algebra of Laurentpolynomials.Corollary 2.6 (From Proposition 2.3). Consider the a�ne tori vari-ety parameterized by monomials fi in n variables. Let Pi ∈ Zn be the



24 MATEUSZ MICHA�EKpoint representing fi. Let C be the monoid generated by points Pi. Thealgebra of the a�ne tori variety is C[C]. �We will be often working with projetive tori varieties.De�nition 2.7 (Projetive tori variety). Consider k + 1 Laurentmonomials fi in n variables. A projetive tori variety is the Zariskilosure of the map (f1, . . . , fk+1) : (C∗)n → Pk.If P ⊂ Zn is the set of points representing the monomials fi, wewill say that the losure of the image of (fi) in Pk is a projetive torivariety assoiated to P and we will denote it by P(X)P . We an adaptProposition 2.3 and Corollary 2.6. First let us onsider an a�ne oneover a projetive tori variety. Its parametrization is as follows:
(λf1, . . . , λfk+1) : (C

∗)n+1 → Ck+1.Notie that we have added a nonzero parameter λ, as we passed toa�ne spae. Of ourse λfi is still a monomial. If fi is represented bya point Pi ∈ Zn then λfi is represented by Pi × {1} ∈ Zn+1. Thus inthe projetive ase it is more natural to onsider the points Pi in thelattie of dimension one bigger and put the last oordinate equal to 1.The monoid generated by Pi×{1} gives rise to a monoid algebra of theone over the projetive variety. Moreover the last oordinate gives thegrading of this algebra. The projetive tori variety is the Proj of thisgraded algebra. Thus a�ne tori varieties orrespond to �nitely gen-erated monoids in Zn. Projetive tori varieties orrespond to �nitelygenerated monoids in Zn+1 with generators with last oe�ient equalto 1. A reader interested in this topi may extend these results tovarieties embedded in weighted projetive spaes as an exerise.Usually one assumes that a tori variety is normal. Let us explainwhy. We start by realling basi de�nitions.De�nition 2.8 (Normal algebrai variety). An a�ne algebrai varietyis normal if and only if its algebra is integrally losed in its �eld offrations. An abstrat algebrai variety is normal if and only if it anbe overed by normal a�ne algebrai varieties.The onept of normality is very important for a number of reasons.Let us reall that smoothness implies normality. Moreover the singularlous of a normal variety has odimension at least 2. Most tori geome-ters work with normal varieties, as this allows for a nie ombinatorialdesription of the variety [Oda87, Theorem 1.4℄.De�nition 2.9 (Lattie). A lattie is a �nitely generated abelian groupwith no torsion. In other words a lattie is an abelian group isomorphito Zn.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 25Consider a subset of points P in a lattie M ≃ Zn. As in the Def-inition 2.7 the set P de�nes a projetive tori variety P(X)P togetherwith an embedding. Let X be the a�ne one over P(X)P . Let C bethe monoid generated by the points of P × {1} ⊂ M × Z. We knowthat X = SpecC[C]. Let M̃ ⊂ M × Z be the sublattie generated by
P × {1}.De�nition 2.10 (Projetive normality). We all the projetive variety
P(X) projetively normal if and only if the a�ne one X over thisvariety is normal.Of ourse eah projetively normal variety is normal. In the torisetting both normality and projetive normality an be desribed inombinatorial language.De�nition 2.11 (Saturated monoid, saturation, saturated set of points).Let C be a monoid ontained in a lattie M̃ . We say that C is saturatedif and only if for any x ∈ M̃ and any positive integer k the element
kx ∈ C if and only if x ∈ C.For any monoid C one an de�ne its saturation C̃ that is the smallestsaturated monoid ontaining C. In other words x ∈ C̃ if and only iffor some positive integer k we have kx ∈ C.We say that a set of points is saturated in a lattie M if and only if itgenerates a saturated monoid. We say that a set of points is saturatedif it is saturated in the lattie that it generates.De�nition 2.12 (Integral polytope). An integral polytope is a onvexhull of a �nite number of points in the lattie. As we will be dealingonly with lattie polytopes we will often all them just polytopes.De�nition 2.13 (Normal polytope). We say that a polytope P ⊂ Mis normal in the lattie M if and only if the set P ×{1} is saturated in
M ×Z. We say that a polytope P is normal if and only if it is normalin the lattie that it generates.In other words a polytpe P is normal in the lattie M if and only iffor any k ∈ N any point Q ∈ kP ∩M is a sum of k points from P .Note that it is very important to speify the lattie. Consider thepolytope P ⊂ M := Z3. Let P have got four integral points: (0, 0, 0),
(1, 1, 0), (0, 1, 1), (1, 0, 1). This is a normal polytope. Note howeverthat it is not normal in M . Indeed (1, 1, 1) ∈ 2P and (1, 1, 1) is notthe sum of two integral points of the polytope.Note that if the set P×{1} is saturated then P must be a polytope inthe lattie that it generates. Indeed suppose that P×{1} is a saturated



26 MATEUSZ MICHA�EKset of points. Let M be the lattie spanned by P . Let D ∈ M be alinear ombination of points from P with positive oe�ients summingup to 1. From the linear algebra it follows that we an assume thatthe oe�ients are rational. Hene some multiple of D × {1} is in themonoid generated by P ×{1}. As P ×{1} is saturated it must ontain
D × {1}. Thus the onvex hull of P interseted with M equals P .Hene P is a polytope.Fat 2.14. The variety P(X)P , de�ned by a set of points P , is pro-jetively normal if and only if the set of points P × {1} is saturated.Equivalently P must be a normal polytope.Fat 2.15. Let D be any point of the set P × {1}. Let PD be the set
P × {1} − D, where the minus is the lattie operation. The variety
P(X)P assoiated to P × {1} is normal if and only if for any D ∈
P × {1} the set PD is saturated. In suh a ase P does not have to benormal.Proof. Both fats are a diret onsequenes of Proposition 2.22. For the�rst, the algebra of the one over the variety equals the monoid algebrafor the monoid C spanned by P × {1}. The monoid C is saturated, ifand only if P is normal.For the seond, one an notie that points of P × {1} orrespond tovariables of the ambient projetive spae. Consider the a�ne subvari-ety of P(X) orresponding to setting one variable, orresponding to apoint D, to 1. The algebra of this a�ne variety is the monoid algebraassoiated to the monoid spanned by PD. �De�nition 2.16 (Cone, one over a polytope). A one is a �nitelygenerated, saturated monoid of a lattie.In the literature it is often alled a onvex polyhedral one. Morepreisely in this thesis we identify lattie points of the polyhedral onewith the one.Let P be a polytope that spans the lattie M . The one over P is thesaturation of the monoid spanned by P × {1} ⊂M × Z.We will see in Proposition 2.22 that normal a�ne tori varieties areassoiated to �nitely generated ones. Projetively normal projetivetori varieties are assoiated to ones over normal polytopes.There is one important ase where even in the projetive ase onean onsider the set of points P instead of P × {1}. Suppose that
P is ontained in a hyperplane given by an equation ∑

aixi = b for
b 6= 0. In this ase the monoid generated by P is isomorphi to themonoid generated by P ×{1}. In the �rst part of the thesis we will beonsidering suh polytopes.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 27We would like now to explain the name tori variety. It is onnetedto the algebrai torus T = (C∗)n = SpecC[x±1
i ]. Using oordinate-wise multipliation T is an algebrai group. On the level of algebrasthe ation is given by a morphism C[x±1

i ] → C[x±1
i ] ⊗ C[x±1

i ] that as-soiates to a generator xi the tensor produt xi ⊗ xi. Note that anarbitrary Laurent polynomial f is not sent to f ⊗ f . This is true onlyfor monomials. Let us onsider algebrai morphisms T → C∗ that pre-serve the abelian group struture. These are alled haraters. Suha map is in partiular a regular funtion on T hene must be givenby a Laurent polynomial. Due to the fat that it must preserve thegroup struture one an prove that it must be a monomial. By iden-tifying a monomial with a lattie point we see that haraters form alattie Zn. Intrinsially, one de�nes the sum of haraters f and g by
(f + g)(x) = f(x)g(x).De�nition 2.17 (Lattie of haraters M). The lattie of haraters
M of a torus T onsists of morphisms of algebrai groups T → C∗ withaddition de�ned by (f + g)(x) = f(x)g(x).Dually one de�nes one parameter subgroups as morphisms of alge-brai groups C∗ → T. By projeting onto oordinates we see that eahsuh morphism is of a form t→ (ta1 , . . . , tan) for ai ∈ Z. It an be iden-ti�ed with a point (a1, . . . , an) ∈ Zn. Hene one parameter subgroupsalso form a lattie.De�nition 2.18 (Lattie of one parameter subgroups N). The lat-tie of one parameter subgroups of a torus T onsists of morphisms ofalgebrai groups C∗ → T with addition de�ned by (λ+ δ)(t) = λ(t)δ(t).It is well known that lattiesM and N are dual. The pairing an bedesribed as follows. Fix f ∈M and λ ∈ N . The omposition f ◦λ is amorphism of one dimensional tori. Hene it is a form t→ ta. We de�nethe produt of f and λ to be equal to a. After using the identi�ationof M and N with Zn this is the standard salar produt.As we have seen the haraters orrespond exatly to monomialsin the algebra of the torus. Hene T is the spetrum of the monoidalgebra C[M ]. Points of T orrespond to maximal ideals of this algebraor to surjetive morphisms of algebras f : C[M ] → C. Of ourse todetermine suh a morphism it is enough to de�ne it on M . As M is agroup its image has to be ontained in C∗. Moreover due to the fatthat f is a map of algebras the map M → C∗ must preserve the groupstruture. Hene the points of T orrespond to maps M → C∗ thatpreserve the group struture. Preisely for a point P we assoiate to aharater χ its value on P .



28 MATEUSZ MICHA�EKDe�nition 2.19 (Abstrat tori variety). A tori variety X is an al-gebrai variety, �nitely generated over C, ontaining T as a dense opensubset. Moreover we require that the ation of T on itself extends to analgebrai ation on X.A ruial fat is that an abstrat tori variety that is a�ne is ana�ne tori variety in the sense of De�nition 2.2. This fat is usuallyproved using the following, very important lemmas.Lemma 2.20. Suppose that a torus T ats on a vetor spae V . Thenthere exists a basis of V suh that the ation is diagonal.Proof. For t ∈ T and v ∈ V we have:
tv =

∑
χ(t)Aχ(v),where the sum is over a �nite olletion of haraters of T. One annotie that Aχ are projetions to subspaes on whih T ats by multi-pliation by a value of the orresponding harater. �Lemma 2.21. The algebra of an abstrat tori variety X that is a�neis a monoid algebra assoiated to a monoid ontained in the haraterlattie of the torus assoiated to the variety.We propose an approah that proves the this lemma diretly.Proof. As T is Zariski dense in X we know that the algebra A of X is asubalgebra of C[M ]. Fix f ∈ A. We know that f =

∑k

i=1 aiχi for some
χi ∈ M and ai 6= 0. Let W be a vetor spae spanned by haraters
χi for i = 1, . . . , k. Consider the vetor subspae V := A ∩W . Our�rst aim is to prove that V = W . Suppose that V is ontained in aproper vetor subspae. Let (b1, . . . , bk) be suh that if ∑k

i=1 diχi ∈ V ,then ∑k

i=1 dibi = 0. By the assumptions T ats on X , hene on A. Anation of a point c ∈ T on χi is given by χi(c)χi. Hene the ation of
c on f gives ∑k

i=1 aiχi(c)χi ∈ V . Thus for any c ∈ T we must have∑k

i=1 biaiχi(c) = 0. Hene ∑k

i=1 biaiχi must be identially zero on T.This is possible only if all bi = 0 what gives a ontradition.Hene the algebra A is spanned as a vetor spae by haraters of
M . Obviously these haraters must form a monoid. �As we have seen the algebra of an abstrat tori variety X that isa�ne is equal to C[C] for a monoid C ⊂ M . As the algebra is �nitelygenerated, so is the monoid C. Let χ1, . . . , χk be generators of C.Consider the embedding of the torus ating on X by (χ1, . . . , χk). Dueto Corollary 2.6 its Zariski losure in Ck is isomorphi to X .



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 29Proposition 2.22. Let X be an a�ne tori variety. Let C be a monoidin the harater lattie M of the torus ating on X. The variety X isnormal if and only if C is a one.Proof. First let us prove that if X is normal then C is saturated. Con-sider any point kc ∈ C for c ∈ M . We want to prove that c ∈ C. For
m ∈ M let χm be a orresponding harater. Consider a polynomial
f(X) = Xk − χkc with oe�ients in the algebra of X . Clearly χcsatis�es the equation f . Moreover as C spans M , the harater χc isin the quotient �eld of the algebra of X . Due to the normality of Xwe know that χc is also in the algebra. Hene c ∈ C.Now we want to prove that if C is saturated, then C[C] is normal.First note that the quotient �eld of C[C] is equal to the quotient �eld of
C[M ]. As the torus is smooth, its algebra is normal. One an also proveit by notiing that its algebra is a UFD (as it is a loalization of thepolynomial ring). Consider any moni polynomial f ∈ C[C][x]. Sup-pose that g is in the quotient �eld and satis�es the equation f(g) = 0.From the normality of C[M ] we know that g ∈ C[M ]. One an repeatthe argument of Lemma 2.21. Namely we an at on the equation
f(g) by any point P of the torus. The ation of P on f gives a monipolynomial with oe�ients in C[C]. Hene the ation of P on g givespolynomials that are in the normalization of C[C]. By the same ar-guments as in Lemma 2.21 we see that every harater appearing in gwith nonzero oe�ient must be in the normalization of C[C]. Thuswe an assume that g ∈M .Suppose that f is of degree d. Notie that f(g) = 0 implies that
dg = d′g + c0 for some integer 0 ≤ d′ < d and c0 ∈ C, as the harater
χdg must redue with some other harater. Thus (d − d′)g ∈ C andby normality g ∈ C. �It is also worth mentioning how we an reover the torus of an a�netori variety given by a parametrization. There are a few equivalentways to do this. Note that our onstrution of an a�ne or projetivevariety de�nes them with an embedding in an a�ne or projetive spaewith a distinguished system of oordinates. These oordinates are inbijetion with the points in the lattie that de�ne the variety. Theonstrution also distinguishes a dense torus in the embedding spae.It ontains all points with nonzero oordinates.Fat 2.23. Consider a parametrization f = (f1, . . . , fk) : T′ := (C∗)n →
Ck, where fi are Laurent monomials in n variables. Let X be theZariski losure of the image of this map. Let T′′ = (C∗)k ⊂ Ck be thetorus ontaining all points with all oordinates di�erent from zero, with



30 MATEUSZ MICHA�EKthe ation given by oordinatewise multipliation. Let M ′ and M ′′ bethe harater latties respetively of the tori T′ and T′′. Then:(i) On the level of algebras the parametrization map f is induedby group homomorphism f̃ :M ′′ →M ′,(ii) The image T of T′ in T′′ is Zariski losed, isomorphi to atorus, with the group ation indued from T′′,(iii) The harater lattie of T is equal to the image of f̃ or equiv-alently to the quotient of M ′′ by the kernel of f̃ ,(iv) The variety X ontains T as a dense open subset and the ationof T extends to X.
�One an identify the torus T that ats on the projetive tori variety

P(X)P . As in the a�ne ase it is the image of the parameterizing torus.It is also equal to the intersetion of P(X)P with a torus T′′ ontainingall points of the projetive spae with all oordinates di�erent fromzero. The ation of T is indued from the ation of T′′ on the projetivespae. Using the basis it is given by the oordinatewise multipliation.We will be often omparing a projetive variety with its a�ne one.The following disussion onerns the ambient spaes. There is a nat-ural morphism m : Cn+1 \ {0} → Pn. A system of oordinates distin-guishes a torus T′ in Cn+1 onsisting of the points with all oordinatesdi�erent from zero. Let M ′ be the harater lattie of T′. Choose aoordinate system on Pn ompatible with the one on Cn+1 by the mor-phism m. The image of T′ is a torus T′′ onsisting of the points withall oordinates di�erent from zero. Let M ′′ be the harater lattie of
T′′. Note that Cn+1 is a tori variety, with the ation of T′ given byoordinatewise multipliation. So is Pn with the ation of T′′. Eahoordinate of Cn+1 is a harater of M ′. All oordinates distinguisha basis of M ′. The morphism m an be restrited to T′ and an beonsidered as morphism of tori, preserving the group ation. It induesa map of harater latties m̃ : M ′′ → M ′. As m is a surjetive mor-phism of tori, the morphism m̃ is injetive. Hene M ′′ is a sublattie of
M ′. Using the basis ofM ′ we an give a preise desription of elementsthat belong to M ′′. Namely an element of M ′ belongs to M ′′ if andonly if its sum of oordinates in M ′ is zero.De�nition 2.24 (Fae of a one). Let C be any one in a lattie M .Let v ∈ M∗ = Hom(M,Z). Suppose that for any c ∈ C we have
v(c) ≥ 0. Let v⊥ be a hyperplane of M onsisting of elements x suhthat v(x) = 0. A fae of the one C is any subset that is given by v⊥∩C



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 31for some v satisfying the onditions above. Notie that a fae of a oneis also a one.Equivalently a fae F of C an be de�ned as a submonoid satisfyingthe following ondition:
• For any c1, c2 ∈ C suh that c1 + c2 ∈ F we have c1, c2 ∈ F .For an a�ne tori variety orresponding to a one C the faes of

C orrespond to orbits of the torus ating on it. Let us present thisorrespondene in details. We �x a �nitely generated monoid C in alattie M and its generators χ1, . . . , χk ∈ C. As in De�nition 2.2 thelosure of the embedding in Ck of the torus SpecC[M ] by haraters χiis the a�ne tori variety X := SpecC[C]. Note that we distinguisheda basis in Ck, but not on the torus C[M ]. Due to Fat 2.23 we knowthat:
• the dense torus orbit of X ontains preisely those points thathave all oordinates di�erent from zero,
• the harater lattie of the torus ating on X is equal to thesublattie of M spanned by C.We will generalize this to other orbits. Assume that C is a one. Eahorbit will be indexed by a fae F of the one. The fae F distinguishesa subset I of indies from {1, . . . , k} suh that i ∈ I if and only if

χi ∈ F . The orbit orresponding to F an be haraterized as follows:1) the orbit ontains preisely those points that have got oordinatesorresponding to i ∈ I di�erent from zero and all other equal tozero,2) the orbit is a torus with a harater lattie spanned by elements of
F ,3) the losure of the orbit is a tori variety given by the one F ,4) eah point of the orbit is a projetion of the dense torus orbit ontothe subspae spanned by basis elements indexed by indies from I,5) the inlusion of the orbit in the variety is given by a morphism ofalgebras C[C] → C[F ]. This morphism is an identity on F ⊂ C[C]and zero on C \ F .Note that eah orbit will ontain a unique distinguished point givenby the projetion of the point (1, . . . , 1) ∈ Ck. We will only present asketh of a proof of these observations.Proof. As in ase of the torus we an identify the points of X withmonoid morphisms C → (C, ·). Fix any point x ∈ X . The haraters

χ ∈ C suh that χ(x) 6= 0 must form a fae of F . Hene x distinguishesa subset of indies I ⊂ {1, . . . , k}. Of ourse the set of points withnonzero oordinates indexed by I and other oordinates equal to zero



32 MATEUSZ MICHA�EKinX is invariant with respet to the ation of the torus ating on X . Soto prove 1) it is enough to prove that all these points are in one orbit.The point x represents a morphism C → (C, ·) that is nonzero on Fand zero on C \F . Consider the restrition of this morphism to F . Asit is nonzero it an be extended to a morphism M ′ → C∗, where M ′ isa sublattie generated by F . Next we an extend this morphism to thelattie M ′′ generated by C. Thus we obtain a morphism f :M ′′ → C∗that agrees with the one representing x on F . Note that f represents apoint p in the torus ating on X . By the ation of p−1 on x we obtaina point given by a morphism that assoiates one to elements from Fand zero to elements from C \ F . Thus we have proved 1). Moreoverwe showed that eah orbit ontains the distinguished point. Point 2)follows, as morphism that are nonzero on F and zero on C \ F areidenti�ed with morphisms from M ′ to C∗. Point 3) is a onsequene of2) and previous disussion on a�ne tori varieties. Indeed, we alreadyknow that the orbit is a torus with the lattie generated by F . Thistorus is the image of the torus SpecC[M ] in Ck by haraters from I andall other oordinates equal to zero. Let A be the a�ne spae spannedby basis elements indexed by indies in I. The orbit orresponding to
F is ontained in A. In fat, by the onstrution it is the image of
SpecC[M ] by haraters χi, suh that i ∈ I. The losure of this torusis exatly given by SpecC[F ], as generators of the monoid C ontainedin F are generators of F . Point 4) is obvious, as the point p onstrutedin the �rst part of the proof projets to x. �We �nish this setion by stating some results about normal abstrattori varieties.De�nition 2.25 (Fan). A fan Σ is a �nite olletion of ones in alattie that satisfy the following onditions:1) if a one C is in the fan then all its faes are also in the fan,2) an intersetion of any two ones from the fan is a fae of both,3) for any one C ∈ Σ if x ∈ C, then −x 6∈ C.A general, normal tori variety an be represented by a fan in theone parameter subgroups lattie N .De�nition 2.26 (Dual one). Let L and L′ be dual latties with thepairing given by (·, ·). Let δ ⊂ L be a one in L. We de�ne the dualone δ∗ ⊂ L′ as:

δ∗ = {x ∈ L′ : for any y ∈ δ we have (x, y) ≥ 0}.A tori variety X is onstruted from a fan Σ by gluing togethera�ne shemes Spec(C[σ∗
i ]), where σ∗

i ⊂ M is a one dual to σi ∈ Σ.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 33One dimensional ones in Σ are alled rays. The generators of thesemonoids are alled ray generators.Many properties of the variety X an be desribed using the fan Σ.For example X is smooth if and only if for every one σi the set of itsray generators an be extended to a basis of N . Moreover to eah raygenerator v we may assoiate a unique T invariant Weil divisor denotedby Dv. For fans ontaining maximal dimensional ones there is a wellknown exat sequene:
0 →M → DivT → Cl(X) → 0,(2.1)where DivT is the group of T invariant Weil divisors and Cl(X) is thelass group. The map M → DivT is given by:

m→
∑

m(vi)Dvi ,where the sum is taken over all ray generators vi.So far we have de�ned objets of the ategory of tori varieties.Not every algebrai morphism is a morphism in this ategory. Indeed,as tori varieties are endowed with the torus ation, it is natural todistinguish those morphisms that respet this ation.De�nition 2.27 (Tori morphism). Let f : X → Y be a morphism oftori varieties. Let TX ⊂ X, TY ⊂ Y be the tori ating respetivelyon X and Y . We all f a tori morphism if f(TX) ⊂ TY and for anypoints p, q ∈ TX we have:
f(pq) = f(p)f(q).Notie that, as the tori are Zariski dense in the varieties, this immedi-ately implies that for any p ∈ TX and q ∈ X the same equality holds.As the restrition of the tori morphism is a morphism of algebraitori, it indues a map of harater latties f̃ :MY →MX . By dualizing,this gives a map of one parameter subgroups f̃ ∗ : NX → NY . In fat onean easily haraterize whih morphisms of one parameter subgroupsgive rise to tori morphisms. For eah one δ in the fan representing Xthere must be a one δ′ in the fan representing Y suh that f̃ ∗(δ) ⊂ δ′.Muh more information on the topi an be found in [CLS℄, [Ful93℄.Part 1. Algebrai varieties assoiated to Markov proesseson treesDans la première partie, nous étudions des variétés algébriques as-soiées aux proessus de Markov sur les arbres. A haque proessus deMarkov sur un arbre on peut assoier une variété algébrique. Motivé



34 MATEUSZ MICHA�EKpar la biologie, nous nous onentrons sur les proessus de Markov dé�-nis par une ation de groupe. Nous étudions les onditions pour que lavariété obtenue soit torique, le théorème 5.63. Nous donnons un résul-tat où les variétés obtenues sont normales (f proposition 5.73), ainsique des exemples où elles ne le sont pas (f proposition 5.74 et alul5.75). L'une des prinipales méthodes que nous utilisons est la général-isation des notions de prises et de réseaux introduites dans [BW07℄ àdes groupes abéliens arbitraires. Dans notre ontexte, les réseaux for-ment un groupe dérit à la dé�nition 5.24 qui agit sur la variété. Parailleurs, l'espae ambiant de la variété est la représentation régulièrede e groupe.Le prinipal problème ouvert que nous essayons de résoudre dansette partie est une onjeture de Sturmfels et Sullivant [SS05, Conje-ture 2℄ indiquant que le shéma a�ne assoié au modèle 3-Kimura estdé�ni par un idéal engendré en degré 4. Notre meilleur résultat dit quele shéma projetif assoié peut être dé�ni par un idéal engendré endegré 4 (f théorème 12.1). Ave Maria Donten�Bury, nous proposonsune méthode pour engendrer l'idéal assoié à la variété pour tous lesmodèles. Nous montrons que notre méthode fontionne pour de nom-breux modèles ainsi que pour les arbres si et seulement si la onjeturede Sturmfels et Sullivant est vraie (f proposition 7.8). Nous présen-tons quelques appliations, par exemple au problème d'identi�abilitéen biologie.

3. IntrodutionThe motivation for the onstrutions in the �rst part of the thesisomes from applied mathematis. Let us reall basi properties ofMarkov hains and Markov proesses on trees. A Markov hain is asequene of random variables {Xi} that satisfy spei� onditions. Fora �xed state of a variable Xi−1 the variable Xi is independent from theset of all the variables Xi−j for j > 1. Typially, this hain is depitedvertially by assoiating a vertex to eah variable and joining Xi with
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Xi−1.

· X0...
· Xi−1

· Xi...For a Markov hain we usually introdue onditional probabilities thatspeify all the properties of the hain. Suppose that eah variable Xian be in ai < ∞ states. Then to eah edge joining Xi−1 and Xi wean assoiate an ai−1×ai matrix. The olumns and rows of the matrixare indexed respetively by states of Xi−1 and Xi. The given entriesorrespond to onditional probabilities. Namely, an entry indexed bya pair of states (p, q) equals the probability that Xi is in the state qunder the ondition that Xi−1 is in the state p. These matries arealled transition matries. If we know the distribution of X0 and thetransition matries we an easily alulate the distributions of all othervariables.This onstrution an be diretly generalized to rooted trees. By arooted tree we will always mean a onneted graph with one distin-guished vertex and no yles. By leaves we mean verties of valenyone. Nodes are verties that are not leaves. In the thesis we willsometimes identify leaves with edges adjaent to them. To simplifythe language we assume that the tree is a direted graph and all theedges are direted away from the root. In the example below the rootis denoted by ◦.
◦

· ·

· · ·As before to eah vertex we assoiate a random variable. We say thata node v1 is a diret anestor of v2 if there is an edge direted from
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v1 to v2. Note that there is always one diret anestor, exept for theroot that does not have anestors. The desendants of a vertex areall the verties that an be reahed from it by a direted path. TheMarkov property ensures that a variable X is independent from allother variables that are not its desendants one the state of the diretanestor is �xed.Markov proesses on trees are good models for many empirial phe-nomena. For example evolution proesses are often modeled it thisway. It is intuitively plausible that the DNA of a speies depends onlyon the state of its diret anestor. The siene that models the evo-lutionary hanges is alled phylogenetis. For more information aboutmathematial and omputational methods in phylogenetis the readeris advised to onsult [SS03℄ and [Fel04℄. The main aim of phylogenet-is is to establish the Markov proess that models evolution of speies.In this situation we assume that the random variables have four statesorresponding to four nuleobases that form the DNA. These are alledadenine, ytosine, guanine, thymine and are denoted respetively by A,
C, G and T . A priori we do not know the transition matries and theshape of the tree. However, by examining the living speies, we knowthe distribution of random variables assoiated to leaves. Theoreti-al biology also provides us with possible types of transition matries.Aording to the theoretial model we hoose the transition matriesmay belong to di�erent linear subspaes. Di�erent biologial modelsare disussed in Setion 4. A very interesting fat is that the modelsproposed by theoretial biologists often have very nie mathematialproperties. Preisely ertain subspaes of possible transition matriesare given as invariants under a group ation.One of the possible approahes to solve the problems in phylogenetisusing algebrai geometry is as follows. We �x a rooted tree T that wesuspet is a orret model of evolution. We onsider any transitionmatries with entries that are free parameters, that possibly dependonly on the biologial model that we hoose. To the spae of parameterswe add also possible distributions of the variable assoiated to theroot. We alulate the distribution of random variables assoiated toleaves. More preisely we get a map2 π ◦ ψ̂ . Its domain parameterizesentries of transition matries and possible distributions of the randomvariable assoiated to the root. Its image parameterizes all possibledistributions of the random variables assoiated to leaves.Example 3.1. In this example we suppose that eah variable an be intwo states denoted by 0 and 1. There is one root with two desendants.2The reason for hoosing this notation will beome lear in the following setions



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 37The variable assoiated to the root attains the value 0 and 1 with theprobability given respetively by λ0 and λ1. The transition matriesare as follows.
◦

[
a1 a2
a2 a1

] [
b1 b2
b2 b1

]

· ·Hene there are 6 parameters. The leaves an be in 4 states. We orderthem as follows:1) both leaves are in state 0,2) the left leaf is in state 0 and right in state 1,3) the left leaf is in state 1 and right in state 0,4) both leaves are in state 1.We obtain the map:
π ◦ ψ̂ : (λ0, λ1, a1, a2, b1, b2) →

(λ0a1b1 + λ1a2b2, λ0a1b2 + λ1a2b1, λ0a2b1 + λ1a1b2, λ0a2b2 + λ1a1b1).Let P be the point, established empirially, that represents the dis-tribution of random variables assoiated to leaves. We would like tohek if P belongs to the image of π ◦ ψ̂. If it is not in the image, thenwe know that either the biologial model we used is wrong, or the tree
T is not the right one. If the point P is in the image, we an ask fora desription of the �ber. However determining if P belongs to theimage is hard in general. One of the methods bases on the fat that
π ◦ ψ̂ is an algebrai map. We an onsider the Zariski losure of itsimage. This is an a�ne algebrai variety. One would like to desribeits ideal and hek weather the generators vanish at P . The elementsof this ideal are alled phylogeneti invariants.This approah may be not very e�etive. The desription of the idealof a variety given by a parametrization is not an easy task. However themaps we get are not arbitrary. As it was observed �rst by Evans andSpeed [ES93℄ for ertain models of evolution the variety we onsider istori. More preisely there are oordinates in whih the parametriza-tion map is given by monomials. This allows to apply methods of torigeometry in order to determine the ideal of the variety.Throughout the thesis we assume that the random variable assoiatedto the root has got a uniform distribution. This assumption is notmotivated by biology. We use it only to obtain nier results from themathematial point of view. Hene in our study the parameter spaeontains only oe�ients of transition matries.



38 MATEUSZ MICHA�EKOne of the main aims of this thesis is to determine under what on-ditions the model of evolution gives rise to tori varieties. Our resultsgive the most general known riterion 5.63. In partiular we believethat our approah overs all biologial models of interest that wereknown to give rise to tori varieties. Further we investigate propertiesof the obtained tori varieties. We prove that varieties assoiated toertain biologial models are normal 5.73. However we give also exam-ples where the obtained varieties are not normal 5.75. Next we addressthe question for whih models the varieties assoiated to trivalent3 treesbelong to the same �at family. For the binary Jukes-Cantor this fatwas known to be true by [BW07℄, while for 3-Kimura it does not holddue to [Kub10℄. By alulating Hilbert polynomials of many varietieswe found out that most onsidered models do not have this property.Another very important task onerns phylogeneti invariants.De�nition 3.2 (Claw tree). A law tree Kn,1 is a tree with exatly oneinner vertex and n leaves.For many models, in partiular those that are most important for us,the study of phylogeneti invariants of any tree was redued to the aseof the law tree [SS05℄, [AR08℄, [DK09℄. However establishing phyloge-neti invariants in this speial ase turned out to be very di�ult. Wedo not even know the degree in whih the ideal of phylogeneti invari-ants is generated. There is a well-known onjeture due to Sturmfelsand Sullivant [SS05, Conjeture 1℄ that gives a preise upper boundfor this degree. The onjeture is astonishingly similar to an old theo-rem of Noether. The theorem bounds the degree in whih the ring ofinvariants of the group ation on the polynomials is generated. How-ever, as we will see in Setion 6 it is hard to give a desription of thewhole algebra of the phylogeneti variety as a ring of invariants. More-over, even if some desription is possible, the order of the group is big� Corollary 6.6. One of interesting observations is that the onjetureimplies a desription of the ideal as a sum of more simple ideals. In fatwe propose a method for obtaining many phylogeneti invariants forany model for the law tree 7.2. We onjeture that our method givesa desription of the whole ideal. We show that in many ases our on-jeture is equivalent to the one made by Sturmfels and Sullivant 7.8.Our strongest result 12.1 in this topi proves a weaker, set-theoretiversion of [SS05, Conjeture 2℄, that is su�ient for appliations.3The valeny of all verties is either one or three.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 394. Basi definitionsThe setion introdues objets that will be studied in the �rst partof the thesis. The subsetion 4.1 is the most important. Other partsan be treated as motivations and examples.We will be dealing with algebrai varieties assoiated to phylogenetimodels. These varieties are always given as losures of the image ofa parametrization map � details will be presented in Setion 4.1. Ashort, algebrai introdution to the topi an be found in [ERSS04℄.Let S be a �nite set, alled the set of states. In the biologial setting
S is often supposed to have four elements. These elements orrespondto four nuleobases. The set S is the odomain of random variables inthe Markov proess. Let ∆ ⊂ R|S| be the probabilisti simplex thatontains all the points with nonnegative oordinates summing up toone. The points of ∆ parameterize all possible distributions of randomvariables with the set of states equal to S. In algebrai geometry insteadof onsidering the simplex ∆ one onsiders the whole omplex vetorspae C|S|.De�nition 4.1 (Spae W ). We de�ne W to be a omplex vetor spaespanned freely by elements of S. More preiselyW = ⊕a∈SCa, where Cais a �eld of omplex numbers orresponding to one dimensional vetorspae spanned by a ∈ S.Suppose that we are given a rooted tree T with edges direted fromthe root.De�nition 4.2 (Sets L, V , N and E). Let L, V , N and E be respe-tively the set of leaves, verties, nodes and edges of the tree T . We have
V = L ∪N and L ∩N = ∅. We identify leaves with edges adjaent tothem.The objets that we study are derived from Markov proesses ona tree. To eah vertex one an assoiate a random variable withthe set of states equal to S. The Markov property ensures that thevariable in a vertex depends only on the variable assoiated to its�rst anestor. Formally let Xi be a variable assoiated to a vertex
vi. Suppose that there is an edge direted from v1 to v2. Considerany set of verties v3, . . . , vj that are not desendants of v2. Then
P (X2 = x2|X1 = x1, X3 = x3, . . . , Xj = xj) = P (X2 = x2|X1 = x1),where xi are some states. This mathematial model is applied for ex-ample in phylogenetis. The nodes of the tree orrespond to speiesand the Markov property desribes the fat that evolutionary hangesdepend only on the diret anestor. More information on Markov pro-esses an be found for example in [Ibe09℄. The reader interested in



40 MATEUSZ MICHA�EKphylogenetis in advised to look in [PS05℄. There one an also �nd adetailed explanation of the relationship between Markov proesses ontrees and models that we onsider.To de�ne a model we need to distinguish a subspae Ŵ ⊆ End(W ).De�nition 4.3 (Transition matrix). Any element of the spae Ŵ rep-resented as a matrix in the basis orresponding to S is alled a transitionmatrix.The entries of a transition matrix orrespond in biology to proba-bilities of mutation. Most often a model is distinguished by speifyingthe type of transition matries.Let us present some of the models.(i) The Cavender-Farris-Neyman model also alled 2-stateJukes-Cantor model4. This is the most simple model. It was�rst introdued in [Ney71℄. In most of biologial artiles it isalled the Cavender-Farris-Neyman model or just the Neymanmodel. However reently, espeially in algebrai phylogenet-is, it is alled the 2-state Jukes-Cantor model or the binarymodel [SS05℄, [BW07℄, [ERSS04℄. In this model S has got twoelements and the transition matries are of the following type:
[
a b
b a

]
.This model has got a lot of nie properties. One of the mostinteresting is the fat that the algebrai varieties arising fromtrivalent trees with the same number of leaves are deformationequivalent � see [BW07℄ for the original, algebrai proof and[Ilt10℄ for a ombinatori one. It is a general group-based modelfor the group G = Z2 � the de�nition of general group-basedmodels will be introdued in subsetion 5.1.(ii) 3-Kimura model. This is a four state model. It was intro-dued in [Kim81℄. It is a general group-based model for thenatural ation of the group G = Z2 × Z2 on the nuleobases

A,C,G, T [ES93℄. The transition matries are of the type



a b c d
b a d c
c d a b
d c b a


 .4We would like to thank Elizabeth Allman for the information on the ambiguity.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 41(iii) 2-Kimura model. This is a model for four states. It wasintrodued in [Kim80℄. The transition matries are of the type:



a b c b
b a b c
c b a b
b c b a


 .(iv) Jukes-Cantor model. This is the most simple model for fourstates. It was introdued in [JC69℄. The transition matriesare of the type:




a b b b
b a b b
b b a b
b b b a


 .(v) General Markov model. This model an be onsidered onany number of states, but for biologial reasons it is typiallyonsidered for four states. The spae Ŵ is equal to the wholespae of endomorphisms EndW . Hene for four states thetransition matries are arbitrary:




a b c d
e f g h
i j k l
m n o p


 .4.1. A variety assoiated to a model. We will assoiate an alge-brai variety to a tree T and a spae Ŵ ⊂ EndW . This is a standardonstrution. In the literature one an �nd a lot of generalizations ofthe approah presented here � see for example [DK09℄.De�nition 4.4 (Spaes Wv and Ŵe). To eah vertex v of the tree weattah a omplex vetor spae Wv with a �xed isomorphism isov : W ≃

Wv. The images of the basis elements of W orresponding to states
S by isov give a basis of Wv. The elements of this basis are denotedby {αv}. We also onsider a vetor spae Ŵ ⊂ End(W ), determinedby the model we hoose. To eah edge e of the given rooted tree T weassoiate a vetor spae Ŵe isomorphi to Ŵ .Remark 4.5. The natural basis on W indues an isomorphism W ∼=
W ∗. Hene End(W ) ∼= W ∗ ⊗W ∼= W ⊗W . We may regard Ŵ andrespetively eah Ŵe as subspaes of W ⊗W .



42 MATEUSZ MICHA�EKDe�nition 4.6 (Spaes WV , ŴE , WL). We reall that V , L and E arerespetively the set of verties, leaves and edges of a tree. We de�nethe three following spaes:
WV =

⊗

v∈V

Wv, WL =
⊗

l∈L

Wl, ŴE =
⊗

e∈E

Ŵe.We all WV the spae of all possible states of the tree, WL the spae ofstates of leaves and ŴE the parameter spae.De�nition 4.7 (The map ψ̂, Constrution 1.5 [BW07℄). Let ψ̂ : ŴE →
WV , be a map whose dual is de�ned as:

ψ̂∗(⊗v∈V α
∗
v) = ⊗e∈E(αv1(e) ⊗ αv2(e))

∗
|Ŵe
.Here the edge e is direted from the vertex v1(e) to v2(e).The map ψ̂ is just a map well known to biologists that to a givenhoie of matries assoiates the probability distribution on the set ofall possible states of verties of the tree.Example 4.8. Let us onsider the binary Jukes�Cantor model. Fixthe tree with one root r and two leaves l1 and l2. The spaes W and Ŵare two dimensional. Hene the spaes WV and ŴE are respetively 8and 4 dimensional. The basis elements of WV orrespond to states ofthe variables assoiated to nodes of trees. Hene they an be indexedby triples (p, q, s) for p, q, s = 0, 1. Assume that the �rst element of thetriple is assoiated to the state of r. The elements of Ŵ are matriesof the type [

a b
b a

]
.Fix a simple tensor in ŴE represented by a pair of suh matries:[

a1 b1
b1 a1

]
,

[
a2 b2
b2 a2

]
.To this element the morphism ψ̂ assoiates an element of WV givenas:

a1a2(0, 0, 0) + a1a2(1, 1, 1) + a1b2(0, 0, 1) + a1b2(1, 1, 0)

+b1a2(0, 1, 0) + b1a2(1, 0, 1) + b1b2(0, 1, 1) + b1b2(1, 0, 0).Thus the map ψ̂ assoiates to a given hoie of transition matriesthe "probability dirstribution" on the set of all possible states of thetree. This is up to a salar, as we assume that the root has got uniformdistribution. Moreover, as we work over omplex numbers and thereare no probabilisti restritions on elements of Ŵ the map ψ̂ is obtained



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 43by the rule for Markov proesses, but in general the elements of theimage have no probabilisti meaning.Reall that N = V \ L is the set of nodes of a tree. We onsider themap δ = ∑
α∗
i ∈ W ∗ that sums up all the oordinates.De�nition 4.9 (π). Let π : WV → WL be a map de�ned as π =

(⊗v∈LidWv
)⊗ (⊗v∈N δWv

). The map π sums the probabilities of all thestates of verties that di�er only on nodes.If we ompose the map ψ̂ with π we obtain a map from ŴE to WL.This indues a rational map:
ψ̌ :

∏

e∈E

P(Ŵe) 99K P(WL).The losure of the image of this map is denoted by P(X(T,W, Ŵ )).This is the algebrai projetive variety assoiated to the modelthat is the main objet of study of this setion. We will alsoonsider the a�ne model X(T,W, Ŵ ) that is the a�ne one over thisvariety. 5. Group-based modelsThe aim of this subsetion is to investigate the properties of ertainmodels. The spae of transition matries will be given as a subspaeinvariant under a group ation. We will see under what onditions weobtain a tori variety. We will also study the properties of so obtainedvarieties and their onnetions with trees and groups. We have to pointout that in this setion we do not assume that a tori variety has tobe normal. We only assume that a torus ats on a variety and one ofthe orbits is dense. This setting is most ommon when dealing withappliations. Muh information an be found in [Stu96℄. The maindrawbak of this approah is that the varieties we onsider will not begiven by a fan. However, still they an be represented by polytopes,that do not have to be normal. For this reason we will often work withthe harater lattie M instead of the one parameter subgroup lattie
N .We will be de�ning objets that will depend on a tree T and a group
G. For any objet O if we want to stress its dependene on either
T or G we write them in the indies: OT

G. For the vetor spaes onwhih a group G ats we use the standard notation for the subspae ofinvariants, by putting G in the upper index.



44 MATEUSZ MICHA�EK5.1. General group-based models. In our study we are mainly in-terested in spei� models. We set the notation for general group-basedmodels. We generalize the notions of "sokets" and "networks" intro-dued in [BW07℄. This enables us to extend some of the results from
Z2 to arbitrary abelian groups. We believe that these notions give anie, uni�ed desription of the variety assoiated to the model.The inspiration for this setion omes from the work [ES93℄ of Evansand Speed who reognized a natural ation of an abelian group G on Sin biologial ase. Namely the group G = Z2×Z2 ats on {A,C,G, T}transitively and freely. Hene from now on we assume that we havea transitive and free ation of an abelian group G on S. In suh asituation S if often alled a G-torsor. The ation of G on S extendsnaturally to the ation of G on W . The fat that general group-basedmodels give tori varieties was already observed in [ES93℄, [SSE93℄.De�nition 5.1 (Ag). For g ∈ G let Ag be the transition matrix (equiv-alently the linear map) orresponding to the ation of g on W .By hoosing one element of the set S and assoiating it to the neutralelement of G we obtain an ation preserving bijetion between theelements of S and G. The element assoiated to a ∈ S will be denotedby ga. Canonially the rows and olumns of the transition matrix arelabeled by elements of S. After �xing a bijetion we an also label themwith group elements, but this is not anonial. The hoie of a bijetionallows us also to �nd another basis of W , indexed by haraters of G.This is done by the disrete Fourier transform.De�nition 5.2 (wχ). Let χ ∈ G∗ be any harater of the group G. Wede�ne a vetor wχ ∈ W by:

wχ =
∑

a∈S

χ(ga)a.Due to the orthogonality of haraters the elements wχ form a basisof W . Let us notie that although the hoie of the bijetion between
S and G is not anonial, the one dimensional spaes spanned by wχare. Changing the bijetion just multiplies eah vetor wχ by χ(g)for some g ∈ G. In the language of representation theory W is theregular representation of G. The one dimensional spaes spanned by
wχ are of ourse unique irreduible one dimensional representationsorresponding to all haraters of G.The group struture distinguishes also naturally a spei� model,namely the vetor spae Ŵ . This is done as follows. We have a natural



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 45ation of G on W ⊗W � the ation of g is just g ⊗ g:
g(
∑

λa1 ⊗ a2) =
∑

λg(a1)⊗ g(a2).De�nition 5.3 (Ŵ ). Let G be an abelian group ating on the set Stransitively and freely. Due to Remark 4.5 we identify End(W ) with
W ⊗W . For a general group based model we de�ne Ŵ as the set of�xed points of the G ation on End(W ) ∼= W ⊗W .Remark 5.4. In other words we take only suh transition matriesthat satisfy the following ondition for any g ∈ G:If we permute the olumns and rows of a matrix with a permutationorresponding to g, then we obtain the same matrix.Hene the parameters in the transition matries depend only on thedi�erene of group elements labelling the row and olumn of a givenentry. In partiular the dimension of Ŵ is equal to |G|.In general in the thesis we assume that the tree is rooted and diretedaway from the root. However the onstrution from subsetion 4.1 anbe easily generalized to other orientations of the edges of the tree. Thereason why we make the assumption is that it simpli�es the language.Remark 5.5. One an see that if A ∈ Ŵ , then AT ∈ Ŵ . This meansthat if we onsider a tree T with two di�erent orientations then theassoiated varieties are exatly the same. If a point is the image of someelement of the parameter spae with respet to a given orientation thanit is also the image of an element of the parameter spae with respetto the seond orientation. We just have to transpose matries that areassoiated to edges with di�erent orientation.The following elements are invariant with respet to the G ationhene belong to Ŵ .De�nition 5.6 (Elements lχ ∈ Ŵ ). Let χ be a harater of G. Wede�ne

lχ(wχ′) :=

{
wχ χ = χ′

0 χ 6= χ′
.It follows that (lχ)χ∈G∗ is a base of Ŵ . Moreover Ŵ is equal tothe spae of diagonal matries in the basis (wχ)χ∈G∗ . The followingProposition gives the desription of lχ in terms of the basis assoiatedto elements of S. We omit the proof, as it relies on basi omputation.



46 MATEUSZ MICHA�EKProposition 5.7.
lχ(a0) =

1

|G|
χ(g−1

a0
)wχ =

1

|G|

∑

a∈S

χ(g−1
a0
ga)a.

�The vetors lχ are independent from the hoie of the bijetion be-tween S and G. The element g−1
a0
ga is a unique element of G thatsends a0 to a, hene does not depend on the bijetion. The map lχ is aprojetion onto the (anonial) one dimensional subspae spanned by

wχ.Using this basis we will see that the map ψ̂ is injetive. Hene theindued algebrai map ∏
e∈E P(We) → P(WV ) is given by the full Segresystem. The algebrai map π ◦ ψ̂ will be given by a subsystem of theSegre system. We will desribe it using the notions of "sokets" and"networks". Let us start with a few lemmas. The ation of G on Wextends to the ation of G on WV and WL.Lemma 5.8. The dimensions of G invariant subspaes of WV and WLare as follows:
dimWG

V = |G||V |−1,

dimWG
L = |G||L|−1.Proof. Let us onsider the basis ofWV given by (⊗v∈V wχv

). The ationof g in this basis is diagonal, so the spae of invariant vetors is spannedby invariant elements of this basis. As g(wχ) = χ(g−1)wχ we obtain:
g(⊗v∈Vwχv

) = ⊗v∈V χv(g
−1)wχv

=
∏

v∈W

χv(g
−1)⊗v∈V wχv

,so an element ⊗v∈V wχv
is invariant if and only if for any g ∈ G we have∏

v∈V χv(g) = 1. This is equivalent to the ondition that ∑
v∈V χv isequal to the trivial harater (we use additive notation for the group ofharaters G∗). From this we see that the dimension dimWG

V is equal tothe number of sequenes, indexed by verties of the tree, of haratersthat sum up to a neutral harater. This gives us |G∗||V |−1 sequenesand proves the �rst equality, as for abelian groups |G∗| = |G|. Theproof of the seond equality is the same. �Remark 5.9. The basis {⊗v∈V wχv
} of WV depends on the hoie ofthe bijetion between the set S and G. However the basis {⊗v∈V wχv

:∑
v∈V χv = χ0} ofWG

V is natural. Changing the bijetion multiplies wχby χ(g) for a �xed g ∈ G. As ∑
v∈V χv = χ0, then (

∑
v∈V χv)(g) = 1and the vetors remain unhanged.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 47One an easily see that the image of ŴE in WV is invariant withrespet to the ation of G.Proposition 5.10. The map ψ̂ is an isomorphism of vetor spaes
ŴE and WG

V . It takes the base {⊗e∈E|G|lχe
} bijetively onto the base

{⊗v∈V wχv
:
∑

v∈V χv = χ0}, where χ0 is the trivial harater.Proof. Using Proposition 5.7 we an see that:
(⊗v∈V av)

∗(ψ̂(⊗e∈E |G|lχe
)) =

∏

e=(v1,v2)∈E

(−χe)(gav1 )χe(gav2 ).For given haraters χe let us de�ne haraters χv for all v verties ofthe tree as:
χv :=

∑

(v,w)∈E

χ(v,w) −
∑

(w,v)∈E

χ(w,v).This orresponds to summing all haraters on edges adjaent to vwith appropriate signs, depending on the orientation of the edge. Weonsider an element ⊗v∈V wχv
that is learly in the hosen basis of WG

Vas eah harater χe is taken twie with di�erent signs, so the sum ofall χv is the trivial harater. Moreover
⊗v∈V wχv

= ⊗v∈V (
∑

a∈S

χv(ga)a),so (⊗v∈V av)
∗(⊗v∈V wχv

) =
∏

v∈V χv(gav), whih proves the theorem.
�Corollary 5.11. The following morphism:

ψ :
∏

e∈E

P(Ŵe) → P(WG
V ),is given by a full Segre system. In the basis from Proposition 5.10 it isgiven by monomials. �Our aim will be to obtain a result similar to Proposition 5.10 for themap π ◦ ψ̂. Let us notie that apart from the ation of G on W ⊗Wgiven by g⊗ g that allowed us to de�ne Ŵ , we have got another ationof G on W ⊗W given by g ⊗ id, where id is the identity map.Lemma 5.12. The ation g ⊗ id restrits to Ŵ .Proof. It is enough to prove that the image of the ation of g ⊗ id onany element that is invariant with respet to the ation g′ ⊗ g′ is alsoinvariant. Let C be any element of Ŵ .

(g′⊗g′)((g⊗id)C = (g′g⊗g′)(C) = (gg′⊗g′)(C) = (g⊗id)(g′⊗g′)(C) =
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(g ⊗ id)(C).Here we used the fat that G is abelian. �De�nition 5.13 (The group GN ). We de�ne ρgv,e for eah v ∈ N ,

g ∈ G and e ∈ E as an isomorphism of the spae Ŵe. The ation on
Ŵe depends on e and v. If e is not adjaent to v it is the identity. If eis an outgoing edge from v it is equal to g⊗ id and if e is an inomingedge it is equal to g−1 ⊗ id.For eah v ∈ N and g ∈ G we de�ne an isomorphism of ŴE givenby ρgv := ⊗e∈Eρ

g
v,e. We also de�ne a group GN ⊂ End(ŴE) as a groupgenerated by all ρgv.Remark 5.14. It is ruial to realize how g⊗ id ats on elements of Ŵonsidered as morphisms. One an hek that g⊗ id(Ag′) = Ag′ ◦Ag−1,so the ation of g ⊗ id omposes given morphism with Ag−1 .To obtain a nie desription of the morphism π◦ψ̂ we need a tehniallemma.Lemma 5.15. The group GN

∼= G|N |. There is a base in whih GNats diagonally on ŴE.Proof. Using 5.14 we obtain:
(g ⊗ id(lχ))(wχ′) = lχAg−1(wχ′) =

= lχAg−1(
∑

a∈A

χ′(ga)a) = lχ(
∑

a∈S

χ′(ga)g
−1a) =

= lχ(
∑

a∈S

χ′(gag)a) = χ′(g)lχ(wχ′) = χ(g)lχ(wχ′),where the last equality follows from the fat that lχ(wχ′) is non zeroonly if χ = χ′. This proves that g ⊗ id(lχ) = χ(g)lχ, what proves thetheorem. �Let F be any abelian group. In our examples F = G or F = G∗.Let us onsider two groups FE and FN . The elements of eah areassoiations of group elements respetively to edges and to nodes ofthe tree.De�nition 5.16 (Adding morphism add, projetion pv). We de�nea morphism add : FE → FN . Let m ∈ FE and pv : FN → F be aprojetion onto the omponent indexed by a vertex v ∈ N . The element
pv(add(m)) is equal to the sum of group elements assoiated by m toedges inoming into v minus the sum of group elements assoiated toedges outgoing from v.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 49Example 5.17. Consider F = Z3. Let T be a law tree with threeedges. We have
add : (Z3)

3 → Z3,where add is the usual sum in Z3.De�nition 5.18 (trivial signed sum). We say that an element m ∈ FEhas got trivial signed sum around a vertex v if and only if pv(add(m))is the neutral element of F .De�nition 5.19 (map add′). We de�ne a map add′ : FL → F . Thismap sends an assoiation of group elements to leaves to their sum.Remark 5.20. As in Proposition 5.10 elements of the base of ŴE arebijetive with the sequenes of haraters indexed by edges of a tree.In other words an element of the basis of ŴE an be desribed as anassoiation of a harater of G to eah edge of a tree. Moreover theelements of the basis of ŴE that are invariant with respet to the ationof GN are exatly suh assoiations that the signed sum of haratersaround eah inner vertex is the trivial harater.Lemma 5.21. The map π : WV →WL an be desribed as follows:
π(⊗v∈V wχv

) = |G||N | ⊗l∈L wχlif all the haraters χv for the inner verties are trivial or zero other-wise.Proof. First let us look at ⊗v∈V wχv
in the old oordinates:

⊗v∈V wχv
= ⊗v∈V (

∑

a∈S

χv(ga)a) =
∑

(au)u∈V ∈SV

(
∏

v∈V

χv(gav))(⊗v∈V av),where the sum ∑
(au)u∈V ∈SV is taken over all |V |-tuples (indexed byverties) of basis vetors. In other words this sum parameterizes thebasis of WV made of tensor produts of base vetors orresponding toelements of G. This is equal to:

∑

(au)u∈N∈SN

∑

(al)l∈L∈SL

∏

v∈N

χv(gav)
∏

f∈L

χf(gaf )⊗v∈N av ⊗f∈L af .We see that π(⊗v∈V wχv
) is equal to:

∑

(au)u∈N∈SN

∑

(al)l∈L∈SL

∏

v∈N

χv(gav)
∏

f∈L

χf(gaf )⊗f∈L af =

(
∏

v∈N

(
∑

g∈G

χv(g)))
∑

(gl)l∈L∈GN

∏

f∈L

χf (gl)⊗f∈L af .



50 MATEUSZ MICHA�EKThe produt ∏u∈N(
∑

g∈G χu(g)) is equal to zero unless all haraters
χu for u ∈ N are trivial. In the latter ase the produt is equal to
|G||N |. Of ourse

∑

(gl)l∈L∈GN

(
∏

f∈L

χf (gl))(⊗l∈Lgl) = ⊗l∈Lwχl
,whih proves the proposition. �The following theorem is a diret generalization to arbitrary abeliangroups of Theorem 2.12 from [BW07℄.Theorem 5.22. The spaes (WG

L ) and (ŴE)
GN are isomorphi.Proof. One an prove it using dimension argument, but it is better tolook how the basis are transformed. The base of (ŴE)

GN is given by
⊗e∈E|G|lχe

, where the signed sum of all haraters at any vertex istrivial. This, thanks to Proposition 5.10, by the morphism ψ̂ : ŴE →
WV is transformed bijetively into an independent set ⊗v∈V wχv

, whereharaters for inner verties are trivial and the sum of all haratersis trivial. Using Lemma 5.21 the image of this set by π gives the set
|G||N |⊗l∈Lwχl

, where the haraters χl sum up to the trivial harater.The last set forms a base of WG
L . �Corollary 5.23. The morphism π ◦ ψ̂ is a tori morphism.Proof. Follows from the proof of Theorem 5.22. �Our aim is to desribe the monomials that de�ne π ◦ ψ̂. This moti-vates the following de�nitions of groups of sokets and networks.De�nition 5.24 (Groups S and N). We �x an abelian group F = G∗.The group of networks N is the kernel of the morphism add. The groupof sokets S is the kernel of the morphism add′.Hene a soket is an assoiation of haraters from G∗ to eah leafsuh that the sum of all these haraters is the trivial harater. A net-work is an assoiation of haraters from G∗ to eah edge suh that thesigned sum of haraters at eah inner vertex gives the trivial harater.Example 5.25. Let us onsider the group G ∼= G∗ = Z3 and thefollowing tree:

◦
e1

e2

e3
e4

e5



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 51Here e2, e3, e4 and e5 are leaves. An example of a soket is an assoia-tion e2 → 1, e3 → 1, e4 → 2, e5 → 2.Example 5.26. We onsider the same tree as in Example 5.25. Wean make a network using the same assoiation and extending it by
e1 → 2.Remark 5.27. Networks and sokets were introdued in [BW07℄ �see the disussion below. As the onstrution presented here diretlygeneralizes the previous one we deided to keep the name. However,networks ould also be named group based �ows. Indeed, the on-dition that at eah vertex the sum of elements assoiated to inomingedges equals the sum of elements assoiated to outgoing edges is thewell known ondition for a �ow. The only di�erene is that we asso-iate elements of an arbitrary group. As we will see in Proposition 5.30there is a bijetion between sokets and networks. This is similar tothe theorem that for a �ow the sum over all soures equals the sumover all sinks.In [BW07℄ for the group Z2 the soket was de�ned as an even subsetsof leaves. That orresponds to assoiating 1 to hosen leaves and 0 tothe other leaves. The ondition that the subset has got even numberof elements is just the ondition that the elements from the group sumup to the neutral element. We see that this de�nition is ompatible.Networks were de�ned as subsets of edges suh that there was an evennumber hosen around eah inner vertex � this is also the ondition ofsumming up to the neutral element around eah inner vertex.Let us generalize the results on sokets and networks from [BW07℄.Lemma 5.28. There are exat sequenes of abelian groups:

0 → N → (G∗)E
add
→ (G∗)N → 0,

0 → S → (G∗)L
add′

→ G∗ → 0.Proof. As add and add′ are surjetive the lemma follows from De�nition5.24. �De�nition 5.29 (morphism fo and bi). There is a group morphism
fo : (G∗)E → (G∗)L that forgets all the omponents indexed by edgesnot adjaent to leaves. From the diagrams in Lemma 5.28 the image of
N by fo is ontained in S. We de�ne bi : N → S to be the restritionof fo.



52 MATEUSZ MICHA�EKThere is the following diagram:
0 → N → (G∗)E

add
→ (G∗)N → 0,

↓bi ↓fo ↓−sum

0 → S → (G∗)L
add′

→ G∗ → 0.The map −sum : (G∗)N → G∗ assoiates to an |N |-tuple of haratersminus their sum.Proposition 5.30. For any tree and any abelian group G the mor-phism bi that assoiates a soket to a network is a group isomorphism.Proof. Let n be a network. We know that the signed sum pv(add(n))around eah inner vertex v is the neutral element. Hene∑v∈N pv(add(n)) =
e, where e is the neutral element. Let us onsider an edge diretedfrom v1 to v2, where v1, v2 ∈ N . Let us note that the group elements
n(v1, v2) and n(v1, v2)−1 appear in pv1(add(n)) and pv2(add(n)). We seethat ∑

v∈N pv(add(n)) =
∑

l∈L n(l). This means that a restrition ofthe network to leaves gives a soket.Given a soket s we an de�ne a funtion n : E → G indutively,starting from leaves, using the ondition of summing up to the neutralelement around inner edges. The only nontrivial thing is to notie thatthe sum around the root also gives the neutral element. This followsfrom the previous equality ∑
v∈N pv(add(n)) =

∑
l∈L n(l) and the fatthat pv(add(n)) = e for eah node v di�erent from the root. �Eah network determines naturally an element of the basis of (ŴE)

GNand eah soket an element of the basis of WG
L . The isomorphism inTheorem 5.22 just uses the natural bijetion 5.30. This motivates thefollowing de�nition.De�nition 5.31 (Spaes W̃E , W̃L). We de�ne the subspae W̃E :=

(ŴE)
GN ⊂ ŴE. Reall that basis elements of ŴE are indexed by ele-ments of (G∗)E as in Remark 5.20. The basis elements of W̃E orre-spond to elements of N.We de�ne the subspae W̃L := WG

L ⊂ WL. The basis elements of W̃Lorrespond to assoiations that form a soket � f. proof of Lemma 5.8.Using Theorem 5.22 we know that the variety X(T,W, Ŵ ) is thelosure of the image of the rational map indued by π ◦ ψ̂:
ψ̌ :

∏
Ŵe = C|G||E| → W̃L,where the oordinates of the domain are indexed by pairs (e, χ) for

e ∈ E and χ ∈ G∗. The oordinates of the odomain are indexed by



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 53sokets (or equivalently networks). In fat the odomain is a regularrepresentation of the group N. In forthoming setions we will use theation of this group on the variety X(T,W, Ŵ ).Note that for a �xed basis of a vetor spae, the points with nonzerooordinates form an algebrai torus that ats on the spae. Let usdesribe the a�ne map π ◦ ψ̂ in tori terms.De�nition 5.32 (LattiesMS,Me,ME). To eah edge e we assoiateda vetor spae Ŵe with the distinguished basis given by ωχ. The pointswith nonzero oordinates in this basis form an algebrai torus with theation given by oordinatewise multipliation. We de�ne Me as theharater lattie of this torus.The produt vetor spae ∏
e∈E Ŵe has got a basis indued from eah

Ŵe. The points with nonzero oordinates form an algebrai torus withthe harater lattie given by ME.The vetor spaes W̃E
∼= W̃L have got the distinguished basis withelements orresponding to sokets. The points with nonzero oordinatesform an algebrai torus with the harater lattie given by MS.Let us note that the oordinate system on the vetor spae distin-guishes the basis of the lattie. The basis of eah lattieMe is indexedby haraters. As ME =
⊕

e∈E Me the basis of ME is indexed bypairs (e, χ) where e is an edge and χ a harater of G. The basis el-ements of MS orresponds to sokets or networks. The rational map
ψ̌ :

∏
e∈E We → W̃E

∼= W̃L is an equivariant parametrization of a torivariety.De�nition 5.33 (Morphism ψ̃). The morphism ψ̃ : MS → ME is themorphism of latties indued by ψ̌.In this setting the desription of ψ̃ is partiularly simple. Let fn ∈
MS be a basis vetor orresponding to a network n. The element ψ̃(fn)will be an element of the unit ube inME . Let h(e,χ) ∈ME be the basisvetor indexed by a pair (e, χ) ∈ E ×G∗ and let h∗(e,χ) be its dual. Wehave:

h∗(e,χ)(ψ̃(fn)) =

{
1 if n(e) = χ

0 otherwise.We ome to the most important de�nition of this setion.De�nition 5.34 (Polytope P ). We de�ne the polytope P ⊂ ME to bethe onvex hull of the image of the basis of MS by ψ̃. In other words theverties of the polytope P orrespond to networks. More preisely eahvertex has got 1 on oordinates indexed by pairs that form a network



54 MATEUSZ MICHA�EKand 0 on other oordinates. Note that the polytope P is a subpolytopeof a unit ube. Hene all its integer points are verties.Example 5.35. Let us onsider the tree T with one inner vertex andthree leaves l1, l2 and l3. Let G ∼= G∗ = Z2. The lattie MS is the4 dimensional lattie generated freely by vetors e(0,0,0), e(1,1,0), e(1,0,1),
e(0,1,1) that orrespond to sokets/networks on T . The lattieME is a 6dimensional lattie with basis vetors f(li,g) with 1 ≤ i ≤ 3 and g ∈ Z2.We have ψ̂(e(a,b,c)) = f(l1,a) + f(l2,b) + f(l3,c). Hene eah vertex of Pwill have three oordinates equal to zero and three to one. Let us on-sider the base ofME in the following order f(l1,0), f(l1,1), . . . , f(l3,0), f(l3,1).The vertex orresponding to e(0,0,0) is (1, 0, 1, 0, 1, 0). In the same or-der e(1,1,0) → (0, 1, 0, 1, 1, 0), e(1,0,1) → (0, 1, 1, 0, 0, 1) and e(0,1,1) →
(1, 0, 0, 1, 0, 1). These are of ourse all verties of P .Remark 5.36. Suppose that a tree T has got a vertex v of degree two.Let e1 = (u, v) and e2 = (v, w) be respetively an inoming and outgoingedge. Consider any network n. We have n(e1) = n(e2). Let T ′ be atree obtained from T be removing the vertex v, edges e1, e2 and addingan edge (u, w). We see that the polytope assoiated to T is isomorphito the polytope assoiated to T ′.The polytope P is the polytope assoiated to the tori varietyX(T,G).The algebra of this variety is the algebra assoiated to the monoid gen-erated by P inME . The generating binomials of a tori ideal assoiatedto a polytope P orrespond to integral relations between integer pointsof this polytope, Corollary 2.6. Hene in our situation phylogeneti in-variants orrespond to relations between networks. Eah suh relationan be desribed in the following way. We number all edges of a treefrom 1 to e. The networks are spei� e-tuples of group elements. Forexample for the law tree these are e-tuples of group elements summingup to the neutral element. Eah relation of degree d between the net-works is enoded as a pair of matries with d olumns and e rows withentries that are group elements. We require that eah olumn repre-sents a network. Moreover the rows of both matries are the same upto permutation.Example 5.37. Consider the binary Jukes-Cantor model and thefollowing tree.(5.1)
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v1The leaves adjaent to v1 have got numbers 1 and 2. We assign 3 tothe inner edge. An example of a relation is given by a pair of matries:




1 0
0 1
1 1
1 0
0 1
0 0



,




0 1
1 0
1 1
1 0
0 1
0 0



.The numbers 0 and 1 are treated as elements of Z2. Due to the de�-nition of the soket the third row has to be the sum of both the �rsttwo and last three rows.Note that P does not have to generate the lattie ME .De�nition 5.38 (Lattie M̂E). We de�ne the lattie M̂E as a sublattieof ME generated by verties of P .The latties de�ned so far orresponded to a�ne objets. A rationalmap from a vetor spae to its projetivization is well de�ned on pointswith non zero oordinates. Hene it indues a surjetive morphism oftori, what orresponds to an injetive morphism of harater latties.De�nition 5.39 (Degree funtions dege). Note that for a haraterlattie M with a distinguished basis we an de�ne a funtion deg :

M → Z that sums up oordinates. The degree of a lattie element isthe degree of the monomial funtion assoiated to it. For latties Methe orresponding degree funtions are denoted by dege.De�nition 5.40 (Latties MS,0, ME,0 and M̂E,0). For a lattie MSwe de�ne MS,0 as a sublattie of elements with the sum of oordinatesequal to zero. In partiular MS,0 is the harater lattie of the toruswhose points are identi�ed with points of P(W̃E) with all oordinatesdi�erent from zero.We de�ne ME,0 as a sublattie of ME de�ned by equalities dege = 0for eah edge e. This is the harater lattie of the torus whose pointsare identi�ed with points of ∏P(We) with all oordinates di�erent fromzero.



56 MATEUSZ MICHA�EKWe de�ne M̂E,0 := ME,0 ∩ M̂E. This is the harater lattie of thetorus whose points are identi�ed with points of the projetive tori va-riety P(X(T )) with all oordinates di�erent from zero.Reall that the basis of the lattie ME is indexed by pairs (e, χ)where e is an edge and χ is a harater of G. Also to eah suh pairwe an assoiate a one parameter subgroup in the dual of ME . This isgiven as a morphism fromME to Z that is the dual vetor to the vetorof the base of ME that is indexed by the pair (e, χ). In partiular foreah leaf l and harater χ ∈ G∗ we obtain a one parameter subgroup
λχl . Using the morphism dual to ψ̃ :MS → ME , for eah pair (e, χ) weobtain a one parameter subgroup in the lattie dual to MS. For eah
t ∈ C∗ we have an ation of λχl (t) on A(|L|−1)×|G| ⊃ X . The weightof this ation on the oordinate indexed by a soket s is either 0 or 1depending on whether the soket s assoiates to the leaf l harater χ(in this ase 1) or not (in this ase 0).Remark 5.41. In [BW07℄ the authors onsidered only one one pa-rameter subgroup for eah leaf although their group had two elements.Notie however that in our notation for the group Z2 the weights ofthe ation of λ0l are ompletely determined by the weights of the ationof λ1l � one weights are negations of the others. In our notation theauthors onsidered only λ1l .The setting presented here, where an abelian group G ats transi-tively and freely on the set of states is the most well-understood. Themodels obtained in this way are alled general group-based models. Al-though this de�nition is quite lear, the question what is a group-basedmodel is muh less obvious. This motivates the disussion of the nextsetion 5.2.5.2. Notation. In Setion 5.1 we have introdued the general group-based models. The key point of the de�nition was that the vetor spae
Ŵ was given as the subspae of EndW invariant under the ation ofan abelian group that ats transitively and freely on the basis of W .This setting enabled us to apply the disrete Fourier transform andassoiate tori varieties with the models. There are a few possibili-ties to generalize this onstrution depending on the assumptions onthe group, its ation on the spae W and properties of the obtainedassoiated variety.The �rst idea would be to onsider any ation of any group on W .Even more general onstrution is presented in [DK09℄, where the ve-tor spaeW may vary depending on the vertex of the tree. Suh modelsare alled equivariant models. Of ourse, in this ase, in general one



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 57annot apply the disrete Fourier transform, as the group G is notabelian. Moreover if the group G is small the transition matries maybe to general and the assoiated variety will not be tori. For exam-ple if G has got only one element it is abelian. However the modelorresponding to it is just the general Markov model. The varietiesassoiated to this model are an objet of intensive study, see for exam-ple [AR08℄ and referenes therein. They are very far from being toriand establishing their properties even for the simplest tree is a greathallenge. For example it is an open problem to determine the ideal inase of the tripod [BO10℄.As we want to work with tori varieties it is reasonable to makefurther assumptions. Let us notie that the adjetive "general" indi-ates that other group-based models should be more spei�. In otherwords the subspae Ŵ for a group-based model should ontain spei�transition matries of a general group-based model. Thus we �x anabelian group H that ats on the spae W transitively and freely. Agroup-based model will be obtained by requiring further onditions onthe spae of transition matries.Before stating de�nitions that will be used in this thesis let us presentthe state of art. In the literature one an �nd many referenes to group-based models [SS05℄, [APRS11℄, [PS05, p. 327℄. In this setting oneassumes that there is a bijetion between elements of an abelian groupand elements of S, as in general group-based models. One also requiresthat the entries of the transition matries depend only on the di�ereneof group elements labelling the row and the olumn of the given entry.However we allow the parameters for di�erent di�erenes to be thesame � a formal de�nition is presented in 5.43. This is a very generalde�nition that overs many models, like Jukes-Cantor on any numberof states, 2-Kimura or any general group-based model. However forexample in [APRS11℄ [SS05, p.460℄ one an also �nd theorems, usuallyoriginating to [ES93℄ that group-based models are tori. We do notbelieve that this is true in suh a general setting. The example ispresented in the Appendix 1, where after the Fourier transform wedo not get monomials but polynomials. The reason for this is thatequality of variables before Fourier transform does not imply equalityof parameters after it. We would like to stress that the fat that Jukes-Cantor and 2-Kimura give rise to tori varieties was known before. Togive a formal de�nition of group based-models we use a method oflabellings due to Sturmfels and Sullivant [SS05, Setion 3℄.De�nition 5.42 (Labelling funtion). Let Lab be any �nite set and Han abelian group. A labelling funtion is any funtion f : H → Lab.



58 MATEUSZ MICHA�EKLater, we will onsider speial labellings, indued by group ations,that will turn out to have interesting properties.De�nition 5.43 (Group-based model). We de�ne group-based mod-els by speifying the spae of transition matries Ŵ . Suppose that anabelian group H ats on the set of states S transitively and freely. Forany two states s1, s2 ∈ S we de�ne a morphism ps1,s2 : EndW → C.It is given by the equality ps1,s2(M) = (s∗2)(M(s1)) where s1 ∈ W isan element of the basis and s2 is an element of the dual basis. Let
gs1,s2 ∈ H be the unique element sending s1 to s2.We �x any labelling funtion f on H. We de�ne Ŵ as the largestsubspae of transition matries M satisfying the following ondition:For any s1, s2, s3, s4 ∈ S suh that f(gs1,s2) = f(gs3,s4) we have
ps1,s2(M) = ps3,s4(M).Less formally, but more intuitively one labels the rows and olumnsof transition matries with elements of H . The ondition requiresthat entries labelled by (g1, g2) and (g3, g4) equal if (f(g1), f(g2)) =

(f(g3), f(g4)). Notie that the spae Ŵ is obtained from the spae oftransition matries of a general group-based model by spei� hyper-plane setions. It is important to understand that in this setting thelass of group-based models is muh larger than the lass of generalgroup-based models. The latter are alled "general" beause the spae
Ŵ is the most general. They orrespond to labellings that are inje-tive. The main drawbak of this setting is that varieties assoiated togroup-based models do not have to be tori. Beause of the hyperplanesetions, the parametrization after the disrete Fourier transform doesnot have to be given by monomials. Although, as we have already said,in many ases it is. This is a motivation for the next Setion 5.3. Wewill distinguish a lass of group based-models, so alled G-models. Forthem, we will require that the labelling is given by a spei� groupation. In this setting the assoiated varieties will be tori.5.3. G-models. This setion ontains results from [Mi11b℄. Our mainaim is to introdue the general framework that would inlude all modelsof interest desribed as group-based, but still would give rise to torivarieties. Moreover we obtain a partiulary nie desription of theassoiated polytope.The setting of this setion is su�iently general to over manyMarkovproesses, in partiular this will be a generalization of the results of Se-tion 5.1. However the inspiration is the 2-Kimura model, that is thephylogeneti model in whih the transition matries are of the following



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 59type: 


a b c b
b a b c
c b a b
b c b a


 .In this ase, as in the previous setion, we also have an abelian group

H = Z2 × Z2 that ats on the basis (A,C,G, T ) of a four dimensionalvetor spae W . As we have seen the �xed points of the ation of H on
W ⊗W de�ne the 3-Kimura model. We may however de�ne a largergroup G, namely the dihedral group of order 8, that ontains H as anormal subgroup. The ation of G on W ⊗W de�nes the 2-Kimuramodel. Details of this onstrution an be found in [BDW09℄. Thismotivates the following setting.Let S be an n-element set of states. Let G be a subgroup5 of Sn =
Sym(S) ating on S. Suppose moreover that the group G ontains anormal, abelian subgroup H and the ation of H on S is transitive andfree. Elements of S one again orrespond to states of verties of aphylogeneti tree T . We de�ne W as in De�nition 4.1.The basi di�erene with the abelian ase is that we de�ne elementsof Ŵ as matries �xed not only by the ation of H , but by the wholeation of G. We assume that End(W ) ∼= W ⊗W , f. Remark 4.5.De�nition 5.44. Let

Ŵ = {
∑

ai,aj∈S

λai,ajai ⊗ aj : λai,aj = λg(ai),g(aj )∀g ∈ G}.Remark 5.45. The haraterization of Ŵ from Remark 5.4 is stillvalid. However due to additional symmetries the dimension is di�erent.Remark 5.46. The situation of the previous setion orresponds to
G = H .Remark 5.47. As before by hoosing an element e ∈ S we make abijetion between S and H . An element assoiated to a ∈ S will bedenoted by ha ∈ H . The element e orresponds to the neutral elementof H and is the index of the �rst row of transition matries. Notiethat the ation of G on S (as permutation) will not generally be thesame as the ation of G on H (as a group).We will often use the following easy observation.Lemma 5.48. Let h ∈ H be an element that as a permutation sends
a to b, where a, b ∈ S. Then h = hbh

−1
a .5not neessarily abelian



60 MATEUSZ MICHA�EKProof. Both elements send a to b, so beause H ats on S freely, theyhave to be equal. �De�nition 5.49 (G-model). Let G be a �nite group ating on a �niteset S. Suppose that G ontains a normal, abelian subgroup H that atson the set S transitively and freely. A G-model is an algebrai variety
X(T,W, Ŵ ) for W and Ŵ as in De�nitions 4.1 and 5.44.Our aim is to prove that also in this generalized setting we will obtaintori varieties. We will proeed in four steps.(i) We introdue a general method for onstruting endomorphismsof W from omplex funtions on H . We prove that under er-tain onditions (namely a funtion should be onstant on orbitsof the onjugation ation of G on H), the obtained endomor-phism is in Ŵ . Suh funtions an regarded as a generalizationof lass funtions to pairs of groups.(ii) We prove that some sums (over the orbits of the ation of G on

H∗) of haraters ofH are funtions that an de�ne elements of
Ŵ . We also notie that we obtain a set of independent vetorsof Ŵ .(iii) Using dimension arguments we prove that the set de�ned instep 2 is in fat a basis.(iv) Finally, using theorems from Setion 5.1, we prove, using thenew oordinates, that our variety is tori.De�nition 5.50. We de�ne ŴH to be the vetor spae of matries �xedby the ation of H.Remark 5.51. From the previous subsetion we know that the losureof the image of the map:

ψ :
∏

e∈E

P((̂WH)e) 99K P(WL),is a tori variety. Moreover we also found the base in whih the de-sribed morphism is given by monomials. As Ŵ ⊂ ŴH , our aim is toprove that the restrition of the previous map is also given by mono-mials in ertain base. We will use the base on ŴH to de�ne the baseof Ŵ .5.3.1. Step 1: Correspondene between funtions on H and endomor-phisms of W . We are going to de�ne some endomorphisms of W .



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 61De�nition 5.52. Let f : H → C be any funtion. We de�ne:
lf =

1

|H|

∑

a,b∈S

f(h−1
a hb)a⊗ b.Remark 5.53. Notie that due to Proposition 5.7 the previous de�-nition is onsistent with the de�nition of lχ for χ ∈ H∗. Moreover thevetor lf depends only on the funtion f and not the bijetion between

S and H , as h−1
a hb is the only element from H that sends a to b.Proposition 5.54. Let us onsider the onjugation ation of G on H:

(g, h) → ghg−1.If f is onstant on orbits of this ation then lf ∈ Ŵ .Proof. Consider any element g ∈ G. We fous on two entries of thematrix lf , namely (a1, b1) and (a2, b2), where
g(a1) = a2 and g(b1) = b2.These entries are from the de�nition of lf respetively f(h−1

a1
hb1) and

f(h−1
a2
hb2). Due to Remark 5.4 we want to prove that f(h−1

a1
hb1) =

f(h−1
a2
hb2). Consider an element ghb1h−1

a1
g−1. Clearly it is an element of

H (beause H was a normal subgroup of G) that sends a2 to b2. FromLemma 5.48 we obtain:
ghb1h

−1
a1
g−1 = hb2h

−1
a2
.This ompletes the proof, as f was onstant on orbits of the onjugationation. �5.3.2. Step 2: Appropriate funtions on H. In the abelian ase weonsidered haraters of H . As G was equal to H , these funtionswere of ourse onstant on (one element) orbits of the ation of G on

H . In a general ase it may happen that we do not have an equality
χ(ghg−1) = χ(h).Of ourse this equality holds if a harater of H extends to a haraterof G, but this is not always the ase. If we de�ne the vetors lχ for

χ ∈ H∗ they may not be in Ŵ . To obtain the vetors in Ŵ we willsum up some haraters to obtain funtions that satisfy the onditionof Proposition 5.54. Consider the ation of G on H∗:
χg(h) = χ(ghg−1).Let O be the set of orbits of this ation. Elements of O give a partitionof H∗. Let us de�ne for eah element o ∈ O a funtion fo : H → C.



62 MATEUSZ MICHA�EKDe�nition 5.55 (Funtion fo). Let fo =
∑

χ∈o χ. Here we are sum-ming haraters as omplex valued funtions, not as haraters, so thisis the usual sum, not the produt. We obtain lfo = ∑
χ∈o lχ.Proposition 5.56. The funtion fo satis�es the onditions of Propo-sition 5.54 that is, it is onstant on orbits of the onjugation ation of

G on H.Proof. As the ation of g′ is a permutation of the orbit o we have:
fo(g

′hg′−1) =
∑

χ∈o

χ(g′hg′−1) =
∑

χ∈o

(g′, χ)(h) =
∑

χ∈o

χ(h) = fo(h).

�Corollary 5.57. The vetors lfo for o ∈ O are in Ŵ . Moreover, as lχforms a basis of ŴH , and lfo are sums over a partition of this basis,they are independent.Proposition 5.58. Any omplex funtion onstant on orbits of O is alinear ombination of the funtions fo.Proof. Let us �x a funtion f onstant on orbits. As the haraters of
H span the spae of all funtions we know that f =

∑
χ∈H∗ aχχ. Wehave to prove that oe�ients of χ in the same orbit are the same. Let

χg
1 = χ2. We know that for any h ∈ H we have
∑

χ∈H∗

aχχ(h) = f(h) = f(ghg−1) =
∑

χ∈H∗

aχχ(ghg
−1) =

∑

χ∈H∗

aχχ
g(h).From the independene of haraters we see that aχ1 = aχ2 whihompletes the proof. �Corollary 5.59. The number of orbits in O (and so the number ofvetors lfo) is equal to the number of orbits of the onjugation ationof G on H.Proof. This follows from omparing dimensions of spaes of omplexfuntions on H that are onstant on orbits. �5.3.3. Step 3: Dimension of Ŵ . We are going to prove that the dimen-sion of Ŵ is equal to the number of orbits |O|. First let us note thatall oe�ients of any matrix in Ŵ (in the basis S) are determined byoe�ients in the �rst row. This follows from Setion 5.1. We see that

dim Ŵ is equal to the number of independent parameters in the �rstrow, that is indexed by e. The ation of G imposes some onditions,



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 63namely the oe�ient in the e-th row and a-th olumn and the oe�-ient in the e-th row and b-th olumn for a, b ∈ S have to be equal ifand only if there exists an element g ∈ G suh that:
g(e) = e and g(a) = b.Lemma 5.60. The following onditions are equivalent:(i) there exists g ∈ G that sends e to e and a to b,(ii) the elements ha and hb are in the same orbit with respet tothe ation (g, h) = ghg−1.Proof. Of ourse ha and hb are in the same orbit if and only if h−1

a and
h−1
b are in the same orbit. For the proof we onentrate on the seondvariant.i)⇒ ii): From Lemma 5.48 we know that gh−1

a g−1 = h−1
b , beauseboth elements send b to e.i)⇐ ii): Suppose that gh−1

a g−1 = h−1
b . Let g′ = h−1

b ghg−1(b). Theelement g′ sends e to e, but g′ = gh−1
a hg−1(b), hene it also sends a to

b. �Proposition 5.61. The dimension of Ŵ is equal to the number oforbits |O|.Proof. Classes of equal parameters in the �rst row of matries in Ŵorrespond bijetively to orbits of the ation of G on H from Lemma5.60 and remarks at the beginning of this subsetion. By Corollary5.59 this �nishes the proof. �Corollary 5.62. The elements lfo for o ∈ O form a basis of Ŵ .Proof. The vetors lfo are independent due to Corollary 5.57. Thenumber of vetors equals the dimension of the spae due to Proposition5.61. �5.3.4. Step 4: G-models are tori. Let us de�ne a basis on Ŵe onsist-ing of vetors lfo . We onsider the inlusion map i : Ŵe → (̂WH)e, inthe basis made respetively of lfo and lχ. We know that lfo = ∑
χ∈o lχ.Let us desribe the morphism i in the oordinates orresponding to thebasis lfo on Ŵe and to the basis lχ on (̂WH)e. Fix χ ∈ o. We have

l∗χ(i(x)) = l∗fo(x).This shows that the map from ∏
e∈E P(Ŵe) to P(WL) that parame-terizes the model is also given by monomials � these are exatly mono-mials from Setion 5.1, where we just make some variables equal toeah other. Let us desribe whih variables are identi�ed. We reallthat variables in the abelian ase orrespond to networks. Fix two



64 MATEUSZ MICHA�EKnetworks n1 and n2. We identify them if and only if for eah edge ethe haraters n1(e) and n2(e) are in the same orbit of the adjoint Gation.We have got the following ommutative diagram:
∏

e∈E P(Ŵe) → P(ŴE) 99K P(WL)
↓ ↓ l∏

e∈E P(ŴHe) → P(ŴHE) 99K P(WL)This proves the main theorem of this setion.Theorem 5.63. Let G be a �nite group that ats faithfully on a �niteset S. Let H be a normal, abelian subgroup of G. Suppose that theation of H on S is transitive and free. Let Ŵ be the spae of matriesinvariant with respet to the ation of G and let W be the vetor spaespanned freely by elements of S. Then the G-model X(T,W, Ŵ ) is torifor any tree T .We will now desribe the latties of haraters of the tori that appearin the onstrution. As in Setion 5.1 there is a lattie MS with basiselements orresponding to sokets and two latties M̂E,H ⊂ME,H . Theletter has got basis elements indexed by pairs (e, χ) where e ∈ E is anedge of the tree and χ ∈ H∗ is a harater.De�nition 5.64 (Lattie ME,G). Let ME,G be a lattie with basis el-ements indexed by pairs (e, o), where e ∈ E and o is an orbit of theadjoint ation of G on H∗.Let fe,χ ∈ ME,H be a basis element indexed by the pair (e, χ). Let
fe,o ∈ ME,G be a basis element indexed by the pair (e, o). There isa natural projetion ME,H → ME,G. To an element fe,χ we assoiate
fe,o, where χ ∈ o. The image of a polytope P ⊂ ME,H for the generalgroup-based model is a polytope P̃ that is assoiated to the varietyrepresenting the G model. Hene P̃ is a subpolytope of a unit ube. Anelement ∑e∈E fe,oe is a vertex of P̃ if and only if there exist haraters
χoe ∈ oe suh that ∑e∈E fe,χoe

is a vertex of P . The lattie spanned by
P̃ will be denoted by M̂E,G. The following diagram ommutes.

MS ME,H

ME,GThe morphisms from MS orrespond to embeddings of both models inan a�ne spae. The surjetive vertial morphism orresponds to in-lusion of models. Indeed, by introduing new onditions on transition



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 65matries for a G-model we restrit the image, hene there is a naturalinlusion in a general group-based model.We �nish this setion by presenting relations of G-models to la-bellings 5.42. From Lemma 5.60 it follows that the entries of transitionmatrix labelled respetively by (h1, h2) ∈ H2 and (h3, h4) ∈ H2 areequal if the elements h−1
1 h2 and h−1

3 h4 are in the same orbit of theadjoint ation of G on H . Let Lab be the set of orbits of the adjointation of G on H . The labelling funtion f : H → Lab assoiates toan element its orbit.De�nition 5.65 (m-friendly labelling, friendly labelling, [SS05, Def-inition 8℄). Let H be any abelian group and Lab any �nite set. Fix alabelling funtion f : H → Lab. For m ≥ 3 onsider the set
Z = {(g1, . . . , gm) ∈ Hm :

m−1∑

i=1

gi = gm}.Consider the indued map f̃ : Z ⊂ Hm → Labm and denote by πi theprojetion πi : H
m → H onto the i-th oordinate. The funtion f isalled m-friendly if, for every l = (l1, . . . , lm) ∈ f̃(Z) ⊂ Labm,

πi(f̃
−1(l)) = f−1(li) for all i = 1, . . . , m.A labelling is friendly if it is m-friendly for all m ≥ 3.Lemma 5.66. The labellings for G-models are friendly.Proof. Fix an m-uple of orbits (o1, . . . , om) for the adjoint ation of

G on an abelian normal subgroup H . Suppose that there exist el-ements hi ∈ oi suh that ∏m−1
i=1 hi = hm. Fix any element h̃i0 ∈

oi0. There is an element g ∈ G suh that h̃i0 = ghi0g
−1. Con-sider an element (gh1g

−1, . . . , ghmg
−1). Let f̃ and πi be as in De�-nition 5.65. Of ourse f̃(gh1g−1, . . . , ghmg

−1) = (o1, . . . , om). More-over πi0(gh1g−1, . . . , ghmg
−1) = h̃i0 , whih proves that the labelling isfriendly. �The main reason to introdue friendly labellings is that they allowto apply a very important indutive proedure. Assuming that we aredealing with a model given by friendly labelling the variety assoiatedto any tree T an be desribed in terms of the varieties assoiated tolaw trees. The polytope assoiated to a tree T is a �ber produt ofpolytopes assoiated to law trees. More information an be found inSetion 5.5 and artiles [Sul07℄, [SS05, Lemma 12℄.At this point we should make a remark about the di�erene betweengroup elements and haraters. To de�ne the spae of transition ma-tries for a G-model we used a G ation on the spae End(W ). We



66 MATEUSZ MICHA�EKonsidered the basis of W that orresponded to states, or by hoosinga bijetion to elements of an abelian group. The adjuntion ation of
G on H allowed us to de�ne the labelling that desribed a G-model.Note however that this is not the labelling that identi�es the oor-dinates of the parametrization of the variety. In the latter ase thevariables orrespond to pairs (e, χ) where χ ∈ H∗. The labelling iden-ti�es the variables orresponding to pairs with haraters on the seondoordinate that are in the same orbit. Hene the set of labels is theset of orbits of the adjoint ation of G on H∗. The labelling assoiatesto a harater its orbit in the adjoint ation. The same proof as in theLemma 5.66 shows that this is also a friendly labelling.5.4. Example of 2-Kimura model. In this subsetion we will showhow the onstrution from the previous subsetion works on Kimuramodels. We will also present the algorithm for onstruting a polytopeof a model for a given group G with a normal subgroup H . The methodwas desribed in a di�erent language in [SS05℄. The main di�erene(apart from the notation) is that the authors assumed the existeneof a friendly labelling funtion, that desribed whih haraters areidenti�ed. In ase of G-models we exatly know this funtion: it asso-iates to a given harater its orbit of the G ation. This is a friendlylabelling.If G = H the onstrution is partiularly easy. The polytope has got
|G||E|−|N | verties and the algorithm works in time O(|N |(|G||E|−|N |))assuming that we an perform group operations in unit time.Algorithm 1. INPUT: A rooted tree T and an abelian group GOUTPUT: Verties of the polytope assoiated to the tori varietyrepresenting the model for the tree T and the group G(i) Orient the edges of the tree from the root.(ii) For eah inner vertex hoose one outgoing edge.(iii) Make a bijetion b : G → B ⊂ Z|G|, where B is the standardbasis of Z|G|.(iv) Consider all possible assoiations of elements of G with not-hosen edges (there are |G||E|−|N | suh assoiations).(v) For eah suh assoiation, make a full assoiation by assigningan element of G to eah hosen edge in suh a way that thesigned sum of elements around eah inner vertex gives a neutralelement in G.(vi) For eah full assoiation output the vertex of the polytope:

(b(ge)e∈E), where ge is the element of the group assoiated toedge e.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 67Example 5.67. For the 3-Kimura model, orresponding to the group
Z2 × Z2, on a tree with one inner vertex and three leaves the vertiesof P orrespond to triples of haraters of the group that sum up to aneutral harater:1) (0, 0), (0, 0), (0, 0) 2) (0, 0), (1, 0), (1, 0) 3) (1, 0), (0, 0), (1, 0)4) (1, 0), (1, 0), (0, 0) 5) (0, 0), (0, 1), (0, 1) 6) (0, 1), (0, 0), (0, 1)7) (0, 1), (0, 1), (0, 0) 8) (0, 0), (1, 1), (1, 1) 9) (1, 1), (0, 0), (1, 1)10) (1, 1), (1, 1), (0, 0) 11) (0, 1), (1, 0), (1, 1) 12) (0, 1), (1, 1), (1, 0)13) (1, 0), (1, 1), (0, 1) 14) (1, 0), (0, 1), (1, 1) 15) (1, 1), (0, 1), (1, 0)16) (1, 1), (1, 0), (0, 1)This in the oordinates of the lattie gives us verties of the polytope:1) 1,0,0,0,1,0,0,0,1,0,0,0 2) 1,0,0,0,0,1,0,0,0,1,0,03) 0,1,0,0,1,0,0,0,0,1,0,0 4) 0,1,0,0,0,1,0,0,1,0,0,05) 1,0,0,0,0,0,1,0,0,0,1,0 6) 0,0,1,0,1,0,0,0,0,0,1,07) 0,0,1,0,0,0,1,0,1,0,0,0 8) 1,0,0,0,0,0,0,1,0,0,0,19) 0,0,0,1,1,0,0,0,0,0,0,1 10) 0,0,0,1,0,0,0,1,1,0,0,011) 0,0,1,0,0,1,0,0,0,0,0,1 12) 0,0,1,0,0,0,0,1,0,1,0,013) 0,1,0,0,0,0,0,1,0,0,1,0 14) 0,1,0,0,0,0,1,0,0,0,0,115) 0,0,0,1,0,0,1,0,0,1,0,0 16) 0,0,0,1,0,1,0,0,0,0,1,0The basis for Ŵ for 3-Kimura (in previous notation vetors lχ =∑
χ(h−1

a hb)a⊗ b) is the following:
l1 =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 , l2 =




1 −1 1 −1
−1 1 −1 1
1 −1 1 −1
−1 1 −1 1


 ,

l3 =




1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1


 , l4 =




1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1


 .For the 2-Kimura model the four elements of H , treated as permuta-tions deomposed into yles, are in order:

(1)(2)(3)(4); (1, 2)(3, 4); (1, 3)(2, 4); (1, 4)(2, 3).The group G is spanned by H and the transposition (3, 4).If we onsider the ation of G on H∗ we obtain three following orbits:



68 MATEUSZ MICHA�EK(i) The orbit of the trivial harater ontains only the trivial har-ater. This tells us that the vetor
f1 =




1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


 ,is in ŴG and will be onsidered as the �rst basis vetor.(ii) The orbit of the harater that assoiates −1 to (1, 3)(2, 4) and

(1, 4)(2, 3) and 1 to other elements. It has got also only oneelement. For example let us notie that
χ((3, 4)(1, 3)(2, 4)(3, 4)) = χ((1, 4)(2, 3)) = −1 = χ((1, 3)(2, 4)).This means that the vetor

f2 =




1 1 −1 −1
1 1 −1 −1
−1 −1 1 1
−1 −1 1 1


 .will be a basis vetor of ŴG.(iii) The orbit that ontains the two remaining haraters. If wetake their sum (as funtions, not haraters) we obtain a fun-tion that assoiates 2 to (1)(2)(3)(4), −2 to (1, 2)(3, 4) and 0to other two elements. This gives us an element:

f3 =




2 −2 0 0
−2 2 0 0
0 0 2 −2
0 0 −2 2


This is the sum of two other lχ.We obtain f1 = l1, f2 = l4, f3 = l2 + l3. Let F = {f1, f2, f3} and

L = {l1, . . . , l4}. From the previous setion we know that F is the basisof ŴG and L of ŴH . This an be heked diretly in this example. Letus now look at the map for the tripod tree . Elements of ŴG arespeial elements of ŴH . We have a map:
(f ei

j )j=1,...,3,i=1,...,3 → (leij )j=1,...,4,i=1,...,3.Here j parameterizes base vetors and i parameterizes edges. Ourmodel is the omposition of this map and a model map for H . Theimage of the �rst map is a subspae given by a ondition that theoordinates orresponding to lei2 and lei3 are equal for eah i = 1, . . . , 3.Let us see this diretly.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 69The �xed bijetion b from the Algorithm 1 is the following:
b(e) = (1, 0, 0, 0), b(χ3) = (0, 1, 0, 0)

b(χ1) = (0, 0, 1, 0), b(χ2) = (0, 0, 0, 1)where χ1 and χ3 are in the same orbit. The domain of ψ̂ for the group
H is {(x1, . . . , x12) : xi ∈ C} in the order as in Example 5.67 (we �x anisomorphism with χ1 = (1, 0) and χ3 = (0, 1)). This tells us that thesubspae ∏

e∈E(ŴG)e is given by onditions x2 = x3 (the oordinatesof l2 and l3 for Ŵ e1
H ), x6 = x7, x10 = x11.This proedure works generally. After having �xed the polytopefor a subgroup H , that is in the lattie M (whose oordinates areindexed by edges and haraters of H) we onsider a morphism from

M onto the lattie M ′ (whose oordinates are indexed by edges andorbits of haraters of H) that just assigns a harater to a given orbit.This morphism sums up oordinates that are in the same orbit of theation of G on H∗. The image of the polytope P is a polytope of ourmodel. For 3-Kimura we sum up oordinates ordered as in Example5.67 obtaining a polytope for 2-Kimura model:1) 1,0,0,1,0,0,1,0,0 2) 1,0,0,0,1,0,0,1,03) 0,1,0,1,0,0,0,1,0 4) 0,1,0,0,1,0,1,0,05) 1,0,0,0,1,0,0,1,0 6) 0,1,0,1,0,0,0,1,07) 0,1,0,0,1,0,1,0,0 8) 1,0,0,0,0,1,0,0,19) 0,0,1,1,0,0,0,0,1 10) 0,0,1,0,0,1,1,0,011) 0,1,0,0,1,0,0,0,1 12) 0,1,0,0,0,1,0,1,013) 0,1,0,0,0,1,0,1,0 14) 0,1,0,0,1,0,0,0,115) 0,0,1,0,1,0,0,1,0 16) 0,0,1,0,1,0,0,1,0After removing double entries we get the following verties:1) 1,0,0,1,0,0,1,0,0 2) 1,0,0,0,1,0,0,1,03) 0,1,0,1,0,0,0,1,0 4) 0,1,0,0,1,0,1,0,05) 1,0,0,0,0,1,0,0,1 6) 0,0,1,1,0,0,0,0,17) 0,0,1,0,0,1,1,0,0 8) 0,1,0,0,1,0,0,0,19) 0,1,0,0,0,1,0,1,0 10) 0,0,1,0,1,0,0,1,05.5. Further notation and appliations. In this setion we will in-trodue notation onerning spei� group-based models. We start byintroduing the so alled "time-reversibility" ondition. This onditionfores the transition matries to be symmetri [PS05, Lema 17.2℄. Itis satis�ed for many models onsidered in appliations, for example forthe 3-Kimura model. One an notie that a general group-based modelgives rise to symmetri transition matries if and only if all nonneutralgroup elements are of order two. We have to point out that in theliterature often one adds to the de�nition of group-based models the



70 MATEUSZ MICHA�EKrequirement that matries are symmetri [BDW09℄, [PS05, p. 328℄. Wedo not use this onvention. This leads to the following de�nition.De�nition 5.68 (general symmetri group-based model, symmetrigroup-based model). Let H be an abelian group ating transitively andfreely on the set of states S. We de�ne the general symmetri group-based model, as the model assoiated to the vetor spae Ŵ given as themaximal spae of symmetri matries invariant with respet to the Hation.Analogously we de�ne the symmetri group-based model, as a modelassoiated to a subspae of Ŵ given by hyperplane setions that makesome parameters of the transition matries equal.Symmetri group-based models do not have to be tori. For a ounterexample one an onsider the general group-based model for Z6. Thetransition matries are of the following type:



a b c d e f
f a b c d e
e f a b c d
d e f a b c
c d e f a b
b c d e f a


Let us onsider a symmetri submodel with transition matries ofthe following type: 



a a c d c a
a a a c d c
c a a a c d
d c a a a c
c d c a a a
a c d c a a



.After the Fourier transform we do not get a map given by monomials� see the Appendix 1. However the general symmetri group-basedmodels always give rise to tori varieties.Proposition 5.69. General symmetri group-based models give rise totori varieties.Proof. This is the orollary of Theorem 12.1. Suppose that H is anyabelian group. We take G to be a semi diret produt ofH by Z2 wherethe ation of 1 ∈ Z2 on h gives h−1. In this ase the assumptions ofthe Theorem 12.1 are satis�ed and the subspae invariant with respetto the G ation gives the general symmetri group-based model. �



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 71There are two abelian groups of order 4. For Z2 × Z2 the generalsymmetri group-based model is the same as the general group-basedmodel and is the 3-Kimura model. For Z4 the general symmetri group-based model is the 2-Kimura model. Notie however that the lass ofgeneral symmetri group-based models does not inlude Jukes-Cantoron four states that is a G-model. It an be obtained for example byan embedding of Z2 × Z2 in S4 as a normal subgroup. More preiselyas {id; (12)(34); (13)(24); (14)(23)}. In onlusion we believe that the
G-models form the largest known lass of group-based models that giverise to tori varieties.We would like to �nish this subsetion by restating the results ofSturmfels and Sullivant obtained for group-based models, in the aseof G-models. We have seen that to eah tree T and a G-model wean assoiate a polytope P . Fix a group G with a normal abeliansubgroup H . The polytope P de�nes a projetive tori variety as de-sribed in 2 and this is the variety representing the model. For generalgroup-based model the points of P orrespond to networks 5.24, thatis speial assoiations of haraters of a group to edges of the tree. Us-ing the labelling method we identify two networks if for eah edge theassoiated haraters are in the same orbit of the adjoint ation of Gon H∗.De�nition 5.70 (Join of two trees, split of a tree into two subtrees).Fix a tree T with an inner edge e = (v1, v2). We distinguish two subsets
S1 and S2 of verties of T . The set S1 ontains all desendants of v1,inluding v1. The set S2 ontains all verties that are not desendantsof v2, inluding v2. Let T1 and T2 be indued subtrees of T with vertiesgiven respetively by S1 and S2. Note that the edge e is a distinguishedleaf both in T1 and T2. One an speify the roots of T1 and T2 arbitrarily.A anonial hoie is to take respetively v1 and v2.We all the trees T1 and T2 the split of T . The tree T is a join of T1and T2 (with a distinguished edge e).Friendly labellings allow to desribe the polytope assoiated to T asa �ber produt of the polytopes assoiated to T1 and T2. In partiularwe an give a desription of the polytope of any tree knowing just thepolytopes assoiated to law trees.Reall that the polytope assoiated to the tree T is ontained in thelattie ME,G with the basis given by pairs (k, o), where k is an edge of
T and o is an orbit of the adjoint G ation on H .Fat 5.71 ([Sul07, Theorem 12℄, [SS05, Theorem 23℄). Let T be a joinof two trees T1 and T2 with a distinguished edge e. Let M be the lattieassoiated to the tree T . Consider a G-model assoiated to a group G



72 MATEUSZ MICHA�EKwith a normal abelian subgroup H. LetM1 andM2 be the orrespondinglatties for the trees T1 and T2. Let Me be the lattie generated by thebasis elements (e, o), where o is any orbit of the adjoint G ation on Hand e is a �xed edge. There are natural projetions p1 :M1 →Me and
p2 :M2 →Me.The polytope assoiated to the tree T is a �ber produt over the pro-jetions p1 and p2 of the polytopes assoiated to trees T1 and T2. �5.6. Normality of G-models. We have seen that the models assoi-ated to a group ontaining a normal, abelian subgroup are tori. Themonomial parametrization map is su�ient for the appliations. How-ever for an algebrai geometer this would not be enough, as one wouldalso need to prove the normality of these varieties. We will now addressthis problem. By normality we will mean projetive normality, that isnormality of the a�ne one equivalent to normality of polytopes. Wewill see that in general one annot expet a G-model to be normal, butin many ases it is. First let us start with a tehnial lemma. Di�er-ent versions of it that worked only for polytopes with a unimodularover were presented in [BW07℄ and [Zwi℄. Reently these results weregeneralized in the paper [EKS11℄.Lemma 5.72. Let P1 and P2 be two normal polytopes ontained re-spetively in latties L1 and L2 spanned by the points of the polytopes.Suppose that we have got morphisms pi : Li → L of latties for i = 1, 2suh that pi(Pi) ⊂ S, where S is a standard simplex (onvex hull ofstandard basis). Then the �ber produt P1 ×L P2 is normal in the lat-tie spanned by its points.Proof. Let q ∈ n(P1 ×L P2) for some positive integer n. Let qi be theprojetion of q to Li. Suppose q is in the lattie spanned by points of
P1×LP2. Hene q is equal to the sum of points that belong to P1×LP2with integral oe�ients summing up to n. We know that it is in theonvex hull of n(P1 ×L P2). Hene eah qi is the sum of points thatbelong to Pi with oe�ients summing up to n and is in the onvexhull of nPi. This means that qi ∈ nPi ∩ Li. From the assumptions weobtain:

qi =

n∑

j=1

vij ,with eah vij ∈ Pi. We also know that p1(q1) = p2(q2) and this is anelement of nS. Moreover pi(vij) ∈ S. Let us notie that eah element of
nS an be uniquely written as the sum of n elements of S. This meansthat the olletions (p1(v11), . . . , p1(v1n)) and (p2(v

2
1), . . . , p2(v

2
n)) are thesame up to permutation, so we an assume that p1(v1j ) = p2(v

2
j ). Thus



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 73we an lift eah pair (v1j , v
2
j ) to a point vj ∈ P1 ×L P2 that projetsrespetively to v1j and v2j . One obtains q =

∑n

j=1 vj whih ompletesthe proof. �Due to Fat 5.71 the polytope assoiated to a tree with more thenone inner vertex is the �ber produt of polytopes assoiated to treeswith stritly smaller number of inner verties. Due to Lemma 5.72 if wewant to prove normality of a polytope assoiated to any trivalent treewe only have to onsider normality of a polytope for a tripod. Moregenerally if we want to prove normality of a polytope assoiated to atree with verties of valeny less or equal to m we have to hek thenormality of polytopes assoiated to law trees with at most m leaves.Proposition 5.73. Let us onsider a trivalent tree. The G-models forthe abelian groups: Z2, Z2 × Z2, Z3 and Z4 are normal.Proof. One an �nd the polytopes for the tripod and hek their nor-mality using Maaulay omputer program [GS℄. The proposition thenfollows from Lemma 5.72. �Proposition 5.74. The polytope of the 2-Kimura model for the tripodis not normal. Moreover the projetive variety assoiated to the modelis not normal.Proof. As the seond part of the statement is stronger we prove onlythat part. The polytope of the 2-Kimura model has for verties:1) 1,0,0,1,0,0,1,0,0 2) 1,0,0,0,1,0,0,1,03) 0,1,0,1,0,0,0,1,0 4) 0,1,0,0,1,0,1,0,05) 1,0,0,0,0,1,0,0,1 6) 0,0,1,1,0,0,0,0,17) 0,0,1,0,0,1,1,0,0 8) 0,1,0,0,1,0,0,0,19) 0,1,0,0,0,1,0,1,0 10) 0,0,1,0,1,0,0,1,0Let Q = (1, 0, 0, 1, 0, 0, 1, 0, 0) be a vertex of P . Due to Fat 2.15it is enough to prove that the monoid C generated by integral pointsof P − Q is not saturated. Let us onsider the one C̃ that is thesaturation of C. The point L = (−1, 0, 1,−1, 0, 1,−1, 0, 1) is in C, as
2L is equal to
(−1, 0, 1,−1, 0, 1, 0, 0, 0)+(−1, 0, 1, 0, 0, 0,−1, 0, 1)+(0, 0, 0,−1, 0, 1,−1, 0, 1).The point L is also in the lattie spanned by the verties as
L = (0, 1, 0, 0, 1, 0, 0, 0, 1)−(0, 1, 0, 0, 1, 0, 1, 0, 0)+(0, 1, 0, 0, 0, 1, 0, 1, 0)

−(0, 1, 0, 0, 0, 1, 0, 1, 0) + (0, 0, 1, 0, 1, 0, 0, 1, 0)− (0, 0, 1, 0, 1, 0, 0, 1, 0).However it is not an integral sum with positive oe�ients of vertiesof P − Q. Indeed eah vertex of P − Q with 0 on the seond, �fth



74 MATEUSZ MICHA�EKand eighth oordinate has got an even sum of third, sixth and ninthoordinates. However the sum of these oordinates for L is odd. �In a joint work with Maria Donten-Bury [DBM℄ we managed to getfurther results. Using the implementation of the Algorithm 1 one anobtain the set of verties of the polytope related to the investigatedgroup and the tripod. We applied Polymake [GJ00℄ to hek the nor-mality of this polytope (in the lattie generated by its verties). Weobtained:Computation 5.75. The polytope assoiated with G-model for the tri-pod and the group G = H = Z6 is not normal. Hene the a�ne alge-brai variety representing this model is not normal.In partiular, the lass of abelian models ontains non-normal mod-els. We believe it an be di�ult to haraterize the lass of groups forwhih G-models are normal, or even to determine a big (in�nite) lassof normal, tori G-models. On the other hand one has the followingresult:Proposition 5.76. Let T be a phylogeneti tree and let G1 be a sub-group of an abelian group G2. If the variety orresponding to the tree Tand group G1 is not normal then the variety orresponding to the tree
T and group G2 is also not normal.Proof. Let Mi be a lattie whose basis is indexed by pairs of an edgeof a tree and an element of the group Gi. The inlusion G1 ⊆ G2 givesus a natural injetive morphism f : M1 → M2. Let Pi ⊂ Mi be thepolytope assoiated to the model for the tree T and group Gi. Let
M̃i ⊂Mi be a sublattie spanned by verties of the polytope Pi.As P1 is not normal in the lattie spanned by its verties, there existsa point x ∈ nP1∩M̃1, that is not a sum of n verties of the polytope P1.Let us onsider y = f(x). The verties of P1 are mapped to verties of
P2. We see that y ∈ nP2 ∩ M̃2. If P2 was normal in M̃2 we would beable to write y =

∑n

i=1 qi with qi ∈ P2.Let us notie that eah point in the image f(M1) has got zero oneah entry of the oordinates indexed by any edge and any element ofthe group g ∈ G2 \ G1. In partiular y has got zero on these entries.As all entries of all verties of P2 are nonnegative, this proves that allentries indexed by any edge and any element of the group g ∈ G2 \G1are zero for qi. However, we see that verties of P2 that have got all nonzero entries on oordinates indexed by pairs of an edge and an element
g ∈ G1 are in the image of P1. Hene qi = f(pi) for pi ∈ P1. We seethat x =

∑
pi, whih is impossible. �



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 75In partiular we see that all abelian groupsG suh that |G| is divisibleby 6 give rise to non-normal models.6. Desription of the variety using the group ationLet us desribe preisely the haraters of the torus that is the denseorbit of the variety assoiated to the model. Let us �x a tree T and anabelian group H . We have got the following diagram:
ψ̂ :MS M̂E ⊂ME

MS,0Let us de�ne a sublattie of ME .De�nition 6.1 (Mdeg).
Mdeg = {m ∈ ME : dege1(m) = dege2(m) e1, e2 ∈ E}Proposition 6.2. The lattie M̂E is ontained in the sublattie Mdeg.Proof. For any basis element b ∈ MS orresponding to a soket andfor any edge e ∈ E we have dege(ψ̂(b)) = 1. Hene the image of anyelement of MS satis�es the relations in the de�nition of Mdeg. �Of ourse the elements of M̂E satisfy more relations. We will desribethem now.De�nition 6.3 (Morphism add). There is a natural surjetive groupmorphism add :ME → (H∗)N . For a node n ∈ N let pn : (H∗)N → H∗be the projetion onto the orresponding fator. Let fe,χ ∈ ME be abasis element orresponding to an edge e and a harater χ ∈ H∗. Wede�ne

pn(add(fe,χ)) =





χ0 if and only if n is not adjaent to e
χ if and only if e is an edge inoming to n
−χ if and only if e is an edge outgoing from n,where χ0 is the neutral harater.We say that an element m ∈ M̂E has a trivial sum around a node nif and only if pn(add(m)) = χ0.Consider the omposition add ◦ ψ̂. Let s ∈ MS be a basis elementorresponding to a network s̃ ∈ N ⊂ (H∗)E . We have add ◦ ψ̂(s) =

add(s̃). However due to De�nition 5.24 we have add(s̃) = 0, hene
add ◦ ψ̂(s) : MS → (H∗)N is equal to zero. This means that M̂E is



76 MATEUSZ MICHA�EKontained in the kernel of the morphism add. We will prove that thereis an exat sequene:
0 → M̂E →Mdeg → (H∗)N → 0,where the last morphism is the restrition of add toMdeg. In partiularranks of M̂E and Mdeg are equal.Corollary 6.4. The dimension of the a�ne variety assoiated to themodel, is equal to the dimension of the dense torus orbit that is

dim M̂E = dimMdeg = (|H| − 1)|E|+ 1.The dimension of the projetive variety equals (|H| − 1)|E|.We have to prove the following lemma.Lemma 6.5. Every element of Mdeg that is in the kernel of add belongsto M̂E.Proof. We proeed by indution on the number of inner verties of thetree. First let us assume that the tree T is a law-tree with l leaves.The elements ofMdeg an be desribed by sequenes of length l given byelements (∑ a1χχ, . . . ,
∑
alχχ) with the ondition ∑

a1χ = · · · =
∑
alχ.We prove that elements of the form (g1+g2−g1g2−χ0, 0, . . . , 0), where

g1, g2 ∈ H∗ are any haraters are in M̂E . Suh an element is equal to
(g1, g

−1
1 , χ0, . . . , χ0)+(g2, χ0, g

−1
2 , χ0, . . . , χ0)−(g1g2, g

−1
1 , g−1

2 , χ0, . . . , χ0)−
(χ0, . . . , χ0). Eah element of the sum is given by a soket, hene it isin M̂E .We now �x any element (∑ a1χχ, . . . ,

∑
alχχ) = m ∈ Mdeg that is inthe kernel of add. We will redue it modulo the image of MS to zero.Let us assume that ∑ a1χ = · · · =

∑
alχ = d.Using elements as above we an reduem and assume that for χ 6= χ0the oe�ient ajχ for eah 1 ≤ j ≤ l is zero apart from one harater foreah j for whih the oe�ient an be equal to one. Preisely if thereare two haraters with a positive (resp. negative) oe�ients we anreplae them with their sum plus (resp. minus) the trivial harater.If one entry is equal to g1 − g2 we add g2 + g1g

−1
2 − g1 − χ0. If there isone negative g on an entry we add g + g−1 − 2χ0.In other words m is equal to (χ1, . . . , χl)+(d−1)(χ0, . . . , χ0) modulothe image of MS . As ∑χj = χ0 in H∗ this element is in the image of

MS.Now we will prove the indution step. Let us �x a tree T with atleast two inner verties. We may hoose an inner edge e of T , suhthat utting along the edge e we obtain two trees T1 and T2 (the tree
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T is a join of T1 and T2) with stritly lower number of inner verties.In one of the trees, say T2, we have to hoose a root � this will be avertex belonging to the edge e. In this way all edges of T2 are orientedas in T apart from e whih has an opposite diretion. An element
m ∈Mdeg gives us two elements mi ∈M i

deg for i = 1, 2 that are also inthe kernels of add for both trees. By indution hypothesis we an �ndtwo elements si ∈ M i
S whih images give mi. Let si = ∑

cijb
i
j where

bij is the basis of M i
S orresponding to sokets on Ti. Let us onsiderthe multisets Zi that are the projetions of ∑ cjb

i
j onto the edge e �eah bj distinguishes an element on e. The multiset Zi has cj elementsdistinguished by bij with a minus sign if cj < 0. Zi is a signed multisetof haraters. Let Z ′

i be a multiset obtained by redutions anelling χwith −χ in the multiset Zi. The multiset Z ′
1 is just the signed multisetof haraters orresponding to me. The multiset Z ′

2 gives the samemultiset as Z ′
1 if we inverse all haraters. This means that we an pairtogether elements from Z ′

1 and Z ′
2 suh that eah pair gives rise to asoket on the tree T . The image of the sum of these sokets does nothave to give m yet. We have to lift also the sokets that we anelledby passing from Zi to Z ′

i. This is done as follows. Suppose that twosokets b1 and b′1 give χ on the edge e and so, b1 and −b′1 were anellingeah other in Z1. We hoose any soket s on T2 that gives χ−1 on theedge e. We an glue together b1 and s obtaining a soket (b1, s) of thetree T and analogously (b′1, s). The image of the di�erene of sokets
(b1, s)− (b′1, s) on the edges of the tree T1 is the same as the di�ereneof b1− b′1 and zero on the edges belonging to T2. In this way we obtainthe sokets of T whih image agrees with ∑

cjb
i
j on Ti, hene is equalto m. �Corollary 6.6. For the tree T and the group H the dense torus orbitof the a�ne variety representing the model has a natural desriptionas a quotient of the dense orbit of the torus of the parameter spae bythe HN × (C∗)|E|−1 ation.Proof. The haraters of the dense orbit of the parameter spae aregiven by the lattie ME . Its algebra is C[ME ] = C[x±1

(e,χ)]e∈E,χ∈H∗.First let us desribe the ation of Gr = (C∗)|E|−1. We regard this torusas a subtorus of (C∗)|E| with an additional ondition that the produtof all oordinates is one. Hene an element of Gr is just an assoiationof a nonzero omplex number to eah edge of the tree T , suh that theprodut of all these numbers is one. The ation of Gr just multiplies
x(e,χ) by the omplex number assoiated to e. In this way the invariant



78 MATEUSZ MICHA�EKmonomials are those whose degree with respet to eah edge is thesame, hene MGr
E =Mdeg.The oordinates of the group HN are indexed by nodes. There is anatural diagonal ation of the group HN on the algebra C[ME ]. Let us�x a node v ∈ N . The ation of the h ∈ H onsidered as an element of

HN , equal to h on the oordinate indexed by v and the neutral elementon the other oordinates is as follows:
• for an edge e inoming to v we have h(x(e,χ)) = χ(h)x(e,χ)
• for an edge e outgoing from v we have h(x(e,χ)) = (χ(h))−1x(e,χ)
• for the other edges h(x(e,χ)) = x(e,χ).First let us notie that elements of M̂E are invariant by the ation of

HN . They are in the kernel of add, so the signed sum of haratersaround eah inner vertex gives a trivial harater. But the ation of
h ∈ H ⊂ HN just multiplies the monomial by the value on h of theharater that is a signed sum of haraters assoiated to edges adjaentto v, hene by 1. Conversely if the signed sum of haraters on any
h ∈ H is 1, then the sum has to be a trivial harater. So an elementof Mdeg is invariant with respet to the HN ation if and only if it is inthe kernel of add, so by 6.5 if and only if it belongs to M̂E . �The group HN × (C∗)|E|−1 ats also on the algebra of the parame-ter spae C[x(e,χ)]e∈E,χ∈H∗. However the quotient is not equal to thevariety representing the model, ontrary to what is stated in [CFS08,Theorem 3.6℄. Indeed the algebra of the variety is generated by thepolytope (ontained in the positive quadrant of Mdeg) and is invariantby the ation of HN × (C∗)|E|−1. However the invariant monomials of
C[x(e,χ)]e∈E,χ∈H∗ orrespond to all the monomials of M̂E that are inthe positive quadrant of ME . Not all suh monomials are generatedby the polytope. For example for the 3-Kimura model the monomial
x2e0,χ

∏
ei∈E

x2ei,e, where e is the trivial harater is invariant for any χand any distinguished edge e0 (beause χ+χ = e). This is not howeverthe sum of any two verties of the polytope assoiated to the variety.Let us present some appliations.Corollary 6.7. There is an exat sequene of groups:
MS,0 →ME,0 → (H∗)|N | → 0.The �rst map is given by ψ̂. The seond one is the restrition of addto ME,0. �This orollary an be applied in the identi�ability problem to deter-mine the parameters of transition matries. We will do this in Setion11.4.1.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 79Let us �x an abelian group H and a tree T . We will prove thatthe group of networks N ats on the variety X(T,G). Reall that theambient spae W̃L is a regular representation of N.Proposition 6.8. The ation of the group of networks N on W̃L re-strits to the variety X(T,G).Proof. Consider the parametrization morphism πL ◦ ψ̂ : C|E||H∗| →
W̃L. The basis vetors of the a�ne spae C|E||H∗| are indexed by pairs
(e, χ) ∈ E×H∗. We denote the orresponding basis elements by b(e,χ).For t ∈ C|E||H∗| we de�ne t(e,χ) := b∗(e,χ)(t). The basis elements of W̃Lare indexed by networks n ∈ (H∗)E. We identify a network with asequene of haraters n = (ne := χe)e∈E indexed by edges. Note thatthe group of networks ats also on the domain C|E||H∗| by:

(n(t))(e,χ) := t(e,n−1
e χ).It is easy to hek that the morphism πL ◦ ψ̂ is equivariant. �7. Phylogeneti invariantsThe setion ontains results of joint work with Maria Donten-Bury[DBM℄. We investigate the most important objets of phylogenetialgebrai geometry � ideals of phylogeneti invariants. The main prob-lem in this area is to give an e�etive desription of the whole ideal ofthe variety assoiated to a given model on a tree. Our task is to �ndan e�ient way to ompute generators of these ideals.We suggest a way of obtaining all phylogeneti invariants of a lawtree of a G-model � more preisely we onjeture that our invariantsgenerate the whole ideal of the variety. These, together with Fat 5.71,ould provide an algorithm listing all generators of the ideal of phylo-geneti invariants for any tree and for any G-model (so in partiularfor a general group-based model).7.1. Inspirations. The inspirations for our method were the onje-tures made by Sturmfels and Sullivant in [SS05℄. They are still openbut, as we will see, they strongly support our ideas. In partiular, wewill prove later that our algorithm listing the generators of the idealworks for the 3-Kimura model if we assume that the weaker onjeturemade in [SS05℄ holds.First we introdue some notation. As before let Kn,1 be a law treewith n leaves. Let φ(G, n) = d be the least natural number suh thatthe ideal assoiated to Kn,1 for the group based model G is generatedin degree d. The phylogeneti omplexity of the group G is de�ned as
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φ(G) = supnφ(G, n). Note that due to [SS05, Theorem 23℄ (see also[Sul07, Theorem 12℄) the number φ(G, n) bounds the degree in whihthe ideal assoiated to any tree of valeny at most n is generated. Basedon numerial results Sturmfels and Sullivant suggested the followingonjeture:Conjeture 7.1. For any abelian group G we have φ(G) ≤ |G|.This onjeture was separately stated for the 3-Kimura model, thatis for G = Z2 × Z2.Still very little is known about the funtion φ apart from the ase ofthe binary Jukes-Cantor model (see also [CP07℄):Proposition 7.2 (Sturmfels, Sullivant [SS05℄). In ase of the binaryJukes-Cantor model φ(Z2) = 2. �There are also some omputational results � to the table in [SS05℄presenting the omputations made by Sturmfels and Sullivant a fewases an be added.Computation 7.3. Using 4ti2 software [tt℄ we obtained the following:

• φ(Z3, 6) = 3,
• φ(Z5, 4) = 4,
• φ(Z8, 3) = 8,
• φ(Z2 × Z2 × Z2, 3) = 8.For the 3-Kimura model we do not even know whether the funtion

φ is bounded. As we will see later, this onjeture is strongly relatedto the one stated in the next setion.7.2. A method for obtaining phylogeneti invariants. We pro-pose a method that is inspired by the geometry of the varieties weonsider. First we have to introdue some notation.De�nition 7.4. Let Vi be the set of verties of a tree Ti for i = 1, 2.Let e be an inner edge of T2 joining v1, v2 ∈ V2. We say that the tree
T1 is obtained from the tree T2 by ontration of an edge e if:

• V1 = {v} ∪ (V2 \ {v1, v2}),
• for w ∈ V1 \ {v} a pair (v, w) is an edge of T1 if and only if
(v1, w) or (v2, w) is an edge of T2,

• for w ∈ V1 \ {v} a pair (w, v) is an edge of T1 if and only if
(w, v1) or (w, v2) is an edge of T2,

• for w, u ∈ V1 \ {v} a pair (w, u) is an edge of T1 if and only if
(w, u) is an edge of T2.In suh a situation we say that T2 is a prolongation of T1.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 81Remark 7.5. Note that these de�nitions are not the same as thede�nitions of �attenings introdued in [AR08℄ and further studied in[DK09℄.Assume that we are in an abelian ase, that is we are dealing witha general group�based model. Using Algorithm 1 one an see thatverties of the polytope orrespond to sokets. As explained in Setion2 verties of the polytope orrespond to oordinates of the ambientspae of the variety. In this setting the variety X(T1) assoiated tothe tree T1 is in a natural way a subvariety of X(T2). Notie that wean identify sokets of both varieties, as we may identify their leaves, soboth varieties are ontained in Ps, where s is the number of sokets. Thenatural inlusion orresponds to the projetion of harater latties: weforget all the oordinates orresponding to the edge joining the verties
v1 and v2. Details are presented in Proposition 8.1. In this setting thefollowing onjeture is natural:Conjeture 7.6. The variety X(Kn,1) is equal to the (sheme theo-reti) intersetion of all the varieties X(Ti), where Ti is a prolongationof Kn,1 that has only two inner verties, both of them of valeny at leastthree.AsX(Kn,1) is a subvariety ofX(Ti) for any prolongation Ti one inlu-sion is obvious. Note also that the valeny ondition is made, beauseotherwise the onjeture would be obvious � one of the varieties thatwe interset would be equal to X(Kn,1) by Remark 5.36. All Ti havegot a stritly smaller maximal valeny than Kn,1, so if the onjetureholds then we an indutively use Theorem 23 of Sturmfels and Sul-livant [SS05℄ (see also Theorem 12 [Sul07℄) to obtain all phylogenetiinvariants for a given model for any tree of any valeny, knowing justthe ideal of the tripod. In suh a ase the ideal of X(Kn,1) is justthe sum of ideals of trees with smaller valeny. More preisely, if 7.6holds then the degree in whih the ideals of law trees are generatedannot grow when the number of leaves gets bigger. This means that
φ(G) = φ(G, 3) whih an be omputed in many ases. In partiular,the onjeture 7.6 implies all ases of the onjeture 7.1 in whih we anompute φ(G, 3) � this inludes the most interesting 3-Kimura model.Remark 7.7. Let us note that varietiesX(T1) andX(T2) are naturallyontained in the same ambient spae for any model, even if it does notgive rise to tori varieties. Indeed using the onstrution of the varietypresented in Setion 4 one an see that the ambient spae depends onlyon leaves of the tree. Hene if we an identify the leaves of trees we anidentify ambient spaes of assoiated varieties. Thus onjeture 7.6 an



82 MATEUSZ MICHA�EKhelp to ompute the ideals of law trees for a large lass of phylogenetimodels.Of ourse one may argue that the onjeture 7.6 above is too strongto be true. Later we will prove it for the binary Jukes-Cantor model.We will also onsider two modi�ations of this onjeture to weakeronjetures that an still have a lot of appliations. The �rst modi�-ation just states that the onjeture 7.6 holds for n large enough.Proposition 7.8. For any G-model the onjeture 7.6 holds for n largeenough if and only if the funtion φ is bounded.Proof. One impliation is obvious. Suppose that 7.6 holds for n > n0.We hoose d suh that the ideals assoiated to Kl,1 are generated indegree m for l ≤ n0. Using 7.6 and the results of [SS05℄ we an desribethe ideal assoiated to Kn,1 as the sum of ideals generated in degree m.It follows that this ideal is also generated in degree m, so the funtion
φ is bounded by m.For the other impliation let us assume that φ(n) ≤ m. Let usonsider any binomial B that is in the ideal of the law tree and is ofdegree less or equal tom. We prove that B belongs to the ideal of someprolongation of a tree T , whih is in fat more than the statement ofConjeture 7.6.Suh a binomial an be desribed as a linear relation between (atmost m) verties of the polytope of this variety. Eah vertex is givenby an assoiation of orbits of haraters to edges suh that there existrepresentatives of orbits that sum up to a trivial harater. Let us�x suh representatives, so that eah vertex is given by n haraterssumming up to a trivial harater.Now the binomial B an be presented as a pair of matries A1 and
A2 with haraters as entries. Eah olumn of the matries is a vertexof the polytope. The matries have got at most m olumns and exatly
n rows. Let us onsider the matrix A = A1 −A2, that is entries of thematrix A are haraters that are di�erenes of entries of A1 and A2.We an subdivide the �rst olumn of A into groups of at most |H|elements summing up to a trivial harater. Then indutively we ansubdivide the rows into groups of at most |H|i elements summing upto a trivial harater in eah olumn up to the i-th one.For n > |H|m + 1 we an �nd a set S of rows of A suh that theharaters sum up to a trivial harater in eah olumn restrited to S,suh that both the ardinality of S and of its omplement are greaterthen 1. Note that the sums of the entries lying in a hosen olumnand in the rows in S are the same in A1 and A2. Therefore, addingto both matries an extra row whose entries are equal to the sum of



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 83the entries in the subset S gives a representation of a binomial B on aprolongation of T . �In partiular, this proof shows that if the onjeture 7.1 of Sturmfelsand Sullivant holds for the 3-Kimura model, then onjeture 7.6 alsoholds for this model for n > 257. Later we will signi�antly improvethis estimation.For the seond modi�ation of the onjeture 7.6 let us reall a fewfats on tori varieties. Let T1 and T2 be two tori with latties of har-aters given respetively by M1 and M2. Assume that both of themare ontained in a third torus T with the harater lattie M . Theinlusions give natural isomorphisms M1 ≃ M/K1 and M2 ≃ M/K2,where K1 and K2 are torsion free latties orresponding to haratersthat are trivial when restrited respetively to T1 and T2. The ideal ofeah torus (inside the algebra of the big torus) is generated by binomi-als orresponding to suh trivial haraters. The points of T are givenby monoid morphismsM → C∗. The points of Ti are those morphismsthat assoiate 1 to eah harater from Ki. We see that the points ofthe intersetion T1 ∩ T2 are those morphisms M → C∗ that assoiate1 to eah harater from the lattie K1 +K2. Of ourse the (possiblyreduible) intersetion Y is generated by the ideal orresponding to
K1 +K2. This lattie may be not saturated, but Y ontains a distin-guished torus T ′, that is one of its onneted omponents. If K ′ is thesaturation of the lattie K1 + K2 then the haraters of T ′ are givenby the lattie M/K ′. Suppose that X is a tori variety that ontainsthe dense torus orbit equal to T . Let Xi be the tori variety that isthe losure of Ti and X ′ be the losure of T ′ in X . We all the torivariety X ′ the tori intersetion of X1 and X2. The de�nition extendsto a greater number of tori varieties embedded equivariantly in onetori variety. The most important ase that we will use is when X isthe a�ne spae and Xi are a�ne tori varieties.In the setting of 7.6 we onjeture the following:Conjeture 7.9. The tori variety X(T ) is the tori intersetion ofall the tori varieties X(Ti).This onjeture di�ers from the previous one by the fat that we al-low the intersetion to be reduible, with one distinguished irreduibleomponent equal to X(T ). We state this onjeture, beause it an beheked using only the tori. As the points important from the biolog-ial point of view are ontained in the torus (see [CFS08, De�nition2.13℄), this onjeture is a weaker version of Conjeture 7.6 whih isstill suitable for appliations. Moreover, it is quite easy to hek it for



84 MATEUSZ MICHA�EKtrees with small enough number of leaves using omputer programs.To explain it properly, let us onsider the following general setting.Assume that the tori Ti are assoiated to polytopes Pi and that T isjust the torus of the projetive spae Pn ⊇ Ti onsisting of the pointswith all oordinates di�erent from zero. Let Ai be a matrix whoseolumns represent verties of the polytope Pi. The haraters trivialon Ti or respetively binomials generating the ideal of Ti are exatlyrepresented by integer vetors in the kernel of Ai. The haraters trivialon the intersetion are given by integer vetors in the sum of latties
kerA1 + kerA2.Note that the ideal of the tori intersetion T ′ of the tori Ti in T isgenerated by binomials orresponding to haraters trivial on T ′, thatis by the saturation of kerA1 + kerA2. These binomials de�ne a torivariety in Pn. This variety is ontained in the intersetion (in fat it isa tori omponent) of the tori varieties that are the losures of Ti. Theequality may not hold however, as the intersetion might be reduible.In onjeture 7.9 we have to ompare two tori, one ontained in theother. To do this, it is enough to ompare their dimensions, that isthe ranks of the harater latties. Let us note that the dimensionof the intersetion T1 ∩ T2 is given by n minus the dimension (as avetor spae) of kerA1 +kerA2, as it is equal to the rank of the lattie
Zn ∩ (kerA1 + kerA2). To ompute this dimension it is enough toompute the ranks of matries A1, A2 and B, where B is a matrixobtained by putting A1 under A2 (that is, kerB = kerA1 ∩ kerA2).This an be done very easily using GAP ([GAP℄). The results obtainedfor small trees will be used in the following setion.
7.3. Main Results. To support Conjeture 7.6 let us onsider the aseof binary Jukes-Cantor model. This model is well understood [BW07℄,[CP07℄, [SS05℄.Proposition 7.10. Conjeture 7.6 holds for the binary Jukes-Cantormodel.Proof. We use the same notation as in the proof of Proposition 7.8.Let us �x a number of leaves l. We laim that we an �nd twospeial trees T1 and T2 for whih the sheme-theoreti intersetion
X(T1,Z2) ∩X(T2,Z2) equals X(Kl,1,Z2). We number the leaves from
1 to l. The trees T1 and T2 are isomorphi as graphs but have di�erent



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 85leaf labelling. The topology of the trees is as follows:
v1For the tree T1 the leaves adjaent to v1 have got numbers 1 and 2.For the tree T2 they are numbered 1 and 3. The ideal of the varietyassoiated to a tree for the group Z2 is always generated in degree 2by Proposition 7.2. Hene the generators of the ideals are of the form

n1n2 = n3n4 where ni for 1 ≤ i ≤ 4 are oordinates orrespondingto networks. Eah binomial equality orresponds to a pair of matries
(M0,M1), with entries that are group elements, whose olumns repre-sent networks and rows are the same up to permutation. Hene eahgenerator of the ideal of X(Kl,1,Z2) is represented by a pair of 2 × lmatries with entries from Z2. Moreover the sum in eah olumn isthe neutral element and rows of both matries are the same up to per-mutation. As we an permute olumns of eah matrix we may assumethat the �rst rows of both matries oinide. Let us onsider any suhgenerator (M0,M1) in the ideal of X(Kl,1,Z2). First suppose that theentries in the �rst row are the same, that is either 00 or 11. Then therelation holds both for X(T1) and X(T2). Hene we may suppose thatthe �rst row is 01 or 10. If the seond row would be equal to 00 or
11 then the relation would hold for X(T1). The same reasoning holdsfor the third row and X(T2). Hene all three rows in both matriesare either 01 or 10. If the seond (resp. third) rows are the same inboth matries then the relation holds for X(T1) (resp. X(T2)). Sothe only possibility left is that the seond and third row of M1 arerespetively the negation of the seond and third row of M0. In thisase the relation does not hold in any X(Ti) but we an generate it.We onsider a matrix M that is equal to M0 with the �rst two rowspermuted. The pair (M0,M) represents a relation in X(T1). Moreoverthe pair (M,M1) represents a relation in X(T2).

�From the proof above it follows that in fat to obtain the varietyof the law tree for the binary Jukes-Cantor model it is enough tointerset two varieties orresponding just to three subdivisions. Thissubdivisions orrespond to S ontaining exatly the �rst and seondrows or the �rst and third rows. Note that it is not enough to intersettwo varieties orresponding to any prolongations � see Setion 8.



86 MATEUSZ MICHA�EKNow we prove the following onditional result for the 3-Kimura model:Proposition 7.11. If the onjeture 7.1 of Sturmfels and Sullivantholds then the onjeture 7.6 holds for n > 8.Proof. We use the same notation as in Proposition 7.8. Consider anybinomial of degree k represented by a pair of matries (M1,M2) withentries given by group elements. Let A = M1 −M2, where minus isthe group substration. Matrix A has got k olumns with entries from
Z2×Z2. Consider A′ with 2k olumns and entries from Z2. The matrix
A′ is obtained from A by applying two projetions Z2 × Z2 → Z2 toeah entry. Reall that matries M1 and M2 had the same rows up topermutation. This means that also after eah projetion the rows werethe same up to permutation. Note that a di�erene of two vetors withentries from Z2 that are the same up to permutation has got always aneven number of 1. Thus if we onsider any row of matrix A′ and eitherodd or even entries of this row, the number of 1 is always even.One again we may assume that the entries in the �rst row of A′ areneutral elements, that is they are equal to zero. Let A′′ be the matrixobtained by deleting the �rst row of A′. For eah subset of rows of A′′we may onsider a vetor of length equal to the number of olumns of
A′′, whose entries are given by sums of group elements from the subset.Note that this vetor always has an even number of 1 both in evenand odd olumns. Beause we assume onjeture 7.1, the matrix A′′has got at most 8 olumns. By pigeonhole priniple, if n > 8 then wean �nd two subsets of rows of A′′ that are not omplements of eahother, suh that their sum vetor is the same. If we take a symmetridi�erene of these subsets, we obtain a strit, nonempty set S of rowsof A′′, summing up in eah olumn to the neutral element. We addthe �rst row of A′ to S or its omplement, so that both sets have morethan one element. Thus we obtain a subdivision of the set of rows of
A suh that the given binomial is in the ideal of the tree orrespondingto this division. �For n ≤ 8 we heked, using the omputer programs Polymake,4ti2, Maaulay2 and GAP, that the tori intersetion of the tori ofsubdivisions gives the torus of the law tree. We used the linear algebradesribed in the previous setion. This proves that if the onjeture 7.1holds for 3-Kimura model, then the onjeture 7.9 holds. Moreover, inall the heked ases it was enough to onsider just two subdivisions.This is not a oinidene as we will prove in Setion 11.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 87To summarize, we know that for 3-Kimura model onjeture 7.6 im-plies both onjetures 7.9 and 7.1 and moreover onjeture 7.1 implies7.9 and for n > 8 also onjeture 7.6.8. Interations between trees and varietiesThe ideas from the preeding setions are general. We an de�ne anorder on trees with l leaves as follows. We say that T1 ≤ T2 if T1 anbe obtained from T2 by a series of ontrations of inner edges. Here byan edge ontration we mean identifying two verties of a given edgeas in De�nition 7.4. The smallest tree with l leaves is the law tree
Kl,1 with one inner vertex. This is a part of a onstrution of the treespae [BHV01℄. We �x an abelian group G.Proposition 8.1. If T1 ≤ T2 then X(T1, G) ⊂ X(T2, G).Proof. Although the statement is very easy we believe that the follow-ing disussion may be helpful to better understand the forthomingsetions. Both trees have got the same number of leaves, so we anmake a natural bijetion between their sokets. This gives an isomor-phism of the ambient spaes W̃E. As T1 ≤ T2 we an make an injetionfrom the edges of T1 to the edges of T2. Note that a network on T2, re-strited to the edges of T1 is a network on T1. This gives us a projetion
π : MT1

E ։ MT2
E . The map π simply forgets the oordinates indexedby (e, g), where e is an edge of T2 not orresponding to an edge of T1.Moreover the projetion of P T2 is equal to P T1. The following diagramommutes:

MT2
E

MS

MT1
E .Any relation between the verties of P T2 is also a relation between theverties of P T1. Hene any polynomial in the ideal of X(T2, G) is alsoin the ideal of X(T1, G). �The surjetive morphism of algebras orresponding to the inlusion ofvarieties is given by the restrition of the surjetive morphism between

MT2
E and MT1

E to the ones spanned by polytopes P T2 and P T1.It is natural to ask what is the relation between X(T0, G) and thesheme theoreti intersetion of all X(T,G) for T0 < T . Conjeture 7.6states that if there exists at least one T > T0, then they are equal. Sofar we only know that the answer is positive for G = Z2 [CP07℄, [SS05℄,[DBM℄.



88 MATEUSZ MICHA�EKConjeture 7.6 an be stated for any phylogeneti model, not ne-essarily given by a group6. In partiular for a general Markov model.One would be also interested to know exatly what is an intersetionof a few varieties assoiated to di�erent trees. In partiular how manyideals do we have to sum to obtain the ideal assoiated to the law tree.One ould also hope that the intersetion of X(T1, G) and X(T2, G) isequal to X(T,G) where T is the largest tree smaller than T1 and T2.Here we present a ounterexample. We will prove that a sheme the-oreti intersetion X(T1,Z2) ∩X(T2,Z2) does not have to be equal to
X(Kl,1,Z2) even if Kl,1 is the only tree smaller then T1 and T2. Weonsider the ase of �ve leaves l = 5. The trees T1 and T2 are isomor-phi as graphs but have di�erent leaf labelling. Their topology is asfollows:(8.1)

v1For the tree T1 the leaves adjaent to v1 have got numbers 1 and 2.The tree T2 is isomorphi, with two distinguished leaves labelled with
4 and 5. We onsider the relation given by a pair of matries:




1 0
0 1
0 0
0 1
1 0



,




1 0
1 0
0 0
0 1
0 1



.This orresponds to a generator of the ideal of X(K5,1,Z2). Considerany relation involving the �rst matrix and some other matrix M for

X(T1) or X(T2). One an see that the �rst two rows of M must benegations of eah other and the third one is 00. Hene it is impossibleto generate the relation above.9. Computational resultsThis setion ontains results of the joint work with Maria Donten-Bury [DBM℄. We used the implementation of Algorithm 1.6I would like to partiularly thank Elizabeth Allman for disussions on this topi.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 899.1. Hilbert-Ehrhart polynomials. The binary Jukes-Cantor model(for trivalent trees) has an interesting property, stated and provedin [BW07℄: an elementary mutation of a tree gives a deformation ofthe assoiated varieties (see Constrution 3.23). This implies that bi-nary Jukes-Cantor models of trivalent trees with the same number ofleaves are deformation equivalent (Theorem 3.26 in [BW07℄). As it wasnot obvious what to expet for other G-models, we omputed Hilbert-Ehrhart polynomials, whih are invariants of deformation, in some sim-ple ases.Let us reall basi fats about Hilbert polynomials for projetive torivarieties. Suppose that our variety orresponds to a polytope P × {1}ontained in the lattie M spanned by its integral points. There aretwo funtions that one an assoiate to the polytope P .(i) Let h : N → N be a funtion. Let h(n) equal the numberof points in the monoid generated by P × {1} with the lastoordinate equal to n. We all h the Hilbert funtion.(ii) Let e : N → N be a funtion. Let e(n) equal the number ofintegral points in nP , or equivalently in n(P ×{1}). We all ethe Ehrhart funtion.The funtion e is a polynomial funtion, thus we all it the Ehrhartpolynomial. The funtion h is a polynomial funtion for large enoughvalues. The polynomial h̃ suh that for n large enough h̃(n) = h(n) isalled the Hilbert polynomial. From the de�nition of normal polytope2.13 we see that the Hilbert funtion equals the Ehrhart polynomialif and only if P is normal, that is if and only if the assoiated varietyis projetively normal. The assoiated variety is normal if and only ifthe Hilbert polynomial equals the Ehrhart polynomial [Stu96, Theorem13.11℄. In this ase we all it the Hilbert-Ehrhart polynomial.9.1.1. Numerial results. We heked models for two di�erent treeswith six leaves (this is the least number of leaves for whih there arenon-isomorphi trees, exatly two), the snow�ake and the 3-aterpillar.The most interesting ones were the ases of the biologially meaningful2-Kimura and 3-Kimura models.To determine the Hilbert-Ehrhart polynomial of a G-model we om-pute the number of lattie points in multiples of its polytope. Even ifit is not possible to get enough data to determine the polynomials (eg.beause numbers are too big), sometimes we an say that polynomi-als for two models are not equal, beause their values for some n aredi�erent.Before we ompleted our omputations, Kubjas omputed numbersof lattie points in the third dilations of the polytopes for 3-Kimura



90 MATEUSZ MICHA�EKmodel on the snow�ake and the 3-aterpillar with 6 leaves and got69248000 and 69324800 points respetively [Kub10℄. Thus she provedthat varieties assoiated with these models are not deformation equiv-alent.Our omputations on�rm her results as for the 3-Kimura model andalso give the followingComputation 9.1. The varieties assoiated with 2-Kimura models forthe snow�ake and the 3-aterpillar trees have di�erent Ehrhart polyno-mials. In the seond dilations of the polytopes there are 56992 lattiepoints for the snow�ake and 57024 for the 3-aterpillar.Also the pairs of varieties assoiated with G-models for the snow�akeand the 3-aterpillar trees and(i) G = H = Z3,(ii) G = H = Z4,(iii) G = H = Z5,(iv) G = H = Z7have di�erent Hilbert-Ehrhart polynomials and therefore are not defor-mation equivalent. (For these pairs G-models are normal, whih an beheked using Polymake.) The preise results of the omputations arepresented in the Appendix 2.In the ases of(i) G = H = Z8,(ii) G = H = Z2 × Z2 × Z2,(iii) G = H = Z9the varieties have got di�erent Hilbert funtions. We were not able tohek if they are normal, however if they are then the Hilbert-Ehrhartpolynomials are di�erent.9.2. Some tehnial details. The �rst attempt to ompute num-bers of lattie points in dilations of a polytope was the diret method:onstruting the list of lattie points in nP by adding verties of Pto lattie points in (n− 1)P and reduing repeated entries. This algo-rithm is not very e�ient, but (after adding a few tehnial upgrades tothe implementation) we were able to on�rm Kubjas' results [Kub10℄.However, this method does not work for non-normal polytopes. As weplanned to investigate 2-Kimura model, we had to implement anotheralgorithm.The seond idea is to ompute indutively the relative Hilbert poly-nomials, i.e. number of points in the n-th dilation of the polytope



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 91interseted with the �ber of the projetion onto the group of oordi-nates that orrespond to a given leaf. Our approah is quite similar tothe methods used in [Kub10℄ and [Sul07℄.First we ompute two funtions for the tripod. Let P ⊂ Z3m ∼= Zm×
Zm×Zm be the polytope assoiated to a tripod. Let pri : Z3m ∼= Zm×
Zm × Zm → Zm be the projetion onto the i-th group of oordinates.We distinguish one edge of the tripod orresponding to the third groupof oordinates in the lattie. Let f be a funtion suh that f(a) for
a = (a1, . . . , am) ∈ Zm is the number of lattie points in (a1+· · ·+am)Pthat projet to a by pr3. We ompute f(a) for su�iently many valuesof a to proeed with the algorithm.Example 9.2. The polytope P for the binary Jukes-Cantor modelhas the following verties:

v1 = (0, 1, 0, 1, 0, 1),

v2 = (0, 1, 1, 0, 1, 0),

v3 = (1, 0, 0, 1, 1, 0),

v4 = (1, 0, 1, 0, 0, 1).These are the only integral points in P . In this ase f(1, 0) = 2 beausethere are exatly two points, (1, 0, 0, 1, 1, 0) and (0, 1, 1, 0, 1, 0), that arein 1P = P and projet to (1, 0) via the third projetion.The funtion f will be our base for indution. Next, we need toompute the number of points in the �ber of a projetion onto twodistinguished leaves. Let g be a funtion suh that g(a, b) for (a, b) =
(a1, . . . , am, b1, . . . , bm) ∈ Zm × Zm is the number of lattie points in
(a1+ · · ·+ am)P that projet to a by pr3 and to b by pr2. We ompute
g(a, b) for su�iently many pairs (a, b) to proeed with the algorithm.Let T be a tree with a orresponding polytope P and a distinguishedleaf l. Let h be a funtion suh that h(a) for a = (a1, . . . , am) ∈
Zm is equal to the number of points in the �ber of the projetionorresponding to leaf l of (a1 + · · · + am)P onto a. We onstrut anew tree T ′ by attahing a tripod to the hosen leaf l of T . We all
T ′ a join of T and the tripod. The hosen leaf of T ′ will be one of theleaves of the attahed tripod. As proved in [BW07℄, [SS05℄, [Mi11b℄,[Sul07℄ (depending on the model), the polytope assoiated to a join oftwo trees is a �ber produt of the polytopes assoiated to these trees.Thus we an alulate the funtion h′ for T ′ by the following rule:
h′(a) =

∑
b g(a, b)h(b), where the sum is taken over all b ∈ Zm suhthat g(a, b) 6= 0.



92 MATEUSZ MICHA�EKThis allows us to ompute indutively the relative Hilbert polyno-mial. The last tripod ould be attahed in the same way. Then oneobtains the Hilbert funtion from relative Hilbert funtions simply bysumming up over all possible projetions. However, it is better to dothe last step in a di�erent way.Suppose that as before we are given a tree T with a distinguishedleaf l and a orresponding relative Hilbert funtion h. We ompute theHilbert funtion of the tree T ′ that is a join of the tree T and a tripodusing the equality h′(n) =
∑

a f(a)h(a), where a = (a1, . . . , am) and∑
ai = n. The funtion f is the basis for indution introdued above.Thus, deomposing the snow�ake and the 3-aterpillar trees to joinsof tripods, we an indutively ompute (a few small values of) the or-responding Hilbert funtions. This method works also for non-normalmodels, if only the Hilbert funtion for the tripod an be omputed.In partiular, for 2-Kimura model the omputations turned out to bepossible, beause its polytope for the tripod is quite well understoodat least to desribe fully its seond dilation. More preisely the pointsof the polytope and the point onstruted in the proof of Proposition5.74 generate the one over the polytope. This way we obtained theresults of 9.1. 10. Categorial settingThe aim of this setion is to present a ategory GM of G-models andits onnetions with other ategories. As an appliation of the theorywe will present a proof of Conjeture 7.9 for the 3-Kimura model.10.1. Category of G-models. A G-model is the following set of data:

• a tree T
• a group G
• a normal, abelian subgroup H ✁G.Let us remind that the groupG ats on the haratersH∗ by adjuntion

χg(h) = χ(ghg−1). This motivates the following de�nition.De�nition 10.1 (Compatible morphism of subgroups). Let us �x twopairs (Hi, Gi) where Hi is an abelian, normal subgroup of Gi for i =
1, 2. We say that a morphism f : H1 → H2 is ompatible if the dualmorphism f ∗ : H∗

2 → H∗
1 preserves the orbits of groups Gi. That is forany pair of haraters χ, χ′ ∈ H∗

2 in the same orbit of the G2 ationthe images f ∗(χ) and f ∗(χ′) are in the same orbit of the G1 ation.Remark 10.2. Let us note that in the abelian ase, that is Gi = Hi allmorphisms are ompatible. Note also that ompatible does not meanthat the orbits of the adjoint ation of Gi on Hi are preserved by f .



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 93Now we are ready to state the de�nition of the ategory GM .De�nition 10.3 (Category GM of G-models). Let GM be a ategorywhere the objets are triples (T,G,H), as desribed above. A morphismin GM between (T1, G1, H1) and (T2, G2, H2) will be a pair of maps
f : T1 → T2 and g : H1 → H2. Here g is a ompatible group morphismand f is a morphism of graphs, that is an isomorphism onto the image.We de�ne the ategory of polytopes Poly.De�nition 10.4 (Category Poly of polytopes). Let Poly be a ategorywhere objets are pairs (P, M̂), where M̂ is a lattie and P a lattiepolytope, that spans the whole lattie. A morphism from (P1, M̂1) to
(P2, M̂2) is a lattie morphism from M̂1 to M̂2 that takes points of P1to points of P2.10.1.1. Constrution of the funtor F . Our aim is to de�ne a on-travariant funtor F from the ategory GM to the ategory Poly. Wehave already done this on objets; to a tree T and a group G✄H weassoiate a pair (P̃ , M̂E,G) as in the disussion after De�nition 5.64.Let us de�ne the funtor F on morphisms. Suppose that we havea morphism in GM , that is a pair of morphisms f : T1 → T2 and
g : H1 → H2. Let Pi ⊂ M̂i be the polytope and the lattie orrespond-ing to the tree Ti with the group Gi ✄ Hi. Let also Mi be the lattiewith the basis elements indexed by (e, o) � f. De�nition 5.64 � where eis an edge of Ti and o an orbit inH∗

i . The lattieMi ontains the lattie
M̂i. Morphism g gives us a morphism of haraters g∗ : H∗

2 → H∗
1 . Weproeed in two steps.Step 1. The group morphism.We onsider a polytope P̃ assoiated to the tree T2 with the group

G1✄H1. Let M ′ be the lattie assoiated to this tree. The basis ofM ′is indexed by pairs (e, o), where e is an edge of T2 and o is an orbit in
H∗

1 . Using the morphism g∗ we an de�ne a morphism m : M2 → M ′by sending a harater over an appropriate edge to its image by g∗.Of ourse the points of P2 are mapped to the points of P̃ , beausethe ondition of summing up to a trivial harater is preserved by theation of the morphism and so are the orbits. This means that we anrestrit m to the morphism m′ : M̂2 → M̂ ′, where M̂ ′ is a sublattieof M ′ spanned by points of P̃ . This gives us a morphism in Poly from
(P2, M̂2) to (P̃ , M̂ ′).Step 2. The tree morphism.



94 MATEUSZ MICHA�EKHere we forget the oordinates orresponding to edges that are not inthe image. Of ourse the ondition of summing up to a trivial harateraround verties that are in the image is preserved.Remark 10.5. In the "big" lattie Mi our morphism has got alwaysa form of:-�rst summing up oordinates (that orrespond to the orbits of har-aters in the inverse image of a given orbit)-seond forgetting oordinates indexed by pairs (e, o), where e is anedge not in the image of the morphism of trees.However, eah time we have to remember about smaller latties andthe fat that the image of our polytope may not span the whole "small"lattie M̂i (if the morphism g∗ is not surjetive).Next we onsider a ovariant funtor from Poly to the ategory ofalgebras. We assoiate to a polytope P ⊂ M an algebra, that is de�nedas a monoid algebra for the submonoid of Z×M , spanned by {1}×P .The ontravariant funtor from the ategory of algebras to the ategoryof varieties is well known. In the tori ase it was desribed in Setion2. Composing all we obtain a ovariant funtor from the ategory GMto the ategory of tori varieties.Remark 10.6. Note that �rst we assoiate to a polytope P ⊂ M analgebra, that is de�ned as an algebra assoiated to the submonoid of
Z×M , spanned by {1} × P . This is not neessarily a one, as P doesnot have to be normal. Then we assoiate to this algebra a variety.This does not have to be a tori variety assoiated to a polytope inthe sense of [Ful93℄, [CLS℄ � that onstrution always gives a normalvariety.10.2. Morphisms of groups and rational maps of varieties. Themotivation for this subsetion is the following observation: if we lookat graded algebras (or respetively projetive varieties), then the mapof graded algebras obtained from the map of polytopes in general givesus only a rational map of varieties. However we obtain a morphism forexample if the map of graded algebras is surjetive.This observation allows us to de�ne a funtor G from GM to Proj,where Proj is the ategory of embedded projetive varieties with ra-tional morphisms. The funtor G is a omposition of the funtor Ffrom the previous setion, a natural funtor that assoiates to a poly-tope a graded algebra generated in degree one (f. Remark 10.6) anda well-known funtor that assoiates to a graded algebra a projetivevariety [Har77, p. 76℄.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 95In partiular let us onsider the abelian ase, that is a full subat-egory GMab ⊂ GM ontaining all objets for whih G = H . Then toeah morphism of groups G1 → G2 we an assoiate a rational mor-phism of projetive varieties. Note that this is a well de�ned morphismof a�ne ones over the projetive varieties. More information on theabelian ase an be found in Setion 10.3.Let us onsider a G-model (T1, G1, H1). The a�ne variety assoi-ated to this model an be realized as a subvariety of As, where s is thenumber of verties of the assoiated polytope. Notie that the mor-phism between two G-models that is an identity on trees indues anequivariant morphism of ambient spaes.The following desription of the morphism between the varieties willbe useful in the following setions. Consider two G-models (T,G1, H1)and (T,G2, H2). Let f : H1 → H2 be a ompatible morphism that,together with an identity on T , indues a morphism of G-models. Let
P1 and P2 be the polytopes assoiated to orresponding models. As inDe�nition 5.64 the polytope Pi is ontained in the lattie ME,Gi

withbasis elements indexed by pairs (e, o) for e an edge of T and o an orbitof Gi ation on H∗
i . The verties of Pi orrespond also to oordinatesof the a�ne spae embedding the a�ne variety assoiated to a model.Note that f ∗ indues a morphism m :ME,G2 →ME,G1. Eah vertex of

P2 an be represented by an assoiation of haraters fromH∗
2 to edges.The morphism m is simply an appliation of f ∗ to the representants.Proposition 10.7. Consider the setting desribed above. Let si bethe number of verties of Pi and let Asi be the a�ne spae embeddingthe a�ne variety assoiated to (T,Gi, Hi). The morphism of G-modelsindues the morphism of a�ne spaes m̃ : As1 → As2. This is an equi-variant morphism indued by a restrition of m to positive quadrants.Preisely, let e∗v be the oordinate orresponding to a vertex v ∈ P2. Wehave e∗v(m̃(x)) = e∗m(v)(x). �Let us now �x morphisms from (T,Gi, Hi) to (T,G0, H0) that areidentities on trees and are given by ompatible group morphisms fi :

Hi → H0. Let Pi be the polytope assoiated to the model (T,Gi, Hi).Let MSi
be the lattie with basis elements indexed by verties of Pi.We obtain a morphism of latties m : MS0 →

∏
MSi

. Let si be thedimension of MSi
. Let pj : ∏MSi

→MSj
be the projetion to the j-thfator.Remark 10.8. The morphism of latties desribed above orrespondsto the morphism of ambient spaes ∏Asi → As0 . It an be desribedin oordinates as follows:



96 MATEUSZ MICHA�EKA oordinate orresponding to a vertex v0 ∈ P0 is a produt of alloordinates orresponding to verties pj(m(v0)) ∈ Pj.10.3. Abelian ase. In this setion we will establish onnetions be-tween morphisms of abelian groups and morphisms of orrespondingvarieties. One again our main aim is appliation in geometry. Weare building the set up of the next setion. That is why we restritto speial ases. This redues the omplexity of the language but stillgives a geometri insight. Let us �x a tree T .Let f : G1 → G2 be a morphism of abelian groups. It induesmorphisms of groups of sokets SG2 → SG1 . This gives the followingommutative diagram :
MS,G1 M̂E,G1

MS,G2 M̂E,G2Hene the morphism M̂E,G1 → M̂E,G2 of harater latties restritsto ones over polytopes. This gives a morphism of algebras of as-soiated varieties. The morphism MS,G2 → MS,G1 restrits to posi-tive quadrants of both latties. Hene we get a morphism of ambi-ent spaes f̂ : ŴL,G1 → ŴL,G1 ompatible with morphism of varieties
f̂ ′ : X(T,G1) → X(T,G2). This gives a ovariant funtor from theategory of abelian groups to the ategory of embedded a�ne tori va-rieties. Moreover if f ∗ is injetive (resp. surjetive) then f̂ ′ is dominant(resp. injetive). The seond assertion is an easy exerise. We also needthe following setting. Suppose that we have morphisms φi : Gi → Gfor i = 1, . . . , m. Just as above this gives us a morphism of embeddedvarieties fi : X(T,Gi) → X(T,G). Let P be the polytope assoiatedto X(T,G) and let Pi be the polytope assoiated to X(T,Gi). Con-sider the indued morphism f̃ : M̂E,G →

∏
M̂E,Gi

. If the produt
f ∗
1 × · · · × f ∗

m : G∗ →
∏
G∗

i is surjetive, then f̃ restrited to themonoid spanned by P is surjetive onto the monoid spanned by ∏
Pi.However, in general, if the produt f ∗

1 × · · · × f ∗
m is injetive then therestrition of f̃ to the monoid generated by P does not have to beinjetive. If f̃ is injetive, than it indues a dominant map from theprodut ∏X(T,Gi) to X(T,G).11. Appliations to the 3-Kimura model, part 1Our aim is to prove the Conjeture 7.9 for G = Z2 × Z2.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 97Conjeture 11.1. The dense torus orbit of the tori variety X(Kl,1,Z2×
Z2) is the intersetion of the dense torus orbits of the varietiesX(T,Z2×
Z2), where T is any tree with l leaves di�erent from the law tree.Note that all dense torus orbits are ontained in the dense torus orbit
O of the projetive (or a�ne) ambient spae. In the algebrai set Oall the onsidered orbits are losed subshemes. Hene Conjeture 11.1an be regarded in a set-theoreti or in a sheme-theoreti version.Both of them are equivalent. This follows for example from a moregeneral statement [ES96, Corollary 2.2℄ and is partiularly simple intori ase. However beause the proofs of both versions are basiallythe same for G = Z2 × Z2 we have deided to inlude both. Moreoverthis also gives an idea how the elements of the ideal of X(Kl,1,Z2×Z2)an be generated by elements of ideals of X(T,Z2 × Z2).The main idea of the proof is to extend the results known for binarymodels to the 3-Kimura model. The binary model is very well under-stood and has a lot of speial properties [BW07℄. In partiular from7.10 we know that Conjeture 7.6 holds for G = Z2. As G is abelian wewill be identifying G with G∗. In partiular, in this subsetion we as-sume that networks and sokets assoiate to edges group elements, notharaters. This onvention does not hange anything, but simpli�esthe language.We have got three natural projetions fi : Z2 × Z2 → Z2 for i =
1, . . . , 3. The map f1 × f2 × f3 : Z2 × Z2 → Z2 × Z2 × Z2 is injetive.Moreover it indues a dominant map from the produt of three binarymodels onto the 3-Kimura model. This map is the key tool that willallow us to transfer some of the properties from the binary model tothe 3-Kimura model. Unfortunately the map is not surjetive, but justdominant. We an projetivise the varieties, but then we get a rationalmap. It turns out that a ombine use of both of the maps allows toderive the main theorem.Let f ∗

i : MS,Z2×Z2 → MS,Z2 be a morphism of latties indued by fi.More preisely a soket that assoiates to an edge e a group element
g ∈ Z2×Z2 is send to a soket that assoiates to e and element fi(g) ∈
Z2. Let i : ME,Z2×Z2 → ME,Z2 ×ME,Z2 ×ME,Z2 be the morphism oflatties indued by f1× f2× f3. A basis vetor indexed by a pair (e, g)is send to the produt of three basis vetors indexed respetively bypairs (e, f1(g)), (e, f2(g)) and (e, f3(g)). For sublatties spanned bybasis vetors indexed by a �xed edge the morphism i an be desribedin oordinates as:

(a, b, c, d) → (a + c, b+ d, a+ b, c+ d, a+ d, b+ c).



98 MATEUSZ MICHA�EKIn partiular we see that i is indeed injetive. Let g :MS,Z2 →ME,Z2 bethe morphism of latties that orresponds to the parametrization mapof the binary model � f. De�nition 5.33. Let g0 :MS,Z2×Z2 →ME,Z2×Z2be the morphism of latties that orresponds to the parametrizationmap of the 3-Kimura model.We have got the following ommutative diagram:
MS,Z2 ×MS,Z2 ×MS,Z2

g×g×g
ME,Z2 ×ME,Z2 ×ME,Z2

MS,Z2×Z2

g0

f∗

1×f∗

2×f∗

3

ME,Z2×Z2

iThe following Fat follows from Corollary 6.4.Fat 11.2. The dimension of the a�ne 3-Kimura model is equal to
3|E|+1. The dimension of the produt of three a�ne binary models isequal to 3(|E|+1). The dimension of the projetive 3-Kimura model isequal to 3|E|. The dimension of the produt of three projetive binarymodels is equal to 3|E|. �It follows that if we onsider projetive varieties representing themodels, the dominant morphism from the produt of three binary mod-els to the 3-Kimura model desribed above beomes a rational, gener-ially �nite map. As the map between projetive varieties is not amorphism we will restrit our attention only to dense orbits of the tori.On these tori orbits all maps are well de�ned and are represented bymorphism of latties.11.1. Maps of dense torus orbits. Let us onsider the followingdiagram:(11.1)

MS,Z2 ×MS,Z2 ×MS,Z2

g×g×g
ME,Z2 ×ME,Z2 ×ME,Z2

MS,0,Z2 ×MS,0,Z2 ×MS,0,Z2 M̂E,0,Z2 × M̂E,0,Z2 × M̂E,0,Z2

MS,Z2×Z2

g0

f∗

1×f∗

2×f∗

3

ME,Z2×Z2

i

MS,0,Z2×Z2

f

h
M̂E,0,Z2×Z2

jThe retangle on the bak is just the previous diagram. The retanglein the front is indued from it by taking sublatties � f. De�nition5.40. On the level of varieties the bak is the a�ne piture, while thefront is the projetive one. The left square with latties of type MSorresponds to morphisms of ambient spaes. The square on the right



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 99desribes the maps between varieties, or parameterizing spaes. Theupper square orresponds to the produt of three binary models, whilethe bottom square to the 3-Kimura model.Let us explain the morphism j. It is injetive, as it is a restritionof i. The lattie M̂E,0 is the harater lattie of the torus ating on theprojetive tori variety representing the model. The morphism j is in-dued by the rational �nite map from the produt of three P(X(T,Z2))to P(X(T,Z2 × Z2)). Due to the oordinate system we an identifydense torus orbits with the tori.De�nition 11.3 (The torus TX). Let X be any tori variety in ana�ne or projetive spae with a distinguished oordinate system. Sup-pose that X is embedded equivariantly, as in Setion 2. The dense torusorbit of X will be denoted by TX ⊂ X. Reall that TX onsists preiselyof those points of X that have got all oordinates di�erent from 0.The morphism j of harater latties is indued by the �nite mor-phism from T(P(X(T,Z2)))3 = (TP(X(T,Z2)))
3 to TP(X(T,Z2×Z2)). Due to thedisussion in the proof of Proposition 8.1 we also know that the mor-phism of ambient spaes does not depend on the tree, but only on thenumber of leaves l. Hene the vertial morphisms of latties on the lefthand side of Diagram 11.1 are the same for all trees with l leaves.11.2. Idea of the proof. The main reason for passing to tori is thatwe want to have a well de�ned dominant �nite map. This allows usto take advantage of tori geometry. For example we know that thenumber of points in the �ber of the morphism of tori (TP(X(T,Z2)))

3 →

TP(X(T,Z2×Z2)) is equal to the index I1 of the image of j in (M̂E,0,Z2)
3.For the projetive ambient spaes the situation is a little bit di�erent.The morphism f : MS,0,Z2×Z2 → (MS,0,Z2)

3 is not injetive, so theorresponding morphism of tori is not surjetive. We will show thatthe image of f in (MS,0,Z2)
3 is of �nite index, say I2. It means thatthe orresponding morphism of tori is �nite with eah �ber having I2elements. Moreover we will show that I2 = I1. Hene we get thediagram:

T(P(W̃E,Z2
)3) TP(W̃E,Z2×Z2

)

T(P(X(T,Z2)))3 TP(X(T,Z2×Z2))where the horizontal maps are �nite, étale of the same degree.This means that if we onsider the morphism of projetive ambientspaes, then the preimage of TP(X(T,Z2×Z2)) is preisely T(P(X(T,Z2)))3 .



100 MATEUSZ MICHA�EKHene any intersetion results that hold for the binary model must alsohold for the 3-Kimura model. In partiular as Conjeture 7.6 holds forthe binary model we obtain a set-theoreti version of Conjeture 11.1for the 3-Kimura model. By easy algebrai arguments we will alsoprove Conjeture 11.1 sheme-theoretially for 3-Kimura model.11.3. Proof. Our �rst step will be to understand the morphism ofprojetive ambient spaes (P(W̃E,Z2))
3
99K P(W̃E,Z2×Z2). This is a wellde�ned map on dense tori orbits. The map of tori orresponds tomorphism of latties f : MS,0,Z2×Z2 → (MS,0,Z2)

3. This morphismsdepend only on the number of leaves, not on the tree.By the de�nition we an embed the group of sokets S in Gl. We analso view the group S as a Z-module. This gives us group morphisms
MS → S → Gl. The element of the basis of MS indexed by a soket sis mapped to the soket s.Example 11.4 (The ase of the binary model and trivalent law tree).Let us onsider the tree K3,1 and the group Z2. We have got 4 sokets:
(0, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1). By oordinate-wise ation they forma subgroup of (Z2)

3. The lattie MS is freely generated by four basisvetors e(0,0,0), e(1,1,0), e(1,0,1), e(0,1,1). The morphism MS → S maps
e(a,b,c) to (a, b, c). Of ourse ke(a,b,c) is mapped to k(a, b, c). For example
3e(1,1,0) is mapped to (1, 1, 0) + (1, 1, 0) + (1, 1, 0) = (1, 1, 0).Lemma 11.5. We have an exat sequene of groups:

MS,0,Z2×Z2 → (MS,0,Z2)
3 → (Z2)

l.The �rst morphism is given by f . The seond is the sum of threemorphisms MS,0,Z2 → (Z2)
l desribed above7.Proof. It is lear that this is a omplex. Let (b′i)i≥0 be the basis of

MZ2
S orresponding to sokets. Let si be the soket orresponding to

b′i. Moreover suppose that b′0 orresponds to the trivial soket, thatis the neutral element of S. Let bi be the basis of MS,0,Z2 de�nedas bi = b′i − b′0 for i > 0. Note that an element (b′i, b
′
j , b

′
k) is in theimage of f ∗

1 × f ∗
2 × f ∗

3 if and only if the orresponding three sokets
si, sj , sk sum up to the neutral element of S. Hene the elementsof the form (bi, bi, 0) = (b′i, b

′
i, b

′
0) − (b′0, b

′
0, b

′
0) are in the image of f .We see that (2bi, 0, 0) = (bi, bi, 0) + (bi, 0, bi) − (0, bi, bi) is also in theimage. Furthermore for any two sokets si and sj there exists a soket

sk := si + sj suh that (bi, bj , bk) is in the image of f . This reduesany element from (MS,0,Z2)
3 to an element (bi, 0, 0) modulo the image7In this ase the seond operation is often alled XOR.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 101of f or to 0. Hene any element is in the image if the XOR of all itsoordinates is zero. �De�nition 11.6 (The kernel K). For any tree T let KT = KT
1 ×KT

2 ×
KT

3 ⊂ MS,0,Z2 ×MS,0,Z2 ×MS,0,Z2 be the restrition of the kernel of themorphism g × g × g to MS,0,Z2 ×MS,0,Z2 ×MS,0,Z2.Eah harater in KT is a harater of (T
P(W̃

Z2
E

)
)3, that is the trivialharater when restrited to the produt (TP(X(Z2)))

3. Eah suh har-ater is a triple of haraters of T
P(W̃

Z2
E

)
. Eah harater of the triple isa quotient of monomials m1

m2
of the same degree on the projetive spae

P(W̃ Z2
E ). The polynomials m1 −m2 span8 the ideal of the tori variety

P(X(Z2)). We want to view haraters as funtions. Hene we restritour attention to (T
P(W̃

Z2
E

)
)3. In the algebra of this torus the ideal of

(TP(X(Z2)))
3 is generated by elements k − 1, where k ∈ KT .De�nition 11.7 (The kernel D). For any tree T let DT be the kernelof the map h de�ned on Diagram 11.1.The elements of D represent haraters trivial on the projetive 3-Kimura variety. In the setting desribed at the end of Subsetion 7.2we want to prove that sublatties DT for di�erent trees T with l leavesgenerate the sublattie DKl,1. The idea is to push the latties D to

(MS,0,Z2)
3 using the morphism f . Next we use the results on binarymodels to obtain the generation for f(D). Using properties of theimage of f we are able to onlude the generation in MS,0,Z2×Z2 . Thefollowing lemma enables us to restrit to the image of f instead ofregarding whole lattie (MS,0,Z2)

3.Lemma 11.8. For any tree T the kernel KT is a sublattie of the imageof f .Proof. It is enough to show that KT
1 ×{0}×{0} ⊂ Im f . Suppose that

m =
∑

i aibi ∈ KT
1 , where eah bi is as in the proof of Lemma 11.5.Hene bi = (gi1−e, . . . , g

i
l −e), where e is the neutral element of Z2 and

gij ∈ Z2 are elements forming a soket. We know that g(m) = 0. Inpartiular the oordinates of ME indexed by leaves are equal to zero.Let us �x k that is a number of a leaf 1 ≤ k ≤ l. Let us look at alloordinates indexed by pairs (k, q) where q ∈ Z2. The restrition of
ME to these oordinates is a free abelian group spanned by elementsof Z2. Hene ∑

i ai(gk − e) = 0 in the free abelian group generatedformally by elements of Z2. Hene, a fortiori, ∑i ai(gk − e) = e where8They do not only generate the ideal, but even span it as the vetor spae.



102 MATEUSZ MICHA�EKnow the sum is taken in Z2. As the ation in S is oordinate-wise wesee that the image of m in S, and hene in Zl
2, is the neutral element.Using Lemma 11.5 we see that m ∈ Im f . �Proposition 11.9. The index of the image of f in (MS,0,Z2)

3 is equalto the index of the image of j in (M̂E,0,Z2)
3.Proof. This is a onsequene of Lemma 11.8. �Corollary 11.10. Conjeture 11.1 holds set-theoretially.Proof. The index of the image of f equals the degree of the �nite mapof tori. In partiular we are in the situation of Diagram 11.2. Theorollary follows from the disussion at the beginning of Setion 11.2.

�Now we will prove Conjeture 11.1 sheme-theoretially. Let T0 =
Kl,1. We onsider trees Ti suh that the ideal of TP(X(T,Z2)) is the sumof the ideals TP(X(Ti,Z2)). Let KTi be the kernel of g × g × g for thetree Ti. Let DTi be the kernel of h for the tree Ti. We know fromProposition 7.10 that the latties KTi for i > 0 span KT0 .Theorem 11.11. The latties DTi for i > 0 span DT0. Conjeture11.1 holds sheme theoretially.Proof. Let a ∈ DT0 . We know that f(a) ∈ KT0

Z2
, so f(a) = ∑

ki, where
ki ∈ KTi

Z2
. Using Lemma 11.8 we an �nd k′i ∈ DTi suh that f(k′i) = ki.This means that a − ∑

k′i is in the kernel of f . In partiular, as j isinjetive, a −∑
k′i belongs to every DTi , hene we obtain the desireddeomposition. �Remark 11.12. From Proposition 7.10 it is enough to take two (par-tiular) di�erent i > 0 to span DT0, as it was in the ase of binarymodel.11.4. Appliations to phylogenetis. In this setion we presenta few appliations. The basi result that we use is due to MartaCasanellas and Jesús Fernández-Sánhez [CFS08℄. It states that allpoints important for biologists are ontained in the dense torus orbitof X(T,Z2 × Z2). Thus, following [CFS08℄, we all points of the densetorus orbit biologially meaningful. In Setion 11 we gave a preisedesription of this orbit for any tree. This is su�ient for biologists.People dealing with appliations are usually interested in trivalenttrees. Let us motivate the use of other trees. The �rst, obvious reasonis that they an appear (at least hypothetially) as right models of evo-lution. This however is a degenerate situation that is often negleted.The next subsetion presents a di�erent reason.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 10311.4.1. Identi�ability. Dealing with appliations we are given a point
P in the spae of all possible probabilities W̃L. The �rst question is forwhih trees this point an be realized. More preisely for whih trees Twe have an inlusion P ∈ X(T,Z2×Z2). We are interested in knowingif this is only one tree T or there are several possibilities. This is a �rstpart of the identi�ability problem. Hene Conjeture 7.6 is a questionabout the lous of points for whih the identi�ability problem annotbe resolved at all. Of ourse a generi point that belongs to any of thevarieties belongs to exatly one X(T,Z2 × Z2) with T trivalent. Muhmore is known about the identi�ability of di�erent models. For thepreise results the reader is advised to look in [AR06℄ or [APRS11℄ andthe referenes therein.In partiular we see that points that belong to some X(T,Z2 × Z2)where T is not trivalent annot identify the tree topology. Hene thequestion about the lous of these points, or equivalently about the poly-nomials de�ning suh varieties may give some results for trivalent trees.However, as situation in Setion 8 shows, the phylogeneti invariantsof two varieties X(T,Z2) for two di�erent trees, do not generate theideal of the variety assoiated to their degeneration.The seond, but equally important question about the identi�abilityis to give the desription of the �ber of the parametrization map of themodel ψ̌−1(P ). The biologist aim at distinguishing one point in the�ber. This would enable to identify not only the tree topology, but alsoorresponding probabilities of mutation. The algebrai setting allowsus to give a desription of this �ber. We assume that P is biologiallymeaningful, that is is ontained in the dense torus orbit. Equivalentlyall oordinates of P after the Fourier transform are di�erent from zero.We prefer to work up to multipliity, that is regard the projetivizationof ψ̌ denoted by ψ̌P. The �ber ψ̌−1

P (P ) is ontained in the dense torusorbit of ∏P(We). As this parameter spae is of the same dimension asthe image, we know that ψ̌P is a generially �nite map. Moreover whenrestrited to dense torus orbits it is étale and �nite. Hene eah �beris �nite and ontains the same number of points, independent from P .This number is the index of lattie M̂E in a saturated sublattie ofME .Of ourse we do not laim that all the points in the �ber have got aprobabilisti meaning. We just prove that from the algebrai point ofview there is always a �xed, �nite number of possible andidates fortransition matries.We will now give a preise desription of a general �ber for a gen-eral group-based model orresponding to an abelian group H . Due toCorollary 6.4 we know that the map of projetive tori parameterizing



104 MATEUSZ MICHA�EKthe model is a �nite map. By dualizing the exat sequene in Corollary6.7 we see that the kernel has got a group struture isomorphi to H |N |.Due to [CFS08℄ the only biologially meaningful points are ontainedin the dense torus orbit.Corollary 11.13. Let T be any tree and H any abelian group. Let
P(X) be the projetive variety assoiated to the model. Let x ∈ P(X)be a biologially meaningful point. Up to multipliation by a onstantthere are exatly |H||N | parameters in the �ber of x. In other wordsthere are exatly |H||N | possible transition matries. �Note that we do not use further restritions on the parameters oftransition matries. For example we do not assume that the param-eters are real. This ondition for sure further dereases the numberof possible transition matries. However we see that when we onsideromplex parameters the number of possible parameters is already �niteand moreover independent from the onsidered point.11.4.2. Phylogeneti invariants. The main theorem gives an indutiveway of obtaining phylogeneti invariants of any tree. It is an open prob-lem if these invariants generate the whole ideal. It is proved howeverthat they give a desription of all biologially meaningful points in aseof the 3-Kimura model. The method is very simple. Suppose that weknow the phylogeneti invariants for all trees with verties of degreeless or equal to d. Due to the results of [SS05℄ it is enough to desribethe phylogeneti invariants for the law tree Kd+1,1. For 3-Kimura, toobtain the desription of the dense torus orbit we just take the sumof two ideals � f. Remark 11.12. They are both assoiated to treeswith the same topology. The tree has got two inner verties v1 and v2of degrees 3 and d respetively. The di�erene between the ideals isa onsequene of di�erent labelling of leaves. For one tree the leavesadjaent to v1 are labeled by 1 and 2. For the seond tree they arelabeled 1 and 3. Notie that in fat we have to ompute just one ideal.The seond one an be obtained by permuting the variables.12. Appliations to the 3-Kimura model, part 2The aim of this subsetion is to further investigate Conjeture 7.1 forthe 3-Kimura model. Let In be the ideal of the variety X(T,Z2 × Z2)where T is a law tree with n leaves. Let I ′n be the subideal of Ingenerated in degree 4. The onjeture of Sturmfels and Sullivant statesthat In = I ′n for any n. In this subsetion we will prove that In and
I ′n de�ne the same projetive sheme. This is equivalent to the fatthat their saturations are equal [Har77, Exerise 5.10 b)℄. In partiular



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 105it follows that they de�ne the same a�ne set. One onludes that inorder to hek if any point belongs to the variety it is enough to onsiderphylogeneti invariants of degree four. Due to [SS05, Theorem 23℄ theresult will follow for any tree. Let us state the main theorem of thissubsetion.Theorem 12.1. Consider any tree T and the 3-Kimura model. Theideal of the variety assoiated to it and the subideal generated by poly-nomials of degree at most four de�ne the same projetive sheme.We hope that the method presented in this setion an be appliedto other problems of the type "prove that a tori projetive sheme anbe de�ned by an ideal generated in degree d". In general let I be anideal of a projetive tori variety. Let I ′ be the subideal generated indegree d. The aim is to prove that the saturation of I ′ with respet tothe irrelevant ideal equals I.Suppose that the variety is given by a polytope P , with points orre-sponding to oordinates of the ambient projetive spae � as in Setion2. Proving that the saturation of I ′ equals I is equivalent to provingthat I ′ and I are equal in eah loalization with respet to any oordi-nate, represented by a point Q ∈ P . Thus we have to prove that anygenerator of I multiplied by a su�iently high power of the variableorresponding to Q belongs to I ′.Let us translate this ondition to ombinatorial language. The gen-erators of I orrespond to relations between points of P × {1}. Letus �x a relation ∑
Ai =

∑
Bj, where Ai, Bj ∈ P × {1}. Multi-plying the orresponding element of the ideal by the variable orre-sponding to Q is equivalent to adding Q to both sides of the relation.Thus we have to prove that the binomial orresponding to the relation∑

Ai +mQ =
∑
Bj +mQ is generated by binomials from I of degreeat most d for m su�iently large.A binomial orresponding to a relation ∑

Ri =
∑
Si between pointsof a polytope is generated in a degree d if and only if one an transform∑

Ri to ∑
Si using a sequene of simple steps. In eah single trans-formation one an replae points R1, . . . , Rk for k ≤ d by R′

1, . . . , R
′
kif they satisfy the relation ∑k

i=1Ri =
∑k

i=1R
′
i. In suh a ase we saythat the relation is generated in degree d.The proof sheme is very simple:(i) Using degree d relations redue Ai, Bi to some simple, speialpoints of P×{1} ontained in a subset LQ ⊂ P . (*)(ii) Show that any relation between the points of LQ is generatedin degree d.



106 MATEUSZ MICHA�EKIn general any of this two points an be very di�ult.Remark 12.2. It is well known that the projetive tori variety de-�ned by a polytope P is overed by a�ne subsets given by loalizationsby oordinates orresponding to verties. Thus one an be tempted toprove that I = I ′ only in the loalizations by verties. Note howeverthat in general, we do not know if the sheme de�ned by I ′ is also ov-ered by loalizations by oordinates orresponding to verties. Indeed,
I ′ and I may be di�erent on the set-theoretial level. For example if
Proj I ′ ontains a point that is zero on the oordinates orrespondingto verties and nonzero on some other oordinates, then suh a pointwill not belong to any loalization with respet to verties. Howeverif rad I ′ = I, then of ourse it is enough to onsider loalizations withrespet to verties.As our polytopes have only verties, the problem desribed in Re-mark 12.2 does not onern us.Remark 12.3. We have got the following equivalenes for a tori ideal
I given by a polytope P × {1}.

• All relations between verties of P×{1} are generated in degree
d ⇔ the ideal I is generated in degree d.

• For any point Q ∈ P ×{1} and any relation there is an integer
m suh that after adding mQ to both sides of the relation, itis generated in degree d⇔ the projetive sheme de�ned by Ian be de�ned by an ideal generated in degree d.

• For any relation there are9 points Qi ∈ P ×{1} suh that afteradding ∑
Qi to both sides, it is generated in degree d ⇔ thedense torus orbit of the variety is de�ned by the ideal generatedin degree d in the algebra of the ambient torus.The whole subsetion is devoted to the proof of Theorem 12.1. theproof is involved but ompletely elementary. The �rst observation isthat by Proposition 6.8 the group of networks ats on the variety, heneon the ideals In and I ′n. The ation is transitive on the points of thepolytope, as they orrespond to elements of the group. Using thisation we an redue to the ase where the point Q of the polytoperepresents the oordinate orresponding to the trivial network, that isa network assigning neutral elements to all edges. Due to Fat 5.71 wean onsider only law trees. Let us index the edges of a law tree Kn,1with numbers 1, . . . , n. We will identify a network with an n-tuple ofgroup elements summing up to zero. The sum of suh n-tuples will be9not neessarily di�erent



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 107a oordinatewise sum, where eah entry is treated as an element of thefree abelian group generated by elements of Z2 × Z2. Eah networkrepresents a vertex of a polytope P ⊂ ME . The addition desribedabove is the addition in this lattie.Example 12.4. For n = 4 we an add in the lattie ME :
(0, (1, 0)+(1, 1), 2 · (0, 1),−3 · (0, 0))+((0, 1), (1, 0)−(1, 1), (1, 0), (0, 0))

= ((0, 1), 2 · (1, 0), 2 · (0, 1) + (1, 0),−2 · (0, 0)).The trivial network is ((0, 0), (0, 0), (0, 0), (0, 0)).De�nition 12.5 (Support of a network). Let n be any network. Theset of indies of edges to whih n assoiates a nonneutral element isalled the support of n.De�nition 12.6 (Pair, triple). We say that a network is a pair if andonly if the ardinality of the support is equal to two. We say that anetwork is a triple if and only if the ardinality of the support is equalto three.By nt we denote the neutral element in the group of networks.Lemma 12.7. For any network s, for m su�iently large, s +m · ntan be redued using degree two relations to a sum of networks thateither:1) assign the same nontrivial element to two edges � pairs2) assign three di�erent nontrivial elements to three edges � triplesand the neutral element to all other edges.Proof. The proof is indutive on the size of the support. Suppose thesupport of s is of ardinality at least four. We an hoose a stritsubset S of the support suh that the sum of group elements ∑e∈S s(e)is the neutral element. Consider the networks s′ and s′′ that agreewith s respetively on the set S and its omplement and assign to allthe other edges the neutral element. We have s + nt = s′ + s′′, whih�nishes the proof. �Example 12.8. Consider the tree K4,1.
((1, 0), (0, 1), (0, 1), (1, 0)) + ((0, 0), (0, 0), (0, 0), (0, 0))

= ((1, 0), (0, 0), (0, 0), (1, 0))+ ((0, 0), (0, 1), (0, 1), (0, 0)).We see that we an assume that f represents a relation only betweenpairs and triples. This ompletes the �rst step of the method (*) pre-sented at the beginning of the setion. The set LQ onsists of pairs andtriples.



108 MATEUSZ MICHA�EKLet us �x any relation ∑
ni =

∑
n′
i, where ni and n′

i are networksthat are either pairs or triples. Our aim is to transform∑
ni to∑n′

i ina series of steps, eah time replaing at most four ni by networks withthe same sum10. We assume that among ni there are more or the samenumber of triples as among n′
i. We �rst try to redue the relation, sothat onsequently:(i) Among ni there are as few triples as possible,(ii) Among n′

i there are as few triples as possible,(iii) The degree of the relation is as small as possible.More preisely let t and t′ be the number of triples among respetively
ni and n′

i. Let d be the degree of the relation. Our proof will beindutive on (t, t′, d) with lexiographi order.To prove Theorem 12.1 we onsider separately three ases dependingon the number of triples among ni. The ases are:a) there are no triples,b) there is exatly one triple,) there are at least two triples.We say that a family of networks agrees on an index j if they allassoiate the same element to j and j belongs to their support. Wewill denote by g1, g2 and g3 the three nontrivial elements of Z2 × Z2.A triple that assoiates g1 to index a, g2 to index b and g3 to index cis denoted by (a, b, c). A pair that assoiates an element gi to indies
d and e will be denoted by (d, e)gi. We say that gi is ontained in anetwork if there exists an index j, suh that the network assoiates
gi to j. We believe that the following proofs are impossible to followwithout a piee of paper. We strongly enourage the reader to notewhat networks appear in both sides of the relation at eah step of theproof.12.1. The ase with no triples. First note that there are no triplesamong n′

i. Without loss of generality we may assume that n1 is a pairequal to (a, b)g1 . Hene there exists n′
i, say n′

1, that is (b, c)g1 for someindex c. If c = a we an redue this pair, hene we assume c 6= a.There exists a network, say n2 that is (c, d)g1. If d = b we an reduethis pair. We onsider two other ases:1) d 6= a. Then we use the degree two relation (a, b)g1 + (c, d)g1 =
(a, d)g1 + (b, c)g1 and we an redue (b, c)g1 .2) d = a. Then there is a network, say n′

2 given by (a, e)g1 . If e = bor e = c we an redue this pair. In the other ases we use the relation
(a, e)g1 + (b, c)g1 = (a, b)g1 + (e, c)g1 and we redue (a, b)g1 .10We are also allowed to add the trivial network to both sides.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 109Notie that in this ase we have only used degree two relations.12.2. The ase with one triple. Let n1 be the only triple among ni.Lemma 12.9. There is exatly one triple among n′
i.Proof. Due to the assumption that there are less triples among n′

i thanamong ni we know that if there is a triple among n′
i then it is unique.Suppose that there are no triples among n′

i. Then the element g1appears among n′
i an even number of times. Indeed eah pair ontains

g1 twie or does not ontain it. As the sum of n′
i equals the sum of nialso the number of times g1 appears among ni must be even. This isimpossible as n1 ontains g1 just one and all pairs ontain g1 twie ordo not ontain it at all. �Due to the previous lemma we may assume that n′

1 is the only tripleamong n′
i. Let n1 = (1, 2, 3).12.2.1. Case: The triples do not agree on any element of the support.We want to redue to the ase where n′

1 agrees with n1 on an indexthat belongs to the support of both. Suppose that this is not the ase.The redution in this ase will have two steps. First, if n1 and n′
1have the same support we will use the relations to move the supports,redue the triples or derease the degree. Next we will show how todeal with the ase when the supports are not the same.1) First step � suppose that {1, 2, 3} is also the support of n′

1.Remember that due to the assumption 12.2.1 the triples n1 and n′
1do not agree on any element from their support. As n′

1 has support
{1, 2, 3} without loss of generality we may assume that n′

1 = (2, 3, 1).Hene there must be a pair (2, a)g1 among ni and (1, b)g1 among n′
i. If

a = 1 and b = 2 then both pairs are the same and an be redued. Asboth ases are symmetri we an assume that a 6= 1.If a 6= 3 we an use the relation (2, a)g1+(1, 2, 3) = (a, 2, 3)+(2, 1)g1.This redues to the ase with di�erent supports. We are left with thease a = 3. There must be a pair (3, z)g1 among n′
i. If z 6= 1 we anuse the relation (3, z)g1 +n′

1 = (z, 3, 1)+ (2, 3)g1. This would enable toredue the (2, 3)g1 pair and derease the degree. So we an assume that
z = 1. So far we have shown that there must be pairs (2, 3)g1 among
ni and (3, 1)g1 among n′

i
11. By the same reasoning for g2 and g3 we seethat we an use the following relation:

(1, 2, 3)+(2, 3)g1+(1, 3)g2+(1, 2)g3 = (2, 3, 1)+(2, 3)g3+(1, 3)g1+(1, 2)g2.11Notie that we have made a symmetry assumption a 6= 1. The symmetriassumption would be b 6= 2. However as the result we got was symmetri, also for
b 6= 2 we prove the existene of the same pairs.



110 MATEUSZ MICHA�EKNotie that this is a degree four relation. It enables us to redue triples.2) Seond step � the triples n1 and n′
1 have di�erent supports.One again let (1, 2, 3) = n1 and let (a, b, c) = n′

1. We may assumethat a is not in the support of n1. We see that there must be a pair
(a, f)g1 among ni. If f 6= 1 we an use a relation (a, f)g1 + n1 =
(a, 2, 3) + (f, 1)g1. This redues to the ase when the triples agree on
a, hene we assume that f = 1. Hene there must be a pair (g, 1)g1among n′

i. If g = a we an redue this pair, so we assume g 6= a.Notie that there must be a pair (g, h)g1 among ni. If h 6= a, then wean use relation (1, a)g1 + (g, h)g1 = (g, 1)g1 + (h, a)g1 and redue thepair (g, 1)g1. So we an assume h = a. Then there must be a pair
(a, i)g1 among n′

i. If i = 1 then we an redue it. Otherwise we an usethe relation (g, 1)g1 + (a, i)g1 = (g, a)g1 + (1, i)g1 and redue the pair
(g, a)g1.12.2.2. Case: the triples agree on exatly one element in their support.So far we redued to the ase where triples agree on at least one element,say 1, in their ommon support. Now we want to make a furtherredution, so that the triples agree on two elements that are in theirsupports. Assume this is not the ase.As before let n1 = (1, 2, 3) and n′

1 = (1, b, c). We onsider threeases.1) b 6= 3.There must be a pair (b, d)g2 among ni. If d 6= 2 then we an applythe relation (b, d)g2 + n1 = (1, b, 3) + (d, 2)g2. This redues to the asewhere triples agree on two elements. So we assume d = 2. Theremust be a pair (2, e)g2 among n′
i. Hene there must also be a pair

(e, f)g2 among ni. If f 6= b we an use a relation (e, f)g2 + (2, b)g2 =
(e, 2)g2 + (f, b)g2 and redue (e, 2)g2. For f = b we must have a pair
(b, g)g2 among n′

i. If g = 2 or g = e then this pair an be redued. Inthe other ase we use the relation (e, 2)g2 + (b, g)g2 = (e, g)g2 + (b, 2)g2and redue (b, 2)g2.2) c 6= 2.This ase is analogous to 1).3) b = 3 and c = 2.Lemma 12.10. If there is a pair (p, q)g2 among ni, suh that p, q 6= 2then we may assume that it is equal to (1, 3).Proof. Suppose that p 6= 1, 3 and q 6= 2. We apply a relation (p, q)g2 +
n1 = (1, p, 3) + (q, 2)g2 and redue to ase 1) b 6= 2. �Analogously if there is a pair (p, q)g2 among n′

i, suh that p, q 6= 3then this pair equals (1, 2)g2.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 111Notie that there must be a pair (3, d)g2 among ni and a pair (2, e)g2among n′
i. From Lemma 12.10 d equals 2 or 1 and e equals 3 or 1. Wewill onsider subases.3.1) Suppose that d = 2.If e = 3 then we an make a redution of pairs. If e = 1 we musthave a pair (1, f)g2 among ni. If f = 2 we make a redution, hene weassume f = 3. This means that there must be a pair (3, g)g2 among

n′
i. If g = 2 or g = 1 we an make a redution. Otherwise we applythe relation (1, 2)g2 + (3, g)g2 = (1, 3)g2 + (2, g)g2 and redue the pair

(1, 3)g2.3.2) Suppose that e = 3.This ase is similar to 3.1).3.3) Suppose that d = 1 and e = 1.As this is the only ase left we may repeat the same reasoning for
g3. In partiular, we must have a pair (1, 2)g3 among ni. We see thatwe an redue the triples by applying the following relation:

(1, 2, 3) + (1, 3)g2 + (1, 2)g3 = (1, 3, 2) + (1, 2)g2 + (1, 3)g3.This is a degree three relation.12.2.3. Case: the triples agree on at least two elements in their support.So far we redued to the ase where triples agree on two elements, say
1 and 2, that are in their support. Suppose that n1 = (1, 2, 3) and
n′
1 = (1, 2, c). Of ourse if c = 3 we an make a redution. In otherase we must have a pair (c, d)g3 among ni. If d 6= 3 then we use therelation (c, d)g3 + (1, 2, 3) = (1, 2, c) + (3, d)g3 and redue the triples.Hene d = 3. Analogously there must be a pair (3, c)g3 among n′

i, henewe an redue this pair.12.3. The ase with at least two triples. We suppose that thereare at least two triples among ni.Lemma 12.11. If there are two triples n1, n2 among ni that do notagree on any element of their supports then we an make a redution.Thus we an assume that any two triples among ni agree on at leastone index.Proof. The assumptions are equivalent to n1 = (a, b, c), n2 = (d, e, f)with a 6= d, b 6= e, c 6= f . We apply the relation n1 + n2 + nt =
(a, d)g1 + (b, e)g2 + (c, f)g3 that redues the number of triples. �Lemma 12.12. If there is no index on whih all triples from ni agreethen we an make a redution.



112 MATEUSZ MICHA�EKProof. Suppose there is no index on whih all ni agree. We may on-sider only two ases due to Lemma 12.11.1) Suppose that any two triples from ni agree on at least two ele-ments.Consider any triple n1 = (1, 2, 3). Due to the fat that not all triplesfrom ni assoiate g1 to 1 there is a triple (a, 2, 3) with a 6= 1 among ni.There also must be a triple that does not assoiate g2 to 2. It annotagree both with (1, 2, 3) and (a, 2, 3) on two indies.2) There exist two triples that agree only on one index.Let n1 = (1, 2, 3) and n2 = (1, b, c) with b 6= 2 and c 6= 3. Due to thease assumption there is a triple n3 = (d, e, f) with d 6= 1. Rememberthat any two triples have to agree on at least one element due to Lemma12.11. Hene without loss of generality we an assume e = b and f = 3.We an apply the relation:
n1 + n2 + n3 + nt = (d, 1)g1 + (2, b)g2 + (3, c)g3 + (1, b, 3),that redues the number of triples. �Due to the previous lemma we may assume that there exists an index,say 1, suh that all triples among ni assoiate to it the same nonneutralelement, say g1.De�nition 12.13 (k). Let k be the number of indies on whih alltriples among ni agree. We know that 1 ≤ k ≤ 3.We proeed indutively on k, as for k = 0 we already know how toredue the relation. Hene from now on dereasing k is also a redution.Lemma 12.14. Suppose that all triples from ni assoiate gj to an index

l. If there is a pair (x, y)gj among ni with l 6= x, y then either {l, x, y}is the support of all triples among ni or we an make a redution.Proof. To simplify the language assume gj = g1 and l = 1. Supposethat there is a triple n1 = (1, b, c) with the support di�erent from
{1, x, y}. We an assume x 6= b, c. We apply the relation n1+(x, y)g1 =
(x, b, c) + (1, y)g1 what redues k. �Lemma 12.15. Suppose that all triples from ni assoiate gj to an index
l. If all pairs (x, y)gj among ni have l in the support then we an redueall suh pairs.Proof. Let t be the number of triples among ni. Let p be the numberof gj pairs among ni. Let t′1 and t′2 be the number of triples in n′

ithat respetively assign or do not assign gj to l. Let p′1 and p′2 be thenumber of gj pairs among n′
i that respetively have or do not have l



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 113in the support. We know that t ≥ t′1 + t′2. Comparing the number oftimes gj appears in ni and n′
i we get:

t+ 2p = t′1 + t′2 + 2(p′1 + p′2).Comparing the number of times gj appears on index l we get:
t+ p = t′1 + p′1.This fores t′2 = p′2 = 0, t = t′1 and p = p′1. Hene all gj pairs andtriples among ni and n′

i must assign gj to l. Hene the multisets ofpairs must be the same for ni and n′
i. �Lemma 12.16. If there are g1 pairs among ni, then we an make aredution.Proof. We will prove that there are no pairs (a, b)g1 among ni that donot have 1 in the support. Due to Lemma 12.15 this will �nish theproof. Suppose that there is a pair (a, b)g1 among ni with a, b 6= 1.Due to Lemma 12.14 all the triples among ni must have the support

{1, a, b}. So either k = 1 or k = 3. If k = 1 we an apply the relation
(1, a, b) + (1, b, a) + (a, b)g1 + nt = (1, a)g1 + (1, b)g1 + (a, b)g2 + (a, b)g3.This redues the number of triples. Thus we an assume that all triplesamong ni are equal to (1, a, b).Claim: Consider any pair (c, d)g2 among ni. We an assume that itssupport is ontained in {1, a, b}.Proof of the Claim. Suppose this is not the ase, that is c 6∈ {1, a, b}.Due to Lemma 12.14 we an assume d = a.1) Suppose that there is a g2 pair among ni that does not ontain ain the support.It must be equal to (1, b)g2 due to Lemma 12.14. We an applythe relation (1, b)g2 + (a, c)g2 = (c, 1)g2 + (a, b)g2. Applying one againLemma 12.14 to the pair (c, 1)g2 we an make a redution.2) All g2 pairs among ni ontain a in the support.Due to Lemma 12.15 we an make a redution. �Thus the support of all g2 pairs among ni is ontained in {1, a, b}.The same holds for g1 and g3 pairs. Thus all networks among ni havesupport ontained in {1, a, b}. Hene the same must hold for n′

i. Soour relation is a relation only on three indies. It is well known thatthe ideal for a tree with three edges is generated in degree 4, so inpartiular the onsidered relation is generated in degree 4. �Corollary 12.17. If all triples among ni assoiate gj to an index l,then there are no gj pairs among ni. Consequently there are no gj



114 MATEUSZ MICHA�EKpairs among n′
i and all triples among n′

i assoiate gj to l. Moreover thenumber of triples among ni equals the number of triples among n′
i. �In onlusion we redued to the ase were there are no g1 pairs neitheramong ni nor n′

i. Moreover, there is the same number of triples among
ni and n′

i and they all assoiate g1 to 1.Lemma 12.18. If all the triples among ni and n′
i have support in

{1, 2, 3} then either k = 3 or we an redue a triple.Proof. In this ase k = 1 or k = 3. If k = 1 then among ni there is atriple (1, 2, 3) and (1, 3, 2). One of this triples an be redued. �12.3.1. Case: k = 1. We �rst onsider the most di�ult ase k =
1. As always let n1 = (1, 2, 3) and n′

1 = (1, b, c). As the proof isquite ompliated we deided to inlude the tree that desribes mostimportant ases. While reading the proof we enourage the reader tofollow at whih node we are. The proof is "depth-�rst, left-�rst".
k = 1

b = 2 c = 3 any triples agree on exatly one indexno (3, l), (c, w) (3, l)g3 (c, w)g3

(c, f)g2 (1, c, g) (1, 3, p) (3, o)g2

(2, q)g3 (1, x, 2)We start with the left node in the seond row � assume b = 2.We move to the most left node in the third row � suppose that thereis no g3 pair among ni that has got c in the support and, symmetrially,there is no g3 pair among n′
i that has got 3 in the support. There mustbe a triple (1, e, c) among ni. If e 6= 3 then we apply the relation

(1, 2, 3) + (1, e, c) = (1, 2, c) + (1, e, 3) and redue the triple (1, 2, c).We have e = 3. Analogously among n′
i there must be a triple (1, c, 3).Hene there must be either a pair (c, f)g2 or a triple (1, c, g) among ni.We ontinue to the most left node in the fourth row � suppose thatthere is a pair (c, f)g2. If f 6= 2 we apply the relation (1, 2, 3)+(c, f)g2 =

(1, c, 3) + (f, 2)g2 and redue the triple (1, c, 3). If f = 2 we apply the



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 115relation (1, 3, c) + (c, 2)g2 = (1, 2, c) + (3, c)g2 and redue the triple
(1, 2, c).Hene we an assume that there is a triple (1, c, g) among ni � seondnode in the fourth row. If g 6= 2 then we apply the relation (1, c, g) +
(1, 2, 3) = (1, 2, g) + (1, c, 3) and redue the triple (1, c, 3). For g = 2we apply the relation (1, 2, 3)+ (1, 3, c)+ (1, c, 2) = (1, 2, c)+ (1, 3, 2)+
(1, c, 3) and redue the triple (1, 2, c).We ontinue to the seond node in the third row. We assume thatthere is a pair (3, l)g3 among n′

i. If l 6= c we apply the relation (1, 2, c)+
(3, l)g3 = (1, 2, 3) + (c, l)g3 and redue the triple (1, 2, 3). If there wasa pair (c,m)g3 among ni then analogously we would have m = 3 andwe would be able to redue this pair. So there must be a triple (1, n, c)among ni. If n 6= 3 then we apply the relation (1, 2, 3) + (1, n, c) =
(1, n, 3) + (1, 2, c) and redue the triple (1, 2, c). So we assume n2 =
(1, 3, c). Hene there is either a pair (3, o)g2 or a triple (1, 3, p) among
n′
i.We move to the third node in the fourth row � suppose that thereis a triple (1, 3, p) among n′

i. If p 6= 2 we apply the relation (1, 2, c) +
(1, 3, p) = (1, 2, p) + (1, 3, c) and we redue (1, 3, c). So we have p = 2.There is either a pair (2, q)g3 or a triple (1, x, 2) among ni.Consider the �rst node in the �fth row � suppose that there is a pair
(2, q)g3 among ni. If q 6= c then we apply the relation (1, 3, c)+(2, q)g3 =
(1, 3, 2) + (c, q)g3 and redue (1, 3, 2). If q = c we apply the relation
(1, 2, 3) + (2, c)g3 = (1, 2, c) + (2, 3)g3 and redue the triple (1, 2, c).So we an move to the seond node in the �fth row � assume thatthere is a triple (1, x, 2) among ni. If x 6= c we apply the relation
(1, 3, c) + (1, x, 2) = (1, x, c) + (1, 3, 2) and redue the triple (1, 3, 2). If
x = c we apply the relation (1, 2, 3) + (1, 3, c) + (1, c, 2) = (1, 2, c) +
(1, 3, 2) + (1, c, 3) and redue the triple (1, 2, c).We pass to the fourth node in the fourth row � we assume that thereis a pair (3, o)g2 and there is no triple (1, 3, p) among n′

i. If o 6= 2 thenwe apply the relation (1, 2, c) + (3, o)g2 = (1, 3, c) + (2, o)g2 and redue
(1, 3, c). So there is a pair (2, 3)g2 among n′

i. Suppose that this pairappears r > 0 times among n′
i. Note that there are no pairs (2, s)g2among ni. Indeed suppose that there is suh a pair. If s 6= 3 thenwe apply the relation (1, 3, c) + (2, s)g2 = (1, 2, c) + (3, s)g2 and reduethe triple (1, 2, c). If s = 3 we redue the pair (2, 3)g2. Hene theremust be at least r + 1 triples of the type (1, 2, t) among ni. If thereis a triple with t 6= 3 then we apply the relation (1, 3, c) + (1, 2, t) =

(1, 3, t) + (1, 2, c) and redue the triple (1, 2, c). Hene we have got atleast r + 1 triples (1, 2, 3) among ni. Notie that there are no triplesof the type (1, y, 3) among n′
i. Indeed, in suh a ase we ould apply



116 MATEUSZ MICHA�EKthe relation (1, y, 3) + (2, 3)g2 = (1, 2, 3) + (y, 3)g2 and redue (1, 2, 3).Hene there must be at least r + 1 pairs of the type (3, u)g3 among n′
i.If u 6= c then we apply the relation (1, 2, c)+(3, u)g3 = (1, 2, 3)+(c, u)g3and redue the triple (1, 2, 3). Hene we have at least r+1 pairs (3, c)g3among n′

i. Note that there are no pairs of the type (c, v)g3 among ni.Indeed if v = 3 we ould redue this pair. If v 6= 3 then we applythe relation (1, 2, 3)+ (c, v)g3 = (1, 2, c) + (3, v)g3 and redue the triple
(1, 2, c). Hene we must have at least r + 1 triples of the type (1, z, c)among ni. If z 6= 3 then we apply the relation (1, 2, 3) + (1, z, c) =
(1, 2, c) + (1, z, 3) and redue the triple (1, 2, c). So there are at least
r + 1 triples (1, 3, c) among ni. Note that the elements g2 on 3 annotbe redued � among n′

i there are only r pairs ontaining them and notriples. The ontradition �nishes this ase.Consider the third node in the third row � there is a pair (c, w)g3among ni. This is ompletely analogous to the seond node in this row,already onsidered.Also the seond node in the seond row � c = 3 � is analogous to the�rst node in the seond row.We are left with the last, third node in the seond olumn � anytwo triples ni and n′
j agree on exatly one index, that is on 1. Dueto Lemma 12.18 we an assume b 6= 2 and b 6= 3. Due to the aseassumption there must be a pair (b, d)g2 among ni. If d 6= 2 then weapply the relation (1, 2, 3) + (b, d)g2 = (1, b, 3) + (d, 2)g2 and redue tothe ase b = 212. Analogously we must have the same pair among n′

iand it an be redued.12.3.2. Case: k = 2 or k = 3. Suppose now that k = 2. Let n1 =
(1, 2, 3) and n′

1 = (1, 2, c). If we annot redue n′
1 then there must be apair (c, d)g3 among ni and a pair (3, e)g3 among n′

i. If d = 3 and e = cwe an redue the pairs. Thus we an assume that d 6= 3. We applythe relation (1, 2, 3)+ (c, d)g3 = (1, 2, c) + (3, d)g3 and redue the triple
(1, 2, 3).The last, easiest ase is k = 3. Then all triples are equal to (1, 2, 3)and there are no pairs due to Corollary 12.17. Hene we an reduethe triples. This �nishes the proof of the theorem.13. Open problemsWe have already presented a few onjetures in this part of the thesis.Here we would like to give a list of problems that should be muh easier,however still we �nd them interesting.12Notie that we do not redue to the ase k = 2 as if this was true we wouldhave already been in the �rst node in the seond olumn b = 2.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 117We start with the questions onerning normality. We already knowthat many general group-based models give rise to projetively normalvarieties for trivalent trees. However not muh is known about treesof higher valeny. Of ourse, due to Proposition 5.72, it is enough toonsider law trees. The questions on normality are important as manytori methods work only for normal polytopes. We have already appliedsome of them to ompute Hilbert funtions. Further appliations tothe onjeture of Sturmfels and Sullivant ould be possible due to themethods of "�nite generation in rings with in�nitely many variables" �for more details see [HS11℄, [DK11℄. The question for the binary modelshould not be di�ult.Conjeture 13.1. Let T be any tree. The polytope representing thebinary Jukes-Cantor model on T is normal.The same question for the 3-Kimura model, in our opinion, is muhmore ambitious.Conjeture 13.2. Let T be any tree. The polytope representing thebinary 3-Kimura model on T is normal.Reall that in Proposition 9.1 we showed that the projetive varietyrepresenting the model is not normal. We also know that the a�ne va-riety representing the general group-based model for Z6 is not normal.Conjeture 13.3. The projetive tori variety representing the generalgroup-based model for Z6 on K1,3 is not normal.Another question is to what extent the methods of Setion 12 anbe applied to other abelian groups.Conjeture 13.4. The projetive sheme assoiated to the group-basedmodel for Z3 and any tree an be represented by an ideal generated indegree 3.We �nish by restating, in our opinion, the most interesting, impor-tant and di�ult Conjeture 7.6.Conjeture 13.5. The variety X(Kn,1) is equal to the (sheme theo-reti) intersetion of all the varieties X(Ti), where Ti is a prolongationof Kn,1 that has only two inner verties, both of them of valeny at leastthree. Appendix 1Here we show an expliit example when the equality of the param-eters before the Fourier transform does not imply the equality afterit.



118 MATEUSZ MICHA�EKLet G = Z6. The transition matries are of the form:



a b c d e f
f a b c d e
e f a b c d
d e f a b c
c d e f a b
b c d e f a


The matrix of the type above orresponds to a funtion g : G → C,suh that g(0) = a, g(1) = b, g(2) = c, g(3) = d, g(4) = e and g(5) = f .The Fourier transform of g gives us: ĝ(χ0) = a + b + c + d + e + f ,

f̂(χ1) = a+jb+j2c+j3d+j4e+j5e, f̂(χ2) = a+j2b+j4c+d+j2e+j4eet. where j is a primitive sixth root of unity. We onsider a submodelde�ned by g(0) = g(1) = g(5) and g(2) = g(4). This orresponds to
a = b = f and c = e. The Fourier transform gives us respetively
(x0, x1, x2, x3, x4, x5) = (3a+2c+d, 2a−c−d,−c+d,−a+2c−d,−c+
d, 2a− c− d). This de�nes a linear subspae given by x4 = x2, x5 = x1and x1 + 3x2 + 2x3 = 0. This is not an equality of distint variables.Appendix 2Here we present the preise results of the omputations of Hilbert-Ehrhart polynomials for a few G-models. The results are from a jointwork with Maria Donten-Bury [DBM℄.For the groups Z8, Z2×Z2×Z2 and Z9 we omputed only the Hilbertfuntion and, as we ould not hek the normality, we do not know ifit is equal to Hilbert-Ehrhart polynomial.Models for G = H = Z3.dilation snow�ake 3-aterpillar1 243 2432 21627 216273 903187 9040694 21451311 214960235 330935625 3319766376 3647265274 36621462707 30770591364 309203498348 209116329075 2102698918719 1189466778457 119666160183710 5831112858273 586893057794111 25205348411361 25377886917819



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 119Models for G = H = Z2 × Z2 (3-Kimura).dilation snow�ake 3-aterpillar1 1024 10242 396928 3969283 69248000 693248004 5977866515 59901707395 291069470720 2918647101446 8967198289920 8995715702784Models for G = H = Z4.dilation snow�ake 3-aterpillar1 1024 10242 396928 3969283 69248000 693248004 6122557220 61385525245 310273545216 3115256883206 10009786400352 10062179606880Models for G = H = Z5.dilation snow�ake 3-aterpillar1 3125 31252 3834375 38343753 2229584375 22305968754 640338121875 642089603125Models for G = H = Z7. In this ase the �rst three dilations of thepolytopes have the same number of points. The numbers of pointsin fourth dilations were too big to obtain preise results. Hene weomputed only the numbers of points mod 64, whih is su�ient toprove that the Hilbert-Ehrhart polynomials are di�erent.dilation snow�ake 3-aterpillar1 16807 168072 117195211 1171952113 423913952448 4239139524484 ≡ 54 mod 64 ≡ 14 mod 64Models for G = H = Z8.dilation snow�ake 3-aterpillar1 32768 327682 454397952 4543979523 3375180251136 3375013036032



120 MATEUSZ MICHA�EKModels for G = H = Z2 × Z2 × Z2.dilation snow�ake 3-aterpillar1 32768 327682 454397952 4543979523 3375180251136 3375013036032Models for G = H = Z9.dilation snow�ake 3-aterpillar1 59049 590492 1499667453 14996674533 20938605820263 20937202945056Part 2. Semigroups assoiated to trivalent graphsLa deuxième partie onerne les variétés algébriques assoiées auxgraphes trivalents pour le modèle de Jukes-Cantor binaire. Il s'agitd'un travail en ommun ave Weronika Buzy«ska, Jarosªaw Buzy«skiet Kaie Kubjas. La variété assoiée á un graphe peut être représentéepar un semi-groupe gradué. Nous étudions les liens entre les propriétésdu graphe et le semigroupe. Le théorème prinipal 14.1 borne le degréen lequel le semi-groupe est engendré par le premier nombre de Bettidu graphe, plus un.This part ontains results of a joint work with W. Buzy«ska, J.Buzy«ski and K. Kubjas. We use a generalization of the onstrutionthat assoiated a variety to a tree. We will be working with arbitrarytrivalent graphs with possible loops and multiple edges between twoverties. However our study onerns only an equivalent of the binaryJukes-Cantor model. 14. IntrodutionLet G be a trivalent graph. For a positive integer d, our main objetof study will be a subset τ(G)d of all labellings of edges of G by integers.A labelling is in τ(G)d, if the following onditions are satis�ed:[♥♥℄ (parity ondition) the sum of the three labels around eah innervertex is even;[+℄ (non-negativity ondition) eah label is non-negative;[△℄ (triangle inequalities) the three labels around eah inner vertexsatisfy the triangle inequalities;[°℄ (degree inequalities) the sum of the three labels around eahinner vertex is at most 2d.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 121We give more details and formal de�nitions in Setion 15. We willbe interested in τ(G) = ⊔
d∈N τ(G)d, whih has a natural struture of amonoid by edgewise addition, and we all it the phylogeneti monoidof G.14.1. Motivation. The ombinatoris of the monoid τ(G) assoiatedto a trivalent graph G has several inarnations. Buzy«ska studied itin [Bu12℄ as a generalization of the polytope de�ning the Cavender-Farris-Neyman [Ney71℄ model of a trivalent phylogeneti tree.In more reent work Sturmfels and Xu, [SX10℄ found a universalobjet for the Cavender-Farris-Neyman model of trivalent trees withthe same disrete invariants. More preisely, they proved that given thenumber of leaves n, the Cavender-Farris-Neyman model of a trivalenttree is a sagbi degeneration of the projetive spetrum of the Cox ringof the blow-up of Pn in n− 3 points. This variety is losely related tothe moduli of quasiparaboli vetor bundles on P1 with n− 2 markedpoints.Further work in this diretion was done by Manon in [Man09℄ and[Man11℄. He uses a sheaf of algebras over moduli spaes of genus gurves with n marked points oming from the onformal �eld theory.The ase g = 0 is the onstrution of [SX10℄, thus Manon's work gener-alises the Sturmfels-Xu onstrution. The monoid algebras C[τ(G)] arethe tori deformations of the algebras over the most speial points inthe moduli of urves in the Manon's onstrution. Here G is the dualgraph of the reduible urve represented by a speial point.Je�rey and Weitsmann in [JW92℄ study the moduli spae of �at

SU(2)-onnetions on a genus g Riemann surfae. In their ontexta trivalent graph G desribes the geometry of the ompat surfae ofgenus g with n marked points. They onsider a subset of Z-labellingsof the graph, whih is exatly τ(G)d. They prove that the number ofelements in this set is equal to the number of Bohr-Sommerfeld �bresassoiated to L⊗d, where L is a natural polarizing line bundle on themoduli spae in question. The Bohr-Sommerfeld �bres are the entralobjet of study in [JW92℄. By the Verlinde formula, the number ofthose �bres equals the dimension of the spae of holomorphi setionsof L⊗d. This number is the value of the Hilbert funtion of the torimodel of a onneted graph with the �rst Betti numberg and n leaves.Thanks to the Verlinde formula, whih arises from mathematialphysis, the Hilbert funtion of the monoid algebras C[τ(G)] has signif-iant meaning. In the ase of trivalent trees it was also used in [SX10℄and then studied by Sturmfels and Velaso in [SV10℄. One of the fea-tures of this model is that the Hilbert funtion depends only on the



122 MATEUSZ MICHA�EKombinatorial data [BW07℄, [Bu12℄. This phenomenon fails to be truefor other, even general group-based models, see [Kub10℄ or Appendix2 from Part 1.14.2. Main results. If ω ∈ τ(G), then there exists d, suh that ω ∈
τ(G)d. Suh d is alled the degree of ω. We are interested in theproblem of determining the degrees of elements in the minimal set ofgenerators of the monoid τ(G). We prove an upper bound for the degreeof generators:Theorem 14.1. Let G be any trivalent graph with �rst Betti number
g. Then the degree of eah element in the minimal set of generators of
τ(G) is at most g + 1.For g = 0, that is G is a trivalent tree, this result is equivalentto statement that τ(G)1 is a normal lattie polytope and it has beenobtained in [BW07℄. For g = 1, the result has been obtained in [Bu12℄.For g ≥ 2 it has been previously unknown. We prove the theorem inSetion 16.The lower bounds were presented in [BBKM10℄. Let us just statethese results.Theorem 14.2. Suppose g is even. Then there exists a trivalent graph
G with the �rst Betti number g and an element ω ∈ τ(G) of degree g+1,whih annot be written in a non-trivial way as a sum of two elements
ω = ω′ + ω′′ with ω′, ω′′ ∈ τ(G). Spei�ally, G an be taken as the
g-aterpillar graph (see Figure 2), and ω as the labelling on Figure 3.

Figure 2: The g-aterpillar graph.
2k 2 2k − 2 4 2 2k

2k 2k 2k 2kFigure 3: The indeomposable element ω of degree g + 1 on the g-aterpillar graph for even g.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 123As for odd g, for all graphs with the �rst Betti number g = 1, thebound is also attained, as proved in [Bu12℄. Also there exist graphswith g = 3, suh that the bound is attained. The simplest of these isthe 3-aterpillar graph and we illustrate an indeomposable degree 4element in Setion 17.We also know the maximal degree of generators of the monoid forthe g-aterpillar graph.Corollary 14.3 ([BBKM10℄). For the g-aterpillar graph G, the monoid
τ(G) is generated in degree g + 1 if either g is even or g ≤ 3 and it isgenerated in degree g if g ≥ 5 and g is odd.We present an indeomposable element of degree 6 on a graph withthe �rst Betti number 6 in Setion 17. We do not know, if there existgraphs with odd �rst Betti number g ≥ 5 suh that τ(G) has a degree
g + 1 minimal generator.We also present the results of some omputational experiments for
g-aterpillar graphs with g ≤ 5. Spei�ally, we list all the generatorsof τ(G) for g ≤ 4 and enumerate these generators for g ≤ 5.15. Semigroup assoiated with a trivalent graphIn this setion we reall the onstrution of the monoid τ(G) intro-dued in [Bu12℄.A graph G is a set V = V(G) of verties and a set E = E(G) of edges,whih we identify with pairs of verties. A graph is trivalent if everyvertex has valeny one or three. A vertex with valeny one is alled aleaf and an edge inident to a leaf is alled a leaf edge. A vertex thathas valeny three is alled an inner vertex. The set of inner vertiesis denoted N = N (G).Notation 15.1. From now on we shall assume that all graphs andtrees are trivalent.The �rst Betti number of a graph is the minimal number of utsthat would make the graph into a tree. Given the origins of the problemexplained in Setion 14.1 it is tempting to all this number the genusof the graph, but this is inonsistent with the graph theory notation,where the genus of graph is the smallest genus of a Riemann surfaesuh that the graph an be embedded into that surfae.A path is a sequene of pairwise distint edges e0, . . . , em with ei ∩
ei+1 6= ∅ for all i ∈ {0, . . . , m − 1}, suh that either both e0 and emontain a leaf, or e0 ∩ em 6= ∅. In the latter ase, if in addition thesequene has no repeated edges, the path is alled a yle. A yle oflength one is a loop. A trivalent graph with no yles is a trivalent



124 MATEUSZ MICHA�EKtree. Two paths are disjoint if they have no ommon vertex. Anetwork is a union of pairwise disjoint paths � f. Remark 5.27 andthe disussion afterwards. For onsisteny we say that the empty setis also a network. An edge whih is ontained in a yle is alled yleedge.De�nition 15.2. Given a graph G let ZE =
⊕

e∈E Z · e be the lattiespanned by E , and ZE∨ = Hom(ZE ,Z) be its dual. Elements of thelattie ZE are formal linear ombinations of the edges, thus E formsthe standard basis of ZE . The dual lattie ZE∨ omes with the dualbasis {e∗}e∈E . We de�ne
M = {u ∈ ZE : ∀v ∈ N

∑

e∋v

e∗(u) ∈ 2Z}.Then the graded lattie of the graph is
Mgr = Z⊕Mwith the degree map

deg :Mgr = Z⊕M → Z,given by the projetion onto the �rst summand.Remark 15.3. An element of the lattie ZE represents also a labellingof the edges of G with integers. For ω ∈ ZE the label of e ∈ E equals
e∗(ω).De�nition 15.4 (av, bv, cv). Let v ∈ N be an inner vertex and let
e1, e2 and e3 be the three edges13 adjaent to v. For ω ∈Mgr we de�ne
av(ω) = e∗1(ω), bv(ω) = e∗2(ω), cv(ω) = e∗3(ω).De�nition 15.5 (degree). We de�ne the degree of ω ∈ Mgr at aninner vertex v ∈ N as 1

2
(av(ω) + bv(ω) + cv(ω)).We rewrite the de�nition of τ(G) given in Setion 14 so that τ(G) isa submonoid of Mgr.De�nition 15.6. For a graph G we de�ne the phylogeneti monoid

τ(G) on G to be the set of elements ω satisfying the following ondi-tions:[♥♥℄ (parity ondition) ω ∈Mgr;[+℄ (non-negativity ondition) e∗(ω) ≥ 0 for any e ∈ E ;[△℄ (triangle inequalities) For any inner vertex v ∈ N

|av(ω)− bv(ω)| ≤ cv(ω) ≤ av(ω) + bv(ω);13If there is a loop at the vertex then e1 = e2.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 125[°℄ (degree inequalities) deg(ω) ≥ degv(ω) for any v ∈ N .The triangle inequalities [△℄ are symmetri and do not depend onthe embedding iv.Remark 15.7. If every edge of G ontains at least one inner vertex,then the inequalities above imply deg(ω) ≥ e∗(ω) for all edges. Onthe other hand, in the degenerate ases where one of the onnetedomponents of G onsists of one edge only, for onsisteny the inequality
deg(ω) ≥ e∗(ω) should be inluded in De�nition 15.6. However, we willnot onsider these degenerate ases here.To de�ne a network in the graded lattie Mgr, we �rst have to do soin the lattie M : we identify paths and networks in G with elements ofthe lattie M by replaing union with sum in the group ZE .De�nition 15.8. A network in the graded lattie Mgr is a pair
ω = (1, a) ∈Mgr where a ∈M is a network.De�nition 15.9. Following 5.24 we de�ne the group of networks tobe a subset of

Z2E :=
⊕

Z2 · esuh that a formal sum in e1 + e2 + · · · + ek ∈ Z2E is in the groupof networks if and only if {e1, e2, . . . , ek} is a network. Note that thissubset forms a subgroup of Z2E .16. The upper boundThe goal of this setion is to prove Theorem 14.1. To do this, weproeed in three steps. First we reall the result of [BW07℄ that givesTheorem 14.1 in the ase g = 0 (that is, if G is a tree). In the se-ond step, we represent a graph G with �rst Betti number g as a tree
T together with g distinguished pairs of leaf edges, that are �glued�together. Elements of τ(G) are in one-to-one orrespondene with theelements of τ(T ) that have idential labels on eah of the distinguishedpairs of leaf edges. Thus for an element ω ∈ τ(G) we onsider the de-omposition of the orresponding element in τ(T ) into a sum of degree
1 elements of τ(T ). To eah suh deomposition we assign a matrixwith entries in {−1, 0, 1}. Sine the deomposition is not unique, westudy how simple modi�ations of the deomposition a�et the matrix.Finally, we apply these modi�ations to the matrix and prove that anysu�iently high degree element τ(G) deomposes. The details follow.



126 MATEUSZ MICHA�EK16.1. The ase of trees. The set of degree 1 elements τ(G)1 ⊂ {1}×
M ⊂Mgr onsists of networks � see [Bu12, Lem. 2.30℄.The monoid τ(G) is the intersetion of the onvex polyhedral onegiven by inequalities [+℄, [△℄, [°℄ with the lattie Mgr � see [♥♥℄. If
T is a trivalent tree, then the inequalities de�ning τ(T )1 de�ne anintegral lattie polytope P in {1}×M ⊂Mgr � see [BW07, Lem. 2.8℄.Furthermore, by [BW07, Prop. A.5℄ this polytope is normal, whihmeans, that any lattie point in the resaling nP an be obtained assum of n lattie points in P . This implies that the monoid τ(T ) isgenerated by τ(T )1. We summarize by quoting [Bu12, Prop. 2.32℄:Corollary 16.1. Let T be a trivalent tree. Then every ω ∈ τ(T )d anbe expressed as ω = ω1 + · · ·+ ωd, where eah ωi ∈ τ(T )1 is a network.Note that usually the deomposition in the orollary is not unique.16.2. Matrix assoiated to a deomposition of a lifted element.To a given onneted graph G with �rst Betti number g we assoiatea tree T with g distinguished pairs of leaf edges. This proedure anbe desribed indutively on g. If g = 0, then the graph is a tree withno distinguished pairs of leaf edges. For g > 0 we hoose a yle edge
e. We divide e into two edges e′ and e′′ adding two verties l′ and
l′′ of valeny 1. The edges e′ and e′′ form a distinguished pair of leafedges. This proedure dereases the �rst Betti number by one andinreases the number of distinguished pairs by one. Note that usuallythe resulting tree with distinguished pairs of leaf edges is not unique,however a tree with distinguished pairs of leaf edges enodes preiselyone graph.Let G be a graph and let T be an assoiated tree. There is a one-to-one orrespondene between elements of τ(G) and the elements of
τ(T ) that assign the same value to the leaf edges in eah distinguishedpair. Thus we have the natural inlusion τ(G) ⊂ τ(T ). See [Bu12,�2.2�2.3℄ for a more geometri interpretation of this inlusion.Let ω be an element of τ(G). By Corollary 16.1, in the monoid τ(T )there exists a deomposition ω = ω1 + · · ·+ ωdeg(ω), where ωi ∈ τ(T )1.For eah suh deomposition we onsider the matrix Bω1,...,ωdeg(ω)

with
deg(ω) rows and g olumns indexed by pairs of distinguished leaf edges.The entry in the i-th row and olumn indexed by a pair of distinguishedleaf edges (e′, e′′) is e′∗(ωi)−e′′∗(ωi). Thus, sine ωi is a network ωi(e) ∈
{0, 1} for any edge, entries of Bω1,...,ωdeg(ω)

are only −1, 0 or 1.The matrixBω1,...,ωdeg(ω)
depends on the tree T and on the deomposi-tion of ω into the sum of degree one elements. An entry of Bω1,...,ωdeg(ω)



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 127is zero when the orresponding network is ompatible on the orre-sponding distinguished pair of leaf edges. Our aim is to deomposeany element ω with deg(ω) > g + 1 in τ(G). This means that we arelooking for deompositions in τ(T ) that are ompatible on the distin-guished pairs of leaf edges. Hene, it is natural to onsider matrieswith as many entries equal to zero as possible.Let ω be an element of τ(T ). Let ω = ω1 + · · · + ωdeg(ω) be adeomposition of ω into networks. Let Bω1,...,ωdeg(ω)
be the matrix with

deg(ω) rows orresponding to the deomposition. Notie that for anysubset of indies {j1, . . . , jp} ⊂ {1, . . . , deg(ω)} the following onditionsare equivalent:(i) the element ωj1 + · · ·+ ωjp is in τ(G);(ii) in eah olumn ofBω1,...,ωdeg(ω)
the sum of entries in rows j1, . . . , jpis equal to zero.Even if we start from a deomposable ω the assoiated matrix might nothave this property; it depends upon the hoie of deomposition of ωin τ(T ). The following lemma shows how to hange this deompositionin order to obtain a matrix with the required property.Lemma 16.2. Let ω be an element of τ(T ). Consider all deomposi-tions of ω and assoiated matries. Let us hoose a deomposition of

ω = ω1+ · · ·+ωdeg(ω) that gives a matrix Bω1,...,ωdeg(ω)
with as many zeroentries as possible. Let us hoose two entries in the matrix Bω1,...,ωdeg(ω)that are in the same olumn indexed by (e′1, e

′′
1). Suppose that they areequal, respetively, to 1 and −1. There exists a deomposition of ω thatyields a matrix the same as Bω1,...,ωdeg(ω)

, exept for those two entries,whih are interhanged.Proof. Let ω = ω1+ · · ·+ωdeg(ω) be the given deomposition. Withoutloss of generality we may assume that the entries are in the �rst andseond row. Hene ω1 assoiates to the edges e′1 and e′′1 values 0 and 1respetively, and similarly ω2 assoiates 1 and 0.Let us onsider all edges of the tree T on whih the networks ω1 and
ω2 disagree. These edges form the network S on the tree T . In fat,
S = ω1 + ω2, where the sum is taken in the group of networks. De�ne
p1 to be the unique path from S starting at e′′1. Suppose that we haveonstruted a sequene of paths p1, . . . , pm−1 for m > 1, where the �rstedge of pi is e′′i and the last is e′i+1 and (e′i, e

′′
i ) is a distinguished pairfor i ∈ {1, . . . , m− 1}. We onsider the following ases:(i) If the edge e′m is not paired, then we stop the onstrution.Otherwise we go to Case (ii).



128 MATEUSZ MICHA�EK(ii) If there is a distinguished pair (e′m, e′′m) and e′m∗(ω1) 6= e′′m
∗(ω1)or e′m∗(ω2) 6= e′′m

∗(ω2) (i.e. at least one of the two entries in theolumn (e′m, e
′′
m) is non-zero), then we stop the onstrution.Otherwise we go to Case (iii).(iii) If there is a distinguished pair (e′m, e′′m) and e′m∗(ω1) = e′′m

∗(ω1),
e′m

∗(ω2) = e′′m
∗(ω2), then ω1 and ω2 disagree on e′′m, and e′′m isin S. We de�ne pm to be the unique path from S starting from

e′′m. Let e′m+1 be the other end of the path pm. We inrease mby 1 and start over from Case (i).Let us notie that the onstruted paths are distint. In partiular,the onstrution terminates. Indeed, eah path pi+1 uniquely deter-mines the path pi. Hene the �rst path that would have been repeatedis p1. This is possible only if the previous path ends with e′1. From theassumption, we would have been in Case (ii), hene the onstrutionwould terminate.We de�ne a network b ⊂ S to be the network, whih is the unionof paths (p1, . . . , pm−1). We use it to de�ne two new networks ω′
1 and

ω′
2. Namely, ω′

i = ωi + b, where the sum is taken in the group ofnetworks. In other words, ω′
1 (resp. ω′

2) oinides with ω1 (resp. ω2) onall edges apart from those belonging to the network b. On the latterones ω′
1 (resp. ω′

2) is a negation of ω1 (resp. ω2), hene oinides with
ω2 (resp. ω1). In partiular, ω1 + ω2 = ω′

1 + ω′
2, where this time thesum is taken in τ(T ).We get a deomposition ω = ω′

1 + ω′
2 + ω3 + · · · + ωdeg(ω) with theassoiated matrix Bω

′

1,...,ωdeg(ω)
. We laim that it exhanges the twohosen entries equal to 1 and −1.Consider eah distinguished pair of leaf edges through whih wepassed during our onstrution of (p1, . . . , pm−1). If we did not stop ata pair (l1, l2) eah network a1 and a2 assigns the same value to l1 and

l2 � otherwise we would have stopped beause of Case (ii). On theseleaf edges ω′
1 and ω′

2 agree with ω2 and ω1 respetively. Hene, theyalso assign the same value to l1 and l2. In partiular, both Bω1,...,ωdeg(ω)and B
ω
′

1,...,ωdeg(ω)
have zeros in �rst two rows in the olumn indexedby (l1, l2). In fat, the only four entries on whih Bω1,...,ωdeg(ω)

and
B

ω
′

1,...,ωdeg(ω)
might possibly di�er are the entries in �rst two rows in theolumns indexed by (e′1, e

′′
1) or (e′m, e′′m), where pm is the last path.Let us exlude the possibility that the onstrution stopped in Case (i).In this ase the last leaf edge is not paired, hene we only hange en-tries in the olumn indexed by (e′1, e

′′
1). Sine both ω′

1 and ω′
2 agree on
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e′1 and e′′1, we have that Bω

′

1,...,ωdeg(ω)
has two zeros, whereas Bω1,...,ωdeg(ω)had 1 and −1. This ontradits the hoie of Bω1,...,ωdeg(ω)

.Suppose now that the onstrution terminated in Case (ii). We on-sider two sub-ases.1) The edges e′m 6= e′1 are distint. We will exlude this ase. Wehange four entries in two olumns. The two entries in the olumn in-dexed by (e′1, e
′′
1) are hanged from 1 and −1 to zero. We know that ma-trix Bω

′

1,...,ωdeg(ω)
has at most as many zero entries as Bω1,...,ωdeg(ω)

. Henethe two entries in the olumn indexed by (e′m, e′′m)must be hanged fromtwo zeros to two non-zeros. Having two zeros in Bω1,...,ωdeg(ω)
in thoseentries ontradits the assumptions of Case (ii).2) The edges e′m = e′1 are equal. In this ase e′′m = e′′1, so we onlyexhange two entries in the olumn indexed by (e′1, e

′′
1). This meansthat we have exhanged 1 and −1, whih proves the lemma. �16.3. Proof of deomposability. We are ready to prove the theoremon the upper bound of the degree of minimal generators of τ(G).Proof of Theorem 14.1. Let us onsider an element ω of degree deg(ω) >

g + 1 in τ(G). We onsider any tree T assoiated with the graph G.Let us hoose a deomposition of ω in τ(T ), suh that the assoiatedmatrix Bω1,...,ωdeg(ω)
has as many zero entries as possible. First we wantto �nd a subset of rows of the matrix Bω1,...,ωdeg(ω)

suh that the sumof entries in eah olumn is even. We redue the entries of Bω1,...,ωdeg(ω)modulo 2 obtaining the matrix Cω with entries from Z2. We onsiderrows of Cω as vetors of the g dimensional vetor spae over the �eld
Z2. We have deg(ω) > g + 1 suh vetors. Hene we an �nd a stritsubset of linearly dependent vetors. As we are working over Z2 we seethat we have a strit subset of vetors summing to 0. The same subset
R of rows in matrix Bω1,...,ωdeg(ω)

sums to even numbers in eah olumn.The element ω is in τ(G). Hene the sum of entries in eah olumnof the matrix Bω1,...,ωdeg(ω)
is zero. Suppose that the sum of entries inthe rows from R is non-zero in a olumn. Using Lemma 16.2 we anexhange the entries, hanging the sum by 2 until it is equal to zero. Inthis way we get a deomposition of ω suh that the rows from R sumto zero in eah olumn. Hene, the sum of networks orresponding torows from R is in τ(G). The sum of the remaining networks is in τ(G)too. Thus we obtain a non-trivial deomposition of ω. �17. Examples on small graphsWe onlude this part with some examples of indeomposable ele-ments for speial ases of graphs with low �rst Betti number g.



130 MATEUSZ MICHA�EKThe �rst one is an indeomposable element of degree 4 on the 3-aterpillar graph. It proves that in the ase g = 3, the upper bound ofTheorem 14.1 is attained.
2 2 4

2 2

1 1

2The seond example is a degree 6 indeomposable element on a graphwith 6 loops and one leaf.
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The following table presents the numbers of generators of τ(G) ineah degree, where G is the g-aterpillar graph, and g ≤ 5.
deg g = 1 g = 2 g = 3 g = 4 g = 5all 3 15 163 2708 49187
1 2 4 8 16 32
2 1 7 37 175 781
3 4 64 704 6624
4 54 1701 35190
5 112 6560Part 3. Derived ategoriesDans la dernière partie, nous étudions la struture de la atégoriedérivée des faiseaux ohérents des variétés toriques lisses. Dans untravail ommun ave Mihaª Laso« [LM11℄, nous onstruisons une ol-letion fortement exeptionnelle omplète de �brés en droites pour unegrande lasse de variétés toriques omplètes lisses dont le nombre dePiard est égal á trois. De nombreuses questions onernant le typede olletions auxquelles on peut s'attendre sur les variétés toriques deertains types sont enore ouvertes. A e titre, nous prouvons que Pnélaté en deux points ne possède pas de olletion fortement exeption-nelle omplète de �brés en droites pour n assez grand. Cei fournit uneolletion in�nie de ontre-exemples à la onjeture de King 19.2. Lepremier ontre-exemple est dû à Hille et Perling [HP06℄. Réemment,des ontre-exemples ont également été trouvés par E�mov [E�℄ dans leadre des variétés de Fano.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 13118. Introdution18.1. De�nition of the derived ategory. Let X be a smooth va-riety over the �eld C. Let us brie�y reall the onstrution of thederived ategory of X . We enourage the reader to onsult �rst hap-ters of [Huy06℄ for preise de�nitions, examples and most importanttheorems. A well-motivated, relatively short introdution to derivedategories an be found in [C l05℄. A muh longer, lassial refereneis [GM03℄.We start the onstrution with the ategory Kom of omplexes ofoherent sheaves on X . Let us introdue the homotopy ategory K ofomplexes. The objets in K are the same as in Kom. We identifymorphisms that are homotopially equivalent.De�nition 18.1 (Homotopially equivalent morphisms of omplexes,De�nition 2.12 [Huy06℄). Let us onsider two omplexes
· · · Ai

δi
Ai+1

δi+1
· · ·

· · · Bi

δ′i
Bi+1

δ′i+1
· · ·and two morphisms f, g between them with omponents given by fi, gi :

Ai → Bi. We say that f and g are homotopially equivalent if and onlyif there exists a olletion of morphisms hi : Ai → Bi−1 suh that
fi − gi = hi+1 ◦ δi − δ′i−1 ◦ hi.The relation of being homotopially equivalent is an equivalene rela-tion. A morphism in the ategory K is an equivalene lass of mor-phisms up to this relation.Reall that a morphism f between omplexes A,B ∈ Kom induesa morphism in ohomology

H i(f) :
Ker δi
Im δi−1

=: H i(A) → H i(B).Moreover if f and g are homotopially equivalent, then H i(f) = H i(g).Hene given a morphism in K we have the well-de�ned indued mor-phism on ohomologies.De�nition 18.2 (Quasi isomorphism). A morphism between omplexes(in Kom or K) is alled a quasi-isomorphism if the indued morphismon ohomologies is an isomorphism.



132 MATEUSZ MICHA�EKThe objets of the derived ategory D(X) will be omplexes of o-herent sheaves. However the morphisms in the derived ategory arede�ned di�erently.De�nition 18.3 (Morphism in the derived ategories). A roof (between
A and B) is the following diagram:

C
f g

A Bwhere A,B,C are omplexes, f, g are morphisms in K and f is a quasi-isomorphism. Two roofs between A and B are alled equivalent if theyan be dominated in K by a ommon roof. More preisely onsider tworoofs for whih the domains of the morphisms are given respetively by
C1 and C2. These roofs are equivalent if and only if there exists thefollowing ommutative diagram in K:

C
f

C1

h

C2

A Bwith h ◦ f a quasi-isomorphism. A morphism in the derived ategory
D(X) is an equivalene lass of roofs. In partiular, one an show thata omposition of roofs is also given by a roof that dominates them.The onstrution seems, and indeed is, quite tehnial. In [C l05℄the author motivates the onstrution by topology, espeially the the-orem of Whitehead. One of the aims of the onstrution is to makequasi-isomorphisms, real isomorphisms. The proess of adding inversemorphisms to the ategory is alled loalisation14. However, for theloalization proess to work well one should pass from the ategory ofomplexes Kom to the ategory K. Indeed, the derived ategory anbe regarded as the smallest possible ategory obtained from Kom byadding inverses of quasi-isomorphisms. Formally this an be harater-ized by a universal property [Huy06, Theorem 2.10℄ that the derivedategory satis�es.We will be mostly interested in the bounded derived ategory Db(X).To de�ne it one an repeat the onstrution of D(X) starting not from14Indeed it is similar to the algebrai loalization where we add formal inversesof elements.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 133the ategory Kom, but a subategory of omplexes with only a �nitenumber of nonzero elements. The ategory Db(X) is equivalent to a fullsubategory of D(X) ontaining omplexes with only a �nite numberof nonzero ohomology.Details of ategory theory are beyond the sope of this thesis. How-ever, we should mention that the derived ategory is not an abelianategory. Thus one annot speak about exat sequenes. Still, somediagrams, alled the distinguished triangles exist and play a role similarto short exat sequenes. This gives the derived ategory the strutureof the triangulated ategory. When we say that two derived ategoriesare equivalent, we assume that the exat triangles are preserved. For-mally by an equivalene we mean an exat equivalene. Details andde�nitions an be found in any book on derived ategories or homolog-ial algebra.On the one hand, the derived ategories give a uniform languagethat allows to state many de�nitions, useful from the point of view ofalgebrai geometry. On the other hand, the struture of the derivedategory an be extremely ompliated and is an objet of intensivestudies. In some ases one an onsider a olletion of objets from thederived ategory that plays a role of the "basis" of the derived ategory.The following setions investigate when suh speial olletions exist.We have to note, that the derived ategory of an algebrai manifolddoes not fully haraterize it. Indeed, the questions how subtile thederived ategory is as an invariant, is one of the most important onein the domain. Let us present two well-known results.Theorem 18.4 (Bridgeland [Bri02℄). Any two birational Calabi-Yauthreefolds have got equivalent derived ategories. �Theorem 18.5 (Bondal, Orlov [BO01℄). Let X and Y be smooth pro-jetive varieties and assume that the (anti-)anonial bundle of X isample. If there exists an equivalene Db(X) ≃ Db(Y ), then X and Yare isomorphi. �18.2. Full, strongly exeptional olletions. The struture andproperties of the derived ategory of an arbitrary variety X an bevery ompliated and they are an objet of many studies. One of theapproahes to understand the derived ategory uses the notion of ex-eptional objets. Let us introdue the following de�nitions (see also[GR87℄):De�nition 18.6 (Strongly exeptional olletion).(i) An objet of the bounded derived ategory Db(X) of X is ex-eptional if Hom(F, F ) = K and Ext iOX
(F, F ) = 0 for i 6= 0.



134 MATEUSZ MICHA�EK(ii) An ordered olletion (F0, F1, . . . , Fm) of objets is an exep-tional olletion if eah sheaf Fi is exeptional andExt iOX
(Fk, Fj) = 0 for j < k and i ≥ 0.(iii) An exeptional olletion (F0, F1, . . . , Fm) of objets is a stronglyexeptional olletion if Ext iOX

(Fj , Fk) = 0 for j ≤ k and
i ≥ 1.(iv) A (strongly) exeptional olletion (F0, F1, . . . , Fm) of objetsis a full, (strongly) exeptional olletion if it generatesthe bounded derived ategory Db(X) of X i.e. the smallesttriangulated ategory ontaining {F0, F1, . . . , Fn} is equivalentto Db(X).For an exeptional olletion (F0, . . . , Fm) one may de�ne an objet

F = ⊕m
i=0Fi and an algebra A = Hom(F, F ). Suh an objet givesus a funtor GF from Db(X) to the derived ategory Db(A−mod) ofright �nite-dimensional modules over the algebra A. Bondal proved in[Bon89℄, that if X is smooth and (Fi) is a full, strongly exeptional ol-letion, then the funtor GF gives an equivalene of these ategories. Infurther setions we will be mostly interested in the strongly exeptionalolletions.19. Tori varieties and exeptional olletionsIn the whole setion we assume that X is a smooth tori variety. Inpartiular X is normal, thus given by a fan.19.1. Known results and ounterexamples. As the struture ofderived ategories is ompliated it is natural to look at examples oftori varieties. In partiular, exeptional olletions for tori varietieshave been an objet of studies. The strongest positive result is due toKawamata [Kaw06℄.Theorem 19.1 ([Kaw06℄). For any smooth, projetive tori variety

X, the bounded derived ategory Db(X) is generated by an exeptionalolletion of oherent sheaves.Due to the fat that line bundles have got a partiularly nie de-sription for tori varieties one ould ask whether "oherent sheaves"in previous theorem an be replaed by line bundles [Huy06, Remark8.38℄. This is an open problem. However, there exists a ounter exam-ple to the following onjeture of King.Conjeture 19.2 (King's). For any smooth, omplete tori variety Xthere exists a full, strongly exeptional olletion of line bundles.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 135The �rst known ounterexample was presented by Hille and Perlingin [HP06℄. They gave an example of a smooth, omplete tori sur-fae whih does not have a full, strongly exeptional olletion of linebundles. Further results gave a full desription of the two dimensionalase [HP℄. In Setion 19.7 we show that Pn blown up in two pointsfor n large enough are also ounterexamples to King's onjeture. Theonjeture was reformulated by Miró-Roig and Costa (stated also in[BH09℄):Conjeture 19.3. For any smooth, omplete Fano tori variety thereexists a full, strongly exeptional olletion of line bundles.This onjeture has an a�rmative answer when the Piard numberof X is less than or equal to two [CMR04℄ or the dimension of X isat most three [BH09℄, [Bon89℄, [BT09℄. Reently it was disproved byE�mov in [E�℄. In the same paper the author states the followingonjeture, suggested by D. Orlov.Conjeture 19.4 ([E�℄). For any smooth projetive tori Deligne�Mumford stak Y , the derived ategory Db(Y ) is generated by a stronglyexeptional olletion.We will often make use of the onstrution of a olletion of linebundles due to Bondal. The onstrution is desribed in Setion 19.3.Using this, one obtains a full olletion of line bundles in Db(X). Insome ases Bondal's olletion of line bundles is a strongly exeptionalolletion (see also [Bon06℄), but it is not true in general. Often onean �nd a subset of this olletion and order it in suh a way that itbeomes strongly exeptional and remains full. This approah was welldesribed in [CMRb℄ for a lass of tori varieties with Piard numberthree.19.2. Tori varieties with Piard number three. Smooth, om-plete tori varieties with Piard number three have been lassi�ed byBatyrev in [Bat91℄ aording to their primitive relations. Let Σ be afan in N = Zn and let R be the set of rays of Σ.De�nition 19.5. We say that a subset P ⊂ R is a primitive olletionif it is a minimal subset of R whih does not span a one in Σ.In other words a primitive olletion is a subset of ray generators,suh that all together they do not span a one in Σ but if we removeany generator, then the rest spans a one that belongs to Σ. To eahprimitive olletion P = {x1, . . . , xk} we assoiate a primitive relation.Let w =
∑k

i=1 xi. Let σ ∈ Σ be the one of the smallest dimension



136 MATEUSZ MICHA�EKthat ontains w and let y1, . . . , ys be the ray generators of this one.The tori variety of Σ was assumed to be smooth, so there are uniquepositive integers n1, . . . , ns suh that
w =

s∑

i=1

niyi.De�nition 19.6. For eah primitive olletion P = {x1, . . . , xk} let niand yi be as desribed above. The linear relation:
x1 + · · ·+ xk − n1y1 − · · · − nsys = 0is alled the primitive relation (assoiated to P ).Using the results of [Grü03℄ and [OP91℄ Batyrev proved in [Bat91℄that for any smooth, omplete n dimensional fan with n + 3 genera-tors its set of ray generators an be partitioned into l non-empty sets

X0, . . . , Xl−1 in suh a way that the primitive olletions are exatlysums of p + 1 onseutive sets Xi (we use a irular numeration, thatis we assume that i ∈ Z/lZ), where l = 2p + 3. Moreover l is equal to
3 or 5. The number l is of ourse the number of primitive olletions.In the ase l = 3 the fan Σ is a splitting fan (that is any two primitiveolletions are disjoint). These varieties are well haraterized, and weknow muh about full, strongly exeptional olletions of line bundleson them. The ase of �ve primitive olletions is muh more ompli-ated and is our objet of study. For l = 5 we have the following resultof Batyrev.Theorem 19.7 ([Bat91, Theorem 6.6℄). Let Yi = Xi ∪ Xi+1, where
i ∈ Z/5Z,

X0 = {v1, . . . , vp0}, X1 = {y1, . . . , yp1}, X2 = {z1, . . . , zp2},

X3 = {t1, . . . , tp3}, X4 = {u1, . . . , up4},where p0 + p1 + p2 + p3 + p4 = n + 3. Then any n-dimensional fan Σwith the set of generators ⋃Xi and �ve primitive olletions Yi an bedesribed up to a symmetry of the pentagon by the following primitiverelations with nonnegative integral oe�ients c2, . . . , cp2, b1, . . . , bp3:
v1+· · ·+vp0+y1+· · ·+yp1−c2z2−· · ·−cp2zp2−(b1+1)t1−· · ·−(bp3+1)tp3 = 0,

y1 + · · ·+ yp1 + z1 + · · ·+ zp2 − u1 − · · · − up4 = 0,

z1 + · · ·+ zp2 + t1 + · · ·+ tp3 = 0,

t1 + · · ·+ tp3 + u1 + · · ·+ up4 − y1 − · · · − yp1 = 0,

u1+ · · ·+up4+v1+ · · ·+vp0 −c2z2−· · ·−cp2zp2 −b1t1−· · ·−bp3tp3 = 0.

�



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 137In this ase we may assume that
v1, . . . , vp0, y2, . . . , yp1, z2, . . . , yp2, t1, . . . , tp3, u2, . . . , up4form a basis of the lattie N . The other vetors are given by
z1 =− z2 − · · · − zp2 − t1 − · · · − tp3

y1 =− y2 − · · · − yp1 − z1 − · · · − zp2 + u1 + · · ·+ up4(19.1)
u1 =− u2 − · · · − up4 − v1 − · · · − vp0 + c2z2 + · · ·+ cp2zp2

+ b1t1 + · · ·+ bp3tp319.3. Bondal's onstrution and Thomsen's algorithm. This se-tion ontains joint results with Mihaª Laso« [LM11℄.We start this setion by realling Thomsen's [Tho00℄ algorithm foromputing the summands of the push forward of a line bundle by aFrobenius morphism. We do this beause of two reasons.First is that Thomsen in his paper assumes �nite harateristi ofthe ground �eld and uses absolute Frobenius morphism. We laim thatthe arguments used apply also in ase of geometri Frobenius morphismand harateristi zero.Moreover by realling all methods we are able to show that the re-sults of Thomsen oinide with the results stated by Bondal in [Bon06℄.Combining both methods enables us to dedue some interesting fatsabout tori varieties. A reader interested in a short proof and a methodfor the deomposition of the push forward of a line bundle by a Frobe-nius morphism is advised to onsult [Ah℄.Most of the results of this setion are due to Bondal and Thomsen.We use the notation from [Tho00℄. Let Σ ⊂ N be a fan suh that thetori varietyX = X(Σ) is smooth. Let us denote by σi ∈ Σ the ones ofour fan and by T the torus of our variety. If we �x a basis (e1, . . . , en) ofthe lattie N , then of ourse T = SpecR, where R = k[X±1
e∗1
, . . . , X±1

e∗n
].In harateristi p we have got two p-th Frobenius morphisms F :

X → X . One of them is the absolute Frobenius morphism given asan identity on the underlying topologial spae and a p-th power onstruture sheaves. Notie that on the torus it is given by a map R → Rthat is simply a p-th power map, hene it is not a morphism of kalgebras (it is not an identity on k).The other morphism is alled the geometri Frobenius morphism andan be de�ned in any harateristi. Let us �x an integer m. Considera morphism of tori T → T that assoiates tm to a point t. Thisis a morphism of shemes over k that an be extended to the m-thgeometri Frobenius morphism F : X → X . What is important is that



138 MATEUSZ MICHA�EKboth of these morphisms an be onsidered as endomorphisms of opena�ne subsets assoiated to ones of Σ. We laim that in both asesThomsen's algorithm works.We begin by realling the algorithm from [Tho00℄. Let vi1, . . . , vidibe the ray generators of the di dimensional one σi. As the variety wasassumed to be smooth we may extend this set to a basis of N . Let
Ai be a square matrix whose rows are vetors vij in the �xed basis of
N . Let Bi = A−1

i and let wij be the j-th olumn of Bi. Of ourse theolumns of Bi are ray generators (extended to a basis) of the dual one
σ∗
i ⊂M = N∗.Let us remind that X(Σ) is overed by a�ne open subsets Uσi

=
SpecRi, where Ri = k[Xwi1 , . . . , Xwidi , X±widi+1 , . . . , X±win]. Here weuse the notation Xv = Xv1

e∗1
· · · · · Xvn

e∗n
. Let also Xij = Xwij . In thisway the monomials Xi1, . . . , Xin should be onsidered as oordinateson the a�ne subset Uσi

, so we are able to think about monomials on
Uσi

as vetors: a vetor v orresponds to the monomial Xv
i . Of ourseall of these a�ne subsets ontain T , that orresponds to the inlusions

Ri ⊂ R.Using basi results from tori geometry, see [Ful93, p. 21℄, we knowthat Uσi
∩Uσj

= Uσi∩σj
and this is a prinipal open subset of Uσi

. Thismeans that there is a monomialMij suh that Uσi∩σj
= Spec((Ri)Mij

).We are interested in Piard divisors. A T invariant Piard divisor isgiven by a ompatible olletion {(Uσi
, Xui

i )}σi∈Σ. Compatible meansthat the quotient of any two funtions in the olletion is invertible onthe intersetion of domains. This motivates the de�nition:
Iij = {v : Xv

i is invertible in (Ri)Mij
}.Given a monomial Xv

i , if we want to know how it looks in oordinates
Xe∗1

, . . . , Xe∗n
(obviously from the de�nition of Xi) we just have to mul-tiply v by Bi: Xv

i = XBiv. We see that Xv
i = X

B−1
j Biv

j . That is why wede�ne Cij = B−1
j Bi and we think of Cij as the matries that translatethe monomials in oordinates of one a�ne piee to another.Now the ompatibility in the de�nition of a Cartier divisor simplyis equivalent to the ondition uj − Cijui ∈ Iji. We de�ne uij = uj −

Cijui and think about them as transition maps. Of ourse a divisor isprinipal if and only if uij = 0 for all i, j (vetor equal to 0 orrespondsto a onstant funtion equal to 1).Let Pm = {v = (v1, . . . , vn) : 0 ≤ vi < m}. Later we will see thatthis set has got a desription in terms of haraters of the kernel of theFrobenius map between tori.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 139Using simple algebra Thomsen proves that the following funtionsare well de�ned (the only thing to prove is that the image of h is in
Iji).De�nition 19.8 (hwijm, rwijm). Let us �x w ∈ Iji and a positive integer
m. We de�ne the funtions

hwijm : Pm → Iji

rwijm : Pm → Pm,for any v ∈ Pm by the equation
Cijv + w = mhwijm(v) + rwijm(v).This is a simple division by m with the rest. Moreover rwijm is bijetive.If we have any v ∈ Pm, a T -Cartier divisor D = {(Uσi

, Xui

i )}σi∈Σ anda �xed σl ∈ Σ then Thomsen de�nes ti = huli

lim(v). He proves that theolletion {(Uσi
, X ti

i )}σi∈Σ is a T -Cartier divisor Dv. This is of ourseindependent on the representation of D up to linear equivalene. Thehoie of l orresponds to "normalizing" the representation of D on thea�ne subset Uσl
. Although the de�nition of Dv may depend on l, thevetor bundle ⊕v∈Pm

O(Dv) is independent on l. Moreover Thomsenproves that in ase of p-th absolute Frobenius morphism and hara-teristi p > 0 this vetor bundle is a push forward of the line bundle
O(D). The proof uses only the fat that the Frobenius morphism anbe onsidered as a morphism of a�ne piees Uσi

, so an be extendedto the ase of geometri Frobenius morphism and arbitrary harater-isti. One only has to notie that the basis of free modules obtainedby Thomsen in [Tho00, Setion 5, Theorem 1℄ are exatly the same inall ases.Now let us remind that there is an exat sequene 2.1:
0 →M → DT → Pic→ 0,where DT are T invariant divisors. Let (gj) be the olletion of raygenerators of the fan Σ andDgj a divisor assoiated to the ray generator

gj. The morphism from M to DT is given by v →
∑

j v(gj)Dgj . Suha map may be extended to a map from MR = M ⊗Z R by f : v →∑
j[v(gj)]Dgj . Notie that this is no longer a morphism, however if

a ∈ M and b ∈ MR, then f(a + b) = f(a) + f(b). We obtain a mapT := MR

M
→ Pic, where T is a real torus (do not onfuse with T ). Wealso �x the notation for an R-divisor D =

∑
j ajDgj :

[D] :=
∑

j

[aj ]Dgj .



140 MATEUSZ MICHA�EKLet G be the kernel of the m-th geometri Frobenius morphism be-tween the tori T . By ating with the funtor Hom(·,C∗) we obtain anexat sequene:
0 →M →M → G∗ ≃

M

mM
→ 0.We also have a morphism:

1

m
: G∗ ≃

M

mM
→ T,that simply divides the oordinates by m. By omposing it with themorphism from T → Pic we get a morphism from G∗ to Pic. It anbe also desribed as follows:We �x χ ∈ G∗ and arbitrarily lift it to an element χM ∈ M . Nowwe use the morphism M → DivT to obtain a T invariant prinipaldivisor Dχ. The image of χ in Pic is simply equal to [Dχ

m
]. Of oursefor di�erent lifts of χ toM we get linearly equivalent divisors. Now weprove one of the results stated by Bondal in [Bon06℄:Proposition 19.9. Let L = O(D) by any line bundle on a smooth torivariety X. The push forward F∗(O(D)) is equal to ⊕χ∈G∗O([D+Dχ

m
]).Remark 19.10. The haraters of G play the role of v ∈ Pm in Thom-sen's algorithm. Notie also that it is not lear that ⊕χ∈G∗O([D+Dχ

m
] isindependent on the representation of L by D. If we prove that this isequal to the push forward then this fat will follow, but in the proof wehave to take any representation of L and we annot hange D with alinearly equivalent divisor.Proof. Let D = {(Uσi

, Xui

i )} and let us �x χ ∈ G∗. We have to provethat O([D+Dχ

m
]) is one of O(Dv) for v ∈ Pm and that this orrespon-dene is one to one over all χ ∈ G∗. We already know that [Dχ

m
] isindependent on the hoie of the lift of χ, so we may take suh a lift,that v = χM +ul is in the Pm. Here l is an index of a one, but we mayassume that its ray generators form a standard basis of N , so Al = Id.Of ourse suh a mathing between χ ∈ G∗ and v ∈ Pm is bijetive.Let us ompare the oe�ients of [D+Dχ

m
] and Dv. We �x a raygenerator r = (r1, . . . , rn) ∈ σj . Let k be suh that this ray generatoris the k-th row of matrix Aj . We ompare oe�ients of Dr. Let

χM = (a1, . . . , an). We see that:
[
D +Dχ

m

]
= · · ·+

[
(uj)k +

∑n

w=1 awrw
m

]
Dr + . . . .



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 141Here of ourse (uj)k is not a transition map ujk, but the k-th entry ofvetor uj that is of ourse the oe�ient of Dr of the divisor D. FromThomsen's algorithm desribed above we know that
Clj(χ + ul) + ulj = mtj + r,where r ∈ Pm. We see that
tj =

[
Clj(χ + ul) + ulj

m

]
.Now Al = Id and from the de�nition of ulj we have Cljul + ulj = uj,so:

tj =

[
Ajχ+ uj

m

]
.This gives us:

Dv = · · ·+

[∑n

w=1 awrw + (uj)k
m

]
Dr + . . .what ompletes the proof. �From [Bon06℄ we know that the imageB ofT in Pic is a full olletionof line bundles. Of ourse B is a �nite set (the oe�ients of divisorsassoiated to ray generators are bounded). Moreover the image ofrational points of T ontains the whole image of T (a set of equalitiesand inequalities with rational oe�ients has got a solution in R if andonly if it has got a solution in Q). This means that for su�ientlylarge m the split of the push forward of the trivial bundle by the m-thFrobenius morphism oinides with the image of T and hene is full.Let us onsider an example of P2. Let v1, v2 and v3 = −v1 − v2be the ray generators of the fan. We �x a basis (v1, v2) of N . Theimage of the torus T is equal to the set of all divisors of the form

[a]Dv1 + [b]Dv2 + [−a − b]Dv3 for 0 ≤ a, b < 1. We see that the imageof the torus T is O,O(−1),O(−2). This is a full olletion. Notiehowever that it is not true that if we have a line bundle L then thereexists an integer m0 suh that the push forward of L by the m-thFrobenius morphism for m > m0 is a diret sum of line bundles from
B. For example the push forward of O(−3) always ontains in the split
O(−3) that is not an element of B. However, as we will see only minordi�erenes from the set B are possible.De�nition 19.11. Let us �x a natural bijetion between points of Tand elements of MR with entries from [0, 1) in some �xed basis. Noweah element of B has got a natural representative in DivT as sumof Dgj with integer oe�ients. Let B0 ⊂ DivT be the set of theserepresentatives. We de�ne the set B′ as the set of all divisors D in Pic



142 MATEUSZ MICHA�EKfor whih there exists an element in b ∈ B0, suh that there exists arepresentation of D whose oe�ients di�er by at most one from theoe�ients of b.In other words we take (some �xed) representations of all elementsof B, we take all other representations whose oe�ients di�er by atmost one and we take the image in Pic to obtain B′.Let us look one more at the example of P2. With previous notation
B is equal to 0, −Dv3 , −2Dv3 . The set B′ would be equal to ±Dv1 ±
Dv2 ±Dv3 , ±Dv1 ±Dv2 ±Dv3 −Dv3 , ±Dv1 ±Dv2 ±Dv3 − 2Dv3. Thisgives us O(3),O(2),O(1), O, O(−1), O(−2), O(−3), O(−4), O(−5).Proposition 19.12. For any smooth tori variety and any line bun-dle there exists an integer m0 suh that the push forward by the m-thFrobenius morphism for any m > m0 splits into the line bundles from
B′.Proof. From 19.9 we know that the line bundles from the split are ofthe form [D

m
+ Dχ

m
], where L = O(D) is a �xed representation of L. Ofourse for su�iently largem all oe�ients of D

m
belong to the interval

(−1, 1). Hene the oe�ients of [D
m
+ Dχ

m
] di�er by at most one fromthe oe�ients of [Dχ

m
] that is in B. This shows that [D

m
+ Dχ

m
] ∈ B′. �This ombined with the result of Thomsen [Tho00℄ that the pushforward and the line bundle are isomorphi as sheaves of abelian groupsgives us the following result:Corollary 19.13. There exists a �nite set, namely B′, suh that eahline bundle is isomorphi as a sheaf of abelian groups to a diret sumof line bundles from B′. In partiular their ohomologies agree. �19.4. Tehniques of ounting homology. This setion ontains jointresults with Mihaª Laso« [LM11℄. Our aim will be to desribe linebundles on tori varieties with vanishing higher ohomologies, thatwe all ayli. Later, we will use this haraterization to hek if

Exti(L,M) = H i(L∨ ⊗M) is equal to zero for i > 0. We start withgeneral remarks on ohomology of line bundles on smooth, ompletetori varieties.Let Σ be a fan in N = Zn with rays x1, ..., xm and let PΣ denotethe variety onstruted from the fan Σ. For I ⊂ {1, . . . , m} let CIbe a simpliial omplex generated by sets J ⊂ I suh that {xi : i ∈
J} generate a one in Σ. For r = (ri : i = 1, . . . , m) let us de�ne
Supp(r) := C{i: ri≥0}.The proof of the following well known fat an be found in the paper[BH09℄:



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 143Proposition 19.14. The ohomology Hj(PΣ, L) is isomorphi to thediret sum over all r = (ri : i = 1, . . . , m) suh that O(
∑m

i=1 riDxi
) ∼= Lof the (n− j)-th redued homology of the simpliial omplex Supp(r).De�nition 19.15. We all a line bundle L on PΣ ayli ifH i(PΣ, L) =

0 for all i ≥ 1.De�nition 19.16. For a �xed fan Σ we all a proper subset I of
{1, . . . , m} a forbidden set if the simpliial omplex CI has nontriv-ial redued homology.From Proposition 19.14 we have the following haraterization ofayli line bundles.Proposition 19.17. A line bundle L on PΣ is ayli if it is not iso-morphi to any of the following line bundles

O(
∑

i∈I

riDxi
−

∑

i 6∈I

(1 + ri)Dxi
)where ri ≥ 0 and I is a proper forbidden subset of {1, . . . , m}.Hene to determine whih bundles on PΣ are ayli it is enough toknow whih sets I are forbidden.In our ase CI = {J ⊂ I : Ŷi := {j : xj ∈ Yi} * J for i = 1, . . . , 5},sine Yi are primitive olletions. We all sets Ŷi also primitive olle-tions. The only di�erene between sets Ŷi and Yi is that the �rst oneis the set of indies of rays in the seond one, so in fat they ould beeven identi�ed.In ase of a simpliial omplex S on the set of verties V we alsode�ne a primitive olletion as a minimal subset of verties that do notform a simplex. Complex S is determined by its primitive olletions,namely it ontains simplexes (subsets of V ) that ontain none of theprimitive olletions.We desribe a very powerful method of ounting homologies of sim-pliial omplexes whih are given by their primitive olletions (as inour ase). To a simpliial omplex S one an assoiate a omplex Cof vetor spaes with the border map de�ned in the usual way. Theobjets in the omplex C are indexed by nonnegative integers. Eahobjet indexed by i is a diret sum of one dimension vetor spaes,eah orresponding to an i dimensional simplex in S. We assume thatin C there is a one dimensional vetor spae indexed by 0 that orre-sponds to the empty set. Of ourse one an ount ohomologies of anyomplex C of vetor spaes, not neessarily oming from a simpliialomplex. We transform the omplex C so that the homologies remain



144 MATEUSZ MICHA�EKunhanged. The method is due to Mrozek and Batko [MB09℄. We willbe removing some simplies from S. In partiular, after some steps itwill be no longer true that all faes of a simplex from a omplex arein the omplex. In this ase the border map takes its values only inthe simplies that are in the omplex. This is a speial example of theso-alled S-omplexes - for details see [MB09℄.Example 19.18. Suppose that a one dimensional simplex P1P2 is inthe omplex S. The usual border map would be
∂(P1P2) = P1 − P2.However if we suppose that P2 does not belong to S then
∂(P1P2) = P1.De�nition 19.19 (Redutive pair). Suppose that in a omplex C thethere exist simplies Z and B suh that either

∂Z = B or ∂Z = −B.Then we all the pair (Z,B) a redutive pair.We use the result of Mrozek and Batko [MB09℄:Lemma 19.20. A redutive pair an be removed from a hain omplexwithout hanging the homology.Example 19.21. Consider a simpliial omplex onsisting of
{∅, P1, P2, P3, P1P2, P1P3, P2P3}.(i) We remove the redutive pair (P1, ∅).(ii) We remove the redutive pair (P1P2, P2).(iii) We remove the redutive pair (P1P3, P3).We are left with one simplex P2P3 and all border maps equal to zero.For more information we advise the reader to onsult [MB09, Setion6℄.De�nition 19.22. Let X be a simpliial omplex de�ned by its set ofprimitive olletions P on the set of verties V . We say that simpliialomplex X ′ on the set of verties V \P is obtained from X by deletinga primitive olletion P if the set of primitive olletions of X ′ is equalto the family of sets in {Q ∩ (X \ P ) : Q ∈ P} that are minimal withrespet to inlusion.Lemma 19.23. Let X be a simpliial omplex and suppose that thereexists an element x whih belongs to exatly one primitive olletion
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P . Let m = |P | and let X ′ be a simpliial omplex obtained from X bydelating P , then

hi(X) = hi−m+1(X ′).Proof. Using Lemma 19.20 we will be removing indutively on dimen-sion redutive pairs (Z,B) suh that x ∈ Z. We start from ({x}, ∅).One an see that in eah dimension we an take all (Z,Z \ {x}) for Zontaining x as redutive pairs. Let us onsider all simplexes of X thatdo not ontain P \ {x}. One an prove by indution on dimension thatwe will remove all of them:Let D be a simplex. If it ontains x, than it will be removed as a�rst element of a redutive pair. If it does not, then D ∪ {x} is also asimplex of X and we will remove (D ∪ {x}, D).We see that our simpliial omplex an be redued to a omplexwith simplexes ontaining P \ {x}. Now one immediately sees thatsuh a omplex is isomorphi to a omplex X ′ (with a degree shiftedby |P \ {x}| = m− 1). �The same method allows us to easily ompute homologies when thereare few primitive olletions and many points. The idea is that we anglue together points that are in exatly the same primitive olletions.De�nition 19.24. Let X be a simpliial omplex de�ned by its set ofprimitive olletions P on the set of verties V . Suppose that thereexist two points x, y ∈ X suh that they belong to the same primitiveolletions. We say that a simpliial omplex X ′ on the set of verties
V \{y} is obtained from X by gluing points x and y if the set of primitiveolletions of X ′ is equal to {Q \ {y} : Q ∈ P}. We an think of it like
x was in fat two points x, y.Proposition 19.25. Let X be a simpliial omplex and suppose thatthere exist two points x, y ∈ X suh that they belong to the same prim-itive olletions. Let X ′ be a simpliial omplex obtained from X bygluing points x and y, then

hi(X) = hi−1(X ′).Proof. In both omplexes we will be removing redutive pairs of theform (Z,B) with x ∈ Z just as in Lemma 19.23. In both situations allthat is left are simplexes that ontain a set of a form P \ {x}, where Pis a primitive olletion ontaining x. In this situation all of simplexesof X that are left ontain y and they an be identi�ed with simplexesof X ′ that are left, the maps are exatly the same what �nishes theproof. �



146 MATEUSZ MICHA�EKCorollary 19.26. Let X be a simpliial omplex on the set of ver-ties V . Let X ′ be a simpliial omplex obtained from X by gluingequivalene lasses of the relation ∼ that identi�es elements that arein exatly the same primitive olletions. Suppose |V | − |V/ ∼ | = m,then
hi(X) = hi−m(X ′).Proof. We use 19.25 for pairs of points in the equivalene lasses. �Corollary 19.27. In the situation of Lemma 19.23 and Corollary19.26 X is ayli if and only if X ′ is ayli.With these tools we are ready to determine forbidden subsets. Ingeneral we have got two following Lemmas:Lemma 19.28. If a nonempty subset I is not a sum of primitive ol-letions, then it is not forbidden.Proof. There exists a ∈ I suh that a does not belong to any primitiveolletion whih is ontained in I. Using Lemma 19.20 we an removesubsequently on dimension redutive pairs (Z,B) suh that a ∈ Z. Westart from ({a}, ∅). One an see that in this way we remove all ofsimplexes and as a onsequene the hain omplex is exat. �Lemma 19.29. A primitive olletion is a forbidden subset.Proof. Using Lemma 19.23 we an remove this primitive olletion andget a omplex onsisting of the empty set only that has nontrivialredued homologies.This an be also seen from the fat that the onsidered omplextopologially is a sphere. �The following Lemmas apply to the ase when the Piard numberis three and we have �ve primitive olletions as in Batyrev's lassi�-ation. Let us remind that primitive olletions of simpliial omplexin this ase are Ŷi := {j : xj ∈ Yi}, for our onveniene we de�ne also

X̂i := {j : xj ∈ Xi}.Lemma 19.30. A sum of two onseutive primitive olletions is aforbidden subset.Proof. Using Lemma 19.23 we remove one primitive olletion and geta situation of Lemma 19.29. �Lemma 19.31. A sum of three onseutive primitive olletions Ŷi,
Ŷi+1, Ŷi+2 is not a forbidden subset.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 147Proof. First we an remove primitive olletion Ŷi. The image of Ŷi+2ontains the image of Ŷi+1, so in fat we are left with just one primitiveolletion P whih is an image of Ŷi+1. We an remove P and ob-tain a nonempty full simpliial omplex whih is known to have trivialhomologies. �The above lemmas math together to the following:Theorem 19.32. The only forbidden subsets are primitive olletions,their omplements and the empty set.This gives us that in our situationCorollary 19.33. A line bundle L is ayli if and only if it is notisomorphi to any of the line bundles
O(α1

1Dv1 + · · ·+α1
2Dy1 + · · ·+α1

3Dz1 + · · ·+α1
4Dt1 + · · ·+α1

5Du1 + · · · )where exatly 2, 3 or 5 onseutive αi := (α1
i , · · · , α

pi
i ) are negative.Proof. It is an immediate onsequene of Proposition 19.17 and Theo-rem 19.32 �Corollary 19.34. If all of the oe�ients b and c are zero in theprimitive relations from Theorem 19.7 then a line bundle L is ayliif and only if it is not isomorphi to any of the line bundles

O(α1Dv + α2Dy + α3Dz + α4Dt + α5Du)where exatly 2, 3 or 5 onseutive αi are negative and if αi < 0 then
αi ≤ −|Xi|.Proof. Sine all divisors orresponding to elements of the set Xi arelinearly equivalent we math them together and as a onsequene αi isthe sum of all of their oe�ients. �19.5. Large family of smooth tori varieties with Piard num-ber 3. This setion ontains joint results with Mihaª Laso« [LM11℄.We give an expliit onstrution of a full, strongly exeptional olle-tion of line bundles in the derived ategory Db(X) for a large family ofsmooth, omplete tori varieties X with Piard number three. Namelyfor varieties X whose sets X1, X3 and X4 from Batyrev's lassi�ationpresented in Theorem 19.7 have only one element. We will use resultsfrom Setion 19.4.



148 MATEUSZ MICHA�EK19.5.1. Our setting. In this subsetion we establish a family of varietieswhih we onsider in this setion and we also �x notation.From now on for the whole Setion let X be a smooth, ompletetori variety with Piard number three, whih using the notation fromTheorem 19.7 has |X1| = |X3| = |X4| = 1.Let r = |X2|. Then of ourse |X0| = n− r. We allow arbitrary non-negative integer parameters b := b1, c2, . . . , cr. This family generalizesone onsidered in [DLM09℄ (there, the ase r = 1 was onsidered) and[CMRa℄ (there the ase b = c1 = · · · = cr = 0 was onsidered).Remark 19.35. A variety of this type is Fano if and only if
n− r >

r∑

i=2

cr + b.In what follows we do not restrit to the Fano ase.Let e1, . . . , en be a basis of the lattie N . Let us write what are theoordinates of the ray generators in the onsidered situation:
v1 = e1, v2 = e2, . . . , vn−r = en−r

y = −e1 − · · · − en−r + c2en−r+2 + · · ·+ cren − (b+ 1)(en−r+1 + · · ·+ en)

z1 = en−r+1, . . . , zr = en

(19.2)
t = −en−r+1 − · · · − en

u = −e1 − · · · − en−r + c2en−r+2 + · · ·+ cren − b(en−r+1 + · · ·+ en)LetDw be the divisor assoiated to the ray generator w. One an eas-ily see that the divisors Dv1 , . . . , Dvn−r
are all linearly equivalent. Let

Dv be any their representant in the Piard group. The other equiva-lene relations that generate all the relations in the Piard group are:
Dv ≃ Du +Dy

Dz1 ≃ Dt + bDu + (b+ 1)Dy(19.3)
Dzi ≃ Dt + (b− ci)Du + (b− ci + 1)Dy 2 ≤ i ≤ rFrom these relations we an easily dedue:Proposition 19.36. The Piard group of the variety X is isomorphito Z3 and is generated by Dt, Dy, Dv.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 149We introdue two sets of divisors. We laim that these sets an beordered in suh a way that line bundles orresponding to divisors fromthese sets form a strongly exeptional olletion.
Col1 = { − sDt − sDy + (−(n− r)− bs + q)Dv :

0 ≤ s ≤ r, 0 ≤ q ≤ n− r}(19.4)
Col2 = { − sDt − (s− 1)Dy + (−(n− r)− bs+ q)Dv :

1 ≤ s ≤ r, 0 ≤ q ≤ n− r − 1}De�nition 19.37. Let Col = Col1 ∪ Col2.Remark 19.38. Let us notie that |Col1| = (r + 1)(n − r + 1) and
|Col2| = r(n− r), so |Col| = 2rn− 2r2 + n+ 1.We alulate the number of maximal ones in the fan de�ning thevariety X . In order to obtain a maximal one we have to hoose n raygenerators that do not ontain a primitive olletion. This is equivalentto removing three ray generators in suh a way that the rest do notontain a primitive olletion. First let us notie that we an remove atmost one element from eah group Xi beause otherwise the rest wouldontain a primitive olletion. We have the following possibilities:1) We remove one element from X0 and X2. Then we have to removeone element from X3 or X4. We have got 2(n− r)r suh possibilities.2) We remove one element from X0 and none from X2. We have got
n− r suh possibilities.3) We remove one element from X2 and none from X0. We have got
r suh possibilities.4) We do not remove any elements from X0 and from X2. We havegot 1 suh possibility.All together we see that we have 2rn− 2r2 + n + 1 maximal ones.From the general theory we know that the rank of the Grothendiekgroup is the same. Let us notie that from Remark 19.38 our set Colis of the same number of elements.19.5.2. Ayliity of di�erenes of line bundles from Col. In this Sub-setion we order the set Col and prove that line bundles orrespondingto divisors from Col form a strongly exeptional olletion.Let us �rst hek that ExtiOX

(O(D1),O(D2)) = 0 for any divisors
D1, D2 from the set Col and for any i > 0. We know that
ExtiOX

(O(D1),O(D2)) = H i(O(D1)
∨ ⊗O(D2)) = H i(O(D2 −D1)).



150 MATEUSZ MICHA�EKThis means that we have to show that all line bundles assoiated todi�erenes of divisors from Col are ayli.De�nition 19.39. Let Diff be the set of all divisors of the form
D1 −D2, where D1, D2 ∈ Col.Proposition 19.40. The set Diff is the union of the sets Diff1,
Diff2, Diff3, where:

Diff1 = {sDt + sDy + (bs + q)Dv :

−r ≤ s ≤ r, r − n ≤ q ≤ n− r}

Diff2 = {sDt + (s− 1)Dy + (bs + q)Dv :

−r + 1 ≤ s ≤ r, r − n+ 1 ≤ q ≤ n− r}

Diff3 = {sDt + (s+ 1)Dy + (bs+ q)Dv :

−r ≤ s ≤ r − 1, r − n ≤ q ≤ n− r − 1}.Proof. The set Diff1 is equal to the set of all possible di�erenes of twodivisors from Col1 and this set ontains all possible di�erenes of twodivisors from Col2. The set Diff2 is the set of all possible di�erenesof the form D1 − D2, where D1 ∈ Col1, D2 ∈ Col2. The set Diff3 isequal to −Diff2 and so it is equal to the set of all di�erenes of theform D2 − D1, where D1 ∈ Col1, D2 ∈ Col2. These are of ourse allpossible di�erenes of two elements from Col. �From the Corollary 19.33 we know that it is enough to prove thatelements of Diff are not of the form
α1Dv + α2Dy + α1

3Dz1 + α2
3Dz2 + · · ·+ αr

3Dzr + α4Dt + α5Du,where exatly two, three or �ve onseutive αi's are negative (we alla number positive when it is nonnegative and onsider only two signspositive and negative) and:1) if α1 < 0, then α1 ≤ −(n − r) (α1 is in fat sum of all theoe�ients of Dvi , whih have to be of the same sign),2) if any αi
3 < 0 then αj

3 < 0 (all parameters αj
3 are treated as onegroup and have the same sign).From now on we assume that these onditions on αi's are satis�ed.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 151Using the relations 19.3 we obtain:
α1Dv + α2Dy + α1

3Dz1 + α2
3Dz2 + · · ·+ αr

3Dzr + α4Dt + α5Du =

(α4 +
r∑

j=1

αj
3)Dt + (α2 − α5 +

r∑

j=1

αj
3)Dy+

(α1 + bα1
3 +

r∑

j=2

(b− cj)α
j
3 + α5)Dv

(19.5)
Lemma 19.41. If the elements αj

3 are negative then the divisors from
Diff are not of the form 19.5.Proof. If α4 was negative, then the oe�ient of Dt would be less thanor equal to −r − 1 and none of the divisors from Diff has got suha oe�ient, so α4 has to be positive. Sine α3 is negative and α4 ispositive, then α2 has to be negative and α5 has to be positive. Thismeans that the oe�ient of Dy is less then or equal to −r − 1. Thedivisors from Diff are not of this form. �From now on we may assume that α3 is positive.Lemma 19.42. The divisors from Diff1 are not of the form (19.5).Proof. Suppose that a divisor from Diff1 an be written in a form(19.5). We have:

α4 +

r∑

j=1

αj
3 = α2 − α5 +

r∑

j=1

αj
3,so α4 + α5 = α2. But α2, α4 and α5 annot be of the same sign, so α4and α5 have to have di�erent signs. As α3 was positive we see that α4is positive, so α5 and α1 are negative. Let us notie that:

α1 + bα1
3 + (

r∑

j=2

(b− cj)α
j
3) + α5 ≤

−n + r + b(

r∑

j=1

αj
3)− 1 ≤

−n + r − 1 + b(α4 +

r∑

j=1

αj
3)This shows preisely that the oe�ient of Dv is less than or equal to

−n + r − 1 plus b times the oe�ient of Dt. Let s be the oe�ient



152 MATEUSZ MICHA�EKof Dt. From the de�nition of Diff1 the oe�ient of Dv is at least
−n+ r + bs. This gives us a ontradition. �Lemma 19.43. The divisors from Diff3 are not of the form (19.5).Proof. Suppose that a divisor from Diff3 an be written in a form(19.5). We have:

α4 +

r∑

j=1

αj
3 = α2 − α5 − 1 +

r∑

j=1

αj
3,so α4 + α5 = α2 − 1. The rest of the proof is idential to the proof ofLemma 19.66. �Lemma 19.44. The divisors from Diff2 are not of the form (19.5).Proof. Suppose that a divisor from Diff2 an be written in a form(19.5). We have:

α4 +
r∑

j=1

αj
3 = α2 − α5 + 1 +

r∑

j=1

αj
3,so α4 + α5 = α2 + 1. But α2, α4 and α5 annot be of the same sign, sowe have two possible ases:1) The oe�ients α4 and α5 have di�erent signs. In this ase theproof is the same as in Lemmas 19.66 and 19.43.2) We have α4 = α5 = 0 and α2 = −1. In this ase α1 has tobe negative, beause α3 was positive. Let s = α4 +

∑r

j=1 α
j
3 be theoe�ient of Dt. We have:

α1 + bα1
3 +

r∑

j=2

(b− cj)α
j
3 + α5 ≤ −n + r + bs,so the oe�ient of Dv is less than or equal to −n + r + bs. But fromthe de�nition of Diff2 we know that the oe�ient of Dv is at least

bs+ r − n+ 1 what gives us a ontradition. �Now we only have to order the line bundles orresponding to divisorsfrom Col in suh a way that
0 = Ext0OX

(O(D1),O(D2)) = H0(O(D1)
∨⊗O(D2)) = H0(O(D2−D1)).for any divisors D1 > D2.Let us de�ne the order by: Ls,q < L′
s,q < Ls,q+1, Ls+1,q1 < Ls,q2where

Ls,q = O(−sDt − sDy + (q − bs− (n− r))Dv)



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 153for s = 0, . . . , r and q = 0, . . . , n− r and
L′
s,q = O(−sDt − (s− 1)Dy + (q − bs− (n− r))Dv)for s = 1, . . . , r− 1 and q = 0, . . . , n− r− 1. It is easy to see that zeroohomology of appropriate di�erenes vanish.19.5.3. Generating the derived ategory. We prove that the stronglyexeptional olletion from Subsetion 19.5.1 is also full. First we showthat it generates all line bundles. Due to [BH06, Corollary 4.8℄ theolletion generates the derived ategory. In order to generate all linebundles we need several lemmas. Our �rst aim is to generate linebundles of the type sDtsDy + qDv and sDt + (s + 1)Dy + qDv. We�rst do it for �xed s and any q � the result is in Lemma 19.49. Theidea is to generate the line bundles indutively on q. We will be doingthis using the Koszul omplexes for families of divisors for di�erentprimitive olletions. As the ray generators orresponding to divisorsof a primitive olletion do not form a one, we obtain indeed the exatsequenes given by Koszul omplexes.Lemma 19.45. Let s and k be any integers. Line bundles Lq =

O(−sDt − sDy + (k + q)Dv) for q = 0, . . . , n− r and L′
q = O(−sDt −

(s−1)Dy +(k+ q)Dv) for q = 0, . . . , n− r−1 generate O(−sDt− (s−
1)Dy + (n− r + k)Dv) in the derived ategory.Proof. We onsider the Koszul omplex forO(Dy),O(Dv1), . . . ,O(Dvn−r

):
0 → O(−Dy − (n− r)Dv) → · · · → O(−Dv)

n−r ⊕O(−Dy) → O → 0.By tensoring it with O(−sDt − (s− 1)Dy + (k + n− r)Dv) we obtain:
0 → O(−sDt−sDy+kDv) → · · · → O(−sDt−(s−1)Dy+(k+n−r−1)Dv)

n−1

⊕O(−sDt−sDy+(k+n−r)Dv) → O(−sDt−(s−1)Dy)+(k+n−r)Dv) → 0.All sheaves that appear in this exat sequene, apart from the lastone, are exatly O(−sDt − sDy + kDv), . . . ,O(−sDt − sDy + (k+ n−
r)Dv),O(−sDt− (s−1)Dy+kDv), . . . ,O(−sDt− (s−1)Dy+(k+n−
r − 1)Dv), so indeed we an generate O(−sDt − (s− 1)Dy + (k + n−
r)Dv). �Lemma 19.46. Let s and k be any integers. Line bundles Lq =
O(−sDt − sDy + (k + q)Dv) for q = 0, . . . , n− r and L′

q = O(−sDt −
(s − 1)Dy + (k + q)Dv) for q = 1, . . . , n − r generate O(−sDt − (s −
1)Dy + kDv) in the derived ategory.Proof. The proof is similar to the last one. We dedue assertion fromthe same exat sequene of sheaves. �



154 MATEUSZ MICHA�EKLemma 19.47. Let s and k be any integers. Line bundles Lq =
O(−sDt − sDy + (k + q)Dv) for q = 1, . . . , n− r and L′

q = O(−sDt −
(s− 1)Dy + (k + q)Dv) for q = 0, . . . , n− r generate O(−sDt − sDy +
(n− r + k + 1)Dv) in the derived ategory.Proof. The proof is similar to the �rst one. We have to onsider theKoszul omplex for line bundles O(Du),O(Dv1), . . . ,O(Dvn−r

):
0 → O(−Du − (n− r)Dv) → · · · → O(−Dv)

n−r ⊕O(−Du) → O → 0we dualize it and we tensor it with O(−sDt − (s− 1)Dy + kDv). �Lemma 19.48. Let s and k be any integers. Line bundles Lq =
O(−sDt−sDy+(k+q)Dv) for q = 1, . . . , n−r+1 and L′

q = O(−sDt−
(s−1)Dy+(k+q)Dv) for q = 1, . . . , n−r generate O(−sDt−sDy+kDv)in the derived ategory.Proof. The proof is similar to the last one. We dedue assertion fromthe same exat sequene of sheaves. �Lemma 19.49. Let s and k be any integers. Line bundles Lq =
O(−sDt−sDy+(k+q)Dv) for q = 0, . . . , n−r and L′

q = O(−sDt−(s−
1)Dy+(k+q)Dv) for q = 0, . . . , n−r−1 generate in the derived ategoryline bundles O(−sDt − sDy + q′Dv) and O(−sDt − (s− 1)Dy + q′Dv)for an arbitrary integer q′.Proof. We prove it by indution on |q′|. For q′ ≥ k + n − r we useLemmas 19.45 and 19.47, for q′ < k we use Lemmas 19.46 and 19.48.

�Next we generate all line bundles of the type sDt + sDy + qDv and
sDt + (s + 1)Dy + qDv with no restritions on s and q. The ideas arethe same and the result is in Lemma 19.54.Lemma 19.50. Let k be any integer. Line bundles Ls,q = O(−sDt −
sDy + qDv) for s = k, . . . , k + r and arbitrary q and L′

s,q = O(−sDt −
(s− 1)Dy + qDv) for s = k, . . . , k + r − 1 and arbitrary q generate inthe derived ategory line bundles L′(k + r, q) = O(−(k + r)Dt − (k +
r − 1)Dy + qDv) with arbitrary q.Proof. Consider the Koszul omplex for O(Dy),O(Dz1), . . . ,O(Dzr):

0 → O(−Dz1 − (r − 1)Dz2 −Dy) → . . .

· · · → O(−Dz1)⊕O(−Dz2)
r−1 ⊕O(−Dy) → O → 0.After tensoring it with O(−(k−1)Dy + q

′Dv) for appropriate q′ we getthe assertion. �



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 155Lemma 19.51. Let k be any integer. Line bundles Ls,q = O(−sDt −
sDy + qDv) for s = k, . . . , k + r and arbitrary q and L′

s,q = O(−sDt −
(s−1)Dy+qDv) for s = k+1, . . . , k+r and arbitrary q generate in thederived ategory line bundles L′(k, q) = O(−kDt − (k − 1)Dy + qDv)for arbitrary q.Proof. The proof is similar to the last one. We dedue assertion fromthe same exat sequene of sheaves. �Lemma 19.52. Let k be any integer. Line bundles Ls,q = O(−sDt −
sDy+qDv) for s = k+1, . . . , k+r and arbitrary q and L′

s,q = O(−sDt−
(s− 1)Dy + qDv) for s = k + 1, . . . , k + r + 1 and arbitrary q generatein the derived ategory line bundles L(k, q) = O(−kDt − kDy + qDv)for arbitrary q.Proof. Consider the Koszul omplex for O(Dz1), . . . ,O(Dzr),O(Dt):

0 → O(−Dz1 − (r − 1)Dz2 −Dt) → . . .

· · · → O(−Dz1)⊕O(−Dz2)
r−1 ⊕O(−Dt) → O → 0.After tensoring it with O(−kDy + q′Dv) for appropriate q′ we get theassertion. �Lemma 19.53. Let k be any integer. Line bundles Ls,q = O(−sDt −

sDy + qDv) for s = k, . . . , k + r and arbitrary q and L′
s,q = O(−sDt −

(s− 1)Dy + qDv) for s = k + 1, . . . , k + r and arbitrary q generate inthe derived ategory line bundles L′(k+ r+1, q) = O(−(k+ r+1)Dt−
(k + r)Dy + qDv) for arbitrary q.Proof. The proof is similar to the last one. We dedue assertion fromthe same exat sequene of sheaves. �Lemma 19.54. Let k be any integer. Line bundles Ls,q = O(−sDt −
sDy + qDv) for s = k, . . . , k + r and arbitrary q and L′

s,q = O(−sDt −
(s− 1)Dy + qDv) for s = k, . . . , k + r − 1 and arbitrary q generate inthe derived ategory line bundles L(s, q) = O(−sDt − sDy + qDv) and
L′(s, q) = O(−sDt − (s− 1)Dy + qDv) for arbitrary s and q.Proof. We prove it by indution on |s|. For s ≥ k+n−r we use Lemmas19.50 and 19.53, for r < k we use Lemmas 19.51 and 19.64. �Finally we proeed indutively on the di�erene of the oe�ients of
Dt and Dy.Lemma 19.55. Let k be any integer. Line bundles O(−sDt − (s +
k)Dy + qDv) and O(−sDt− (s+ k+1)Dy + qDv) for arbitrary s and qgenerate in the derived ategory line bundles O(−sDt− (s+k+2)Dy+
qDv) for arbitrary s and q.



156 MATEUSZ MICHA�EKProof. Consider the Koszul omplex for O(Dt),O(Du):
0 → O(−Dt −Du) → O(−Dt)⊕O(−Du) → O → 0.After tensoring it with O(−k′Dy + q′) for appropriate k′ and q′ we getthe assertion. �Lemma 19.56. Let k be any integer. Line bundles O(−sDt − (s +

k)Dy + qDv) and O(−sDt− (s+ k+1)Dy + qDv) for arbitrary s and qgenerate in the derived ategory line bundles O(−sDt− (s+k−1)Dy+
qDv) for arbitrary s and q.Proof. Consider the Koszul omplex for O(Dt),O(Du):

0 → O(−Dt −Du) → O(−Dt)⊕O(−Du) → O → 0.After tensoring it with O(−k′Dy + q′) for appropriate k′ and q′ we getthe assertion. �Proposition 19.57. Line bundles
Ls,q = O(−sDt − sDy + (q − bs− (n− r))Dv)for s = 0, . . . , r and q = 0, . . . , n− r and

L′
s,q = O(−sDt − (s− 1)Dy + (q − bs− (n− r))Dv)for s = 0, . . . , r − 1 and q = 0, . . . , n − r − 1 generate in the derivedategory all line bundles.Proof. We use Lemmas 19.49, 19.54, 19.55 and 19.56. �Summarizing, we have proved:Theorem 19.58. Let X be a smooth, omplete, n dimensional torivariety with Piard number three and the set of ray generators X0 ∪

· · · ∪X4, where
X0 = {v1, . . . , vn−r}, X1 = {y}, X2 = {z1, . . . , zr}, X3 = {t}, X4 = {u},primitive olletions X0 ∪X1, X1 ∪X2, . . . , X4 ∪X0 and primitive re-lations:

v1 + · · ·+ vn−r + y − cz2 − · · · − czr − (b+ 1)t = 0,

y + z1 + · · ·+ zr − u = 0,

z1 + · · ·+ zr + t = 0,

t+ u− y = 0,

u+ v1 + · · ·+ vn−r − c2z2 − · · · − crzr − bt = 0,where b and c are positive integers.Then the ordered olletion of line bundles
Ls,q = O(−sDt − sDy + (q − bs− (n− r))Dv)
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L′
s,q = O(−sDt − (s− 1)Dy + (q − bs− (n− r))Dv)for s = 0, . . . , r− 1 and q = 0, . . . , n− r− 1 where the order is de�nedby Ls,q < L′
s,q < Ls,q+1, Ls+1,q1 < Ls,q2 is a full, strongly exeptionalolletion of line bundles.Proof. From Subsetion 19.5.2 we already know that this is a stronglyexeptional olletion. We have just heked the su�ient onditionfor fullness in Proposition 19.57. �19.6. The split of the push forward of the strutural sheaf notontaining a full, strongly exeptional olletion. This setionontains joint results with Mihaª Laso« [LM11℄.19.6.1. Example. Let us onsider the ase when:
X0 = {v1}, X1 = {y1, . . . , yk}, X2 = {z1},

X3 = {t1, . . . , tk}, X4 = {u1, . . . , uk}then we an take
v1, y2, . . . , yk, t1, . . . , tk, u2, . . . , ukto be a basis of the lattie N = Z3k−1. Other vetors are like in 19.1with all oe�ients bi and ci equal to zero. We have linear dependeniesof divisors:

Dv1 = Du1 +Dy1, Dti = Dz1 +Dy1 , Dyi = Dy1, Dui
= Du1Let B be the image of the real torus in the Piard group as desribedin the Subsetion 19.3. One an easily see that:

B = {O([

k∑

i=1

−αi
t]Dz1+[

k∑

i=2

−αi
u−α

1
v]Du1+[−α1

v+

k∑

i=2

−αi
y+

k∑

i=1

αi
t]Dy1) :

0 ≤ αi
v, α

i
y, α

i
t, α

i
u < 1}.So B is ontained in the set:

S := {O(−aDz1 − bDu1 + (a− c)Dy1) : a, b, c ∈ {0, . . . , k}} =

= {O(−a(Dz1 −Dy1)− bDu1 − cDy1) : a, b, c ∈ {0, . . . , k}}.From Corollary 19.34 we know that line bundle is ayli if and only ifit is not isomorphi to any of the following line bundles
O(α1Dv1 + α2Dy1 + α3Dz1 + α4Dt1 + α5Du1) =

= O((α3 + α4)(Dz1 −Dy1) + (α1 + α2 + α3)Dy1 + (α1 + α5)Du1),



158 MATEUSZ MICHA�EKwhere exatly 2, 3 or 5 onseutive α are negative and if α2 < 0 then
α2 ≤ −k, if α4 < 0 then α4 ≤ −k and if α5 < 0 then α5 ≤ −k. Let usobserve that line bundles from the set
R = {O(a(Dz1−Dy1)+bDy1+cDu1) : (a, b, c) ∈ [

k

2
, k]×[−k,−

k

2
−1]×[0, k]}are not ayli. Indeed �xing α1 = −k, α3 = k

2
and taking α4, α5nonnegative and α2 negative we an ahieve all of them. Let us de�nethe set of pairs

P := {−(
k

2
+
a

2
)(Dz1−Dy1)−(

k

2
+
b

2
)Dy1−(

k

2
+
c

2
)Du1,−(

k

2
−
a

2
)(Dz1−Dy1)−

−(
k

2
−
b

2
)Dy1 − (

k

2
−
c

2
)Du1) : (a, b, c) ∈ [

k

2
, k]× [−k,−

k

2
− 1]× [0, k]}.It is easy to see that elements of these pairs are distint and they belongto S. Di�erene in eah pair is an element of R so it is not ayli linebundle. Hene to have a strongly exeptional olletion C in S wehave to exlude at least one element from eah pair. To have integeroe�ients of divisors in P we should take a ≡ b ≡ c ≡ k (mod 2), sowe have to throw out at least k3

32
elements among (k + 1)3 elements in

S. Full, strongly exeptional olletion has to have l elements, where
l is the rank of the Grothendiek group K0(X) (for tori varieties itis isomorphi to Zl, where l is the number of maximal ones). In ourase there are at least k3 maximal ones, sine eah time we throw outone element from X2, X4 and X5 we get di�erent maximal one (exatnumber is k3 + 2k2 + 2k). So we have proven the following:Theorem 19.59. For k > 32 there is no full, strongly exeptionalolletion ontained in the set of line bundles that ome from Bondal'sonstrution.Proof. For k > 32 we have (k+1)3− 1

32
k3 < k3+2k2+2k so the prooffollows from the disussion above. �Remark 19.60. Notie that the onsidered variety is Fano, so is ex-peted to have a full, strongly exeptional olletion.19.6.2. Our ase. Let us onsider the ase from Subsetion 19.5.1, butwith all oe�ients ci equal to c ≤ b. Let B be the image of the realtorus in the Piard group as desribed in the Subsetion 19.3. One ansee that:

B = {O([

r∑

i=1

−αi
z]Dt + [

n−r∑

i=1

−αi
v + c

r∑

i=2

αi
z − (b+ 1)

r∑

i=1

αi
z)]Dy+



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 159
+[

n−r∑

i=1

−αi
v + c

r∑

i=2

αi
z − b

r∑

i=1

αi
z)]Du) : 0 ≤ αi

v, α
i
z < 1}.So B is ontained in the set:

S := {O(−sDt−sDy+qDv),O(−sDt−(s−1)Dy+qDv) : s ∈ {0, . . . , r},

q ∈ {−(n− r)− c− (b− c)s), . . . , (b− c)(−s + 1)}}Our olletion de�ned in Subsetion 19.5.1, or its torsion, is on-tained in the set S unless cr ≤ b. It an be also shown that if this in-equality fails then there is no full strongly exeptional olletion amongline bundles that ome from Bondal's onstrution.19.7. Pn blown up in two points. The results of this setion an befound in [Mi11a℄.The varieties we onsider are of Piard number 3. Using the las-si�ation of Theorem 19.7 Pn blown up in two points is given by
|X0| = |X2| = |X3| = |X4| = 1 and |X1| = n − 1 with all otherparameters equal to 0. Choosing the basis of the one parameter sub-groups lattie N equal to v1, y2, . . . , yn−1, z1 the ray generators of thefan are the basis elements and vetors y1, t1, u1 satisfying:

t1 = −z1, y1 = −y2 − · · · − yn−1 − z1 − v1, u1 = −v1.The rank of the Grothendiek group is equal to the number of maximalones that is 3n− 1. All divisors in a given Xi are linearly equivalentand, as before, are given by Dv, Dy, Dz, Dt, Du respetively for i =
0, 1, 2, 3, 4. Divisors with nonzero higher ohomology will be alledforbidden. The following lassi�ation of forbidden divisors is veryeasy to establish. In a general ase of Piard number three this hasbeen done in the previous setion, but in this speial ase one anuse arguments of elementary topology. The forbidden divisors in ourase are α1Dv + α2Dy + α3Dz + α4Dt + α5Du, where exatly 2, 3 or 5onseutive (in a yli way, that is indies are onsidered modulo 5)
α's are negative and if α2 < 0, then α2 ≤ −n + 1.We have Dz = Dt + Dy and Dv = Du + Dy. We hoose the basis
Dy, Dt, Du, what gives us forbidden divisors (α1+α2 +α3)Dy + (α3 +
α4)Dt + (α1 + α5)Du with the onditions on α's as above. A divisor
aDy+bDt+cDu will be denoted by (a, b, c) and we reserve preise lettersfor preise oordinates. A line bundle L1 will be alled ompatiblewith L2 if and only if they an both appear in a strongly exeptionalolletion, that is if and only if L1 −L2 and L2 −L1 = −(L1 −L2) arenot forbidden.



160 MATEUSZ MICHA�EKLet us �x a strongly exeptional olletion E. We assume withoutloss of generality that 0 ∈ E and that all other divisors in E havenonnegative oe�ient a.Lemma 19.61. The only divisors with a = 0 ompatible with (0, 0, 0)are:
(0,−1, 0), (0, 0,−1), (0, 1, 0), (0, 0, 1), (0,−1, 1), (0, 1,−1).Proof. If b < −1, then we take α1 = 0, α2 = 1, α3 = −1, α4-negativeto obtain b, α5-any to obtain c. Analogously for c < −1, hene −1 ≤

b, c ≤ 1. Moreover (0,−1,−1) is also bad (so also (0, 1, 1)). �Corollary 19.62. There an be at most 3 distint line bundles with
a = 0 in E. For a �xed a we an have only 3 line bundles in E.Proof. Follows by inspetion. �Lemma 19.63. For a > 0 the only line bundles (a, b, c) that are notforbidden must satisfy −1 ≤ b ≤ a and −1 + a − b ≤ c ≤ a (and bysymmetry −1 + a− c ≤ b ≤ a).Proof. For b < −1 we take α1 = 0, α3 = −1, α2-positive to have a, α4-negative to have b, α5-any to have c. For b > a we look at (−a,−b,−c)and take α3 = −a, α1 = α2 = 0, α4-negative to have −b, α5-any tohave −c. In the same way −1 ≤ c ≤ a15. So the only ase that wehave to exlude is −1 ≤ c < −1 + a − b. In suh a ase we an take
α4 = −1, α3 = b+1, α2 = 0, α1 = a− b−1, α5 = c−a+ b+1 < 0. �Lemma 19.64. For three onseutive parameters a's there an be atmost 8 line bundles in E.Proof. We assume without loss of generality 0 ≤ a ≤ 2. If the lemmadoes not hold, then from the Corollary 19.62 we would have to have 3line bundles for eah a. For a = 0 we an have either:Case 1: (0, 0, 0), (0,−1, 0), (0, 0,−1) then for a = 1 there is only oneompatible from the Lemma 19.63 namely (1, 0, 0).Case 2:(0, 0, 0), (0, 1, 0), (0, 0, 1) then for a = 1 the ompatible linebundles are (1, 1, 1), (1, 1, 0), (1, 0, 1). If we hoose all of them then theonly one ompatible for a = 2 is (2, 1, 1) from the Lemma 19.63.Case 3: (0, 0, 0), (0,−1, 0), (0,−1, 1); (0, 0, 0), (0, 0,−1), (0, 1,−1);
(0, 0, 0), (0, 1, 0), (0, 1,−1); (0, 0, 0), (0, 0, 1), (0,−1, 1). All these pos-sibilities are ases 1 or 2 after subtrating a divisor from all threeonsidered divisors. �15The parameters b and c are in symmetry.



TORIC VARIETIES: PHYLOGENETICS AND DERIVED CATEGORIES 161De�nition 19.65. Line bundles in the olletion E with a > n arealled high. Others are alled low.Lemma 19.66. A high line bundle is forbidden unless either b = 1(high bundles of type 1)or c = 1 (high bundles of type 2).Proof. Suppose that b = 0 or b = −1. We show that (−a,−b,−c) isforbidden. Take α1 = −1, α2 = −a + 1, α3 = 0, α4 = −b, α5-any toobtain −c. So b ≥ 1 and analogously c ≥ 1. If both oe�ients werestritly greater than 1 we would obtain (−a,−b,−c) by taking all α'snegative. �Lemma 19.67. We annot have high line bundles of both types in E.Proof. From the Lemma 19.63 a high line bundle must have the oordi-nate di�erent from 1 greater or equal to n− 1. If we subtrat two highline bundles of di�erent types we an assume that the �rst oordinateis positive and one of the others will be less or equal to −n + 2 whatontradits the Lemma 19.63 for n > 3. �From now on without loss of generality we assume that we only havehigh line bundles of type 1 in E. Let us projet all high line bundlesfrom E onto the �rst oordinate obtaining a subset of N. Suppose thatthis subset has got k elements, that is high line bundles an have kdi�erent parameters a. We obtain:Lemma 19.68. There are at most k + 2 high line bundles in E.Proof. We assumed that 0 ∈ E, so the high line bundles in E must notbe forbidden. We know that for eah high line bundle in E we have
b = 1, so from the Lemma 19.63 we know that 0 ≤ a − c ≤ 2. Letus notie that the di�erene a − c annot derease when a inreasesfor high line bundles in E. Indeed suppose that we have two highline bundles in E of the form (a1, 1, c1), (a2, 1, c2) with a2 > a1 and
a2 − c2 < a1 − c1. By subtrating these two line bundles we obtain
(a2 − a1, 0, c2 − c1) that is forbidden by the Lemma 19.63.Notie that eah time we have more than one line bundle for a �xed
a then the di�erene a − c stritly inreases. This means that we anhave one line bundle for eah a plus possibly two more as a−c inreasesfrom 0 to 2. This gives us in total k + 2 line bundles.

�Proposition 19.69. There are at most 8
3
(n− 1) + 6 low line bundles(from the Lemma 19.64), so k > 0 for n > 13.Remark 19.70. Of ourse k is at most n + 1. Otherwise we wouldhave two high line bundles in E with the di�erene that is high. By



162 MATEUSZ MICHA�EKthe Lemma 19.67 the di�erene would have b = 0, hene by the Lemma19.66 it would have c = 1 and would be forbidden by the Lemma 19.63.From the de�nition of k we know that there is a line bundle L =
(a, 1, c) in E, with a ≥ n + k. Now we investigate line bundles with
a < k, that are alled very low.Lemma 19.71. Eah very low line bundle in E must have b = 0.Proof. Let B be a very low line bundle. L − B is high, so from theLemma 19.66 either the seond or third oordinate is 1. The third oneis cL − cB ≥ aL − 2 − aB > n + k − 2− k = n− 2 > 1, for n > 3. Wesee that bL − bB = 1. As bL = 1 the Lemma follows. �For very low line bundles in E the parameter c is either a or a − 1by the Lemma 19.63 and the Lemma 19.71. Reasoning analogously tothe proof of the Lemma 19.68, we see that there are at most k+1 verylow line bundles (the di�erene a− c annot derease).Theorem 19.72. The sequene E an have at most: k+1+ 8

3
(n−k−

1) + 6 + k + 2 ≤ 8
3
n− 2

3
k + 19

3
< 3n− 1 for n > 20.Remark 19.73. The bounds on n an be easily improved. For exampleby onsidering separately the ase k = 1 one an derease the bound to

n > 18. We onentrated rather on brevity of the proof than sharpbounds. Referenes[Ah℄ Piotr Ahinger, A note on the frobenius morphism on tori varieties,arXiv:1012.2021v2.[APRS11℄ Elizabeth S. Allman, Sonja Petrovi¢;, John A. Rhodes, and SethSullivant, Identi�ability of two-tree mixtures for group-based models,IEEE/ACM Transations on Computational Biology and Bioinfor-matis 8 (2011), 710�722.[AR06℄ Elizabeth S. Allman and John A. Rhodes, The identi�ability of treetopology for phylogeneti models, inluding ovarion and mixture mod-els, J. Comput. Biol. 13 (2006), no. 5, 1101�1113.[AR08℄ , Phylogeneti ideals and varieties for the general Markovmodel, Advanes in Applied Mathematis 40(2) (2008), 127�148.[Bat91℄ Vitor V. Batyrev, On the lassi�ation of smooth projetive torivarieties, Tohoku Math. J. (2) 43 (1991), no. 4, 569�585.[BBKM10℄ Weronika Buzy«ska, Jarosªaw Buzy«ski, Kaie Kubjas, and MateuszMihalek, Degrees of generators of phylogeneti semigroups on graphs,arXiv:1004.1183v1 [math.AG℄ (2010).[BDW09℄ Weronika Buzy«ska, Maria Donten, and Jarosªaw A. Wi±niewski,Isotropi models of evolution with symmetries, Contemporary Math-ematis 496 (2009), 111�132.
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