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| - Curriculum Vitae

1) Civil status

Name Hatt Mathieu

Birth date and place October the 5th, 1981in Strasbourg, France
Nationality: French

Marital status: Single

2) Education (France)

» 2008 PhD from the University of Brest, with highest honors.

« Automatic determination of functional volumes in emission imaging for oncology
applications » -1 prize of IEEE France for best biomedical thesis in 2008.

» 2004 Master in computer sciencedrom the University of Strasbourg, with honors.
Options: image processing, artificial intelligence, parallel computing, networks,
algorithmic for graphics, bioinformatics.

» 2002 Licence in computer sciencefrom the University of Strasbourg.

» 1999 Scientific baccalauréat specialization in physics and chemistry, with honors.

3) Research formation

» 11/2011-presenStichting Maastricht Radiation Oncology (MAASTRO), Maastricht,
the Netherlands. Director: Prof. P. Lambin. Supervidgéwof. P. Lambin.

» 2005-2011Laboratory of medical information processing (LaTIM INSERM U650),
Brest. Director: Pr. C. Roux. Supervis@R D. Visvikis.

» 2004: 6 months trainee in th&boratory of sciences of image, computer sciences and
remote sensing (LSITT UMR 7005) Strasbourg.
SupervisorsProf. C. Collet and F. Salzenstein.

4) Additional formation
> 2006 7" IEEE EMBS International Summer School on Biomedical Imaging, Berder

Island, France.
» 2010 visiting fellow in MRC clinical center, Hammersmith Hospital, London, UK.
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Il - Professional experience

2002-2003

2003-2004:

2005-2008

2009-2011

2011-2012:

Trainee (two voluntary training periods of 2 months from July to August) as a
computer scientist in trainingn the astronomical observatory of Strasbourg
(UMR 7550), stellar datacenter of Strasbourg (CDS).
e In charge of JAVA developments for SIMBAD stellar catalogs
interface under the supervision of M. Wenger.

Traine@ the laboratory of sciences of image, computer sciences and remote
sensing (LSITT UMR 7005) for*land 29 year 6 months projects of master in
computer sciences.

e Team« automation, vision and robotics » for the design of an expert
system for robot control under the supervision of S. Besse.

e Team « models, images and vision » for the development of fuzzy
hidden Markov chains for astronomical images segmentation under the
supervision of C. Collet and F. Salzenstein.

PhD studentin the laboratory of medical information processing (LaTIM
INSERM U650), team « Quantitative multi modality imaging for diagnosis and
therapy » under the supervision of D. Visvikis and C. Roux
e Development of methodologies dedicated to metabolically active tumor
volume delineation in PET images for oncology applications.

Post-doc fellowin the laboratory of medical information processing (LaTIM
INSERM U650), team « Quantitative multi modality imaging for diagnosis and
therapy ».
e Principal investigator on ANR project SIERand in charge of
supervising trainees and PhD students in the team.

Research fellow in the imaging and radiotherapy research department,
MAASTRO lab, Maastricht, the Netherlands.
e In charge of collaborative research projects regarding the use of
PET/CT imaging for the prediction of therapy response and prognosis
in radiotherapyCo-supervising two PhD students.

! Segmentation of functional images for radiotherapy, ANR TEC 2008, 500k€ (250k€ funded by ANR).
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1l - Educational activities

1) Supervision and co-supervision of trainees and PhD students in the LaTIM

PhD students (supervision)
e 2009-2011: Simon David (thesis viva 13/12/2011)
Image analysis for therapy response studies in PET
o 2009-2011: Amandine Le Maitre (thesis vivhskmester of 2012)
Realistic simulations, automatic segmentation and dosinmeRET/CT imaging
e 2011-2013: Houda Hanzouli (started October 2011)
Multi resolution image analysis for multi modal imaging
PhD students (co-supervision)
e 2008-10: Adrien Le Pogam (thesis viva 04/2010)
Partial volume effects correction in emission imaging
e 2010-12: Florent Tixier (thesis viva 2012)
Characterization of tracer uptake heterogeneity in PET using textural features

Trainees (supervision)
o 2011: M. Sayed (ISEN engineer, 3 months) (collaboration with INSERM U613, Brest)
Automatic registration of fluorescence images of mice for gene transfer applications
e 2010: T. Merlin (ISEN engineer, 6 months)
Development and validation of an automatic algorithm for estimation and comparison
of PET delineations for oncology
Trainees (co-supervision)
o 2011: Hela Rezgui (ENSI engineer, 9 months)
Multivariate analysis for prognosis and response prediction in esophageal and head
& neck cancers
e 2011: Houda Hanzouli (ENSI engineer, 6 months)
PET images denoising using combined wavelet and curvelet transforms

2) Teaching (University of Brest)

Since 2010: DES of radiotherapy
PET Physics and use of PET imagingadiotherapy applications
15h / year

Since 2009: master 2 SIBM (Signal and Image in Biology and Medicine)
PET/CT imaging, digital medical image processing, PET quantification

9h / year
Advanced image segmentation techniques and applications in medical imaging
3h /year
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IV - Publications and communications

1) _Original articles in peer-revieadjournals

1. A. Le Maitre, D. Visvikis, C. Cheze-Le Rest, O. PradMr,Hatt. Dose prescription adapted to
functional tumor*®F-FDG heterogeneities: the influence of contrast and size of sub-volRimgsics
in Medicine and Biology 2012; in revision

2. S. David, D. Visvikis, Q. Quellec, P. Fernandez, M. Allard, C. RdlixHatt. Image change
detection using paradoxical theory for patient follow-up quantitation and therapgsasentlEEE
Transactions on Medical Imaging 2Q12 revision.

3. F. Tixier,M. Hatt, C. Cheze Le Rest, A. Le Pogam, L. Corcos, D. VisviRisproducibility of
tumor uptake heterogeneity characterization through textural feature analy$iE-FDG PET
imaging Journal of Nuclear Medicine 2012; in press.

4. M. Hatt, A. Le Pogam, D. Visvikis, O. Pradier, C. Cheze le Regpact of partial volume effects
correction on the predictive and prognostic value of baséfé&DG PET images in esophageal
cancer Journal of Nuclear Medicine 2012;53(1):12-20.

5._M. Hatt, C. Cheze le Rest, A. van Baardwijk, P. Lambin, O. Pradier, D. VisWkgct of tumor
size and tracer uptake heterogeneity®FDG PET and CT NesSmall Cell Lung Cancer tumor
delineation Journal of Nuclear Medicine 2011;52(11):1690-7.

6. S. David, D. Visvikis, C. RowM. Hatt. Multi observation PET image analysis for patient follow-
up quantitation and therapy assessmétttysics in Medicine and Biology 2011;56(18):5771-88.
[Featured free articlaseditor’s choice]

7. A. Le PogamM. Hatt, P. Descourt, N. Boussion, C. Tsoumpas, FE. Turkheimer, C. Prunier-Aesch,
J-L. Baulieu, D. Guilloteau, D. Visvikigvaluation of a 3D local multi-resolution algorithm for the
correction of partial volume effects in positron emission tomographledical Physics
2011;38(9):4920-4933Cover of the issue]

8_M. Hatt, D. Visvikis, O. Pradier, C. Cheze-le Re8aseline '®F-FDG PET image derived
parameters for therapy response prediction in cesophageal cancer. European Journal of Nuclear
Medicine and Molecular Imaging 2011;38(9):1595-1606.

9._M. Hatt, D. Visvikis, N. M. Albarghach, F. Tixier, O. Pradier, C. Cheze-le R&stgnostic value
of ®F-FDG PET imagdased parameters in cesophageal cancer and impact of tumor delineation
methodology European Journal of Nuclear Medicine and Molecular Imaging 2011;38(7):1191-1202.

10. F. Tixier, C. Cheze Le Redfl. Hatt, N. M. Albarghach, O. Pradier, J-P. Metges, L. Corcos, D.
Visvikis. Intra-tumor heterogeneity characterized by textural features on bas@#DG PET
images predicts response to concomitant radio-chemotherapy in esophagealoamnal of Nuclear
Medicine 2011;52(3):369-378.

11. M. Hatt, C. Cheze le Rest, N. M. Albarghach, O. Pradier, D. Visvikisbustness and
repeatability of image segmentation approaches dedicated to PET tumor uptake delinesgion
European Journal of Nuclear Medicine and Molecular Imaging 2011;38(4):663-672.

12. M. Hatt, C. Cheze-Le Rest, E. O. Aboagye, L. M. Kenny, L. Rosso, F. E. Turkheimer, N. M.
Albarghach, O. Pradier, D. Visviki®eproducibility of"®F-FDG and 3'-Deox-'*F-Fluorothymidine
PET Tumor Volume Measuremen@ournal of Nuclear Medicine 2010;51(9):1368-1376.
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http://iopscience.iop.org/0031-9155/56/18/001/
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http://www.springerlink.com/content/1376145263v117r3/
http://www.springerlink.com/content/6717570h860h51n2/
http://www.springerlink.com/content/6717570h860h51n2/
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http://www.springerlink.com/content/9288x01x27432811/
http://www.springerlink.com/content/9288x01x27432811/
http://jnm.snmjournals.org/cgi/content/abstract/jnumed.110.078501v1
http://jnm.snmjournals.org/cgi/content/abstract/jnumed.110.078501v1

13. M. Hatt, C. Cheze le Rest, P. Descourt, A. Dekker, D. De Ruysscher, M. Oellers, P. Lambin, O.
Pradier, D. VisvikisAccurate automatic delineation of heterogeneous functional volumes in positron
emission tomography for oncology applicatiolternational Journal of Radiation Oncology Biology
Physics 2010;77(1):301-308.

14. A. Le Maitre, W.P. Segars, S. Marache, A. ReilhacHatt, S. Tomei, C. Lartizien, D. Visvikis.
Incorporating patient specific variability in the simulation of realistibole body *F-FDG
distributions for oncology application®roceedings of the IEEE Special Issue on Computational
anthropomorphic anatomical models, 2009;97(12):2026-2038.

15. M. Hatt, C. Cheze le Rest, A. Dekker, D. De Ruysscher, M. Oellers, P. Lambin, C. Rbux,
Visvikis. Une nouvelle méthode de détermination automatique des volumes fonctionnels pour les
applications de l'imagerie d'émission en oncologigénierie et Recherche BioMédicale (numéro
spécial RITS 2009) 2009;34(4):144-149.

16. M. Hatt, A. Turzo, C. Roux, D. VisvikisA fuzzy locally adaptive Bayesian segmentation
approach for volume determination in PHEEE Transactions on Medical Imaging 2009;28(6):881-
893.

17. N. Boussion, C. Cheze Le Rddt, Hatt, D. Visvikis. Incorporation of wavelet based denoising in
iterative deconvolution for partial volume correction in whole body PET imgaguropean Journal
of Nuclear Medicine and Molecular Imaging 2008;36(7):1064-75.

18. N. BoussionM. Hatt, F. Lamare, C. Cheze Le Rest, D. Visvikisontrast enhancement in
emission tomography by way of synergistic PET/CT image combina@omputer Methods and
Programs in Biomedicine 2008;90(3):191-201.

19. M. Hatt, F. Lamare, N. Boussion, A. Turzo, C. Collet, F. Salzenstein, C. Roux, K. Carson, P.
Jarritt, C. Cheze-Le Rest, D. Visvikisiuzzy hidden Markov chains segmentation for volume
determination and quantitation in PERhysics in Medicine and Biology 2007;52(12):3467-3491.

20. F. Salzenstein, C. Collet, S. Lecalt, Hatt. Non-stationary fuzzy Markov chairRattern
Recognition Letters 2007;28(16):2201-2208.

21. N. BoussionM. Hatt, F. Lamare, Y. Bizais, A. Turzo, C. Cheze-Le Rest, D. Visvikisnulti
resolution image based approach for correction of partial volume effects inoentssiography
Physics in Medicine and Biology 2006;51(7):1857-18766.

2) Reviews in peer-reviesdjournals

M. Hatt, N. Boussion, C. Cheze-le Rest, D. Visvikis, O. Pradigéetabolically active volumes
automatic delineation methodologies in PET imaging: review and perspe@amcer/Radiothérapie
2011; online in october.

3) Letters to the editor of peer-reviedjournals

M. Hatt, D. Visvikis, C. Cheze Le Restegarding Autocontouring and Manual Contouring: Which Is
the Better Method for Target Delineation Usii§-FDG PET/CT in NoaSmall Cell Lung Cancer?
By K. Wu et al Journal of Nuclear Medicine 2011;52(4):658.

M. Hatt, D. Visvikis. Defining radiotherapy target volumes usifig-Fluoro-Deoxy-Glucose Positron
Emission Tomography: still a Pandora box?: in regard to Devic.ent@rnational Journal of
Radiation Oncology Biology Physics 2010; 78(5):1605.
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http://www.redjournal.org/article/S0360-3016%2809%2902954-X/abstract
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http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4982914&arnumber=4749328&count=20&index=10
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?isnumber=4982914&arnumber=4749328&count=20&index=10
http://www.springerlink.com/content/w357q577202r41nm/
http://www.springerlink.com/content/w357q577202r41nm/
http://www.cmpbjournal.com/article/S0169-2607(07)00319-7/abstract
http://www.cmpbjournal.com/article/S0169-2607(07)00319-7/abstract
http://www.iop.org/EJ/abstract/0031-9155/52/12/010/
http://www.iop.org/EJ/abstract/0031-9155/52/12/010/
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V15-4P6VD1M-3&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=70452f765daa03e898da79c6374537f4
http://www.iop.org/EJ/abstract/0031-9155/51/7/016
http://www.iop.org/EJ/abstract/0031-9155/51/7/016
file:///C:/Documents%20and%20Settings/Hatt/Application%20Data/Microsoft/Word/%5bFeatured%20free%20article%20as%20editor’s%20choice%5d
file:///C:/Documents%20and%20Settings/Hatt/Application%20Data/Microsoft/Word/%5bFeatured%20free%20article%20as%20editor’s%20choice%5d
http://jnm.snmjournals.org/cgi/content/full/52/4/658
http://jnm.snmjournals.org/cgi/content/full/52/4/658
http://jnm.snmjournals.org/cgi/content/full/52/4/658
http://www.redjournal.org/article/S0360-3016%2810%2903048-8/fulltext
http://www.redjournal.org/article/S0360-3016%2810%2903048-8/fulltext

4) Book chapters

M. Hatt, D. Visvikis, Chapitre 4 Tomographie parréission de positons et tomographie d’émission
monophotonique dynamiquesn 'Imagerie Dynamique Cardiaque : Systémes et Techniques
d'acquisition'P. Clarysse & F. Frouin publishing, 2011.

5) Communications and invited talks in peer-rewehnternational conferences

See appendix for full list.
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V - Scientific societies, grants, industrial and research partnerships, awards

Scientific societies and professional committees
¢ Member of the following scientific societies

= |EEE (Institute of Electrical and Electronics Engineers)
=  AAPM (American Association of Physicists in Medicine)
= SNM (Society of Nuclear Medicine)

= SFGBM (French Society of BioMedical enGineering)

e Member of AAPM Taskgroup n° 211
Classification, Advantages and Limitations of the Auto-Segmentation Approaches for PET

e Member of SNM computer & instrumentation council

o Substitute member for France of COST European agi»i0-07>
Bimodal molecular imaging technologies coupling PET and MRI for in vivo visualization
of pathologies and biological processes

e Associate editorial board member of the American Journal of Nuclear Medicine and
Molecular Imaging

o Referee for the following journals:

= European Journal of Nuclear Medicine

» |EEE Transactions on Medical Imaging

= |EEE Transactions on Information Technology in BioMedicine
» |EEE Transactions on Nuclear Science

= Journal of Applied Clinical Medical Physics

= Journal of Nuclear Medicine

= Journal of Nuclear Medicine and Radiation Therapy

= Medical Physics

= Physics in Medicine and Biology

Grants

French national research agend\R, 250k€)
Ligue contre le cancer (XE)

Institut Telecom (5%€)

PhD student grants (1%€)

2 http://www.aapm.org/org/structure/default.asp?committee _code=TG211

3 http://www.cost.eu/domains_actions/mpns/Actions/TD1007?management

4 http://www.ajnmmi.us/editorialboard.html
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Research partnerships
National

¢ CHRU Brest

e CHRU Bordeaux

e CHRU Toulouse

International

MAASTRO lab- Maastricht (The Netherlands)

Nijmegen (The Netherlanjls

CHU Liege (Belgium)

MRC Clinical Sciences Centre Hammersmith (London, UK)
UCLH (University College London Hospital) (London, UK)
Royal Surrey County Hospital (Guilford, UK)

University of Wisconsin, Madison (USA)

University of Seattle, Washington (USA)

University of Maryland, Baltimore (USA)

MD Anderson, Houston, Texas (USA)

University of Washington (Seattle, USA)

Munich (Germany)

Freiburg (Germany)

Industrial partnerships
e Research agreements with Philips Healthcare and Siemens Healthcare regarding the
exploitation of the PET segmentation FLAB algorithm

Awards

e« Bestin-physics» paper in AAPM annual meeting 2011

e «Young investigators awardef the New trends in molecular imaging and nuclear
medicine conference, 2009.

e « Iprize research » for best biomedical PhD thesis in 280& IEEE-France.

e Travel grant from NSS-MIC 2008 conference based onxtheientific excellence of the
submitted contributiom.

Other assignments in the laboratory
¢ In charge of the internal review committee for the articles written within the group

e Delegate for the post-doc fellows of the laboratory.
e In charge of the organization and planning for the monthly meeting of the laboratory.

5 http://www.aapm.org/m/mtg/absdetail.asp?mid=59&sid=3844&aid=16323
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Résumé en francais (French summary)

Avec une formation initiale en sciess de I’informatique et une spécialisation image, mes

activités de recherche actuelles concernent le traitement et I’analyse de I’information et de

I’image pour des applications en médecine, plus particulicrement [’oncologie et la
radiothérapie. Plus spéjuement, je m’intéresse a la segmentation et la classification
automatique pour la définition des contours d’organes et de tumeurs, au filtrage du bruit et a

la déconvolution pour I’amélioration qualitative et quantitative, et plus récemment, aux
modeéles multi observation pour la prise en compte des images multi modales, et la fusion
d’informations pour I’aide a la décision dans la prise en charge des patients. Je poursuis ces
thématiques spécifiquement dans le cadre de [utilisation de I’imagerie TEP/TDM
(Tomographie par Emission de Positons et scanner X) en oncologie et radiothérapie.

Mes activités de recherche ont pris place dans le contexte de 1’équipe « imagerie multi modale
guantitative pour le diagnostic et la thérapie » du laboratoire INSERM U650 de traitement de
I’information médicale (LaTIM). Ce contexte a garantit un travail d’équipe pluridisciplinaire,

en collaboration notamment avec des radiothérapeutes, des médecins nucléaires, des
physiciens, des ingénieurs, des mathématiciens et des informaticiens.

En tant que doctorant, ma principale contribution a été le développement d’une méthode
originale de segmentation d’image adaptée a la définition des volumes fonctionnels des
tumeurs sur les images TEP. Lors de mon gosterat, j’ai poursuivi la validation de la
précision, de la robustesse et de la reproductibilité de cette approche dans le cadre d’un projet

ANR pour lequel j’ai recu un financement de deux ans et demi. J’ai également étudié au cours

de ces deux derniéres années I’impact d’une telle méthode dans de nombreuses applications,
telles que la dosimétrie en planification de traitement en radiothérapie, et la prise en charge
des patients en oncologie.

Au cours de ces six derniéres années, j’ai été de plus en plus impliqué dans des travaux de
recherche connexes menés par d’autres doctorants et post-doctorants. Ces travaux incluent la
fusion d’images TEP pour le suivi temporel quantitatif, les simulations réalistes et
I’évaluation dosimétrique, la caractérisation de 1’hétérogénéité intra tumorale des traceurs

TEP par analyse de texture, et la réduction des effets de volume partiel et du bruit €e image
d’émission. J’ai assumé la responsabilité de co-encadrant de plusieurs stagiaires et doctorants

de I’équipe sous la direction du directeur de recherche D. Visvikis. Cette responsabilité inclus

des réunions hebdomadaires et des discussions régulieres avec les ¢tudiants, 1’aide a la mise

en place des expériences et protocoles de validation, a 1’analyse des résultats, la correction de

rapports destage, d’articles et de manuscrits de thése, ainsi que réfléchir a des solutions aux
problemes tant théoriques que techniques. Je travaille actuellement en tant que chercheur
associé au département de recherche en imagerie et radiothérapie de Maastricht (MAASTRO)
aux Pays-bas.

Au cours des prochaines années, mon projet de recherche sera dédié au développement
d’un contexte flexible et robuste permettant la modélisation et 1’analyse semi-automatique
d’ensemble d’images médicales multi modales, multi résolutions et multi temporelles, telles
gue TEP/TDM, TEMP/TDM, TEP/IRM, multi IRM ou TEP avec différents traceurs, ainsi que
des acquisitions dynamiques. Ce développement permettra de déduire de nouveaux modéles
prédictifs et des outils de décision adaptés a diverses applications cliniques tels que les
cancers de I’cesophage, rectal, pulmonaire ou ORL, par la fusion de toute I’information
disponible (imagerie, génétique, phénotypes et rapports cliniques). Ce projet se construira en
partie sur les travaux préliminaires réalisés avec des doctorants venant de soutenir et en passe
de terminer leur thése, et sur les théses de deux nouvelles doctorantes que j’encadrerai a partir
d’octobre 2011 et courant 2012, recrutées sur des financements que j’ai contribué a obtenir en
2010-2011.
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vi- Overview of past and present research activities

With an initial formationin theoretical computer sciences with a focus on image
processing and analysis,ynturrent research activities deal with image and information
processing and analysis for applications in medicine, namely oncology and radiotherapy.
More specifically, my research interests are image automatic segmentation and classification
for organs and tumors delineation, image denoising and deconvolution for qualitative and
guantitative improvement, and more recently, multi observation models for multi modal
imaging and information fusion for computer-aided decision making in patients management
These developments are especially considered within the context of the use of Positron
Emission Tomography and Computed Tomography (PET/CT) for oncology and radiotherapy
applications.

My research activities have been and are still carried out within the“tpamtitative
multi modal imaging for diagnosis and therapy”, in the LaTIM INSERM U1101. This
framework ensures a multi disciplinary teamwarkgollaboration with radiation oncologists,
nuclear medicine physicians, physicists, engineers, mathematicians and computer scientists.

As a PhD student, my main contribution to the field has been the development of image
segmentation algorithms dedicated to the automated delineation of metabolically active tumor
volumes in PET images, with a specific focus on adapting the methodology to specific
characteristics of the processed images. As a post-doctoral fellow, | have been further
investigating the accuracy, robustness and reproducibility of this methodology within a
project for which | had obtained funding from the French research agency (ANR) for two and
a half years. | have also been investigating the impact of such methodology and its resulting
tumor volumes measurements in various applications such as the dosimetry impact in
radiotherapy treatment planning or patient management and therapy assessment in oncology.

During the last six years | have also been more and more involved in research
developments by several PhD students and post-doctoral fellows, such as PET images fusion
for quantitative follow up, realistic simulations and dosimetry evaluation, methodologies for
reduction of partial volume effects and noise in emission imaging, and textural features
analysis for characterization of tracer uptake heterogeneity within tumors. Overall, | have
been acting as co-supervisor of most of the trainees and PhD students of the team under the
direction of Research Director D. Visvikis. This responsibility included weekly meetings and
discussions with the students, help with designing experiments and analyzing the results,
writing of thesis reports and research articles, as well as finding solutions to theoretical
problems and technical issues.

In the next few years, my research project will be focused on the development of a
robust and flexible framework for the modeling and the automatic analysis of multi modality,
multi resolution, multi observation and multi temporal images datasets, such as PET/CT,
SPECT/CT, PET/MRI, multi MRI or PET tracers imaging, as well as dynamic acquisitions.
This development will allow deriving new predictive models and decision tools by fusion of
the available multi source information (imaging, genetics and other clinical data), validated in
various models such as esophageal, rectal, lung, or head & neck cancers. Additional
applications in neurologyfdr example Alzheimer’s disease) might also be explored. This
project will be based on previous developments by PhD students that are almost finished with
their thesis, and will focus on new PhD students beginning their work under my supervision
in October 2011 and early 2012, whose recruitment was possible thanks to Igrants
contributed to obtain in 2010-2011.
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1. Research during the PhD
A. PhD methodological developments

One of the main factors of error for semi-quantitative analysis in positron emission
tomography (PET) imaging for diagnosis and patient follow up (1), as well as new flourishing
applications like image guided radiotherapy (2), is the methodology used to define the
volumes of interest in the functional images. This is explained by poor image quality in
emission tomography resulting from noise and partial volume effects (3) induced blurring, as
well as the variability of acquisition protocols, scanner models and image reconstruction
procedures (4). Manual delineation of the metabolically active tumor volumes (MATV) is
extremely subjective and suffers from major inter and intra observer variability (5). In
addition, it is especially tedious and time consuming; therefore it is never used in clinical
practice. The majority of previously published approachese based at the time (before
2005) on deterministic binary thresholding (6) that are not robust to contrast variation and
noise (7). In addition, these methodologies are unable to correctly handle heterogeneous
uptake inside tumors (8). The objective of my thesis was to develop an automatic, robust,
accurate and reproducible 3D image segmentation approach for the functional volumes
determination of tumors of all sizes and shapes, and whose activity distribution may be
strongly heterogeneous. The approach | have developed is based on a statistical image
segmentation framework, combined with a fuzzy measure, which allows to take into account
both noisy and blurry properties of emission images (9). A first development was carried out
using fuzzy hidden Markov chains as a spatial model [1], which gave satisfying results except
for small structures (either small lesions or small sub volumes within a lesion, as well as
complex shapes and contoufg)]. A second development was carried out to solve these
issues and was named FLAB for Fuzzy Locally Adaptive Bayesiant[3}ill exploited a
stochastic iterative parameters estimation and a fuzzy measure as in the first method, however
the hidden Markov chains model was replaced by a locally adaptive model of the voxel and
its neighbors for the estimation and segmentation. This method was also improved in order to
be able to consider up to three classes in the images, in order to account for heterogeneous
activity (either in the background or within the tumdfLAB was evaluated using a large
array of datasets, comprising both simulated and real acquisitions of phantoms and tumors.
The results obtained on phantom acquisitions allowed validating the accuracy of the
segmentation with respect to the size of considered structures, down to 13-17 mm in diameter
as well as its robustness with respect to noise, contrast variation, and acquisition parameters
The performance of the developed algoritiias shown to be superior to threshold-based
methodologies and other clustering algorithms. The results dentedsting ability of the
developed approach to accurately delineate tumors with complex shapes and activity
distributions, as illustrated in figure 1, in which the result of FLAB is compared to the results
on an adaptive threshold approach used by two different clinicians on patient image with an
esophageal lesion. This illustrates well the ability of FLAB to obtain a complete tumor
volume in case of heterogeneous activity, contrary to the adaptive threshold approach. It also
emphasizes the lack of repeatability of the adaptive threshold method due to heterogeneous
background uptake in the mediastinum.
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The FLAB algorithmwas also able to delineate multiples regions inside the tumor [4].
Some of the datasets used for the accuracy evaluation were generated using realistic Mont
Carlo simulations that were improved in several ways in collaboration with another PhD
student (A. Le Maitre), including patient-specific anatomical properties and complex non
spherical shaped tumors exhibiting heterogeneous tracer uptake [5]. Both robustness and
accuracy results demonstrated that the proposed methodology may be used in clinical context
for diagnosis and patients follow up, as well as for radiotherapy treatment planning and "dose
painting”, facilitating optimized dosimetry and potentially reduced doses delivered to healthy
tissues around the tumor and nearby organs.

[1] F. Salzenstein, C. Collet, S. Lecam, M. Hatt, Non-stationary fuzzy Markochain, PRL 2007

[2] Hatt et al. Fuzzy hidden Markov chains segmentation for volume determirtaon and quantitation in

PET, PMB 2007

[3] Hatt et al. A fuzzy locally adaptive Bayesian segmentation approach for volume determination RET,

IEEE TMI 2009

[4] Hatt et al. Accurate automatic delineation of heterogeneous functional volursein positron emission
tomography for oncology applications, IJROBP 2010

[5] A. Le Maitre, W.P. Segars, S. Marache, A. Reilhac, M. Hatt, et al. Incorpating patient specific
variability in the simulation of realistic whole body '®F-FDG distributions for oncology applications,
Proceedings of the IEEE 2009

This work was recognized by an awamidelivered by the French section of the IEEE and

the French society of biomedical engineering (SFGBM) for the best research PhD thesis in
biomedical imaging defended in 2008. A conference paper describing the latest developments
and validation of the FLAB approach was recognized in 2008 by the IEEE-Medical Imaging
Conference committee through a trainee grant based on the scientific excellence of the
contribution. According to Google Scholar, the four methodological papers [1-4] add up to
more than 100 citations, almost 50 of them for the FLAB paper [3].
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Fig.1 Coronal, sagital and axia views of a 18F-FDG PET image ofpatient with esophageal cancer (large heterogeneous MATYV). Delineation (blue contours) using
FLAB (on the left) and adaptive threshold with two different observers (on the right and intie middle). Note the significant underestimation obtained with adaptive
threshold (both users) due to the heterogeneity.



B. Additional methodological developments

There are numerous other pitfalls and sources of errors in PET imaging. Most importantly,
the level of noise and its characteristics, as well as partial volume effects (PVE), lead to
significant quantitative biases and qualitatively degraded images (4). Both aspects are also
closely related to the problem of automatic delineation of PET images. Therefore, during my
PhD | have been working closely with a post-doctoral fellow (N. Boussion) and a féilow P
student in the team (A. Le Pogam), on denoising and deconvolution methodologies dedicated
to emission imaging. | have contributed to several developments, including two PVE
correction methods and a denoising approach. The first methodology was based on the use of
anatomical high resolution details from the co-registered morphological images (such as CT
or MRI) in order to correct for the spill in and spill out effects of partial volume effects in the
asociated functional dataset. This Mutual Multi resolution Analysis (MMA) method
exploited spatial-frequency analysis, namely wavelet transforms, and edratuctural
details from these decompositions in order to derive a model linking both image modalities
[1-2]. Another approach was also developed in order to correct for PVE in emission images
without requiring associated high resolution anatomical datasets, or in cases (and there are
many) for which no spatial correlation between the morphological and functional datasets can
be exploited. This second approach was based on iterative deconvolution (10-11), which is a
well known method for improving spatial resolution of images. However, such algorithms are
associated with increased noise levels in the deconvolved images, which is not compatible
with thar subsequent clinical use. Therefore, we designed a denoising methodology dedicated
to emission imaging, based on the filtering of wavelet coefficients using a Bayesian based
method to discriminate between noise and information in the wavelet domain (12). This
methodology was then included in the iterative deconvolution process in order to control the
noise propagation additively introduced by each iteration of the deconvolution. This allowed
significantly reducing the blur in emission imaging without significant addition of noise. The
validation of the method demonstrated its ability to restore accurate quantitative
measurements in the images, while providing full whole-body corrected images [3]. Note that
the developed denoising method was also considered as a standalone denoising approach for
emission imaging (see part 2.3)

[1] N. Boussion, M. Hatt, et al. A multiresolution image based approach fozorrection of partial volume

effects in emission tomography, PMB 2006

[2] N. Boussion, M. Hatt, et al. Contrast enhancement in emission tomagphy by way of synergistic
PET/CT image combination, CMBP 2008

[3] N. Boussion, C. Cheze Le Rest, M. Hatt, et al. Incorporation of waveléased denoising in iterative
deconvolution for partial volume correction in whole body PET imaging, EJNM 2008



2. Post-doctoral work

During the last few months of my PhD, | applied for a research gwathie French
National Research Agency (ANR Emergence TEC 2008 call to projects) and receivkd a 25
grant for two and a half year for a project named SIFR (segmentation of functionas ifmage
radiotherapygomplete cost S00K€E).

The goals of this project were to i) further validate the automatic delineation algorithm
proposed during myhHD andii) investigate its impact and value in the clinical setting through
various studies.

The following describes my main research activities within this SIFR project, which included
supervision of trainees and PhD students, as well as other contributions to additional
methodological developments carried out in the team by various students under my co-
supervision.

A. Robustness, repeatability and reproducibility of MATV measurements in PET
imaging

Automatic delineation approaches for MATV measurements in PET images may be of
interest for applications such as target volume definition in radiotherapy for scenarios of dose
redistribution, boosting or painting (13), and oncology applications such as diagnosis,
prognosis and prediction or assessment of response to therapy (early or late during treatment)
(1, 14). Their use however faces several pitfalls.

First, there is a clear lack of standardization of acquisition and reconstruction protocols across
clinical centers (4, 15). Each one has its own scanner model and associated vendor-specific
iterative reconstruction algorithm (and associated pre or post filtering options and voxel sizes
for the reconstruction grid), with a specific set of chosen and often optimized parameters for
their specific acquisition protocols (injected dose, time between injection and acquisition,
acquisition duration, etc). Such differences lead to images that have vastly different properties
of noise levels, signab-noise ratios, textures, and spatial resolution. The robustness of the
method used to delineate MATVs on images from different centers is therefore crucial,
especially when considering multi-centric clinical studies. One objective was therefore to
investigate the robustness of existing methods.

Second, the reproducibility of PET scans is known to be limited, even with highly
standardized acquisition and reconstruction protocols. The reproducibility of maximum
adivity measured in tumors had been previously assessed by various authors using double
baseline PET scans (carried out at a few days interval with a procedure as identical as
possible), and reported upper and lower reproducibility limits of about +15 to 30% (16-17)
These results constituted the basis for the definition of confidence intervals regarding the
required maximum activity variation between pre and post treatment PET scans to
characterize patient responding, stable or progressive disease in solid tumors (1). If the
MATVs and their associated measurements (mean SUV for example) are to be used within
the same context, it is mandatory to evaluate their reproducibility on double baseline scans,
which was a second objective.
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Third, the repeatability is an important characteristic of any automated approach, since one of
the major advantages of using automatic algorithms is the low inter and intra user variability,
with respect to manual delineation, in addition to the gain in time. The evaluation of the
repeatability was therefore a third objective.

a) Robustness
We designed the following study for assessing the robustness of the FLAB methodology with
respect to other existing approaches (fixed and adaptive threshold). We considered a single
physical phantom containing spheres of various diameters that can be filled with activity, as
well as the background, in order to create a contrast between the sphere (simulating a simple
tumor) and the background (simulating an homogeneous physiological background). Clearly,
such homogeneous spheres on homogeneous background are insufficient to properly validate
the accuracy of a delineation algorithm since tumors are often non spherical and exhibit
heterogeneous tracer uptake. However, this is a proper tool to investigate robustness of the
delineation with respect to varying acquisition conditions. The originality of this study was to
consider acquisitions carried out on four stait¢he-art PET/CT scanners by all three vendors
(Siemens, GE, Philips), including a timéflight model (Philips), and their associated
reconstruction algorithms (OSEM, RAMLA and MLEM) and post-filtering options. In
addition, a protocol was designed such as for each scanner model, different acquisition
parameters would be available: two contrasts between the spheres and the background
(around 4-5 to 1, and 8-10 to 1), three acquisition durations (1, 2 and 5 minutes) to investigate
the noise, and two voxel sizes used in the reconstruction (2 or 4-5 mm in each dimension).
This allowed for a wide range of image qualities, texture and properties to investigate the
robustness. FLAB demonstrated significantly higher robustness (lower variability of the
results) to varying acquisition and reconstruction parameters or across scanner models than
the other methods [1].

b) Reproducibility
We designed the following study to investigate reproducibility of tumor volume
measurements in PET images: two clinical datasets were considered, including esophageal
lesions with'®-FDG, and breast cancer witfF-FLT, both with double baseline PET scans.
At this occasion, | stayed as a visiting fellow in the MRC clinical center of the Hammersmith
Hospital, in London, for the specific investigation of the reproducibility of tumor volumes
measurements in breast cancer imaged WRAFLT. We demonstrated that using FLAB,
tumor volumes could be automatically delineated on both FDG and FLT (despite the
increased noise and lower contrast in FLT images) with reproducibility similar to the
extraction of maximum activity with upper and lower limits of about 30%. On the contrary,
using threshold-based methods, upper and lower limits were significantly higher (40-90%,
consistent with another study (18)) and therefore less compatible for response monitoring
purposes, especially early during treatment [2].

c) Repeatability
Repeatability was investigated for FLAB and other methods in both the previous studies
considering different simulated and real clinical datasets, demonstrating much higher
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repeatability with the automated methods (less than a few % variability) than manual
delineation (15-30% inter and intra observer variability) [1-2].

[1] M. Hatt, et al. Robustness and repeatability of image segmentatioapproaches dedicated to PET
tumor uptake volume delineation, EJNM 2011.

[2] M. Hatt, et al. Reproducibility of ®F-FDG and 3'-Deoxy3'-'®F-Fluorothymidine PET Tumor Volume
Measurements, JNM 2010.

This work was recognized by a “young investigator award” delivered by the conference “New
trends in molecular imaging and nuclear madi’ in 2009. Despite being relatively recent
papers, these two papers add up to 24 citations according to Google Scholar.

B. Clinical value and impact of automatic MATV delineation in oncology and
radiotherapy

Automatic delineation approaches for MATV measurements in PET images may be useful for
several applications, for instance patient management and therapy monitoring in oncology, as
well as tumor targeting in radiotherapy planning, dose redistribution and boosting.

a) Prognosis and response to therapy prediction
8c_.FDG PET has been identified as a powerful tool for diagnosis and prognosis in several
cancer models, such as lung, esophageal, rectal and head and neck (19). In addition, the use of
PET has been suggested to assess treatment response after the end of treatment or earlier
during treatment (1). Finally, it has been suggested that it may be possible to predict response
based on the baseline scan before treatment, which could impaoeets’ management.
Potential non responders could indeed be identified before treatment, thus avoiding
unnecessary toxicities. However, most of the studies have investigated the prognostic or
predictive value of PET images by extracting maximum activity (S4JVonly. In order to
investigate the potential clinical value of accurate tumor volume delineation and the
extraction of associated parameters from baséffReFDG PET scans, we carried out a
retrospective study on 50 patients treated for locally advanced esophageal cancer with
concomitant radiochemotherapy. The results demonstrated that whereas standard clinical
parameters and usual SUV measurements were neither prognostic nor predictive factors,
measurements derived from metabolic volume were highly correlated with overall survival [1]
or response to therapy [2], larger and more active volumes being associated with poor
outcome and worse response. This is illustrated in figure 2. Receiver operating characteristic
(ROC) curves are provided for the identification of complete responders or non responders,
using various image-derived indices. MATV derived indices have significantly higher area
under the curve (AC) than SUV measurements.
In both these studies we also demonstrated that more accurate prediction could be achieved
with more accurate methods. | also took part in the investigation of additional PET derived
indices by co-supervising a PhD student (F. Tixier) working on the spatial patterns
characterization of the tracer uptake heterogeneity within the tumor in PET images. Tumor
heterogeneity has been identified as a potential factor of failed treatment and its
characterization is therefore of potentially high clinical value (20). After accurater tum
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volume delineation, several parameters derived from textural features analysis of the voxels
within the tumor could provide characterization and quantification of local and regional
heterogeneity patterns. Several of these parameters were significantly correlated with
response, higér heterogeneity being associated with poorer or lack of response [3].
Therefore, we demonstrated that it may be possible to improve patient management by
identifying potential non responders before even initiating treatment by exploiting more fully
the information contained in the baseline PET images. However, such a more complete
analysis requires validated and robust semi-automated tools (21). Similarly to MATV
measurements, evaluation of the specific reproducibility of these new indices is crucial to
identify which parameters could be used for heterogeneity characterization during treatment
for response monitoring. Such a study has been conducted and allowed identifying several
local and regional heterogeneity parameters with sufficient reproducibility, but also excluding
some of them that were characterized by very high variability across double baseline scans

[4].

[1] M. Hatt, et al. Prognostic value of'®F-FDG PET imagebased parameters in cesophageal cancer and
impact of tumor delineation methodology, EJNM 2011

[2] M. Hatt, et al. Baseline’®F-FDG PET image derived parameters for therapy response prediction in
cesophageal cancer, EJNM 2011

[3] F. Tixier, C. Cheze Le Rest, M. Hatt, et al. Intra-tumor heterogeneitycharacterized by textural
features on baseline'®-FDG PET images predicts response to concomitant radio-chemotherapy in
esophageal cancer, JNM 2011.

[4] F. Tixier, M. Hatt, et al. Reproducibility of tumor uptake heterogeneity characterization through
textural feature analysis in*®F-FDG PET imaging, JNM 2012; in press.
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b) Tumor targeting and dosimetry in radiotherapy
The use of CT images is considered the gold standard for the definition of tumor target
volumes in radiotherapy planning (22). There is however a growing interest in including PET-
based target delineation in order to reduce inter and intra observer delineation variability
especially in cases where the tumor morphological contours are not clearly distinguishable
(23). Also, the use of PET in radiotherapy is being considered to derive modified treatment
plans using boosting or redistribution of the dose to specific parts of the tumor identified as
being more metabolically active (using FDG), proliferative (using FLT) or hypoxic (using
CU-ATSM, HX4 or FMISO), in order to reach higher tumor control probability (TCP). (13)
However, this potentially requires accurate delineation of tumor volumes and sub-volumes in
PET images. We therefore conducted different studies to demonstrate the dosimetry impact of
such accurate delineation on standard IMRT (intensity-modulated radiotherapy) plans as well
as the interest of dose redistribution or boosting, based on PET images with different tracers.
Most of this work was conducted under my supervision by a PhD student (A. Le maitre),
building on our previous work regarding advanced Monte Carlo simulations (24). We used
such simulated datasets to compare delineation results by several approaches (FLAB and
threshold-based methods) in terms of volume errors, sensitivity and positive predictive value.
In addition, we investigated target coverage, dose homogeneity and D95 (target volume
receiving 95% of prescribed dose), with a specific focusaseswith heterogeneous tracer
distribution [1]. In addition, we carried out a study on simulated and clinical datasets
regarding the impact of contrast and size of tumor functional sub-volumes on the dose
redistribution and dose boosting scenarios, demonstrating the TCP improvement using
boosting if contrast between the sub-volumes within the tumor is sufficinEiftally, in
collaboration with the MAASTRO clinic in the Netherlands, | also recently investigated the
impact of tumor size and tracer uptake heterogeneity on the gross target volume delineation of
non-small cell lung cancer validated by histopathology data on surgical specimens. The
results highlighed a significant correlation between morphological volume and FDG uptake
level of heterogeneity, and confirmed the need for advanced segmentation algorithms to
obtain accurate PET heterogeneous delineation of the target vidlime

[1] A. Le Maitre, D. Visvikis, C. Cheze-le Rest, O. Pradier, M. Hatt, Impat of the accuracy of automatic
tumor functional volume delineation on radiotherapy treatment planning, Med Phy2012, submitted.

[2] A. Le Maitre, D. Visvikis, C. Cheze-le Rest, O. Pradier, M. Hatt, Dose prescription agéted to
functional tumor radiotracer heterogeneities: the influence of contrast, PMB 2012, in késion.

[3] M. Hatt, et al, Impact of tumor size and tracer uptake heterogeneityin **F-FDG PET and CT Non-
Small Cell Lung Cancer tumor delineation, JNM 2011

C. Image fusion and paradoxical theory for therapy follow-up using sequential PET/CT
images and multi-tracer PET images analysis



It has been proposed to consider the analysis of sequential PET/CT scans carried out
before, during and after treatment in order to monitor response to therapy. However until now,
most of the studies have only considered the evolution of simple measurements likg SUV
(25). In addition, the use of multiple radiotracers to image different physiological processes
(glucose consumption, cellular proliferation, hypoxia...) leads to as many images as tracers for
a single patient (26). In both applications, the independent visual or semi-automatic analysis
of each image might be insufficient as the correlation between images would not be fully
exploited. In the work of a PhD student (S. David) under my supervision, we developed
methods to automatically analyze and process multiple co-registered images, either sequential
PET images for therapy follow-up, or the combination of different tracers, for instance to
devise a biological target tumor volume in radiotherapy. The methods developed are based on
multi observation fusion and classification within a Bayesian framew&¥k iy order to take
into account all available information simultaneously. The approach demonstrated improved
results with respect to independent segmentations on simulated data as well as clinical pre and
post treatment PET images [1]. Another approach was also recently developed, based on
paradoxical theory (Denzert-Smarandache fusion) (28) for the fusion of locally estimated
parameters of interest [2]. Although these methods require rigid registration of multiple PET
images and are therefore dependent on issues such as respiratory motion or anatomical
changes during time, they could provide visual and quantitative estimation of tumor evolution
during treatment as well as multi tracer analysis for radiotherapy target vdefingion, as
illustrated in figure 3 next page.

[1] S. David, D. Visvikis, C. Roux, M. Hatt, Multi observation PET imae analysis for patient followup
guantitation and therapy assessment, PMB 201[kelected as editor’s choice]

[2] S. David, D. Visvikis, G. Quellec, P. Fernandez, M. Allard, C. Roux, M. Hg Image change detection
using paradoxical theory for patient follow-up quantitation and therapy assessmentEEE TMI 201, in
revision.
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Fig.3: pre et post treatment PET images ofa necrotic rectal cancertumor, with corresponding fusion
showing responding (dark blue) or stable (green) voxels, as well as different sublume heterogeneities

disappearing (light blue) or appearing (red).
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D. PET image denoising and partial volume effects correction

| have been involved in the improvement of PET image wavelet-based denoising process by
co-supervising the work of a PhD student (A. Le Pogam) as well as a master 2 trainee (H.
Hanzouli). The major disadvantage of wavelets is the lack of direction information in the
spatial-frequency transform, and therefore contours are not well preserved in the filtered
image. On the contrary, curvelets explicitly model contours and better preserve them, whereas
they are not as appropriate as wavelets to describe small point discontinuities (29). A method
was then devised to combine wavelets and curvelets to reach the best compromise between
denoising and preservation of the important information such as contours [1]. It should be
emphasized that this method was also incorporated in the previously described deconvolution
technique to improve the required denoising step. Using this improved deconvolution method,
| recently demonstrated the lack of impact of PVE correction on prognostic or predictive
clinical value of parameters derived from baseline PET scans in locally advanced esophageal
cancer [2], although the impact of PVE correction on lesion detectability tasks or serial PET
scans analysis remains to be evaluated.

| also contributed to another development of A. Le Pogam regarding the improvement of the
partial volume effects correction method (MMA) developed in collaboration with N.
Boussion and described previously (30). The first MMA method had two issues, first it was a
global approach, meaning that the model linking functional and anatomical datasets was
defined by one global paramneet The model was in addition applied to the entire image,
independently of the correlation between datasets, which could introduce artefacts (such as
bones from CT) in the corrected PET images. Second, it was a 2D method only. The method
was therefore improved by designing a local and 3D model, and we demonstrated similar or
significantly improved quantitative correction and qualitative visual aspects of the corrected
images, with no artefacts in case of lack of correlation between the datdsétsig3paper

made the cover of the september issue of Medical Physics (see illustration in figure 4).

[1] A. Le Pogam, H. Hanzouli, M. Hatt, et al, A combined 3-D waveletral curvelet approach for edge
preserving denoising in emission tomography, IEEE TMI 2012, submitted.

[2] M. Hatt, et al, Impact of partial volume effects correction on the predidve and prognostic value of
baseline'®F-FDG PET images in esophageal cancer, JNM 2012, in press

[3] A. Le Pogam, M. Hatt, et al, Evaluation of a 3D local multi-reolution algorithm for the correction of
partial volume effects in positron emission tomography, Med Phys 2011 [covef the September issue]
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Fig.4: PVE correction obtained with the original 2D MMA (3) versus the improved B local MMA (4) from the uncorrected PET (2) using details in the associated

MRI (1). Notice the lack of artefacts in (4) with respect to the skull (red mow) and the gadolinium injection (white cercle) that are introduced in the corrected
image by the global approach (3).



vil- Future research project

Nowadays, the current trend in medical imaging is providing more and more images to
characterize pathologies. Several imaging modalities have been used for decades (US, MRI
CT, PET), and new modalities are developed (optical imaging for irgtaB&isting
modalities have also been expanded with new modes of acquisitions, providing
complementary information, such as for instance different radiotracers in PET imaging
beyond glucose metabolism, or various sequences with MRI. This trend has also been further
emphasized since PET/CT multi modal devices have been introduced in the clinical setting for
a decade now, and today with emerging PET/MRI systems, either sequential or simultaneous
(31). The fourth dimension is also being more and more available, with significant advances
in both hardware and software, allowing dynamic acquisitions to provide information on
organs and tumors motion in both anatomical and functional modalities (32). It should also be
emphasized that the dynamic nature of the acquisition can in addition be considered regarding
the kinetics of tracers or contrast agents injected to the patients (33). In the near future, it may
become more and more routine practice to carry out 5D acquisitions taking into account both
temporal properties (physiological and morphological motion in addition to tracer kinetics).
Thanks to less and less invasive procedures, another current trend in medical imaging consists
of multiple acquisitions during the course of treatment, which may allow adaptive and
potentially improved therapy in a variety of cancers (34-40).

Clinicians now have access to a large array of imaging modalities and devices
providing complementary information and various views of the human body, on both
morphological and physiological levels. In addition, these image datasets are almost
systematically in three dimensions and full of details, therefore rather complex and time-
consuming to fully analyze. The limitation of visual and manual analysis of one single 3D
image dataset has already been underlined in numerous studies for specific tasks, such as for
instance manual delineation of organs or tumors or detectability tasks. This led to restricting
the majority of their clinical use to diagnosis or staging purposes in oncology, or sub-optimal
treatment planning in radiotherapy. Such difficulties are exponentially increasing with the
availability of additional 3D datasets of different imaging modalities, and/or additional
dimensions to consider (motion, kinetics, and comparison of datasets during the course of
treatment). A comprehensive, robust, reproducible and fast analysis of such large image
datasetsdr a single patient or a patients’ cohort would be impossible without semi-automated
dedicated tools. The first contributions to the field in my research project will thetedore
new and innovate approaches for the semi-automated processing and analysis of multi modal,
multi resolution, multi dimensional images datasets.

Although primordial in today medicine, especially in oncology and radiotherapy,
imaging is not the only source of information physicians base their decisions on. Similarly to
the current increase of image-based data, another trend in medicine is the increase of the
amount of data beyond imaging. Additional clinical information and data such as genetics or
tumor biology are available and need to be taken into account. This means that this
information may not only be correlated with imaging, but also combined with imaging for



increased predictive and prognostic power. A more personalized, preventive and predictive
medicine for the future may benefit from decision aid systems combining the available data,
both clinical and image-based (41-44hdditional contributions to the oncology and
radiotherapy fields in my project will therefore be the development of a multi source fusion
information framework to combine imaging and other clinical data into predictive and
prognostic models for clinically reliable decision tools. This will require large datasets and the
use of combined databases, which depends on local, regional, national and international
research collaborations.

1. Multi observation framework for multi modal medical imaging

This part of my research project will be dedicated to the design and development of a
robust and flexible mathematical and computational framework allowing to process or
analyze complex, multi dimensional, multi resolution, multi modal co-registered images
datasets. The goal is to design a framework that is flexible and robust enough to be able to
carry out and implement the following fully or semi-automated complex image processing
procedures on various image datasets such as for instance multi tracer PET images, PET/MRI
or PET/CT datasets, including multiple scans during treatment and/or dynamic acquisitions:
filtering and resolution recovery, segmentation and delineation, classification and pattern
recognition.

| intend to develop such a framework by building on existing statistical hierarchical
models such as Markov trees. | will focus on two major developments:

1. The multi observation framework

Markov trees can be used in order to include several images (or observations) within
the same structure, instead of analyzing or processing each image separately (27). This
requires prior co-registration, which could be obtained with high accuracy especially since
multiple modalities are now often acquired almost (PET/CT) or completely simultaneously
(integrated PET/MRI). Images with different resolutions can be included in the hierarchical
model on appropriate scales, whereas images with similar resolution can also be included on
the same scale, but with multi observation vectors associated to each node .tNet&e
that additional data could be taken into account in such a framework: wavelet decompositions
of the images, annotations from physicians, various textural features images associated to
each dataset, etc.

2. The modeling of correlations

One advantage of using such Markov tree models is that it should be possible to
include in the model various correlations existing within or between the different images (see
figure 5). Within each image, spatial correlations would be modeled by the intrinsic structure
of the tree, and additional spatial correlation might be added. Similarly, correlations between
images of different resolutions could be exploited by associating data of different resolution to
different scales of the hierarchical model. Correlation between different modalities or
different images at the same level of resolution could be estimated and used. This would be
achieved thanks to the multi observation modeling, with a vector of several values
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corresponding to the different images being associated with each node of the tree. The
different types of noise and partial volume effects could be efficiently handled both within
each image and in relationship with the other images included in the framework. This would
be achieved via appropriate non stationary and correlated noise models (45). Such a
framework would also be robust versus potential misregistration errors between datasets and
missing data due to the modeling and exploitation of all these correlations.
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Fig.5: illustration of the multi observation, multi scale framework



The figure 5 on the previous page illustrates the potential of such structures for the
proposed flexible framework. Note that this figure illustrates a Markov tree (a 3D structure)
applied to 2D images with 16 (4x4) leaves and three scales (the root, a scale at 4 voxels and
the last scale with 16), but it could in practice be extended to 3D datasets and obviously with a
number of leaves adapted to the number of voxels in the attached images.

Grey circles represent the nodes of the tree (prior model) whereas white ones represent
attached data (observed values in the images or other data such as wavelet decompositions
textural features, and so forth). As pointed out by the green arrow, this attached data may be
multi observation, with various images or associated data included (see blue arrows linking
elements of the observation vector to various images).

Large double arrows represent the various correlations that could be modeled and used
for various applications. Blue ones denote correlations within the observations vector and
could be implemented as various noise models. Basic modeling assumes independent
observation and Gaussian noise, although more complex models could be used, such as non
stationary, correlated, non Gaussian noise. It may also allow for missing data to be handled,
since observation vectors may not contain the same data in each scale of the tree. Purple ones
denote father-son statistical correlations linking elements of different scales in the quadtree
that can add better handling of missing data and may relate information of images with
different resolution (in the example above, a PET image is related to its associated CT and
MRI datasets who have about four times more voxels). Yellow and red ones indicate
additional spatial intra and inter scale correlations respectively that could be added in such a
model to increase the robustness (as well as the complexity) of the model. As previously
explained, data/images of different spatial resolutions may be associated with appropriate
scales in the tree structure.

In this example, the leasd€the elements at the base of the quadtree) are associated
with a vector of observation consisting of an MRI and a CT image (of approximately the same
resolution). In the scale level above, a PET image (with about four times less voxels) is
associated. WD denotes wavelet transforms. As these spatial-frequency transforms generates
multi scale (from finer to coarser detaik we go “up” in the tree structure) information, such
additional data could also be attached as observations in the vector attached to tre tree,
used as an guiding process, for instance within the context of couple or triplet Markov models
that generalize standard Markov models allowing for more realistic modeling of real data
(46).

Such models would also require dedicated developments of the associated parameters
estimation procedures so the framework is automated enough to be used for applications such
as image processing or analysis of large multi modal image datasets. The more complex and
flexible the framework, the more parameters will need to be estimated in case of application
to real data with unknown parameters. Robust algorithms such as Stochastic Expectation
Maximization (SEM) or Iterative Conditional Estimation (ICE) will be adapted to the
developed models (47).



As first applications of these developments, specific approaches will be investigated.
They will be dedicated to multimodal PET/MRI and PET/CT, as well as dynamic imaging or
sequential multimodal images during treatment. They will include automatic tumor
localization/detection, improved denoising and partial volume effects correction, tumors and
organs semi-automatic delineation, and static and dynamic parameters extraction to
characterize pathologies. These approaches will be implemented within such a framework and
are expected to benefit froils modeling versatility.

2. Multi source information fusion for predictive models and computer-
aided decision in oncology

This part of my research project will be dedicated to the design and development of
decision aid systems based on the exploitation of patients databases in various cancer models
(for example esophageal, lung, or rectal) with known outcome (pathological response,
disease-free and overall survival, etc.) in combination with clinical data and image-based
parameters extracted thanks to the framework described above.

1. Multi modal image derived parameters obtained through developments carried out
in the first part

As a first application of the multi observation framework described in part 1, | will
implement automated multi modal characterization of tumors in oncology. Parameters such as
anatomico-functional tumor volumes and associated measurements in various image
modalities (SUVs of various PET tracers, heterogeneity of the tracer uptake or of the tissues
in CT or MR, diffusion, perfusion, dynamic information, etc.) could be extracted from large
multi modal dataset in order to characterize fully the pathology in head and neck, esophageal,
lung or rectal cancers. In addition, the temporal evolution of this full tumor characterization
during treatment will also be of interest.

2. Clinical data including genetics and tumor biology

Fusion information (Denzert-Smarandache theory) (28) and classification approaches
such as decision trees or support vector machines (49) will be investigated and compared on
multi source data in order to derive predictive and prognostic models regarding each
pathology for which patients databases are available. The goal will be to reach pertinent
fusion of image-derived parameters and other additional semantic information such as clinical
data (age, gender, stage...), tumor biology and genesdfrom biopsies or histopathological
examination, phenotypes, genotypes, etc.) as illustrated in figure 6. Such model learning
requires large databases to avoid over fitting of the data, and multiple research collaborations
will be needed with national and international clinical centers. | will exploit existing
collaborations with research clinical teams in the Netherlands (Maastricht, Nijmegen), the
United Kingdom (London, Surrey), the United States (MD Anderson), Germany (Freiburg,
Munich) and FranceRennes, Nantes, Toulouse, Bordeaux, Brest) to help building such
databases. Developed predictive and prognostic models will then be validated on prospective
studies.
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vill - Conclusion

| now have a significant experience in modeling for PET and PET/CT imaging applications in
oncology and radiotherapy, with a special focus on semi-automated delineation and image
processing algorithms. | have also significantly contributed to developments in partial volume
effects correction, denoising, image fusion, radiotracer heterogeneity characterization and
realistic Monte Carlo simulations and dosimetry studies in radiotherapy. | have further
investigated the impact of such methodological developments in the clinical setting and
associated applications. Most of these developments have invahsgpervision of several

PhD students (in addition to several master students), two of them being supervised mostly by
me and have now finished their PhD. My project for the next years involves the full
supervision of two additional PhD students and co-supervision of at least two others.
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Abstract

Accurate volume of interest (VOI) estimation in PET is crucial in different
oncology applications such as response to therapy evaluation and radiotherapy
treatment planning. The objective of our study was to evaluate the performance
of the proposed algorithm for automatic lesion volume delineation; namely the
fuzzy hidden Markov chains (FHMC), with that of current state of the art in
clinical practice threshold based techniques. As the classical hidden Markov
chain (HMC) algorithm, FHMC takes into account noise, voxel intensity and
spatial correlation, in order to classify a voxel as background or functional
VOI. However the novelty of the fuzzy model consists of the inclusion of
an estimation of imprecision, which should subsequently lead to a better
modelling of the ‘fuzzy’ nature of the object of interest boundaries in emission
tomography data. The performance of the algorithms has been assessed on
both simulated and acquired datasets of the IEC phantom, covering a large
range of spherical lesion sizes (from 10 to 37 mm), contrast ratios (4:1 and 8:1)
and image noise levels. Both lesion activity recovery and VOI determination
tasks were assessed in reconstructed images using two different voxel sizes
(8 mm? and 64 mm?). In order to account for both the functional volume
location and its size, the concept of % classification errors was introduced in the
evaluation of volume segmentation using the simulated datasets. Results reveal
that FHMC performs substantially better than the threshold based methodology
for functional volume determination or activity concentration recovery
considering a contrast ratio of 4:1 and lesion sizes of <28 mm. Furthermore
differences between classification and volume estimation errors evaluated were
smaller for the segmented volumes provided by the FHMC algorithm. Finally,
the performance of the automatic algorithms was less susceptible to image
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noise levels in comparison to the threshold based techniques. The analysis of
both simulated and acquired datasets led to similar results and conclusions
as far as the performance of segmentation algorithms under evaluation is
concerned.

1. Introduction

Positron emission tomography (PET) has been long established as a powerful tool in oncology,
particularly in the area of diagnosis. However, alternative applications such as the use of PET in
radiotherapy planning (Jarritt et al 2006) and response to therapy studies (Krak et a/ 2005) are
rapidly gaining ground. Whereas accurate activity concentration recovery is crucial for correct
diagnosis and monitoring response to therapy, applications such as the use of PET in intensity-
modulated radiation therapy (IMRT) treatment planning render equally vital the accurate
shape and volume determination of lesions. Different volume-of-interest (VOI) determination
methodologies have been proposed that can be classified as manual or automatic. On the
one hand, manual segmentation methods to delineate boundaries are laborious and highly
subjective (Krak et al 2005). On the other hand, automatic segmentation of objects of interest
in PET (Reutter et al 1997, Zhu and Jiang 2003, Kim et al 2002, Riddell ez al 1999) is not a
trivial task because of low spatial resolution and resulting partial volume effects (PVE), low
contrast ratios, as well as noise resulting from the statistical nature of radioactive decay or the
choice of the reconstruction process.

The most widely used method to semi-automatically determine VOIs in PET is
thresholding, either adaptive, using a priori computed tomography (CT) knowledge (Erdi et al
1997), or fixed threshold (Krak et al 2005) using values derived from phantom studies (from
30 to 75% of maximum local activity concentration value) (Jarritt et al 2006, Krak et al 2005,
Erdi et al 1997). Such thresholding techniques, however, lead to variable VOI determination as
shown in recent clinical studies (Nestle et al 2005). On the other hand, numerous works have
addressed automatic lesion detection from PET datasets, including different methodologies
such as edge detection (Reutter ef al 1997), fuzzy C-means (Zhu and Jiang 2003), clustering
(Kim et al 2002) or watersheds (Riddell ez al 1999). The performance of these algorithms
is sensitive to variations of noise intensity and/or lesion contrast. In addition, past work
has in its majority considered the ability of such automatic methodologies for the detection
of lesions but not the accuracy with which the methods are capable for VOI and/or activity
concentration determination. Furthermore, all of the afore-mentioned algorithms often involve
user-dependent initializations, pre- and post-processing, or additional information like CT or
expert knowledge; rendering their employment more complicated and the outcome dependent
on choices made by the user in relation to the pre- and/or post-processing steps necessary.
For example in the case of the watershed algorithm a filtering pass as a pre-processing step to
smooth the image, and a post-processing step to fuse the different regions resulting from the
algorithm are necessary.

Hidden Markov models are automatic segmentation algorithms allowing noise modelling
and have proven to be less sensitive to variation of the values in the regions of the images
than other segmentation approaches thanks to their statistical modelling. They have only been
previously used in PET in the form of hidden Markov fields (HMF) (Chen ef @/ 2001). Hidden
Markov chains (HMC) (Benmiloud and Pieczynski 1995) is a faster model and can offer
competitive results (Salzenstein and Pieczynski 1998). Furthermore, HMC leads to shorter
computational times, as quantities of interest can be computed directly on the chain, whereas



Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET 3469

the HMF algorithm needs iterative Monte Carlo like estimation procedures (Salzenstein and
Pieczynski 1998) that are time consuming. These algorithms offer an unsupervised estimation
of the parameters needed for the image segmentation and limit the user’s input to the number
of classes to be searched for in the image. Reconstructed images require no further pre- or
post-processing treatment (such as for example filtering) prior to the segmentation process.
Instead, image noise is considered as additional information (a parameter in the classification
decision process) to be taken into account, not to be suppressed or avoided.

The objectives of our study were to (a) develop a new fuzzy HMC (FHMC) model in an
attempt to account for the limited spatial resolution in PET and (b) compare the performance
of FHMC with those of the thresholding methodologies currently used in clinical practice.
Different imaging conditions in terms of statistical quality, as well as lesion size and source-
to-background (S/B) ratio were considered in this study. The analysis was carried out on both
simulated and acquired images reconstructed using iterative algorithms which form today’s
state of the art in whole body PET imaging in routine clinical oncology practice (Visvikis et al
2001, 2004).

2. Materials and methods

2.1. Hard and fuzzy hidden Markov chain models

The HMC model is an unsupervised methodology that takes place in the Bayesian framework.
Although we place ourselves in the application of image segmentation this methodology can
be used in other applications such as, for example, speech recognition (Dai 1994). Let T
be a finite set corresponding to the voxels of an image. We consider two random processes
Y = (¥)rer and X = (x;);e7. Y represents the observed image, and X represents the ‘hidden’
segmentation map. X takes its values in 2 = {1, ..., K} with K being the number of classes c,
and Y takes its values in R. We assume that a Markov process can model the prior distribution
of X. The segmentation problem consists in estimating the hidden X from the available noisy
observation Y. The relationship between X and Ycan be modelled by the joint distribution
P(X,Y). This distribution can be obtained thanks to the Bayes formula:
PX,Y) PYIX)PX) )

P(Y) P(Y) 1)
P(Y|X) is the likelihood of the observation Y conditionally with respect to the hidden ground-
truth X, and P (X) is the prior knowledge concerning X. The Bayes rule allows us to know the
posterior distribution of X with respect to the observation Y. In the Markov chain framework we
have to assume the random variables Y = (y;),cr are conditionally independent with respect
to X and that the distribution of each y, conditional on X is equal to its distribution conditional
on x,. Many applications of hidden Markov models with unsupervised estimation have been
successful considering different types of images (radar, sonar, magnetic resonance images
(MRI), CT, satellite or astronomical) (Pieczynski 2003, Salzenstein et al 2004, Delignon et al
1997), but this kind of approach was almost never applied to PET data.

PX]Y) =

2.1.1. Markov chain definition. X is a Markov chain if:
P(x/|xy, ..., xi—1) = P(xs|x;—1) for 1<tr<T. 2)

The distribution of X is then defined by the distribution of x,, called initial probabilities init(c)
for each class ¢ (P(x; = c¢)) and the transition matrix trans(c, d) (of dimension K x K)
containing the probabilities of transitions from the class c to the class d; P (x4 = d|x; = ¢).
As X and Y are one-dimensional elements in the HMC context, a spatial transformation
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Figure 1. The 3D Hilbert—Peano space filling curve for a4 x 4 x 4 voxels VOL

is necessary to process three-dimensional VOIs. For the best preservation of the spatial
correlation between voxels we use the Hilbert—Peano space-filling curve. This fractal path
can be extended to explore 3D VOIs (Kamata et al 1999). A visual illustration of the Hilbert—
Peano path for a 4 x 4 x 4 voxels 3D VOI is given in figure 1. Once the chain has been
segmented, the inverse path is used to reconstruct the 3D segmentation map.

2.1.2. Adding a fuzzy measure to the model. The general idea behind the implementation
of a fuzzy model within the Bayesian framework was previously introduced by Salzenstein
(Salzenstein and Pieczynski 1997). Its implementation in association with HMC developed
as a part of this work is based on the incorporation of a finite number of fuzzy levels F; in
combination with two homogeneous (or ‘hard’) classes, in comparison to HMC where only
a finite number of hard classes are considered. This model allows the coexistence of voxels
belonging to one of two hard classes and voxels belonging to a ‘fuzzy level’ depending on
its membership to the two hard classes. Therefore, FHMC adds an estimation of imprecision
of the hidden data (X, see section 2.1) in contrast to HMC which only models uncertainty
of the observed data (Y, see section 2.1). The statistical part of the algorithm models the
uncertainty of the classification, with the assumption being that the voxel is clearly identified
but the observed data is noisy. On the other hand, the fuzzy part models the imprecision of the
voxel’s membership, with the assumption being that the voxel may contain both classes. One
way to achieve this extension is to simultaneously use Dirac and Lesbegue measures at the
class level. Hence we consider that X in the fuzzy model takes its values in [0, 1] instead of
Q={1,..., K}. Let §p and §; be the Dirac measures at 0 and 1, and ¢ the Lesbegue measure
on ]0, 1[. We define the new measure v = §y + §; + { on [0, 1]. Note that, for example, using
two hard classes and two fuzzy levels in the FHMC model is not equivalent to using four hard
classes in the HMC model where v = §; + 8, + - - - + 6¢. This has been previously stated using
Markov fields based segmentation (Salzenstein and Pieczynski 1997).
The distribution of X can then be defined using a conjoint density g for (x,, x,+;) on

[0, 1] x [0, 1]:

let (a, b) € [0, 1] x [0, 1]

ga=0,b=0)=0u and ga=1,b=1)=wm 3

ga=0,b=1)=y and gla=1,b=0)=n ©)

ga.b) = ffe(a.b)  if (a.b) # {(0.0), (0. 1), (1,0). (1, 1)}
with

/ / ga,b)dv®v)(a,b) =1 and g+t +yi+y+pr=1 4)
(0,11 J[o,11
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where d(v ® v)(a, b) is the notation for integration with respect to the (a, b) variables, each
one being with respect to the measure v on the interval [0, 1]. A is a constant depending on
the form of the parameterized function fg:

fela,b) =1—la—bl|. &)
‘We now define the initial and transition probabilities (init(c) and trans(c, d)) using the conjoint
density g and an utility density % on [0, 1] defined by: h(a) = fol g(a,b)dv(b):

init(c) using densities g and h:

1
P(x; €{0,1}) = / g(x1,b)dv(b) = h(x))
0

; (6)
vl 1! 1
P(x; € F)) =/ / gla,b)yd(v ®v)(a, b) ~ —/ g(&i, b)d(v)(b) = —h(e;)
= Jo N-Jo N
trans(c, d) using the conditional density fdeduced from (1) : f(x/41|x;) = %

Je, Jr 8ej ) d @ v)(ej, &)
Jr hiei) dv(e)
fpj glej, x)dv(e))

h(x;) -
fFi g(xH'l’ 81’) dv(é‘i)
fF,. h(g;)dv(g;)

P(xi1 € Filx; € Fy) =

P € Fjlx, €10, 1) =

P(xip1 €0, l}x; € Fy) =

Pt € (0, Ly, € {0, 1) = S0
h(x;)
where N — 1 is the number of fuzzy levels and ¢; = ’ﬁ is the value associated with a fuzzy

level F;.

The fuzzy model is a generalization of the hard model. The use of the Dirac measures
allows one to retrieve the standard two-class hard model when the fuzzy component is null. As
the theoretical framework described above has not been developed for a specific kind of image,
but as a general segmentation algorithm, the a priori and the noise (also called observation)
models are not directly derived from PET image characteristics. However this segmentation
approach may be appropriate in segmenting PET images since they are both noisy and of low
resolution. The ‘noise’ aspect when considering hidden Markov models in general is the way
the values of each class to be found in the image are distributed around a mean value. The
noise model used, whose respective mean and variance are to be determined by the estimation
steps, can therefore be adapted to image specific characteristics. On the other hand, the
fuzzy measure allows a more realistic modelling of the objects’ border transitions between
foreground and background, allowing in such a way to indirectly account for the effects
of blurring (partial volume effects) associated with low resolution images, such as those
in PET.

2.1.3. Segmentation and parameters estimation. In order to perform segmentation on the
chain level, we need to use a criterion to classify each element as background or functional
VOI. For this purpose we use the marginal posterior mode (MPM) (Marroquin et al 1987).
This approach aims to minimize the expectation E{L(x;, x,)|Y} where L is a loss (or cost)
function:

L(x;, %) = |x; — %] ®)
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with x, the real class and %, = §(y;) the one affected by the segmentation process §. This
criterion is adequate for the segmentation problem as it penalizes a configuration with respect to
the number of misclassified elements. In order to compute a solution, the MPM segmentation
needs the parameters defining the a priori model (initial and transition probabilities of the
chain) as well as the noisy observation data model (mean and variance of each class). The
assumption that the noise for each class of the observed data can fit a Gaussian distribution
was made as a first step. The mean and variance of each fuzzy level F; is derived from the
ones estimated in the two hard classes as follows:
wr =po(l —e) +en  op =o5(1—&) +&lof. ©)
Both a priori and noise models parameters are unknown in the real case and therefore
they must be estimated. In order to achieve such estimation, we use the stochastic iterative
procedure called stochastic expectation maximization (SEM) (Celeux and Diebolt 1986), a
stochastic version of the EM algorithm (Dempster et al 1977). This is achieved in a similar
fashion to that used in the classical HMC context by simulating posterior realizations of X (see
the appendix for detailed posterior realization of X and the SEM procedure) and computing
empirical values of the parameters of interest using the simulated chain. The stochastic nature
of this procedure makes it less sensitive to the initial guess of the parameters using the K-
means (McQueen 1967) than deterministic procedures such as the EM algorithm. Both the
MPM segmentation and SEM parameters estimation use a practical recursive computation of
the values of interest called forward—backward procedure that is performed directly on the
chain (Benmiloud and Pieczynski 1995). The implementation of the FHMC segmentation
algorithm in a step-by-step fashion can be found in the appendix. Note that the overall
algorithm is entirely unsupervised (except for the number of classes and fuzzy levels to use)
and it is able to adjust to a large spectrum of image structures, noise or contrast. For example,
no a priori is made on the shape of the objects to extract or the source-to-background ratio in
the image.

2.2. Thresholding

Various thresholding methodologies have been proposed in the past for both functional volume
segmentation and/or activity concentration recovery (Krak ez al 2005, Erdi et al 1997, Nestle
et al 2005). Thresholding using 42% and 50% of the maximum value in the lesion was chosen
for VOI determination and quantitation purposes respectively, based on previous publications
(Krak et al 2005, Erdi et al 1997). The methodology was implemented through region
growing using the voxel of maximum intensity in the object of interest as a seed. Using a
3D neighbourhood (26 neighbours) the region is iteratively increased by adding neighbouring
voxels if their intensity is superior or equal to the selected threshold value. The results derived
using these methods will be denoted from here onwards as T42 and T50 for the thresholds of
42% and 50% respectively.

2.3. Validation studies

2.3.1. Simulated and acquired datasets. Simulated datasets using the IEC image quality
phantom (IEC 1998), containing six different spherical lesions of 10, 13, 17, 22, 28 and
37 mm in diameter (figure 2) were generated using Geant4 Application for Tomographic
Emission (GATE) and a validated model of the Philips Allegro PET scanner (Lamare
et al 2006). Images, considering only the detected true coincidences, were subsequently
reconstructed using the OPL-EM iterative algorithm (Reader ez al 2002) with seven iterations
(Lamare et al 2006). Two different voxel sizes were considered in the reconstructed images;
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(b) ©

Figure 2. (a) A graphical representation of the IEC phantom, and the central slice of the digital
IEC phantom used in the generation of the simulated datasets (b) with 2 x 2 x 2 mm? and (c) 4 x
4 x 4 mm?.

namely 2 x 2 x 2 mm?® and 4 x 4 x 4 mm®. The 8 mm? voxel size configuration leads to
better sampled objects of interest but with higher noise due to the number of counts being
divided by eight in each voxel in comparison to the 64 mm? voxel sizes. A uniform activity
was simulated throughout the phantom cylinder and the lesions. Different parameters were
however considered to cover a large spectrum of configurations allowing assessment of the
influence of different parameters susceptible to affect the functional VOI determination or
quantitation accuracy. The statistical quality of the images was varied by considering 20, 40
and 60 million true coincidences. Two different signal-to-background (S/B) ratios were also
considered, 4:1 and 8:1 (with around 6 kBq cm~2 in the background, and 24 or 48 kBq cm >
in the spheres respectively). Visual illustration of the reconstructed images corresponding to
different simulated configurations is given in figures 3(a)—(d).

In addition to the simulated datasets, acquisitions of the IEC phantom were carried out
in the list-mode format using a Philips GEMINI PET/CT scanner. The only difference with
the simulated datasets was the exclusion of the 28 mm diameter sphere in the study because
in the phantom used it was replaced by a plastic sphere of unknown diameter. The same S/B
ratios of 4:1 and 8:1 used in the simulations were also employed in this part of the study, by
introducing 7.4 kBq cm ™ in the background and 29.6 or 59.2 kBq cm 3 respectively in the
spheres. Different count statistical qualities were obtained by reconstructing 1 min, 2 min
or 5 min list-mode time frames using the 3D RAMLA algorithm, with specific parameters
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() (b)

(© (d

Figure 3. Different images used in the segmentation study; (a)—(d) simulated: (a) ratio 4:1,
20 million coincidences, 64 mm?, (b) ratio 8:1, 40 million, 64 mm3, (c) ratio 4:1, 20 million
coincidences, 8 mm?, (d) ratio 8:1, 40 million, 8 mm?; (e)—(h) acquired: (e) ratio 4:1, 2 min
acquisition time, 64 mm>, (f) ratio 8:1, 5 min, 64 mmS, (g) ratio 4:1, 5 min, 8 mm?3, (h) ratio 8:1,
5 min, § mm>.

previously optimized (Visvikis et al 2004). The same voxel sizes as for the simulated datasets
(8 mm?® and 64 mm?) were used in the reconstruction of each of the different statistical quality
datasets considered. Visual illustration of the acquired images is given in figures 3(e)—(h).
Each sphere in both simulated and acquired images was isolated in a box of the same size
(16 x 16 x 10 for the 4 mm case, and 32 x 32 x 20 for the 2 mm case) prior to the segmentation
process.

2.3.2.  Computed volume versus classification error measurement. The majority of
previous works dealing with VOI determination in PET measure the performance of a given
methodology by computing the VOI obtained on the segmentation map and comparing it with
the true known volume of the object of interest. This type of approach has the potential to lead
to biased performance measurements since a segmentation result may contain two different
types of errors. On the one hand, one may have voxels of the background that are classified
as belonging to the object of interest, denoted from here on as positive classification errors
(PCE), while on the other hand, one may end up with voxels of the object that are classified
as belonging to the background, denoted from here on as negative classification errors (NCE).
These classification errors essentially occur on the boundaries of the objects of interest because
of ‘spill in’ (increasing probabilities of a NCE) and ‘spill out’ (increasing probabilities of a



Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET 3475

(® ()

Figure 3. (Continued.)

PCE). If the segmentation results in PCEs and NCEs of equal amounts, the computed VOI
would be very close to the true known volume whereas the shape and position of the object
would be incorrect. The shape and position information is as important as the total volume
of the object in order to accurately derive a radiotherapy treatment planning or the activity
concentration of interest in a response to therapy study based on the derived functional volume.
For example, let us assume that the segmentation process results in 20% NCEs and 15% PCEs.
This leads to a classification error of 35% whereas the error in the overall computed volume
is only —5%. Hence, the use of classification error is a more pertinent measurement of the
accuracy with which a given algorithm performs the task of functional volume delineation
since it takes into account not only the segmented volume in comparison to the actual volume
of interest but also its position and shape.

In the simulation study the total number of PCEs and NCE:s is considered with respect to
the number of voxels defining the sphere (VoS) in the digital phantom (the ground truth) in
order to obtain a percentage classification error (CE):

(PCE + NCE)
= — X

VoS
The size of classification errors can be bigger than 100% in the case where a large number of
background voxels in the selected area of interest are misclassified as belonging to the sphere.
In practical terms, maximum classification errors calculated during this work where limited
to 200%, since any such values represent complete failure of the segmentation process. In
addition, the interest of classification errors is when they occur at the borders of the objects

CE 100. (10)
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and not in other regions of the background. One should also keep in mind that a combined
representation of PCE and NCE into CE leads to a loss of information as far as the direction of
the bias is concerned. It does, however, still represent more pertinent information than overall
volume estimation errors, which reflect neither accurate magnitude nor direction of the bias
for a segmented volume.

On the other hand in the case of the images reconstructed from the acquired datasets
only overall computed volumes were considered in order to avoid any biases as a result of
misalignment and rescaling inaccuracies, as well as reconstruction artefacts in the higher and
lower slices of the associated CT datasets. As the goal is not to detect the lesion in the whole
image but to estimate its volume, shape and position with the best accuracy possible, we
assume that the lesion has been previously identified by the clinician and automatically or
manually placed in a 3D ‘box’ well encompassing the object. Subsequently, the images of
the selected area were segmented in two classes (functional VOI and background) using each
of the three methods under evaluation (thresholding, FHMC and HMC). In the FHMC case,
different numbers of fuzzy levels were considered in the segmentation process (namely two
and three). Following the segmentation by FHMC, volumes of interest can be defined using
the hard classes and any number of the fuzzy levels considered.

2.3.3. Quantitation accuracy. In terms of quantitation the objective of our study was to
determine the accuracy of the average activity concentration recovered from a volume derived
using a given segmentation algorithm. The ‘ground truth’ for comparison purposes was
established using the exact size, shape and location of each lesion (using the known digital
phantom employed in the generation of the simulated datasets).

As aresult, these recovered activity concentration values represented an under-estimation
of the true activity due to PVE. A comparison on a lesion-by-lesion basis was subsequently
carried out with the measured activity concentration from the segmented volumes obtained by
the three algorithms considered. TS50 should lead to some improvements in the lesion activity
recovery with respect to T42 as a result of including less voxels in the volume used to compute
the activity and therefore less voxels associated with PVE. Similarly FHMC 0/2 (see section 3,
results, for the definition of FHMC x/y) should lead to concentration recovery improvements
with respect to FHMC 1/2, since voxels belonging to the fuzzy levels are found at the edges
of the lesions and their intensity is most significantly reduced by PVE. Therefore the inclusion
of these voxels should only result in even stronger under-evaluation of the true lesion activity
concentrations.

3. Results

Different segmentation maps obtained using each of the methods under evaluation are
presented in figure 4 for a slice centred on the 28 mm sphere of the simulated images to
visually illustrate the variations of the segmentation maps obtained. Figure 5(a) shows the
impact of the number of fuzzy levels included in the FHMC segmentation. The various
FHMC maps are denoted as FHMC x/y with x being the number of fuzzy levels included in
the segmentation map, and y being the total number of fuzzy levels used in the segmentation
process. The error bars in these figures represent different results obtained for each of the three
different levels of statistical quality considered (the top of the error bar is the result concerning
the worst statistical quality, the medium one concerns the medium quality and the lowest one
corresponds to the best quality considered). As figure 5(a) shows, for the range of simulated
spheres considered, no improvement was obtained in the % classification errors by having more
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Figure 4. Examples of segmentation maps for the 28 mm sphere (one slice): (a) PET ROI,
(b) digital ‘ground truth’, (c¢) HMC map, (d) T42 map, (e) FHMC with two fuzzy levels (light and
dark grey voxels) segmentation map, (f) map used for VOI (hard class + first fuzzy level, FHMC
1/2), (g) map for quantitation (only hard class voxels, FHMC 0/2), (h) T50 map. Note that in this
particular case, FHMC 1/2 for VOI and T50 result in the same map but this is of course not always
the case (especially having considered the complete 3D volume).

than two fuzzy levels in the FHMC segmentation process and keeping in the overall segmented
volume more than the voxels identified in the first fuzzy level. It should be emphasized at
this point that this conclusion was reached considering the results of the whole of the range of
simulated sphere diameters and keeping in mind that our objective is determining a single best
configuration of the algorithm parameters across a wide range of imaging conditions and not
different parameters for individual lesion sizes, image statistics or contrast ratios. In addition,
it is clearly shown in figure 5 that HMC leads to worse segmentation results in comparison
to FHMC for all different configurations considered. Therefore for all subsequent volume
determination analyses, the results associated with the FHMC 1/2 versus T42 are presented.
As shown in figure 5(b), no benefits are observed through the inclusion in the segmentation
map of any voxels belonging to the fuzzy domain. This confirms what was anticipated in
section 2.3.3. Therefore from here onwards all the quantitation results presented for FHMC
have been calculated using only the hard class voxels resulting from the segmentation process
(FHMC 0/2).

The % classification errors for reconstructed images of the simulated datasets as a function
of lesion size and contrast are presented in figure 6(a) for 64 mm?® and (b) for 8 mm?,
for the FHMC and the threshold based method (T42). A breakdown, in terms of PCEs
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Figure 5. (a) Classification errors for the lesion VOI determination and (b) lesion activity recovery
errors in the simulated images for the FHMC versus HMC segmentation. Different numbers of
fuzzy levels (two or three) were used in the segmentation process and different numbers of these
were subsequently selected to (a) form the segmented volumes or (b) determine lesion average
activity concentrations for the different imaging conditions considered.
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Figure 6. Classification errors in lesion VOI determination from the simulated images: (a) 64 mm?
voxels and (b) 8 mm? voxels for the FHMC 1/2 versus T42 segmentation under variable imaging
conditions.

and NCEs, of the % classification errors in figure 6(a) is given in figures 7(a)—(c) for the
FHMC, HMC and T42 segmentation methods respectively. Finally, in order to facilitate
a comparison of the segmentation results between the simulated and the acquired datasets,

the % computed volume error is given in figures 8(a)—(b) for the same configurations as in
figures 6(a)—(b).
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Figure 7. Repartition of PCEs and NCEs from the (a) FHMC 1/2, (b) HMC and (c) T42
segmentation results for the different simulated imaging configurations considered.

Considering the simulated datasets, the introduction of FHMC led to superior results in
comparison to the current ‘gold standard’ in functional volume delineation of T42. FHMC
segmentations led to <25% classification errors in computed volumes for lesion sizes > 13 mm
irrespective of contrast ratio, level of noise or lesion size. Errors of more than 200% for FHMC
were only observed for the 10 mm sphere. Results for the T42 were more dependent on the
lesion size, relative to FHMC results, varying from 10% to more than 200% (even for spheres
up to 22 mm in diameter for a contrast of 4:1 and 64 mm? voxel size). However, the use of
T42 was found to work well for lesion sizes of >17 mm and a lesion-to-background ratio of
8:1 with % classification errors of 20-30%. On the other hand, for a lesion-to-background
ratio of 4:1, the T42 threshold led to over 100% overestimation in the functional volume
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Figure 7. (Continued.)

for lesions <28 mm in diameter. As the errors bars in the different figures reveal, there
was a larger dependence on the statistical quality of the reconstructed images observed with
T42 in comparison to FHMC for the majority of the lesion sizes and contrast configurations
considered. In particular this was true for all of the lesions for a contrast ratio of 4:1 and
for lesions <22 mm for a contrast ratio of 8:1. For example, for the 17 mm sphere and
a contrast ratio of 8:1, T42 resulted in classification errors of 20 to 35% whereas FHMC
classification errors from 15 to 17% were observed (figure 6). On the other hand in the case
of the 28 mm sphere and a contrast ratio of 4:1, T42 errors were ranging from 85 to 110%
whereas FHMC resulted in errors of 17-18%. The reduction in the reconstruction voxel
size (from 64 mm? to 8 mm?) led to small differences in the functional volumes determined
using the FHMC segmentation algorithm, and although it led to improvements in the T42
based segmented volumes, the % classification errors remained at 80-200%. The trend
observed with the standard voxel sizes on the variation of the segmentation results as a
function of statistical quality was similar for the reduced voxel size images. For example in
the case of the 22 m sphere and a contrast ratio of 4:1 errors of 77-100% and 26-27% were
observed for T42 and FHMC respectively. In general, the largest errors were observed for
the smaller lesions of 10 and 13 mm, where none of the segmentation algorithms considered
performed well under any of the configurations tested, with errors largely >200%. As shown in
figure 7(a) FHMC classification errors are essentially NCEs for the two biggest spheres and
PCEs for the small ones. In contrast, as shown in figures 7(b)—(c), T42 and HMC methods
result essentially in PCEs, apart from T42 in association with lesions >28 mm in diameter
and a lesion-to-background ratio of 8:1.

In terms of overall volume estimation errors on simulated datasets (see figures 8(a), (b))
FHMC results in errors of up to 10% and between 10% and 20% for a contrast ratio of 8:1 and
4:1 respectively, for lesions >13 mm. T42 led to volume determination errors of <10% for
lesions >17 mm in diameter and a lesion-to-background ratio of 8:1, while errors of over 100%
were observed for lesions <28 mm with a lesion-to-background ratio of 4:1. However, while
the lowest overall volume error of T42 was around 10%, the corresponding classification error
was >20%. In the case of an 8 mm? reconstructed voxel size (figure 8(b)) small improvements
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Figure 8. Lesion VOI estimation errors from the simulated images: (a) 64 mm? voxels and
(b) 8 mm? voxels for the FHMC 1/2 versus T42 segmentation under variable imaging conditions.

were seen using the T42 for lesions >13 mm and >22 mm for a lesion-to-background ratio
of 8:1 and 4:1 respectively. Finally, no noticeable differences were seen in the FHMC based
segmentation results, apart from an improvement to <15% in the volume estimation error for
the 13 mm lesion with a contrast size of 8:1.

Figures 9(a), (b) show the results in terms of % error in the recovered activity as a function
of lesion size and contrast ratio considering the segmented volumes using 64 mm? and 8 mm?
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Figure 9. Lesion average activity concentration estimation errors from the simulated images:
(a) 64 mm? voxels and (b) 8 mm? voxels for FHMC 0/2 versus T50 segmentation under variable
imaging conditions.

reconstructed voxel sizes. As can be seen from this figure, FHMC and T50 led to the best
results in comparison to the ‘ground truth’ throughout the different lesion sizes and contrasts
evaluated, although T50 introduces larger errors in comparison to the ‘ground truth’ for lesion
sizes of <22 mm and a contrast of 4:1. The use of the 8 mm?® voxels does not alter the
conclusions as far as the relationship between the results for the two methods evaluated is
concerned, although in absolute terms all algorithms perform worse in comparison to the
results obtained for 64 mm? voxels.
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Figure 10. Lesion VOI estimation errors from the acquired images: (a) 64 mm?> voxels and
(b) 8 mm? voxels for the FHMC 1/2 versus T42 segmentation under variable imaging conditions.

Considering the acquired datasets, figures 10(a) and (b) contain the results for the % overall
lesion volume estimation for the 64 mm? and 8 mm? voxels, while figures 11(a) and (b) show
the corresponding results for the activity quantitation errors. In terms of the volume estimation
the general trends were similar to those observed for the simulated datasets, with the FHMC
performing better than the T42 throughout the range of lesion sizes and contrasts evaluated.
In absolute terms, the FHMC results were better particularly in the case of 8 mm? voxels
where errors of <20% and 10% were seen for lesions >10 mm and >22 mm respectively.
T42 errors were similar to FHMC for the 8:1 ratio and spheres >13 mm but ranged from 20
to >100% for the 4:1 ratio configuration. A larger dependence on the statistical quality of
the reconstructed images can be observed with the acquired datasets, demonstrating the more
robust performance of the FHMC algorithm in comparison to the T42 methodology which
was seen to be more affected by the images’ statistical quality. Using again the example of the
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Figure 11. Lesion average activity concentration estimation errors from the acquired images:
(a) 64 mm> voxels and (b) 8 mm> voxels for the FHMC 0/2 versus T50 segmentation under
variable imaging conditions.

22 mm sphere (figure 10(a)), T42 errors were from 30 to 95% while FHMC errors were less
than 5%. Although the variation of the FHMC results was higher for smaller spheres (10 and
13 mm), it was still smaller than in the case of the T42 results. For example, FHMC applied to
the 13 mm sphere with a 4:1 contrast ratio (figure 10(b)) resulted in errors between 5 and
30% whereas T42 errors ranged from 50 to 150%. Similar results between the FHMC and
the T50 algorithms were globally seen in terms of the % accuracy of the recovered activity
concentration, confirming the trends observed with the simulated datasets. Finally, similarly
with the volume estimation, better results were seen with the 8 mm? reconstructed voxel’s size
for both the T50 and the FHMC leading to activity concentration estimation errors of between
+10% and —10% for lesions >17 mm in diameter.
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4. Discussion

Although PET imaging applications are currently, in their majority, diagnostic and largely
based on visual interpretation, there is increasing interest in applications such as the use of
PET for radiotherapy treatment planning, as well as response to therapy and outcome prediction
studies where accurate functional volume and concentration of activity estimation respectively
are indispensable. Current state-of-the-art methodologies for functional volume determination
involve the use of adaptive thresholding based on anatomical information or phantom studies.
The performance of these techniques is greatly dependent on lesion contrast and image noise
characteristics and as this work has demonstrated can lead to variable performance. On
the other hand, already proposed automatic segmentation methodologies have been mostly
evaluated for use in lesion detection rather than lesion volume determination. In addition, their
performance is highly dependent, similarly to the thresholding algorithms, on image contrast
and noise characteristics.

Hidden Markov chains is an automatic segmentation algorithm that allows noise modelling
in the images but has also previously been evaluated for lesion detection rather than functional
volume estimation. In the presented work a new algorithm (Fuzzy HMC) has been introduced
and evaluated allowing the incorporation within hidden Markov chains of a finite number
of fuzzy levels in combination with the ‘hard’ classes considered in HMC, adding this way
an estimation of imprecision that can account for the effects of limited spatial resolution in
emission tomography images. During the evaluation of the FHMC, the inclusion of more than
two fuzzy levels was found to not substantially alter the segmentation results, while only the
inclusion of the voxels belonging to the first fuzzy level led to the most accurate results in
terms of functional volume calculations throughout the range of configurations considered.
Although it would be possible to consider the use of HMC with four hard classes and an
additional rule to cluster the resulting segmentation map, the fuzzy nature of the borders leads
to computation issues in transition probabilities that HMC is not able to deal with. Note that
the significant addition of the fuzzy measure and mathematical changes in the model allows
FHMC to take into account such a configuration, mainly due to the fact that one given voxel
can contain both classes.

Finally, in this paper we have introduced the concept of classification errors rather
than volume estimation errors in the evaluation of segmentation algorithms for volume
determination tasks. An evaluation based on classification errors is more robust since it
does not simply consider the segmented volume but also its location with respect to the
‘ground truth’ known in simulated datasets. Therefore, while the absolute segmented volume
may be correct its location may be wrong, a fact that is as significant as the correct estimation
of the overall functional volume particularly for applications such as the use of PET volumes
in radiotherapy treatment planning.

In comparison to the recommended T42 for the accurate functional volume determination
in PET (Krak et al 2005), the FHMC algorithm gave clearly superior results for lesions
<28 mm, in particular considering a lesion contrast of 4:1, where the T42 methodology
completely failed to recover the functional volume. In addition, FHMC was more robust
considering the different image statistical quality levels evaluated, while the results of T42
were greatly influenced by the level of noise present in the images. Differences between
classification and volume estimation errors across the different configurations evaluated were
smaller for the segmented volumes provided by the FHMC algorithm. In addition, the
classification error results allow us to establish that the accuracy obtained on the estimated
volumes using the FHMC algorithm is not by chance due to a similar level of negative and
positive classification errors. A smaller reconstructed voxel size at the same statistical quality
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level led to worse overall segmentation results, without altering the conclusions as far as the
relative performance of the different algorithms evaluated is concerned.

The performance of the segmentation algorithms under evaluation in the reconstructed
images of the acquired datasets was similar to that obtained with the simulated datasets in
terms of volume estimation errors. The only difference observed in comparison with the
simulated dataset results was an improvement in the overall segmentation results for 8 mm?
reconstructed images in comparison to the 64 mm?, which can be attributed to an associated
adjustment of the optimized reconstruction parameters as a function of the voxel size in the
3D RAMLA algorithm used to reconstruct the acquired datasets.

As far as concentration recovery results are concerned, the performance of the different
segmentation algorithms was compared in the simulated datasets to the recovered activity
concentration considering the exact size and location of the simulated lesions. These results
were influenced by the effects of partial volume leading to increasing underestimation of the
activity concentration with decreasing lesion size. Segmentation algorithms concentrate on
accurate edge modelling in the object of interest and do not as such account for changes in the
values of the voxels as a result of PVE. FHMC and the current ‘state-of-the-art’ threshold of
50% of the maximum lesion value (Krak er al 2005) led to similar results independently of the
configurations evaluated, with absolute differences of 10—-15% (due to an extra underestimation
for the T50 results). Similar trends to those observed with the simulated datasets were obtained
from the segmentation of the acquired images.

The presented results demonstrate the interest of FHMC over thresholding algorithms as
the flexibility of the fuzzy levels choice may allow the use of the same segmentation map for
different tasks, across a large range of lesion contrasts and sizes. FHMC through the addition
of the fuzzy levels associated with each hard class is able to more accurately model the object
of interest edges in reconstructed PET images. In addition, FHMC is clearly less susceptible
to alterations in statistical image quality and lesion contrasts than other methodologies. This
was observed on both images of simulated and acquired datasets. Having said that, none
of the evaluated algorithms was successful in accurate volume estimation for lesion sizes of
<17 mm, considering typical PET image statistical qualities and reconstructed voxels of either
8 mm? or 64 mm?. The main reason behind the failure of FHMC concerning the segmentation
of such small lesions is the small number of voxels associated with the object of interest in
combination with image noise levels, and the Hilbert—Peano path used to transform the image
into a chain. The spatial correlation of such small objects may be lost once the image is
transformed into a chain. A local model may be able to overcome such an issue (Hatt et al
2007).

The results for FHMC may be further improved. Firstly, the direct estimation of the
noise in the reconstructed images may lead to better results in comparison to the assumed
Gaussian model used in this work to fit the distribution for each of the classes. Secondly, other
a priori models may be used for Markovian modelling, like couple (Pieczynski and Derode
2004) or triplet (Lanchantin and Pieczynski 2004) Markov chains or fields. These may be of
interest considering a better modelling of the transitions between boundary classes, as well
as the non-stationary nature of the hidden a priori model. In addition, the fuzzy model may
be extended to more than two hard classes to better model inhomogeneous or non-spherical
objects of interest.

5. Conclusion

A modified version of the hard Markov chains segmentation algorithm has been developed by
introducing a fuzzy measure (FHMC). Our results with both simulated and acquired datasets
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have shown that FHMC is more effective than the reference thresholding methodologies
for both VOI determination and quantification in PET imaging. As part of the evaluation
process, we have also introduced and assessed the interest of classification errors as a
robust measurement of the performance of segmentation algorithms for VOI determination in
contrast to a simple volume estimation which may introduce biases in terms of the segmented
lesion location. Future developments will concentrate on the use of more than two ‘hard’
classes in FHMC, which may more accurately account for the presence of inhomogeneous or
non-spherical functional volumes, as well as an investigation into more adequate noise and
a priori models.
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Appendix. The FHMC algorithm step by step

For the calculation of the expressions a quantization of the interval [0, 1] into intervals
{O, % %, %, 1} is used. For example with two fuzzy levels (or intervals) Fy, F3,
we have N = 3 and there are N — 1 = 2 fuzzy levels with ¢; = ’ﬁ g = % and &, = % Note
that the symbol .”~". denotes a density instead of a probability.
(1) Transformation of the 2D or 3D image into a 1D chain using the Hilbert—Peano path
(Kamata et al 1999) (save the path to be used in step 5 of the procedure).

From this point on, every step is performed on the image transformed into a chain.

(2) Parameters initialization

A priori model parameters:
@ =, =025
n=y=0

2S00 (-

i=1

} init(c) and trans(c, d) are computed according to (3), (4) and the following:

i 1Nlefl i J
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) =2 (-f-4)
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P P

Initial and transition probabilities initializations can then be computed as follows:
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trans(c,d) = C nd)

with { |
N

Noise model parameters:
(o, 1}, {oo, 01}) = K means(Y, 2) with Y the image and 2 for the two hard classes to

look for. Then we determine parameters of each fuzzy level with (9).
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(3) SEM procedure for parameters estimation
At each iteration g until no significant modification of the estimated parameters
(convergence):

(a) m and E@E densities computation for each class c,c € {0, 1,¢&;},i =1,...,N — 1
is performed recursively as follows:

fort=1: J/‘_u\)gl(c) =h(c)G:(y1)

fort > 1: fwd,(c) = Gc(y,)(ﬁfz,_l(O)EéBE (c,0) + fwd, ,(irans (c, 1)

N—1
1 — ——
+ N I:ZI Swd,_, (g)trans (c, 8,'))
fort:T:l;z;ET(c)zl
fort < T :bwd (¢) = Go(yrs)bwd 111 (0)trans (0, ¢) + G (ys1)bwd ;41 (1)trans (1, ¢)
N—1
1 — —
5 D Go rwn)trans (61, Obwd 1. (e1).

i=1

These computations must be normalized. G, is given by: G.(y) = . L 5= eXp (— S ;;‘2)2)

(b) Stochastic re-estimation of parameters:
To obtain one a posteriori realization of X, simulate a fuzzy Markov chain using the following:

Posterior distributions of X are defined by:

init(c) = fmdl(c) and frans (c,d)"' = 1 f(d|c)Gd(yt+l)/b\l£d 1(d)

Jo f@le)Ga(yre)bwd 111 (d)dv(d)
trans (c, d)' if d € {0, 1}
Ltrans (c, d) if d € 10, 1].

init(c) if ¢ € {0, 1}

t__
Linlt (¢) if ¢ €10, 1] and - trans(c, d)’ =

init(c) = {

It has to be noted that trans(c, d)" depends on ¢ since a different transition matrix is computed
for each element of the posterior realization, as we are dealing with a non-stationary Markov
chain.
The estimated values of the parameters at the iteration g are computed on the simulated
a posteriori chain {x,|t = 1, ..., T} as follows:
init(c)l! = S(xgq], c).
T lq] [q]
Zt:Z S(Xt—l’ C)(S(xl ’ d)
T lq] ’
Y2 8(x i)
T lq] T [q] [q1)2
_iwd(x ¢ _0(x,", ¢ —
For the noise model: !4 = Z’*‘y’—(’) o2lal — St (" ) (v — )
¢ ZT S(x[q] C) ¢ ZT S(x[q] c)
=1 t o =1 t

for c = 0 and ¢ = 1. For fuzzy levels (c = ¢;) noise parameters, use equation (9)

For the a priori model: trans(c, d)[‘f] =

1 if m=n

with 8(m,n)={0 it
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(4) MPM segmentation of the chain using estimated parameters
For each x;, determine the class (hard class or fuzzy level) minimizing the error
classification probability by minimizing the following expression:

—_ —_ l —_
Swdbwd,(0)L(0, 5(y:)) + fwdbwd,(1)L(1,5(y;)) +/ fwdbwd,(g;)L(&;, 5(y;)) de;
0

foreverys(y,), and where f wdbwd denotes the product of the forward and backward densities.
The cost function L is given by (8).

(5) Reverse transformation of the 1D segmented chain into the 2D or 3D segmentation
map using the path saved at step 1.
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A Fuzzy Locally Adaptive Bayesian Segmentation
Approach for Volume Determination in PET
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Abstract—Accurate volume estimation in positron emission to-
mography (PET) is crucial for different oncology applications. The
objective of our study was to develop a new fuzzy locally adaptive
Bayesian (FLAB) segmentation for automatic lesion volume delin-
eation. FLAB was compared with a threshold approach as well as
the previously proposed fuzzy hidden Markov chains (FHMC) and
the fuzzy C-Means (FCM) algorithms. The performance of the
algorithms was assessed on acquired datasets of the IEC phantom,
covering a range of spherical lesion sizes (10-37 mm), contrast
ratios (4:1 and 8:1), noise levels (1, 2, and 5 min acquisitions),
and voxel sizes (8 and 64 mm?). In addition, the performance
of the FLAB model was assessed on realistic nonuniform and
nonspherical volumes simulated from patient lesions. Results
show that FLAB performs better than the other methodologies,
particularly for smaller objects. The volume error was 5%-15%
for the different sphere sizes (down to 13 mm), contrast and image
qualities considered, with a high reproducibility (variation <4%).
By comparison, the thresholding results were greatly dependent
on image contrast and noise, whereas FCM results were less de-
pendent on noise but consistently failed to segment lesions <2 cm.
In addition, FLAB performed consistently better for lesions
<2 cm in comparison to the FHMC algorithm. Finally the FLAB
model provided errors less than 10% for nonspherical lesions
with inhomogeneous activity distributions. Future developments
will concentrate on an extension of FLAB in order to allow the
segmentation of separate activity distribution regions within the
same functional volume as well as a robustness study with respect
to different scanners and reconstruction algorithms.

Index Terms—Oncology, positron emission tomography (PET),
segmentation, volume determination.
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1. INTRODUCTION

OSITRON emission tomography (PET) is now a widely
P used tool in the field of oncology, especially in applica-
tions such as diagnosis, and more recently radiotherapy plan-
ning [1] or response to therapy and patient follow-up studies
[2]. On the one hand, accurate activity concentration recovery is
crucial for correct diagnosis and monitoring response to therapy.
On the other hand, applications such as intensity-modulated ra-
diation therapy (IMRT) treatment planning using PET also re-
quire accurate shape and volume determination of the lesions of
interest, in order to reduce collateral damage to healthy tissues
and to ensure maximum dose delivered to the active disease.
Various methodologies used for the determination of volume of
interest (VOI) have been proposed. On the one hand, segmenta-
tion methods requiring a manual delineation of the boundaries
of the object of interest have been established as laborious and
highly subjective [2]. Alternatively, the performance of already
available automatic algorithms is hampered by the low resolu-
tion and associated partial volume effects (PVE), as well as low
contrast and signal to noise ratios generally characterizing PET
images.

Most of the previously proposed work dealing with VOIs de-
termination in PET use thresholding, either adaptive, based on
a priori computed tomography (CT) knowledge [3], or a fixed
threshold using values derived from phantom studies (from
30%—75% of maximum local activity concentration value)
[1]-[3]. Thresholding is however known to be significantly
susceptible to noise and contrast variations, leading to variable
VOIs determination as shown in recent clinical studies [4]. As
far as automatic detection of lesions from PET datasets is con-
cerned, different methodologies have been previously proposed
including edge detection [5], watersheds [6], fuzzy C-Means
[7], or clustering [8]. The performance of these algorithms is
also sensitive to variations in lesion-to-background contrast
and/or noise levels. In addition, past work has in its majority
considered the ability of such automatic methodologies for the
detection of lesions (sensitivity), and not for their performance
in terms of accuracy in the specific VOI determination task.
Finally, all of the aforementioned algorithms have additional
drawbacks associated with necessary preprocessing or post-
processing steps. For example in the case of the watershed
algorithm, a preprocessing step using a filtering pass is required
to smooth the image, and a postprocessing step is necessary to
fuse the regions resulting from the over-segmentation of the
algorithm. Such a need for user-dependent initializations, pre-
processing and postprocessing steps, or additional information
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like CT or expert knowledge render the use of these algorithms
more complicated and the outcome dependent on choices made
by the user in relation to these necessary steps.

Bayesian-based image segmentation methods are automatic
algorithms allowing noise modelling and have shown to be
less sensitive to noise than other segmentation approaches due
to their statistical modelling [9]. They offer an unsupervised
estimation of the parameters needed for the image segmentation
and limit the user’s input to the number of classes to be searched
for in the image. Reconstructed images require no further pre-
processing or postprocessing treatment (such as for example
filtering) prior to the segmentation process. Instead, image
noise is considered as additional information (a parameter in
the classification decision process) to be taken into account
rather than to be filtered or ignored. They have only been
previously used in PET imaging in the form of hidden Markov
fields (HMFs) [10] and more recently we have investigated
the performance of hidden Markov chains (HMCs) for volume
determination, a faster model that was in addition extended to
include fuzzy modelling, fuzzy HMC (FHMC) [11]. Although
FHMC was shown to provide overall superior results relative
to the threshold reference methodology, independent of lesion
contrast and image signal-to-noise ratio, it is unable to correctly
segment objects <2 cm in diameter. This is mainly due to the
3-D Hilbert-Peano path [12] used to transform the 3-D volume
into an 1-D chain, since voxels defining small objects may
find themselves far away from each other on the chain, thus
being misidentified by the algorithm as noise and becoming not
significant enough to form a class apart from the background.

Consequently, the main objectives of this study were to im-
prove the segmentation of small objects by 1) developing a fuzzy
local adaptive Bayesian (FLAB) model and 2) comparing the
performance of this new algorithm with that of the thresholding
methodologies currently used in clinical practice as well as the
fuzzy C-Means (FCM) and the previously proposed FHMC al-
gorithms. In addition, as a secondary objective we have also in-
vestigated the use of the Pearson’s system [13] in order to poten-
tially improve the noise modelling used in the algorithm, instead
of simply assuming a Gaussian distribution.

Different imaging conditions were considered in this study in
terms of statistical quality, as well as lesion size and source-to-
background (S/B) ratio. The images were reconstructed using an
iterative algorithm, since this type of reconstruction algorithms
form today’s state of the art in whole body PET imaging in rou-
tine clinical oncology practice [14]. In addition, the new FLAB
algorithm was evaluated using simulated images of non homo-
geneous and non spherical tumors derived from tumors of pa-
tients undergoing radiotherapy.

II. MATERIAL AND METHODS

A. FLAB Model

The FLAB model is an unsupervised statistical methodology
that takes place in the Bayesian framework. Let 7" be a finite set
corresponding to the voxels of a 3-D PET image. We consider
two random processes Y = (y;),cp and X = (z¢),.p. Y rep-
resents the observed image and takes its values in R whereas X
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represents the “hidden” segmentation map and takes its values
in the set {1, ..., C}, with C being the number of classes. The
segmentation problem consists of estimating the hidden X from
the available noisy observation Y. The relationship between X
and Y can be modeled by the joint distribution P(X,Y), which
can be obtained using the Bayes formula

P(X,Y) P(Y|X)P(X)

PXIY) = 5" =~ pryy (1)

P(Y|X) is the likelihood of the observation Y conditionally
with respect to the hidden ground-truth X, and P(X) is the prior
knowledge concerning X. The Bayes rule allows the determina-
tion of the posterior distribution of X with respect to the obser-
vation Y : P(X]Y). Contrary to the FHMC model [11], we do
not assume here that a Markov process can model the prior dis-
tribution of X, thus simplifying its expression.

The Fuzzy Measure: The general idea behind the implemen-
tation of a fuzzy model within the Bayesian framework was pre-
viously introduced in [15] and [16] and was used for a local
Bayesian segmentation scheme in [15]. Its implementation is
based on the incorporation of a finite number of fuzzy levels
F; in combination with two homogeneous (or “hard”) classes,
in comparison to the standard implementation where only a
finite number of hard classes are considered. This model al-
lows the coexistence of voxels belonging to one of two hard
classes and voxels belonging to a “fuzzy level” depending on
its membership to the two hard classes. While the statistical
part of the algorithm models the uncertainty of the classifica-
tion, with the assumption being that the voxel is identified but
the observed data is noisy, the fuzzy part models the impreci-
sion of the voxel’s membership, with the assumption being that
the voxel may contain both classes. One way to achieve this ex-
tension is to simultaneously use Dirac and Lesbegue measures,
considering that X in the fuzzy model takes its values in [0,1]
instead of Q = {1,...,C}. We define therefore a new mea-
sure v = 0g + 81 + ¢ on [0,1], given that 6y and 7 are the Dirac
measures at 0 and 1, and ( is the Lesbegue measure on the fuzzy
interval [0,1]. This approach is adapted for the segmentation of
PET images since they are both noisy and of low resolution. The
“noise” aspect when considering Bayesian models is the way
the values of each class to be found in the image are distributed
around a mean value. The noise model used, whose respective
mean and variance are to be determined by the estimation steps,
can therefore be adapted to image specific characteristics. Fi-
nally, the fuzzy measure facilitates a more realistic modelling
of the objects’ borders transitions between foreground and back-
ground, allowing in such a way to indirectly account for the ef-
fects of blurring associated with low resolution PET images.

Distribution of X (a priori model): Using v = 6o + 61 + (
as a measure on [0,1], the a priori distribution of each x; can be
defined by a density h on [0,1], with respect to v. If we assume
that X is a stationary process and that the distribution of each z,
is uniform on the fuzzy class, this density can be written as

h(0) = Plz: = 0] = po
h(1) =Plzy = 1] =py
h(e) =Plzy =¢] =1 —po —p1 fore € [0, 1] 2)
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where, h satisfies the following normalization condition:

h(0) + h(1) + /h(g)dg =1.

Using this simple modelling for the prior distribution leads to ig-
noring the spatial relationship of each voxel with respect to its
local neighborhood. Although it is possible to include such spa-
tial information using the contextual framework [15], the use of
such modelling leads to an increase in the number of parameters
to be handled, and in practice, no more than one or two neigh-
bors can be actually taken into account. Hence, the contextual
approach is not of interest since we aim to explore all the in-
formation available in the 3-D volume around each voxel, i.e.,
at least 26 neighbors (eight-connectivity extended in three di-
mensions). As an alternative, the adaptive framework [15] can
be used. In this adaptive modelling, the spatial information is
inserted into the estimation step of the algorithm (see section
parameters estimation).

Distribution of Y (Observation or Noise Model) and the
Pearson’s System: In order to define the distribution of Y
conditional on X, let us consider two independent random
variables Y and Y, associated with the two “hard” values 0
and 1, whose densities fy and f; are characterized by means
and variances (po,08) and (ju1,07) respectively. The mean
and variance of each fuzzy level F; are derived from the ones
estimated in the two hard classes as follows:

pr, =po(l—€i) +eim
oF, =05(1—e;)’ +¢ejo} 3)

where ¢; is the value associated to a fuzzy level F;. For the case
of two fuzzy levelse; = 1/3 and 2 = 2/3 were used according
to results previously published [11].

The assumption that the noise for each class of the observed
data can fit a Gaussian distribution was considered as a first
approximation as with the previous implementation of the
FHMC algorithm [11]. In this work, we propose the study of
the Pearson’s system that contains seven other distributions.
In this context, instead of using a Gaussian distribution, an
additional step is introduced to detect which laws best fit the
actual distribution of the voxels in the image, for each class
considered at a given iteration of the estimation step of the
algorithm. The theory behind the Pearson’s system has been
previously detailed in [17] and a description of its use in
mixture estimation and statistical image segmentation is given
in [13]. Here, we briefly describe the Pearson’s system in our
particular context.

A distribution density f on R belongs to the Pearson’s system
if it satisfies

1 df(y)
fly) dy

Different shapes of distributions as well as the parameters
determining a given distribution are provided by the variations
of the coefficients a, cg, c1, and cs. Form = 1, 2, 3, and 4, let

co + 1y + c2y?’

“)

1

0,
3(N) @
Y @

0 1 2
Y1
Fig. 1. The eight distribution families in the graph of Pearson, function of v,

and v» [17]. 1 for Beta I, II for type II, III for Gamma, IV for type IV, V for
Inverse Gamma, VI for Beta II, VII for type VII and N for Normal.

us consider the first four statistical moments of a partition Y,
of Y defined by

pr = E[Yy]
pp =E[(Yp, — E[Y,])"] form > 2. 5)

We also define two parameters -y; and -2 as follows:

12

2
3 Ha
1= 3
I

and 7, = 5 ©)
Ha
where /71 is called “skewness” and 2 is called “kurtosis.”
The coefficients a, cg, c1, and co are related to (5) and (6) by
equations that can be found in the Appendix I-A. Given A =
(72 + 3)/4(4v2 — 3m) (272 — 371)(272 — 371 — 6), the
eight distribution density families {f1, ..., fs} contained in the
system of Pearson can now be defined by a set of conditions
using A\, y; and 7y» (see Appendix I-B). These eight distribution
density families are illustrated in Fig. 1. Finally, the protocol
used for the determination of which density family best fits each
measured distribution can be found in Appendix I-C.
Parameters Estimation: The different parameters necessary
to be estimated for the segmentation process are

w=(A,B)
A = (po,p1)
B = (/1'070—87/1’170%) : 0

Both a priori (A) and noise (B) parameters are unknown and
may vary from one image to another. An iterative procedure
called stochastic expectation maximization (SEM) [18], a sto-
chastic version of the EM algorithm [19], is used for the estima-
tion of these parameters. This is achieved by sampling a real-
ization of X according to its posterior distribution P(X]|Y') and
computing empirical values of the parameters of interest using
this realization. The stochastic nature of this procedure makes
it less sensitive to the initial guess of the parameters using the
K-Means [20] than deterministic procedures like the EM algo-
rithm. The system of Pearson can be used as an additional step
(inside each iteration of the algorithm) in order to determine the
type of distribution to use. The posterior distribution d with re-
spect to class ¢ for a given voxel ¢ used at iteration ¢ for sam-
pling the posterior realization is given by (8) at the bottom of the
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page, where, f7=1(y;|c) is a density whose distribution type is
chosen using the Pearson system and whose mean and variance
were estimated at iteration ¢ — 1, and p;’;l is the prior proba-
bility of voxel ¢ belonging to class ¢ estimated at iteration g — 1.

In the adaptive framework priors are reestimated using a local
neighboring window with priors p; . depending on the position
t of the voxel in the image. Although in the 2-D case, a window
centred on the voxel of interest is used [15], for our application
we use a 3-D “cube” centred on each voxel. The size of the es-
timation “cube” was experimentally determined for the specific
application of PET imaging, since it depends on the size of the
objects of interest (10—50 mm in diameter) relative to the recon-
structed voxel size (2 x 2 x 2 or 4 X 4 x 4 mm?). An estimation
cube should from one hand be small enough to yield good local
characteristics [15], while on the other hand it should not be
too large with respect to the size of the object of interest. Con-
sidering this, we tested two different estimation “cube” sizes;
namely covering 3 X 3 X 3 and 5 X 5 X 5 voxels.

It is worth noting that only the priors are concerned by the use
of the adaptive framework. Noise parameters are estimated the
same way as in the blind context [15]. The detailed description
of the SEM algorithm in our context is given in the Appendix II.

Segmentation: In order to perform segmentation on a voxel
by voxel basis, we need to use a criterion to classify each
voxel as either part of the background or the functional VOI.
For this purpose we use the maximum posterior likelihood
(MPL) method as suggested by [15]. To compute a solution,
the MPL method requires the parameters defining the a priori
model (priors of each class for each voxel) as well as the noisy
observation data model (mean and variance of each class),
estimated using SEM. The MPL computes the posterior density
and selects for each voxel the class that maximizes it, using the
procedure described below.

Let us consider d(e|y;) given by (8) computed using the pa-
rameters estimated by the SEM estimation algorithm. Using
d(Fly:) = 1 — d(0]y:) — d(1]ys), the decision rule assigning
the class c or fuzzy level F; to the voxel ¢ knowing the observed
value ¥, is given by the following procedure:

For each voxel, let ¢; = arg max,¢o,1,7} d(nly:). If ¢ €
{0, 1}, then assign the hard class 0 (¢; = 0) or 1 (¢; = 1) to
the voxel ¢. Else if ¢; belongs to the fuzzy domain (¢; = F),
use ¢; = argmax,gjo,1[d(n|y;) to determine its exact value
using the quantitation of the fuzzy interval into fuzzy levels (see
Section II-A-3) and assign one of the fuzzy levels to the voxel.
In our implementation of FLAB, each c; can take four different
values: 0, 1/3, 2/3, and 1.

B. Alternative Approaches Used for Comparison

Thresholding: Various thresholding methodologies have
been proposed in the past for functional volume determination
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[2]-[4]. For comparison purposes with the developed method-
ology, threshold at 42% of the maximum value inside the lesion
was chosen for VOI determination, based on suggestions from
previous publications [2], [3]. The methodology was imple-
mented through region growing using the voxel of maximum
intensity in the object of interest as a seed. Using a 3-D neigh-
borhood (26 neighbors) the region is iteratively increased by
adding neighboring voxels if their intensity is superior or equal
to the selected threshold value. The results derived using this
method will be denoted from here onwards as T42.

Fuzzy C-Means: The FCMs algorithm was introduced in
[21]. It was suggested for PET image segmentation in [7].
For the purpose of this study it was implemented using the
following objective function O:

TI J
0(e) =Y ebileij — mil? ©)

i=1 j=1

where e > 1 is a weighting exponent and m; are the centre
values of the classes. The weighting exponent e controls the
fuzzy aspect of the image and is usually set to 2 (hard segmen-
tation is represented by e = 1). The algorithm converges to the
value at which the objective function has a local maximum. The
results derived using this method will be denoted from here on-
wards as FCM.

C. Validation Studies

Datasets: Acquisitions of the IEC image quality phantom
[22], containing six different spherical lesions of 10, 13, 17,
22, 28, and 37 mm in diameter [Fig. 3(a)] were carried out
in list-mode format using a Philips GEMINI PET/CT scanner.
The spatial resolution of this system is 4.9 mm full-width at
half-maximum (FWHM) at the center of the field of view [23].
Partial volume effects are therefore expected to be significant
even for the largest sphere. The 28-mm-diameter sphere was
not considered in this study since it was replaced by a hand-
made plastic sphere whose diameter was not known precisely.
Different parameters were considered covering a large spectrum
of configurations allowing assessment of the influence of dif-
ferent parameters susceptible to affect the functional VOI de-
termination. The statistical quality of the images was varied by
considering 1, 2, or 5 min list-mode time frames. Two different
signal-to-background (S/B) ratios (4:1 and 8:1) were consid-
ered, by introducing 7.4 kBq/ cm® in the background and 29.6
or 59.2 kBq/ cm®, respectively, in the spheres. Two different
voxel sizes (2 x 2 x 2 or 4 x 4 x 4 mm?®) were used in the re-
construction of each of the different statistical quality datasets
using the 3-D RAMLA algorithm, with specific parameters pre-
viously optimized for clinical use [14]. Visual illustration of the
acquired images is given in Fig. 2. In addition, an estimation of

pic f (yelo)

d*(cly) =

®

1
Plot FLnl0) + pi o (el ) + (1= plot = pin") [ fo l8) a0
0
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Fig. 2. Different images used in the segmentation study; (a) ratio 4:1, 2 min
acquisition time, 64 mm? voxels, (b) ratio 8:1, 2 min, 64 mm?, (c) ratio 4:1,
2 min, 8 mm?, (d) ratio 8:1,2 min, 8 mm?3, (¢) CT acquisition, (f) voxel-by-voxel
ground-truth generated using CT image on the PET image. Note the 28 mm
sphere is in plastic and not clearly seen (since its real diameter was unknown
this sphere was excluded from any analysis in this work).

the FLAB algorithm’s reproducibility was performed by consid-
ering five different 1 min list-mode time frames acquired con-
secutively and reconstructed using 8 mm? voxels.

Finally, to test the algorithm against more clinically realistic
conditions of tumor shapes, we simulated three lesions with
nonspherical shapes and inhomogeneous activity distributions.
These lesions were generated using real lung tumor images from
three patients undergoing '8 FDG PET scans for radiotherapy
treatment planning purposes. A ground-truth was drawn by a
nuclear medicine physician (on a slice-by-slice basis) based on
the reconstructed patient images. In the case of the first tumor,
the simulated contrast between the region of the highest ac-
tivity concentration and the rest of the tumor was around 2.2:1
whereas in the case of the second tumor, it is closer to 1.4:1.
Finally, the third tumor is almost homogeneous. The overall
contrast between the whole tumor and the background was 6:1
and 5:1 for the first and second tumors, respectively, and less
than 2:1 for the third one. In terms of lesion size, the largest le-
sion “diameter” was 4.1, 2.9, and 1.5 cm for the first, second,

and third lesion, respectively. These lesions were subsequently
placed within the lungs of the NCAT phantom [24]. No respira-
tory or cardiac motion was considered. Normal organ FDG con-
centration was assumed for the simulation [25], with the max-
imum activity concentration in the lesions being four times the
mean activity concentration in the lungs. The NCAT emission
and attenuation maps were finally combined with a model of
the Philips PET/CT scanner previously validated with GATE
[26]. A total of 45 million coincidences were simulated corre-
sponding to the statistics of a standard clinical acquisition over
a single axial field of view of 18 cm [26]. Images were subse-
quently reconstructed from the list mode output of the simula-
tion using 8 mm? voxels. As well as using all of the simulated
true coincidences, images were reconstructed for each lesion
using only 40% and 20% of the overall detected coincidences
in order to evaluate the accuracy of the segmentation algorithms
at different noise levels (similar to the IEC phantom study using
5,2, and 1 min acquisitions for the image reconstruction). Visual
illustration of these simulated tumor images (central slice), with
their ground-truth drawn from the corresponding patient tumors
are displayed in Figs. 7 and 8, and Fig. 9(a)—(c). Each segmen-
tation algorithm considered was applied to the lesion and the
segmentation map was compared with the ground-truth. Note
that in this framework, the ground-truth does not need to be ac-
curate with respect to the true patient image. What is important
is that we are able to compare the segmentation obtained on the
simulated image with the ground-truth used in the simulation.
The corresponding segmentation maps (central slice) for each
algorithm can be found in Figs. 7 and 8 and Fig. 9(d)—(g).

Analysis: As our goal is not lesion detection in the whole
body image but the estimation of a lesion’s volume with the
best accuracy possible, we assume that the lesion has been pre-
viously identified by the clinician and automatically or manu-
ally placed in a 3-D “box” well encompassing the object [see
Fig. 3(a)]. Although no significant impact on the segmentation
results was observed through small changes in placement or size
of the box, certain conditions must be respected. Evidently it
should be large enough to contain the entire extent of the ob-
ject of interest and a significant number of background voxels
so the algorithm is able to detect and estimate the parameters
of the background class. On the other hand it should be small
enough in order to avoid including neighboring tissues with sig-
nificant uptake that would end up being classified as functional
VOI, requiring manual postprocessing. However, the shape of
this box does not have to be perfectly cubic or with specified
dimensions (contrary to the FHMC case [11]), and as a result it
could be drawn accordingly to exclude structures in the back-
ground that are of no interest.

Subsequently, the images of the selected area were segmented
in two classes (functional VOI and background) using each of
the methods under evaluation (T42, FCM, FHMC, and FLAB).
In the FHMC and FLAB cases, considering the optimization
results obtained in [11], two fuzzy levels were considered in the
segmentation process and the functional volumes were defined
using the first hard class and the first fuzzy level. A voxel-to-
voxel ground-truth was generated for the phantom dataset using
the CT image registered with the PET reconstructed image [see
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Fig. 2(e) and (f)]. Classification errors (CE) were then computed
on a voxel-by-voxel basis following the definition used in [11]:

(PCE + NCE)
VoS

PCE stands for positive classification errors, including voxels
of the background that are classified as belonging to the ob-
ject of interest, and NCE stands for negative classification errors
including voxels of the object that are classified as belonging
to the background. These classification errors essentially occur
on the boundaries of the objects of interest because of activity
“spill in” and “spill out.” If the segmentation results in PCEs
and NCEs of equal amounts, the computed VOI would be very
close to the true known volume whereas the shape and position
of the object would be incorrect (this essentially occurs for ob-
jects >2 cm, while for smaller objects the errors are essentially
PCE). As shown in (10), the total number of PCEs and NCEs
is considered with respect to the number of voxels defining the
sphere (VoS). Although the size of classification errors can be
bigger than 100%, in the case where a large number of back-
ground voxels in the selected area of interest are misclassified
as belonging to the sphere, maximum classification errors con-
sidered in this paper where limited to 100%, since any such
values represent complete failure of the segmentation process.
Although the combination of PCE and NCE into CE leads to
a loss of information as far as the direction of the bias is con-
cerned, classification errors represent more pertinent informa-
tion than overall volume errors, which reflect neither accurate
magnitude nor direction of the bias for a segmented volume. For
comparison purposes overall volume errors (with respect to the
known volume of the sphere) were also computed and shown in
Fig. 6.

As far as the simulated tumors are concerned, both overall
volume errors (with respect to the known volume of the ground-
truth) and CE were computed. Since all the algorithms under
investigation in this study perform binary segmentations (i.e.,
able to distinguish between tumor tissue and background only),
no evaluation was performed of their ability to distinguish dif-
ferent regions within a given tumor.

CE = x 100. (10)

III. RESULTS

Different segmentation maps obtained using each of the
methods under evaluation (FHMC, FLAB, T42, and FCM) are
presented in Fig. 3(c)—(f) for a slice centered on the 22 mm
sphere considering a “good quality” image (8:1 contrast and
5 min acquisition) [Fig. 3(a)] to visually illustrate the variations
of the segmentation maps obtained. Segmentation results in the
case of a “lower quality” image (4:1 contrast and 2 min acqui-
sition) and a smaller sphere (17 mm) [Fig. 3(g)] are presented
in Fig. 3(h)-(k). Both images are representative of the 8 mm?
voxel size reconstructions.

In the different figures shown in this section the CE are given
for all five spheres (10, 13, 17, 22, and 37 mm) and for both
contrast ratios (4:1 on the left part of each figure, 8:1 on the
right part) considered. The error bars in the figures represent the
different results obtained for each of the three different levels
of image statistical quality considered. The top of the error
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Fig. 3. (a) Graphical representation of the IEC phantom and illustration of the
3-D box selection for the 22-mm sphere and examples of segmentation maps
(only central slice is shown); (b)—(f) for the 22 mm sphere (8:1 contrast, 5 min
acquisition) and (g)—(k) for the 17 mm sphere (4:1 contrast, 2 min acquisition)
with corresponding volume errors (computed on the whole volume): (b) and
(g) PET ROI, (c) and (h) T42 map, (d) and (i) FCM map, (e) and (j) FHMC, and
(f) and (k) FLAB maps with two fuzzy levels (light and dark grey voxels). Both
images are extracted from 8 mm? voxel size reconstructions.

bar is the result concerning the worst statistical quality images
(1 min acquisition), the medium one concerns the medium
quality (2 min acquisition), and the lowest one corresponds to
the superior statistical quality (5 min acquisition). The only
exception is Fig. 5 where the error bars represent the variability
of the FLAB segmentation results considering the application
of the algorithm on multiple images of 1 minute acquisitions
(five independent realizations).
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Fig. 4. Optimization of the FLAB algorithm. Classification errors for (a) Beta I distributions (detected using the Pearson’s system) or Gaussian distributions (for
the 8 mm? voxel size); (b) 3 X 3 X 3 or 5 X 5 X 5 voxels for the estimation cube (for the 64 mm?> voxel size); (c) 3 X 3 X 3 or 5 X 5 X 5 voxels for the
estimation cube (for the 8 mm? voxel size); (d) with (FLAB) or without (FLB) adaptive estimation of priors (for the 8 mm? voxel size). The top of the error bar
is the result concerning the worst statistical quality images (1 min acquisition), the medium one concerns the medium quality (2 min acquisition), and the lowest

one corresponds to the superior statistical quality (5 min acquisition).

Fig. 4 contains the results on the optimization of the algo-
rithm for the specific application of lesion segmentation in PET
images. Considering the selected volume of interest around a le-
sion, the Pearson’s system systematically led to the detection of
Beta I distributions for both the background and the lesion ac-
tivity distributions (although with different parameters). How-
ever, the parameters ; and v, (see (6)) placed the estimated dis-
tributions very close to the Gaussian one in the Pearson graph [as
it can be seen in Fig. 1, the surface matching Beta I distribution
(D is in contact with the point defining the Normal distribution
(N)]. Consequently only small changes in the volume estima-
tion results were consistently obtained using the Beta I instead
of a Gaussian distribution [Fig. 4(a)]. Considering these results
the Gaussian distribution was kept in the final implementation
of the algorithm for the description of both the background and
lesion activity distributions.

In terms of the size of the estimation “cube” used for the
re-estimation of the priors in the adaptive framework, a size of
3 x 3 x 3 voxels led to consistently better results across different
lesion and voxel sizes as well as S/B contrast and noise config-

urations as shown in Fig. 4(b) and (c). Finally, Fig. 4(d) demon-
strates the impact in terms of the improved results through the
use of the adaptive estimation, for the 8 mm? configuration.
In this figure the FLAB segmentation results are compared to
the results without adaptive estimation (FLB for Fuzzy Local
Bayesian, using the same fuzzy levels implementation), where
priors are the same for all the voxels of the image and are com-
puted using the entire image instead of using only the local
neighbourhood of each voxel. As is demonstrated by this figure,
the inclusion of the adaptive estimation significantly improves
the segmentation results throughout the different lesion sizes
and contrast configurations considered.

Results in relation to the FLAB algorithm’s reproducibility
can be seen in Fig. 5. In this particular figure, error bars rep-
resent the variation of the segmentation results (mean and vari-
ance) using the five different images obtained from the consecu-
tive 1 minute acquisitions. A variation of <4% in the segmented
volumes was obtained from the application of the algorithm on
the five different images for all spheres except from the 1 cm
sphere which the algorithm consistently failed to correctly seg-
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Fig.5. Study of FLAB reproducibility using five different 1 min list-mode time
frames (reconstructed with 8 mm?® voxel size). The error bars represent the vari-
ability of the FLAB segmentation results considering the application of the al-
gorithm on multiple images of 1 minute acquisitions (five realizations).

ment. This segmentation failure is most probably the cause of
this larger variability observed for the segmented volume of the
1 cm sphere.

Fig. 6 presents the classification errors and corresponding
overall volume errors relative to the CT-based ground-truth
obtained using each approach, for both 64 and 8 mm?® voxel
sizes [Fig. 6(a) and (b) and 6(c) and (d), respectively]. Globally,
volume errors are very closely linked to classification errors:
when the segmentation results in strictly NCE, the volume error
(underestimation) is equal to the CE. When the segmentation
results in only PCE, the volume error (overestimation) is also
equal to the CE. And when both NCE and PCE occur, the
volume error is inferior to the CE (it essentially occurs for
medium-sized spheres). FLAB led to superior results in com-
parison to all the other methodologies on the whole dataset.
The proposed algorithm gives good results (on average between
5% and 20% CE) independently of the contrast ratio and for
all spheres except from the 1 cm one for which a minimum
error of 25% was obtained for the most favorable configuration
evaluated (8:1 contrast and a 5 min. acquisition). The use of a
reconstruction voxel size of Smm? allowed an improvement in
the segmented volume errors from 10%—25% to 5%—15% for
lesions between 1 and 2 cm.

As shown in Fig. 6, T42 gave errors <20% for the three
biggest spheres with the 8:1 contrast and 64 mm? voxel size,
while for a 4:1 contrast T42 did not manage to accurately seg-
ment any of the spheres. By reducing the reconstruction voxel
size to 8 mm® an improvement was obtained in the results of
the T42 with errors <15% for the three larger spheres and a
contrast 8:1, while errors of <20% were obtained for the 22
and 37 mm spheres with a 4:1 contrast ratio. In the case of the
FCM algorithm errors of <20% and >40% were seen for le-
sions larger and smaller than 2 cm, respectively. No substantial
differences were seen in these results from the reduction in the
reconstruction voxel sizes from 64 to 8 mm?. Finally, FLAB per-
formed better in comparison to the previously developed fuzzy
Bayesian approach (FHMC) for all different lesion sizes and
statistical image qualities considered with a larger magnitude

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 6, JUNE 2009

effect (improvements of over 100% in the errors) observed in
the spheres with a diameter <2 cm. Relative to the FLAB re-
sults globally larger improvements in the accuracy of the seg-
mented volumes were observed for the FHMC algorithm with a
reduction in the reconstructed voxel size. On the other hand, in
percentage terms the dependence of the algorithm results to the
statistical quality of the images was similar for both the FLAB
and FHMC results.

Figs. 7-9 show visual illustration of the segmentation maps
obtained on the simulated tumors. Fig. 10 contains the results
for both classification errors (NCE+PCE divided by the number
of voxels defining the tumor ground-truth volume) and volume
errors (with respect to known overall volume of the tumor) for
each approach.

The results for the first and third tumors (Fig. 7) show the
largest differences between the four algorithms. In the case of
the first tumor, this difference can be attributed to the nonuni-
form activity distribution (the contrast between the region of
highest activity and the rest of the tumor is around 2.2:1) rel-
ative to the second tumor (closer to 1.4:1). Consequently, the
segmentation results of T42 and FCM lead to large under evalu-
ation (—30 to —50%) of the true volume of the first tumor since
they limit themselves to the highest activity area, whereas in
the case of the second tumor they are unable to differentiate be-
tween the two regions, hence recovering the entire tumor (less
than 10% error_for all methods). On the other hand, the third
tumor despite being uniform is small with a low tumor to back-
ground ratio (1.5 cm in “diameter” and contrast <2:1). As a
result, thresholding using 42% of maximum value fails com-
pletely (the region growing never stops and expands into the en-
tire selection box) and FCM despite qualitatively satisfying re-
sults leads to a large over evaluation (from 10% to 40% volume
error depending on the image statistical quality) of the volume.
As far as FHMC and FLAB are concerned, they are both able
to recover the whole tumor in all cases with volume errors be-
tween 2% and <20% (see Fig. 10). While FLAB in compar-
ison with the FHMC performed better in terms of both the mis-
classification and the overall volume errors, FHMC results were
less competitive with decreasing tumor sizes as seen also in the
IEC phantom results (Fig. 10). Finally, the variability of the re-
sults (demonstrated by the error bars in Fig. 10) considering the
different noise levels was higher for FCM and T42, illustrating
their lower robustness to noise in comparison to the fuzzy sta-
tistical approaches.

IV. DISCUSSION

Over the past few years there has been an increasing interest
in clinical applications such as the use of PET for IMRT plan-
ning, for which an accurate estimation of the functional volume
is indispensable. Unfortunately, accurate manual delineation is
impossible to achieve due to high inter- and intra-observer vari-
ability [2] resulting from the noisy and low resolution nature
of the PET images. Current state of the art methodologies for
functional volume determination involve the use of adaptive
thresholding based on anatomical information or phantom
studies. Thresholding however is known to be sensitive to
contrast variation as well as noise [2], [4], since it does not
include any explicit modelling of noise or spatial relationship.
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Fig. 6. Comparison of performances for FLAB, FHMC, FCM, and T42 on data reconstructed with (a) classification errors and (b) volume errors, for 64 mm?
and (c) classification errors and (d) volume errors, for 8 mm?® voxels. The top of the error bar is the result concerning the worst statistical quality images (1 min
acquisition), the medium one concerns the medium quality (2 min acquisition), and the lowest one corresponds to the superior statistical quality (5 min acquisition).
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Fig. 7. (a) Real tumour used as model, (b) voxelized ground-truth (manually
drawn) and its binary version, and (c) simulated tumour. Segmentation binary
maps obtained using (d) T42, (e) FCM, (f) FHMC, and (g) FLAB are shown.
Image is 34 X 34 voxels with 8 mm? voxels.

In addition, proposed adaptive thresholding methodologies
require a priori knowledge of the tumor volumes currently
obtained by CT images, based on the nonvalid assumption
that the functional and anatomical volumes are the same [3].
In addition, proposed correction methodologies accounting

Fig. 8. (a) Real tumour used as model, (b) voxelized ground-truth (manually
drawn) and its binary version, and (c) simulated tumour. Segmentation binary
maps obtained using (d) T42, (e) FCM, (f) FHMC, and (g) FLAB are shown.
Image is 30 X 30 voxels with 8 mm? voxels.

for the effects of background activity levels depend on lesion
contrast and background noise as well as being imaging system
specific [4]. On the other hand, previously developed automatic
algorithms have also shown dependence on the level of noise
and lesion contrast, most frequently requiring preprocessing
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Fig. 9. (a) Real tumour used as model, (b) voxelized ground-truth (manually
drawn) and its binary version, and (c) simulated tumour. Segmentation binary
maps obtained using (d) T42, (e) FCM, (f) FHMC, and (g) FLAB are shown.
Image is 16 x 16 voxels with 8 mm? voxels.
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Fig. 10. Segmentation results for the three simulated tumours. (a) Classifica-
tion errors and (b) overall volume errors. The top of the error bar is the result
concerning the worst statistical quality images (20% of detected coincidences),
the medium one concerns the medium quality (40%), and the lowest one corre-
sponds to the superior statistical quality (100%).

or postprocessing steps and variable initialization parameter
values depending on image characteristics rendering their use
complicated and their performance highly variable.

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 28, NO. 6, JUNE 2009

We have previously developed and assessed the performance
for functional volume segmentation of a modified version of
the hidden Markov chains algorithm (FHMC) [11]. In this al-
gorithm a number of fuzzy levels have been added to introduce
the notion of imprecision allowing this way to account for the
effects of low image spatial resolution in addition to the noise
modelling (which is part of the standard HMC framework). Al-
though the algorithm was shown to accurately segment func-
tional volumes (errors < 15%) for lesions >2 cm throughout dif-
ferent contrast and noise conditions, it was unable to accurately
segment lesions <2 cm. The main reason behind the failure of
FHMC concerning the segmentation of such small lesions was
the small number of voxels associated with the object of interest
in combination to image noise levels, and the Hilbert-Peano path
[12] used to transform the image into a chain. The spatial cor-
relation of such small objects is lost once the image is trans-
formed into a chain, because the voxels belonging to the object
may find themselves far away from each other in the chain, thus
resulting in transition probabilities that prevent these voxels to
form a class differentiated from the background. In addition, it
was thought that the assumption of a Gaussian noise distribu-
tion in the images to be segmented may have also been partly
responsible.

FLAB clearly improved the results of FHMC, essentially due
to the adaptive estimation of the priors using the whole 3-D
neighborhood of each voxel, as the results of Fig. 5(c) clearly
demonstrate. FLAB results obtained on the objects >2 cm were
similar to those obtained through the use of FHMC as were
their respective robustness with respect to noise levels. Finally,
FLAB resulted in faster computation times in comparison with
the FHMC.

In addition, highly reproducible results (<4% variability, to
compare with the 8%—-20% variability observed on manual seg-
mentation [2]) were obtained for different image contrast ratios
and lesion sizes >1 cm. We should emphasize here that the per-
formance of the FLAB in comparison to other segmentation al-
gorithms was evaluated in this study on images reconstructed
using a specific iterative reconstruction algorithm used today in
clinical practise. Since the FLAB segmentation algorithm has
been developed in order to better cope with variable noise and
contrast characteristics it should be the least affected by such
changes introduced as a result of using an alternative reconstruc-
tion algorithm [27]. On the other hand, the use of the system of
Pearson for the determination of image voxel value distributions
did not lead to significant changes or improvements in the results
in comparison to the Gaussian assumption. Although this was
shown to be the case for the images reconstructed using the spe-
cific iterative reconstruction algorithm used here it may not be
the case if an alternative reconstruction algorithm is used, where
potentially the use of the system of Pearson for the characteri-
sation of the image voxel values distribution may still prove to
play a role in the segmentation process and needs to be further
investigated.

By comparison the use of T42 led, as expected, to segmented
functional volumes greatly dependent on image contrast and
noise levels while being comparable to the FLAB results con-
sidering medium image statistical quality and lesions >17 mm
with an 8:1 tumor to background ratio. Finally, the resulting vol-

Authorized licensed use limited to: Universite de Bretagne Occidentale. Downloaded on November 24, 2009 at 05:11 from IEEE Xplore. Restrictions apply.



HATT et al.: AFUZZY LOCALLY ADAPTIVE BAYESIAN SEGMENTATION APPROACH FOR VOLUME DETERMINATION IN PET 891

umes from the application of the automatic segmentation algo-
rithm FCM were less dependent to image statistical quality but
consistently failed to segment lesions <2 cm.

In this study, as in every other phantom study presented to
date in the literature, we have firstly considered the performance
of the different algorithms for the segmentation of uniformly
filled spherical lesions. To our knowledge there has been
no study up to now specifically investigating the functional
volume segmentation task for inhomogeneous uptake lesions,
for example lesions with necrotic or partially necrotic regions.
Although it has not been the major aim of their work, Nestle et
al. demonstrated some evidence of the issues associated with
the use of either fixed or background adjusted thresholding
methodologies for lesions with inhomogeneous activity dis-
tributions and shapes in the clinical set up for non small cell
lung cancer [4]. As it was shown in this study using simulated
realistic lesions, the FLAB model is able to successfully deal
with nonuniform lesion shapes and variable activity concen-
trations in contrast with the threshold based or fuzzy C-means
segmentation algorithms considered. On the other hand, the
binary two-class modelling (background or lesion) is obviously
not adequate to permit the differentiation of multiple regions
inside the tumor with largely different activity concentrations,
as well as extracting the overall tumor in the case of strong
heterogeneity. However, whereas it seems difficult to improve
threshold-based segmentation methods in order to allow the
identification of regions with variable activity concentration
within the same functional volume of interest, the fuzzy model
of FLAB may be extended to more than two hard classes to
allow modelling a combination of inhomogeneous regions
within a given volume. This could further enhance the use of
FLAB for functional volume segmentation in future potential
clinical applications.

The objectives of this study were to address the issue of
functional volume determination and lesion segmentation. The
FLAB model, as with any other segmentation algorithms, does
not modify the values of the image voxels. As such, the use
of the functional volume obtained with the FLAB algorithm,
although is the closest to the true volume of the tumor as
demonstrated by the results in this study, does not lead to the
accurate activity concentration within the lesion. This is as a
result of including voxels whose values have been decreased
by spill-out from partial volume effects, usually leading to an
underestimation of the activity concentration whose magnitude
depends on the size of the lesion [11]. Although the segmented
volume should therefore not be used for directly recovering the
accurate activity concentration, they can be used in combina-
tion with partial volume correction methodologies potentially
allowing a more accurate correction in comparison to the use
of anatomical volumes [28].

V. CONCLUSION

A modified version of a fuzzy local Bayesian segmentation al-
gorithm has been developed. The suggested approach combines
statistical and fuzzy modelling in order to address specific is-
sues in the segmentation of low resolution noisy PET images.
It is automatic, fully 3-D and uses adaptive estimation of priors

to yield good local spatial characteristics that improve segmen-
tation of small objects of interest. Results obtained with images
of the IEC phantom reconstructed with the 3-D RAMLA iter-
ative algorithm have shown that it is more effective than the
reference thresholding methodology and other previously pro-
posed automatic algorithms such as FHMC or the FCM methods
for functional volume determination in PET images. The algo-
rithm has also been tested successfully against realistic simu-
lated tumors, using real patient tumors as model, with nonspher-
ical shape and inhomogeneous activity distributions. Future de-
velopments will concentrate on the incorporation into FLAB of
three hard classes and three different fuzzy transitions, in order
to allow the segmentation within the same lesion of variable
activity distributions in the case of highly heterogeneous func-
tional uptake in the tumor volumes. We will also evaluate the
use of different noise models in an associated robustness study
using acquisitions with different scanner models and reconstruc-
tion algorithms.

APPENDIX [

A. Relationship Between Coefficients a, cg, c1, and co and
(5) and (6)

yo (24 3) e "

10y, — 124, — 18
‘o :/t2(472 = 3m1)—p1(v2 + 3) /2 +pi (22 — 311 — 6)

10y, — 12, — 18
(2 + 3)\/Y1pi2 — 211 (272 — 371 — 6)
1072 — 12, — 18

- (272 — 371 — 6)

10y, — 127, — 18

C1=

B. Definition of the Eight Distribution Density Families

fefhieA0 : Beta of the first kind(I)
fefreyn=0andy, <3 :Typell(Il

JEf3 2y -3y —6=0 :Gamma(IIl)
fefieicAickl : Type IV(IV)
fefser=1 : Inverse Gamma(V)
fefeeor>1 : Beta IT(VI)
f€frevyr=0andvy >3 : Type VII(VII)
fefsey=0andy =3 :Normal(Gaussian)(N)

Beta I and Gaussian distributions with respect to a class c are
defined as follows:

: 1 (y — pe)?
Gaussian.(y) = oo exp <_T3> (18)
1
Betac(y) = gy~ 1=y 19)

where B(a, ) = T'(«)T(8)/T(a + ) is the Beta function
(with I' the Gamma function).

We also have the following relationships between the param-
eters o and 3, and the mean and variance (/i.., [73 denote es-
timated mean and variance) of class c (this is useful to get the
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parameters « and 3 from the estimated means and variances ob-
tained through the SEM algorithm)
_ @
He = 0t B
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a=p (B Fed

2
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C. Recipe for Identification of the Best Family to Fit
Distributions of Classes

Let us consider the voxels y1, . .., y; and their partitions (g
and @), into two classes. The moments can be estimated from
empirical moments, and we use the following to detect which
family best fits each distribution.

1) Consider the partitions Qo, Q1 of (z1, ...

1€Qo e r;,=0and: € Q; & z; = 1.
2) For each class 4 use (); in order to estimate the ji,, ; em-
pirical moments by the following.

Zyt

o teQy
ML= Card(Qs)
> (Y — )™
1EQ,

Card(Q;)

, 1) defined by

Hp,i =

form = 2, 3, 4.

3) For each class ¢, calculate y; ; and -y ; from the estimated
tm,i (m =1, 2,3, 4) according to (6).

4) For each class 1, use v1,;, ¥2,; and rules (Appendix I-B) to
determine which family its density f belongs to.

APPENDIX II

SEM Algorithm

1) Give an initial value of the parameters

0
wO = [pw(t),mp?,l? /1'87 (0(2)) ;H% (U%> ]

using K-Means algorithm for the noise and equal probabil-
ities for the priors.

2) At each iteration ¢, w? is obtained from w? ! and the data

(y1,-..,y:) using:
a) Choose a distribution for the classes 0 and 1 according
to the Pearson system rules (Section II-A-3 and Ap-
pendixes I-B and I-C).

For each y;, compute the a posteriori probabilities d?(0|y:)
and d?(1|y;) using (8) and sample a value in the set {0, 1, F'}
according to d?(0|y:), d(1|y;) and 1 — d?(0|y;) — d?(1]y:) (F
representing the fuzzy voxels). Let us denote R = (r{,...,r%)
the posterior realization obtained through this sampling.

Let Q¢ = {t|rl = 0} and Q% = {t|r] = 1}.
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* Reestimate the priors using

1
=S 5(r0) & 0,1
Det Card(Cy) Z (rd,c) forc € {0,1}

where C; is the estimation cube centred on voxel ¢ and
8(a,b) the Kronecker function.
* Reestimate the noise parameters using

Zyt

fatl — teQd
¢ Card (Q?)
Z (yt - AZ“)Z
(&2)(I+1 _ teQ?
¢ Card (Q?)

for ¢ € {0,1}

For the means and variances of the fuzzy levels, use (3).

Repeat step 2 until stabilization of the parameters. Stabiliza-
tion is defined by a criterion of % change in the values of the pa-
rameters between two successive iterations (we used 0.1% and
the algorithm usually stops before 25 iterations) and a maximum
number of iterations if the stabilization criterion is not met (usu-
ally 50 iterations).
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Une nouvelle méthode de détermination automatique des volumes
fonctionnels pour les applications de I’'imagerie d’émission en oncologie

A new automatic methodology for functional volumes determination in emission imaging
for oncology applications
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Résumé

La détermination des volumes fonctionnels est une étape cruciale pour les applications en oncologie comme le suivi thérapeutique ou la
planification en radiothérapie guidée par I’image. Il n’existe pour I’instant pas de consensus dans la communauté sur la méthode appropriée pour
définir automatiquement un volume tumoral sur 1’image fonctionnelle d’émission (e.g. TEP au 18F-FDG), a cause de la grande variabilité des
images obtenues dans ce contexte, en termes de bruit, de textures, de contrastes ou des formes et des fixations hétérogenes des tumeurs. Nous
proposons une méthode automatique dont la robustesse et la précision ont été validées sur des acquisitions de fantdme, des tumeurs simulées et
réelles, avec des performances tres supérieures aux méthodes de référence par seuillage, constituant un outil prometteur pour les applications de
la TEP en oncologie.
© 2009 Elsevier Masson SAS. Tous droits réservés.

Mots clés : Oncologie ; Imagerie d’émission ; TEP ; Volumes fonctionnels ; Segmentation automatique
Abstract

Functional volumes determination is a crucial step for several applications in oncology like therapy assessment or image-guided radiotherapy
treatment planning. There is currently no consensus about the appropriate method for an automatic definition of the tumoural volume on functional
emission images (e.g. 18F-FDG PET), because they are characterized by a large variability of noise, textures and contrasts, as well as shapes
and uptakes of tumours. We propose a novel automatic method that was validated for robustness and accuracy on phantom acquisitions, realistic
simulations and clinical images of complex tumours. This method outperforms the reference thresholding methodologies and may have an impact
in several PET applications in oncology.
© 2009 Elsevier Masson SAS. All rights reserved.

Keywords: Oncology; Emission imaging; PET; Functional volumes; Automatic segmentation

1. Introduction

La détermination des volumes fonctionnels est une étape
cruciale pour les applications en oncologie comme le suivi thé-
rapeutique [1] ou la planification en radiothérapie guidée par

* A I’image [2]. Cette tiche est généralement effectuée a la main
uteur correspondant. - T E R
Adresse e-mail - hatt@univ-brest.fr (M. Hatt). par les utilisateurs, a été jugée complexe et est associée a une

1959-0318/$ — see front matter © 2009 Elsevier Masson SAS. Tous droits réserveés.
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tres grande variabilité inter- et intra-utilisateurs [3]. Malgré le
grand nombre de méthodes ayant été proposées récemment pour
automatiser la définition des volumes tumoraux sur les images
d’émission [4-19], il n’existe pour I’instant pas de consensus
dans la communauté sur la méthode appropriée pour définir
automatiquement un volume tumoral sur I’'image fonctionnelle
d’émission (e.g. TEP au 18F-FDG), du fait de leur qualité limitée
et de la faiblesse de la plupart des méthodes proposées jusqu’a
présent, inappropriées pour gérer la grande variabilité des para-
metres en termes de bruit, de flou, de contraste ou des formes et
des fixations hétérogenes des tumeurs. La plupart des méthodes
proposées jusqu’a présent partagent également le désavantage
de ne pas bénéficier d’une validation suffisante pour convaincre
les utilisateurs finaux, par exemple en se contentant de résultats
sur fantdmes simplifi€s ou sur des données cliniques sans vérité
terrain.

Nous proposons une méthode automatique, robuste et pré-
cise, validée sur plusieurs ensembles de données de la simulation
a I’image clinique, pouvant étre utilisée sans optimisation préa-
lable pour un scanner et un protocole spécifique et limitant
I’intervention de I’utilisateur a la détection de la tumeur.

2. Matériels et méthodes

La méthode proposée est fondée sur 1’utilisation du contexte
méthodologique de la segmentation statistique d’images [20].
Plusieurs approches ont déja tenté d’ utiliser ce type de méthodo-
logies dans le cadre de I’imagerie d’émission [14,15] mais ces
derniéres se limitaient a I’utilisation d’une mesure statistique
dite « dure » ou seule une somme de Dirac est considérée. Cette
mesure permet de bien modéliser 1’aspect bruité des images,
mais n’est pas adaptée aux images d’émission qui sont de plus
floues. En effet, 'hypothese de la modélisation « dure » consiste
aconsidérer qu’un voxel appartient & une classe et que son obser-
vation est bruitée, en conséquence de quoi elle ne permet pas de
modéliser qu'un voxel puisse contenir un mélange de classes.
La modélisation que nous utilisons est fondée sur 'utilisation
d’une mesure statistique définie par un mélange de masses de
Dirac pour les classes homogenes et de mesures continues de
Lesbegue pour les transitions floues entre les régions [21]. Ceci
permet de prendre en compte simultanément les deux princi-
paux défauts des images d’émission : le bruit statistique et le
flou induit par la résolution spatiale.

Cette mesure floue a été utilisée dans le cadre d’'une modé-
lisation par chaines de Markov [19] puis d’une approche locale
adaptative [22] offrant des performances supérieures. Cette der-
niere approche a ét€ nommée FLAB pour fuzzy locally adaptive
Bayesian et a fait I’objet d’un brevet'. De plus, en étendant
la modélisation a trois classes homogenes et trois transitions
floues différentes, la méthode est capable de prendre en compte
I’hétérogénéité de la fixation au sein des tumeurs et permet
de générer des volumes segmentés non binaires [23]. Cela est
notamment intéressant pour les applications de « dose painting »
en radiothérapie pour une optimisation de la dosimétrie [24]

I Brevet francais référence FRO8/56089.

alors que la plupart des méthodes proposées jusqu’a présent ne
considerent que des segmentations binaires des volumes fonc-
tionnels et ne peuvent donc pas étre utilisées automatiquement
dans cette optique. Dans la méthode FLAB, le contexte spa-
tial des voxels est pris en compte par un cube glissant, au sein
de I’estimation itérative des parametres d’intérét du modele, a
savoir les moyennes et variances de chaque classe ainsi que les
probabilités a priori de chaque voxel d’appartenir a une classe
donnée [22], ce qui est indispensable pour une segmentation pré-
cise. Cette estimation itérative est réalisée grace a 1’algorithme
stochastic expectation maximization (SEM) [25] qui assure une
vitesse de convergence supérieure et une relative indépendance
aux conditions d’initialisation par rapport a I’algorithme expec-
tation maximization (EM) classique.

Les résultats de FLAB ont été comparés avec ceux obtenus
par des méthodes utilisant un seuillage fixe (ici 42 % du maxi-
mum comme proposé par Erdi et al. [4]) ou adaptatif prenant
en compte le signal du fond environnant [9] dont les parametres
ont été optimisés pour les scanners considérés. Sa robustesse a
été étudiée sur des acquisitions réelles de fantobme contenant des
spheres homogenes et réalisées sur plusieurs scanners différents
(Philips Gemini et Gemini TF, Siemens Biograph, GE Disco-
very LS) avec leurs algorithmes de reconstruction (RAMLA,
TF ML-EM, OSEM) (Fig. 1). Sa précision a été validée sur
20 images de tumeurs réalistes tant en termes de formes que
de fixations, basées sur des acquisitions réelles de patients et
simulées a I’aide de Geant4 application for tomography emis-
sion (GATE) [26,27] (Fig. 2), ainsi que sur un ensemble de 18
images de tumeurs pulmonaires réelles (Fig. 3). Concernant ces
derniéres, tous les patients ont été opérés et le diametre maxi-
mal des tumeurs a été mesuré lors de 1’étude macroscopique
des pieces opératoires [28]. Le diametre maximal des tumeurs
déterminé par le pathologiste a ét€ comparé a celui mesuré sur
les volumes segmentés par chaque méthode considérée.

Il est important de noter que la méthode proposée n’est pas
congue pour étre appliquée a I’image corps entier du patient car
I’objectif n’est pas de détecter la tumeur, mais de la segmenter
avec la plus grande précision possible. Elle est appliquée a une
sélection contenant toute la tumeur, détectée et sélectionnée par
I’ utilisateur. Pour I’instant, le choix d’utiliser la méthode binaire
(deux classes dures et une transition floue) ou la méthode a trois
classes (trois classes dures et trois transitions floues) repose sur
I’utilisateur en fonction de son appréciation de I’hétérogénéité
de la tumeur a segmenter, mais il est possible d’automatiser cette
initialisation, par exemple avec un algorithme de K-moyennes
flou avec sélection automatique du nombre de classes par mini-
misation de I’entropie de 1’histogramme de 1’image comme
proposé par Provost dans sa theése [29].

3. Résultats

Les performances de FLAB, tant en termes de robustesse que
de précision, sont largement supérieures a celles des méthodes de
référence utilisant des seuillages. L’évaluation de la robustesse
[30] estimportante, car elle permet de déterminer si une méthode
donnée peut étre utilisée sur des images obtenues avec n’importe
quel scanner sans optimisation préalable, contrairement aux
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Fig. 1. Exemples d’acquisitions de fantdme sur un des scanners considérés (ici le Philips Gemini) avec différents parametres. A. Contraste 8:1. B. Contraste 4:1; a:
reconstruction 4 mm? x 4 mm?> x 4 mm? ; b : reconstruction 2mm? x 2mm?> x 2mm?3 ; 1 : cing minutes d’acquisition ; 2 : une minute d’acquisition.

méthodes utilisant des seuillages adaptatifs, dont les parametres
doivent étre optimisés pour un scanner et une reconstruction
donnés. Comme le montrent sur la Fig. 4, I’erreur moyenne
et I’écart-type obtenus sur les spheres de 37 a 13 mm de dia-
metre, sur I’ensemble des acquisitions, FLAB permet d’obtenir
moins de 10 % d’erreur sur les spheres, avec un écart-type de
I’ordre de 5 a 10 %. Aucune des méthodes ne permet d’obtenir
de bons résultats sur la sphere de 10 mm car on atteint ici les
limites des scanners TEP dont la résolution spatiale est limitée
a environ 5 mm de largeur a mi-hauteur, combinée a un échan-
tillonnage spatial de voxels de 2 et 5 mm de c6té. Les résultats

sur fantdmes sont satisfaisants pour démontrer la robustesse de
la méthode et son universalité car elle donne de bons résultats
sur différents types de textures, de bruit, d’échantillonnage spa-
tial ou de contrastes. Bien que les erreurs soient de plus faibles
concernant la détermination du volume (autour ou inférieures
a 10 %), il ne s’agit que de cas idéaux de fixations sphériques
uniformes sur un fond uniforme. Les tumeurs réelles présentent
en regle générale des structures plus complexes, tant en termes
de formes que d’hétérogénéité de fixations.

Ainsi, les résultats obtenus sur les tumeurs simulées (Fig. 5)
permettent d’apprécier la précision de la segmentation en situa-

Threshold Adaplive FLAB
42% threshold (2 classes)
Segmentation
¢ | B S ¥ &
: Classification
Ground-truth Slrnplgz_?ted oror >100% 14% 6%
Volume Volume
Ground-truth Simulated PET \ b ol
-62% +37%
& ' Threshold 42% Adaptive threshold
»
Classification error
C24%
. C32%
Segmentation
FLAB (3 classes)

Fig. 2. Tllustration de deux tumeurs simulées et des résultantes de segmentation obtenues par les différentes approches, par rapport a la vérité terrain simulée. L’échec
complet du seuillage fixe a 42 % sur la plus petite tumeur s’explique par le fait que dans I’image, aucun voxel n’a de valeur inférieure a 42 % du maximum de la

1ésion (tres faible contraste).
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Threshold 42%
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_—

Segmentation

PET

Adaptive threshold

Fig. 3. Illustration d’une tumeur pulmonaire réelle (image anatomique et fonctionnelle) et les résultats de segmentation obtenus par différentes méthodes.

mT42 m®mT50 ®EFCM BFLAB

100

Classification Error (%)

13mm 17mm 22mm 28mm 37mm

Sphéres

Fig. 4. Erreurs de classification voxel a voxel par rapport a la vérité terrain
obtenues par différentes méthodes (seuillages a 42 et 50 % du maximum, T42
et TS0, le clustering par Fuzzy C-Means FCM et FLAB) sur I’ensemble des
acquisitions de fantdme (tous les scanners, tous les parametres considérés).

tion plus réaliste. Les résultats sont en faveur de FLAB, avec
une erreur moyenne (calculée sur un ensemble de 20 tumeurs)
de classification voxel a voxel par rapport a la vérité terrain
simulée inférieure a 9 % et un écart-type de 8 %. Le seuillage

® Mean error and associated std. dev.

Classification Error (%)

FLAB Adaptive threshold
Segmentation algorithms

42% threshold

Fig. 5. Erreurs de classification moyenne et écart-type de chaque méthode sur
20 tumeurs simulées par rapport a la vérité terrain voxel a voxel.
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FLAB Adaptive threshold
Segmentation algorithms

42% threshold

Fig. 6. Erreur moyenne et écart-type par rapport au diametre de la tumeur mesuré
en histologie, pour I’ensemble des 18 tumeurs et les différentes approches de
segmentation des images.

adaptatif et le seuillage a 42 % donnent respectivement des
erreurs moyennes et des écarts-types de 19 £ 15 % et 34 £20 %.
Les résultats obtenus sur la mesure du diametre maximal des
tumeurs réelles mesurées en histologie (Fig. 6) sont également
en faveur de FLAB. En effet, bien que toutes les méthodes
obtiennent une erreur moyenne inférieure a 5 %, les écarts-
types associés au seuillage adaptatif et au seuillage fixe sont
respectivement de 10 et 20 % la ou celui associ€¢ a FLAB est
inférieur a 5 %. La faible erreur moyenne obtenue s’explique
par le fait que dans les 18 tumeurs considérées, environ la moi-
tié est sous-estimée et I’autre moitié surestimée. De plus, outre
une précision accrue sur la définition des volumes tumoraux,
comme ’illustrent les Fig. 2 et 3, FLAB est capable de générer
des volumes segmentés non binaires, offrant une information
supplémentaire trés importante, notamment en radiothérapie,
sur I’éventuelle hétérogénéité de la fixation au sein des tumeurs
considérées.

4. Discussion et conclusion

La position de la TEP comme outil de référence pour le diag-
nostic en oncologie a été renforcée par I’arrivée des scanners
multimodalités TEP/TDM depuis le début des années 2000. Plus
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récemment, 1’intérét porté a I’imagerie fonctionnelle pour des
applications comme le suivi thérapeutique et surtout la plani-
fication de traitement en radiothérapie par I’image a motivé
le développement par de nombreux groupes de recherche, de
méthodes permettant d’améliorer la détermination automatique
des volumes fonctionnels. Il a déja ét€ montré que I’utilisation
de I’'imagerie fonctionnelle dans le cadre de la radiothérapie per-
met, d’une part, de réduire la variabilité inter- et intra-utilisateurs
[28,31] et, d’autre part, d’inclure des volumes tumoraux qui
sont ratés, par 'utilisation de I’imagerie anatomique seule, ou
au contraire d’exclure des volumes non malins qui auraient été
inclus a tort en se basant uniquement sur 1’information de densité
de tissus fournie par I’imagerie TDM [32].

La méthode que nous proposons a plusieurs avantages par
rapport aux méthodes de référence utilisant des seuillages. Elle
est d’abord plus robuste et peut étre utilisée sur des images
acquises sur différents scanners et reconstruites avec diffé-
rents algorithmes, sans optimisation préalable de parametres.
La dépendance au scanner et aux caractéristiques de 1’image
est donc réduite par rapport aux seuillages adaptatifs. La pré-
cision de la méthode est supérieure, y compris et surtout sur
des cas complexes de tumeurs hétérogénes sur lesquelles les
méthodes binaires utilisant des seuillages sont inappropriées et
échouent parfois totalement. La possibilité de générer directe-
ment des volumes segmentés a trois classes permet d’envisager
I’implémentation automatique du principe de dose painting en
radiothérapie, pour une dosimétrie optimisée, ou une analyse
fine région par région de la tumeur dans le cadre du suivi thé-
rapeutique. Enfin, elle est automatique et réduit 1’intervention
de I'utilisateur a la détection de la tumeur et son isolation dans
une boite de traitement. La méthode a été validée a la fois sur
de multiples acquisitions de fantdmes pour valider sa reproduc-
tibilité et sa robustesse et sur des images simulées et réelles
de tumeurs complexes et hétérogénes pour valider sa préci-
sion. Les résultats encourageants obtenus par cette approche
permettent de penser qu’il s’agit 1a d’une méthode pouvant avoir
un impact important dans les diverses applications de la TEP:
le diagnostic, le suivi thérapeutique et la radiothérapie, pour
lesquelles une définition automatique et précise des volumes
fonctionnels permet d’améliorer et d’accélérer I’analyse quan-
titative des images d’émission. Une étude est en cours dans le
cadre d’un projet ANR (SIFR, 2009-2010) pour renforcer la
validation de FLAB et estimer son impact dans le cadre de la
radiothérapie guidée par I’image ainsi que pour le suivi théra-
peutique.

5. Conflits d’intéréts
Aucun.
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ACCURATE AUTOMATIC DELINEATION OF HETEROGENEOUS FUNCTIONAL
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Purpose: Accurate contouring of positron emission tomography (PET) functional volumes is now considered
crucial in image-guided radiotherapy and other oncology applications because the use of functional imaging allows
for biological target definition. In addition, the definition of variable uptake regions within the tumor itself may
facilitate dose painting for dosimetry optimization.

Methods and Materials: Current state-of-the-art algorithms for functional volume segmentation use adaptive
thresholding. We developed an approach called fuzzy locally adaptive Bayesian (FLAB), validated on homoge-
neous objects, and then improved it by allowing the use of up to three tumor classes for the delineation of inhomo-
geneous tumors (3-FLAB). Simulated and real tumors with histology data containing homogeneous and
heterogeneous activity distributions were used to assess the algorithm’s accuracy.

Results: The new 3-FLAB algorithm is able to extract the overall tumor from the background tissues and delineate
variable uptake regions within the tumors, with higher accuracy and robustness compared with adaptive threshold
(Tyekg) and fuzzy C-means (FCM). 3-FLAB performed with a mean classification error of less than 9% + 8% on the
simulated tumors, whereas binary-only implementation led to errors of 15% + 11%. Ty and FCM led to mean
errors of 20% + 12% and 17% +* 14%, respectively. 3-FLAB also led to more robust estimation of the maximum
diameters of tumors with histology measurements, with <6 % standard deviation, whereas binary FLAB, T, and
FCM lead to 10%, 12%, and 13 %, respectively.

Conclusion: These encouraging results warrant further investigation in future studies that will investigate the impact
of 3-FLAB in radiotherapy treatment planning, diagnosis, and therapy response evaluation. © 2010 Elsevier Inc.

Heterogeneous functional volumes delineation, Automatic segmentation, Image-guided radiotherapy,

Dose painting.

INTRODUCTION

Although most clinical applications of positron emission
tomography (PET) rely on manual and visual analysis, accu-
rate functional volume delineation in PET is crucial for
numerous oncology applications. These include the use of
tumor volume and associated determination of semiquantita-
tive indices of activity concentration for diagnosis and ther-
apy response evaluation (1) or the definition of target
volumes in intensity-modulated radiation therapy (IMRT)
(2). Subjective (1) and tedious manual delineation cannot
perform accurate and reproducible segmentation, particularly
when considering complex shapes and nonhomogeneous

uptake. This results from the low quality of PET images
due to statistical noise and partial volume effects (PVE)
(3), arising from the scanner’s limited spatial resolution.
Most of the previously proposed methods for PET volume
definition are semiautomatic and threshold-based, using
either fixed (30%—75% of the maximum activity) (2, 4, 5)
or adaptive approaches incorporating the background activity
(6-10). Unfortunately, these approaches often require
additional a priori information and are user- and system-
dependent. They require manual background regions of
interest (ROIs), and their performance depends on parame-
ters requiring optimization using phantom acquisitions for
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each scanner and reconstruction. Finally, all of these
approaches are strictly binary and were not validated consid-
ering heterogeneous volumes.

Numerous works have addressed PET lesion segmentation
using more advanced image segmentation methodologies
(11-19). However, the majority of these approaches often
depend on pre- or postprocessing steps such as deconvolution
or denoising, are often binary only, and are validated on
phantom acquisitions or clinical data without rigorous
ground truth.

We previously developed an algorithm for PET volume
definition by combining a fuzzy measure with a locally
adaptive Bayesian-based classification (FLAB) that has
been shown to perform better with respect to fixed threshold-
ing, fuzzy C-means (FCM), or fuzzy hidden Markov chains
(FHMC) for PET volume definition, as far as homogeneous
spheres or slightly heterogeneous and nonspherical tumors
are concerned (20). Preliminary results show that FLAB is
also robust with respect to variability of the acquisition and
reconstruction parameters (24).

Clinical tumors may be characterized by heterogeneous
uptake, thus demanding a nonbinary approach for an accurate
segmentation that may have a significant impact in defining
biological target volumes for dose painting (21). The goals
of this work were to (/) improve the FLAB model by incor-
porating the use of three hard classes and three fuzzy transi-
tions and (2) evaluate its accuracy on real (with known
diameter measured in histology) and simulated (with known
ground truth) data sets containing inhomogeneous tumors.

METHODS AND MATERIALS

Three-class fuzzy Bayesian segmentation (3-FLAB)

The 3-FLAB algorithm is an extension of our previous work
considering only a binary segmentation (20). FLAB automatically
estimates parameters of interest from the image, maximizing the
probability of each voxel to belong to one of the considered classes.
This probability is estimated for each voxel as a function of its value
and the values of its neighbors relative to the voxels’ statistical
distributions in the image, which corresponds to an estimation of
the noise within each class. Hence, each voxel of the volume is
considered a random variable within a Bayesian framework:

P(X,Y) PYIX)P(X)

PIIY) =5y = ) M)

where P(X]|Y)is the probability of belonging to Class X knowing
Observation Y. This probability is obtained by the product of
P(Y|X) and P(X), corresponding to the noise model and the spatial
model, respectively. P(Y|X) is estimated considering the statistical
distribution of the voxels within each class, whereas P(X) is esti-
mated using a sliding cube of 3 x 3 x 3 voxels; hence, each voxel’s
classification is influenced by its neighbors. The parameters to
estimate are the mean and variance of each class and the spatial
probabilities of each voxel with respect to its neighbors. This is
performed iteratively using a stochastic version (SEM) (25) of the
Expectation Maximization (EM) (26) initialized with K-means
(27) or fuzzy C-means (28). In addition, a fuzzy measure between
the classes was added to account for the blur between regions,
assuming each voxel may contain a mixture of classes (22, 23).
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Fig. 1. The fuzzy scheme in the three-class fuzzy locally adaptive
Bayesian (3-FLAB) implementation.

The difference between 3-FLAB and the previously developed
binary-only FLAB (20) is the use of three classes and three fuzzy
transitions within the model (see Fig. 1), to deal with both homoge-
neous and heterogeneous activity distributions. Figure 2 demon-
strates the inability of FLAB to handle highly nonuniform activity
distributions, where the lower uptake part of the lesion is errone-
ously considered as part of the background (see Fig. 2b), emphasiz-
ing the need to better model heterogeneous activity distributions.
3-FLAB should retain the accuracy and robustness of the original
model, while also being able to handle the challenging heteroge-
neous activity distributions that are frequently seen in clinical
lesions. The 3-FLAB segmentation workflow is summarized as
follows, and the implementation and mathematical details can be
found in the Appendix.

1. Initialization of both the spatial and noise models parameters:
means and variances of each class are obtained using the
K-means or fuzzy C-means. The prior probabilities are fixed at
one third for each class.

2. Iterative estimation is performed using the SEM by stochastic
sampling for each voxel according to its posterior probability.

3. Segmentation is done by selecting for each voxel the class or
fuzzy level that maximizes its posterior probability and fusion
of fuzzy levels with each hard class to generate a two- or three-
class segmentation map.

Alternative segmentation methodologies used for
comparison

We compared the results of the 3-FLAB algorithm with the binary
FLAB approach and the fuzzy C-means (with two or three clusters)
clustering introduced by Dunn (28) and used to segment PET brain
tumors in (13), as well as an adaptive thresholding (6) (Tycig):

Ithreshold =aX Imezm + Ibaokground, (2)

Lnean Was obtained by computing the mean of all voxels contained
inside an initial threshold at 70% of the maximum and Ipuckground
by computing the mean of the voxels inside a ROI manually drawn
on the background. 04, and Ipackgrouna Were subsequently used to
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(a)

(b)

Fig. 2. Binary fuzzy locally adaptive Bayesian (FLAB) model applied to a heterogeneous simulated tumour (a). The

segmentation result (b) clearly misses parts of the tumour.

derive a first approximation of the source-to-background contrast.
The parameter o was optimized using phantom acquisitions on
each scanner used to obtain the data. The adaptive thresholding
algorithm was implemented using a region-growing approach with
the maximum intensity voxel as a seed and iteratively adding
three-dimensional (3D) neighboring voxels if their value was above
the threshold calculated using Eq. 2.

Validation studies

Data sets: Data Set 1 was used to evaluate the performance of the
algorithm under realistic imaging conditions. It consists of 20 3D
simulated tumors with variable levels of irregular shape and homoge-
neous or nonhomogeneous uptake distributions derived from tumors
in patients undergoing 18F-fluorodeoxyglucose PET/CT investiga-
tions for radiotherapy treatment planning purposes. These images
were acquired in 2D and 3D mode using the GE Discovery LS and
Philips Gemini PET/CT scanners, respectively. Three of these tumors
illustrating the range of sizes, shapes, and heterogeneities considered
are shown in Fig. 4a—4c. The goal was to produce realistic images of
PET tumors while retaining a voxel-based ground truth to compute
accurate voxel-based classification errors. Half of the tumors were
simulated considering a homogeneous uptake distribution, whereas
the other half was simulated using significant heterogeneity within
the tumor. The procedure followed to generate these images is
illustrated in Fig. 3 and detailed in the following paragraphs.

Each clinical tumor is first manually delineated on the PET image
by a nuclear medicine expert, thus creating a voxelized volume that
represents the ground truth of the simulation. The activity levels
attributed to each of the tumor parts were derived from the average
activity measured in the same areas of the tumor in the correspond-
ing patient images. This ground truth tumor structure is subse-
quently transformed into a nonuniform rational B-splines
(NURBS) volume using Rhinoceros (CADLINK software, Moran-
gis, France), for insertion into the NURBS-based CArdiac-Torso
(NCAT) phantom (29) attenuation maps at the approximate position
where it was located in the patient (30). No respiratory or cardiac
motions were considered. Simulations using a model of the Philips
PET/CT scanner previously validated with Geant4 Application for
Tomography Emission (GATE) (31) were carried out. Forty-five
million coincidences were simulated corresponding to the statistics

of a clinical acquisition over a single-axial 18-cm field of view (31).
Images were subsequently reconstructed using OPL-EM (seven
iterations, one subset) (31) with two voxel sizes (4 x 4 x 4 for
the Philips Gemini and 2 x 2 x 5 mm? for the GE Discovery LS)
to match those used in the corresponding clinical images.

Data Set 2 contains 18 images of lung tumors from patients with
histologically proven non—small cell lung cancer (clinical Stage Ib—
IIIb), acquired on the Siemens Biograph PET/CT scanner and recon-
structed using OSEM (four iterations, eight subsets), with scatter
and CT-based attenuation correction, and 5.31 x 5.31 x 3.38
mm?® voxels. These tumors were surgically extracted for a histology
study in which their maximum diameter was measured by
macroscopic examination (32). These diameters range from 15 to
90 mm (44 £ 21). One of these tumors is shown in Fig. 4d.

Analysis: Because our goal is not the detection of a lesion in the
whole image but the accurate estimation of its volume and shape, we
assume it has been detected and isolated by the clinician within a 3D
“box”” encompassing the tumor.

Because a ground truth was available, classification errors (CE)
were computed. In the case of a two-class ground truth, the CE is:

_ card{t|c, #x,}

= 100 3
card{t|x, = 1} % ’ )

where ¢; is the classification of voxel ¢, and x; is the true class. Card is
the number of elements. This error measurement takes into consid-
eration the spatial distribution of the tumor by considering both
background voxels classified as object and object voxels classified
as background. Consequently, this measure is more appropriate
than simple volume estimation, which could lead to overall small
volume errors associated with largely inaccurate segmentations. In
addition, the errors are computed relatively to the size of the object,
to avoid biases relative to the size of the processing box. In the case
of a three-class ground truth, CE may be computed for each of the
three classes using Eq. 4 or with respect to a binarized ground truth
(second and third class merged) using Eq. 3.

_card{tlx, = c,c,#c} + card{t|x, #c,c, = c}

CE,
card{tlx, = c}

x 100, (4)

where CE, stands for the classification error associated with a given
class c.
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Fig. 3. The simulation of realistic positron emission tomography images.

Two analyses were conducted using Data Set 1. The first consid-
ered the entire data set (both homogeneous and heterogeneous
tumors) and CE computed using Eq. 3 to compare overall perfor-
mances of FLAB (binary only), 3-FLAB, FCM, and Ty, The
second considered only the 10 heterogeneous tumors to compute
CE, and CEj; using Eq. 4 for 3-FLAB and FCM with three clusters.

The segmentation accuracy on the tumors with histology (Data
Set 2) was assessed by segmenting the clinical image and subse-
quently measuring the maximum diameter on the segmented
volumes to compare it with the histology measurement.

RESULTS

Figure 5 contains one axial slice of the segmentations
obtained on three simulated tumors of Data Set 1 and one
tumor of Data Set 2. Figure 6a contains the mean classifica-
tion errors and standard deviation obtained by all the methods
on the 20 tumors of Data Set 1. FLAB (binary only)
performed well on homogeneous tumors but failed as
expected on strongly heterogeneous lesions, leading to over-
all errors of 15% =+ 11%. 3-FLAB, in contrast, produced
segmentation maps closer to the ground truth, both visually
and quantitatively, with errors between 5% and 15%
(9% =+ 8%). FCM (with two or three clusters) was competi-
tive with respect to 3-FLAB for some tumors but showed
a higher variability (10%—40%) and mean error (20% =+
12%). This translated qualitatively in FCM being unable to
differentiate two regions within the tumor as well as being
unable to detect discontinuities in the contours (e.g.,
Fig. 5d, first row). In addition, for the regions where a transi-
tion was present between the high uptake region and the
background (e.g., Fig. 4d), the 3-FLAB approach was the
only one giving accurate representation of this transition
(Fig. 5c vs. Fig. 5d, last row). Ty, Was not able to produce
satisfactory segmentation in several cases. Tumors with high
overall contrast were approximately extracted from the back-
ground (e.g., Fig. 5e, rows 2—4). However, as a binary
method, it is unable to delineate uptake distributions within
the tumor. In several cases, the heterogeneity was significant,
and Ty, lead to significant underevaluation of the tumor
volume (CE up to 60% with a mean of 17% + 14%) because

it tends to extract the high-activity region or parts of the re-
duced uptake region only (e.g., Fig. Se, first row).

Figure 6b compares 3-FCM (using three clusters) and
3-FLAB concerning the three-class segmentation of the 10
heterogeneous simulated tumors of Data Set 1. 3-FCM is
less accurate and robust compared with 3-FLAB, especially
in the delineation of higher activity regions (third class),
with about twice the mean error and standard deviation
(24% + 20%) of 3-FLAB (11% =+ 8%).

Figure 7 contains the mean error and standard deviation
with respect to the maximum diameter, computed on the
tumor histology database (Data Set 2). Whereas all methods
gave relatively low mean errors (=3%), the standard devia-
tion associated with FCM and Tk, (13% and 12%, respec-
tively) is about twice that of 3-FLAB (<6%), and binary
FLAB showed a standard deviation of almost 10%. The
low mean error for all these algorithms is explained by the
fact that there were about the same amount of under- and over-
estimation of the diameters in this data set, resulting in an
overall low mean error. Here the standard deviation is a better
indicator of the accuracy obtained on the data set and demon-
strates higher accuracy and robustness for 3-FLAB.

DISCUSSION

Functional volume delineation represents an area of interest
for multiple clinical applications (routine and research) of
PET. Such areas include response to therapy studies and the
use of biological tumor volumes in radiotherapy treatment
planning. Although several fully automatic algorithms have
recently been proposed (11-20), segmentation methodolo-
gies currently used in clinical practice are based on the use
of fixed and adaptive thresholding (4—10). These algorithms
have been shown to determine functional volumes accurately
under specific imaging conditions of spherical and homoge-
neous activity distribution object in phantom studies and
have been evaluated on clinical images for which the ground
truth is unknown. In clinical practice, lesions are often hetero-
geneous in shape and uptake. To address these issues, we have
extended a previously developed algorithm to evaluate
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(c)

Non available

(d)

Fig. 4. Data sets illustration. (a—d) Examples of clinical tumors (up) with CT (left) and PET (right), and the corresponding

simulated PET (down): (a—c) Data Set 1; (d) Data Set 2.

lesions with nonuniform uptake and nonspherical forms. In
addition, we have proposed an evaluation framework includ-
ing both realistic simulated patient lesions and histological
assessment of tumor diameters, allowing for evaluation of
segmentation algorithms under standard imaging conditions
and the added advantage of knowing the ground truth.

The inability of the adaptive thresholding considered in
this study to segment complex tumors accurately is
demonstrated by its poor performance. This is explained by
the fact that in cases of heterogeneous uptake, the 70%
threshold used for the initial estimation of the tumor-to-back-
ground contrast may retain only the high uptake region, thus
leading to incorrect contrast estimation. However, if the
lesion is small or has a small contrast, the 70% threshold
may lead to an initial overestimation of the volume of the
tumor, and hence an underestimation of its uptake and an
incorrect estimation of the contrast, for which the subsequent
adaptive thresholding may not be able to compensate. In
addition, the background ROl is user-dependent with a poten-
tially high impact on the result, especially with heteroge-

neous background. In such cases, we systematically
selected the ROI that resulted in the lowest error. Finally,
the region growing implementation avoids incorporating
false positives of the background if they are not connected
to the main tumor, especially when the contrast is low or
the background is noisy and heterogeneous. However, it
also makes the algorithm dependent on the seed location
and can lead to missing parts of the tumor when several
high-uptake regions are connected by low-uptake regions.
FCM can produce binary or three-class segmentations, but
its robustness and accuracy are much lower compared with
FLAB because it incorporates neither spatial correlation
nor noise modeling. One advantage of the Ty, over FCM
is its region growing implementation that makes it less sus-
ceptible than FCM to the inclusion of high-intensity voxels
of the background. Therefore, FCM usually performs poorer
than Ty, for low-contrast lesions and noisy images but bet-
ter for heterogeneous activity distributions within the tumor.
In contrast, 3-FLAB performed accurately even under chal-
lenging contrast, noise, and heterogeneity conditions, with
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(a)

(b)

(c)

(d) (e)

Fig. 5. Segmentations of the tumors in Fig. 4a—4d: (a) ground truth; (b) positron emission tomographic image; segmen-
tations for (c) three-class fuzzy locally adaptive Bayesian, (d) fuzzy C-means, and (e) adaptive threshold models.

overall superior performance compared with the other
algorithms considered here.

The need for more than three classes may arise for hetero-
geneous tumors on a heterogeneous background. However,
all the clinical tumors considered in this study were correctly
delineated using two or three classes because the contrasts
between the heterogeneities within the tumor are usually
much higher than those occurring in the background. Hence,
only one hard class may be sufficient to deal with the back-
ground, whereas two are required to correctly handle the
significantly different uptakes occurring inside the tumor.
Eventually the 3-FLAB algorithm could be extended to
more than three classes assuming that only pairs of hard
classes generate fuzzy transitions. One also has to keep in
mind that using more classes will lead to smaller regions,
but those regions within the tumor will subsequently be
used for quantification or radiotherapy dose boosting and/
or painting and should therefore be kept reasonably large.
The potential impact of using three classes proposed by
3-FLAB should therefore be investigated before more
complex segmentations using additional classes can be
considered.

We have already demonstrated that FLAB performs well
for small lesions down to 13 mm in diameter (20), and this
study was not designed to investigate specifically the ability
of 3-FLAB to deal with small tumors because these rarely

exhibit heterogeneous uptake that can be detected on the
PET image considering the existing resolution limits.
3-FLAB retains all the characteristics of FLAB but also has
the ability to consider a third class and therefore handle non-
uniform lesion activity distributions. Thus, 3-FLAB does not
as such improve the delineation of small (<2 cm) lesions.
However, the higher/lower uptake regions within the larger
tumors are often of small size, comparable to that of small
lesions, with PVE affecting them with respect to their ‘“back-
ground,” which is, in fact, the other part of the tumor with
a different uptake. As Fig. 6b demonstrates, 3-FLAB is
capable of accurately segmenting these regions.

An application that could greatly benefit from the use of
FLAB is radiotherapy treatment planning (33). It is now
acknowledged that planning based on PET/CT volumes
improves tumor delineation by reducing inter- and intraob-
server variability (32, 34). It can also lead to the inclusion
of regions not visible on CT or the exclusion of regions with-
out significant uptake (35). Using the 3-FLAB algorithm
could help lower inter- and intraobserver variability, as
well as shorten the time-consuming delineation process
associated with currently implemented algorithms given the
need for multiple phantom studies in the use of adaptive
thresholding. 3-FLAB takes a few seconds per iteration
even for the largest tumors considered in this study (on a sin-
gle 2-Ghz core processor in C++ implementation). Further,
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Fig. 6. Mean classification errors and standard deviation for (a) all
methodologies considering all 20 tumors of Data Set 1, (b) three-
class fuzzy locally adaptive Bayesian, and 3-class fuzzy C-means
considering the second and third classes of the 10 heterogeneous
tumors of Data Set 1.

““dose painting”’ can be facilitated by the nonbinary nature of
the proposed segmentation, allowing for automatic definition
of ROIs inside the tumor—for example, in dose-escalation
studies (36)—in addition to the external contour information
for optimized dosimetry, potentially reducing the dose deliv-
ered to healthy surrounding tissues and organs. The impact of
such improved accuracy on overall patient outcome remains
to be demonstrated in clinical studies, which are planned for
the future. Finally, FLAB robustness with respect to the noise
characteristics associated with the use of different scanners,
acquisition protocols, and reconstruction algorithms has
been demonstrated in a preliminary study (24) and should
allow its use with any type of PET images without the need
for time-consuming preprocessing optimization.
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Fig. 7. Mean errors and standard deviation for each methodology,
with respect to known maximum diameter of Data Set 2 tumors.

The proposed algorithm may also have an impact on
diagnosis and therapy response assessment when combined
with PVE correction (PVC) for accurate quantification.
With various PVC approaches, anatomic information from
MRI or CT is used to improve the quantitative and qualitative
accuracy of functional images (37, 38). Unfortunately, when
no anatomic image is available or no correlation exists
between the anatomic and functional structures, such
approaches are not easy to use (3). This is especially true in
cases of large heterogeneous tumors for which there is little
to no correlation between the anatomic and functional infor-
mation. A potential solution will be the use of the FLAB
result instead of the anatomic image in combination with
one of the previously proposed PVC algorithms. This should
lead to improved contrast at the object’s borders as well as
improved quantification in the regions within the tumor.
Such combination recently demonstrated encouraging
results (39) and warrants further investigation regarding the
potential impact in clinical therapy response studies.

CONCLUSION

A modified version of the FLAB algorithm has been devel-
oped to include the estimation of three hard classes and three
fuzzy transitions. This automatic approach combines statisti-
cal and fuzzy modeling to address specific issues associated
with 3D-PET images, such as noise and PVE. Its accuracy
has been assessed on both simulated and clinical images of
complex shapes containing inhomogeneous activities and
small regions. The results demonstrate the ability of
3-FLAB to delineate such lesions, for which the threshold-
based methodologies suggested until now have failed.
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The objective of this study was to establish the repeatability
and reproducibility limits of several volume-related PET image-
derived indices—namely tumor volume (TV), mean standard-
ized uptake value, total glycolytic volume (TGV), and total
proliferative volume (TPV)—relative to those of maximum stand-
ardized uptake value (SUVax), commonly used in clinical prac-
tice. Methods: Fixed and adaptive thresholding, fuzzy
C-means, and fuzzy locally adaptive Bayesian methodology
were considered for TV delineation. Double-baseline 8F-FDG
(17 lesions, 14 esophageal cancer patients) and 3’-deoxy-
3’-18F-fluorothymidine ('8F-FLT) (12 lesions, 9 breast cancer
patients) PET scans, acquired at a mean interval of 4 d and
before any treatment, were used for reproducibility evaluation.
The repeatability of each method was evaluated for the same
datasets and compared with manual delineation. Results: A
negligible variability of less than 5% was measured for all seg-
mentation approaches in comparison to manual delineation
(5%-35%). SUVax reproducibility levels were similar to others
previously reported, with a mean percentage difference of
1.8% =+ 16.7% and —0.9% * 14.9% for the '8F-FDG and
18F-FLT lesions, respectively. The best TV, TGV, and TPV repro-
ducibility limits ranged from —21% to 31% and —-30% to
37% for '8F-FDG and '8F-FLT images, respectively, whereas
the worst reproducibility limits ranged from —90% to 73%
and —68% to 52%, respectively. Conclusion: The reproduc-
ibility of estimating TV, mean standardized uptake value, and
derived TGV and TPV was found to vary among segmentation
algorithms. Some differences between '8F-FDG and '8F-FLT
scans were observed, mainly because of differences in overall
image quality. The smaller reproducibility limits for volume-
derived image indices were similar to those for SUVax, sug-
gesting that the use of appropriate delineation tools should
allow the determination of tumor functional volumes in PET
images in a repeatable and reproducible fashion.
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Most current PET clinical practices for diagnosis, stag-
ing, prognosis, therapy-response assessment, and patient
follow-up rely on manual and visual analysis (/). The index
most commonly used in PET clinical studies is the stand-
ardized uptake value (SUV). To obtain this index of activity
accumulation, a region of interest (ROI) should be deter-
mined, usually drawn manually or using some fixed thresh-
old. Although an ROI is not the only factor that can affect
the accuracy of SUVs, the type and size of an ROI are large
contributors to the variability of such measurements, as has
been previously demonstrated (2,3). A popular alternative
is the use of the pixel with the maximum activity value,
usually referred to as the maximum SUV (SUV ,.x). Many
studies have demonstrated the prognostic and predictive
value of SUV,.., despite the fact that it is sensitive to
image noise (4,5). On the other hand, a few, mostly recent,
studies have explored the use of overall tumor volume (TV)
as an index for prognosis and response assessment (6-8).
These studies considered the TV either alone or in combi-
nation with the mean SUV (SUV .n), to form the total
glycolytic volume (TGV) and total proliferative volume
(TPV) (for '8F-FDG and 3’-deoxy-3’-!8F-fluorothymidine
['8F-FLT], respectively), defined as the product of TV x
SUVean (9-11).

The accuracy, robustness, repeatability, and reproduci-
bility of image delineation are directly responsible for the
reduced use of functional volumes derived from PET
images. On the one hand, manual delineation of functional
volumes using PET images leads to high inter- and intra-
observer variability (3), principally arising from the poor
quality of PET images. On the other hand, current state-of-
the-art algorithms for functional-volume segmentation con-
sist of fixed- (/2) or adaptive-threshold approaches (/3,14).
Although fixed-threshold approaches are attractive because
of their simplicity, their drawbacks are numerous given that
the value of the threshold to be used for each lesion clearly
depends on multiple factors, such as lesion contrast and size
and image noise (/5). The solutions based on the use of
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adaptive thresholding consider the contrast between the
object to delineate and its surrounding background. How-
ever, adaptive thresholding requires imaging system-—spe-
cific optimization using uniformly filled spheric lesions,
hence reducing the robustness of the approach, particularly
in the case of multicenter trials. In addition, this method
depends on the background ROI choice, which can in turn
lead to reduced interobserver reproducibility for functional-
volume determination. A few automatic algorithms have
been proposed (/6—19). The main difference between these
algorithms and the threshold-based approaches is that the
algorithms automatically estimate the parameters of interest
and find the optimal regions’ characteristics in a given
image, without system-dependent parameters. This techni-
que may reduce issues associated with deterministic ap-
proaches based on thresholding, potentially increasing the
robustness and reproducibility of PET functional-volume
determination (20).

Establishing the level of reproducibility and repeatability
is essential in the use of any image-derived index in prog-
nostic or therapy-response studies, allowing the evaluation of
which change between 2 studies can be considered signifi-
cant. To date, only a few reproducibility studies (27-25),
almost exclusively concentrating on SUV ., and SUV can
variability in double-baseline '8F-FDG PET scans, have
shown a relative absolute percentage difference of up to
13%, with an SD of 10%. The reproducibility of quantita-
tive indices (Patlak influx constant), associated with the
acquisition of dynamic datasets, has also been assessed
(21,22), showing similar levels of reproducibility (mean
percentage difference, 8%—10%). Studies on the reproduci-
bility of such indices in the case of '8F-FLT PET have
shown that changes larger than 15%-20% and 25%-30%
may be considered significant in SUV .., (obtained using a
41% fixed threshold) and SUV,,,, or Patlak influx constant,
respectively (26,27).

In most of these studies, SUV .., has been calculated
using manually drawn ROIs or a single fixed threshold
(varying from 40% to 75% of the maximum activity).
Among these studies, only 1 has considered the reproduci-
bility of metabolic functional volumes using a fixed thresh-
old. Krak et al. (3) have shown a mean percentage difference
in the ROI volumes of 23% = 20% and 55% = 35% for a
fixed threshold of 50% and 75%, respectively. Finally, to our
knowledge there has been no published study evaluating the
reproducibility of TGV and TPV.

To date, despite numerous studies assessing the accuracy
of different segmentation algorithms, there is a lack of
evaluation of the repeatability and reproducibility of these
algorithms relative to different threshold- and automatic-
based delineation approaches. Therefore, the main objec-
tive of this study was to assess the repeatability and
reproducibility in determining 3-dimensional (3D) func-
tional volumes and associated indices (SUV can, TGV, and
TPV) in PET using different algorithms. The reproducibil-
ity of SUV .« was also included because it represents the

PET VoLuME DETERMINATION REPRODUCIBILITY * Hatt et al.

index most used today in clinical practice and facilitates a
direct comparison with previous studies. This evaluation
was performed on double-baseline '8F-FDG and '8F-FLT
clinical PET datasets.

MATERIALS AND METHODS

Segmentation Algorithms Considered

Four approaches were used in this work. Two different fixed
thresholds (/2) were considered, at 42% (T42) and 50% (T50) of
the maximum voxel value, using a region-growing algorithm with
the maximum-intensity voxel as seed.

An adaptive-threshold method (TSBR, for threshold source—to—
background ratio) (/3) was also included:

Tiweshold = a + b= Eq. 1

SBR is the source-to-background ratio, defined as the contrast
between a manually defined background ROI and the mean of the
maximum-intensity voxel and its 8 surrounding neighbors in the
same slice. The parameters a and b are optimized through linear
regression analysis for a given scanner using phantom acquisitions
of various sphere sizes and contrast.

For automatic-segmentation approaches, the fuzzy C-means
(FCM) (28) clustering algorithm, with 2 clusters (background and
lesion), was considered. This algorithm has been previously used
for functional-volume segmentation tasks in both brain and oncol-
ogy applications (29,30) and iteratively minimizes a cost function
of the voxel-intensity values to estimate the center of each cluster
and membership of each voxel to these clusters. The second auto-
matic algorithm considered was the fuzzy locally adaptive Baye-
sian (FLAB) (/9) methodology, based on a combination of
statistical models with a fuzzy measure to simultaneously address
issues of both noise and blur resulting from partial-volume effects
in PET images. FLAB is also able to deal with strongly heteroge-
neous uptake in tumors of complex shape and generate nonbinary
segmented volumes by considering 3 classes and the associated
fuzzy transitions (37). The parameters required for the segmenta-
tion (gaussian mean and variance of each class and spatial priors
for each voxel) were estimated using the iterative stochastic
expectation maximization procedure. For all approaches, the
tumors were delineated after having been isolated in a 3D box
of interest previously defined and fixed for all segmentation meth-
odologies (manual and automatic).

Repeatability and Reproducibility: Definitions

Within the context of this study, repeatability is defined as the
ability of a given segmentation algorithm to reach the same result
regarding the definition of a functional volume when applied
multiple times on a single image. In such a task, entirely
deterministic fixed-threshold approaches (T42, T50) will always
give the same result. On the other hand, more advanced
methods—for example, the adaptive thresholding or automatic
algorithms such as FCM and FLAB considered here—are suscep-
tible to giving different results when applied multiple times on the
same image. The adaptive-threshold segmentation, for instance,
depends on a manually drawn background ROI and may thus
result in variable delineation depending on the choice of this
ROL. On the other hand, FCM and FLAB are iterative procedures
that may not converge to the same result at each execution.
Finally, manual delineation may be considered as the least repeat-
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able, even when considering a single operator (intraoperator var-
iability). A second aspect considered in this study was the impact
of a segmentation algorithm on the reproducibility of determining
functional volumes from 2 baseline PET scans.

Two different clinical datasets—comprising esophageal and
breast cancer patients scanned with '8F-FDG and '®F-FLT, respec-
tively—were used. In both cases, 2 consecutive PET scans were
acquired at an interval of a few days. We therefore studied the
differences in derived functional TVs, lesion SUV ,can, and TGVs
and TPVs extracted from both images. The repeatability of meas-
uring TVs using the various delineation approaches considered in
this study was investigated for the same clinical datasets.

Validation Studies

Fourteen whole-body '8F-FDG PET/CT images acquired for
patients with esophageal cancer (n = 17 lesions) and nine '3F-
FLT PET/CT images acquired for breast cancer patients (n = 12
lesions) were considered. Esophageal cancer patients’ images
were acquired at 3.4 = 2.2 d on a PET/CT scanner (Gemini;
Philips), with 2-min acquisitions per bed position, 60 min after
the '8F-FDG injection (6 MBg/kg). Data were reconstructed using
a 3D row-action maximization-likelihood algorithm with standard
clinical protocol parameters (2 iterations, relaxation parameter of
0.05, 5 mm in full width at half maximum, 3D gaussian postfilter-
ing). '8F-FLT PET images were acquired for patients with breast
cancer (27); 2 scans were obtained within 2-7 d (median, 4.1 d)
before treatment. All patients received a single bolus intravenous
injection of F-FLT (153-381 MBq) over 30 s, and dynamic PET
was performed for 95 min. Patients were scanned on a PET scan-
ner (ECAT962/HR+; CTI/Siemens), and data were reconstructed
using ordered-subset expectation maximization (360 iterations, 6
subsets, no postfiltering).

In both cases, 2 baseline scans were acquired within an average
of 3—4 d of each other. Because no treatment was administered
between the 2 baseline scans, and considering the short time
between the 2 acquisitions, the assumption was that no significant
physiologic changes occurred in between the time the scans were
obtained. A similar assumption had been previously used in all
other studies evaluating the reproducibility and repeatability of
different SUV measurements in PET, with double-baseline scans
obtained within 5-10 d (2/-25). Figure 1 shows the 2 baseline
scans—1 for an esophageal cancer (Fig. 1A) and 1 for a breast
cancer (Fig. 1B) patient.

Analysis

For the repeatability evaluation, the tumors in the first image for
each patient were segmented 10 times each with FCM, FLAB, and
TSBR. In addition, manual delineation was performed by 2
nuclear medicine experts. More specifically, the 2 experts
performed 10 different slice-by-slice manual delineations for the
different lesions considered in a randomized fashion, ensuring
a minimum of a week between 2 consecutive delineations of the
same lesion. All these manual segmentations were performed
under the same conditions as those of full-range contrast display.
The mean percentage variability and associated SD with respect to
the mean segmented volume was computed for each of the lesions
and segmentation approaches across the 10 executions and across the
10 manual delineations, to assess the repeatability of the approaches.
The repeatability of the manual delineations of the 2 experts were
compared separately (intraobserver variability) and with each other
(interobserver variability) using intraclass coefficients.
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FIGURE 1. Baseline images: '8F-FDG (esophagus) (A) and

18F-FLT (breast) (B).

To study the relative impact of the different segmentation
algorithms on the reproducibility of deriving different PET
image indices, TVs were segmented independently on both
baseline scan images for each lesion, using the different
automatic-segmentation approaches. Subsequently, TV (in cm?),
SUV neans TGV or TPV, and SUV,,,,, quantitative values (M) were
computed for each delineated lesion and compared between the 2
scans using the mean percentage difference relative to the mean of
both baseline scans:

M +M
(MscanZ - Mscanl)/ M X 100. Eq 2

The distribution of the differences between each pair of
measurements was assessed for each index using the Kolmo-
gorov—Smirnov test, showing no significant differences from a
normal distribution (Fig. 2). Bland—Altman analysis (32) was sub-
sequently used to highlight differences between segmentation
methodologies. Mean and SD of differences and the respective
95% confidence intervals (Cls) were obtained. To define the repro-
ducibility limits (reference range of spontaneous changes), the
95% Cls for the difference between 2 measurements were com-
puted as the mean difference = 1.96 times the SD of the differ-
ence. To investigate any potential correlations in the measured
reproducibility, the magnitude of the percentage difference for
the TV, SUV pax, and SUV e, measurements was compared with
the average of the TVs using the Pearson correlation coefficient r.
This analysis was repeated to investigate the correlation of the
reproducibility of the different parameters with the SUV can.

RESULTS

Table 1 contains the mean variability and SD around the
mean segmented volume across the 10 manual delineations

No. 9 « September 2010



Standard normal deviate
o
T

2+ o
So oy
-30 -20 -10 0 10 20 30 40
Differences between
SUV measurements (scan #2 - scan #1) (%)
B sfF
2~ o

Standard normal deviate
o
T

So oy
-50 -40 -30 -20 -10 0 10 20 30

Differences between
volume measurements (scan #2 - scan #1) (%)

FIGURE 2. Plots showing that distributions of differences
for SUVean (FLAB) (A) and TV (FLAB) (B) between 2 scans
were not significantly different from normal.

performed by each of the 2 nuclear medicine experts and 10
repeated executions of the FLAB, FCM, and TSBR algo-
rithms. Results for both clinical datasets are presented sep-
arately. FLAB demonstrated highly repeatable results in all
of the studied cases, with negligible variability (1%) around
the mean segmented 3D volumes across the different
repeated executions. FCM also led to satisfactory repeat-
ability results (1.4% * 1.6% for the '8F-FDG cases and
2.3% * 1.9% for the '8F-FLT cases). In comparison, the
use of the TSBR led to more than twice as high variability
(2.9% *+ 2.7% and 4.7% =+ 3.6% for the '8F-FDG and '8F-
FLT cases, respectively). By contrast, manual segmentation
by the 2 experts showed high intraobserver variability for
I8F-FDG esophageal lesions (14.1% * 12.1% and 16.4% *
11.3% for experts 1 and 2, respectively). Interobserver var-
iability was 17.1% * 14.3%, with an intraclass coefficient
of 0.67 (95% CI, 0.39-0.89). In the case of '3F-FLT, this
variability was even higher, with an intraobserver variabil-
ity of 22.1% = 18.7% and 23.8% = 17.8% for experts 1
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and 2, respectively, and an interobserver variability of
27.4% = 21.9%, with an intraclass coefficient of 0.59
(95% CI, 0.31-0.84).

Tables 2 and 3 contain a summary of the reproducibility
results for the different parameters computed from Bland—
Altman plots on the 2 consecutive baseline scans for '8F-
FDG esophageal and '8F-FLT breast lesions, respectively.
The observed reproducibility of SUV,.. and SUV ..,
measurements for the volumes obtained using TSBR and
FLAB is illustrated in Figure 3. The corresponding plots for
TV are shown in Figures 4A and 4B using TSBR and
FLAB, respectively.

Concerning the reproducibility of SUV .., similar per-
centage differences were measured for the '®F-FDG and
I8F-FLT datasets, with an SD of the mean percentage differ-
ence of 16.7% and 14.9%, respectively. The upper and
lower percentage reproducibility limits for the SUV .«
were —31% to 35% and —30% to 28% for the '3F-FDG
and '8F-FLT datasets, respectively. On the other hand, the
automatic approaches led to '8F-FDG TV measurement
reproducibility limits of —21% to 31% and —51% to
52% for the FLAB and the FCM algorithms, respectively.
A poorer reproducibility of the '®F-FDG TV measurements
was observed for the threshold-based approaches, with
upper and lower reproducibility limits of —90% to 51%
and —69% to 73% for the adaptive and T42, respectively.
In the case of '8F-FLT TV measurements, the reproducibil-
ity was similar to that of '®F-FDG for the threshold-based
approaches, whereas a deterioration in the reproducibility
obtained with the automatic approaches was observed, par-
ticularly for the FCM algorithm (with reproducibility limits
of —66% to 74%).

SUV mean measurements using FLAB exhibited reprodu-
cibility levels similar in magnitude to that for the TV def-
inition, with an SD of the mean percentage difference of
15.6% and 14.1% for the '8F-FDG and '3F-FLT datasets,
respectively. This was, however, not the case for the other
tumor-delineation algorithms considered, with the larger
SUV hean reproducibility limits using the FCM tumor defi-
nition (—77% to 62% and —59% to 59% for the '8F-FDG
and BF-FLT datasets, respectively). Finally, the smaller
SUVinean reproducibility for the threshold-based ap-
proaches was obtained using T50 for both the '3F-FDG
and the '8F-FLT datasets, with a mean percentage difference
of —10.5% * 23% and —13.3% = 16.8%, respectively.

The reproducibility of TGV and TPV, being the product
of TV and SUV can, Was dependent on the direction of
changes for both TV and SUV .,. As an increase of TV
was correlated with a decrease of SUV .., and vice versa
(P <0.002; r = 0.54, 0.67, and 0.72 for FLAB, TSBR, and
T42, respectively), TGV and TPV reproducibility levels
were generally similar in magnitude to the TV and SUV ,can
considered separately. However, in certain cases there were
more increases or decreases of both TV and SUV .., for a
given patient, resulting in larger variability of the TGV and
TPV measurements (e.g., the TSBR measurements of the
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TABLE 1. Repeatability Evaluation

Esophageal lesion

Breast lesion

Method Mean variability (%) SD Mean variability (%) SD
FLAB 0.6 0.3 1.1 0.7
FCM 1.4 1.6 2.3 1.9
Fixed threshold 0 0 0 0
Adaptive threshold 2.9 2.7 4.7 3.6
Manual delineation (expert 1) 14.1 12.2 22.1 18.7
Manual delineation (expert 2) 16.4 11.3 23.8 17.8
Manual delineation (expert 2 with respect to 1) 17.1 14.3 27.4 21.9

Data are mean variability and SD around mean segmented volume for repeated delineations of 17 esophageal and 12 breast lesions

on first baseline '8F-FDG and '8F-FLT scans, respectively.

I8E_FLT breast lesions, with 22.1% * 48.9% for the TPV,
whereas TV and SUV ., were 11.3% * 31.4% and
—3.2% = 26.5%, respectively).

The TV reproducibility results were dependent on the
measured TV, with a larger variability seen for smaller
tumors. This dependence was statistically significant for the
adaptive thresholding (r = 0.37, P = 0.046; Fig. 5A), with
differences higher than 30% on average (=75%) in several
of the tumors below 50 cm?. On the other hand, this depend-
ence was not significant for FLAB (r = 0.27, P = 0.16; Fig.
5B), with most differences less than 30%—irrespective of
TV—further demonstrating improved robustness, as previ-
ously shown (79,20). In terms of the SUV ., reproducibil-
ity results, no statistically significant trend with either the
lesion size (r = 0.016, P = 0.93; Fig. 5C) or the mean of
the 2 SUV,can measurements (r = 0.14, P = 0.49) was
observed. Finally, no statistically significant trends were
found for the SUV,.., reproducibility depending on the
lesion size, irrespective of the segmentation algorithm used

(r=02,P=0.3,and r = 0.23, P = 0.23, for TSBR and
FLAB, respectively).

DISCUSSION

Functional-volume delineation today represents an area
of interest for multiple clinical (routine and research)
applications of PET (prognosis, response prediction, ther-
apy assessment, radiotherapy treatment planning). In all of
these applications, the repeatability and reproducibility
with which functional volumes can be determined under
different imaging conditions play a predominant role,
allowing a level of confidence to be established in the use
of such TV measurements. Volume-definition methodolo-
gies currently used in clinical practice are based on the use
of manual delineation or fixed and adaptive thresholding
(12-14), whereas several promising automatic algorithms
have been proposed (/6—19). The major drawback of man-
ual delineation is high inter- and intraobserver variability;
in addition, the approach is time-consuming. On the other

TABLE 2. Reproducibility Results Using '8F-FDG for Esophageal Lesions

Method Parameter Mean = SD 95% ClI
SN e 1.8 = 16.7 —6.8t0 10.4
FLAB TV 5+ 13.3 —1.8to0 11.9
S| \/— 0+ 15.6 —8to 8
TGV 5.1 + 10.6 —0.4 to 10.5
FCM TV 0.4 + 26.4 —13.2to 14
SUVrmean ~7.8 355 —-26t0 10.5
TGV —7.4 =302 —22.91t0 8.2
TSBR TV —-19.4 + 36 —37.9to —0.9
S| \/— 6.3 + 27.4 —7.81020.4
TGV —-13 = 28.2 —2751t01.5
T42 TV 2.1 + 36.1 —16.5 to 20.7
SUVrmean —-10.5 + 30 —259t05
TGV —8.4 = 234 —20.5t0 3.6
T50 TV 0.9 + 32.9 —16to 17.8
S| \/— -10.5 = 23 —22.6t01.6
TGV —9.5 + 23.1 —-2141t024

LRL 95% ClI for LRL URL 95% ClI for URL
—30.9 —45.9to —16 34.6 19.9-49.6
-21.1 —33 to —9.1 31.1 19.2-43
—30.5 —44.4to —16.6 30.5 16.5-44.4
-156.8 —25.3t0 —6.3 25.9 16.4-35.5
-51.4 —75.1to —27.7 52.2 28.5-75.9
—77.4 —109.2 to —45.5 61.8 30-93.7
—66.6 —93.7 to —39.5 5il.9 24.8-78.9
=6 —122.1 to —57.6 51.1 18.9-83.3
—47.4 —72to —22.8 60.1 35.5-84.6
—68.2 —93.4 to —42.9 42.2 17-67.4
—68.7 —101.2 to —36.3 72.9 40.5-105.3
—69.3 —96.2 to —42.4 48.4 21.5-75.3
—54.3 —75.3to —33.3 37.5 16.5-58.5
—63.5 —-92.9to —34 65.3 35.9-94.8
—56.5 —77.6to —35.5 35.6 14.5-56.6
—54.9 —75.6 to 34.1 35.8 15.1-56.6

LRL = lower reproducibility limit; URL = upper reproducibility limit.
Data are percentage differences between scan 2 and scan 1 measurements.
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TABLE 3. Reproducibility Results Using '8F-FLT for Breast Lesions

Method Parameter Mean + SD 95% ClI
SN —0.9 + 14.9 —10.4t0 8.5
FLAB TV 4.3 + 15.7 —5.7 to 14.3
S| \/— —0.6 = 14.1 —9.6 to 8.3
TGV 3.7 £17.2 —7.21t0 14.6
FCM TV 4.2 + 35.7 —18.4 to 26.9
SN 0.3 + 30.1 —18.8 to 19.4
TGV 4.6 + 29.8 —14.3 to 23.6
TSBR TV 11.3 + 31.4 —8.7 to 31.2
S U] \/— —-3.2 £ 26.5 —20to 16.6
TGV 22.1 = 48.9 —9to 53.2
T42 TV 9.8 = 35 —12.4 to 32.1
SUVmean —-9.4 + 20.9 —22.7t0 3.9
TGV 0.7 £ 27.3 —16.7 to 18
T50 TV 112 + 31.4 —8.8 to 31.1
SUVmean -13 + 16.8 —24t0 —2.7
TGV —1.8 = 26 —18.4 to 14.7

LRL 95% ClI for LRL URL 95% ClI for URL
-30 —46.6 to —13.4 28.2 11.6-44.8
=255 —44.1 to —8.9 35.2 17.6-52.8
—28.2 —44 to —12.5 27 11.2-42.7
—30 —49.2 to —10.8 37.4 18.2-56.6
—65.6 —105.5 to —25.8 741 34.3-114
—58.6 =CR2 e =25 59.2 25.6-92.8
=5 —87.2 to —20.5 63.1 29.7-96.4
—50.4 —85.5to0 —15.2 72.8 37.7-108
=Bk)1 —84.7 to —25.5 48.7 19.1-78.3
—73.8 —128.5 to —19.1 118 63.3-172.7
=58.7 —97.8 to —19.6 78.4 39.3-117.5
—50.3 —73.7 to =27 31.6 8.2-54.9
—52.8 —83.3 to —22.3 54.1 23.6-84.6
—50.5 —85.6 to —15.3 72.8 37.6-107.9
—46.2 —64.9to —27.4 11915 0.8-38.3
—52.8 —81.9 to —23.7 491 20.1-78.2

LRL = lower reproducibility limit; URL = upper reproducibility limit.
Data are percentage differences between scan 2 and scan 1 measurements.

hand, currently considered state-of-the art adaptive thresh-
old-based algorithms have been shown to accurately define
functional volumes under certain imaging conditions of
spheric and homogeneous-activity-distribution lesions.
However, adaptive-threshold approaches usually involve
some user interaction to select background ROIs, which
can potentially lead to user-introduced variability. Although
signal intensity reproducibility, predominantly considering
the use of SUV ,..x, has been previously assessed, the poten-
tial of new indices such as TV or TGV and TPV can be
considered only after the assessment of their reproducibil-
ity, which has not been previously widely assessed. There-
fore, in this study the reproducibility limits of these indices,
in comparison to other indices considered as the current
gold standard, have been assessed using different tumor-
delineation methodologies on double-baseline '8F-FDG
and '8F-FLT datasets.

In terms of repeatability, all algorithms exhibited mean
differences of less than 5%, with automatic approaches
coming closer to the perfect repeatability that can be
achieved by deterministic approaches such as a fixed
threshold. The repeatability of both threshold and auto-
matic-segmentation approaches was superior to that of
manual delineation. This should, of course, be considered
within the context of the limited absolute accuracy of
thresholding, particularly for lesions not homogeneous in
form and activity distribution (37).

The variability in the SUV . observed in this work is
similar to that measured in previous reproducibility studies,
with comparable percentage differences for '8F-FDG and
I8F_FLT datasets. These percentage differences suggest that
differences larger than —30% can be considered as signifi-
cant in treatment response, whereas changes above 35%
(30% for '8F-FLT) may be indicative of no response.
Depending on the delineation algorithm used, the mean

PET VoLuME DETERMINATION REPRODUCIBILITY * Hatt et al.

percentage difference and corresponding SD for TV mea-
sured on the 2 baseline scans varied from 5% * 13% to
—19% * 36% for the '8F-FDG and from 4% *= 16% to
10% = 35% for the '3F-FLT datasets. The smallest TV
reproducibility limits obtained were similar to those for
SUVhax- These limits ranged from —21% to 31% and
—27% to 35% for '8F-FDG and '8F-FLT, respectively, sug-
gesting in turn that, depending on the segmentation algo-
rithm used and similar to SUV .., CIs may be considered
for monitoring therapy response based on functional TV.
Similarly, in the case of TGV and TPV the smallest repro-
ducibility limits measured were between —16% to 26% and
—30% to 37% for '®F-FDG and '8F-FLT, respectively. On
the other hand, the largest reproducibility limits for the '3F-
FDG TV and TGV ranged from —90% to 73% and from
—68% to 52%, respectively.

Reproducibility ranges obtained for the '8F-FDG esoph-
ageal lesions were almost systematically smaller than the
ones obtained on the '3F-FLT breast lesions—which can be
attributed to the higher level of noise and overall lower
contrast observed in the '8F-FLT cases, resulting in less
robust delineations. In addition, '8F-FDG esophageal
lesions tended to appear more homogeneous than breast
lesions. For instance, FCM—which incorporates neither
noise nor spatial modeling—is associated with a larger
mean TV variability of the '8F-FLT dataset relative to
18F-FDG, whereas FLAB exhibited similar reproducibility
levels for both. The variability in reproducibility highlights
the need for a robust delineation tool ensuring high repro-
ducibility in an environment of substantial image-quality
variability—Ilikely, for example, to be encountered in multi-
center trials in which the use of functional TV as a measure
of response to therapy may be considered.

T50 uses a more restrictive threshold than 42% and is
therefore less prone to large overevaluation of low contrast
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FIGURE 3. Bland-Altman plots of SUVax (A), SUVmean
using adaptive thresholding (B), and SUVean Using FLAB
(C) for both '8F-FDG and '8F-FLT lesions. Lines show
combined mean, 95% CIl, and upper and lower
reproducibility limits. Individual values for '8F-FDG and '8F-
FLT lesions are shown in Tables 2 and 3, respectively. LRL =
lower reproducibility limit; URL = upper reproducibility limit.
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FIGURE 4. Bland-Altman plots of TV using adaptive
thresholding (A) and TV using FLAB (B) for both '8F-FDG
and '8F-FLT lesions. Lines show combined mean, 95% CI,
and upper and lower reproducibility limits. Individual values
for '8F-FDG and '8F-FLT lesions are shown in Tables 2 and
3, respectively. LRL = lower reproducibility limit; URL =
upper reproducibility limit.

(<4:1) or small-size (<2 cm in diameter) TVs. T50 led to
systematically lower variability than T42. Finally, the adap-
tive-threshold methodology did not demonstrate better
reproducibility than did fixed thresholding, which can be
attributed to the use of the background ROI placed man-
ually on both scans, combined with the fact that back-
ground activity may also vary between the 2 scans.
Although a potential criticism for the current study can be
the lack of ground-truth for the functional volumes, the aim
of this work was not to assess the absolute accuracy of
algorithms, which has been assessed previously for the
approaches used in this work (/9,37). The objective was to
assess the reproducibility limits of functional-volume—
related indices that can be attained depending on the
algorithm. Within this context, the repeated studies of the
double-baseline acquisitions have been performed within an
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FIGURE 5. Differences between TVs (A and B) and SUV,,,a«
(C) measured in 2 baseline scans in relation to average TV
obtained using adaptive thresholding (A) and FLAB (B and C).
abs = absolute.

average of 3—4 d, without any treatment between them,
matching the method used by all other reproducibility studies
to date (27-25). Finally, the reproducibility of SUV ., was
included in this work as the current gold standard, facilitat-
ing at the same time the comparison of our reproducibility

PET VoLuME DETERMINATION REPRODUCIBILITY * Hatt et al.

study to those performed previously. The SUV,.x reprodu-
cibility limits obtained in this work for both '3F-FDG and
I8F-FLT agree closely with those of previous studies.

CONCLUSION

The smaller reproducibility ranges obtained for the
different image indices considered in this study, similar to
those of SUV ,,.x, suggest that new automatic-segmentation
approaches may facilitate the introduction of TVs or a
combination of TVs and signal intensity in the form of
TGVs and TPVs derived from PET images for therapy-
response studies. However, our results also demonstrate that
the reproducibility of different quantitative parameters
associated with functional volumes depends significantly
on the delineation approach.
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Abstract

Purpose Current state-of-the-art algorithms for functional
uptake volume segmentation in PET imaging consist of
threshold-based approaches, whose parameters often re-
quire specific optimization for a given scanner and
associated reconstruction algorithms. Different advanced
image segmentation approaches previously proposed and
extensively validated, such as among others fuzzy C-means
(FCM) clustering, or fuzzy locally adaptive bayesian
(FLAB) algorithm have the potential to improve the
robustness of functional uptake volume measurements.
The objective of this study was to investigate robustness
and repeatability with respect to various scanner models,
reconstruction algorithms and acquisition conditions.
Methods and materials Robustness was evaluated using a
series of IEC phantom acquisitions carried out on different
PET/CT scanners (Philips Gemini and Gemini Time-of-
Flight, Siemens Biograph and GE Discovery LS) with their
associated reconstruction algorithms (RAMLA, TF MLEM,
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OSEM). A range of acquisition parameters (contrast,
duration) and reconstruction parameters (voxel size) were
considered for each scanner model, and the repeatability of
each method was evaluated on simulated and clinical
tumours and compared to manual delineation.

Results For all the scanner models, acquisition parameters
and reconstruction algorithms considered, the FLAB algo-
rithm demonstrated higher robustness in delineation of the
spheres with low mean errors (10%) and variability (5%),
with respect to threshold-based methodologies and FCM.
The repeatability provided by all segmentation algorithms
considered was very high with a negligible variability
of <5% in comparison to that associated with manual
delineation (5-35%).

Conclusion The use of advanced image segmentation
algorithms may not only allow high accuracy as previously
demonstrated, but also provide a robust and repeatable tool
to aid physicians as an initial guess in determining
functional volumes in PET.

Keywords PET uptake volume determination -
Robustness - Repeatability - FLAB - Thresholding

Introduction

Accurate, robust, reproducible and fast delineation of
functional tumour uptake volumes in three dimensions
using positron emission tomography (PET) has been
identified as a pressing challenge for an increasing number
of oncology applications, such as image-guided radiother-
apy [1-3], diagnosis, prognosis and therapy response
assessment [4, 5]. On the one hand, manual delineation of
functional uptake volumes using PET images is tedious and
associated with very low repeatability due to high inter- and
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intraobserver variability [4], principally arising from the
poor quality of PET images. On the other hand, current
state-of-the-art algorithms for functional uptake volume
segmentation using PET images consist of fixed [6] or
adaptive thresholding approaches [7, 8]. Regarding the use
of a fixed threshold, numerous studies have shown the need
for a variable threshold, depending on numerous factors,
such as among others, lesion contrast, lesion size, and
image noise [9]. As a solution, in the case of adaptive
thresholding, the applied threshold depends on the mea-
sured contrast between the object delineated and its
surrounding background, as well as parameters requiring
optimization on phantom acquisitions. This optimization
has to be performed for each scanner model and associated
reconstruction and correction algorithms, making these
approaches system-dependent. In addition, recent studies
have shown that even for the same scanner model, a
significant variation in the “ideal” threshold may exist due
to differences in clinical acquisition and reconstruction
protocols [10] underlining the possibility that such deter-
ministic approaches may not be sufficiently robust and
reproducible for functional uptake volume determination.

Recently several advanced image segmentation algo-
rithms have been proposed in the literature for PET volume
delineation [11-16]. The physical accuracy of these
algorithms in differentiating the uptake signal from its
surrounding background has, in most cases, already been
assessed with respect to ground-truth, provided by a
combination of realistic simulated or acquired phantom
images as well as, in some cases, clinical tumours with
associated histopathology measurements.

However, apart from physical accuracy, different char-
acteristics can be equally important in terms of assessing
the performance of such advanced image segmentation
algorithms, which in principle have the potential to be more
robust and repeatable than “threshold-based” approaches. A
robust and repeatable performance may facilitate their use
with images acquired on different scanner models without
any previous optimization to individual image quality,
providing a less hardware-dependent solution to the
problem of 3-D functional uptake segmentation. However,
none of these methodologies have been shown to be
system-independent, considering the potential variability
that can be observed in PET image characteristics depend-
ing on the scanner or associated reconstruction and
correction algorithms used. Such an evaluation is essential
for the efficient application of these approaches to the
different clinical applications targeted, not simply within a
given institution but also with regard to their use within a
multicentre trial context.

Finally, such a robustness analysis could provide some
insight into the potential behaviour of a given segmentation
algorithm with the use of different tracers. On the one hand,
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the PET scanner properties in terms of spatial resolution
will be similar for acquisitions performed with the same
radioisotope, therefore resulting in partial volume effects of
similar magnitude. On the other hand, acquisitions per-
formed using different radiotracers show different uptake
intensities and therefore subsequent different contrast and
noise level characteristics for a given tumour uptake. For
instance, '®F-FLT and '®F-FMISO images are usually
characterized by higher noise levels and reduced tumour
uptake contrast than '®F-FDG images [17, 18]. Therefore,
studying the behaviour of automated algorithms dedicated
to the delineation of elevated activity in '*F-FDG images,
considering variable contrast and noise levels, could
provide an insight into the potential behaviour of such
algorithms when applied to other '®F-labelled PET tracers.

The objectives of this study were (1) to provide a
robustness and repeatability evaluation framework, and (2)
to assess within this framework the performance of
different advanced and threshold-based segmentation algo-
rithms in delineating elevated activity distributions in a PET
image.

Materials and methods
Segmentation algorithms

Threshold-based and more advanced approaches were
considered in this work. Two different fixed thresholds
were considered, at 42% (T42) and 50% (T50) of the
maximum tumour value, using a region growing algorithm
with the maximum intensity voxel as seed [4]. An adaptive
thresholding (TSBR, for threshold source-to-background
ratio) approach [7] was also included:

1
]threshald =a+ b—— (1)

where SBR is the tumour-to-background ratio determined
by ROI analysis, and the parameters a and b are optimized
for each scanner using phantom acquisitions of spheres.

In terms of more advanced image segmentation
approaches, the fuzzy C-means (FCM) [16] clustering,
previously used for functional volume segmentation tasks
in both brain and oncology applications [14, 15, 19, 20],
was considered. This algorithm iteratively estimates cluster
“centroids” (centres of mass) in the image, computing a
voxel’s membership between 0 and 1 to a given cluster
depending on the distance between the voxel’s value and
the cluster centroids. However, the FCM algorithm lacks
explicit noise and spatial correlation modelling. The second
advanced algorithm considered was an unsupervised bayes-
ian segmentation, known as the fuzzy locally adaptive
bayesian (FLAB) algorithm [14, 15]. It computes, for each
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voxel, a probability of belonging to a given “class” (for
instance, tumour, background or a given uptake level within
a tumour). This probability takes into account the voxel
intensity, spatial correlation with surrounding voxels (the
assumption being that voxels of similar intensities and close
to each other have higher probability of belonging to the
same class) as well as the overall statistical distributions in
the regions of the image by estimating the mean and
variance for each class. The FLAB algorithm automatically
estimates the parameters of interest (number of classes,
class mean and variance, spatial correlation of each voxel)
within a stochastic expectation maximization (SEM) frame-
work [21].

In order to deal with the inherent blurry properties of
PET images due to the limited spatial resolution of
scanners, the algorithm considers that each voxel may
contain a mixture of classes by modelling both spatial
correlation and statistical distributions with a combination
of Dirac “hard” and Lebesgue “fuzzy” measures. This
enables a classification of voxels as belonging to what we
denote as “hard classes” or “fuzzy transitions”, the first
referring to fairly homogeneous regions, the second to
blurred areas occurring at the frontier between two
homogeneous regions. The FLAB algorithm is therefore
able to accurately differentiate if necessary both the overall
tumour spatial extent from its surrounding background as
well as tumour subvolumes with different uptakes. The
accuracy of the FLAB algorithm has been previously
extensively investigated for both homogeneous [14] and
heterogeneous nonspherical tumours [15] and has demon-
strated satisfactory accuracy even for small (<2 cm diam-
eter) volumes of interest (both overall tumours and tumour
subvolumes), short acquisition durations (associated with
higher noise levels) and low (<4:1) contrast (both for
overall tumours with respect to their surrounding back-
ground and between a tumour and its smaller subvolumes).

Accuracy, robustness, repeatability: definitions

For a given segmentation algorithm we define accuracy as
the precision in retrieving the true 3-D object spatial extent,
shape and volume based on the reconstructed activity
distribution in a PET image, irrespective of the correlation
between this distribution and the underlying physiological
process. Thus an image segmentation algorithm would not
be expected to differentiate specific from nonspecific tracer
uptake (for example inflammation and tumour in the case of
FDG) if they are of the same intensity. The defined
accuracy of each of the methodologies considered was
determined as in previous studies [14, 15] by calculating
the classification errors (see section Analysis).

We define robustness as the ability of a given
methodology to generate accurate segmented volumes

under varying acquisition and image reconstruction
conditions. This robustness is determined as the variabil-
ity of the segmentation results when a method is applied
without prior optimization to images acquired using
various scanners, and for each scanner under various
contrast and noise conditions, using different reconstruc-
tion and associated correction algorithms. A dataset
consisting of multiple phantom acquisitions performed
on various scanner models (see section Validation
studies) was used for this task. These phantom studies
were used to assess robustness as they are consistently
employed for optimization purposes with most of the
functional volume segmentation algorithms.

Within the context of this study, repeatability is defined
as the ability of a given algorithm to reach the same result
when applied multiple times to a single image. In such a
task, deterministic fixed threshold approaches will always
give the same result. On the other hand, more advanced
methods may give different results when applied multiple
times to the same image. For example, adaptive thresh-
olding segmentation may depend on a manually drawn
background ROI and may thus result in variable delinea-
tions depending on the choice of this ROI. Finally, manual
delineation may be considered as the least repeatable, even
when considering a single operator (intraoperator variabil-
ity). In order to compare the performances of the different
segmentation algorithms in terms of repeatability, we used a
series of simulated tumour images [22], as well as 15
different clinical cases (see section Validation studies).

Validation studies

Four different PET/CT scanners currently used in clinical
practice were used for the robustness study: namely, the
Philips Gemini and Gemini TF (Philips Medical Systems,
Cleveland, OH), the Siemens Biograph (SIEMENS Medical
Solutions, Knoxville, TN) and the GE Discovery LS (GE
Healthcare, Milwaukee, WI). In each case, scans of the IEC
phantom containing spheres of various diameters (10, 13,
17, 22, 28, 37 mm) filled with 8F and placed on a hot
uniform background were acquired. A standard protocol
was designed to generate the following acquisitions for
each scanner model: (a) two different SBRs (4:1 and 8:1),
(b) three different scan durations (1, 2 and 5 min) to study
the effect of noise, and (c) two different voxel volumes
used in the reconstruction (between 2x2x2 mm and 4.3 x
4.3x4.25 mm). All scans were performed in 3-D mode and
list-mode format facilitating the generation of 1-, 2- and 5-
min realizations from one single 5-min acquisition. In
addition to the standard CT acquisition used for attenuation
correction, a CT scan at high resolution was acquired for
each PET/CT acquisition in order to generate (after
registration) a ground-truth defining the true spatial extent
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Table 1 Overview of the acqui-

Voxel size (mm) Duration (min) Reconstruction protocol

sition parameters used for each PET/CT system Contrast
scanner model
Philips Gemini 4:1
8:1
Philips Gemini TF 4:1
8:1
Siemens Biograph 4:1
8:1
GE Discovery LS 4:1
8:1

2x2x2 1,2,5 RAMLA 3D
4x4x4

2x2x2 1,2,5 TF ML-EM
4x4x4

2x2x2 1,2,5 FORE-OSEM
5.33x5.33%2

1.95%1.95x4.25 1,2,5 FORE-OSEM
43x43%425

(the interior of the sphere) of the tracer uptake at the voxel-
by-voxel level [14]. This is subsequently used to compute
the accuracy of each algorithm through classification errors
(see section Analysis).

Routine clinical image reconstruction protocols were
used for all scanners. For the Philips GEMINI and
GEMINI TF, data were reconstructed using the RAMLA
3D (two iterations, relaxation parameter 0.05, and 5-mm
FWHM 3-D gaussian postfiltering) and the TF ML-EM
algorithm, respectively. In the case of the Siemens
Biograph and GE Discovery LS, images were recon-
structed with Fourier rebinning (FORE) followed by
OSEM (four iterations and eight subsets, with 5-mm
FWHM 3-D gaussian postfiltering, and two iterations
and eight subsets, respectively). All acquisitions were

corrected for attenuation (using the corresponding CT
image), as well as for scatter and random coincidences.
A summary of the parameters for each of the datasets
obtained using the different scanners is shown in Table 1.
Figures 1 and 2 illustrate the various images obtained.
Note that in the case of the Philips GEMINI acquisitions,
the 37-mm sphere was not in the same plane as the others,
and thus appears visually smaller in the selected slice,
while the 28-mm sphere was missing in the phantom used
for the GE Discovery LS acquisitions.

Regarding the repeatability study, two different datasets
were used. The first one consisted of ten tumours extracted
from a database of realistically simulated PET scans based
on clinical whole-body images using the NCAT (NURBS
cardiac-torso) phantom, a model of the Philips GEMINI

Fig. 1 2-D phantom slices T s o oy
thﬁ)ugh e s spheres Philips Gemini Philips Gemini TF
for the different systems and
imaging conditions. Contrast . » . = . . . .
ratios: rows (4) 4:1, rows (B) (A) ® » r
8:1. Voxel sizes: columns (a) - s
small voxels, columns (b) large . . - -
voxels (see Table 1)
e - . o', o’.
B) * o i . .
L . . N
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Fig. 2 Variability for the 17-
mm sphere across all four scan-
ner models for two different
configurations. Rows (a): con-
trast 4:1, small voxels and 1-min -
acquisition. Rows (b): contrast
8:1, large voxels and 5 min
acquisition. Columns (4) Philips
Gemini, (B) Philips Gemini TF,
(C) Siemens Biograph, and (D)
GE Discovery LS

(b)

scanner and GATE (Geant4 Application for Tomography
Emission). The procedure for the generation of these
images, reconstructed using OPL-EM (seven iterations,
one subset) with 4x4x4 mm?® voxels, has been previously
described in detail [22]. In the second part of the
repeatability study a number of clinical cases were selected
from datasets acquired on various scanner models: four
oesophagus lymphomas and four follicular lymphomas
were scanned on the Philips GEMINI PET/CT scanner
(2 min per bed position, 60 min after injection of 6 MBq/kg
"F_.FDG); and three non-small-cell lung cancers were
scanned on the Siemens Biograph (5 min per bed position,
45 min after injection of 5 MBg/kg '®*F-FDG) and on the
GE Discovery LS (3 min per bed position, 60 min after
injection of 5 MBg/kg '*F-FDG).

Analysis

For the phantom images used in the robustness study
each sphere was processed separately. The images
corresponding to the region containing each sphere were
segmented in two classes (sphere and background), using
each of the methods under evaluation (FCM, FLAB, T42
and T50). A voxel-to-voxel ground-truth based on the
corresponding CT datasets as described previously [14]
was used in the robustness evaluation of the different
methodologies considered through the determination of

the segmentation accuracy with the computation of the
classification errors (CE):

_ card{t|c; # x;}

= 100 2
card{tlx; = 1} x @

where, c¢; is the class assigned by the classification of
voxel ¢, and x; is its true class (x,=1 for the sphere and x,=
0 for the background) and card{} is the cardinal. The
errors are computed based on all misclassified voxels,
either background voxels classified as sphere voxels or
vice versa, divided by the total number of voxels defining
the sphere volume.

The mean classification error and associated standard
deviation (SD) were obtained for each sphere and for each
segmentation approach, thus providing a measure of the
robustness of the different segmentation algorithms when
applied without specific optimization for a given scanner
model or associated reconstruction algorithm under differ-
ent imaging conditions (contrast and noise). The 10-mm
sphere was not included in the analysis because it was not
clearly visible in several of the phantom acquisitions and
was therefore not possible to segment particularly when
using 4x4x4 mm® and 5x5x5 mm’ reconstruction voxel
sizes by any of the segmentation algorithms considered.
Adaptive thresholding could not be compared directly with
the other methodologies since it is optimized on each of the

Table 2 Optimized parameters a and b of the adaptive thresholding (TSBR) approach for each scanner model, with the minimum mean
classification errors and their associated standard deviations across the entire range of configurations

PET/CT system TSBR approach

Parameter a Parameter b

Standard deviation of
classification error

Minimum mean associated
classification error (%)

Philips Gemini 40.1 59.7
Philips Gemini TF 38.6 61.4
Siemens Biograph 41.7 57.6
GE Discovery LS 42.0 56.8

10.8 33
9.7 2.8
13.1 5.2
11.1 3.7
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Fig. 3 Mean classification errors and standard deviations (error bars) p»

for each methodology with respect to (a) sphere diameter, (b) contrast,
(¢) acquisition duration and (d) voxel size, computed across the
different scanner models

individual scanner datasets, with the parameters a and b
optimized for each imaging device shown in Table 2.
However, in order to assess the robustness of these
approaches depending on the imaging system used we
applied adaptive thresholding using the parameters opti-
mized on other scanners to the image datasets acquired with
the Siemens Biograph.

For the repeatability evaluation, the simulated and
clinical tumours were segmented ten times each with the
FCM, FLAB and TSBR algorithms (fixed thresholding was
not included since it always gives the same volume). In
addition, manual delineation was carried out by two nuclear
medicine experts with similar experience (more than
10 years) and training. More specifically the two experts
were instructed to delineate the elevated uptakes in the
images by performing ten different slice-by-slice manual
delineations for the different lesions considered in a
randomized fashion, ensuring a minimum of 1 week
between two consecutive segmentations of the same lesion.
All these manual segmentations were carried out under the
same conditions of full range contrast display. The mean
percentage variability and associated standard deviation
with respect to the mean segmented volume was computed
for each of the lesions and segmentation approaches across
the ten executions and across the ten manual delineations in
order to assess the repeatability of the approaches for each
of the images. The repeatability of the manual delineations
from the two experts were compared separately (intra-
observer variability) and with each other (interobserver
variability).

Results

Classification errors representing segmentation accuracy
computed for each sphere are shown in Fig. 3a, considering
the entire range of systems used for acquisition and the
different parameters in terms of contrast, acquisition
duration and voxel size. For all the systems considered,
the relative impact of the different acquisition (contrast,
duration) and reconstruction (voxel size) parameters is
demonstrated in Fig. 3b, ¢ and d, respectively. Table 3
shows the mean errors and standard deviations computed
across the different spheres taken separately (as shown in
Fig. 3a) and all together for the different imaging devices
and acquisition configurations considered.

For the entire range of sphere sizes (37 to 13 mm), the
FLAB algorithm showed better accuracy and variability
through smaller overall mean errors and SD (8.7+4.5%)
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Table 3 Robustness evaluation: ] ] ]

mean classification error and Sphere diameter (mm) Classification error (%)

associated standard deviation

computed for each methodology T42 T50 FCM FLAB

across the entire range of sphere

phantom acquisitions Mean SD Mean SD Mean SD Mean SD
37-13 (all spheres) 42.6 51.6 20.3 18.5 27.8 25.6 8.7 4.5
37 10.5 5.3 16 7.9 11.4 5.3 8.4 2.8
28 17 13.8 15.9 7.5 11.7 5.7 8.4 3.6
22 23 20.7 15.6 9.8 13.4 7.1 7.9 33
17 49.1 35 21.5 13.8 31.6 12.7 7.2 4.9
13 113.6 62.1 327 33.1 70.9 20.9 11.6 5.9

than the other advanced segmentation algorithm FCM
(27.84£25.6%) as well as relative to the fixed threshold
approaches T50 (20.3+18.5%) and T42 (42.6+51.6%).
These latter were also more sensitive to variations in the
parameters as shown in Fig. 3a. The T50 algorithm was
clearly more robust than T42 algorithm (SD 19% compared
to 52%). This is explained by the fact that the 50%
threshold is more restrictive and hence leads to lower over-
estimation for the smallest sphere volumes, and that the
42% threshold may lead to a gross over-estimate (>100%
errors for the most challenging imaging conditions). On the
other hand, the T50 algorithm was associated with a larger
classification error for the two larger spheres, as it tended to
under-estimate their volumes by only including the central
high-intensity voxels of the sphere. The FCM algorithm
was unable to accurately segment spheres smaller than 2 cm
in diameter, leading to large overall mean errors when
considering its performance over all sphere sizes, although
it exhibited a lower variability than the fixed threshold
approaches for the majority of the spheres with a size
of >2 cm.

As shown in Fig. 3b, the FLAB algorithm exhibited
low variability with respect to contrast changes, and all
other methodologies, especially the T42 and FCM algo-
rithms, exhibited higher sensitivity to such changes. The

T50 algorithm, on the other hand, was less sensitive to
contrast changes with respect to the mean error but
exhibited larger variability for lower contrast. Figure 3c
illustrates the resilience to shorter acquisitions (hence
higher noise levels) for each methodology. The FLAB
algorithm demonstrates very low variability with shorter
acquisitions, whereas all other methodologies showed
higher variability with significantly larger mean errors
and standard deviations. Finally, only small improvements
were seen for each methodology (except for T50) when
using smaller voxels (see Fig. 3d).

The optimized parameters a and b of the TSBR approach
for each scanner model are shown in Table 2. The mean
classification error across all the spheres (range 13—37 mm)
associated with each scanner was between 9.7% and 13.1%
with associated standard deviations from 2.8% to 5.2%.
When applying the parameters a and b of the Philips
GEMINI, Philips GEMINI TF and Discovery LS datasets
to the Siemens Biograph dataset, the mean error increased
from 13.14£5.2% to 21.7+£7.1%, 23.4+7.6% and 19.1+6.4%,
respectively.

Concerning repeatability, Table 4 shows the mean
variability and SD around the mean segmented volume
across the ten manual delineations performed by the two
nuclear medicine experts, and ten repeated executions of

Table 4 Repeatability evalua-

tion: variability and standard Method Variability (%)

deviation around the mean seg-

mented volume for repeated (10 Simulated cases Clinical cases

times) delineations of simulated

and clinical tumours Mean SD Mean SD
FLAB 0.5 0.3 0.9 0.5
FCM 0.8 0.6 1.7 1.9
Fixed thresholding 0 0 0 0
Adaptive thresholding 3.4 2.8 3.8 3.1
Manual delineation
Expert 1 134 17.3 19.6 15.2
Expert 2 11.7 18.4 22.1 13.6
Expert 2 with respect to expert 1 16.4 21.8 24.7 17.5
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the FLAB, FCM and TSBR algorithms. The FLAB
algorithm demonstrated highly repeatable results in all of
the studied cases, with negligible variability (<1%) around
the mean segmented 3-D volume across the different
repeated executions for both the simulated and the clinical
datasets. The FCM algorithm also led to satisfactory
repeatability results (0.8+0.6% for the simulated tumours
and 1.7£1.9% for the clinical cases). However, the
variability with the TSBR algorithm was more than double
(3.4+2.8% for the simulated tumours and 3.8+3.1% for the
clinical cases) which was most probably due to the manual
definition of the background ROI. By contrast manual
segmentation performed by the two experts showed high
intraobserver variability for simulated tumours (13.4£17.3%
and 11.7+18.4% for expert 1 and 2, respectively), and even
larger variability for the clinical images (19.6+15.2% and
22.1£13.6% for expert 1 and 2, respectively). Interobserver
variability was 16.4+21.8% and 24.7+17.6% for the simulated
tumours and clinical cases, respectively. Figure 4 shows
examples of delineations obtained by manual segmentation
and the automatic approaches.

Fig. 4 Tumour delineations on the same image slice: a delineation by
adaptive thresholding with two different background ROIs (6%
difference); b delineation by the FLAB method; ¢ two manual
delineations by the same observer (fairly consistent, 9% difference);
d two manual delineations by different observers (highly different,
37% difference)
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Discussion

Functional tumour uptake volume delineation is today an
area of interest for multiple clinical (routine and
research) applications of PET imaging, such as studying
response to therapy and radiotherapy treatment planning.
In all of these applications, the robustness and repeat-
ability with which functional uptake volumes can be
determined under different imaging conditions play a
predominant role in allowing the level of confidence to
be established with the use of such tumour volume
measurements in clinical practice [18]. Although several
promising advanced algorithms have recently been pro-
posed [11-15, 20], methodologies currently used in
clinical practice are based on the use of manual delinea-
tion or fixed and adaptive thresholding [6—8]. The major
drawback of manual delineation is its high inter- and
intraobserver variability, in addition to being time con-
suming. On the other hand, the currently considered state-
of-the-art adaptive threshold-based algorithms have been
shown to accurately define functional volumes under
certain imaging conditions of spherical lesions with a
homogeneous activity distribution. However, they require
specific parameter optimization and are thus system-
dependent. In addition, the adaptive thresholding
approaches usually involve some user interaction to select
background regions of interest, which can potentially lead
to user-introduced variability. In the present study we
focused on the evaluation under different imaging con-
ditions of the level of robustness and repeatability of
different functional volume segmentation algorithms,
including those used in current clinical practice.

In terms of robustness, the use of images from different
commercial PET/CT systems acquired under typical clinical
acquisition conditions resulted in large variability in the
performance of the different segmentation algorithms evalu-
ated. Across all of the images and spheres considered, a fixed
threshold of 42% of the maximum resulted in the largest
variability of the segmented functional volumes (+15-60%)
across the different images considered for spheres <3 cm in
diameter. On the other hand, the variability using a fixed
threshold of 50% was closer (£20%) to that of one of the
advanced segmentation algorithms included in this work
(FCM). Finally, the FLAB algorithm was the most robust of
all the evaluated algorithms leading to the lowest variability
(£5%), with no particular dependence on acquisition (dura-
tion, contrast) and processing parameters (reconstructed voxel
size). The 42% fixed threshold and the FCM algorithm were
the most sensitive to contrast and acquisition duration across
the different scanners used. In terms of variability across the
different images used, the 50% fixed threshold demonstrated
the most significant dependence of variability on lesion
contrast. Finally, applying adaptive thresholding (TSBR) to
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acquisitions performed on a different scanner than the one
used to optimize its parameters led to higher mean errors
of <25%.

In terms of repeatability, all algorithms considered
exhibited mean differences of <5%, although only the
FLAB algorithm came close to the perfect repeatability that
can be achieved by a deterministic approach such as a fixed
threshold. Finally, the repeatability of both threshold and
automatic segmentation approaches was superior to that of
manual delineation (variability >15-20% for both the
clinical and simulated tumours).

The overall better accuracy (lower mean errors) and
lower variability (lower standard deviations) associated
with the FLAB algorithm across the different images
considered demonstrates its ability, without the need of
any scanner-specific optimization, to robustly deal with the
different image qualities resulting from the use of different
reconstruction and correction algorithms as well as sensi-
tivities associated with different systems. This of course
should be considered within the context of the limited
absolute accuracy of binary threshold-based approaches
shown in this and previous studies. The accuracy of
threshold-based approaches is particularly limited for
lesions with a nonhomogeneous form and activity distribu-
tion. In such cases it may result, as previously shown [15],
in large under- or over-estimation of the overall tumour
spatial extent.

The present study also demonstrated that the use of any
of the segmentation algorithms significantly reduced intra-
and interobserver variability associated with manual delin-
eation. However, one should keep in mind that automated
segmentation algorithms are not able to differentiate
between similar levels of physiological and pathological
elevated tracer uptakes. Therefore physician involvement is
still imperative and desirable, especially regarding the
detection and selection of elevated tracer uptakes
corresponding to pathological findings that are to be
subsequently accurately delineated.

Conclusion

This study demonstrated significant differences in the
robustness and reproducibility of functional volume meas-
urements depending on the segmentation algorithm used.
The advantage of employing advanced segmentation
algorithms is an improvement in overall elevated activity
delineation across the range of image qualities that can be
encountered today in clinical practice, without the need for
system-dependent optimization procedures. In addition,
their high level of repeatability allows performance similar
to that of deterministic threshold-based approaches to be
achieved. Therefore such advanced image segmentation
algorithms may provide robust and reliable tools to aid

physicians as an initial guess in determining functional
volumes on PET images.
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Abstract

Purpose '"*F-fluorodeoxyglucose (FDG) positron emission
tomography (PET) image-derived parameters, such as
standardized uptake value (SUV), functional tumour length
(TL) and tumour volume (TV) or total lesion glycolysis
(TLG), may be useful for determining prognosis in patients
with oesophageal carcinoma. The objectives of this work
were to investigate the prognostic value of these indices in
oesophageal cancer patients undergoing combined chemo-
radiotherapy treatment and the impact of TV delineation
strategies.

Methods A total of 45 patients were retrospectively analysed.
Tumours were delineated on pretreatment '*F-FDG scans
using adaptive threshold and automatic (fuzzy locally
adaptive Bayesian, FLAB) methodologies. The maximum
standardized uptake value (SUVpax), SUVipea, SUVinean,
TL, TV and TLG were computed. The prognostic value of
each parameter for overall survival was investigated using
Kaplan-Meier and Cox regression models for univariate and
multivariate analyses, respectively.
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Results Large differences were observed between method-
ologies (from —140 to +50% for TV). SUV measurements
were not significant prognostic factors for overall survival,
whereas TV, TL and TLG were, irrespective of the
segmentation strategy. After multivariate analysis including
standard tumour staging, only TV (p<0.002) and TL (p=
0.042) determined using FLAB were independent prognos-
tic factors.

Conclusion Whereas no SUV measurement was a signifi-
cant prognostic factor, TV, TL and TLG were significant
prognostic factors for overall survival, irrespective of the
delineation methodology. Only functional TV and TL
derived using FLAB were independent prognostic factors,
highlighting the need for accurate and robust PET tumour
delineation tools for oncology applications.

Keywords PET- Tumour volume - Tumour segmentation -
Oesophageal cancer - Survival

Introduction

The incidence of oesophageal cancer is increasing and
despite advances in therapy, the diagnosis still carries a
poor prognosis [1]. As with all tumours, the outcome for
patients is strongly associated with the stage at initial
diagnosis. The TNM (tumour, node, metastasis) system
currently in use for the staging of oesophageal cancer does
not take into account non-anatomical factors such as
histopathological type, grade or various biomarkers that
may be important determinants of prognosis. The patho-
logical stage is given by surgery but this procedure is not
possible for all patients because it is associated with a high
risk of mortality and morbidity. Therefore a noninvasive
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staging method would be of great interest, and within this
context the primary role of '®F-fluorodeoxyglucose (FDG)
positron emission tomography (PET) in oesophageal cancer
is the detection of distant metastases [2—4]. This modality is
also gaining acceptance in oesophageal cancer for the
assessment of therapy response [5, 6] or for radiotherapy
treatment planning [7-9]. Lately, some authors have also
suggested that different parameters derived from initial '*F-
FDG PET images could have a role as independent
prognostic factors [10—14]. The parameters studied include
standardized uptake value (SUV . as the maximum uptake
in the primary tumour or in the combined primary and
regional area), tumour functional longitudinal length (TL),
tumour functional volume (TV), nodal uptake or FDG-avid
metastases [10—14]. Although a few studies have demon-
strated the interest of these indices for determining
prognosis, there are conflicting results concerning the
independent prognostic value of each of these indices. For
example, Hyun et al. [12], analysing results from 151
patients with principally squamous cell carcinoma (SCC),
have recently suggested that primary tumour SUV ,, is not
an independent prognostic factor, in agreement with other
studies [10, 15, 16]. On the other hand, Kato et al. [17]
based on the analysis of 184 patients with oesophageal SCC
have shown that SUV,,, of the primary tumour is an
independent prognostic factor for overall survival, in
agreement with other studies [18-20]. These conflicting
results can be potentially caused by differences in the
methodology used for the analysis of the PET images.
Although SUV,,,. is less sensitive to tumour size, the
conflicting results considering its value as an independent
prognostic factor may also be due to variability in the
tumour sizes considered in the different studies.
Pathological TL has been shown to be an independent
prognostic factor in oesophageal carcinoma [21]. Therefore,
determining the functional TL in '"*F-FDG PET images may
be a good surrogate. The use of different thresholds for the
determination of the functional TL in the existing studies may
be responsible for the conflicting results regarding its value as
a predictor of response to chemoradiotherapy [11, 22], while
it has been shown to be an independent predictor in patients
undergoing surgery [10]. On the other hand, functional TV
may be more representative of overall tumour burden. The
value of the functional TV has been only recently explored in
a single study of patients with oesophageal carcinoma
considering a heterogeneous treatment regime (76 and 24%
treated by surgery and combined radiochemotherapy, respec-
tively) [12]. In this study both the presence of metastases and
the TV were found to be independent prognostic factors for
overall patient survival. Tumours were delineated based on a
three fixed threshold scale depending on the tumour SUV ..
Although such an approach may be simple to implement in
clinical practice, the use of a fixed threshold for functional
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TV determination suffers from multiple shortcomings which
have been highlighted in different studies [23, 24]. In
addition, the proposed scale is not universally applicable to
the different clinical settings spanning from the acquisition
protocols to the scanning systems used and variable
associated image qualities.

Therefore, despite early evidence that functional TL and
TV may be useful parameters in predicting survival and
response to therapy, there is a clear need to assess the
influence of the methodology used in obtaining these indices.
Finally, the determination of functional TV may allow the
calculation of alternative image-derived indices such as the
total glycolytic lesion index (TLG) (g), defined as the product
of the TV (ml) and its associated mean activity (SUV can)
(g/ml) [25], whose value has not as yet been explored in
predicting response to therapy or as a prognostic factor for
survival using '®F-FDG in oesophageal carcinoma.

The objective of this study was therefore to retrospec-
tively investigate the prognostic value of '*F-FDG PET in
45 oesophageal cancer patients treated with concomitant
radiochemotherapy, considering for the first time in a single
study all of the commonly used PET-derived parameters
such as functional TL, TV, SUV measurements (max, peak,
mean) and TLG. In addition, the impact of different tumour
delineation strategies was assessed.

Materials and methods
Patients

A total of 45 patients with newly diagnosed oesophageal
cancer treated between 2004 and 2008 with concomitant
radiochemotherapy and without surgery were included in this
study. The characteristics of the patients are given in Table 1.
Of the patients, 41 were male (91%), and the mean age at the
time of diagnosis was 66+10 years. Most of the tumours
were SCC (73%) and originated from the middle and lower
oesophagus (76%). All patients were referred before treat-
ment for an '*F-FDG PET study as part of a routine
procedure for the initial staging in oesophageal cancer. The
treatment included three courses of 5-fluorouracil/cisplatin
and a median radiation dose of 60 Gy given in 180-cGy
daily fractions delivered once daily, 5 days a week for
6—7 weeks. Follow-up data were prospectively collected in a
database for further analysis and overall survival was
calculated. The current analysis was carried out after an
approval by the Institutional Ethics Review Board.

"®E_.FDG PET acquisitions

"®E-FDG PET studies were carried out prior to the
treatment. Patients were instructed to fast for a minimum
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Table 1 Patient demographic and clinical characteristics

Parameter No. of patients (%)
Gender

Male 41 91)
Female 409
Age

Range 45-84
Median 68

Site

Upper oesophagus 11 (24)
Middle oesophagus 17 (38)
Lower oesophagus 17 (38)
Histology type

Adenocarcinoma 12 (27)
SCC 33 (73)
Histology differentiation

Well differentiated 12 (27)
Moderately differentiated 11 (24)
Poorly differentiated 409
Unknown 18 (40)
TNM stage

T1 6 (13)
T2 7 (16)
T3 22 (49)
T4 10 (22)
NO 18 (40)
N1 27 (60)
MO 29 (64)
M1 16 (36)
AJCC stage

1 3(7)
A 7 (16)
B 5(11)
111 14 (31)
IVa 5(11)
IVb 11 (24)

of 6 h before the injection of '®F-FDG. The administered
dose was 5 MBg/kg, and static emission images were
acquired (2 min per bed position) from head to thigh
beginning 60 min after injection on a Philips GEMINI PET/
CT system (Philips Medical Systems, Cleveland, OH,
USA). In addition to the emission PET scan, a low-dose
CT scan without IV or oral contrast was acquired for
attenuation correction. Images were reconstructed with the
3-D row action maximum likelihood algorithm (RAMLA)
using standard clinical protocol parameters: 2 iterations,
relaxation parameter of 0.05, 5-mm 3-D Gaussian post-
filtering and 4x4x4 mm® voxels grid sampling.

PET image analysis

The following parameters were extracted from each PET
image: SUVyax, SUV e defined as the mean of SUV
and its 26 neighbours, mean SUV within the delineated
tumour (SUV ean), functional TL in longitudinal direction,
functional TV and TLG. SUV,.., usually defined as a
I-cm circle or sphere [26] [we used a 3x3x3 cube of
4x4x4 mm® voxels which roughly corresponds to the same
region of interest (ROI)], was considered in order to
investigate the impact of reducing the potential bias in the
SUV nax measurements as a result of its sensitivity to noise.
Whereas SUV na and SUV g, are independent on the
tumour delineation strategy used, TL, TV, SUV .., and the
derived TLG were determined on delineations performed
using two strategies. First, an adaptive threshold [23] using
a background ROI manually chosen by two experienced
nuclear medicine physicians led to two different results
Tbckgrdl and Tbckgrdz. Observers were instructed to choose
the ROI in the mediastinum at a sufficient distance from the
lesion to avoid any overlapping. However, they were
allowed to choose the size, shape and exact placement of
the ROI. Finally the automatic fuzzy locally adaptive
Bayesian (FLAB) algorithm [24, 27] was considered.

Statistical analysis

All quantitative data were expressed as mean+1 standard
deviation (SD) and summary statistics are given in Table 2.

The correlation between all parameters extracted using
the different methodologies was computed with Pearson
coefficients. The differences between methodologies were
assessed using Bland-Altman analysis [28] to define bias as
the mean error, and agreement intervals (upper and lower
limits) as 1.96 times the SD. Kaplan-Meier methods were
used to estimate the survival distributions [29]. Overall
survival was calculated from the date of initial diagnosis to
the date of death or most recent follow-up in cases of
patients still alive. Survival curves were generated for each
parameter considered. The most discriminating threshold
value allowing differentiation of the two groups of patients
was selected using receiver-operating characteristic (ROC)
methodology [30]. The prognostic value of each parameter
in terms of overall survival was assessed by the log-rank
test. The significance of the following factors was tested:
age, gender, histology type, T, N, M classifications,
American Joint Committee on Cancer (AJCC) stage [31],
TL, TV, SUVmax, SUVpea, SUVinean and TLG. Indepen-
dent prognostic factors for overall survival were determined
using multivariate Cox regression analysis [32] by incor-
porating in the model all parameters that were deemed
significant in the univariate analysis. However, the indices
obtained by each delineation (Tbckgrdl, Tbckgrd2 and FLAB)
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Table 2 Parameters definition and statistics

Definition Notation Mean + SD Range
Highest SUV within the tumour SUV hax 10+3.8 2.2-19.7
Mean of SUV ., and its 26 neighbours SUV peak 8.2+3.3 1.8-16.1
Mean SUV of tumour defined by Adaptive threshold Ist user SUV nean (Tbckgrdl) 6.6+£2.6 1.8-13.7
2nd user SUVimean (Thekgrd’) 6.2+2.7 1.6-13.8
FLAB SUV mean (FLAB) 6.0+£2.4 1.7-13.2
Functional TV defined by Adaptive threshold 1st user TV (Tbckgrdl) 22.6+£23.8 1.8-92.0
2nd user vV (Tbckgrdz) 29.2+29.7 2.4-133.9
FLAB TV (FLAB) 36.3+£33.7 3.0-139.7
Functional TL defined by Adaptive threshold 1st user TL (Tbckgrd') 5.9+3.0 1.6-15.6
2nd user TL (Toekgrd’) 5.6+2.9 1.6-14.4
FLAB TL (FLAB) 6.2+2.9 2.0-15.6
SUVmean (Tockgra XTV (Toekgra') (2) TLG (Tockera') 165.4+182.7 3.2-759.7
SUVmean (Tockgra )XTV (Toekgra’) (2) TLG (Tockerd’) 198.8+209.4 6.9-921.3
SUV nean (FLAB)XTV (FLAB) (g) TLG (FLAB) 221.6+225.8 5.3-882.7

were incorporated in the multivariate analysis separately
since they were found to be highly correlated (Pearson >
0.8, *>0.66; see the “Correlation between image-derived
indices and between methodologies” section). All tests
were carried out using MedCalc™ (MedCalc Software,
Mariakerke, Belgium); p values <0.05 were considered
statistically significant.

Results

All primary lesions were detected by '*F-FDG PET. The
intensity of maximum '®F-FDG uptake in the primary
lesion was quite high with a normally distributed SUV .«
of 10£3.8. As expected, SUV .« measurements were
comparatively lower (8£3). Measurements related to the
dimensions of the tumours were less uniformly distributed
than SUV measurements, with a larger SD with respect to
the mean. For example the TV (FLAB) was 35+33 cm’.

Correlation between image-derived indices
and between methodologies

TL measurements were correlated with TV (p<0.0001)
although with moderate coefficients (»=0.69, 0.58 and 0.6
for FLAB, Tbckgrdl and Tbckgrdz, respectively). No signifi-
cant correlation was found between any SUV measurement
(SUVmax> SUVpeak, SUVinean) and TV (p>0.2, r<0.3),
irrespective of the delineation strategy, in line with results
of other studies such as van Heijl et al. [33].

All SUV,can measurements derived from TV delineation
performed using the two different methodologies considered
were highly correlated (p<0.0001) with coefficients >0.97.
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TV (r>0.82), TL (r>0.91) and TLG (r>0.95) results were
also highly correlated (»p<0.0001) for both methodologies.

Despite high correlation coefficients, large differences
were observed for several patients between measure-
ments using the two delineation methodologies consid-
ered, and between the two users of the same adaptive
thresholding. Figure la, b illustrates such differences. In
the case of adaptive thresholding these differences were
the result of the two users placing the background ROI
differently.

A summary of the Bland-Altman analysis carried out to
compare the delineation methods and highlight potential
differences is presented in Fig. 2c, d and complete results
are given in Table 3. The largest differences between
methodologies were observed for TV with a bias of up to
50% between the adaptative thresholding and FLAB: both
users yielded globally smaller volumes (bias of —50£50%
and —21+54% for Tbckgrdl and Tbckgrdz, respectively).
Agreement intervals (upper and lower limits) were large
for all parameters and for all comparisons, up to +80 and
—140% (see Fig. 2b). Even between the two users of the
same adaptive thresholding method (see Fig. 2a), mean
differences of —30+35% were seen and limits of agreement
were large, from —100 to +45%. No significant trend was
found regarding the correlation between TV and differences
between methodologies (r<0.2, p>0.1).

Better agreement was observed for TL and SUV ean;
however, intervals of agreement were large (—50 to —25%
lower limit and +20 to +40% upper limit for TL; —80
to —10% lower limit and +10 to +80% upper limit for
SUVmean)~

Due to the combined effect of TV and SUV,,can, TLG
differences were in between, with moderate bias but still
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Fig. 1 Illustration of differences a
in tumour delineation depending
on the methodology for a a "
small (<8 cm?®) and low
contrast (approximately 2:1)
tumour and b a larger (30 cm®)
and higher contrast

(approximately 7:1) tumour . 3
E I

TV (FLAB)
7.6cm3

™V {Thckgdl} v {Tbckgdzl
2.8cm? 8.4cm?
(-62.7%) i S (+10%)
| +200% 1

FLAB
30cm?

large agreement intervals (upper and lower limits of —120
to —75% and +40 to +90%, respectively).

Survival analysis

At the time of last follow-up, 10 patients were alive with no
evidence of disease, 9 were alive with recurrent oesopha-
geal cancer and 26 had died from the disease. With a
median follow-up of 60 months (range 9-82), the overall
median survival was 15 months. The 1-year and 2-year
survival rates were 63 and 34%, respectively.

The results of the log-rank analysis of significant
parameters for overall survival in univariate analysis are

LI . L]

Tbckgﬁl Tl:udegd2
153cm* | @ |24.6cm?
-49% -18%

[ +61% 1

given in Table 4. Table 5 summarizes the prognostic value
of all the parameters under investigation in this study.

Age, gender and histology types were not significant
prognostic factors in the univariate analysis. Neither were T
and N classifications. In the univariate analysis, the
presence of metastases [median survival of 26 months
(MO0) versus 12 months (M1), p=0.01)] and the clinical
AJCC stage (p<0.001) were significant prognostic factors.

Although there was a trend observed, neither SUV ,,, nor
SUV,cak Were significant prognostic factors. A SUV . <5
or <8 tended to be a factor for better outcome with a median
survival of 14 vs 7 months (p=0.08) or 21 vs 13 months
(p=0.1), respectively (see Fig. 3a).
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Fig. 2 Bland-Altman analysis a
of differences between a 50
Tbckgrdl and Tbckgrdz and b 40
Tockera and FLAB, for each F 30
parameter (TL, TV, SUV peans = 20
TLG). Grey columns and error 5 10
bars represent the mean i
differences (bias) and associated = 0
SD, respectively. Bold arrows .-'““ -10
up and down denote upper and s -20
lower limits, respectively; 95% 2 -30
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Mean SUVs in the tumour were not significant prog-
nostic factors in univariate analysis. There was however a
trend for shorter survival associated with higher SUV can.
For example, the median survival was reduced by a factor
of 2 for patients with an SUV ., higher than 5 (13 months
vs 21 months, p=0.06). This was however observed only
when the FLAB methodology was used to define TV, while
no similar trend was observed with SUV .., parameters
obtained with adaptive thresholding.

Functional TV was a significant prognostic factor for
overall survival, whatever methodology was used (p<0.001
using FLAB and p=0.004 for both Tbckgrd1 and Tbckgrdz, see
Fig. 3b, c). In addition, using the TV, and independently of
the delineation approach used, allowed us to separate our
population into three groups with significantly different
outcome (p=0.002, p=0.02 and p=0.004 for FLAB,
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Tbckgrdl and Tbckgrdz, respectively). For instance, volumes
defined by FLAB less than 14 cm®, between 14 and 85 cm®
or superior to 85 cm® were respectively associated with a
median survival of 49 (19 patients), 15 (21 patients) and 5.5
(6 patients) months as illustrated in Fig. 3d. In Fig. 4a—c
three examples of '*F-FDG PET baseline images of patients
belonging to each of these three groups are presented.

Functional TL was also a significant prognostic factor
with results similar to TV (p=0.01, p=0.02 and p=0.04 for
FLAB, Tbckgrdl and Tbckgrdz, respectively), apart from not
being possible to significantly differentiate three groups of
patients with different outcome, independently of the
strategy.

Similarly, TLG was also a significant prognostic factor
whatever methodology was used, while it was equally not
possible to significantly differentiate three groups. The
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Table 3 Bland-Altman analysis results comparing delineation strategies for all parameters

Parameter Mean+SD 95% CI of mean LL 95% CI of LL UL 95% CI of UL
% difference between Tbckgrdl and Tbckgrdz
TL 6.7+18 1.3 to 12.1 -28.6 -37.9t0 —19.3 41.9 32.6 to 51.2
TV —29+37.3 —40.2 to —17.8 -102 —121.3 to —82.8 44.1 24.8 to 63.4
SUVinean -6.3£9 -9 1o -3.6 -23.9 —28.5t0 —19.3 11.2 6.6 to 15.8
TLG —23.5£32.3 —33.2to —13.8 —86.8 —103.5 to —70.1 39.7 23 to 56.4
% difference between Tyckgrq and FLAB
TL Tbckgrdl —5.9+15.3 —10.4 to —1.4 —35.8 —43.6 to —28 24 16.2 to 31.8
Tbckgrdz —12+7 -183to0 7.1 —49.4 —59 to —39.9 24.1 14.5 to 33.6
TV Tbckgrd' —48.8+48.8 —63.3 to —34.3 —144.5 —169.5 to —120 46.9 219to0 71.9
Tbckg,dz —22+53.9 —38.1 to —6.0 -127.7 —155.3 to —100 83.6 56.1 to 111.2
SUV 1ean Tbckgrdl 11.5+36.2 0.7 to 22.2 -59.5 78 to —41 82.4 63.8 to 100.9
Tbckgrdz 7.1+£35.8 -3.6t017.7 —63.1 —81.4 to —44.8 77.2 58.9 to 95.5
TLG Tbckg,dl —34.5+£25.6 —42 to —26.9 —84.6 -97.6 to =71.5 15.7 2.6 to 28.7
Tbckg,dz —10.6+33.2 -20.4 to —0.7 -75.6 —92.5 to —58.6 54.4 37.5t0 71.4

SD standard deviation, C/ confidence interval, UL upper limit, LL lower limit

median overall survival was 10 months for patients with a
TLG (FLAB) >180 g and increased to 21 months for
patients with a TLG<180 g (p=0.01). Similar results were
obtained with adaptive thresholding (20 versus 8 and 20
versus 10 months for Tbckgrdl and Tbckgrdz, respectively).

After multivariate analysis, considering each delineation
methodology separately, only TV obtained using FLAB and
AJCC stage were found to be independent significant
prognostic factors (p=0.0017 and 0.0021 for TV and
AJCC, respectively), whereas only AJCC stage was an
independent significant prognostic factor (p<0.002) when
considering TV obtained by adaptive thresholding.

Similar results were obtained when replacing TV by TL,
with both TL and clinical AJCC staging found to be
independent significant prognostic factors in the case of

FLAB (p=0.017 and p=0.042 for AJCC stage and TL,
respectively), whereas in the case of adaptive thresholding
only AJCC staging was an independent significant prog-
nostic factor (p=0.0021).

On the other hand, in the case of TLG only the AJCC
staging was an independent significant prognostic factor
(»<0.002), whatever delineation strategy was considered.

Discussion

An accurate staging in oesophageal cancer is essential for
guiding therapy. The standard conventional modalities are
endoscopic ultrasonography and computed tomography
even if this combined approach suffers from several

Table 4 Parameters with

significant prognostic value Parameter HR HR 95% CI )4 Median survival (months)
after univariate analysis
AJCC stage 0.281 0.090-0.881 0.0008 26 vs 8
M stage 0.402 0.172-0.940 0.01 26 vs 12
TL (Tbckgrdl) 0.318 0.133-0.761 0.02 21 vs 10
TL (Tbckgrdz) 0.393 0.164-0.939 0.04 21 vs 10
TL (FLAB) 0.163 0.052-0.510 0.01 21 vs 10
vV (Tbckgrdl) 0.212 0.020-2.280 0.004 16 vs 5
NA NA 0.02 21 vs 10 vs 9
TV (Thekgra) 0.212 0.020-2.280 0.004 16 vs 5
NA NA 0.004 49 vs 14 vs 5
TV (FLAB) 0.236 0.050-0.909 0.0005 20 vs 5.5
NA NA 0.002 49 vs 15 vs 5.5
TLG (Tekgra') 0.217 0.064-0.735 0.007 20 vs 8
TLG (Tbckgrd2 ) 0.202 0.063-0.645 0.01 20 vs 10
HR hazard ratio, CI confidence TLG (FLAB) 0.337 0.147-0.772 0.02 21 vs 10

interval
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Table 5 Prognostic value of all

Significant prognostic factor
in univariate analysis

Significant independent prognostic factor
in multivariate analysis

parameters Variable
Age No
Gender No
Histology type No
AJCC stage Yes
T No
N No
M Yes
SUVmax No
SUVpeax No
SUVinean (Tbckgrdl) No
SUVinean (Tbckgrdz) No
SUVean (FLAB) No
TL (Tockgra') Yes
TL (Tockera’) Yes
TL (FLAB) Yes
TV (Tpekgra') Yes
v (Tbckgrdz) Yes
TV (FLAB) Yes
TLG (Tockgra') Yes
TLG (Tbckgrdz ) Yes
TLG (FLAB) Yes

Yes

Yes

shortcomings. '*F-FDG PET is more and more often
included in the initial staging because it allows a more
accurate disease assessment, especially regarding the
detection of distant metastases [2—4]. Since no patient
underwent surgery in our study, anatomopathology data
were not available. Therefore TNM classifications and
AJCC stages were determined using suboptimal conven-
tional staging and this could explain the poor prognostic
value of T or N classification in our population.

As found in our study, '®F-FDG uptake is always present
in oesophageal cancer if extended at least to submucosa
[34]. Some authors suggested that the intensity of '*F-FDG
uptake could be related to prognosis in oesophageal cancer,
based on the good correlation existing between hexokinase
activity or poor differentiation and tumour uptake [35] and
also because increasing SUV . values seem to correlate
with T classification, which is part of the TNM staging
[36].

In our study, SUV measurements were not significant
prognostic factors for overall survival. While various cutoff
values of SUV,,. tend to be associated with a poor
prognosis, none led to statistically significant differentia-
tion. Swisher et al. reported similar results in a uniform
group of highly selected patients with locally advanced
oesophageal cancer treated by neoadjuvant radiochemo-
therapy [37]. On the other hand, these results could appear
in contrast with our previous report [18], where we initially
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reported that an SUV,, cutoff value of 9 had an
independent prognostic value of overall survival, but this
difference may be explained by the different patient
characteristics considered in the two studies. We previously
considered [18] a daily practice population, half of which
underwent curative surgery, while we included here only
patients with advanced disease exclusively treated by
combined radiochemotherapy.

TL established by pathological examination has been
demonstrated to be an independent prognostic factor for
long-term survival [21]. Some authors proposed estimating
TL based on '"F-FDG PET images using different thresh-
olds [38]. Functional TL has been studied as a predictor of
response to neoadjuvant chemoradiotherapy with
conflicting results [11, 22]. In a group of 69 patients with
oesophageal SCC undergoing curative surgery, Choi et al.
demonstrated that functional TL was an independent
prognostic factor [10]. However, one may argue that
functional TL is a parameter that does not reflect the real
volume of the tumour but only its longitudinal extension
and could be therefore considered as only a surrogate of
tumour spatial extent. This argument can be supported by
the data shown in this work, where only a moderate
correlation (r<0.7) was found between TV and TL,
suggesting that functional TV may be more accurate in
assessing actual tumour burden. In our study we also
compared the prognostic value of TL with that of TV. Both
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parameters were found to be significant prognostic factors
irrespective of the functional volume delineation strategy.
In addition, both TV and TL were independent prognostic
factors for survival in the multivariate analysis. However,
this result was found to be dependent on the segmentation
algorithm, with both parameters being independent survival
prognostic factors only when determined using the auto-
matic FLAB segmentation. This may be related to the
higher overall accuracy of FLAB with respect to adaptive
thresholding for tumour delineation as previously reported
[24, 27, 39]. Despite the similar prognostic values of TL
and TV, only TV allowed a statistically significant
stratification of patients into three groups, irrespective of
the segmentation methodology. More specifically, two
different cutoff values (85 and 14 cm?) resulted in
significant differentiation of two groups among the patients
with median overall survival of 5-6 vs 20 months
(»=0.0005) and 49 vs 13 months (p=0.036) for 85 and
14 cm?®, respectively. Being able to provide such a finer
stratification of patient groups could be of value in clinical
trials assessing new therapeutic regimes.

SUV hean Measured in a volume determined using the
different tumour delineation approaches considered was not
found to be a prognostic factor for overall survival,
although a trend was seen for SUV .., associated with
TV defined with FLAB, which tended to differentiate
patients with poor and better prognosis (13 vs 21 months,
p=0.06).

A fundamental biological question underlying '*F-FDG
PET prognostic value is whether the total volume or the
metabolically active portion of the tumour is most impor-
tant. Intuitively both would seem important and desirable to
determine. In our study, both functional TL and TV
(representative of the tumour functional spatial extent) were
significant prognostic factors compared to SUV ,c., (repre-
sentative of the tumour glycolytic metabolism) which was
not. Combining both parameters into total lesion glycolysis
index (TLG) was a prognostic factor for overall survival
whatever methodology was used for tumour delineation.
However, it was not an independent significant prognostic
factor in the multivariate analysis. Only very few data are
available on the potential clinical value of TLG in different
cancer models. Xie et al. reported on the prognostic value
of TLG in head and neck cancer for long-term survival
[40], while Cazaentre et al. demonstrated the usefulness of
TLG for predicting response to radioimmunotherapy in
lymphoma [41]. To date, the limited use of TV and TLG in
clinical studies could be explained by the poor accuracy,
robustness and reproducibility of available tumour delinea-
tion tools affecting the clinical value of resulting measure-
ments. The fact that TLG was not an independent
prognostic factor, whereas TV alone was, suggests that the
prognostic value of TLG mainly comes from the volume
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information and is impaired by the low prognostic value of
SUV,ean measurements. In addition, the value of TLG
might be reduced by a loss of information when combining
the TV and the SUV,,., into one parameter by simple
product, since large tumours with low uptake might result
in the same TLG as small tumours with high uptake.
Finally, the lack of partial volume effects (PVE) correction
might also play a role in the reduced prognostic value of all
SUV measurements as well as the resulting TLG, since
tumour volumes across the patients range from quite small
and significantly affected by PVE (<2 cm in diameter) to
very large tumours for which PVE have smaller quantitative
impact.

As expected, results concerning parameters dependent
on the tumour delineation process were well correlated. On
the other hand, our results also highlighted the potential
impact of differences between existing tumour delineation
methods, with TV and TL being independent survival
prognostic factors only when determined using FLAB. This
approach has been previously shown to be both robust and
accurate [24, 27]. At present most commonly used methods
are based on fixed or adaptive thresholds. Fixed thresh-
olding has been demonstrated to be both inaccurate and
non-robust [23, 24, 27, 39] and was therefore not
considered in this study.

Regarding the adaptive thresholding performance, results
from one observer (Tbckgrdz) were closer to these of FLAB
compared to the other one (Tbckgrdl), with however
significant differences, as shown in Fig. 2b and Table 3.
Neither TV (Tbckgrdl) nor TV (Tbckgrdz) were independent
prognostic factors contrary to TV (FLAB). This can be
explained by the behaviour of adaptive thresholding
(independently of the user) for several tumours. Most of
the tumours exhibited simple shapes and homogeneous
tracer uptake. However, some were more complex and
exhibited higher heterogeneity, or were small (<2-3 cm)
with low contrast. Adaptive thresholding has been demon-
strated to provide unsatisfactory delineation for such cases
[24], because its final threshold is based on the ratio
between an isocontour at 70% of the maximum and the
background ROI. Such an isocontour tends to overestimate
(respectively underestimate) the actual value of the entire
tumour for heterogeneous uptake (respectively small
tumours will low contrast).

Hence the adaptive thresholding led to significant
underevaluation of larger heterogeneous tumours in our
study, e.g. a patient with a survival of 6 months had a TV
defined by FLAB of almost 97 cm’, whereas TV (Tbckgrdl)
and TV (Tpeigra”) Were 38 em® (—61%) and 50 cm”® (—50%),
respectively, clearly missing parts of the tumour. On the
other hand, the dependency on the background ROI is
higher regarding small tumours with low contrast, e.g. for a
patient with 21 months survival, TV (FLAB) was 5.8 cm”,
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whereas TV (Tbckgrdl) and TV (Tbckgrdz) were 1.9 cm’®
(-67%) and 26.9 cm’® (+364%), respectively. Several
patients were therefore incorporated in the wrong survival
curve, mostly patients with large volumes that were under-
estimated by the adaptive threshold.

In addition, adaptive thresholding was found to be
highly user dependent, since we observed a bias up to
30% between the two users measuring TV, the agreement
interval being too large for clinical applications (—110 to
+45%). This seems to be in agreement with results
concerning the level of reproducibility in measuring
functional TV from '"*F-FDG imaging which can vary from
21 to 90% using automatic and threshold-based approaches,
respectively [42]. If advanced segmentation algorithms are
not available, the use of adaptive thresholding approaches
should be preferred to manual or fixed threshold-based
delineation. Automated background ROI determination
could reduce the interobserver variability observed in this
work.

The limits of this study are its retrospective nature and
the limited number of patients. Our results need to be
confirmed through a prospective study on a larger cohort of
patients. It is finally worth noting that overall survival
might have been affected by other factors such as
subsequent treatment for patients who relapsed, although
this should have minor impact on the results of this study
since it applies to all parameters considered. Other outcome
measures such as progression-free survival were not
investigated in this study.

Conclusion

Our results suggest that the functional tumour volume followed
by length has additional value compared to commonly used
SUV measurements (SUV ax, SUVpeak, SUViyean) for prog-
nosis in patients with locally advanced oesophageal cancer
treated with exclusive concomitant radiochemotherapy. Both
parameters were significant prognostic factors for overall
survival, independently of the approach used to delineate the
tumours. However, only the automatic FLAB algorithm
allowed TV and TL to be independent prognostic factors for
survival in a multivariate analysis that included standard
tumour staging. In addition, the total lesion glycolysis index
was a statistically significant, but not independent, prognostic
factor irrespective of the delineation algorithm used. Our
findings confirm the potential value of '*F-FDG PET to give
a useful orientation for patient management purposes in
oesophageal cancer, but they also highlight the influence of
the methodology used on the degree of pertinence of these
PET image-derived parameters of interest as their accuracy
and their clinical significance increase if they are computed
using more reliable and robust tumour segmentation methods.
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Abstract

Purpose The objectives of this study were to investigate the
predictive value of tumour measurements on 2-deoxy-2-['*F]
fluoro-p-glucose (**F-FDG) positron emission tomography
(PET) pretreatment scan regarding therapy response in
oesophageal cancer and to evaluate the impact of tumour
delineation strategies.

Methods Fifty patients with oesophageal cancer treated
with concomitant radiochemotherapy between 2004 and 2008
were retrospectively considered and classified as complete,
partial or non-responders (including stable and progressive
disease) according to Response Evaluation Criteria in Solid
Tumors (RECIST). The classification of partial and complete
responders was confirmed by biopsy. Tumours were delineat-
ed on the '"®F-FDG pretreatment scan using an adaptive
threshold and the automatic fuzzy locally adaptive Bayesian
(FLAB) methodologies. Several parameters were then
extracted: maximum and peak standardized uptake value
(SUV), tumour longitudinal length (TL) and volume (TV),
SUVinean, and total lesion glycolysis (TLG = TV x
SUVinean)- The correlation between each parameter and
response was investigated using Kruskal-Wallis tests, and
receiver-operating characteristic methodology was used to
assess performance of the parameters to differentiate patients.
Results Whereas commonly used parameters such as SUV
measurements were not significant predictive factors of the
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response, parameters related to tumour functional spatial
extent (TL, TV, TLG) allowed significant differentiation of
all three groups of patients, independently of the delineation
strategy, and could identify complete and non-responders with
sensitivity above 75% and specificity above 85%. A system-
atic although not statistically significant trend was observed
regarding the hierarchy of the delineation methodologies and
the parameters considered, with slightly higher predictive
value obtained with FLAB over adaptive thresholding, and
TLG over TV and TL.

Conclusion TLG is a promising predictive factor of
concomitant radiochemotherapy response with statistically
higher predictive value than SUV measurements in advanced
oesophageal cancer.

Keywords Oesophageal cancer- Response to therapy - PET
scan - Tumour volume - Total lesion glycolysis

Introduction

Oesophageal cancer is the third most common malignancy
of the digestive tract and a leading cause of cancer mortality
worldwide with an estimated 5-year survival of 15% [1].
Despite the progress made to better understand this disease,
its incidence is steadily increasing and there is a growing
concern regarding its effective management [2]. The best
chance for cure remains surgical resection. However, many
patients have already an advanced disease (locally advanced
oesophageal carcinoma, LAEC) at diagnosis and may benefit
in terms of survival from neoadjuvant therapy prior to
surgery [3]. The maximum benefit is for those patients who
achieve a complete pathological response with no residual
cancer cells in the primary tumour or lymph nodes [4]. A
complete response occurs only in 15-30% of cases and is
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associated with an increased overall survival [5]. On the other
hand, patients who do not respond to therapy may be
unnecessarily affected by toxicity of an inefficient therapy
[6]. Therefore, the development of a diagnostic test offering
noninvasive response to therapy prediction early in the course
of treatment is of great interest, allowing potential personal-
ization of patient management such as for inoperable tumours;
chemotherapy and/or radiation therapy remains the only
option. Such an assessment becomes more critical when one
considers new targeted drugs that could be tested with higher
efficiency if applied early [7]. For oesophageal cancer several
histological markers, such as the tumour suppressor factor
gene p53, the proliferative marker Ki-67 and the epidermal
growth factor receptor, have been evaluated for the prediction
of the therapeutic response prior to neoadjuvant therapy. None
of these markers or a combination of them can currently
predict response with sufficient accuracy [8, 9]. Positron
emission tomography (PET) imaging with 2-deoxy-2-['*F]
fluoro-D-glucose (**F-FDG) allows the visualization of the
enhanced glucose metabolism in viable oesophageal cancer
cells and may be of interest within this context. '*F-FDG PET
is already well established for staging of oesophageal cancer
with a better sensitivity and specificity than the combined use
of CT and endoscopic ultrasonography (EUS) to detect distant
metastases [10]. PET has also been shown to be promising in
assessing response to therapy [11]. Several studies have
shown that the reduction of the tumour’s metabolic activity as
measured by the standardized uptake value (SUV) from the
baseline to the end of therapy uptake is predictive of a better
outcome with however a large variability in the sensitivity and
specificity [12]. In addition, a correlation between clinical
outcome and a metabolic response observed as early as within
the first 2 weeks of treatment has been demonstrated [13].
These findings suggest that tumour activity concentration
differences measured on serial '*F-FDG PET scans could
possibly be used to individualize treatment. However, it could
be more cost-effective and beneficial to the patient to be able
to predict therapy response from a single baseline PET scan
acquired before the initiation of the treatment. The current
study was therefore carried out to investigate the potential
value of baseline '*F-FDG PET image-derived parameters for
the prediction of response to combined radiochemotherapy in
oesophageal cancer. A secondary objective was to investigate
the potential influence of the method used to delineate the
tumour on the prediction results.

Materials and methods
Patients

Fifty consecutive patients with newly diagnosed oesophageal
cancer treated with exclusive concomitant radiochemotherapy
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between 2004 and 2008 were included in this study. As part of
the routine procedure for the initial staging in oesophageal
cancer, each patient was referred for an '*F-FDG PET study
before treatment. It included three courses of 5-fluorouracil/
cisplatin and a median radiation dose of 60 Gy given in 180-
cGy daily fractions delivered once daily, 5 days a week for
6—7 weeks. The characteristics of the patients are given in
Table 1. Most of them (45 of 50) were male, aged 65+
9 years at the time of diagnosis; 74% of the tumours, most of
which were squamous cell carcinoma (72%), originated from
the middle and lower oesophagus. Response to therapy was
evaluated 1 month after the completion of the concomitant
radiochemotherapy using conventional thoraco-abdominal

Table 1 Patient demographic and clinical characteristics

Parameter Number of patients (%)
Gender

Male 45 (90)
Female 5 (10)
Age

Range 45-84
Median 69

Site

Upper oesophagus 13 (26)
Middle oesophagus 20 (40)
Lower oesophagus 17 (34)
Histology type

Adenocarcinoma 14 (28)
Squamous cell carcinoma 36 (72)
Histology differentiation

Well differentiated 14(28)
Moderately differentiated 12 (24)
Poorly differentiated 5 (10)
Unknown 19 (38)
TNM stage

T1 7 (14)
T2 8 (16)
T3 24 (48)
T4 11 (22)
NO 20 (40)
N1 30 (60)
MO 34 (68)
Ml 16 (32)
AJCC stage

I 4(8)
A 8 (16)
1B 6 (12)
111 16 (32)
IVA 16 (32)
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CT and endoscopy. Patients were classified as non-
responders (NR) including stable and progressive disease,
partial responders (PR) or complete responders (CR).
Response evaluation was based on CT evolution between
pretreatment and post-treatment scans using Response
Evaluation Criteria in Solid Tumors (RECIST) [14]. Patients
also underwent fibroscopy in cases of partial or complete
response. Complete response was confirmed by the absence
of visible disease in the high endoscopy and no viable
tumour on biopsy. Partial CT response was confirmed by
macroscopic residual (>10% viable) on biopsy. No discor-
dance was observed between pathological, when available,
and CT evaluation.

The current analysis was carried out after an approval by
the Institutional Ethics Review Board.

"E_FDG PET acquisitions

All "8F-FDG PET studies were carried out prior to the
initiation of treatment. Patients were instructed to fast for at
least 6 h before the '*F-FDG administration (5 MBq/kg).
Static emission images were acquired from head to thigh
(2 min per bed position) beginning 60 min after injection on
a Philips GEMINI PET/CT system (Philips Medical
Systems, Cleveland, OH, USA). Images were reconstructed
using the RAMLA 3D algorithm and CT based attenuation
correction. Optimized reconstruction parameters were used
for the 3-D row action maximum likelihood algorithm
(RAMLA) based on the standard optimized clinical
protocol (2 iterations, relaxation parameter of 0.05, 5 mm
3-D Gaussian post-filtering, 4x4x4 mm’ voxels grid
sampling). The PET images were corrected for attenuation
using CT-based attenuation correction.

PET image analysis

All parameters considered were extracted from the
baseline PET images only. For each patient, the primary
tumour was identified on the baseline pretreatment
PET images by a nuclear physician. Three different
SUV measurements and three parameters related to the
tumour functional dimensions, namely the tumour
volume (TV), tumour longitudinal length (TL) and total
lesion glycolysis (TLG) [15], were extracted for each
primary lesion. SUV measurements considered were
SUVinax, SUVpear defined as the mean of SUVy,, and
its 26 neighbours [roughly similar to a 1-cm region of
interest (ROI)] and mean SUV within the delineated
tumour (SUVyean). Whereas SUV,,, and SUV,cq are
clearly independent of the tumour delineation strategy
used, TL, TV, SUV ean and the derived TLG values might
depend on the delineation process. To study the impact of
this step, we considered two different approaches, namely the
automatic fuzzy locally adaptive Bayesian (FLAB) algorithm
[16, 17] and an adaptive threshold algorithm [18] optimized
for the GEMINI PET/CT scanner. Although the first
approach is fully automatic, adaptive thresholding requires
a manually defined background ROI. Therefore, two
experienced nuclear medicine physicians were considered
in the background ROI definition, leading to two series of
results denoted as Ts; and Ta,. TL was determined in
longitudinal direction by multiplying the number of slices in
the delineated TV by the PET image slice thickness (4 mm).
TV was defined as the sum of all voxels contained in the
delineated volumes multiplied by the image voxel’s volume
(64 mm®). Finally, TLG was determined by multiplying the
SUV hean and associated TV.

Table 2 Definition of
image-derived parameters

and associated summary
statistics

Definition Notation Mean+SD
Highest SUV SUV nax 9.7+3.9
Mean of SUV .« and its SUVeax 8.0+£3.3
26 neighbours
Mean SUV within tumour Adaptive threshold User 1 SUVinean(Ta1) 6.4+2.5
defined by User 2 SUV ean(Taz) 6.0+£2.6
FLAB SUV ean(FLAB) 5.5+2.3
TL (cm) defined by Adaptive threshold User 1 TL(Tay) 5.84£2.9
User 2 TL(Ta2) 5.5+2.8
FLAB TL(FLAB) 6.0£2.8
TV (cm®) defined by Adaptive threshold User 1 TV(Ta1) 27.2+25.6
User 2 TV(Tx0) 34.8+30.7
FLAB TV(FLAB) 39.4+£34.9
SUVinean (Ta1) X TV(Ta1)(g) TLG(Ta;) 175.6+178.9
SUVinean (Taz) % TV(Ta2)(g) TLG(Ta,) 206.9+203.4
SUVnean (FLAB) x TV(FLAB)(g) TLG(FLAB) 207.3+192.0
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Statistical analysis

The relation between response to therapy and each parameter
distribution was studied using the Kruskal-Wallis test [19] as
recommended for small, not normally distributed samples.

Fig. 1 Illustration of

differences in tumour delinea-

tion depending on the

methodology for two patients
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Receiver-operating characteristic (ROC) methodology
[20] was used to assess the performance of each parameter
to differentiate patients. Two classification tasks were
considered: differentiating CR patients from PR and NR,
or NR patients from CR and PR. Evaluation was performed
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in terms of the area under the curve (AUC) as well as
specificity and sensitivity.

The significance of the following factors was tested: age,
gender, T, N and M classifications, American Joint Committee
on Cancer (AJCC) stage, histology types, SUV yax, SUVpcaks
TL, TV, SUVcan and TLG. All tests were two-sided and
p values <0.05 were considered statistically significant.

Results

The range of values for the different image-derived indices as
well as the mean and standard deviation for the patient
population considered are given in Table 2. All primary
lesions were detected by '*F-FDG PET exhibiting a rather
high uptake with an SUV,, of 9.7£3.9. SUV . and
SUV hean Measurements were comparatively lower (8.0£3.3
and 5.8+2 .4, respectively).

Correlation between image-derived indices
and between methodologies

TV and TL measurements were moderately correlated (#=0.77,
0.68 and 0.60 for FLAB, Ta; and Ta, respectively,

p<0.0001). On the other hand, no significant correlation
was found between TV and any of the SUV measure-
ments (r<0.2, p>0.1), irrespective of the delineation
approach used. High correlations were observed between
the TV (»>0.89), TL (»>0.90) or TLG (+>0.93) measure-
ments obtained with the two delineation strategies
(p<0.0001). Even higher correlation coefficients
(r>0.97, p<0.0001) were observed for the SUV,can
measurements derived using the two different tumour
segmentation approaches (FLAB and adaptive thresh-
olding). Despite these correlations, certain large differ-
ences were observed for a few patients between the
delineation results of the two segmentation algorithms
considered, examples of which are illustrated in Fig. 1.

Response to therapy analysis

Of the 50 patients included in the study, 25 were classified as
PR, while there were 12 CR and 13 NR. Results concerning
the predictive value of all parameters considered are summa-
rized in Tables 3 and 4 containing the results of the Kruskal-
Wallis tests and that of the ROC analysis (considering the
AUC, specificity and sensitivity regarding the classification
tasks), respectively.

Table 3 Kruskal-Wallis

test results for each parameter Kruskal-Wallis tests

considering the ability to

differentiate (p<0.05) each Parameter Test statistic p Response differentiation? (p<0.05)
pair of response group
CR (n=12) vs CR (n=12) vs PR (n=25) vs
NR (n=13) PR (n=25) NR (n=13)
Age 0.4 0.83 No No No
Gender 4.0 0.14 No No No
T 4.9 0.09 No No No
N 2.7 0.26 No No No
M 3.6 0.17 No No No
AJCC stage 5.9 0.052 Yes No Yes
Histology type 2.3 0.32 No No No
SUV jax 2.5 0.29 No No No
SUVpeax 39 0.14 No No No
SUV 1ean Ta1 33 0.197 No No No
Taz 32 0.199 No No No
FLAB 2.6 0.270 No No No
TL Tay 14.5 0.0007 Yes Yes Yes
Tan 12.4 0.0020 Yes Yes Yes
FLAB 15.6 0.0004 Yes Yes Yes
TV Ta, 13.9 0.0010 Yes Yes Yes
Tan 12.9 0.0016 Yes Yes Yes
FLAB 16.2 0.0003 Yes Yes Yes
TLG Tar 14.6 0.0007 Yes Yes Yes
Tan 14.6 0.0007 Yes Yes Yes
FLAB 21.1 <0.0001 Yes Yes Yes
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Table 4 ROC analysis results

with AUC and associated 95% Parameter ROC analysis
confidence intervals (CI),
specificity (Sp) and sensitivity NR&PR (n=38) vs CR (n=12) NR (n=13) vs PR&CR (n=37)
(Se) for each parameter
regarding the two classification AUC  95% CI Se (%) Sp (%) AUC 95% CI Se (%)  Sp (%)
sk Age 0.51 0.32-0.70 83.3 31.6 0.55 0.35-0.75 86.5 36.5
Gender 0.61 0.46-0.75] 27.3 94.3 0.51 0.41-0.62  90.9 114
T 0.70 0.47-0.93 60.0 89.3 0.64 0.49-0.78  100.0 333
N 0.64 0.46-0.83 60.0 68.8 0.55 0.38-0.73  70.0 40.6
M 0.56 0.38-0.73 70.0 41.2 0.70 0.53-0.87  70.0 70.6
AJCC stage 0.63 0.43-0.84 54.6 73.5 0.72 0.57-0.88  87.5 46.2
Histology type 0.51 0.35-0.66 72.7 28.2 0.60 0.46-0.75 429 77.8
SUV max 0.65 0.45-0.85 33.3 94.7 0.54 0.34-0.73  30.8 89.2
SUVpeak 0.69 0.49-0.89 75.0 63.2 0.54 0.35-0.73  30.8 86.5
SUViean  Tai 0.67 0.47-0.87 50.0 84.2 0.54 0.35-0.74 89.2 38.0
Taz 0.67 0.45-0.88 50.0 94.7 0.51 0.32-0.70  100.0 16.2
FLAB  0.65 0.43-0.87 583 84.2 0.51 0.32-0.70  100.0 13.5
TL Tar 0.81 0.65-0.97 83.3 79.0 0.78 0.63-0.93  59.5 923
Tas 0.79 0.63-0.96 83.3 73.3 0.75 0.61-0.90  75.7 69.2
FLAB 0.79 0.64-0.94 83.3 65.8 0.82 0.70-0.94  59.5 92.3
TV Tai 0.79 0.65-0.89 75.0 81.6 0.79 0.65-0.93  78.4 69.2
Tas 0.74 0.59-0.85 83.3 57.9 0.81 0.67-0.95 94.6 53.9
FLAB 0.78 0.64-0.88 75.0 79.0 0.84 0.72-0.96  75.7 76.9
TLG Tai 0.81 0.62-1.00 66.7 92.1 0.78 0.65-0.92 923 56.8
Taz 0.80 0.61-0.99 75.0 86.8 0.80 0.67-0.93  69.2 81.1
FLAB 0.85 0.73-0.98 75.0 92.1 0.86 0.75-0.98  84.6 75.7

Age, gender or T, N and M classifications did not allow
significant prediction of the response to treatment. The
AJCC stage was not significantly (p>0.05) associated with
the type of response, despite the fact that all NR were at
least stage IIB and could be statistically differentiated from
both PR and CR (p<0.05). However, AJCC stage could not
differentiate PR from CR (p>0.05). Finally, there was no
statistical correlation between histology type and response
(p=0.3).

Figure 2 shows a graphical comparison of the Kruskal-
Wallis results considering the predictive value of the
different SUV parameters considered. Initial SUV .
(Fig. 2a) was not predictive of response to therapy
(»=0.29) although CR tended to have smaller SUV .
(8.1+4.1) than PR and NR (10.2+£3.7 and 10.2+3.9,
respectively). Similarly, SUV ¢ (Fig. 2b) was not predic-
tive of response to therapy with a mean value of 6.5+3.5 in
CR, whereas both PR and NR were characterized by similar
higher SUV e values (8.5+3.1 and 8.4+3.3, respectively)
(p=0.14). None of the SUV .., measurements, whatever
delineation strategy was used, could significantly predict
response to therapy (p>0.19).

On the contrary, all parameters related to tumour spatial
extent (TL, TV and TLG) measurements allowed significant
(»<0.002) differentiation of the three response groups,
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irrespective of the segmentation methodology (see Fig. 3a—c).
For instance, TV as measured by FLAB was 20+25, 32+24
and 72+40 cm’ for CR, PR and NR patients, respectively.
The parameter that allowed the best differentiation between
the three patient groups was TLG measured by FLAB
(Kruskal-Wallis test p<0.0001, see Fig. 3c), with a TLG of
74+75, 179+143 and 3854226 g for CR, PR and NR
patients, respectively. Figure 4 shows examples of one CR,
one PR and one NR patient with corresponding TLG values.

The ROC analysis results confirmed the limited predic-
tive value of most SUV measurements for the accurate
classification of either CR vs PR and NR, or NR vs PR and
CR (AUC<0.70 and <0.56, respectively). Differences
between ROC analysis associated with SUV measurements
and those associated with TL, TV and TLG were significant
(»<0.05) for both tasks (see examples in Fig. 5). Better
predictive performances were obtained with TL, TV and
TLG measurements with significantly higher AUC (from
0.74 to 0.86) for both tasks (»<0.05). For instance, using
FLAB a TLG <58 g allowed identifying CRs with a
sensitivity of 75% and a specificity of 92%, and a
TLG >196 g identified NRs with a sensitivity of 76% and
a specificity of 85%. However, in terms of predictive
performance no significant differences were obtained
between TL, TV and TLG measurements for both tasks.
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Fig. 2 Distributions of NR, PR and CR patients and associated Kruskal-
Wallis tests for SUV-based image-derived indices: SUV,,.«x (a) and
SUVpeak (b)
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Fig. 3 Distributions of NR, PR and CR patients and associated
Kruskal-Wallis tests for TV-related image-derived indices: TL (Tx2)
(a), TV (Ta1) (b) and TLG (FLAB) (¢)
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Fig. 4 'SF-FDG PET axial, a

coronal and sagittal images of a

complete responder with 20 g

TLG (a), partial responder ™
with 100 g TLG (b) and non-

responder with 750 g TLG (c)

In terms of an observed trend, better results were obtained
for TLG over TV and TL whatever tumour delineation
approach was used (Tables 3 and 4). In addition, there was
a systematic although not statistically significant trend of
better performance for those parameters when obtained
with FLAB compared to the use of the adaptive threshold,
as demonstrated by higher AUC and smaller confidence
intervals, as well as higher sensitivity and specificity for
both classification tasks (Table 4).

The analysis with respect to histology type (adenocarci-
noma vs squamous cell carcinoma) led to results similar to
what was observed when considering the entire population.
Within the same context no statistically significant differ-
ences were observed between the two patient groups in the
hierarchy of parameters and results derived using the
different functional TV delineation methods.

The predictive value of TLG, combining TV and
SUV nean into one single parameter, was higher than the
one of TV, despite the non-significant value of SUV can
alone. Considering together TV and SUV ,c.n, One is able to
differentiate different treatment response patient groups (see
Fig. 6). On the one hand, TLG increased the differentiation
between CR and NR, as all NR had either a TV above
50 cm® (8/13) or an SUV can above 5 (8/13), while 10 of
12 CR had either a small TV (<15 cm?) (9/12) or SUV pean
(<5) (7/12), and half of them (6/12) had both. On the other
hand, PR had either a higher SUV,;,c., than CR for volumes
below 25 cm® (6.5+2.7 vs 4.5+2.4) or lower SUV . than
NR for TV of 25-50 cm® (5.8+1.8 vs 7.1+0.9). Therefore,
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the use of TLG increased the differentiation between PR
and CR, as well as between PR and NR for volumes below
15 cm® and between 25 and 50 cm?, respectively.

Discussion

Assessment of response to therapy early during treatment
plays an important role in patient management as well as
in drug development and new criteria including PET
have been suggested for this task [21, 22]. However,
being able to predict response to therapy before the
initiation of the treatment would be even more powerful
for patient management. In this context, either patient or
tumour characteristics could be considered. In our study
we focused on functional imaging and different image-
derived parameters related to tumour uptake using PET.
The results of our study demonstrate that TV-based
parameters derived from baseline '*F-FDG PET images
in oesophageal cancer are good predictors of response to
therapy, with high TL, TV and TLG being associated with
poor response to combined radiochemotherapy. On the
contrary, more commonly used parameters such as tumour
SUVs were not predictors of response to therapy consid-
ering only the baseline 'SF-FDG PET images. These
results further demonstrate the value of TV-based PET
image-derived parameters, since we have previously
demonstrated a superior prognostic value of baseline
functional TL, TV and TLG over SUV measurements for
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Fig. 5 Examples of ROC curves obtained for classification tasks of
differentiating CR from NR&PR (a) or NR from PR&CR (b).
Comparison of ROC curves for SUV measurements (SUV ., in red,
SUVpeak in orange and SUV,eqy in yellow) and TL, TV and TLG
measured with FLAB (in /ight blue, blue and dark blue, respectively)

overall survival in a similar group of oesophageal cancer
patients [23].

FDG PET has been previously used for the prediction of
response to therapy or prognosis in a variety of malignan-
cies [24]. Considering the predictive value of baseline FDG
uptake for therapy response in oesophageal cancer, only
few data showing conflicting results are available [12].
Levine et al. and Rizk et al. reported a high initial SUV .«

being associated with good response [25, 26], whereas
Makino et al. and Kato et al. found the opposite [27, 28].
These conflicting results can be potentially attributed to
differences in patient populations, tumour histology types,
as well as treatment, but could also suggest that SUV
measurements are unreliable in this context. Although
similarly to the results of Kato et al. and Makino et al.
our results suggest that lower values of SUV,, are
associated with a complete response, this trend was not
significant. In addition, SUV ¢ 01 SUV ey, considered
more robust to potential noise bias associated with SUV .,
were also not significant predictors of response to therapy
in our study.

One of the demonstrated independent predictors of long-
term survival in oesophageal cancer is longitudinal tumour
extension established by pathological examination [29]. It
has been previously demonstrated that TL measured on CT
images leads to a weak correlation with the pathological
TL, associated with a large overestimation [30]. Some
authors proposed the estimation of metabolic TL as a
surrogate of pathological TL using various thresholds of
"E_.FDG PET uptake [31]; however, conflicting results
concerning the predictive value of metabolic TL for
response to neoadjuvant radiochemotherapy have been
observed [32, 33]. One may argue that TL does not reflect
the entire volume of the tumour and could therefore be only
considered as a limited surrogate measure of tumour
functional spatial extent. This assumption is partly sup-
ported by our data, in which only a moderate correlation (»
between 0.6 and 0.77) was found between TV and TL,
suggesting that TV may bring additional information
compared to TL in assessing overall tumour burden. In
our study both TV and TL were found to be significant
predictive factors of response to therapy, irrespective of the
functional volume delineation strategy, with only a small
and non-significant improvement of the predictive value of
TV over TL.

TV and TLG measured on PET are 3-D measurements
incorporating metabolically active TV not available from
CT data [34]. It has already been demonstrated that a
decrease of the TV and TLG can predict response to therapy
[35, 36]. These studies however have explored differences
in indices derived from serial PET images. The value of
such indices obtained on the baseline scan only within the
context of therapy response prediction in oesophageal
cancer has not previously been explored. Because these
parameters reflect metabolic information in the entire
tumour, they may be more accurate for tumour character-
ization than a single voxel measure and this may explain
why TV and TLG were good predictors of therapy response
as demonstrated in our study. Our results are consistent
with recent studies in pleural mesothelioma and lymphoma
patients that have demonstrated the potential of such
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indices extracted from baseline '*F-FDG PET scan to
predict response to therapy [37, 38].

Despite a great potential value, such indices have been
only of limited use to date, which can be explained by the
limited accuracy, robustness and reproducibility of the
available tumour delineation tools [39, 40]. In oesophageal
cancer only the prognostic value of TV has been studied
[23, 41], while there are limited data on the value of TLG
[23]. In our study TLG allowed identifying complete
responders and non-responders with moderate sensitivity
(75 and 76%, respectively) and high specificity (92 and
85%, respectively). Prospective studies with a larger patient
population using a predictive model built upon our results
should now be carried out to demonstrate the ability of the
parameters to discriminate responders from non-responders
on a patient by patient basis.

In our study, TNM stage and AJCC classification were
not good predictors of therapy response. This could be
explained by our suboptimal staging procedure. Since we
considered only patients referred for exclusive radioche-
motherapy, no patient underwent surgery, and therefore no
pathological data were available. Staging was routinely
performed using EUS and CT which are known to have
limited staging performances [10].

Our present study has limitations. Firstly, we considered
a group of only 50 patients with predominantly squamous
cell carcinomas since it is the most common histological
type of oesophageal cancer in European countries. An
analysis based on the tumour histology type considering
our patient population did not reveal statistically significant
differences, although due to the small number of patients
with adenocarcinomas, these results would obviously need
to be confirmed. Secondly, our study was inherently limited
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by its retrospective design and as such some selection bias
might be present. However, the treatment regime was
homogeneous throughout the recruited patients since all were
treated in a single institution. In addition, within this patient
population no particular selection criteria were applied.
Thirdly, the impact of partial volume effects in the measured
SUVs was not assessed in this study. The lack of partial
volume correction might have played a role in the reduced
predictive value of some of the SUV measurements, although
it is unlikely because of the large TVs considered in this work
(40+35 cm?). Lastly, we did consider only primary tumours
since the measurements used are simpler to perform in
routine clinical practice compared to measurement of overall
tumour burden including primary and metastatic lesions.
However, given the respective size of metastatic lesions and
primary tumours, adding metastatic lesions to the overall
TLG would not significantly alter the resulting values and
associated conclusions.

Conclusion

Our results demonstrated that '*F-FDG baseline image-
derived parameters related to the metabolic tumour spatial
extent (TL, TV and TLG) are good predictors of response to
therapy in oesophageal cancer with sensitivity above 75%
and specificity above 85%. Commonly used SUV measure-
ments (max, peak, mean) on the pretreatment '*F-FDG PET
image did not allow statistically significant differentiation
of the different response patient groups.
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Impact of Tumor Size and Tracer Uptake Heterogeneity
in F-FDG PET and CT Non-Small Cell Lung Cancer

Tumor Delineation
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The objectives of this study were to investigate the relationship
between CT- and '8F-FDG PET-based tumor volumes in non—
small cell lung cancer (NSCLC) and the impact of tumor size
and uptake heterogeneity on various approaches to delineating
uptake on PET images. Methods: Twenty-five NSCLC cancer
patients with 8F-FDG PET/CT were considered. Seventeen
underwent surgical resection of their tumor, and the maximum
diameter was measured. Two observers manually delineated
the tumors on the CT images and the tumor uptake on the
corresponding PET images, using a fixed threshold at 50% of
the maximum (Tsg), an adaptive threshold methodology, and the
fuzzy locally adaptive Bayesian (FLAB) algorithm. Maximum
diameters of the delineated volumes were compared with the
histopathology reference when available. The volumes of the
tumors were compared, and correlations between the anatomic
volume and PET uptake heterogeneity and the differences
between delineations were investigated. Results: All maximum
diameters measured on PET and CT images significantly corre-
lated with the histopathology reference (r > 0.89, P < 0.0001).
Significant differences were observed among the approaches:
CT delineation resulted in large overestimation (+32% = 37%),
whereas all delineations on PET images resulted in underesti-
mation (from —15% = 17% for Tso to —4% = 8% for FLAB)
except manual delineation (+8% = 17%). Overall, CT volumes
were significantly larger than PET volumes (55 + 74 cm? for CT
vs. from 18 = 25 to 47 + 76 cm?3 for PET). A significant corre-
lation was found between anatomic tumor size and heteroge-
neity (larger lesions were more heterogeneous). Finally, the
more heterogeneous the tumor uptake, the larger was the
underestimation of PET volumes by threshold-based techni-
ques. Conclusion: Volumes based on CT images were larger
than those based on PET images. Tumor size and tracer uptake
heterogeneity have an impact on threshold-based methods,
which should not be used for the delineation of cases of large
heterogeneous NSCLC, as these methods tend to largely
underestimate the spatial extent of the functional tumor in such
cases. For an accurate delineation of PET volumes in NSCLC,
advanced image segmentation algorithms able to deal with
tracer uptake heterogeneity should be preferred.
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The use of 18F-FDG PET, with the addition of CT since
the development of PET/CT devices, has been increasing
for staging non—small cell lung cancer (NSCLC) (/). In
addition, the use of '3F-FDG PET/CT in radiotherapy
treatment planning for the definition of gross tumor vol-
ume has been similarly growing (2). Manual contouring of
the tumor boundaries on the CT images is still the conven-
tional methodology for target volume definition. On the
other hand, and despite a high spatial resolution, the de-
lineation on CT alone may be biased by insufficient con-
trast between tumor and healthy tissues (e.g., in cases of
atelectasis, pleural effusion, and fibrosis or for tumors
attached to the chest wall or mediastinum). Several studies
have investigated the impact of delineation performed
on fused '8F-FDG PET/CT images and have found signifi-
cant modifications of the treatment plan (size, location, or
shape of the gross tumor volume) (3) and reduced inter-
and intraobserver variability (4). Additional benefits from
the use of PET relative to CT include the potential to
image cellular proliferation and tumor hypoxia using
tracers such as 3’-deoxy-3’-!8F-fluorothymidine and '8F-
fluoromisonidazole or ®*Cu-diacetyl-bis(N*-methythiose-
micarbazone), respectively.

However, the integration of PET within radiotherapy
planning is complex, especially because there is neither
consensus nor guidelines regarding the delineation of '8F-
FDG PET tumor uptake or how to subsequently use the
delineated functional volumes. Most previously published
studies have investigated the use of a specific threshold of
PET uptake to define the metabolically active tumor volume
(MATYV, the tumor volume that can be seen and delineated
on an '8F-FDG PET image) or spatial extent, with a large
variability in the recommended threshold and resulting
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volumes (5-8). A few recent studies have investigated the
correlation between tumor histopathology measurements
and the threshold of PET uptake (4,9-12). For example,
the study of Yu et al. (/2) on 15 patients proposed an
optimal threshold of 31% = 11% of the PET maximum
uptake within the tumor for a good correlation with the
corresponding histopathology-derived tumor maximum di-
ameter. Considering 3-dimensional reconstructed histopa-
thology volumes instead of only the maximum diameter,
Stroom et al. (/0) recommended a fixed threshold of 42%
of the maximum PET uptake based on their findings in a
group of 5 patients with rather small tumors. Finally, in the
study by Wu et al. (//) on 31 patients, 50% of the max-
imum (Tso) was proposed as the best threshold for PET
uptake delineation in NSCLC with respect to the histopa-
thologic maximum diameter. This conclusion was reached
by comparing the results obtained using a range of different
fixed thresholds (from 20% to 55%), although only non-
statistically significant differences were found with the
other tested values. The same authors subsequently showed
that such a threshold was less appropriate than manual
delineation, which led to incorrect delineation in some
cases (/3). Manual contouring is far from ideal, as it suffers
from large intra- and interobserver variability (/4) and is
also a tedious and time-consuming procedure, especially in
3 dimensions.

Alternatively, other authors have considered the use of
adaptive thresholding approaches taking into account the
tumor-to-background ratio instead of a fixed threshold but
requiring the determination of a background region of
interest, as well as optimization for a given scanner model,
acquisition protocol, and image reconstruction using phan-
tom acquisitions (8,15,16). Using such an approach, van
Baardwijk et al. (4) obtained a significant correlation with
histopathology measurements for 23 NSCLC tumors, as
well as reduced interobserver variability. Finally, the use
of more advanced image segmentation methodologies to
automatically delineate MATYV has been proposed in sev-
eral studies (1/7-24), with variable levels of validation. For
example, we have already demonstrated that such auto-
mated image segmentation approaches can offer higher
accuracy (18,21), robustness (25), and reproducibility (/4)
than threshold-based (fixed or adaptive) methods.

Some previous studies investigating NSCLC tumor
delineation on PET/CT hypothesized a significant influence
of the anatomic or metabolic lesion size and activity dis-
tribution heterogeneity on both the results and the observed
differences between delineation methodologies (8). How-
ever, those studies neither quantified this heterogeneity nor
thoroughly investigated such a correlation with respect to
the anatomic tumor and functional uptake sizes. The main
objective of our study was therefore to investigate the cor-
relation among anatomic tumor size as determined on CT,
the '8F-FDG uptake level of heterogeneity, and the differ-
ences between various automatic PET MATV delineation
approaches.

MATERIALS AND METHODS

Patient Studies

Twenty-five patients with confirmed NSCLC, stage Ib-IIIb,
were included in this study. All patients underwent an '3F-FDG
PET/CT examination for staging purposes before treatment.
Patients were instructed to fast for a minimum of 6 h before
examination. Free-breathing PET and CT images were acquired
45-60 min after '3F-FDG injection. A total of seven 5-min bed
positions with overlap were used for whole-body PET (Biograph
PET/CT; Siemens) acquisitions, which were corrected for attenu-
ation using the CT data and iteratively reconstructed using the
ordered-subsets expectation maximization algorithm (4 iterations,
8 subsets). Within a week after PET/CT acquisitions, 17 of the 25
patients underwent surgery (lobectomy), which allowed further
macroscopic examination. All specimens were processed in the
same way; namely the fresh specimens were put on ice, and
1 pathologist measured the maximum diameter of the tumor in
3 dimensions (4). Specimen shrinkage, estimated at about 10%,
was not considered since the measurements were performed
before fixation in formalin, allowing subsequent immunohisto-
chemical examination, for which the biopsy specimens were par-
affin-embedded.

This study was approved by the Institutional Ethics Review
Board, and informed written consent was obtained from all
patients before their inclusion in the study.

PET and CT Tumor Delineation

PET images were first up-sampled using a cubic B-spline
interpolation scheme (26), in such a way that the voxels were of
the same size as the associated CT images (Fig. 1). Because the
goal of this study was to compare anatomic and MATV as seen and
delineated on CT and '8F-FDG PET images, respectively, manual
delineation on fused PET/CT images was not considered. Only
primary tumors were delineated on both CT and PET images in-
dependently. Tumor anatomic volumes were manually delineated
on CT without knowledge of the PET information by 2 observers,
both with more than 10 y experience in PET and CT. Functional
tumor volumes were manually delineated on PET images by one
of the observers (and checked by the other observer) (/3), as
well as using semi- or fully automatic image segmentation tools.
A fixed threshold at Tsy as suggested by Wu et al. (/1), and an
adaptive threshold taking into account the background uptake (8),
were considered. The adaptive threshold approach was optimized
on phantom acquisitions performed on the same PET/CT scanner
that was used for the patient acquisitions. The method requires the
definition of a manual background region of interest defining the

A B
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FIGURE 1. lllustration of up-sampled PET images (central axial

slice). Original PET image with voxel size of 5.31 x 5.31 x 5 mm
(A) and PET image up-sampled with voxel size equal to CT (0.98 x
0.98 x 5 mm) (B) using cubic B-spline interpolation.

2 THE JOURNAL OF NUCLEAR MEDICINE * Vol. 52 ¢ No. 11 ¢ November 2011

jnm092767-sn m 10/8/11

[

Fig. 1]



background uptake to compute a first approximation of the tumor-
to-background contrast. Both observers were therefore instructed
to place this background region of interest in the lungs, at a dis-
tance of several centimeters from the boundaries of the tumors.
They were, however, free to choose the actual size and position of
the region of interest, which led to 2 different results, denoted Al
and A2. Finally, the fuzzy locally adaptive Bayesian (FLAB) algo-
rithm (/8,21) was also used. This algorithm allows automatic
tumor delineation by computing a probability of belonging to a
given class (e.g., tumor or background) for each voxel. This pro-
bability is determined by taking into account the voxel intensity
with respect to the statistical distributions (characterized by their
mean and variance) of the voxels in the various regions of the
image, as well as spatial correlation with neighboring voxels.
FLAB has demonstrated its ability to accurately differentiate, if
necessary, both the overall tumor spatial extent from its surround-
ing background and the tumor subvolumes with different uptakes
9.

Investigated Parameters and Analysis

First, for the 17 patients for whom macroscopic measurements
were available, the maximum diameters were measured as the
largest dimension in any orientation, considering the different
volume delineations (manual on CT and PET, Ts,, Al and A2, and
FLAB), and compared with the histopathology reference. We
reported both absolute (in cm) and relative (%) errors with respect
to the maximum diameter to establish a hierarchy between the
different methods. Second, for all patients the anatomic tumor
volumes defined on CT images and the MATYV obtained by each
delineation approach were compared with each other. Delineations
on original non—up-sampled PET images were performed to verify

that the up-sampling would not bias the results of the various
methods. Finally, the '8F-FDG uptake heterogeneity was esti-
mated using the coefficient of variation (COV), defined as the ratio
between the SD of the standardized uptake values and the mean
standardized uptake value within the delineated MATV. Two dif-
ferent volumes were used to calculate COV. The first was the one
obtained using FLAB (COVEgpp), since it was found to be the
most accurate with respect to histology measurements, whereas
the second was the CT-based volume (COVcr) copied onto the
PET images.

Summary statistics are expressed as mean = SD. Pearson coef-
ficients were used to estimate correlations between parameters.
Paired r tests were used to assess the differences between the
tumor volume distributions obtained with the various delineation
approaches. As most distributions were not normally distributed,
they were log-transformed before analysis. All tests were 2-sided,
and P values of less than 0.05 were considered statistically sig-
nificant.

RESULTS

Comparison with Maximum Diameter
(Histopathology Reference)

Table 1 shows the maximum measured diameters of the
17 tumors based on either macroscopic examination or PET
and CT images. All measured diameters correlated strongly
with macroscopic measurements for all delineation ap-
proaches considered (r from 0.89 for Ts, to 0.99 for FLAB,
P < 0.0001) (Figs. 2A-2C). Despite high correlations
with maximum diameter for all methodologies as shown

TABLE 1
Maximum-Diameter Measurements on Pathology and Image Delineations for All 17 Patients

Measurement (cm)

Patient no. Pathologic  CT1 (manual) CT2 (manual) PET (manual) PET (Tsg) PET (A1) PET (A2) PET (FLAB)
1 6.2 6.6 6.7 5.7 4.6 5 4.8 5.8

2 2.7 3.3 3.3 3.4 2.8 3.1 2.8 3

3 9 10.5 10.1 8.9 7 7.5 7.7 9.2

4 1.5 1.8 1.9 2.1 1.3 1.6 1.3 1.5

5 1.8 3.4 3.4 2 1.2 1.4 1.3 1.6

6 3.1 4 3.9 3.2 2.4 2.6 2.5 2.8

7 4.3 5 5.1 4.5 3.8 3.9 3.8 3.9

8 3.1 5.7 5.7 5.1 2.8 4 3.7 3.5

9 3.5 3.9 4 3.4 2.7 2.9 3 3.1

10 5.7 7.6 7.7 7.4 7.5 4.7 6.7 5.4

11 5 5.1 53 4.7 2.7 3 2.9 4.6

12 2.8 3.5 3.2 3.2 2.4 2.5 2.6 2.8

13 41 5.2 51 4.3 3.2 3.3 3.3 4

14 4 4.8 4.9 3.7 3.2 3.4 3.2 3.9

15 7 7.4 7.4 5.8 6.2 6.5 6.3 6.7

16 2.3 2.3 2.4 2.1 1.8 1.7 1.9 2.1

17 2.5 6 5.9 4.5 2.5 2.7 2.6 2.2
Mean = SD 4.0+ 2.0 51 *22 51+ 21 4219 34+19 3516 36=*=1.8 3.9=*20
Median 3.5 5.0 5.1 3.7 2.8 3.1 3.0 3.5
Range 1.5-9 1.8-10.5 1.9-10.1 1.9-8.9 1.2-7.5 1.4-7.5 1.3-7.7 1.5-9.2
Pearson r — 0.90 0.91 0.95 0.89 0.95 0.93 0.99
95% Cl for r — 0.74-0.96 0.76-0.96 0.86-0.98 0.72-0.96 0.85-0.98 0.81-0.98  0.98-1.00

Cl = confidence interval.
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FIGURE 2. Correlations with manual delineations on CT (A) and
PET (B) and with FLAB delineations on PET (C).

in Table 1 and Figure 2, significant differences were
observed among the delineations (Figs. 3A and 3B). On
the one hand, CT delineation consistently overestimated
the maximum diameter of all tumors (+32% *+ 37%), with
errors up to 3.5 cm (+140%). Manual delineation on PET
images led to no significant bias but a high SD (mean error,
8% * 17%), with maximum errors of —1.5 cm (—17%)
and +1.2 cm (+39%). On the other hand, PET automatic

>
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FIGURE 3. Absolute (in cm) differences (A) and relative (%) errors
(B) between pathology measurements and image-based delinea-
tions.

delineations mostly led to underestimation of the real diam-
eter. Tsq led to the largest underestimation (—15% * 17%),
with errors up to +1.8 cm (+32%) and —2.3 cm (—46%).
Adaptive thresholding led to better accuracy, with similar
results for both observers (—11% *+ 17% and —12% =+
16% for Al and A2, respectively) and errors up to —2
cm (—40%). FLAB was associated with the most accurate
results (—4% =+ 8%), with no error above *=0.4 cm
(*x13%).

Comparison of Tumor Volumes

Table 2 shows the tumor volumes for all patients. No
significant differences in volume determination on CT were
found between the 2 observers (P > 0.08). Therefore, the
results for only 1 observer will be considered. No signifi-
cant difference was observed between volumes obtained on
original or up-sampled PET images.

Anatomic tumor volumes delineated on CT images were
the largest (55 = 74 ¢cm?) and were significantly different
from all volumes defined on PET images (P < 0.0001). In
addition, all PET-based methodologies resulted in volumes
that were significantly different from one another (P <
0.0001). Among the PET-defined tumor volumes, and con-
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TABLE 2
Tumor Volumes Measured on CT and PET Images (n = 25)

Tumor volume

(cm3) (n = 25) Mean + SD Median Range

CT1 (manual) 54.5 £ 74.0 28.2 1.9-338.9
CT2 (manual) 55.1 £ 74.8 29.1 1.8-339.4
PET (manual) 47.3 £ 76.4 21.3 2.1-356.2
PET (Tso) 17.7 = 25.1 9.2 8.5-125.8
PET (A1) 22.6 = 33.2 11.9 1.2-166.9
PET (A2) 21.8 + 33.9 11.3 0.9-172.4
PET (FLAB) 39.5 £ 70.5 15.8 1.1-345.1

sistent with what was observed according to the maximum
diameters, the smallest volumes were obtained with Tsq (18 =
25 c¢m?), followed by the adaptive threshold (23 * 33 cm?),
FLAB (40 = 71 cm?®), and manual (47 * 76 cm?).
Regarding the overlap in delineated volumes, the larger
CT volumes almost systematically enclosed the PET-based
volumes, except for 8 cases in which small regions of PET
uptake were just outside the anatomic volume, involving
small margins comprising only a few voxels. The smallest
PET uptake volumes generated with T5, were also almost
systematically enclosed within the volumes defined by the
adaptive thresholding, which in turn were mostly enclosed

[Fig. 4] within the FLAB-based volumes. Figure 4 illustrates 3 dif-

ferent cases representative of the various situations encoun-
tered.

Correlation of '8F-FDG Uptake Heterogeneity with
Tumor Size and Impact on Delineation

The calculated COVs using the 2 different delineated
tumor volumes (COVg ag and COVr) correlated strongly
(r = 0.98, P < 0.0001). The heterogeneity of PET uptake
in these lung tumors was moderate to high, with a mean
COVEgpag 0of 0.26 = 0.06 and a range of 0.21-0.48. COVr
was higher, with a mean of 0.37 = 0.08 (range, 0.3-0.6).
Twenty-two of 25 tumors were characterized by a
COVpgpag of 0.2-0.3 (0.25-0.4 for COV ), and the 3 most
heterogeneous were characterized by a COVgpap of 0.32,
0.36, and 0.48 (0.46, 0.48, and 0.69, respectively, for

[Fig. 5] COVcr). Figure 5 shows 2 different lesions and their asso-

ciated COVcr and COVEpap. A moderate but significant
correlation was found between CT volumes and PET het-
erogeneity, as larger anatomic volumes exhibited higher
heterogeneity (r = 0.44 and r = 0.5 for COV¢r and
COVEgpag, respectively, P < 0.03). A similar correlation
was found between MATVs and the corresponding hetero-
geneity, as larger functional volumes also exhibited signi-
ficantly higher heterogeneity (» = 0.51 and r = 0.58 for
COVer and COVEp 4, respectively, P < 0.002).

Tumor size had an impact on the differences observed
between the delineation results using the different images
and segmentation approaches considered. A moderate (r =
0.44) correlation was observed between anatomic tumor
volumes and the differences between FLAB and Tsq results

[Fig. 6] (Fig. 6A). The larger the anatomic size of the lesion, the

larger were the differences between FLAB and Ts, volumes
(P = 0.025). Similar nonsignificant trends were observed
for differences between adaptive thresholding volumes or
manual delineation and FLAB (r < 0.4, P > 0.08). No
correlation was found between anatomic tumor size and
the differences between CT volumes and all of the PET
volumes determined with the different segmentation ap-
proaches considered.

The impact of PET uptake heterogeneity was more
significant than anatomic tumor size on the resulting MATV
differences using the PET delineation methodologies
considered. As illustrated in Figure 6B, differences between
MATYV obtained with Tso and FLAB correlated strongly
(r < —0.8) with PET heterogeneity (P < 0.0001) estimated
either with COV ¢t or COVEp . The higher the heteroge-
neity within the tumor, the smaller was the MATV obtained
with Tsy compared with that derived by FLAB. A similar
correlation was observed for the differences between FLAB
and Al (r < —0.7, P < 0.0001), as well as between FLAB
and manual delineation (» < 0.6, P < 0.001).

DISCUSSION

Interest in the use of MATV delineation on PET for
NSCLC has been growing for several years, especially for
radiotherapy applications such as dose redistribution,
boosting, and painting, for which MATV is not used in
place of anatomic volume but rather as a complement to

A

FIGURE 4. Small lesions (<2 cm in diameter) (A) and larger lesions
with moderate (COVE ag = 0.23) (B) and higher (COVE ag = 0.30) (C)
heterogeneity. For readability, A1 contours are not shown in B and C
and manual PET contours are not shown in B as they were similar to
FLAB and Tso. White = manual on CT; blue = Tsq; purple = Af;
green = FLAB.
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COVppp= 0.23
COVy =0.32

COVp = 0.48
COV¢ =0.69

FIGURE 5. Heterogeneity estimation for 2 tumors.

increase or redistribute dose within the lesion (27-29).
These techniques are of interest especially for large tumors
characterized by heterogeneous uptake within the MATV.
However, the optimal MATV delineation methodology is
still subject to debate, especially for these tumor cases.

Our results confirm that large discrepancies can be
observed in image-based determination of NSCLC tumor
volumes according to the methodology used for tumor
delineation. Using morphologic imaging and manual delin-
eation, we saw a large overestimation of tumor volume as
previously described by several authors (/3). Using a fixed
threshold of 50% as recommended by Wu et al. (/1), the
estimation of the maximum tumor diameter on PET images
was not correct. We observed a constant underestimation of
the maximum diameter—a finding that differs from those of
Wau et al., who reported mostly overestimations of the max-
imum diameter of the tumor. This difference is most pro-
bably related to the size of the tumors considered in the 2
studies. Wu et al. included mostly small tumors (median
diameter, 2 cm; range, 1.1-6.5 cm) whereas we considered
larger tumors (4 = 2 cm; range, 1.5-9 cm). The discordant
results could be explained by the failure of binary threshold
approaches to deal with heterogeneity, which is more
present in larger tumors.

On the other hand, we found differences between CT and
PET volumes similar to those found by Wu et al. in their
subsequent study (/3). CT volumes were significantly
larger than PET-based volumes in both studies, despite
the differences in tumor sizes considered. In our group of
patients, we mostly observed that the MATV was com-
pletely enclosed in the larger anatomic tumor volumes.
Only in a few cases was elevated tracer uptake observed
outside the limits of the anatomic tumor, and only a few
voxels were involved. This marginal difference may be
explained either by imperfect spatial registration between
PET and CT or by the impact of respiratory motion.

Using the adaptive thresholding methodology as
described by Nestle et al. (8), PET tumor sizes did correlate
well with the histopathology-based gold standard, albeit
with an underestimation of the maximum diameters in

our group of lung tumors. Our results agree with those
of Van Baardjwick et al. (4), who previously investigated
a slightly different semiautomatic methodology first pro-
posed by Daisne et al. (16).

In the current study, results from the 2 observers using
adaptive thresholding were not significantly different,
contrary to what was previously observed in the case of
esophageal tumors (30,31). However, unlike the rather het-
erogeneous uptake in the mediastinum surrounding esoph-
ageal tumors, the lung uptake is more homogeneous, thus
leading to negligible variability in the manually determined
background values. Manual delineation was less dependent
on the heterogeneity within MATV than were threshold-
based methods, leading to satisfactory results with no sig-
nificant bias (mean error < 10%), although there was a
large SD (17%) as some MATV were either largely over-
estimated (mostly the smaller lesions with lower contrast)
or underestimated (some of the most heterogeneous ones
with complex shapes). Overall, manual delineation corre-
lated strongly with FLAB (r = 0.96).

Automatic delineation on PET images using FLAB
provided the best estimation of tumor diameters, in ac-
cordance with our previous evaluation of FLAB perform-

20
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FIGURE 6. Correlation between anatomic volume (A) or uptake
heterogeneity (B) and differences between Tsq and FLAB volumes.
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ance (/8). Other advanced segmentation algorithms able to
deal with heterogeneous MATV could potentially yield
similar satisfactory results (22,32). In our previous study,
FLAB was compared with a fixed threshold at 42%, instead
of 50%, but with similar trends in the observed results.
Furthermore, in our previous work the segmentation algo-
rithms were applied to the original PET images without up-
sampling and therefore with larger voxels. In the present
study, resampling was performed for an easier comparison
with CT delineations and overlap estimation. This approach
resulted in a more accurate estimation of the differences
between PET- and CT-based delineation methodologies,
without, however, significant differences in the resulting
volumes with respect to delineation performed on nonre-
sampled images.

Tracer uptake heterogeneity within the MATV has been
recognized as an important factor and a plausible explan-
ation of failed cancer treatments (33). Also in malignancies
such as sarcomas, esophageal cancer, cervical cancer, and
head and neck cancer, studies have shown that local and
regional tracer uptake heterogeneity assessment with PET
can predict outcome (34-36). In NSCLC, Nestle et al. has
already observed a larger variability between MATV delin-
eations due to spatial tracer uptake heterogeneity, without,
however, quantifying this heterogeneity and the associated
correlation with the MATV results (8). The impact of het-
erogeneity on MATV delineation results can be observed
and reach statistically significant levels only for objects
larger than a few centimeters in diameter, since the limited
PET spatial resolution cannot provide accurate imaging of
tracer heterogeneity in smaller volumes of interest. These
larger tumors are also most frequently encountered in radio-
therapy treatment, for which an accurate delineation of the
overall MATV may be advantageous, particularly if one
considers treatment scenarios involving dose painting or
boosting.

Although limited by the small sample of patients and the
need to confirm the results in a larger group, our study
added several elements to the existing knowledge on the
correlation between anatomic tumor size and '3F-FDG PET
uptake in NSCLC. Our results suggest that the larger the
tumor, the more heterogeneous the '3F-FDG PET uptake is
likely to be. This suggestion is in agreement with the
expected evolution of NSCLC, since necrosis, hemorrhage,
or myxoid changes, known to cause areas of low attenua-
tion on CT images, are more likely to appear in larger
tumors. A large, heterogeneous MATV is less likely to be
accurately delineated using simple fixed or even adaptive
binary threshold methods.

In this study, we used the COV to quantify the
heterogeneity of PET tracer uptake within the tumor. This
heterogeneity factor does not offer any information on the
spatial distribution of the heterogeneity and could poten-
tially result in the same value for very different heteroge-
neous distributions. However, this simple parameter that
provides a global measure of heterogeneity is sufficient for

the purposes and objectives targeted in this study, allowing
us to observe significant correlations between tracer uptake
heterogeneity and differences in the MATV segmentation
results, either with COVg ag or COVer. The most hetero-
geneous lesions were characterized by COVgap values
above 0.3; however, values from 0.2 to 0.3 were distributed
in a rather continuous fashion, making it hard to set a thresh-
old value allowing the differentiation of homogeneous from
heterogeneous distributions. A more detailed characteriza-
tion of the spatial distribution of tumor heterogeneity, which
was outside the scope of this study, can be obtained using,
for instance, local and regional textural features (35).

In studies such as the present one and those published
previously within the same context, a common limitation is
the lack of respiratory gating. Four-dimensional PET can
provide solutions to improve subvolume delineation for
dose-painting applications (37). However, in our dataset the
large size of the tumors should have reduced the potential
impact of respiratory motion on the results. In theory, the
MATV could have been overestimated for the smallest
lesions by both respiratory motion and partial-volume
effects. In practice, in our patients only a small fraction
of the lesions (10%—-20%) were smaller than 2-3 cm.

Finally, a second limitation of our study was the de-
termination of tumor extent based on the measurement of
maximum diameter and not the entire volume. Errors in
maximum diameter may translate into significantly larger
errors with respect to the entire functional volume, especially
when heterogeneous uptake distributions are considered. It
is indeed possible to obtain an accurate maximum diameter
with inaccurate 3-dimensional delineations, especially for
complex shapes. Unfortunately full-volume histopathology
datasets, for which protocols and corresponding volume
estimations are associated with numerous approximations
and inaccuracies, are not available yet for NSCLC. Hence,
the maximum diameter measurements can be considered as
a satisfactory surrogate and have been used in most clinical
studies.

CONCLUSION

Volumes based on CT images were systematically and
significantly larger than those based on PET images. In
addition, tumor size and PET uptake heterogeneity had a
significant impact on the MATV PET delineation results
using semi- or fully automatic image segmentation tools.
Our results indicate that for a case of large, heterogeneous
NSCLC, fixed and adaptive thresholding should not be
used for the MATV delineation of '8F-FDG PET uptake.
These methods inherently assume homogeneous uptake in
both background and MATV and therefore tend to largely
underestimate the spatial extent of the functional tumor
in such cases. The use of thresholding approaches should
be restricted to smaller lesions with sufficient tumor-to-
background contrast or for larger tumors exhibiting homo-
geneous uptake. For an accurate automatic delineation of
MATYV in NSCLC, advanced image segmentation algo-
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rithms able to deal with tracer uptake heterogeneity should
be used.
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Impact of Partial-Volume Effect Correction on the Predictive
and Prognostic Value of Baseline 3F-FDG PET Images in

Esophageal Cancer
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The objective of this study was to investigate the clinical impact of
partial-volume effect (PVE) correction on the predictive and
prognostic value of metabolically active tumor volume (MATV)
measurements on '8F-FDG PET baseline scans for therapy re-
sponse and overall survival in esophageal cancer patients. Meth-
ods: Fifty patients with esophageal cancer treated with
concomitant radiochemotherapy between 2004 and 2008 were
retrospectively considered. PET baseline scans were corrected
for PVE with iterative deconvolution incorporating wavelet denois-
ing. MATV delineation on both original and corrected images was
performed using the automatic fuzzy locally adaptive Bayesian
methodology. Several parameters were extracted considering
the original and corrected images: maximum and peak standard-
ized uptake value (SUV), mean SUV, MATV, and total lesion gly-
colysis (TLG) (TLG = MATV x mean SUV). The predictive value of
each parameter with or without correction was investigated using
Kruskal-Wallis tests, and the prognostic value was determined
with Kaplan-Meier curves. Results: Whereas PVE correction
had a significant quantitative impact on the absolute values of
the investigated parameters, their clinical value within the clinical
context of interest was not significantly modified—a result that
was observed for both overall survival and response to therapy.
The hierarchy between parameters was the same before and after
correction. SUV measurements (maximum, peak, and mean) had
nonsignificant (P > 0.05) predictive or prognostic value, whereas
functional tumor-related measurements (MATV and TLG) were
significant (P < 0.002) predictors of response and independent
prognostic factors. Conclusion: PVE correction does not improve
the predictive and prognostic value of baseline PET image-
derived parameters in esophageal cancer patients.
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survival; PET; partial volume effects; SUV; tumor volume; total
lesion glycolysis
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With a worldwide estimated 5-y survival of only 15%
(1), esophageal cancer is the third most common malignancy
of the digestive tract and is a leading cause of cancer mor-
tality. Its incidence is still increasing, and there is a growing
concern regarding its effective management (2). Surgical re-
section remains the most effective treatment; however, many
patients have a locally advanced esophageal carcinoma at
diagnosis and neoadjuvant therapy before surgery has dem-
onstrated improved survival in such cases (3). The maximum
improvement in terms of increased overall survival from
neoadjuvant treatment is observed for patients who achieve
a complete pathologic response (only 15%-30% of cases),
with no residual cancer cells in the primary tumor or lymph
nodes (4). On the other hand, nonresponders (NRs) may be
unnecessarily affected by toxicity (5). The development of
an early diagnostic test offering noninvasive prediction of the
response to therapy or survival is therefore of great interest.
For tumors that cannot be surgically removed, combined
radiochemotherapy is the preferred treatment. In this case
too, early assessment of response to therapy would allow
a modification in the management of nonresponding patients
early during treatment. Such a response assessment becomes
even more critical when one considers the availability of new
targeted drugs that could be tested with higher efficiency if
applied early (6).

Along with the standardized uptake values (SUVs)
(maximum SUV [SUV,,,,] or peak SUV [SUV,.4]) usu-
ally considered in clinical practice, other parameters de-
scribing functional lesions—such as metabolically active
tumor volume (MATYV, defined as the tumor volume that
can be seen and delineated on an '8F-FDG PET image) (7),
mean SUV (SUV ean), and total lesion glycolysis (TLG,
defined as the product of MATYV and its associated SUV can)
(8)—have been investigated. The prognostic value of these
parameters in esophageal cancer patients for overall or dis-
ease-free survival has been demonstrated (9—/2). On the
other hand regarding therapy prediction, several studies on
different cancer models have recently suggested using
the baseline scan only, instead of the comparison of pre-
treatment and posttreatment scans (late assessment) or
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during-treatment scans (early assessment) (/3). Such inves-
tigations were, for instance, performed in pleural mesothe-
lioma (/4), non-Hodgkin lymphoma (/5), and esophageal
cancer (7,16), demonstrating higher statistical value for
MATV-based parameters than SUV measurements, whose
predictive value has been found to be conflicting (/7).

However, in most of these studies, no partial-volume
effect (PVE) correction was applied, possibly explaining
the observed limited value of SUV. The impact of PVE
correction on the clinical value of SUV measurements has
been investigated by a limited number of authors. Hoetjes
et al. (/8) investigated the impact of 4 PVE correction
strategies on 15 breast cancer patients, regarding the early
metabolic PET response after 1 cycle of chemotherapy. The
SUV decrease between the pretreatment scan and the scan
early during treatment was found to be lower after PVE
correction (26%—-27% vs. 31%) for the first 3 methods but
not for the fourth one based on binary tumor masks (30%).
Van Heijl et al. (/9) recently demonstrated a nonsignificant
impact of PVE correction on the correlation between dis-
ease-free survival and '8F-FDG PET SUV measurements in
52 esophageal cancer patients. In this study, a PVE correc-
tion method based on binary tumor masks generated with
adaptive thresholding delineation was used, and disease-
free survival was the only clinical endpoint investigated.
Both the use of adaptive thresholding and the PVE correc-
tion method based on tumor masks assume a homogeneous
tracer distribution in both tumor and background and are
therefore likely to provide only approximate correction
(20). On the other hand, no data are currently available
regarding the impact of PVE correction on the value of
baseline '8F-FDG PET-based measurements for the predic-
tion of overall survival and response to therapy in esopha-
geal cancer.

The current study was therefore performed to investigate
the impact of an advanced PVE correction methodology
and the use of an accurate MATV delineation approach on
both the predictive and the prognostic value of baseline
I8F-FDG PET scan—derived parameters.

MATERIALS AND METHODS

Patients

Fifty consecutive patients with newly diagnosed esophageal
cancer were included and retrospectively analyzed. The char-
acteristics of the patients are given in Table 1. Most of the
patients (45 of 50) were men, aged 65 = 9 y at the time of
diagnosis. Seventy-four percent of the tumors originated from
the middle and lower esophagus, and 72% were squamous cell
carcinoma. None of the patients underwent surgery, and all
were treated with concomitant radiochemotherapy between
2004 and 2009. The therapy regime included 3 courses of 5-
fluorouracil and cisplatin and a median radiation dose of 60 Gy
given in 180-cGy fractions delivered once daily, 5 d a week for
6-—7 wk. As part of the routine procedure for the initial staging
in esophageal cancer, each patient was referred for an '3F-FDG
PET study before treatment, and these baseline scans were used
in this study.

TABLE 1
Patient Demographics and Clinical Characteristics

No. of patients

Parameter (n = 50)
Sex
Male 45 (90)
Female 5(10)
Site
Upper esophagus 13 (26)
Middle esophagus 20 (40)
Lower esophagus 17 (34)
Histology type
Adenocarcinoma 14 (28)
Squamous cell carcinoma 36 (72)
Histologic differentiation
Well differentiated 14 (28)
Moderately differentiated 12 (24)
Poorly differentiated 5 (10)
Unknown 19 (38)
TNM stage
T 7(14)
T2 8 (16)
T3 24 (48)
T4 11 (22)
NO 20 (40)
N1 30 (60)
MO 34 (68)
M1 16 (32)
American Joint Committee on Cancer stage
| 4 (8)
A 8 (16)
B8 6 (12)
11l 16 (32)
IVA 16 (32)

Age range of patients was 45-84 y, and median was 69 y. Data
in parentheses are percentages.

Overall survival was determined as the time between initial
diagnosis and last follow-up or death. Response to therapy was
evaluated 1 mo after the completion of the concomitant radio-
chemotherapy using conventional thoracoabdominal CT and
endoscopy. Patients were classified as NRs (including stable and
progressive disease), partial responders (PRs), or complete
responders (CRs). Response evaluation was based on CT evolution
between pretreatment and posttreatment scans using response
evaluation criteria in solid tumors (2/). Patients also underwent
fibroscopy in the case of partial or complete response. Complete
response was confirmed by the absence of visible disease in the
endoscopy and no viable tumor on biopsy. Partial CT response was
confirmed by macroscopic residual (disease >10% viable) on bi-
opsy. No discordance was observed between pathologic, when
available, and CT evaluation. The current analysis was performed
after an approval by the institutional ethics review board.

18F-FDG PET Acquisitions

I8F-FDG PET studies were performed before the treatment.
Patients were instructed to fast for at least 6 h before an in-
jection of '8 F-FDG (5 MBg/kg). Static emission images were
acquired from head to thigh beginning 60 min after injection
and with 2 min per bed position, on a Gemini PET/CT system
(Philips). Images were reconstructed using the row-action
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maximum-likelihood 3-dimensional algorithm according to
standard clinical protocol: 2 iterations, relaxation parameter
of 0.05, 5-mm 3-dimensional gaussian postfiltering, a 4 x 4 X
4 mm voxel grid sampling, and attenuation correction based on
a low-dose CT scan.

PET Image PVE Correction and Image Analysis

Images were corrected for PVE using an iterative deconvolution
methodology that has been previously validated (22). Its principle
is to iteratively estimate the inversion of the scanner’s point spread
function, which is assumed to be known and spatially invariant in
the field of view. The considered lesions were all in the same body
region, and this approximation should therefore not significantly
affect the applied correction on a patient-by-patient comparison
basis. Iterative deconvolution methods, such as those of Lucy-
Richardson (L-R) (23,24) or Van Cittert (25), are known for the
amplification of noise associated with an increasing number of
iterations. To solve this issue, wavelet-based denoising of the re-
sidual was introduced within the iterative L-R deconvolution using
Bayeshrink filtering (26), leading to images corrected for PVE
without significant noise addition. The following are advantages
of this methodology: it is able to generate entire whole-body cor-
rected images independently of any manual or automatic segmen-
tation of regions of interest, and it is voxel-based and therefore
does not assume homogeneous regional radiotracer distributions
for the tumor or surrounding background.

Tumor Delineation and Parameter Extraction

For each patient, the tumor was identified on the baseline
pretreatment PET images by an experienced nuclear physician. It
was then delineated using the fuzzy locally adaptive Bayesian
algorithm (20,27) on both the original (without PVE correction) and
the PVE-corrected images. This segmentation approach has been
shown to give both robust and reproducible functional volume
delineations under variable image noise characteristics (28,29).

The following parameters were subsequently extracted from
each baseline image with or without correction for PVE: SUV .,
SUV,eak (defined as the mean of SUV . and its 26 neighbors
[roughly corresponding to a 1-cm region of interest]), SUV pnean

within the volume, MATYV, and TLG (determined by multiplying
SUV pean With the corresponding MATV).

Statistical Analysis

Pearson coefficients were used to estimate correlation between
the image-derived parameters, and paired ¢ tests were used to
characterize the differences between uncorrected and corrected
parameters. The correlation between response to therapy and each
parameter was investigated using the Kruskal-Wallis test as a non-
parametric statistic allowing the comparison of parameter distri-
butions associated with each category of response (CR, PR, and
NR). This test does not assume a normal distribution of variables,
and the computation of its statistic H is based on ranks instead of
absolute values of variables (30). Regarding survival, for each
considered parameter, Kaplan—Meier survival curves were gener-
ated (37) for which the most discriminating threshold value allow-
ing differentiation of the groups of patients was identified using
receiver-operating-characteristic methodology (32). The prognos-
tic value of each parameter in terms of overall survival was
assessed by the log-rank test.

The significance of the following factors (with or without
correction) was tested: SUV ., SUVpear, MATV, SUV qy, and
TLG. All tests were performed 2-sided using the MedCalc statis-
tical software (MedCalc Software), and P values below 0.05 were
considered statistically significant.

RESULTS

Impact of PVE Correction on
Image-Derived Parameters

The PVE correction affected the images that could be
assessed visually, with a higher contrast between the tumor
and the surrounding tissues, as can be seen in Figure 1 and
is illustrated using profiles in Figure 2. Table 2 provides the
distributions of volumes and associated parameters mea-
sured in original and corrected images.

MATVs delineated on original images and images cor-
rected for PVE were highly correlated (» > 0.998; confidence

FIGURE 1. lllustration of iterative decon-
volution PVE correction on whole-body .
18F-FDG PET image, with original image (A)
and corrected image (B).
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FIGURE 2. Qualitative differences between original and corrected PET images of esophageal lesion of MATV above 25 cm? using profiles

on axial, sagittal, and coronal planes.

interval, 0.997-0.999; P < 0.0001). However, MATVs de-
lineated on PVE-corrected images were systematically
smaller (P < 0.001) by on average —10% = 5% (range,
—1.5% to —22.4%), resulting in a mean volume difference
of =4 = 3 cm?® (40 = 36 cm?® vs. 36 = 34 cm?). This
difference is illustrated on 3 different tumors in Figure 3.
There was no significant correlation between these differen-
ces and the PET lesion volumes (r < 0.2, P > 0.18).

All primary lesions were detected by '8F-FDG PET and
exhibited a rather high uptake with a mean SUV ,, of 10 *
4. As expected, SUV,c and SUV ., measurements were

comparatively lower (8 = 3 and 6 * 2, respectively). All
SUV measurements are summarized in Table 2. After it-
erative deconvolution, SUV ., SUVpea, and SUV eqn
were 15 = 6, 10 = 4, and 7 = 3, respectively. All were
significantly higher than noncorrected values (P < 0.05).
SUV.x increased by 54% = 23% (range, 18%—157%),
whereas the impact on SUV .o and SUV .. Was lower,
with a mean increase of 27% * 10% (range, 8%—51%)
and 28% = 11% (range, 9%—-59%), respectively. Consid-
ering the PVE correction-induced decrease of MATV
(—10% = 5%) and increase of corresponding SUV can

TABLE 2
Distributions of Parameters With and Without PVE Correction

Definition Notation Original mean + SD PVE correction mean = SD
Highest SUV SUVmax 9.7 = 3.9 14.9 = 6.1
Mean of SUVax and its 26 neighbors SUVpeak 8.0 + 3.3 10.1 = 4.0
SUVnean Within MATV SUVnean 58+ 24 7.4 =31
MATV (cm?3) MATV 39.9 + 36.1 36.2 = 33.7
Total lesion glycolysis () TLG 218.1 = 208.3 235.8 + 218.1

PARTIAL-VOLUME CORRECTION ON
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FIGURE 3. Examples of fuzzy locally adaptive Bayesian delinea-
tion results (blue contours) on original (left) and corrected (right) PET
images with large, slightly heterogeneous MATV (A); MATV with
necrotic core (B); and small, homogeneous MATV (C).

(+28% = 11%), PVE correction resulted in significantly
higher TLG values (+14% * 12%; range, —2 to +50%)
(P < 0.0001).

The increases of SUV ., and SUV ., after PVE correc-
tion did not correlate with MATV (r < 0.2, P > 0.2),
whereas the increase of SUV ., correlated inversely with
MATV (r = —0.79, P < 0.0001), with higher increases
observed for smaller volumes.

Impact of PVE Correction on Predictive and
Prognostic Values

Twenty-five patients were classified as PR, 11 were CR,
and 14 were NR (including stable and progressive disease).

With a median follow-up of 60 mo (range, 10-84 mo), the
median overall survival was 12 mo and the 1-y and 2-y
survival rates were 60% and 35%, respectively. At the time
of last follow-up, 10 patients were alive with no evidence of
disease, 9 were alive with recurrent disease, and 31 had
died. Survival was significantly correlated with response,
as overall survival was 24 * 15 (median, 21), 22 = 20
(median, 14), and 9 = 4 (median, 10) months for CR,
PR, and NR, respectively (P < 0.01). Results concerning
the prognostic and predictive values of all considered
parameters with and without PVE correction are summa-
rized in Tables 3 and 4.

Initial SUV,,,,,, whether corrected for PVE or not, was
not predictive of response to therapy (P = 0.2 and 0.3 for
SUV.ax and SUV ., with PVE correction, respectively),
although CRs tend to have a smaller SUV ., (7.8 = 4.2 and
12.2 = 6.6 after PVE correction) than PRs and NRs (10.2 =
3.7 and 10.3 = 3.8 for PR and NR, respectively, and 15.9 *+
6.0 and 15.5 £ 5.7, respectively, after PVE correction) (Fig.
4A). SUV,eqx led to slightly more differentiated groups of
response without reaching statistical significance (P =
0.08), with a mean value of 6.2 = 3.6 in CRs, whereas both
PRs and NRs were characterized by a similarly higher
SUV,eak (8.5 = 3.1 and 8.5 = 3.2 for PRs and NRs, re-
spectively). After PVE correction, the results using SUV e,
were similar, with 7.8 = 4.4, 10.7 £ 3.7, and 10.8 = 3.9 for
CRs, PRs, and NRs, respectively (P = 0.1). The SUV pean
measurements could not significantly predict response (P =
0.07), and the differentiation between the 3 groups of re-
sponse considered on the basis of SUV .., Was still not
possible after PVE correction (P > 0.14).

None of the SUV measurements was a significant
prognostic factor in the univariate analysis, despite a trend
for longer survival associated with lower SUV (maximum,
peak, or mean). For instance, an SUV,,,, below a threshold
of 8 or an SUV .., under 6.5 tend to be associated with
a better outcome and a median survival of 20 versus 13 mo

TABLE 3

Kruskal-Wallis

Test Results

Response differentiation? (P < 0.05)

Parameter H P CR(n=11)/NR(n =14) CR(n = 11)/PR (n = 25) PR (n = 25)/NR (n = 14)
SUVmax 3.6 0.17 No No No
SUVnax With PVE correction 2.4 0.31 No No No
SUVpeak 5.1 0.08 No No No
SUVpeak With PVE correction 4.7 0.10 No No No
SUVmean 55 0.07 No No No
SUVnean With PVE correction 3.9 0.14 No No No
MATV (cm3) 20.7 <0.0001 Yes Yes Yes
MATV with PVE correction (cm3) 20.7 <0.0001 Yes Yes Yes
TLG (9) 25.1 <0.0001 Yes Yes Yes
TLG with PVE correction (g) 25.2 <0.0001 Yes Yes Yes

H statistic and associated P value are given for each parameter, with ability to differentiate (P < 0.05) each pair of response groups

among patients.
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TABLE 4
Univariate Analysis Results Using Kaplan—Meier Survival Curves

HR 95% confidence

Parameter Threshold HR interval P Median survival (mo)

SUVmax 8 1.5 0.7-3.1 0.28 20 vs. 13
SUVnax With PVE correction 11 1.6 0.7-3.2 0.26 20 vs. 13
SUVpeak 7 1.4 0.7-2.8 0.31 16 vs. 10
SUVpeak With PVE correction 9 1.8 0.9-3.6 0.11 20 vs. 11
SUVmean 6.5 1.7 0.8-3.6 0.15 16 vs. 10
SUVnean With PVE correction 7.5 1.7 0.8-3.5 0.12 20 vs. 10
MATV (cmd) 85 3.9 1.0-15.2 0.0004 20 vs. 6

MATV with PVE correction (cm?) 80 3.4 0.9-11.7 0.0024 16 vs. 10
TLG (9) 260 2.9 1.2-6.8 0.0012 21 vs. 10
TLG with PVE correction (g) 280 3.2 1.3-7.6 0.0004 21vs. 10

(P = 0.3) and 16 versus 10 mo (P = 0.15), respectively. DISCUSSION

Similarly, after PVE correction no threshold value could
significantly differentiate groups of patients regarding their
survival (Figs. SA and 5B).

Contrary to SUV measurements with or without PVE
correction, the parameters related to functional volume
(MATYV and TLG) allowed significant (P < 0.0001) differ-
entiation of the 3 response groups and were significant
prognostic factors (P < 0.002), as illustrated in Figure
4C. No significant differences were found using the original
or PVE-corrected values.

The parameter that allowed for the best differentiation of
patient groups was the TLG (P < 0.0001). CRs were charac-
terized by a TLG of 55 % 45 g, whereas PRs and NRs had
aTLG of 178 £ 143 and 416 = 238 g, respectively. After PVE
correction, the absolute values of each group rose to 62 = 45,
200 = 155, and 437 = 249 g for CRs, PRs, and NRs, re-
spectively, leading to the same discrimination between groups
of response (P < 0.0001). Although slightly less efficient than
TLG, the use of MATV allowed a statistically significant dif-
ferentiation of the 3 response groups (P < 0.0001). Use of the
MATV values extracted from PVE correction images led to
exactly the same discriminating power (P < 0.0001).

MATV and TLG were also good prognostic factors, with
high MATV and TLG values being significantly associated
with shorter survival, with hazard ratios between 3 and 4 (Table
3). A MATYV above 85 cm? was identified as a predictor of poor
outcome, with a median survival of only 6 mo, versus 20 mo
for patients with a smaller MATV (P = 0.0004), as illustrated
in Figure 5C. In addition, a MATV below 15 cm?® was associ-
ated (P = 0.009) with longer survival (49 mo) than a larger
MATV (11 mo). Similar results were obtained using the
MATVs measured on the PVE-corrected images, with a median
survival of 20 mo for patients with tumor volume with PVE
correction below 80 cm? versus 10 mo for patients with MATV
above 80 cm? (P < 0.002). Regarding TLG, a threshold of 260
g was found to be a good discriminating factor for outcome (21
vs. 10 mo, P = 0.0012), whereas using PVE-corrected TLG
led to similar results, with a slightly higher threshold (TLG
with PVE correction = 280 g, 21 vs. 10 mo, P = 0.0004).

Our study investigated the impact of PVE correction on
the predictive and prognostic values of different parameters
derived using the baseline pretreatment PET images. Our
results confirmed that PVE correction significantly affects
quantitative SUVs, with an average increase of above 50%
for SUV .x, in agreement with previous studies (/8,19),
and a lower increase (<<30%) for SUV ¢ and SUV eqn.
The lower increase observed for SUV e, and SUV ey, is
related to the fact that the L-R deconvolution is a voxel-
by-voxel process leading to enhancement of contrasts be-
tween subvolumes within the MATV and both lower- and
higher-voxels SUVs included in the averaging associated
with the calculation of SUV eq and SUV ,eq. PVE correc-
tion did not significantly affect the delineation of the
MATYV. Overall, MATVs delineated on the corrected
images were only slightly smaller than those determined
on the original images. The mean reduction of 10% was
within the reproducibility limits of confidence intervals re-
garding tumor volume measurements on double-baseline
PET scans using fuzzy locally adaptive Bayesian algorithm
method (£30%) (29). This limited impact of PVE correc-
tion on MATV can be explained by the fact that PVE is
dependent on tumor size and is more pronounced on small
lesions (33). In our group of patients, the tumors were
rather large (40 = 30 cm?); therefore, the relative variation
of volumes with respect to the entire volume is small.
Twelve patients (25%) had an MATV of around 10 cm3
or smaller. In addition, the use of a robust delineation ap-
proach instead of threshold-based methods in various con-
figurations of blur and noise (28,34) ensured a limited
variability in the MATV delineation results between origi-
nal and corrected images.

As previously demonstrated (7,12), MATV and TLG
extracted from noncorrected '8F-FDG PET pretreatment
acquisitions had high clinical value. In contrast, none of
the usual SUV measurements (maximum, peak, or mean)
considered in clinical practice was significantly associated
with therapy response or survival, as also reported in the 2
largest available prospective trials (35,36).
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Regarding response to therapy prediction using SUVs,
we found that PVE correction did not improve the already
demonstrated low discriminating power of any of the SUV
measurements considered (7). This can be explained by the

combination of several factors. First, without PVE correc-
tion, the trend of low SUV being associated with better
outcome may have been exaggerated by an underestimation
of SUV, because CRs had also smaller volumes in addition
to low SUV ... Second, after PVE correction all 3 response
groups had increased SUV,,,« but with still no significant
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difference between the groups. We have demonstrated that
SUV ean increase after PVE correction was inversely cor-
related with tumor volume (r = 0.8, P < 0.0001), with
smaller volumes being characterized by higher SUV can
increases after PVE correction than larger volumes. The
SUV can Within the MATV of PRs and NRs was therefore
increased by a smaller amount (+20% = 9%) than those
within the MATV of CRs (+34% = 13%), which were
associated with smaller tumor volumes. The mean tumor
SUVs of CRs were therefore closer to the SUV ca, of PRs
and NRs after correction. Hence, the discriminating power
of SUV ean Was reduced by PVE correction. A similar
trend was observed for SUV .« and SUV ¢, although it
was less significant because their respective increase was
not correlated with the MATYV. Therefore, PVE correction
might have further reduced the clinical value of SUV mea-
surements in this context. This effect has been previously
suggested as a limitation to the prognostic value of SUV .«
in early-stage non—small cell lung cancer (37).

Similar conclusions can be drawn from the results
regarding the impact of PVE correction on the prognostic
value of the SUV parameters. Indeed, as already demon-
strated (/2), extreme MATYV values were significantly asso-
ciated with longer or shorter overall survival for very small
(49 mo for MATV below 15 cm? vs. 11 mo for MATYV above
15 cm?3) or very large MATV (6 mo for tumor volume above
85 ¢cm? vs. 20 mo for MATV below 80 cm?), respectively.
On the other hand, SUV measurements without correction
cannot significantly differentiate between the patients with
longer or shorter survival (P > 0.05 for all SUV measure-
ments), although a trend for longer survival was associated
with lower SUVs. After correction, this differentiation was
not significantly improved, because SUVs associated with
the smaller volumes were closer to SUVs associated with
larger volumes. Therefore, the discrimination was again re-
duced by PVE correction. To our knowledge there are no
similar data available on the impact of PVE correction on
SUV predictive value in the literature, but our results are in
agreement with previous findings that demonstrated no sig-
nificant changes in disease-free survival correlation between
original and corrected SUVs in esophageal cancer using
alternative less accurate methodologies for both PVE cor-
rection and functional volume segmentation (/9).

As previously demonstrated (7,1/2), MATV and associated
TLG values were good predictors of response (7) and inde-
pendent prognostic factors of overall survival (12). After PVE
correction, the already high clinical value of MATV and TLG
was not significantly altered. Considering the thresholds used
to differentiate patient groups, there was no need for adjust-
ment regarding MATV measurements because MATVs were
not significantly modified by PVE correction. On the other
hand, TLG thresholds needed to be adjusted, considering that
PVE correction led to significantly increased SUV ., and
resulting TLG values. The determined threshold values for
each parameter regarding prognosis or prediction of response
were found using receiver-operating-characteristic analysis

on the current patient cohort and would therefore require
larger prospective studies to be validated.

The rather large tumor volumes (40 = 30 c¢cm?) in our
patient dataset might be considered as a limitation of this
study, because PVEs are usually considered significant for
volumes around or below 10 cm3 (33). First, 25% of the
tumors in this dataset were within this volume range. In
addition, the shape of the primary esophageal lesions is
not spheric but mostly cylindric, with a small diameter
(<2 cm) in the transaxial direction. Therefore, esopha-
geal lesions can be significantly affected by PVEs despite
the overall large metabolic volumes, as can be seen in
Figure 2 for a lesion with a MATYV above 25 cm?. Finally,
the patient population used in this study was typical of
routine clinical practice and was not selected on the basis
of the overall primary MATVs.

CONCLUSION

The results of this study demonstrate that PVE correction
does not add any value to parameters derived from MATVs
such as MATV and TLG measured on '8F-FDG PET base-
line acquisitions. PVE correction did not alter the already
demonstrated clinical value of both parameters as predic-
tive factors of the response to concomitant radiochemother-
apy or as prognostic factors of overall survival in locally
advanced esophageal cancer. Similarly, although PVE cor-
rection led to increases in all SUV measurements (maxi-
mum, peak, or mean) considered in clinical practice, the
corrected values were still not significantly associated with
either therapy response or prognosis. Finally, our study is in
agreement with previous investigations using simpler tools,
showing limited interest in PVE correction in this specific
context. However, the potential impact of PVE correction in
other applications such as diagnosis or lesion detectability
remains to be evaluated. In addition, the value of PVE
correction in patient follow-up using serial PET scans needs
to be further demonstrated.
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Abstract

Partial volume effects (PVE) are consequences of the limited spatial resolution
in emission tomography. They lead to a loss of signal in tissues of size
similar to the point spread function and induce activity spillover between
regions.  Although PVE can be corrected for by using algorithms that
provide the correct radioactivity concentration in a series of regions of interest
(ROIs), so far little attention has been given to the possibility of creating
improved images as a result of PVE correction. Potential advantages of PVE-
corrected images include the ability to accurately delineate functional volumes
as well as improving tumour-to-background ratio, resulting in an associated
improvement in the analysis of response to therapy studies and diagnostic
examinations, respectively. The objective of our study was therefore to develop
a methodology for PVE correction not only to enable the accurate recuperation
of activity concentrations, but also to generate PVE-corrected images. In
the multiresolution analysis that we define here, details of a high-resolution
image H (MRI or CT) are extracted, transformed and integrated in a low-
resolution image L (PET or SPECT). A discrete wavelet transform of both H
and L images is performed by using the ‘a trous’ algorithm, which allows the
spatial frequencies (details, edges, textures) to be obtained easily at a level of
resolution common to H and L. A model is then inferred to build the lacking
details of L from the high-frequency details in H. The process was successfully
tested on synthetic and simulated data, proving the ability to obtain accurately
corrected images. Quantitative PVE correction was found to be comparable
with a method considered as a reference but limited to ROI analyses. Visual
improvement and quantitative correction were also obtained in two examples of
clinical images, the first using a combined PET/CT scanner with a lymphoma
patient and the second using a FDG brain PET and corresponding T1-weighted
MRI in an epileptic patient.
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1. Introduction

Partial volume effects (PVE) are well-known consequences of the limited spatial resolution
in emission tomography. PVE is characterized by the loss of signal in tissues of size similar
to the point spread function (PSF). In addition, PVE induces a signal cross-contamination in
adjacent structures with different amounts of radioactivity (Aston et al 2002, Du et al 2005).
In this latter phenomenon, sometimes referred to as spillover, the high activity in a given
region can spread out and contaminate a bordering area of lower activity, leading to either
underestimated or overestimated activity concentration measurements.

These effects can be corrected for by using a number of different algorithms that often
rely on the use of the PSF of the imaging device and a priori anatomical knowledge provided
by computed tomography (CT) or magnetic resonance imaging (MRI) (Meltzer et al 1990,
Muller-Gartner et al 1992, Rousset er al 2000, Aston et al 2002, Matsuda et al 2003, Baete
et al 2004, Bencherif et al 2004, Quarantelli er al 2004, Kusano et al 2005, Rota Kops and
Krause 2005). The large majority of these algorithms, which have been evaluated mostly in
the context of cerebral imaging, require a segmentation step to delineate the different parts
from anatomical images. This step renders their accuracy dependent on the segmentation
algorithm used as well as making their application on other clinical investigations outside the
brain challenging (Feuardent et a/ 2003). For example, the pixel-based approach of Meltzer
et al (1990) is restricted indeed to brain metabolism or neuroreceptor binding, and requires
compartmental analysis (Meltzer et al 1999). As a rare example, Pretorius and King (2004)
proposed an application of PVE correction for cardiac SPECT. Furthermore, and similar to the
great majority of PVE correction methods (except in the interesting approach of Kennedy et a/
using Taylor expansion (Kennedy ez al 2005)), these algorithms offer quantitative correction of
ROI (region of interest) intensities without considering the construction of enhanced images.
On the other hand, resolution compensation or resolution recovery algorithms can also be used
to reduce PVE in emission tomography. However, the majority of these algorithms suffer from
being reconstruction algorithm specific (Ardekani et al 1996, Som et al 1998, Somayajula
et al 2005), as well as being only tested in limited clinical context such as cardiac SPECT
(Hutton and Lau 1998) or FDG PET in the human brain (Baete et al 2004).

One of the reference methods (referred to from here onwards as RSF for regional spread
function) described by Rousset et al (1998, 2000) and recently improved (Frouin et al 2002,
Du et al 2005) was also developed in the brain context and allows estimating the true
mean signal in any user-defined series of n homogeneous regions of interest (ROIs), but
the images themselves are not enhanced. This approach relies on the inversion of an n x
n matrix called geometric transfer matrix (GTM). The elements w;; of the GTM are the
coefficients of activity spillage from ROI i to ROI j, and the true activity 7; in ROI i can be
deduced from the measured activity ¢; by inverting the equation [¢] = [GTM] x [T ], where [¢]
and [T'] are the vectors containing the #; and T; values, respectively. The use of this approach
is theoretically possible in various clinical applications even if it was originally designed for
cerebral studies where generally only three ROIs are required (white matter, grey matter,
cerebrospinal fluid). Actually, the method works satisfactorily when the image is segmented
into a series of ROIs that constitute a partition. In other words, ROIs must not overlap and at
the same time considering all ROIs together must cover the entire image. As a consequence,
when studying tumours in whole-body images, the number of ROIs can dramatically increase
(Feuardent et al 2003), thus hampering the clinical use of this methodology.

In general, the aim of all these methods is to provide the user with correct radioactivity
concentration estimates in a given ROI. To date however, except in very specific applications
(Baete e al 2004), little attention has been given to the challenging possibility of creating
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improved images through a generic approach. In this paper, a new PVE correction
methodology is proposed, based on the multiresolution analysis of images of different spatial
resolutions. The main advantage of the proposed methodology is that it not only enables
the accurate recuperation of activity concentrations, but is also capable of simultaneously
generating PVE-corrected images. This improvement allows (a) performing a visual control
of the correction, (b) improving clinical diagnostic studies through a better visual assessment of
the images, and most important (c) allowing further image processing (such as, for example,
functional volume estimate of tumours, location of epiletogenic foci in cerebral imaging
(Boussion et al 2003), or wall motion and ejection fraction in cardiac imaging (Hickey et al
2004)). Furthermore, the method is not restricted to a particular organ and does not require
tedious and time-consuming ROI delineation.

In the following section, a concise presentation of the wavelet transform and the
multiresolution analysis serves as an introduction to section 2. The developed PVE algorithm
is described in detail including a description of the test images and overall methodology used
to validate the developed algorithm.

2. Materials and methods

2.1. Multiresolution image analysis and wavelet transform

Although the theoretical foundations of multiresolution analysis do not constitute the main
topic of this study, it is constructive to introduce the basic concepts of the wavelet transform
which is an important part of the proposed methodology. Actually, the wavelet transform can
be introduced by comparison with the more common Fourier transform with which it has a
number of similarities. While the Fourier transform provides global information about the
spatial frequencies in an image, the wavelet transform leads to a local representation of these
spectral properties. From an image processing point of view, the Fourier transform permits one
to switch between the spatial and the frequency domains while the wavelet transform allows
one to bring them together in one single image. In practice, the wavelet transform of a given
image is another image presenting the areas where one may find either more or less important
contrast. In addition, one of the interests of the wavelet transform in image processing is that
it enables work at different levels of spatial resolution, operating as a tool of multiresolution
analysis. Multiresolution analysis allows retrieving the layers of details that have different
sizes by separating the spatial frequencies that the image contains. Basically, a medical image
at a given spatial resolution R contains information at different scales, from large structures to
small details. For instance, in a cerebral MRI the sharp edges between white and grey matters
will be lost when a low-pass filter is applied, but at the same time the skull will stay clearly
separated from the brain. Accessing and separating these structures of different sizes is the
scope of multiresolution analysis.

If we now consider the mathematic point of view, the wavelet transform allows expressing
a signal according to a basis of elementary functions called wavelets. This basis is built from
a ‘mother’ wavelet v (also referred to as analysing wavelet) on which are applied dilation
and translation computations. This process is obtained in one dimension as a result of the
following formula:

_L x—b 0) 1
Wa,b(x)—ﬁlﬂ( P ) (a > 0). (D

a is called the scale parameter and is linked to the frequency domain, while b is the position
parameter linked to time or space.
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The wavelet transform W(a, b) of the function f(x) is defined as

1 [ L[(x—b
Wi(a,b) = ﬁ/ F) (T) dx, 2)

where 1* stands for the complex conjugate of the analysing wavelet . W is linear, shift
invariant and also invariant by dilation. These latter two properties are of interest in image
processing involving combination of different images. Actually, on the one hand, shift
invariance limits the unavoidable consequences of inaccurate superimposition of images. On
the other hand, dilation invariance is valuable for observing ‘objects’ of different sizes in a
given signal without changing the analysing wavelet.

There are many algorithms available to perform the discrete wavelet transform of an
image. All have particular interests and drawbacks but they must be chosen carefully because
the passage to the discrete approach can lead to the loss of interesting properties such as
invariance mentioned above. A widely used approach is the pyramidal methodology which
consists of reducing the size of the image iteratively to get smoother and smoother versions of
the initial image. This is the widespread multiresolution approach that Mallat (1989) developed
through his algorithm that permits compression of data by decimating the image. This method
is anisotropic in the sense that horizontal, diagonal and vertical details are separated during
the process. Another common approach is the algorithm ‘a trous’ (French term that means
‘with holes’). This is an undecimated method inducing shift invariance which is of particular
interest when investigating image comparison. The transformation is not pyramidal since the
initial image and the images of coarser spatial resolution have identical sizes. For this reason,
this particular algorithm is redundant and is of reduced interest in image compression. This
algorithm forms however the basis of our PVE correction methodology as it presents several
practical advantages, namely (a) the implementation is straightforward and the initial image
can be perfectly reconstructed without loss of any kind, (b) there is no selection of specific
directions during the analysis since the process is isotropic, (c) the transform is known for
each pixel improving accuracy of further processing, and (d) navigation is easy between the
different levels of resolution.

This discrete wavelet transform algorithm called ‘a trous’ was introduced by Dutilleux
(1987), developed by Holdschneider et al (1989) and detailed by Starck ez al (1998). The
process gives an image sequence of coarser and coarser spatial resolution by performing
successive convolutions with a low-pass filter / obtained from a scaling function ¢. At each
iteration j, the spatial resolution of the image /; is degraded to give the approximation image
I;11 according to

Lk, 1) = Zh(m,n)lj(k+m2j,l+n2j). 3)

m,n

As already pointed out, there is no decimation involved in the process, which means that all
1; approximations have the size of the initial image I,. However, only one pixel out of 2/
is considered during the filtering process, leading to inclusion of zeros in the rows and the
columns of the mask. This feature gives its name to the algorithm, i.e. ‘with holes’, and it also
explains why the process is dyadic, where the successive approximations /; have resolutions
decreasing by powers of 2.

The difference I; — I, is the wavelet coefficients w;,; containing the details (edges,
texture) at a resolution level between /; and /. Note that the undecimation permits one to
follow the local information at a pixel level for any /;, that is, navigation through all /; images
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is possible at any pixel location. The synthesis procedure that reconstructs the original image
from its layers of details wy is given by

k=N
I = IN+Zwk, 4)
k=1

with N the number of iterations from the initial image /, to the final approximation /y of spatial

resolution decreased by 2V. A pixel at location (x, y) can be expressed as the sum of the

wavelet coefficients at this position plus the smoothed array at the same (x, y) coordinates:
k=N

Io(x,y) = In(x, y) + Y wilx, ). 5)

k=1

The ‘a trous’ algorithm can easily be implemented by performing the following steps (Starck

et al 1998):

(1) Initialize j to O: start with the original image /.

(2) Increment j and carry out a convolution of /;_; with the low-pass filter 4. The distance
between the central pixel and the adjacent ones is 277!,

(3) The wavelet coefficients w; at this level of resolution are given by I;,_| — I;.

(4) If j is less than the required number N of resolutions, go to step 2.

(5) The set W = {wq, wy, ..., wy, Iy} is the wavelet transform of /.

Provided they satisfy a limited number of properties (compacity, regularity, symmetry) and
according to suitable prerequisites, different scaling functions can be constructed. However,
several already exist possessing interesting characteristics. The most widely used filters in
the ‘a trous’ algorithm are based on linear interpolation and B-splines interpolation. For
instance, the bicubic spline is a very smooth function, well suited for isolation of large image
structures. On the other hand, linear interpolation is a good compromise, enabling work with
both small and large scale characteristics. Another filter, sometimes called low-scale filter, is a
sharply peaked function that performs well in isolating very small structures. The normalized
