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I - Curriculum Vitae 
 

1) Civil status  
 

Name:  Hatt Mathieu  
Birth date and place:  October the 5th, 1981 in Strasbourg, France 
Nationality:    French 

            Marital status:     Single 
 

2) Education (France) 
 

 2008: PhD from the University of Brest, with highest honors. 
« Automatic determination of functional volumes in emission imaging for oncology 
applications » -1st prize of IEEE France for best biomedical thesis in 2008. 

 
 2004: Master in computer sciences from the University of Strasbourg, with honors. 

Options: image processing, artificial intelligence, parallel computing, networks, 
algorithmic for graphics, bioinformatics. 

 
 2002: Licence in computer sciences from the University of Strasbourg. 

 
 1999: Scientific baccalauréat, specialization in physics and chemistry, with honors. 

 
 

3) Research formation 
 
 11/2011-present Stichting Maastricht Radiation Oncology (MAASTRO), Maastricht, 

the Netherlands. Director: Prof. P. Lambin. Supervisor : Prof. P. Lambin. 
  2005-2011 Laboratory of medical information processing (LaTIM INSERM U650), 
Brest. Director: Pr. C. Roux. Supervisor: DR D. Visvikis. 
 

 2004: 6 months trainee in the laboratory of sciences of image, computer sciences and 
remote sensing (LSITT UMR 7005), Strasbourg. 
Supervisors: Prof. C. Collet and F. Salzenstein. 
 

 
4) Additional formation 
 

 2006: 7th IEEE EMBS International Summer School on Biomedical Imaging, Berder 
Island, France. 

 2010: visiting fellow in MRC clinical center, Hammersmith Hospital, London, UK. 
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II - Professional experience 
 
2002-2003:  Trainee (two voluntary training periods of 2 months from July to August) as a 

computer scientist in training, in the astronomical observatory of Strasbourg 
(UMR 7550), stellar datacenter of Strasbourg (CDS). 

 In charge of JAVA developments for SIMBAD stellar catalogs 
interface under the supervision of M. Wenger. 

 
2003-2004:  Trainee in the laboratory of sciences of image, computer sciences and remote 

sensing (LSITT UMR 7005) for 1st and 2nd year 6 months projects of master in 
computer sciences.  

 Team « automation, vision and robotics » for the design of an expert 
system for robot control under the supervision of S. Besse.  

 Team « models, images and vision » for the development of fuzzy 
hidden Markov chains for astronomical images segmentation under the 
supervision of C. Collet and F. Salzenstein.  

 
2005-2008:  PhD student in the laboratory of medical information processing (LaTIM 

INSERM U650), team « Quantitative multi modality imaging for diagnosis and 
therapy » under the supervision of D. Visvikis and C. Roux 

 Development of methodologies dedicated to metabolically active tumor 
volume delineation in PET images for oncology applications. 

 
2009-2011:  Post-doc fellow in the laboratory of medical information processing (LaTIM 

INSERM U650), team « Quantitative multi modality imaging for diagnosis and 
therapy ». 

 Principal investigator on ANR project SIFR1 and in charge of 
supervising trainees and PhD students in the team. 

 
2011-2012: Research fellow in the imaging and radiotherapy research department, 

MAASTRO lab, Maastricht, the Netherlands. 
 In charge of collaborative research projects regarding the use of 

PET/CT imaging for the prediction of therapy response and prognosis 
in radiotherapy. Co-supervising two PhD students. 

                                                 
1 Segmentation of functional images for radiotherapy, ANR TEC 2008, 500k€ (250k€ funded by ANR). 
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III - Educational activities 
 
1) Supervision and co-supervision of trainees and PhD students in the LaTIM 
 
PhD students (supervision) 

 2009-2011: Simon David (thesis viva 13/12/2011) 
Image analysis for therapy response studies in PET 

 2009-2011: Amandine Le Maître (thesis viva 1st semester of 2012) 
Realistic simulations, automatic segmentation and dosimetry in PET/CT imaging 

 2011-2013: Houda Hanzouli (started October 2011) 
Multi resolution image analysis for multi modal imaging 

PhD students (co-supervision) 
 2008-10: Adrien Le Pogam (thesis viva 04/2010) 

Partial volume effects correction in emission imaging 
 2010-12: Florent Tixier (thesis viva 2012) 

Characterization of tracer uptake heterogeneity in PET using textural features 
 
Trainees (supervision) 

 2011: M. Sayed (ISEN engineer, 3 months) (collaboration with INSERM U613, Brest) 
Automatic registration of fluorescence images of mice for gene transfer applications 

 2010: T. Merlin (ISEN engineer, 6 months) 
Development and validation of an automatic algorithm for estimation and comparison 
of PET delineations for oncology 

Trainees (co-supervision) 
 2011: Hela Rezgui (ENSI engineer, 9 months) 

Multivariate analysis for prognosis and response prediction in esophageal and head 
& neck cancers 

 2011: Houda Hanzouli (ENSI engineer, 6 months) 
PET images denoising using combined wavelet and curvelet transforms 
 

2) Teaching (University of Brest) 
 
Since 2010: DES of radiotherapy 

PET Physics and use of PET imaging in radiotherapy applications 
15h / year 
 

Since 2009: master 2 SIBM (Signal and Image in Biology and Medicine) 
PET/CT imaging, digital medical image processing, PET quantification 
9h / year 
Advanced image segmentation techniques and applications in medical imaging 
3h / year 
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IV -  Publications and communications 
 

1)  Original articles in peer-reviewed journals 
 
1. A. Le Maitre, D. Visvikis, C. Cheze-Le Rest, O. Pradier, M. Hatt . Dose prescription adapted to 
functional tumor 18F-FDG heterogeneities: the influence of contrast and size of sub-volumes. Physics 
in Medicine and Biology 2012; in revision 
 
2. S. David, D. Visvikis, Q. Quellec, P. Fernandez, M. Allard, C. Roux, M. Hatt . Image change 
detection using paradoxical theory for patient follow-up quantitation and therapy assessment. IEEE 
Transactions on Medical Imaging 2012; in revision. 
 
3. F. Tixier, M. Hatt , C. Cheze Le Rest, A. Le Pogam, L. Corcos, D. Visvikis. Reproducibility of 
tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET 
imaging. Journal of Nuclear Medicine 2012; in press. 
 
4. M. Hatt , A. Le Pogam, D. Visvikis, O. Pradier, C. Cheze le Rest. Impact of partial volume effects 
correction on the predictive and prognostic value of baseline 18F-FDG PET images in esophageal 
cancer. Journal of Nuclear Medicine 2012;53(1):12-20. 
 
5. M. Hatt , C. Cheze le Rest, A. van Baardwijk, P. Lambin, O. Pradier,  D. Visvikis. Impact of tumor 
size and tracer uptake heterogeneity in 18F-FDG PET and CT Non–Small Cell Lung Cancer tumor 
delineation. Journal of Nuclear Medicine 2011;52(11):1690-7. 
 
6. S. David, D. Visvikis, C. Roux, M. Hatt . Multi observation PET image analysis for patient follow-
up quantitation and therapy assessment. Physics in Medicine and Biology 2011;56(18):5771-88. 
[Featured free article as editor’s choice] 
 
7. A. Le Pogam, M. Hatt , P. Descourt, N. Boussion, C. Tsoumpas, FE. Turkheimer, C. Prunier-Aesch, 
J-L. Baulieu, D. Guilloteau, D. Visvikis. Evaluation of a 3D local multi-resolution algorithm for the 
correction of partial volume effects in positron emission tomography. Medical Physics 
2011;38(9):4920-4933. [Cover of the issue] 
 
8. M. Hatt , D. Visvikis, O. Pradier, C. Cheze-le Rest. Baseline 18F-FDG PET image derived 
parameters for therapy response prediction in œsophageal cancer. European Journal of Nuclear 
Medicine and Molecular Imaging 2011;38(9):1595-1606. 

 
9. M. Hatt , D. Visvikis, N. M. Albarghach, F. Tixier, O. Pradier, C. Cheze-le Rest. Prognostic value 
of 18F-FDG PET image-based parameters in œsophageal cancer and impact of tumor delineation 
methodology. European Journal of Nuclear Medicine and Molecular Imaging 2011;38(7):1191-1202. 
 
10. F. Tixier, C. Cheze Le Rest, M. Hatt , N. M. Albarghach, O. Pradier, J-P. Metges, L. Corcos, D. 
Visvikis. Intra-tumor heterogeneity characterized by textural features on baseline 18F-FDG PET 
images predicts response to concomitant radio-chemotherapy in esophageal cancer. Journal of Nuclear 
Medicine 2011;52(3):369-378. 

 
11. M. Hatt , C. Cheze le Rest, N. M. Albarghach, O. Pradier, D. Visvikis. Robustness and 
repeatability of image segmentation approaches dedicated to PET tumor uptake volume delineation. 
European Journal of Nuclear Medicine and Molecular Imaging 2011;38(4):663-672. 
 
12. M. Hatt , C. Cheze-Le Rest, E. O. Aboagye, L. M. Kenny, L. Rosso, F. E. Turkheimer, N. M. 
Albarghach, O. Pradier, D. Visvikis. Reproducibility of 18F-FDG and 3'-Deoxy-3'-18F-Fluorothymidine 
PET Tumor Volume Measurements. Journal of Nuclear Medicine 2010;51(9):1368-1376. 

http://jnm.snmjournals.org/content/early/2011/10/10/jnumed.111.092767.abstract
http://jnm.snmjournals.org/content/early/2011/10/10/jnumed.111.092767.abstract
http://jnm.snmjournals.org/content/early/2011/10/10/jnumed.111.092767.abstract
http://iopscience.iop.org/0031-9155/56/18/001/
http://iopscience.iop.org/0031-9155/56/18/001/
http://online.medphys.org/resource/1/mphya6/v38/i9/p4920_s1
http://online.medphys.org/resource/1/mphya6/v38/i9/p4920_s1
http://www.springerlink.com/content/1376145263v117r3/
http://www.springerlink.com/content/1376145263v117r3/
http://www.springerlink.com/content/6717570h860h51n2/
http://www.springerlink.com/content/6717570h860h51n2/
http://www.springerlink.com/content/6717570h860h51n2/
http://jnm.snmjournals.org/cgi/content/abstract/jnumed.110.082404v1
http://jnm.snmjournals.org/cgi/content/abstract/jnumed.110.082404v1
http://www.springerlink.com/content/9288x01x27432811/
http://www.springerlink.com/content/9288x01x27432811/
http://jnm.snmjournals.org/cgi/content/abstract/jnumed.110.078501v1
http://jnm.snmjournals.org/cgi/content/abstract/jnumed.110.078501v1
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13. M. Hatt , C. Cheze le Rest, P. Descourt, A. Dekker, D. De Ruysscher, M. Oellers, P. Lambin, O. 
Pradier,  D. Visvikis. Accurate automatic delineation of heterogeneous functional volumes in positron 
emission tomography for oncology applications. International Journal of Radiation Oncology Biology 
Physics  2010;77(1):301-308. 
 
14. A. Le Maitre, W.P. Segars, S. Marache, A. Reilhac, M. Hatt , S. Tomei, C. Lartizien, D. Visvikis. 
Incorporating patient specific variability in the simulation of realistic whole body 18F-FDG 
distributions for oncology applications. Proceedings of the IEEE Special Issue on Computational 
anthropomorphic anatomical models, 2009;97(12):2026-2038. 

 
15. M. Hatt , C. Cheze le Rest, A. Dekker, D. De Ruysscher, M. Oellers, P. Lambin, C. Roux,  D. 
Visvikis. Une nouvelle méthode de détermination automatique des volumes fonctionnels pour les 
applications de l'imagerie d'émission en oncologie. Ingénierie et Recherche BioMédicale (numéro 
spécial RITS 2009) 2009;34(4):144-149. 

 
16. M. Hatt , A. Turzo, C. Roux, D. Visvikis. A fuzzy locally adaptive Bayesian segmentation 
approach for volume determination in PET. IEEE Transactions on Medical Imaging 2009;28(6):881-
893. 
 
17. N. Boussion, C. Cheze Le Rest, M. Hatt , D. Visvikis. Incorporation of wavelet based denoising in 
iterative deconvolution for partial volume correction in whole body PET imaging. European Journal 
of Nuclear Medicine and Molecular Imaging 2008;36(7):1064-75. 

 
18. N. Boussion, M. Hatt , F. Lamare, C. Cheze Le Rest, D. Visvikis. Contrast enhancement in 
emission tomography by way of synergistic PET/CT image combination. Computer Methods and 
Programs in Biomedicine 2008;90(3):191-201. 
 
19. M. Hatt , F. Lamare, N. Boussion, A. Turzo, C. Collet, F. Salzenstein, C. Roux, K. Carson, P. 
Jarritt, C. Cheze-Le Rest, D. Visvikis. Fuzzy hidden Markov chains segmentation for volume 
determination and quantitation in PET. Physics in Medicine and Biology 2007;52(12):3467-3491. 
 
20. F. Salzenstein, C. Collet, S. Lecam, M. Hatt . Non-stationary fuzzy Markov chain. Pattern 
Recognition Letters 2007;28(16):2201-2208. 
 
21. N. Boussion, M. Hatt , F. Lamare, Y. Bizais, A. Turzo, C. Cheze-Le Rest, D. Visvikis. A multi 
resolution image based approach for correction of partial volume effects in emission tomography. 
Physics in Medicine and Biology 2006;51(7):1857-18766. 
 
 

2) Reviews in peer-reviewed journals 
 

M. Hatt , N. Boussion, C. Cheze-le Rest, D. Visvikis, O. Pradier. Metabolically active volumes 
automatic delineation methodologies in PET imaging: review and perspectives. Cancer/Radiothérapie 
2011; online in october. 
 

3) Letters to the editor of peer-reviewed journals 
 
M. Hatt , D. Visvikis, C. Cheze Le Rest. Regarding Autocontouring and Manual Contouring: Which Is 
the Better Method for Target Delineation Using 18F-FDG PET/CT in Non–Small Cell Lung Cancer? 
By K. Wu et al. Journal of Nuclear Medicine 2011;52(4):658. 
 
M. Hatt , D. Visvikis. Defining radiotherapy target volumes using 18F-Fluoro-Deoxy-Glucose Positron 
Emission Tomography: still a Pandora box?: in regard to Devic et al. International Journal of 
Radiation Oncology Biology Physics 2010; 78(5):1605. 

http://www.redjournal.org/article/S0360-3016%2809%2902954-X/abstract
http://www.redjournal.org/article/S0360-3016%2809%2902954-X/abstract
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5332060
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5332060
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B94S6-4WN8HGF-2&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b6229c107189dbd89c767129df0d0336
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B94S6-4WN8HGF-2&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=b6229c107189dbd89c767129df0d0336
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4982914&arnumber=4749328&count=20&index=10
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4982914&arnumber=4749328&count=20&index=10
http://www.springerlink.com/content/w357q577202r41nm/
http://www.springerlink.com/content/w357q577202r41nm/
http://www.cmpbjournal.com/article/S0169-2607(07)00319-7/abstract
http://www.cmpbjournal.com/article/S0169-2607(07)00319-7/abstract
http://www.iop.org/EJ/abstract/0031-9155/52/12/010/
http://www.iop.org/EJ/abstract/0031-9155/52/12/010/
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V15-4P6VD1M-3&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=70452f765daa03e898da79c6374537f4
http://www.iop.org/EJ/abstract/0031-9155/51/7/016
http://www.iop.org/EJ/abstract/0031-9155/51/7/016
file:///C:/Documents%20and%20Settings/Hatt/Application%20Data/Microsoft/Word/%5bFeatured%20free%20article%20as%20editor’s%20choice%5d
file:///C:/Documents%20and%20Settings/Hatt/Application%20Data/Microsoft/Word/%5bFeatured%20free%20article%20as%20editor’s%20choice%5d
http://jnm.snmjournals.org/cgi/content/full/52/4/658
http://jnm.snmjournals.org/cgi/content/full/52/4/658
http://jnm.snmjournals.org/cgi/content/full/52/4/658
http://www.redjournal.org/article/S0360-3016%2810%2903048-8/fulltext
http://www.redjournal.org/article/S0360-3016%2810%2903048-8/fulltext
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4) Book chapters 

 
M. Hatt , D. Visvikis, Chapitre 4 : Tomographie par émission de positons et tomographie d’émission 
monophotonique dynamiques, in 'Imagerie Dynamique Cardiaque : Systèmes et Techniques 
d'acquisition', P. Clarysse & F. Frouin publishing, 2011. 
 

5) Communications and invited talks in peer-reviewed international conferences 
 

See appendix for full list. 
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V - Scientific societies, grants, industrial and research partnerships, awards 
 
Scientific societies and professional committees 
 
 Member of the following scientific societies 

 
 IEEE (Institute of Electrical and Electronics Engineers) 
 AAPM (American Association of Physicists in Medicine) 
 SNM (Society of Nuclear Medicine) 
 SFGBM (French Society of BioMedical enGineering) 
 

 Member of AAPM Taskgroup n° 211 2 
Classification, Advantages and Limitations of the Auto-Segmentation Approaches for PET 
 

 Member of SNM computer & instrumentation council 
 

 Substitute member for France of COST European action TD-10-07 3 
Bimodal molecular imaging technologies coupling PET and MRI for in vivo visualization 
of pathologies and biological processes 
 

 Associate editorial board member of the American Journal of Nuclear Medicine and 
Molecular Imaging4 
 

 Referee for the following journals: 
 
 European Journal of Nuclear Medicine 
 IEEE Transactions on Medical Imaging 
 IEEE Transactions on Information Technology in BioMedicine 
 IEEE Transactions on Nuclear Science 
 Journal of Applied Clinical Medical Physics  
 Journal of Nuclear Medicine 
 Journal of Nuclear Medicine and Radiation Therapy 
 Medical Physics 
 Physics in Medicine and Biology 
 

Grants 
 French national research agency (ANR, 250 k€) 
 Ligue contre le cancer (30 k€) 
 Institut Telecom (55 k€) 
 PhD student grants (190 k€) 

 
 
 

                                                 
2 http://www.aapm.org/org/structure/default.asp?committee_code=TG211 
 
3 http://www.cost.eu/domains_actions/mpns/Actions/TD1007?management 
 
4 http://www.ajnmmi.us/editorialboard.html 

http://www.aapm.org/org/structure/default.asp?committee_code=TG211
http://www.cost.eu/domains_actions/mpns/Actions/TD1007?management
http://www.cost.eu/domains_actions/mpns/Actions/TD1007?management
http://www.aapm.org/org/structure/default.asp?committee_code=TG211
http://www.cost.eu/domains_actions/mpns/Actions/TD1007?management
http://www.ajnmmi.us/editorialboard.html
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Research partnerships 
National 
 CHRU Brest 
 CHRU Bordeaux 
 CHRU Toulouse 

 
International 
 MAASTRO lab – Maastricht (The Netherlands) 
 Nijmegen (The Netherlands). 
 CHU Liège (Belgium) 
 MRC Clinical Sciences Centre Hammersmith (London, UK) 
 UCLH (University College London Hospital) (London, UK) 
 Royal Surrey County Hospital (Guilford, UK) 
 University of Wisconsin, Madison (USA) 
 University of Seattle, Washington (USA) 
 University of Maryland, Baltimore (USA) 
 MD Anderson, Houston, Texas (USA) 
 University of Washington (Seattle, USA) 
 Munich (Germany) 
 Freiburg (Germany) 

 
Industrial partnerships  
 Research agreements with Philips Healthcare and Siemens Healthcare regarding the 

exploitation of the PET segmentation FLAB algorithm 
 
Awards 
 « Best-in-physics » paper in AAPM annual meeting 20115. 
 « Young investigators award » of the New trends in molecular imaging and nuclear 

medicine conference, 2009. 
 « 1st prize research » for best biomedical PhD thesis in 2008, from IEEE-France. 
 Travel grant from NSS-MIC 2008 conference based on the « scientific excellence of the 

submitted contribution ». 
 

Other assignments in the laboratory 
 
 In charge of the internal review committee for the articles written within the group 

 
 Delegate for the post-doc fellows of the laboratory. 
 In charge of the organization and planning for the monthly meeting of the laboratory.

                                                 
5 http://www.aapm.org/m/mtg/absdetail.asp?mid=59&sid=3844&aid=16323 
 

http://www.aapm.org/m/mtg/absdetail.asp?mid=59&sid=3844&aid=16323
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Résumé en français (French summary) 
 

Avec une formation initiale en sciences de l’informatique et une spécialisation image, mes 
activités de recherche actuelles concernent le traitement et l’analyse de l’information et de 
l’image pour des applications en médecine, plus particulièrement l’oncologie et la 
radiothérapie. Plus spécifiquement, je m’intéresse à la segmentation et la classification 
automatique pour la définition des contours d’organes et de tumeurs, au filtrage du bruit et à 
la déconvolution pour l’amélioration qualitative et quantitative, et plus récemment, aux 
modèles multi observation pour la prise en compte des images multi modales, et la fusion 
d’informations pour l’aide à la décision dans la prise en charge des patients. Je poursuis ces 
thématiques spécifiquement dans le cadre de l’utilisation de l’imagerie TEP/TDM 
(Tomographie par Emission de Positons et scanner X) en oncologie et radiothérapie. 
Mes activités de recherche ont pris place dans le contexte de l’équipe « imagerie multi modale 
quantitative pour le diagnostic et la thérapie » du laboratoire INSERM U650 de traitement de 
l’information médicale (LaTIM). Ce contexte a garantit un travail d’équipe pluridisciplinaire, 
en collaboration notamment avec des radiothérapeutes, des médecins nucléaires, des 
physiciens, des ingénieurs, des mathématiciens et des informaticiens. 
En tant que doctorant, ma principale contribution a été le développement d’une méthode 
originale de segmentation d’image adaptée à la définition des volumes fonctionnels des 
tumeurs sur les images TEP. Lors de mon post-doctorat, j’ai poursuivi la validation de la 
précision, de la robustesse et de la reproductibilité de cette approche dans le cadre d’un projet 
ANR pour lequel j’ai reçu un financement de deux ans et demi. J’ai également étudié au cours 
de ces deux dernières années l’impact d’une telle méthode dans de nombreuses  applications, 
telles que la dosimétrie en planification de traitement en radiothérapie, et la prise en charge 
des patients en oncologie. 
Au cours de ces six dernières années, j’ai été de plus en plus impliqué dans des travaux de 
recherche connexes menés par d’autres doctorants et post-doctorants. Ces travaux incluent la 
fusion d’images TEP pour le suivi temporel quantitatif, les simulations réalistes et 
l’évaluation dosimétrique, la caractérisation de l’hétérogénéité intra tumorale des traceurs 
TEP par analyse de texture, et la réduction des effets de volume partiel et du bruit en imagerie 
d’émission. J’ai assumé la responsabilité de co-encadrant de plusieurs stagiaires et doctorants 
de l’équipe sous la direction du directeur de recherche D. Visvikis. Cette responsabilité inclus 
des réunions hebdomadaires et des discussions régulières avec les étudiants, l’aide à la mise 
en place des expériences et protocoles de validation, à l’analyse des résultats, la correction de 
rapports de stage, d’articles et de manuscrits de thèse, ainsi que réfléchir à des solutions aux 
problèmes tant théoriques que techniques. Je travaille actuellement en tant que chercheur 
associé au département de recherche en imagerie et radiothérapie de Maastricht (MAASTRO) 
aux Pays-bas. 
 Au cours des prochaines années, mon projet de recherche sera dédié au développement 
d’un contexte flexible et robuste permettant la modélisation et l’analyse semi-automatique 
d’ensemble d’images médicales multi modales, multi résolutions et multi temporelles, telles 
que TEP/TDM, TEMP/TDM, TEP/IRM, multi IRM ou TEP avec différents traceurs, ainsi que 
des acquisitions dynamiques. Ce développement permettra de déduire de nouveaux modèles 
prédictifs et des outils de décision adaptés à diverses applications cliniques tels que les 
cancers de l’œsophage, rectal, pulmonaire ou ORL, par la fusion de toute l’information 
disponible (imagerie, génétique, phénotypes et rapports cliniques). Ce projet se construira en 
partie sur les travaux préliminaires réalisés avec des doctorants venant de soutenir et en passe 
de terminer leur thèse, et sur les thèses de deux nouvelles doctorantes que j’encadrerai à partir 
d’octobre 2011 et courant 2012, recrutées sur des financements que j’ai contribué à obtenir en 
2010-2011. 
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VI -  Overview of past and present research activities 
 
With an initial formation in theoretical computer sciences with a focus on image 

processing and analysis, my current research activities deal with image and information 
processing and analysis for applications in medicine, namely oncology and radiotherapy. 
More specifically, my research interests are image automatic segmentation and classification 
for organs and tumors delineation, image denoising and deconvolution for qualitative and 
quantitative improvement, and more recently, multi observation models for multi modal 
imaging and information fusion for computer-aided decision making in patients management. 
These developments are especially considered within the context of the use of Positron 
Emission Tomography and Computed Tomography (PET/CT) for oncology and radiotherapy 
applications. 

My research activities have been and are still carried out within the team “quantitative 
multi modal imaging for diagnosis and therapy”, in the LaTIM INSERM U1101. This 
framework ensures a multi disciplinary teamwork, in collaboration with radiation oncologists, 
nuclear medicine physicians, physicists, engineers, mathematicians and computer scientists.   

As a PhD student, my main contribution to the field has been the development of image 
segmentation algorithms dedicated to the automated delineation of metabolically active tumor 
volumes in PET images, with a specific focus on adapting the methodology to specific 
characteristics of the processed images. As a post-doctoral fellow, I have been further 
investigating the accuracy, robustness and reproducibility of this methodology within a 
project for which I had obtained funding from the French research agency (ANR) for two and 
a half years. I have also been investigating the impact of such methodology and its resulting 
tumor volumes measurements in various applications such as the dosimetry impact in 
radiotherapy treatment planning or patient management and therapy assessment in oncology. 

During the last six years I have also been more and more involved in research 
developments by several PhD students and post-doctoral fellows, such as PET images fusion 
for quantitative follow up, realistic simulations and dosimetry evaluation, methodologies for 
reduction of partial volume effects and noise in emission imaging, and textural features 
analysis for characterization of tracer uptake heterogeneity within tumors. Overall, I have 
been acting as co-supervisor of most of the trainees and PhD students of the team under the 
direction of Research Director D. Visvikis. This responsibility included weekly meetings and 
discussions with the students, help with designing experiments and analyzing the results, 
writing of thesis reports and research articles, as well as finding solutions to theoretical 
problems and technical issues. 

In the next few years, my research project will be focused on the development of a 
robust and flexible framework for the modeling and the automatic analysis of multi modality, 
multi resolution, multi observation and multi temporal images datasets, such as PET/CT, 
SPECT/CT, PET/MRI, multi MRI or PET tracers imaging, as well as dynamic acquisitions. 
This development will allow deriving new predictive models and decision tools by fusion of 
the available multi source information (imaging, genetics and other clinical data), validated in 
various models such as esophageal, rectal, lung, or head & neck cancers. Additional 
applications in neurology (for example Alzheimer’s disease) might also be explored. This 
project will be based on previous developments by PhD students that are almost finished with 
their thesis, and will focus on new PhD students beginning their work under my supervision 
in October 2011 and early 2012, whose recruitment was possible thanks to grants I 
contributed to obtain in 2010-2011. 
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1. Research during the PhD 
A. PhD methodological developments 

 
One of the main factors of error for semi-quantitative analysis in positron emission 

tomography (PET) imaging for diagnosis and patient follow up (1), as well as new flourishing 
applications like image guided radiotherapy (2), is the methodology used to define the 
volumes of interest in the functional images. This is explained by poor image quality in 
emission tomography resulting from noise  and partial volume effects (3) induced blurring, as 
well as the variability of acquisition protocols, scanner models and image reconstruction 
procedures (4). Manual delineation of the metabolically active tumor volumes (MATV) is 
extremely subjective and suffers from major inter and intra observer variability (5). In 
addition, it is especially tedious and time consuming; therefore it is never used in clinical 
practice. The majority of previously published approaches were based at the time (before 
2005) on deterministic binary thresholding (6) that are not robust to contrast variation and 
noise (7). In addition, these methodologies are unable to correctly handle heterogeneous 
uptake inside tumors (8). The objective of my thesis was to develop an automatic, robust, 
accurate and reproducible 3D image segmentation approach for the functional volumes 
determination of tumors of all sizes and shapes, and whose activity distribution may be 
strongly heterogeneous. The approach I have developed is based on a statistical image 
segmentation framework, combined with a fuzzy measure, which allows to take into account 
both noisy and blurry properties of emission images (9). A first development was carried out 
using fuzzy hidden Markov chains as a spatial model [1], which gave satisfying results except 
for small structures (either small lesions or small sub volumes within a lesion, as well as 
complex shapes and contours) [2]. A second development was carried out to solve these 
issues and was named FLAB for Fuzzy Locally Adaptive Bayesian [3]. It still exploited a 
stochastic iterative parameters estimation and a fuzzy measure as in the first method, however 
the hidden Markov chains model was replaced by a locally adaptive model of the voxel and 
its neighbors for the estimation and segmentation. This method was also improved in order to 
be able to consider up to three classes in the images, in order to account for heterogeneous 
activity (either in the background or within the tumor). FLAB was evaluated using a large 
array of datasets, comprising both simulated and real acquisitions of phantoms and tumors. 
The results obtained on phantom acquisitions allowed validating the accuracy of the 
segmentation with respect to the size of considered structures, down to 13-17 mm in diameter 
as well as its robustness with respect to noise, contrast variation, and acquisition parameters. 
The performance of the developed algorithm was shown to be superior to threshold-based 
methodologies and other clustering algorithms. The results demonstrated the ability of the 
developed approach to accurately delineate tumors with complex shapes and activity 
distributions, as illustrated in figure 1, in which the result of FLAB is compared to the results 
on an adaptive threshold approach used by two different clinicians on patient image with an 
esophageal lesion. This illustrates well the ability of FLAB to obtain a complete tumor 
volume in case of heterogeneous activity, contrary to the adaptive threshold approach. It also 
emphasizes the lack of repeatability of the adaptive threshold method due to heterogeneous 
background uptake in the mediastinum. 



Habilitation à diriger les recherches 
Mathieu Hatt 

14 

 The FLAB algorithm was also able to delineate multiples regions inside the tumor [4]. 
Some of the datasets used for the accuracy evaluation were generated using realistic Monte 
Carlo simulations that were improved in several ways in collaboration with another PhD 
student (A. Le Maitre), including patient-specific anatomical properties and complex non 
spherical shaped tumors exhibiting heterogeneous tracer uptake [5]. Both robustness and 
accuracy results demonstrated that the proposed methodology may be used in clinical context 
for diagnosis and patients follow up, as well as for radiotherapy treatment planning and "dose 
painting", facilitating optimized dosimetry and potentially reduced doses delivered to healthy 
tissues around the tumor and nearby organs. 
 
[1] F. Salzenstein, C. Collet, S. Lecam, M. Hatt, Non-stationary fuzzy Markov chain, PRL 2007 
[2] Hatt et al. Fuzzy hidden Markov chains segmentation for volume determination and quantitation in 
PET, PMB 2007 
[3] Hatt et al. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET, 
IEEE TMI 2009 
[4] Hatt et al. Accurate automatic delineation of heterogeneous functional volumes in positron emission 
tomography for oncology applications, IJROBP 2010 
[5] A. Le Maitre, W.P. Segars, S. Marache, A. Reilhac, M. Hatt, et al. Incorporating patient specific 
variability in the simulation of realistic whole body 18F-FDG distributions for oncology applications, 
Proceedings of the IEEE 2009 

 
This work was recognized by an award co-delivered by the French section of the IEEE and 
the French society of biomedical engineering (SFGBM) for the best research PhD thesis in 
biomedical imaging defended in 2008. A conference paper describing the latest developments 
and validation of the FLAB approach was recognized in 2008 by the IEEE-Medical Imaging 
Conference committee through a trainee grant based on the scientific excellence of the 
contribution. According to Google Scholar, the four methodological papers [1-4] add up to 
more than 100 citations, almost 50 of them for the FLAB paper [3]. 
 
 



 

Fig.1 Coronal, sagital and axia views of a 18F-FDG PET image of a patient with esophageal cancer (large heterogeneous MATV). Delineation (blue contours) using 
FLAB (on the left) and adaptive threshold with two different observers (on the right and in the middle). Note the significant underestimation obtained with adaptive 
threshold (both users) due to the heterogeneity. 



B. Additional methodological developments 
 
There are numerous other pitfalls and sources of errors in PET imaging. Most importantly, 

the level of noise and its characteristics, as well as partial volume effects (PVE), lead to 
significant quantitative biases and qualitatively degraded images (4). Both aspects are also 
closely related to the problem of automatic delineation of PET images. Therefore, during my 
PhD I have been working closely with a post-doctoral fellow (N. Boussion) and a fellow PhD 
student in the team (A. Le Pogam), on denoising and deconvolution methodologies dedicated 
to emission imaging. I have contributed to several developments, including two PVE 
correction methods and a denoising approach. The first methodology was based on the use of 
anatomical high resolution details from the co-registered morphological images (such as CT 
or MRI) in order to correct for the spill in and spill out effects of partial volume effects in the 
associated functional dataset. This Mutual Multi resolution Analysis (MMA) method 
exploited spatial-frequency analysis, namely wavelet transforms, and extracted structural 
details from these decompositions in order to derive a model linking both image modalities 
[1-2]. Another approach was also developed in order to correct for PVE in emission images 
without requiring associated high resolution anatomical datasets, or in cases (and there are 
many) for which no spatial correlation between the morphological and functional datasets can 
be exploited. This second approach was based on iterative deconvolution (10-11), which is a 
well known method for improving spatial resolution of images. However, such algorithms are 
associated with increased noise levels in the deconvolved images, which is not compatible 
with their subsequent clinical use. Therefore, we designed a denoising methodology dedicated 
to emission imaging, based on the filtering of wavelet coefficients using a Bayesian based 
method to discriminate between noise and information in the wavelet domain (12). This 
methodology was then included in the iterative deconvolution process in order to control the 
noise propagation additively introduced by each iteration of the deconvolution. This allowed 
significantly reducing the blur in emission imaging without significant addition of noise. The 
validation of the method demonstrated its ability to restore accurate quantitative 
measurements in the images, while providing full whole-body corrected images [3]. Note that 
the developed denoising method was also considered as a standalone denoising approach for 
emission imaging (see part 2.3) 
 
[1] N. Boussion, M. Hatt, et al. A multiresolution image based approach for correction of partial volume 
effects in emission tomography, PMB 2006 
[2] N. Boussion, M. Hatt, et al. Contrast enhancement in emission tomography by way of synergistic 
PET/CT image combination, CMBP 2008 
[3] N. Boussion, C. Cheze Le Rest, M. Hatt, et al. Incorporation of wavelet based denoising in iterative 
deconvolution for partial volume correction in whole body PET imaging, EJNM 2008 
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2. Post-doctoral work  
  

During the last few months of my PhD, I applied for a research grant to the French 
National Research Agency (ANR Emergence TEC 2008 call to projects) and received a 250k€ 
grant for two and a half year for a project named SIFR (segmentation of functional images for 
radiotherapy, complete cost 500k€). 
The goals of this project were to i) further validate the automatic delineation algorithm 
proposed during my PhD and ii)  investigate its impact and value in the clinical setting through 
various studies.  
The following describes my main research activities within this SIFR project, which included 
supervision of trainees and PhD students, as well as other contributions to additional 
methodological developments carried out in the team by various students under my co-
supervision. 
 
A. Robustness, repeatability and reproducibility of MATV measurements in PET 
imaging 
 
Automatic delineation approaches for MATV measurements in PET images may be of 
interest for applications such as target volume definition in radiotherapy for scenarios of dose 
redistribution, boosting or painting (13), and oncology applications such as diagnosis, 
prognosis and prediction or assessment of response to therapy (early or late during treatment) 
(1, 14). Their use however faces several pitfalls.  
 
First, there is a clear lack of standardization of acquisition and reconstruction protocols across 
clinical centers (4, 15). Each one has its own scanner model and associated vendor-specific 
iterative reconstruction algorithm (and associated pre or post filtering options and voxel sizes 
for the reconstruction grid), with a specific set of chosen and often optimized parameters for 
their specific acquisition protocols (injected dose, time between injection and acquisition, 
acquisition duration, etc). Such differences lead to images that have vastly different properties 
of noise levels, signal-to-noise ratios, textures, and spatial resolution. The robustness of the 
method used to delineate MATVs on images from different centers is therefore crucial, 
especially when considering multi-centric clinical studies. One objective was therefore to 
investigate the robustness of existing methods.  
Second, the reproducibility of PET scans is known to be limited, even with highly 
standardized acquisition and reconstruction protocols. The reproducibility of maximum 
activity measured in tumors had been previously assessed by various authors using double 
baseline PET scans (carried out at a few days interval with a procedure as identical as 
possible), and reported upper and lower reproducibility limits of about ±15 to 30% (16-17). 
These results constituted the basis for the definition of confidence intervals regarding the 
required maximum activity variation between pre and post treatment PET scans to 
characterize patient responding, stable or progressive disease in solid tumors (1). If the 
MATVs and their associated measurements (mean SUV for example) are to be used within 
the same context, it is mandatory to evaluate their reproducibility on double baseline scans, 
which was a second objective. 
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Third, the repeatability is an important characteristic of any automated approach, since one of 
the major advantages of using automatic algorithms is the low inter and intra user variability, 
with respect to manual delineation, in addition to the gain in time. The evaluation of the 
repeatability was therefore a third objective. 
 

a) Robustness 
We designed the following study for assessing the robustness of the FLAB methodology with 
respect to other existing approaches (fixed and adaptive threshold). We considered a single 
physical phantom containing spheres of various diameters that can be filled with activity, as 
well as the background, in order to create a contrast between the sphere (simulating a simple 
tumor) and the background (simulating an homogeneous physiological background). Clearly, 
such homogeneous spheres on homogeneous background are insufficient to properly validate 
the accuracy of a delineation algorithm since tumors are often non spherical and exhibit 
heterogeneous tracer uptake. However, this is a proper tool to investigate robustness of the 
delineation with respect to varying acquisition conditions. The originality of this study was to 
consider acquisitions carried out on four state-of-the-art PET/CT scanners by all three vendors 
(Siemens, GE, Philips), including a time-of-flight model (Philips), and their associated 
reconstruction algorithms (OSEM, RAMLA and MLEM) and post-filtering options. In 
addition, a protocol was designed such as for each scanner model, different acquisition 
parameters would be available: two contrasts between the spheres and the background 
(around 4-5 to 1, and 8-10 to 1), three acquisition durations (1, 2 and 5 minutes) to investigate 
the noise, and two voxel sizes used in the reconstruction (2 or 4-5 mm in each dimension). 
This allowed for a wide range of image qualities, texture and properties to investigate the 
robustness. FLAB demonstrated significantly higher robustness (lower variability of the 
results) to varying acquisition and reconstruction parameters or across scanner models than 
the other methods [1]. 
 

b) Reproducibility 
We designed the following study to investigate reproducibility of tumor volume 
measurements in PET images: two clinical datasets were considered, including esophageal 
lesions with 18F-FDG, and breast cancer with 18F-FLT, both with double baseline PET scans. 
At this occasion, I stayed as a visiting fellow in the MRC clinical center of the Hammersmith 
Hospital, in London, for the specific investigation of the reproducibility of tumor volumes 
measurements in breast cancer imaged with 18F-FLT. We demonstrated that using FLAB, 
tumor volumes could be automatically delineated on both FDG and FLT (despite the 
increased noise and lower contrast in FLT images) with reproducibility similar to the 
extraction of maximum activity with upper and lower limits of about 30%. On the contrary, 
using threshold-based methods, upper and lower limits were significantly higher (40-90%, 
consistent with another study (18)) and therefore less compatible for response monitoring 
purposes, especially early during treatment [2]. 
 

c) Repeatability 
Repeatability was investigated for FLAB and other methods in both the previous studies 
considering different simulated and real clinical datasets, demonstrating much higher 
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repeatability with the automated methods (less than a few % variability) than manual 
delineation (15-30% inter and intra observer variability) [1-2]. 
 
[1] M. Hatt, et al. Robustness and repeatability of image segmentation approaches dedicated to PET 
tumor uptake volume delineation, EJNM 2011. 
[2] M. Hatt, et al. Reproducibility of 18F-FDG and 3'-Deoxy-3'-18F-Fluorothymidine PET Tumor Volume 
Measurements, JNM 2010. 
 

This work was recognized by a “young investigator award” delivered by the conference “New 
trends in molecular imaging and nuclear medicine” in 2009. Despite being relatively recent 
papers, these two papers add up to 24 citations according to Google Scholar. 
 
B. Clinical value and impact of automatic MATV delineation in oncology and 
radiotherapy 
 
Automatic delineation approaches for MATV measurements in PET images may be useful for 
several applications, for instance patient management and therapy monitoring in oncology, as 
well as tumor targeting in radiotherapy planning, dose redistribution and boosting. 
 

a) Prognosis and response to therapy prediction 
18F-FDG PET has been identified as a powerful tool for diagnosis and prognosis in several 
cancer models, such as lung, esophageal, rectal and head and neck (19). In addition, the use of 
PET has been suggested to assess treatment response after the end of treatment or earlier 
during treatment (1). Finally, it has been suggested that it may be possible to predict response 
based on the baseline scan before treatment, which could improve patients’ management. 
Potential non responders could indeed be identified before treatment, thus avoiding 
unnecessary toxicities. However, most of the studies have investigated the prognostic or 
predictive value of PET images by extracting maximum activity (SUVmax) only. In order to 
investigate the potential clinical value of accurate tumor volume delineation and the 
extraction of associated parameters from baseline 18F-FDG PET scans, we carried out a 
retrospective study on 50 patients treated for locally advanced esophageal cancer with 
concomitant radiochemotherapy. The results demonstrated that whereas standard clinical 
parameters and usual SUV measurements were neither prognostic nor predictive factors, 
measurements derived from metabolic volume were highly correlated with overall survival [1] 
or response to therapy [2], larger and more active volumes being associated with poor 
outcome and worse response. This is illustrated in figure 2. Receiver operating characteristic 
(ROC) curves are provided for the identification of complete responders or non responders, 
using various image-derived indices. MATV derived indices have significantly higher area 
under the curve (AUC) than SUV measurements. 
In both these studies we also demonstrated that more accurate prediction could be achieved 
with more accurate methods. I also took part in the investigation of additional PET derived 
indices by co-supervising a PhD student (F. Tixier) working on the spatial patterns 
characterization of the tracer uptake heterogeneity within the tumor in PET images. Tumor 
heterogeneity has been identified as a potential factor of failed treatment and its 
characterization is therefore of potentially high clinical value (20). After accurate tumor 
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volume delineation, several parameters derived from textural features analysis of the voxels 
within the tumor could provide characterization and quantification of local and regional 
heterogeneity patterns. Several of these parameters were significantly correlated with 
response, higher heterogeneity being associated with poorer or lack of response [3]. 
Therefore, we demonstrated that it may be possible to improve patient management by 
identifying potential non responders before even initiating treatment by exploiting more fully 
the information contained in the baseline PET images. However, such a more complete 
analysis requires validated and robust semi-automated tools (21). Similarly to MATV 
measurements, evaluation of the specific reproducibility of these new indices is crucial to 
identify which parameters could be used for heterogeneity characterization during treatment 
for response monitoring. Such a study has been conducted and allowed identifying several 
local and regional heterogeneity parameters with sufficient reproducibility, but also excluding 
some of them that were characterized by very high variability across double baseline scans 
[4]. 
 
[1] M. Hatt, et al. Prognostic value of 18F-FDG PET image-based parameters in œsophageal cancer and 
impact of tumor delineation methodology, EJNM 2011 
[2] M. Hatt, et al. Baseline 18F-FDG PET image derived parameters for therapy response prediction in 
œsophageal cancer, EJNM 2011 
[3] F. Tixier, C. Cheze Le Rest, M. Hatt, et al. Intra-tumor heterogeneity characterized by textural 
features on baseline 18F-FDG PET images predicts response to concomitant radio-chemotherapy in 
esophageal cancer, JNM 2011. 
[4] F. Tixier, M. Hatt, et al. Reproducibility of tumor uptake heterogeneity characterization through 
textural feature analysis in 18F-FDG PET imaging, JNM 2012; in press. 
 
 



 

Fig.2: identification of complete responders (left) and non responders (right) in locally advanced esophageal cancer using SUV (max, peak or mean), or tumor 
volume (TV) and associated total lesion glycolysis (TLG, volume multiplied by mean SUV) extracted from baseline 18F-FDG PET scans. 



b) Tumor targeting and dosimetry in radiotherapy 
The use of CT images is considered the gold standard for the definition of tumor target 
volumes in radiotherapy planning (22). There is however a growing interest in including PET-
based target delineation in order to reduce inter and intra observer delineation variability 
especially in cases where the tumor morphological contours are not clearly distinguishable 
(23). Also, the use of PET in radiotherapy is being considered to derive modified treatment 
plans using boosting or redistribution of the dose to specific parts of the tumor identified as 
being more metabolically active (using FDG), proliferative (using FLT) or hypoxic (using 
CU-ATSM, HX4 or FMISO), in order to reach higher tumor control probability (TCP) (13). 
However, this potentially requires accurate delineation of tumor volumes and sub-volumes in 
PET images. We therefore conducted different studies to demonstrate the dosimetry impact of 
such accurate delineation on standard IMRT (intensity-modulated radiotherapy) plans as well 
as the interest of dose redistribution or boosting, based on PET images with different tracers. 
Most of this work was conducted under my supervision by a PhD student (A. Le maitre), 
building on our previous work regarding advanced Monte Carlo simulations (24). We used 
such simulated datasets to compare delineation results by several approaches (FLAB and 
threshold-based methods) in terms of volume errors, sensitivity and positive predictive value. 
In addition, we investigated target coverage, dose homogeneity and D95 (target volume 
receiving 95% of prescribed dose), with a specific focus on cases with heterogeneous tracer 
distribution [1]. In addition, we carried out a study on simulated and clinical datasets 
regarding the impact of contrast and size of tumor functional sub-volumes on the dose 
redistribution and dose boosting scenarios, demonstrating the TCP improvement using 
boosting if contrast between the sub-volumes within the tumor is sufficient [2]. Finally, in 
collaboration with the MAASTRO clinic in the Netherlands, I also recently investigated the 
impact of tumor size and tracer uptake heterogeneity on the gross target volume delineation of 
non-small cell lung cancer validated by histopathology data on surgical specimens. The 
results highlighted a significant correlation between morphological volume and FDG uptake 
level of heterogeneity, and confirmed the need for advanced segmentation algorithms to 
obtain accurate PET heterogeneous delineation of the target volume [3]. 
 
[1] A. Le Maître, D. Visvikis, C. Cheze-le Rest, O. Pradier, M. Hatt, Impact of the accuracy of automatic 
tumor functional volume delineation on radiotherapy treatment planning, Med Phys 2012, submitted. 
[2] A. Le Maître, D. Visvikis, C. Cheze-le Rest, O. Pradier, M. Hatt, Dose prescription adapted to 
functional tumor radiotracer heterogeneities: the influence of contrast, PMB 2012, in revision. 
[3] M. Hatt, et al, Impact of tumor size and tracer uptake heterogeneity in 18F-FDG PET and CT Non–
Small Cell Lung Cancer tumor delineation, JNM 2011 
 
 
 
 
 
 
 
 

 C. Image fusion and paradoxical theory for therapy follow-up using sequential PET/CT 
images and multi-tracer PET images analysis 
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It has been proposed to consider the analysis of sequential PET/CT scans carried out 
before, during and after treatment in order to monitor response to therapy. However until now, 
most of the studies have only considered the evolution of simple measurements like SUVmax 
(25). In addition, the use of multiple radiotracers to image different physiological processes 
(glucose consumption, cellular proliferation, hypoxia...) leads to as many images as tracers for 
a single patient (26). In both applications, the independent visual or semi-automatic analysis 
of each image might be insufficient as the correlation between images would not be fully 
exploited. In the work of a PhD student (S. David) under my supervision, we developed 
methods to automatically analyze and process multiple co-registered images, either sequential 
PET images for therapy follow-up, or the combination of different tracers, for instance to 
devise a biological target tumor volume in radiotherapy. The methods developed are based on 
multi observation fusion and classification within a Bayesian framework (27), in order to take 
into account all available information simultaneously. The approach demonstrated improved 
results with respect to independent segmentations on simulated data as well as clinical pre and 
post treatment PET images [1]. Another approach was also recently developed, based on 
paradoxical theory (Denzert-Smarandache fusion) (28) for the fusion of locally estimated 
parameters of interest [2]. Although these methods require rigid registration of multiple PET 
images and are therefore dependent on issues such as respiratory motion or anatomical 
changes during time, they could provide visual and quantitative estimation of tumor evolution 
during treatment as well as multi tracer analysis for radiotherapy target volume definition, as 
illustrated in figure 3 next page. 
 
[1] S. David, D. Visvikis, C. Roux, M. Hatt, Multi observation PET image analysis for patient follow-up 
quantitation and therapy assessment, PMB 2011 [selected as editor’s choice] 
[2] S. David, D. Visvikis, G. Quellec, P. Fernandez, M. Allard, C. Roux, M. Hatt, Image change detection 
using paradoxical theory for patient follow-up quantitation and therapy assessment, IEEE TMI 201, in 
revision. 



Habilitation à diriger les recherches 
Mathieu Hatt 

24 

 

 
 
Fig.3: pre et post treatment PET images of a necrotic rectal cancer tumor, with corresponding fusion 
showing responding (dark blue) or stable (green) voxels, as well as different sub-volume heterogeneities 
disappearing (light blue) or appearing (red). 



Habilitation à diriger les recherches 
Mathieu Hatt 

25 

 

 
 

D. PET image denoising and partial volume effects correction 
 

I have been involved in the improvement of PET image wavelet-based denoising process by 
co-supervising the work of a PhD student (A. Le Pogam) as well as a master 2 trainee (H. 
Hanzouli). The major disadvantage of wavelets is the lack of direction information in the 
spatial-frequency transform, and therefore contours are not well preserved in the filtered 
image. On the contrary, curvelets explicitly model contours and better preserve them, whereas 
they are not as appropriate as wavelets to describe small point discontinuities (29). A method 
was then devised to combine wavelets and curvelets to reach the best compromise between 
denoising and preservation of the important information such as contours [1]. It should be 
emphasized that this method was also incorporated in the previously described deconvolution 
technique to improve the required denoising step. Using this improved deconvolution method, 
I recently demonstrated the lack of impact of PVE correction on prognostic or predictive 
clinical value of parameters derived from baseline PET scans in locally advanced esophageal 
cancer [2], although the impact of PVE correction on lesion detectability tasks or serial PET 
scans analysis remains to be evaluated. 
I also contributed to another development of A. Le Pogam regarding the improvement of the 
partial volume effects correction method (MMA) developed in collaboration with N. 
Boussion and described previously (30). The first MMA method had two issues, first it was a 
global approach, meaning that the model linking functional and anatomical datasets was 
defined by one global parameter. The model was in addition applied to the entire image, 
independently of the correlation between datasets, which could introduce artefacts (such as 
bones from CT) in the corrected PET images. Second, it was a 2D method only. The method 
was therefore improved by designing a local and 3D model, and we demonstrated similar or 
significantly improved quantitative correction and qualitative visual aspects of the corrected 
images, with no artefacts in case of lack of correlation between the datasets [3]. This paper 
made the cover of the september issue of Medical Physics (see illustration in figure 4). 
 
[1] A. Le Pogam, H. Hanzouli, M. Hatt, et al, A combined 3-D wavelet and curvelet approach for edge 
preserving denoising in emission tomography, IEEE TMI 2012, submitted. 
[2] M. Hatt, et al, Impact of partial volume effects correction on the predictive and prognostic value of 
baseline 18F-FDG PET images in esophageal cancer, JNM 2012, in press 
[3] A. Le Pogam, M. Hatt, et al, Evaluation of a 3D local multi-resolution algorithm for the correction of 
partial volume effects in positron emission tomography, Med Phys 2011 [cover of the September issue] 



 
Fig.4: PVE correction obtained with the original 2D MMA (3) versus the improved 3D local MMA (4) from the uncorrected PET (2) using details in the associated 
MRI (1). Notice the lack of artefacts in (4) with respect to the skull (red arrow) and the gadolinium injection (white cercle) that are introduced in the corrected 
image by the global approach (3). 



 

VII -   Future research project 

Nowadays, the current trend in medical imaging is providing more and more images to 
characterize pathologies. Several imaging modalities have been used for decades (US, MRI, 
CT, PET), and new modalities are developed (optical imaging for instance). Existing 
modalities have also been expanded with new modes of acquisitions, providing 
complementary information, such as for instance different radiotracers in PET imaging 
beyond glucose metabolism, or various sequences with MRI. This trend has also been further 
emphasized since PET/CT multi modal devices have been introduced in the clinical setting for 
a decade now, and today with emerging PET/MRI systems, either sequential or simultaneous 
(31). The fourth dimension is also being more and more available, with significant advances 
in both hardware and software, allowing dynamic acquisitions to provide information on 
organs and tumors motion in both anatomical and functional modalities (32). It should also be 
emphasized that the dynamic nature of the acquisition can in addition be considered regarding 
the kinetics of tracers or contrast agents injected to the patients (33). In the near future, it may 
become more and more routine practice to carry out 5D acquisitions taking into account both 
temporal properties (physiological and morphological motion in addition to tracer kinetics). 
Thanks to less and less invasive procedures, another current trend in medical imaging consists 
of multiple acquisitions during the course of treatment, which may allow adaptive and 
potentially improved therapy in a variety of cancers (34-40). 

Clinicians now have access to a large array of imaging modalities and devices 
providing complementary information and various views of the human body, on both 
morphological and physiological levels. In addition, these image datasets are almost 
systematically in three dimensions and full of details, therefore rather complex and time-
consuming to fully analyze. The limitation of visual and manual analysis of one single 3D 
image dataset has already been underlined in numerous studies for specific tasks, such as for 
instance manual delineation of organs or tumors or detectability tasks. This led to restricting 
the majority of their clinical use to diagnosis or staging purposes in oncology, or sub-optimal 
treatment planning in radiotherapy. Such difficulties are exponentially increasing with the 
availability of additional 3D datasets of different imaging modalities, and/or additional 
dimensions to consider (motion, kinetics, and comparison of datasets during the course of 
treatment). A comprehensive, robust, reproducible and fast analysis of such large image 
datasets for a single patient or a patients’ cohort would be impossible without semi-automated 
dedicated tools. The first contributions to the field in my research project will therefore be 
new and innovate approaches for the semi-automated processing and analysis of multi modal, 
multi resolution, multi dimensional images datasets.  

Although primordial in today medicine, especially in oncology and radiotherapy, 
imaging is not the only source of information physicians base their decisions on. Similarly to 
the current increase of image-based data, another trend in medicine is the increase of the 
amount of data beyond imaging. Additional clinical information and data such as genetics or 
tumor biology are available and need to be taken into account. This means that this 
information may not only be correlated with imaging, but also combined with imaging for 
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increased predictive and prognostic power. A more personalized, preventive and predictive 
medicine for the future may benefit from decision aid systems combining the available data, 
both clinical and image-based (41-44). Additional contributions to the oncology and 
radiotherapy fields in my project will therefore be the development of a multi source fusion 
information framework to combine imaging and other clinical data into predictive and 
prognostic models for clinically reliable decision tools. This will require large datasets and the 
use of combined databases, which depends on local, regional, national and international 
research collaborations. 

 

1. Multi observation framework for multi modal medical imaging 

This part of my research project will be dedicated to the design and development of a 
robust and flexible mathematical and computational framework allowing to process or 
analyze complex, multi dimensional, multi resolution, multi modal co-registered images 
datasets. The goal is to design a framework that is flexible and robust enough to be able to 
carry out and implement the following fully or semi-automated complex image processing 
procedures on various image datasets such as for instance multi tracer PET images, PET/MRI 
or PET/CT datasets, including multiple scans during treatment and/or dynamic acquisitions: 
filtering and resolution recovery, segmentation and delineation, classification and pattern 
recognition. 

I intend to develop such a framework by building on existing statistical hierarchical 
models such as Markov trees. I will focus on two major developments: 

1. The multi observation framework 

Markov trees can be used in order to include several images (or observations) within 
the same structure, instead of analyzing or processing each image separately (27). This 
requires prior co-registration, which could be obtained with high accuracy especially since 
multiple modalities are now often acquired almost (PET/CT) or completely simultaneously 
(integrated PET/MRI). Images with different resolutions can be included in the hierarchical 
model on appropriate scales, whereas images with similar resolution can also be included on 
the same scale, but with multi observation vectors associated to each node of the tree. Note 
that additional data could be taken into account in such a framework: wavelet decompositions 
of the images, annotations from physicians, various textural features images associated to 
each dataset, etc. 

2. The modeling of correlations 

One advantage of using such Markov tree models is that it should be possible to 
include in the model various correlations existing within or between the different images (see 
figure 5). Within each image, spatial correlations would be modeled by the intrinsic structure 
of the tree, and additional spatial correlation might be added. Similarly, correlations between 
images of different resolutions could be exploited by associating data of different resolution to 
different scales of the hierarchical model. Correlation between different modalities or 
different images at the same level of resolution could be estimated and used. This would be 
achieved thanks to the multi observation modeling, with a vector of several values 
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corresponding to the different images being associated with each node of the tree. The 
different types of noise and partial volume effects could be efficiently handled both within 
each image and in relationship with the other images included in the framework. This would 
be achieved via appropriate non stationary and correlated noise models (45). Such a 
framework would also be robust versus potential misregistration errors between datasets and 
missing data due to the modeling and exploitation of all these correlations. 



 

MRICT

PET

MRI-WD

PET-WD

Father-son (inter-scale) correlations (quad tree)

Inter-observation correlations (non stationary, correlated noise + missing data)

Additional spatial intra-scale correlations (Markov field or chain)

Additional spatial inter-scale correlations

 

Fig.5: illustration of the multi observation, multi scale framework 



The figure 5 on the previous page illustrates the potential of such structures for the 
proposed flexible framework. Note that this figure illustrates a Markov tree (a 3D structure) 
applied to 2D images with 16 (4x4) leaves and three scales (the root, a scale at 4 voxels and 
the last scale with 16), but it could in practice be extended to 3D datasets and obviously with a 
number of leaves adapted to the number of voxels in the attached images. 

Grey circles represent the nodes of the tree (prior model) whereas white ones represent 
attached data (observed values in the images or other data such as wavelet decompositions, 
textural features, and so forth). As pointed out by the green arrow, this attached data may be 
multi observation, with various images or associated data included (see blue arrows linking 
elements of the observation vector to various images).  

Large double arrows represent the various correlations that could be modeled and used 
for various applications. Blue ones denote correlations within the observations vector and 
could be implemented as various noise models. Basic modeling assumes independent 
observation and Gaussian noise, although more complex models could be used, such as non 
stationary, correlated, non Gaussian noise. It may also allow for missing data to be handled, 
since observation vectors may not contain the same data in each scale of the tree. Purple ones 
denote father-son statistical correlations linking elements of different scales in the quadtree 
that can add better handling of missing data and may relate information of images with 
different resolution (in the example above, a PET image is related to its associated CT and 
MRI datasets who have about four times more voxels). Yellow and red ones indicate 
additional spatial intra and inter scale correlations respectively that could be added in such a 
model to increase the robustness (as well as the complexity) of the model. As previously 
explained, data/images of different spatial resolutions may be associated with appropriate 
scales in the tree structure.  

In this example, the leaves (the elements at the base of the quadtree) are associated 
with a vector of observation consisting of an MRI and a CT image (of approximately the same 
resolution). In the scale level above, a PET image (with about four times less voxels) is 
associated. WD denotes wavelet transforms. As these spatial-frequency transforms generates 
multi scale (from finer to coarser details as we go “up” in the tree structure) information, such 
additional data could also be attached as observations in the vector attached to the tree, or 
used as an guiding process, for instance within the context of couple or triplet Markov models 
that generalize standard Markov models allowing for more realistic modeling of real data 
(46). 

 Such models would also require dedicated developments of the associated parameters 
estimation procedures so the framework is automated enough to be used for applications such 
as image processing or analysis of large multi modal image datasets. The more complex and 
flexible the framework, the more parameters will need to be estimated in case of application 
to real data with unknown parameters. Robust algorithms such as Stochastic Expectation 
Maximization (SEM) or Iterative Conditional Estimation (ICE) will be adapted to the 
developed models (47). 
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As first applications of these developments, specific approaches will be investigated. 
They will be dedicated to multimodal PET/MRI and PET/CT, as well as dynamic imaging or 
sequential multimodal images during treatment. They will include automatic tumor 
localization/detection, improved denoising and partial volume effects correction, tumors and 
organs semi-automatic delineation, and static and dynamic parameters extraction to 
characterize pathologies. These approaches will be implemented within such a framework and 
are expected to benefit from its modeling versatility.  

 
2. Multi source information fusion for predictive models and computer-
aided decision in oncology 

This part of my research project will be dedicated to the design and development of 
decision aid systems based on the exploitation of patients databases in various cancer models 
(for example esophageal, lung, or rectal) with known outcome (pathological response, 
disease-free and overall survival, etc.) in combination with clinical data and image-based 
parameters extracted thanks to the framework described above. 

1. Multi modal image derived parameters obtained through developments carried out 
in the first part 

As a first application of the multi observation framework described in part 1, I will 
implement automated multi modal characterization of tumors in oncology. Parameters such as 
anatomico-functional tumor volumes and associated measurements in various image 
modalities (SUVs of various PET tracers, heterogeneity of the tracer uptake or of the tissues 
in CT or MRI, diffusion, perfusion, dynamic information, etc.) could be extracted from large 
multi modal dataset in order to characterize fully the pathology in head and neck, esophageal, 
lung or rectal cancers. In addition, the temporal evolution of this full tumor characterization 
during treatment will also be of interest. 

2. Clinical data including genetics and tumor biology 

Fusion information (Denzert-Smarandache theory) (28) and classification approaches 
such as decision trees or support vector machines (49) will be investigated and compared on 
multi source data in order to derive predictive and prognostic models regarding each 
pathology for which patients databases are available. The goal will be to reach pertinent 
fusion of image-derived parameters and other additional semantic information such as clinical 
data (age, gender, stage…), tumor biology and genetics (from biopsies or histopathological 
examination, phenotypes, genotypes, etc.) as illustrated in figure 6. Such model learning 
requires large databases to avoid over fitting of the data, and multiple research collaborations 
will be needed with national and international clinical centers. I will exploit existing 
collaborations with research clinical teams in the Netherlands (Maastricht, Nijmegen), the 
United Kingdom (London, Surrey), the United States (MD Anderson), Germany (Freiburg, 
Munich) and France (Rennes, Nantes, Toulouse, Bordeaux, Brest) to help building such 
databases. Developed predictive and prognostic models will then be validated on prospective 
studies. 



 

Fig.6 : fusion of various data to build predictive models 



 

VIII -  Conclusion 
 
I now have a significant experience in modeling for PET and PET/CT imaging applications in 
oncology and radiotherapy, with a special focus on semi-automated delineation and image 
processing algorithms. I have also significantly contributed to developments in partial volume 
effects correction, denoising, image fusion, radiotracer heterogeneity characterization and 
realistic Monte Carlo simulations and dosimetry studies in radiotherapy. I have further 
investigated the impact of such methodological developments in the clinical setting and 
associated applications. Most of these developments have involved co-supervision of several 
PhD students (in addition to several master students), two of them being supervised mostly by 
me and have now finished their PhD. My project for the next years involves the full 
supervision of two additional PhD students and co-supervision of at least two others. 
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Abstract

Accurate volume of interest (VOI) estimation in PET is crucial in different

oncology applications such as response to therapy evaluation and radiotherapy

treatment planning. The objective of our study was to evaluate the performance

of the proposed algorithm for automatic lesion volume delineation; namely the

fuzzy hidden Markov chains (FHMC), with that of current state of the art in

clinical practice threshold based techniques. As the classical hidden Markov

chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and

spatial correlation, in order to classify a voxel as background or functional

VOI. However the novelty of the fuzzy model consists of the inclusion of

an estimation of imprecision, which should subsequently lead to a better

modelling of the ‘fuzzy’ nature of the object of interest boundaries in emission

tomography data. The performance of the algorithms has been assessed on

both simulated and acquired datasets of the IEC phantom, covering a large

range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1)

and image noise levels. Both lesion activity recovery and VOI determination

tasks were assessed in reconstructed images using two different voxel sizes

(8 mm3 and 64 mm3). In order to account for both the functional volume

location and its size, the concept of % classification errors was introduced in the

evaluation of volume segmentation using the simulated datasets. Results reveal

that FHMC performs substantially better than the threshold based methodology

for functional volume determination or activity concentration recovery

considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore

differences between classification and volume estimation errors evaluated were

smaller for the segmented volumes provided by the FHMC algorithm. Finally,

the performance of the automatic algorithms was less susceptible to image
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noise levels in comparison to the threshold based techniques. The analysis of

both simulated and acquired datasets led to similar results and conclusions

as far as the performance of segmentation algorithms under evaluation is

concerned.

1. Introduction

Positron emission tomography (PET) has been long established as a powerful tool in oncology,

particularly in the area of diagnosis. However, alternative applications such as the use of PET in

radiotherapy planning (Jarritt et al 2006) and response to therapy studies (Krak et al 2005) are

rapidly gaining ground. Whereas accurate activity concentration recovery is crucial for correct

diagnosis and monitoring response to therapy, applications such as the use of PET in intensity-

modulated radiation therapy (IMRT) treatment planning render equally vital the accurate

shape and volume determination of lesions. Different volume-of-interest (VOI) determination

methodologies have been proposed that can be classified as manual or automatic. On the

one hand, manual segmentation methods to delineate boundaries are laborious and highly

subjective (Krak et al 2005). On the other hand, automatic segmentation of objects of interest

in PET (Reutter et al 1997, Zhu and Jiang 2003, Kim et al 2002, Riddell et al 1999) is not a

trivial task because of low spatial resolution and resulting partial volume effects (PVE), low

contrast ratios, as well as noise resulting from the statistical nature of radioactive decay or the

choice of the reconstruction process.

The most widely used method to semi-automatically determine VOIs in PET is

thresholding, either adaptive, using a priori computed tomography (CT) knowledge (Erdi et al

1997), or fixed threshold (Krak et al 2005) using values derived from phantom studies (from

30 to 75% of maximum local activity concentration value) (Jarritt et al 2006, Krak et al 2005,

Erdi et al 1997). Such thresholding techniques, however, lead to variable VOI determination as

shown in recent clinical studies (Nestle et al 2005). On the other hand, numerous works have

addressed automatic lesion detection from PET datasets, including different methodologies

such as edge detection (Reutter et al 1997), fuzzy C-means (Zhu and Jiang 2003), clustering

(Kim et al 2002) or watersheds (Riddell et al 1999). The performance of these algorithms

is sensitive to variations of noise intensity and/or lesion contrast. In addition, past work

has in its majority considered the ability of such automatic methodologies for the detection

of lesions but not the accuracy with which the methods are capable for VOI and/or activity

concentration determination. Furthermore, all of the afore-mentioned algorithms often involve

user-dependent initializations, pre- and post-processing, or additional information like CT or

expert knowledge; rendering their employment more complicated and the outcome dependent

on choices made by the user in relation to the pre- and/or post-processing steps necessary.

For example in the case of the watershed algorithm a filtering pass as a pre-processing step to

smooth the image, and a post-processing step to fuse the different regions resulting from the

algorithm are necessary.

Hidden Markov models are automatic segmentation algorithms allowing noise modelling

and have proven to be less sensitive to variation of the values in the regions of the images

than other segmentation approaches thanks to their statistical modelling. They have only been

previously used in PET in the form of hidden Markov fields (HMF) (Chen et al 2001). Hidden

Markov chains (HMC) (Benmiloud and Pieczynski 1995) is a faster model and can offer

competitive results (Salzenstein and Pieczynski 1998). Furthermore, HMC leads to shorter

computational times, as quantities of interest can be computed directly on the chain, whereas
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the HMF algorithm needs iterative Monte Carlo like estimation procedures (Salzenstein and

Pieczynski 1998) that are time consuming. These algorithms offer an unsupervised estimation

of the parameters needed for the image segmentation and limit the user’s input to the number

of classes to be searched for in the image. Reconstructed images require no further pre- or

post-processing treatment (such as for example filtering) prior to the segmentation process.

Instead, image noise is considered as additional information (a parameter in the classification

decision process) to be taken into account, not to be suppressed or avoided.

The objectives of our study were to (a) develop a new fuzzy HMC (FHMC) model in an

attempt to account for the limited spatial resolution in PET and (b) compare the performance

of FHMC with those of the thresholding methodologies currently used in clinical practice.

Different imaging conditions in terms of statistical quality, as well as lesion size and source-

to-background (S/B) ratio were considered in this study. The analysis was carried out on both

simulated and acquired images reconstructed using iterative algorithms which form today’s

state of the art in whole body PET imaging in routine clinical oncology practice (Visvikis et al

2001, 2004).

2. Materials and methods

2.1. Hard and fuzzy hidden Markov chain models

The HMC model is an unsupervised methodology that takes place in the Bayesian framework.

Although we place ourselves in the application of image segmentation this methodology can

be used in other applications such as, for example, speech recognition (Dai 1994). Let T

be a finite set corresponding to the voxels of an image. We consider two random processes

Y = (yt )t∈T and X = (xt )t∈T . Y represents the observed image, and X represents the ‘hidden’

segmentation map. X takes its values in � = {1, . . . , K} with K being the number of classes c,

and Y takes its values in R. We assume that a Markov process can model the prior distribution

of X. The segmentation problem consists in estimating the hidden X from the available noisy

observation Y. The relationship between X and Ycan be modelled by the joint distribution

P(X, Y). This distribution can be obtained thanks to the Bayes formula:

P(X|Y) =
P(X, Y)

P (Y)
=

P(Y|X)P (X)

P (Y)
. (1)

P(Y|X) is the likelihood of the observation Y conditionally with respect to the hidden ground-

truth X, and P(X) is the prior knowledge concerning X. The Bayes rule allows us to know the

posterior distribution of X with respect to the observation Y. In the Markov chain framework we

have to assume the random variables Y = (yt )t∈T are conditionally independent with respect

to X and that the distribution of each yt conditional on X is equal to its distribution conditional

on xt . Many applications of hidden Markov models with unsupervised estimation have been

successful considering different types of images (radar, sonar, magnetic resonance images

(MRI), CT, satellite or astronomical) (Pieczynski 2003, Salzenstein et al 2004, Delignon et al

1997), but this kind of approach was almost never applied to PET data.

2.1.1. Markov chain definition. X is a Markov chain if:

P(xt |x1, . . . , xt−1) = P(xt |xt−1) for 1 < t � T . (2)

The distribution of X is then defined by the distribution of x1, called initial probabilities init(c)

for each class c (P (x1 = c)) and the transition matrix trans(c, d) (of dimension K × K)

containing the probabilities of transitions from the class c to the class d; P(xt+1 = d|xt = c).

As X and Y are one-dimensional elements in the HMC context, a spatial transformation
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Figure 1. The 3D Hilbert–Peano space filling curve for a 4 × 4 × 4 voxels VOI.

is necessary to process three-dimensional VOIs. For the best preservation of the spatial

correlation between voxels we use the Hilbert–Peano space-filling curve. This fractal path

can be extended to explore 3D VOIs (Kamata et al 1999). A visual illustration of the Hilbert–

Peano path for a 4 × 4 × 4 voxels 3D VOI is given in figure 1. Once the chain has been

segmented, the inverse path is used to reconstruct the 3D segmentation map.

2.1.2. Adding a fuzzy measure to the model. The general idea behind the implementation

of a fuzzy model within the Bayesian framework was previously introduced by Salzenstein

(Salzenstein and Pieczynski 1997). Its implementation in association with HMC developed

as a part of this work is based on the incorporation of a finite number of fuzzy levels Fi in

combination with two homogeneous (or ‘hard’) classes, in comparison to HMC where only

a finite number of hard classes are considered. This model allows the coexistence of voxels

belonging to one of two hard classes and voxels belonging to a ‘fuzzy level’ depending on

its membership to the two hard classes. Therefore, FHMC adds an estimation of imprecision

of the hidden data (X, see section 2.1) in contrast to HMC which only models uncertainty

of the observed data (Y, see section 2.1). The statistical part of the algorithm models the

uncertainty of the classification, with the assumption being that the voxel is clearly identified

but the observed data is noisy. On the other hand, the fuzzy part models the imprecision of the

voxel’s membership, with the assumption being that the voxel may contain both classes. One

way to achieve this extension is to simultaneously use Dirac and Lesbegue measures at the

class level. Hence we consider that X in the fuzzy model takes its values in [0, 1] instead of

� = {1, . . . , K}. Let δ0 and δ1 be the Dirac measures at 0 and 1, and ζ the Lesbegue measure

on ]0, 1[. We define the new measure ν = δ0 + δ1 + ζ on [0, 1]. Note that, for example, using

two hard classes and two fuzzy levels in the FHMC model is not equivalent to using four hard

classes in the HMC model where ν = δ1 + δ2 + · · · + δK . This has been previously stated using

Markov fields based segmentation (Salzenstein and Pieczynski 1997).

The distribution of X can then be defined using a conjoint density g for (xt , xt+1) on

[0, 1] × [0, 1]:

let (a, b) ∈ [0, 1] × [0, 1]

g(a = 0, b = 0) = α1 and g(a = 1, b = 1) = α2

g(a = 0, b = 1) = γ1 and g(a = 1, b = 0) = γ2

g(a, b) = βfg(a, b) if (a, b) �= {(0, 0), (0, 1), (1, 0), (1, 1)}

(3)

with∫

[0,1]

∫

[0,1]

g(a, b) d(ν ⊗ ν)(a, b) = 1 and α1 + α2 + γ1 + γ2 + βλ = 1 (4)
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where d(ν ⊗ ν)(a, b) is the notation for integration with respect to the (a, b) variables, each

one being with respect to the measure ν on the interval [0, 1]. λ is a constant depending on

the form of the parameterized functionfg:

fg(a, b) = 1 − |a − b|. (5)

We now define the initial and transition probabilities (init(c) and trans(c, d)) using the conjoint

density g and an utility density h on [0, 1] defined by: h(a) =
∫ 1

0
g(a, b) dν(b):

init(c) using densities g and h:

P (x1 ∈ {0, 1}) =
∫ 1

0

g(x1, b) dν(b) = h(x1)

P (x1 ∈ Fi) =
∫ i

N

i−1
N

∫ 1

0

g(a, b) d(ν ⊗ ν)(a, b) ≃
1

N

∫ 1

0

g(εi, b) d(ν)(b) =
1

N
h(εi)

(6)

trans(c, d) using the conditional densityf deduced from (1) : f (xt+1|xt ) = g(xt+1,xt )

h(xt )

P(xt+1 ∈ Fj |xt ∈ Fi) =

∫
Fj

∫
Fi

g(εj , εi) d(ν ⊗ ν)(εj , εi)∫
Fi

h(εi) dν(εi)

P (xt+1 ∈ Fj |xt ∈ {0, 1}) =

∫
Fj

g(εj , xt ) dν(εj )

h(xt )

P (xt+1 ∈ {0, 1}|xt ∈ Fi) =
∫
Fi

g(xt+1, εi) dν(εi)∫
Fi

h(εi) dν(εi)

P (xt+1 ∈ {0, 1}|xt ∈ {0, 1}) =
g(xt+1, xt )

h(xt )

(7)

where N − 1 is the number of fuzzy levels and εi = i
N

is the value associated with a fuzzy

level Fi .

The fuzzy model is a generalization of the hard model. The use of the Dirac measures

allows one to retrieve the standard two-class hard model when the fuzzy component is null. As

the theoretical framework described above has not been developed for a specific kind of image,

but as a general segmentation algorithm, the a priori and the noise (also called observation)

models are not directly derived from PET image characteristics. However this segmentation

approach may be appropriate in segmenting PET images since they are both noisy and of low

resolution. The ‘noise’ aspect when considering hidden Markov models in general is the way

the values of each class to be found in the image are distributed around a mean value. The

noise model used, whose respective mean and variance are to be determined by the estimation

steps, can therefore be adapted to image specific characteristics. On the other hand, the

fuzzy measure allows a more realistic modelling of the objects’ border transitions between

foreground and background, allowing in such a way to indirectly account for the effects

of blurring (partial volume effects) associated with low resolution images, such as those

in PET.

2.1.3. Segmentation and parameters estimation. In order to perform segmentation on the

chain level, we need to use a criterion to classify each element as background or functional

VOI. For this purpose we use the marginal posterior mode (MPM) (Marroquin et al 1987).

This approach aims to minimize the expectation E{L(xt ,
⌢
x t )|Y } where L is a loss (or cost)

function:

L(xt , x̂t ) = |xt − x̂t | (8)
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with xt the real class and x̂t = ŝ(yt ) the one affected by the segmentation process ŝ. This

criterion is adequate for the segmentation problem as it penalizes a configuration with respect to

the number of misclassified elements. In order to compute a solution, the MPM segmentation

needs the parameters defining the a priori model (initial and transition probabilities of the

chain) as well as the noisy observation data model (mean and variance of each class). The

assumption that the noise for each class of the observed data can fit a Gaussian distribution

was made as a first step. The mean and variance of each fuzzy level Fi is derived from the

ones estimated in the two hard classes as follows:

µFi
= µ0(1 − εi) + εiµ1 σ 2

Fi
= σ 2

0 (1 − εi)
2 + ε2

i σ
2
1 . (9)

Both a priori and noise models parameters are unknown in the real case and therefore

they must be estimated. In order to achieve such estimation, we use the stochastic iterative

procedure called stochastic expectation maximization (SEM) (Celeux and Diebolt 1986), a

stochastic version of the EM algorithm (Dempster et al 1977). This is achieved in a similar

fashion to that used in the classical HMC context by simulating posterior realizations of X (see

the appendix for detailed posterior realization of X and the SEM procedure) and computing

empirical values of the parameters of interest using the simulated chain. The stochastic nature

of this procedure makes it less sensitive to the initial guess of the parameters using the K-

means (McQueen 1967) than deterministic procedures such as the EM algorithm. Both the

MPM segmentation and SEM parameters estimation use a practical recursive computation of

the values of interest called forward–backward procedure that is performed directly on the

chain (Benmiloud and Pieczynski 1995). The implementation of the FHMC segmentation

algorithm in a step-by-step fashion can be found in the appendix. Note that the overall

algorithm is entirely unsupervised (except for the number of classes and fuzzy levels to use)

and it is able to adjust to a large spectrum of image structures, noise or contrast. For example,

no a priori is made on the shape of the objects to extract or the source-to-background ratio in

the image.

2.2. Thresholding

Various thresholding methodologies have been proposed in the past for both functional volume

segmentation and/or activity concentration recovery (Krak et al 2005, Erdi et al 1997, Nestle

et al 2005). Thresholding using 42% and 50% of the maximum value in the lesion was chosen

for VOI determination and quantitation purposes respectively, based on previous publications

(Krak et al 2005, Erdi et al 1997). The methodology was implemented through region

growing using the voxel of maximum intensity in the object of interest as a seed. Using a

3D neighbourhood (26 neighbours) the region is iteratively increased by adding neighbouring

voxels if their intensity is superior or equal to the selected threshold value. The results derived

using these methods will be denoted from here onwards as T42 and T50 for the thresholds of

42% and 50% respectively.

2.3. Validation studies

2.3.1. Simulated and acquired datasets. Simulated datasets using the IEC image quality

phantom (IEC 1998), containing six different spherical lesions of 10, 13, 17, 22, 28 and

37 mm in diameter (figure 2) were generated using Geant4 Application for Tomographic

Emission (GATE) and a validated model of the Philips Allegro PET scanner (Lamare

et al 2006). Images, considering only the detected true coincidences, were subsequently

reconstructed using the OPL-EM iterative algorithm (Reader et al 2002) with seven iterations

(Lamare et al 2006). Two different voxel sizes were considered in the reconstructed images;
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(a)

(b) (c)

Figure 2. (a) A graphical representation of the IEC phantom, and the central slice of the digital

IEC phantom used in the generation of the simulated datasets (b) with 2 × 2 × 2 mm3 and (c) 4 ×
4 × 4 mm3.

namely 2 × 2 × 2 mm3 and 4 × 4 × 4 mm3. The 8 mm3 voxel size configuration leads to

better sampled objects of interest but with higher noise due to the number of counts being

divided by eight in each voxel in comparison to the 64 mm3 voxel sizes. A uniform activity

was simulated throughout the phantom cylinder and the lesions. Different parameters were

however considered to cover a large spectrum of configurations allowing assessment of the

influence of different parameters susceptible to affect the functional VOI determination or

quantitation accuracy. The statistical quality of the images was varied by considering 20, 40

and 60 million true coincidences. Two different signal-to-background (S/B) ratios were also

considered, 4:1 and 8:1 (with around 6 kBq cm−3 in the background, and 24 or 48 kBq cm−3

in the spheres respectively). Visual illustration of the reconstructed images corresponding to

different simulated configurations is given in figures 3(a)–(d).

In addition to the simulated datasets, acquisitions of the IEC phantom were carried out

in the list-mode format using a Philips GEMINI PET/CT scanner. The only difference with

the simulated datasets was the exclusion of the 28 mm diameter sphere in the study because

in the phantom used it was replaced by a plastic sphere of unknown diameter. The same S/B

ratios of 4:1 and 8:1 used in the simulations were also employed in this part of the study, by

introducing 7.4 kBq cm−3 in the background and 29.6 or 59.2 kBq cm−3 respectively in the

spheres. Different count statistical qualities were obtained by reconstructing 1 min, 2 min

or 5 min list-mode time frames using the 3D RAMLA algorithm, with specific parameters
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(a) (b)

(c)    (d)

Figure 3. Different images used in the segmentation study; (a)–(d) simulated: (a) ratio 4:1,

20 million coincidences, 64 mm3, (b) ratio 8:1, 40 million, 64 mm3, (c) ratio 4:1, 20 million

coincidences, 8 mm3, (d) ratio 8:1, 40 million, 8 mm3; (e)–(h) acquired: (e) ratio 4:1, 2 min

acquisition time, 64 mm3, (f) ratio 8:1, 5 min, 64 mm3, (g) ratio 4:1, 5 min, 8 mm3, (h) ratio 8:1,

5 min, 8 mm3.

previously optimized (Visvikis et al 2004). The same voxel sizes as for the simulated datasets

(8 mm3 and 64 mm3) were used in the reconstruction of each of the different statistical quality

datasets considered. Visual illustration of the acquired images is given in figures 3(e)–(h).

Each sphere in both simulated and acquired images was isolated in a box of the same size

(16 × 16 × 10 for the 4 mm case, and 32 × 32 × 20 for the 2 mm case) prior to the segmentation

process.

2.3.2. Computed volume versus classification error measurement. The majority of

previous works dealing with VOI determination in PET measure the performance of a given

methodology by computing the VOI obtained on the segmentation map and comparing it with

the true known volume of the object of interest. This type of approach has the potential to lead

to biased performance measurements since a segmentation result may contain two different

types of errors. On the one hand, one may have voxels of the background that are classified

as belonging to the object of interest, denoted from here on as positive classification errors

(PCE), while on the other hand, one may end up with voxels of the object that are classified

as belonging to the background, denoted from here on as negative classification errors (NCE).

These classification errors essentially occur on the boundaries of the objects of interest because

of ‘spill in’ (increasing probabilities of a NCE) and ‘spill out’ (increasing probabilities of a
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(e) (f )

(g) (h)

Figure 3. (Continued.)

PCE). If the segmentation results in PCEs and NCEs of equal amounts, the computed VOI

would be very close to the true known volume whereas the shape and position of the object

would be incorrect. The shape and position information is as important as the total volume

of the object in order to accurately derive a radiotherapy treatment planning or the activity

concentration of interest in a response to therapy study based on the derived functional volume.

For example, let us assume that the segmentation process results in 20% NCEs and 15% PCEs.

This leads to a classification error of 35% whereas the error in the overall computed volume

is only −5%. Hence, the use of classification error is a more pertinent measurement of the

accuracy with which a given algorithm performs the task of functional volume delineation

since it takes into account not only the segmented volume in comparison to the actual volume

of interest but also its position and shape.

In the simulation study the total number of PCEs and NCEs is considered with respect to

the number of voxels defining the sphere (VoS) in the digital phantom (the ground truth) in

order to obtain a percentage classification error (CE):

CE =
(PCE + NCE)

VoS
× 100. (10)

The size of classification errors can be bigger than 100% in the case where a large number of

background voxels in the selected area of interest are misclassified as belonging to the sphere.

In practical terms, maximum classification errors calculated during this work where limited

to 200%, since any such values represent complete failure of the segmentation process. In

addition, the interest of classification errors is when they occur at the borders of the objects
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and not in other regions of the background. One should also keep in mind that a combined

representation of PCE and NCE into CE leads to a loss of information as far as the direction of

the bias is concerned. It does, however, still represent more pertinent information than overall

volume estimation errors, which reflect neither accurate magnitude nor direction of the bias

for a segmented volume.

On the other hand in the case of the images reconstructed from the acquired datasets

only overall computed volumes were considered in order to avoid any biases as a result of

misalignment and rescaling inaccuracies, as well as reconstruction artefacts in the higher and

lower slices of the associated CT datasets. As the goal is not to detect the lesion in the whole

image but to estimate its volume, shape and position with the best accuracy possible, we

assume that the lesion has been previously identified by the clinician and automatically or

manually placed in a 3D ‘box’ well encompassing the object. Subsequently, the images of

the selected area were segmented in two classes ( functional VOI and background) using each

of the three methods under evaluation (thresholding, FHMC and HMC). In the FHMC case,

different numbers of fuzzy levels were considered in the segmentation process (namely two

and three). Following the segmentation by FHMC, volumes of interest can be defined using

the hard classes and any number of the fuzzy levels considered.

2.3.3. Quantitation accuracy. In terms of quantitation the objective of our study was to

determine the accuracy of the average activity concentration recovered from a volume derived

using a given segmentation algorithm. The ‘ground truth’ for comparison purposes was

established using the exact size, shape and location of each lesion (using the known digital

phantom employed in the generation of the simulated datasets).

As a result, these recovered activity concentration values represented an under-estimation

of the true activity due to PVE. A comparison on a lesion-by-lesion basis was subsequently

carried out with the measured activity concentration from the segmented volumes obtained by

the three algorithms considered. T50 should lead to some improvements in the lesion activity

recovery with respect to T42 as a result of including less voxels in the volume used to compute

the activity and therefore less voxels associated with PVE. Similarly FHMC 0/2 (see section 3,

results, for the definition of FHMC x/y) should lead to concentration recovery improvements

with respect to FHMC 1/2, since voxels belonging to the fuzzy levels are found at the edges

of the lesions and their intensity is most significantly reduced by PVE. Therefore the inclusion

of these voxels should only result in even stronger under-evaluation of the true lesion activity

concentrations.

3. Results

Different segmentation maps obtained using each of the methods under evaluation are

presented in figure 4 for a slice centred on the 28 mm sphere of the simulated images to

visually illustrate the variations of the segmentation maps obtained. Figure 5(a) shows the

impact of the number of fuzzy levels included in the FHMC segmentation. The various

FHMC maps are denoted as FHMC x/y with x being the number of fuzzy levels included in

the segmentation map, and y being the total number of fuzzy levels used in the segmentation

process. The error bars in these figures represent different results obtained for each of the three

different levels of statistical quality considered (the top of the error bar is the result concerning

the worst statistical quality, the medium one concerns the medium quality and the lowest one

corresponds to the best quality considered). As figure 5(a) shows, for the range of simulated

spheres considered, no improvement was obtained in the % classification errors by having more
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(a) (b) (c)

(d) (e) (f )

(g) (h) 

Figure 4. Examples of segmentation maps for the 28 mm sphere (one slice): (a) PET ROI,

(b) digital ‘ground truth’, (c) HMC map, (d) T42 map, (e) FHMC with two fuzzy levels (light and

dark grey voxels) segmentation map, (f) map used for VOI (hard class + first fuzzy level, FHMC

1/2), (g) map for quantitation (only hard class voxels, FHMC 0/2), (h) T50 map. Note that in this

particular case, FHMC 1/2 for VOI and T50 result in the same map but this is of course not always

the case (especially having considered the complete 3D volume).

than two fuzzy levels in the FHMC segmentation process and keeping in the overall segmented

volume more than the voxels identified in the first fuzzy level. It should be emphasized at

this point that this conclusion was reached considering the results of the whole of the range of

simulated sphere diameters and keeping in mind that our objective is determining a single best

configuration of the algorithm parameters across a wide range of imaging conditions and not

different parameters for individual lesion sizes, image statistics or contrast ratios. In addition,

it is clearly shown in figure 5 that HMC leads to worse segmentation results in comparison

to FHMC for all different configurations considered. Therefore for all subsequent volume

determination analyses, the results associated with the FHMC 1/2 versus T42 are presented.

As shown in figure 5(b), no benefits are observed through the inclusion in the segmentation

map of any voxels belonging to the fuzzy domain. This confirms what was anticipated in

section 2.3.3. Therefore from here onwards all the quantitation results presented for FHMC

have been calculated using only the hard class voxels resulting from the segmentation process

(FHMC 0/2).

The % classification errors for reconstructed images of the simulated datasets as a function

of lesion size and contrast are presented in figure 6(a) for 64 mm3 and (b) for 8 mm3,

for the FHMC and the threshold based method (T42). A breakdown, in terms of PCEs
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Figure 5. (a) Classification errors for the lesion VOI determination and (b) lesion activity recovery

errors in the simulated images for the FHMC versus HMC segmentation. Different numbers of

fuzzy levels (two or three) were used in the segmentation process and different numbers of these

were subsequently selected to (a) form the segmented volumes or (b) determine lesion average

activity concentrations for the different imaging conditions considered.
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Figure 6. Classification errors in lesion VOI determination from the simulated images: (a) 64 mm3

voxels and (b) 8 mm3 voxels for the FHMC 1/2 versus T42 segmentation under variable imaging

conditions.

and NCEs, of the % classification errors in figure 6(a) is given in figures 7(a)–(c) for the

FHMC, HMC and T42 segmentation methods respectively. Finally, in order to facilitate

a comparison of the segmentation results between the simulated and the acquired datasets,

the % computed volume error is given in figures 8(a)–(b) for the same configurations as in

figures 6(a)–(b).
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Figure 7. Repartition of PCEs and NCEs from the (a) FHMC 1/2, (b) HMC and (c) T42

segmentation results for the different simulated imaging configurations considered.

Considering the simulated datasets, the introduction of FHMC led to superior results in

comparison to the current ‘gold standard’ in functional volume delineation of T42. FHMC

segmentations led to <25% classification errors in computed volumes for lesion sizes >13 mm

irrespective of contrast ratio, level of noise or lesion size. Errors of more than 200% for FHMC

were only observed for the 10 mm sphere. Results for the T42 were more dependent on the

lesion size, relative to FHMC results, varying from 10% to more than 200% (even for spheres

up to 22 mm in diameter for a contrast of 4:1 and 64 mm3 voxel size). However, the use of

T42 was found to work well for lesion sizes of >17 mm and a lesion-to-background ratio of

8:1 with % classification errors of 20–30%. On the other hand, for a lesion-to-background

ratio of 4:1, the T42 threshold led to over 100% overestimation in the functional volume
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Figure 7. (Continued.)

for lesions <28 mm in diameter. As the errors bars in the different figures reveal, there

was a larger dependence on the statistical quality of the reconstructed images observed with

T42 in comparison to FHMC for the majority of the lesion sizes and contrast configurations

considered. In particular this was true for all of the lesions for a contrast ratio of 4:1 and

for lesions <22 mm for a contrast ratio of 8:1. For example, for the 17 mm sphere and

a contrast ratio of 8:1, T42 resulted in classification errors of 20 to 35% whereas FHMC

classification errors from 15 to 17% were observed (figure 6). On the other hand in the case

of the 28 mm sphere and a contrast ratio of 4:1, T42 errors were ranging from 85 to 110%

whereas FHMC resulted in errors of 17–18%. The reduction in the reconstruction voxel

size (from 64 mm3 to 8 mm3) led to small differences in the functional volumes determined

using the FHMC segmentation algorithm, and although it led to improvements in the T42

based segmented volumes, the % classification errors remained at 80–200%. The trend

observed with the standard voxel sizes on the variation of the segmentation results as a

function of statistical quality was similar for the reduced voxel size images. For example in

the case of the 22 m sphere and a contrast ratio of 4:1 errors of 77–100% and 26–27% were

observed for T42 and FHMC respectively. In general, the largest errors were observed for

the smaller lesions of 10 and 13 mm, where none of the segmentation algorithms considered

performed well under any of the configurations tested, with errors largely >200%. As shown in

figure 7(a) FHMC classification errors are essentially NCEs for the two biggest spheres and

PCEs for the small ones. In contrast, as shown in figures 7(b)–(c), T42 and HMC methods

result essentially in PCEs, apart from T42 in association with lesions >28 mm in diameter

and a lesion-to-background ratio of 8:1.

In terms of overall volume estimation errors on simulated datasets (see figures 8(a), (b))

FHMC results in errors of up to 10% and between 10% and 20% for a contrast ratio of 8:1 and

4:1 respectively, for lesions >13 mm. T42 led to volume determination errors of <10% for

lesions >17 mm in diameter and a lesion-to-background ratio of 8:1, while errors of over 100%

were observed for lesions <28 mm with a lesion-to-background ratio of 4:1. However, while

the lowest overall volume error of T42 was around 10%, the corresponding classification error

was >20%. In the case of an 8 mm3 reconstructed voxel size (figure 8(b)) small improvements
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Figure 8. Lesion VOI estimation errors from the simulated images: (a) 64 mm3 voxels and

(b) 8 mm3 voxels for the FHMC 1/2 versus T42 segmentation under variable imaging conditions.

were seen using the T42 for lesions �13 mm and >22 mm for a lesion-to-background ratio

of 8:1 and 4:1 respectively. Finally, no noticeable differences were seen in the FHMC based

segmentation results, apart from an improvement to <15% in the volume estimation error for

the 13 mm lesion with a contrast size of 8:1.

Figures 9(a), (b) show the results in terms of % error in the recovered activity as a function

of lesion size and contrast ratio considering the segmented volumes using 64 mm3 and 8 mm3
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Figure 9. Lesion average activity concentration estimation errors from the simulated images:

(a) 64 mm3 voxels and (b) 8 mm3 voxels for FHMC 0/2 versus T50 segmentation under variable

imaging conditions.

reconstructed voxel sizes. As can be seen from this figure, FHMC and T50 led to the best

results in comparison to the ‘ground truth’ throughout the different lesion sizes and contrasts

evaluated, although T50 introduces larger errors in comparison to the ‘ground truth’ for lesion

sizes of <22 mm and a contrast of 4:1. The use of the 8 mm3 voxels does not alter the

conclusions as far as the relationship between the results for the two methods evaluated is

concerned, although in absolute terms all algorithms perform worse in comparison to the

results obtained for 64 mm3 voxels.
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Figure 10. Lesion VOI estimation errors from the acquired images: (a) 64 mm3 voxels and

(b) 8 mm3 voxels for the FHMC 1/2 versus T42 segmentation under variable imaging conditions.

Considering the acquired datasets, figures 10(a) and (b) contain the results for the % overall

lesion volume estimation for the 64 mm3 and 8 mm3 voxels, while figures 11(a) and (b) show

the corresponding results for the activity quantitation errors. In terms of the volume estimation

the general trends were similar to those observed for the simulated datasets, with the FHMC

performing better than the T42 throughout the range of lesion sizes and contrasts evaluated.

In absolute terms, the FHMC results were better particularly in the case of 8 mm3 voxels

where errors of <20% and 10% were seen for lesions >10 mm and >22 mm respectively.

T42 errors were similar to FHMC for the 8:1 ratio and spheres >13 mm but ranged from 20

to >100% for the 4:1 ratio configuration. A larger dependence on the statistical quality of

the reconstructed images can be observed with the acquired datasets, demonstrating the more

robust performance of the FHMC algorithm in comparison to the T42 methodology which

was seen to be more affected by the images’ statistical quality. Using again the example of the
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Figure 11. Lesion average activity concentration estimation errors from the acquired images:

(a) 64 mm3 voxels and (b) 8 mm3 voxels for the FHMC 0/2 versus T50 segmentation under

variable imaging conditions.

22 mm sphere (figure 10(a)), T42 errors were from 30 to 95% while FHMC errors were less

than 5%. Although the variation of the FHMC results was higher for smaller spheres (10 and

13 mm), it was still smaller than in the case of the T42 results. For example, FHMC applied to

the 13 mm sphere with a 4:1 contrast ratio (figure 10(b)) resulted in errors between 5 and

30% whereas T42 errors ranged from 50 to 150%. Similar results between the FHMC and

the T50 algorithms were globally seen in terms of the % accuracy of the recovered activity

concentration, confirming the trends observed with the simulated datasets. Finally, similarly

with the volume estimation, better results were seen with the 8 mm3 reconstructed voxel’s size

for both the T50 and the FHMC leading to activity concentration estimation errors of between

+10% and −10% for lesions >17 mm in diameter.
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4. Discussion

Although PET imaging applications are currently, in their majority, diagnostic and largely

based on visual interpretation, there is increasing interest in applications such as the use of

PET for radiotherapy treatment planning, as well as response to therapy and outcome prediction

studies where accurate functional volume and concentration of activity estimation respectively

are indispensable. Current state-of-the-art methodologies for functional volume determination

involve the use of adaptive thresholding based on anatomical information or phantom studies.

The performance of these techniques is greatly dependent on lesion contrast and image noise

characteristics and as this work has demonstrated can lead to variable performance. On

the other hand, already proposed automatic segmentation methodologies have been mostly

evaluated for use in lesion detection rather than lesion volume determination. In addition, their

performance is highly dependent, similarly to the thresholding algorithms, on image contrast

and noise characteristics.

Hidden Markov chains is an automatic segmentation algorithm that allows noise modelling

in the images but has also previously been evaluated for lesion detection rather than functional

volume estimation. In the presented work a new algorithm (Fuzzy HMC) has been introduced

and evaluated allowing the incorporation within hidden Markov chains of a finite number

of fuzzy levels in combination with the ‘hard’ classes considered in HMC, adding this way

an estimation of imprecision that can account for the effects of limited spatial resolution in

emission tomography images. During the evaluation of the FHMC, the inclusion of more than

two fuzzy levels was found to not substantially alter the segmentation results, while only the

inclusion of the voxels belonging to the first fuzzy level led to the most accurate results in

terms of functional volume calculations throughout the range of configurations considered.

Although it would be possible to consider the use of HMC with four hard classes and an

additional rule to cluster the resulting segmentation map, the fuzzy nature of the borders leads

to computation issues in transition probabilities that HMC is not able to deal with. Note that

the significant addition of the fuzzy measure and mathematical changes in the model allows

FHMC to take into account such a configuration, mainly due to the fact that one given voxel

can contain both classes.

Finally, in this paper we have introduced the concept of classification errors rather

than volume estimation errors in the evaluation of segmentation algorithms for volume

determination tasks. An evaluation based on classification errors is more robust since it

does not simply consider the segmented volume but also its location with respect to the

‘ground truth’ known in simulated datasets. Therefore, while the absolute segmented volume

may be correct its location may be wrong, a fact that is as significant as the correct estimation

of the overall functional volume particularly for applications such as the use of PET volumes

in radiotherapy treatment planning.

In comparison to the recommended T42 for the accurate functional volume determination

in PET (Krak et al 2005), the FHMC algorithm gave clearly superior results for lesions

<28 mm, in particular considering a lesion contrast of 4:1, where the T42 methodology

completely failed to recover the functional volume. In addition, FHMC was more robust

considering the different image statistical quality levels evaluated, while the results of T42

were greatly influenced by the level of noise present in the images. Differences between

classification and volume estimation errors across the different configurations evaluated were

smaller for the segmented volumes provided by the FHMC algorithm. In addition, the

classification error results allow us to establish that the accuracy obtained on the estimated

volumes using the FHMC algorithm is not by chance due to a similar level of negative and

positive classification errors. A smaller reconstructed voxel size at the same statistical quality
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level led to worse overall segmentation results, without altering the conclusions as far as the

relative performance of the different algorithms evaluated is concerned.

The performance of the segmentation algorithms under evaluation in the reconstructed

images of the acquired datasets was similar to that obtained with the simulated datasets in

terms of volume estimation errors. The only difference observed in comparison with the

simulated dataset results was an improvement in the overall segmentation results for 8 mm3

reconstructed images in comparison to the 64 mm3, which can be attributed to an associated

adjustment of the optimized reconstruction parameters as a function of the voxel size in the

3D RAMLA algorithm used to reconstruct the acquired datasets.

As far as concentration recovery results are concerned, the performance of the different

segmentation algorithms was compared in the simulated datasets to the recovered activity

concentration considering the exact size and location of the simulated lesions. These results

were influenced by the effects of partial volume leading to increasing underestimation of the

activity concentration with decreasing lesion size. Segmentation algorithms concentrate on

accurate edge modelling in the object of interest and do not as such account for changes in the

values of the voxels as a result of PVE. FHMC and the current ‘state-of-the-art’ threshold of

50% of the maximum lesion value (Krak et al 2005) led to similar results independently of the

configurations evaluated, with absolute differences of 10–15% (due to an extra underestimation

for the T50 results). Similar trends to those observed with the simulated datasets were obtained

from the segmentation of the acquired images.

The presented results demonstrate the interest of FHMC over thresholding algorithms as

the flexibility of the fuzzy levels choice may allow the use of the same segmentation map for

different tasks, across a large range of lesion contrasts and sizes. FHMC through the addition

of the fuzzy levels associated with each hard class is able to more accurately model the object

of interest edges in reconstructed PET images. In addition, FHMC is clearly less susceptible

to alterations in statistical image quality and lesion contrasts than other methodologies. This

was observed on both images of simulated and acquired datasets. Having said that, none

of the evaluated algorithms was successful in accurate volume estimation for lesion sizes of

<17 mm, considering typical PET image statistical qualities and reconstructed voxels of either

8 mm3 or 64 mm3. The main reason behind the failure of FHMC concerning the segmentation

of such small lesions is the small number of voxels associated with the object of interest in

combination with image noise levels, and the Hilbert–Peano path used to transform the image

into a chain. The spatial correlation of such small objects may be lost once the image is

transformed into a chain. A local model may be able to overcome such an issue (Hatt et al

2007).

The results for FHMC may be further improved. Firstly, the direct estimation of the

noise in the reconstructed images may lead to better results in comparison to the assumed

Gaussian model used in this work to fit the distribution for each of the classes. Secondly, other

a priori models may be used for Markovian modelling, like couple (Pieczynski and Derode

2004) or triplet (Lanchantin and Pieczynski 2004) Markov chains or fields. These may be of

interest considering a better modelling of the transitions between boundary classes, as well

as the non-stationary nature of the hidden a priori model. In addition, the fuzzy model may

be extended to more than two hard classes to better model inhomogeneous or non-spherical

objects of interest.

5. Conclusion

A modified version of the hard Markov chains segmentation algorithm has been developed by

introducing a fuzzy measure (FHMC). Our results with both simulated and acquired datasets
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have shown that FHMC is more effective than the reference thresholding methodologies

for both VOI determination and quantification in PET imaging. As part of the evaluation

process, we have also introduced and assessed the interest of classification errors as a

robust measurement of the performance of segmentation algorithms for VOI determination in

contrast to a simple volume estimation which may introduce biases in terms of the segmented

lesion location. Future developments will concentrate on the use of more than two ‘hard’

classes in FHMC, which may more accurately account for the presence of inhomogeneous or

non-spherical functional volumes, as well as an investigation into more adequate noise and

a priori models.
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Appendix. The FHMC algorithm step by step

For the calculation of the expressions a quantization of the interval [0, 1] into intervals{
0, 1

N
, 2

N
, . . . , N−1

N
, 1

}
is used. For example with two fuzzy levels (or intervals) F1, F2,

we have N = 3 and there are N − 1 = 2 fuzzy levels with εi = i
N

: ε1 = 1
3

and ε2 = 2
3
. Note

that the symbol .̃ . . . denotes a density instead of a probability.

(1) Transformation of the 2D or 3D image into a 1D chain using the Hilbert–Peano path

(Kamata et al 1999) (save the path to be used in step 5 of the procedure).

From this point on, every step is performed on the image transformed into a chain.

(2) Parameters initialization

A priori model parameters:
α1 = α2 = 0.25

γ1 = γ2 = 0

}
init(c) and trans(c, d) are computed according to (3), (4) and the following:

λ =
2

N

(
N−1∑

i=1

(
1 −

i

N

)
+

N−1∑

i=1

(
1 −

∣∣∣∣
i

N
− 1

∣∣∣∣
))

+
1

N2

N−1∑

i=1

N−1∑

j=1

(
1 −

∣∣∣∣
i

N
−

j

N

∣∣∣∣
)

β =
1 − (α1 + α2 + γ1 + γ2)

λ
.

Initial and transition probabilities initializations can then be computed as follows:

init(0) = α1 + γ1 +
β

N

N−1∑

i=1

(
1 −

i

N

)

init(1) = α2 + γ2 +
β

N

N−1∑

i=1

(
1 −

∣∣∣∣1 −
i

N

∣∣∣∣
)

init(εi) =
β

N


(1 − εi) + (1 − |εi − 1|) +

1

N

N−1∑

j=1

(
1 −

∣∣∣∣εi −
j

N

∣∣∣∣
)



trans(c, d) = C
g(c, d)

h(d)
with

{
C = 1 if d ∈ {0, 1}
C = 1

N
if d ∈ ]0, 1]

Noise model parameters:

({µ0, µ1} , {σ0, σ1}) = K means(Y, 2) with Y the image and 2 for the two hard classes to

look for. Then we determine parameters of each fuzzy level with (9).
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(3) SEM procedure for parameters estimation

At each iteration q until no significant modification of the estimated parameters

(convergence):

(a) f̃ wd and b̃wd densities computation for each class c, c ∈ {0, 1, εi} , i = 1, . . . , N − 1

is performed recursively as follows:

for t = 1 : f̃ wd1(c) = h(c)Gc(y1)

for t > 1 : f̃ wd t (c) = Gc(yt )

(
f̃ wd t−1(0)t̃rans (c, 0) + f̃ wd t−1(1)t̃rans (c, 1)

+
1

N

N−1∑

i=1

f̃ wd t−1(εi)t̃rans (c, εi)

)

for t = T : b̃wd T (c) = 1

for t < T : b̃wd t (c) = G0(yt+1)b̃wd t+1(0)t̃rans (0, c) + G1(yt+1)b̃wd t+1(1)t̃rans (1, c)

+
1

N

N−1∑

i=1

Gεi
(yt+1)t̃rans (εi, c)b̃wd t+1(εi).

These computations must be normalized. Gc is given by: Gc(y) = 1

σc

√
2π

exp
(
− (y−µc)

2

2σ 2
c

)
.

(b) Stochastic re-estimation of parameters:

To obtain one a posteriori realization of X, simulate a fuzzy Markov chain using the following:

Posterior distributions of X are defined by:

ĩnit(c) = ˜f wdbwd1(c) and t̃rans (c, d)t+1 =
f (d|c)Gd(yt+1)b̃wd t+1(d)

∫ 1

0
f (d|c)Gd(yt+1)b̃wd t+1(d)dv(d)

init(c) =
{

ĩnit(c) if c ∈ {0, 1}
1
N

ĩnit (c) if c ∈ ]0, 1]
and trans(c, d)t =

{
t̃rans (c, d)t if d ∈ {0, 1}
1
N

t̃rans (c, d) if d ∈ ]0, 1] .

It has to be noted that trans(c, d)t depends on t since a different transition matrix is computed

for each element of the posterior realization, as we are dealing with a non-stationary Markov

chain.

The estimated values of the parameters at the iteration q are computed on the simulated

a posteriori chain {xt |t = 1, . . . , T } as follows:

init(c)[q] = δ
(
x

[q]
1 , c

)
.

For the a priori model: trans(c, d)[q] =
∑T

t=2 δ
(
x

[q]
t−1, c

)
δ
(
x

[q]
t , d

)
∑T

t=2 δ
(
x

[q]
t−1, c

) .

For the noise model: µ[q]
c =

∑T
t=1 ytδ

(
x

[q]
t , c

)
∑T

t=1 δ
(
x

[q]
t , c

) σ 2[q]
c =

∑T
t=1 δ

(
x

[q]
t , c

)(
yt − µ

[q]
c

)2

∑T
t=1 δ

(
x

[q]
t , c

)

for c = 0 and c = 1. For fuzzy levels (c = εi) noise parameters, use equation (9)

with δ(m, n) =
{

1 if m = n

0 if m �= n.
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(4) MPM segmentation of the chain using estimated parameters

For each xt , determine the class (hard class or fuzzy level) minimizing the error

classification probability by minimizing the following expression:

˜f wdbwd t (0)L(0, ŝ(yt )) + ˜f wdbwd t (1)L(1, ŝ(yt )) +

∫ 1

0

˜f wdbwd t (εi)L(εi, ŝ(yt )) dεi

for every ŝ(yt ), and where ˜f wdbwd denotes the product of the forward and backward densities.

The cost function L is given by (8).

(5) Reverse transformation of the 1D segmented chain into the 2D or 3D segmentation

map using the path saved at step 1.
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Abstract—Accurate volume estimation in positron emission to-
mography (PET) is crucial for different oncology applications. The
objective of our study was to develop a new fuzzy locally adaptive
Bayesian (FLAB) segmentation for automatic lesion volume delin-
eation. FLAB was compared with a threshold approach as well as
the previously proposed fuzzy hidden Markov chains (FHMC) and
the fuzzy C-Means (FCM) algorithms. The performance of the
algorithms was assessed on acquired datasets of the IEC phantom,
covering a range of spherical lesion sizes (10–37 mm), contrast
ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions),
and voxel sizes (8 and 64 mm�). In addition, the performance
of the FLAB model was assessed on realistic nonuniform and
nonspherical volumes simulated from patient lesions. Results
show that FLAB performs better than the other methodologies,
particularly for smaller objects. The volume error was 5%–15%
for the different sphere sizes (down to 13 mm), contrast and image
qualities considered, with a high reproducibility (variation 4%).
By comparison, the thresholding results were greatly dependent
on image contrast and noise, whereas FCM results were less de-
pendent on noise but consistently failed to segment lesions 2 cm.
In addition, FLAB performed consistently better for lesions

2 cm in comparison to the FHMC algorithm. Finally the FLAB
model provided errors less than 10% for nonspherical lesions
with inhomogeneous activity distributions. Future developments
will concentrate on an extension of FLAB in order to allow the
segmentation of separate activity distribution regions within the
same functional volume as well as a robustness study with respect
to different scanners and reconstruction algorithms.
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I. INTRODUCTION

P
OSITRON emission tomography (PET) is now a widely

used tool in the field of oncology, especially in applica-

tions such as diagnosis, and more recently radiotherapy plan-

ning [1] or response to therapy and patient follow-up studies

[2]. On the one hand, accurate activity concentration recovery is

crucial for correct diagnosis and monitoring response to therapy.

On the other hand, applications such as intensity-modulated ra-

diation therapy (IMRT) treatment planning using PET also re-

quire accurate shape and volume determination of the lesions of

interest, in order to reduce collateral damage to healthy tissues

and to ensure maximum dose delivered to the active disease.

Various methodologies used for the determination of volume of

interest (VOI) have been proposed. On the one hand, segmenta-

tion methods requiring a manual delineation of the boundaries

of the object of interest have been established as laborious and

highly subjective [2]. Alternatively, the performance of already

available automatic algorithms is hampered by the low resolu-

tion and associated partial volume effects (PVE), as well as low

contrast and signal to noise ratios generally characterizing PET

images.

Most of the previously proposed work dealing with VOIs de-

termination in PET use thresholding, either adaptive, based on

a priori computed tomography (CT) knowledge [3], or a fixed

threshold using values derived from phantom studies (from

30%–75% of maximum local activity concentration value)

[1]–[3]. Thresholding is however known to be significantly

susceptible to noise and contrast variations, leading to variable

VOIs determination as shown in recent clinical studies [4]. As

far as automatic detection of lesions from PET datasets is con-

cerned, different methodologies have been previously proposed

including edge detection [5], watersheds [6], fuzzy C-Means

[7], or clustering [8]. The performance of these algorithms is

also sensitive to variations in lesion-to-background contrast

and/or noise levels. In addition, past work has in its majority

considered the ability of such automatic methodologies for the

detection of lesions (sensitivity), and not for their performance

in terms of accuracy in the specific VOI determination task.

Finally, all of the aforementioned algorithms have additional

drawbacks associated with necessary preprocessing or post-

processing steps. For example in the case of the watershed

algorithm, a preprocessing step using a filtering pass is required

to smooth the image, and a postprocessing step is necessary to

fuse the regions resulting from the over-segmentation of the

algorithm. Such a need for user-dependent initializations, pre-

processing and postprocessing steps, or additional information

0278-0062/$25.00 © 2009 IEEE
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like CT or expert knowledge render the use of these algorithms

more complicated and the outcome dependent on choices made

by the user in relation to these necessary steps.

Bayesian-based image segmentation methods are automatic

algorithms allowing noise modelling and have shown to be

less sensitive to noise than other segmentation approaches due

to their statistical modelling [9]. They offer an unsupervised

estimation of the parameters needed for the image segmentation

and limit the user’s input to the number of classes to be searched

for in the image. Reconstructed images require no further pre-

processing or postprocessing treatment (such as for example

filtering) prior to the segmentation process. Instead, image

noise is considered as additional information (a parameter in

the classification decision process) to be taken into account

rather than to be filtered or ignored. They have only been

previously used in PET imaging in the form of hidden Markov

fields (HMFs) [10] and more recently we have investigated

the performance of hidden Markov chains (HMCs) for volume

determination, a faster model that was in addition extended to

include fuzzy modelling, fuzzy HMC (FHMC) [11]. Although

FHMC was shown to provide overall superior results relative

to the threshold reference methodology, independent of lesion

contrast and image signal-to-noise ratio, it is unable to correctly

segment objects 2 cm in diameter. This is mainly due to the

3-D Hilbert-Peano path [12] used to transform the 3-D volume

into an 1-D chain, since voxels defining small objects may

find themselves far away from each other on the chain, thus

being misidentified by the algorithm as noise and becoming not

significant enough to form a class apart from the background.

Consequently, the main objectives of this study were to im-

prove the segmentation of small objects by 1) developing a fuzzy

local adaptive Bayesian (FLAB) model and 2) comparing the

performance of this new algorithm with that of the thresholding

methodologies currently used in clinical practice as well as the

fuzzy C-Means (FCM) and the previously proposed FHMC al-

gorithms. In addition, as a secondary objective we have also in-

vestigated the use of the Pearson’s system [13] in order to poten-

tially improve the noise modelling used in the algorithm, instead

of simply assuming a Gaussian distribution.

Different imaging conditions were considered in this study in

terms of statistical quality, as well as lesion size and source-to-

background (S/B) ratio. The images were reconstructed using an

iterative algorithm, since this type of reconstruction algorithms

form today’s state of the art in whole body PET imaging in rou-

tine clinical oncology practice [14]. In addition, the new FLAB

algorithm was evaluated using simulated images of non homo-

geneous and non spherical tumors derived from tumors of pa-

tients undergoing radiotherapy.

II. MATERIAL AND METHODS

A. FLAB Model

The FLAB model is an unsupervised statistical methodology

that takes place in the Bayesian framework. Let be a finite set

corresponding to the voxels of a 3-D PET image. We consider

two random processes and . Y rep-

resents the observed image and takes its values in whereas X

represents the “hidden” segmentation map and takes its values

in the set , with C being the number of classes. The

segmentation problem consists of estimating the hidden X from

the available noisy observation Y. The relationship between X

and Y can be modeled by the joint distribution , which

can be obtained using the Bayes formula

(1)

is the likelihood of the observation Y conditionally

with respect to the hidden ground-truth X, and is the prior

knowledge concerning X. The Bayes rule allows the determina-

tion of the posterior distribution of X with respect to the obser-

vation . Contrary to the FHMC model [11], we do

not assume here that a Markov process can model the prior dis-

tribution of X, thus simplifying its expression.

The Fuzzy Measure: The general idea behind the implemen-

tation of a fuzzy model within the Bayesian framework was pre-

viously introduced in [15] and [16] and was used for a local

Bayesian segmentation scheme in [15]. Its implementation is

based on the incorporation of a finite number of fuzzy levels

in combination with two homogeneous (or “hard”) classes,

in comparison to the standard implementation where only a

finite number of hard classes are considered. This model al-

lows the coexistence of voxels belonging to one of two hard

classes and voxels belonging to a “fuzzy level” depending on

its membership to the two hard classes. While the statistical

part of the algorithm models the uncertainty of the classifica-

tion, with the assumption being that the voxel is identified but

the observed data is noisy, the fuzzy part models the impreci-

sion of the voxel’s membership, with the assumption being that

the voxel may contain both classes. One way to achieve this ex-

tension is to simultaneously use Dirac and Lesbegue measures,

considering that X in the fuzzy model takes its values in [0,1]

instead of . We define therefore a new mea-

sure on [0,1], given that and are the Dirac

measures at 0 and 1, and is the Lesbegue measure on the fuzzy

interval [0,1]. This approach is adapted for the segmentation of

PET images since they are both noisy and of low resolution. The

“noise” aspect when considering Bayesian models is the way

the values of each class to be found in the image are distributed

around a mean value. The noise model used, whose respective

mean and variance are to be determined by the estimation steps,

can therefore be adapted to image specific characteristics. Fi-

nally, the fuzzy measure facilitates a more realistic modelling

of the objects’ borders transitions between foreground and back-

ground, allowing in such a way to indirectly account for the ef-

fects of blurring associated with low resolution PET images.

Distribution of X (a priori model): Using

as a measure on [0,1], the a priori distribution of each can be

defined by a density on [0,1], with respect to . If we assume

that X is a stationary process and that the distribution of each

is uniform on the fuzzy class, this density can be written as

(2)
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where, satisfies the following normalization condition:

Using this simple modelling for the prior distribution leads to ig-

noring the spatial relationship of each voxel with respect to its

local neighborhood. Although it is possible to include such spa-

tial information using the contextual framework [15], the use of

such modelling leads to an increase in the number of parameters

to be handled, and in practice, no more than one or two neigh-

bors can be actually taken into account. Hence, the contextual

approach is not of interest since we aim to explore all the in-

formation available in the 3-D volume around each voxel, i.e.,

at least 26 neighbors (eight-connectivity extended in three di-

mensions). As an alternative, the adaptive framework [15] can

be used. In this adaptive modelling, the spatial information is

inserted into the estimation step of the algorithm (see section

parameters estimation).

Distribution of Y (Observation or Noise Model) and the

Pearson’s System: In order to define the distribution of Y

conditional on X, let us consider two independent random

variables and , associated with the two “hard” values 0

and 1, whose densities and are characterized by means

and variances and respectively. The mean

and variance of each fuzzy level are derived from the ones

estimated in the two hard classes as follows:

(3)

where is the value associated to a fuzzy level . For the case

of two fuzzy levels and were used according

to results previously published [11].

The assumption that the noise for each class of the observed

data can fit a Gaussian distribution was considered as a first

approximation as with the previous implementation of the

FHMC algorithm [11]. In this work, we propose the study of

the Pearson’s system that contains seven other distributions.

In this context, instead of using a Gaussian distribution, an

additional step is introduced to detect which laws best fit the

actual distribution of the voxels in the image, for each class

considered at a given iteration of the estimation step of the

algorithm. The theory behind the Pearson’s system has been

previously detailed in [17] and a description of its use in

mixture estimation and statistical image segmentation is given

in [13]. Here, we briefly describe the Pearson’s system in our

particular context.

A distribution density on belongs to the Pearson’s system

if it satisfies

(4)

Different shapes of distributions as well as the parameters

determining a given distribution are provided by the variations

of the coefficients , , , and . For , 2, 3, and 4, let

Fig. 1. The eight distribution families in the graph of Pearson, function of �
and � [17]. I for Beta I, II for type II, III for Gamma, IV for type IV, V for
Inverse Gamma, VI for Beta II, VII for type VII and N for Normal.

us consider the first four statistical moments of a partition

of Y defined by

(5)

We also define two parameters and as follows:

(6)

where is called “skewness” and is called “kurtosis.”

The coefficients , , , and are related to (5) and (6) by

equations that can be found in the Appendix I-A. Given

, the

eight distribution density families contained in the

system of Pearson can now be defined by a set of conditions

using , and (see Appendix I-B). These eight distribution

density families are illustrated in Fig. 1. Finally, the protocol

used for the determination of which density family best fits each

measured distribution can be found in Appendix I-C.

Parameters Estimation: The different parameters necessary

to be estimated for the segmentation process are

(7)

Both a priori and noise parameters are unknown and

may vary from one image to another. An iterative procedure

called stochastic expectation maximization (SEM) [18], a sto-

chastic version of the EM algorithm [19], is used for the estima-

tion of these parameters. This is achieved by sampling a real-

ization of X according to its posterior distribution and

computing empirical values of the parameters of interest using

this realization. The stochastic nature of this procedure makes

it less sensitive to the initial guess of the parameters using the

K-Means [20] than deterministic procedures like the EM algo-

rithm. The system of Pearson can be used as an additional step

(inside each iteration of the algorithm) in order to determine the

type of distribution to use. The posterior distribution with re-

spect to class for a given voxel used at iteration for sam-

pling the posterior realization is given by (8) at the bottom of the
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page, where, is a density whose distribution type is

chosen using the Pearson system and whose mean and variance

were estimated at iteration , and is the prior proba-

bility of voxel belonging to class estimated at iteration .

In the adaptive framework priors are reestimated using a local

neighboring window with priors depending on the position

of the voxel in the image. Although in the 2-D case, a window

centred on the voxel of interest is used [15], for our application

we use a 3-D “cube” centred on each voxel. The size of the es-

timation “cube” was experimentally determined for the specific

application of PET imaging, since it depends on the size of the

objects of interest (10–50 mm in diameter) relative to the recon-

structed voxel size ( or mm ). An estimation

cube should from one hand be small enough to yield good local

characteristics [15], while on the other hand it should not be

too large with respect to the size of the object of interest. Con-

sidering this, we tested two different estimation “cube” sizes;

namely covering and voxels.

It is worth noting that only the priors are concerned by the use

of the adaptive framework. Noise parameters are estimated the

same way as in the blind context [15]. The detailed description

of the SEM algorithm in our context is given in the Appendix II.

Segmentation: In order to perform segmentation on a voxel

by voxel basis, we need to use a criterion to classify each

voxel as either part of the background or the functional VOI.

For this purpose we use the maximum posterior likelihood

(MPL) method as suggested by [15]. To compute a solution,

the MPL method requires the parameters defining the a priori

model (priors of each class for each voxel) as well as the noisy

observation data model (mean and variance of each class),

estimated using SEM. The MPL computes the posterior density

and selects for each voxel the class that maximizes it, using the

procedure described below.

Let us consider given by (8) computed using the pa-

rameters estimated by the SEM estimation algorithm. Using

, the decision rule assigning

the class or fuzzy level to the voxel knowing the observed

value is given by the following procedure:

For each voxel, let . If

, then assign the hard class 0 or 1 to

the voxel . Else if belongs to the fuzzy domain ,

use to determine its exact value

using the quantitation of the fuzzy interval into fuzzy levels (see

Section II-A-3) and assign one of the fuzzy levels to the voxel.

In our implementation of FLAB, each can take four different

values: 0, 1/3, 2/3, and 1.

B. Alternative Approaches Used for Comparison

Thresholding: Various thresholding methodologies have

been proposed in the past for functional volume determination

[2]–[4]. For comparison purposes with the developed method-

ology, threshold at 42% of the maximum value inside the lesion

was chosen for VOI determination, based on suggestions from

previous publications [2], [3]. The methodology was imple-

mented through region growing using the voxel of maximum

intensity in the object of interest as a seed. Using a 3-D neigh-

borhood (26 neighbors) the region is iteratively increased by

adding neighboring voxels if their intensity is superior or equal

to the selected threshold value. The results derived using this

method will be denoted from here onwards as T42.

Fuzzy C-Means: The FCMs algorithm was introduced in

[21]. It was suggested for PET image segmentation in [7].

For the purpose of this study it was implemented using the

following objective function O:

(9)

where is a weighting exponent and are the centre

values of the classes. The weighting exponent controls the

fuzzy aspect of the image and is usually set to 2 (hard segmen-

tation is represented by ). The algorithm converges to the

value at which the objective function has a local maximum. The

results derived using this method will be denoted from here on-

wards as FCM.

C. Validation Studies

Datasets: Acquisitions of the IEC image quality phantom

[22], containing six different spherical lesions of 10, 13, 17,

22, 28, and 37 mm in diameter [Fig. 3(a)] were carried out

in list-mode format using a Philips GEMINI PET/CT scanner.

The spatial resolution of this system is 4.9 mm full-width at

half-maximum (FWHM) at the center of the field of view [23].

Partial volume effects are therefore expected to be significant

even for the largest sphere. The 28-mm-diameter sphere was

not considered in this study since it was replaced by a hand-

made plastic sphere whose diameter was not known precisely.

Different parameters were considered covering a large spectrum

of configurations allowing assessment of the influence of dif-

ferent parameters susceptible to affect the functional VOI de-

termination. The statistical quality of the images was varied by

considering 1, 2, or 5 min list-mode time frames. Two different

signal-to-background (S/B) ratios (4:1 and 8:1) were consid-

ered, by introducing 7.4 in the background and 29.6

or 59.2 , respectively, in the spheres. Two different

voxel sizes ( or mm ) were used in the re-

construction of each of the different statistical quality datasets

using the 3-D RAMLA algorithm, with specific parameters pre-

viously optimized for clinical use [14]. Visual illustration of the

acquired images is given in Fig. 2. In addition, an estimation of

(8)
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Fig. 2. Different images used in the segmentation study; (a) ratio 4:1, 2 min
acquisition time, 64 mm voxels, (b) ratio 8:1, 2 min, 64 mm , (c) ratio 4:1,
2 min, 8 mm , (d) ratio 8:1, 2 min, 8 mm , (e) CT acquisition, (f) voxel-by-voxel
ground-truth generated using CT image on the PET image. Note the 28 mm
sphere is in plastic and not clearly seen (since its real diameter was unknown
this sphere was excluded from any analysis in this work).

the FLAB algorithm’s reproducibility was performed by consid-

ering five different 1 min list-mode time frames acquired con-

secutively and reconstructed using 8 mm .

Finally, to test the algorithm against more clinically realistic

conditions of tumor shapes, we simulated three lesions with

nonspherical shapes and inhomogeneous activity distributions.

These lesions were generated using real lung tumor images from

three patients undergoing PET scans for radiotherapy

treatment planning purposes. A ground-truth was drawn by a

nuclear medicine physician (on a slice-by-slice basis) based on

the reconstructed patient images. In the case of the first tumor,

the simulated contrast between the region of the highest ac-

tivity concentration and the rest of the tumor was around 2.2:1

whereas in the case of the second tumor, it is closer to 1.4:1.

Finally, the third tumor is almost homogeneous. The overall

contrast between the whole tumor and the background was 6:1

and 5:1 for the first and second tumors, respectively, and less

than 2:1 for the third one. In terms of lesion size, the largest le-

sion “diameter” was 4.1, 2.9, and 1.5 cm for the first, second,

and third lesion, respectively. These lesions were subsequently

placed within the lungs of the NCAT phantom [24]. No respira-

tory or cardiac motion was considered. Normal organ FDG con-

centration was assumed for the simulation [25], with the max-

imum activity concentration in the lesions being four times the

mean activity concentration in the lungs. The NCAT emission

and attenuation maps were finally combined with a model of

the Philips PET/CT scanner previously validated with GATE

[26]. A total of 45 million coincidences were simulated corre-

sponding to the statistics of a standard clinical acquisition over

a single axial field of view of 18 cm [26]. Images were subse-

quently reconstructed from the list mode output of the simula-

tion using 8 mm . As well as using all of the simulated

true coincidences, images were reconstructed for each lesion

using only 40% and 20% of the overall detected coincidences

in order to evaluate the accuracy of the segmentation algorithms

at different noise levels (similar to the IEC phantom study using

5, 2, and 1 min acquisitions for the image reconstruction). Visual

illustration of these simulated tumor images (central slice), with

their ground-truth drawn from the corresponding patient tumors

are displayed in Figs. 7 and 8, and Fig. 9(a)–(c). Each segmen-

tation algorithm considered was applied to the lesion and the

segmentation map was compared with the ground-truth. Note

that in this framework, the ground-truth does not need to be ac-

curate with respect to the true patient image. What is important

is that we are able to compare the segmentation obtained on the

simulated image with the ground-truth used in the simulation.

The corresponding segmentation maps (central slice) for each

algorithm can be found in Figs. 7 and 8 and Fig. 9(d)–(g).

Analysis: As our goal is not lesion detection in the whole

body image but the estimation of a lesion’s volume with the

best accuracy possible, we assume that the lesion has been pre-

viously identified by the clinician and automatically or manu-

ally placed in a 3-D “box” well encompassing the object [see

Fig. 3(a)]. Although no significant impact on the segmentation

results was observed through small changes in placement or size

of the box, certain conditions must be respected. Evidently it

should be large enough to contain the entire extent of the ob-

ject of interest and a significant number of background voxels

so the algorithm is able to detect and estimate the parameters

of the background class. On the other hand it should be small

enough in order to avoid including neighboring tissues with sig-

nificant uptake that would end up being classified as functional

VOI, requiring manual postprocessing. However, the shape of

this box does not have to be perfectly cubic or with specified

dimensions (contrary to the FHMC case [11]), and as a result it

could be drawn accordingly to exclude structures in the back-

ground that are of no interest.

Subsequently, the images of the selected area were segmented

in two classes (functional VOI and background) using each of

the methods under evaluation (T42, FCM, FHMC, and FLAB).

In the FHMC and FLAB cases, considering the optimization

results obtained in [11], two fuzzy levels were considered in the

segmentation process and the functional volumes were defined

using the first hard class and the first fuzzy level. A voxel-to-

voxel ground-truth was generated for the phantom dataset using

the CT image registered with the PET reconstructed image [see
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Fig. 2(e) and (f)]. Classification errors (CE) were then computed

on a voxel-by-voxel basis following the definition used in [11]:

(10)

PCE stands for positive classification errors, including voxels

of the background that are classified as belonging to the ob-

ject of interest, and NCE stands for negative classification errors

including voxels of the object that are classified as belonging

to the background. These classification errors essentially occur

on the boundaries of the objects of interest because of activity

“spill in” and “spill out.” If the segmentation results in PCEs

and NCEs of equal amounts, the computed VOI would be very

close to the true known volume whereas the shape and position

of the object would be incorrect (this essentially occurs for ob-

jects 2 cm, while for smaller objects the errors are essentially

PCE). As shown in (10), the total number of PCEs and NCEs

is considered with respect to the number of voxels defining the

sphere (VoS). Although the size of classification errors can be

bigger than 100%, in the case where a large number of back-

ground voxels in the selected area of interest are misclassified

as belonging to the sphere, maximum classification errors con-

sidered in this paper where limited to 100%, since any such

values represent complete failure of the segmentation process.

Although the combination of PCE and NCE into CE leads to

a loss of information as far as the direction of the bias is con-

cerned, classification errors represent more pertinent informa-

tion than overall volume errors, which reflect neither accurate

magnitude nor direction of the bias for a segmented volume. For

comparison purposes overall volume errors (with respect to the

known volume of the sphere) were also computed and shown in

Fig. 6.

As far as the simulated tumors are concerned, both overall

volume errors (with respect to the known volume of the ground-

truth) and CE were computed. Since all the algorithms under

investigation in this study perform binary segmentations (i.e.,

able to distinguish between tumor tissue and background only),

no evaluation was performed of their ability to distinguish dif-

ferent regions within a given tumor.

III. RESULTS

Different segmentation maps obtained using each of the

methods under evaluation (FHMC, FLAB, T42, and FCM) are

presented in Fig. 3(c)–(f) for a slice centered on the 22 mm

sphere considering a “good quality” image (8:1 contrast and

5 min acquisition) [Fig. 3(a)] to visually illustrate the variations

of the segmentation maps obtained. Segmentation results in the

case of a “lower quality” image (4:1 contrast and 2 min acqui-

sition) and a smaller sphere (17 mm) [Fig. 3(g)] are presented

in Fig. 3(h)–(k). Both images are representative of the 8 mm

voxel size reconstructions.

In the different figures shown in this section the CE are given

for all five spheres (10, 13, 17, 22, and 37 mm) and for both

contrast ratios (4:1 on the left part of each figure, 8:1 on the

right part) considered. The error bars in the figures represent the

different results obtained for each of the three different levels

of image statistical quality considered. The top of the error

Fig. 3. (a) Graphical representation of the IEC phantom and illustration of the
3-D box selection for the 22-mm sphere and examples of segmentation maps
(only central slice is shown); (b)–(f) for the 22 mm sphere (8:1 contrast, 5 min
acquisition) and (g)–(k) for the 17 mm sphere (4:1 contrast, 2 min acquisition)
with corresponding volume errors (computed on the whole volume): (b) and
(g) PET ROI, (c) and (h) T42 map, (d) and (i) FCM map, (e) and (j) FHMC, and
(f) and (k) FLAB maps with two fuzzy levels (light and dark grey voxels). Both
images are extracted from 8 mm voxel size reconstructions.

bar is the result concerning the worst statistical quality images

(1 min acquisition), the medium one concerns the medium

quality (2 min acquisition), and the lowest one corresponds to

the superior statistical quality (5 min acquisition). The only

exception is Fig. 5 where the error bars represent the variability

of the FLAB segmentation results considering the application

of the algorithm on multiple images of 1 minute acquisitions

(five independent realizations).
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Fig. 4. Optimization of the FLAB algorithm. Classification errors for (a) Beta I distributions (detected using the Pearson’s system) or Gaussian distributions (for
the 8 mm voxel size); (b) � � � � � or � � � � � voxels for the estimation cube (for the 64 mm voxel size); (c) � � � � � or � � � � � voxels for the
estimation cube (for the 8 mm voxel size); (d) with (FLAB) or without (FLB) adaptive estimation of priors (for the 8 mm voxel size). The top of the error bar
is the result concerning the worst statistical quality images (1 min acquisition), the medium one concerns the medium quality (2 min acquisition), and the lowest
one corresponds to the superior statistical quality (5 min acquisition).

Fig. 4 contains the results on the optimization of the algo-

rithm for the specific application of lesion segmentation in PET

images. Considering the selected volume of interest around a le-

sion, the Pearson’s system systematically led to the detection of

Beta I distributions for both the background and the lesion ac-

tivity distributions (although with different parameters). How-

ever, the parameters and (see (6)) placed the estimated dis-

tributions very close to the Gaussian one in the Pearson graph [as

it can be seen in Fig. 1, the surface matching Beta I distribution

(I) is in contact with the point defining the Normal distribution

(N)]. Consequently only small changes in the volume estima-

tion results were consistently obtained using the Beta I instead

of a Gaussian distribution [Fig. 4(a)]. Considering these results

the Gaussian distribution was kept in the final implementation

of the algorithm for the description of both the background and

lesion activity distributions.

In terms of the size of the estimation “cube” used for the

re-estimation of the priors in the adaptive framework, a size of

led to consistently better results across different

lesion and voxel sizes as well as S/B contrast and noise config-

urations as shown in Fig. 4(b) and (c). Finally, Fig. 4(d) demon-

strates the impact in terms of the improved results through the

use of the adaptive estimation, for the 8 mm configuration.

In this figure the FLAB segmentation results are compared to

the results without adaptive estimation (FLB for Fuzzy Local

Bayesian, using the same fuzzy levels implementation), where

priors are the same for all the voxels of the image and are com-

puted using the entire image instead of using only the local

neighbourhood of each voxel. As is demonstrated by this figure,

the inclusion of the adaptive estimation significantly improves

the segmentation results throughout the different lesion sizes

and contrast configurations considered.

Results in relation to the FLAB algorithm’s reproducibility

can be seen in Fig. 5. In this particular figure, error bars rep-

resent the variation of the segmentation results (mean and vari-

ance) using the five different images obtained from the consecu-

tive 1 minute acquisitions. A variation of 4% in the segmented

volumes was obtained from the application of the algorithm on

the five different images for all spheres except from the 1 cm

sphere which the algorithm consistently failed to correctly seg-
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Fig. 5. Study of FLAB reproducibility using five different 1 min list-mode time
frames (reconstructed with 8 mm voxel size). The error bars represent the vari-
ability of the FLAB segmentation results considering the application of the al-
gorithm on multiple images of 1 minute acquisitions (five realizations).

ment. This segmentation failure is most probably the cause of

this larger variability observed for the segmented volume of the

1 cm sphere.

Fig. 6 presents the classification errors and corresponding

overall volume errors relative to the CT-based ground-truth

obtained using each approach, for both 64 and 8 mm

sizes [Fig. 6(a) and (b) and 6(c) and (d), respectively]. Globally,

volume errors are very closely linked to classification errors:

when the segmentation results in strictly NCE, the volume error

(underestimation) is equal to the CE. When the segmentation

results in only PCE, the volume error (overestimation) is also

equal to the CE. And when both NCE and PCE occur, the

volume error is inferior to the CE (it essentially occurs for

medium-sized spheres). FLAB led to superior results in com-

parison to all the other methodologies on the whole dataset.

The proposed algorithm gives good results (on average between

5% and 20% CE) independently of the contrast ratio and for

all spheres except from the 1 cm one for which a minimum

error of 25% was obtained for the most favorable configuration

evaluated (8:1 contrast and a 5 min. acquisition). The use of a

reconstruction voxel size of 8mm allowed an improvement in

the segmented volume errors from 10%–25% to 5%–15% for

lesions between 1 and 2 cm.

As shown in Fig. 6, T42 gave errors 20% for the three

biggest spheres with the 8:1 contrast and 64 mm size,

while for a 4:1 contrast T42 did not manage to accurately seg-

ment any of the spheres. By reducing the reconstruction voxel

size to 8 mm an improvement was obtained in the results of

the T42 with errors 15% for the three larger spheres and a

contrast 8:1, while errors of 20% were obtained for the 22

and 37 mm spheres with a 4:1 contrast ratio. In the case of the

FCM algorithm errors of 20% and 40% were seen for le-

sions larger and smaller than 2 cm, respectively. No substantial

differences were seen in these results from the reduction in the

reconstruction voxel sizes from 64 to 8 mm . Finally, FLAB per-

formed better in comparison to the previously developed fuzzy

Bayesian approach (FHMC) for all different lesion sizes and

statistical image qualities considered with a larger magnitude

effect (improvements of over 100% in the errors) observed in

the spheres with a diameter 2 cm. Relative to the FLAB re-

sults globally larger improvements in the accuracy of the seg-

mented volumes were observed for the FHMC algorithm with a

reduction in the reconstructed voxel size. On the other hand, in

percentage terms the dependence of the algorithm results to the

statistical quality of the images was similar for both the FLAB

and FHMC results.

Figs. 7–9 show visual illustration of the segmentation maps

obtained on the simulated tumors. Fig. 10 contains the results

for both classification errors (NCE+PCE divided by the number

of voxels defining the tumor ground-truth volume) and volume

errors (with respect to known overall volume of the tumor) for

each approach.

The results for the first and third tumors (Fig. 7) show the

largest differences between the four algorithms. In the case of

the first tumor, this difference can be attributed to the nonuni-

form activity distribution (the contrast between the region of

highest activity and the rest of the tumor is around 2.2:1) rel-

ative to the second tumor (closer to 1.4:1). Consequently, the

segmentation results of T42 and FCM lead to large under evalu-

ation ( 30 to 50%) of the true volume of the first tumor since

they limit themselves to the highest activity area, whereas in

the case of the second tumor they are unable to differentiate be-

tween the two regions, hence recovering the entire tumor (less

than 10% error_for all methods). On the other hand, the third

tumor despite being uniform is small with a low tumor to back-

ground ratio (1.5 cm in “diameter” and contrast 2:1). As a

result, thresholding using 42% of maximum value fails com-

pletely (the region growing never stops and expands into the en-

tire selection box) and FCM despite qualitatively satisfying re-

sults leads to a large over evaluation (from 10% to 40% volume

error depending on the image statistical quality) of the volume.

As far as FHMC and FLAB are concerned, they are both able

to recover the whole tumor in all cases with volume errors be-

tween 2% and 20% (see Fig. 10). While FLAB in compar-

ison with the FHMC performed better in terms of both the mis-

classification and the overall volume errors, FHMC results were

less competitive with decreasing tumor sizes as seen also in the

IEC phantom results (Fig. 10). Finally, the variability of the re-

sults (demonstrated by the error bars in Fig. 10) considering the

different noise levels was higher for FCM and T42, illustrating

their lower robustness to noise in comparison to the fuzzy sta-

tistical approaches.

IV. DISCUSSION

Over the past few years there has been an increasing interest

in clinical applications such as the use of PET for IMRT plan-

ning, for which an accurate estimation of the functional volume

is indispensable. Unfortunately, accurate manual delineation is

impossible to achieve due to high inter- and intra-observer vari-

ability [2] resulting from the noisy and low resolution nature

of the PET images. Current state of the art methodologies for

functional volume determination involve the use of adaptive

thresholding based on anatomical information or phantom

studies. Thresholding however is known to be sensitive to

contrast variation as well as noise [2], [4], since it does not

include any explicit modelling of noise or spatial relationship.
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Fig. 6. Comparison of performances for FLAB, FHMC, FCM, and T42 on data reconstructed with (a) classification errors and (b) volume errors, for 64 mm
and (c) classification errors and (d) volume errors, for 8 mm voxels. The top of the error bar is the result concerning the worst statistical quality images (1 min
acquisition), the medium one concerns the medium quality (2 min acquisition), and the lowest one corresponds to the superior statistical quality (5 min acquisition).

Fig. 7. (a) Real tumour used as model, (b) voxelized ground-truth (manually
drawn) and its binary version, and (c) simulated tumour. Segmentation binary
maps obtained using (d) T42, (e) FCM, (f) FHMC, and (g) FLAB are shown.
Image is 34 � 34 voxels with 8 mm ������.

In addition, proposed adaptive thresholding methodologies

require a priori knowledge of the tumor volumes currently

obtained by CT images, based on the nonvalid assumption

that the functional and anatomical volumes are the same [3].

In addition, proposed correction methodologies accounting

Fig. 8. (a) Real tumour used as model, (b) voxelized ground-truth (manually
drawn) and its binary version, and (c) simulated tumour. Segmentation binary
maps obtained using (d) T42, (e) FCM, (f) FHMC, and (g) FLAB are shown.
Image is 30 � 30 voxels with 8 mm ������.

for the effects of background activity levels depend on lesion

contrast and background noise as well as being imaging system

specific [4]. On the other hand, previously developed automatic

algorithms have also shown dependence on the level of noise

and lesion contrast, most frequently requiring preprocessing

Authorized licensed use limited to: Universite de Bretagne Occidentale. Downloaded on November 24, 2009 at 05:11 from IEEE Xplore.  Restrictions apply. 



890 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 6, JUNE 2009

Fig. 9. (a) Real tumour used as model, (b) voxelized ground-truth (manually
drawn) and its binary version, and (c) simulated tumour. Segmentation binary
maps obtained using (d) T42, (e) FCM, (f) FHMC, and (g) FLAB are shown.
Image is 16 � 16 voxels with 8 mm ������.

Fig. 10. Segmentation results for the three simulated tumours. (a) Classifica-
tion errors and (b) overall volume errors. The top of the error bar is the result
concerning the worst statistical quality images (20% of detected coincidences),
the medium one concerns the medium quality (40%), and the lowest one corre-
sponds to the superior statistical quality (100%).

or postprocessing steps and variable initialization parameter

values depending on image characteristics rendering their use

complicated and their performance highly variable.

We have previously developed and assessed the performance

for functional volume segmentation of a modified version of

the hidden Markov chains algorithm (FHMC) [11]. In this al-

gorithm a number of fuzzy levels have been added to introduce

the notion of imprecision allowing this way to account for the

effects of low image spatial resolution in addition to the noise

modelling (which is part of the standard HMC framework). Al-

though the algorithm was shown to accurately segment func-

tional volumes (errors 15%) for lesions 2 cm throughout dif-

ferent contrast and noise conditions, it was unable to accurately

segment lesions 2 cm. The main reason behind the failure of

FHMC concerning the segmentation of such small lesions was

the small number of voxels associated with the object of interest

in combination to image noise levels, and the Hilbert-Peano path

[12] used to transform the image into a chain. The spatial cor-

relation of such small objects is lost once the image is trans-

formed into a chain, because the voxels belonging to the object

may find themselves far away from each other in the chain, thus

resulting in transition probabilities that prevent these voxels to

form a class differentiated from the background. In addition, it

was thought that the assumption of a Gaussian noise distribu-

tion in the images to be segmented may have also been partly

responsible.

FLAB clearly improved the results of FHMC, essentially due

to the adaptive estimation of the priors using the whole 3-D

neighborhood of each voxel, as the results of Fig. 5(c) clearly

demonstrate. FLAB results obtained on the objects 2 cm were

similar to those obtained through the use of FHMC as were

their respective robustness with respect to noise levels. Finally,

FLAB resulted in faster computation times in comparison with

the FHMC.

In addition, highly reproducible results ( 4% variability, to

compare with the 8%–20% variability observed on manual seg-

mentation [2]) were obtained for different image contrast ratios

and lesion sizes 1 cm. We should emphasize here that the per-

formance of the FLAB in comparison to other segmentation al-

gorithms was evaluated in this study on images reconstructed

using a specific iterative reconstruction algorithm used today in

clinical practise. Since the FLAB segmentation algorithm has

been developed in order to better cope with variable noise and

contrast characteristics it should be the least affected by such

changes introduced as a result of using an alternative reconstruc-

tion algorithm [27]. On the other hand, the use of the system of

Pearson for the determination of image voxel value distributions

did not lead to significant changes or improvements in the results

in comparison to the Gaussian assumption. Although this was

shown to be the case for the images reconstructed using the spe-

cific iterative reconstruction algorithm used here it may not be

the case if an alternative reconstruction algorithm is used, where

potentially the use of the system of Pearson for the characteri-

sation of the image voxel values distribution may still prove to

play a role in the segmentation process and needs to be further

investigated.

By comparison the use of T42 led, as expected, to segmented

functional volumes greatly dependent on image contrast and

noise levels while being comparable to the FLAB results con-

sidering medium image statistical quality and lesions 17 mm

with an 8:1 tumor to background ratio. Finally, the resulting vol-
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umes from the application of the automatic segmentation algo-

rithm FCM were less dependent to image statistical quality but

consistently failed to segment lesions 2 cm.

In this study, as in every other phantom study presented to

date in the literature, we have firstly considered the performance

of the different algorithms for the segmentation of uniformly

filled spherical lesions. To our knowledge there has been

no study up to now specifically investigating the functional

volume segmentation task for inhomogeneous uptake lesions,

for example lesions with necrotic or partially necrotic regions.

Although it has not been the major aim of their work, Nestle et

al. demonstrated some evidence of the issues associated with

the use of either fixed or background adjusted thresholding

methodologies for lesions with inhomogeneous activity dis-

tributions and shapes in the clinical set up for non small cell

lung cancer [4]. As it was shown in this study using simulated

realistic lesions, the FLAB model is able to successfully deal

with nonuniform lesion shapes and variable activity concen-

trations in contrast with the threshold based or fuzzy C-means

segmentation algorithms considered. On the other hand, the

binary two-class modelling (background or lesion) is obviously

not adequate to permit the differentiation of multiple regions

inside the tumor with largely different activity concentrations,

as well as extracting the overall tumor in the case of strong

heterogeneity. However, whereas it seems difficult to improve

threshold-based segmentation methods in order to allow the

identification of regions with variable activity concentration

within the same functional volume of interest, the fuzzy model

of FLAB may be extended to more than two hard classes to

allow modelling a combination of inhomogeneous regions

within a given volume. This could further enhance the use of

FLAB for functional volume segmentation in future potential

clinical applications.

The objectives of this study were to address the issue of

functional volume determination and lesion segmentation. The

FLAB model, as with any other segmentation algorithms, does

not modify the values of the image voxels. As such, the use

of the functional volume obtained with the FLAB algorithm,

although is the closest to the true volume of the tumor as

demonstrated by the results in this study, does not lead to the

accurate activity concentration within the lesion. This is as a

result of including voxels whose values have been decreased

by spill-out from partial volume effects, usually leading to an

underestimation of the activity concentration whose magnitude

depends on the size of the lesion [11]. Although the segmented

volume should therefore not be used for directly recovering the

accurate activity concentration, they can be used in combina-

tion with partial volume correction methodologies potentially

allowing a more accurate correction in comparison to the use

of anatomical volumes [28].

V. CONCLUSION

A modified version of a fuzzy local Bayesian segmentation al-

gorithm has been developed. The suggested approach combines

statistical and fuzzy modelling in order to address specific is-

sues in the segmentation of low resolution noisy PET images.

It is automatic, fully 3-D and uses adaptive estimation of priors

to yield good local spatial characteristics that improve segmen-

tation of small objects of interest. Results obtained with images

of the IEC phantom reconstructed with the 3-D RAMLA iter-

ative algorithm have shown that it is more effective than the

reference thresholding methodology and other previously pro-

posed automatic algorithms such as FHMC or the FCM methods

for functional volume determination in PET images. The algo-

rithm has also been tested successfully against realistic simu-

lated tumors, using real patient tumors as model, with nonspher-

ical shape and inhomogeneous activity distributions. Future de-

velopments will concentrate on the incorporation into FLAB of

three hard classes and three different fuzzy transitions, in order

to allow the segmentation within the same lesion of variable

activity distributions in the case of highly heterogeneous func-

tional uptake in the tumor volumes. We will also evaluate the

use of different noise models in an associated robustness study

using acquisitions with different scanner models and reconstruc-

tion algorithms.

APPENDIX I

A. Relationship Between Coefficients , , , and and

(5) and (6)

B. Definition of the Eight Distribution Density Families

Beta I and Gaussian distributions with respect to a class are

defined as follows:

(18)

(19)

where is the Beta function

(with the Gamma function).

We also have the following relationships between the param-

eters and , and the mean and variance ( , denote es-

timated mean and variance) of class (this is useful to get the
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parameters and from the estimated means and variances ob-

tained through the SEM algorithm)

C. Recipe for Identification of the Best Family to Fit

Distributions of Classes

Let us consider the voxels and their partitions

and into two classes. The moments can be estimated from

empirical moments, and we use the following to detect which

family best fits each distribution.

1) Consider the partitions , of defined by

and .

2) For each class use in order to estimate the em-

pirical moments by the following.

for , 3, 4.

3) For each class , calculate and from the estimated

( , 2, 3, 4) according to (6).

4) For each class , use , and rules (Appendix I-B) to

determine which family its density belongs to.

APPENDIX II

SEM Algorithm

1) Give an initial value of the parameters

using K-Means algorithm for the noise and equal probabil-

ities for the priors.

2) At each iteration , is obtained from and the data

using:

a) Choose a distribution for the classes 0 and 1 according

to the Pearson system rules (Section II-A-3 and Ap-

pendixes I-B and I-C).

For each , compute the a posteriori probabilities

and using (8) and sample a value in the set

according to , and (

representing the fuzzy voxels). Let us denote

the posterior realization obtained through this sampling.

Let and .

• Reestimate the priors using

where is the estimation cube centred on voxel and

the Kronecker function.

• Reestimate the noise parameters using

For the means and variances of the fuzzy levels, use (3).

Repeat step 2 until stabilization of the parameters. Stabiliza-

tion is defined by a criterion of % change in the values of the pa-

rameters between two successive iterations (we used 0.1% and

the algorithm usually stops before 25 iterations) and a maximum

number of iterations if the stabilization criterion is not met (usu-

ally 50 iterations).
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Résumé

La détermination des volumes fonctionnels est une étape cruciale pour les applications en oncologie comme le suivi thérapeutique ou la

planification en radiothérapie guidée par l’image. Il n’existe pour l’instant pas de consensus dans la communauté sur la méthode appropriée pour

définir automatiquement un volume tumoral sur l’image fonctionnelle d’émission (e.g. TEP au 18F-FDG), à cause de la grande variabilité des

images obtenues dans ce contexte, en termes de bruit, de textures, de contrastes ou des formes et des fixations hétérogènes des tumeurs. Nous

proposons une méthode automatique dont la robustesse et la précision ont été validées sur des acquisitions de fantôme, des tumeurs simulées et

réelles, avec des performances très supérieures aux méthodes de référence par seuillage, constituant un outil prometteur pour les applications de

la TEP en oncologie.

© 2009 Elsevier Masson SAS. Tous droits réservés.

Mots clés : Oncologie ; Imagerie d’émission ; TEP ; Volumes fonctionnels ; Segmentation automatique

Abstract

Functional volumes determination is a crucial step for several applications in oncology like therapy assessment or image-guided radiotherapy

treatment planning. There is currently no consensus about the appropriate method for an automatic definition of the tumoural volume on functional

emission images (e.g. 18F-FDG PET), because they are characterized by a large variability of noise, textures and contrasts, as well as shapes

and uptakes of tumours. We propose a novel automatic method that was validated for robustness and accuracy on phantom acquisitions, realistic

simulations and clinical images of complex tumours. This method outperforms the reference thresholding methodologies and may have an impact

in several PET applications in oncology.

© 2009 Elsevier Masson SAS. All rights reserved.

Keywords: Oncology; Emission imaging; PET; Functional volumes; Automatic segmentation
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1. Introduction

La détermination des volumes fonctionnels est une étape

cruciale pour les applications en oncologie comme le suivi thé-

rapeutique [1] ou la planification en radiothérapie guidée par

l’image [2]. Cette tâche est généralement effectuée à la main

par les utilisateurs, a été jugée complexe et est associée à une

1959-0318/$ – see front matter © 2009 Elsevier Masson SAS. Tous droits réservés.

doi:10.1016/j.irbm.2009.05.004
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très grande variabilité inter- et intra-utilisateurs [3]. Malgré le

grand nombre de méthodes ayant été proposées récemment pour

automatiser la définition des volumes tumoraux sur les images

d’émission [4–19], il n’existe pour l’instant pas de consensus

dans la communauté sur la méthode appropriée pour définir

automatiquement un volume tumoral sur l’image fonctionnelle

d’émission (e.g. TEP au 18F-FDG), du fait de leur qualité limitée

et de la faiblesse de la plupart des méthodes proposées jusqu’à

présent, inappropriées pour gérer la grande variabilité des para-

mètres en termes de bruit, de flou, de contraste ou des formes et

des fixations hétérogènes des tumeurs. La plupart des méthodes

proposées jusqu’à présent partagent également le désavantage

de ne pas bénéficier d’une validation suffisante pour convaincre

les utilisateurs finaux, par exemple en se contentant de résultats

sur fantômes simplifiés ou sur des données cliniques sans vérité

terrain.

Nous proposons une méthode automatique, robuste et pré-

cise, validée sur plusieurs ensembles de données de la simulation

à l’image clinique, pouvant être utilisée sans optimisation préa-

lable pour un scanner et un protocole spécifique et limitant

l’intervention de l’utilisateur à la détection de la tumeur.

2. Matériels et méthodes

La méthode proposée est fondée sur l’utilisation du contexte

méthodologique de la segmentation statistique d’images [20].

Plusieurs approches ont déjà tenté d’utiliser ce type de méthodo-

logies dans le cadre de l’imagerie d’émission [14,15] mais ces

dernières se limitaient à l’utilisation d’une mesure statistique

dite « dure » où seule une somme de Dirac est considérée. Cette

mesure permet de bien modéliser l’aspect bruité des images,

mais n’est pas adaptée aux images d’émission qui sont de plus

floues. En effet, l’hypothèse de la modélisation « dure » consiste

à considérer qu’un voxel appartient à une classe et que son obser-

vation est bruitée, en conséquence de quoi elle ne permet pas de

modéliser qu’un voxel puisse contenir un mélange de classes.

La modélisation que nous utilisons est fondée sur l’utilisation

d’une mesure statistique définie par un mélange de masses de

Dirac pour les classes homogènes et de mesures continues de

Lesbegue pour les transitions floues entre les régions [21]. Ceci

permet de prendre en compte simultanément les deux princi-

paux défauts des images d’émission : le bruit statistique et le

flou induit par la résolution spatiale.

Cette mesure floue a été utilisée dans le cadre d’une modé-

lisation par chaînes de Markov [19] puis d’une approche locale

adaptative [22] offrant des performances supérieures. Cette der-

nière approche a été nommée FLAB pour fuzzy locally adaptive

Bayesian et a fait l’objet d’un brevet1. De plus, en étendant

la modélisation à trois classes homogènes et trois transitions

floues différentes, la méthode est capable de prendre en compte

l’hétérogénéité de la fixation au sein des tumeurs et permet

de générer des volumes segmentés non binaires [23]. Cela est

notamment intéressant pour les applications de « dose painting »

en radiothérapie pour une optimisation de la dosimétrie [24]

1 Brevet français référence FR08/56089.

alors que la plupart des méthodes proposées jusqu’à présent ne

considèrent que des segmentations binaires des volumes fonc-

tionnels et ne peuvent donc pas être utilisées automatiquement

dans cette optique. Dans la méthode FLAB, le contexte spa-

tial des voxels est pris en compte par un cube glissant, au sein

de l’estimation itérative des paramètres d’intérêt du modèle, à

savoir les moyennes et variances de chaque classe ainsi que les

probabilités a priori de chaque voxel d’appartenir à une classe

donnée [22], ce qui est indispensable pour une segmentation pré-

cise. Cette estimation itérative est réalisée grâce à l’algorithme

stochastic expectation maximization (SEM) [25] qui assure une

vitesse de convergence supérieure et une relative indépendance

aux conditions d’initialisation par rapport à l’algorithme expec-

tation maximization (EM) classique.

Les résultats de FLAB ont été comparés avec ceux obtenus

par des méthodes utilisant un seuillage fixe (ici 42 % du maxi-

mum comme proposé par Erdi et al. [4]) ou adaptatif prenant

en compte le signal du fond environnant [9] dont les paramètres

ont été optimisés pour les scanners considérés. Sa robustesse a

été étudiée sur des acquisitions réelles de fantôme contenant des

sphères homogènes et réalisées sur plusieurs scanners différents

(Philips Gemini et Gemini TF, Siemens Biograph, GE Disco-

very LS) avec leurs algorithmes de reconstruction (RAMLA,

TF ML-EM, OSEM) (Fig. 1). Sa précision a été validée sur

20 images de tumeurs réalistes tant en termes de formes que

de fixations, basées sur des acquisitions réelles de patients et

simulées à l’aide de Geant4 application for tomography emis-

sion (GATE) [26,27] (Fig. 2), ainsi que sur un ensemble de 18

images de tumeurs pulmonaires réelles (Fig. 3). Concernant ces

dernières, tous les patients ont été opérés et le diamètre maxi-

mal des tumeurs a été mesuré lors de l’étude macroscopique

des pièces opératoires [28]. Le diamètre maximal des tumeurs

déterminé par le pathologiste a été comparé à celui mesuré sur

les volumes segmentés par chaque méthode considérée.

Il est important de noter que la méthode proposée n’est pas

conçue pour être appliquée à l’image corps entier du patient car

l’objectif n’est pas de détecter la tumeur, mais de la segmenter

avec la plus grande précision possible. Elle est appliquée à une

sélection contenant toute la tumeur, détectée et sélectionnée par

l’utilisateur. Pour l’instant, le choix d’utiliser la méthode binaire

(deux classes dures et une transition floue) ou la méthode à trois

classes (trois classes dures et trois transitions floues) repose sur

l’utilisateur en fonction de son appréciation de l’hétérogénéité

de la tumeur à segmenter, mais il est possible d’automatiser cette

initialisation, par exemple avec un algorithme de K-moyennes

flou avec sélection automatique du nombre de classes par mini-

misation de l’entropie de l’histogramme de l’image comme

proposé par Provost dans sa thèse [29].

3. Résultats

Les performances de FLAB, tant en termes de robustesse que

de précision, sont largement supérieures à celles des méthodes de

référence utilisant des seuillages. L’évaluation de la robustesse

[30] est importante, car elle permet de déterminer si une méthode

donnée peut être utilisée sur des images obtenues avec n’importe

quel scanner sans optimisation préalable, contrairement aux
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Fig. 1. Exemples d’acquisitions de fantôme sur un des scanners considérés (ici le Philips Gemini) avec différents paramètres. A. Contraste 8:1. B. Contraste 4:1 ; a :

reconstruction 4 mm3
× 4 mm3

× 4 mm3 ; b : reconstruction 2 mm3
× 2 mm3

× 2 mm3 ; 1 : cinq minutes d’acquisition ; 2 : une minute d’acquisition.

méthodes utilisant des seuillages adaptatifs, dont les paramètres

doivent être optimisés pour un scanner et une reconstruction

donnés. Comme le montrent sur la Fig. 4, l’erreur moyenne

et l’écart-type obtenus sur les sphères de 37 à 13 mm de dia-

mètre, sur l’ensemble des acquisitions, FLAB permet d’obtenir

moins de 10 % d’erreur sur les sphères, avec un écart-type de

l’ordre de 5 à 10 %. Aucune des méthodes ne permet d’obtenir

de bons résultats sur la sphère de 10 mm car on atteint ici les

limites des scanners TEP dont la résolution spatiale est limitée

à environ 5 mm de largeur à mi-hauteur, combinée à un échan-

tillonnage spatial de voxels de 2 et 5 mm de côté. Les résultats

sur fantômes sont satisfaisants pour démontrer la robustesse de

la méthode et son universalité car elle donne de bons résultats

sur différents types de textures, de bruit, d’échantillonnage spa-

tial ou de contrastes. Bien que les erreurs soient de plus faibles

concernant la détermination du volume (autour ou inférieures

à 10 %), il ne s’agit que de cas idéaux de fixations sphériques

uniformes sur un fond uniforme. Les tumeurs réelles présentent

en règle générale des structures plus complexes, tant en termes

de formes que d’hétérogénéité de fixations.

Ainsi, les résultats obtenus sur les tumeurs simulées (Fig. 5)

permettent d’apprécier la précision de la segmentation en situa-

Fig. 2. Illustration de deux tumeurs simulées et des résultantes de segmentation obtenues par les différentes approches, par rapport à la vérité terrain simulée. L’échec

complet du seuillage fixe à 42 % sur la plus petite tumeur s’explique par le fait que dans l’image, aucun voxel n’a de valeur inférieure à 42 % du maximum de la

lésion (très faible contraste).
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Fig. 3. Illustration d’une tumeur pulmonaire réelle (image anatomique et fonctionnelle) et les résultats de segmentation obtenus par différentes méthodes.

Fig. 4. Erreurs de classification voxel à voxel par rapport à la vérité terrain

obtenues par différentes méthodes (seuillages à 42 et 50 % du maximum, T42

et T50, le clustering par Fuzzy C-Means FCM et FLAB) sur l’ensemble des

acquisitions de fantôme (tous les scanners, tous les paramètres considérés).

tion plus réaliste. Les résultats sont en faveur de FLAB, avec

une erreur moyenne (calculée sur un ensemble de 20 tumeurs)

de classification voxel à voxel par rapport à la vérité terrain

simulée inférieure à 9 % et un écart-type de 8 %. Le seuillage

Fig. 5. Erreurs de classification moyenne et écart-type de chaque méthode sur

20 tumeurs simulées par rapport à la vérité terrain voxel à voxel.

Fig. 6. Erreur moyenne et écart-type par rapport au diamètre de la tumeur mesuré

en histologie, pour l’ensemble des 18 tumeurs et les différentes approches de

segmentation des images.

adaptatif et le seuillage à 42 % donnent respectivement des

erreurs moyennes et des écarts-types de 19 ± 15 % et 34 ± 20 %.

Les résultats obtenus sur la mesure du diamètre maximal des

tumeurs réelles mesurées en histologie (Fig. 6) sont également

en faveur de FLAB. En effet, bien que toutes les méthodes

obtiennent une erreur moyenne inférieure à 5 %, les écarts-

types associés au seuillage adaptatif et au seuillage fixe sont

respectivement de 10 et 20 % là où celui associé à FLAB est

inférieur à 5 %. La faible erreur moyenne obtenue s’explique

par le fait que dans les 18 tumeurs considérées, environ la moi-

tié est sous-estimée et l’autre moitié surestimée. De plus, outre

une précision accrue sur la définition des volumes tumoraux,

comme l’illustrent les Fig. 2 et 3, FLAB est capable de générer

des volumes segmentés non binaires, offrant une information

supplémentaire très importante, notamment en radiothérapie,

sur l’éventuelle hétérogénéité de la fixation au sein des tumeurs

considérées.

4. Discussion et conclusion

La position de la TEP comme outil de référence pour le diag-

nostic en oncologie a été renforcée par l’arrivée des scanners

multimodalités TEP/TDM depuis le début des années 2000. Plus
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récemment, l’intérêt porté à l’imagerie fonctionnelle pour des

applications comme le suivi thérapeutique et surtout la plani-

fication de traitement en radiothérapie par l’image a motivé

le développement par de nombreux groupes de recherche, de

méthodes permettant d’améliorer la détermination automatique

des volumes fonctionnels. Il a déjà été montré que l’utilisation

de l’imagerie fonctionnelle dans le cadre de la radiothérapie per-

met, d’une part, de réduire la variabilité inter- et intra-utilisateurs

[28,31] et, d’autre part, d’inclure des volumes tumoraux qui

sont ratés, par l’utilisation de l’imagerie anatomique seule, ou

au contraire d’exclure des volumes non malins qui auraient été

inclus à tort en se basant uniquement sur l’information de densité

de tissus fournie par l’imagerie TDM [32].

La méthode que nous proposons a plusieurs avantages par

rapport aux méthodes de référence utilisant des seuillages. Elle

est d’abord plus robuste et peut être utilisée sur des images

acquises sur différents scanners et reconstruites avec diffé-

rents algorithmes, sans optimisation préalable de paramètres.

La dépendance au scanner et aux caractéristiques de l’image

est donc réduite par rapport aux seuillages adaptatifs. La pré-

cision de la méthode est supérieure, y compris et surtout sur

des cas complexes de tumeurs hétérogènes sur lesquelles les

méthodes binaires utilisant des seuillages sont inappropriées et

échouent parfois totalement. La possibilité de générer directe-

ment des volumes segmentés à trois classes permet d’envisager

l’implémentation automatique du principe de dose painting en

radiothérapie, pour une dosimétrie optimisée, ou une analyse

fine région par région de la tumeur dans le cadre du suivi thé-

rapeutique. Enfin, elle est automatique et réduit l’intervention

de l’utilisateur à la détection de la tumeur et son isolation dans

une boîte de traitement. La méthode a été validée à la fois sur

de multiples acquisitions de fantômes pour valider sa reproduc-

tibilité et sa robustesse et sur des images simulées et réelles

de tumeurs complexes et hétérogènes pour valider sa préci-

sion. Les résultats encourageants obtenus par cette approche

permettent de penser qu’il s’agit là d’une méthode pouvant avoir

un impact important dans les diverses applications de la TEP :

le diagnostic, le suivi thérapeutique et la radiothérapie, pour

lesquelles une définition automatique et précise des volumes

fonctionnels permet d’améliorer et d’accélérer l’analyse quan-

titative des images d’émission. Une étude est en cours dans le

cadre d’un projet ANR (SIFR, 2009–2010) pour renforcer la

validation de FLAB et estimer son impact dans le cadre de la

radiothérapie guidée par l’image ainsi que pour le suivi théra-

peutique.

5. Conflits d’intérêts

Aucun.
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ACCURATE AUTOMATIC DELINEATION OF HETEROGENEOUS FUNCTIONAL

VOLUMES IN POSITRON EMISSION TOMOGRAPHY FOR ONCOLOGY

APPLICATIONS
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Purpose: Accurate contouring of positron emission tomography (PET) functional volumes is now considered
crucial in image-guided radiotherapy and other oncology applications because the use of functional imaging allows
for biological target definition. In addition, the definition of variable uptake regions within the tumor itself may
facilitate dose painting for dosimetry optimization.
Methods and Materials: Current state-of-the-art algorithms for functional volume segmentation use adaptive
thresholding. We developed an approach called fuzzy locally adaptive Bayesian (FLAB), validated on homoge-
neous objects, and then improved it by allowing the use of up to three tumor classes for the delineation of inhomo-
geneous tumors (3-FLAB). Simulated and real tumors with histology data containing homogeneous and
heterogeneous activity distributions were used to assess the algorithm’s accuracy.
Results: The new 3-FLAB algorithm is able to extract the overall tumor from the background tissues and delineate
variable uptake regions within the tumors, with higher accuracy and robustness comparedwith adaptive threshold
(Tbckg) and fuzzy C-means (FCM). 3-FLAB performedwith amean classification error of less than 9%± 8%on the
simulated tumors, whereas binary-only implementation led to errors of 15% ± 11%. Tbckg and FCM led to mean
errors of 20% ± 12% and 17% ± 14%, respectively. 3-FLAB also led to more robust estimation of the maximum
diameters of tumors with histologymeasurements, with <6% standard deviation, whereas binary FLAB, Tbckg and
FCM lead to 10%, 12%, and 13%, respectively.
Conclusion: These encouraging resultswarrant further investigation in future studies thatwill investigate the impact
of 3-FLAB in radiotherapy treatment planning, diagnosis, and therapy response evaluation. � 2010 Elsevier Inc.

Heterogeneous functional volumes delineation, Automatic segmentation, Image-guided radiotherapy,

Dose painting.

INTRODUCTION

Although most clinical applications of positron emission

tomography (PET) rely on manual and visual analysis, accu-

rate functional volume delineation in PET is crucial for

numerous oncology applications. These include the use of

tumor volume and associated determination of semiquantita-

tive indices of activity concentration for diagnosis and ther-

apy response evaluation (1) or the definition of target

volumes in intensity-modulated radiation therapy (IMRT)

(2). Subjective (1) and tedious manual delineation cannot

perform accurate and reproducible segmentation, particularly

when considering complex shapes and nonhomogeneous

uptake. This results from the low quality of PET images

due to statistical noise and partial volume effects (PVE)

(3), arising from the scanner’s limited spatial resolution.

Most of the previously proposed methods for PET volume

definition are semiautomatic and threshold-based, using

either fixed (30%–75% of the maximum activity) (2, 4, 5)

or adaptive approaches incorporating the background activity

(6–10). Unfortunately, these approaches often require

additional a priori information and are user- and system-

dependent. They require manual background regions of

interest (ROIs), and their performance depends on parame-

ters requiring optimization using phantom acquisitions for
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each scanner and reconstruction. Finally, all of these

approaches are strictly binary and were not validated consid-

ering heterogeneous volumes.

Numerous works have addressed PET lesion segmentation

using more advanced image segmentation methodologies

(11–19). However, the majority of these approaches often

depend on pre- or postprocessing steps such as deconvolution

or denoising, are often binary only, and are validated on

phantom acquisitions or clinical data without rigorous

ground truth.

We previously developed an algorithm for PET volume

definition by combining a fuzzy measure with a locally

adaptive Bayesian-based classification (FLAB) that has

been shown to perform better with respect to fixed threshold-

ing, fuzzy C-means (FCM), or fuzzy hidden Markov chains

(FHMC) for PET volume definition, as far as homogeneous

spheres or slightly heterogeneous and nonspherical tumors

are concerned (20). Preliminary results show that FLAB is

also robust with respect to variability of the acquisition and

reconstruction parameters (24).

Clinical tumors may be characterized by heterogeneous

uptake, thus demanding a nonbinary approach for an accurate

segmentation that may have a significant impact in defining

biological target volumes for dose painting (21). The goals

of this work were to (1) improve the FLAB model by incor-

porating the use of three hard classes and three fuzzy transi-

tions and (2) evaluate its accuracy on real (with known

diameter measured in histology) and simulated (with known

ground truth) data sets containing inhomogeneous tumors.

METHODS AND MATERIALS

Three-class fuzzy Bayesian segmentation (3-FLAB)
The 3-FLAB algorithm is an extension of our previous work

considering only a binary segmentation (20). FLAB automatically

estimates parameters of interest from the image, maximizing the

probability of each voxel to belong to one of the considered classes.

This probability is estimated for each voxel as a function of its value

and the values of its neighbors relative to the voxels’ statistical

distributions in the image, which corresponds to an estimation of

the noise within each class. Hence, each voxel of the volume is

considered a random variable within a Bayesian framework:

PðXjYÞ ¼
PðX;YÞ

PðYÞ
¼

PðYjXÞPðXÞ

PðYÞ
; (1)

where PðXjYÞis the probability of belonging to Class X knowing

Observation Y. This probability is obtained by the product of

PðYjXÞ and PðXÞ, corresponding to the noise model and the spatial

model, respectively. PðYjXÞ is estimated considering the statistical

distribution of the voxels within each class, whereas PðXÞ is esti-
mated using a sliding cube of 3� 3� 3 voxels; hence, each voxel’s

classification is influenced by its neighbors. The parameters to

estimate are the mean and variance of each class and the spatial

probabilities of each voxel with respect to its neighbors. This is

performed iteratively using a stochastic version (SEM) (25) of the

Expectation Maximization (EM) (26) initialized with K-means

(27) or fuzzy C-means (28). In addition, a fuzzy measure between

the classes was added to account for the blur between regions,

assuming each voxel may contain a mixture of classes (22, 23).

The difference between 3-FLAB and the previously developed

binary-only FLAB (20) is the use of three classes and three fuzzy

transitions within the model (see Fig. 1), to deal with both homoge-

neous and heterogeneous activity distributions. Figure 2 demon-

strates the inability of FLAB to handle highly nonuniform activity

distributions, where the lower uptake part of the lesion is errone-

ously considered as part of the background (see Fig. 2b), emphasiz-

ing the need to better model heterogeneous activity distributions.

3-FLAB should retain the accuracy and robustness of the original

model, while also being able to handle the challenging heteroge-

neous activity distributions that are frequently seen in clinical

lesions. The 3-FLAB segmentation workflow is summarized as

follows, and the implementation and mathematical details can be

found in the Appendix.

1. Initialization of both the spatial and noise models parameters:

means and variances of each class are obtained using the

K-means or fuzzy C-means. The prior probabilities are fixed at

one third for each class.

2. Iterative estimation is performed using the SEM by stochastic

sampling for each voxel according to its posterior probability.

3. Segmentation is done by selecting for each voxel the class or

fuzzy level that maximizes its posterior probability and fusion

of fuzzy levels with each hard class to generate a two- or three-

class segmentation map.

Alternative segmentation methodologies used for

comparison
We compared the results of the 3-FLAB algorithmwith the binary

FLAB approach and the fuzzy C-means (with two or three clusters)

clustering introduced by Dunn (28) and used to segment PET brain

tumors in (13), as well as an adaptive thresholding (6) (Tbckg):

Ithreshold ¼ a� Imean þ Ibackground:
(2)

Imean was obtained by computing the mean of all voxels contained

inside an initial threshold at 70% of the maximum and Ibackground
by computing the mean of the voxels inside a ROI manually drawn

on the background. Imean and Ibackground were subsequently used to

Fig. 1. The fuzzy scheme in the three-class fuzzy locally adaptive
Bayesian (3-FLAB) implementation.
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derive a first approximation of the source-to-background contrast.

The parameter a was optimized using phantom acquisitions on

each scanner used to obtain the data. The adaptive thresholding

algorithm was implemented using a region-growing approach with

the maximum intensity voxel as a seed and iteratively adding

three-dimensional (3D) neighboring voxels if their value was above

the threshold calculated using Eq. 2.

Validation studies
Data sets: Data Set 1 was used to evaluate the performance of the

algorithm under realistic imaging conditions. It consists of 20 3D

simulated tumors with variable levels of irregular shape and homoge-

neous or nonhomogeneous uptake distributions derived from tumors

in patients undergoing 18F-fluorodeoxyglucose PET/CT investiga-

tions for radiotherapy treatment planning purposes. These images

were acquired in 2D and 3D mode using the GE Discovery LS and

PhilipsGemini PET/CT scanners, respectively. Three of these tumors

illustrating the range of sizes, shapes, and heterogeneities considered

are shown in Fig. 4a–4c. The goal was to produce realistic images of

PET tumors while retaining a voxel-based ground truth to compute

accurate voxel-based classification errors. Half of the tumors were

simulated considering a homogeneous uptake distribution, whereas

the other half was simulated using significant heterogeneity within

the tumor. The procedure followed to generate these images is

illustrated in Fig. 3 and detailed in the following paragraphs.

Each clinical tumor is first manually delineated on the PET image

by a nuclear medicine expert, thus creating a voxelized volume that

represents the ground truth of the simulation. The activity levels

attributed to each of the tumor parts were derived from the average

activity measured in the same areas of the tumor in the correspond-

ing patient images. This ground truth tumor structure is subse-

quently transformed into a nonuniform rational B-splines

(NURBS) volume using Rhinoceros (CADLINK software, Moran-

gis, France), for insertion into the NURBS-based CArdiac-Torso

(NCAT) phantom (29) attenuation maps at the approximate position

where it was located in the patient (30). No respiratory or cardiac

motions were considered. Simulations using a model of the Philips

PET/CT scanner previously validated with Geant4 Application for

Tomography Emission (GATE) (31) were carried out. Forty-five

million coincidences were simulated corresponding to the statistics

of a clinical acquisition over a single-axial 18-cm field of view (31).

Images were subsequently reconstructed using OPL-EM (seven

iterations, one subset) (31) with two voxel sizes (4 � 4 � 4 for

the Philips Gemini and 2 � 2 � 5 mm3 for the GE Discovery LS)

to match those used in the corresponding clinical images.

Data Set 2 contains 18 images of lung tumors from patients with

histologically proven non–small cell lung cancer (clinical Stage Ib–

IIIb), acquired on the Siemens Biograph PET/CT scanner and recon-

structed using OSEM (four iterations, eight subsets), with scatter

and CT-based attenuation correction, and 5.31 � 5.31 � 3.38

mm3 voxels. These tumors were surgically extracted for a histology

study in which their maximum diameter was measured by

macroscopic examination (32). These diameters range from 15 to

90 mm (44 � 21). One of these tumors is shown in Fig. 4d.

Analysis: Because our goal is not the detection of a lesion in the

whole image but the accurate estimation of its volume and shape, we

assume it has been detected and isolated by the clinician within a 3D

‘‘box’’ encompassing the tumor.

Because a ground truth was available, classification errors (CE)

were computed. In the case of a two-class ground truth, the CE is:

CE ¼
card{tjctsxt}

card{tjxt ¼ 1}
� 100; (3)

where ct is the classification of voxel t, and xt is the true class. Card is

the number of elements. This error measurement takes into consid-

eration the spatial distribution of the tumor by considering both

background voxels classified as object and object voxels classified

as background. Consequently, this measure is more appropriate

than simple volume estimation, which could lead to overall small

volume errors associated with largely inaccurate segmentations. In

addition, the errors are computed relatively to the size of the object,

to avoid biases relative to the size of the processing box. In the case

of a three-class ground truth, CE may be computed for each of the

three classes using Eq. 4 or with respect to a binarized ground truth

(second and third class merged) using Eq. 3.

CEc ¼
card{tjxt ¼ c; ctsc}þ card{tjxtsc; ct ¼ c}

card{tjxt ¼ c}
� 100; (4)

where CEc stands for the classification error associated with a given

class c.

Fig. 2. Binary fuzzy locally adaptive Bayesian (FLAB) model applied to a heterogeneous simulated tumour (a). The
segmentation result (b) clearly misses parts of the tumour.
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Two analyses were conducted using Data Set 1. The first consid-

ered the entire data set (both homogeneous and heterogeneous

tumors) and CE computed using Eq. 3 to compare overall perfor-

mances of FLAB (binary only), 3-FLAB, FCM, and Tbckg. The

second considered only the 10 heterogeneous tumors to compute

CE2 and CE3 using Eq. 4 for 3-FLAB and FCM with three clusters.

The segmentation accuracy on the tumors with histology (Data

Set 2) was assessed by segmenting the clinical image and subse-

quently measuring the maximum diameter on the segmented

volumes to compare it with the histology measurement.

RESULTS

Figure 5 contains one axial slice of the segmentations

obtained on three simulated tumors of Data Set 1 and one

tumor of Data Set 2. Figure 6a contains the mean classifica-

tion errors and standard deviation obtained by all the methods

on the 20 tumors of Data Set 1. FLAB (binary only)

performed well on homogeneous tumors but failed as

expected on strongly heterogeneous lesions, leading to over-

all errors of 15% � 11%. 3-FLAB, in contrast, produced

segmentation maps closer to the ground truth, both visually

and quantitatively, with errors between 5% and 15%

(9% � 8%). FCM (with two or three clusters) was competi-

tive with respect to 3-FLAB for some tumors but showed

a higher variability (10%–40%) and mean error (20% �
12%). This translated qualitatively in FCM being unable to

differentiate two regions within the tumor as well as being

unable to detect discontinuities in the contours (e.g.,

Fig. 5d, first row). In addition, for the regions where a transi-

tion was present between the high uptake region and the

background (e.g., Fig. 4d), the 3-FLAB approach was the

only one giving accurate representation of this transition

(Fig. 5c vs. Fig. 5d, last row). Tbckg was not able to produce

satisfactory segmentation in several cases. Tumors with high

overall contrast were approximately extracted from the back-

ground (e.g., Fig. 5e, rows 2–4). However, as a binary

method, it is unable to delineate uptake distributions within

the tumor. In several cases, the heterogeneity was significant,

and Tbckg lead to significant underevaluation of the tumor

volume (CE up to 60% with a mean of 17% � 14%) because

it tends to extract the high-activity region or parts of the re-

duced uptake region only (e.g., Fig. 5e, first row).

Figure 6b compares 3-FCM (using three clusters) and

3-FLAB concerning the three-class segmentation of the 10

heterogeneous simulated tumors of Data Set 1. 3-FCM is

less accurate and robust compared with 3-FLAB, especially

in the delineation of higher activity regions (third class),

with about twice the mean error and standard deviation

(24% � 20%) of 3-FLAB (11% � 8%).

Figure 7 contains the mean error and standard deviation

with respect to the maximum diameter, computed on the

tumor histology database (Data Set 2). Whereas all methods

gave relatively low mean errors (#3%), the standard devia-

tion associated with FCM and Tbckg (13% and 12%, respec-

tively) is about twice that of 3-FLAB (<6%), and binary

FLAB showed a standard deviation of almost 10%. The

low mean error for all these algorithms is explained by the

fact that therewere about the same amount of under- and over-

estimation of the diameters in this data set, resulting in an

overall low mean error. Here the standard deviation is a better

indicator of the accuracy obtained on the data set and demon-

strates higher accuracy and robustness for 3-FLAB.

DISCUSSION

Functional volume delineation represents an area of interest

for multiple clinical applications (routine and research) of

PET. Such areas include response to therapy studies and the

use of biological tumor volumes in radiotherapy treatment

planning. Although several fully automatic algorithms have

recently been proposed (11–20), segmentation methodolo-

gies currently used in clinical practice are based on the use

of fixed and adaptive thresholding (4–10). These algorithms

have been shown to determine functional volumes accurately

under specific imaging conditions of spherical and homoge-

neous activity distribution object in phantom studies and

have been evaluated on clinical images for which the ground

truth is unknown. In clinical practice, lesions are often hetero-

geneous in shape and uptake. To address these issues,we have

extended a previously developed algorithm to evaluate

Fig. 3. The simulation of realistic positron emission tomography images.
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lesions with nonuniform uptake and nonspherical forms. In

addition, we have proposed an evaluation framework includ-

ing both realistic simulated patient lesions and histological

assessment of tumor diameters, allowing for evaluation of

segmentation algorithms under standard imaging conditions

and the added advantage of knowing the ground truth.

The inability of the adaptive thresholding considered in

this study to segment complex tumors accurately is

demonstrated by its poor performance. This is explained by

the fact that in cases of heterogeneous uptake, the 70%

threshold used for the initial estimation of the tumor-to-back-

ground contrast may retain only the high uptake region, thus

leading to incorrect contrast estimation. However, if the

lesion is small or has a small contrast, the 70% threshold

may lead to an initial overestimation of the volume of the

tumor, and hence an underestimation of its uptake and an

incorrect estimation of the contrast, for which the subsequent

adaptive thresholding may not be able to compensate. In

addition, the background ROI is user-dependent with a poten-

tially high impact on the result, especially with heteroge-

neous background. In such cases, we systematically

selected the ROI that resulted in the lowest error. Finally,

the region growing implementation avoids incorporating

false positives of the background if they are not connected

to the main tumor, especially when the contrast is low or

the background is noisy and heterogeneous. However, it

also makes the algorithm dependent on the seed location

and can lead to missing parts of the tumor when several

high-uptake regions are connected by low-uptake regions.

FCM can produce binary or three-class segmentations, but

its robustness and accuracy are much lower compared with

FLAB because it incorporates neither spatial correlation

nor noise modeling. One advantage of the Tbckg over FCM

is its region growing implementation that makes it less sus-

ceptible than FCM to the inclusion of high-intensity voxels

of the background. Therefore, FCM usually performs poorer

than Tbckg for low-contrast lesions and noisy images but bet-

ter for heterogeneous activity distributions within the tumor.

In contrast, 3-FLAB performed accurately even under chal-

lenging contrast, noise, and heterogeneity conditions, with

Fig. 4. Data sets illustration. (a–d) Examples of clinical tumors (up) with CT (left) and PET (right), and the corresponding
simulated PET (down): (a–c) Data Set 1; (d) Data Set 2.
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overall superior performance compared with the other

algorithms considered here.

The need for more than three classes may arise for hetero-

geneous tumors on a heterogeneous background. However,

all the clinical tumors considered in this study were correctly

delineated using two or three classes because the contrasts

between the heterogeneities within the tumor are usually

much higher than those occurring in the background. Hence,

only one hard class may be sufficient to deal with the back-

ground, whereas two are required to correctly handle the

significantly different uptakes occurring inside the tumor.

Eventually the 3-FLAB algorithm could be extended to

more than three classes assuming that only pairs of hard

classes generate fuzzy transitions. One also has to keep in

mind that using more classes will lead to smaller regions,

but those regions within the tumor will subsequently be

used for quantification or radiotherapy dose boosting and/

or painting and should therefore be kept reasonably large.

The potential impact of using three classes proposed by

3-FLAB should therefore be investigated before more

complex segmentations using additional classes can be

considered.

We have already demonstrated that FLAB performs well

for small lesions down to 13 mm in diameter (20), and this

study was not designed to investigate specifically the ability

of 3-FLAB to deal with small tumors because these rarely

exhibit heterogeneous uptake that can be detected on the

PET image considering the existing resolution limits.

3-FLAB retains all the characteristics of FLAB but also has

the ability to consider a third class and therefore handle non-

uniform lesion activity distributions. Thus, 3-FLAB does not

as such improve the delineation of small (<2 cm) lesions.

However, the higher/lower uptake regions within the larger

tumors are often of small size, comparable to that of small

lesions, with PVE affecting them with respect to their ‘‘back-

ground,’’ which is, in fact, the other part of the tumor with

a different uptake. As Fig. 6b demonstrates, 3-FLAB is

capable of accurately segmenting these regions.

An application that could greatly benefit from the use of

FLAB is radiotherapy treatment planning (33). It is now

acknowledged that planning based on PET/CT volumes

improves tumor delineation by reducing inter- and intraob-

server variability (32, 34). It can also lead to the inclusion

of regions not visible on CT or the exclusion of regions with-

out significant uptake (35). Using the 3-FLAB algorithm

could help lower inter- and intraobserver variability, as

well as shorten the time-consuming delineation process

associated with currently implemented algorithms given the

need for multiple phantom studies in the use of adaptive

thresholding. 3-FLAB takes a few seconds per iteration

even for the largest tumors considered in this study (on a sin-

gle 2-Ghz core processor in C++ implementation). Further,

Fig. 5. Segmentations of the tumors in Fig. 4a–4d: (a) ground truth; (b) positron emission tomographic image; segmen-
tations for (c) three-class fuzzy locally adaptive Bayesian, (d) fuzzy C-means, and (e) adaptive threshold models.
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‘‘dose painting’’ can be facilitated by the nonbinary nature of

the proposed segmentation, allowing for automatic definition

of ROIs inside the tumor—for example, in dose-escalation

studies (36)—in addition to the external contour information

for optimized dosimetry, potentially reducing the dose deliv-

ered to healthy surrounding tissues and organs. The impact of

such improved accuracy on overall patient outcome remains

to be demonstrated in clinical studies, which are planned for

the future. Finally, FLAB robustness with respect to the noise

characteristics associated with the use of different scanners,

acquisition protocols, and reconstruction algorithms has

been demonstrated in a preliminary study (24) and should

allow its use with any type of PET images without the need

for time-consuming preprocessing optimization.

The proposed algorithm may also have an impact on

diagnosis and therapy response assessment when combined

with PVE correction (PVC) for accurate quantification.

With various PVC approaches, anatomic information from

MRI or CT is used to improve the quantitative and qualitative

accuracy of functional images (37, 38). Unfortunately, when

no anatomic image is available or no correlation exists

between the anatomic and functional structures, such

approaches are not easy to use (3). This is especially true in

cases of large heterogeneous tumors for which there is little

to no correlation between the anatomic and functional infor-

mation. A potential solution will be the use of the FLAB

result instead of the anatomic image in combination with

one of the previously proposed PVC algorithms. This should

lead to improved contrast at the object’s borders as well as

improved quantification in the regions within the tumor.

Such combination recently demonstrated encouraging

results (39) and warrants further investigation regarding the

potential impact in clinical therapy response studies.

CONCLUSION

Amodified version of the FLAB algorithm has been devel-

oped to include the estimation of three hard classes and three

fuzzy transitions. This automatic approach combines statisti-

cal and fuzzy modeling to address specific issues associated

with 3D-PET images, such as noise and PVE. Its accuracy

has been assessed on both simulated and clinical images of

complex shapes containing inhomogeneous activities and

small regions. The results demonstrate the ability of

3-FLAB to delineate such lesions, for which the threshold-

based methodologies suggested until now have failed.
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The objective of this study was to establish the repeatability

and reproducibility limits of several volume-related PET image–

derived indices—namely tumor volume (TV), mean standard-

ized uptake value, total glycolytic volume (TGV), and total

proliferative volume (TPV)—relative to those of maximum stand-

ardized uptake value (SUVmax), commonly used in clinical prac-

tice. Methods: Fixed and adaptive thresholding, fuzzy

C-means, and fuzzy locally adaptive Bayesian methodology

were considered for TV delineation. Double-baseline 18F-FDG

(17 lesions, 14 esophageal cancer patients) and 39-deoxy-

39-18F-fluorothymidine (18F-FLT) (12 lesions, 9 breast cancer

patients) PET scans, acquired at a mean interval of 4 d and

before any treatment, were used for reproducibility evaluation.

The repeatability of each method was evaluated for the same

datasets and compared with manual delineation. Results: A

negligible variability of less than 5% was measured for all seg-

mentation approaches in comparison to manual delineation

(5%–35%). SUVmax reproducibility levels were similar to others

previously reported, with a mean percentage difference of

1.8% 6 16.7% and 20.9% 6 14.9% for the 18F-FDG and
18F-FLT lesions, respectively. The best TV, TGV, and TPV repro-

ducibility limits ranged from 221% to 31% and 230% to

37% for 18F-FDG and 18F-FLT images, respectively, whereas

the worst reproducibility limits ranged from 290% to 73%

and 268% to 52%, respectively. Conclusion: The reproduc-

ibility of estimating TV, mean standardized uptake value, and

derived TGV and TPV was found to vary among segmentation

algorithms. Some differences between 18F-FDG and 18F-FLT

scans were observed, mainly because of differences in overall

image quality. The smaller reproducibility limits for volume-

derived image indices were similar to those for SUVmax, sug-

gesting that the use of appropriate delineation tools should

allow the determination of tumor functional volumes in PET

images in a repeatable and reproducible fashion.

Key Words: oncology; PET; other; delineation; 18F-FDG; 18F-

FLT; reproducibility; tumor volume
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Most current PET clinical practices for diagnosis, stag-

ing, prognosis, therapy-response assessment, and patient

follow-up rely on manual and visual analysis (1). The index

most commonly used in PET clinical studies is the stand-

ardized uptake value (SUV). To obtain this index of activity

accumulation, a region of interest (ROI) should be deter-

mined, usually drawn manually or using some fixed thresh-

old. Although an ROI is not the only factor that can affect

the accuracy of SUVs, the type and size of an ROI are large

contributors to the variability of such measurements, as has

been previously demonstrated (2,3). A popular alternative

is the use of the pixel with the maximum activity value,

usually referred to as the maximum SUV (SUVmax). Many

studies have demonstrated the prognostic and predictive

value of SUVmax, despite the fact that it is sensitive to

image noise (4,5). On the other hand, a few, mostly recent,

studies have explored the use of overall tumor volume (TV)

as an index for prognosis and response assessment (6–8).

These studies considered the TV either alone or in combi-

nation with the mean SUV (SUVmean), to form the total

glycolytic volume (TGV) and total proliferative volume

(TPV) (for 18F-FDG and 39-deoxy-39-18F-fluorothymidine

[18F-FLT], respectively), defined as the product of TV ·

SUVmean (9–11).

The accuracy, robustness, repeatability, and reproduci-

bility of image delineation are directly responsible for the

reduced use of functional volumes derived from PET

images. On the one hand, manual delineation of functional

volumes using PET images leads to high inter- and intra-

observer variability (3), principally arising from the poor

quality of PET images. On the other hand, current state-of-

the-art algorithms for functional-volume segmentation con-

sist of fixed- (12) or adaptive-threshold approaches (13,14).

Although fixed-threshold approaches are attractive because

of their simplicity, their drawbacks are numerous given that

the value of the threshold to be used for each lesion clearly

depends on multiple factors, such as lesion contrast and size

and image noise (15). The solutions based on the use of
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adaptive thresholding consider the contrast between the

object to delineate and its surrounding background. How-

ever, adaptive thresholding requires imaging system–spe-

cific optimization using uniformly filled spheric lesions,

hence reducing the robustness of the approach, particularly

in the case of multicenter trials. In addition, this method

depends on the background ROI choice, which can in turn

lead to reduced interobserver reproducibility for functional-

volume determination. A few automatic algorithms have

been proposed (16–19). The main difference between these

algorithms and the threshold-based approaches is that the

algorithms automatically estimate the parameters of interest

and find the optimal regions’ characteristics in a given

image, without system-dependent parameters. This techni-

que may reduce issues associated with deterministic ap-

proaches based on thresholding, potentially increasing the

robustness and reproducibility of PET functional-volume

determination (20).

Establishing the level of reproducibility and repeatability

is essential in the use of any image-derived index in prog-

nostic or therapy-response studies, allowing the evaluation of

which change between 2 studies can be considered signifi-

cant. To date, only a few reproducibility studies (21–25),

almost exclusively concentrating on SUVmax and SUVmean

variability in double-baseline 18F-FDG PET scans, have

shown a relative absolute percentage difference of up to

13%, with an SD of 10%. The reproducibility of quantita-

tive indices (Patlak influx constant), associated with the

acquisition of dynamic datasets, has also been assessed

(21,22), showing similar levels of reproducibility (mean

percentage difference, 8%–10%). Studies on the reproduci-

bility of such indices in the case of 18F-FLT PET have

shown that changes larger than 15%–20% and 25%–30%

may be considered significant in SUVmean (obtained using a

41% fixed threshold) and SUVmax or Patlak influx constant,

respectively (26,27).

In most of these studies, SUVmean has been calculated

using manually drawn ROIs or a single fixed threshold

(varying from 40% to 75% of the maximum activity).

Among these studies, only 1 has considered the reproduci-

bility of metabolic functional volumes using a fixed thresh-

old. Krak et al. (3) have shown a mean percentage difference

in the ROI volumes of 23% 6 20% and 55% 6 35% for a

fixed threshold of 50% and 75%, respectively. Finally, to our

knowledge there has been no published study evaluating the

reproducibility of TGV and TPV.

To date, despite numerous studies assessing the accuracy

of different segmentation algorithms, there is a lack of

evaluation of the repeatability and reproducibility of these

algorithms relative to different threshold- and automatic-

based delineation approaches. Therefore, the main objec-

tive of this study was to assess the repeatability and

reproducibility in determining 3-dimensional (3D) func-

tional volumes and associated indices (SUVmean, TGV, and

TPV) in PET using different algorithms. The reproducibil-

ity of SUVmax was also included because it represents the

index most used today in clinical practice and facilitates a

direct comparison with previous studies. This evaluation

was performed on double-baseline 18F-FDG and 18F-FLT

clinical PET datasets.

MATERIALS AND METHODS

Segmentation Algorithms Considered

Four approaches were used in this work. Two different fixed

thresholds (12) were considered, at 42% (T42) and 50% (T50) of

the maximum voxel value, using a region-growing algorithm with

the maximum-intensity voxel as seed.

An adaptive-threshold method (TSBR, for threshold source–to–

background ratio) (13) was also included:

Ithreshold 5 a1 b
1

SBR
: Eq. 1

SBR is the source-to-background ratio, defined as the contrast

between a manually defined background ROI and the mean of the

maximum-intensity voxel and its 8 surrounding neighbors in the

same slice. The parameters a and b are optimized through linear

regression analysis for a given scanner using phantom acquisitions

of various sphere sizes and contrast.

For automatic-segmentation approaches, the fuzzy C-means

(FCM) (28) clustering algorithm, with 2 clusters (background and

lesion), was considered. This algorithm has been previously used

for functional-volume segmentation tasks in both brain and oncol-

ogy applications (29,30) and iteratively minimizes a cost function

of the voxel-intensity values to estimate the center of each cluster

and membership of each voxel to these clusters. The second auto-

matic algorithm considered was the fuzzy locally adaptive Baye-

sian (FLAB) (19) methodology, based on a combination of

statistical models with a fuzzy measure to simultaneously address

issues of both noise and blur resulting from partial-volume effects

in PET images. FLAB is also able to deal with strongly heteroge-

neous uptake in tumors of complex shape and generate nonbinary

segmented volumes by considering 3 classes and the associated

fuzzy transitions (31). The parameters required for the segmenta-

tion (gaussian mean and variance of each class and spatial priors

for each voxel) were estimated using the iterative stochastic

expectation maximization procedure. For all approaches, the

tumors were delineated after having been isolated in a 3D box

of interest previously defined and fixed for all segmentation meth-

odologies (manual and automatic).

Repeatability and Reproducibility: Definitions

Within the context of this study, repeatability is defined as the

ability of a given segmentation algorithm to reach the same result

regarding the definition of a functional volume when applied

multiple times on a single image. In such a task, entirely

deterministic fixed-threshold approaches (T42, T50) will always

give the same result. On the other hand, more advanced

methods—for example, the adaptive thresholding or automatic

algorithms such as FCM and FLAB considered here—are suscep-

tible to giving different results when applied multiple times on the

same image. The adaptive-threshold segmentation, for instance,

depends on a manually drawn background ROI and may thus

result in variable delineation depending on the choice of this

ROI. On the other hand, FCM and FLAB are iterative procedures

that may not converge to the same result at each execution.

Finally, manual delineation may be considered as the least repeat-
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able, even when considering a single operator (intraoperator var-

iability). A second aspect considered in this study was the impact

of a segmentation algorithm on the reproducibility of determining

functional volumes from 2 baseline PET scans.

Two different clinical datasets—comprising esophageal and

breast cancer patients scanned with 18F-FDG and 18F-FLT, respec-

tively—were used. In both cases, 2 consecutive PET scans were

acquired at an interval of a few days. We therefore studied the

differences in derived functional TVs, lesion SUVmean, and TGVs

and TPVs extracted from both images. The repeatability of meas-

uring TVs using the various delineation approaches considered in

this study was investigated for the same clinical datasets.

Validation Studies

Fourteen whole-body 18F-FDG PET/CT images acquired for

patients with esophageal cancer (n 5 17 lesions) and nine 18F-

FLT PET/CT images acquired for breast cancer patients (n 5 12

lesions) were considered. Esophageal cancer patients’ images

were acquired at 3.4 6 2.2 d on a PET/CT scanner (Gemini;

Philips), with 2-min acquisitions per bed position, 60 min after

the 18F-FDG injection (6 MBq/kg). Data were reconstructed using

a 3D row-action maximization-likelihood algorithm with standard

clinical protocol parameters (2 iterations, relaxation parameter of

0.05, 5 mm in full width at half maximum, 3D gaussian postfilter-

ing). 18F-FLT PET images were acquired for patients with breast

cancer (27); 2 scans were obtained within 2–7 d (median, 4.1 d)

before treatment. All patients received a single bolus intravenous

injection of 18F-FLT (153–381 MBq) over 30 s, and dynamic PET

was performed for 95 min. Patients were scanned on a PET scan-

ner (ECAT962/HR1; CTI/Siemens), and data were reconstructed

using ordered-subset expectation maximization (360 iterations, 6

subsets, no postfiltering).

In both cases, 2 baseline scans were acquired within an average

of 3–4 d of each other. Because no treatment was administered

between the 2 baseline scans, and considering the short time

between the 2 acquisitions, the assumption was that no significant

physiologic changes occurred in between the time the scans were

obtained. A similar assumption had been previously used in all

other studies evaluating the reproducibility and repeatability of

different SUV measurements in PET, with double-baseline scans

obtained within 5–10 d (21–25). Figure 1 shows the 2 baseline

scans—1 for an esophageal cancer (Fig. 1A) and 1 for a breast

cancer (Fig. 1B) patient.

Analysis

For the repeatability evaluation, the tumors in the first image for

each patient were segmented 10 times each with FCM, FLAB, and

TSBR. In addition, manual delineation was performed by 2

nuclear medicine experts. More specifically, the 2 experts

performed 10 different slice-by-slice manual delineations for the

different lesions considered in a randomized fashion, ensuring

a minimum of a week between 2 consecutive delineations of the

same lesion. All these manual segmentations were performed

under the same conditions as those of full-range contrast display.

The mean percentage variability and associated SD with respect to

the mean segmented volume was computed for each of the lesions

and segmentation approaches across the 10 executions and across the

10 manual delineations, to assess the repeatability of the approaches.

The repeatability of the manual delineations of the 2 experts were

compared separately (intraobserver variability) and with each other

(interobserver variability) using intraclass coefficients.

To study the relative impact of the different segmentation

algorithms on the reproducibility of deriving different PET

image indices, TVs were segmented independently on both

baseline scan images for each lesion, using the different

automatic-segmentation approaches. Subsequently, TV (in cm3),

SUVmean, TGVor TPV, and SUVmax quantitative values (M) were

computed for each delineated lesion and compared between the 2

scans using the mean percentage difference relative to the mean of

both baseline scans:

ðMscan2 �Mscan1Þ

,

ðMscan1 1Mscan2Þ

2
3 100: Eq. 2

The distribution of the differences between each pair of

measurements was assessed for each index using the Kolmo-

gorov–Smirnov test, showing no significant differences from a

normal distribution (Fig. 2). Bland–Altman analysis (32) was sub-

sequently used to highlight differences between segmentation

methodologies. Mean and SD of differences and the respective

95% confidence intervals (CIs) were obtained. To define the repro-

ducibility limits (reference range of spontaneous changes), the

95% CIs for the difference between 2 measurements were com-

puted as the mean difference 6 1.96 times the SD of the differ-

ence. To investigate any potential correlations in the measured

reproducibility, the magnitude of the percentage difference for

the TV, SUVmax, and SUVmean measurements was compared with

the average of the TVs using the Pearson correlation coefficient r.

This analysis was repeated to investigate the correlation of the

reproducibility of the different parameters with the SUVmean.

RESULTS

Table 1 contains the mean variability and SD around the

mean segmented volume across the 10 manual delineations

FIGURE 1. Baseline images: 18F-FDG (esophagus) (A) and
18F-FLT (breast) (B).
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performed by each of the 2 nuclear medicine experts and 10

repeated executions of the FLAB, FCM, and TSBR algo-

rithms. Results for both clinical datasets are presented sep-

arately. FLAB demonstrated highly repeatable results in all

of the studied cases, with negligible variability (1%) around

the mean segmented 3D volumes across the different

repeated executions. FCM also led to satisfactory repeat-

ability results (1.4% 6 1.6% for the 18F-FDG cases and

2.3% 6 1.9% for the 18F-FLT cases). In comparison, the

use of the TSBR led to more than twice as high variability

(2.9% 6 2.7% and 4.7% 6 3.6% for the 18F-FDG and 18F-

FLT cases, respectively). By contrast, manual segmentation

by the 2 experts showed high intraobserver variability for
18F-FDG esophageal lesions (14.1%6 12.1% and 16.4%6

11.3% for experts 1 and 2, respectively). Interobserver var-

iability was 17.1% 6 14.3%, with an intraclass coefficient

of 0.67 (95% CI, 0.39–0.89). In the case of 18F-FLT, this

variability was even higher, with an intraobserver variabil-

ity of 22.1% 6 18.7% and 23.8% 6 17.8% for experts 1

and 2, respectively, and an interobserver variability of

27.4% 6 21.9%, with an intraclass coefficient of 0.59

(95% CI, 0.31–0.84).

Tables 2 and 3 contain a summary of the reproducibility

results for the different parameters computed from Bland–

Altman plots on the 2 consecutive baseline scans for 18F-

FDG esophageal and 18F-FLT breast lesions, respectively.

The observed reproducibility of SUVmax and SUVmean

measurements for the volumes obtained using TSBR and

FLAB is illustrated in Figure 3. The corresponding plots for

TV are shown in Figures 4A and 4B using TSBR and

FLAB, respectively.

Concerning the reproducibility of SUVmax, similar per-

centage differences were measured for the 18F-FDG and
18F-FLT datasets, with an SD of the mean percentage differ-

ence of 16.7% and 14.9%, respectively. The upper and

lower percentage reproducibility limits for the SUVmax

were 231% to 35% and 230% to 28% for the 18F-FDG

and 18F-FLT datasets, respectively. On the other hand, the

automatic approaches led to 18F-FDG TV measurement

reproducibility limits of 221% to 31% and 251% to

52% for the FLAB and the FCM algorithms, respectively.

A poorer reproducibility of the 18F-FDG TV measurements

was observed for the threshold-based approaches, with

upper and lower reproducibility limits of 290% to 51%

and 269% to 73% for the adaptive and T42, respectively.

In the case of 18F-FLT TV measurements, the reproducibil-

ity was similar to that of 18F-FDG for the threshold-based

approaches, whereas a deterioration in the reproducibility

obtained with the automatic approaches was observed, par-

ticularly for the FCM algorithm (with reproducibility limits

of 266% to 74%).

SUVmean measurements using FLAB exhibited reprodu-

cibility levels similar in magnitude to that for the TV def-

inition, with an SD of the mean percentage difference of

15.6% and 14.1% for the 18F-FDG and 18F-FLT datasets,

respectively. This was, however, not the case for the other

tumor-delineation algorithms considered, with the larger

SUVmean reproducibility limits using the FCM tumor defi-

nition (277% to 62% and 259% to 59% for the 18F-FDG

and 18F-FLT datasets, respectively). Finally, the smaller

SUVmean reproducibility for the threshold-based ap-

proaches was obtained using T50 for both the 18F-FDG

and the 18F-FLT datasets, with a mean percentage difference

of 210.5% 6 23% and 213.3% 6 16.8%, respectively.

The reproducibility of TGV and TPV, being the product

of TV and SUVmean, was dependent on the direction of

changes for both TV and SUVmean. As an increase of TV

was correlated with a decrease of SUVmean and vice versa

(P , 0.002; r 5 0.54, 0.67, and 0.72 for FLAB, TSBR, and

T42, respectively), TGV and TPV reproducibility levels

were generally similar in magnitude to the TVand SUVmean

considered separately. However, in certain cases there were

more increases or decreases of both TV and SUVmean for a

given patient, resulting in larger variability of the TGV and

TPV measurements (e.g., the TSBR measurements of the

FIGURE 2. Plots showing that distributions of differences
for SUVmean (FLAB) (A) and TV (FLAB) (B) between 2 scans

were not significantly different from normal.
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18F-FLT breast lesions, with 22.1% 6 48.9% for the TPV,

whereas TV and SUVmean were 11.3% 6 31.4% and

23.2% 6 26.5%, respectively).

The TV reproducibility results were dependent on the

measured TV, with a larger variability seen for smaller

tumors. This dependence was statistically significant for the

adaptive thresholding (r 5 0.37, P 5 0.046; Fig. 5A), with

differences higher than 30% on average (#75%) in several

of the tumors below 50 cm3. On the other hand, this depend-

ence was not significant for FLAB (r5 0.27, P5 0.16; Fig.

5B), with most differences less than 30%—irrespective of

TV—further demonstrating improved robustness, as previ-

ously shown (19,20). In terms of the SUVmax reproducibil-

ity results, no statistically significant trend with either the

lesion size (r 5 0.016, P 5 0.93; Fig. 5C) or the mean of

the 2 SUVmean measurements (r 5 0.14, P 5 0.49) was

observed. Finally, no statistically significant trends were

found for the SUVmean reproducibility depending on the

lesion size, irrespective of the segmentation algorithm used

(r 5 0.2, P 5 0.3, and r 5 0.23, P 5 0.23, for TSBR and

FLAB, respectively).

DISCUSSION

Functional-volume delineation today represents an area

of interest for multiple clinical (routine and research)

applications of PET (prognosis, response prediction, ther-

apy assessment, radiotherapy treatment planning). In all of

these applications, the repeatability and reproducibility

with which functional volumes can be determined under

different imaging conditions play a predominant role,

allowing a level of confidence to be established in the use

of such TV measurements. Volume-definition methodolo-

gies currently used in clinical practice are based on the use

of manual delineation or fixed and adaptive thresholding

(12–14), whereas several promising automatic algorithms

have been proposed (16–19). The major drawback of man-

ual delineation is high inter- and intraobserver variability;

in addition, the approach is time-consuming. On the other

TABLE 1. Repeatability Evaluation

Method

Esophageal lesion Breast lesion

Mean variability (%) SD Mean variability (%) SD

FLAB 0.6 0.3 1.1 0.7

FCM 1.4 1.6 2.3 1.9

Fixed threshold 0 0 0 0

Adaptive threshold 2.9 2.7 4.7 3.6

Manual delineation (expert 1) 14.1 12.2 22.1 18.7

Manual delineation (expert 2) 16.4 11.3 23.8 17.8

Manual delineation (expert 2 with respect to 1) 17.1 14.3 27.4 21.9

Data are mean variability and SD around mean segmented volume for repeated delineations of 17 esophageal and 12 breast lesions

on first baseline 18F-FDG and 18F-FLT scans, respectively.

TABLE 2. Reproducibility Results Using 18F-FDG for Esophageal Lesions

Method Parameter Mean 6 SD 95% CI LRL 95% CI for LRL URL 95% CI for URL

SUVmax 1.8 6 16.7 26.8 to 10.4 230.9 245.9 to 216 34.6 19.9–49.6

FLAB TV 5 6 13.3 21.8 to 11.9 221.1 233 to 29.1 31.1 19.2–43

SUVmean 0 6 15.6 28 to 8 230.5 244.4 to 216.6 30.5 16.5–44.4

TGV 5.1 6 10.6 20.4 to 10.5 215.8 225.3 to 26.3 25.9 16.4–35.5

FCM TV 0.4 6 26.4 213.2 to 14 251.4 275.1 to 227.7 52.2 28.5–75.9

SUVmean 27.8 6 35.5 226 to 10.5 277.4 2109.2 to 245.5 61.8 30–93.7

TGV 27.4 6 30.2 222.9 to 8.2 266.6 293.7 to 239.5 51.9 24.8–78.9

TSBR TV 219.4 6 36 237.9 to 20.9 289.9 2122.1 to 257.6 51.1 18.9–83.3

SUVmean 6.3 6 27.4 27.8 to 20.4 247.4 272 to 222.8 60.1 35.5–84.6

TGV 213 6 28.2 227.5 to 1.5 268.2 293.4 to 242.9 42.2 17–67.4

T42 TV 2.1 6 36.1 216.5 to 20.7 268.7 2101.2 to 236.3 72.9 40.5–105.3

SUVmean 210.5 6 30 225.9 to 5 269.3 296.2 to 242.4 48.4 21.5–75.3

TGV 28.4 6 23.4 220.5 to 3.6 254.3 275.3 to 233.3 37.5 16.5–58.5

T50 TV 0.9 6 32.9 216 to 17.8 263.5 292.9 to 234 65.3 35.9–94.8

SUVmean 210.5 6 23 222.6 to 1.6 256.5 277.6 to 235.5 35.6 14.5–56.6

TGV 29.5 6 23.1 221.4 to 2.4 254.9 275.6 to 34.1 35.8 15.1–56.6

LRL 5 lower reproducibility limit; URL 5 upper reproducibility limit.

Data are percentage differences between scan 2 and scan 1 measurements.
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hand, currently considered state-of-the art adaptive thresh-

old–based algorithms have been shown to accurately define

functional volumes under certain imaging conditions of

spheric and homogeneous-activity-distribution lesions.

However, adaptive-threshold approaches usually involve

some user interaction to select background ROIs, which

can potentially lead to user-introduced variability. Although

signal intensity reproducibility, predominantly considering

the use of SUVmax, has been previously assessed, the poten-

tial of new indices such as TV or TGV and TPV can be

considered only after the assessment of their reproducibil-

ity, which has not been previously widely assessed. There-

fore, in this study the reproducibility limits of these indices,

in comparison to other indices considered as the current

gold standard, have been assessed using different tumor-

delineation methodologies on double-baseline 18F-FDG

and 18F-FLT datasets.

In terms of repeatability, all algorithms exhibited mean

differences of less than 5%, with automatic approaches

coming closer to the perfect repeatability that can be

achieved by deterministic approaches such as a fixed

threshold. The repeatability of both threshold and auto-

matic-segmentation approaches was superior to that of

manual delineation. This should, of course, be considered

within the context of the limited absolute accuracy of

thresholding, particularly for lesions not homogeneous in

form and activity distribution (31).

The variability in the SUVmax observed in this work is

similar to that measured in previous reproducibility studies,

with comparable percentage differences for 18F-FDG and
18F-FLT datasets. These percentage differences suggest that

differences larger than 230% can be considered as signifi-

cant in treatment response, whereas changes above 35%

(30% for 18F-FLT) may be indicative of no response.

Depending on the delineation algorithm used, the mean

percentage difference and corresponding SD for TV mea-

sured on the 2 baseline scans varied from 5% 6 13% to

219% 6 36% for the 18F-FDG and from 4% 6 16% to

10% 6 35% for the 18F-FLT datasets. The smallest TV

reproducibility limits obtained were similar to those for

SUVmax. These limits ranged from 221% to 31% and

227% to 35% for 18F-FDG and 18F-FLT, respectively, sug-

gesting in turn that, depending on the segmentation algo-

rithm used and similar to SUVmax, CIs may be considered

for monitoring therapy response based on functional TV.

Similarly, in the case of TGV and TPV the smallest repro-

ducibility limits measured were between216% to 26% and

230% to 37% for 18F-FDG and 18F-FLT, respectively. On

the other hand, the largest reproducibility limits for the 18F-

FDG TV and TGV ranged from 290% to 73% and from

268% to 52%, respectively.

Reproducibility ranges obtained for the 18F-FDG esoph-

ageal lesions were almost systematically smaller than the

ones obtained on the 18F-FLT breast lesions—which can be

attributed to the higher level of noise and overall lower

contrast observed in the 18F-FLT cases, resulting in less

robust delineations. In addition, 18F-FDG esophageal

lesions tended to appear more homogeneous than breast

lesions. For instance, FCM—which incorporates neither

noise nor spatial modeling—is associated with a larger

mean TV variability of the 18F-FLT dataset relative to
18F-FDG, whereas FLAB exhibited similar reproducibility

levels for both. The variability in reproducibility highlights

the need for a robust delineation tool ensuring high repro-

ducibility in an environment of substantial image-quality

variability—likely, for example, to be encountered in multi-

center trials in which the use of functional TV as a measure

of response to therapy may be considered.

T50 uses a more restrictive threshold than 42% and is

therefore less prone to large overevaluation of low contrast

TABLE 3. Reproducibility Results Using 18F-FLT for Breast Lesions

Method Parameter Mean 6 SD 95% CI LRL 95% CI for LRL URL 95% CI for URL

SUVmax 20.9 6 14.9 210.4 to 8.5 230 246.6 to 213.4 28.2 11.6–44.8

FLAB TV 4.3 6 15.7 25.7 to 14.3 226.5 244.1 to 28.9 35.2 17.6–52.8

SUVmean 20.6 6 14.1 29.6 to 8.3 228.2 244 to 212.5 27 11.2–42.7

TGV 3.7 6 17.2 27.2 to 14.6 230 249.2 to 210.8 37.4 18.2–56.6

FCM TV 4.2 6 35.7 218.4 to 26.9 265.6 2105.5 to 225.8 74.1 34.3–114

SUVmean 0.3 6 30.1 218.8 to 19.4 258.6 292.2 to 225 59.2 25.6–92.8

TGV 4.6 6 29.8 214.3 to 23.6 253.9 287.2 to 220.5 63.1 29.7–96.4

TSBR TV 11.3 6 31.4 28.7 to 31.2 250.4 285.5 to 215.2 72.8 37.7–108

SUVmean 23.2 6 26.5 220 to 16.6 255.1 284.7 to 225.5 48.7 19.1–78.3

TGV 22.1 6 48.9 29 to 53.2 273.8 2128.5 to 219.1 118 63.3–172.7

T42 TV 9.8 6 35 212.4 to 32.1 258.7 297.8 to 219.6 78.4 39.3–117.5

SUVmean 29.4 6 20.9 222.7 to 3.9 250.3 273.7 to 227 31.6 8.2–54.9

TGV 0.7 6 27.3 216.7 to 18 252.8 283.3 to 222.3 54.1 23.6–84.6

T50 TV 11.2 6 31.4 28.8 to 31.1 250.5 285.6 to 215.3 72.8 37.6–107.9

SUVmean 213 6 16.8 224 to 22.7 246.2 264.9 to 227.4 19.5 0.8–38.3

TGV 21.8 6 26 218.4 to 14.7 252.8 281.9 to 223.7 49.1 20.1–78.2

LRL 5 lower reproducibility limit; URL 5 upper reproducibility limit.

Data are percentage differences between scan 2 and scan 1 measurements.
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(,4:1) or small-size (,2 cm in diameter) TVs. T50 led to

systematically lower variability than T42. Finally, the adap-

tive-threshold methodology did not demonstrate better

reproducibility than did fixed thresholding, which can be

attributed to the use of the background ROI placed man-

ually on both scans, combined with the fact that back-

ground activity may also vary between the 2 scans.

Although a potential criticism for the current study can be

the lack of ground-truth for the functional volumes, the aim

of this work was not to assess the absolute accuracy of

algorithms, which has been assessed previously for the

approaches used in this work (19,31). The objective was to

assess the reproducibility limits of functional-volume–

related indices that can be attained depending on the

algorithm. Within this context, the repeated studies of the

double-baseline acquisitions have been performed within an

FIGURE 3. Bland–Altman plots of SUVmax (A), SUVmean

using adaptive thresholding (B), and SUVmean using FLAB

(C) for both 18F-FDG and 18F-FLT lesions. Lines show

combined mean, 95% CI, and upper and lower
reproducibility limits. Individual values for 18F-FDG and 18F-

FLT lesions are shown in Tables 2 and 3, respectively. LRL 5

lower reproducibility limit; URL 5 upper reproducibility limit.

FIGURE 4. Bland–Altman plots of TV using adaptive

thresholding (A) and TV using FLAB (B) for both 18F-FDG

and 18F-FLT lesions. Lines show combined mean, 95% CI,

and upper and lower reproducibility limits. Individual values
for 18F-FDG and 18F-FLT lesions are shown in Tables 2 and

3, respectively. LRL 5 lower reproducibility limit; URL 5

upper reproducibility limit.

1374 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 51 • No. 9 • September 2010



average of 3–4 d, without any treatment between them,

matching the method used by all other reproducibility studies

to date (21–25). Finally, the reproducibility of SUVmax was

included in this work as the current gold standard, facilitat-

ing at the same time the comparison of our reproducibility

study to those performed previously. The SUVmax reprodu-

cibility limits obtained in this work for both 18F-FDG and
18F-FLT agree closely with those of previous studies.

CONCLUSION

The smaller reproducibility ranges obtained for the

different image indices considered in this study, similar to

those of SUVmax, suggest that new automatic-segmentation

approaches may facilitate the introduction of TVs or a

combination of TVs and signal intensity in the form of

TGVs and TPVs derived from PET images for therapy-

response studies. However, our results also demonstrate that

the reproducibility of different quantitative parameters

associated with functional volumes depends significantly

on the delineation approach.
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Abstract

Purpose Current state-of-the-art algorithms for functional

uptake volume segmentation in PET imaging consist of

threshold-based approaches, whose parameters often re-

quire specific optimization for a given scanner and

associated reconstruction algorithms. Different advanced

image segmentation approaches previously proposed and

extensively validated, such as among others fuzzy C-means

(FCM) clustering, or fuzzy locally adaptive bayesian

(FLAB) algorithm have the potential to improve the

robustness of functional uptake volume measurements.

The objective of this study was to investigate robustness

and repeatability with respect to various scanner models,

reconstruction algorithms and acquisition conditions.

Methods and materials Robustness was evaluated using a

series of IEC phantom acquisitions carried out on different

PET/CT scanners (Philips Gemini and Gemini Time-of-

Flight, Siemens Biograph and GE Discovery LS) with their

associated reconstruction algorithms (RAMLA, TF MLEM,

OSEM). A range of acquisition parameters (contrast,

duration) and reconstruction parameters (voxel size) were

considered for each scanner model, and the repeatability of

each method was evaluated on simulated and clinical

tumours and compared to manual delineation.

Results For all the scanner models, acquisition parameters

and reconstruction algorithms considered, the FLAB algo-

rithm demonstrated higher robustness in delineation of the

spheres with low mean errors (10%) and variability (5%),

with respect to threshold-based methodologies and FCM.

The repeatability provided by all segmentation algorithms

considered was very high with a negligible variability

of <5% in comparison to that associated with manual

delineation (5–35%).

Conclusion The use of advanced image segmentation

algorithms may not only allow high accuracy as previously

demonstrated, but also provide a robust and repeatable tool

to aid physicians as an initial guess in determining

functional volumes in PET.

Keywords PET uptake volume determination .

Robustness . Repeatability . FLAB . Thresholding

Introduction

Accurate, robust, reproducible and fast delineation of

functional tumour uptake volumes in three dimensions

using positron emission tomography (PET) has been

identified as a pressing challenge for an increasing number

of oncology applications, such as image-guided radiother-

apy [1–3], diagnosis, prognosis and therapy response

assessment [4, 5]. On the one hand, manual delineation of

functional uptake volumes using PET images is tedious and

associated with very low repeatability due to high inter- and

M. Hatt :C. Cheze Le Rest :N. Albarghach :O. Pradier :

D. Visvikis

INSERM, U650, LaTIM, CHU Morvan,

Brest 29200, France

C. Cheze Le Rest

Academic Department of Nuclear Medicine, CHU,

Brest 29200, France

N. Albarghach :O. Pradier

Institute of Oncology, CHU,

Brest 29200, France

M. Hatt (*)

LaTIM, INSERM U650, CHU MORVAN,

5 avenue Foch,

29609 Brest, France

e-mail: hatt@univ-brest.fr

Eur J Nucl Med Mol Imaging (2011) 38:663–672

DOI 10.1007/s00259-010-1688-6

Author's personal copy



intraobserver variability [4], principally arising from the

poor quality of PET images. On the other hand, current

state-of-the-art algorithms for functional uptake volume

segmentation using PET images consist of fixed [6] or

adaptive thresholding approaches [7, 8]. Regarding the use

of a fixed threshold, numerous studies have shown the need

for a variable threshold, depending on numerous factors,

such as among others, lesion contrast, lesion size, and

image noise [9]. As a solution, in the case of adaptive

thresholding, the applied threshold depends on the mea-

sured contrast between the object delineated and its

surrounding background, as well as parameters requiring

optimization on phantom acquisitions. This optimization

has to be performed for each scanner model and associated

reconstruction and correction algorithms, making these

approaches system-dependent. In addition, recent studies

have shown that even for the same scanner model, a

significant variation in the “ideal” threshold may exist due

to differences in clinical acquisition and reconstruction

protocols [10] underlining the possibility that such deter-

ministic approaches may not be sufficiently robust and

reproducible for functional uptake volume determination.

Recently several advanced image segmentation algo-

rithms have been proposed in the literature for PET volume

delineation [11–16]. The physical accuracy of these

algorithms in differentiating the uptake signal from its

surrounding background has, in most cases, already been

assessed with respect to ground-truth, provided by a

combination of realistic simulated or acquired phantom

images as well as, in some cases, clinical tumours with

associated histopathology measurements.

However, apart from physical accuracy, different char-

acteristics can be equally important in terms of assessing

the performance of such advanced image segmentation

algorithms, which in principle have the potential to be more

robust and repeatable than “threshold-based” approaches. A

robust and repeatable performance may facilitate their use

with images acquired on different scanner models without

any previous optimization to individual image quality,

providing a less hardware-dependent solution to the

problem of 3-D functional uptake segmentation. However,

none of these methodologies have been shown to be

system-independent, considering the potential variability

that can be observed in PET image characteristics depend-

ing on the scanner or associated reconstruction and

correction algorithms used. Such an evaluation is essential

for the efficient application of these approaches to the

different clinical applications targeted, not simply within a

given institution but also with regard to their use within a

multicentre trial context.

Finally, such a robustness analysis could provide some

insight into the potential behaviour of a given segmentation

algorithm with the use of different tracers. On the one hand,

the PET scanner properties in terms of spatial resolution

will be similar for acquisitions performed with the same

radioisotope, therefore resulting in partial volume effects of

similar magnitude. On the other hand, acquisitions per-

formed using different radiotracers show different uptake

intensities and therefore subsequent different contrast and

noise level characteristics for a given tumour uptake. For

instance, 18F-FLT and 18F-FMISO images are usually

characterized by higher noise levels and reduced tumour

uptake contrast than 18F-FDG images [17, 18]. Therefore,

studying the behaviour of automated algorithms dedicated

to the delineation of elevated activity in 18F-FDG images,

considering variable contrast and noise levels, could

provide an insight into the potential behaviour of such

algorithms when applied to other 18F-labelled PET tracers.

The objectives of this study were (1) to provide a

robustness and repeatability evaluation framework, and (2)

to assess within this framework the performance of

different advanced and threshold-based segmentation algo-

rithms in delineating elevated activity distributions in a PET

image.

Materials and methods

Segmentation algorithms

Threshold-based and more advanced approaches were

considered in this work. Two different fixed thresholds

were considered, at 42% (T42) and 50% (T50) of the

maximum tumour value, using a region growing algorithm

with the maximum intensity voxel as seed [4]. An adaptive

thresholding (TSBR, for threshold source-to-background

ratio) approach [7] was also included:

Ithreshold ¼ aþ b
1

SBR
ð1Þ

where SBR is the tumour-to-background ratio determined

by ROI analysis, and the parameters a and b are optimized

for each scanner using phantom acquisitions of spheres.

In terms of more advanced image segmentation

approaches, the fuzzy C-means (FCM) [16] clustering,

previously used for functional volume segmentation tasks

in both brain and oncology applications [14, 15, 19, 20],

was considered. This algorithm iteratively estimates cluster

“centroids” (centres of mass) in the image, computing a

voxel’s membership between 0 and 1 to a given cluster

depending on the distance between the voxel’s value and

the cluster centroids. However, the FCM algorithm lacks

explicit noise and spatial correlation modelling. The second

advanced algorithm considered was an unsupervised bayes-

ian segmentation, known as the fuzzy locally adaptive

bayesian (FLAB) algorithm [14, 15]. It computes, for each
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voxel, a probability of belonging to a given “class” (for

instance, tumour, background or a given uptake level within

a tumour). This probability takes into account the voxel

intensity, spatial correlation with surrounding voxels (the

assumption being that voxels of similar intensities and close

to each other have higher probability of belonging to the

same class) as well as the overall statistical distributions in

the regions of the image by estimating the mean and

variance for each class. The FLAB algorithm automatically

estimates the parameters of interest (number of classes,

class mean and variance, spatial correlation of each voxel)

within a stochastic expectation maximization (SEM) frame-

work [21].

In order to deal with the inherent blurry properties of

PET images due to the limited spatial resolution of

scanners, the algorithm considers that each voxel may

contain a mixture of classes by modelling both spatial

correlation and statistical distributions with a combination

of Dirac “hard” and Lebesgue “fuzzy” measures. This

enables a classification of voxels as belonging to what we

denote as “hard classes” or “fuzzy transitions”, the first

referring to fairly homogeneous regions, the second to

blurred areas occurring at the frontier between two

homogeneous regions. The FLAB algorithm is therefore

able to accurately differentiate if necessary both the overall

tumour spatial extent from its surrounding background as

well as tumour subvolumes with different uptakes. The

accuracy of the FLAB algorithm has been previously

extensively investigated for both homogeneous [14] and

heterogeneous nonspherical tumours [15] and has demon-

strated satisfactory accuracy even for small (<2 cm diam-

eter) volumes of interest (both overall tumours and tumour

subvolumes), short acquisition durations (associated with

higher noise levels) and low (<4:1) contrast (both for

overall tumours with respect to their surrounding back-

ground and between a tumour and its smaller subvolumes).

Accuracy, robustness, repeatability: definitions

For a given segmentation algorithm we define accuracy as

the precision in retrieving the true 3-D object spatial extent,

shape and volume based on the reconstructed activity

distribution in a PET image, irrespective of the correlation

between this distribution and the underlying physiological

process. Thus an image segmentation algorithm would not

be expected to differentiate specific from nonspecific tracer

uptake (for example inflammation and tumour in the case of

FDG) if they are of the same intensity. The defined

accuracy of each of the methodologies considered was

determined as in previous studies [14, 15] by calculating

the classification errors (see section Analysis).

We define robustness as the ability of a given

methodology to generate accurate segmented volumes

under varying acquisition and image reconstruction

conditions. This robustness is determined as the variabil-

ity of the segmentation results when a method is applied

without prior optimization to images acquired using

various scanners, and for each scanner under various

contrast and noise conditions, using different reconstruc-

tion and associated correction algorithms. A dataset

consisting of multiple phantom acquisitions performed

on various scanner models (see section Validation

studies) was used for this task. These phantom studies

were used to assess robustness as they are consistently

employed for optimization purposes with most of the

functional volume segmentation algorithms.

Within the context of this study, repeatability is defined

as the ability of a given algorithm to reach the same result

when applied multiple times to a single image. In such a

task, deterministic fixed threshold approaches will always

give the same result. On the other hand, more advanced

methods may give different results when applied multiple

times to the same image. For example, adaptive thresh-

olding segmentation may depend on a manually drawn

background ROI and may thus result in variable delinea-

tions depending on the choice of this ROI. Finally, manual

delineation may be considered as the least repeatable, even

when considering a single operator (intraoperator variabil-

ity). In order to compare the performances of the different

segmentation algorithms in terms of repeatability, we used a

series of simulated tumour images [22], as well as 15

different clinical cases (see section Validation studies).

Validation studies

Four different PET/CT scanners currently used in clinical

practice were used for the robustness study: namely, the

Philips Gemini and Gemini TF (Philips Medical Systems,

Cleveland, OH), the Siemens Biograph (SIEMENS Medical

Solutions, Knoxville, TN) and the GE Discovery LS (GE

Healthcare, Milwaukee, WI). In each case, scans of the IEC

phantom containing spheres of various diameters (10, 13,

17, 22, 28, 37 mm) filled with 18F and placed on a hot

uniform background were acquired. A standard protocol

was designed to generate the following acquisitions for

each scanner model: (a) two different SBRs (4:1 and 8:1),

(b) three different scan durations (1, 2 and 5 min) to study

the effect of noise, and (c) two different voxel volumes

used in the reconstruction (between 2×2×2 mm and 4.3×

4.3×4.25 mm). All scans were performed in 3-D mode and

list-mode format facilitating the generation of 1-, 2- and 5-

min realizations from one single 5-min acquisition. In

addition to the standard CT acquisition used for attenuation

correction, a CT scan at high resolution was acquired for

each PET/CT acquisition in order to generate (after

registration) a ground-truth defining the true spatial extent
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(the interior of the sphere) of the tracer uptake at the voxel-

by-voxel level [14]. This is subsequently used to compute

the accuracy of each algorithm through classification errors

(see section Analysis).

Routine clinical image reconstruction protocols were

used for all scanners. For the Philips GEMINI and

GEMINI TF, data were reconstructed using the RAMLA

3D (two iterations, relaxation parameter 0.05, and 5-mm

FWHM 3-D gaussian postfiltering) and the TF ML-EM

algorithm, respectively. In the case of the Siemens

Biograph and GE Discovery LS, images were recon-

structed with Fourier rebinning (FORE) followed by

OSEM (four iterations and eight subsets, with 5-mm

FWHM 3-D gaussian postfiltering, and two iterations

and eight subsets, respectively). All acquisitions were

corrected for attenuation (using the corresponding CT

image), as well as for scatter and random coincidences.

A summary of the parameters for each of the datasets

obtained using the different scanners is shown in Table 1.

Figures 1 and 2 illustrate the various images obtained.

Note that in the case of the Philips GEMINI acquisitions,

the 37-mm sphere was not in the same plane as the others,

and thus appears visually smaller in the selected slice,

while the 28-mm sphere was missing in the phantom used

for the GE Discovery LS acquisitions.

Regarding the repeatability study, two different datasets

were used. The first one consisted of ten tumours extracted

from a database of realistically simulated PET scans based

on clinical whole-body images using the NCAT (NURBS

cardiac-torso) phantom, a model of the Philips GEMINI

PET/CT system Contrast Voxel size (mm) Duration (min) Reconstruction protocol

Philips Gemini 4:1 2×2×2 1, 2, 5 RAMLA 3D

8:1 4×4×4

Philips Gemini TF 4:1 2×2×2 1, 2, 5 TF ML-EM

8:1 4×4×4

Siemens Biograph 4:1 2×2×2 1, 2, 5 FORE-OSEM

8:1 5.33×5.33×2

GE Discovery LS 4:1 1.95×1.95×4.25 1, 2, 5 FORE-OSEM

8:1 4.3×4.3×4.25

Table 1 Overview of the acqui-

sition parameters used for each

scanner model

Philips Gemini Philips Gemini TF

GE Discovery LS Siemens Biograph

(A)

(A)

(B)

(a) (b) (a) (b)

(B)

Fig. 1 2-D phantom slices

through the centre of the spheres

for the different systems and

imaging conditions. Contrast

ratios: rows (A) 4:1, rows (B)

8:1. Voxel sizes: columns (a)

small voxels, columns (b) large

voxels (see Table 1)
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scanner and GATE (Geant4 Application for Tomography

Emission). The procedure for the generation of these

images, reconstructed using OPL-EM (seven iterations,

one subset) with 4×4×4 mm3 voxels, has been previously

described in detail [22]. In the second part of the

repeatability study a number of clinical cases were selected

from datasets acquired on various scanner models: four

oesophagus lymphomas and four follicular lymphomas

were scanned on the Philips GEMINI PET/CT scanner

(2 min per bed position, 60 min after injection of 6 MBq/kg
18F-FDG); and three non-small-cell lung cancers were

scanned on the Siemens Biograph (5 min per bed position,

45 min after injection of 5 MBq/kg 18F-FDG) and on the

GE Discovery LS (3 min per bed position, 60 min after

injection of 5 MBq/kg 18F-FDG).

Analysis

For the phantom images used in the robustness study

each sphere was processed separately. The images

corresponding to the region containing each sphere were

segmented in two classes (sphere and background), using

each of the methods under evaluation (FCM, FLAB, T42

and T50). A voxel-to-voxel ground-truth based on the

corresponding CT datasets as described previously [14]

was used in the robustness evaluation of the different

methodologies considered through the determination of

the segmentation accuracy with the computation of the

classification errors (CE):

CE ¼
card tjct 6¼ xtf g

card tjxt ¼ 1f g
� 100 ð2Þ

where, ct is the class assigned by the classification of

voxel t, and xt is its true class (xt=1 for the sphere and xt=

0 for the background) and card{} is the cardinal. The

errors are computed based on all misclassified voxels,

either background voxels classified as sphere voxels or

vice versa, divided by the total number of voxels defining

the sphere volume.

The mean classification error and associated standard

deviation (SD) were obtained for each sphere and for each

segmentation approach, thus providing a measure of the

robustness of the different segmentation algorithms when

applied without specific optimization for a given scanner

model or associated reconstruction algorithm under differ-

ent imaging conditions (contrast and noise). The 10-mm

sphere was not included in the analysis because it was not

clearly visible in several of the phantom acquisitions and

was therefore not possible to segment particularly when

using 4×4×4 mm3 and 5×5×5 mm3 reconstruction voxel

sizes by any of the segmentation algorithms considered.

Adaptive thresholding could not be compared directly with

the other methodologies since it is optimized on each of the

(A)

(a)

(b)

(B) (C) (D)
Fig. 2 Variability for the 17-

mm sphere across all four scan-

ner models for two different

configurations. Rows (a): con-

trast 4:1, small voxels and 1-min

acquisition. Rows (b): contrast

8:1, large voxels and 5 min

acquisition. Columns (A) Philips

Gemini, (B) Philips Gemini TF,

(C) Siemens Biograph, and (D)

GE Discovery LS

Table 2 Optimized parameters a and b of the adaptive thresholding (TSBR) approach for each scanner model, with the minimum mean

classification errors and their associated standard deviations across the entire range of configurations

PET/CT system TSBR approach Minimum mean associated

classification error (%)

Standard deviation of

classification error

Parameter a Parameter b

Philips Gemini 40.1 59.7 10.8 3.3

Philips Gemini TF 38.6 61.4 9.7 2.8

Siemens Biograph 41.7 57.6 13.1 5.2

GE Discovery LS 42.0 56.8 11.1 3.7
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individual scanner datasets, with the parameters a and b

optimized for each imaging device shown in Table 2.

However, in order to assess the robustness of these

approaches depending on the imaging system used we

applied adaptive thresholding using the parameters opti-

mized on other scanners to the image datasets acquired with

the Siemens Biograph.

For the repeatability evaluation, the simulated and

clinical tumours were segmented ten times each with the

FCM, FLAB and TSBR algorithms (fixed thresholding was

not included since it always gives the same volume). In

addition, manual delineation was carried out by two nuclear

medicine experts with similar experience (more than

10 years) and training. More specifically the two experts

were instructed to delineate the elevated uptakes in the

images by performing ten different slice-by-slice manual

delineations for the different lesions considered in a

randomized fashion, ensuring a minimum of 1 week

between two consecutive segmentations of the same lesion.

All these manual segmentations were carried out under the

same conditions of full range contrast display. The mean

percentage variability and associated standard deviation

with respect to the mean segmented volume was computed

for each of the lesions and segmentation approaches across

the ten executions and across the ten manual delineations in

order to assess the repeatability of the approaches for each

of the images. The repeatability of the manual delineations

from the two experts were compared separately (intra-

observer variability) and with each other (interobserver

variability).

Results

Classification errors representing segmentation accuracy

computed for each sphere are shown in Fig. 3a, considering

the entire range of systems used for acquisition and the

different parameters in terms of contrast, acquisition

duration and voxel size. For all the systems considered,

the relative impact of the different acquisition (contrast,

duration) and reconstruction (voxel size) parameters is

demonstrated in Fig. 3b, c and d, respectively. Table 3

shows the mean errors and standard deviations computed

across the different spheres taken separately (as shown in

Fig. 3a) and all together for the different imaging devices

and acquisition configurations considered.

For the entire range of sphere sizes (37 to 13 mm), the

FLAB algorithm showed better accuracy and variability

through smaller overall mean errors and SD (8.7±4.5%)
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Fig. 3 Mean classification errors and standard deviations (error bars)

for each methodology with respect to (a) sphere diameter, (b) contrast,

(c) acquisition duration and (d) voxel size, computed across the

different scanner models

b
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than the other advanced segmentation algorithm FCM

(27.8±25.6%) as well as relative to the fixed threshold

approaches T50 (20.3±18.5%) and T42 (42.6±51.6%).

These latter were also more sensitive to variations in the

parameters as shown in Fig. 3a. The T50 algorithm was

clearly more robust than T42 algorithm (SD 19% compared

to 52%). This is explained by the fact that the 50%

threshold is more restrictive and hence leads to lower over-

estimation for the smallest sphere volumes, and that the

42% threshold may lead to a gross over-estimate (>100%

errors for the most challenging imaging conditions). On the

other hand, the T50 algorithm was associated with a larger

classification error for the two larger spheres, as it tended to

under-estimate their volumes by only including the central

high-intensity voxels of the sphere. The FCM algorithm

was unable to accurately segment spheres smaller than 2 cm

in diameter, leading to large overall mean errors when

considering its performance over all sphere sizes, although

it exhibited a lower variability than the fixed threshold

approaches for the majority of the spheres with a size

of >2 cm.

As shown in Fig. 3b, the FLAB algorithm exhibited

low variability with respect to contrast changes, and all

other methodologies, especially the T42 and FCM algo-

rithms, exhibited higher sensitivity to such changes. The

T50 algorithm, on the other hand, was less sensitive to

contrast changes with respect to the mean error but

exhibited larger variability for lower contrast. Figure 3c

illustrates the resilience to shorter acquisitions (hence

higher noise levels) for each methodology. The FLAB

algorithm demonstrates very low variability with shorter

acquisitions, whereas all other methodologies showed

higher variability with significantly larger mean errors

and standard deviations. Finally, only small improvements

were seen for each methodology (except for T50) when

using smaller voxels (see Fig. 3d).

The optimized parameters a and b of the TSBR approach

for each scanner model are shown in Table 2. The mean

classification error across all the spheres (range 13–37 mm)

associated with each scanner was between 9.7% and 13.1%

with associated standard deviations from 2.8% to 5.2%.

When applying the parameters a and b of the Philips

GEMINI, Philips GEMINI TF and Discovery LS datasets

to the Siemens Biograph dataset, the mean error increased

from 13.1±5.2% to 21.7±7.1%, 23.4±7.6% and 19.1±6.4%,

respectively.

Concerning repeatability, Table 4 shows the mean

variability and SD around the mean segmented volume

across the ten manual delineations performed by the two

nuclear medicine experts, and ten repeated executions of

Sphere diameter (mm) Classification error (%)

T42 T50 FCM FLAB

Mean SD Mean SD Mean SD Mean SD

37–13 (all spheres) 42.6 51.6 20.3 18.5 27.8 25.6 8.7 4.5

37 10.5 5.3 16 7.9 11.4 5.3 8.4 2.8

28 17 13.8 15.9 7.5 11.7 5.7 8.4 3.6

22 23 20.7 15.6 9.8 13.4 7.1 7.9 3.3

17 49.1 35 21.5 13.8 31.6 12.7 7.2 4.9

13 113.6 62.1 32.7 33.1 70.9 20.9 11.6 5.9

Table 3 Robustness evaluation:

mean classification error and

associated standard deviation

computed for each methodology

across the entire range of sphere

phantom acquisitions

Method Variability (%)

Simulated cases Clinical cases

Mean SD Mean SD

FLAB 0.5 0.3 0.9 0.5

FCM 0.8 0.6 1.7 1.9

Fixed thresholding 0 0 0 0

Adaptive thresholding 3.4 2.8 3.8 3.1

Manual delineation

Expert 1 13.4 17.3 19.6 15.2

Expert 2 11.7 18.4 22.1 13.6

Expert 2 with respect to expert 1 16.4 21.8 24.7 17.5

Table 4 Repeatability evalua-

tion: variability and standard

deviation around the mean seg-

mented volume for repeated (10

times) delineations of simulated

and clinical tumours
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the FLAB, FCM and TSBR algorithms. The FLAB

algorithm demonstrated highly repeatable results in all of

the studied cases, with negligible variability (<1%) around

the mean segmented 3-D volume across the different

repeated executions for both the simulated and the clinical

datasets. The FCM algorithm also led to satisfactory

repeatability results (0.8±0.6% for the simulated tumours

and 1.7±1.9% for the clinical cases). However, the

variability with the TSBR algorithm was more than double

(3.4±2.8% for the simulated tumours and 3.8±3.1% for the

clinical cases) which was most probably due to the manual

definition of the background ROI. By contrast manual

segmentation performed by the two experts showed high

intraobserver variability for simulated tumours (13.4±17.3%

and 11.7±18.4% for expert 1 and 2, respectively), and even

larger variability for the clinical images (19.6±15.2% and

22.1±13.6% for expert 1 and 2, respectively). Interobserver

variability was 16.4±21.8% and 24.7±17.6% for the simulated

tumours and clinical cases, respectively. Figure 4 shows

examples of delineations obtained by manual segmentation

and the automatic approaches.

Discussion

Functional tumour uptake volume delineation is today an

area of interest for multiple clinical (routine and

research) applications of PET imaging, such as studying

response to therapy and radiotherapy treatment planning.

In all of these applications, the robustness and repeat-

ability with which functional uptake volumes can be

determined under different imaging conditions play a

predominant role in allowing the level of confidence to

be established with the use of such tumour volume

measurements in clinical practice [18]. Although several

promising advanced algorithms have recently been pro-

posed [11–15, 20], methodologies currently used in

clinical practice are based on the use of manual delinea-

tion or fixed and adaptive thresholding [6–8]. The major

drawback of manual delineation is its high inter- and

intraobserver variability, in addition to being time con-

suming. On the other hand, the currently considered state-

of-the-art adaptive threshold-based algorithms have been

shown to accurately define functional volumes under

certain imaging conditions of spherical lesions with a

homogeneous activity distribution. However, they require

specific parameter optimization and are thus system-

dependent. In addition, the adaptive thresholding

approaches usually involve some user interaction to select

background regions of interest, which can potentially lead

to user-introduced variability. In the present study we

focused on the evaluation under different imaging con-

ditions of the level of robustness and repeatability of

different functional volume segmentation algorithms,

including those used in current clinical practice.

In terms of robustness, the use of images from different

commercial PET/CT systems acquired under typical clinical

acquisition conditions resulted in large variability in the

performance of the different segmentation algorithms evalu-

ated. Across all of the images and spheres considered, a fixed

threshold of 42% of the maximum resulted in the largest

variability of the segmented functional volumes (±15–60%)

across the different images considered for spheres <3 cm in

diameter. On the other hand, the variability using a fixed

threshold of 50% was closer (±20%) to that of one of the

advanced segmentation algorithms included in this work

(FCM). Finally, the FLAB algorithm was the most robust of

all the evaluated algorithms leading to the lowest variability

(±5%), with no particular dependence on acquisition (dura-

tion, contrast) and processing parameters (reconstructed voxel

size). The 42% fixed threshold and the FCM algorithm were

the most sensitive to contrast and acquisition duration across

the different scanners used. In terms of variability across the

different images used, the 50% fixed threshold demonstrated

the most significant dependence of variability on lesion

contrast. Finally, applying adaptive thresholding (TSBR) to

Fig. 4 Tumour delineations on the same image slice: a delineation by

adaptive thresholding with two different background ROIs (6%

difference); b delineation by the FLAB method; c two manual

delineations by the same observer (fairly consistent, 9% difference);

d two manual delineations by different observers (highly different,

37% difference)
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acquisitions performed on a different scanner than the one

used to optimize its parameters led to higher mean errors

of <25%.

In terms of repeatability, all algorithms considered

exhibited mean differences of <5%, although only the

FLAB algorithm came close to the perfect repeatability that

can be achieved by a deterministic approach such as a fixed

threshold. Finally, the repeatability of both threshold and

automatic segmentation approaches was superior to that of

manual delineation (variability >15–20% for both the

clinical and simulated tumours).

The overall better accuracy (lower mean errors) and

lower variability (lower standard deviations) associated

with the FLAB algorithm across the different images

considered demonstrates its ability, without the need of

any scanner-specific optimization, to robustly deal with the

different image qualities resulting from the use of different

reconstruction and correction algorithms as well as sensi-

tivities associated with different systems. This of course

should be considered within the context of the limited

absolute accuracy of binary threshold-based approaches

shown in this and previous studies. The accuracy of

threshold-based approaches is particularly limited for

lesions with a nonhomogeneous form and activity distribu-

tion. In such cases it may result, as previously shown [15],

in large under- or over-estimation of the overall tumour

spatial extent.

The present study also demonstrated that the use of any

of the segmentation algorithms significantly reduced intra-

and interobserver variability associated with manual delin-

eation. However, one should keep in mind that automated

segmentation algorithms are not able to differentiate

between similar levels of physiological and pathological

elevated tracer uptakes. Therefore physician involvement is

still imperative and desirable, especially regarding the

detection and selection of elevated tracer uptakes

corresponding to pathological findings that are to be

subsequently accurately delineated.

Conclusion

This study demonstrated significant differences in the

robustness and reproducibility of functional volume meas-

urements depending on the segmentation algorithm used.

The advantage of employing advanced segmentation

algorithms is an improvement in overall elevated activity

delineation across the range of image qualities that can be

encountered today in clinical practice, without the need for

system-dependent optimization procedures. In addition,

their high level of repeatability allows performance similar

to that of deterministic threshold-based approaches to be

achieved. Therefore such advanced image segmentation

algorithms may provide robust and reliable tools to aid

physicians as an initial guess in determining functional

volumes on PET images.
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Abstract

Purpose 18F-fluorodeoxyglucose (FDG) positron emission

tomography (PET) image-derived parameters, such as

standardized uptake value (SUV), functional tumour length

(TL) and tumour volume (TV) or total lesion glycolysis

(TLG), may be useful for determining prognosis in patients

with oesophageal carcinoma. The objectives of this work

were to investigate the prognostic value of these indices in

oesophageal cancer patients undergoing combined chemo-

radiotherapy treatment and the impact of TV delineation

strategies.

Methods A total of 45 patients were retrospectively analysed.

Tumours were delineated on pretreatment 18F-FDG scans

using adaptive threshold and automatic (fuzzy locally

adaptive Bayesian, FLAB) methodologies. The maximum

standardized uptake value (SUVmax), SUVpeak, SUVmean,

TL, TV and TLG were computed. The prognostic value of

each parameter for overall survival was investigated using

Kaplan-Meier and Cox regression models for univariate and

multivariate analyses, respectively.

Results Large differences were observed between method-

ologies (from −140 to +50% for TV). SUV measurements

were not significant prognostic factors for overall survival,

whereas TV, TL and TLG were, irrespective of the

segmentation strategy. After multivariate analysis including

standard tumour staging, only TV (p<0.002) and TL (p=

0.042) determined using FLAB were independent prognos-

tic factors.

Conclusion Whereas no SUV measurement was a signifi-

cant prognostic factor, TV, TL and TLG were significant

prognostic factors for overall survival, irrespective of the

delineation methodology. Only functional TV and TL

derived using FLAB were independent prognostic factors,

highlighting the need for accurate and robust PET tumour

delineation tools for oncology applications.

Keywords PET. Tumour volume . Tumour segmentation .

Oesophageal cancer . Survival

Introduction

The incidence of oesophageal cancer is increasing and

despite advances in therapy, the diagnosis still carries a

poor prognosis [1]. As with all tumours, the outcome for

patients is strongly associated with the stage at initial

diagnosis. The TNM (tumour, node, metastasis) system

currently in use for the staging of oesophageal cancer does

not take into account non-anatomical factors such as

histopathological type, grade or various biomarkers that

may be important determinants of prognosis. The patho-

logical stage is given by surgery but this procedure is not

possible for all patients because it is associated with a high

risk of mortality and morbidity. Therefore a noninvasive
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staging method would be of great interest, and within this

context the primary role of 18F-fluorodeoxyglucose (FDG)

positron emission tomography (PET) in oesophageal cancer

is the detection of distant metastases [2–4]. This modality is

also gaining acceptance in oesophageal cancer for the

assessment of therapy response [5, 6] or for radiotherapy

treatment planning [7–9]. Lately, some authors have also

suggested that different parameters derived from initial 18F-

FDG PET images could have a role as independent

prognostic factors [10–14]. The parameters studied include

standardized uptake value (SUVmax as the maximum uptake

in the primary tumour or in the combined primary and

regional area), tumour functional longitudinal length (TL),

tumour functional volume (TV), nodal uptake or FDG-avid

metastases [10–14]. Although a few studies have demon-

strated the interest of these indices for determining

prognosis, there are conflicting results concerning the

independent prognostic value of each of these indices. For

example, Hyun et al. [12], analysing results from 151

patients with principally squamous cell carcinoma (SCC),

have recently suggested that primary tumour SUVmax is not

an independent prognostic factor, in agreement with other

studies [10, 15, 16]. On the other hand, Kato et al. [17]

based on the analysis of 184 patients with oesophageal SCC

have shown that SUVmax of the primary tumour is an

independent prognostic factor for overall survival, in

agreement with other studies [18–20]. These conflicting

results can be potentially caused by differences in the

methodology used for the analysis of the PET images.

Although SUVmax is less sensitive to tumour size, the

conflicting results considering its value as an independent

prognostic factor may also be due to variability in the

tumour sizes considered in the different studies.

Pathological TL has been shown to be an independent

prognostic factor in oesophageal carcinoma [21]. Therefore,

determining the functional TL in 18F-FDG PET images may

be a good surrogate. The use of different thresholds for the

determination of the functional TL in the existing studies may

be responsible for the conflicting results regarding its value as

a predictor of response to chemoradiotherapy [11, 22], while

it has been shown to be an independent predictor in patients

undergoing surgery [10]. On the other hand, functional TV

may be more representative of overall tumour burden. The

value of the functional TV has been only recently explored in

a single study of patients with oesophageal carcinoma

considering a heterogeneous treatment regime (76 and 24%

treated by surgery and combined radiochemotherapy, respec-

tively) [12]. In this study both the presence of metastases and

the TV were found to be independent prognostic factors for

overall patient survival. Tumours were delineated based on a

three fixed threshold scale depending on the tumour SUVmax.

Although such an approach may be simple to implement in

clinical practice, the use of a fixed threshold for functional

TV determination suffers from multiple shortcomings which

have been highlighted in different studies [23, 24]. In

addition, the proposed scale is not universally applicable to

the different clinical settings spanning from the acquisition

protocols to the scanning systems used and variable

associated image qualities.

Therefore, despite early evidence that functional TL and

TV may be useful parameters in predicting survival and

response to therapy, there is a clear need to assess the

influence of the methodology used in obtaining these indices.

Finally, the determination of functional TV may allow the

calculation of alternative image-derived indices such as the

total glycolytic lesion index (TLG) (g), defined as the product

of the TV (ml) and its associated mean activity (SUVmean)

(g/ml) [25], whose value has not as yet been explored in

predicting response to therapy or as a prognostic factor for

survival using 18F-FDG in oesophageal carcinoma.

The objective of this study was therefore to retrospec-

tively investigate the prognostic value of 18F-FDG PET in

45 oesophageal cancer patients treated with concomitant

radiochemotherapy, considering for the first time in a single

study all of the commonly used PET-derived parameters

such as functional TL, TV, SUV measurements (max, peak,

mean) and TLG. In addition, the impact of different tumour

delineation strategies was assessed.

Materials and methods

Patients

A total of 45 patients with newly diagnosed oesophageal

cancer treated between 2004 and 2008 with concomitant

radiochemotherapy and without surgery were included in this

study. The characteristics of the patients are given in Table 1.

Of the patients, 41 were male (91%), and the mean age at the

time of diagnosis was 66±10 years. Most of the tumours

were SCC (73%) and originated from the middle and lower

oesophagus (76%). All patients were referred before treat-

ment for an 18F-FDG PET study as part of a routine

procedure for the initial staging in oesophageal cancer. The

treatment included three courses of 5-fluorouracil/cisplatin

and a median radiation dose of 60 Gy given in 180-cGy

daily fractions delivered once daily, 5 days a week for

6–7 weeks. Follow-up data were prospectively collected in a

database for further analysis and overall survival was

calculated. The current analysis was carried out after an

approval by the Institutional Ethics Review Board.

18F-FDG PET acquisitions

18F-FDG PET studies were carried out prior to the

treatment. Patients were instructed to fast for a minimum
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of 6 h before the injection of 18F-FDG. The administered

dose was 5 MBq/kg, and static emission images were

acquired (2 min per bed position) from head to thigh

beginning 60 min after injection on a Philips GEMINI PET/

CT system (Philips Medical Systems, Cleveland, OH,

USA). In addition to the emission PET scan, a low-dose

CT scan without IV or oral contrast was acquired for

attenuation correction. Images were reconstructed with the

3-D row action maximum likelihood algorithm (RAMLA)

using standard clinical protocol parameters: 2 iterations,

relaxation parameter of 0.05, 5-mm 3-D Gaussian post-

filtering and 4×4×4 mm3 voxels grid sampling.

PET image analysis

The following parameters were extracted from each PET

image: SUVmax, SUVpeak defined as the mean of SUVmax

and its 26 neighbours, mean SUV within the delineated

tumour (SUVmean), functional TL in longitudinal direction,

functional TV and TLG. SUVpeak, usually defined as a

1-cm circle or sphere [26] [we used a 3×3×3 cube of

4×4×4 mm3 voxels which roughly corresponds to the same

region of interest (ROI)], was considered in order to

investigate the impact of reducing the potential bias in the

SUVmax measurements as a result of its sensitivity to noise.

Whereas SUVmax and SUVpeak are independent on the

tumour delineation strategy used, TL, TV, SUVmean and the

derived TLG were determined on delineations performed

using two strategies. First, an adaptive threshold [23] using

a background ROI manually chosen by two experienced

nuclear medicine physicians led to two different results

Tbckgrd
1 and Tbckgrd

2. Observers were instructed to choose

the ROI in the mediastinum at a sufficient distance from the

lesion to avoid any overlapping. However, they were

allowed to choose the size, shape and exact placement of

the ROI. Finally the automatic fuzzy locally adaptive

Bayesian (FLAB) algorithm [24, 27] was considered.

Statistical analysis

All quantitative data were expressed as mean±1 standard

deviation (SD) and summary statistics are given in Table 2.

The correlation between all parameters extracted using

the different methodologies was computed with Pearson

coefficients. The differences between methodologies were

assessed using Bland-Altman analysis [28] to define bias as

the mean error, and agreement intervals (upper and lower

limits) as 1.96 times the SD. Kaplan-Meier methods were

used to estimate the survival distributions [29]. Overall

survival was calculated from the date of initial diagnosis to

the date of death or most recent follow-up in cases of

patients still alive. Survival curves were generated for each

parameter considered. The most discriminating threshold

value allowing differentiation of the two groups of patients

was selected using receiver-operating characteristic (ROC)

methodology [30]. The prognostic value of each parameter

in terms of overall survival was assessed by the log-rank

test. The significance of the following factors was tested:

age, gender, histology type, T, N, M classifications,

American Joint Committee on Cancer (AJCC) stage [31],

TL, TV, SUVmax, SUVpeak, SUVmean and TLG. Indepen-

dent prognostic factors for overall survival were determined

using multivariate Cox regression analysis [32] by incor-

porating in the model all parameters that were deemed

significant in the univariate analysis. However, the indices

obtained by each delineation (Tbckgrd
1, Tbckgrd

2 and FLAB)

Table 1 Patient demographic and clinical characteristics

Parameter No. of patients (%)

Gender

Male 41 (91)

Female 4 (9)

Age

Range 45–84

Median 68

Site

Upper oesophagus 11 (24)

Middle oesophagus 17 (38)

Lower oesophagus 17 (38)

Histology type

Adenocarcinoma 12 (27)

SCC 33 (73)

Histology differentiation

Well differentiated 12 (27)

Moderately differentiated 11 (24)

Poorly differentiated 4 (9)

Unknown 18 (40)

TNM stage

T1 6 (13)

T2 7 (16)

T3 22 (49)

T4 10 (22)

N0 18 (40)

N1 27 (60)

M0 29 (64)

M1 16 (36)

AJCC stage

I 3 (7)

IIA 7 (16)

IIB 5 (11)

III 14 (31)

IVa 5 (11)

IVb 11 (24)
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were incorporated in the multivariate analysis separately

since they were found to be highly correlated (Pearson r>

0.8, r2>0.66; see the “Correlation between image-derived

indices and between methodologies” section). All tests

were carried out using MedCalc™ (MedCalc Software,

Mariakerke, Belgium); p values <0.05 were considered

statistically significant.

Results

All primary lesions were detected by 18F-FDG PET. The

intensity of maximum 18F-FDG uptake in the primary

lesion was quite high with a normally distributed SUVmax

of 10±3.8. As expected, SUVpeak measurements were

comparatively lower (8±3). Measurements related to the

dimensions of the tumours were less uniformly distributed

than SUV measurements, with a larger SD with respect to

the mean. For example the TV (FLAB) was 35±33 cm3.

Correlation between image-derived indices

and between methodologies

TL measurements were correlated with TV (p<0.0001)

although with moderate coefficients (r=0.69, 0.58 and 0.6

for FLAB, Tbckgrd
1 and Tbckgrd

2, respectively). No signifi-

cant correlation was found between any SUV measurement

(SUVmax, SUVpeak, SUVmean) and TV (p>0.2, r<0.3),

irrespective of the delineation strategy, in line with results

of other studies such as van Heijl et al. [33].

All SUVmean measurements derived from TV delineation

performed using the two different methodologies considered

were highly correlated (p<0.0001) with coefficients >0.97.

TV (r>0.82), TL (r>0.91) and TLG (r>0.95) results were

also highly correlated (p<0.0001) for both methodologies.

Despite high correlation coefficients, large differences

were observed for several patients between measure-

ments using the two delineation methodologies consid-

ered, and between the two users of the same adaptive

thresholding. Figure 1a, b illustrates such differences. In

the case of adaptive thresholding these differences were

the result of the two users placing the background ROI

differently.

A summary of the Bland-Altman analysis carried out to

compare the delineation methods and highlight potential

differences is presented in Fig. 2c, d and complete results

are given in Table 3. The largest differences between

methodologies were observed for TV with a bias of up to

50% between the adaptative thresholding and FLAB: both

users yielded globally smaller volumes (bias of −50±50%

and −21±54% for Tbckgrd
1 and Tbckgrd

2, respectively).

Agreement intervals (upper and lower limits) were large

for all parameters and for all comparisons, up to +80 and

−140% (see Fig. 2b). Even between the two users of the

same adaptive thresholding method (see Fig. 2a), mean

differences of −30±35% were seen and limits of agreement

were large, from −100 to +45%. No significant trend was

found regarding the correlation between TV and differences

between methodologies (r<0.2, p>0.1).

Better agreement was observed for TL and SUVmean;

however, intervals of agreement were large (−50 to −25%

lower limit and +20 to +40% upper limit for TL; −80

to −10% lower limit and +10 to +80% upper limit for

SUVmean).

Due to the combined effect of TV and SUVmean, TLG

differences were in between, with moderate bias but still

Table 2 Parameters definition and statistics

Definition Notation Mean ± SD Range

Highest SUV within the tumour SUVmax 10±3.8 2.2–19.7

Mean of SUVmax and its 26 neighbours SUVpeak 8.2±3.3 1.8–16.1

Mean SUV of tumour defined by Adaptive threshold 1st user SUVmean (Tbckgrd
1) 6.6±2.6 1.8–13.7

2nd user SUVmean (Tbckgrd
2) 6.2±2.7 1.6–13.8

FLAB SUVmean (FLAB) 6.0±2.4 1.7–13.2

Functional TV defined by Adaptive threshold 1st user TV (Tbckgrd
1) 22.6±23.8 1.8–92.0

2nd user TV (Tbckgrd
2) 29.2±29.7 2.4–133.9

FLAB TV (FLAB) 36.3±33.7 3.0–139.7

Functional TL defined by Adaptive threshold 1st user TL (Tbckgrd
1) 5.9±3.0 1.6–15.6

2nd user TL (Tbckgrd
2) 5.6±2.9 1.6–14.4

FLAB TL (FLAB) 6.2±2.9 2.0–15.6

SUVmean (Tbckgrd
1)×TV (Tbckgrd

1) (g) TLG (Tbckgrd
1) 165.4±182.7 3.2–759.7

SUVmean (Tbckgrd
2)×TV (Tbckgrd

2) (g) TLG (Tbckgrd
2) 198.8±209.4 6.9–921.3

SUVmean (FLAB)×TV (FLAB) (g) TLG (FLAB) 221.6±225.8 5.3–882.7

Eur J Nucl Med Mol Imaging



large agreement intervals (upper and lower limits of −120

to −75% and +40 to +90%, respectively).

Survival analysis

At the time of last follow-up, 10 patients were alive with no

evidence of disease, 9 were alive with recurrent oesopha-

geal cancer and 26 had died from the disease. With a

median follow-up of 60 months (range 9–82), the overall

median survival was 15 months. The 1-year and 2-year

survival rates were 63 and 34%, respectively.

The results of the log-rank analysis of significant

parameters for overall survival in univariate analysis are

given in Table 4. Table 5 summarizes the prognostic value

of all the parameters under investigation in this study.

Age, gender and histology types were not significant

prognostic factors in the univariate analysis. Neither were T

and N classifications. In the univariate analysis, the

presence of metastases [median survival of 26 months

(M0) versus 12 months (M1), p=0.01)] and the clinical

AJCC stage (p<0.001) were significant prognostic factors.

Although there was a trend observed, neither SUVmax nor

SUVpeak were significant prognostic factors. A SUVmax <5

or <8 tended to be a factor for better outcome with a median

survival of 14 vs 7 months (p=0.08) or 21 vs 13 months

(p=0.1), respectively (see Fig. 3a).

Fig. 1 Illustration of differences

in tumour delineation depending

on the methodology for a a

small (<8 cm3) and low

contrast (approximately 2:1)

tumour and b a larger (30 cm3)

and higher contrast

(approximately 7:1) tumour
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Mean SUVs in the tumour were not significant prog-

nostic factors in univariate analysis. There was however a

trend for shorter survival associated with higher SUVmean.

For example, the median survival was reduced by a factor

of 2 for patients with an SUVmean higher than 5 (13 months

vs 21 months, p=0.06). This was however observed only

when the FLAB methodology was used to define TV, while

no similar trend was observed with SUVmean parameters

obtained with adaptive thresholding.

Functional TV was a significant prognostic factor for

overall survival, whatever methodology was used (p<0.001

using FLAB and p=0.004 for both Tbckgrd
1 and Tbckgrd

2, see

Fig. 3b, c). In addition, using the TV, and independently of

the delineation approach used, allowed us to separate our

population into three groups with significantly different

outcome (p=0.002, p=0.02 and p=0.004 for FLAB,

Tbckgrd
1 and Tbckgrd

2, respectively). For instance, volumes

defined by FLAB less than 14 cm3, between 14 and 85 cm3

or superior to 85 cm3 were respectively associated with a

median survival of 49 (19 patients), 15 (21 patients) and 5.5

(6 patients) months as illustrated in Fig. 3d. In Fig. 4a–c

three examples of 18F-FDG PET baseline images of patients

belonging to each of these three groups are presented.

Functional TL was also a significant prognostic factor

with results similar to TV (p=0.01, p=0.02 and p=0.04 for

FLAB, Tbckgrd
1 and Tbckgrd

2, respectively), apart from not

being possible to significantly differentiate three groups of

patients with different outcome, independently of the

strategy.

Similarly, TLG was also a significant prognostic factor

whatever methodology was used, while it was equally not

possible to significantly differentiate three groups. The

Fig. 2 Bland-Altman analysis

of differences between a

Tbckgrd
1 and Tbckgrd

2 and b

Tbckgrd and FLAB, for each

parameter (TL, TV, SUVmean,

TLG). Grey columns and error

bars represent the mean

differences (bias) and associated

SD, respectively. Bold arrows

up and down denote upper and

lower limits, respectively; 95%

confidence intervals for each are

given in Table 3
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median overall survival was 10 months for patients with a

TLG (FLAB) >180 g and increased to 21 months for

patients with a TLG<180 g (p=0.01). Similar results were

obtained with adaptive thresholding (20 versus 8 and 20

versus 10 months for Tbckgrd
1 and Tbckgrd

2, respectively).

After multivariate analysis, considering each delineation

methodology separately, only TVobtained using FLAB and

AJCC stage were found to be independent significant

prognostic factors (p=0.0017 and 0.0021 for TV and

AJCC, respectively), whereas only AJCC stage was an

independent significant prognostic factor (p<0.002) when

considering TV obtained by adaptive thresholding.

Similar results were obtained when replacing TV by TL,

with both TL and clinical AJCC staging found to be

independent significant prognostic factors in the case of

FLAB (p=0.017 and p=0.042 for AJCC stage and TL,

respectively), whereas in the case of adaptive thresholding

only AJCC staging was an independent significant prog-

nostic factor (p=0.0021).

On the other hand, in the case of TLG only the AJCC

staging was an independent significant prognostic factor

(p<0.002), whatever delineation strategy was considered.

Discussion

An accurate staging in oesophageal cancer is essential for

guiding therapy. The standard conventional modalities are

endoscopic ultrasonography and computed tomography

even if this combined approach suffers from several

Table 3 Bland-Altman analysis results comparing delineation strategies for all parameters

Parameter Mean±SD 95% CI of mean LL 95% CI of LL UL 95% CI of UL

% difference between Tbckgrd
1 and Tbckgrd

2

TL 6.7±18 1.3 to 12.1 −28.6 −37.9 to −19.3 41.9 32.6 to 51.2

TV −29±37.3 −40.2 to −17.8 −102 −121.3 to −82.8 44.1 24.8 to 63.4

SUVmean −6.3±9 −9 to −3.6 −23.9 −28.5 to −19.3 11.2 6.6 to 15.8

TLG −23.5±32.3 −33.2 to −13.8 −86.8 −103.5 to −70.1 39.7 23 to 56.4

% difference between Tbckgrd and FLAB

TL Tbckgrd
1

−5.9±15.3 −10.4 to −1.4 −35.8 −43.6 to −28 24 16.2 to 31.8

Tbckgrd
2

−12±7 −18.3 to 7.1 −49.4 −59 to −39.9 24.1 14.5 to 33.6

TV Tbckgrd
1

−48.8±48.8 −63.3 to −34.3 −144.5 −169.5 to −120 46.9 21.9 to 71.9

Tbckgrd
2

−22±53.9 −38.1 to −6.0 −127.7 −155.3 to −100 83.6 56.1 to 111.2

SUVmean Tbckgrd
1 11.5±36.2 0.7 to 22.2 −59.5 −78 to −41 82.4 63.8 to 100.9

Tbckgrd
2 7.1±35.8 −3.6 to 17.7 −63.1 −81.4 to −44.8 77.2 58.9 to 95.5

TLG Tbckgrd
1

−34.5±25.6 −42 to −26.9 −84.6 −97.6 to −71.5 15.7 2.6 to 28.7

Tbckgrd
2

−10.6±33.2 −20.4 to −0.7 −75.6 −92.5 to −58.6 54.4 37.5 to 71.4

SD standard deviation, CI confidence interval, UL upper limit, LL lower limit

Parameter HR HR 95% CI p Median survival (months)

AJCC stage 0.281 0.090–0.881 0.0008 26 vs 8

M stage 0.402 0.172–0.940 0.01 26 vs 12

TL (Tbckgrd
1) 0.318 0.133–0.761 0.02 21 vs 10

TL (Tbckgrd
2) 0.393 0.164–0.939 0.04 21 vs 10

TL (FLAB) 0.163 0.052–0.510 0.01 21 vs 10

TV (Tbckgrd
1) 0.212 0.020–2.280 0.004 16 vs 5

NA NA 0.02 21 vs 10 vs 9

TV (Tbckgrd
2) 0.212 0.020–2.280 0.004 16 vs 5

NA NA 0.004 49 vs 14 vs 5

TV (FLAB) 0.236 0.050–0.909 0.0005 20 vs 5.5

NA NA 0.002 49 vs 15 vs 5.5

TLG (Tbckgrd
1) 0.217 0.064–0.735 0.007 20 vs 8

TLG (Tbckgrd
2 ) 0.202 0.063–0.645 0.01 20 vs 10

TLG (FLAB) 0.337 0.147–0.772 0.02 21 vs 10

Table 4 Parameters with

significant prognostic value

after univariate analysis

HR hazard ratio, CI confidence

interval
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shortcomings. 18F-FDG PET is more and more often

included in the initial staging because it allows a more

accurate disease assessment, especially regarding the

detection of distant metastases [2–4]. Since no patient

underwent surgery in our study, anatomopathology data

were not available. Therefore TNM classifications and

AJCC stages were determined using suboptimal conven-

tional staging and this could explain the poor prognostic

value of T or N classification in our population.

As found in our study, 18F-FDG uptake is always present

in oesophageal cancer if extended at least to submucosa

[34]. Some authors suggested that the intensity of 18F-FDG

uptake could be related to prognosis in oesophageal cancer,

based on the good correlation existing between hexokinase

activity or poor differentiation and tumour uptake [35] and

also because increasing SUVmax values seem to correlate

with T classification, which is part of the TNM staging

[36].

In our study, SUV measurements were not significant

prognostic factors for overall survival. While various cutoff

values of SUVmax tend to be associated with a poor

prognosis, none led to statistically significant differentia-

tion. Swisher et al. reported similar results in a uniform

group of highly selected patients with locally advanced

oesophageal cancer treated by neoadjuvant radiochemo-

therapy [37]. On the other hand, these results could appear

in contrast with our previous report [18], where we initially

reported that an SUVmax cutoff value of 9 had an

independent prognostic value of overall survival, but this

difference may be explained by the different patient

characteristics considered in the two studies. We previously

considered [18] a daily practice population, half of which

underwent curative surgery, while we included here only

patients with advanced disease exclusively treated by

combined radiochemotherapy.

TL established by pathological examination has been

demonstrated to be an independent prognostic factor for

long-term survival [21]. Some authors proposed estimating

TL based on 18F-FDG PET images using different thresh-

olds [38]. Functional TL has been studied as a predictor of

response to neoadjuvant chemoradiotherapy with

conflicting results [11, 22]. In a group of 69 patients with

oesophageal SCC undergoing curative surgery, Choi et al.

demonstrated that functional TL was an independent

prognostic factor [10]. However, one may argue that

functional TL is a parameter that does not reflect the real

volume of the tumour but only its longitudinal extension

and could be therefore considered as only a surrogate of

tumour spatial extent. This argument can be supported by

the data shown in this work, where only a moderate

correlation (r<0.7) was found between TV and TL,

suggesting that functional TV may be more accurate in

assessing actual tumour burden. In our study we also

compared the prognostic value of TL with that of TV. Both

Variable Significant prognostic factor

in univariate analysis

Significant independent prognostic factor

in multivariate analysis

Age No -

Gender No -

Histology type No -

AJCC stage Yes Yes

T No -

N No -

M Yes No

SUVmax No -

SUVpeak No -

SUVmean (Tbckgrd
1) No -

SUVmean (Tbckgrd
2) No -

SUVmean (FLAB) No -

TL (Tbckgrd
1) Yes No

TL (Tbckgrd
2) Yes No

TL (FLAB) Yes Yes

TV (Tbckgrd
1) Yes No

TV (Tbckgrd
2) Yes No

TV (FLAB) Yes Yes

TLG (Tbckgrd
1) Yes No

TLG (Tbckgrd
2 ) Yes No

TLG (FLAB) Yes No

Table 5 Prognostic value of all

parameters
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Fig. 3 Kaplan-Meier survival curves obtained using SUVmax (a), TV measured by FLAB (b) and Tbckgrd
1 (c), and defining three groups using TV

measured by FLAB (d)

Fig. 4 18F-FDG PET images

(axial, coronal and sagittal

views from top to bottom) of

patients with a a small tumour

(11 cm3, 54 months survival), b

medium size tumour (22 cm3,

18 months survival) and c larger

tumour (92 cm3, 5 months

survival)
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parameters were found to be significant prognostic factors

irrespective of the functional volume delineation strategy.

In addition, both TV and TL were independent prognostic

factors for survival in the multivariate analysis. However,

this result was found to be dependent on the segmentation

algorithm, with both parameters being independent survival

prognostic factors only when determined using the auto-

matic FLAB segmentation. This may be related to the

higher overall accuracy of FLAB with respect to adaptive

thresholding for tumour delineation as previously reported

[24, 27, 39]. Despite the similar prognostic values of TL

and TV, only TV allowed a statistically significant

stratification of patients into three groups, irrespective of

the segmentation methodology. More specifically, two

different cutoff values (85 and 14 cm3) resulted in

significant differentiation of two groups among the patients

with median overall survival of 5–6 vs 20 months

(p=0.0005) and 49 vs 13 months (p=0.036) for 85 and

14 cm3, respectively. Being able to provide such a finer

stratification of patient groups could be of value in clinical

trials assessing new therapeutic regimes.

SUVmean measured in a volume determined using the

different tumour delineation approaches considered was not

found to be a prognostic factor for overall survival,

although a trend was seen for SUVmean associated with

TV defined with FLAB, which tended to differentiate

patients with poor and better prognosis (13 vs 21 months,

p=0.06).

A fundamental biological question underlying 18F-FDG

PET prognostic value is whether the total volume or the

metabolically active portion of the tumour is most impor-

tant. Intuitively both would seem important and desirable to

determine. In our study, both functional TL and TV

(representative of the tumour functional spatial extent) were

significant prognostic factors compared to SUVmean (repre-

sentative of the tumour glycolytic metabolism) which was

not. Combining both parameters into total lesion glycolysis

index (TLG) was a prognostic factor for overall survival

whatever methodology was used for tumour delineation.

However, it was not an independent significant prognostic

factor in the multivariate analysis. Only very few data are

available on the potential clinical value of TLG in different

cancer models. Xie et al. reported on the prognostic value

of TLG in head and neck cancer for long-term survival

[40], while Cazaentre et al. demonstrated the usefulness of

TLG for predicting response to radioimmunotherapy in

lymphoma [41]. To date, the limited use of TV and TLG in

clinical studies could be explained by the poor accuracy,

robustness and reproducibility of available tumour delinea-

tion tools affecting the clinical value of resulting measure-

ments. The fact that TLG was not an independent

prognostic factor, whereas TV alone was, suggests that the

prognostic value of TLG mainly comes from the volume

information and is impaired by the low prognostic value of

SUVmean measurements. In addition, the value of TLG

might be reduced by a loss of information when combining

the TV and the SUVmean into one parameter by simple

product, since large tumours with low uptake might result

in the same TLG as small tumours with high uptake.

Finally, the lack of partial volume effects (PVE) correction

might also play a role in the reduced prognostic value of all

SUV measurements as well as the resulting TLG, since

tumour volumes across the patients range from quite small

and significantly affected by PVE (<2 cm in diameter) to

very large tumours for which PVE have smaller quantitative

impact.

As expected, results concerning parameters dependent

on the tumour delineation process were well correlated. On

the other hand, our results also highlighted the potential

impact of differences between existing tumour delineation

methods, with TV and TL being independent survival

prognostic factors only when determined using FLAB. This

approach has been previously shown to be both robust and

accurate [24, 27]. At present most commonly used methods

are based on fixed or adaptive thresholds. Fixed thresh-

olding has been demonstrated to be both inaccurate and

non-robust [23, 24, 27, 39] and was therefore not

considered in this study.

Regarding the adaptive thresholding performance, results

from one observer (Tbckgrd
2) were closer to these of FLAB

compared to the other one (Tbckgrd
1), with however

significant differences, as shown in Fig. 2b and Table 3.

Neither TV (Tbckgrd
1) nor TV (Tbckgrd

2) were independent

prognostic factors contrary to TV (FLAB). This can be

explained by the behaviour of adaptive thresholding

(independently of the user) for several tumours. Most of

the tumours exhibited simple shapes and homogeneous

tracer uptake. However, some were more complex and

exhibited higher heterogeneity, or were small (<2–3 cm)

with low contrast. Adaptive thresholding has been demon-

strated to provide unsatisfactory delineation for such cases

[24], because its final threshold is based on the ratio

between an isocontour at 70% of the maximum and the

background ROI. Such an isocontour tends to overestimate

(respectively underestimate) the actual value of the entire

tumour for heterogeneous uptake (respectively small

tumours will low contrast).

Hence the adaptive thresholding led to significant

underevaluation of larger heterogeneous tumours in our

study, e.g. a patient with a survival of 6 months had a TV

defined by FLAB of almost 97 cm3, whereas TV (Tbckgrd
1)

and TV (Tbckgrd
2) were 38 cm3 (−61%) and 50 cm3 (−50%),

respectively, clearly missing parts of the tumour. On the

other hand, the dependency on the background ROI is

higher regarding small tumours with low contrast, e.g. for a

patient with 21 months survival, TV (FLAB) was 5.8 cm3,
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whereas TV (Tbckgrd
1) and TV (Tbckgrd

2) were 1.9 cm3

(−67%) and 26.9 cm3 (+364%), respectively. Several

patients were therefore incorporated in the wrong survival

curve, mostly patients with large volumes that were under-

estimated by the adaptive threshold.

In addition, adaptive thresholding was found to be

highly user dependent, since we observed a bias up to

30% between the two users measuring TV, the agreement

interval being too large for clinical applications (−110 to

+45%). This seems to be in agreement with results

concerning the level of reproducibility in measuring

functional TV from 18F-FDG imaging which can vary from

21 to 90% using automatic and threshold-based approaches,

respectively [42]. If advanced segmentation algorithms are

not available, the use of adaptive thresholding approaches

should be preferred to manual or fixed threshold-based

delineation. Automated background ROI determination

could reduce the interobserver variability observed in this

work.

The limits of this study are its retrospective nature and

the limited number of patients. Our results need to be

confirmed through a prospective study on a larger cohort of

patients. It is finally worth noting that overall survival

might have been affected by other factors such as

subsequent treatment for patients who relapsed, although

this should have minor impact on the results of this study

since it applies to all parameters considered. Other outcome

measures such as progression-free survival were not

investigated in this study.

Conclusion

Our results suggest that the functional tumour volume followed

by length has additional value compared to commonly used

SUV measurements (SUVmax, SUVpeak, SUVmean) for prog-

nosis in patients with locally advanced oesophageal cancer

treated with exclusive concomitant radiochemotherapy. Both

parameters were significant prognostic factors for overall

survival, independently of the approach used to delineate the

tumours. However, only the automatic FLAB algorithm

allowed TV and TL to be independent prognostic factors for

survival in a multivariate analysis that included standard

tumour staging. In addition, the total lesion glycolysis index

was a statistically significant, but not independent, prognostic

factor irrespective of the delineation algorithm used. Our

findings confirm the potential value of 18F-FDG PET to give

a useful orientation for patient management purposes in

oesophageal cancer, but they also highlight the influence of

the methodology used on the degree of pertinence of these

PET image-derived parameters of interest as their accuracy

and their clinical significance increase if they are computed

using more reliable and robust tumour segmentation methods.

Conflicts of interest None.
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Abstract

Purpose The objectives of this study were to investigate the

predictive value of tumour measurements on 2-deoxy-2-[18F]

fluoro-D-glucose (18F-FDG) positron emission tomography

(PET) pretreatment scan regarding therapy response in

oesophageal cancer and to evaluate the impact of tumour

delineation strategies.

Methods Fifty patients with oesophageal cancer treated

with concomitant radiochemotherapy between 2004 and 2008

were retrospectively considered and classified as complete,

partial or non-responders (including stable and progressive

disease) according to Response Evaluation Criteria in Solid

Tumors (RECIST). The classification of partial and complete

responders was confirmed by biopsy. Tumours were delineat-

ed on the 18F-FDG pretreatment scan using an adaptive

threshold and the automatic fuzzy locally adaptive Bayesian

(FLAB) methodologies. Several parameters were then

extracted: maximum and peak standardized uptake value

(SUV), tumour longitudinal length (TL) and volume (TV),

SUVmean, and total lesion glycolysis (TLG = TV ×

SUVmean). The correlation between each parameter and

response was investigated using Kruskal-Wallis tests, and

receiver-operating characteristic methodology was used to

assess performance of the parameters to differentiate patients.

Results Whereas commonly used parameters such as SUV

measurements were not significant predictive factors of the

response, parameters related to tumour functional spatial

extent (TL, TV, TLG) allowed significant differentiation of

all three groups of patients, independently of the delineation

strategy, and could identify complete and non-responders with

sensitivity above 75% and specificity above 85%. A system-

atic although not statistically significant trend was observed

regarding the hierarchy of the delineation methodologies and

the parameters considered, with slightly higher predictive

value obtained with FLAB over adaptive thresholding, and

TLG over TV and TL.

Conclusion TLG is a promising predictive factor of

concomitant radiochemotherapy response with statistically

higher predictive value than SUV measurements in advanced

oesophageal cancer.

Keywords Oesophageal cancer . Response to therapy . PET

scan . Tumour volume . Total lesion glycolysis

Introduction

Oesophageal cancer is the third most common malignancy

of the digestive tract and a leading cause of cancer mortality

worldwide with an estimated 5-year survival of 15% [1].

Despite the progress made to better understand this disease,

its incidence is steadily increasing and there is a growing

concern regarding its effective management [2]. The best

chance for cure remains surgical resection. However, many

patients have already an advanced disease (locally advanced

oesophageal carcinoma, LAEC) at diagnosis and may benefit

in terms of survival from neoadjuvant therapy prior to

surgery [3]. The maximum benefit is for those patients who

achieve a complete pathological response with no residual

cancer cells in the primary tumour or lymph nodes [4]. A

complete response occurs only in 15–30% of cases and is
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associated with an increased overall survival [5]. On the other

hand, patients who do not respond to therapy may be

unnecessarily affected by toxicity of an inefficient therapy

[6]. Therefore, the development of a diagnostic test offering

noninvasive response to therapy prediction early in the course

of treatment is of great interest, allowing potential personal-

ization of patient management such as for inoperable tumours;

chemotherapy and/or radiation therapy remains the only

option. Such an assessment becomes more critical when one

considers new targeted drugs that could be tested with higher

efficiency if applied early [7]. For oesophageal cancer several

histological markers, such as the tumour suppressor factor

gene p53, the proliferative marker Ki-67 and the epidermal

growth factor receptor, have been evaluated for the prediction

of the therapeutic response prior to neoadjuvant therapy. None

of these markers or a combination of them can currently

predict response with sufficient accuracy [8, 9]. Positron

emission tomography (PET) imaging with 2-deoxy-2-[18F]

fluoro-D-glucose (18F-FDG) allows the visualization of the

enhanced glucose metabolism in viable oesophageal cancer

cells and may be of interest within this context. 18F-FDG PET

is already well established for staging of oesophageal cancer

with a better sensitivity and specificity than the combined use

of CT and endoscopic ultrasonography (EUS) to detect distant

metastases [10]. PET has also been shown to be promising in

assessing response to therapy [11]. Several studies have

shown that the reduction of the tumour’s metabolic activity as

measured by the standardized uptake value (SUV) from the

baseline to the end of therapy uptake is predictive of a better

outcome with however a large variability in the sensitivity and

specificity [12]. In addition, a correlation between clinical

outcome and a metabolic response observed as early as within

the first 2 weeks of treatment has been demonstrated [13].

These findings suggest that tumour activity concentration

differences measured on serial 18F-FDG PET scans could

possibly be used to individualize treatment. However, it could

be more cost-effective and beneficial to the patient to be able

to predict therapy response from a single baseline PET scan

acquired before the initiation of the treatment. The current

study was therefore carried out to investigate the potential

value of baseline 18F-FDG PET image-derived parameters for

the prediction of response to combined radiochemotherapy in

oesophageal cancer. A secondary objective was to investigate

the potential influence of the method used to delineate the

tumour on the prediction results.

Materials and methods

Patients

Fifty consecutive patients with newly diagnosed oesophageal

cancer treated with exclusive concomitant radiochemotherapy

between 2004 and 2008 were included in this study. As part of

the routine procedure for the initial staging in oesophageal

cancer, each patient was referred for an 18F-FDG PET study

before treatment. It included three courses of 5-fluorouracil/

cisplatin and a median radiation dose of 60 Gy given in 180-

cGy daily fractions delivered once daily, 5 days a week for

6–7 weeks. The characteristics of the patients are given in

Table 1. Most of them (45 of 50) were male, aged 65±

9 years at the time of diagnosis; 74% of the tumours, most of

which were squamous cell carcinoma (72%), originated from

the middle and lower oesophagus. Response to therapy was

evaluated 1 month after the completion of the concomitant

radiochemotherapy using conventional thoraco-abdominal

Table 1 Patient demographic and clinical characteristics

Parameter Number of patients (%)

Gender

Male 45 (90)

Female 5 (10)

Age

Range 45–84

Median 69

Site

Upper oesophagus 13 (26)

Middle oesophagus 20 (40)

Lower oesophagus 17 (34)

Histology type

Adenocarcinoma 14 (28)

Squamous cell carcinoma 36 (72)

Histology differentiation

Well differentiated 14(28)

Moderately differentiated 12 (24)

Poorly differentiated 5 (10)

Unknown 19 (38)

TNM stage

T1 7 (14)

T2 8 (16)

T3 24 (48)

T4 11 (22)

N0 20 (40)

N1 30 (60)

M0 34 (68)

M1 16 (32)

AJCC stage

I 4 (8)

IIA 8 (16)

IIB 6 (12)

III 16 (32)

IVA 16 (32)
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CT and endoscopy. Patients were classified as non-

responders (NR) including stable and progressive disease,

partial responders (PR) or complete responders (CR).

Response evaluation was based on CT evolution between

pretreatment and post-treatment scans using Response

Evaluation Criteria in Solid Tumors (RECIST) [14]. Patients

also underwent fibroscopy in cases of partial or complete

response. Complete response was confirmed by the absence

of visible disease in the high endoscopy and no viable

tumour on biopsy. Partial CT response was confirmed by

macroscopic residual (>10% viable) on biopsy. No discor-

dance was observed between pathological, when available,

and CT evaluation.

The current analysis was carried out after an approval by

the Institutional Ethics Review Board.

18F-FDG PET acquisitions

All 18F-FDG PET studies were carried out prior to the

initiation of treatment. Patients were instructed to fast for at

least 6 h before the 18F-FDG administration (5 MBq/kg).

Static emission images were acquired from head to thigh

(2 min per bed position) beginning 60 min after injection on

a Philips GEMINI PET/CT system (Philips Medical

Systems, Cleveland, OH, USA). Images were reconstructed

using the RAMLA 3D algorithm and CT based attenuation

correction. Optimized reconstruction parameters were used

for the 3-D row action maximum likelihood algorithm

(RAMLA) based on the standard optimized clinical

protocol (2 iterations, relaxation parameter of 0.05, 5 mm

3-D Gaussian post-filtering, 4×4×4 mm3 voxels grid

sampling). The PET images were corrected for attenuation

using CT-based attenuation correction.

PET image analysis

All parameters considered were extracted from the

baseline PET images only. For each patient, the primary

tumour was identified on the baseline pretreatment

PET images by a nuclear physician. Three different

SUV measurements and three parameters related to the

tumour functional dimensions, namely the tumour

volume (TV), tumour longitudinal length (TL) and total

lesion glycolysis (TLG) [15], were extracted for each

primary lesion. SUV measurements considered were

SUVmax, SUVpeak defined as the mean of SUVmax and

its 26 neighbours [roughly similar to a 1-cm region of

interest (ROI)] and mean SUV within the delineated

tumour (SUVmean). Whereas SUVmax and SUVpeak are

clearly independent of the tumour delineation strategy

used, TL, TV, SUVmean and the derived TLG values might

depend on the delineation process. To study the impact of

this step, we considered two different approaches, namely the

automatic fuzzy locally adaptive Bayesian (FLAB) algorithm

[16, 17] and an adaptive threshold algorithm [18] optimized

for the GEMINI PET/CT scanner. Although the first

approach is fully automatic, adaptive thresholding requires

a manually defined background ROI. Therefore, two

experienced nuclear medicine physicians were considered

in the background ROI definition, leading to two series of

results denoted as TA1 and TA2. TL was determined in

longitudinal direction by multiplying the number of slices in

the delineated TV by the PET image slice thickness (4 mm).

TV was defined as the sum of all voxels contained in the

delineated volumes multiplied by the image voxel’s volume

(64 mm3). Finally, TLG was determined by multiplying the

SUVmean and associated TV.

Definition Notation Mean±SD

Highest SUV SUVmax 9.7±3.9

Mean of SUVmax and its

26 neighbours

SUVpeak 8.0±3.3

Mean SUV within tumour

defined by

Adaptive threshold User 1 SUVmean(TA1) 6.4±2.5

User 2 SUVmean(TA2) 6.0±2.6

FLAB SUVmean(FLAB) 5.5±2.3

TL (cm) defined by Adaptive threshold User 1 TL(TA1) 5.8±2.9

User 2 TL(TA2) 5.5±2.8

FLAB TL(FLAB) 6.0±2.8

TV (cm3) defined by Adaptive threshold User 1 TV(TA1) 27.2±25.6

User 2 TV(TA2) 34.8±30.7

FLAB TV(FLAB) 39.4±34.9

SUVmean TA1ð Þ � TV TA1ð Þ gð Þ TLG(TA1) 175.6±178.9

SUVmean TA2ð Þ � TV TA2ð Þ gð Þ TLG(TA2) 206.9±203.4

SUVmean FLABð Þ � TV FLABð Þ gð Þ TLG(FLAB) 207.3±192.0

Table 2 Definition of

image-derived parameters

and associated summary

statistics
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Statistical analysis

The relation between response to therapy and each parameter

distribution was studied using the Kruskal-Wallis test [19] as

recommended for small, not normally distributed samples.

Receiver-operating characteristic (ROC) methodology

[20] was used to assess the performance of each parameter

to differentiate patients. Two classification tasks were

considered: differentiating CR patients from PR and NR,

or NR patients from CR and PR. Evaluation was performed

Fig. 1 Illustration of

differences in tumour delinea-

tion depending on the

methodology for two patients
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in terms of the area under the curve (AUC) as well as

specificity and sensitivity.

The significance of the following factors was tested: age,

gender, T, N andM classifications, American Joint Committee

on Cancer (AJCC) stage, histology types, SUVmax, SUVpeak,

TL, TV, SUVmean and TLG. All tests were two-sided and

p values <0.05 were considered statistically significant.

Results

The range of values for the different image-derived indices as

well as the mean and standard deviation for the patient

population considered are given in Table 2. All primary

lesions were detected by 18F-FDG PET exhibiting a rather

high uptake with an SUVmax of 9.7±3.9. SUVpeak and

SUVmean measurements were comparatively lower (8.0±3.3

and 5.8±2.4, respectively).

Correlation between image-derived indices

and between methodologies

TVand TLmeasurements weremoderately correlated (r=0.77,

0.68 and 0.60 for FLAB, TA1 and TA2 respectively,

p<0.0001). On the other hand, no significant correlation

was found between TV and any of the SUV measure-

ments (r<0.2, p>0.1), irrespective of the delineation

approach used. High correlations were observed between

the TV (r>0.89), TL (r>0.90) or TLG (r>0.93) measure-

ments obtained with the two delineation strategies

(p<0.0001). Even higher correlation coefficients

(r>0.97, p<0.0001) were observed for the SUVmean

measurements derived using the two different tumour

segmentation approaches (FLAB and adaptive thresh-

olding). Despite these correlations, certain large differ-

ences were observed for a few patients between the

delineation results of the two segmentation algorithms

considered, examples of which are illustrated in Fig. 1.

Response to therapy analysis

Of the 50 patients included in the study, 25 were classified as

PR, while there were 12 CR and 13 NR. Results concerning

the predictive value of all parameters considered are summa-

rized in Tables 3 and 4 containing the results of the Kruskal-

Wallis tests and that of the ROC analysis (considering the

AUC, specificity and sensitivity regarding the classification

tasks), respectively.

Kruskal-Wallis tests

Parameter Test statistic p Response differentiation? (p<0.05)

CR (n=12) vs

NR (n=13)

CR (n=12) vs

PR (n=25)

PR (n=25) vs

NR (n=13)

Age 0.4 0.83 No No No

Gender 4.0 0.14 No No No

T 4.9 0.09 No No No

N 2.7 0.26 No No No

M 3.6 0.17 No No No

AJCC stage 5.9 0.052 Yes No Yes

Histology type 2.3 0.32 No No No

SUVmax 2.5 0.29 No No No

SUVpeak 3.9 0.14 No No No

SUVmean TA1 3.3 0.197 No No No

TA2 3.2 0.199 No No No

FLAB 2.6 0.270 No No No

TL TA1 14.5 0.0007 Yes Yes Yes

TA2 12.4 0.0020 Yes Yes Yes

FLAB 15.6 0.0004 Yes Yes Yes

TV TA1 13.9 0.0010 Yes Yes Yes

TA2 12.9 0.0016 Yes Yes Yes

FLAB 16.2 0.0003 Yes Yes Yes

TLG TA1 14.6 0.0007 Yes Yes Yes

TA2 14.6 0.0007 Yes Yes Yes

FLAB 21.1 <0.0001 Yes Yes Yes

Table 3 Kruskal-Wallis

test results for each parameter

considering the ability to

differentiate (p<0.05) each

pair of response group
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Age, gender or T, N and M classifications did not allow

significant prediction of the response to treatment. The

AJCC stage was not significantly (p>0.05) associated with

the type of response, despite the fact that all NR were at

least stage IIB and could be statistically differentiated from

both PR and CR (p<0.05). However, AJCC stage could not

differentiate PR from CR (p>0.05). Finally, there was no

statistical correlation between histology type and response

(p=0.3).

Figure 2 shows a graphical comparison of the Kruskal-

Wallis results considering the predictive value of the

different SUV parameters considered. Initial SUVmax

(Fig. 2a) was not predictive of response to therapy

(p=0.29) although CR tended to have smaller SUVmax

(8.1±4.1) than PR and NR (10.2±3.7 and 10.2±3.9,

respectively). Similarly, SUVpeak (Fig. 2b) was not predic-

tive of response to therapy with a mean value of 6.5±3.5 in

CR, whereas both PR and NR were characterized by similar

higher SUVpeak values (8.5±3.1 and 8.4±3.3, respectively)

(p=0.14). None of the SUVmean measurements, whatever

delineation strategy was used, could significantly predict

response to therapy (p>0.19).

On the contrary, all parameters related to tumour spatial

extent (TL, TV and TLG) measurements allowed significant

(p<0.002) differentiation of the three response groups,

irrespective of the segmentation methodology (see Fig. 3a–c).

For instance, TV as measured by FLAB was 20±25, 32±24

and 72±40 cm3 for CR, PR and NR patients, respectively.

The parameter that allowed the best differentiation between

the three patient groups was TLG measured by FLAB

(Kruskal-Wallis test p<0.0001, see Fig. 3c), with a TLG of

74±75, 179±143 and 385±226 g for CR, PR and NR

patients, respectively. Figure 4 shows examples of one CR,

one PR and one NR patient with corresponding TLG values.

The ROC analysis results confirmed the limited predic-

tive value of most SUV measurements for the accurate

classification of either CR vs PR and NR, or NR vs PR and

CR (AUC<0.70 and <0.56, respectively). Differences

between ROC analysis associated with SUV measurements

and those associated with TL, TV and TLG were significant

(p<0.05) for both tasks (see examples in Fig. 5). Better

predictive performances were obtained with TL, TV and

TLG measurements with significantly higher AUC (from

0.74 to 0.86) for both tasks (p<0.05). For instance, using

FLAB a TLG <58 g allowed identifying CRs with a

sensitivity of 75% and a specificity of 92%, and a

TLG >196 g identified NRs with a sensitivity of 76% and

a specificity of 85%. However, in terms of predictive

performance no significant differences were obtained

between TL, TV and TLG measurements for both tasks.

Parameter ROC analysis

NR&PR (n=38) vs CR (n=12) NR (n=13) vs PR&CR (n=37)

AUC 95% CI Se (%) Sp (%) AUC 95% CI Se (%) Sp (%)

Age 0.51 0.32–0.70 83.3 31.6 0.55 0.35–0.75 86.5 36.5

Gender 0.61 0.46–0.75] 27.3 94.3 0.51 0.41–0.62 90.9 11.4

T 0.70 0.47–0.93 60.0 89.3 0.64 0.49–0.78 100.0 33.3

N 0.64 0.46–0.83 60.0 68.8 0.55 0.38–0.73 70.0 40.6

M 0.56 0.38–0.73 70.0 41.2 0.70 0.53–0.87 70.0 70.6

AJCC stage 0.63 0.43–0.84 54.6 73.5 0.72 0.57–0.88 87.5 46.2

Histology type 0.51 0.35–0.66 72.7 28.2 0.60 0.46–0.75 42.9 77.8

SUVmax 0.65 0.45–0.85 33.3 94.7 0.54 0.34–0.73 30.8 89.2

SUVpeak 0.69 0.49–0.89 75.0 63.2 0.54 0.35–0.73 30.8 86.5

SUVmean TA1 0.67 0.47–0.87 50.0 84.2 0.54 0.35–0.74 89.2 38.0

TA2 0.67 0.45–0.88 50.0 94.7 0.51 0.32–0.70 100.0 16.2

FLAB 0.65 0.43–0.87 58.3 84.2 0.51 0.32–0.70 100.0 13.5

TL TA1 0.81 0.65–0.97 83.3 79.0 0.78 0.63–0.93 59.5 92.3

TA2 0.79 0.63–0.96 83.3 73.3 0.75 0.61–0.90 75.7 69.2

FLAB 0.79 0.64–0.94 83.3 65.8 0.82 0.70–0.94 59.5 92.3

TV TA1 0.79 0.65–0.89 75.0 81.6 0.79 0.65–0.93 78.4 69.2

TA2 0.74 0.59–0.85 83.3 57.9 0.81 0.67–0.95 94.6 53.9

FLAB 0.78 0.64–0.88 75.0 79.0 0.84 0.72–0.96 75.7 76.9

TLG TA1 0.81 0.62–1.00 66.7 92.1 0.78 0.65–0.92 92.3 56.8

TA2 0.80 0.61–0.99 75.0 86.8 0.80 0.67–0.93 69.2 81.1

FLAB 0.85 0.73–0.98 75.0 92.1 0.86 0.75–0.98 84.6 75.7

Table 4 ROC analysis results

with AUC and associated 95%

confidence intervals (CI),

specificity (Sp) and sensitivity

(Se) for each parameter

regarding the two classification

tasks
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In terms of an observed trend, better results were obtained

for TLG over TV and TL whatever tumour delineation

approach was used (Tables 3 and 4). In addition, there was

a systematic although not statistically significant trend of

better performance for those parameters when obtained

with FLAB compared to the use of the adaptive threshold,

as demonstrated by higher AUC and smaller confidence

intervals, as well as higher sensitivity and specificity for

both classification tasks (Table 4).

The analysis with respect to histology type (adenocarci-

noma vs squamous cell carcinoma) led to results similar to

what was observed when considering the entire population.

Within the same context no statistically significant differ-

ences were observed between the two patient groups in the

hierarchy of parameters and results derived using the

different functional TV delineation methods.

The predictive value of TLG, combining TV and

SUVmean into one single parameter, was higher than the

one of TV, despite the non-significant value of SUVmean

alone. Considering together TV and SUVmean, one is able to

differentiate different treatment response patient groups (see

Fig. 6). On the one hand, TLG increased the differentiation

between CR and NR, as all NR had either a TV above

50 cm3 (8/13) or an SUVmean above 5 (8/13), while 10 of

12 CR had either a small TV (<15 cm3) (9/12) or SUVmean

(<5) (7/12), and half of them (6/12) had both. On the other

hand, PR had either a higher SUVmean than CR for volumes

below 25 cm3 (6.5±2.7 vs 4.5±2.4) or lower SUVmean than

NR for TV of 25–50 cm3 (5.8±1.8 vs 7.1±0.9). Therefore,

the use of TLG increased the differentiation between PR

and CR, as well as between PR and NR for volumes below

15 cm3 and between 25 and 50 cm3, respectively.

Discussion

Assessment of response to therapy early during treatment

plays an important role in patient management as well as

in drug development and new criteria including PET

have been suggested for this task [21, 22]. However,

being able to predict response to therapy before the

initiation of the treatment would be even more powerful

for patient management. In this context, either patient or

tumour characteristics could be considered. In our study

we focused on functional imaging and different image-

derived parameters related to tumour uptake using PET.

The results of our study demonstrate that TV-based

parameters derived from baseline 18F-FDG PET images

in oesophageal cancer are good predictors of response to

therapy, with high TL, TV and TLG being associated with

poor response to combined radiochemotherapy. On the

contrary, more commonly used parameters such as tumour

SUVs were not predictors of response to therapy consid-

ering only the baseline 18F-FDG PET images. These

results further demonstrate the value of TV-based PET

image-derived parameters, since we have previously

demonstrated a superior prognostic value of baseline

functional TL, TV and TLG over SUV measurements for

Fig. 4 18F-FDG PET axial,

coronal and sagittal images of a

complete responder with 20 g

TLG (a), partial responder

with 100 g TLG (b) and non-

responder with 750 g TLG (c)
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overall survival in a similar group of oesophageal cancer

patients [23].

FDG PET has been previously used for the prediction of

response to therapy or prognosis in a variety of malignan-

cies [24]. Considering the predictive value of baseline FDG

uptake for therapy response in oesophageal cancer, only

few data showing conflicting results are available [12].

Levine et al. and Rizk et al. reported a high initial SUVmax

being associated with good response [25, 26], whereas

Makino et al. and Kato et al. found the opposite [27, 28].

These conflicting results can be potentially attributed to

differences in patient populations, tumour histology types,

as well as treatment, but could also suggest that SUV

measurements are unreliable in this context. Although

similarly to the results of Kato et al. and Makino et al.

our results suggest that lower values of SUVmax are

associated with a complete response, this trend was not

significant. In addition, SUVmean or SUVpeak, considered

more robust to potential noise bias associated with SUVmax,

were also not significant predictors of response to therapy

in our study.

One of the demonstrated independent predictors of long-

term survival in oesophageal cancer is longitudinal tumour

extension established by pathological examination [29]. It

has been previously demonstrated that TL measured on CT

images leads to a weak correlation with the pathological

TL, associated with a large overestimation [30]. Some

authors proposed the estimation of metabolic TL as a

surrogate of pathological TL using various thresholds of
18F-FDG PET uptake [31]; however, conflicting results

concerning the predictive value of metabolic TL for

response to neoadjuvant radiochemotherapy have been

observed [32, 33]. One may argue that TL does not reflect

the entire volume of the tumour and could therefore be only

considered as a limited surrogate measure of tumour

functional spatial extent. This assumption is partly sup-

ported by our data, in which only a moderate correlation (r

between 0.6 and 0.77) was found between TV and TL,

suggesting that TV may bring additional information

compared to TL in assessing overall tumour burden. In

our study both TV and TL were found to be significant

predictive factors of response to therapy, irrespective of the

functional volume delineation strategy, with only a small

and non-significant improvement of the predictive value of

TV over TL.

TV and TLG measured on PET are 3-D measurements

incorporating metabolically active TV not available from

CT data [34]. It has already been demonstrated that a

decrease of the TVand TLG can predict response to therapy

[35, 36]. These studies however have explored differences

in indices derived from serial PET images. The value of

such indices obtained on the baseline scan only within the

context of therapy response prediction in oesophageal

cancer has not previously been explored. Because these

parameters reflect metabolic information in the entire

tumour, they may be more accurate for tumour character-

ization than a single voxel measure and this may explain

why TV and TLG were good predictors of therapy response

as demonstrated in our study. Our results are consistent

with recent studies in pleural mesothelioma and lymphoma

patients that have demonstrated the potential of such
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Fig. 5 Examples of ROC curves obtained for classification tasks of

differentiating CR from NR&PR (a) or NR from PR&CR (b).

Comparison of ROC curves for SUV measurements (SUVmax in red,

SUVpeak in orange and SUVmean in yellow) and TL, TV and TLG

measured with FLAB (in light blue, blue and dark blue, respectively)
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indices extracted from baseline 18F-FDG PET scan to

predict response to therapy [37, 38].

Despite a great potential value, such indices have been

only of limited use to date, which can be explained by the

limited accuracy, robustness and reproducibility of the

available tumour delineation tools [39, 40]. In oesophageal

cancer only the prognostic value of TV has been studied

[23, 41], while there are limited data on the value of TLG

[23]. In our study TLG allowed identifying complete

responders and non-responders with moderate sensitivity

(75 and 76%, respectively) and high specificity (92 and

85%, respectively). Prospective studies with a larger patient

population using a predictive model built upon our results

should now be carried out to demonstrate the ability of the

parameters to discriminate responders from non-responders

on a patient by patient basis.

In our study, TNM stage and AJCC classification were

not good predictors of therapy response. This could be

explained by our suboptimal staging procedure. Since we

considered only patients referred for exclusive radioche-

motherapy, no patient underwent surgery, and therefore no

pathological data were available. Staging was routinely

performed using EUS and CT which are known to have

limited staging performances [10].

Our present study has limitations. Firstly, we considered

a group of only 50 patients with predominantly squamous

cell carcinomas since it is the most common histological

type of oesophageal cancer in European countries. An

analysis based on the tumour histology type considering

our patient population did not reveal statistically significant

differences, although due to the small number of patients

with adenocarcinomas, these results would obviously need

to be confirmed. Secondly, our study was inherently limited

by its retrospective design and as such some selection bias

might be present. However, the treatment regime was

homogeneous throughout the recruited patients since all were

treated in a single institution. In addition, within this patient

population no particular selection criteria were applied.

Thirdly, the impact of partial volume effects in the measured

SUVs was not assessed in this study. The lack of partial

volume correction might have played a role in the reduced

predictive value of some of the SUV measurements, although

it is unlikely because of the large TVs considered in this work

(40±35 cm3). Lastly, we did consider only primary tumours

since the measurements used are simpler to perform in

routine clinical practice compared to measurement of overall

tumour burden including primary and metastatic lesions.

However, given the respective size of metastatic lesions and

primary tumours, adding metastatic lesions to the overall

TLG would not significantly alter the resulting values and

associated conclusions.

Conclusion

Our results demonstrated that 18F-FDG baseline image-

derived parameters related to the metabolic tumour spatial

extent (TL, TVand TLG) are good predictors of response to

therapy in oesophageal cancer with sensitivity above 75%

and specificity above 85%. Commonly used SUV measure-

ments (max, peak, mean) on the pretreatment 18F-FDG PET

image did not allow statistically significant differentiation

of the different response patient groups.
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Impact of Tumor Size and Tracer Uptake Heterogeneity

in 18F-FDG PET and CT Non–Small Cell Lung Cancer

Tumor Delineation

Mathieu Hatt1, Catherine Cheze-le Rest1, Angela van Baardwijk2, Philippe Lambin2, Olivier Pradier1,3,

and Dimitris Visvikis1

1INSERM, U650 LaTIM, CHRU Morvan, Brest, France; 2MAASTricht Radiation Oncology Clinic, Maastricht, The Netherlands; and
3Department of Radiotherapy, CHRU Morvan, Brest, France

The objectives of this study were to investigate the relationship

between CT- and 18F-FDG PET–based tumor volumes in non–

small cell lung cancer (NSCLC) and the impact of tumor size

and uptake heterogeneity on various approaches to delineating

uptake on PET images. Methods: Twenty-five NSCLC cancer

patients with 18F-FDG PET/CT were considered. Seventeen

underwent surgical resection of their tumor, and the maximum

diameter was measured. Two observers manually delineated

the tumors on the CT images and the tumor uptake on the

corresponding PET images, using a fixed threshold at 50% of

the maximum (T50), an adaptive threshold methodology, and the

fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum

diameters of the delineated volumes were compared with the

histopathology reference when available. The volumes of the

tumors were compared, and correlations between the anatomic

volume and PET uptake heterogeneity and the differences

between delineations were investigated. Results: All maximum

diameters measured on PET and CT images significantly corre-

lated with the histopathology reference (r . 0.89, P , 0.0001).

Significant differences were observed among the approaches:

CT delineation resulted in large overestimation (132% 6 37%),

whereas all delineations on PET images resulted in underesti-

mation (from 215% 6 17% for T50 to 24% 6 8% for FLAB)

except manual delineation (18% 6 17%). Overall, CT volumes

were significantly larger than PET volumes (55 6 74 cm3 for CT

vs. from 18 6 25 to 47 6 76 cm3 for PET). A significant corre-

lation was found between anatomic tumor size and heteroge-

neity (larger lesions were more heterogeneous). Finally, the

more heterogeneous the tumor uptake, the larger was the

underestimation of PET volumes by threshold-based techni-

ques. Conclusion: Volumes based on CT images were larger

than those based on PET images. Tumor size and tracer uptake

heterogeneity have an impact on threshold-based methods,

which should not be used for the delineation of cases of large

heterogeneous NSCLC, as these methods tend to largely

underestimate the spatial extent of the functional tumor in such

cases. For an accurate delineation of PET volumes in NSCLC,

advanced image segmentation algorithms able to deal with

tracer uptake heterogeneity should be preferred.

Key Words: NSCLC; 18F-FDG; tumor delineation; tumor volumes;

tumor size; uptake heterogeneity

J Nucl Med 2011; 52:1–8

DOI: 10.2967/jnumed.111.092767

The use of 18F-FDG PET, with the addition of CT since

the development of PET/CT devices, has been increasing

for staging non–small cell lung cancer (NSCLC) (1). In

addition, the use of 18F-FDG PET/CT in radiotherapy

treatment planning for the definition of gross tumor vol-

ume has been similarly growing (2). Manual contouring of

the tumor boundaries on the CT images is still the conven-

tional methodology for target volume definition. On the

other hand, and despite a high spatial resolution, the de-

lineation on CT alone may be biased by insufficient con-

trast between tumor and healthy tissues (e.g., in cases of

atelectasis, pleural effusion, and fibrosis or for tumors

attached to the chest wall or mediastinum). Several studies

have investigated the impact of delineation performed

on fused 18F-FDG PET/CT images and have found signifi-

cant modifications of the treatment plan (size, location, or

shape of the gross tumor volume) (3) and reduced inter-

and intraobserver variability (4). Additional benefits from

the use of PET relative to CT include the potential to

image cellular proliferation and tumor hypoxia using

tracers such as 39-deoxy-39-18F-fluorothymidine and 18F-

fluoromisonidazole or 64Cu-diacetyl-bis(N4-methythiose-

micarbazone), respectively.

However, the integration of PET within radiotherapy

planning is complex, especially because there is neither

consensus nor guidelines regarding the delineation of 18F-

FDG PET tumor uptake or how to subsequently use the

delineated functional volumes. Most previously published

studies have investigated the use of a specific threshold of

PET uptake to define the metabolically active tumor volume

(MATV, the tumor volume that can be seen and delineated

on an 18F-FDG PET image) or spatial extent, with a large

variability in the recommended threshold and resulting
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volumes (5–8). A few recent studies have investigated the

correlation between tumor histopathology measurements

and the threshold of PET uptake (4,9–12). For example,

the study of Yu et al. (12) on 15 patients proposed an

optimal threshold of 31% 6 11% of the PET maximum

uptake within the tumor for a good correlation with the

corresponding histopathology-derived tumor maximum di-

ameter. Considering 3-dimensional reconstructed histopa-

thology volumes instead of only the maximum diameter,

Stroom et al. (10) recommended a fixed threshold of 42%

of the maximum PET uptake based on their findings in a

group of 5 patients with rather small tumors. Finally, in the

study by Wu et al. (11) on 31 patients, 50% of the max-

imum (T50) was proposed as the best threshold for PET

uptake delineation in NSCLC with respect to the histopa-

thologic maximum diameter. This conclusion was reached

by comparing the results obtained using a range of different

fixed thresholds (from 20% to 55%), although only non-

statistically significant differences were found with the

other tested values. The same authors subsequently showed

that such a threshold was less appropriate than manual

delineation, which led to incorrect delineation in some

cases (13). Manual contouring is far from ideal, as it suffers

from large intra- and interobserver variability (14) and is

also a tedious and time-consuming procedure, especially in

3 dimensions.

Alternatively, other authors have considered the use of

adaptive thresholding approaches taking into account the

tumor-to-background ratio instead of a fixed threshold but

requiring the determination of a background region of

interest, as well as optimization for a given scanner model,

acquisition protocol, and image reconstruction using phan-

tom acquisitions (8,15,16). Using such an approach, van

Baardwijk et al. (4) obtained a significant correlation with

histopathology measurements for 23 NSCLC tumors, as

well as reduced interobserver variability. Finally, the use

of more advanced image segmentation methodologies to

automatically delineate MATV has been proposed in sev-

eral studies (17–24), with variable levels of validation. For

example, we have already demonstrated that such auto-

mated image segmentation approaches can offer higher

accuracy (18,21), robustness (25), and reproducibility (14)

than threshold-based (fixed or adaptive) methods.

Some previous studies investigating NSCLC tumor

delineation on PET/CT hypothesized a significant influence

of the anatomic or metabolic lesion size and activity dis-

tribution heterogeneity on both the results and the observed

differences between delineation methodologies (8). How-

ever, those studies neither quantified this heterogeneity nor

thoroughly investigated such a correlation with respect to

the anatomic tumor and functional uptake sizes. The main

objective of our study was therefore to investigate the cor-

relation among anatomic tumor size as determined on CT,

the 18F-FDG uptake level of heterogeneity, and the differ-

ences between various automatic PET MATV delineation

approaches.

MATERIALS AND METHODS

Patient Studies

Twenty-five patients with confirmed NSCLC, stage Ib–IIIb,

were included in this study. All patients underwent an 18F-FDG

PET/CT examination for staging purposes before treatment.

Patients were instructed to fast for a minimum of 6 h before

examination. Free-breathing PET and CT images were acquired

45–60 min after 18F-FDG injection. A total of seven 5-min bed

positions with overlap were used for whole-body PET (Biograph

PET/CT; Siemens) acquisitions, which were corrected for attenu-

ation using the CT data and iteratively reconstructed using the

ordered-subsets expectation maximization algorithm (4 iterations,

8 subsets). Within a week after PET/CT acquisitions, 17 of the 25

patients underwent surgery (lobectomy), which allowed further

macroscopic examination. All specimens were processed in the

same way; namely the fresh specimens were put on ice, and

1 pathologist measured the maximum diameter of the tumor in

3 dimensions (4). Specimen shrinkage, estimated at about 10%,

was not considered since the measurements were performed

before fixation in formalin, allowing subsequent immunohisto-

chemical examination, for which the biopsy specimens were par-

affin-embedded.

This study was approved by the Institutional Ethics Review

Board, and informed written consent was obtained from all

patients before their inclusion in the study.

PET and CT Tumor Delineation

PET images were first up-sampled using a cubic B-spline

interpolation scheme (26), in such a way that the voxels were of

the same size as the associated CT images ( ½Fig: 1�Fig. 1). Because the

goal of this study was to compare anatomic and MATVas seen and

delineated on CT and 18F-FDG PET images, respectively, manual

delineation on fused PET/CT images was not considered. Only

primary tumors were delineated on both CT and PET images in-

dependently. Tumor anatomic volumes were manually delineated

on CT without knowledge of the PET information by 2 observers,

both with more than 10 y experience in PET and CT. Functional

tumor volumes were manually delineated on PET images by one

of the observers (and checked by the other observer) (13), as

well as using semi- or fully automatic image segmentation tools.

A fixed threshold at T50 as suggested by Wu et al. (11), and an

adaptive threshold taking into account the background uptake (8),

were considered. The adaptive threshold approach was optimized

on phantom acquisitions performed on the same PET/CT scanner

that was used for the patient acquisitions. The method requires the

definition of a manual background region of interest defining the

FIGURE 1. Illustration of up-sampled PET images (central axial

slice). Original PET image with voxel size of 5.31 · 5.31 · 5 mm

(A) and PET image up-sampled with voxel size equal to CT (0.98 ·

0.98 · 5 mm) (B) using cubic B-spline interpolation.
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background uptake to compute a first approximation of the tumor-

to-background contrast. Both observers were therefore instructed

to place this background region of interest in the lungs, at a dis-

tance of several centimeters from the boundaries of the tumors.

They were, however, free to choose the actual size and position of

the region of interest, which led to 2 different results, denoted A1

and A2. Finally, the fuzzy locally adaptive Bayesian (FLAB) algo-

rithm (18,21) was also used. This algorithm allows automatic

tumor delineation by computing a probability of belonging to a

given class (e.g., tumor or background) for each voxel. This pro-

bability is determined by taking into account the voxel intensity

with respect to the statistical distributions (characterized by their

mean and variance) of the voxels in the various regions of the

image, as well as spatial correlation with neighboring voxels.

FLAB has demonstrated its ability to accurately differentiate, if

necessary, both the overall tumor spatial extent from its surround-

ing background and the tumor subvolumes with different uptakes

(18).

Investigated Parameters and Analysis

First, for the 17 patients for whom macroscopic measurements

were available, the maximum diameters were measured as the

largest dimension in any orientation, considering the different

volume delineations (manual on CT and PET, T50, A1 and A2, and

FLAB), and compared with the histopathology reference. We

reported both absolute (in cm) and relative (%) errors with respect

to the maximum diameter to establish a hierarchy between the

different methods. Second, for all patients the anatomic tumor

volumes defined on CT images and the MATV obtained by each

delineation approach were compared with each other. Delineations

on original non–up-sampled PET images were performed to verify

that the up-sampling would not bias the results of the various

methods. Finally, the 18F-FDG uptake heterogeneity was esti-

mated using the coefficient of variation (COV), defined as the ratio

between the SD of the standardized uptake values and the mean

standardized uptake value within the delineated MATV. Two dif-

ferent volumes were used to calculate COV. The first was the one

obtained using FLAB (COVFLAB), since it was found to be the

most accurate with respect to histology measurements, whereas

the second was the CT-based volume (COVCT) copied onto the

PET images.

Summary statistics are expressed as mean 6 SD. Pearson coef-

ficients were used to estimate correlations between parameters.

Paired t tests were used to assess the differences between the

tumor volume distributions obtained with the various delineation

approaches. As most distributions were not normally distributed,

they were log-transformed before analysis. All tests were 2-sided,

and P values of less than 0.05 were considered statistically sig-

nificant.

RESULTS

Comparison with Maximum Diameter

(Histopathology Reference)

½Table 1�Table 1 shows the maximum measured diameters of the

17 tumors based on either macroscopic examination or PET

and CT images. All measured diameters correlated strongly

with macroscopic measurements for all delineation ap-

proaches considered (r from 0.89 for T50 to 0.99 for FLAB,

P , 0.0001) ( ½Fig: 2�Figs. 2A–2C). Despite high correlations

with maximum diameter for all methodologies as shown

TABLE 1

Maximum-Diameter Measurements on Pathology and Image Delineations for All 17 Patients

Measurement (cm)

Patient no. Pathologic CT1 (manual) CT2 (manual) PET (manual) PET (T50) PET (A1) PET (A2) PET (FLAB)

1 6.2 6.6 6.7 5.7 4.6 5 4.8 5.8

2 2.7 3.3 3.3 3.4 2.8 3.1 2.8 3

3 9 10.5 10.1 8.9 7 7.5 7.7 9.2

4 1.5 1.8 1.9 2.1 1.3 1.6 1.3 1.5

5 1.8 3.4 3.4 2 1.2 1.4 1.3 1.6

6 3.1 4 3.9 3.2 2.4 2.6 2.5 2.8

7 4.3 5 5.1 4.5 3.8 3.9 3.8 3.9

8 3.1 5.7 5.7 5.1 2.8 4 3.7 3.5

9 3.5 3.9 4 3.4 2.7 2.9 3 3.1

10 5.7 7.6 7.7 7.4 7.5 4.7 6.7 5.4

11 5 5.1 5.3 4.7 2.7 3 2.9 4.6

12 2.8 3.5 3.2 3.2 2.4 2.5 2.6 2.8

13 4.1 5.2 5.1 4.3 3.2 3.3 3.3 4

14 4 4.8 4.9 3.7 3.2 3.4 3.2 3.9

15 7 7.4 7.4 5.8 6.2 6.5 6.3 6.7

16 2.3 2.3 2.4 2.1 1.8 1.7 1.9 2.1

17 2.5 6 5.9 4.5 2.5 2.7 2.6 2.2

Mean 6 SD 4.0 6 2.0 5.1 6 2.2 5.1 6 2.1 4.2 6 1.9 3.4 6 1.9 3.5 6 1.6 3.6 6 1.8 3.9 6 2.0

Median 3.5 5.0 5.1 3.7 2.8 3.1 3.0 3.5

Range 1.5–9 1.8–10.5 1.9–10.1 1.9–8.9 1.2–7.5 1.4–7.5 1.3–7.7 1.5–9.2

Pearson r — 0.90 0.91 0.95 0.89 0.95 0.93 0.99

95% CI for r — 0.74–0.96 0.76–0.96 0.86–0.98 0.72–0.96 0.85–0.98 0.81–0.98 0.98–1.00

CI 5 confidence interval.
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in Table 1 and Figure 2, significant differences were

observed among the delineations (½Fig: 3� Figs. 3A and 3B). On

the one hand, CT delineation consistently overestimated

the maximum diameter of all tumors (132% 6 37%), with

errors up to 3.5 cm (1140%). Manual delineation on PET

images led to no significant bias but a high SD (mean error,

8% 6 17%), with maximum errors of 21.5 cm (217%)

and 11.2 cm (139%). On the other hand, PET automatic

delineations mostly led to underestimation of the real diam-

eter. T50 led to the largest underestimation (215% 6 17%),

with errors up to 11.8 cm (132%) and 22.3 cm (246%).

Adaptive thresholding led to better accuracy, with similar

results for both observers (211% 6 17% and 212% 6

16% for A1 and A2, respectively) and errors up to 22

cm (240%). FLAB was associated with the most accurate

results (24% 6 8%), with no error above 60.4 cm

(613%).

Comparison of Tumor Volumes

½Table 2�Table 2 shows the tumor volumes for all patients. No

significant differences in volume determination on CTwere

found between the 2 observers (P . 0.08). Therefore, the

results for only 1 observer will be considered. No signifi-

cant difference was observed between volumes obtained on

original or up-sampled PET images.

Anatomic tumor volumes delineated on CT images were

the largest (55 6 74 cm3) and were significantly different

from all volumes defined on PET images (P , 0.0001). In

addition, all PET-based methodologies resulted in volumes

that were significantly different from one another (P ,

0.0001). Among the PET-defined tumor volumes, and con-

FIGURE 2. Correlations with manual delineations on CT (A) and

PET (B) and with FLAB delineations on PET (C).

FIGURE 3. Absolute (in cm) differences (A) and relative (%) errors

(B) between pathology measurements and image-based delinea-

tions.
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sistent with what was observed according to the maximum

diameters, the smallest volumes were obtained with T50 (186

25 cm3), followed by the adaptive threshold (23 6 33 cm3),

FLAB (40 6 71 cm3), and manual (47 6 76 cm3).

Regarding the overlap in delineated volumes, the larger

CT volumes almost systematically enclosed the PET-based

volumes, except for 8 cases in which small regions of PET

uptake were just outside the anatomic volume, involving

small margins comprising only a few voxels. The smallest

PET uptake volumes generated with T50 were also almost

systematically enclosed within the volumes defined by the

adaptive thresholding, which in turn were mostly enclosed

within the FLAB-based volumes.½Fig: 4� Figure 4 illustrates 3 dif-

ferent cases representative of the various situations encoun-

tered.

Correlation of 18F-FDG Uptake Heterogeneity with

Tumor Size and Impact on Delineation

The calculated COVs using the 2 different delineated

tumor volumes (COVFLAB and COVCT) correlated strongly

(r 5 0.98, P , 0.0001). The heterogeneity of PET uptake

in these lung tumors was moderate to high, with a mean

COVFLAB of 0.26 6 0.06 and a range of 0.21–0.48. COVCT

was higher, with a mean of 0.37 6 0.08 (range, 0.3–0.6).

Twenty-two of 25 tumors were characterized by a

COVFLAB of 0.2–0.3 (0.25–0.4 for COVCT), and the 3 most

heterogeneous were characterized by a COVFLAB of 0.32,

0.36, and 0.48 (0.46, 0.48, and 0.69, respectively, for

COVCT).½Fig: 5� Figure 5 shows 2 different lesions and their asso-

ciated COVCT and COVFLAB. A moderate but significant

correlation was found between CT volumes and PET het-

erogeneity, as larger anatomic volumes exhibited higher

heterogeneity (r 5 0.44 and r 5 0.5 for COVCT and

COVFLAB, respectively, P , 0.03). A similar correlation

was found between MATVs and the corresponding hetero-

geneity, as larger functional volumes also exhibited signi-

ficantly higher heterogeneity (r 5 0.51 and r 5 0.58 for

COVCT and COVFLAB, respectively, P , 0.002).

Tumor size had an impact on the differences observed

between the delineation results using the different images

and segmentation approaches considered. A moderate (r 5

0.44) correlation was observed between anatomic tumor

volumes and the differences between FLAB and T50 results

(½Fig: 6� Fig. 6A). The larger the anatomic size of the lesion, the

larger were the differences between FLAB and T50 volumes

(P 5 0.025). Similar nonsignificant trends were observed

for differences between adaptive thresholding volumes or

manual delineation and FLAB (r , 0.4, P . 0.08). No

correlation was found between anatomic tumor size and

the differences between CT volumes and all of the PET

volumes determined with the different segmentation ap-

proaches considered.

The impact of PET uptake heterogeneity was more

significant than anatomic tumor size on the resulting MATV

differences using the PET delineation methodologies

considered. As illustrated in Figure 6B, differences between

MATV obtained with T50 and FLAB correlated strongly

(r, 20.8) with PET heterogeneity (P , 0.0001) estimated

either with COVCT or COVFLAB. The higher the heteroge-

neity within the tumor, the smaller was the MATVobtained

with T50 compared with that derived by FLAB. A similar

correlation was observed for the differences between FLAB

and A1 (r , 20.7, P , 0.0001), as well as between FLAB

and manual delineation (r , 0.6, P , 0.001).

DISCUSSION

Interest in the use of MATV delineation on PET for

NSCLC has been growing for several years, especially for

radiotherapy applications such as dose redistribution,

boosting, and painting, for which MATV is not used in

place of anatomic volume but rather as a complement to

TABLE 2

Tumor Volumes Measured on CT and PET Images (n 5 25)

Tumor volume

(cm3) (n 5 25) Mean 6 SD Median Range

CT1 (manual) 54.5 6 74.0 28.2 1.9–338.9

CT2 (manual) 55.1 6 74.8 29.1 1.8–339.4

PET (manual) 47.3 6 76.4 21.3 2.1–356.2

PET (T50) 17.7 6 25.1 9.2 8.5–125.8

PET (A1) 22.6 6 33.2 11.9 1.2–166.9

PET (A2) 21.8 6 33.9 11.3 0.9–172.4

PET (FLAB) 39.5 6 70.5 15.8 1.1–345.1

FIGURE 4. Small lesions (,2 cm in diameter) (A) and larger lesions

with moderate (COVFLAB 5 0.23) (B) and higher (COVFLAB 5 0.30) (C)

heterogeneity. For readability, A1 contours are not shown in B and C

and manual PET contours are not shown in B as they were similar to

FLAB and T50. White 5 manual on CT; blue 5 T50; purple 5 A1;

green 5 FLAB.
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increase or redistribute dose within the lesion (27–29).

These techniques are of interest especially for large tumors

characterized by heterogeneous uptake within the MATV.

However, the optimal MATV delineation methodology is

still subject to debate, especially for these tumor cases.

Our results confirm that large discrepancies can be

observed in image-based determination of NSCLC tumor

volumes according to the methodology used for tumor

delineation. Using morphologic imaging and manual delin-

eation, we saw a large overestimation of tumor volume as

previously described by several authors (13). Using a fixed

threshold of 50% as recommended by Wu et al. (11), the

estimation of the maximum tumor diameter on PET images

was not correct. We observed a constant underestimation of

the maximum diameter—a finding that differs from those of

Wu et al., who reported mostly overestimations of the max-

imum diameter of the tumor. This difference is most pro-

bably related to the size of the tumors considered in the 2

studies. Wu et al. included mostly small tumors (median

diameter, 2 cm; range, 1.1–6.5 cm) whereas we considered

larger tumors (4 6 2 cm; range, 1.5–9 cm). The discordant

results could be explained by the failure of binary threshold

approaches to deal with heterogeneity, which is more

present in larger tumors.

On the other hand, we found differences between CT and

PET volumes similar to those found by Wu et al. in their

subsequent study (13). CT volumes were significantly

larger than PET-based volumes in both studies, despite

the differences in tumor sizes considered. In our group of

patients, we mostly observed that the MATV was com-

pletely enclosed in the larger anatomic tumor volumes.

Only in a few cases was elevated tracer uptake observed

outside the limits of the anatomic tumor, and only a few

voxels were involved. This marginal difference may be

explained either by imperfect spatial registration between

PET and CT or by the impact of respiratory motion.

Using the adaptive thresholding methodology as

described by Nestle et al. (8), PET tumor sizes did correlate

well with the histopathology-based gold standard, albeit

with an underestimation of the maximum diameters in

our group of lung tumors. Our results agree with those

of Van Baardjwick et al. (4), who previously investigated

a slightly different semiautomatic methodology first pro-

posed by Daisne et al. (16).

In the current study, results from the 2 observers using

adaptive thresholding were not significantly different,

contrary to what was previously observed in the case of

esophageal tumors (30,31). However, unlike the rather het-

erogeneous uptake in the mediastinum surrounding esoph-

ageal tumors, the lung uptake is more homogeneous, thus

leading to negligible variability in the manually determined

background values. Manual delineation was less dependent

on the heterogeneity within MATV than were threshold-

based methods, leading to satisfactory results with no sig-

nificant bias (mean error , 10%), although there was a

large SD (17%) as some MATV were either largely over-

estimated (mostly the smaller lesions with lower contrast)

or underestimated (some of the most heterogeneous ones

with complex shapes). Overall, manual delineation corre-

lated strongly with FLAB (r 5 0.96).

Automatic delineation on PET images using FLAB

provided the best estimation of tumor diameters, in ac-

cordance with our previous evaluation of FLAB perform-

FIGURE 5. Heterogeneity estimation for 2 tumors.

FIGURE 6. Correlation between anatomic volume (A) or uptake

heterogeneity (B) and differences between T50 and FLAB volumes.
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ance (18). Other advanced segmentation algorithms able to

deal with heterogeneous MATV could potentially yield

similar satisfactory results (22,32). In our previous study,

FLAB was compared with a fixed threshold at 42%, instead

of 50%, but with similar trends in the observed results.

Furthermore, in our previous work the segmentation algo-

rithms were applied to the original PET images without up-

sampling and therefore with larger voxels. In the present

study, resampling was performed for an easier comparison

with CT delineations and overlap estimation. This approach

resulted in a more accurate estimation of the differences

between PET- and CT-based delineation methodologies,

without, however, significant differences in the resulting

volumes with respect to delineation performed on nonre-

sampled images.

Tracer uptake heterogeneity within the MATV has been

recognized as an important factor and a plausible explan-

ation of failed cancer treatments (33). Also in malignancies

such as sarcomas, esophageal cancer, cervical cancer, and

head and neck cancer, studies have shown that local and

regional tracer uptake heterogeneity assessment with PET

can predict outcome (34–36). In NSCLC, Nestle et al. has

already observed a larger variability between MATV delin-

eations due to spatial tracer uptake heterogeneity, without,

however, quantifying this heterogeneity and the associated

correlation with the MATV results (8). The impact of het-

erogeneity on MATV delineation results can be observed

and reach statistically significant levels only for objects

larger than a few centimeters in diameter, since the limited

PET spatial resolution cannot provide accurate imaging of

tracer heterogeneity in smaller volumes of interest. These

larger tumors are also most frequently encountered in radio-

therapy treatment, for which an accurate delineation of the

overall MATV may be advantageous, particularly if one

considers treatment scenarios involving dose painting or

boosting.

Although limited by the small sample of patients and the

need to confirm the results in a larger group, our study

added several elements to the existing knowledge on the

correlation between anatomic tumor size and 18F-FDG PET

uptake in NSCLC. Our results suggest that the larger the

tumor, the more heterogeneous the 18F-FDG PET uptake is

likely to be. This suggestion is in agreement with the

expected evolution of NSCLC, since necrosis, hemorrhage,

or myxoid changes, known to cause areas of low attenua-

tion on CT images, are more likely to appear in larger

tumors. A large, heterogeneous MATV is less likely to be

accurately delineated using simple fixed or even adaptive

binary threshold methods.

In this study, we used the COV to quantify the

heterogeneity of PET tracer uptake within the tumor. This

heterogeneity factor does not offer any information on the

spatial distribution of the heterogeneity and could poten-

tially result in the same value for very different heteroge-

neous distributions. However, this simple parameter that

provides a global measure of heterogeneity is sufficient for

the purposes and objectives targeted in this study, allowing

us to observe significant correlations between tracer uptake

heterogeneity and differences in the MATV segmentation

results, either with COVFLAB or COVCT. The most hetero-

geneous lesions were characterized by COVFLAB values

above 0.3; however, values from 0.2 to 0.3 were distributed

in a rather continuous fashion, making it hard to set a thresh-

old value allowing the differentiation of homogeneous from

heterogeneous distributions. A more detailed characteriza-

tion of the spatial distribution of tumor heterogeneity, which

was outside the scope of this study, can be obtained using,

for instance, local and regional textural features (35).

In studies such as the present one and those published

previously within the same context, a common limitation is

the lack of respiratory gating. Four-dimensional PET can

provide solutions to improve subvolume delineation for

dose-painting applications (37). However, in our dataset the

large size of the tumors should have reduced the potential

impact of respiratory motion on the results. In theory, the

MATV could have been overestimated for the smallest

lesions by both respiratory motion and partial-volume

effects. In practice, in our patients only a small fraction

of the lesions (10%–20%) were smaller than 2–3 cm.

Finally, a second limitation of our study was the de-

termination of tumor extent based on the measurement of

maximum diameter and not the entire volume. Errors in

maximum diameter may translate into significantly larger

errors with respect to the entire functional volume, especially

when heterogeneous uptake distributions are considered. It

is indeed possible to obtain an accurate maximum diameter

with inaccurate 3-dimensional delineations, especially for

complex shapes. Unfortunately full-volume histopathology

datasets, for which protocols and corresponding volume

estimations are associated with numerous approximations

and inaccuracies, are not available yet for NSCLC. Hence,

the maximum diameter measurements can be considered as

a satisfactory surrogate and have been used in most clinical

studies.

CONCLUSION

Volumes based on CT images were systematically and

significantly larger than those based on PET images. In

addition, tumor size and PET uptake heterogeneity had a

significant impact on the MATV PET delineation results

using semi- or fully automatic image segmentation tools.

Our results indicate that for a case of large, heterogeneous

NSCLC, fixed and adaptive thresholding should not be

used for the MATV delineation of 18F-FDG PET uptake.

These methods inherently assume homogeneous uptake in

both background and MATV and therefore tend to largely

underestimate the spatial extent of the functional tumor

in such cases. The use of thresholding approaches should

be restricted to smaller lesions with sufficient tumor-to-

background contrast or for larger tumors exhibiting homo-

geneous uptake. For an accurate automatic delineation of

MATV in NSCLC, advanced image segmentation algo-
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rithms able to deal with tracer uptake heterogeneity should

be used.
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Impact of Partial-Volume Effect Correction on the Predictive

and Prognostic Value of Baseline 18F-FDG PET Images in

Esophageal Cancer

Mathieu Hatt1, Adrien Le Pogam1,2, Dimitris Visvikis1, Olivier Pradier1,3, and Catherine Cheze Le Rest1

1INSERM, U650 LaTIM, CHRU Morvan, Brest, France; 2MRC Clinical Sciences Centre, Hammersmith Hospital, London, United

Kingdom; and 3Department of Radiotherapy, CHRU Morvan, Brest, France

The objective of this study was to investigate the clinical impact of

partial-volume effect (PVE) correction on the predictive and

prognostic value of metabolically active tumor volume (MATV)

measurements on 18F-FDG PET baseline scans for therapy re-

sponse and overall survival in esophageal cancer patients. Meth-

ods: Fifty patients with esophageal cancer treated with

concomitant radiochemotherapy between 2004 and 2008 were

retrospectively considered. PET baseline scans were corrected

for PVE with iterative deconvolution incorporating wavelet denois-

ing. MATV delineation on both original and corrected images was

performed using the automatic fuzzy locally adaptive Bayesian

methodology. Several parameters were extracted considering

the original and corrected images: maximum and peak standard-

ized uptake value (SUV), mean SUV, MATV, and total lesion gly-

colysis (TLG) (TLG 5 MATV · mean SUV). The predictive value of

each parameter with or without correction was investigated using

Kruskal–Wallis tests, and the prognostic value was determined

with Kaplan–Meier curves. Results: Whereas PVE correction

had a significant quantitative impact on the absolute values of

the investigated parameters, their clinical value within the clinical

context of interest was not significantly modified—a result that

was observed for both overall survival and response to therapy.

The hierarchy between parameters was the same before and after

correction. SUV measurements (maximum, peak, and mean) had

nonsignificant (P . 0.05) predictive or prognostic value, whereas

functional tumor-related measurements (MATV and TLG) were

significant (P , 0.002) predictors of response and independent

prognostic factors. Conclusion: PVE correction does not improve

the predictive and prognostic value of baseline PET image–

derived parameters in esophageal cancer patients.

Key Words: esophageal cancer; response to therapy; overall

survival; PET; partial volume effects; SUV; tumor volume; total

lesion glycolysis

J Nucl Med 2012; 53:12–20
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With a worldwide estimated 5-y survival of only 15%

(1), esophageal cancer is the third most common malignancy

of the digestive tract and is a leading cause of cancer mor-

tality. Its incidence is still increasing, and there is a growing

concern regarding its effective management (2). Surgical re-

section remains the most effective treatment; however, many

patients have a locally advanced esophageal carcinoma at

diagnosis and neoadjuvant therapy before surgery has dem-

onstrated improved survival in such cases (3). The maximum

improvement in terms of increased overall survival from

neoadjuvant treatment is observed for patients who achieve

a complete pathologic response (only 15%–30% of cases),

with no residual cancer cells in the primary tumor or lymph

nodes (4). On the other hand, nonresponders (NRs) may be

unnecessarily affected by toxicity (5). The development of

an early diagnostic test offering noninvasive prediction of the

response to therapy or survival is therefore of great interest.

For tumors that cannot be surgically removed, combined

radiochemotherapy is the preferred treatment. In this case

too, early assessment of response to therapy would allow

a modification in the management of nonresponding patients

early during treatment. Such a response assessment becomes

even more critical when one considers the availability of new

targeted drugs that could be tested with higher efficiency if

applied early (6).

Along with the standardized uptake values (SUVs)

(maximum SUV [SUVmax] or peak SUV [SUVpeak]) usu-

ally considered in clinical practice, other parameters de-

scribing functional lesions—such as metabolically active

tumor volume (MATV, defined as the tumor volume that

can be seen and delineated on an 18F-FDG PET image) (7),

mean SUV (SUVmean), and total lesion glycolysis (TLG,

defined as the product of MATVand its associated SUVmean)

(8)—have been investigated. The prognostic value of these

parameters in esophageal cancer patients for overall or dis-

ease-free survival has been demonstrated (9–12). On the

other hand regarding therapy prediction, several studies on

different cancer models have recently suggested using

the baseline scan only, instead of the comparison of pre-

treatment and posttreatment scans (late assessment) or
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during-treatment scans (early assessment) (13). Such inves-

tigations were, for instance, performed in pleural mesothe-

lioma (14), non-Hodgkin lymphoma (15), and esophageal

cancer (7,16), demonstrating higher statistical value for

MATV-based parameters than SUV measurements, whose

predictive value has been found to be conflicting (17).

However, in most of these studies, no partial-volume

effect (PVE) correction was applied, possibly explaining

the observed limited value of SUV. The impact of PVE

correction on the clinical value of SUV measurements has

been investigated by a limited number of authors. Hoetjes

et al. (18) investigated the impact of 4 PVE correction

strategies on 15 breast cancer patients, regarding the early

metabolic PET response after 1 cycle of chemotherapy. The

SUV decrease between the pretreatment scan and the scan

early during treatment was found to be lower after PVE

correction (26%–27% vs. 31%) for the first 3 methods but

not for the fourth one based on binary tumor masks (30%).

Van Heijl et al. (19) recently demonstrated a nonsignificant

impact of PVE correction on the correlation between dis-

ease-free survival and 18F-FDG PET SUV measurements in

52 esophageal cancer patients. In this study, a PVE correc-

tion method based on binary tumor masks generated with

adaptive thresholding delineation was used, and disease-

free survival was the only clinical endpoint investigated.

Both the use of adaptive thresholding and the PVE correc-

tion method based on tumor masks assume a homogeneous

tracer distribution in both tumor and background and are

therefore likely to provide only approximate correction

(20). On the other hand, no data are currently available

regarding the impact of PVE correction on the value of

baseline 18F-FDG PET–based measurements for the predic-

tion of overall survival and response to therapy in esopha-

geal cancer.

The current study was therefore performed to investigate

the impact of an advanced PVE correction methodology

and the use of an accurate MATV delineation approach on

both the predictive and the prognostic value of baseline
18F-FDG PET scan–derived parameters.

MATERIALS AND METHODS

Patients

Fifty consecutive patients with newly diagnosed esophageal

cancer were included and retrospectively analyzed. The char-

acteristics of the patients are given in Table 1. Most of the

patients (45 of 50) were men, aged 65 6 9 y at the time of

diagnosis. Seventy-four percent of the tumors originated from

the middle and lower esophagus, and 72% were squamous cell

carcinoma. None of the patients underwent surgery, and all

were treated with concomitant radiochemotherapy between

2004 and 2009. The therapy regime included 3 courses of 5-

fluorouracil and cisplatin and a median radiation dose of 60 Gy

given in 180-cGy fractions delivered once daily, 5 d a week for

6–7 wk. As part of the routine procedure for the initial staging

in esophageal cancer, each patient was referred for an 18F-FDG

PET study before treatment, and these baseline scans were used

in this study.

Overall survival was determined as the time between initial

diagnosis and last follow-up or death. Response to therapy was

evaluated 1 mo after the completion of the concomitant radio-

chemotherapy using conventional thoracoabdominal CT and

endoscopy. Patients were classified as NRs (including stable and

progressive disease), partial responders (PRs), or complete

responders (CRs). Response evaluation was based on CT evolution

between pretreatment and posttreatment scans using response

evaluation criteria in solid tumors (21). Patients also underwent

fibroscopy in the case of partial or complete response. Complete

response was confirmed by the absence of visible disease in the

endoscopy and no viable tumor on biopsy. Partial CT response was

confirmed by macroscopic residual (disease .10% viable) on bi-

opsy. No discordance was observed between pathologic, when

available, and CT evaluation. The current analysis was performed

after an approval by the institutional ethics review board.

18F-FDG PET Acquisitions
18F-FDG PET studies were performed before the treatment.

Patients were instructed to fast for at least 6 h before an in-

jection of 18F-FDG (5 MBq/kg). Static emission images were

acquired from head to thigh beginning 60 min after injection

and with 2 min per bed position, on a Gemini PET/CT system

(Philips). Images were reconstructed using the row-action

TABLE 1

Patient Demographics and Clinical Characteristics

Parameter

No. of patients

(n 5 50)

Sex

Male 45 (90)

Female 5 (10)

Site

Upper esophagus 13 (26)

Middle esophagus 20 (40)

Lower esophagus 17 (34)

Histology type

Adenocarcinoma 14 (28)

Squamous cell carcinoma 36 (72)

Histologic differentiation

Well differentiated 14 (28)

Moderately differentiated 12 (24)

Poorly differentiated 5 (10)

Unknown 19 (38)

TNM stage

T1 7 (14)

T2 8 (16)

T3 24 (48)

T4 11 (22)

N0 20 (40)

N1 30 (60)

M0 34 (68)

M1 16 (32)

American Joint Committee on Cancer stage

I 4 (8)

IIA 8 (16)

IIB 6 (12)

III 16 (32)

IVA 16 (32)

Age range of patients was 45–84 y, and median was 69 y. Data

in parentheses are percentages.
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maximum-likelihood 3-dimensional algorithm according to

standard clinical protocol: 2 iterations, relaxation parameter

of 0.05, 5-mm 3-dimensional gaussian postfiltering, a 4 · 4 ·

4 mm voxel grid sampling, and attenuation correction based on

a low-dose CT scan.

PET Image PVE Correction and Image Analysis

Images were corrected for PVE using an iterative deconvolution

methodology that has been previously validated (22). Its principle

is to iteratively estimate the inversion of the scanner’s point spread

function, which is assumed to be known and spatially invariant in

the field of view. The considered lesions were all in the same body

region, and this approximation should therefore not significantly

affect the applied correction on a patient-by-patient comparison

basis. Iterative deconvolution methods, such as those of Lucy-

Richardson (L-R) (23,24) or Van Cittert (25), are known for the

amplification of noise associated with an increasing number of

iterations. To solve this issue, wavelet-based denoising of the re-

sidual was introduced within the iterative L-R deconvolution using

Bayeshrink filtering (26), leading to images corrected for PVE

without significant noise addition. The following are advantages

of this methodology: it is able to generate entire whole-body cor-

rected images independently of any manual or automatic segmen-

tation of regions of interest, and it is voxel-based and therefore

does not assume homogeneous regional radiotracer distributions

for the tumor or surrounding background.

Tumor Delineation and Parameter Extraction

For each patient, the tumor was identified on the baseline

pretreatment PET images by an experienced nuclear physician. It

was then delineated using the fuzzy locally adaptive Bayesian

algorithm (20,27) on both the original (without PVE correction) and

the PVE-corrected images. This segmentation approach has been

shown to give both robust and reproducible functional volume

delineations under variable image noise characteristics (28,29).

The following parameters were subsequently extracted from

each baseline image with or without correction for PVE: SUVmax,

SUVpeak (defined as the mean of SUVmax and its 26 neighbors

[roughly corresponding to a 1-cm region of interest]), SUVmean

within the volume, MATV, and TLG (determined by multiplying

SUVmean with the corresponding MATV).

Statistical Analysis

Pearson coefficients were used to estimate correlation between

the image-derived parameters, and paired t tests were used to

characterize the differences between uncorrected and corrected

parameters. The correlation between response to therapy and each

parameter was investigated using the Kruskal–Wallis test as a non-

parametric statistic allowing the comparison of parameter distri-

butions associated with each category of response (CR, PR, and

NR). This test does not assume a normal distribution of variables,

and the computation of its statistic H is based on ranks instead of

absolute values of variables (30). Regarding survival, for each

considered parameter, Kaplan–Meier survival curves were gener-

ated (31) for which the most discriminating threshold value allow-

ing differentiation of the groups of patients was identified using

receiver-operating-characteristic methodology (32). The prognos-

tic value of each parameter in terms of overall survival was

assessed by the log-rank test.

The significance of the following factors (with or without

correction) was tested: SUVmax, SUVpeak, MATV, SUVmean, and

TLG. All tests were performed 2-sided using the MedCalc statis-

tical software (MedCalc Software), and P values below 0.05 were

considered statistically significant.

RESULTS

Impact of PVE Correction on

Image-Derived Parameters

The PVE correction affected the images that could be

assessed visually, with a higher contrast between the tumor

and the surrounding tissues, as can be seen in Figure 1 and

is illustrated using profiles in Figure 2. Table 2 provides the

distributions of volumes and associated parameters mea-

sured in original and corrected images.

MATVs delineated on original images and images cor-

rected for PVE were highly correlated (r. 0.998; confidence

FIGURE 1. Illustration of iterative decon-

volution PVE correction on whole-body
18F-FDG PET image, with original image (A)

and corrected image (B).
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interval, 0.997–0.999; P , 0.0001). However, MATVs de-

lineated on PVE-corrected images were systematically

smaller (P , 0.001) by on average 210% 6 5% (range,

21.5% to 222.4%), resulting in a mean volume difference

of 24 6 3 cm3 (40 6 36 cm3 vs. 36 6 34 cm3). This

difference is illustrated on 3 different tumors in Figure 3.

There was no significant correlation between these differen-

ces and the PET lesion volumes (r , 0.2, P . 0.18).

All primary lesions were detected by 18F-FDG PET and

exhibited a rather high uptake with a mean SUVmax of 10 6

4. As expected, SUVpeak and SUVmean measurements were

comparatively lower (8 6 3 and 6 6 2, respectively). All

SUV measurements are summarized in Table 2. After it-

erative deconvolution, SUVmax, SUVpeak, and SUVmean

were 15 6 6, 10 6 4, and 7 6 3, respectively. All were

significantly higher than noncorrected values (P , 0.05).

SUVmax increased by 54% 6 23% (range, 18%–157%),

whereas the impact on SUVpeak and SUVmean was lower,

with a mean increase of 27% 6 10% (range, 8%–51%)

and 28% 6 11% (range, 9%–59%), respectively. Consid-

ering the PVE correction–induced decrease of MATV

(210% 6 5%) and increase of corresponding SUVmean

FIGURE 2. Qualitative differences between original and corrected PET images of esophageal lesion of MATV above 25 cm3 using profiles

on axial, sagittal, and coronal planes.

TABLE 2

Distributions of Parameters With and Without PVE Correction

Definition Notation Original mean 6 SD PVE correction mean 6 SD

Highest SUV SUVmax 9.7 6 3.9 14.9 6 6.1

Mean of SUVmax and its 26 neighbors SUVpeak 8.0 6 3.3 10.1 6 4.0

SUVmean within MATV SUVmean 5.8 6 2.4 7.4 6 3.1

MATV (cm3) MATV 39.9 6 36.1 36.2 6 33.7

Total lesion glycolysis (g) TLG 218.1 6 208.3 235.8 6 218.1
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(128% 6 11%), PVE correction resulted in significantly

higher TLG values (114% 6 12%; range, 22 to 150%)

(P , 0.0001).

The increases of SUVmax and SUVpeak after PVE correc-

tion did not correlate with MATV (r , 0.2, P . 0.2),

whereas the increase of SUVmean correlated inversely with

MATV (r 5 20.79, P , 0.0001), with higher increases

observed for smaller volumes.

Impact of PVE Correction on Predictive and

Prognostic Values

Twenty-five patients were classified as PR, 11 were CR,

and 14 were NR (including stable and progressive disease).

With a median follow-up of 60 mo (range, 10–84 mo), the

median overall survival was 12 mo and the 1-y and 2-y

survival rates were 60% and 35%, respectively. At the time

of last follow-up, 10 patients were alive with no evidence of

disease, 9 were alive with recurrent disease, and 31 had

died. Survival was significantly correlated with response,

as overall survival was 24 6 15 (median, 21), 22 6 20

(median, 14), and 9 6 4 (median, 10) months for CR,

PR, and NR, respectively (P , 0.01). Results concerning

the prognostic and predictive values of all considered

parameters with and without PVE correction are summa-

rized in Tables 3 and 4.

Initial SUVmax, whether corrected for PVE or not, was

not predictive of response to therapy (P 5 0.2 and 0.3 for

SUVmax and SUVmax with PVE correction, respectively),

although CRs tend to have a smaller SUVmax (7.86 4.2 and

12.26 6.6 after PVE correction) than PRs and NRs (10.2 6

3.7 and 10.36 3.8 for PR and NR, respectively, and 15.96

6.0 and 15.56 5.7, respectively, after PVE correction) (Fig.

4A). SUVpeak led to slightly more differentiated groups of

response without reaching statistical significance (P 5

0.08), with a mean value of 6.2 6 3.6 in CRs, whereas both

PRs and NRs were characterized by a similarly higher

SUVpeak (8.5 6 3.1 and 8.5 6 3.2 for PRs and NRs, re-

spectively). After PVE correction, the results using SUVpeak

were similar, with 7.86 4.4, 10.76 3.7, and 10.86 3.9 for

CRs, PRs, and NRs, respectively (P 5 0.1). The SUVmean

measurements could not significantly predict response (P5

0.07), and the differentiation between the 3 groups of re-

sponse considered on the basis of SUVmean was still not

possible after PVE correction (P . 0.14).

None of the SUV measurements was a significant

prognostic factor in the univariate analysis, despite a trend

for longer survival associated with lower SUV (maximum,

peak, or mean). For instance, an SUVmax below a threshold

of 8 or an SUVmean under 6.5 tend to be associated with

a better outcome and a median survival of 20 versus 13 mo

TABLE 3

Kruskal–Wallis Test Results

Response differentiation? (P , 0.05)

Parameter H P CR (n 5 11)/NR (n 5 14) CR (n 5 11)/PR (n 5 25) PR (n 5 25)/NR (n 5 14)

SUVmax 3.6 0.17 No No No

SUVmax with PVE correction 2.4 0.31 No No No

SUVpeak 5.1 0.08 No No No

SUVpeak with PVE correction 4.7 0.10 No No No

SUVmean 5.5 0.07 No No No

SUVmean with PVE correction 3.9 0.14 No No No

MATV (cm3) 20.7 ,0.0001 Yes Yes Yes

MATV with PVE correction (cm3) 20.7 ,0.0001 Yes Yes Yes

TLG (g) 25.1 ,0.0001 Yes Yes Yes

TLG with PVE correction (g) 25.2 ,0.0001 Yes Yes Yes

H statistic and associated P value are given for each parameter, with ability to differentiate (P , 0.05) each pair of response groups

among patients.

FIGURE 3. Examples of fuzzy locally adaptive Bayesian delinea-

tion results (blue contours) on original (left) and corrected (right) PET

images with large, slightly heterogeneous MATV (A); MATV with

necrotic core (B); and small, homogeneous MATV (C).
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(P 5 0.3) and 16 versus 10 mo (P 5 0.15), respectively.

Similarly, after PVE correction no threshold value could

significantly differentiate groups of patients regarding their

survival (Figs. 5A and 5B).

Contrary to SUV measurements with or without PVE

correction, the parameters related to functional volume

(MATV and TLG) allowed significant (P , 0.0001) differ-

entiation of the 3 response groups and were significant

prognostic factors (P , 0.002), as illustrated in Figure

4C. No significant differences were found using the original

or PVE-corrected values.

The parameter that allowed for the best differentiation of

patient groups was the TLG (P , 0.0001). CRs were charac-

terized by a TLG of 55 6 45 g, whereas PRs and NRs had

a TLG of 1786 143 and 4166 238 g, respectively. After PVE

correction, the absolute values of each group rose to 62 6 45,

200 6 155, and 437 6 249 g for CRs, PRs, and NRs, re-

spectively, leading to the same discrimination between groups

of response (P , 0.0001). Although slightly less efficient than

TLG, the use of MATV allowed a statistically significant dif-

ferentiation of the 3 response groups (P , 0.0001). Use of the

MATV values extracted from PVE correction images led to

exactly the same discriminating power (P , 0.0001).

MATV and TLG were also good prognostic factors, with

high MATV and TLG values being significantly associated

with shorter survival, with hazard ratios between 3 and 4 (Table

3). AMATVabove 85 cm3was identified as a predictor of poor

outcome, with a median survival of only 6 mo, versus 20 mo

for patients with a smaller MATV (P 5 0.0004), as illustrated

in Figure 5C. In addition, a MATV below 15 cm3 was associ-

ated (P 5 0.009) with longer survival (49 mo) than a larger

MATV (11 mo). Similar results were obtained using the

MATVsmeasured on the PVE-corrected images, with a median

survival of 20 mo for patients with tumor volume with PVE

correction below 80 cm3 versus 10 mo for patients with MATV

above 80 cm3 (P, 0.002). Regarding TLG, a threshold of 260

g was found to be a good discriminating factor for outcome (21

vs. 10 mo, P 5 0.0012), whereas using PVE-corrected TLG

led to similar results, with a slightly higher threshold (TLG

with PVE correction 5 280 g, 21 vs. 10 mo, P 5 0.0004).

DISCUSSION

Our study investigated the impact of PVE correction on

the predictive and prognostic values of different parameters

derived using the baseline pretreatment PET images. Our

results confirmed that PVE correction significantly affects

quantitative SUVs, with an average increase of above 50%

for SUVmax, in agreement with previous studies (18,19),

and a lower increase (,30%) for SUVpeak and SUVmean.

The lower increase observed for SUVpeak and SUVmean is

related to the fact that the L-R deconvolution is a voxel-

by-voxel process leading to enhancement of contrasts be-

tween subvolumes within the MATV and both lower- and

higher-voxels SUVs included in the averaging associated

with the calculation of SUVmean and SUVpeak. PVE correc-

tion did not significantly affect the delineation of the

MATV. Overall, MATVs delineated on the corrected

images were only slightly smaller than those determined

on the original images. The mean reduction of 10% was

within the reproducibility limits of confidence intervals re-

garding tumor volume measurements on double-baseline

PET scans using fuzzy locally adaptive Bayesian algorithm

method (630%) (29). This limited impact of PVE correc-

tion on MATV can be explained by the fact that PVE is

dependent on tumor size and is more pronounced on small

lesions (33). In our group of patients, the tumors were

rather large (40 6 30 cm3); therefore, the relative variation

of volumes with respect to the entire volume is small.

Twelve patients (25%) had an MATV of around 10 cm3

or smaller. In addition, the use of a robust delineation ap-

proach instead of threshold-based methods in various con-

figurations of blur and noise (28,34) ensured a limited

variability in the MATV delineation results between origi-

nal and corrected images.

As previously demonstrated (7,12), MATV and TLG

extracted from noncorrected 18F-FDG PET pretreatment

acquisitions had high clinical value. In contrast, none of

the usual SUV measurements (maximum, peak, or mean)

considered in clinical practice was significantly associated

with therapy response or survival, as also reported in the 2

largest available prospective trials (35,36).

TABLE 4

Univariate Analysis Results Using Kaplan–Meier Survival Curves

Parameter Threshold HR

HR 95% confidence

interval P Median survival (mo)

SUVmax 8 1.5 0.7–3.1 0.28 20 vs. 13

SUVmax with PVE correction 11 1.6 0.7–3.2 0.26 20 vs. 13

SUVpeak 7 1.4 0.7–2.8 0.31 16 vs. 10

SUVpeak with PVE correction 9 1.8 0.9–3.6 0.11 20 vs. 11

SUVmean 6.5 1.7 0.8–3.6 0.15 16 vs. 10

SUVmean with PVE correction 7.5 1.7 0.8–3.5 0.12 20 vs. 10

MATV (cm3) 85 3.9 1.0–15.2 0.0004 20 vs. 6

MATV with PVE correction (cm3) 80 3.4 0.9–11.7 0.0024 16 vs. 10

TLG (g) 260 2.9 1.2–6.8 0.0012 21 vs. 10

TLG with PVE correction (g) 280 3.2 1.3–7.6 0.0004 21 vs. 10
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Regarding response to therapy prediction using SUVs,

we found that PVE correction did not improve the already

demonstrated low discriminating power of any of the SUV

measurements considered (7). This can be explained by the

combination of several factors. First, without PVE correc-

tion, the trend of low SUV being associated with better

outcome may have been exaggerated by an underestimation

of SUV, because CRs had also smaller volumes in addition

to low SUVmax. Second, after PVE correction all 3 response

groups had increased SUVmax but with still no significant

FIGURE 4. Examples of distributions of NRs, PRs, and CRs and

associated Kruskal–Wallis test results: SUVmax and SUVmax with

PVE correction (A), MATV and MATV with PVE correction (B), and

TLG and TLG with PVE correction (C). MATVPVC 5 MATV with PVE

correction; SUVmax
PVC 5 SUV with PVE correction; TLGPVC 5 TLG

with PVE correction.

FIGURE 5. Examples of Kaplan–Meier survival curves obtained

using SUVpeak (A), SUVpeak with PVE correction (B), and MATV (C).

SUVpeak
PVC 5 SUVpeak with PVE correction.
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difference between the groups. We have demonstrated that

SUVmean increase after PVE correction was inversely cor-

related with tumor volume (r 5 0.8, P , 0.0001), with

smaller volumes being characterized by higher SUVmean

increases after PVE correction than larger volumes. The

SUVmean within the MATV of PRs and NRs was therefore

increased by a smaller amount (120% 6 9%) than those

within the MATV of CRs (134% 6 13%), which were

associated with smaller tumor volumes. The mean tumor

SUVs of CRs were therefore closer to the SUVmean of PRs

and NRs after correction. Hence, the discriminating power

of SUVmean was reduced by PVE correction. A similar

trend was observed for SUVmax and SUVpeak, although it

was less significant because their respective increase was

not correlated with the MATV. Therefore, PVE correction

might have further reduced the clinical value of SUV mea-

surements in this context. This effect has been previously

suggested as a limitation to the prognostic value of SUVmax

in early-stage non–small cell lung cancer (37).

Similar conclusions can be drawn from the results

regarding the impact of PVE correction on the prognostic

value of the SUV parameters. Indeed, as already demon-

strated (12), extreme MATV values were significantly asso-

ciated with longer or shorter overall survival for very small

(49 mo for MATV below 15 cm3 vs. 11 mo for MATVabove

15 cm3) or very large MATV (6 mo for tumor volume above

85 cm3 vs. 20 mo for MATV below 80 cm3), respectively.

On the other hand, SUV measurements without correction

cannot significantly differentiate between the patients with

longer or shorter survival (P . 0.05 for all SUV measure-

ments), although a trend for longer survival was associated

with lower SUVs. After correction, this differentiation was

not significantly improved, because SUVs associated with

the smaller volumes were closer to SUVs associated with

larger volumes. Therefore, the discrimination was again re-

duced by PVE correction. To our knowledge there are no

similar data available on the impact of PVE correction on

SUV predictive value in the literature, but our results are in

agreement with previous findings that demonstrated no sig-

nificant changes in disease-free survival correlation between

original and corrected SUVs in esophageal cancer using

alternative less accurate methodologies for both PVE cor-

rection and functional volume segmentation (19).

As previously demonstrated (7,12), MATV and associated

TLG values were good predictors of response (7) and inde-

pendent prognostic factors of overall survival (12). After PVE

correction, the already high clinical value of MATVand TLG

was not significantly altered. Considering the thresholds used

to differentiate patient groups, there was no need for adjust-

ment regarding MATV measurements because MATVs were

not significantly modified by PVE correction. On the other

hand, TLG thresholds needed to be adjusted, considering that

PVE correction led to significantly increased SUVmean and

resulting TLG values. The determined threshold values for

each parameter regarding prognosis or prediction of response

were found using receiver-operating-characteristic analysis

on the current patient cohort and would therefore require

larger prospective studies to be validated.

The rather large tumor volumes (40 6 30 cm3) in our

patient dataset might be considered as a limitation of this

study, because PVEs are usually considered significant for

volumes around or below 10 cm3 (33). First, 25% of the

tumors in this dataset were within this volume range. In

addition, the shape of the primary esophageal lesions is

not spheric but mostly cylindric, with a small diameter

(,2 cm) in the transaxial direction. Therefore, esopha-

geal lesions can be significantly affected by PVEs despite

the overall large metabolic volumes, as can be seen in

Figure 2 for a lesion with a MATVabove 25 cm3. Finally,

the patient population used in this study was typical of

routine clinical practice and was not selected on the basis

of the overall primary MATVs.

CONCLUSION

The results of this study demonstrate that PVE correction

does not add any value to parameters derived from MATVs

such as MATV and TLG measured on 18F-FDG PET base-

line acquisitions. PVE correction did not alter the already

demonstrated clinical value of both parameters as predic-

tive factors of the response to concomitant radiochemother-

apy or as prognostic factors of overall survival in locally

advanced esophageal cancer. Similarly, although PVE cor-

rection led to increases in all SUV measurements (maxi-

mum, peak, or mean) considered in clinical practice, the

corrected values were still not significantly associated with

either therapy response or prognosis. Finally, our study is in

agreement with previous investigations using simpler tools,

showing limited interest in PVE correction in this specific

context. However, the potential impact of PVE correction in

other applications such as diagnosis or lesion detectability

remains to be evaluated. In addition, the value of PVE

correction in patient follow-up using serial PET scans needs

to be further demonstrated.
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Abstract

Partial volume effects (PVE) are consequences of the limited spatial resolution

in emission tomography. They lead to a loss of signal in tissues of size

similar to the point spread function and induce activity spillover between

regions. Although PVE can be corrected for by using algorithms that

provide the correct radioactivity concentration in a series of regions of interest

(ROIs), so far little attention has been given to the possibility of creating

improved images as a result of PVE correction. Potential advantages of PVE-

corrected images include the ability to accurately delineate functional volumes

as well as improving tumour-to-background ratio, resulting in an associated

improvement in the analysis of response to therapy studies and diagnostic

examinations, respectively. The objective of our study was therefore to develop

a methodology for PVE correction not only to enable the accurate recuperation

of activity concentrations, but also to generate PVE-corrected images. In

the multiresolution analysis that we define here, details of a high-resolution

image H (MRI or CT) are extracted, transformed and integrated in a low-

resolution image L (PET or SPECT). A discrete wavelet transform of both H

and L images is performed by using the ‘à trous’ algorithm, which allows the

spatial frequencies (details, edges, textures) to be obtained easily at a level of

resolution common to H and L. A model is then inferred to build the lacking

details of L from the high-frequency details in H. The process was successfully

tested on synthetic and simulated data, proving the ability to obtain accurately

corrected images. Quantitative PVE correction was found to be comparable

with a method considered as a reference but limited to ROI analyses. Visual

improvement and quantitative correction were also obtained in two examples of

clinical images, the first using a combined PET/CT scanner with a lymphoma

patient and the second using a FDG brain PET and corresponding T1-weighted

MRI in an epileptic patient.
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1. Introduction

Partial volume effects (PVE) are well-known consequences of the limited spatial resolution

in emission tomography. PVE is characterized by the loss of signal in tissues of size similar

to the point spread function (PSF). In addition, PVE induces a signal cross-contamination in

adjacent structures with different amounts of radioactivity (Aston et al 2002, Du et al 2005).

In this latter phenomenon, sometimes referred to as spillover, the high activity in a given

region can spread out and contaminate a bordering area of lower activity, leading to either

underestimated or overestimated activity concentration measurements.

These effects can be corrected for by using a number of different algorithms that often

rely on the use of the PSF of the imaging device and a priori anatomical knowledge provided

by computed tomography (CT) or magnetic resonance imaging (MRI) (Meltzer et al 1990,

Muller-Gartner et al 1992, Rousset et al 2000, Aston et al 2002, Matsuda et al 2003, Baete

et al 2004, Bencherif et al 2004, Quarantelli et al 2004, Kusano et al 2005, Rota Kops and

Krause 2005). The large majority of these algorithms, which have been evaluated mostly in

the context of cerebral imaging, require a segmentation step to delineate the different parts

from anatomical images. This step renders their accuracy dependent on the segmentation

algorithm used as well as making their application on other clinical investigations outside the

brain challenging (Feuardent et al 2003). For example, the pixel-based approach of Meltzer

et al (1990) is restricted indeed to brain metabolism or neuroreceptor binding, and requires

compartmental analysis (Meltzer et al 1999). As a rare example, Pretorius and King (2004)

proposed an application of PVE correction for cardiac SPECT. Furthermore, and similar to the

great majority of PVE correction methods (except in the interesting approach of Kennedy et al

using Taylor expansion (Kennedy et al 2005)), these algorithms offer quantitative correction of

ROI (region of interest) intensities without considering the construction of enhanced images.

On the other hand, resolution compensation or resolution recovery algorithms can also be used

to reduce PVE in emission tomography. However, the majority of these algorithms suffer from

being reconstruction algorithm specific (Ardekani et al 1996, Som et al 1998, Somayajula

et al 2005), as well as being only tested in limited clinical context such as cardiac SPECT

(Hutton and Lau 1998) or FDG PET in the human brain (Baete et al 2004).

One of the reference methods (referred to from here onwards as RSF for regional spread

function) described by Rousset et al (1998, 2000) and recently improved (Frouin et al 2002,

Du et al 2005) was also developed in the brain context and allows estimating the true

mean signal in any user-defined series of n homogeneous regions of interest (ROIs), but

the images themselves are not enhanced. This approach relies on the inversion of an n ×
n matrix called geometric transfer matrix (GTM). The elements wij of the GTM are the

coefficients of activity spillage from ROI i to ROI j, and the true activity Ti in ROI i can be

deduced from the measured activity ti by inverting the equation [t] = [GTM] × [T ], where [t]

and [T ] are the vectors containing the ti and Ti values, respectively. The use of this approach

is theoretically possible in various clinical applications even if it was originally designed for

cerebral studies where generally only three ROIs are required (white matter, grey matter,

cerebrospinal fluid). Actually, the method works satisfactorily when the image is segmented

into a series of ROIs that constitute a partition. In other words, ROIs must not overlap and at

the same time considering all ROIs together must cover the entire image. As a consequence,

when studying tumours in whole-body images, the number of ROIs can dramatically increase

(Feuardent et al 2003), thus hampering the clinical use of this methodology.

In general, the aim of all these methods is to provide the user with correct radioactivity

concentration estimates in a given ROI. To date however, except in very specific applications

(Baete et al 2004), little attention has been given to the challenging possibility of creating
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improved images through a generic approach. In this paper, a new PVE correction

methodology is proposed, based on the multiresolution analysis of images of different spatial

resolutions. The main advantage of the proposed methodology is that it not only enables

the accurate recuperation of activity concentrations, but is also capable of simultaneously

generating PVE-corrected images. This improvement allows (a) performing a visual control

of the correction, (b) improving clinical diagnostic studies through a better visual assessment of

the images, and most important (c) allowing further image processing (such as, for example,

functional volume estimate of tumours, location of epiletogenic foci in cerebral imaging

(Boussion et al 2003), or wall motion and ejection fraction in cardiac imaging (Hickey et al

2004)). Furthermore, the method is not restricted to a particular organ and does not require

tedious and time-consuming ROI delineation.

In the following section, a concise presentation of the wavelet transform and the

multiresolution analysis serves as an introduction to section 2. The developed PVE algorithm

is described in detail including a description of the test images and overall methodology used

to validate the developed algorithm.

2. Materials and methods

2.1. Multiresolution image analysis and wavelet transform

Although the theoretical foundations of multiresolution analysis do not constitute the main

topic of this study, it is constructive to introduce the basic concepts of the wavelet transform

which is an important part of the proposed methodology. Actually, the wavelet transform can

be introduced by comparison with the more common Fourier transform with which it has a

number of similarities. While the Fourier transform provides global information about the

spatial frequencies in an image, the wavelet transform leads to a local representation of these

spectral properties. From an image processing point of view, the Fourier transform permits one

to switch between the spatial and the frequency domains while the wavelet transform allows

one to bring them together in one single image. In practice, the wavelet transform of a given

image is another image presenting the areas where one may find either more or less important

contrast. In addition, one of the interests of the wavelet transform in image processing is that

it enables work at different levels of spatial resolution, operating as a tool of multiresolution

analysis. Multiresolution analysis allows retrieving the layers of details that have different

sizes by separating the spatial frequencies that the image contains. Basically, a medical image

at a given spatial resolution R contains information at different scales, from large structures to

small details. For instance, in a cerebral MRI the sharp edges between white and grey matters

will be lost when a low-pass filter is applied, but at the same time the skull will stay clearly

separated from the brain. Accessing and separating these structures of different sizes is the

scope of multiresolution analysis.

If we now consider the mathematic point of view, the wavelet transform allows expressing

a signal according to a basis of elementary functions called wavelets. This basis is built from

a ‘mother’ wavelet ψ (also referred to as analysing wavelet) on which are applied dilation

and translation computations. This process is obtained in one dimension as a result of the

following formula:

ψa,b(x) =
1

√
a
ψ

(

x − b

a

)

(a > 0). (1)

a is called the scale parameter and is linked to the frequency domain, while b is the position

parameter linked to time or space.



4 N Boussion et al

The wavelet transform W(a, b) of the function f (x) is defined as

W(a, b) =
1

√
a

∫ +∞

−∞
f (x)ψ∗

(

x − b

a

)

dx, (2)

where ψ∗ stands for the complex conjugate of the analysing wavelet ψ . W is linear, shift

invariant and also invariant by dilation. These latter two properties are of interest in image

processing involving combination of different images. Actually, on the one hand, shift

invariance limits the unavoidable consequences of inaccurate superimposition of images. On

the other hand, dilation invariance is valuable for observing ‘objects’ of different sizes in a

given signal without changing the analysing wavelet.

There are many algorithms available to perform the discrete wavelet transform of an

image. All have particular interests and drawbacks but they must be chosen carefully because

the passage to the discrete approach can lead to the loss of interesting properties such as

invariance mentioned above. A widely used approach is the pyramidal methodology which

consists of reducing the size of the image iteratively to get smoother and smoother versions of

the initial image. This is the widespread multiresolution approach that Mallat (1989) developed

through his algorithm that permits compression of data by decimating the image. This method

is anisotropic in the sense that horizontal, diagonal and vertical details are separated during

the process. Another common approach is the algorithm ‘à trous’ (French term that means

‘with holes’). This is an undecimated method inducing shift invariance which is of particular

interest when investigating image comparison. The transformation is not pyramidal since the

initial image and the images of coarser spatial resolution have identical sizes. For this reason,

this particular algorithm is redundant and is of reduced interest in image compression. This

algorithm forms however the basis of our PVE correction methodology as it presents several

practical advantages, namely (a) the implementation is straightforward and the initial image

can be perfectly reconstructed without loss of any kind, (b) there is no selection of specific

directions during the analysis since the process is isotropic, (c) the transform is known for

each pixel improving accuracy of further processing, and (d) navigation is easy between the

different levels of resolution.

This discrete wavelet transform algorithm called ‘à trous’ was introduced by Dutilleux

(1987), developed by Holdschneider et al (1989) and detailed by Starck et al (1998). The

process gives an image sequence of coarser and coarser spatial resolution by performing

successive convolutions with a low-pass filter h obtained from a scaling function φ. At each

iteration j, the spatial resolution of the image Ij is degraded to give the approximation image

Ij+1 according to

Ij+1(k, l) =
∑

m,n

h(m, n)Ij (k + m2j , l + n2j ). (3)

As already pointed out, there is no decimation involved in the process, which means that all

Ij approximations have the size of the initial image I0. However, only one pixel out of 2j

is considered during the filtering process, leading to inclusion of zeros in the rows and the

columns of the mask. This feature gives its name to the algorithm, i.e. ‘with holes’, and it also

explains why the process is dyadic, where the successive approximations Ij have resolutions

decreasing by powers of 2.

The difference Ij − Ij+1 is the wavelet coefficients wj+1 containing the details (edges,

texture) at a resolution level between Ij and Ij+1. Note that the undecimation permits one to

follow the local information at a pixel level for any Ij, that is, navigation through all Ij images
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is possible at any pixel location. The synthesis procedure that reconstructs the original image

from its layers of details wk is given by

I0 = IN +

k=N
∑

k=1

wk, (4)

with N the number of iterations from the initial image I0 to the final approximation IN of spatial

resolution decreased by 2N. A pixel at location (x, y) can be expressed as the sum of the

wavelet coefficients at this position plus the smoothed array at the same (x, y) coordinates:

I0(x, y) = IN (x, y) +

k=N
∑

k=1

wk(x, y). (5)

The ‘à trous’ algorithm can easily be implemented by performing the following steps (Starck

et al 1998):

(1) Initialize j to 0: start with the original image I0.

(2) Increment j and carry out a convolution of Ij−1 with the low-pass filter h. The distance

between the central pixel and the adjacent ones is 2j−1.

(3) The wavelet coefficients wj at this level of resolution are given by Ij−1 − Ij .

(4) If j is less than the required number N of resolutions, go to step 2.

(5) The set W = {w1, w2, . . . , wN , IN } is the wavelet transform of I0.

Provided they satisfy a limited number of properties (compacity, regularity, symmetry) and

according to suitable prerequisites, different scaling functions can be constructed. However,

several already exist possessing interesting characteristics. The most widely used filters in

the ‘à trous’ algorithm are based on linear interpolation and B-splines interpolation. For

instance, the bicubic spline is a very smooth function, well suited for isolation of large image

structures. On the other hand, linear interpolation is a good compromise, enabling work with

both small and large scale characteristics. Another filter, sometimes called low-scale filter, is a

sharply peaked function that performs well in isolating very small structures. The normalized

coefficients of these different filters are presented in the appendix. Each of these filters were

tested under different image characteristics in order to evaluate their behaviour and choose the

most appropriate one in the framework of the developed PVE correction algorithm.

2.2. Description of the algorithm implementation

The process employed in the developed algorithm comes from the field of data fusion (Luo

et al 2002) and as stated above it relies on a wavelet-based image merging. Actually, new

approaches to image merging that uses multiresolution analysis procedures based upon the

discrete wavelet transform have been proposed recently in as different domains as texture

classification (Li and Shawe-Taylor 2005), forensic science (Wen and Chen 2004) or aerial

images (Ranchin and Wald 2000). The multiscale fusion that we define here is the process

whereby details of a high-resolution image H (MRI or CT typically) are extracted, transformed

according to a given model and integrated in a low-resolution image L like PET or SPECT

for instance. The challenge is to preserve the global functional characteristic of L while

incorporating additional data in it and the mandatory hypothesis is that the tissues examined

by L are also present in the high-resolution image H. Contrary to all other applications that have

been studied till now, such as aerial imaging or forensic sciences, the visual enhancement is

not here the unique goal of the process. Our primary objective is the quantitative improvement

of the recovered activity concentrations. This latter is possible by adding detail layers of

different resolutions that all have a zero-mean signal.
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(a) (b) (c)

Figure 1. (a) The high-resolution H image with discs of various sizes and intensities. The five

horizontal discs have identical intensities and decreasing sizes in order to evaluate the correction of

tissue-fraction effects. The six vertical discs have decreasing intensities to allow studying spillover

effects. (b) Low-resolution image L corresponding to the degradation of high-resolution image H

after 10-standard-deviation Gaussian noise addition and low-pass filtering. (c) L image after PVE

correction using the developed wavelet-based algorithm.

Wavelet analysis allows the spatial frequencies to be obtained easily at any level of

resolution, in particular at a level of resolution common to H and L. A model is then inferred

to compute the lacking details of L from the high-frequency details’ layers of H. If the level of

resolution of H is q, referred to as Hq, and that of L is r = q + p, referred to as Lr, we can write

Lr(x, y) = Lq+p(x, y) = Lq+p+1(x, y) + wL
q+p+1(x, y) (6)

and

Hq(x, y) = Hq+p+1(x, y) +

k=p+1
∑

k=1

wH
q+k(x, y). (7)

The lacking details of L are the wavelet coefficients wL
i with q � i � q + p. However, we do

possess wL
q+p+1 and wH

q+p+1 and we assume that there exists a more or less simple link between

them like wL
q+p+1 = α × wH

q+p+1, α ∈ IR∗ for instance. Although, different models can be

envisaged, in this study a simple linear model is used where the parameter α is considered

equal to the mean pixel-by-pixel division of wL
q+p+1 by wH

q+p+1.

Lq can now be reconstructed from Lr by taking wL
i (q � i � q + p) into account. They

are calculated as wL
i = α × wH

i (q � i � q + p) leading to

Lq(x, y) = Lq+p+1(x, y) + α

k=p+1
∑

k=1

wH
q+k. (8)

2.3. Validation studies

2.3.1. Synthetic and simulated images. The developed algorithm was firstly validated using

different synthetic and simulated datasets. Synthetic images were composed of a circular

container (intensity 50) including discs of different sizes and contrast ratios (figure 1(a)). A first

series of five horizontal discs of decreasing diameter (30 mm, 20 mm, 15 mm, 10 mm, 5 mm)

and constant intensity (70) was built up to specifically examine the tissue-fraction effect and the

recovering of small areas. A second series of six vertical discs of constant diameter (10 mm)

but decreasing intensity (70, 60, 40, 30, 20 and 10) was designed specifically to consider
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spillover effects. This image of high spatial resolution (1 mm) corresponded to H as stated

in the previous section. A n-standard-deviation (SD) Gaussian noise was added (n ranging

from 1 to 10) and a 6 mm FWHM Gaussian blur was convolved in order to simulate the L

images (figure 1(b)) with a uniform 6 mm spatial resolution (the letter n in n-standard deviation

corresponds to the amount of noise added on a given pixel; the Gaussian law built with a zero

mean and a standard deviation equal to n times the standard deviation calculated in a 5 ×
5 pixel ROI around the pixel to treat). The convolution induced a contamination of signal

between homogeneous areas of the synthetic images very similar to partial volume effects,

and the levels of resolution for L and H were chosen according to those of typical PET and

MRI studies, respectively. The different amounts of noise in L, introduced by the variable SD

Gaussian noise, aimed at investigating the performance of the correction algorithm in PET

images of variable statistical quality.

The mean intensity in the discs inside the container was calculated before and after PVE

correction in each one of the ten L images and then compared with actual values in H. In

practice, ROIs delineating discs in L were obtained automatically by copying the masks of

exact discs in H. The mean intensity in the discs of L images was then calculated inside

these exact ROIs. These results were also compared with those obtained by applying the RSF

method (Rousset et al 1998) often considered as the reference numerical approach (Frouin et al

2002, Quarantelli et al 2004) for PVE correction in emission tomography.

The robustness of the developed algorithm to spatial misalignment between the H and L

images was also studied by introducing artificial displacements of L with regards to H. A set of

20 configurations was created, namely 1, 2 and 3 pixels (each pixel 1 mm of size) translation

errors in the four directions (up, down, left, right), 1, 2 and 3 degrees of rotations clockwise

and anticlockwise, and finally, two scaling errors of 99% and 101%. The L image with 6 SD

Gaussian noise was considered for this specific investigation. The error in intensity recovery

was calculated in the 11 discs for each of the 20 configurations of misalignment produced,

after applying either the RSF PVE correction or our wavelet-based method.

The synthetic images were also used to assess the proposed methodology in cases where

image contents no longer correlate. As already mentioned, one of the mandatory prerequisites

to the application of the correction method proposed in this paper is the similarity of tissues

in the images we are dealing with. For this purpose, and without altering the low-resolution

image, we modified the synthetic ‘CT’ image to create two grossly unfavourable configurations.

In the first one, the horizontal series of five discs was completely removed from the synthetic

‘CT’ image (figure 2(a)), and in the second one (figure 2(c)) the intensity of the first disc in

this same series was set to 20 (cold intensity) instead of 70 (hot intensity, as in the ‘PET’

image).

Finally, simulated images were also included in our study. They consisted of a simplified

numerical version (figure 3(a)) of the physical IEC phantom (IEC Publication 61675-1 1998).

This phantom consists of a 20 cm diameter by 20 cm long cylinder, containing six spheres of

37 mm, 28 mm, 22 mm, 17 mm, 13 mm and 10 mm in diameter. The numerical version of this

phantom was produced as a set of 64 contiguous planes of 64 × 64 square pixels of 4 mm ×
4 mm in size. This phantom was subsequently combined with a Monte Carlo based simulation

of the Philips Allegro PET scanner using GATE (Lamare et al 2006). A total of 60 million

coincidences were simulated considering a sphere/cylinder activity concentration ratio of 5/1.

Images were subsequently reconstructed using the OPLEM algorithm (11 iterations) (Reader

et al 2002). The high-resolution image serving for PVE correction was the numerical phantom

in which values were arbitrarily set to 1000 for the background, 2000 for the cylindrical

container and 3000 for the spheres, leading to a 1.5 sphere/cylinder intensity ratio. These

realistic ratios in the numerical phantom and in the simulated PET image were chosen in order
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Synthetic images with no tissue correlation between high- and low-resolution images;

only the high-resolution image is altered. (a) First configuration, without horizontal discs in the

high-resolution image, and (b) corresponding PVE-corrected low-resolution image. (c) Second

configuration, with contrast modified in the first horizontal disc only, and (d) corresponding PVE-

corrected low-resolution image. A local application of the proposed algorithm is shown in (e),

with the region of interest surrounding the disc to be corrected, and (f) the whole image after PVE

correction demonstrating that only the part inside the specified region of interest is PVE corrected.

to investigate the behaviour of the developed PVE correction methodology in more realistic

conditions than the synthetic images.

2.3.2. Quantitative and qualitative assessment of the developed methodology on clinical

images. In order to demonstrate the use of the developed algorithm in the clinical context,

the technique was applied on two different sets of patients’ images. The first one consisted

of a whole-body FDG PET and corresponding CT images figure 4 acquired on a lymphoma

patient using a dedicated combined PET/CT scanner (GE Discovery LS), while the second

dataset consisted of a FDG brain PET and corresponding T1-weighted MRI images acquired

during pre-surgical evaluation of refractory epilepsy figure 5. The MRI and PET cerebral
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(a) (b)

Figure 3. Simulated numerical image of the IEC image quality phantom: (a) uncorrected and (b)

PVE corrected.

(a)

(c)

(b)

Figure 4. Clinical PET/CT patient study of the thorax acquired on a combined PET/CT scanner.

(a) Original emission PET FDG image. (b) Corresponding CT image at the same anatomical

location (identical slice level). (c) FDG PET after PVE correction.

images were acquired separately and spatially co-registered by using mutual information

maximization (Wells et al 1996) and affine transformation (rotation, translation, scaling).
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(a) (b) (c)

Figure 5. (a) Transaxial brain PET image obtained with FDG in an epilepsy follow-up study.

(b) Corresponding MRI slice (the skull has been removed). (c) Same transaxial plane as in (a),

here shown after PVE correction by using the developed wavelet-based multiresolution analysis

algorithm.

Apart from the qualitative assessment of the corrected images, a ROI analysis was also

performed to quantify the impact of the PVE correction. Different regions were drawn

in both the original and corrected whole-body PET images, namely four circular ROIs of

30 mm in diameter placed at the middle of the right lung corresponding to a normal area with

homogeneous intensity (ROIlung), two circular ROIs of 20 mm in diameter inside the heart in

a normal but visually inhomogeneous area (ROIheart) and a ROI surrounding the lesion in left

lung (ROIlesion, size 20 mm × 8 mm). A similar quantitative investigation was performed in the

FDG brain PET, in which grey matter and white matter intensities were calculated before and

after PVE correction. As a first step, grey and white matters were delineated automatically in

the T1-weighted MRI using the SPM software (Ashburner and Friston 2000), and in a second

step the two obtained segmented areas were superimposed on the PET image. They both

served as ROIs in which mean intensities were calculated.

3. Results

Figure 1(b) shows an example of the synthetic image L used to assess the developed

methodology. The corresponding PVE-corrected image of L is given in figure 1(c), where it

can be noted that, aside from quantitative considerations, edges are visually enhanced. Figure 6

illustrates the PVE correction in a semi-quantitative fashion. Profiles across the five horizontal

discs in uncorrected and corrected L images along with the related wavelet coefficients built

from the H image and representing the correction values are presented. In the profile presented

in figure 6(a), one can note that the discs are represented by five coarse Gaussian shapes, the

last being so attenuated that it is hardly visible. The corresponding profile in figure 6(b) shows

that the correction required for this disc is the most significant among the five discs, leading

at the end to equal corrected values as demonstrated by figure 6(c). As a consequence, the

process does not only enhance the edges of objects but also increases the global intensity level

when needed, especially for smaller objects.

The global recovery of intensity in the low-resolution synthetic images, considering the

ten different levels of image noise described in section 2.3.1, is represented in figure 7, where

results concerning tissue-fraction and spillover effects are separated in figures 7(a) and 7(b),

respectively. As figure 7(a) demonstrates, the intensity level in the five discs with diminishing

sizes in the uncorrected L images was found to dramatically decrease clearly demonstrating

the tissue-fraction effects. For example, the intensity in disc 1 (30 mm diameter) and disc 5
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Figure 6. A semi-quantitative assessment of the results obtained from the application of the

developed PVE methodology on the synthetic images (considering the L image with 5-standard-

deviation Gaussian noise). A ‘plot profile’ is generated along a line crossing the five horizontal

discs, in the uncorrected image (a), in the wavelet-based correction image (b) and in the corrected

image which is the pixel-to-pixel addition of the first two (c).

(5 mm diameter) decreased from 70 to 67.2 (−4.0%) and 56.7 (−19.0%), respectively.

The spillover effect is illustrated by the six vertical discs, whose intensities were either

underestimated or overestimated depending on their initial signal-to-background (S/B) ratios

(figure 7(b)). For example, the intensity in disc 6 (10 mm in diameter, initial S/B = 1.4)
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(a) (b)

Figure 7. Quantitative performance assessment of the PVE correction. The results from the L

synthetic images of the ten different noise levels considered are summarized in this figure, namely

(a) mean intensity recovery in the five discs of diminishing sizes, with the errors bars representing

the standard deviation in the mean taking into account the ten different noise levels considered

(the actual intensity is 70), (b) mean intensity in the six discs of decreasing intensities (the actual

values are 70, 60, 40, 30, 20 and 10 for discs 6–11, respectively).

decreased by 11.4% and the intensity in disc 11 (10 mm in diameter, initial S/B = 0.2)

increased by 158.0% (from 10 to 25.8). Following the application of the developed algorithm,

both phenomena were corrected for as also illustrated in figure 7. It is however of significance

to observe the dependence of the correction upon the choice of the filter. In figure 8, for

example, the results of the correction are shown for the 11 discs simulating the tissue-fraction

effect and spillover, according to the four filters described in section 2.1 and the appendix.

For this purpose, we call recovery error the difference between the expected disc intensity

(for example, 70 in the discs 1–5) and the intensity in the same disc after PVE correction.

A perfect PVE correction would then lead to a recovery error equal to 0. It is clear that the

bicubic spline filter and the 5 × 5 linear filter perform better than the other two. For discs 1–5,

the percentage of recovery error was less than 1% for these two filters, while the low-scale

filter led to error greater than 4%. For discs 9–11, the percentage of recovery error exceeded

20% with this low-scale filter. According to these results, the bicubic spline filter or the

5 × 5 linear filter should be preferred. Consequently, all results presented in this paper were

obtained with the bicubic spline filter.

The good noise characteristics of the developed algorithm are shown in figure 9 where the

percentage of correction error is plotted against the different L images considering variable

noise levels. As far as tissue-fraction effects are considered (figure 9(a)), a negligible

overestimation error was found, globally increasing with respect to the amount of noise.

However, errors never exceeded 1% in the set of images considered. Concerning the spillover,

the correction slightly underestimated the true values, with an error up to 4% in high noise

conditions figure 9(b). Finally, the comparison with the RSF method is given in figure 10. The

graphs show that the two methods have very similar behaviours in correcting for both tissue-

fraction effects (discs 1–5) and spillover (discs 6–11) since the two graphic representations

almost perfectly overlap. However, a closer comparison reveals a slight difference in favour of

the wavelet method. For the discs 4 and 5, which are highly subjected to tissue-fraction effect

on account of their small sizes, the errors in intensity recovery are, respectively, 0.07% and

0.33% for the wavelet approach against 0.34% and 0.92% for the RSF method. The difference

is more significant when considering the disc 11 which undergoes substantial spill-in from

the surrounding area: 0.47% of error for the proposed method against 4.27% for the RSF

approach.
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Figure 8. Influence of the filter used in the ‘à trous’ algorithm on the percentage of recovery

error. Results are presented for the 11 discs of the synthetic images, dedicated to the study of

tissue-fraction effects (discs 1–5) and spillover (discs 6–11). Values are mean percentages obtained

from all ten different noise level synthetic images.

Figure 11 summarizes the results on the effects of spatial registration errors, demonstrating

that the developed algorithm behaves similarly to the RSF method. Both methods gave

satisfactory PVE correction of tissue-fraction effects (discs 1–5). The correction of PVE

in discs simulating spillover seemed to be more dependant upon co-registration than the

correction of tissue-fraction effects (discs 6–11). However, as figure 11 demonstrates the

developed algorithm performed better in correcting spillover effects than the RSF method,

since, in some cases, the latter led to errors exceeding 100% for discs 10 and 11.

The effects of grossly unfavourable configurations for the methodology described in this

work, where tissues greatly differ between high- and low-resolution images, are demonstrated

in figure 2. The image in figure 2(a) corresponds to the case where horizontal discs are erased

in the high-resolution image. As a result, in the corresponding corrected image figure 2(b)

vertical discs are PVE corrected as is the contour of the container, but the horizontal series

of discs stays unmodified since no corresponding information exists in the high-resolution
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(a) (b)

Figure 9. Robustness of the wavelet-based PVE correction according to noise. (a) Error percentage

of intensity recovery in the five discs of decreasing sizes, and (b) error percentage of intensity

recovery in the six discs of decreasing intensities.

Figure 10. Comparison of the wavelet-based PVE correction with the RSF approach of Rousset

et al, presented in terms of percentage of recovery error. Results are mean values obtained in the

set of ten L images with different levels of noise. For the sake of clarity, the standard deviations

(error bars) are presented for the wavelet-based method only.



A multiresolution image based approach for correction of partial volume effects in emission tomography 15

Figure 11. Robustness of the correction according to the alignment accuracy of the images.

Twenty different configurations were tested (12 translation movements, 6 rotation movements and

2 inadequate scalings). For each disc, the value presented is the mean error of intensity recovery

obtained in the set of 20 configurations considered.

image. In terms of quantitative accuracy, there has been no alteration in the values of the

horizontal spheres independently of their sizes. Therefore, the complete lack of a given tissue

in the high-resolution image does not modify the corresponding part in the low-resolution

image. The image in figure 2(c) relates to the second case where the intensity in an isolated

disc is altered compared to the other discs (‘cold spot’ rather than a ‘hot spot’). This leads

to a local artefact in the corrected image corresponding to the limits of the ‘cold sphere’ in

the high-resolution image, mainly due to a local inverse contrast in the high-resolution image

compared to the same area in the low-resolution image (figure 2(d)). The quantitative errors

are also local to the visual artefact with values not altered in the rest of the sphere.

The transaxial slice of the reconstructed PET image of the numerical IEC phantom

containing all the lesions is shown in figure 3(a). The corresponding PVE-corrected image

is given in figure 3(b), while the quantitative results (an expected ratio between spheres and

background of 5/1, irrespective of lesion size) are presented in figure 12. As this latter figure

demonstrates, although both correction methods lead to an improvement in the sphere/cylinder

ratios, the wavelet-based correction performed better in all spheres, particularly for the smallest

ones. For example, the ratios for the 13 mm and 10 mm diameter spheres were improved from

2.19 to 5.93 and from 2.03 to 5.96, respectively, using the wavelet-based algorithm, against

9.08 and 9.80 with the RSF method.

Finally, figures 4(c) and 5(c) clearly demonstrate the visual image quality improvement

achieved in both oncology and brain clinical applications, permitted by the generation of PVE-

corrected images using the developed algorithm. Aside from these visual improvements, ROI

analyses were performed to get a quantitative insight of the correction in clinical images. In the

whole-body PET image and before PVE correction, the average intensities in ROIlung, ROIheart

and ROIlesion were 35.1, 245.2 and 109.2, respectively. After correction with the proposed

multiresolution method, these mean intensities changed to 36.4 (+3.7%), 240.0 (−2.1%) and

129.2 (+18.3%), respectively. This led to an increase of lesion-to-lung ratio of 16.1%. In the

brain PET image, the mean intensity in white matter was 113.8 before correction and 90.7

after PVE correction. In the grey matter, the values were 126.6 before correction and 162.3

after correction, representing a 28.2% increase.
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Figure 12. Sphere-to-background ratio in each of the different diameter spheres in the transaxial

reconstructed slice of the simulated IEC phantom, before PVE correction and after PVE correction

by either the RSF method or the developed wavelet-based algorithm. Expected ratios are equal

to 5.

4. Discussion

The development of spatial co-registration algorithms in the last decade has allowed the

automated and reliable superimposition of multimodality images in a day-to-day practice, in

as different domains as neurology or cardiology. Moreover, since the advent of combined

PET/CT and more recently SPECT/CT scanners, there has been a widespread acceptance

of this new technology. This development has lead to easier and direct superimposition of

functional and anatomical images (Vogel et al 2004) for oncology applications. Consequently,

the use of anatomical data has naturally become one of the keys in addressing the problem of

partial volume effects in emission tomography. However, the current PVE correction methods

focus mainly on cerebral imaging, while PVE remains a major problem in other applications

notably in oncology and whole-body studies. Actually, the size of tumours is often close to

the PSF of PET scanners and consequently they are significantly exposed to PVE (Soret et al

2001). In this case, the activity and the dimension of tumours, which are critical parameters

in quantitative accuracy for applications such as response to therapy or radiotherapy treatment

planning (Caldwell et al 2003), become difficult to assess.

As previously stated, most of the different methods of correction that have been published

till now suffer from the need to perform a segmentation of the anatomical information of

interest and their subsequent specificity to brain imaging, with very few procedures having

been tested on other organs. In addition, the vast majority of developed algorithms focus on the

recuperation of accurate activity concentrations and not on yielding PVE-corrected images.

The methodology developed by Rousset et al (1998) and referred to throughout this paper as

the RSF method remains indeed the most widely used approach because it is straightforward

to implement and it only requires the knowledge of the PSF. Like many other approaches it

however also needs the segmentation of anatomical structures, which may become tedious and

time consuming when no automatic algorithm is available. It is important as well to underline

that this algorithm needs the ROIs to be accurately delineated (Frouin et al 2002, Zaidi et al
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2005) which may be uncertain in the case of manual segmentation such as may be the case in

whole-body PET.

In this paper, a novel approach aiming at overcoming these limitations was proposed.

The general concept of the technique is a mutual multiresolution analysis of functional and

anatomical images that are supposed to be correctly co-registered. During the process, the

details in the high-resolution image are automatically extracted, altered according to a model

and introduced in the PET image by using a simple pixel-to-pixel addition. The correction

image containing these modified details is built from wavelet coefficients and consequently

has a zero mean. As a result, the algorithm adjusts the intensity in boundaries of the organs

and greatly enhances the smallest parts like lesions or tumours, but at the same time it hardly

modifies the intensity in large and homogeneous structures.

The performance of the developed algorithm was assessed through the use of synthetic and

simulated images in direct comparison with the most popular PVE correction methodology

developed by Rousset et al in the first instance for brain imaging applications. The data

obtained from the use of synthetic images demonstrated the correction ability of both aspects

of PVE, that is to say tissue-fraction effects and spillover, with as good accuracy as the RSF

method. In addition to the quantitatively accurate results, the developed methodology allowed

the derivation of enhanced images. One may argue that the synthetic high-resolution image

H had ideal properties since the L images were derived from it. Actually, the intensity in the

different parts of H was rigorously the same as that we wanted to retrieve in L. However, the

simple model that we defined between the wavelet coefficients of L and H allowed us to obtain

similar corrected values in L by flipping the contrast in H, illustrating the robustness of the

model against the nature of the high-resolution image. Similarly, good results were obtained

using simulated PET images of the IEC phantom, considering the presence of lesions from

10 mm to 40 mm in diameter, with the developed methodology leading to a larger improvement

in comparison to the RSF method, particularly for smaller lesions. Finally, the improvement

that can be derived from the developed technique in the clinical setting was demonstrated

by the enhanced PVE-corrected PET images produced as a result of the developed algorithm

considering both brain and oncology applications. Such enhanced images may allow a more

accurate lesion delineation providing solutions in clinical PET applications of increasing

importance such as response to therapy studies and use for radiotherapy treatment planning.

In the whole-body PET image, indeed, the improved visual delineation of the lesion came

with an increase of intensity leading to a 16% increase of lesion-to-lung ratio. As far as brain

PET is considered, the PVE correction induced compensation for both spill-in and spillover

effects. The intensity in the white matter decreased in the benefit of grey matter acting as a

redistribution of activity from an overestimated area to an underestimated one. The accuracy

and the precision of these quantitative results are difficult to evaluate but the global behaviour

of the correction is in accordance with an expected ‘inverse’ cross-contamination.

However, the improvement in grey matter uptake seems to be lower than that obtained in

simulated images as described by Quarantelli et al (2004). Even if the comparison of results

from real and simulated images is questionable, this point justifies some discussion. First,

the proposed PVE correction operates in 2D since the wavelet transform that we use (the

‘à trous’ algorithm) is restricted to 2D images. This is a notable weakness but a potential

solution would consist in taking into account the 3D nature of PET images, for example by

performing the ‘à trous’ algorithm in coronal and sagittal slices in addition to the transverse

plane. In the same way, the 16% increase of lesion-to-lung ratio in the whole-body PET

image may appear moderate. Potential improvement in this domain could be foreseen by

performing the multiresolution analysis in a limited ROI surrounding the lesion instead of

the whole image containing very different tissues and organs. The simple and global linear



18 N Boussion et al

model that was presented in this study (allowing us to build lacking details of the PET image

from the details of the CT or MRI images, see section 2.2) may indeed not be adapted to very

extended regions presenting with heterogeneous structures, typically like abdominal images

where clearly certain structures such as intestines appear differently in CT and PET. Therefore,

although a simple and global model may be better adapted to a visual improvement alone, a

quantitative study under clinical imaging conditions could potentially benefit from considering

a more restricted field of view. In support of this statement, it is worth considering the results

that were obtained in the second unfavourable configuration of synthetic images (figures 2(c)

and (d)). In this latter case, an intense local artefact was observed after applying our algorithm,

thus leading to a corrupted correction. However, if we operate our method in a limited area

surrounding the given disc as demonstrated in figure 2(e), the algorithm results in the expected

partial volume correction for the specified region of interest (figure 2(f)). Obviously, the

remainder of the image is not PVE corrected. It is also important to note that the same kind

of artefact as that shown in figure 2(d) will appear in a corrected PET image, considering the

use of the global linear model, when a given tissue is present in the CT and not in the PET.

A potential solution to this particular case will be the use of a restricted field of view for the

application of the global model in combination with the introduction of a measure of similarity

between the wavelet components of the high- and low-resolution images within the particular

ROI. However, one must keep in mind that the aim is to correct for PVE in a part of the PET

image corresponding to an actual tissue of interest. If there is no structure of interest present

in PET, there is no associated interest in PVE correction.

Finally, only circular and homogeneous lesions were tested in the synthetic and simulated

images that were presented in this paper. In clinical practice concerning whole-body imaging

for example, lesions can obviously be of different shape and have non-uniform activity

concentration. Here again, a more sophisticated model rather than the linear model used

in the implemented algorithm in combination with its application in a more limited region

may be more appropriate.

5. Conclusion

In this paper, a novel technique to correct emission tomography for partial volume effects

using multiresolution analysis has been presented. The advantages of this approach are three-

fold and can be summarized as follows. According to various tests on synthetic images, the

efficiency of the correction proved to be as good as a reference method based on regional

spread functions. On the other hand, the wavelet-based correction leads to better results in

simulated images. In addition, and contrary to the RSF method, the process allows enhancing

the images themselves to perform further processing, without any time-consuming step of

ROI delineation. Finally, images of any kind of tissues, organs, functions and metabolisms

are likely to be corrected, provided an anatomical image of the same object is available and

correctly aligned. A simple linear and global link between the wavelet coefficients of the

emission image and those of the anatomical one has been defined in this study. Under certain

imaging conditions, a local model, defining only a limited area around the tissue of interest,

may be more appropriate and will be considered in future developments.
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Appendix

5 × 5 bicubic spline :













1/256 1/64 3/128 1/64 1/256

1/64 1/16 3/32 1/16 1/64

3/128 3/32 9/64 3/32 3/128

1/64 1/16 3/32 1/16 1/64

1/256 1/64 3/128 1/64 1/256













.

5 × 5 linear interpolation :













1/100 1/50 3/25 1/50 1/100

1/50 1/25 2/25 1/25 1/50

1/25 2/25 4/25 2/25 1/25

1/50 1/25 2/25 1/25 1/50

1/100 1/50 1/25 1/25 1/100













.

3 × 3 linear interpolation :





1/16 1/8 1/16

1/8 1/4 1/8

1/16 1/8 1/16



 .

3 × 3 low scale :





1/172 1/86 1/172

1/86 160/172 1/86

1/172 1/86 1/172



 .
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Abstract

This paper deals with a recent statistical model based on fuzzy Markov random chains for image segmentation, in the context of sta-
tionary and non-stationary data. On one hand, fuzzy scheme takes into account discrete and continuous classes through the modeling of
hidden data imprecision and on the other hand, Markovian Bayesian scheme models the uncertainty on the observed data. A non-sta-
tionary fuzzy Markov chain model is proposed in an unsupervised way, based on a recent Markov triplet approach. The method is com-
pared with the stationary fuzzy Markovian chain model. Both stationary and non-stationary methods are enriched with a parameterized
joint density, which governs the attractiveness of the neighbored states. Segmentation task is processed with Bayesian tools, such as the
well known MPM (Mode of Posterior Marginals) criterion. To validate both models, we perform and compare the segmentation on syn-
thetic images and raw optical patterns which present diffuse structures.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Fuzzy Markov chain; Triplet Markov chain; Non-stationary chain; Multispectral image segmentation

1. Introduction

The fuzzy segmentation problem consists of estimating
the hidden realization x = (xs)16s6N, for a given set of
D observations Y ¼ y ¼ fys 2 R

Dg, where xs = (e1(s),
e2(s), . . ., eK(s)). Each component ei(s) represents the contri-
bution of each classxi in a finite discrete setX = {x1, . . .,xK}
of K hard classes. The fuzzy belonging of each pixel respects
the normalization condition: e1(s) + e2(s) + � � � + eK(s) = 1.
In the context of two ‘‘hard’’ classes, a set X = {0,1} yields
xs 2 [0, 1]. Then, all values xs 2 [0,1] model the proportion
of the class ‘‘0’’ in the pixel related toXs, whereas 1 � xs cor-
responds to the proportion of the class ‘‘1’’. The distribution
at each random variable Xs is given by a density hs with

respect to a measure m including discrete components (Dirac
functions d0, d1 on {0,1}) and a continuous component (the
Lebesgue measure l on ]0,1[) (Caillol et al., 1993):

m ¼ d0 þ d1 þ l: ð1Þ

The discrete components of m are associated with the hard
classes, whereas the continuous component l is associated
with the fuzzy feature. In this paper, we will consider the
case D = N (mono-spectral context). When X is a Markov
chain called ‘‘fuzzy Markov chain’’ (FMC) and the vari-
able Y is independent conditionally on X, it is possible to
express the joint distribution p(x,y) with respect to a mea-
sure mN � lN, as follows:

pðx; yÞ ¼ pðx1Þpðx2jx1Þ � � � pðxN jxN�1Þpðy1jx1Þ � � � pðyN jxNÞ:

ð2Þ

In particular, the posterior field X conditional on Y is Mar-
kovian. Thus, one can process the posterior realizations of
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the hidden variable X, called Hidden Fuzzy Markov Chain
(HFMC). Generally the distribution p(x,y) depends on un-
known parameter h = (hX,hY) where the prior parameters
hX define the prior density of the Markov chain and the
parameters hY define the distribution parameters of the dri-
ven data conditional on X. Algorithms like ‘‘Expectation
Maximization’’ (EM) (McLachlan and Krishnan, 1997)
or its stochastic version (SEM) (Celeux and Diebolt,
1985) are efficient to estimate the hyper-parameter when
hX does not vary locally, i.e., when the variable X is station-
ary. Recent studies have focused on unsupervised segmen-
tation of Markov chain in the fuzzy context (Avrachenkov
and Sanchez, 2002; Mohammed and Gader, 2000; Carin-
cotte et al., 2004). In particular, we derive hX from the prior
joint density p(xs,xs+1) at each neighbored sites. We pres-
ent here a new model based on a parameterized joint den-
sity, which governs locally the attractiveness between two
neighbored states. Unfortunately, when hX does not vary
locally, these approaches are sometimes badly adapted.
Thus one has to introduce a new fuzzy hidden Markov
chain model which represents non-stationary data. In this
work we model the non-stationarity by a third auxiliary
process U, which governs the changing values of hX in
the hidden process. A such method has been successfully
applied in the hard context (Hughes et al., 1999; Lanchan-
tin and Pieczynski, 2004), and we propose in this article to
extend non-stationary Markov chain to the fuzzy case. The
solution proposed in (Lanchantin and Pieczynski, 2004) is
derived from a recent triplet Markov chain model (Pieczyn-
ski, 2002) which can be described in the following manner:
the pairwise process Z = (X,U) is assumed to be Markov-
ian, X and U separately are not necessary Markovian. The
triplet process T = (X,U,Y) is then a particular triplet
Markov chain. In Section 2, we present the stationary fuzzy
Markov chain (SFMC) with and without a parameterized
joint density (P-SFMC versus NP-SFMC). We briefly
introduce the stationary fuzzy Markov field (SFMF) (Sal-
zenstein and Pieczynski, 1997), which is used in the exper-
imental part to enrich the comparisons. In the next
Section3 we generalize the non-stationary model of Lanch-
antin and Pieczynski (2004) presenting a new fuzzy model
in the context of non-stationary Markov chain (NSFMC)
with a possibly joint parameterized density (P-NSFMC
versus NP-NSFMC). We describe the noise model used
(Section 4), the MPM segmentation procedure applied to
the S/NS-FMC methods (Section 5) and the associated
hyper-parameter estimation step (Section 6). Finally we
show the efficiency of the new method though synthetic
images (Section 7) and real images (Section 8).

2. The stationary fuzzy Markov chain (SFMC)

Let us consider now a Markov chain X = (xs)16s6N with
continuous statements, i.e., Xs 2 [0, 1]. To define the distri-
bution p(x) of the variable X, we need the density p(x1) of
the initial distribution, and the transition densities
p(xsjxs�1)16s6N:

pðx1; x2; . . . ; xN Þ ¼ pðx1Þ � pðx2jx1Þ � � � pðxN jxN�1Þ: ð3Þ

When the chain is stationary, all prior distributions can be
deduced from a joint density. The prior joint density
p(xs,xs+1) is defined on the pairwise (xs,xs+1) 2 [0,1]2.
According to a measure m � m, the normalization condition
yields
Z 1

0

Z 1

0

pðu; vÞdðm� mÞðu; vÞ ¼ 1: ð4Þ

We propose a general model to define it

pðe1; e2Þ ¼ a � /ðe1; e2Þ þ b with /ðe1; e2Þ

¼ /ðe2; e1Þ; ða; bÞ 2 R2: ð5Þ

The function /(e1, e2), is applied when at least one label is
fuzzy, i.e., e1 or e1 2 ]0, 1[. If both labels are hard, we note
p(0,0) = p00, p(1,1) = p11, p(0,1) = p01, p(1,0) = p10. We
model a parameterized function / as follows:

/ðe1; e2Þ ¼ ð1� je1 � e2jÞ
r

r 2 R: ð6Þ

When r increases, the probability of having two similar
neighbored pixels increases: thus, the parameter r governs
the homogeneity of the image, i.e., the attractiveness be-
tween the different states. Moreover, the limit conditions
that we impose yield

pð0; 1Þ ¼ pð1; 0Þ ¼ b ¼ p01 ¼ p10: ð7Þ

Applying Eq. (4) yields to the general condition:

pð0; 0Þ þ pð1; 1Þ þ pð0; 1Þ þ pð1; 0Þ þ 2 �

Z

�0;1½

pð0; uÞdu

þ 2 �

Z

�0;1½

pð1; uÞduþ

Z

�0;1½

Z

�0;1½

pðu; vÞdudv ¼ 1: ð8Þ

This gives a relationship between all prior parameters
(p00,p11,p01,p10,a,b). When the prior joint density is de-
fined by the function (6), we compute (8) using a quantiza-
tion of the interval [0,1] into M equidistant values:
fe0 ¼ 0; e1 ¼

1
M
. . . ; ei ¼

i
M
; . . . ; eM ¼ 1g. Then, we derive

the initial density p(x1), which corresponds to the marginal
distribution (9)

pðxsÞ ¼

Z 1

0

pðxs; eÞdmðeÞ

¼ pðxs; 0Þ þ pðxs; 1Þ þ

Z

�0;1½

pðxs; eÞde: ð9Þ

In this section we briefly described a new fuzzy Markov
random chain model based on a parameterized joint den-
sity associated to the transition probabilities. The station-
ary fuzzy chain associated with a non-parameterized
density is named NP-SFMC. The stationary fuzzy chain
associated with a parameterized density is named P-SFMC.
It is also possible to define in the same way, the stationary
Markovian random field (SFMF) (Salzenstein and Piec-
zynski, 1997) X 2 [0,1]N, for which the distribution pX with
respect to a measure mN is given by Salzenstein and Pieczyn-
ski (1997)
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pX ðxÞ ¼
1

Z
� e�U f ðxÞ; ð10Þ

where the fuzzy energy Uf is a sum of functions UC defined
on neighbored sites:

U fðxÞ ¼
X

ðxs;xtÞ2C

UCðxs; xtÞ; ð11Þ

where (xs,xt) 2 [0,1]2 represents a pairwise of neighbored
pixels (Geman and Geman, 1984) in the image (vertical,
diagonal or horizontal neighborhood), and the associated
functions UC defined on [0,1]2. Let us notice, the SFMF
procedure is time consuming: on has to compute several
realizations of X according to its posterior distribution,
using a Gibbs sampling (Geman and Geman, 1984). In
the opposite way, the Markov chain model provides an effi-
cient tool: one can compute directly the posterior density
using the forward/backward procedure (Devijver, 1985).
In order to use the HMC procedure, it is possible to extract
the 2D signal as mono-dimensional data using the Hilbert-
Peano path. This technique preserves the neighborhood
information. Let us describe now a non-stationary fuzzy
Markov chain model.

3. The non-stationary fuzzy Markov chain (NSFMC)

Authors (Lanchantin and Pieczynski, 2004) propose to
add to an initial process X an additional process U,
which takes its values in a finite set K = {k1,k2, . . .,kK}.
The couple Z = (X,U) = {(x1,u1), (x2,u2), . . ., (xN,uN)} is
supposed to be a stationary Markov chain, where X is an
interested non-stationary process, and U models auxiliary
states:

pðzs ¼ ðxs; usÞjzs�1; zs�2; . . . ; z1Þ ¼ pðzsjzs�1Þ: ð12Þ

In (Lanchantin and Pieczynski, 2004), X and U take their
values into discrete classes. We propose to generalize this
model by labeling each component Xs into a continuous
set [0, 1]. The intermediate variable U takes its values into
a finite set, in order to define stationary partitions of the
variable X. The chain Z is defined by a prior joint density

pðzs; zsþ1Þ ¼ pðxs; xsþ1; us; usþ1Þ;

according to the measure mþ
PK

n¼1dkn
� �

� mþ
PK

n¼1dkn
� �

,
the initial probability is computed by

P ðX s 2 I s;X sþ1 2 I sþ1;U s ¼ ks;U sþ1 ¼ ksþ1Þ

¼

Z

Is

Z

Isþ1

pð�; g; ks; ksþ1Þdðm� mÞð�; gÞ; ð13Þ

with Is � [0,1] and Is+1 � [0,1]. As in the stationary case, it
is possible to define a parameterized and non-parameter-
ized joint density, provided that the normalization condi-
tion (14) is established:

X

ki

X

kj

Z 1

0

Z 1

0

pð�; g; ki; kjÞdðm� mÞð�; gÞ ¼ 1: ð14Þ

In particular, this condition is written
X

ki

X

kj

P ij ¼ 1; ð15Þ

where
Z 1

0

Z 1

0

gð�; g; ki; kjÞdðm� mÞð�; gÞ ¼ P ½ki; kj� ¼ P ij: ð16Þ

Thus, it is possible to construct a parameterized mode of
p(zs,zs+1) by the means of the parameters pij

00, p
ij

01, p
ij

10, p
ij

11

pð0; 0; ki; kjÞ ¼ p
ij

00; pð0; 1; ki; kjÞ ¼ p
ij

01; ð17Þ

pð1; 0; ki; kjÞ ¼ p
ij

10; pð1; 1; ki; kjÞ ¼ p
ij

11: ð18Þ

When �1 or �2 2 ]0, 1[, let us express aij, bij and the auxiliary
function / defined by (6)

pð�1; �2; ki; kjÞ ¼ aij � /ð�1; �2Þ þ bij: ð19Þ

Moreover, we impose limit conditions (20)

aij � /ð0; 1Þ þ bij ¼ aij � /ð1; 0Þ þ bij ¼ bij ¼ p
ij

01 ¼ p
ij

10: ð20Þ

Finally the neighborhood prior density depends on 4 · K2

parameters pij

00, p
ij

01, p
ij

11. The other parameters pij

10, bij and
aij are computed by the conditions (15), (16), (20). The
non-stationary Markov chain based on a parameterized
joint density will be named P-NSFMC whereas the model
based on a non-parameterized density is named NP-
NSFMC. In this section we introduced a new fuzzy non-
stationary Markov random chain model. We defined the
associated prior joint density, initial and transition proba-
bilities. Let us now describe the segmentation task.

4. Model of the observations in a non-stationary context

The joint process Z = (X,U) being assumed to be Mar-
kovian, the aim of our paper is to process multispectral
data. We observe D realizations (y(1),y(2), . . .,y(D)) of the
random vector Y = (Y(1),Y(2), . . .,Y(D)). They represent
a single scene observed at different wavelengths or from
different sensors. For each field Y(i), the variables
Y ðiÞ ¼ fY

ðiÞ
1 ; Y

ðiÞ
2 ; . . . ; Y

ðiÞ
N g are spatially independent condi-

tionally on Z. One has the following relationships (Lanch-
antin and Pieczynski, 2004):

pðY ðiÞjZÞ ¼
YN

s¼1

pðY ðiÞ
s jZÞ; ð21Þ

pðY ðiÞ
s jZÞ ¼ pðY ðiÞ

s jZsÞ; ð22Þ

pðY ðiÞ
s jZsÞ ¼ pðY ðiÞ

s jX sÞ: ð23Þ

According to the third condition, the data driven parame-
ter are stationary. Hence the parameter hX varies locally,
whereas the parameter hY stays global. The distribution
fxsðysÞ of ys according to Xs = es 2 [0,1] is a Gaussian mul-
tivariate density (Salzenstein and Collet, 2006)

fxsðysÞ ¼
1

2pD=2ðdetCesÞ
1=2

exp
�1
2 ðys�les Þ

tC�1
es

ðys�les Þð Þ ð24Þ
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where les
¼ ½lð1Þ

es
; . . . ; lðDÞ

es
�t and Ces 2 R

D � RD, respectively,
define a mean vector and variance–covariance matrix, at
each fuzzy/hard site. Let be (l0,l1) and (C0,C1) the mean
vectors and variance–covariance matrix related to the hard
classes ‘‘0’’ and ‘‘1’’. For each fuzzy site Xs = es, the related
mean vector and covariance matrix les

and Ces are written

les
¼ ð1� esÞ � l0 þ es � l1; ð25Þ

Ces ¼ ð1� esÞ
2
� C0 þ e2s � C1: ð26Þ

5. Segmentation procedure

5.1. Segmentation of the SFMC

Given the set of observations Y = y, we wish to estimate
one realization X = x 2 [0,1]N. It is possible to adapt the
MPM criterion (Maroquin et al., 1987) to the fuzzy context
(Salzenstein and Pieczynski, 1997). For a such approach,
the final decision process is performed as following: given
a realization Y = y, the bayesian decision bds such that
bdsðY ÞÞ ¼ cX s , will involve minimizing a conditional expec-
tation (27) at each location s, in order to obtain an optimal
value of Xs

x̂opts ¼ arg min
bX s¼x̂s

E½LsðX s;cX sÞjY ¼ y�: ð27Þ

The loss function L�
s ðbxs ; xsÞmodels the severity of attributing

the value bxs instead of a true one xs to the pixel. Although
there are numerous possibilities in the choice of the loss
function, the ‘absolute distance’ Lsðxs; x̂sÞ ¼ jxs � x̂sj, gives
efficient results for segmentation tasks. For a stationary var-
iable X, the error rate is approximated by

E½LsðX s; bX sÞ� ’
1

N

Xs¼N

s¼1

Lsðxs; x̂sÞ: ð28Þ

The calculus of (27) requires the knowledge of the posterior
distribution pYX s

at each Xs:

E½LsðX s;cX sÞjy� ¼ p
y
X s
ð0Þ � Lsð0;cX sÞ þ p

y
X s
ð1ÞLsð1;cX sÞ

þ

Z

�0;1½

p
y
X s
ðtÞLsðt;cX sÞdt: ð29Þ

Segmentation is performed by affecting to each pixel a
value cX s 2 ½0; 1� which minimizes (29). When the hidden
process X is a Markov chain, one can compute the
posterior density using the forward/backward procedure
(Devijver, 1985) in the fuzzy context. The forward and
backward densities as(xs),bs(xs) are defined by

asðxsÞ ¼ pðxs; y1; . . . ; ysÞ; ð30Þ

bsðxsÞ ¼
pðysþ1; . . . ; yN jxsÞ

pðysþ1; . . . ; yN jy1; . . . ; ysÞ
: ð31Þ

The recurrence formula providing these quantities, are
analogous to the hard segmentation processing

asðxsÞ / pðysjxsÞ

Z 1

0

as�1ðuÞ � pðxsjuÞdmðuÞ; ð32Þ

bsðxsÞ /

Z 1

0

bsþ1ðuÞpðysþ1juÞpðujxsÞdmðuÞ: ð33Þ

The relationship asðeÞ � bsðeÞ ¼ pYX s
gives immediately the

minimization of (29). Moreover, as in the hard context, it
is possible to simulate posterior realizations of the variable
X using the posterior transition pysþ1ðxsþ1jxsÞ and initial
densities pYX s

ðxsÞ i.e., for any (xs,xs+1) 2 [0,1]2:

pYX s
ðxsÞ ¼ asðxsÞ � bsðxsÞ; ð34Þ

pysþ1ðxsþ1jxsÞ ¼
pðxsþ1jxsÞ � pðysþ1jxsþ1Þ � bsþ1ðxsþ1ÞR 1

0
pðxjxsÞpðysþ1jxÞ � bsþ1ðxÞdmðxÞ

: ð35Þ

5.2. Segmentation of the NSFMC

The segmentation problem consists then in estimating a
realization of an hidden process X = x, which is not neces-
sary Markovian, given a set Y = y. In order to estimate the
fuzzy process X, one has to minimize the conditional expec-
tation (27). In order to estimate the hidden auxiliary pro-
cess U, we apply the classic decision task (36)
corresponding to the local ‘‘0–1’’ loss function:

bU opt
s ¼ arg min

bU s¼ûs

P ½U sjY ¼ y�: ð36Þ

Thus, it is necessary to compute the posterior densities
p[XsjY = y] and p[UsjY = y] in order to perform the deci-
sion processes (27) and (36). They correspond to the mar-
ginalization of the distribution p(Zsjy):

pðxsjyÞ ¼
X

K

pðzsjyÞ;

pðusjyÞ ¼

Z 1

0

pðzsjyÞdm;

ð37Þ

Z = (X,U) being a pairwise Markov chain, it is possible to
compute the posterior distribution p(zsjy) by the means of
the forward–backward procedure, extended to the fuzzy
context:

asðzsÞ / pðysjzsÞ
X

k2K

Z 1

0

as�1ðe; kÞ � pðzsje; kÞdmðeÞ; ð38Þ

bsðzsÞ /
X

k2K

Z 1

0

bsþ1ðe; kÞpðysþ1je; kÞpðe; kjzsÞdmðeÞ: ð39Þ

Using the hypothesis related to the observed data, we sim-
plify this procedure in the following manner:

asðzsÞ / pðysjxsÞ
X

k2K

Z 1

0

as�1ðe; kÞ � pðzsjeÞdmðeÞ; ð40Þ

bsðzsÞ /
X

k2K

Z 1

0

bsþ1ðe; kÞpðysþ1jeÞpðe; kjzsÞdmðeÞ: ð41Þ

At each step, we compute the posterior distribution

pðxs; usjyÞ ¼ asðxs; usÞ � bsðxs; usÞ: ð42Þ
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In the same manner as we have seen in Section 5.1, it is pos-
sible to simulate hidden realizations of the variable
Z = (X,U) according to the posterior initial and transition
densities. This allows us to estimate hyper-parameters by
using the well known SEM procedure.

6. Hyper-parameter estimation

We focus in this section on the estimation of the param-
eter h in the context of a non-stationary variable. Actually,
the stationary context is a particular case, for which U

owns one discrete state i.e., CardK = 1. The final segmen-
tation step requires the parameter set h = (hZ,hY) where
the prior parameters hZ define the prior density of the Mar-
kov chain Z, which could be the set of parameters
ðpij

00; p
ij

01; p
ij

10; p
ij

11; aij; bijÞ for the P-SFMC and P-NSFMC
approaches. The parameters hY = ((l0,l1); (r0,r1)) define
the distribution of the data driven conditional on X. For
each posterior realization of the field Z = (X,U), an SEM
estimator (empirical frequencies and moments) is used to
estimate the hyper-parameters. When the sequence h[p]

approaches steady state – for example 1% of the relative
change in the values – we stop the procedure. Let us con-
sider now the problem in estimating hZ and hY separately.

6.1. Data driven parameter estimation

Let us suppose now, we observe a realization (x,y) of the
pairwise (X,Y). In ahard classification the empiricalmoment
estimator ĥY ðX ; Y Þ of hY corresponds to the maximum like-
lihood under conditional Gaussian laws assumption. When
we use a fuzzy classification, it is enough to estimate the
parameters dealing with hard classes. We generalize the
method proposed in (Salzenstein and Pieczynski, 1997)
applying the empirical moments to the hard pixels. Let be
Qp = {s 2 S/Xs = p}, p = 0, 1 the sets of pixels which belong
to the hard classes. Our aim is to estimate the set of parame-
ters hY ¼ ðl0;C0; l1;C1Þ ¼ ðl

ðiÞ
0 ;C

ði;jÞ
0 ; l

ðiÞ
1 ;C

ði;jÞ
1 Þ, where

1 < i, j < D. Applying the empirical moment method on the
hard pixels yields

blðiÞ
p ¼

P
s2Qp

yðiÞs � dðxs; pÞ
P

s2Qp
dðxs; pÞ

; ð43Þ

bCði;jÞ
p ¼

P
s2Qp

ðyðiÞs � blðiÞ
p Þ � ðyðjÞs � blðjÞ

p Þdðxs; pÞ
P

s2Qp
dðxs; pÞ

: ð44Þ

6.2. Prior parameter estimation

Let us consider an hidden chain Z = (X,U) simulated by
its posterior distribution, according to the procedure
described in Section 5.1. The prior parameter hZ corre-
sponds to the initial and transition densities. They can be
deduced from the joint density, as seen in Section 3. We
consider two hypothesis: (i) the joint density is a non-

parameterized density. (ii) It depends on a parameterized
function /.

(i) NP-NSFMC: We compute the empirical M2
· K2

joint probabilities (45) according to different neigh-
borhood configurations

P ½X s 2 I i;X sþ1 2 I j;U s ¼ kp;U sþ1 ¼ kq�

¼

Z

I i

Z

I j

pðes; esþ1; kp; kqÞdðm� mÞes; esþ1Þ ð45Þ

We deduce the joint density from these probabilities.
For instance, when I i ¼

i
M
; iþ1
M

� �
and I j ¼

j

M
; jþ1

M

� �
cor-

responding to a discretization of [0,1]

p �i ¼
i

M
; �j ¼

j

M
; kp; kq

� �
’

1

M2
� P ½X s

2 I i;X sþ1 2 I j;U s ¼ kp;U sþ1 ¼ kq�: ð46Þ

(ii) P-NSFMC: when the joint density is parameterized,
we have to estimate the quantities p

ij

00, p
ij

01, p
ij

11 and
Pij according to the empirical frequencies

p
ij

00 ¼

PN�1
s¼1 1½ðxs;usÞ¼ð0;iÞ;ðxsþ1;usþ1Þ¼ð0;jÞ�

N
; ð47Þ

p
ij

01 ¼

PN�1
s¼1 1½ðxs;usÞ¼ð0;iÞ;ðxsþ1;usþ1Þ¼ð1;jÞ�

N
; ð48Þ

p
ij

11 ¼

PN�1
s¼1 1½ðxs;usÞ¼ð1;iÞ;ðxsþ1;usþ1Þ¼ð1;jÞ�

N
; ð49Þ

P ij ¼

PN�1
s¼1 1½us¼i;usþ1¼j�

N
: ð50Þ

p
ij

01, aij and bij are deduced by conditions (15), (16),
(20).

Fig. 1. (a) A non-stationary fuzzy Markov chain X; (b) its related states

U; (c) its noisy version Y.
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7. Results on synthetic images

We simulated a non-stationary fuzzy Markov chain
on M = 10 discrete fuzzy levels, with two homogeneous
states (CardK = 2) and r = 1. The variables X and U are
represented in Fig. 1a and b. The class ‘‘0’’ (in black) of
U corresponds to an hard-dominating area in X

ðp11
00 ¼ p11

11 ¼ 0:2Þ, where as the class ‘‘1’’ (in white) corre-
sponds to a fuzzy area in X ðp11

00 ¼ p11
11 ¼ 0:05Þ. A noisy ver-

sion is represented in Fig. 1c. We give below the following
corresponding prior and data driven parameters:

p
ij

00 ¼ p
ij

11 ¼
0:2 0

0 0:05

� �
P ij ¼

0:4995 0:005

0:005 0:4995

� �

p
ij

10 ¼ p
ij

01 ¼ bij ¼
0 0

0 0

� �

ðl0; l1Þ ¼ ð120; 142Þ ðr0; r1Þ ¼ ð4; 4Þ:

Fig. 2a and b gives the segmented fields X corresponding to
the non-stationary (CardK = 2) case when one considers

respectively the parameterized (P-NSFMC with r = 1)
and non-parameterized (NP-NSFMC) approaches.
Fig. 2c–e corresponds to the stationary algorithm
(CardK = 1) applied to the image, respectively by the
means of a parameterized (P-SFMC), non-parameterized
(NP-SFMC) fuzzy Markov chain. Another stationary
method used is based on a fuzzy Markov field (SFMF),
briefly presented in Section 2. For the non-stationary ap-
proaches with two states, the segmented field U is repre-
sented in Fig. 3a and b. Moreover, the estimated prior
parameters are indicated in Table 1, where as the noise
parameters for NSFMC, SFMC and SFMF are given,
respectively, in Tables 2 and 3. Finally the error rates com-
puted by (28) are given for all NP/P-(N)SFMC and SFMF
procedures in Table 4. The stationary method based on
FMC or FMF give higher rates of error than the non-sta-
tionary methods. The highest rate is given by the SFMF.

Fig. 2. Segmented images of X. (a) P-NSFMC; (b) NP-NSFMC;

(c) P-SFMC; (d) NP-SFMC; (e) SFMF.

Fig. 3. Segmented images of U. (a) P-NSFMC; (b) NP-NSFMC.

Table 1

Estimated prior parameters for the non-stationary procedures

Parameters P-NSFMC NP-NSFMC

p̂00 0:23 0
0 0:043

� �
0:22 0
0 0:059

� �

p̂11
0:20 0
0 0:05

� �
0:19 0
0 0:07

� �

P̂ ij
0:45 0:0004
0:0004 0:55

� �
0:55 0:0004
0:0003 0:44

� �

Table 2

Estimated data driven parameters for the non-stationary procedures

Parameters P-NSFMC NP-NSFMC

ðl̂0; l̂1Þ (119.99,142.12) (120.10,141.97)

ðr̂0; r̂1Þ (4.07,3.62) (4.1,3.72)

Table 3

Estimated data driven parameters for the stationary procedures

Parameters P-SFMC NP-SFMC SFMF

ðl̂0; l̂1Þ (121.02,141.25) (120.30,141.89) (1119.21,142.09)

ðr̂0; r̂1Þ (4.86,4.10) (4.24,3.76) (3.75,3.83)
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The SFMC are staying competitive but do not provide any
accuracy information concerning the homogeneity of the
image. Actually, the non-stationary procedure estimates
correctly the homogeneous areas (see Fig. 3a and b). Let
us notice the method using a non-parameterized neighbor-
hood density stay competitive facing the parameterized
assumption. Further studies must be performed in order
to measure the influence of the parameter r.

8. Results on real images

We wish to identify different homogeneous regions
inside an image. We processed here our images in the
mono-spectral context. We present in Fig. 4a and b two
images of Oakland typically exhibiting a such situation.

Fig. 4a contains a sea area and the city, which appear to
be inhomogeneous on the picture, noticing that the distri-
bution of this part of the image behaves differently from
the distribution of the sea part. Fig. 4b contains a cloudy
area and a town area. We processed first all images
Fig. 4a and b using a stationary approach. The results
are given in Fig. 4c–f, respectively by the FMC and the
FMF algorithm. These methods do not provide the fine
details and give comparable results. It is then necessary
to take into account the stationary information, initializing
the algorithm with more than two stationary states (K > 2).
The segmented fields X and U are represented, respectively,
in Fig. 5a–d. In particular, the class ‘‘0’’ of U indicates the
high density region i.e., the city part. Our procedure
ensures a convergence of the stationary field towards
K = 2 classes, which suits the initial hypothesis of both
groundtruth models i.e., city/sea areas for Fig. 4a and
city/cloud areas for Fig. 4b. The results given by the hidden
realizations X are less convenient because the method tends
to lose some details, concerning the lower homogeneous
regions. In order to enrich the information providing by
this field, we propose to combine the NP-FMC and NP-
NSFMC approaches into an algorithm as follows:

• (i) Perform the NP-NSFMC method to the observed
data.

• (ii) For each stationary state Ui, i = 1,2, . . .,K, apply a
stationary NP-FMC method. For each state i, the data
corresponding to Uj, j 5 i are processed as missing data:
one has to suppress them in the Hilbert-Peano path
(Salzenstein and Collet, 2006).

Table 4

Rates of error for the stationary and non-stationary procedures

P-SFMC NP-SFMC P-NSFMC NP-NSFMC SFMF

5.85% 6.01% 5.18% 5.35% 6.79%

Fig. 4. (a, b) The observation; (c, d) segmented images using SFMC; (e, f)

segmented images using SFMF.

Fig. 5. Segmented images of Fig. 4a and b, using a non-stationary

method. (a, b) Realizations of X; (c, d) associated U containing two states

K = 2.
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Consequently, we applied the method separately for each
stationary parts of Fig. 4a and b. The segmented data cor-
responding are given in Fig. 6. Although the interpretation
is more delicate, requiring separate graylevels/pictures, the
final results provide more detailed groundtruth.

9. Conclusion

We presented in this paper a new fuzzy Markov chain
model based on a non-stationary approach. On one hand
we modeled the prior parameters of a stationary chain
using a parameterized joint density defined on neighbored
sites. On the other hand, we used an intermediate field U

in order to govern the switching in the distribution of X.
Here the classes in U are discrete while the classes in X

are continuous. The proposed method merges the fuzzy
processing technique and a recent technique that has been
used to describe non-stationary images for hard classifica-

tion. This model is more flexible than the single chain based
procedure, in the following manner: (i) the pairwise (X,U)
is a Markov chain, but X is not necessary Markovian; (ii)
the stationary model is a particular case with one discrete
state in U. The fuzzy context should be better adapted than
the hard approach when the scene owns diffuse structure.
In order to take into account the complexity of multiple
real situations, it worths to extend this model to the
multi-sensors context and non-Gaussian data driven
distributions.
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a b s t r a c t

The display of image fusion is well accepted as a powerful tool in visual image analysis

and comparison. In clinical practice, this is a mandatory step when studying images from a

dual PET/CT scanner. However, the display methods that are implemented on most work-

stations simply show both images side by side, in separate and synchronized windows.

Sometimes images are presented superimposed in a single window, preventing the user

from doing quantitative analysis. In this article a new image fusion scheme is presented,

allowing performing quantitative analysis directly on the fused images.

Methods: The objective is to preserve the functional information provided by PET while incor-

porating details of higher resolution from the CT image. The process relies on a discrete

wavelet-based image merging: both images are decomposed into successive details layers

by using the “à trous” transform. This algorithm performs wavelet decomposition of images

and provides coarser and coarser spatial resolution versions of them. The high-spatial fre-

quencies of the CT, or details, can be easily obtained at any level of resolution. A simple

model is then inferred to compute the lacking details of the PET scan from the high fre-

quency detail layers of the CT. These details are then incorporated in the PET image on a

voxel-to-voxel basis, giving the fused PET/CT image.

Results: Aside from the expected visual enhancement, quantitative comparison of initial PET

and CT images with fused images was performed in 12 patients. The obtained results were

in accordance with the objectives of the study, in the sense that the organs’ mean intensity

in PET was preserved in the fused image.

Conclusion: This alternative approach to PET/CT fusion display should be of interest for people

interested in a more quantitative aspect of image fusion. The proposed method is actually

complementary to more classical visualization tools.

© 2008 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Multimodality imaging has become a mandatory exploration

in many clinical applications. PET/CT hybrid scanners con-

stitute today a necessary tool in diagnosis, treatment and

staging of cancer [1–3]. The complementary information pro-

∗ Corresponding author. Tel.: +33 298018105.
E-mail address: nboussion@yahoo.fr (N. Boussion).

vided by this kind of dual imaging device allows revealing the

physiological state of malignant tumours by PET while in the

same time, the CT image offers anatomical accuracy through

high-spatial resolution. One of the specific uses of PET/CT

that currently encounters increasing interest is intensity-

modulated radiotherapy (IMRT). Recent works tend to prove

0169-2607/$ – see front matter © 2008 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.cmpb.2007.12.009
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indeed that PET/CT-guided IMRT improves treatment planning

while reducing tissue doses, for example in head and neck

cancer [4].

Aside from the problem of spatial co-registration of PET

and CT images, which permits their superposition on a voxel-

to-voxel basis, the effective management of images in a

day-to-day clinical use consists of their visualization. This

step is of great importance since it allows comparing the

images and making an accurate judgment according to func-

tional and morphological complementarity. Two main types

of visualization techniques exist [5]. In the first one, the two

images are displayed side by side in two separate windows,

with synchronized commands and cursors. This method of

display presents the advantage of preserving information but

the efficient visual comparison of structures remains diffi-

cult. The second visualization approach is the overlay of both

images in a single window. Several approaches can be cho-

sen but most of them require two look-up-tables, generally

a grey level one for the CT image and a colour one for the

PET image. An easy way to proceed is to display a voxel of

each image alternately, like a mosaic. Another approach is

to blend the images using a single look-up-table but then

the intensity in a voxel is a weighted sum of PET and CT

intensities in the given voxel. Recent works in this domain

include multi-image voxel composting [6] in which the CT

image is decomposed into several layers with different ranges

of contrast adjustments, each one corresponding to a particu-

lar tissue (bone, lungs, soft tissues, etc.). These layers are then

weighted and mixed together, finally been blended with the

PET image.

In oncology staging or treatment planning it is of decisive

importance to follow the evolution of both tumour activity

and size. However, such quantitative measurements cannot

be directly derived from the fused images since the intensity

in a voxel is a mixture of corresponding PET and CT inten-

sities. Even if the anatomical information is preserved to a

certain extent, it is impossible to measure the PET intensity

in a given region of interest. Moreover, the complementarity

aspect of fusion display loses its interest in the sense that it is

limited to visual inspection.

By enlarging the field of investigation, one may notice that

image fusion concerns many fields, like geosciences [7], food

safety [8], fingerprints analysis [9], biometric imaging [10] or

forensic investigations [11]. Nevertheless, the objective of all

these studies remains largely in the scope of visual enhance-

ment of images without considering the quantitative aspect

which is of outmost importance in medical imaging. Some

general surveys have been also performed but mostly tackling

without specific attention the medical aspect of image fusion

algorithms [12].

In this article, we introduce a new fusion display scheme

able to preserve the quantitative functional information pro-

vided by PET, and in the same time, able to maintain

morphological details of the CT. The algorithm is based

on multi-resolution analysis of the PET and CT images

using wavelets. After presenting the theory and implemen-

tation of this method, we apply it on a number of clinical

whole-body example image datasets and perform quantitative

analysis to demonstrate its potential for preserving relevant

information.

2. Background

2.1. Basic theory on continuous wavelet transform

(CWT)

For the sake of clarity, definitions are given for an 1D func-

tion f, but a more general theory can be found in [14]. The

wavelet transform W of an 1D, real, square-integrable function

f is defined by

W(a, b) =
∫ +∞

−∞
f (x) ∗

(

x− b

a

)

dx,

where a is the scale of the analysis and b is the parameter of

translation corresponding to the position of the wavelet � (� *

stands for the complex conjugate of �). W(a, b) is the inner

product of f with the scaled and translated versions of � :

W(a, b) =
∫ +∞

−∞
f (x) ∗

a,b(x) dx =< f (x), �a,b(x) >,

with

�a,b(x) =
(

1√
a

)

�

(

x− b

a

)

.

W may also be seen as a measure of similarity between

the function f and the basis functions �a,b which are derived

from the so-called mother wavelet � . Here, similarity refers to

a comparable frequency content, at the current scale a. The

wavelet analysis can then be seen as a mathematical micro-

scope which does not depend on the magnification once the

optical � is chosen.

The reconstruction formula is

f (x) = C−1
�

∫ +∞

0

∫ +∞

−∞

√
aW(a, b) (x− b/a)dadb/a2,

with

C� =
∫ +∞

0

|�̂ (�)|2d�/�

(�̂ is the Fourier transform of � ).

2.2. Discrete wavelet transform (DWT)

The discrete wavelets that have been introduced are no longer

continuously translatable and scalable but can simply be

translated and scaled following discrete steps with indices j

and k:

�j,k(x) = 1
√

aj
�

(

x− kbaj

aj

)

.

This very general solution has been proposed by

Daubechies [13], who also suggested the choice of a = 2

and b = 1 (dyadic sampling) to obtain orthogonal basis func-

tions for certain � wavelets (Daubechies wavelets). The

multi-resolution analysis developed by Mallat [14] allows to

implement this discrete approach by using high-pass and

low-pass filtering and sub-sampling. However, this algorithm

cancels shift invariance which may be a problem when deal-

ing with several images like in image fusion. The resulting

wavelet transform is no longer shift invariant, which means
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that the wavelet transforms of an image and of a shifted ver-

sion of the same image are not simply shifted versions of each

other. For this reason we have chosen to use the undecimated

“à trous” algorithm which is totally shift invariant and also

easier to implement. It also has the advantage of leading to

wavelet images of same size as the original image, allowing to

compare details at different scales on a voxel-to-voxel basis.

The general theory linked to this algorithm is extensively pre-

sented in [15], where accurate comparison with the Mallat

implementation of DWT is also provided.

3. Design considerations

In this section we present the iterative “à trous” algorithm

which can be easily implemented on a given image I. This

discrete wavelet transform algorithm was introduced by

Dutilleux [16], developed by Holdschneider [17] and detailed

by Starck et al. [18]. The process gives an image sequence of

coarser and coarser spatial resolution by performing succes-

sive convolutions with a low-pass filter h. At each iteration j,

the spatial resolution of the approximation image appj−1 is

degraded to give the approximation image appj according to

appj(k, l) =
∑

m,n

h(m,n)appj−1(k+m2j−1, l+ n2j−1).

The first approximation image app0 is taken as I, the

original image. The difference appj−1 − appj is the wavelet

coefficientswj containing the details (edges, texture) at a reso-

lution level between appj−1 and appj. The synthesis procedure

that reconstructs the original image from its layers of details

wk is given by

app0 = I = IN +
k=N
∑

k=1

wk,

with N the number of iterations from the initial image I to the

final approximation IN of spatial resolution decreased by 2N.

The algorithm can be easily implemented by performing

the following steps [18]:

1. Initialize j to 0: start with the original image I = app0 (app

stands for approximation).

2. Increment j and carry out a convolution of appj−1 with

a low-pass filter h in order to obtain appj (the distance

between the central voxel and the adjacent ones is 2j−1).

3. The wavelet coefficients w(j) at this level of resolution are

given by appj−1 − appj.

4. If j is less than the required number N of resolutions go to

step 2.

5. The set W =
{

w(1), w(2), . . . , w(N), appN
}

is the wavelet

transform of I.

Practically, at each iteration, zeros are inserted between

lines and columns of the filter h giving its name to the algo-

rithm “à trous” which in French means “with holes”. In this

work, the chosen low-pass filter h(k) = (1/16, 1/4, 3/8, 1/4, 1/16)

Fig. 1 – Illustration of the PET enhancement process on simulated images (a) wavelet transform of the original simulated CT

image (resolution level q); (b) wavelet transform of the original simulated PET image (resolution level q + 2); the lacking

details of the PET image, WPET
q+1(�x) and WPET

q+2(�x), are retrieved from the existing details WCT
q+1(�x) and WCT

q+2(�x) of the CT

images which are modified according to the model defined between existing details of both CT and PET at a lower but

common level of resolution; (c) the enhanced PET image is the voxel-to-voxel addition of the original PET image with the

retrieved details WPET
q+1(�x) and WPET

q+2(�x).
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is deduced from the spline function of order 3 [19]:

�(x) = 1

12
(|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x− 2|3).

In 2D we have �2D(x, y) =�(x)�(y) thus leading to h2D(k,

l) = h(k)h(l), the filter being separable:

h2D(k, l) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1/256 1/64 3/128 1/64 1/256

1/64 1/16 3/32 1/16 1/64

3/128 3/32 9/64 3/32 3/128

1/64 1/16 3/32 1/16 1/64

1/256 1/64 3/128 1/64 1/256

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

This filter is isotropic, has a Gaussian-like shape and can

be convolved in two steps (columns and then lines).

4. System description

4.1. Alternative “à trous” implementation and

combination process

The method relies on the fact that PET and CT images are spa-

tially co-registered, i.e. both images can be superimposed and

are reconstructed with the same voxel size. The fusion display

approach presented here aims at preserving relevant infor-

mation provided by each modality: anatomical details and

high-spatial resolution from CT on the one hand, and func-

tional data from the PET on the other hand. For this purpose

the anatomical details provided by the CT and correspond-

ing to resolution levels that are not present in the PET are

detected, extracted, modified and injected in the PET image

on a voxel-to-voxel basis.

Wavelet analysis allows the spatial frequencies to be eas-

ily obtained, in particular at a level of resolution common to

the CT and PET images. A model is then inferred to estimate

the lacking details of PET from the high frequency details lay-

ers of CT. If the level of resolution of CT is q, referred to as

CTq, and the one of PET is r = q + p, referred to as PETr, we can

write

PETr(�r) = PETq+p(�r) = PETq+p+1(�r) +wPET
q+p+1(�r),

and

CTq(�r) = CTq+p+1(�r) +
k=p+1
∑

k=1

wCT
q+k(�r).

The lacking details of PET are the wavelet coeffi-

cients wPET
i

(�r) with q ≤ i ≤ q + p; however we do possess

wPET
q+p+1(�r) and wCT

q+p+1(�r) and we assume that there exists

a more or less simple link between them like wPET
q+p+1(�r) =

˛×wCT
q+p+1(�r), ˛∈ IR∗ for instance. Although, different models

can be envisaged, in this study a simple linear model is used

Fig. 2 – An example of CT decomposition using dyadic and linear transformation (“à trous” algorithm). (a) original CT image

of resolution 1 mm; (b)-(e) wavelet layers corresponding to details of resolution 1 mm-2 mm, 2 mm-4 mm, 4 mm-5 mm and

5 mm-6 mm, respectively; (f) residual approximation image; (g) reconstructed CT image corresponding to the pixel-to-pixel

addition of wavelet layers (b)–(e) and residual image (f); (h)difference between original CT image (a) and reconstructed CT

image (g).
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where the parameter alpha is considered equal to the mean

voxel-to-voxel division of wPET
q+p+1(�r) by wCT

q+p+1(�r).
PETq can now be reconstructed from PETr by taking thewPET

i

(q ≤ i ≤ q + p) into account. They are calculated as wPET
i

(�r) = ˛×
wCT
i

(�r), (q ≤ i ≤ q+ p) leading to

PETq(�r) = PETq+p+1(�r) +
k=p+1
∑

k=1

wPET
q+k(�r).

As stated above, the undecimated “à trous” implementa-

tion of the DWT is dyadic which means that the resolution

decreases by a factor of two at each iteration. Thus if the res-

olution of CT is 1 mm and the one of PET is 8 mm the process

is able to separate the wavelet images of CT in the sequence

w1–2mm,w2–4mm, andw4–8mm, and the resulting CT approxi-

mation has a resolution of 8 mm, exactly the same as the PET.

However, if the resolution of PET is 6 mm, it is impossible to

obtain a CT approximation with a resolution equal to 6 mm.

The resolutions that can be obtained are only 2 mm, 4 mm,

8 mm, 16 mm and so on. For this reason we modified the clas-

sical implementation of the algorithm to make any discrete

resolution level available. In the normal implementation, the

sampling of the image to be convolved is widened by a fac-

tor of 2 at each iteration. This is done indirectly by inserting

zeros in the filter mask: the distance between the studied voxel

and its neighbours is 2j−1. This sampling scheme is manda-

Fig. 3 – Example of PET contrast enhancement by combination with CT. First column: CT images (transverse, sagittal,

coronal); second column: PET images; third column: enhanced PET images. The combination scheme was dyadic + linear

decomposition.
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Fig. 4 – Supplementary example of fusion, here on a restricted area corresponding to lungs (Patient 6). From left to right: CT,

PET, enhanced PET.

tory to get perfect reconstruction, but the CT reconstruction

is not our final objective. The aim is to extract wavelet lay-

ers of details corresponding to resolution levels higher than

the resolution of the PET image. Consequently, we modified

the “à trous” algorithm to get a linear version instead of a

dyadic one. The sampling is then performed differently in the

sense that zeros are still inserted in the filter, but the dis-

tance between the centre voxel and its neighbours becomes

j instead of 2j−1. The obtained series of resolution levels is

then 2 mm, 3 mm, 4 mm, 5 mm and so on. From this alterna-

tive implementation one can also deduce a third approach as

a mixture of the two and referred to as “dyadic + linear”. In this

method, the dyadic implementation is performed first, lead-

ing to the series of resolutions 2 mm, 4 mm for instance, and

then the linear approach is performed giving resolutions of

5 mm, 6 mm, etc. The main interest consists of a gain in com-

putation time in comparison with a linear implementation

alone.

In this study, the model between details of PET and CT at

their common level of resolution is the mean voxel-to-voxel

division of the layer images containing wavelet coefficients.

The obtained parameter is then multiplied to each wavelet

Fig. 5 – Mutual information (MI) between initial and fused images, for the three presented methods (dyadic, linear,

dyadic + linear). Left: MI between CT and PET/CT fused images. Right: MI between PET and PET/CT fused images.
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image (always on a voxel-to-voxel basis) of the first CT decom-

position. These modified images containing high-resolution

details not present in the PET are added to the said PET giving

the actual fused image. A graphical description of the whole

process is shown in Fig. 1 in order to facilitate the understand-

ing of the method.

4.2. Clinical images and quantitative assessment

The presented algorithm and its different implementations

were tested on 12 clinical images. They consisted of whole-

body FDG PET and CT images of patients under oncological

follow-up. Images were obtained on a dedicated PET/CT scan-

ner (GE DLS) using a 5-min per bed position for the emission

acquisition (2D mode) and a CT scan (140 kV, 80 mA) over the

same area acquired under shallow breathing. Images were

Fig. 6 – Percentage of intensity variation between PET and

fused PET/CT in a series of ROIs (lungs, heart, liver). (a)

Dyadic analysis; (b) linear analysis; (c) dyadic + linear.

reconstructed using ordered subsets expectation maximisa-

tion (OSEM) with two iterations and 28 subsets. The CT maps

were used for attenuation correction [19] after being reduced

to 128 × 128 with a reconstruction slice interval of 4.25 to

match the in-slice resolution and the slice thickness of the

PET reconstructed images.

To our knowledge, there exists no “gold standard” approach

for evaluating a fusion display apart from visual assessment.

In this study considering the proposed methodology we have

chosen quantitative indices to evaluate the algorithm perfor-

mance and more particularly to assess its specificity regarding

preservation of PET information. We have therefore compared

the intensity in regions of interest (ROI) corresponding to dif-

ferent tissues, in the PET images and then in the fused one,

for each patient. The regions investigated were lungs, liver

and heart and the ROIs were drawn manually on the PET and

reported automatically onto the fused image. Mean signal and

standard deviation in these ROIs were then calculated and

compared.

On the other hand in order to evaluate the fusion aspect

of the display we calculated also the mutual information

between PET and CT on the one hand and PET and the fused

image on the other. Given two images M and N, their mutual

information is given by

I(M,N) =
∑

m∈M

∑

n∈N

p(m,n) log
p(m,n)

p(m)p(n)

where, p(M, N) is the joint histogram of M and N and p(M) and

p(N) the histograms of M and N, respectively. I(M, N) can be

seen as the amount of information that is common to M and

N. Consequently we calculated I(PET,CT), I(PET, fused) and I(CT,

fused).

As a last part, we calculated the mean contrast along linear

plot profiles placed at two kinds of tissue boundaries. The first

group of profiles was put at the interface between lungs and

soft tissue (liver or heart) and the second group consisted of

profiles put across small tumours (10–40 mm) inside homoge-

neous regions, mainly lungs and liver. In each obtained profile

the contrast was calculated using the following formula:

contrast = 100 × |xj− xi|
xj+ xi

,

where xi and xj are the values of two adjacent pixels along

the slope of the profile. The local contrast was calculated on

each pixel of the slope and the mean contrast was the mean

of these values.

5. Status report

An example of CT image decomposition using the “à trous”

algorithm (version using dyadic then linear transformation)

is shown in Fig. 2. The reconstructed CT image (Fig. 2g) is

very similar to the original one (Fig. 2a) since their voxel-

to-voxel difference (Fig. 2h) has only zero values apart from

a limited number of voxels. The quantitative measurements

on Fig. 2h give mean value 1.9 × 10−10 ± 7.4 × 10−7, min value

−1.5 × 10−5 and max value 1.5 × 10−5 (mean of the absolute

values 5.4 × 10−6 ± 5.7 × 10−6) while the same investigation

when using only dyadic decomposition would lead to a zero
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Fig. 7 – Example of PET/CT fusion (Patient 10) and location of two lines of interest (arrows) for calculating contrast. Intensity

profiles along these two lines are given in Fig. 8. Top: lungs-soft tissue; bottom: isolated tumour.

mean exactly. Fig. 3 shows the fusion results for Patient 5,

where CT and FDG PET images are illustrated as well as their

fusion, in the three planes of space (transverse, coronal, sagit-

tal). Patient 6 is shown in Fig. 4 where one can see with more

details the upper thoracic part of the body corresponding to

the lungs. Visually, the fusion allows a contrast improvement

of the PET image with details and boundaries better delin-

eated. In the same time, while detailed structures of the CT

appear in the fusion image the global intensity of PET is pre-

served.

Quantitative results are given in Figs. 5 and 6. In Fig. 5 one

can see the values of mutual information between PET, CT and

fused PET/CT providing a degree of similarity between images.

The curves’ shapes in Fig. 5a and b are similar and show that

the degree of similarity between PET or CT and PET/CT fused

images is much larger than the one between PET and CT (MI

mean increase 87%). A number of points can be made based on

this result; namely that both initial images have contributed

to the fused image, and that the fused image contains more

information than the PET alone and the CT alone, which is

in accordance with the aim of a fusion process. On the other

hand, still considering the mutual information, it appears that

the three methods of analysis presented in Section 4.1, that is,

dyadic, linear, and dyadic + linear gave comparable similarity

values between images.

The variation of intensity between PET and fused PET/CT

images are given in Fig. 6 in which results are given also for the

three proposed methods (dyadic, linear and dyadic + linear).

One can see that concerning heart and liver, the differ-

ence never reaches 6% for the dyadic and dyadic + linear

approaches, while it remains under 10% for the linear

approach. As far as the lung results are concerned, the dif-

ference in intensity between PET and fused PET/CT is larger,

attaining 25% for Patient 6 when using the linear approach

(Fig. 6b). However, the mean activity in lungs stays relatively

stable (variation less than 10%) when using the dyadic method

(Fig. 6a), and stays below 5% of variation when using the

dyadic + linear analysis (Fig. 6c).

Plot profiles along lines crossing tissue boundaries were

used to qualitatively evaluate the gain in contrast. Two exam-

ples are given in Figs. 7 and 8 where lines of interest are

given (for Patient 10) as well as their corresponding inten-

sity profiles. One can notice that the slope of the curves is

increased after PET/CT fusion (Fig. 8), proving that not only

the PET image is improved visually, but also in the same time

contrast at boundaries is increased. Quantitatively, the mean

contrast at boundaries between large regions (lungs–soft tis-

sues) was increased by +74.5% ±21.4% (min 36.1%, max 88.8%,

three profiles by patient, total 36 profiles). In the set of profiles

across isolated tumours inside homogeneous areas, the con-

trast increase was +52.5% ±19.5% (min 29.1%, max 81.3%, 27

tumours in total).

6. Lessons learned

In this article a new approach to PET/CT image fusion has

been proposed for whole-body imaging. Contrary to the great

majority of existing methods, the aim of the presented work

was to provide the user with a fused image preserving both
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Fig. 8 – Intensity profiles along segments of line shown in

Fig. 7 (Patient 10). After PET/CT fusion, one can observe that

slopes are sharper, which corresponds to an improvement

of contrast. At lungs–soft tissue boundaries; (b) across

tumour of the neck.

anatomical and functional data. The objective is therefore

different from simply presenting two images in a visually con-

venient fusion display in the sense that quantitative analysis

is also here considered as a possible step. In the proposed

methodology the anatomical information is present in terms

of improved contrast while the intensity in the organs is

comparable with the functional information presented by the

PET. This is of paramount importance in cancer staging and

treatment follow-up for instance, where quantitative assess-

ment of activity uptake is necessary. Furthermore, when using

PET/CT-guided IMRT the complementarity provided by the

image fusion proposed in this article may be of key interest.

Indeed, when considering day-to-day clinical use, this algo-

rithm is more user-friendly and allows physicians to gain a lot

of time when making diagnosis and treatment planning for

radiotherapy.

The method here described is rather simple to implement

and consists of introducing the high-resolution details of the

CT in the PET image by using wavelet transform. The discrete

implementation of the wavelet transform is performed using

original and alternative versions of the “à trous” algorithm.

Actually, since the reconstruction of images is less important

in this application relative to accessing the wavelet images

corresponding to details, we modified the original algorithm

in such a way that all levels of resolution are accessible. This

alteration allows degrading the CT image to the exact level of

the PET resolution. Unfortunately, the discrete wavelet trans-

form prevents us from using real resolution values that are

more precise than integer values. Even if satisfying results

were obtained in this study, it would be valuable in future work

to take into account actual resolution values.

Concerning the different versions of the “à trous” algo-

rithm that are presented, it appears that the “dyadic + linear”

approach gives the best quantitative results. As a matter of

fact, the mean signal in the lungs before and after fusion

seems to change less than with the other two approaches

(dyadic alone or linear alone). Nevertheless, it is worth men-

tioning that in the present study the ratio between spatial

resolutions (CT and PET) was 6:1. Consequently, for the dyadic

approach, it was impossible to obtain CT details at the reso-

lution 6 mm and we had to stop the decomposition at a level

of resolution equal to 8 mm. This point may of course explain

why dyadic results were not as good as those obtained with

the dyadic + linear approach.

The change in intensity in the lungs could be explained

by the incorporation of the pulmonary vasculature present

in the CT and not in the PET (Fig. 9). Also, the model that

is used to modify the detail layers (images of wavelet coef-

ficient) obtained in the CT decomposition may be considered

too simplistic (mean voxel-to-voxel division). A more sophis-

ticated model would be preferable and one can consider that

adopting a local model may be more appropriate, in particular

for limiting artifacts coming from structures present in the CT

only.

The methodology itself is of course not restricted to

whole-body imaging in the oncology domain. Provided two

co-registered images are available, one functional and the

other anatomical, the process can be applied in a wide range

of clinical areas. As an illustration (Fig. 10) we provide an

example of contrast enhancement of an FDG brain image pro-

vided by the fusion with the corresponding T1-weighted MRI.

Similar observations made on the whole body images results

can be also made in this particular case. Contrast is signifi-

cantly improved in the enhanced FDG PET, particularly at the

interface between white matter and gray matter. Furthermore,

mean activity in gray matter is preserved in such a way that

further image processing could be performed.

For interested readers, the algorithm is available upon

simple request by e-mailing the corresponding author. The

program is written in JAVA and can easily be added to the

free ImageJ software as an independent plug-in with simple

graphical user interface.

7. Future plans

Concerning the algorithm, it would be of great interest to

define a local model instead of a global one in order to modify

the detail layers of the CT. This improvement could lead to the

elimination of artifacts corresponding to structures present

in the CT but not in the PET. The results presented in this
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Fig. 9 – Potential influence of the pulmonary “network”. Left: PET before fusion; right: PET enhanced by integration of CT

details. The arrow shows that small structures like bronchioles present in the CT may locally but significantly alter the

intensity in lungs after combination with PET.

study were obtained using 2D calculation only. Indeed, most

discrete wavelet transforms still perform in 2D and 3D imple-

mentations do not exist or are not well validated yet. However,

a potential improvement could consist in applying the 2D

approach to each plane (sagittal, coronal and transverse) and

then making an average from the three obtained images.

To conclude, we have defined a new approach to medical

image fusion that allows performing quantitative analysis by

means of multi-resolution analysis. The intensity of voxels in

the PET image is indeed globally preserved while details of

high resolution coming from CT are introduced. As a result,

boundaries are better delineated and contrast is enhanced. A

Fig. 10 – Application of the proposed image enhancement in the cerebral context. Brain FDG PET image; (b) corresponding

T1-weighted MRI; (c) enhanced FDG PET after fusion of MRI.
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larger and more comprehensive clinical evaluation of the pro-

posed method should be considered in order to evaluate the

potential impact of such a method, for instance in the staging

of cancer or treatment planning.
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ondelettes et méthodes temps-fréquence et espace des
phases, Marseille, France, Springer–Verlag, 1987, pp.
298–304.

[17] R. Holdschneider, R. Kronland-Martinet, J. Morlet, P.
Tchamitchian, A real time algorithm for signal analysis with
the help of the wavelet transform, in: J.M. Combes, et al.
(Eds.), Wavelets, Springer–Verlag, Berlin, 1989.

[18] J.L. Starck, F. Murtagh, A. Bijaoui, Image processing and data
analysis: the multiscale approach, Cambridge University
Press, Cambridge, UK, 1998.

[19] J.L. Starck, F. Murtagh, Astronomical Image and Data
Analysis, Springer–Verlag, Berlin, 2002.



ORIGINAL ARTICLE

Incorporation of wavelet-based denoising in iterative

deconvolution for partial volume correction in whole-body

PET imaging

N. Boussion & C. Cheze Le Rest & M. Hatt & D. Visvikis

Received: 7 October 2008 /Accepted: 30 December 2008
# Springer-Verlag 2009

Abstract

Purpose Partial volume effects (PVEs) are consequences of

the limited resolution of emission tomography. The aim of

the present study was to compare two new voxel-wise PVE

correction algorithms based on deconvolution and wavelet-

based denoising.

Materials and methods Deconvolution was performed

using the Lucy-Richardson and the Van-Cittert algorithms.

Both of these methods were tested using simulated and real

FDG PET images. Wavelet-based denoising was incorpo-

rated into the process in order to eliminate the noise

observed in classical deconvolution methods.

Results Both deconvolution approaches led to significant

intensity recovery, but the Van-Cittert algorithm provided

images of inferior qualitative appearance. Furthermore, this

method added massive levels of noise, even with the

associated use of wavelet-denoising. On the other hand, the

Lucy-Richardson algorithm combined with the same

denoising process gave the best compromise between

intensity recovery, noise attenuation and qualitative aspect

of the images.

Conclusion The appropriate combination of deconvolution

and wavelet-based denoising is an efficient method for

reducing PVEs in emission tomography.

Keywords FDG-PET. Image processing . Partial volume

correction .Whole-body PET

Introduction

Partial volume effects (PVEs) in emission tomography are a

well-known consequence of the limited spatial resolution

affecting both qualitative and quantitative accuracy of the

image. In this work, we refer to spatial resolution as the ability

to separate two small objects and, more precisely, the full-

width at half-maximum of the point spread function (PSF).

PVEs can be divided into three classes; namely (1) attenuation

of intensity in small structures compared with the PSF size,

(2) spill-in and spill-out affecting bordering organs or, more

simply, reciprocal intensity spread from one tissue to another,

and (3) tissue mixing in boundaries due to the discrete

sampling of images into finite voxels. The last one of these

three points is very general as it is a problem in a wide range

of medical imaging modalities, both functional or morpho-

logical. The voxel size is indeed a physical limit no modality

can overcome, whatever its intrinsic spatial resolution. On the

other hand, the first two points are more specifically related to

quantitative and functional imaging in general and to

emission tomography in particular. For this reason, in the

present work, we focus only on these two effects.

There exists a wide variety of algorithms aiming at

correcting PVEs in emission tomography the vast majority

of which have been evaluated in both single photon

emission tomography (SPECT) and positron emission

tomography (PET). Most of them are based on the use of

a priori information provided either by MRI or CT, and

remain, even in recent works, restricted to cerebral

applications [1–4]. One of these methods, described by

Rousset et al. [5], allows an estimation of the real mean

signal in any homogeneous tissue providing that its true

boundaries are known. This can be achieved by a manual

contouring or automatic segmentation (mostly used in brain

imaging) of the tissue of interest on the CT or MR image
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[6]. However, the assumption related to the tissue homoge-

neity in the region of interest (ROI) remains questionable and

relies mostly on visual analysis of the emission tomography

images. Furthermore, adequate tissue correlation between

SPECT/PET and MRI or CT cannot be achieved in certain

circumstances because of physiological motion in the patient

as well as uncontrollable movement of the patient in a more

general sense between and during image acquisitions. This is

mostly the case in oncology, where images are acquired

across the whole body. Unfortunately in this domain

structures of interest can be small (tumours) and therefore

PVEs significantly alter quantification. For this reason the

willingness to incorporate effective PVE correction into

PET/CT scanners dedicated to oncology remains of high

interest as recently discussed by Basu and Alavi [7].

Furthermore, problems in the use of anatomical information

for PVE correction include differences in the appearance

and size of some tumours (or structures in general) between

the functional and the anatomical images (for example

functional necrosis seen on PET may not necessarily be

observed on CT). This challenging problem has been

widely discussed recently [8].

In an attempt to obviate the need for drawing or

segmenting ROIs as well as producing PVE-corrected

images that can be used for further processing, we have

previously proposed and described a novel voxel-wise PVE

correction method for a broad range of clinical applications

[9]. On the other hand, this methodology involves mutual

analysis of PET and a coregistered anatomical image, and

consequently suffers from the limitations related to the

tissue spatial correlation already described. In a couple of

recent papers, alternative approaches to PVE correction in

PET using iterative deconvolution of emission data only

have been proposed. The first study was restricted to the

cerebral domain [10] and in the second the method was

ROI-based only [11]. An interesting third approach using

voxel-based deconvolution has also been proposed [12].

This method is based on the MLEM reconstruction

algorithm and requires the determination and the optimiza-

tion of eight parameters, most of them depending on the

image quality or the PET scanner properties. Despite the

fact that standard deconvolution algorithms are easy to

implement, they suffer from significant noise propagation

as a result of the additive (or multiplicative) approach in the

regularization component. These noise properties force the

application of deconvolution algorithms to specific ROIs,

where activity concentration values are calculated and

subsequently improved iteratively.

The aim of this study was to compare the performance of

two alternative deconvolution methodologies (Lucy-

Richardson and Van-Cittert) in combination with the

introduction of dedicated wavelet-based denoising algo-

rithms. The main objective of this work was to reduce the

noise introduced by the deconvolution process and subse-

quently improve quantitative accuracy for voxel-wise PVE

correction in whole-body imaging. The different algorithms

considered were tested on various datasets, including

simulated and phantom studies and clinical whole-body

FDG PET images.

Materials and methods

Deconvolution

The general framework in deconvolution is based on the

following model:

I r!
� �

¼ O r!
� �

� PSF r!
� �

þ N r!
� �

ð1Þ

where I is the observed image, O is the real object, PSF is the

degrading PSF, N is an additive noise and⊗ the convolution

operator. Teo et al. in [11] used the Van Cittert algorithm

[13] according to which it is possible to iteratively retrieve

the actual object O from the observed data I (the emission

tomography image in our case) and PSF, by writing:

O nþ1ð Þ r
!

� �

¼ O nð Þ r
!

� �

þ a I r
!

� �

� PSF r
!

� �

� O nð Þ r
!

� �� �

ð2Þ

where α is a converging parameter generally taken as 1. In

this equation, the quantity I r!
� �

� PSF r!
� �

� O nð Þ r!
� �

is

called the residual because it is obtained by subtraction and

it converges towards noise. Considering this notation, the

Van Cittert algorithm may be rewritten as:

O nþ1ð Þ r!
� �

¼ O nð Þ r!
� �

þ aRes nð Þ r!
� �

ð3Þ

For this reason the regularization step is additive.

There are a number of classical deconvolution algo-

rithms, each one with specific characteristics. In the Lucy-

Richardson deconvolution approach (see, for example,

references [14] and [15]), the regularization step is

multiplicative instead of additive:

Onþ1 r!
� �

¼ On r!
� � I r!

� �

In r!
� � � PSF � r!

� �

" #

with In r!
� �

¼ PSF r!
� �

� On r!
� �

ð4Þ

Considering the previous notation concerning the resid-

ual, Eq. 4 can be rewritten as:

Onþ1 r!
� �

¼ On r!
� � In r!

� �

þ Re sn r!
� �

In r!
� � � PSF � r!

� �

" #

ð5Þ
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Compared with the Van-Cittert approach, this multipli-

cative process has the advantage of limiting noise propa-

gation. For this reason, our investigation included the

implementation of this technique for PVE correction in

PET imaging in comparison to the Van-Cittert methodolo-

gy, which was also included in this study.

Wavelet-based denoising

In order to reduce noise introduced by the deconvolution

process and thus facilitate the use of deconvolution based

on the image rather than ROI for PVE correction in PET,

we propose in this work the integration of wavelet-based

denoising in the deconvolution process.

When considering image processing from a general point

of view, wavelet denoising is one of the most powerful

denoising methods and is the theme of numerous publica-

tions. The procedure consists of three steps, and the main

hypothesis is that the observed image I r!
� �

¼ S r!
� �

þ
N r!
� �

contains the true signal S with noise N. These three

steps are described by the following equations:

Y ¼ W Ið Þ ð6Þ

J ¼ T Y; tð Þ ð7Þ

Sest ¼ W�1 Jð Þ ð8Þ

where W and W−1 are the direct and inverse wavelet

transform operators, T(t) is the denoising operator depend-

ing on the threshold t. In terms of the implementation of the

denoising operator T and/or the threshold t selection

different algorithms may be considered. In this work one

of the most robust algorithms, the BayesShrink [16]

described below, was used.

BayesShrink

Given threshold t for any data w, the rule:

T w; tð Þ ¼ sgn wð Þmax 0; wj j � tð Þ ð9Þ

defines the simplest version of thresholding, known as

nonlinear soft thresholding. The operator T nulls all values

of w for which wj j � t and shrink towards the origin by an

amount t all values of w for which wj j > t. Considering the

context of use in the present study w stands for the wavelet

values that we wish to threshold. For this reason, the soft

thresholding rule in the wavelet domain is often referred to as

wavelet shrinkage denoising. Most work concerning

wavelet-based denoising is due to Donoho [17], with one

of the primary developments being a method called

Visushrink [18]. In this latter, a general threshold, now

usually referred to as universal threshold, is defined as

Tu¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2s2 log N
p

with N being the sample size and σ the

noise expressed as the standard deviation of the wavelet

transform values. Although in most common situations it is

impossible to measure σ from the corrupted (noisy) image,

it is possible to estimate it from the first subband of the

wavelet transform as:

s¼
Median wij jð Þ

0:6745
; wi 2 first sub� band ð10Þ

Without challenging the soft-thresholding strategy, alter-

native threshold value selections have been also proposed.

Assuming a generalized gaussian distribution of the wavelet

coefficients, Chang et al. proposed a method based on the

Bayes theory, referred to as BayesShrink [16]. This

approach performs soft-thresholding with a data-driven,

subband-dependent threshold TB ¼ s
2
�

sX with σ
2 denot-

ing the noise variance estimated using the median operator

already described, and sX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max s
2
w � s

2; 0
� �

q

where

s
2
w ¼ 1

n2

P

n2

i¼1

w2
i
and n2 is the size of the considered subband.

The main interest in this robust method is because of the

fact that the filtering threshold is adapted to different levels

of resolution where noise properties can be very different.

Actually, because of the limited PSF, the noise in emission

images is not white but coloured and therefore noise

variance changes across subbands.

The wavelet transform

Wavelets have already been used in different domains and

different applications of emission tomography [9, 19, 20].

In this section we consider the choice of the wavelet

transform provided that some requirements are met

concerning the specific application of interest. First, the

kind of images we are concerned with may be large and

thus require a substantial amount of computer memory.

Furthermore, the overall processing time should remain

reasonable since use in the clinical domain is the aim. At

last, a crucial point is the fact that we need to reconstruct

the image from its altered (filtered) wavelet coefficients.

For this reason, the so-called Decimated Wavelet Trans-

forms (for example the pyramidal algorithm of Mallat) are

not well adapted for our application due to the loss of the

translation-invariance property [21, 22]. The elimination of

the decimation process leads to wavelet transforms of size

exactly equal to the original image, as in the dyadic “à

trous” algorithm. This latter approach to wavelet transform

is called Undecimated Wavelet Transform (UWT). At each

iteration, which decreases spatial resolution while preserv-

ing image size, three images are generated presenting edges

and details in horizontal, vertical and diagonal directions

respectively. Equivalence between the UWT and Mallat’s
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algorithm has been previously demonstrated by Shensa

[23]. In some applications, as in the one we are dealing

with, the direction may appear of reduced practical interest.

By choosing adequate filters it is possible however to

obtain a single isotropic wavelet image instead of three

directional ones allowing a gain in both memory require-

ment and computing time. This approach is called Isotropic

Undecimated Wavelet Transform (IUWT) and was chosen

for our denoising problem. From a theoretical point of view,

its similarity with Mallat’s algorithm has been recently

proved by Starck et al. [24]. A 2-D wavelet decomposition

was chosen for the sake of simplicity.

Algorithm

The IUWT of the image I, performed using the filter f, leads

to the set W = {w1, w2, …, wi, IJ}, where wi are the wavelet

coefficients at scale i and IJ is a smoothed version of I, that

is I at scale J. The passage from one level of resolution, or

scale, to the next which is reduced by half (dyadic

progression) is performed as follows:

Iiþ1 x; yð Þ¼ f � Ii ¼
X

u;v

f u; vð ÞIi xþ 2i u; yþ 2iv
� �

ð11Þ

The corresponding wavelet coefficients, on which actual

denoising is performed, are hence obtained by a simple

pixel-to-pixel subtraction:

wiþ1 x; yð Þ¼ Ii x; yð Þ�Iiþ1 x; yð Þ ð12Þ

Finally, the original image I is reconstructed without any

loss by adding all wavelet images to the final smoothed IJ:

I x; yð Þ ¼ I0 x; yð Þ ¼ IJ x; yð Þ þ
X

J

j¼1

wj x; yð Þ ð13Þ

PVE correction by integrating wavelet-based denoising

into iterative deconvolution

In the previous sections we have introduced the different

tools to be employed for the implementation of the

proposed voxel-wise PVE correction in such a way that

the complete methodology can now be described in detail.

The algorithm consists of only two nested steps.

In the first step the image we wish to correct for PVEs

undergoes deconvolution using either the Van-Cittert or the

Lucy-Richardson algorithm. The denoising phase is per-

formed concomitantly by applying wavelet-based thresh-

olding to the residual Res (Eqs. 3 and 5 for the Van-Cittert

and the Lucy-Richardson algorithms, respectively) at each

iteration of the deconvolution process. Thus, before

addition or multiplication, Res undergoes IUWT (section

The wavelet transform) and the obtained wavelet images

are denoised according to the BayesShrink method (section

BayesShrink). In the present study, the IUWT was

performed using the bicubic-spline filter and up to J=3,

which means that three wavelet images (or subbands) were

obtained. Each of these was denoised and the obtained

altered wavelet values were used to reconstruct a noise-

attenuated residual Res. One of the limitations of wavelet-

based thresholding is the 2-D aspect. To circumvent this

limitation the denoising process was applied on the three

planes of the space (axial, coronal, sagittal) and the final

thresholded Res image was obtained by averaging the three

sets of data on a voxel-by-voxel basis. For comparison

purposes, deconvolution without denoising was also per-

formed using both the Van-Cittert and Lucy-Richardson

methodologies.

Deconvolution algorithms assume that the PSF is known

and stationary across the field of view (FOV), or at least

inside the whole image to be analysed. This is not the case

in emission tomography where the PSF can vary in the

three directions of the FOV. Although an accurate measure

of the PSF is possible by acquiring images of line sources

at different positions throughout a system’s FOV, one can

only use a single PSF in the deconvolution process. This

could potentially induce errors when considering the

accuracy of the PVE correction in different regions of a

given image. In the previous work by Teo et al. [11], it was

shown that a 1-mm error in the PSF would lead to a

negligible impact on standard uptake values measured

inside homogeneous areas. This study concerned the Van-

Cittert algorithm only and no denoising technique was

incorporated into the deconvolution process. We further

investigated this potential issue in our study considering an

image simulated with a 6-mm PSF and containing a 15-mm

diameter sphere. The sphere-to-background ratio (SBR)

was modelled as 8:1 (before degrading by Poisson noise

and a 6-mm PSF). SBR was finally measured after

deconvolution using the different algorithms considered in

this study with different PSF values, ranging from 4 mm to

8 mm, in 1-mm increments.

All programs were implemented using C on a Pentium 4,

single processor, 2 Gb memory personal computer.

Test images

Different images were used to test and compare both the

Van-Cittert and Lucy-Richardson algorithms, with and

without wavelet denoising. Simulated and phantom data

were used to assess the behaviour of the algorithms and to

quantify their properties, considering perfectly known

object intensity and sizes.

The aim of the first image dataset was to appreciate the

global behaviour of the techniques and was manually

designed from a real heterogeneous liver tumour isolated
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from a clinical FDG scan. The tumour was extracted from

the original image and then manually segmented into three

classes (necrosis, active tissue, background). Activity

values were attributed to each class based on the relative

activity levels in the original image and Poisson noise was

added with mean value equal to each considered class

value. The obtained image was then blurred by a 6.5 mm ×

6.5 mm × 7 mm 3D- Gaussian kernel, giving the final

synthetic tumour PET image. The same kernel size was

used in the deconvolution algorithms.

The second dataset comprised real acquisitions from a

FDG-filled cylinder phantom (IEC) containing six spheres

with diameters ranging from 10 mm to 37 mm. Acquis-

itions were carried-out in the list-mode format using a

Philips GEMINI GXL PET/CT scanner (Philips Medical

Systems, Cleveland, OH). The SBR was set to 8:1 by

introducing 7.4 kBq.cm−3 and 59.2 kBq.cm−3 in the

background and in the spheres, respectively. Three different

statistical qualities were obtained by reconstructing 1-min,

2-min and 5-min list-mode time frames using the 3-D

RAMLA algorithm (voxel sizes of 2 cm×2 cm×2 cm).

These phantom images were also used to assess the impact

of the accuracy of the PSF size to the overall performance

of the deconvolution algorithms considered (see also

section PVE correction by integrating wavelet-based

denoising into iterative deconvolution).

The third set of images comprised clinical FDG whole-

body images of 13 patients undergoing oncological

staging. Images were acquired on a Philips GEMINI

GXL PET/CT scanner (seven patients) at an average of

54 min after injection of an average of 380 MBq with an

acquisition of 3 min per bed position, and on a GE

Discovery LS (GE Healthcare, UK) scanner (six patients)

after an injection of an average of 366 MBq and an

acquisition time per bed position of 5 min. Lesions were

localized in the lungs and/or in the abdomen. Images of

the patients acquired with the Philips and GE systems

were reconstructed using optimized parameters for the

RAMLA 3-D [25] and OSEM (two iterations, 28 subsets,

4.3×4.3×4.25-mm voxels) respectively.

Data collection and analysis

Intensity was computed as the mean signal inside ROIs. For

the simulated tumour and the cylindrical phantom, the size

of the ROIs was known exactly and their actual boundaries

were used to calculate mean intensities. The level of noise

inside these ROIs was calculated as the standard deviation

of the signal. For this purpose we used smaller ROIs in

order to estimate the noise in areas as homogeneous as

possible. The aim was to eliminate the regions close to the

boundaries where on the one hand PVEs are known to

produce large intensity gradients and where on the other

hand voxels contain a mixture of tissues due to discrete

sampling (tissue fraction effect).

Considering the clinical data we first evaluated the

intensity inside large and visually uniform areas including

the lungs, the liver and other soft tissues. The selection of

these ROIs was made assuming that PVEs were either null

or negligible inside them. In total 45 ROIs were manually

drawn. The mean intensity and the noise were thus

calculated inside areas of identical sizes, contrary to the

lesions where the same approach as for the simulated/

phantom data was used. Nevertheless, the exact size of the

lesions was obviously unknown. As a consequence they

were manually segmented by an expert in the field of

clinical nuclear medicine imaging.

Results

The different PVE correction methods implemented in this

study, i.e. Van-Cittert with and without BayesShrink

denoising, and Lucy-Richardson with and without Bayes-

Shrink denoising, are referred to from here onwards as

VC_B, VC, LR_B and LR, respectively. Images in Fig. 1

show the synthetic tumour simulated from an actual liver

tumour, before and after using the different deconvolution

algorithms. One of the things to notice is the very noisy

aspect of the image generated by the Van-Cittert deconvo-

lution alone (Fig. 1b). When incorporating wavelet-based

denoising in this algorithm, noise is drastically reduced but

artefacts present in the originally deconvolved images (see

Fig. 1b) persist, manifested by underestimated activity

regions appearing around high-intensity tissues (see arrow,

Fig. 1c, and plot profile, Fig. 1f). On the contrary, the Lucy-

Richardson algorithm provided artefact-free images, with a

far less significant noise even without denoising (Fig. 1d,

e). The quantitative results, which are given in Fig. 2, show

that both deconvolution methods added noise to the

corrected image. Nevertheless, the use of the Van-Cittert

algorithm alone always led to the largest amount of noise

while the combination of Lucy-Richardson and wavelet-based

denoising provided less noisy images (in certain circum-

stances approaching the noise levels of the original image; for

example, tissue 1 in Fig. 2a). Considering the accuracy of the

PVE correction (i.e. the ability to retrieve the original

intensity in a given tissue), the percentage of intensity loss

is shown in Fig. 2b. Tissue 1 (expected intensity 20,000) and

tissue 2 (expected intensity 50,000) intensity losses due to

PVEs are 10% and 15%, respectively, while the application

of the LR_B protocol led to 3.8% and −0.6%, respectively,

which are the best results among all the PVE correction

methods under investigation.

The same PVE correction processes were applied to the

IEC cylinder phantom images containing spheres of
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different diameters (expected SBR of 8:1). Qualitatively

similar remarks as for the synthetic tumour can be made

(Fig. 3). Van-Cittert deconvolution alone generated elevated

noise levels both in the background and in the spheres

(Fig. 3b). Adding wavelet-based denoising significantly

attenuated these effects (Fig. 3c), although LR_B method

provided the best visual results in this example (Fig. 3e).

The SNRs (calculated as mean/SD) in the background area

a) b) c) 

d) e) 

overcorrection 

 

 

f) 

Fig. 1 Synthetic tumour simu-

lated from the manual segmen-

tation of a real liver tumour. a

The uncorrected image shows

two classes of different active

tissues surrounding a necrotic

area. b–e Images after applica-

tion of the VC method (b),

VC_B method (c), LR method

(d) and LR_B method (e). f Plot

profile across the area shown by

the arrow in c. Note the signif-

icant overcorrection induced by

the VC_B method

Fig. 2 Quantitative measures in the tissues of the synthetic tumour. a

Noise amount expressed as the standard deviation of the intensity in

each tissue. b Accuracy of the intensity recovery expressed as the

error percentage between the expected intensity (20,000 and 50,000

for tissue 1 and tissue 2, respectively) and the measured mean

intensity in each tissue
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of the cylinder for the uncorrected image, the VC image,

the VC_B image, the LR image and the LR_B image were:

9.54, 3.23, 3.96, 5.51 and 6.67, respectively, for the 1-min

time frame acquisition; 12.08, 4.87, 5.91, 7.61 and 8.63,

respectively, for the 2-min time frame acquisition; and

16.41, 6.90, 8.13, 10.82 and 12.34, respectively, for the

5-min time frame acquisition. These values support the

visual impression that the use of the Van-Cittert deconvo-

lution alone leads to large noise levels, significantly

compromising any potential PVE correction for the deriva-

tion of improved images.

SBRs and percentage noise increase are shown on

Fig. 4. In this particular set of phantom data the percentage

of SBR recovery was found to be comparable whatever the

algorithm used, either with or without denoising. The

intensity recovery difference in the spheres considering

the different algorithms under investigation was at a

maximum between the images corrected with the VC and

the LR_B algorithms (difference between 5% and 20%

increasing with decreasing lesion size). These results were

generally uniform whatever the level of statistical noise in

the images as a result of evaluating different time

acquisitions (1, 2 and 5 min; Fig. 4a, Fig. 4b and Fig. 4c,

respectively). We also observed that no method was able to

retrieve the original 8:1 SBR, with the absolute 8:1 ratio

being more closely approached for large than for small

spheres. The percentage of SBR increase was significant,

ranging from 10.1±1.9% (largest sphere) to 40.9±2.0%

(smallest sphere). The impact of the denoising step on the

actual PVE correction was found to be negligible. More

specifically we measured a global SBR decrease of only

1.2±0.4 when passing from a deconvolution method

without denoising to the same method with denoising.

The results concerning the level of noise in the PVE-

corrected images are shown in Figs. 4d–f. Several obser-

vations can be made. Firstly, the statistical quality of the

original (uncorrected) images depending on the acquisition

time (from 1 min to 5 min) appears to have no correlation

with the level of noise introduced by deconvolution. In

contrast, the size of the object of interest appeared to be

more correlated with noise introduction since a greater

noise increase was seen for the three largest spheres in

comparison to the three smallest ones. Another important

result concerns the actual noise levels in PVE-corrected

images. The VC algorithm led to an increase in noise of

between 82% and 362% (see Fig. 4e). The LR method

always performed better, even if significant noise levels

were also introduced in some cases. The use of wavelet-

based denoising in the VC deconvolution led to a reduction

in the amount of noise (absolute percentage decrease of

−12% to −94%, mean decrease −37±24%).

It is important to note that the Lucy-Richardson

deconvolution performed better even without denoising

and in all the cases included in the study. LR-corrected

images showed 121±30% less noise than VC_B-corrected

images. In three cases (Fig. 4e, f) LR correction led to the

generation of images with even less noise than the original

(uncorrected) images. The incorporation of wavelet-based

denoising into the LR iterative process led to the lowest

levels of noise among all cases, whatever the statistics of

the initial image and the sphere diameter. The average noise

percentage difference between the LR and LR_B methods,

considering all the different phantom configurations under

evaluation (such as acquisition time and sphere size;

Fig. 4), was 26%. In summary, (1) VC and LR led to the

same level of PVE correction, (2) LR outperformed VC in

Fig. 3 IEC phantom containing

spheres. a Uncorrected image,

transverse view. b–e Transverse

views after application of the

VC method (b), VC_B method

(c), LR method (d) and LR_B

method (e)
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terms of noise propagation, and (3) wavelet-based denois-

ing was effective in reducing overall noise without altering

the quantitative intensity recovery.

Figure 5 shows the results obtained using the FDG

whole-body images from one of the 13 patients. Consider-

ing the ROIs in large and visually uniform tissues (for

example lung and liver) the application of the LR_B

method to the whole-body images led to an average change

of 0.6±2.8% in the mean intensity of large and uniform

areas. The results obtained with the other methods were 7.2

Fig. 4 SBR (a–c) and noise increase percentage (d–f) in the six spheres of the IEC phantom. a, d 1-min time frame acquisition image; b, e 2-min

time frame acquisition image; c, f 5-min time frame acquisition image
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±21.4% for the VC method, 6.7±16.6% for VC_B method

and 0.8±2.6% for the LR method. A similar trend was seen

for the noise levels (expressed as standard deviation) in the

same set of ROIs. Applying the Van-Cittert algorithm to the

whole-body images led to an increase by as much as three

times in noise levels relative to the original (uncorrected)

image (+195±112%). Although wavelet denoising reduced

the introduced noise by a factor of nearly 2, there was still a

significant increase (+113±97%) relative to the original

(uncorrected) images. On the other hand, relative to the

uncorrected images, the amounts of noise amplification as a

result of the use of the LR and the LR_B algorithms were

+29.3±14.1% and +19.1±13.4% respectively. Similar con-

clusions in terms of both intensity recovery and noise

propagation can be drawn for the set of ROIs in the patient

lesions (22 ROIs in total, mean size 38±26 cm3). The mean

increases in intensity for these ROIs were 59.1±25.5%,

39.5±17.2%, 37.4±13.8% and 27.5±8.8% for the VC,

VC_B, LR and LR_B methods, respectively. Concerning

noise the observed values were 260.8±101.1%, 124.0±

64.4%, 100.9±42.1% and 49.2±14.4%, respectively.

Knowledge of the PSF is the only requirement for the

algorithms presented in this study. It is thus necessary to

evaluate the influence of the PSF on the quantitative results

obtained. The data obtained by varying the PSF size are

shown in Fig. 6. Firstly, the effect of the PSF value on the

SBR accuracy appear linear since underestimation of the

PSF leads to underestimation of the SBR while overesti-

a) b) c) d) e) 

f) g) h) i) j)

Fig. 5 Clinical images: examples of PVE correction using the

proposed approaches. a–e Patient 1, coronal view (mediastinal and

pulmonary lesions).f–j Patient 2, sagittal view (head and neck lesion).

a, f Uncorrected images. b–e, g–j Images after application of the VC

method (b, g), VC_B method (c, h), LR method (d, i) and LR_B

method (e, j). For patient 1, using LR_B, the mean intensity in the

small lesion (e arrow) is increased by 23% and at the same time the

image quality is preserved

Fig. 6 Relative SBR expressed as percentage errors, obtained with

different PSF values. The expected SBR value corresponds to that

obtained with the actual PSF (6 mm). For example, the use of a 4 mm

PSF instead of the actual value in the Lucy-Richardson algorithm

leads to a 5% SBR underestimation
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mation of the PSF leads to overestimation of the SBR. A

significant point also not illustrated here is the fact that

incorporating wavelet-based denoising in either of the two

deconvolution algorithms considered did not modify the

PSF dependence compared with deconvolution without

denoising. Thus there was no effect of denoising on the

PSF value or on SBR estimation. The second point is that

an error of up to 2 mm in the PSF led to a maximum 5%

error in the SBR estimation when using the Lucy-

Richardson deconvolution. In comparison, an error of

1 mm in the PSF led to a 5% error in the SBR estimation

when using the Van Cittert algorithm, which is in

accordance with the study of Teo et al. [11].

The results of the same study in each sphere of the IEC

physical phantom are shown in Fig. 7. Although similar

results were seen, a supplementary point can be underlined.

When investigating small lesions (less than 15 mm in

diameter), one should pay attention to the estimation of the

PSF because even with the L-R algorithm a ±1 mm error in

the PSF estimation may lead to a 5–7% error in the SBR

estimation, although under the same imaging conditions the

error is nearly 20% with the VC algorithm.

Discussion

PVEs are difficult to overcome and remain a major problem

in emission tomography, in particular when investigating

small lesions. This is typically the case in FDG whole-body

studies, which are today an essential tool in the manage-

ment of patients with a tumour. Most PVE correction

algorithms are, however, restricted to brain imaging

because of the mandatory use of anatomical information

provided by MRI. This morphological requirement is

difficult to transpose to whole-body imaging since small

structures are not easy to superimpose even with dedicated

PET/CT scanners. This is mainly because of both internal

(physiological) and external patient motion during and

between acquisitions. For these reasons, classical PVE

correction methods cannot be applied in whole-body

imaging with a sufficient degree of reliability.

Recently, iterative deconvolution-based algorithms have

been proposed for tumour imaging [10–12]. In the study by

Teo et al. [11], only the Van Cittert algorithm was tested

and showed the introduction of high levels of noise, which

led the authors to propose the application of the algorithm

only to specific ROIs (such as a well-delineated tumour). In

the study by Tohka and Reilhac [10], two different

deconvolution algorithms were tested, but only in the

specific case of raclopride brain PET imaging. In the study

by Kirov et al. [12], the method did not require anatomical

images and noise was not added during the process, and the

method required few parameters to be manually defined by

the user. The objectives of our study were to assess two

fully automatic and iterative deconvolution algorithms for

whole-body PET imaging, and to introduce modifications

to limit noise propagation without significantly affecting

the PVE correction aspects.

The findings of the present study regarding the use of

iterative deconvolution algorithms in oncology PET imag-

ing allow us to draw several conclusions. First, automatic

PVE attenuation can be achieved at a voxel level with a

fairly limited noise increase. The intensity recovery in

relatively small areas is indeed significant enough to accept

the moderate noise addition inherent to iterative deconvo-

lution. However, on the other hand our results suggest that

the choice of algorithm is crucial. In our investigation, the

Van-Cittert approach led to larger increases in signal

recovery (by a factor of up to 40%) in comparison to the

Lucy-Richardson approach. On the other hand, an increase

Fig. 7 Relative SBR obtained in the IEC phantom for different PSF values. For a given sphere, the expected SBR value corresponds to the one

obtained with the actual PSF (6.5 mm). a Van-Cittert algorithm; b Lucy-Richardson algorithm
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of >250% in the image noise levels was also measured with

the use of the Van-Cittert algorithm in comparison to the

uncorrected images, while the noise introduced with the use

of the Lucy-Richardson was smaller by a factor of three

relative to the Van-Cittert algorithm. The levels of noise

associated with the Van-Cittert algorithm led to images

which were visually difficult to interpret, while artefacts

were also observed around high-intensity regions. Finally,

changes in intensity were also observed in areas of the body

where uniform activity distributions are usually observed

(for example, the normal lung and liver).

All these factors suggest that the Van-Cittert algorithm

strongly and systematically alters the actual intensity in

regions irrespective of their size. This bias affecting the voxel

values in both a random and a systematic fashion clearly

indicates that the use of the Van-Cittert algorithm for

quantitative purposes should be avoided, a point that is also

in accordance with the qualitative assessment of images.

Comparatively, the Lucy-Richardson deconvolution provid-

ed not only good qualitative performance but also satisfactory

quantitative improvement as well. Unlike the Van-Cittert

method, the Lucy-Richardson method led to more consistent

results in both qualitative and quantitative assessments

irrespective of the imaging conditions (noise level, lesion

size). These specific conclusions apply to both simulated and

clinical images. Finally, it is worth noting that the Lucy-

Richardson algorithm is as easy to implement as the Van-

Cittert method (the only difference is in the iteration step

which is multiplicative in the Lucy-Richardson method and

additive in the Van-Cittert method).

One of the major developments presented here concerns

the introduction of a denoising step during regularization of

the deconvolution process, in an attempt to minimize noise

propagation by the algorithms. The denoising procedure

was implemented in the wavelet domain in an attempt to

minimize the potential parallel loss of pertinent signal

leading to an associated loss in resolution. Although a 2-D

wavelet decomposition was employed, the denoising

operation was performed on the three planes (axial, coronal,

sagittal) with the final thresholded residual image obtained

by averaging the three sets of data on a voxel-by-voxel

basis. The BayesShrink method was chosen for the

selection of the denoising operator and threshold values.

This approach has the benefit of adapting the threshold to

the noise properties observed at different levels of resolu-

tion [16]. However it should be noted that depending on the

image reconstruction algorithm used, the noise within each

level of resolution (wavelet subbands) considered may not

be homogeneous (particularly in the case of iterative

reconstruction algorithms). This heterogeneity in noise will

not be accounted for by the adaptive threshold of the

denoising operator proposed here, although it is expected to

have a limited impact on the results obtained. A possible

way to account for such noise heterogeneity in the different

subbands is the use of more recent denoising approaches

[26]. Our results clearly demonstrate that the inclusion of

denoising as proposed here has the potential to significantly

reduce (by a factor of >100%) the level of noise introduced

by the deconvolution process.

As a final point in relation to this study, one can say that

the Lucy-Richardson algorithm was less sensitive to the

PSF value than the Van Cittert algorithm, and an error of up

to 2 mm remains tolerable regarding the associated changes

in SBR. Thus the Lucy–Richardson algorithm is expected

to be less sensitive to changes in the PSF that can be

observed throughout a system’s FOV.

Conclusion

We have shown that deconvolution algorithms for the

correction of PVEs must be used with care. The application

of a denoising step following deconvolution appears

mandatory in order to be able to perform reliable voxel-

wise quantitative analyses. In particular, the use of the Van

Cittert deconvolution alone was shown to propagate noise

to an amount that prevented reliable quantitative evaluation.

A significant bias was also observed in some cases leading

to over-correction, while the process always led to visual

degradation of the images. The use of the Lucy-Richardson

algorithm together with wavelet-based denoising appeared

to give more robust and consistent results in both accuracy

and precision, while preserving the visual aspect of the

images.
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Incorporating Patient-Specific
Variability in the Simulation
of Realistic Whole-Body
18F-FDG Distributions for
Oncology Applications
Computed data, that describes the anatomy and breathing-motion of

individual cancer patients, is used to increase the realism of
computer models that represent the patients bodies.
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Simon Marache, Anthonin Reilhac, Mathieu Hatt, Member IEEE,

Sandrine Tomei, Carole Lartizien, and Dimitris Visvikis, Senior Member IEEE

ABSTRACT | The purpose of the work described in this paper

was the development of a framework for the creation of a

realistic positron emission tomography (PET) simulated data-

base incorporating patient-specific variability. The ground

truth used was therefore based on clinical PET/computed

tomography (CT) data of oncology patients. In the first step, the

NURBS-based cardiac-torso phantom was adapted to the

patient’s CT acquisitions to reproduce their specific anatomy

while the corresponding PET acquisitions were used to derive

the activity distribution of each organ of interest. Secondly,

realistic tumor shapes with homogeneous or heterogeneous

activity distributions were modeled based on segmentation of

the PET tumor volume and incorporated in the patient-specific

models obtained at the first step. Lastly, patient-specific

respiratory motion was also modeled. The derived patient-

specific models were subsequently combined with the PET

SORTEO Monte Carlo simulation tool for the simulation of the

whole-body PET acquisition process. The accuracy of the

simulated datasets was assessed in comparison to the original

clinical patient images. In addition, a couple of applications for

such simulated images were also demonstrated. Future work

will focus on the creation of a comprehensive database of

simulated raw data and reconstructed whole-body images,

facilitating the rigorous evaluation of image-processing algo-

rithms in PET for oncology applications.

KEYWORDS | Database; Monte Carlo simulation; positron

emission tomography (PET); SORTEO

I . INTRODUCTION

Positron emission tomography (PET) functional imaging

using 18F-FDG is widely considered as the state of the art

in diagnosis for a number of oncology applications [1]. In

addition, current interest within the clinical context con-

centrates on further extending the impact of PET imaging

in other applications, such as patient follow-up during

treatment and assessment of tumor response to therapy
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(either chemotherapy or radiotherapy) [2]. In order to

optimize the quantitative use of PET in clinical practice,

data- and image-processing methods are also a field of

intense interest and development. The evaluation of such

methods often relies on the use of simulated data and

images since these offer control of the ground truth.

Monte Carlo (MC) simulations are widely used for PET

simulation since they take into account all the random

processes involved in PET imaging, from the emission of

the positron to the detection of the photons by the

detectors. In general, MC simulations play an important

role for different clinical applications, notably in the

domains of medical imaging and radiotherapy [3]–[6]. In

the field of medical imaging, simulations are primarily

used for the design and optimization of new and existing

imaging devices at the level of detectors and associated

electronics systems [3], [7]. The second area of interest lies

in the use of simulations for the assessment of acquisition

and subsequent processing protocols involving the pro-

duction of raw datasets and corresponding reconstructed

images. Numerous simulation packages are now available

to create such datasets, like GATE [8], SimSET [9], or

SORTEO [10]. GATE offers additional precision consider-

ing physics modelling but is also much more computa-

tionally demanding. SimSET, on the other hand, is faster

despite the use of a precise physical modelling but is

limited in terms of the geometry of the detectors it can

model. PET-SORTEO has the advantage of being fast with

a precise geometry modelling but is less precise than GATE

as far as the physics modelling is concerned. A complete

review of available simulation tools for emission tomog-

raphy can be found in [11].

In the area of emission tomography, simulated raw

datasets can be used for the optimization of reconstruction

algorithms and associated correction strategies such as, for

example, those for scattered detected events [12], [13].

Based on these simulated datasets, reconstructed PET

images are often used to test various image-processing

algorithms, examples of which include partial volume

effects correction [14], denoising [15], automated detec-

tion [16], and segmentation [17]. Using MC simulated

datasets is the most reliable approach to validate and assess

the performance of such algorithms since they include an

accurate modelling of all physical processes associated

with the acquisition process. In addition, the advantage of

using simulated data over clinical data is that it allows

control of the ground truth that is usually not available in

the case of patient studies. However, phantoms offer

limited shapes and realism, and the use of more realistic

and clinically relevant datasets, in terms of geometry and

activity distribution, should improve the evaluation of

methodologies destined to be used in clinical practice.

Within this context a few simulated PET databases already

exist. A first one was developed by Reilhac et al. using PET-
SORTEO [10], [18]. It contains brain images modelling

tracer kinetics based on the use of different radiopharma-

ceuticals. A second one was developed by Castiglioni et al.
[19] containing several images of simulated brain and

thorax parts of the Zubal phantom [20] as well as cylind-

rical phantoms generated using various simulation tools.

Aristophanous et al. [21] have created a single whole-body

phantom simulation based on the use of the Zubal phan-

tom in combination with the SimSET code, incorporating

nonuniform lesions in the lungs. However, no patient

variability in terms of anatomical and functional activity

distribution or physiological motion (such as respiration)

was considered. More recently, a third database of FDG

whole-body images was developed by Tomei et al. [22]
using PET-SORTEO. This database is based on the use of

the Zubal phantom including spherical lesions of various

sizes with different contrast using a model of lesion extent

based on the clinical description of lymphoma patients.

The aim of this work is to improve the realism of

simulated whole-body PET images through the incorpora-

tion of both anatomical and functional uptake variability

considering different disease models. Within this context,

the simulated images include variability from patient to

patient, taking into consideration the anatomy of each

patient as well as specific 18F-FDG distribution in organs

and lesions. In addition, the proposed database includes

the effects of respiratory motion through the simulation of

four-dimensional (4-D) whole-body PET images based on

the respiratory signals of individual patients.

II . MATERIALS AND METHODS

The simulation process consists of two major steps. As a

first step, the model of the patient’s anatomy is created,

followed by the simulation of the PET acquisition based on

the developed patient’s model. This simulation requires

the model of a scanner geometry. The individual steps are

explained in the following sections.

A. Clinical Data
The datasets to be simulated are based on whole-body

clinical images. The objective is to simulate images which

are as realistic as possible, modelling the anatomical varia-

bility and corresponding tumors from the original clinical

images. The clinical images used up to date were acquired

on a PET/CT Philips GEMINI system (Philips Medical

Systems, Cleveland, OH). The total injected activity was

between 2:78� 105 kBq and 5:10� 105 kBq and the

images were acquired 1 h postinjection. The scan time for

each bed position is 2 min. These clinical images were

reconstructed with the iterative reconstruction algorithm

RAMLA [23] used in Philips GEMINI scanners and stan-

dard clinical protocol parameters previously optimized

(two iterations, a Gaussian postfiltering with 3-D full width

at half-maximum (FWHM) of 5 mm and a relaxation pa-

rameter of 0.05) [24]. CT scan acquisitions were carried

out using 120 kV and 100 mA for tube settings, resulting in

CTDI from 600 to 800 mGy. The voxel size of the CT
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images was 1:17� 1:17� 5 mm3 with dimensions of 512 �
512� N (N slices depending on the patient’s axial cov-

erage). The voxel size of the PET images was 4� 4 �
4 mm3 with dimensions of 144� 144 � M (M also

depending on the patient’s axial coverage). We selected

ten patients (six men and four women) with different

shapes of tumors at different positions in the body and with

homogeneous and heterogeneous activity distributions.

The different patient data with corresponding injected

activity and tumor characteristics are summarized in

Table 1. The CT images were used for the anatomy

modelling and the PET images for the activity distribution

modelling.

The model obtained by the following procedure is a

voxel-based description of the patient’s anatomy. Each

organ is designated by one label. These labels have to be

associated with both an activity concentration and an

attenuation coefficient in order for the simulation tool to

reproduce the process of radioactive disintegration,

particle interaction, and photon detection.

B. Modelling of the Anatomy

1) Organ Shape: The anatomical and activity distribution

models were constructed using the nonuniform rational

basis splines (NURBS)-based cardiac-torso (NCAT) phan-

tom [25] as a basis. This model achieves a good balance

between flexibility and realism thanks to the use of

NURBS surfaces for the organ shape modelling. In order to

take into account the interpatient anatomical variability,

we used an interactive software application [26], which

allows the modification of the NCAT phantom’s anatomy.

We thus modified the NCAT model based on specific

patient anatomy using the CT clinical images acquired

during the corresponding patient PET/CT studies as a

guide. Two-dimensional slices of the NCAT phantom were

overlaid with corresponding slices of the CT clinical

images. The organ shapes were modified by changing the

position of the control points associated to the NURBS

surfaces of each organ. Within this process, the first step

involved the use of simple transformations like rotations,

translations, or scaling applied to one or several organs via

their respective control points. This first step allows for a

global adaptation of the phantom to the anatomy of a given

patient. A finer adjustment was subsequently applied by a

displacement of individual control points to more accu-

rately reshape the organs of interest. The majority of the

different organ shapes were adapted to those of the specific

patients, although some differences still remained for

some complex organs of the abdomen. We found, in par-

ticular, that the intestines are difficult to match with those

of specific patient acquisitions because of large differences

between the modelled shape in the NCAT phantom and

the real shape in combination with large interpatient

variability in both shape and form. A potential improve-

ment for the matching of organs, such as the intestines,

between the model and specific patient will be the use of

deformable models, which have not been explored in

this work.

2) Activity Distribution: The clinical PET images were

employed in order to accurately model the variable FDG

distributions. A region of interest (ROI) analysis was per-

formed for the different organs (liver, lungs, kidneys, etc.)

of each patient in order to identify mean and standard

deviation of activity concentrations per organ. In addition,

these activity concentrations were compared to the stan-

dardized uptake values (SUVs) available in already pub-

lished work of normal organ uptakes in FDG PET imaging

[27] and used to assign the activities for the different

organs in the NCAT patient specific emission maps used in

the simulation.

Table 2 illustrates for four different organs (liver,

lungs, stomach, and spleen) the comparison of the theo-

retical SUV (column 1) and the clinical SUV (column 2)

obtained from the ROI analysis. For the ROI analysis, we

considered 17 different organs: liver, lungs, heart wall,

heart chamber, stomach, kidneys, spleen, spine bone,

other bone, pelvis, bladder, intestines, rectum, ovaries/

prostate, urethra, brain, and body (including muscle).

Table 1 Summary of the Ten Clinical Scans Used for the Simulation
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3) Attenuation Map: The attenuation map was con-

structed using the same labelled phantom model as the one

for the emission map. Each label of the phantom was

associated with the corresponding attenuation coefficient

at 511 keV. The different attenuation coefficients of the

organs were approximated with those of seven struc-

tures: water (0.096033 cm�1), bone (0.151108 cm�1),

lung (0.024667 cm�1), brain (0.098530 cm�1), fat

(0.087718 cm�1), air (0.000111 cm�1), and muscle

(0.098731 cm�1).

C. Tumor Modelling
The next step consisted in adding the tumor to the

healthy patient model. The NCAT phantom allows the in-

corporation of homogeneous spherical tumors into the

model. However, in order to simulate realistic patient-

specific phantoms, we frequently need to incorporate

modelling of complex tumor shapes and heterogeneous

distributions. For this purpose, a new process for the

incorporation of nonuniform shape and activity distribu-

tion lesions was developed in order to model lesion hete-

rogeneity within the NCAT phantom.

The following steps were considered in this process.

Initially, the tumors were manually segmented from the

clinical PET images considering variable activity distribu-

tions and shapes. A 3-D reconstruction was subsequently

derived using the segmented structures to obtain a mesh

using AMIRA.1 The organs in the NCAT phantom are

modelled with NURBS. These types of surfaces allow more

flexibility as well as the incorporation of respiratory

motion. Since one of our aims is to include the simulation

of patient-specific respiratory motion effects, the tumor

surfaces were also modelled using NURBS for compatibil-

ity. The last step of tumor modelling is therefore the

conversion of the mesh into a NURBS surface, for which

Rhinoceros (CADLINK software) was used. More specifi-

cally, section curves were first extracted from the mesh of

the tumor, and cubic NURBS surfaces were then fitted to

these contours. The number of curves and the distance

between them as well as the number of control points to

use depend on the tumor shape. The more complex the

shape is, the more curves and control points are needed for

a realistic modelling. These parameters were therefore

chosen in order to achieve the best match between each

tumor mesh and its corresponding NURBS surface. Within

two consecutive curves, a normal distribution is consid-

ered for the interpolation. The complete procedure is

illustrated in Fig. 1.

In order to model tumor nonuniformities, as many

NURBS surfaces as levels of activity identified within the

tumors were created. During the creation of the voxelized

phantom, each NURBS surface is associated with a specific

level of activity. For the patients included to date in the

simulated database under construction, only tumors with

one or two levels of activity were modelled, since it was

found to be sufficient for the adequate modelling of the

nonuniform activity distributions encountered. However,

the extension of the approach to include higher levels of

nonuniformity in the modelled lesions is straightforward.

In the work described in this paper, the decision regarding

the number of activity levels to be included in the

modelling of heterogeneity was based on a combination of

visual and ROI assessments. ROIs were manually drawn

within the visually distinguishable nonhomogeneous

regions within the tumors, and the standard deviation

with respect to the mean was measured. The standard

deviations around the mean values within the ROIs were

usually smaller than 10%. Additional activity regions

would have hence led to insignificant nonuniform activity

contrast differences with the main tumor.

Fig. 2 illustrates the result of the two first steps; it

shows the coronal slices of a CT clinical image, the

corresponding clinical PET slice, and the labelled phantom

obtained by the procedure described above with the tumor

incorporated in the right lung.

D. Respiratory Motion
The default respiratory cycle of the NCAT phantom is a

sinusoid [28]. In order to take into consideration the

nonuniform nature of realistic respiratory signals, we

replaced this cycle by patient specific respiratory signals.

These were acquired during a 4-D PET/CT acquisition with

an external sensor placed on the patient’s thorax [29]. This

resulting respiratory cycle is therefore nonregular in both

phase and amplitude. It is characterized by a nonregular

period and nonregular inspiration and expiration phases,

contrary to the default NCAT respiratory cycle.

Each respiratory cycle was divided into N bins, and one

phantom was created for each of the N instances of the

respiratory cycle.

E. Data Simulation

1) Simulation Process: The simulations of the images

presented in this paper were carried out using the PET-

SORTEO simulation tool that has been fully validated for

the ECAT HR+ scanner geometry [10]. Six bed fields, each

corresponding to the dimension of the scanner’s axial field

of view (FoV), were used during the simulation to achieve

whole-body coverage (see Fig. 2), with the scanner1http://www.amiravis.com/.

Table 2 Comparison of Theoretical SUV and Clinical SUV Measured on

the Ten Clinical Datasets Used in the Study
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operating in 3-D. An overlap of 2.91 cm (corresponding to

12 reconstructed slices) was considered between two

consecutive beds to compensate for the loss of sensitivity

on both extremities of the axial FoV.

For the studies without the inclusion of respiratory

motion, simulations were carried out approximating

clinical acquisitions of 3–15 min per bed position in order

to provide whole-body images of variable statistical quality.

For the simulations with respiratory motion, the acquisi-

tion time per bed position used in static simulation

ðTacqTotÞ was divided by the number of respiratory cycles

ðNbinsÞ and the number of bins per respiratory cycle

ðNbinsÞ to obtain the acquisition time per bed position at

one instance (bin) of the respiratory cycle ðTacqBinÞ

TacqBin ¼
TacqTot

NcycleNbins

: (1)

So the total acquisition time per bed position remains

the same for simulations with or without the inclusion of

Fig. 2. Coronal slice of (a) a clinical CT image, (b) the corresponding clinical PET image, and (c) the corresponding slice of the adapted labelled

NCAT phantom model. The six bed positions used for the simulation process are illustrated on the labelled phantom.

Fig. 1. Illustration of the tumor modelling process. The steps are: 1) tumor segmentation, 2) 3-D reconstruction of the tumor, 3) extraction of

section curves from the mesh, and 4) reconstruction of a NURBS surface from the section curves.
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respiratory motion. In order to obtain the gated simulated

data, the sinograms at the same instance of the respiratory

cycle were added before reconstruction. To obtain the

respiratory average patient acquisition, all the sinograms

were added before reconstruction.

Even considering the use of a simulation platform such

as SORTEO, which is significantly faster than other

alternatives, heavy load is put on computing resources by

the simulation process. In order to generate data in a

reasonable amount of time, we have been using the IN2P3

computing centre in Lyon.2 Twenty processors were allo-

cated for each bed of a whole-body simulation on Linux

scientific 32-bit running systems. Such a configuration

allowed us to generate a 14-min whole-body simulation

without respiratory motion in about 90 h.

2) Corrections and Reconstruction: Before the reconstruc-
tion of the images, the standard corrections were applied

to the simulated images: normalization [30], dead time,

radioactive decay, scattered [31], and random corrections

using a delayed coincidence window approach [18]. For

the attenuation correction, two different approaches were

used. In the first one, a transmission sinogram was em-

ployed. We simulated two acquisitions with a rotating 68Ge

source, one with the patient model in place (3 min) and

one in air [18]. The difference of the counts between the

two acquisitions gives the attenuation coefficients, which

can then be used for attenuation correction. An alternative

way could be using CT-based attenuation correction. The

simulation of CT images can be performed using the NCAT

patient-specific attenuation maps created here and a de-

dicated CT simulator. This has been previously shown

using standard NCAT maps and an analytical CT simulator

[32]. However, since the simulation of patient-specific CT

images was not the objective of the work described in this

paper, an alternative approach, similar to the use of CT

images for attenuation correction for the simulated emis-

sion images, was performed. The patient-specific NCAT

attenuation maps (see Section II) were first filtered

(Gaussian filter of 12� 12� 5 mm3) to match the reso-

lution of the PET emission images [33] and subsequently

projected forward [34] to derive the correction factors

used for the attenuation correction.

The images were reconstructed with the iterative

AW-OSEM algorithm, which is used clinically with the

ECAT HR+ scanner [35]. The number of subsets (16) and

iterations (four) used in the clinical setting was employed

for the reconstruction of the simulated images. The final

step was the use of a Gaussian isotropic filtering of 8 mm.

Images were reconstructed using two different voxel sizes

(5� 5� 2:425 mm3 and 2:5� 2:5� 2:425 mm3), since

this parameter represents an important factor influencing

overall emission image quality and spatial sampling of the

objects of interest (such as, for example, lesions in onco-

logy applications). As such, it is important to be able to test

the influence of voxel size on different image-processing

algorithms, which is an example of the use of a database of

simulated emission images introducing patient-specific

variability, such as explained in this paper.

The different steps of the simulation process were

detailed in this section. The following list of steps sum-

marizes the procedure for the creation of one simulated

image:

1) modelling of the patient-specific anatomy based

on the CT clinical images;

2) description of the activity distribution in the main

organs based on measurements carried out on the

corresponding patient PET clinical images;

3) modelling of tumors (if necessary) by:

a) segmenting the tumors and defining the

various uptake levels within each tumor;

b) transformation of the tumor mesh in a

NURBS surface using Rhinoceros;

c) incorporation of the tumor into the phantom;

4) definition of the scanner geometry within the

chosen simulation environment;

5) simulation of the emission raw datasets (sino-

grams or list mode data) within the chosen simu-

lation environment;

6) correction of the simulated raw datasets (sino-

grams or list mode data);

7) reconstruction of the PET simulated images.

III . RESULTS AND APPLICATIONS

A. The Whole-Body PET Simulated Database
To date we have generated ten different patients, eight

of them corresponding to respiratory motion average PET/

CT whole-body acquisitions and two of them correspond-

ing to 4-D PET/CT acquisitions synchronized with

respiratory motion. The respiratory motion average data

were simulated with variable statistical qualities by varying

the acquisition time as explained in Section II-D. A few

examples of the simulated static PET whole-body images

highlighting the wide range of patient variability in terms

of anatomical and functional details are given in Fig. 3.

Two examples of tumors are shown in Fig. 4, where it

can be seen that, in comparison with clinical data, the

tumor shapes are qualitatively respected. In the clinical

data, the voxel size is 4� 4� 4 mm3 whereas in the

simulated datasets two different voxel sizes were used

(5� 5� 2:425 mm3 and 2:5� 2:5� 2:425 mm3). The

difference in the contrast between the high uptake

zone and the low uptake zone is about 2% in the second

illustrated tumor; the first one was modelled with one

level of activity only.

1) Activity Distribution: The injected dose in the cases of

the clinical data on which we based the simulations of PET2http://cc.in2p3.fr.
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Fig. 3. Coronal slices from three patient whole-body simulated images: (a) the labelled NCAT phantom, (b) the simulated image,

and (c) the clinical image.
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acquisitions ranged from 2:78� 105 to 5:10� 105 kBq. In

the simulated data, the injected dose ranged from

3:10� 105 to 4:68� 105 kBq.

Fig. 5 contains the mean activity concentration dif-

ferences for each organ of interest, derived using the ROI

analysis, considering all eight static PET simulated images.

A good agreement can be seen for most of the organs, with

the highest mean activity differences in the kidneys, brain,

and bladder (14%, 15%, and 23%, respectively), whereas

for the other organs (liver, lungs, etc.), the mean differ-

ence is less than 9%.

Table 3 contains the standard deviation of mean

activities within ROIs drawn inside organs of interest in

order to illustrate the variability of the activity distribution

from patient to patient. The patient variability of the sim-

ulated and the clinical data are of the same order of mag-

nitude. The standard deviation in the heart wall is higher

(about 5.3) than that of the other organs (mean standard

deviation of about 1.3), which is consistent with the varia-

ble contrast seen in clinical PET images between the heart

wall and the heart chamber.

2) Images of Different Statistical Quality: For the third

patient in Fig. 3, simulated images considering different

acquisition times (see Section II-E) leading to different

statistical quality, and hence various levels of noise, are

illustrated. The mean activity concentration and standard

deviation computed within the two ROIs drawn in the liver

and the lungs were compared. The longer the acquisition

time, the lower the standard deviation, with 24% and 23%

decreases of the noise from 7 to 14 min for the liver and the

lungs, respectively. On the other hand, the mean activity

concentrations were largely unchanged (þ=�1%).

3) Dynamic Data: Results on the gated acquisitions can

be found in Fig. 6, which illustrates the resulting images at

Fig. 5. Mean percentage differences in the mean activity of the

organs of interest between the simulated and the clinical images.

The error bars denote the standard deviation in these mean

differences for each organ.

Table 3 Comparison of the Mean and Standard Deviation of the

Activities (in kBq/mL) Considering All of the Simulated Images for

Organs of Interest in Both the Clinical and Simulated Datasets

Fig. 4. Illustration of two different simulated tumors: (a) clinical image, (b) simulated image, and (c) labelled image. The table contains the

differences in the corresponding activity concentrations and contrasts for the second tumor, which has been modeled using two activity levels.

The results of the segmentation process are contoured in red, and the corresponding ground truth is shown in yellow.
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two different times of the respiratory cycle for patient 5

(see Table 1). It corresponds to bins 1 and 6 of the

respiratory cycle. These images were simulated with a

spherical tumor with medium contrast (�10) in the lung.

The motion of the liver and the tumor in the lung are

clearly visible in these two images. The top of the liver and

the tumor are about 16 and 10 mm lower, respectively, in

bin 6 with respect to bin 1. The estimated liver motion

correlates well with the amplitude of the motion trace used

in the simulation, which is expected considering the linear

liver motion implemented in the NCAT phantom.

B. Applications
In this section, we discuss two examples on the use of

such a simulated database for the validation of PET image-

processing methods. The first one is on the correction of

partial volume effects and the second is on the automatic

segmentation of tumor volumes.

1) Partial Volume Effect Correction and Denoising: Partial
volume effect (PVE) is the consequence of the limited

spatial resolution in PET. It affects both qualitative and

quantitative accuracy of images as a result of the blurring

and spill-in and spill-out effects. This is especially evident

in tumor imaging, since the effect is major for structures of

less than 1 cm in diameter, that is, twice the FWHM of the

point spread function of the imaging device [36]. A large

number of approaches have been proposed to correct for

PVE [37]–[40], with some emerging methodologies

concentrating on the production of improved image

quality rather than concentrating on ROI analysis, which

has been traditionally used for brain imaging applications

[41]. In this application example, the method proposed by

Boussion et al. [14] was applied to one of the illustrated

simulated images (the second patient shown in Fig. 3). The

simulated image contains two spherical tumors, one in

the lung and one in the mediastinum, of 13 and 20 mm

diameter, respectively. The PVE correction method is

based on the use of PET data only and consists of the

combination of a deconvolution and a denoising method in

order to compensate for the noise amplification usually

associated with iterative deconvolution methods. The Lucy

Richardson deconvolution process is applied and the resid-

ual is denoised within each iteration using a wavelet-based

denoising method. Such PVE correction leads to improved

qualitative and quantitative analysis for oncology applica-

tions such as diagnosis and/or therapy assessment.

The original and corrected images are illustrated in

Fig. 7, using a line profile demonstrating a 40% increase of

the activity within the tumor in the mediastinum and a 28%

increase for the tumor in the lung. A smaller increase relative

to the ground truth is seen for the smaller lesion relative to

the larger which agrees with the results reported on the

original paper evaluating this PVE correction approach [14].

Table 4 shows the mean activity and associated standard

deviation computed in the tumors and lungs in both sim-

ulated and corrected images. The tumor/lung contrast is

Fig. 7. Result of PVE correction. The figure illustrates one transaxial slice of the simulated image (top) without and (bottom) with

PVE correction. Two line profiles are plotted on the right.

Fig. 6. Coronal slices of the simulated whole-body scans for patient 5

at two instants (bin 1 and bin 6) of the respiratory cycle.
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clearly improved after correction, with an increase from 3.4

to 5.3 in the case of tumor 1 and a similar improvement (from

6.2 to 10.4) for the second tumor, In addition, the derived

mean values in the activity concentration of the lesions are

closer to the simulated ground truth after correction, as

shown in Table 4.

2) Tumor Segmentation: Another important clinical

application in PET is tumor volume delineation for

applications like patient follow-up and radiotherapy treat-

ment planning, especially considering the growing interest

of using hypoxia and proliferation tracers for improved

biological target volume or dose painting and dose escalation

applications [42]. The fuzzy locally adaptive Bayesian

segmentation proposed by Hatt et al. [17] was applied here

on the tumor illustrated in the tumor modelling process (see

Fig. 1) and on the second heterogeneous tumor illustrated in

Fig. 4 (quoted from here onwards as the second tumor).

The ground truth volume of the first and second tumor

is 33.4 and 62.4 cm3, respectively. The results of the

segmentation are illustrated in Fig. 4 for the two tumors,

showing one coronal slice for each of the two segmented

tumors and the corresponding slice of the ground truth.

The segmentation process results in an overall tumor

volume of 35.2 cm3 (5% error) and 61.8 cm3 (1% error) for

the first and second tumor, respectively.

IV. DISCUSSION

The use of simulated datasets to evaluate new image-

processing algorithms in PET is crucial. Indeed, it allows

the control of the ground truth, which is not easily avail-

able when dealing with clinical datasets. In addition,

Monte Carlo–based simulated images can be produced

considering an accurate modelling of the overall detection

process. In the field of emission tomography, a few simu-

lated PET databases already exist, but the major concern

remains the realism of these simulated images and the lack

of variability between the different cases due to the use of

nonflexible models. Within this context, the aim of the

work described in this paper was to incorporate patient

variability in a PET simulated database to improve the

correspondence of the simulated images to the clinical

cases. This variability concerns both the anatomy based on

the clinical CT images and the 18F-FDG distribution based

on the corresponding PET acquisition. The realism of our

simulated images is also based on realistic tumor model-

ling’s allowing variable tumor shapes and heterogeneity in

the FDG uptake. Lastly, the possibility of generating respi-

ratory motion in the simulated images was also included.

The patient-specific organ reshaping of the NCAT

phantom, which forms the basic anthropomorphic model

used in this paper, showed good results for the overall body

shape and the organs of the thorax (lungs, liver, thoracic

cage, etc.). A wide anatomical variability may be observed

among the various images already simulated. Some prob-

lems, however, still remain at the abdominal region, parti-

cularly for the intestines as a result of the large interpatient

variability at this level in combination with large differ-

ences between patient and model-based intestines.

Concerning the tumor modeling, the data simulated to

date show good qualitative and quantitative correlation

between the simulated and clinical data. In this paper, the

choice of the number of activity levels needed to simulate

heterogeneous tumors was made considering a combined

visual and ROI analysis approach. However, this process

could be improved using statistical measures of tumor

heterogeneity [43].

For the images already simulated to date and included

in the database, a good correlation between the simulated

images and the clinical images was found in terms of

activity distributions. The organs with the greatest differ-

ences between simulated and clinical FDG uptake are the

kidneys, brain, and bladder. The differences measured in

these specific organs can be largely attributed to the lack of

realism in their modelling considering the version of the

NCAT phantom used in this paper. The NCAT phantom, as

its name indicates, was first developed for the thorax, with

a main feature remaining the incorporation of respiratory

and cardiac motions. Therefore, the main organs of in-

terest are those located in the thorax. The brain, for in-

stance, is only made of one simple structure, so the activity

simulated in the brain is not as variable as the one existing

in clinical images. For more realistic brain modelling, the

Zubal phantom [20] is currently more precise. The kidneys

and the bladder in the NCAT are also modelled with only

one level of activity, whereas in reality, these are both

heterogeneous organs in terms of FDG uptake.

Table 4 Comparison With the Ground Truth of the Mean Activity (in kBq/mL) in the Lungs and the Tumors as Well as the

Tumor/Lung Contrast in Simulated and Corrected Images
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The number of labelled regions available in the NCAT

phantom may be a limiting factor for the definition of a

more detailed activity map. For instance, in the version

used in this paper, the muscles are not modelled. More

specifically, there is only one structure named Bbody[

around the different organs, and no distinction exists

between the muscles and the fat. However, a later version

of the NCAT phantom [44], developed for CT simulation,

includes muscles and also more precise brain modelling.

On the other hand, considering the availability of more

structures within the NCAT phantom, there is no partic-

ular difficulty envisaged for the inclusion of additional

labels in the workflow proposed in the work for the pro-

duction of the simulated images.

The standard deviations in the different ROIs inside the

organs could not be compared between the clinical and

simulated images because the simulated images were not

reconstructed with the same reconstruction algorithm

(RAMLA for the clinical datasets and OSEM for the sim-

ulated images). In addition, the scanner geometry employed

was not that corresponding to the system used in the

acquisition of the clinical studies. Lastly, differences in

terms of the correction algorithms used (attenuation, scat-

ter, and random corrections) could also account for potential

differences in the noise characteristics between the clinical

and the simulated images. However, the purpose of this

paper was to obtain realistic simulated FDG whole-body

images rather than reproducing the exact clinical image

quality of the Philips PET/CT system. Although this was not

the objective of this paper, the simulation of different

specific imaging devices can be more easily performed with

alternative MC simulation codes than the SORTEO used

here, which was specifically developed and validated for the

Siemens ECAT HR+ scanner. For example, one such code is

GATE (Geant4 Application for Tomographic Emission) [8],

which facilitates an easier simulation of variable system

architectures and associated readout and processing elec-

tronics [7]. The SORTEO MC simulation platform was

chosen here because of its faster execution times in com-

parison to GATE at the beginning of the study. In any case,

the approach described in this paper regarding the anthro-

pomorphic model and its patient-specific adaptation is uni-

versal and applicable to any simulation platform.

The simulations including the respiratory motion

effects as well as the use of a patient-specific respiratory

cycle were validated as a first step and produced qualita-

tively acceptable images. The use of a patient-specific res-

piratory cycle improves the realism of the respiration

modelling as it incorporates irregularities in the amplitude

and the period of the motion. However, one should also

note that the realism of the NCAT phantom (at least in the

version used in this paper) in terms of respiratory motion

at the diaphragm level is limited (models only a linear

motion of the liver, the heart and the spleen). Lastly, the

use of the actual version of the PET SORTEO simulation

tool is not ideal for the simulation of respiratory motion

since simulations including real-time physiological motion

cannot be performed [45], and hence separate simulations

have to be carried out for different instances in the respi-

ratory cycle. In addition, the only raw data format available

is sinograms, which can be limiting in comparison to list-

mode format, which incorporates temporal information

along the recorded coincidences for the investigation of

dynamic processes and the application of associated cor-

rection algorithms [46]. Ongoing work will investigate the

ability to generate list-mode data with the PET SORTEO

simulation tool.

The execution times realized within the study de-

scribed in this paper for the simulation of a whole-body

PET image are reasonable within a research environment

considering limited computing capabilities. Eventually,

our objective will be to make available in a public database

not only the simulated images but also the corresponding

raw data files, which will facilitate the evaluation of image-

reconstruction algorithms and associated corrections. In

this paper, we have finally demonstrated on a couple of

applications the usefulness of such simulated images in the

validation and evaluation of postreconstruction processing

algorithms, making clear use of the clinically realistic

images and the availability of the ground truth.

V. CONCLUSION

We have described a generic methodology for the de-

velopment of a realistic simulated whole-body PET images

database including patient-specific variability. The patient

model was based on the NCAT anthropomorphic phantom

adapted to patient-specific CT images. Ten simulated datasets

containing tumors of various shapes and activity distributions

were generated, with two of them including the simulation of

respiratory gated PET frames, using patient-specific respira-

tory signals. The PET SORTEO simulation tool was used for

the generation of the simulated datasets based on the derived

patient-specific NCAT models.

Future work will include continuing the building of a

comprehensive database of simulated static and 4-D FDG

whole-body PET images from corresponding oncology

patient acquisitions. The contents of the database will be

complemented in the future by the raw simulated datasets

as well as the use of alternative simulation platforms of-

fering a larger spectrum of imaging system models and

facilitating the simulation of 4-D processes. h
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18F-FDG PET is often used in clinical routine for diagnosis, stag-

ing, and response to therapy assessment or prediction. The

standardized uptake value (SUV) in the primary or regional area

is the most common quantitative measurement derived from

PET images used for those purposes. The aim of this study

was to propose and evaluate new parameters obtained by tex-

tural analysis of baseline PET scans for the prediction of therapy

response in esophageal cancer. Methods: Forty-one patients

with newly diagnosed esophageal cancer treated with com-

bined radiochemotherapy were included in this study. All

patients underwent pretreatment whole-body 18F-FDG PET.

Patients were treated with radiotherapy and alkylatinlike agents

(5-fluorouracil-cisplatin or 5-fluorouracil-carboplatin). Patients were

classified as nonresponders (progressive or stable disease),

partial responders, or complete responders according to the

Response Evaluation Criteria in Solid Tumors. Different image-

derived indices obtained from the pretreatment PET tumor

images were considered. These included usual indices such as

maximum SUV, peak SUV, and mean SUV and a total of 38

features (such as entropy, size, and magnitude of local and global

heterogeneous and homogeneous tumor regions) extracted from

the 5 different textures considered. The capacity of each param-

eter to classify patients with respect to response to therapy was

assessed using the Kruskal–Wallis test (P, 0.05). Specificity and

sensitivity (including 95% confidence intervals) for each of the

studied parameters were derived using receiver-operating-

characteristic curves. Results: Relationships between pairs of

voxels, characterizing local tumor metabolic nonuniformities,

were able to significantly differentiate all 3 patient groups (P ,

0.0006). Regional measures of tumor characteristics, such as

size of nonuniform metabolic regions and corresponding inten-

sity nonuniformities within these regions, were also significant

factors for prediction of response to therapy (P 5 0.0002).

Receiver-operating-characteristic curve analysis showed that

tumor textural analysis can provide nonresponder, partial-

responder, and complete-responder patient identification with

higher sensitivity (76%–92%) than any SUV measurement.

Conclusion: Textural features of tumor metabolic distribution

extracted from baseline 18F-FDG PET images allow for the best

stratification of esophageal carcinoma patients in the context of

therapy-response prediction.

Key Words: 18F-FDG PET; esophageal cancer; textural

analysis; predictive value; response to therapy
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Esophageal cancer is associated with high mortality.

In patients with early-stage disease at presentation, esopha-

gectomy is the treatment of choice and is potentially cu-

rative. Unfortunately most patients at presentation have

already locally advanced esophageal cancer or distant

metastases. In locally advanced esophageal cancer, preop-

erative chemotherapy or radiochemotherapy will improve

survival in patients who respond to induction therapy (1,2).

On the other hand, patients who do not respond to neo-

adjuvant therapy may be affected unnecessarily by the tox-

icity of an inefficient therapy. Therefore, the development

of a diagnostic test capable of noninvasively predicting

response to therapy early in the course of treatment is of

great interest, potentially allowing personalization of pa-

tient management. In patients treated by exclusive conven-

tional combined radiochemotherapy, assessment of response

is equally of great interest, because it could allow an early

change in the management of nonresponding patients. Such

assessment becomes more critical when one considers the

availability of new targeted therapies that could be tested

with higher efficiency if applied early in diagnosis (3,4).
18F-FDG PET is already well established for the initial

staging of esophageal cancer, because it is associated with a

better sensitivity and specificity than combined use of CT

and echoendoscopy, especially regarding detection of dis-

tant metastasis (5).
18F-FDG PET has been also used to assess response to

therapy and patient outcome prognosis (4,6). Within this

context, few studies have explored the potential prognostic

value of pretreatment 18F-FDG PET, demonstrating that

the level of activity concentration on preoperative PET,
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although not statistically significant, tends to predict overall

survival (7–9).

On the other hand, several studies have evaluated the

role of PET in assessing treatment response based on 18F-

FDG uptake changes between a pre- and a posttreatment

PET scan obtained during or after the treatment comple-

tion. Studies considering a second PET scan after treat-

ment completion have shown that a complete metabolic

response is associated with better outcome (10–12). How-

ever, because that information is of limited interest in

patient management if acquired late, different attempts

have been made to determine whether 18F-FDG PET

could be used for assessing response to therapy earlier

(usually within a few weeks) in the course of treatment

(13–15), showing some promising results that need to be

confirmed in multicenter trials (4). One of the highlighted

issues is that early response prediction during combined

chemoradiotherapy, in contrast to chemotherapy alone,

may be compromised by increased 18F-FDG tumor

uptake resulting from radiotherapy-induced inflammatory

processes (4).

An alternative to monitoring changes during treatment

is the potential of predicting response to therapy from the

baseline 18F-FDG PET scan alone, which may allow the

best available therapy regime to be chosen for a given

patient. However, to date there is only limited evidence

that a measure of tumor activity concentration on a base-

line PET scan in esophageal cancer can differentiate

groups of patient response (8,9). Within the same context,

parameters derived from pretreatment 18F-FDG PET have

shown the potential to differentiate between responders

and nonresponders (NRs) in non-Hodgkin lymphoma

patients (16).

The PET image index predominantly used in such studies

for assessment of metabolic response is the normalized

mean tumor activity concentration known as the mean

standardized uptake value (SUVmean), within a region of

interest around the tumor, or the maximum standardized

uptake value corresponding to the highest-activity pixel

value (SUVmax). However,
18F-FDG tumor uptake has been

associated not only with increased metabolism but also with

several other physiologic parameters such as perfusion, cell

proliferation (17), tumor viability, aggressiveness, or hyp-

oxia (18,19), all of which may in turn be responsible for

tumor uptake heterogeneity. Therefore, the hypothesis can

be made that characterizing tumor 18F-FDG distribution,

through its relationship to underlying tumor biologic char-

acteristics, may be useful in predicting therapy response.
18F-FDG tumor activity distribution may be assessed in

a global, regional, or local fashion, allowing in turn the

assessment of corresponding global, regional, or local pat-

terns of biologic heterogeneity. Although the measurement

of such features have been previously explored in anatomic

imaging (20–22), they have not to date been widely used in

PET. Until now, only 1 study has considered the use of

some textural features to predict treatment outcome from

baseline 18F-FDG PET images, with encouraging results in

cervical and head and neck cancer (23), and the assessment

of spatial heterogeneity was also shown to be significantly

associated with survival in sarcoma patients (24). However,

the potential predictive value of tumor heterogeneity char-

acterization on a baseline 18F-FDG PET scan has never

been assessed.

The objective of this current study was, therefore, to

assess the predictive value of 18F-FDG uptake heterogene-

ity characterized by textural features extracted from pre-

therapy 18F-FDG PET images of patients with esophageal

carcinoma by assessing the ability of each parameter to

identify different categories of responders. The predictive

value of these parameters was compared with the use of

standard image activity concentration indices (SUVmax,

SUVmean). The potential prognostic value of such image-

derived parameters for assessing overall patient survival

was not assessed in this study.

MATERIALS AND METHODS

Patients

Forty-one patients with newly diagnosed esophageal cancer

treated with exclusive radiochemotherapy between 2003 and 2008

were included in this study. The characteristics of the patients are

summarized in Table 1. The mean age at the time of diagnosis was

66 6 10 y (median, 69 y; range, 45–84 y), and 85% of patients

were male. Most of the tumors were squamous cell carcinoma

(76%), and most of the patients had a well or moderately differ-

entiated tumor (56%). Most of the tumors originated from the

middle and lower esophagus (76%). Twenty-six patients had a

T3 or T4 primary lesion, 25 had N1 (61%) lymph node metastases,

and 17 had distant metastases (Table 1). All patients were treated

with external-beam radiotherapy and chemotherapy with alkylatin-

like agents (5-fluorouracil-cisplatin or 5-fluorouracil-carboplatin).

A median radiation dose of 60 Gy was delivered in 180-cGy daily

fractions (5 d/wk and 6–7 wk in total). One month after the com-

pletion of the treatment, patients were reassessed to determine

response to therapy using thoracoabdominal CT and endoscopy.

Patients were subsequently classified as complete responders

(CR), partial responders (PR), stable disease, or progressive dis-

ease. Response was assessed using pretreatment and posttreatment

CT scans by evaluating the increase (or decrease) in the sum of the

longest diameters for all target lesions and the appearance, persis-

tence, or disappearance of nontarget lesions, according to the

Response Evaluation Criteria in Solid Tumors (RECIST) (25).

Considering the small number of patients in the stable disease (7)

and progressive disease (4) groups, these patients were eventually

combined into an NR group.

All patients underwent pretreatment whole-body 18F-FDG PET

for staging purposes. Patients were instructed to fast for a minimum

of 6 h before the injection of 18F-FDG. The dose of administered
18F-FDG was 5 MBq/kg, and static emission images were

acquired from thigh to head, on average 54 min after injection,

on a Gemini PET/CT scanner (Philips). In addition to the emission

PET scan, a low-dose CT scan was acquired for attenuation-cor-

rection purposes. Images were reconstructed with the 3-dimen-

sional (3D) row-action maximum-likelihood algorithm using

standard clinical protocol parameters (2 iterations, relaxation

parameter of 0.05, and 3D gaussian postfiltering of 5 mm in
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full width at half maximum). The current data analysis was per-

formed after approval by the institutional review board.

Tumor Analysis

For each patient, primary tumors were identified on 18F-FDG

PET images by an experienced nuclear physician. Tumors were

then delineated automatically using the previously validated fuzzy

locally adaptive Bayesian algorithm (26). All parameters were

subsequently extracted from this delineated volume. Only the pri-

mary tumors were considered because textural analysis cannot be

reliably performed on small lesions (nodal or distant metastases)

because of the small number of voxels involved.

Standardized Uptake Value (SUV) Analysis

The following SUV parameters were extracted from each

patient’s baseline PET images: SUVmax; peak SUV (SUVpeak),

defined as the mean of the voxel of maximum value and its 26

neighbors (in 3 dimensions); and mean SUV within the delineated

tumor (SUVmean). The SUVpeak was considered in addition to

SUVmax to investigate the impact of reducing the potential bias

in the SUVmax measurements as a result of its sensitivity to noise.

Textural Analysis

We define texture as a spatial arrangement of a predefined

number of voxels allowing the extraction of complex image

properties, and we define a textural feature as a measurement

computed using a texture matrix. The method used was realized

in 2 steps. First, matrices describing textures on images were

extracted from tumors, and textural features were subsequently

computed using theses matrices. All these parameters characterize

in some way tumor heterogeneity at local and regional (using

texture matrices) or global scales (using image-voxel-intensity

histograms).

Several different textures (Table 2, left column) were com-

puted. Voxel values within the segmented tumors (Fig. 1A and

1B) were resampled to yield a finite range of values (Fig. 1C),

allowing textural analysis using:

VðxÞ 5

"

2s
IðxÞ 2 min

i2V
i

max
i2V

i 2 min
i2V

i1 1

#

Eq. 1

where 2S represents the number of discrete values (16–128), I is

the intensity of the original image, and V is the set of voxels in the

delineated volume. This resampling step on the delineated tumor

volume, necessary for the computation of the textural analysis, has

2 effects: it reduces the noise in the image by clustering voxels

with similar intensities and it normalizes the tumor voxel inten-

sities across patients, which in turn facilitates the comparison of

the textural features. Local and regional features were computed

with different resampling considering 16, 32, 64, and 128 dis-

crete values to investigate the potential impact of this resampling

parameter.

All considered textures were originally described for 2

dimensions (27–30) and were therefore adapted in this work for

3 dimensions. The cooccurrence matrix (M1, Fig. 1D(a)) describ-

ing pairwise arrangement of voxels, and the matrix describing the

alignment of voxels with the same intensity (M2, Fig. 1D(b)),

were computed considering 13 different angular directions.

Finally, 3D matrices describing differences between each voxel

and its neighbors (M3, Fig. 1D(c)) and characteristics of homoge-

neous zones (M4, Fig. 1D(d)) were computed considering for each

voxel the neighbors in the 2 adjacent planes, adapting the normal-

izing factors to 3 dimensions.

From each of the extracted texture matrices, different features

summarized in Table 2 (middle column) were computed. Depend-

ing on the way the matrix is analyzed, it is possible to extract

features of a local or regional nature. Six features highlighting

local variations of voxel intensities within the image were

extracted from the cooccurrence matrices M1 (Fig. 2C). For exam-

ple, using the matrix M1, the local entropy and homogeneity are

calculated using Equations 2 and 3, respectively:

Local entropy 52+
i; j

M1ði; jÞlogðMði; jÞÞ Eq. 2

Local homogeneity 5 +
i; j

M1ði; jÞ

11ji 2 jj
Eq. 3

where M1 is a cooccurrence matrix, i, j are the rows and columns

index, and M1(i,j) is an element of the matrix.

In addition, M3 matrices were used to extract busyness

(quantifying sharp-intensity variations) and contrast and coarse-

TABLE 1

Characteristics of Patients (n 5 41)

Characteristic No. of patients

Sex

Male 35 (85)

Female 6 (15)

Primary site

Upper esophagus 10 (24)

Middle esophagus 15 (37)

Lower esophagus 16 (39)

Tumor cell type

Squamous cell carcinoma 31 (76)

Adenocarcinoma 10 (24)

Histologic grade

Well differentiated 12 (29)

Moderately differentiated 11 (27)

Poorly differentiated 3 (7)

Unknown 15 (37)

TNM stage

T1 6 (15)

T2 7 (17)

T3 21 (51)

T4 7 (17)

N0 16 (39)

N1 25 (61)

M0 24 (59)

M1 17 (41)

AJCC stage

I 4 (10)

IIa 6 (15)

IIb 5 (12)

III 12 (29)

IVa 4 (10)

IVb 10 (24)

RECIST

CR 9 (22)

PR 21 (51)

Stable disease (NR) 7 (17)

Progressive disease (NR) 4 (10)

Data in parentheses are percentages.
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ness (quantifying tumor granularity). These features allow extract-

ing measurements describing tumor local heterogeneity propor-

tional to variations of 18F-FDG uptake between individual voxels.

On the other hand, the M2 and M4 matrices were used to extract

regional tumor uptake characteristics, representing regional hetero-

geneity, such as variation of intensity between regions and in the

size and alignment of homogeneous areas. For example, the M4

matrix links the homogeneous tumor regions to their intensity (Fig.

2B). It was hence used to calculate the variability in the size and the

intensity of identified homogeneous tumor zones according to Equa-

tions 4 and 5, respectively:

Size-zone variability 5
1

Q
+
M

m51

"

+
N

n51

M4ðm; nÞ

#2

Eq. 4

TABLE 2

Texture Type and Associated Features

Type Feature Scale

Features based on intensity histogram Minimum intensity Global

Maximum intensity

Mean intensity

Variance

SD

Skewness

Kurtosis

Features based on voxel-alignment matrix (M2) Short run emphasis Regional

Long run emphasis

Intensity variability

Run-length variability

Run percentage

Low-intensity run emphasis

High-intensity run emphasis

Low-intensity short-run emphasis

High-intensity short-run emphasis

Low-intensity long-run emphasis

High-intensity long-run emphasis

Features based on intensity–size–zone matrix (M4) Short-zone emphasis Regional

Large-zone emphasis

Intensity variability

Size-zone variability

Zone percentage

Low-intensity zone emphasis

High-intensity zone emphasis

Low-intensity short-zone emphasis

High-intensity short-zone emphasis

Low-intensity large-zone emphasis

High-intensity large-zone emphasis

Features based on cooccurrence matrices (M1) Second angular moment Local

Contrast (inertia)

Entropy

Correlation

Homogeneity

Dissimilarity

Features based on neighborhood intensity-difference matrix (M3) Coarseness Local

Contrast

Busyness

FIGURE 1. Whole-body 18F-FDG PET

scan (A), tumor segmentation (B), and

voxel-intensity resampling (C) allowing

extraction of different features (D) by analy-

sis of consecutive voxels in a direction (for

cooccurrence matrices) (a), alignment of

voxels with same intensity (b), difference

between voxels and their neighbors (c),

and zones of voxels with same intensity (d).
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Intensity variability 5
1

Q
+
N

n51

"

+
M

m51

M4ðm; nÞ

#2

; Eq. 5

where Q represents the number of homogeneous areas in the

resampled tumor, M the number of distinct intensity values within

the tumor, and N the size of the largest homogeneous area in the

matrix M4.

Finally, global features are computed on the original image

voxels’ intensity distribution by analyzing the characteristics of the

intensity value histogram within the segmented tumor (Fig. 2A).

Thirty-eight features were extracted from the 4 different texture

matrices and intensity histograms. Seven of the 38 features

characterize the uptake distribution within the entire tumor (using

the intensity histogram), 9 describe local voxel arrangements (using

matrices M1 and M3), and 22 are related to the organization of

voxels at a regional scale (using matrices M2 and M4).

Statistical Analysis

The capacity of each feature to classify patients with respect to

therapy response was investigated on the primary tumor using the

Kruskal–Wallis test (8). P values of less than 0.05 were considered

statistically significant. Specificity and sensitivity (including 95%

confidence intervals [CIs]) for each of the studied parameters were

derived using receiver operating characteristic (ROC) curves mea-

suring associated areas under the ROC curves (AUC). Texture results

were compared with those of SUVmax, SUVmean, and SUVpeak for

their ability to distinguish among responders (PR and CR) and

NRs, CRs and non-CRs (PR, NR), and all 3 groups separately.

RESULTS

Patients were evaluated 1 mo after the completion of

combined radiochemotherapy. Nine patients (22%) had no

evidence of disease after treatment and were considered

CRs. Radiochemotherapy led to partial response in 21

(51%) patients, whereas 11 (27%) were stable or progressed

under treatment according to RECIST (25).

Results of the Kruskal–Wallis test show that SUVmax

(Fig. 3) and SUVmean were capable of differentiating only

CRs from NRs and PRs. Within this context, all SUV mea-

surements were significant predictive factors of response

(P 5 0.034, 0.044, and 0.012 for the SUVmax, SUVmean,

and SUVpeak, respectively). However, only SUVpeak was a

significant predictive factor (P 5 0.045) when considering

the differentiation of 3 patient response groups (i.e., NR, PR,

and CR), whereas SUVmax and SUVmean were not (P. 0.05).

Figure 4 shows examples of different extracted features

and associated values for tumors of CRs, PRs, and NRs.

The Kruskal–Wallis tests revealed no statistically signifi-

cant differences in the textural parameters derived using

FIGURE 2. Examples of features extracted from tumor resampled on 4 values: 3 global features computed using intensity histogram,

2 regional features computed using M4 matrix, and 2 local features computed using M1 texture matrices.
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different resampling values (16, 32, 64, or 128 discrete

values). All subsequent reported results were obtained

using 64 discrete values in the resampling normalization

process. This value was chosen because it allows for 0.25

SUV increments, which were considered sufficient given

the range of SUVs encountered (from ;4–20).

None of the global features extracted from the intensity

histogram within the tumor was a significant predictive

factor of response to therapy. However, considering local

variation of 18F-FDG uptake, a high predictive value (P ,

0.0007) was found using the cooccurrence features, partic-

ularly considering the use of the average feature values

FIGURE 3. Box-plot representation of

parameters’ values in function of patient

response (0, NR; 1, PR; and 2, CR) for SUVmax

(P 5 0.106) (A), SUVpeak (P 5 0.045) (B), local

entropy (P 5 0.0006) (C), and regional inten-

sity variability (P 5 0.0002) (D).

FIGURE 4. Example of different extracted features and associated values for tumors of CRs, PRs, and NRs (results are normalized in [0–1]

interval using range of observed values for local and regional parameters).
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computed using M1 matrices (Table 3). All these features

offered statistically significant differentiation of NRs and

responders (considering both CR and PR).

Regarding local features, the busyness and contrast

computed on M3 matrices were not statistically significant

predictive factors of response, but the coarseness, reflecting

the local granularity of the tumor functional image, was

found to be significant (P 5 0.0002). Among the local

measures of functional tumor characteristics computed

using M1 matrices, the measure of local entropy was the

only measure allowing statistically significant differentia-

tion of all 3 patient groups (P 5 0.0006, Fig. 3).

Because the features computed on M2 and M4 matrices,

used to highlight regional variability in the 18F-FDG dis-

tribution, were strongly correlated (r . 0.9), only features

based on M4 were used in the subsequent analysis.

Regional measures of tumor characteristics extracted from

these M4 matrices, such as the variability in the size and the

intensity of identified homogeneous tumor zones, were sta-

tistically significant in predicting therapy response (P 5

0.0002), allowing the differentiation of all 3 patient re-

sponse groups (Fig. 3).

The ROC curve analysis for SUVmax, SUVpeak, local

homogeneity, local entropy, and regional tumor character-

istics such as the variability in size and intensity of identi-

fied homogeneous tumor areas is presented in Figure 5.

Table 3 summarizes the ROC curve analysis results, com-

paring the performance of the different studied parameters

in terms of sensitivity and specificity in, on the one hand,

identifying complete-response patients and, on the other

hand, differentiating responders (PR and CR).

First, based on the ROC curve analysis, textural param-

eters can identify CRs better than can the SUV-based

measurements, as demonstrated by the respective AUCs

(Fig. 5). For example, SUVmax, with an AUC of 0.7,

allowed the identification of CRs, with a maximum sensi-

tivity of 46% and specificity of 91%, using a threshold of 6.

On the other hand, the variability in the size of the uniform

tumor zones (AUC, 0.85) allowed for the extraction of CR

patients with the best accuracy (sensitivity, 92%; specific-

ity, 69%).

Second, as Figure 5 shows, textural features were most

efficient in identifying responders (CRs and PRs), whereas

for the same task the performance of SUV measurements

was limited. For the differentiation of the patient respond-

ers, the AUC was less than 0.6 for the different SUV

parameters, compared with an AUC of more than 0.82

for the use of the texture parameters. For example, the

AUC of the SUVmax was 0.59, allowing a sensitivity of

53% and specificity of 73% in the differentiation of res-

ponders using an optimal threshold of 9.1. On the other

hand, for the same task the local homogeneity had a spe-

cificity and sensitivity of 88% and 73%, respectively

(AUC, 0.89).

DISCUSSION

Assessment of tumor response to therapy plays a central

role in drug development and patient clinical management.

Currently, response is mainly assessed by measuring

anatomic tumor size and classifying tumor shrinkage

according to standard criteria. Because metabolic changes

often occur before morphologic changes, metabolic imag-

ing appears to be a valuable tool for monitoring various

treatments in different cancer types. Within this context,
18F-FDG PET has shown promising results in assessing

response to therapy and prognosis. In esophageal cancer,

quantitative changes in 18F-FDG uptake at 2 wk after the

start of therapy have been shown to correlate well with

TABLE 3

Sensitivity and Specificity (Along with Corresponding 95% Confidence Intervals) of 3 SUV-Based

Measurements, 2 Cooccurrence Features, and 2 Size-Zone Features

Comparison Parameters Sensitivity (%) 95% confidence interval (%) Specificity (%) 95% confidence interval (%)

NR vs. PR 1 CR SUVmax 53 35.1–70.2 73 39.0–94.0

SUVmean 71 52.5–84.9 45 16.7–76.6

SUVpeak 56 37.9–72.8 73 39.0–94.0

Local homogeneity 88 71.8–96.6 73 39.0–94.0

Local entropy 79 61.1–91.0 82 48.2–97.7

Size-zone 76 58.8–89.8 91 58.7–99.8

Intensity variability 76 58.7–89.3 91 58.7–99.8

NR 1 PR vs. CR SUVmax 46 19.2–74.9 91 75.0–98.0

SUVmean 62 31.6–86.1 81 63.6–92.8

SUVpeak 62 31.6–86.1 81 63.6–92.8

Local homogeneity 92 61.5–99.8 56 37.7–73.6

Local entropy 92 61.5–99.8 69 50.0–83.9

Size-zone 92 64.0–99.8 69 50.0–83.9

Intensity variability 85 54.6–98.1 75 56.6–88.5

Data in top part of table are evaluation of parameters to distinguish PR or CR; data on bottom part of table are evaluation of parameters

to differentiate CRs.
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subsequent tumor shrinkage and patient survival (4). This

approach still has limitations, especially if patients undergo

radiotherapy treatment. Hautzel et al. have shown that even

low irradiation may enhance tumor uptake, and inflamma-

tory changes may contribute early to this increase, yielding

inaccurate information about treatment response (31).

Within the same context, induced ulceration may also

impair response assessment using PET (32).

On the other hand, the prediction of response before

treatment initiation may be of great interest to the optimi-

zation of patient management. With such an endpoint, few

authors have studied the predictive value of initial 18F-FDG

uptake for therapy response. Rizk et al. reported an SUVmax

of more than 4.5 to be a reliable predictor of pathologic

response (9), whereas Javeri et al. (8) demonstrated in a

larger group of patients a trend of greater rate of response

obtained after combined chemoradiotherapy in patients who

had an initial SUVmax higher than 10. Similarly in our study,

initial SUVmean, SUVmax, and SUVpeak were also predictors

of complete response. However, in general these indices did

not allow differentiating NRs from PRs, a distinction that

could be useful for patient management. For instance, within

the patient population of our study the identification of PRs

before any treatment could allow the definition of a subpo-

pulation for which the use of conventional radiochemother-

apy should be directly replaced by another option, such as a

new targeted therapy.

A few studies have already focused on the link between

image analysis and tumor biologic parameters. Gillies et al.

(33) suggested that imaging can longitudinally characterize

spatial variations in the tumor phenotype and its microen-

vironment so that the system dynamics over time can be

quantitatively captured. Segal et al. (22) showed that con-

trast-enhanced CT image characteristics (such as texture

heterogeneity score or estimated percentage of necrosis)

correlate with most of the liver global gene expression pro-

files, revealing cell proliferation, liver synthetic function, and

patient prognosis. Within the same context, Diehn et al. (34)

mapped neuroimaging parameters with gene-expression pat-

terns in glioblastoma, whereas Strauss et al. (35) combined

dynamic PET kinetic parameters with gene-array techniques.

Finally, Eary et al. (24) previously demonstrated that a glob-

ally assessed 18F-FDG distribution heterogeneity in sarcoma

is a potential prognostic factor.

In our study, the value of textural feature analysis was

explored on the pretreatment 18F-FDG PET scans for pre-

dicting response to combined chemoradiotherapy. Global

tumor metabolic features based on the intensity histogram

were computed directly on the original image. As such,

they were therefore highly correlated with 18F-FDG uptake,

which could explain why these textures could only predict

CRs but could not distinguish NRs from PRs, similar to the

SUV measurements. The other features evaluated in this

study highlight tumor heterogeneity at a local and regional

level, characterized in several ways, depending on the type

of matrix used and the kind of feature computed on this

matrix. Consequently, whereas a single feature cannot be

directly linked to a specific biologic process, one could

assume that a combination of textural parameters may be

closely related to underlying physiologic processes, such as

vascularization, perfusion, tumor aggressiveness, or hyp-

oxia (18,19). Therefore textural features could be correlated

to physiologic processes related to response to combined

radiochemotherapy. For example, one could reasonably

expect that a tumor exhibiting a heterogeneous, compared

with a homogeneous, 18F-FDG distribution may respond

less favorably to a uniformly distributed radiotherapy dose.

We could also hypothesize that underlying neoangiogene-

sis contributes to tumor 18F-FDG uptake heterogeneity,

FIGURE 5. ROC curves for SUVmax, SUVmean, SUVpeak, local

homogeneity, uniform tumor areas, intensity variability, and size-

zone variability for identification of CRs (A) and PRs or CRs (B).

376 THE JOURNAL OF NUCLEAR MEDICINE • Vol. 52 • No. 3 • March 2011



although it is now widely accepted that neoangiogenesis is

associated with reduced effectiveness of conventional che-

motherapy. However, the exact relationship between the

proposed image-derived indices and underlying tumor biol-

ogy can be established only on carefully designed prospec-

tive studies.

In this work, the cooccurrence features analyzing inter-

relationships between pairs of voxels, corresponding to the

characterization of local nonuniformities, were able to sig-

nificantly differentiate NRs from other patient groups. The

measurement of local homogeneity and entropy gave the

best results for this class of textures. Although in most

cases responders (PR and CR) were associated with greater

local heterogeneity than NRs, these features were less

efficient in discriminating CRs from PRs.

The 2 features facilitating the best patient stratification

were both associated with regional tumor characterization.

Both the intensity and the size variability of uniform zones

identified within the tumor, representing a measure of

regional tumor heterogeneity, were significant predictors of

response to therapy. ROC curve analysis showed that the

performance of these features is similar to that of cooccur-

rence features in identifying NRs, but they can in addition

distinguish between PRs and CRs with higher sensitivity

and specificity than SUV measurements. These results

suggest that regional (in terms of intensity and size of

homogeneous areas) rather than local heterogeneity offers a

superior differentiation of esophageal carcinoma patient

groups in terms of response to combined chemoradiother-

apy treatment than does any other global tumor metabolic

activity measurement currently used in routine clinical

practice, such as SUVs.

A limitation of the present study is that it is retrospective,

considering a relatively small patient cohort. Therefore, the

potential of new image-derived indices characterizing

tumor 18F-FDG distribution for prediction of response to

therapy studies demonstrated in this work needs to be vali-

dated by a prospective study on a larger patient cohort.

CONCLUSION

We have demonstrated that textural analysis of the

intratumor tracer uptake heterogeneity on baseline 18F-

FDG PET scans can predict response to combined chemo-

radiation treatment in esophageal cancer. Textural features

derived from cooccurrence matrices strongly differentiated

NRs from PRs, providing useful information for personal-

izing patient management. These results suggest that

regional and local characterization of 18F-FDG PET tracer

heterogeneity in tumors, exploring processes underlying the
18F-FDG uptake and distribution within tumors, are more

powerful than global measurements currently used in clin-

ical practice, holding the potential to revolutionize the pre-

dictive role of PET in cancer treatment. Finally, although

only 18F-FDG images in esophageal cancer have been con-

sidered here, clearly the same indices applied in other PET

radiotracer studies in the same or different tumor types may

help create even stronger links between imaging and under-

lying tumor biology.
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18F-FDG PET/CT for assessing response to therapy in esophageal cancer. J Nucl

Med. 2009;50:89S–96S.

5. van Westreenen H, Westerterp M, Bossuyt P, et al. Systematic review of the

staging performance of 18f-fluorodeoxyglucose positron emission tomography

in esophageal cancer. J Clin Oncol. 2004;22:3805–3812.

6. Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treat-

ment response. J Nucl Med. 2009;50:88–99.

7. Rizk N, Downey RJ, Akhurst T, et al. Preoperative 18FDG positron emission

tomography standardized uptake values predict survival after esophageal adeno-

carcinoma resection. Ann Thorac Surg. 2006;81:1076–1081.

8. Javeri H, Xiao L, Rohren E, et al. Influence of the baseline 18FDG positron

emission tomography results on survival and pathologic response in patients with

gastroesophageal cancer undergoing chemoradiation. Cancer. 2009;115:624–

630.

9. Rizk NP, Tang L, Adusumilli PS, et al. Predictive value of initial PET SUVmax

in patients with locally advanced esophageal and gastroesophageal junction ad-

enocarcinoma. J Thorac Oncol. 2009;4:875–879.

10. Flamen P, Van Cutsem E, Lerut A, et al. Positron emission tomography for

assessment of the response to induction radiochemotherapy in locally advanced

oesophageal cancer. Ann Oncol. 2002;13:361–368.

11. Downey RJ, Akhurst T, Ilson D, et al. Whole body 18FDG-PET and the response

of esophageal cancer to induction therapy: results of a prospective trial. J Clin

Oncol. 2003;21:428–432.

12. Kim MK, Ryu JS, Kim SB, et al. Value of complete metabolic response by 18F-

fluorodeoxyglucose-positron emission tomography in oesophageal cancer for

prediction of pathologic response and survival after preoperative chemoradio-

therapy. Eur J Cancer. 2007;43:1385–1391.

13. Weber WA, Ott K, Becker K, et al. Prediction of response to preoperative chemo-

therapy in adenocarcinomas of the esophagogastric junction by metabolic imag-

ing. J Clin Oncol. 2001;19:3058–3065.

14. Lordick F, Ott K, Krause BJ, et al. PET to assess early metabolic response and to

guide treatment of adenocarcinoma of the oesophagogastric junction: the MU-

NICON phase II trial. Lancet Oncol. 2007;8:797–805.

15. Ott K, Weber WA, Lordick F, et al. Metabolic imaging predicts response, sur-

vival, and recurrence in adenocarcinomas of the esophagogastric junction. J Clin

Oncol. 2006;24:4692–4698.

16. Cazaentre T, Morschhauser F, Vermandel M, et al. Pre-therapy 18F-FDG PET

quantitative parameters help in predicting the response to radioimmunotherapy

in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2010;37:494–504.

17. Vesselle H, Schmidt RA, Pugsley JM, et al. Lung cancer proliferation correlates

with 18FDG uptake by positron emission tomography. Clin Cancer Res.

2000;6:3837–3844.

18. Rajendran JG, Schwartz DL, O’Sullivan J, et al. Tumour hypoxia imaging with
18F fluoromisonidazole positron emission tomography in head and neck cancer.

Clin Cancer Res. 2006;12:5435–5441.

19. Kunkel M, Reichert TE, Benz P, et al. Overexpression of Glut-1 and increased

glucose metabolism in tumours are associated with a poor prognosis in patients

with oral squamous cell carcinoma. Cancer. 2003;97:1015–1024.

PET TEXTURAL ANALYSIS PREDICTS RESPONSE • Tixier et al. 377



20. Xu Y, Sonka M, McLennan G, Guo J, Hoffman EA. MDCT-based 3-D texture

classification of emphysema and early smoking related lung pathologies. IEEE

Trans Med Imaging. 2006;25:464–475.

21. Tesar L, Shimizu A, Smutek D, Kobatake H, Shigeru N. Medical image analysis

of 3D CT images based on extension of Haralick texture features. Comput Med

Imaging Graph. 2008;32:513–520.

22. Segal E, Sirlin CB, Ooi C, et al. Decoding global gene expression programs in

liver cancer by noninvasive imaging. Nat Biotechnol. 2007;25:675–680.

23. El Naqa I, Grigsby PW, Aptea A, et al. Exploring feature-based approaches in

PET images for predicting cancer treatment outcomes. Pattern Recognit.

2009;42:1162–1171.

24. Eary JF, O’Sullivan F, O’Sullivan J, Conrad EU. Spatial heterogeneity in sar-

coma 18F-FDG uptake as a predictor of patient outcome. J Nucl Med. 2008;49:

1973–1979.

25. Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the

response to treatment in solid tumors. European Organization for Research and

Treatment of Cancer, National Cancer Institute of the United States, National

Cancer Institute of Canada. J Natl Cancer Inst. 2000;92:205–216.

26. Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive

Bayesian segmentation approach for volume determination in PET. IEEE Trans

Med Imaging. 2009;28:881–893.

27. Amadasun M, King R. Textural features corresponding to textural properties.

IEEE Trans Syst Man Cybern. 1989;19:1264–1274.

28. Haralick RM, Shanmugam K, Dinstein I. Textural features for image classifica-

tion. IEEE Trans Syst Man Cybern. 1973;3:610–621.

29. Loh H, Leu J, Luo R. The analysis of natural textures using run length features.

IEEE Trans Ind Electron. 1988;35:323–328.

30. Thibault G, Fertil B, Navarro C, et al. Texture indexes and gray level size zone

matrix: application to cell nuclei classification. Pattern Recognition Inf Process.

2009;140–145.
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Purpose: Partial volume effects (PVEs) are consequences of the limited spatial resolution in emis-

sion tomography leading to underestimation of uptake in tissues of size similar to the point spread

function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE

correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently intro-

duced. MMA is based on the extraction and transformation of high resolution details from an ana-

tomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using

wavelet decompositions. Although this method allows creating PVE corrected images, it is based

on a 2D global correlation model, which may introduce artifacts in regions where no significant

correlation exists between anatomical and functional details.

Methods: A new model was designed to overcome these two issues (2D only and global correla-

tion) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was

evaluated on synthetic, simulated and patient images, and its performance was compared to the

original approach as well as the geometric transfer matrix (GTM) method.

Results: Quantitative performance was similar to the 2D global model and GTM in correlated

cases. In cases where mismatches between anatomical and functional information were present, the

new model outperformed the 2D global approach, avoiding artifacts and significantly improving

quality of the corrected images and their quantitative accuracy.

Conclusions: A new 3D local model was proposed for a voxel-wise PVE correction based on the

original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and

more robust qualitative and quantitative accuracy compared to the original MMA methodology, par-

ticularly in the absence of full correlation between anatomical and functional information. VC 2011

American Association of Physicists in Medicine. [DOI: 10.1118/1.3608907]

Key words: emission tomography, partial volume effects, resolution and intensity recovery, wavelet

transform, multimodality

I. INTRODUCTION

Partial volume effects (PVEs) refer to two distinct phenom-

ena leading in underestimation or overestimation of the tis-

sues uptake. The first results from the limited spatial

resolution of the imaging device, leading to a three-dimen-

sional (3D) blurring and a loss of signal in tissues of size

similar to the system’s point spread function (PSF) full

width at half-maximum (FWHM), as well as activity cross-

contamination (“spillover”) between structures with different

uptakes.1 The second phenomenon arises from the discrete rep-

resentation on a grid with voxel sizes from 1 to 5 mm for the

reconstruction of images. The voxel values at the edges are

consequently a mixture of different tissues, an effect
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commonly known as “tissue-fraction effect.” This effect exists

on all image modalities, but its magnitude is lower on anatomi-

cal datasets such as magnetic resonance image (MRI) or com-

puted tomography (CT), and the introduction of higher

resolution details from anatomical images in the functional

images could reduce its impact. In this study, we considered

both the spatial resolution of the scanner and the voxel grid

sampling, which are specific to the low-resolution images

obtained with PET.

Most of the previously proposed approaches for PVE

correction consist in using a priori anatomical information

provided by either computed tomography or magnetic reso-

nance images. Although these methodologies usually aim at

the recovery of accurate uptakes in specific regions of inter-

est (ROIs)1–4 requiring either a coregistered atlas or a seg-

mentation step, such as the ROI based geometric transfer

matrix (GTM) by Rousset et al.,2 some voxel-based imple-

mentations have been recently proposed. They could be clas-

sified in two groups; namely deconvolution without the use

of anatomical information5–8 or voxel-wise correction based

on the use of anatomical and functional images available

from multimodality devices.9–11

Teo et al.5 considered the use of iterative deconvolution

restricted to a ROI to avoid noise increase in the overall

image, while a more recent study applied iterative deconvo-

lution to brain images.6 Boussion et al.7 proposed the use of

wavelet-based denoising at the iterative level of the decon-

volution process to avoid noise amplification. The efficacy

of this denoising greatly depends on the choice of the wave-

let filtering algorithm and associated threshold values. Kirov

et al.8 suggested the use of regularized iterative deconvolu-

tion with variance control based on local topology as an al-

ternative solution for noise reduction. This latter approach is

not fully automatic because the determination and optimiza-

tion of the regularization parameters are dependent on the

properties of the image.

One methodology based on the use of anatomical informa-

tion to correct functional data was proposed by Boussion

et al.9 and is referred to as mutual multiresolution analysis

(MMA). It uses discrete wavelet transforms10 of a low-reso-

lution PET image L and a corresponding coregistered high

resolution anatomical MRI (or CT) H. The method extracts

the spatial frequencies like details, edges, and textures from

wavelet decompositions at a level of resolution common to H

and L (a specific decomposition layer in which both wavelet

images have the same PSF FWHM). A global linear model is

then inferred to build the lacking details of L from these

found in H. The method demonstrated accurate quantitative

correction comparable with the methodologies considered as

the current state of the art2–4 but limited to ROI analyses.

This approach has the advantage of generating PVE corrected

images, allowing for an accurate activity recovery, without

any segmentation or other preprocessing steps.

Despite these advantages, the original MMA approach

suffers from two limitations. First, it is based on a global cor-

relation between anatomical and functional structures, as a

linear and global link is assumed in order to model the rela-

tion between the wavelet coefficients of both modality trans-

forms at the same level of resolution. Consequently, where

there is little to no correlation between these structures, arti-

facts may appear in the corrected emission image as a result

of the incorporation of anatomical structures with no func-

tional significance. An alternative approach based on MMA

has been recently published11 restricted to the brain domain

and making use of atlases for the provision of the anatomical

information in an attempt to reduce the impact of functional

and anatomical image mismatches. However, such approach

is dependent on the use of atlases and is, therefore, only ap-

plicable to brain imaging. The second limitation of the origi-

nal MMA algorithm is due to the use of a 2D modeling as

the correction is applied independently slice by slice,

whereas PVE is a 3D effect for which it is important to con-

sider interactions in all three spatial directions.

The goal of the present study was to design a new model

in order to overcome the shortcomings associated with the

original MMA algorithm as highlighted above. More specifi-

cally, a new 3D wavelet decomposition scheme was

designed, and the global linear relation model was replaced

with an improved local analysis, in order to process limited

image areas at a time and adapt this model to each image

part based on local information. This new approach was

evaluated on synthetic and simulated images and applied to

brain and whole body patient datasets, and its performance

was compared to the results obtained with both the original

2D global MMA algorithm described by Boussion et al.9 and

the GTM reference methodology.2

II. MATERIALS AND METHODS

II.A. Multiresolution analysis in the wavelet domain

Performing multiresolution image analysis using wavelet

transforms consists in analyzing details across different lev-

els of resolution or scale,12 in order to extract consecutive

layers of details from large structures to small edges, by

separating the spatial frequencies they contain. Among the

many algorithms developed to perform wavelet transform

of an image, the most common approach is the multiresolu-

tion pyramidal methodology13 consisting in iteratively

reducing the resolution of the image. Such subsampling

may cause a loss of linear continuity in spatial features

such as edges and the appearance of artifacts in those struc-

tures.14 Therefore, the undecimated algorithms are often

more appropriate, for instance, for the image fusion pur-

pose.15 The “à trous” (“with holes”) algorithm was used

here and extended to 3D to perform the wavelet decomposi-

tion10 based on the initial work of Boussion et al.9 This

algorithm presents several advantages such as a straightfor-

ward implementation, a reconstruction without any loss of

information and an isotropic process (i.e., no specific direc-

tions selected). This algorithm is related to the standard dis-

crete wavelet transform decomposition scheme16 as it

performs the subsampling of the filtered image by upsam-

pling the low-pass filter, inserting zeros between each of

the filter’s coefficient at each level. The detail coefficients

images fwjg are then obtained as the difference fIjþ1� Ijg
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between the low-pass filtered images from two consecutive

levels. At each iteration j, the resolution of the image Ij is

reduced to obtain the smoothed image Ijþ1 (called residual)

using

Ijþ1ðx; y; zÞ ¼
X

m;n;o2½�2;2�

hðm; n; oÞIj

ðxþm:2j; yþ n:2j; zþ o:2jÞ; (1)

where h is a 3D low-pass filter defined by

hðx; y; zÞ ¼ h1DðxÞ � h1DðyÞ � h1DðzÞ
h1Dð0Þ ¼ 3=8; h1Dð61Þ ¼ 1=4; h1Dð62Þ ¼ 1=16; and h1DðnÞ ¼ 0 if jnj > 2

�

; (2)

with � the convolution operator and h1D a binomial filter17 of

order 4. The inverse transform can be computed by adding

the detail layers fwjg from all levels to the final low-resolu-

tion image IJ

I0ðx; y; zÞ ¼ IJðx; y; zÞ þ
X

j¼J

j¼1

wjðx; y; zÞ; (3)

where J is the number of iterations from the initial image I0
to the final approximation IJ.

Due to the discrete convolution shown in Eq. (1), the

spatial resolution (or PSF FWHM) of the residual image

Ijþ1 depends on both the spatial resolution of Ij and the

size of its voxels. This is because the image Ij is sampled

according to the iteration index j (i.e., the level of scale in

the wavelet transform) and the convolution leads to a non-

linear dependency (factor 2j) on the resulting PSF FWHM

of the residual Ij þ 1. The relationship between voxel sizes

and the residual FWHM at different scales was determined

by applying the à trous algorithm to an initial point source

of different sizes (from 0.6 to 1.4 mm) using the MATHEMA-

TICA software. This relationship was found to be linear

(see Table I). In order to change the voxel size of the ini-

tial image I0 and to obtain a residual Ij with a specific

spatial resolution according to the MATHEMATICA software

analysis, trilinear interpolation and third order B-spline

resampling were used for anatomical and functional

images, respectively.

Using both Eq. (3) and this resampling, the spatial fre-

quencies fwjg of the anatomical and functional images are

extracted in 3D and the spatial resolution of the final re-

sidual IJ is accurately determined. We define the spatial re-

solution of the anatomical image H as q (initial image H

referred to as Hq) and that of the functional image L as

r¼ qþ p (initial image L referred to as Lr), with r> q and

p the number of decompositions that have to be performed

to reach a common level of resolution between the two

modalities. This number is deduced from the PSF FWHM

and the voxel sizes of both initial images. We can then

perform the extraction of the spatial frequencies at a level

of resolution common to H and L (qþ pþ 1), using the à

trous algorithm

Lrðx; y; zÞ ¼ Lqþpðx; y; zÞ

¼ Lqþpþ1ðx; y; zÞ þ w
L
qþpþ1ðx; y; zÞ; (4)

Hqðx; y; zÞ ¼ Hqþpþ1ðx; y; zÞ þ
X

k¼pþ1

k¼1

wH
qþkðx; y; zÞ; (5)

where wL (in terms of units) and wH are the wavelet coeffi-

cients from the wavelet decomposition of the functional and

anatomical images, respectively.

II.B. Local mutual multiresolution analysis

Similarly to previously developed methodologies using

wavelets for PVE correction,9,11 our method is based on the

exploitation of existing correlations in the wavelet domain.

Such correlation is defined by establishing a relationship

between the anatomical and functional wavelet coefficients

at a common level of resolution, independently of the origi-

nal images content (in terms of units). In our proposed

approach, we assume that the residual Lr can be estimated by

a space dependent scaling of Hr, for which the scaling factor

can be obtained from a local analysis to account for local dif-

ferences between H and L. The corrected emission image Lq

(same level of resolution as Hq) is, therefore, obtained using

Eq. (6) by adding the original uncorrected value of L

[Lqþpþ1ðx; y; zÞ þ wL
qþpþ1ðx; y; zÞ, see Eq. (4)] with the sum

of the anatomical wavelet coefficients weighted by a local

factor a

Lqðx; y; zÞ ¼ Lqþpþ1ðx; y; zÞ þ w
L
qþpþ1ðx; y; zÞ

þaðx; y; zÞ
X

k¼p

k¼1

wH
qþkðx; y; zÞ; (6)

where a stands for the median of the ratio map (MRM).

Equation (6) provides the corrected value for each voxel (x,

y, z) by adding to the original functional image value (L) the

wavelet coefficient. Each voxel is processed individually,

however, the parameter a is computed for each voxel using a

TABLE I. FWHM values of the residual scales for an initial FWHM of 1 mm

and initial voxel sizes of 0.6, 1, and 1.4 mm. The equation formula provided

by the software is presented.

Voxel size of the initial image (mm) 0.60 1.00 1.40 x

FWHM residual scale 1 1.56 2.61 3.65 2.61 * x

FWHM residual scale 2 3.38 5.64 7.90 5.64 * x

FWHM residual scale 3 6.89 11.48 16.08 11.48 * x
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3D sliding cube, simultaneously applied within the L and H

wavelet layers to obtain the MRM

aðx;y;zÞ

¼median �
wL

qþpþ1ðxi;yi;ziÞ

TðwH
qþpþ1ðxi;yi;ziÞÞ

;ðxi;yi;ziÞ 2WIND

( )

; (7)

where WIND is a window in 3D (i.e., a cube) centered on

(x,y,z) with a fixed size of 3� 3� 3 voxels (i¼ 1…3) and T

is a threshold operator. Equation (7), therefore, computes a

for each voxel of coordinates x, y, z, as the median (within a

cube centered on this voxel) of the ratios between the wave-

lets coefficients of each transforms. The cubic moving win-

dow was introduced instead of a simple voxel-by-voxel ratio

to account for local variations in the anatomical and func-

tional images, contrary to the global model9 and to reduce

the noise and misregistration sensitivity associated with a

voxel-by-voxel analysis. The choice of using the median

instead of the mean within the cubic sliding window, as well

as the actual size of the cube was made based on the results

obtained on simulations (see Sec. IV). Different sizes (3, 5,

and 7 voxels) were compared since this parameter might

have an impact on the sensitivity of the method to spatial

misregistration, noise and inappropriate choice of the respec-

tive PSF FWHM values. Also, results obtained using the

mean or the median of the ratios were compared. The mean

was expected to be more sensitive to artifacts and noise in

contrast to the median, which would tend to discard extreme

values. Also, the use of a sliding cube should also make the

approach more robust to spatial misregistration or inaccurate

PSF FWHM values used in the process. On the one hand, the

ratio map allows a large amount of uncorrelated details such

as anatomical structures without significant uptake in the

functional image to be discarded. On the other hand, if no

structural information is associated with a significant uptake

in the corresponding functional image, the low values of the

wavelet coefficients may lead to MRM evaluation errors

with denominator values wH
qþ pþ 1 close to zero. In order to

avoid extreme values that may be generated by the MRM

and preserve the activity of the functional image in such con-

figurations, we introduced a fixed threshold T [Eq. (7)] on

the anatomical wavelet coefficients. Its value was empiri-

cally chosen as 0.1 as it gave satisfactory results in most con-

sidered cases, however future studies should investigate the

automatic estimation of an optimal value for each case.

Therefore, an investigation regarding the cube optimal size

was carried out in this study.

II.C. Validation and comparison study

II.C.1. Analysis

Mean and associated standard deviation were computed

on ROI placed on the organs or objects of interest in order to

quantify the partial volume effect correction and compared

to the ground-truth when available (synthetic images and

simulated datasets). In such cases (for example, the spheres),

the ROIs were defined on the ground-truth, covering the

entire structure voxel-by-boxel, and were reported to both

uncorrected and corrected images. For clinical datasets, as

ground-truth was not available, the improvement between

uncorrected and corrected image was reported for ROI

placed on both images.

II.C.2. Synthetic images

The proposed algorithm was first validated using syn-

thetic images. All the images considered in this section were

generated in 3D and analyzed either on a 2D basis using the

original MMA method, or in 3D using the proposed

approach. Finally, the GTM methodology was also applied,

assuming a perfect knowledge of the ground-truth for the

definition of the necessary ROIs in order to eliminate any

potential errors that can be associated with a segmentation

step. Two different synthetic images were employed, the first

one Href [Fig. 1-(1)] to generate the functional images L

[Fig. 1-(2)], and the second one Hanat [Fig. 1-(3)] used for

the correction of PVE via both the 2D global and 3D local

methodologies. A Gaussian noise [standard deviation (SD)

2% of the mean in the uniform part of the phantom] was

added in the Hanat images prior to their use for the correction.

These 128� 128� 128 (1� 1� 1 mm3 voxels) images con-

tain a cylindrical background region with a fixed intensity of

100 and spheres of different sizes and intensities. The first

[Fig. 1(a)-(1)] contains five 2 cm diameter spheres with

decreasing intensities (200, 120, 90, 70, and 50). The second

one [Fig. 1(b)-(1)] contains four spheres of decreasing diam-

eter (6, 4, 2, and 1 cm) with intensity of 200. The last two

images [Figs. 1(c)-(1) and 1(c)-(3)] display spheres common

to both modalities with, however, no absolute intensity cor-

relation, as well as two additional structures: one which is

present only in the anatomical data Hanat with no correspond-

ing uptake in the functional image and, respectively, a hot

spot in the functional data L without any corresponding ana-

tomical structure in Hanat.

The L images [Fig. 1-(2)] (same voxel size and dimen-

sions as for Hanat) were generated by convolving Href [Fig.

1-(1)] with a 6 mm FWHM 3D Gaussian PSF and adding

Gaussian noise (SD 10% of the mean intensity). In this first

dataset, both Hanat and L images had a voxel size of 1 mm3.

The Gaussian noise approximation is realistic enough for the

reconstructed PET images when considering a specific

ROI.18 The noise intensity (SD value) used was determined

through different ROI analyses in the lung and liver from

various whole body clinical datasets.

Different combinations of the 3D synthetic images in Fig.

1 were considered to compare the performance of the differ-

ent approaches considered. First, functional and anatomical

images with complete structural and intensity correlation

[Figs. 1(a)-(2) and 1(a)-(3)] were used to specifically study

the accuracy of the correction for spillover effects due to the

various contrasts. A second combination was analyzed [Figs.

1(b)-(2) and 1(b)-(3)] in order to examine the value recovery

of small objects. These two configurations were designed to

validate the performance of the local approach for cases

where the global approach already leads to satisfactory

results, i.e., with a perfect match (structure and intensity)
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FIG. 1. Three synthetic datasets for which the background region has a fixed value of 100. (a) A correlated case with spheres of constant size and decreasing

intensities (from 200 to 50); (b) a correlated case with spheres of constant intensity (200) and decreasing sizes; and (c) an uncorrelated case. For each one of

the three synthetic datasets: (1) a high-resolution anatomical image Href used to generate the low-resolution functional image L (2), (3) the high-resolution ana-

tomical image Hanat used for the PVE correction, (4) the PVE corrected images using the 2D global approach, and (5) images after PVE correction using the

3D local approach. Percentage of intensity recovery (mean6 SD) for the three datasets corrected for PVE using the GTM (mean only), 2D global or 3D local

approach: (d) a correlated case with spheres of constant size and decreasing intensities, (e) a correlated case with spheres of constant intensity and decreasing

sizes, and (f) an uncorrelated case. Spheres are numbered on 1-(1).
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between both modalities. A third combination was used to

investigate partial correlation between the two modalities

[Figs. 1(c) (2), and (3)] for which the 2D global MMA is

expected to perform with reduced qualitative and quantita-

tive accuracy. In each case, the new local 3D MMA

approach was compared to the previous 2D global model

and to the GTM method.

Finally, tests similar to those already used for the 2D

MMA (Ref. 9) were carried out to evaluate the impact of

noise and possible misregistration errors, or an inappropriate

choice of FWHM parameters. For this purpose, variable

noise intensities (SD from 10% to 50%) were added to the

functional images of Fig. 1(c)-(2). The robustness of the

approach against misregistration errors was evaluated by

applying different rigid transformations [translation up to 4

voxels (about 4 mm), rotation up to 5�] or inappropriate scal-

ing (610%) to the functional image of Fig. 1(c)-(2). The

impact of an inappropriate choice of FWHM parameters for

the resampling was investigated by generating different L

images from the Href [Fig. 1(c)-(1)] with FWHM PSF from 4

to 8 mm. These L images were then corrected for PVE con-

sidering a unique FWHM value of 6 mm.

II.C.3. Simulated images

In the second part of this study, simulated images gener-

ated using a segmented brain phantom based on measured

T1 MRIs (Ref. 19) were analyzed. The images are a T1-

weighted MRI and an associated 18F-FDG PET. The func-

tional image was generated using the following procedure.20

Clinically measured plasma time activity curves (TACs)

were first used to generate a set of TACs for each anatomical

region of the brain phantom according to 28 different clinical

dynamic frames (1� 30 s, 1� 15 s, 1� 5 s, 4� 10 s, 4� 30

s, 4� 60 s, 4� 120 s, 9� 300 s). Pathological parameters

were introduced in the parietal and the anterior frontal lobes.

The dynamic images were then forward-projected using the

maximum ring difference, mash and span as for the patient

study, forming projection data of the ECAT HRþ scanner

(spatial resolution of 4.8 and 5.6 mm FWHM transaxially

and axially, respectively). These projection data were attenu-

ated using the values of the different tissue types contained

in the Zubal phantom (muscle, bone, fat, and skin), and

uncorrected for normalization by applying the inverse nor-

malization factors. These factors and the scatter additive

term were both taken from the human study. The random

contribution was simulated based on the system’s detection

efficiency factors pattern scaled to the total random events of

each frame in the acquired human study. Finally, Poisson

noise was added to the sinograms, and the images were

finally reconstructed with filtered backprojection including

scatter, attenuation, and normalization corrections. The

image sizes for both PET and MRI were 128� 128� 64

(2.35� 2.35� 2.42 mm3 voxels). The final static PET image

was eventually obtained by summing the last six temporal

frames. The respective considered FWHM values were 4.8

mm in plane and 5.6 mm axially for the PET images and 1

mm in all three dimensions for the anatomical datasets. The

performance of the method was assessed by comparison

with the known ground-truth of the simulation. This dataset

was also used to determine the optimal sliding cube size

among 3� 3� 3, 5� 5� 5 or 7� 7� 7 voxels (see Sec. IV).

II.C.4. Clinical images

The approaches were also compared on two clinical

images. The first one consists of a clinical T1 MRI (GE

1.5T) and associated FDG brain PET (Philips GEMINI dual

slice PET/CT) scans. The MRIs were chosen instead of the

CT for the correction to benefit from the improved contrast

in the different brain structures. The MRI contains a hyperin-

tensity signal in the left occipital lobe and the posterior cing-

ulum due to the gadolinium injection. The PET

reconstructed images [using RAMLA 3D (two iterations,

relaxation parameter of 0.05 and a 5 mm FWHM 3D Gaus-

sian postfiltering] and CT based attenuation correction) are

128� 128� 64 (1.41� 1.41� 2 mm3 voxels), and the MRI

is 512� 512� 160 (0.47� 0.47� 1 mm3 voxels). The PET

image and MRI were spatially coregistered using mutual in-

formation maximization and affine transformations using

MIPAV software [Center for Information Technology (CIT)

National Institutes of Health (NIH)]. The FWHM considered

was 1 and 5 mm in all three dimensions for the MRI and

PET datasets, respectively (considering the spatial resolution

for the Philips GEMINI PET system of 5.2 and 5.4 mm

FWHM transaxially and axially, respectively, in combina-

tion with the 5 mm FWHM Gaussian postfiltering applied to

the reconstructed image). Qualitative evaluation was carried

out using profiles through the frontal and the tempo-occipital

regions. Quantitative accuracy was evaluated by white and

gray matter quantification (mean intensity and standard devi-

ation) before and after PVE correction using an automatic

delineation on the MRI via the voxel-based morphometry

segmentation tool of the SPM software.21 The same delinea-

tion results were used for the ROI based correction using

GTM for comparison. The impact of the 3D analysis was

observed on this dataset in which voxels are anisotropic.

The second dataset is a whole-body 18F-FDG-PET/CT

image of a lung cancer patient (GE Discovery STE 4-slice

PET/CT), acquired 55 min after injection of 355 MBq (CT:

80 mA, 140 kVp, PET: 3 min per axial field of view). PET

images were reconstructed (voxel size of 4.68� 4.68� 3.27

mm3 and a matrix size of 128� 128� 47 voxels) using

OSEM (two iterations, 28 subsets) and CT based attenuation

correction. The resolution of the original CT image was

0.97� 0.97� 0.97 mm3 voxels (matrix dimension 421�
321� 100). The FWHM of the PET image was considered

as 6.1 and 6.7 mm in plane and axially, respectively (match-

ing the spatial resolution of GE Discovery STE), and 1 mm

in all three directions for the CT images. Manually drawn

spherical regions were placed on the lesion (ROIlesion) and in

the lung (ROInormal). An additional ROI in the spinal region

(ROIbone) was used in order to evaluate the potential of intro-

ducing artifacts in the PVE corrected PET images as a result

of prominent anatomical structures (such as bones) in the CT

images, which are not present in the FDG PET images. Since

4925 Le Pogam et al.: 3D local multiresolution based partial volume effect correction 4925

Medical Physics, Vol. 38, No. 9, September 2011



no ground-truth is available in this case, anatomical images

were semiautomatically segmented to generate ROIs for the

tumor, the lungs, the soft tissues, and the bones in order to

be used in the GTM method.

III. RESULTS

III.A. Synthetic images

The quantitative results regarding the correction using the

three methods can be found in Figs. 1(d)–1(f) for the three

different synthetic datasets. Figure 1(d) contains results of

the spillover effects correction for the spheres of constant

size and varying intensities [Fig. 1(a)]. It displays the per-

centage of recovered intensity (a value of 100 is a perfect re-

covery of the true activity) in the spheres, demonstrating

similar levels of recovery for the three methods, within 2%

for all of the different intensities considered. Figure 1(e)

shows quantification results for the constant intensity and

variable size spheres [Fig. 1(b)]. The recovered intensities in

the spheres demonstrate that both approaches perform with

similar accuracy. As the functional image is resampled with

the voxel size of the anatomical image as a first step for both

methodologies, the impact of tissue-fraction effect is reduced

by introducing the higher resolution details of the anatomic

imaging when available and correlated, achieving accurate

intensity recovery even for the smallest spheres where PVE

have the most significant impact. Figures 1(c)-(4) and (5)

show the results for the uncorrelated case in which the

spheres are different in the functional and anatomical images

in terms of both intensity and structure, revealing differences

between the 2D global and new 3D local approaches as the

new approach does not incorporate uncorrelated anatomical

details in the functional image during the correction,

whereas the 2D global MMA creates local artifacts related to

existing mismatches. In addition, the local approach handles

more accurately the differences in absolute signal intensity

between the anatomical and functional images. A quantita-

tive comparison of recovered intensities in the spheres is

shown in Fig. 1(f) and demonstrates much higher accuracy

for the new approach: without correction, the mean error

was� 11.4%6 5.2%, whereas the 2D global and 3D local

corrections resulted in a mean error of� 15.1%6 6.1% and

2.8%6 2.4%, respectively. The GTM method resulted in a

mean error of 3.2%. The standard deviation of each measure-

ment associated with the use of the 2D global MAA

approach was much larger than when applying the new

model. This is explained by the artifacts that are introduced

due to mismatch in structural information between anatomi-

cal and functional datasets that the 2D global approach is not

able to address. Such a case highlights the limitation of the

2D global MMA and the way the new 3D approach success-

fully overcomes such issues, with similar accuracy to GTM

using the ground-truth ROIs. The measurements in sphere 7

illustrate the fact that no PVE correction can be performed

due to the lack of corresponding structure in the anatomical

image. It is important, however, to emphasize that in such a

case, the functional activity in the corrected image remains

unchanged and no additional artifact is introduced.

The local approach appeared more robust with respect

to the increase of noise in the functional image in Fig.

1(c)-(2): mean recovered intensity across all structures

(excluding sphere 7) and the different noise levels was

99.5%6 1.1% for the 3D local, whereas the 2D global

results exhibited much higher standard deviation with a

mean recovery intensity of 97.8%6 27.8% as illustrated in

Fig. 2(a).

The impact of an inappropriate choice of FWHM value

and of a spatial misalignment between the anatomical and

functional images was investigated for the 3D local MMA

only as such an analysis has already been performed by

Boussion et al.9 for the 2D global approach only. This analy-

sis demonstrated overall satisfactory robustness with, how-

ever, recovery errors reaching 25%–50% for certain spheres

although the spatial misalignments and rotations considered

were smaller (up to 3 mm and 3�, respectively). For the pres-

ent study of the 3D local MMA robustness, a maximum

mean error of 1.9%6 23.1% was reached with the investi-

gated misalignment, rotations, and inadequate scaling pa-

rameters [Fig. 2(b)]. Regarding the inadequate choice of

FHWM parameters, the mean error was 9.4%6 5.5% and

2.8%6 3% for6 2 mm and6 1 mm around the actual exact

value [Fig. 2(c)].

III.B. Simulated images

Figures 3(b) and 3(c) illustrate the correction obtained

using the mean and the median of the ratios, respectively

(use to establish the factor a), on the simulated 18F-FDG

brain PET and associated T1-weighted MRIs of Fig. 3(a).

The impact of the cube size (3� 3� 3, 5� 5� 5 and

7� 7� 7 voxels in (1), (2), and (3), respectively) is also

illustrated. Irrespectively of the cube size, the mean of the

ratio led to major artifacts due to noise and the possible

approximations in the FWHM parameters. On the contrary,

the use of the median led to better visual result. Only small

visual differences (mostly a slight increasing blurring effect)

were observed with the three different cube sizes [Figs. 3(c)-

(1) to 3(c)-(3)]. This blurring effect can be explained by the

inclusion of additional voxels for the computation of the me-

dian value and a less efficient local modeling. The quantita-

tive analysis as shown in Fig. 3(d) demonstrated higher

activity recovery when using the smallest cubic window size

(3� 3� 3). All other results were, therefore, generated with

this setting.

Figure 4(a) shows the results obtained on the simulated
18F-FDG brain PET images. The global 2D MMA led to the

incorporation of all the MRI details into the corrected PET

images [Fig. 4(a)-(3)], creating artifacts such as uptake cor-

responding to the skull, whereas the image corrected with

the new approach [Fig. 4(a)-(4)] was free of such artifacts.

Further evaluation using a frontal region profile is presented

in Fig. 4(b), demonstrating higher contrast with the local

approach. Both gray and white matters are better delineated.

The spikes on both sides of the profile [see red arrows in

Figs. 4(a)-(3) and 4(b)], corresponding to the artifact uptake

from the bone incorporation using the global MMA
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approach, are absent from the corrected image using the new

model. Comparison of ROI values placed in different regions

of the brain against the true image [Fig. 4(c) (1–5)] demon-

strated higher accuracy of the correction with the new

approach. In some regions such as amygdala, cerebellum, or

thalamus, the 2D global MMA and the GTM approach accu-

rately corrected the intensities. However, in other regions

such as the frontal or the hippocampus region, for instance,

it led to an overestimation or underestimation of the uptake,

respectively. Mean error for all analyzed regions was

31.9%6 8.5%, 21.3%6 6.8%, 16.7%6 5.7%, and 8.9%6

2.7% for the noncorrected PET, 2D global MMA, GTM, and

3D local MMA, respectively.

III.C. Clinical images

As a last evaluation step, the new approach was applied

and compared to the global MMA and GTM on two clinical

cases: a brain and a whole-body acquisition (Figs. 5 and 6,

respectively). Despite, the good correlation between the T1

MRI [Fig. 5(a)-(1)] and FDG PET [Fig. 5(a)-(2)] images

regarding the gray and white matter, noncorrelated

FIG. 2. (a) Percentage of mean recovered intensity relative to true values (mean6 SD) across all structures of Fig. 1(c)-(1) (excluding sphere 7) and the differ-

ent noise levels (SD from 10% to 50%) in Fig. 1(c)-(2). Percentage error of recovered intensity relative to true values (mean6 SD) in the different spheres

[Fig. 1(c)-(1)] considering: (b) different spatial misalignment scenarios between Figs. 1(c)-(2) and 1(c)-(3) (translation up to 4 voxels, rotation up to 5�) or

inappropriate scaling (6 10%) of Fig. 1(c)-(2); (c) different PSF sizes (4–8 mm) in the PVE correction process relative to the true value (6 mm).
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structures also exist, such as the skull (see red arrows) and

the gadolinium enhancement (see white circle) in the MRI.

These MRI features, which do not match any FDG uptake,

were introduced in the corrected image by the 2D global

process [Fig. 5(a)-(3)], whereas the 3D local approach [Fig.

5(a)-(4)] suppressed these uncorrelated details, leading to a

more reliable and visually satisfying PVE correction. In

addition, the new approach led to higher contrast between

regions as shown in the profiles of Fig. 5(b). Furthermore,

using the SPM software to segment the gray and white matter

from the MRIs, we obtained quantitative results for the com-

parison of the two voxel-wise correction methodologies as

well as corrected values using the GTM approach in these

ROIs. The 2D global MMA led to higher standard deviation

values due to the incorporation of additional uncorrelated

details, with an average mean intensity variation with

respect to the initial PET image in the gray and white matter

regions of 1.8%6 21.1% and 0.2%6 31.6%, respectively.

In contrast, higher mean intensity variations and lower

standard deviation were obtained with the new approach:

11.4%6 6.5% in the gray matter and� 2.6%6 8.3% in the

white matter. The new approach, therefore, led to less noisy

and higher uptake enhancements than the 2D global MMA.

By comparison, the use of GTM led to þ10% and� 19%

FIG. 3. Optimization and validation for the local modeling parameters on (a) a simulated FDG PET (a)-(2)/MRI (a)-(3) brain dataset [ground-truth on Fig. (a)-

(1)] using; (b) the mean; and (c) the median of the ratio maps methodologies for, respectively a (1) 3� 3� 3, (2) 5� 5� 5, and (3) 7� 7� 7 3D cube. (d) Per-

centage intensity recovery in the different brain structures considered in the simulation following the PVE correction.
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mean activity changes for the gray and white matter ROIs,

respectively.

The whole-body 18F-FDG PET/CT image [Figs. 6-(1) and

6-(2)] of a patient with lung cancer was analyzed in order to

assess the potential of our new approach regarding oncology

applications. Figure 6 contains the correction results using

both approaches, demonstrating the incorporation of artifacts

such as the spine with the global approach [Fig. 6-(3)],

whereas the new model allowed avoiding them [Fig. 6-(4)].

Quantitative measurements in this bone region demonstrated

an uptake increase of 28.8%6 25.4% with the 2D global,

whereas the 3D local led to a much lower variation

(1.9%6 11.3%). Table II contains the results of quantitative

analysis using ROIs placed in the tumor and the lung, reveal-

ing an increase in lesion-to-lung ratio of 33.5% with the

global approach, 45.8% with the GTM method and 54.1%

with the 3D local approach. Furthermore, a variation in the

whole lung activity concentration of 13.3% with the global

approach was measured, whereas the new model leads to a

smaller variation of only 6.7% thanks to the fact that it disre-

gards anatomical structures in the lungs without matching

FDG uptake. A similar variation of 5.4% of the lung uptake

was obtained with the GTM approach.

IV. DISCUSSION

Multimodality PET/CT imaging is rapidly becoming the

gold standard for diagnostic studies especially in oncology

with 18F-FDG PET/CT. PET/CT systems are now widely

used in clinical practice thanks to the automatic fusion of

functional and anatomical information they provide. Accu-

rate and efficient PVC in this context might demonstrate

FIG. 4. (a) PET images of the simulated brain 18F-FDG PET/T1-weighted MRI dataset: (1) T1-weighted MRI, (2) noncorrected PET, (3) 2D global, and (4)

3D local MMA based PVE corrected images; (b) profile results across the frontal cortex on the uncorrected and PVE corrected PET images; (c) ROI quantifi-

cation intensity (mean value6 SD) comparisons between measured (black solid lines) and true image values (magenta dotted lines): (1) for the simulated

image and recovered from the corrected images using the (2) 2D global, (3) 3D local MMA, and (4) GTM approach. The ROIs and the associated true activity

concentration values used in the simulation are shown in c-(5) based on the segmented T1-weighted MRI (showing highlighted a frontal region of interest).
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significant clinical impact, for instance, for the detection of

small lesions in whole-body PET acquisitions, or for the

assessment of therapy response during or after treatment.

In addition, new technology developments now allow the si-

multaneous acquisition of PET image and MRI for clinical

brain studies22 and it is expected this will be also extended

to whole-body imaging. These developments facilitate the

use of anatomical information either during the reconstruc-

tion (attenuation correction23,24 or incorporation of a priori

information25,26) or as a postprocessing step for the improve-

ment of qualitative and quantitative accuracy of functional

images (denoising27 or partial volume correction9,11).

The recently introduced MMA methodology for partial

volume correction9 is based on the mutual multiresolution

analysis of a functional image and the corresponding ana-

tomical one. In contrast to the standard PVE correction

approaches using anatomical information,2 the MMA is

voxel-wise and, hence, does not use ROIs obtained from a

segmentation of the anatomical images. The algorithm was

validated on synthetic and simulated datasets with accuracy

similar to the reference GTM approach with the advantage

of not requiring an atlas or a segmentation step as well as

leading to PVE corrected images which are subsequently

available for further analysis. There was, however, certain

limitations associated with its 2D implementation and the

use of a strictly linear and global model. This model results

in the incorporation of every anatomical detail into the func-

tional image and can therefore lead to artifacts in the cor-

rected images where no correlation exists between

anatomical and functional details. For example, the method-

ology has been shown to work well with a combination of

FDG PET and T1 MRI brain images,9,28 but its performance

FIG. 5. (a) A clinical brain T1-weighted MRI/18F-FDG PET with injection of gadolinium contrast: (1) T1-weighted MRI, (2) noncorrected 18F-FDG PET

image, (3) 2D global, and (3) 3D local MMA based PVE corrected images; (b) profile results across the frontal and occipital cortex regions on the uncorrected

and PVE corrected PET brain images corresponding to the datasets shown in (a).
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with respect to receptor brain PET imaging has not been

demonstrated.

In this study, we have developed and evaluated a new

model for MMA, based on a locally adaptive 3D analysis in

order to address the limitations of the 2D global MMA previ-

ous implementation. An accurate coregistration is considered

as a prerequisite to both MMA and our new proposed

approach, although we also demonstrated satisfactory robust-

ness of the method to misregistration errors. The implemen-

tation is based on the extension of the 2D analysis to the 3D

and the introduction of a local model. The impact of each of

the two modifications has not been evaluated individually.

On the one hand, the 3D analysis provides a better represen-

tation of the PSF convolution which is a 3D phenomenon,

allowing an accurate wavelet decomposition of the image

compared to the 2D approach. The local analysis applied to

this 3D decomposition allows computing a more accurate

model which is subsequently used for the correction, com-

pared to the simple global approach.

In addition, in order to discard uncorrelated details, the

initial linear model coefficient was replaced by a new one

based on the median value (rather than the mean) of the

voxel-by-voxel ratios in a local cube centered on each

voxel. Consequently, the 3D anatomical details in the

wavelet domain are discarded in the regions where there is

no matching functional uptake. The validation of the new

model was performed on synthetic and simulated datasets.

The results demonstrated similar quantitative performance

with the 2D global approach and the GTM in the case of

correlated datasets [Figs. 1(a) and 1(b)]. It is worth noting

that the GTM was applied using the available ground-truth

for the definition of the ROIs, leading this way to the best

possible results with this approach. In addition, the per-

formance was significantly improved for noncorrelated

structural and functional image combinations [Figs. 1(c)

and 4]. The new model was also evaluated using clinical

whole-body and brain datasets. For both these clinical data-

sets we obtained a significantly improved image quality

without artifacts, as well as higher contrast improvements,

compared to the 2D global MMA correction (Figs. 5–6).

However in the absence of ground-truth, the absolute accu-

racy of the recovered activity values and spatial spread of

the structures of interest (such as small tumors) could not

be directly assessed on these datasets.

Although this new approach allows improved qualitative

and quantitative voxel-wise partial volume correction using

anatomical information, without assuming homogeneous

uptake in regions of interest as the GTM approach, and is ap-

plicable to both brain and oncology imaging, one should

consider potential pitfalls associated with any postprocessing

PVE correction approach based on anatomical information.

As the correction is performed based on the anatomical

image details, if no or not enough information is available

for a specific structure, the PVE correction will be either not

possible or incomplete. The new proposed approach is cer-

tainly able to handle mismatches between anatomical and

functional information. However, in the case of tumor imag-

ing, if the lesion is necrotic in the functional image, but there

is no corresponding necrosis in the anatomical structure,

then the correction will be incomplete as only the external

outline of the lesion will be corrected. Absence of contrast in

the anatomical dataset corresponding to a specific structure

would lead to a lack of significant wavelet coefficients in the

wavelet decomposition of such a structure; therefore, no cor-

rection can be deduced and applied to the corresponding

functional uptake. However, when a relationship exists

between the anatomical signal and the functional one, such

an issue may be overcome by using alternative acquisition

protocols in order to generate such contrast. For instance, a

contrast enhanced anatomical imaging or different sequences

available in MRI imaging will be certainly interesting in

enhancing the potential of PVC approaches such as our own

for newly developed PET/MRI devices. Finally, one can

identify the areas of the image where no significant PVE cor-

rection was applied as a result of lack of anatomical details

by analyzing the MRM. This map indeed contains the cor-

rection that was applied to each voxel and very low or zero

values correspond to little or no correction. It is also impor-

tant to emphasize that the tissue-fraction effect can be cor-

rected only where the frontier between tissues can be

FIG. 6. A clinical whole body CT/18F-FDG PET study: (1) CT, (2) original

noncorrected PET, (3) PVE corrected images using the 2D global MMA

algorithm, and (4) PVE corrected images using the 3D local MMA

approach.

TABLE II. ROI quantification [mean6SD of the uptake value (kBq/ml) in

different ROIs] for the original whole body PET image and the corrected

one using the GTM, the 2D global and the 3D local MMA approaches. Note

that there is no SD in the case of the GTM approach since it is a ROI based

PVE correction approach.

Activity (kBq/ml) ROI lung ROI lesion ROI bone

Original PET 1.56 0.1 8.96 1.4 5.26 0.5

GTM 1.2 10.9 5.5

2D global 1.36 0.3 10.36 1.6 6.76 1.7

3D local 1.46 0.1 12.86 1.9 5.36 0.6
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extracted from anatomical images. This effect can in addi-

tion only be reduced, not entirely corrected, as it also exists

in the anatomical datasets, although with a lower magnitude

than in the functional images.

Another potential limitation of voxel-wise partial volume

correction approaches based on the use of anatomical

images may come from the dependency of the algorithm on

the noise level in both the anatomical and functional

images. However, our approach demonstrated high robust-

ness versus noise. In addition, the local aspect of the corre-

lation model greatly reduces the sensitivity of the correction

to potential artifacts/distortions present in the anatomical

images.

Misregistration is also a limiting factor for multimodality

PVE correction approaches such as the one reported in this

work. However, current techniques29–31 allow fully auto-

mated 3D elastic image registration and can accurately align

(with errors within 1–2 voxels) whole-body PET and CT

images acquired on standalone as well as on combined PET-

CT scanners. Furthermore, although both the 2D and 3D

approaches are sensitive to a spatial registration error between

the anatomical and functional images, the different tests car-

ried out on synthetic images with translation movements up

to 4 voxels and rotation movements up to 5�, as well as inap-

propriate scaling of the anatomical image showed limited

impact with a maximum error of 1.9%6 23.1% thanks to the

use of the sliding cube and the median of the ratios. However,

misregistration should be limited to a minimum in order to

ensure the most accurate correction, since large translations

and rotations might lead to errors up to 25%.

Finally, as with any postprocessing PVE correction algo-

rithm the new model requires the exact knowledge of both

modalities’ spatial resolution (FHWM) and voxel sizes in

order to determine the parameters of the wavelet decomposi-

tion scheme. However, our new methodology also demon-

strated satisfactory robustness versus errors up to 2 mm in

the choice of the FWHM parameters. After images coregis-

tration, the process is automatic and takes from about a mi-

nute to several minutes (depending on the size of the

images) on a desktop computer.

We assumed a constant value of the PSF FWHM in the

entire image, which is a simplification considering the poten-

tial variation of the PSF FWHM throughout the field of view,

especially in the case of whole body imaging. This aspect

could be improved by modeling the exact PSF FWHM in

each direction according to the spatial position of the ana-

lyzed voxel. Finally, an automatic estimation of the threshold

T value regarding the wavelets coefficients might improve

the results on a case by case basis. Future studies will also

investigate the performance of postreconstruction processing

approaches such as the one developed in this study with the

incorporation of the PSF and other a priori information into

the reconstruction iterative algorithm. Within this context a

couple of existing studies have shown similar performance

between the postprocessing deconvolution and PSF incorpo-

rated reconstruction based PVE correction approaches,32,33

with the generic advantage of postreconstruction approaches

being reconstruction algorithm independent.

V. CONCLUSION

We developed an improved voxel-wise methodology to

correct for partial volume effects in emission tomography.

This new model overcomes limitations encountered in the

originally proposed MMA and allows for a more universal

approach that can potentially handle any combination of

coregistered anatomical and functional images. Our new

methodology extends the 2D MMA to a 3D local analysis,

in which local details are conditionally taken into account

in the correction process. PVE correction was successfully

applied to images with either high correlation, for which

the 2D MMA correction was already adequate, or more

challenging cases for which correlation between anatomical

and functional datasets was not complete and for which

global 2D MMA failed by introducing artifacts and led to

inaccurate quantification. The local 3D process was suc-

cessfully tested and validated on synthetic, simulated, and

clinical datasets, with similar performance to the reference

GTM method without requiring a segmentation step, pro-

ducing PVE corrected images, and avoiding artifacts gener-

ated by the 2D global approach. In addition, it proves to be

overall more robust with good accuracy and robustness

without particular requirements regarding the structural and

intensity correlations between the anatomical and func-

tional images.
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Abstract

In positron emission tomography (PET) imaging, an early therapeutic response

is usually characterized by variations of semi-quantitative parameters restricted

to maximum SUV measured in PET scans during the treatment. Such

measurements do not reflect overall tumor volume and radiotracer uptake

variations. The proposed approach is based on multi-observation image

analysis for merging several PET acquisitions to assess tumor metabolic

volume and uptake variations. The fusion algorithm is based on iterative

estimation using a stochastic expectation maximization (SEM) algorithm. The

proposed method was applied to simulated and clinical follow-up PET images.

We compared the multi-observation fusion performance to threshold-based

methods, proposed for the assessment of the therapeutic response based on

functional volumes. On simulated datasets the adaptive threshold applied

independently on both images led to higher errors than the ASEM fusion and

on clinical datasets it failed to provide coherent measurements for four patients

out of seven due to aberrant delineations. The ASEM method demonstrated

improved and more robust estimation of the evaluation leading to more pertinent

measurements. Future work will consist in extending the methodology and

applying it to clinical multi-tracer datasets in order to evaluate its potential

impact on the biological tumor volume definition for radiotherapy applications.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Positron emission tomography (PET) is now a widely used tool in the field of oncology,

especially in applications such as diagnosis, patient follow-up studies (Krak et al 2005)

3 Author to whom any correspondence should be addressed.
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or in radiotherapy planning (Jarritt et al 2006). In the context of patient follow-up, early

metabolic changes detected with 2′-deoxy-2′-[18F]-fluoro-D-glucose (FDG) PET imaging can

occur before anatomic changes observed with computed tomography (CT) imaging. By

assessing differences in several PET scans acquired before and at different times during

treatment, various qualitative and quantitative methods have been proposed to characterize the

therapeutic response (Weber 2007). In patient monitoring studies, qualitative methods such as

visual assessment are less accurate and reproducible than quantitative measurements (Lin et al

2007). Furthermore, different therapeutic parameters (indexes) have been defined either on

dynamic or static PET acquisitions with a similar reproducibility (Weber et al 1999). Being

less restrictive in clinical routine, only the parameters computed in the static PET scans have

been considered in our work. Most widely used in patient follow-up studies, the standardized

uptake value (SUV) measures the tracer uptake in the tumor. Derived from the SUV index,

two measurements, namely the maximum SUV (SUVmax) and the mean SUV (SUVmean), were

assessed in our study by computing, respectively, the maximum and the mean of SUV in voxels

included in a region of interest defining the tumor. The reproducibility and the robustness

of both SUV indexes have been previously assessed (Weber 2007, Nahmias and Wahl 2008)

and compared to the reproducibility of tumor volume measurements with various automated

methodologies (Hatt et al 2010). An early therapeutic response can be characterized by

measuring relative or absolute SUV variations between pre-treatment and mid-treatment PET

scans. Other quantitative parameters have been used such as the total lesion glycolysis (TLG)

defined as the product of the mean SUV and the tumor volume (Larson et al 1999, Hatt et al

2010).

The therapeutic response is usually estimated by measuring the tumor size on the CT scans,

and according to guidelines such as World Health Organization (1979) and RECIST (Therasse

et al 2000). More recent criteria have been proposed such as PERCIST (Wahl et al 2009),

adding the consideration of quantitative parameters extracted from PET images. However,

these criteria are still limited to simple SUV measurements and do not include volumetric

characterization of the tumors, and no guidelines have been established recommending the

best way to characterize the therapy response according to the variation of metabolically active

tumor volumes. In the current clinical practice, the therapeutic response is therefore usually

assessed by considering one single value as the SUVmax within the primary lesion, extracted

from each PET scan. Presently, the measure of SUVmax variation is considered as the gold

standard of the treatment response definition. This method however accounts neither for the

tumor volume variations nor the spatial uptake variation within the tumor volume.

Among the new methodologies developed in PET tumor delineation (Zaidi and El Naqa

2010), most of them have only considered the use of such delineation for static images

segmentation and for diagnosis/prognosis. A few authors have recently proposed different

methodologies dedicated to PET follow-up, like the one by Necib et al (2008), which is

aimed at assessing a response by comparing two follow-up PET images. After voxel-to-voxel

registration of the two scans, a biparametric map is generated representing the tracer uptake

variations within the tumor. In the context of cancer treatment prediction, El Naqa et al (2009)

have recently proposed a texture-based approach, considering texture properties of voxels

within tumors as prognosis factors for the assessment of therapy response.

Regarding the use of PET in radiotherapy, the gross tumor volume (GTV) definition

is usually carried out manually on fused FDG-PET/CT scans. However, imaging tumor’s

glucose consumption with the FDG alone may not be sufficient to determine the GTV

(Mankoff et al 2003). Considering the measure of other features of cancer metabolism

like proliferation, hypoxia and apoptosis using additional tracers may generate more complete

information regarding the target tumor volume (Bentzen 2005, Shields 2003, Vaupel and
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Mayer 2007). Accurate tumor volume delineation would therefore require a fusion of all

available measurements obtained with these different tracers. Such a fusion could be valuable

to thoroughly and potentially more accurately assess tumor volume definition as well as

evolution during therapy.

The main objective of this study was to develop a fusion method derived from multi-

observation approaches such as these developed in satellite and astronomical imaging (Masson

and Pieczynski 1993). Considering either patient follow-up and/or multi-tracer PET datasets,

the proposed method aims at assessing a treatment response and tumor volume definition

by automatically determining the different variations of tracer uptakes within the regions

of the analyzed fused images. Our approach is statistical and assumes that the data can

be modeled by a mixture distribution of multi-observation random fields. The parameters

defining the mixture distribution are estimated using a stochastic expectation maximization

(SEM) algorithm (Celeux and Diebolt 1986) combined with a locally adaptive spatial priors

estimation in order to account for voxels correlation.

Our method was applied to simulated and clinical pre- and post-treatment PET scans of

esophageal cancer within the context of radio-chemotherapy follow-up. It was compared to

current quantitative methods proposed for the assessment of the therapeutic response based on

tumor volume evolution, namely the definition of the tumor volumes independently on both

scans using adaptive thresholding.

2. Materials and methods

2.1. Multi-observation framework

The proposed method could potentially be applied for both patient follow-up applications and

multi-tracer analysis using PET scans. The proposed method is aimed at merging the available

PET images in order to derive a fusion of the information regarding the treatment response in

patient follow-up application or/and the multi-tracer tumor volume, as illustrated in figure 1.

While the analysis for both applications might require different fusion rules or interpretation,

the basics of the approach are the same and are based on the unsupervised Bayesian methods,

widely used in segmentation and classification of satellite, astronomical or medical imaging

(Masson and Pieczynski 1993, Pieczynski 2003, Hatt et al 2009).

2.1.1. Bayesian model. Let T be a finite set corresponding to the voxels of 3D registered

PET images. We consider two random processes Y = (yt)t�T and X = (xt )t�T . Y models

the observed multi-tracers or follow-up PET scans, acquired at different times during the

treatment, and takes its values in R. Each yt is therefore a vector of real values defined as

yt =
(

y
(1)
t , . . . , y

(B)
t

)

, containing the voxel values of each PET image, with B being the image

number observed in the fusion. Each yt is associated with a label xt. X models the fusion

map which is designated in our specific application as the therapeutic response classification.

X takes its values in a set {1 . . . K}, with K being the number of classes that is usually user-

dependent and defined depending on the fusion goal. The objective of the approach is therefore

to estimate the distribution of (X, Y). Considering the Bayesian framework, the relationship

between X and Y can be modeled using the joint probability:

p(X, Y) = p(Y|X) × p(X), (1)

where p(X) is the prior knowledge about X and p(Y|X) is the ‘noise model’: the likelihood of

the observation Y conditionally to the hidden ground-truth X. In this Bayesian framework, the

prior knowledge p(X) can be modeled globally, for instance by considering Markovian models
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Figure 1. Multi-observation framework of multi-tracer and patient follow-up data.

(Pieczynski 2003) such as chains or trees, or locally with blind, contextual or adaptive models

(Peng and Pieczynski 1995). Different noise distributions can be used for the observation

model p(Y|X) such as Gaussian or generalized Gaussian (Delignon et al 1997).

In our fusion method, we have used a locally adaptive prior model and the noise model

has been assumed Gaussian; however, other distributions could be considered in future

developments. The distribution of (X, Y) is hence defined by the priors �k , the mean

vectors µk and covariance matrices Ŵk associated to each of the K classes in the mixture. The

mean parameter µk is a vector associated to the B images of the fusion µk =
(

μ
(1)
k , . . . , μ

(B)
k

)

.

The SEM algorithm was used here to estimate the parameters of the distribution of (X, Y). It

is a stochastic version of the classic EM algorithm, ensuring better and faster convergence as

well as higher independence on the initialization. From here onwards, our approach will be

denoted as ASEM.

2.2. Fusion process

2.2.1. Pre-processing: image deconvolution. PET images are characterized by their high

level of noise and the limited spatial resolution inducing partial volume effect (PVE) (Soret

et al 2007). The under estimation of the tissues uptakes and activity cross contamination

between structures with different uptakes are two consequences of the PVE effects in PET

images. When considering several co-registered PET images, the voxels most affected by PVE

may not be on the same coordinates for each scan, which implies intensities distributions that

might complexify both estimation and classification steps in the fusion process. In addition,

without PVE correction (PVC), SUV values extracted from each scan may be significantly

biased. This can lead to under or over estimation of the uptake variation between pre- and

post-treatment scans, especially if significant tumor volume variation occurs. Indeed, PVE

impact on the SUV measurement within the tumor strongly depends on the object’s size. In

order to reduce the impact of these effects on the subsequent steps, a PVE correction (PVC)

was applied to each image prior to their fusion. The chosen PVC method was developed by

Boussion et al (2008) and further improved by Le Pogam et al (2009) and consists of a 3D
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(a) (b)

Figure 2. (a) Illustration of VOI definition in the pre-treatment scan and (b) automatically reported

on the registered mid-treatment scan.

voxel-wise correction using an iterative deconvolution improved by wavelet-based optimal

denoizing of the residual. This preprocessing step offers two advantages: first, it reduces

the size of blurred frontiers between the different regions of the images, hence reducing their

impact on subsequent registration and fusion complexity. Second, it allows the extraction of

corrected uptake values from fusion maps for a quantitative characterization of evolution of

the activity within tumor volume and/or sub-volumes.

2.2.2. Local-based analysis. As our goal is to automatically determine the variation of tracer

activity and position/volume of a functional tumor, we assume that the overall tumor volume

has been previously automatically or manually isolated in a 3D box or volume of interest

(VOI) by a clinician on the co-registered PET images. Therefore, the box should be large

enough to encompass the entire tumor in each scan and avoid including too many neighboring

tissues with significant physiological uptake. Consequently, the definition of such a processing

box should allow any shape and size in 3D. The definition of this 3D VOI should therefore

be carried out on the scan in which the tumor appears to be the largest, and automatically

registered on the other volumes involved in the fusion as illustrated in figure 2.

2.2.3. Fuzzy k-means initialization and choice of the number of classes. In unsupervised

Bayesian segmentation framework, the initialization is an important step. In our method, we

used the fuzzy k-means (FKM) algorithm (Krishnapuram and Keller 1994) based on fuzzy

logic applied to the voxels values. In his PhD thesis, Provost (2001) described an improved

version of FKM, allowing the automatic estimation of the optimal number of classes in the

mixture, based on the use of an entropy criterion and a user selection of the upper limit of

the number of classes. This upper limit was defined as the product of the number of images

and the number of classes within each image considered in the fusion. In each iteration and

for all the voxels of the image, a membership coefficient associated to the K classes of the

mixture is estimated. At the end of FKM execution, the mixture parameters associated with

each class k (�k, µk, Ŵk) are initialized for the Bayesian estimation. The cost function of the

FKM algorithm is defined as

E =

K
∑

k=1

T
∑

t=1

(ψkt )
d ‖xt − ck‖

2 + α

K
∑

k=1

p2
k (2)
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with
K

∑

k=1

ψkt = 1, ∀t and pk =

T
∑

t=1

ψkt , (3)

where E is the cost function to minimize, K is the number of classes in the mixture, T is

the number of voxels in the volume, ψkt is the membership matrix of each voxel t to the kth

class, ck is the centroid of the kth class. The second term of the equation (2) is the entropic

criterion where α is the parameter weighting the cost function. The minimization of the FKM

cost function is performed by constraining the entropic term. This latter is high in the first

iterations, leading to a reduction of the number of classes in the mixture, and it decreases

exponentially in order to allow the FKM classification process.

2.2.4. Parameters estimation. The parameters (�k, µk, Ŵk) defining the Gaussian mixture

of the (X, Y) distribution are estimated by the SEM algorithm by sampling several realizations

of X according to its posterior distribution p(X|Y). In the adaptive framework, the global prior

�k associated to the kth class of the mixture are re-estimated using a local neighboring 3D

cube and replaced by local priors π t,k defined for each voxel and each class. The mean vector

µk and the covariance matrix Ŵk are finally computed for each of the K classes in the mixture.

The details of parameters estimation with the SEM algorithm are given in the appendix section.

2.2.5. Decision step. In order to perform fusion on a voxel-by-voxel basis, we used a

classification criterion to assign a class to each voxel. For this purpose we chose the maximum

likelihood method. To compute a solution, this criterion requires the parameters defining the

a priori model (priors of each class and for each voxel) as well as the observation data model

(mean and covariance matrices of each class), previously estimated using the SEM algorithm

(see appendix).

2.3. Simulated datasets

In order to evaluate the behavior of the fusion approach within the context of tumor evolution

assessment, we considered realistic simulations of non-spherical tumors. These simulated

tumors were created using as models real head and neck and esophageal observed in clinical

datasets. The procedure for the simulations of such data has been previously described (Le

Maitre et al 2009). The simulated cases used in our study are composed of two simulated PET

scans, one before and one after the treatment. The clinical cases used as models corresponded

to patients classified as partial responders or progressive disease to the radiochemotherapy

according to RECIST criteria.

In order to evaluate the robustness of the methods, three levels of noise were considered

for every simulated acquisition by selecting 100, 80 and 60% of the simulated lines of

response for the iterative reconstruction, respectively. With 20 clinical follow-up cases and

considering three levels of noise and various tumor-to-background ratios for each case, 70

different simulated cases were generated. Most of the simulated datasets, representing 15 out

of the 20 cases, were generated from patients classified as partial responders. The others

cases were designed to simulate progressive disease. The mean tumor volume and tumor to

background ratio used in the first and second simulated follow-up cases are given in table 1.

Three examples of these simulated follow-up cases (showing only central axial slice) with

their associated ground-truth are illustrated in figure 3. Similar to the clinical datasets they

are based on, these tumors are characterized by either homogenous or heterogeneous tracer

uptake. Background activity was simulated as homogeneous. The voxels were assumed to
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Table 1. Mean tumor to background ratios and mean tumor volumes computed for all the simulated

follow-up cases.

Tumor volume (cm3) T/B ratio

PET 1 34.1 ± 27 (6–90) 5.7 ± 2 (2.7–9.3)

PET 2 17.4 ± 2.5 (1.9–101) 4.2 ± 1.4 (2.0–6.5)

belong either to the background (BD) or to the tumor (T). In these simulated images, no

registration was required.

2.4. Clinical datasets

2.4.1. Patient data. After preliminary studies on simulated follow-up PET scans, the fusion

method was tested on real clinical datasets. Seven patients with esophageal cancer undergoing

concomitant radiochemotherapy between 2005 and 2008 were considered, with one PET

scan before treatment, and another PET scan after treatment, both acquisitions carried out

according to the same protocol. All these patients were classified as partial responders one

month after the completion of treatment, according to RECIST. Consequently, the variation of

metabolically active tumor volume as well as the SUV within the tumor volume is expected

to be less than 100% since residual tumor uptake is seen for all these patients, and also above

20 to 30% which is their reproducibility limits as previously demonstrated (Hatt et al 2010).

No volume or uptake increase should be measured in these cases. Visual illustrations of three

clinical follow-up cases are given in figure 5. The physiological uptake of the mediastinum

around the tumor volume was much more significant in the clinical images than in simulated

cased (for which background was simulated as homogeneous) and was therefore taken into

account in the fusion process as an additional class. Thus, on each scan, the voxels were

assumed to belong to the background (BD) of the lungs, the physiological tissues (PHY) of

the mediastinum or the tumor volume (T).

2.4.2. PET/PET registration. In the context of patient follow-up, the PET/CT images are

acquired at several month intervals. As an important prerequisite of the proposed method,

which works on a voxel level, the scans must therefore be registered before the fusion method

can be applied. The PET/PET registration was carried out using a method previously proposed

(Ouksili et al 2007), in which the PET data are first registered with their associated CT scans,

acquired in the same bed position. Having more landmarks and a higher resolution, the CT

scans are registered using the MIPAV software. The CT/CT registration was carried out using

a rigid transformation, which optimizes the least-squares criterion of a large VOI. The CT/CT

transformation matrix was then applied to the PET scans for registration. A rigid registration

was considered to be sufficient since the procedure was carried out only on small 3D regions

of interest surrounding the lesions which were located in the mediastinum or head and neck

regions. In addition, a rigid transformation avoids the deformation of tumor volumes in the

PET images which would be certainly associated with the use of a deformable model. Finally,

the consideration of head and neck and mediastinum lesions reduces the potential influence of

respiratory motion on the registration process.

In the fusion process, the use of a sliding estimation cube as described in section 2.2 for

the computation of the spatial priors is expected to reduce the impact of small registration

errors of the PET datasets. The impact of the scans misregistration on the fusion process was

considered in this study by shifting the second scan in a subgroup of the simulated datasets
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Case 1

(a) (b)

Case 2

Case 3

Tumor response
Tumor stable
Disease progression

∆SUV70 % 35 % 0 %

(c) (d) (e)

(i)(f) (g) (h)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(f) (g) (h) (i)

Figure 3. (b) and (d) Simulated follow-up tumors, (a) and (c) associated ground-truths, (e) ASEM

fusion map, individual segmented map with the adaptive threshold (f) and (g), and the ASEM

method (h) and (i) for the three simulated cases.
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by one and two voxels (4 and 8 mm, respectively) in a random direction, and then quantifying

the impact on the resulting volume error for each scan after ASEM fusion. The one to two

voxel shifts used in this work corresponds to typical registration errors associated with the use

of fusion algorithms in CT imaging.

2.4.3. Quantitative measurement of clinical datasets. In patient monitoring studies, the SUV

is the most used semi-quantitative parameter and is defined as

SUV =
C

A × W
, (4)

where C is the tracer concentration, A the injected activity and W the patient weight. Among

the different SUV indexes available, the most often used in clinical practice are SUVmax and

SUVmean, computed, respectively, as the highest value and the mean of voxels values in a given

region of interest (ROI), usually defined manually. Contrary to the SUVmax, the computation

of the SUVmean depends on the volume of the ROI. Our fusion method allows identifying

the variations of concentration activities. Therefore, according to the ASEM fused map, an

estimation of each individual tumor volume can be carried out. Then, for each scan, a measure

of SUVmean can be extracted according to the metabolic volume of the tumor VASEM estimated

with the multi-observation method. Note that the SUV values extracted from the fusion maps

are values corrected for PVE due to the deconvolution pre-processing step.

2.5. Alternative approaches used for comparison

We compared the multi-observation fusion results with methods that have been proposed for

patient follow-up studies. Most clinical studies only consider SUVmax variation. In order

to take into account full metabolically active volumes evolution as a response criterion, it

has been suggested to determine them independently on both scans using threshold-based

methodologies. Many studies have demonstrated that a fixed threshold value not adequate for

this task and that adaptive thresholding taking into account the background uptake performs

better (Nestle et al 2005, Tylski et al 2010). Manual tumor delineation by experts was

not considered in the study, due to its high inter- and intra-observer variability (Hatt et al

2010). We compared our approach to independent delineation of tumors in each scan using

adaptive threshold, the value of which is determined from the estimated contrast between

the tumor activity and the background activity and is optimized for a given scanner using

phantom acquisitions of spheres (Erdi et al 1997). Such an optimization was performed for

our acquisition protocol and scanner model. An associated SUVmean value was also computed.

2.6. Evaluation metric for simulated datasets

True volumes of simulated tumors are known. Therefore, the assessment of the fusion process

was achieved by the estimation of volume errors (VE). For each simulated case, segmented

maps of the first and second follow-up scans are obtained with the two methods, as illustrated

in figure 3. The individual segmented maps of the multi-observation method can actually be

deduced from the ASEM fused map. Although volume errors may be larger than 100% in

specific cases for which delineation completely fails, errors were limited to 100%.

2.7. Quantitative variation for clinical datasets

No ground-truth was available for the clinical follow-up cases. Hence, to compare the methods,

the following quantitative indexes have been considered. The variation of metabolic tumor
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volume (�V) and mean of SUV (�SUVmean) between the pre-treatment and the follow-up

PET scans for the different methods were measured with the two methods. In addition, the

evolution of the original (without PVE correction) maximum SUV in the ROI was considered

for comparison as it is the one currently used in clinical practice in oncology and defined as

the gold standard. Contrary to the simulated datasets, the background level in clinical cases

is not homogenous due to the physiological uptake of the mediastinum. The intra-observer

variability of the adaptive thresholding method has been investigated for the same context

of esophageal lesions in a previous study and demonstrated significant variability (Hatt et al

2011). Therefore, the adaptive threshold segmentation was carried out here by two clinicians

with similar training and experience for each follow-up case, in order to evaluate the impact on

the measurement of quantitative variations. The two clinicians followed a specific protocol:

they were instructed to measure the mean background value by placing manually a ROI within

the mediastinum, at least a few cm away from the lesions. They were free to choose the exact

location and size of the ROI.

3. Results

3.1. Results on simulated datasets

For the selected simulated cases, the fusion maps obtained by our multi-observation method

are illustrated in figure 3(e). In order to facilitate the interpretation of the ASEM fused

maps, colors have been affected to the different uptake variations. Blue areas represent a

response (negative difference in tracer uptake between the two scans) whereas green color

is associated with a stable tumor (similar significant uptake in both scans at this location).

Red color was used to indicate tumor progression (higher uptake in second scan with respect

to first one). Note that ASEM never wrongly resulted in tumor progression or regression.

The intensity associated with each voxel in the fusion map is set as the SUV relative

variation (�SUV) between the first and the second scan. The segmented maps of the

first and second chosen follow-up scan computed the different methods are presented in

figure 3(f–h).

Mean volume errors and associated standard deviation associated with the use of ASEM

fusion or independent adaptive threshold-based delineation, for all pre-treatment and post-

treatment simulated cases are presented in figure 4. The VE computed for the first follow-up

scan was significantly (Kruskal-Wallis tests p < 0.0001) lower for ASEM (−2.6 ± 8%) than

for the adaptive threshold (+28 ± 17%). For the second follow-up scan, however, the VE were

higher for both methods. Adaptive threshold led to higher overestimation of the tumor volumes

than for the pre-treatment image (+30 ± 15%), whereas ASEM led to underestimation of the

true post-treatment tumor volume (−9 ± 25%) with a larger variability. Adaptive threshold

gave large volume overevaluation in all cases, whereas ASEM led to better results in several

cases but higher errors in some other cases. In both pre- and post-treatment images, the

adaptive threshold method tended to overestimate the tumor volume, with larger absolute

errors than the ASEM method, that tended to underestimate the volume in the second scan.

Three selected cases among the simulated dataset are illustrated in the figure 3. For the

first case, no significant differences were observed between the use of the adaptive threshold

applied independently to each image and the ASEM method. For the second more complex

case, both methods showed different results. As illustrated in figure 3(f), the adaptive threshold

led to an underestimation of the tumors uptake, contrary to the ASEM method. As the fusion

map (figure 3(e)) shows, the disappearing lesion is correctly identified (in blue) whereas

the larger lesion is shown as stable (in green) with a small blue part, indicating that this
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EV1 EV2

Tb ASEM

Figure 4. Mean VE (%) with standard deviation as error bars of the first and second follow-up

scans for adaptive threshold and ASEM methods applied to the simulated cases.

tumor uptake has indeed smaller volume in the post-treatment scan. The third case illustrates

the evolution of a necrotic tumor, on which ASEM correctly identified the various parts of

evolution (blue, green, red).

Finally, the ASEM fusion proved robust to random misregistration of one voxel (4 mm)

with volume errors increasing from −2.6 ± 8% to −9 ± 16% and −9 ± 25% to −13.5 ± 30%

for first and second scan, respectively. A spatial shift of two voxels (8 mm) led to similar error

levels regarding the first scan (−9 ± 17% versus −9 ± 16%) but a higher increase regarding

the second scan (−21 ± 37% versus −13.5 ± 30%).

3.2. Results on clinical datasets

The fusion maps obtained by applying the ASEM method to three representative clinical

follow-up cases are illustrated in figure 5(c). Three colors were used to represent physiological

uptake (in yellow), tumor response (in blue) area and stable tumor (in green), underlying the

partial response status of these patients. The color intensity associated to the voxels classified

as responders or stable is determined by the SUV relative variation (�SUV) between the

first and the second follow-up scans. The segmented maps of the pre-treatment and post-

treatment scans, computed with the adaptive threshold and the ASEM methods are illustrated

in figure 5(d–g).

The quantitative measurements estimated for each clinical case individually are shown in

table 2, and mean measurements, estimated for all the patients are shown in table 3. The clinical

cases were more challenging to analyze than the simulated cases, due to a combination of

noisier and more heterogeneous background and tumor uptake distributions. Since the patients

were classified as partial responder, the tumor uptakes were expected to exhibit a significant

decrease of the SUVmax (at least 30%) between the pre- and post-treatment scans. Similarly,

the tumor volumes and associated mean tracer uptakes should also decrease (at least by 20 to

30%) and this can be confirmed visually.
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Table 2. Measurements of volume, SUVmean and SUVmax evolution, computed with the adaptive

threshold and the ASEM methods for each patient.

�SUVmax �SUVmax

Patient Method �SUVmean (%) �V (%) without PVC (%) with PVC (%)

1 Tb 1 −35.7 −79.8 −51.7 −35.8

Tb 2 −33.5 −83.2

ASEM −33.1 −80.4

2 Tb 1 −69.5 −86.3 −74.2 −76.9

Tb 2 −74.2 −64.9

ASEM −71.4 −65.2

3 Tb 1 −59.7 −81.4 −60.2 −66.9

Tb 2 −68.9 −40.0

ASEM −62.7 −59.5

4 Tb 1 −27.0 −66.1 −32.7 −25.7

Tb 2 −24.2 −71.7

ASEM −26.7 −59.2

5 Tb 1 −28.4 −41.1 −28.1 −42.2

Tb 2 −35.2 −12.9

ASEM −20.6 −52.5

6 Tb 1 −87.3 402.5 −56.1 −87.8

Tb 2 −85.7 74.1

ASEM −83.3 −81.9

7 Tb 1 −65.9 361.0 −58.8 −66.9

Tb 2 −60.7 −16.1

ASEM −47.9 −59.8

Table 3. Mean measurements of volume, SUVmean and SUVmax evolution, computed with the

adaptive threshold and the ASEM methods for all patients.

�SUVmax �SUVmax

Method �SUVmean(%) �V (%) without PVC (%) with PVC (%)

Tb 1 −53.3 ± 23.2 58.4 ± 221.7

Tb 2 −54.7 ± 23.6 −30.7 ± 53.5 −51.7 ± 16.2 −57.5 ± 23.0

ASEM −49.4 ± 23.9 −65.5 ± 11.3

With or without PVC, variations of SUVmax were higher than 30% (−52 ± 16% without

PVC and −58 ± 23% with PVC), as expected by their partial responder status. Regarding the

other quantitative measurements, there was no significant (p > 0.05) difference between the

mean variation of SUVmean obtained with each observer using the adaptive threshold (−53 ±

23 for Tb1, −55 ± 24% for Tb2). SUVmean variation deduced from the ASEM fusion maps

was slightly, although not significantly (p > 0.05) lower (−49 ± 24%).

By contrast, the variations of tumor volumes were significantly different for all approaches.

The variations measured by the two observers using the adaptive threshold were significantly

(p < 0.0001) different (58 ± 222% for Tb1 and −31 ± 54% for Tb2). The results obtained

with the ASEM method were also significantly different from both adaptive threshold results

(−66 ± 11%). They were also much more homogeneous across the entire group of patients
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(11% standard deviation only). These results can be explained by analyzing the quantitative

parameters of each patient individually. Among the seven clinical cases, the adaptive threshold

and ASEM performed differently. On the one hand, for patient 1, 2 and 4, the variation of

SUVmean and tumor volume estimated with the adaptive threshold and the ASEM method

were similar and pertinent with respect to the partial responder status of the patients. On the

other hand, for patient 3 and 5, the tumor volume variation estimated by the two clinicians

using adaptive thresholding were significantly different with a factor of 2 to 4 between the two

measured variations (−81 and −40% for patient 3, −41 and −13% for patient 5). Finally, the

use of adaptive threshold on patient 6 and 7 led to completely aberrant values (above +400

and +75%, and +360 and −16%) contrary to the ASEM method that produced much more

consistent volume variation results.

Different behavior of the adaptive threshold and ASEM method, three clinical follow-up

cases corresponding to patients 2, 5 and 7 are illustrated in figure 5. Regarding patient 2, both

adaptive thresholding applied independently to each PET scan and the proposed fusion method

resulted in similar measurements leading to similar segmented maps. The first follow-up scan

of patient 3 clearly exhibited a heterogeneous uptake within the tumor as shown in figure 5(a).

The two segmentation maps obtained with Tb clearly underestimated the overall tumor volume

as shown in figure 5(d) and (f) by excluding the central part of the functional uptake, whereas

ASEM included it. The poor reproducibility of the adaptive thresholding methodology is

also emphasized for patient 7, for which the volume variation of the first observer is clearly

overestimated (+360%) contrary to the second observer which tends to under estimate this

volume evolution (−16%) while the ASEM method estimated it at −60%.

4. Discussion

The use multiple PET scans for response to therapy assessment is rising in oncology, due to

the need to assess response to therapy earlier, in order to improve patient’s management in

radiotherapy and/or chemotherapy. On the other hand, the use of different radiotracers to

visualize processes such as cellular proliferation or hypoxia for instance is generating a large

amount of research especially in radiotherapy and early therapy assessment (Shields 2003,

Vaupel and Mayer 2007).

The aim of this study was to propose a fusion method based on the multi-observation

framework in order to specifically address the simultaneous analysis of multiple follow-up

PET scans in the context of response to therapy assessment. The use of a fusion method

taking into consideration both scans at the same time was expected to produce more reliable

results than independent delineations performed on both scans separately. The ASEM method

demonstrated the ability to merge patient follow-up PET scans through unsupervised Bayesian

estimation, with especially good results on the first scan (error −2.6 ± 8%) and mostly good

results on the second scan, with however a few cases that prove more difficult especially

considering the second scan, therefore leading to a higher mean error and standard deviation

of −9 ± 25%. On simulated datasets, the adaptive threshold applied independently on both

images led to higher errors than the ASEM fusion with a systematic overestimation for both

the first and second scan (+28 ± 17% and +30 ± 15%, respectively). In the real clinical

datasets however, a significantly higher variability in the quantitative parameters measured

with the adaptive threshold method was observed for four patients out of seven.

These results can be explained by the fact that simulated data were generated with low

and uniform physiological uptake and considering homogenous tumor uptake, as well as

only one user to manually determine the background region of interest. However, noisy and

heterogeneous uptake in nearby healthy tissues are very common in actual clinical datasets
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Patient 2

(a)

Patient 5

Patient 7

Tumor response
Tumor stable
∆SUV70 % 35 % 0 %

(b) (c)

(d) (e) (f) (g) (h) (i)

(a) (b) (c)

(d) (e) (f) (g) (h) (i)

(a) (b) (c)

(d) (e) (f) (g) (h) (i)

Figure 5. (a) and (b) Clinical follow-up tumors, (c) ASEM fusion maps, individual segmented

map of the two clinicians (d), (e) and (f), (g) with the adaptive threshold, (h) and (i), the ASEM

method, for three real clinical datasets.



Multi-observation PET image fusion for patient follow-up quantitation and therapy response 5785

affecting the delineation process, for instance in esophageal cancer for which the tumor is

located in the mediastinum and close to lung tissues. ASEM seemed much more resilient with

respect to non-uniform background and reduced tumor-to-background contrasts thanks to the

use of spatial (the local adaptive priors) and inter-observation correlations (multi-observation

framework using covariance matrices in the observation model) within the ASEM fusion. It is

to be emphasized that the ASEM fusion requires accurate co-registration of PET datasets with

a target registration error of 1 voxel (4 mm) as demonstrated by the results obtained by shifting

the second scan in the simulated datasets by one and two voxels (4 and 8 mm) in random

directions. The fusion was rather robust to 1 voxel spatial shifting; however, volume errors

regarding the second scan became higher when shifting by 2 voxels was applied, which can be

explained by the fact that as second scan tumor volumes are usually smaller, a misregistration

can lead to a higher impact on the volume error of such small volumes.

Despite being more dependent on the noise and the images reconstruction, SUVmax is

nevertheless a parameter that is most commonly used in clinical routine to assess and quantify

tumor evolution and response to therapy (Weber 2007, Nahmias and Wahl 2008). However,

the variation of SUVmax only may be not sufficient to characterize the tumor response, without

taking into account the information of the metabolic tumor volume, especially for early therapy

assessment. The SUVmean is considered more reproducible than SUVmax, but may depend on

the definition of the tumor volume (Tylski et al 2010).

In this study, three quantitative indexes, namely SUVmax, SUVmean and volume were

computed with both methodologies. An analysis of volume and SUVmean variations give

additional features to characterize the tumor response. In our results, SUV measurements

variations between pre- and post-treatment scans were similarly independent on the delineation

used. Tumor volume variations measured by the clinicians using the adaptive method were

close for patients 1, 2 and 4, and were significantly different for patients 3 and 5, emphasizing

the user dependence of such method in the presence of heterogeneous physiological uptake,

which is often the case for esophageal tumors (Hatt et al 2011). They were in addition

aberrant for patients 6 and 7, demonstrating the accuracy limitation of such an approach. By

contrast, tumor volume variations measured by ASEM were much more homogeneous across

the group of patients (−66 ± 11%). The poor reproducibility of the adaptive method was first

mentioned by Nestle et al (2005) in the case of non-small cell lung cancer. The measurements

and segmented maps obtained with the ASEM method were more appropriate considering the

known partial responder status of these patients. The combination of pertinent quantitative

indexes such as the metabolic volume and activity concentration in the tumor, measured with

a robust method could be valuable to thoroughly assess tumor response, as illustrated with the

use of the ASEM method on the clinical datasets.

5. Conclusion

A fusion method based on the multi-observation Bayesian framework was proposed to assess

multi-PET scans in the context of therapy response. Using the Bayesian framework, the

proposed method can potentially be applied to patient follow-up and multi-tracer datasets in

order to assess accurate treatment response and tumor volume definition by automatically

delineating the different variations of activity within the tumor. In this study, the multi-

observation method has been applied to simulated and clinical follow-up PET images and

compared with current threshold-based methods used in clinical practice for assessment of

the therapeutic response. On simulated datasets, the adaptive threshold applied independently

on both images led to higher errors than the ASEM fusion. The adaptive threshold proves

unreliable for more than half the patients, whereas ASEM produced measurements in line with
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what could be expected with respect to the classification of the considered patients. Future

work will also consider more than two PET scans within the context of therapy response

assessment, as well as multi-tracer studies in order to adapt the proposed fusion approach for

the definition of multi-tracer PET target volumes in radiotherapy, especially for dose boosting

or dose painting scenarios in radiotherapy (Sovik et al 2009).
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Appendix

Let us consider two random processes Y = (yt)t�T and X = (xt )t�T , modeling the

observations and the fusion map, respectively. Considering a mixture of multi-dimensional

Gaussian density probability functions, the distribution of (X, Y) is hence defined by the priors

�k , the mean vectors µk and covariance matrices Ŵk associated to each of the K classes in the

mixture.

(1) The parameters
(

�0
k, µ0

k, Ŵ
0
k

)

defining the Gaussian mixture of the (X, Y) distribution and

the class number K are initialized with a FKM algorithm based on entropy criterion.

(2) The mixture parameters are then computed with the SEM algorithm by sampling several

realizations of X according to its posterior distribution p(X|Y) defined for all the voxels

t ∈ [1, T ] and each class k ∈ [1,K] as

p(Xt = k|Y t) =
πt,k × f (Y t, µk, Ŵk)

∑K
q=1 πt,q × f (Y t, µq, Ŵq)

, (A.1)

where π t,k is the adaptive prior of the voxel t and the class k defined at the step 4, and

f (Y t, µk, Ŵk) is the multi-dimensional Gaussian defined for the kth class by the mean

vectors µk and covariance matrices Ŵk .

(3) For each voxel and associated observation vector Yt with t ∈ [1, T ], a posterior realization

called R = (r1 . . . rT ) is sampled and a partition Q = (Q1, . . . ,QK) is defined as

Qk = {rt |rt = k} , (A.2)

where Qk is the partition associated to the k class. Using these realizations, the parameters

of the Gaussian mixture are estimated.

(4) First, in the adaptive framework, priors are re-estimated using a local neighboring 3D

cube, hence priors for each voxel depend on its position in the image and the current state

of its neighbors in the posterior realization. Replacing global prior �k, local priors π t,k

are defined for each voxel and each class as

πt,k =
1

Card(Ct )

∑

j∈Ct

δ(rj , k) for k ∈ [1,K], (A.3)

where Ct is the estimation cube and δ is the Dirac function. For our application we chose

a cube of size (3 × 3 × 3) voxels.

(5) The mean vector associated to the kth class can be computed for each b image with

μ
(b)
k =

∑

t∈Qk
Y

(b)
t

Card(Qk)
, for k ∈ [1,K], for b ∈ [1, B]. (A.4)



Multi-observation PET image fusion for patient follow-up quantitation and therapy response 5787

(6) The covariance matrix associated to the kth class is defined as

Ŵk =

∑

t∈Qk
[Y t − µk]t [Y t − µk]

Card(Qk)
, for k ∈ [1,K]. (A.5)

(7) The decision step based on the maximum likelihood criteria computes the posterior

probability p(X|Y) and selects for each voxel the class that maximizes it

kmax = arg max
k∈[1,...,K]

p (Xt = k|Y t) , ∀t, (A.6)

where Kmax is the estimated maximized class.
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a b  s t r a  c t

PET  imaging is  now  considered a gold  standard tool in clinical oncology,  especially for  diagnosis  pur-
poses. More  recent applications  such as  therapy  follow-up or  tumor targeting  in radiotherapy  require
a fast,  accurate  and  robust metabolically  active tumor volumes  delineation on  emission  images,  which
cannot  be obtained  through  manual contouring.  This  clinical  need  has sprung  a large  number  of methodo-
logical  developments  regarding  automatic  methods  to define tumor volumes  on PET images. This  paper
reviews  most of the  methodologies  that  have  been  recently proposed  and  discusses  their  framework  and
methodological  and/or clinical  validation.  Perspectives  regarding  the future  work  to be  done are  also
suggested.

© 2011 Société française  de  radiothérapie  oncologique  (SFRO).  Published by  Elsevier  Masson SAS.  All
rights reserved.

1. Introduction

La tomographie par émission de positons (TEP) est dorénavant
un outil de référence en routine clinique en oncologie, notam-
ment pour le diagnostic [1].  Des applications plus récentes de
cette imagerie fonctionnelle concernent la  prise en  charge et le

∗ Auteur correspondant.
Adresse e-mail : hatt@univ-brest.fr (M.  Hatt).

suivi thérapeutique, ou l’identification et la définition des cibles
en radiothérapie [2,3]. Ces dernières applications sont encore au
stade du  développement. Elles nécessitent des efforts en  termes
de standardisation [4],  notamment multicentriques, ainsi que la
mise au point d’outils permettant une quantification robuste,
précise et reproductible. En particulier, la mise à  disposition de
méthodes permettant la définition automatique, rapide et fiable
des volumes métaboliquement actifs  (VMA) des tumeurs a  été
identifiée comme  un besoin important et urgent [2,5].  Les applica-
tions visées sont notamment la mise au point de nouveaux indices
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pronostiques ou  prédictifs de la  réponse, le suivi thérapeutique
et l’évaluation de la réponse et la définition des contours des
volumes tumoraux macroscopiques (gross tumour volumes [GTV])
en radiothérapie [2,6–10].  Ce  besoin a  notamment émergé suite
aux efforts déployés depuis le début des années 2000 pour tenter
de mettre en œuvre le «  volume cible biologique », avec l’utilisation
de radiotraceurs différents et plus spécifiques que le (18F)-
fluorodésoxyglucose [(18F)-FDG], dont l’utilisation reste largement
majoritaire en oncologie. Les traceurs permettant de visualiser la
prolifération cellulaire [(18F)-fluorothymidine (FLT)] ou l’hypoxie
[(64Cu)-diacétyl-bis(N4-méthylthiosemicarbazone (ATSM)], (18F)-
fluoromisonidazole (FMiso)] suscitent un intérêt particulier en
radiothérapie car ils permettent d’identifier des régions plus
agressives ou radiorésistantes. Ils prennent une importance
accrue en combinaison avec les nouvelles techniques d’irradiation
ciblée comme  la radiothérapie conformationnelle avec modula-
tion d’intensité (RCMI) et les scénarii d’escalade de dose [11] et de
dose painting [12].  Toutefois, la méthode standard de définition des
volumes tumoraux macroscopiques reste le contour manuel coupe
par coupe par le radiothérapeute sur les volumes obtenues par
tomodensitométrie (TDM) de planification. Cette dernière bénéficie
d’une résolution spatiale élevée de l’ordre du  millimètre, supé-
rieure à celle offerte par la TEP (de l’ordre de 4 à 6 mm).  Plusieurs
travaux ont étudié l’impact de l’utilisation des images fusionnées
TEP/tomodensitométrie sur la reproductibilité des contours ainsi
que sur la taille et la  forme des volumes tumoraux macrosco-
piques. Par rapport à l’utilisation de l’image anatomique seule, les
contours réalisés sur la  fusion TEP/tomodensitométrie mènent à
des volumes tumoraux macroscopiques en général plus reproduc-
tibles et souvent significativement plus petits ou plus grands en
fonction des localisations et des cas [13–16].  Actuellement, la TEP
est utilisée en routine clinique au mieux comme  un guide visuel à  la
définition des volumes tumoraux macroscopiques. La planification
réellement fondée sur l’imagerie fonctionnelle (avec le traceur FDG,
seul ou combinant différents traceurs), bien qu’ayant été suggérée
[17], est loin d’être une réalité clinique. Une des limites majeures
à la réalisation d’une telle méthodologie est sa complexité :  si  la
variabilité inter- et intra-utilisateur de la  détermination manuelle
des volumes tumoraux macroscopiques sur l’imagerie anatomique
peut être significative [14],  celle constatée sur l’imagerie fonc-
tionnelle est plus importante et incompatible avec une pratique
clinique [18].

Nous proposons dans cette revue une évaluation critique des
solutions qui ont été proposées jusqu’à présent pour assister le cli-
nicien dans la démarche chronophage et complexe de définition
des contours du volume métaboliquement actif sur les images de
TEP. Nous discuterons des manques actuels qu’il faut combler pour
parvenir à des solutions pouvant être mises en  pratique en routine
clinique.

2. Évaluation critique

2.1. Problématique des méthodes fondées sur des seuillages

Les premiers travaux visant à  établir une définition des volumes
métaboliquement actifs en  TEP sont fondés majoritairement sur des
méthodes de seuillage déterministe (fixe ou adaptatif) des valeurs
des voxels de l’image. Une liste détaillée de ces travaux peut être
consultée dans la revue de Dewalle et al. [19].  Le cas de la  TEP
est particulier dans le  sens où les seuillages ont pris une grande
importance en termes de popularité auprès des cliniciens et en
conséquence un grand nombre de publications les utilisant. Le prin-
cipal attrait de ces approches est leur simplicité méthodologique
et leur facilité d’utilisation. Elles reposent toutefois sur des hypo-
thèses simplificatrices, en particulier concernant la  distribution

du  radiotraceur au sein du volume métaboliquement actif. Cela
explique la grande variabilité de valeurs de seuils indiquées dans
les publications (de 20 à 75 % du standard uptake value [SUV] maxi-
mum)  et leur manque de précision et de robustesse [18,20–24].  Afin
d’apporter une réponse au problème fondamental de l’utilisation
d’une valeur fixe de seuil, il a  été  proposé d’adapter cette valeur
aux caractéristiques du volume métaboliquement actif et de son
environnement immédiat. Ces «  seuils adaptatifs » se fondent sur
une estimation approximative du contraste entre le volume méta-
boliquement actif et le « fond » physiologique, en lien avec une
optimisation propre au système et au protocole d’acquisition. Les
résultats sont ainsi améliorés, mais ces approches souffrent encore
de nombreuses limites. L’estimation initiale du  contraste est le
plus souvent dépendante de l’utilisateur [18,22],  et l’optimisation
nécessaire rend la méthode spécifique au système et au protocole
du  centre clinique. Une variabilité significative peut en effet être
observée entre des centres cliniques différents utilisant pourtant
le même  modèle de scanner [25].  En l’absence de standardisation,
ces approches peuvent difficilement être utilisées dans le cadre
d’études multicentriques. Ces techniques sont en outre susceptibles
d’échouer dans des situations complexes, notamment de distribu-
tion hétérogène du radiotraceur [6,23,26], comme illustré en Fig. 1.
Il est dorénavant acquis que les seuillages fixes sont à  proscrire, et
qu’en absence d’alternative, une segmentation manuelle est préfé-
rable [20].  Les seuillages adaptatifs sont susceptibles d’apporter une
précision suffisante dans les cas simples, mais sont dépendants des
utilisateurs et du  système. Ils  font globalement trop d’hypothèses
simplificatrices pour pouvoir être considérés comme  une solution
d’avenir.

3. Méthodologies de segmentation d’images

Étant données les limites des méthodes à  base de seuillage, il
est pertinent de s’intéresser à des méthodologies fondées sur des
approches de segmentation d’image plus avancées. Ces dernières
ont en commun des outils d’analyse et de segmentation d’image
ayant été développés auparavant dans d’autres domaines. Elles se
distinguent par le type de méthodologie considérée, les éventuelles
modifications apportées, leur niveau d’automatisation, la  nécessité
de pré- et/ou post-traitement(s) et par leur niveau de validation.

Bien que les spécificités propres à chaque localisation et type
de tumeurs ou au radiotraceur considéré doivent être gardées à
l’esprit, la  définition automatique d’un volume métaboliquement
actif sur une image de TEP reste avant tout une problématique de
segmentation d’image. C’est dans cette optique que nous orientons
cette revue critique. Certaines méthodologies ont été dévelop-
pées pour résoudre la problématique de faç on globale, tandis que
d’autres l’ont été pour une localisation particulière (sphère ORL,
poumon, rectum. . .)  ou une problématique plus spécifique encore
(imagerie dynamique, contours en radiothérapie. . .). Notons éga-
lement que  l’immense majorité des travaux ont étudié le problème
en considérant le (18F)-FDG.

3.1. Méthodologies considérées

Il existe littéralement des centaines de méthodes de segmenta-
tion d’images, et plusieurs des plus connues ont été considérées par
différents groupes pour étudier la problématique de la segmenta-
tion d’images de TEP afin de définir les volumes métaboliquement
actifs. Certaines cherchent à  identifier les contours dans l’image,
d’autres tentent d’identifier les régions ou regroupements de
voxels. Cela peut être fait suivant des critères variés comme  les
valeurs, les  formes ou les textures, par des approches déterministes,
statistiques et probabilistes, ou d’intelligence artificielle.

dx.doi.org/10.1016/j.canrad.2011.07.243
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Fig. 1. Erreurs de classification (%) obtenues par des seuillages sur  simulations Geant4 Application for Tomography Emission (GATE) [59].  A :  vérité terrain simulée et B :
binarisée  pour le calcul d’erreurs ; C–F  : simulations avec différents niveaux de contraste et  bruit. T42 et  T50 :  seuils fixes à  42  et 50 %  du  maximum. Tbckgd et TSBR : seuillages
adaptatifs de Nestle et Daisne [19].

Une approche classique en  segmentation d’images consiste en
la détection de contours par analyse du gradient de l’image, afin de
définir une région interne et une région externe au contour détecté.
L’application directe de ce  type de méthode en TEP est difficile
car les contours sont flous et les gradients difficiles à  identifier.
Plusieurs études ont étudié l’adaptation de ces  méthodes pour la
définition de volume métaboliquement actif en TEP. Par exemple,
la méthode du « partage des eaux » (watershed),  qui est fondée sur
l’analogie avec une surface topologique se remplissant d’eau [27].
Une autre approche est fondée sur la détection des pics de gradient
pour identifier les contours des objets d’intérêt [28–32].  Il a  éga-
lement été proposé d’améliorer le  résultat d’un seuillage adaptatif
par l’utilisation d’un contour actif [33].  Notons qu’il a été suggéré
également de faire évoluer de tels contours en prenant en compte
les images de TEP et de tomodensitométrie simultanément [34].

Les méthodologies fondées sur le regroupement (clustering)  flou
non supervisé de voxels (en anglais : Fuzzy C-Means [FCM]) ont été
utilisées par plusieurs groupes [21,35,36].  Notons que l’algorithme
original est relativement simpliste et ne prend pas en compte les
corrélations spatiales entre voxels, par exemple, et mène à  des
résultants décevants [21,36].  Il semble toutefois a  priori assez bien
adapté aux images de TEP, du  fait de sa modélisation floue. Le
groupe ayant proposé la méthode la plus aboutie fondée sur le
FCM, a utilisé une version modifiée incorporant des informations
supplémentaires comme  la détection automatique du  nombre de
classes (ou clusters), la  corrélation spatiale des voxels et l’analyse
de l’hétérogénéité du traceur [36].

Le  regroupement des voxels pour définir les régions tumorales
et  physiologiques peut aussi se  faire par la différentiation statis-
tique des valeurs dans l’image. Ce type de méthode est très utilisé
en traitement d’images et a  de nombreuses applications en  ima-
gerie satellite et astronomique notamment [37].  Le principe est de
distinguer les voxels appartenant aux tumeurs de ceux appartenant
aux tissus sains par leurs propriétés statistiques respectives. Elles

sont toutefois assez peu adaptées au traitement d’images de TEP
à  cause de la difficulté de prise en  compte du flou. Une approche
simple consiste à faire croître la région de l’image correspondant au
volume métaboliquement actif à  partir du voxel d’intensité maxi-
male, avec comme critère de croissance la moyenne et la variance
[38]. Une autre approche est appliquée aux projections maximum

intensity projection (MIP) pour bénéficier du contraste ainsi aug-
menté, et fait correspondre le volume métaboliquement actif défini
sur la TEP d’origine grâce aux ensembles flous associés à un opé-
rateur de fusion [35].  L’utilisation de mélanges de gaussiennes
pour opérer la classification des voxels a  été proposée également.
Cette méthode ne considère pas de modèle spatial et nécessite une
complexe estimation du nombre total de gaussiennes à  utiliser et
de celles qui sont à associer au volume métaboliquement actif [39].
Dans ce contexte, il est possible de modéliser l’information spatiale
dans l’image par des modèles de Markov [40]. Il est aussi possible
de modifier la  modélisation des données au sein de ces outils, pour
prendre en compte le flou et ainsi obtenir des résultats amélio-
rés [41]. L’approche fuzzy locally adaptive bayesian (FLAB) utilise ce
principe [18,21,22,26].

L’analyse de texture a  également fait l’objet d’adaptation pour
classifier les voxels d’images de TEP/tomodensitométrie [42,43].
Cette approche consiste à apprendre à l’algorithme, via une base
de données d’images pour lesquelles la  vérité est identifiée par
des médecins, en quoi les voxels de tumeurs forment des textures
différentes de celles des voxels physiologiques. Cet apprentissage
permet la construction de classifieurs (par exemple des arbres de
décision) servant à  classifier les voxels d’une nouvelle image pro-
posée en entrée de l’algorithme. Une méthode similaire dans son
approche (apprentissage sur base de données pour générer un clas-
sifieur), mais utilisant des réseaux de neurones, a récemment été
proposée [44].

D’autres approches peuvent être citées, notamment une étude
qui s’est spécifiquement intéressée à  la segmentation de tumeurs
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en détectant les fixations physiologiques situées à proximité pour
éviter de les incorporer au volume métaboliquement actif [45].
Il a aussi été proposé de classifier les voxels comme  tumoraux
ou physiologiques en les regroupant en fonction de la courbe
temps–activité (time–activity curve) les caractérisant [46].  Cette
méthode ne peut toutefois être  utilisée que sur des images para-
métriques issues d’acquisitions de TEP dynamiques.

3.2. Prise en compte de la  nature des images de  tomographie par

émission de positons

Des méthodes reconnues comme  peu robustes au bruit et fon-
dées sur des décisions de segmentation peu flexibles paraissent
a priori mal  adaptées à l’analyse d’images de TEP. C’est pourtant
le cas des seuillages. Certaines approches, au contraire, proposent
de modéliser explicitement les caractéristiques des images de TEP.
C’est notamment le cas de l’approche FLAB [21].  D’autres méthodes
ont modifié des algorithmes connus pour obtenir une précision
satisfaisante. C’est le cas de l’algorithme par partage des eaux,
pour lequel le contour d’origine a  été modifié [27]. De faç on simi-
laire, l’algorithme FCM a  été  modifié pour incorporer l’information
de corrélation spatiale et celle de l’hétérogénéité du  traceur [36].
Les approches fondées sur des techniques issues de l’intelligence
artificielle [42–44] ne proposent pas de modélisation explicite des
caractéristiques des images de TEP, toutefois leur nature intrin-
sèque doit leur permettre d’apprendre ces  caractéristiques pour
s’y  adapter. Une alternative consiste à améliorer la qualité des
images de TEP préalablement à  la  segmentation. Ainsi, la métho-
dologie fondée sur la théorie des possibilités est appliquée aux
projections MIP  et non aux images d’origine, dans le but d’opérer
la segmentation sur un  contraste plus élevé [35].  Les approches
utilisant l’analyse du gradient sont souvent associées à une ou
plusieurs étapes de prétraitement visant à  permettre une détec-
tion moins complexe des contours [32,34]. Ces prétraitements
atténuent le bruit et réduisent le flou. La même  méthodologie pro-
posée par l’industrie MIMVista semble ne  pas faire appel à  de tels
prétraitements1 [28–31].  Cela pose la  question de la  dépendance à
cette étape, car ces corrections sont délicates à étendre à l’ensemble
des  images de TEP [47,48].  D’autres approches ont par ailleurs
démontré de bonnes performances sur les images d’origine sans
nécessiter de tels prétraitement(s) [21,36].

Le développement d’une approche de segmentation automa-
tique d’images de TEP nécessite, en  effet, la  prise en  compte de
plusieurs paramètres.

D’une part, ceux qui sont liés à la tumeur ou à l’organe à définir :

• hétérogénéité de la distribution du traceur au sein de la
tumeur/organe ;

• hétérogénéité de la distribution du traceur au sein du  fond phy-
siologique ;

• contraste(s) mis  en  jeu entre l’objet et le fond, et au sein même
de l’objet et du fond ;

• complexité de la  forme de l’objet.

D’autre part, ceux qui sont liés à  la nature de l’acquisition :

• niveau de bruit ;
• taille des voxels et échantillonnage spatial ;
• type et modèle du scanographe ;
• algorithme de reconstruction et ses paramètres.

1 Il est important de souligner que  les détails de la méthodologie ne sont pas
disponibles, seuls les résultats étant présentés dans  des papiers de conférences et
non  des articles en journaux à comité de lecture.

Les paramètres ayant le plus d’impact sur la précision et la robus-
tesse d’une segmentation sont l’hétérogénéité de la  distribution du
traceur et les contrastes mis  en jeu (Fig. 1). Les volumes métabo-
liquement actifs réels sont rarement sphériques et homogènes sur
un fond homogène comme  le supposent de nombreuses méthodes,
et comme  sont conç ues les données de validation utilisées dans de
nombreuses publications.

Les autres paramètres peuvent également avoir un impact
important sur  la qualité globale de l’image. La taille des voxels,
par exemple, a  un impact significatif sur la  définition d’un contour.
Plus les voxels utilisés pour définir la  grille de reconstruction sont
petits, meilleur est l’échantillonnage spatial des structures, et plus
le contour peut être finement défini. Toutefois, la réduction de la
taille des voxels dans la  grille de reconstruction entraîne une baisse
significative des statistiques disponibles en chaque voxel, et une
augmentation significative du  bruit (Fig. 2). Une alternative pour
améliorer l’échantillonnage spatial consiste à suréchantillonner
l’image, ce qui est d’ailleurs réalisé dans les stations commer-
ciales pour la  visualisation. Cela a  toutefois un impact important
sur l’aspect visuel des images et peut varier en fonction de la
méthode utilisée (Fig. 3). Étant donnée la grande variabilité des
modèles et types de scanner en  activité, le manque de standardisa-
tion des protocoles d’acquisition, et le grand nombre d’algorithmes
de reconstruction existant (et la possibilité de varier leurs para-
mètres), les images de TEP peuvent présenter des aspects très
variés (Fig. 4). Se pose alors le problème de l’universalité et de
la robustesse des méthodes proposées qui n’ont été validées que
sur un nombre restreint de données. Enfin, les mouvements phy-
siologiques, en particulier la respiration, ont un impact important,
notamment pour les localisations thoraciques. Plusieurs études ont
récemment concerné cette problématique [49,50],  mais la grande
majorité des méthodes ne prennent pas  en compte ce  paramètre
dans leur validation. Soulignons toutefois qu’il n’est pas déraison-
nable de faire l’hypothèse que les effets de la respiration puissent
être corrigés en amont au cours ou après la reconstruction [51].

3.3. Validation

Afin de démontrer rigoureusement les performances d’une
méthodologie, il  faut évaluer :

• la précision absolue ;
• la robustesse ;
• la reproductibilité et la dépendance éventuelle à  l’utilisateur.

La précision désigne la  capacité de l’algorithme à  définir la
position, la forme et le volume du volume métaboliquement
actif et pour l’évaluer, il est nécessaire de disposer d’une vérité
terrain. Certains travaux ont suggéré l’utilisation des volumes
segmentés sur les images tomodensitométriques comme vérité
terrain, ce  qui est aberrant car rien ne garanti que les volumes
anatomiques et fonctionnels soient parfaitement superposés. La
définition manuelle par un expert ne permet pas non plus de
générer une vérité terrain satisfaisante du fait de la variabilité
inter- comme  intra-utilisateurs [14,18].  Une alternative est de
définir un consensus de nombreux utilisateurs. Cela reste tou-
tefois dépendant des utilisateurs, ainsi que de la faç on dont
le consensus est défini [52].  Dans le cas des images cliniques,
c’est toutefois la seule alternative à l’analyse histopathologique
qui consiste à  extraire chirurgicalement l’objet et d’en réaliser
des mesures macroscopiques. Cette opération comporte de nom-
breuses sources d’erreurs et d’approximations, l’objet pouvant
subir des déformations, devant être coupé en  tranches (ce qui
peut provoquer des pertes de matériau), et les régions corres-
pondant aux zones tumorales étant définies manuellement sur
les coupes. Enfin, les données doivent être recalées spatialement,
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Fig. 2. Acquisition de tomographie par  émission de positons (TEP) corps entier au (18F)-FDG reconstruite avec des voxels de A : 2 × 2 ×  2 mm3 et B : 4 ×  4 ×  4 mm3 .

ce qui est complexe étant donnée la nature très différente des
images. Peu de jeux de données existent [14,53–57].  Ils sont de
taille réduite, de moins d’une dizaine à  une trentaine de patients.
Dans la majorité des cas, seul le diamètre maximal est mesuré, ce
qui constitue une mesure réductrice du volume métaboliquement
actif.

Une alternative à l’utilisation de données cliniques pour évaluer
la précision consiste à réaliser des acquisitions de modèles phy-
siques réels dont les dimensions sont connues, tels les fantômes
NEMA IEC contenant des sphères de taille variable. La seule mesure

pertinente qu’il est possible d’évaluer sur de telles données est la
robustesse par rapport à  des structures de tailles et de contrastes
variables. En effet, les objets en question sont des sphères dont
l’activité est homogène, placées sur un fond homogène, ce  qui est
simpliste par rapport aux volumes métaboliquement actifs réels.
Des fantômes physiques permettant de générer des activités hété-
rogènes et/ou des formes plus complexes ont été proposées [40],
mais restent loin  de la complexité des images cliniques réelles
et sont complexes à  produire et utiliser. Une étude rigoureuse et
complète de la robustesse devrait idéalement être réalisée sur des

Fig. 3. Image de tomographie par émission de positons (TEP) d’une tumeur pulmonaire. A : originale (5,31 × 5,31 ×  5 mm3) et  interpolée sur  des voxels de 1 mm3 par approche
B  : linéaire et C : B splines cubiques.
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Fig. 4. A–C : tumeurs pulmonaires sur  A :  Philips Gemini ; B : Siemens Biograph et C : GE Discovery LS  ; D :  tumeur œsophage et E : tumeur rectale sur Philips Gemini ; et F :
tumeur  du sein avec (18F)-fluorothymidine sur Siemens Biograph.

objets plus complexes en termes de formes et d’hétérogénéité, que
des acquisitions de fantômes contenant des sphères. Cela peut être
réalisé grâce aux simulations numériques.

Une troisième solution permettant d’évaluer les performances
d’une approche est l’utilisation de données simulées réalistes.
Générer de telles données nécessite l’utilisation de simulateurs de
particules comme  Simulation of Realistic Tridimensional Emitting
Objects (SORTEO) ou Geant4 Application for Tomography Emission
(GATE) associant des modèles de fantômes anthropomorphiques
numériques comme  Zubal ou XCAT (4D eXtended CArdiac Torso
phantom) avec des modèles de systèmes d’acquisition [58–63].  Il
est possible avec ces  outils de générer des structures complexes et
réalistes, y compris en  ce qui concerne la  modélisation des tumeurs
[64], avec l’avantage de connaître la vérité terrain et de contrô-
ler la plupart des paramètres. Toutefois, cette approche nécessite
des compétences spécifiques et des matériels dédiés, du  fait de
l’exigence en termes de puissance de calcul. Des simulations ana-
lytiques plus simples peuvent également être considérées, mais les
résultats doivent alors être considérés avec plus de précaution car
elles impliquent des simplifications.

La mesure de mérite utilisée afin d’évaluer la  précision par rap-
port à la vérité terrain a également son  importance. Les erreurs de
volume peuvent être  suffisantes pour les sphères homogènes, mais
ne sont pas rigoureuses pour évaluer la  précision sur des objets plus
complexes, car une segmentation erronée peut fournir le même
volume absolu. Des mesures de mérite comme  les erreurs de clas-
sification ou les coefficients de Dice sont plus pertinents [21,65].

La robustesse mesure la capacité d’une méthode à  fonction-
ner sur la grande variabilité des images de TEP, sans ajustement
préalable de paramètres. Il est donc nécessaire de considérer diffé-
rents modèles de scanographe et les algorithmes de reconstruction
associés, et pour chacun, différents paramètres d’acquisition
pour évaluer la robustesse au bruit, au contraste, ou encore à
l’échantillonnage spatial. Il  est envisageable de générer de telles
données avec les outils de simulations réalistes, mais cela implique
la modélisation de différents scanographes et peut donc être

laborieux. Une alternative consiste à  exploiter des acquisitions de
fantômes physiques réalisées dans différents centres, pour obtenir
une large gamme de situations. Ce type de données est toutefois
long à acquérir, et souffre des limites évoquées précédemment pour
l’évaluation de la précision.

Évaluer la reproductibilité (aussi dénommée «  répétabilité »)
peut se  faire par la  répétition de l’exécution de la segmentation sur
les mêmes  données. On peut ainsi la comparer avec la variabilité
observée avec la définition manuelle [18].  Ainsi, l’exécution répétée
d’un seuillage fixe sur une même  image donne systématiquement le
même  résultat avec une variabilité nulle. Au  contraire, l’utilisation
de méthodes avancées nécessitant par exemple un processus itéra-
tif peut mener à  différents résultats en fonction, par exemple, des
paramètres d’initialisation et du  critère de convergence.

L’évaluation des interactions avec l’utilisateur est plus délicate
à quantifier. Il est nécessaire de déterminer si  l’utilisateur doit
détecter et isoler le volume métaboliquement actif, définir des
régions d’intérêt (dans le volume métaboliquement actif et/ou le
fond), ou encore ajuster des paramètres au cas par cas. La plupart
des méthodes proposées font l’hypothèse préalable que le volume
métaboliquement actif a  été détecté et isolé par l’utilisateur.
Quelques méthodes se sont toutefois positionnées dans le cadre de
la segmentation de l’image entière (Tableau 1), l’interaction avec
l’utilisateur intervenant une fois la  segmentation effectuée, pour
analyser le résultat et associer au volume métaboliquement actif
certaines des régions obtenues par la  segmentation.

Par rapport à  ces exigences, les méthodologies évoquées dans la
section précédente fournissent des preuves de performances à des
niveaux différents. Le Tableau 1 résume pour chaque approche le
type de segmentation utilisée, l’interaction utilisateur, les pré- ou
post-traitement nécessaires, les données utilisées pour la valida-
tion de la  précision (et la vérité terrain associée), et si une évaluation
de la robustesse et de la  reproductibilité a été réalisée.

L’analyse de ce tableau révèle de grands écarts de qualité de vali-
dation entre les publications, ainsi qu’une grande variabilité dans
les données de validation considérées. On notera le faible nombre
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Tableau 1
Comparaison des méthodologies de segmentation d’images.

Référence(s) Méthode Interaction utilisateursa Pré- et post-traitement(s) Application viséeb Données de validation et
vérité terrainc

Précision sur
tumeurs
réalistesd

Évaluation de
la robustessee

Évaluation de
la répétabilité

[27] Partage des eaux Standard +  placement de
plusieurs marqueurs

Ø Globale AF(1) - Vol. et images CT Non  Non Non

[28–31]  Gradient Standard +  initialisation Ø Globale AF(5) - Vol.
25 TSMC -  Vol. + TLG
18 TCH -  Diam.

Oui Oui Oui

[32]  Gradient Standard +  initialisation Débruitage et déconvolution Globale SF et AF - Vol. + Diam.
7 TCH - Complet

Oui Non Non

[33]  SA + contour actif Standard +  nécessité de fixer
plusieurs paramètres

Ø Globale AF(1) - Vol. 1 TC - Ø Non  Non Oui

[34]  Contours actifs
multimodaux (TEP/TDM)

Standard +  initialisation de la
forme du modèle
déformable, sélection de
poids

Normalisation et  recalage des
données de TEP et  de
tomodensitométrie,
déconvolution des images de
TEP

GTV TEP/TDM AF - Vol.
2  TC -  CM(1), SF

Non Non Non

[35]  Théorie des possibilités sur
projections MIP

Standard Ø Globale AF(1) - Vol.
5  TSMC – Vox.
7  TCH - Complet

Oui Non Non

[36]  Fuzzy C-Means (FCM)
amélioré

Interprétation des classes de
la  segmentation effectuée sur
l’image entière

Débruitage, transformations en
ondelettes

Globale 3 TSA – Vox.
21 TCH -  Diam.
7 TCH - Complet

Oui Non Non

[39] Mélange de  gaussiennes Standard +  initialisation du
modèle, choix du nombre de
classes

Ø Tumeurs pulmonaires 7 TC -  Ø Non  Non Oui

[40] Champs de Markov
multi-résolution

Choix du nombre de
classes  +  interprétation des
classes  de la segmentation
effectuée sur  l’image entière

Transformations en  ondelettes Globale AF(1) - Vol.
3  TC -  Ø

Non Non Non

[41]  Chaînes de Markov floues
(FHMC)

Standard Ø Globale SF(1) et AF(2) -  Vox. Non  Non Non

[18,21,22,26] Fuzzy locally adaptive

bayesian (FLAB)
Standard Ø Globale SF (1) et AF (4) - Vox.

20 TSMC - Vox.
18 TCH -  Diam.

Oui Oui Oui

[38]  Croissance de  région sur
critères statistiques

Standard Optimisation sur chaque
système nécessaire

Tumeurs rectales 18 TC - CM(1) Non  Non Non

[42,43]  Arbres de décision avec
apprentissage sur
paramètres de texture
TEP/TDM

Interprétation de  la
segmentation finale réalisée
sur  l’image entière

Apprentissage et construction
des arbres de décision

GTV  ORL 10 TC - CM(3) Non  Non Non

[44]  Réseau de neurones Interprétation des classes de
la  segmentation effectuée sur
l’image entière

Apprentissage et construction
du réseau de neurones

Globale AF(1) - Vol.
3  TSA - Vox.
1 TCH - Diam.

Non Non Oui

[45]  Algorithme Spherical Mean

Shift

Standard Rééchantillonnage dans un
domaine de coordonnées
différent

Globale 280 TSA -  Vox. Non  Non Non

[46]  Classification des voxels à
partir des courbes
temps–activité

Standard +  initialisation et
choix du nombre de classes

Imagerie dynamique
uniquement, débruitage et
déconvolution

Tumeurs rectales TEP
dynamique

AF - Vol. + Diam.
21 TC - CM(1)

Non Non Non

a Standard :  interaction « standard »  (détection et  placement du  VMA  dans une région d’intérêt).
b Globale : non restreint à une application.
c AF(x) : acquisitions de fantôme sur  x scanographes différents ; SF(x) : simulations de fantôme sur x scanographes différents ;  TSA : tumeurs simulées de faç on analytique ; TSMC : tumeurs simulées par approche Monte Carlo ;

TC  :  tumeurs cliniques ;  TCH :  tumeurs cliniques avec histopathologie ; Vol. : volume uniquement ; Vox. :  voxel à  voxel ; Diam :  diamètre maximum uniquement ;  complet :  reconstruction histopathologique 3D ;  CM(x) : contours
manuels  (x expert(s)) ; SF :  seuillage fixe.

d Fortement hétérogènes, formes complexes, faibles contrastes, etc. avec vérité terrain rigoureuse.
e Requiert de  multiples acquisitions sur plusieurs systèmes et un grand nombre de paramètres.
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Fig. 5. Sur des tumeurs similaires et fortement hétérogènes, A :  d’après [31] méthode par gradient (rose) qui englobe toute la tumeur sans différencier le cœur du  pourtour
et  un seuil à 37 % (bleu) qui ne prend que le pourtour ;  B : Fuzzy locally adaptive bayesian (FLAB) avec trois classes [26]  qui définit le contour externe, le cœur nécrosé, et la
fixation de plus haute activité.

de publications ayant explicitement démontré la  capacité de la
méthode à segmenter avec précision des volumes métabolique-
ment actifs réalistes dont la  fixation de radiotraceur est fortement
hétérogène, c’est-à-dire dont les contrastes intra-tumoraux sont
suffisamment élevés pour rendre inadéquate une segmentation
comme  celle des seuillages [26,29,36].  Notons le cas particulier de
la méthode par gradient, qui semble capable de générer un contour
sur une tumeur hétérogène contenant un cœur nécrosé, mais n’est
pas capable de définir le  contour interne de la nécrose en question,
ou de définir des régions différentes au sein de la  tumeur (Fig. 5).
Pour une majorité des publications, la  précision a été évaluée sur
des jeux de données relativement simplistes et de taille limitée
et/ou des données cliniques sans vérité terrain rigoureuse. Plusieurs
approches ont été appliquées sur  des jeux de données disposant
de mesures histopathologiques en commun. La méthode par gra-
dient, le FCM, et celle de la  théorie des possibilités ont  été testées
sur sept patients atteints de cancer de la sphère ORL [53],  avec des
erreurs par rapport aux volumes de 19 ± 22 %, 9 ± 28 % et 18 ± 10 %
respectivement. Les méthodes FCM et FLAB ont été appliquées
sur 18 patients avec tumeurs pulmonaires [14],  avec ±  6 %  d’erreur
par rapport au diamètre maximum pour FLAB [26] et ± 15 % pour
FCM [36] (Fig. 6). Dans la majorité des publications, les méthodes

proposées ont été comparées avec des seuillages, et non avec une
méthode plus performante déjà publiée. Cela explique en  partie la
multiplication des méthodes proposées. Il est en effet plus facile de
démontrer des résultats améliorés par rapport aux seuillages, dont
la  précision et la robustesse sont très limitées.

La plupart des études n’ont pas  apporté d’informations perti-
nentes sur  les aspects de robustesse et de répétabilité, à l’exception
des méthodes par gradient de MIMvista et FLAB. Quelques résul-
tats concernant la répétabilité sont également disponibles dans le
cas du contour actif, des réseaux de neurones et du  mélange de
distributions gaussiennes [33,39,44].

En  conclusion, les méthodologies ayant bénéficié de la valida-
tion la plus complète (fantômes sur plusieurs scanographes pour la
robustesse, images simulées réalistes, images cliniques avec histo-
pathologie, répétabilité) sont les méthodes par gradient et FLAB.

3.4. Démonstration de l’impact clinique

Un enjeu important d’actualité est l’évaluation de l’impact cli-
nique d’une définition précise, fiable et reproductible des volumes
métaboliquement actifs pour les différentes applications de la TEP.
Cela est crucial afin de convaincre les cliniciens et les industriels
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Fig. 6. Sur une même  tumeur hétérogène, A : Fuzzy C-Means (FCM) amélioré [36] et B :  FLAB [26].  Les contours rouge, jaune et  vert correspondent respectivement au  FCM
simple,  au FCM-S (avec corrélation spatiale), et  au FCM-SW (rajoutant la  gestion des hétérogénéités), qui sous-évalue la  partie droite de  la  tumeur.

de mettre en œuvre ces approches en routine. À ce jour, seuls
quelques travaux sont disponibles, démontrant, par exemple, un
impact en dosimétrie pour la  planification de radiothérapie utili-
sant la méthode par gradient [66]. Des travaux récents démontrent
également l’intérêt d’une précision accrue dans la définition
des volumes métaboliquement actifs, permettant d’extraire des
images des paramètres tels que le volume métaboliquement actif
et le total lesion glycolysis (TLG) associé [67].  Il a été démontré
que ces derniers, contrairement aux mesures classiques de SUV,
peuvent avoir une valeur prédictive de la survie et de la réponse
thérapeutique dans le cadre des lymphomes, des mésothéliomes
et des cancers localement évolués de l’œsophage, et ce, sur l’image
prétraitement uniquement [6,9,68,69].  Ces paramètres nécessitent
toutefois, contrairement à la mesure de SUVmax,  une définition pré-
cise des volumes métaboliquement actifs. Notons également que
cela permet d’envisager la caractérisation de l’hétérogénéité
du traceur au sein du volume métaboliquement actif
[8,70,71].

La détermination d’intervalles de confiance permettant de
caractériser la reproductibilité des mesures de volume métabo-
liquement actif, afin de les utiliser pour caractériser la réponse
thérapeutique [2], peut se faire sur des acquisitions répétées à
quelques jours d’intervalle sans traitement. Utiliser une méthode
robuste permet d’atteindre le même  degré de reproductibilité que
le SUVmax (±30 %),  contrairement à  l’utilisation de seuillages qui
mènent à des niveaux de variabilité nettement plus élevés (± 35 à
±  94 %) [18,72].

La grande majorité des méthodologies de segmentation
d’images de TEP qui ont  été publiées ces dernières années n’ont
pour l’instant pas encore été  utilisées afin de démontrer l’intérêt
d’une définition fiable des volumes métaboliquement actifs dans
les différentes applications cliniques, ce qui conduit à retarder leur
adoption par l’industrie, et donc a fortiori par les cliniciens.

4. Perspectives

Comme nous l’avons exposé, la problématique de la défini-
tion automatique (ou du  moins semi-automatique) des volumes
métaboliquement actifs sur les images de TEP a  été en partie
résolue par les travaux de certains auteurs, y compris pour des
situations relativement complexes de formes et d’hétérogénéité,
de faibles contrastes ou rapports signal sur bruit. Les difficultés
résident essentiellement dans la validation, souvent délicate et
controversée, et dans l’étape de transfert à  l’utilisation clinique,
ce que peu de groupes ont jusqu’à présent réalisé en  utilisant leurs
méthodes respectives. Ajoutons à  cela la popularité des seuillages
fixes et adaptatifs dans les publications, qui parasitent fortement
la diffusion et l’acceptation au sein de la  communauté clinique de
méthodologies plus performantes.

Certaines difficultés pratiques restent pour l’instant non réso-
lues. Citons, en  particulier, outre la problématique de la spécificité
du  radiotraceur, la différentiation automatique des fixations patho-
logiques et physiologiques. En ce qui concerne l’identification du
volume métaboliquement actif à segmenter, il est probable que
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l’intervention de l’utilisateur restera nécessaire, en particulier pour
des cas complexes de tumeurs situées à  proximité de zones ou
d’organes associés à  une fixation physiologique élevée. La robus-
tesse des méthodes face au manque actuel de standardisation des
protocoles d’acquisitions est loin d’être démontrée, bien que cer-
taines investigations aient déjà été menées [22].  Les faibles niveaux
de contraste et les hauts niveaux de bruit (ou de fixations physio-
logiques) associés à  l’utilisation de traceurs différents du FDG sont
encore, même  pour les approches les plus performantes, des limites
complexes à dépasser. De plus, toutes les méthodes partagent des
limitations techniques en termes d’initialisation de paramètres
et de dépendance à l’utilisateur et peu d’entre elles ont  fait la
démonstration d’une automatisation suffisante pour permettre une
utilisation aisée et rapide par les cliniciens. Cela est toutefois un
obstacle surmontable car de nombreuses solutions d’interface utili-
sateur et d’estimation automatique existent, permettant de limiter
les interventions de l’utilisateur ou  de les rendre plus reproduc-
tibles. Il  s’agit toutefois d’un effort à  fournir essentiellement de
la part des industriels pour la mise en œuvre des méthodologies
développées par les équipes de recherche au sein de leurs produits
destinés aux cliniciens.

Pour ce faire, les industriels doivent pouvoir identifier les
méthodologies les plus prometteuses, ce qui est délicat, car la
comparaison des méthodes est sujette à controverse si elle est réali-
sée sur la base des publications disponibles, faute de données de test
communes. La mise à disposition de larges bases de données conte-
nant des données cliniques associées à une vérité terrain rigoureuse
comme  les données d’histopathologie, et des données simulées
réalistes couvrant une vaste gamme  de situations, permettrait de
mettre en place de telles études comparatives. Cet effort n’est pour
le moment consenti que  par quelques équipes regroupées au sein
de collaborations limitées, bien que certaines initiatives soient déjà
menées pour tenter de construire et mettre à disposition des bases
de données plus conséquentes [73].

Les développements actuels de l’imagerie multimodale au sens
large génèrent aussi de nouveaux défis que les méthodes déve-
loppées jusqu’à présent ne permettent pas de prendre en compte
explicitement. La tendance actuelle est en  effet à  l’augmentation
du nombre de modalités d’imagerie disponibles (IRM, TEP, tomo-
densitométrie, etc.) et des modes d’acquisitions (radiotraceurs en
TEP, séquences en IRM, etc.). Cela entraîne potentiellement la  mul-
tiplication d’examens pour un patient donné, et les cliniciens sont
confrontés à la prise en  compte de multiples images, éventuel-
lement associées, mais souvent acquises dans des configurations
spatiales et temporelles différentes. La prise en compte auto-
matique de ces données hétérogènes et multi-sources (plusieurs
modalités et/ou plusieurs modes d’acquisition ou  traceurs pour une
modalité donnée, ainsi que l’évolution temporelle à  différents ins-
tants d’un traitement par exemple) pour un même  patient, devra
donc faire l’objet de développements appropriés, pour lesquels des
outils de recalage et d’analyse d’image et de données existent mais
doivent être adaptés et validés.

5. Conclusion

Il n’existe pour l’instant pas de consensus dans la communauté
sur la méthodologie à adopter pour définir automatiquement les
volumes métaboliquement actifs sur les images TEP, que ce soit
pour des applications de suivi thérapeutique ou la définition de
nouveaux critères pronostiques et prédictifs en oncologie, ou bien
la définition des volumes tumoraux macroscopiques en  radiothé-
rapie. Malgré l’existence de méthodologies ayant démontré des
performances largement supérieures aux seuillages, qui  restent
le standard, le manque d’études approfondies et comparatives
sur des données établies comme  références en  est la principale

raison. Ce manque s’explique principalement par une ignorance des
méthodologies existantes de la part d’une majorité de cliniciens, et
d’une persistance de la communauté à n’utiliser et populariser les
seuillages. Il s’explique également par un manque de bases de don-
nées disponibles et ouvertes, sur lesquelles chaque groupe pourrait
tester les performances d’une méthode développée et la comparer
à  celles proposées précédemment. Tant que de telles données et
études ne  sont pas disponibles, il sera difficile d’obtenir des indus-
triels une implémentation de méthodologies performantes au sein
des outils destinés au cliniciens pour leur pratique routinière.

La plupart des méthodologies existantes souffrent de défauts
plus au moins fondamentaux et importants, et des travaux sont
encore nécessaires, notamment en termes d’automatisation et de
fiabilité. Par ailleurs, de nouveaux défis voient le jour avec le déve-
loppement de l’imagerie TEP multi-traceurs et les imageries multi
modalité (TEP/tomodensitométrie, TEMP/tomodensitométrie,
TEP/IRM, etc.), notamment pour le traitement d’informations
multidimensionnelles et multi-résolution, nécessitant le déve-
loppement d’approches d’analyse d’images appropriées et
innovantes.
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L e t t e r s t o t h e E d i t o r

Autocontouring Versus Manual Contouring

TO THE EDITOR: We read with interest the study of Wu et al.

(1) regarding autocontouring methodologies for target delineation

in PET/CT for non–small cell lung cancer (NSCLC). Seventeen

NSCLC tumors were delineated with both automated and manual

approaches, using either combined PET/CT or CT and PET inde-

pendently. As expected, manual contouring of PET uptake corre-

lated better with the maximum diameter of the primary tumor than

did autocontouring using a fixed threshold at 50% of maximum

tumor uptake. We believe that this result is largely associated with

the various shortcomings of fixed-threshold approaches, a point

that needs to be clearly emphasized.

The authors have previously demonstrated that the best

correlation between histopathology-derived maximum tumor

diameters and image-derived ones was obtained using a 50%

fixed threshold (2). This conclusion was reached by comparison

with results obtained using other fixed-threshold values (from 20%

to 55%), with a modest correlation of 0.77 and nonstatistically

significant differences from the other fixed-threshold values tested.

Most significantly, the use of a 50% fixed threshold led to differ-

ences larger than 1 cm in half the tumors considered. Such differ-

ences in maximum tumor diameter will most certainly lead to

larger differences in the overall 3-dimensional volume. Consider-

ing similar comparisons based on 3-dimensional NSCLC tumor

volumes determined by histopathology, other authors have dem-

onstrated that an “optimal” threshold cannot be determined; con-

siderable variability is seen (20%–42% [31% 6 11%] of the

maximum), whereas CT-based volumes significantly overesti-

mated the pathologic volume (3).

It is therefore important to emphasize that a fixed threshold

(irrespective of its absolute value) is not an adequate methodology

to delineate elevated uptake signal in PET, because of its binary,

deterministic nature and lack of robustness versus varying contrast

and noise conditions (4,5). To account for these widely docu-

mented literature findings concerning tumor target delineation

incorporating PET uptake information, fixed thresholding should

be avoided, and at the very least, methodologies considering

target-to-background ratios such as adaptive thresholding (5,6)

should be favored. Eventually, the wider availability of automatic

segmentation approaches (7–10), some of which can account for

the presence of heterogeneous tumor uptake (7), may improve the

accuracy and reproducibility of adaptive thresholding (11) for

determination of functional tumor volume.

Considering all these facts, we do agree with the authors that

manual contouring should be preferred to autocontouring at a 50%

threshold for functional tumor volume delineation. On the other

hand, one should consider that manual delineation of PET uptake is

not the ideal approach either, for multiple reasons. Most importantly,

it represents a long process, particularly when it has to be performed

in 3 dimensions, and it is inherently of low reproducibility (11).

We therefore recommend that future studies investigating this

issue include the use of advanced image segmentation approaches

(4–10), which have demonstrated improved performance in com-

parison to a fixed threshold and may therefore lead to alternative

or complementary conclusions regarding the role of manual

contouring. Irrespective of the performance of a segmentation

algorithm, operator intervention will always be necessary to

appropriately identify the functional uptake of interest and avoid

the inclusion of non–tumor-specific uptake.
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There are limited data on contouring the gross tumor volume

(GTV) using PET/CT thresholds correlated with tumor size on

histopathologic examination. Our study demonstrated that using the

50% fixed threshold for contouring GTV produced the best cor-

relation between maximum tumor diameters and histopathologic

findings (2). However, the 50% fixed threshold led to a larger differ-

ence in the diameter of GTVon PET, and CT-based volume signifi-

cantly overestimated the pathologic volume. In fact, the window and

level of CT also led to more differences in determining the CT-based

volume (2). Much uncertainty exists regarding the most appropriate

threshold to define a PET target volume in NSCLC radiation treat-

ment planning. The use of a standardized uptake value (SUV) fixed-

threshold intensity to define a tumor on PET may be inadequate for

target volume definition and tends to underestimate target volumes

(3). Nestle et al. (4) demonstrated that a GTVapplying a threshold of

40% of the maximum SUV does not appear to be suitable for target

volume delineation, although they used CT volume compared with

PET volume because there was no available pathology correlation.

For laryngeal tumors, the segmented volumes by the gradient-based

method agreed with those delineated on the macroscopic specimens,

whereas the threshold-based method overestimated the true volume

by 68% (5).Yu et al. (6) have shown that the absolute SUV had no

significant correlation with the GTVof pathology or tumor diameter.

The simplest method, which is widely used, is a visual inter-

pretation of the PET scan and definition of contours as judged

visually in cooperation with an experienced nuclear medicine

physician (7–9). Another method using SUV is absolute SUV and

regression function or source-to-background ratio. Hatt et al. (10)

established the repeatability and reproducibility limits of several

volume-related PET image–derived indices—namely tumor volume,

mean SUV, total glycolytic volume, and total proliferative volume.

Fixed and adaptive thresholding, fuzzy C-means, and fuzzy locally

adaptive Bayesian (FLAB) methodology were considered for tumor

volume delineation. The reproducibility of different quantitative

parameters associated with functional volumes depends significantly

on the delineation approach. State-of-the-art algorithms for functional

volume segmentation use adaptive thresholding. The new 3-FLAB

algorithm is able to extract the overall tumor from the background

tissues and delineate variable-uptake regions within the tumors, with

improved accuracy and robustness compared with adaptive threshold

(tumor and background intensities) and fuzzy C-means. The gradient-

based segmentation method applied to denoised and deblurred

images proved to be more accurate than the source-to-background

ratio method (5).

The different techniques to define tumor contour by 18F-FDG

PET in radiotherapy planning resulted in substantially different

volumes, especially in patients with inhomogeneous tumors (4).

In our study, manual contouring was preferred to autocontouring

at a 50% threshold for PET tumor volume delineation (1). How-

ever, manual delineation of functional volumes using PET images

leads to high inter- and intraobserver variability (11). Furthermore,

manual contouring is a long process when it has to be performed

in 3 dimensions (12). As for the conclusion in our paper, when

using autocontouring of the target in NSCLC, one should consider

manual contouring of 18F-FDG PET to check for any missed dis-

ease that might be incompletely covered (1).

We agree with the recommendation of Hatt and colleagues that

future studies investigating this issue should include a more

accurate methodology, such as a segmentation algorithm. We also

need to attain more data on functional volume compared with

pathologic volume. Much more work must be done to resolve

these issues concerning the delineation target of NSCLC using

PET/CT, and we still must correlate with the gold standard—

pathologic findings—whenever possible.
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DEFINING RADIOTHERAPY TARGET VOLUMES USING
18F-FLUORO-DEOXY-GLUCOSE POSITRON EMISSION

TOMOGRAPHY/COMPUTED TOMOGRAPHY: STILL

A PANDORA’S BOX?: IN REGARD TO DEVIC ET AL. (INT J

RADIAT ONCOL BIOL PHYS 2010)

To the Editor:We read with interest the article by Devic et al. (1) investi-
gating the use of fixed thresholds to define non–small-cell lung carcinoma tu-
mor positron emission tomography (PET) volumes exhibiting heterogeneous
uptake. They found no correlation between the computed tomography–based
and the PET-based volumes, and they associated the observed variations with
intrinsic properties of PET acquisition rather than the segmentation choice.
They also concluded that PET-based volumes should not be used for radio-
therapy dose painting/boosting. Several studies recently dealt with similar is-
sues considering fixed threshold to determine tumor metabolic volumes,
showing large variability in the threshold values (2, 3). Other recent studies
also showed the limitations of fixed thresholding and proposed more
accurate and robust methods, from adaptive thresholding (4, 5) to advanced
algorithms (6–8) capable in some cases of handling heterogeneous uptake
frequently characterizing tumors treated with radiotherapy.

Fixed thresholds cannot reliably define functional volumes because of
their deterministic and binary nature, whereas tumor uptake is variable, spa-
tially heterogeneous, and dependent on a large number of data acquisition
and image reconstruction parameters. We agree that additional studies are
needed to better characterize the correlation between tracer uptake and un-
derlying metabolism. However, irrespective of such correlation, differentia-
tion of a PET volume from its background is an image segmentation issue
that cannot be rigorously addressed using fixed threshold–based methodolo-
gies, which lead to inconsistent tumor volumes in most clinical cases (1–5),
especially heterogeneous ones (1, 5, 8). In these cases and in the absence of
appropriate segmentation tools, it may be more accurate (though less
reproducible) to rely on manual delineation rather than a fixed threshold.

The use of inappropriate segmentation tools may lead to misleading con-
clusions regarding the potential of 18F-fluorodeoxyglucose–PET in guiding
radiotherapy treatment planning or as a prognostic and predictive factor for
therapy response (9). As new algorithms become available and clinical re-
search applications show their potential, the medical equipment and soft-
ware industry should implement them. Minimum standards and guidelines
regarding functional volumes segmentation need to be developed by the dif-
ferent societies involved, first in clinical research and eventually in clinical
practice. This is a slow process, and misleading conclusions as a result of the
use of inappropriate approaches will only reduce further the process of
making available new technology. We therefore suggest a more radical
stance avoiding the use of any fixed threshold-based definition of PET
metabolic tumor volumes in the future, especially if they are to be used
for any PET image–guided therapy application.

MATHIEU HATT, PH.D.
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INSERM U650
National Institute of Health and Medical Research
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RANDOMIZED COMPARISON OF WHOLE BRAIN

RADIOTHERAPY, 20GY INFOURDAILYFRACTIONSVERSUS 40

GY IN 20 TWICE-DAILY FRACTIONS, FORBRAINMETASTASES.

IN REGARD TO GRAHAM ET AL. (INT J RADIAT ONCOL BIOL

PHYS 2010;77(3):648-54.)

Dr. Graham and colleagues are to be congratulated in persevering and
completing their randomized study of accelerated whole-brain irradiation
for brain metastases (1). The accelerated prescription of 40 Gy in 20 frac-
tions given twice daily gained attention after Vecht et al. (2) reported that
this prescription provided a median survival in non-operated patients of 26
weeks. This outcome was far superior to the results previously described
in a number of randomized trials of palliative whole-brain irradiation,
which typically used daily hypofractionated prescriptions. Our own at-
tempt (3) to reproduce the experience of Vecht et al. failed. However,
we are reassured to see the findings of our own randomized study with re-
spect to survival (the same as conventionally hypofractionated radiation)
and local control (improved by a factor of �2) duplicated in the report
by Dr. Graham et al.

Nevertheless, how can a treatment that improves local control by a factor
of 2 fail to have a positive impact on survival? Dr. Graham et al. (1) attri-
bute this to the competing risk of death from uncontrolled extracranial dis-
ease. Although important, it is of interest that a quality-of-life study (4) that
opened at our institution and competed with ours for prognostically favor-
able patients (age of\60 and Karnofsky performance scale of $70) pro-
vided those patients with a median survival of 18 weeks. By contrast,
similar patients entering the accelerated trial at our institution achieved
a median survival of 27 weeks (95% confidence interval, 19-35 weeks).
We suspect that, in prognostically favorable patients, the provision of sal-
vage treatments for intracranial relapse (as was done in our study at our in-
stitution) can improve overall survival in patients with controlled
extracranial disease.

Where does this leave accelerated whole-brain irradiation? At the present
time, we have been offering the accelerated regimen described by Vecht
et al. (2) to patients whom I expect to be long- term survivors, in the hope
of reducing the risks of long-term morbidity. The accelerated regimen pro-
vides a slightly lower equivalent dose in 2-Gy fractions (EQD2) than a com-
monly prescribed daily regimen of 37.5 Gy in 15 fractions over 3 weeks
(EQD2 = 42.2 Gy for an alpha:beta ratio of 2 Gy) and published data (5)
do suggest an increasing risk of measurable cognitive loss above an EQD2

of 40 Gy. Of course, no one really knows what the dose per fraction sensi-
tivity is for neurocognitive injury, whether or not the dose response is inde-
pendent of clinical factors such as age, or whether alternative strategies such
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