N

N

Méthode d’évolution de modeles produits dans les
sytemes PLM

Seyed Hamedreza [zadpanah

» To cite this version:

Seyed Hamedreza [zadpanah. Méthode d’évolution de modeéles produits dans les sytéemes PLM. Autre.
Université de Grenoble, 2011. Frangais. NNT: 2011GRENIO77 . tel-00721744

HAL Id: tel-00721744
https://theses.hal.science/tel-00721744
Submitted on 30 Jul 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00721744
https://hal.archives-ouvertes.fr

UNIVERSITE DE GRENOBLE

THESE

Pour obtenir le grade de

DOCTEUR DE L’'UNIVERSITE DE GRENOBLE

Spécialité : Génie Industriel

Arrété ministériel : 7 aolt 2006

Présentée par

« Seyed Hamedreza IZADPANAH »

Thése dirigée par « Michel TOLLENAERE » et
codirigée par « Lilia GZARA »

Préparée au sein du Laboratoire G-SCOP
dans I'Ecole Doctorale IMEP2

Méthodologie d’évolution de
modeles produit dans les
systemes PLM

Date de la soutenance : 28 septembre 2011,
devant le jury composé de :

Monsieur Laurent TABOUROT

Professeur a I'Université de Savoie, Examinateur

Monsieur Christophe MERLO

Maitre de conférences HDR a 'ESTIA de Bayonne, Rapporteur

Monsieur Samuel GOMES
Professeur a 'UTBM, Rapporteur

Monsieur Philippe PERNELLE
Maitre de Conférence a I'Université Lyon 1, Examinateur

Monsieur Michel TOLLENAERE
Professeur a Grenoble-INP, Directeur de thése

Madame, Lilia GZARA
Maitre de Conférence a Grenoble-INP, Co-encadrante

Méthodes d’évolution de modele produit dans les systémes du type PLM

Insanity means doing the same thing over and over again and
expecting different results.

Albert Einstein

Remerciements

Un travail de these est le résultat d’une forte collaboration. Je tiens a remercier ici toutes
les personnes m’ayant aidé tout au long de mon parcours académique.

J'exprime mes profonds remerciements a mes encadrants, madame la docteur Lilia Gzara
et le directeur de these, le professeur Michel Tollenaere, pour l'aide compétente qu'ils
m'ont apportée, pour leur patience et leur encouragement.

Je remercie également Monsieur le professeur Yannick Frien, le directeur du laboratoire G-
SCOP pour son aide et son soutien

Je remercie en premier lieu les membres du Jury pour avoir accepté de faire partie du Jury
de cette these ainsi que pour le dipléme qu’ils m’ont accordé.

J'exprime aussi ma gratitude a tous mes amis et camarades au sein du laboratoire GSCOP
pour créer cette superbe ambiance. Je tiens plus particulierement a remercier mes
collegues du bureau, Charlotte, Sandra, Valérie, Safa et Helene, elles sont toutes

formidables.

Enfin, je remercie ma famille et mes amis pour l'aide et le soutien qu’ils m’ont apportés au
cours de ces années de these.

Méthodes d’évolution de modele produit dans les systémes du type PLM

Table of Content
Chapter 1 Introduction and CONtEXL ... ————————— 9
B I g 01T) 21 1 1 9
1.1. Functionalities Of PLM SYSTEIMS.....corerienreseeseenseeseesseessesssessssssssssssssss s sssssesssssssesssssssssans 10
1.2. PLM and itS QIOUNM...ieceureeeeeesresseeeessessesssessessesssessessesssssessesssssssssessssssessessssssessessssssessesssssssssesssssssssesses 11
1.3, PLM TOOIS ATCRITECTUIE ..oocereeeeeeeeesreeseseessessessessessessessessessssssessessssssessessssssessssssssssssesssssssssesssssesssesses 12
1.4. Product Model, Definition and its role in PLM SYSTEMS......cccouunrenmeenmeenmeensesneeeseesseessesssessseenns 15
2. PLM Evolution, INdustrial CONtEXLccciuiimmiicmmiissimisssissassassansens 16
R 60 1 Tl L1) o 17
4. Map of this thesis ... ——————————————— 18
Chapter 2 Product model evolution within PLM systems, Problematic..........coceeueus 19
1. Beginning diSCUSSION ... s s s e as s ms s nas s sae s san e an 19
2. Modification, Evolution and Transformation......cc.eiesmerississmsssmsssssssssssssssssssssssssssens 20
3. Researchreview on product model evolution from informational viewpoint.......... 20
4. Research review on informatics evolution viewpoint ..., 24
4.1. Modeling 1anguage @VOIULION ... cecercereeeeseessesseeseessessessessessesssssessessesssssse s sesssessssssssssssessessssssesns 24
5. Conclusion of state of art.......— s —————————————— 27
6. ProblematicC ... —————————————————————— 28
6.1. Functions of propoSed PrOCEAUTEcirenienreeneeireesreeesessssesse s sssssssssesssssssesssssssessssssssssssnses 30
Chapter 3 Model Evolution, Our Approach ... 32
1. INrOAUCHION i ——————————— 32
2. Model Driven Engineering: princCipals..... s 33
2.1. Model and meta-mModel CONCEPLS....urrererreerer e seesses e seesses s ssesses e sessessessessessees 35
2.2, Model TranSfOrmMation ... eeeeeserseesessesseesessesssesessessssssessesssssessessesssssessessssssessesssssessesssasessees 37
K T '] D 14 s 0 o 9 40
4. CONCIUSION it 42
Chapter 4 Product Model EVOIULIONcccvmcnmnmsmsmnmmsssssmmsssens 44
1. Beginning of diSCUSSION ...t s e 44
2. Phase one: Preparation: modeling industrial problematic.......cccocuossnmsnmsnsssnssssssesnnns 45
3. Phase two: Identification of the equivalent Evolution Scenario........coumminsesnnesinns 47
3.1, Meta-Modeling, DSML..... s sesseesessesssessssesssssessesssssssses s s ssessesssssses s sssssssesssasesness 50
4. Phase three: Similarity FrameworK ... 51
0 S\ [T U= W) 40§ U (Y0) VO 51
4.2. Proposed framework of similarity framework...... s 52
4.3. Method for comparing tWo MOAELS ... ss s ssssssse e ssseees 58
T O00) o 30 =V 0 g Vo o B a0 (P 61
T TR 010) o Tod 1D F-3 o) o ST 64
5. Phase four: Transformation and implementation—————— 65
6. CONCIUSION ... 66
Chapter 5 An Industrial Need of Evolution, Generic Configuration...........ccuoumnesenens 67
1. “Generic” MOAeliNg ... s s s s sas 68
1.1. Product Generic Representation, an industrial Need........oerrenrermeseeneenseseeseessessesseesseenes 68
1.2. Levels of product CONfiGUIationeemrereenneinnceneeiseessesssesssssss s sssesss s sesssssssesssssssssans 69
1.3. Properties of “generic” modeling frameworKs ... sesssesssesssessseenns 70
2. A New Approach to Built Generic Product Modelviimniimnnsnnssnnssnssssssssssssssssnnns 72
2.1. Industrial context and ProblemMatiC ... e sseesses s ssesees e ssessessesssessessees 72
72 N T3 1o L U () o P 75
R U 60 1 Tl L1 () o 86

Chapter 6 TOOL ... 87

1. Tool's needed functionalities ... ———————————— 88

2. TOOI'S OPEration ... —————————————— 89

2/ S 51 3 Y=t (o) W 021010 0T 90

2.2. Second part, DSM and Meta-model COMPATISON ...ccvverererreereeneemrerserseessessesseessessesssessessessessesees 90

2.3. Third part, TranSfOrMatioN ... eeneiseenseineessesssesssssssessssessessessssssssssssssesssssssesssssssssssessssssssses 90

2.4. Forth part, Inserting the data in t0 NEW SYSTEIM ... seeses s seesessesssessesees 91

3. Tool development advanCemeNtcccocumrmsmnessmssssmssssmssssmsssssssssssssss s s sss s sssmsssasans 91

4. Experimentation SCENATI0 ... ssssssssassssasssssssnssesssns 93

5. ToO0lS DemMONSIatiON ... —————— 97

6. CONCIUSION ... ——————————————— 100
General Conclusion and Perspectives......mmm s —————— 101
T o=] 0 T T 103
1.1, DSML ccceiereesseeesseesssess e sssee s s essessssee s sees s s s 8RR R RS R R R R RS en R 103

D U 1)PP 103

RS TR 003 00 o =1 510 10 40 U 0 (o 1o (3000 103
REf@IENCES.. ...t R 105
ANNEXES it 111

Méthodes d’évolution de modele produit dans les systémes du type PLM

Table of Figures

Figure 1-1, Product Lifecycle , (Terzi S. 2007)cccvverriiriieiieeiieieeeie ettt 10
Figure 1-2, PLM software architecture presented in (Hong-Bae Jun et al. 2006).................... 13
Figure 1-3, IT architecture of (Golovatchev & Budde 2007)........ccceevieviienciienieeiieiieeieeieens 14
Figure 1-4, PLM archit@CtUIEcoueiviiiieriieiieiierieeie ettt sttt 15
Figure 2-1, Product structure viewpoints (Zina et al. 2000)..........cccecveeriercirenieniieenieeieenieenns 22
Figure 2-2, Evolution of models and modeling 1anguages.............cccecueerieriieniieniieenieeieeieenns 26
Figure 2-3, Product model evolution between systems/VIEWPOINLSeccvrerveeereenieeriveenneenns 30
Figure 3-1, PIM, PSM and transformation (OMG 2001)........cccceerieriiienieniieniieeieesiie e 34
Figure 3-2, object/model/meta-model/meta-meta-model............coceeveriiniininiiniiniiiiee 35
Figure 3-3, Simplified UML meta-model (MOF)c..cocoiiiiiiiiniiiiiieieeceeeeeeee 36
Figure 3-4, MOF and Models in UML, example standard de figure 3.2ccccvvevveriiennns 36
Figure 3-5, Two models and their meta-modelcocooiiiiiiiniiniiiieee 37
Figure 3-6, Model Transformation mechaniSme...........ccceeeeverienieniinienieneeeneee e 38
Figure 3-7, Model Transformationc.eoeeuerienienienienteieeie ettt 39
Figure 3-8, PLM product modeling facilitiescccerierieiiiniinieiiiieieiceeeceeece e 42
Figure 4-1, Overall view of the PropoSItioncccueeeuieriierieiiieieeie et eve e eve e 45
Figure 4-2, Translation of evolution problematicC.............coceevuirierieniniinienieieneeeeeseeeee 46
Figure 4-3, FArSt SCENATIO ... cevteuieriieriiiieeitert ettt ettt ettt ettt ettt ettt et et e e ae e 48
Figure 4-4, SECONA SCENATIOecuveruieiiiiieiiertieteeite sttt ettt ettt ettt sttt esaeeaeenee 48
Figure 4-5, Third SCENATIO ...c..eeveriieriiiieeiteteeieeet ettt sttt sttt e aeeeee 49
Figure 4-6, FOUIth SCENATIOeeviiuiiiiiiiiiiieiieieee ettt 49
Figure 4-7, Similarity calculation frameworkccccoooeriiiiiiiniini 54
Figure 4-8, Inter level Transformationcocceeerieriiiienieiiiieneeee e 61
Figure 4-9, Transformation of CONSrAINTS.........eeuerieriirienieiiriesieeieee e 62
Figure 5-1, Evolution and different levels of abstraction............c.cceoevieveenenieniencnienceee 70
Figure 5-2, Specialization and composition in product configurationcceceeveeruereenenne. 71
Figure 5-3, levels of abstraction via MDEccccooiiiiiiiniiiiiieneeeeeeeeeee e 72
Figure 5-4, Steps Of OUL PrOPOSTHION.......eiiirtieierierteeieriteet ettt ettt 76
Figure 5-5, Composition 0f @ Pan.......cccueviiriiiiiiiienieieeieeeeee e 77
Figure 5-6, the draft of “generic” product meta-model...........cccovieviniiniininiiniiieee 79
Figure 5-7, Meta-model COMPATISONcc.eeruieiirieniieieiieriteteeite sttt 80
Figure 5-8, Dependency MatriCES.ccoutriirrieriirienieeieeiienitete et sttt sttt sttt ae e 82
Figure 5-9, CompPoNnents’ TEZIOUPINGccueeeveerureriueerrieereenieeereesseesseesseesseesseessseessaesssessseenns 82
Figure 5-10, FACIOTIZAtION ...eoviiiiiiiieiiiieeiieieeiee ettt sttt sttt 83
Figure 5-11, Dependency matrix Of Pam........ccceeierieriinienieniinieseeieseseeee e 84
Figure 5-12, structure of Product.........ccooieriieiiiiienieieeieeee e 85
Figure 6-1, Use Case Diagram of proposed t00l.........ccceeevieiieiiiieiieiiieiieeie e 89
Figure 6-2, ACtiVIty dIQGIaIMcccueeiiiiiiieiieeiieiee ettt ettt et e ete et eseteebeeesaeesaeseseeseens 89
Figure 6-3, first layer of transformation............coceveeiirienieiiiienieeeeeee e 91
Figure 6-4, Second layer of transformation...........c.ccecevierierinienieneneeeeeeeeee e 92
Figure 6-5, Source meta-modelcooeiiiriiiiiiiiiiieieeee e 94
Figure 6-6, Target meta-model.coouiiiiiiiiiiiiieieeee et 94
Figure 6-7, SOUrce MOdEL.coouiiiiiiiiiiiiiiteeeee ettt 95
Figure 6-8, The transformation between formats (translation)c.ccceceevervenieneniiencennenne 97
Figure 6-9, Initial meta-model INSETtioN.........cc.eviirieriiriinieiceieseee e 98
Figure 6-10, Target meta-model INSETtION.........ceverieriiriirieieeiesieee e 98
Figure 6-11, ATL comparison frameworkcoceeveriinieiiniienieienieeeceeeeee e 99
Figure 6-12, XMI format of model [eVel...........cccooiiiiiiiiiiiiiiiee e 100

Table of Tables

Tableau 4, Reasons 0f PLIM €VOIULIONuvviiiiiiiiiiiieiiiieee ettt ettt eaaaeeeeas 28
Tableau 5, Current and fUtUIE SYSTEMSeevuieeiiierieeiierie ettt et sae e e eeseenes 74
Tableau 6, COMPONENE PIOPETLICS.eerurierieriieeiieriieeteerteeteeseeeteessaeeseesseessseensaessseeseessseensns 78
Tableau 7, Dependencies fOr @ PAN...........ccuevieeiieriieiiieiie ettt sae e eeseenes 84

Méthodes d’évolution de modele produit dans les systémes du type PLM

Abbreviations
ATL Atlas Transformation Language
BOM Bill of Materials
CAD Computer Aided Design
(CAO) (Conception Assistée par I'Ordinateur)
DSM Dependency Structure Matrix
DSML Domain Specific Modeling Language
EMF Eclipse Modeling Framework
MDA Model Driven Architecture
MDE Model Driven Engineering
(IDM) (Ingénierie dirigée par les modéles)
MM Meta-Model
MOF Meta-Object Facilities
MT Model Transformation
PDM Product Data Management
PIM Platform Independent Model
PLM Product Lifecycle Management
PSM Platform Specific Model
UML Unified Modeling Language
XMI Extensible Modeling Interchange
XML Extensible Modeling Language

Chapter 1 Introduction and Context

PLM system has a very important role in whole enterprise information system. This
chapter tries to explain this importance by presenting its mission in the roadmap of enterprise’s
strategy. Product model’s position in the whole PLM system is the other subject to be discussed
in this chapter. We aim to show the importance of product model evolution in PLM systems
within industrial information management systems. This chapter will finish with a brief

representation of scientific problematic as well as its context.

1. PLM Systems

Product information management is a huge challenge for industries nowadays.
Connecting to a secure stream of the exact part of data in the proper time and appropriate place
is essential and vital for an enterprise in this globalized business world. In order to fulfil this
necessity, enterprises employ information systems like PLM (Product Lifecycle Management),

which help them to organise and share their technical data (Terzi S. 2007)

A commonly accepted definition of product life-cycle management, proposed by CMIData
(CMIData 2003) is “a strategic business approach that applies a consistent set of business
solution in support of the collaborative creation, management, dissemination, and use of product
definition information across the extended enterprise from concept to end of life-integrating
people, processes, business, systems, and information”. Therefore, PLM systems not only offer a
document management system and a collaborative design platform, but also present a strategic
approach through design and manufacturing until marketing and EOL (End Of Life) stages in
order to retrieve information and improve business activities. So PLM tools manage product’s
information across its complete lifecycle from early phase of design until recycle phase, and
allow the exchange of related data between these phases. Figure 1 shows the PLM implication in

different phases of product life, extracted from (Terzi S. 2007)

Méthodes d’évolution de modele produit dans les systémes du type PLM

[Beginning of Life] ‘ Middle of Life] [End of Life]

1 . 4

—— 1
[MH - j { _] { e J

| |1 |

Figure 1-1, Product Lifecycle, (Terzi S. 2007)

Information systems that manage product data were limited to product design and

development phases. Product Data Management (PDM) tools deal with product information

structure and concepts during the design process. The objective of PLM systems is to break this

limitation by managing product information within its lifecycle. However, nowadays PLM

system

s are yet focused on design phase of product lifecycle, which may be due to their age. By

the time, the implication of PLM systems during the other phases may be done. It is undeniable

that the huge actual tendency to PLM systems comes from their capacity in information

management during design phase. In any case, PLM tools proposed by editors are claimed to be

able to manage product during its whole lifecycle, which needs to be proved by several

industrial cases.

1.1.

Functionalities of PLM systems
The most important functionalities required from PLM systems in industries are:

Organising, classifying, archiving and creating a reliable referential system of product
information, product breakdown structure, and all technical data related to product. It
should be capable to manage the product structure and its multiple views (C. Sung & S.
Park 2007)

Information sharing and diffusion between actors or stakeholders who use different
levels of details or representation of product information, work with various types of
computer systems and software, are located in different sites, during all phases of
product design, production, after sale etc. (G. Thimm 2005). It means that PLM system

assures the presence of appropriate information in requested time for proper actor.

Globalization: Worldwide production demonstrates the necessity of using different types
of distant collaborative design and manufacturing, etc. systems within the enterprise as
well as with its partners in order to share necessary information in real time. Also
globalized business situation, increases the competition between different enterprises,
which forces them to improve their reactivity to market change (and various other
vagaries) and encourage them to use marketing or end-of-life related information of

product to improve their product design or fabrication (Golovatchev & Budde 2007).

10

Moreover, product innovation activities accompanied by strong concurrence, push
enterprises to profit from PLM systems in order to set up collaborative frameworks,
which help them to work in teams, design in real-time and reduce their costs (Schuh et
al. 2008)(Eynard et al. 2006).

Security of information: in globalized prospect of product design, precious information
circulates the globe. This information should be accessible for everybody needs it, but

the sharing system must guaranty the security.

Maintaining the coherence of product information. The product information organisation
changes during its life cycle. PLM system dues to manage this organisation changing.
(Terzi S. 2007). Moreover, PLM system can assist to manage the product information

exchange between different information systems like ERP, etc. within enterprise.

Information traceability: With PLM systems, information of a part or a product can be
followed and traced, during its lifecycle. This traceability contains information of the
part, modifications done through time, products whose it belongs to and users created or
changed this piece. These data may be crucial throughout the time. For example, a
product component, which is a source of problems on the last phases of product life can

be found and redesigned in the early phases of product development.

Workflow and process standardisation: In each enterprise, there are lots of processes for
treatment of product information during different phases of product lifecycle. PLM tools
formalise, manage, keep trace and execute these processes by workflow functions. This
facilitates the process tracking by its regularisation and autoimmunization (Golovatchev
& Budde 2007).

PLM systems help to integrate functionalities done by other design and engineering
systems, such as visualisation, communication, calculation, and task execution. (A. A.
Yassine et al. 2004)

PLM systems can be used to solve the design problems related to environmental
challenges. The capacity to manage the EOL information and integrate this information
within the first phases of design is a good solution for sustainable product development.
With this tool, designers can be informed about the environmental and ecological
aspects of the product and its components in different phases of product lifecycle, and

improve their design process by considering these demands.

PLM and its around

Several information systems handle data management in an enterprise, such as ERP,

PLM, CIM, etc. They manage different information relating to different phases of product

development, or different functionalities. Coherence of existing information in these systems is a

challenge for industry. (Svensson & Malmqvist 2002) stated that in an efficient product

information management system, ERP, PLM and other similar systems, which offer different

product structure, should be adopted to each other. The challenge has been encountered by

considering the different viewpoint of product structure related to different domains of

activities of these systems. (Schuh et al. 2008) claimed that integration of Computer integrated

11

Méthodes d’évolution de modele produit dans les systémes du type PLM

manufacturing core fundaments in the PLM system can improve the process management in

enterprise.

This integration or making coherence, which is the subject of lots of researches, needs
some modification in information systems to be integrated. Eventual evolution of PLM may be

conceivable.

1.3. PLM Tools Architecture

Architecture of an information system is an important subject. Analyzing the impacts of
architecture on the process of evolution as well as the influence of evolution on the IS
architecture helps to 1) design IS architecture more optimally in order to make it more
adaptable for eventual evolutions during its lifecycle and 2) improve the pertinence of evolution
process since evolution process phases may be determined by the section of IS to be evolved.
(Nieva T. 2001) defines the architecture of IS as a concept that originally comes from the
creation of building structures. This structure is enriched by determination of its components

and its relationships.

Before entering to debate, it should be noticed that, in academic research, there are two
approaches for architectural analysis of IS. First approach focalises more on informatics aspect
of tools used to implement an IS. In this approach, IS deduces to an informatics tool and then
different parts of this tool are studied. Databases, interfaces, modelling infrastructures,
processes workflow diagrams are some different parts of IS with software decomposition
viewpoint. Research on IS architecture focus more on this approach. The other approach deals
with functionalities proposed by a tool. In this approach, tool is divided into some business
activity fragments, like different services, processes and portfolios. Industrial information’s

systems like PLM are studied more with functionality-based viewpoint.

(Hong-Bae Jun et al. 2006) defines architecture of a PLM system on three different
viewpoints: Business architecture, Software architecture and Hardware architecture. Their
business architecture is based on different BOL, MOL and EOL modelling. (Beginning of life,
Middle of life, End of life). Their approach is developed for closed-loop PLM, in which an
embedded chip in the product contains its information. Proposed software architecture in

(Hong-Bae Jun et al. 2006) for their closed-loop PLM is illustrated in figure 2:

12

PLM users

1

. N\
~—— Back-end
Information/ =5 software)
b Knowledge —
: . Middleware f«s e S ’1 Decision support
£] \\\ \\\
: Y Information/Knowledge

Qﬁn support

New! Information/ =
Knowledge‘ Data “ . Decision
—p transformer <« 4| » support
1 Experience .

J

Domain experts ' Information

Categorized data
nformat|0n

ﬂiﬂﬂ Diagnosis/ ‘ - }

Analysis tool

--p Raw data

\1%/
PEIDs attached to products

Figure 1-2, PLM software architecture presented in (Hong-Bae Jun et al. 2006)

(Golovatchev & Budde 2007) in their research on the integrated approach to PLM,
explain IT architecture of PLM as one of the four principal components of integrated PLM-
approach. This structure must maintain 3 axes of PLM process: 1) decision support, 2)
operational support and 3) integration of supplemental business applications. These
components consist of different modules of PLM functionalities; already existing separately in
enterprise. Therefore, they have proposed a method of reuse of existing IT components

(modules) for their integrated PLM. These modules are presented in figure 3.

13

Méthodes d’évolution de modele produit dans les systémes du type PLM

Strategic Resource
CAs ’ ‘ Management

‘ Value Management ’\\

>

Multi-Project- Collaboration Tools Product-Data-Management
Management System System

Product
Modeling System

— el | | I —l ol I
J—J—‘ Integration-layer (SOA) J—'l

Workflow- Management System

- — -
Business Business Applications Biisiness

Applications Applications
— | sem || e || crMm | [cap |

Figure 1-3, IT architecture of (Golovatchev & Budde 2007)

The approach of PLM tool architecture, used in this thesis, is based on its informatics and
business characteristics. A PLM tool, which is supposed to be integrated in enterprise, consists
of two separated sections: (1) Core section, which is the set of principle functionalities exiting in
the PLM tool sold to the enterprise (functionalities like modeling framework, databases,
workflow engines as well as interfaces). (2) Customization section, which is added in order to
integrate enterprise-required functionalities and adapt the PLM to enterprise specificities and
requisites of future deployment. For example, product models, as well as product meta-models
should be developed and built, based on core framework facilities. Therefore, the core section is

a PLM offer of developers and customization layer is the consequence of deployment process.

The advantages of choosing this approach of PLM architecture are:

= Separating commercial tool from integration-adding section may be useful while
evolution caused and consequences are studied. Because the causes related to the tool
modification or replacement have different consequences than customization layer
changing. Furthermore, the other modularization of principle functionalities like product
and process modeling will be useful for classification and analysis of PLM evolution.

» Itis based on integration process of PLM.

In the 3rd chapter, the new representation of this architecture, which is more
adaptable to our solutions’ methodology (MDE), will be presented.

14

Customisation

API

Applicative layer

Product Models

Data Base

Figure 1-4, PLM architecture

1.4. Product Model, Definition and its role in PLM systems

Product model, product structure, product configuration, product breakdown and Bill of
Materials are the most common terms used to explain product constitution. Different in their
definitions, they are commonly employed for diverse functionalities in product lifecycle. For
example, BOM shows the product’s physical components. So it's more effective for assembly or
manufacturing purposes. Regardless to exact definition of “Product model”, it's the most
principle structure to manage product information in PLM systems, since all information and
technical data must be organized and stored within this structure. All eventual evolution or
changing of PLM may influence on this structure. In other words, product model can be
considered as the core of information organization in PLM system, which has a strong
association with evolution subjects. This will be elucidated in coming sections.

Based on the definition of Zeng et Jin (Zeng & Jin 2007), “Product Model” is an abstract of
a product series, which represents product. In the classical tree, components form the nodes.
Product model in this form, which contains only physical product sub-components, represents
assembly decomposition. In (Svensson & Malmqvist 2002), they clarified the different types of
product structure of a single product, based on business viewpoint, such as design or
manufacturing and counted the different usage of these viewpoints. In their research, they
claimed that one of the challenges of collaborative frameworks is the lack of coherence between
these product structure viewpoints of a single product.

Garwood defined BOM as “items or raw materials that go in to product” (D. Garwood
1988). Essential tree aspects of BOM, regarding to Jiao (Jiao et al. 2000), are items, relationships
and employment. Items are the product subparts, which may be purchased parts, intermediate
parts or even finished product. Relationship defines the parent-component; and finally
employment explains the different viewpoints of a singular product structure via different
perspective business functions. BOM is commonly used for production management.(Jiao et al.
2000)

15

Méthodes d’évolution de modele produit dans les systémes du type PLM

2. PLM Evolution, Industrial context

PLM systems manage and organize all of product-relating information within enterprise.
Moreover, all workflows which should be followed in order to receive, collect, stock, modify,
approve, and share this information are organized by PLM. This structure of information and
workflow undergoes lots of modification or changing due to all types of evolution, which occur
in the product configuration, organizational structure of enterprise, or informatics modification

of the system.

Evolution in product design and fabrication occurs frequently in a complex and multi-
actors context. Changing of product definition in order to extend it, modification of product
structure, or shifting modeling framework, which are probable, can originate PLM evolution.
Adaptation of PLM to other information systems of enterprise or, systems of partners,
customers, or suppliers may obligate the need to evolve PLM. This might be happen while the

enterprise wants to joint or merge to other enterprise.

2.1.1. Problematic, Model Evolution

As discussed PLM systems are one strategic components of information management in
enterprises. Their role in creating and maintaining enterprise’s collaborative framework is
fundamental and crucial. Furthermore, They are strongly connected to almost all business
activities of enterprise. It means that product design, manufacturing, marketing, maintenance,
recycling, which contain almost all activities of the enterprise, are dependent to PLM system.
Therefore, a PLM system, which is adapted accurately to enterprise requirements and
specifications, and additionally is flexible and evolvable with different possible types of changing

or modification, is vital.

In the other hand, the risk of evolution in PLM system is high. It is because of this strong
dependence of PLM system and all activities of enterprise. Changing enterprise activities,
modification of workflows, product evolution, system replacement and other reasons argued in
the last section, which are enough probable, may influence on organization of information and
obligate the PLM evolution.

Product model, as elaborated in section 1.3, is the most important information
structure in PLM systems. Therefore, it may be the first PLM component that suffers from these
probable evolutions. Moreover, any evolution of product model can affect other components of
PLM. In this approach our problematic returns with the evolution of product model within PLM

system.
Our approach in order to analyze this problematic consists of two wings:

- Analyze the cause of evolution of PLM, with business viewpoint. These causes are
industrial problematic, which force the enterprise to modify their PLM. They

are discussed in the next chapter.

- Analyze the component of PLM system that is influenced by evolution. This
approach helps us to find the appropriate solution for each accurate situation of
evolution. This analyze is based on the architectural study done in section 1.2,
in which the different informatics and business components of PLM system are
identified.

16

The research question supposed to be answered during this research work may be

formulated:

Which procedure should be followed for evolving a product model from one
condition to another, within PLM systems, when the evolution originates from an
external business change?

To clarify this problematic, it should be noticed that in our problematic changing
condition refers to all types of modification can influence the product model, such as product
redefinition, reorganization of enterprise, or system replacement. These types of source of

evolution will be discussed in the next chapter.

The associated questions to the principal problematic, which may be useful to be

analyzed preliminarily are:
- What are the different causes of product model evolution?

- Which component of PLM system may be undergone the consequences of each

type of evolution?
- How to manage evolution?

These questions will be discussed in the next chapters.

3. Conclusion

In this chapter the global context of PLM systems and the importance of analyzing its
evolution was discussed. The different functionalities of PLM systems were identified. These
functionalities may accentuate the evolution problematic, because they make PLM system as a

strategic tool in enterprise, which should be properly adapted to enterprise specifications.

Then PLM architecture was introduced. This architecture may help the enterprise to 1)
improve the flexibility of its PLM for probable evolution in the pre-installation of system, 2)
manage the evolution by identifying which component of system will be evolved and this

evolution can affect which other components.

Next topic treated in this chapter is product model, one of the components of
architectural structure of PLM systems. Product model has been chosen for this research
because it is an important organization of data in PLM systems. PLM is due to manage product
information. With this perspective, we assume that analyzing product model evolution within

PLM may be useful to studying other type of evolution.

The importance and high probability of PLM evolution were discussed in the end of this
chapter. PLM is relatively a new component of information managing framework of enterprise,
comparing to other tools like ERP. These components like ERP or CMI have been employed more
previously, so 1) they are now more optimal and adapted to requirement of enterprise, 2)

problematic of evolution may be more treated in their context. PLM evolution may be initiated

17

Méthodes d’évolution de modele produit dans les systémes du type PLM

by several reasons. These reasons were discussed in this chapter and will be detailed in the

following one.

4. Map of this thesis

1st part of this thesis is about the problem definition. 2nd chapter introduces a detailed
analysis of the problematic of this research. The different type of product model evolution,
modification, changing and reformulation will be discussed. 3rd chapter devotes to explain our

methodology of solution and approach that was chosen to propose the solution mechanism.

2nd part is about the solution. It contains the proposed mechanism to enable evolution as
well as an industrial example, which is treated by the proposed method. Industrial example is
evolution of product model from a system that is only capable to deal with specific product

model to one, which manages the genericity of product family.

18

Chapter 2 Product model evolution within PLM systems,
Problematic

1. Beginning discussion

Various components of PLM systems may undergo an evolution. Workflows defined in
PLM systems, organizational parts (users, groups, authorizations...) and the system interface are
supposed to evolve. It is important to identify the part of PLM system to be evolved following a
business change. It should be noted that evolution of product model usually launches the
evolution of other parts of PLM systems but rarely the reverse. Evolution of other parts of PLM is

not considered in this study. We focus on product model evolution.

As discussed in the previous chapter, product model determines how a product is
structured, what are its components and what is other information to be related to product’s
structure. Therefore, product model encompasses product related information and its
organization within an information system like PLM. Each product model has a pattern, which
defines how the product model can be built by providing the various entities that should exist in
the product model as well as the relationships between these entities. In some cases, this pattern
provides the ontology of the product domain. Then, evolution of product model means any type
of change in this organized structure. When dealing with product model evolution, we consider
all types of modification in the product model as well as in its associated pattern. This is the

subject of this chapter.

Evolution of product model was a subject of several research works. These researches

can be classified on two directions.

- First direction analyzes the evolution problematic from a business and organizational
viewpoint. In this approach, the evolution of information content, which is stored in the product
model, is a subject of considered researches. In this viewpoint, the probable industrial changes
and their effects on product model in PLM systems are studied. Researches in this axis focus on

identification of changes in the product model semantics and main contributions aim to

19

Méthodes d’évolution de modele produit dans les systémes du type PLM

preserve the coherence between the different product models (before / after change) from
semantic point of view (so to not lose information on product). In this thesis, this axis is called

“product model evolution from informational viewpoint”.

- Second direction analyses the evolution problematic from an informatics point of view.
In this approach, the evolution of information container, which stores product information, is
the subject of considered researches. In this viewpoint, product model evolution problematic is
treated like any other model evolution problematic. In this axis, the way that product model, or
more generally all types of models, is represented and constructed in different modeling
frameworks is discussed and the translation between these frameworks are analyzed and
treated regarding to their structure and format. Research works in this axis propose a variety of
model driven engineering based approaches. This axis is called in the rest of the chapter “model

evolution from informatics viewpoint”.

These two viewpoints of product model evolution will be detailed in this chapter. But before

broaching the subject, some terminologies are defined in next section.

2. Modification, Evolution and Transformation

The terms modification, evolution and transformation are usually considered as
synonyms. However, it’s better to define them in order to avoid ambiguity regarding existent

research works.

Evolution of an entity signifies its change during time, at different stages of its lifecycle.
This changing is progressive and closely related to time axe. It can be considered as a sequence

of small changes within the entity (changes of some entity’s parts).

In the other hand, transformation of entity is a kind of change, which takes place in a
moment of time, between two contexts. In this situation, changing may not be considered as a
sequence of small changes within the entity, because of its brutal and fundamental nature.
Contrary to evolution, transformation takes place between two systems, situations or languages.

During the process of changing, all parts of the entity are simultaneously transformed.

Modification concerns changes within a part of entity. This modification doesn’t occur
during the lifecycle of this entity or even because its evolution. The result of modification is the
entity with a changed part. It happens in a moment of entity’s lifecycle. Moreover, the entity is

not transformed to a new situation by a modification

As mentioned earlier, these 3 terms are often considered as synonyms but taking into
account their variations may help the reader to understand more properly the differences
between researches. In this report, our problematic is to change a product model between
systems, which lies more on the concept of transformation. In our viewpoint, a product model

may be evolved during its lifecycle, and transformed between different systems or situations.

3. Researchreview on product model evolution from informational
viewpoint
In this section, we focus on research works dealing with evolution of information stored

in PLM systems. These works’ approach is based on the “content” of information stored in the

system, rather than on its “container”. Container refers to modeling languages and format, i.e.

20

information syntax, whereas content refers to the concepts included in the model to describe

and specify the product, i.e. information semantic.

3.1.1. Evolution of information through different phases of product lifecycle

Researches in this category are about connecting, within a single model, product
information issued from different representations. This category of researches is not about
product model evolution problems; however mechanisms proposed in related works are
interesting for our purpose. In this axe, product model restructuring during the different phases
of product lifecycle is studied. As mentioned in the first chapter, the mission of PLM systems is to
structure and manage the information and knowledge about a product during its lifecycle.
Obviously, the structure and nature of product related information varies during different
phases of this lifecycle, based on the specific requirements of each phase of design,
industrialization, manufacturing, usage and end of life. For example, in product design, different
options for a given product component are authorized, which are not allowed in the
manufacturing (Mannisto et al. 2001). Therefore the structure of product model varies during its
lifecycle. The product model may have different viewpoints, which represent the product
according to specific business requirements (Eynard et al. 2006) (Svensson & Malmqvist 2002).
This variety in product model is generated by several actors with different business viewpoints
such as manufacturing and design (with different fields such as electric, mechanic, and thermal).
In this case, different models co-exist and represent different aspects of the same objects.
Therefore the mechanism of transformation among the various models used in the enterprise

during the product lifecycle may be interesting for our research issue.

The mission therefore is to manage links between various viewpoints. Researches in this

topic propose two approaches:

1) Determining a modeling methodology that generates a very general model which is

able to represent the different viewpoints,

2) Managing the transformation of product models and their synchronization through

the different phases.

Sudarsan et al. proposed a generic framework for the design of product information
modeling architecture. This research aims to maintain coherence between the various product
configurations during lifecycle (Sudarsan et al. 2005). Eynard et al. have paid attention to the
different breakdown business-viewpoints such as assembly or manufacturing and tried to avoid
duplicating the data stored in PLM by recommending the mixed modeling structure (Eynard et
al. 2006)(Eynard et al. 2004). Sevensson discussed the basic technical requirements for the
Product Structure Management strategy. He highlighted the capabilities to create and manage
the product models, keep the history of all of the activities around the product and ensuring the
traceability and consistency of information. He proposed a master structure from which all of
the views can be derived (Svensson & Malmqvist 2002). Gzara et al. proposed a method for
building a product model by reuse of patterns. Based on a set of rules and criteria, the product
model is built progressively by assembling different model fragments obtained by reuse of
patterns (Gzara et al. 2003). Eastman et al. analyzed the evolutionary product model

development with the viewpoint of database languages. They choose a suitable type of model

21

Méthodes d’évolution de modele produit dans les systémes du type PLM

mapping which enables following and handling the evolution of product model during its
lifecycle. Then they proposed a language able to facilitate the mapping, derivation of views, etc.
(Charles Eastman & Jeng 1999). The PPO (product-process-organization) project aimed to
propose a generic model, which describes all of aspects of information system (Noel &
Roucoules 2008). They introduced a general meta-model on which all models in an information

system can conform.

Zina et al. also worked on generic modeling of product. They divided the approaches
used to take into account actors’ viewpoints to two types: multi-view and multi-model. The multi
view approach is based on the development of a single model starting from different views.
Therefore there is only one unique generic model, and the derived models are the writable view
of it (it is possible to change or modify the views, and this modification is also made in the
generic model). The multi-model approach, meanwhile, proposes many models; each one is
conformed to one business viewpoint. In this optics, the coherence rule is unavoidable (Zina et
al. 2006).

The product

Y l
o, I
3“3 @Qc;; i

|
I
d
| Maintenance

Production

Figure 2-1, Product structure viewpoints (Zina et al. 2006)

In more specific way, Demoly et al propose a methodology based on assembly
constraints in order to manage the evolution of product model between design and assembly
phases (Demoly F. & Gomes 2009) (Demoly F. 2010). In their approach, they use assembly rules
in design process in order to construct product structure, which contains sub-assemblies and

parts.

To conclude, it can be noted that the main propositions in quoted researches are about
developing a generic model, which manages the evolution during different phases of product
lifecycle. This generic model contains all of necessary information on product. Therefore,
different methods have been developed to construct specific models via this generic model.
Evolution between models can be projected to this generic model and solved in simple manner.
But these generic models are complicated and models should be designed according to them.
The most part of these propositions don’t cover already existing models. In order to use these

methods, models should be designed and implemented regarding to methods’ standards. This

22

shows the need to propose a methodology for treating product model evolution in general way

that is not dependent to their designs.

3.1.2. Evolution of information within a single phase of product lifecycle

Previous section is devoted to analyze research works dealing with product model
evolution through different viewpoints. In this section, we focus on the case where the product
model evolves within a same phase of its lifecycle. As mentioned before, there are many reasons
that lead to evolve or modify existing product models. Reorganization of the enterprise, change
of the products’ offer or evolution of the enterprise’ information system can be sources of
product model evolution. This latter case corresponds to the case where the product model
migrates between 2 PLM systems; two sub-cases may be distinguished: (1) the enterprise uses
the same PLM software (the core model is then unchanged) but migrates from one product
generic model to a new one, (2) the enterprise uses a different PLM software (replacement) and

then the core model is different.

It should be noted that the type of evolution considered in this section is different from
managing simple product versions (here we assumed that the difference between product
versions isn’t so radical that the new version can be considered as a new offer). Product versions
can be managed in lots of existing systems, but our problematic concerns managing a radical

model evolution in PLM systems, which are not treated with features of existing systems.

Comparing to previous category (product viewpoints), few research works dealing with
this type of evolution are observed. This lack may be relied on the complexity of the subject. This
type of evolution hugely depends on the industrial context and user’s requirements. Our
industrial observations have proved the importance of this subject as well as the varieties of
approaches adopted in literature to approach the problem (for example (Martin Gwyther 2008),
which specifies the lack of existing PLM systems on this subject and shows its industrial needs).
As mentioned before in this chapter, Eastman et all described the different types of product
model evolution and proposed a methodology to handle this evolution (Charles Eastman & Jeng
1999). Their research, which didn’t consider the product model complexity, tried to propose a
new modeling language in order to support the modification of model’s elements and support
the synergies between different derived views of them. Therefore Their approach is simple and
primitive, based on design of database (Eastman, C. M. & Bond A. 1991).

In this section two axes of product evolution within a design phase are discussed.
Product model evolution may relate to context evolution. Product offer extension or product
modeling framework modification can cause a context-oriented product model evolution. In this
axe, modeling concepts evolve and the new product model must be constructed by using new
concepts. The other axe is structure-based evolution. In this axe, the structure or configuration
of product data evolves. In other words, in this axis, the motivation of evolution is the liaison and
relationships between concepts in model. For example, when the evolution is about a passage
from specific model to generic model for a product line, the evolution is structure-based. This
structure represents the relationship between concepts existing in product modeling facilities of
PLM system.

23

Méthodes d’évolution de modele produit dans les systémes du type PLM

4. Researchreview on informatics evolution viewpoint

In this axe, we consider the evolution between different modeling and implementations
frameworks. Models can be described and implemented in different environments. This axe
focuses on transformation of models between these environments. We approach this axe
according two considerations: Evolution of implementation framework (§4.1) and Evolution of

modeling framework (§4.2) Software evolution

Lots of researches are done in order to study software evolution during time. They study
how software’s components change during different versions of software and how this evolution
may be managed by optimizing this process and decreasing system or software eventual
changes. This subject seems to be far from this thesis’s problematic and explicitly not related to
product modeling in PLM systems. But it should be noted that the evolution in software is key
part of modeling-driven engineering initiatives. Therefore, it may help to understand the
different parts of the proposed methodology, which is introduced in the third chapter. On the
other hand, since that the core part of PLM systems is an application, then studying software

evolution helps understanding PLM evolution problematic

Dhungana studies the potential types of evolution of models in the cases of software
engineering (Dhungana et al. s.d.). In his approach, he uses two sections of meta-model
evolution and model spacing to manage the product (software)-line evolution. Model fragments,
which are managed independently, and meta-models may undergo an evolution, but by these

strategies, evolution may be handled separately in these sections.

Evolution of data-centered information systems is another type of evolution discussed in
software evolution field. Hink et al proposed a methodology to support database evolution
caused by context evolution (Hick & Hainaut 2006). In their approach they used modern

database modeling methods to handle the evolution in content and structure of databases.

4.1. Modeling language evolution

The other aspect of informatics evolution is the transformation of models between
modeling languages. Modeling languages are used to build models, which represent real systems
(Bézivin 2005). Modeling languages are used to conceptualize model’s elements. Therefore, they
have a significant effect on modeling processes. The modeling capabilities and features offered
by these languages may influence on the resulting models and therefore the concepts and their

structure in models may be different in different languages.

On the other hand, there are a variety of modeling languages used in information
systems, software applications and frameworks. Besides, these frameworks and systems should
be interoperable and a coherent flow of information must be set up between them.
Transformation between modeling languages should guarantee an appropriate exchange of
information between these systems. Moreover, transformation between languages may be
useful to install a communication between systems that are fed with different modeling

languages.

24

Several studies have dealt with evolution between modeling languages. They mainly
focus on transformation between UML and other modeling languages developed in different
contexts. Favre et al. worked on the transformation between SQL and UML(]. M. Favre & T.
NGuyen 2005). In their research, they found the different elements existing in SQL and tried to
determine their correspondence among UML concepts. As seen in this example, the problem is
not the domain-related concepts (i.e. CRM, PLM, purchasing, planning, inventory systems etc.)
but it is about the modeling elements, which are used to represent these concepts. In other
words, the transformation does not deal with evolution of one system into another, but it s about
evolution of this system described in a modeling language to the same system described in
another modeling language. This is shown in figure 2.3. Figure 2.3.a illustrates an evolution
process where source and target modeling framework are conform to a same modeling
language. In this case, modeling frameworks differ upon to the concepts they held. Figure 2.3.b
illustrates an evolution caused by migration between modeling languages. Modeling framework
is the same in the source and target systems but the modeling language with which they are
constructed are different. Obviously, with a proper methodology of this transformation and a
suitable procedure to execute this type of evolution, the real-time exchange of data and

information between different systems with different modeling languages is possible.

25

Méthodes d’évolution de modele produit dans les systémes du type PLM

Modeling language 1

framework 1

Uses Uses
i
Modeling Modeling
framework 1 N framework 2
Transformation
Conforms | Conforms Conforms
Models 1 Models 2
Transformation
Figure 2.a
Modeling Modeling
language 1 language 2
Correspondances
Uses Conforms Uses
i
Modeling Modeling

framework 1

Transformation

Conforms Conforms Conforms

bl

Models 1 Models 2

Transformation

Figure 2.b

Figure 2-2, Evolution of models and modeling languages

Some research works have addressed the same problem (transformation between
modeling languages) in the particular case of product data management. They focused on
evolution among different product modeling languages by studying the process of data (models’
instances) migration and standardizing the rules of data exchange between different languages,
like STEP initiative (Mdnnisto et al. 1998) (S. Rachuri et al. 2008). For example, some efforts
have been done to do mapping between the models in different systems, such as PDM, CAD and
CAM (Oh et al. 2001), or mapping among diverse representation language or schema of models
and meta-models (Krause & Kaufmann 2007). In these cases, the process of MDE’s model
transformation is not always considered, even though the specification of mapping between

models is a question of model transformation. It should be noted that the process of

26

standardization is useful as the systems are under design and implementation. Lots of problems
happen when systems are designed and implemented previously, without proper specific

standards.

This type of model evolution problem is interesting for the context of this thesis since
product model evolution sometimes concerns the transformation of a product model through
two PLM systems, which are using different modeling languages. In this case, the product model
evolution follows the same procedure as common model evolution methodology described in
the chapter 4, because the domain concepts are not different in the source and target models but
the languages used to build models are different. The problematic is how to construct the same
concepts with different modeling elements. Besides, for several modeling languages, some
translators are designed and implemented in order to transform models between languages.
Indeed, in product model evolution within PLM systems, a migration of data between these
systems must be done. This migration may require these methods of translation since probably
different systems use different modeling languages for data (instances of models which are

stored in databases).

5. Conclusion of state of art

As argued earlier, product model evolution can be considered as a type of model
evolution in different information systems. Subject of model evolution/transformation in
informatics field has been discussed and treated in the last ten years. These researches have
been enforced and directed by introduction of model driven engineering and model driven
architecture in software engineering and development. Model driven engineering (MDE) which
will be discussed more precisely in the next chapter, proposes some methods and regulations in

order to manage model evolution.

In industrial information systems, the problematic of model evolution is more focused on
the necessities related to industrial requirements. Based on previous discussions, the
transformation of product model in PLM system may be caused by several types of industrial

problematic.

As it was discussed in chapter one, analysis of product model evolution may be based on
the classification of the business reasons that have initiated it. It should be noted that it is
possible to classify the product model evolution regarding the PLM system’s part, which
undergoes the evolution (i.e. the architecture of PLM system). But, here we are interested by
classification regarding the reason leading to the evolution and then the proposed solution
follows according to the impacted part in the PLM system. Moreover, in this PhD thesis, the
evolution problematic is treated only in a single part of PLM system that related to product
modeling that consists of two main parts, product models and product modeling facilities.

Therefore, classification of PLM reasons seems more suitable here.

There are different types of reasons, which can cause product model evolution. They are
listed in the table 4.

27

Méthodes d’évolution de modele produit dans les systémes du type PLM

Related to product:

Product offer extension (product definition)
Physical product

Modification of product components

Product information Adding or deleting the product information

to be saved in the system

Modification of product modelling framework

Related to organisation and decision:

Inter-Organisational Adaptation of PLM to partner's systems

modifications

Merging PLM to partner's systems

Inter-Organisational

e Adaptation of PLM to other enterprise’s systems
modifications

Related to informatics tool:

Modification/Update/Upgrade

Integration/Merging

Replacement

Related to process :

Modification of process related to product configuration

Tableau 1, Reasons of PLM evolution

As described in this table, PLM evolution reasons are classified on four main groups.
Reasons related to product, to process, to organization, and to informatics technologies. As
discussed earlier, this classification doesn’t reflect the part of PLM systems that undergoes the
evolution. It means that for example, the reasons, which are related to organization or process,
may effect product model, and cause product model evolution. It depends on the specific context
of evolution. In some case, the adaption of PLM system to other enterprise systems may initiate
product model evolution, if the adaption aims to integrate modeling framework and construct a
common models, usable for all systems. Therefore it stays upon the case and context of
evolution. Moreover, even for a specific industrial reasons, there are different alternative
solutions with different PLM system’s parts to be evolved. All of these choices should be done

according to the context properties and user’s requirements.

6. Problematic

Product configuration, i.e. the set of functional and physical features of a product, is the

principal concept in PLM systems. PLM systems offer a set of mechanisms in order to support

28

product configuration management. Product configuration includes the documents and BOMs
(Bill of Materials). BOMs are instantiations of one or more product models in a database.
Therefore the role of product model within the PLM is to structure all product-related

information and their connections (Schuh et al. 2008).

In this context, any modification in the product model plays a fundamental role in the
evolution of the whole PLM application. Product model evolution means modification of the
model architecture, its elements and their relations. In the object-oriented modeling approach, it
means the modification of classes, attributes, associations, and methods. These items show the
importance of the product model evolution analysis in relation to the PLM evolution. In fact,
during the procedure of PLM evolution, the most delicate subject that can affect the whole
procedure is how product model should be modified. Moreover, as mentioned before, some of

PLM evolution causes are related to product model modification itself.

In the other hand, PLM implementation is costly and time-consuming effort for an
enterprise. The enterprise may works for couple of years to set up a PLM system. This PLM
system is fit to all of enterprise’s properties and fulfills all of its requirements. Additionally, it
formalizes some of its procedures and commands. But as described in the first chapter, evolution
is probable in this changing world. Therefore treating the evolution problematic is inevitable to
help enterprise to manage evolutions in their information systems in the most proper and
optimized way. This helps them to transform properly their knowledge, skills, and requirements
to the new system with a minimum of cost, time and effort, and probably, in the automatic

technique. Our problematic is a crucial subject in PLM system management in an enterprise.

But, as shown in this chapter, previous researches don’t cover all of different types of
product model evolution. Several of these researches concerns the evolution of product model
during its lifecycle, which means the modification of model caused by the different process of
design, manufacturing, etc. It can be cited that this modification may be done on the
instantiation of product model. But the approach under the study in this thesis regards to
modification of product model in one instant of time. In this case, the product model is changed,
not because of the design and manufacturing process requirements, but in the reason of
evolution in the information system or the enterprise organization. This classification described

in figure 2.3.

29

Méthodes d’évolution de modele produit dans les systémes du type PLM

Product model evolution between
different viewpoints during product

Q@\% 3 \& lifecycle
O J
O & & ¥ & oo
Q@ é‘& ége‘ e & &L
Q
> v s S < Product model lifecycle
|
\I" I fom] [1= P x| 1 o
PLM system 1

PLM system 2

[Product model evolution
| between different systems

Figure 2-3, Product model evolution between systems/viewpoints

As shown in figure 3, product model evolution, which is interesting in this thesis, is the
evolution that takes place between systems. Evidently, proposed method may help the users to

preserve the consistency between different viewpoints.

Several other researches cover the technical and informatics subjects of model evolution.
They proposed methods and tools for software or application evolution, as well as translation
between different modeling languages. They didn’t treat the subject of conceptual modeling

evolution within systems.

Enterprises need a proper general procedure for evolution of their product models,
between different systems, probably with different modeling languages, which can preserve the
consistency of the coherence between different phases of product models during its lifecycle.
Moreover, this procedure should be able to treat the problematic of evolution of whole system,
evolution, which cause the general modification of system by changing the core of PLM systems,

or evolution with the less complication such as product offer renovation.

6.1. Functions of proposed procedure

As mentioned before, product model evolution returns to the problem of model
transformation. In this context, one of the major questions is to determine if the implementation
of model transformation should be started in the meta-model level or if the transformation is
not related to the upper (meta-model). Each PLM system uses its own structure to design the
product model, i.e. the meta-model allowing to build the various product models are different in
the PLM system. In the case where the PLM system itself is changed, it should be firstly ensured

that the meta-model transformation is necessary or not. In the other hand, in the case of model

30

transformation with the same meta-model, the procedure of model transformation probably
conforms to the meta-model. Furthermore, it must determine if the target systems meta-models
are defined previously or they should be constructed during model evolution. In other words,
the new system’s properties and specification are known in the beginning of model evolution or
not. For example, in the case of adaption a PLM system to the system of the other bigger

partners, generally, the new system’s specifications are known.

Proposed procedure must be able to tackle all types of product model evolution between
different systems, even if product meta-model evolves. Moreover, it must define some methods
to determine the new system’s specifications. It consists of its design or enrichment, depending
on the context of problematic. Forth chapter tries to propose a structured procedure to fulfill

these requirements.

31

Méthodes d’évolution de modele produit dans les systémes du type PLM

Chapter 3 Model Evolution, Our Approach

1. Introduction

Problematic of product model evolution in industrial information system seems to be a
crucial subject in industries which deal with complex and very composed products, but the
solutions proposed in the academic media may not be structured on a very standard approach in
information science and technology. In other words, propositions were made for a specific
situation or context or didn’t relay on a general application. As a result, these propositions didn’t
study product model evolution as a generic problematic but in a very specific way to solve a

local problem.

Approaches aiming to handle and solve product model evolution may be classified in two

directions:

(1) Approaches, based on product conceptual modeling, utilize more the product model
concepts and try to re-configure these concepts so that the resulting product model conforms to
the target specifications. For example they use the concept of modular modeling and try to
reconstruct the models from these modular parts. These approaches are more oriented towards
industrial context of problematic. The specification of product design and its concepts normally

don’tlet to be used in the other application cases.

(2) The other approach, which is ours, depends on the model itself. The principals and
high generic level of our approach don’t depend on the specification of product models. Product
modeling framework requirements are used during evolution process and helped the system to
find the similarities and divergences. In other words, our approach observes the product only as
an element of model with some specifications, which specify it from other elements of model.
There for, our methodology is not limited to a specific context, but in the more general level, it

may solve the product model evolution. More in detail, we preferred to observe concepts, parts,

32

configurations, links and specification of a product by a modeling-oriented view, for example
UML diagrams. With this “transformation” of product model evolution problematic, a new

problematic may be formed that is more oriented on the general model evolution.

In our methodology, we profit from the rules and concepts of MDE, Model Driven
Engineering. This is new approach that is pioneer in design and implement informatics systems
as well as information systems, is described in this chapter. Methods based on MDE deal with
models as a general concepts. In their specifications, model has a large definition. However, the
general process and proposition should be customized in order to be applicable for a specific
problematic, but these customization are also possible by their methods. Therefore, MDE has a
almost complete framework for model management and engineering, which prepare a very huge

and vast collection of tools and methods.

At the end of this chapter we will justify the utility and importance of MDE implication in

product model evolution.

2. Model Driven Engineering: principals

Challenges faced in software development field during its huge advancement in recent
years, justified the introduction of new methods and technologies, which reduce the related

complexity and set up an efficient and fast development process. These challenges are:

- Complexity: during these past years, software industry has suffered from a huge
increase of problem and solution complexity (van Sinderen & Ferreira Pires 2004).
Requirements against computer systems are becoming more and more complicated
and technological solutions developed to fulfill these problems are complex. This
complexity comes form size of software’s, number of modules and services provided
by software, number of users, possibility of running on web, different platforms and
operating systems, etc. Lots of programming languages, development platforms and
technologies (such as middleware and Service-Oriented Architecture) necessitate a
modern global method of software development able to reformulate the industrial
problematic in a very general way which is comprehensive for several technological
platforms and also helps the solution developers to understand and simplify their

propositions.

- Time to market: huge rapidity of software development demands a very fast
response to needs in order to protect own market. So the problem identification and
solution development processes should be fast and efficient. One of the most
important methods that aimed to decrease development time is the opportunity of
reusing different components; and setting up a library. But the complexity related to
platform technologies make this reusing so difficult. Therefore a new method should

be proposed in order to facilitate this reusing for more complex situations.

- Collaboration on software development: complexity and rapidity of software
development, force enterprises to collaborate and develop them mutually. This
collaboration requires setting up a common framework of software development by

introducing more integrated methods of design and implementation. These methods

33

Méthodes d’évolution de modele produit dans les systémes du type PLM

should be capable of keeping the particularities of each collaborator, and

simultaneously guarantee a permanent comprehensive communication.

In order to fulfill the necessities mentioned above, a new paradigm of software
development, based on abstraction, was introduced, Model driven engineering (MDE). MDE
separates design from implementation and reduce the ambiguity of development (J. M. Favre
2004b). Firstly, any computer system should be designed, independently from platform on
which it may be implemented. Then, implementation is done by transformation of designed

concepts to implementation concepts by entering platform’s requirements.

In design phase of software development, the design models are constructed, assembled,
and refined. This phase is done interdependently from platform. This model is called Platform
Independent Model (PIM). All of further probable evolutions are then done on this level of
models. The independent models are then transformed to models, which are executable on
different platforms. These models are called Platform Specific Models (PSM). The requirements
and particularities of platform should be taken into account. These particularities form the
“platform model”. The primitive task of MDE was to establish this transformation between PIM
and PSM. In order to facilitate and automate this transformation, the concepts of meta-model

and model are developed and accustomed to MDE. This procedure is shown in figure 3.1

Platform Independent Model

Other Information
| Platform model

Transformation

Platform Specific Model

@

=

Figure 3-1, PIM, PSM and transformation (OMG 2001)

This brief history shows the needs, which led to invention of MDE and standardize it into
MDA (Model driven Architecture, standard of OMG). But this new paradigm of software
development wasn’t limited to PIM/PSM transformation. It means that the new areas proposed
and developed in MDE isn’t limited to model implementation. All other types of model
transformation and evolution between different systems, even if both of them are platform
independent can be treated by MDE mechanisms. The new concepts and methods proposed and
developed in MDE are used in other areas of computer engineering model engineering. The
definition of model and meta-model and model transformation, which are the interesting parts

in this research are presented in the following parts.

34

2.1. Model and meta-model concepts

The trends in previous works of software development, especially those on object-
oriented programming are to increase the abstraction of information, by constructing models.
Concept models are illustrated by class diagram. Then other model diagrams use these concept’s
models in order to specify different aspects of concepts, like their transition. The object level,
which represents the physical objects, is the instances of models. Therefore the relationship

between object level and model level is “instantiation”.

Creating models should follow some rules, which specify the concepts and their
relationships in models. These rules form a modeling language. Modeling language determines
which concept can be present in model, with which kind of specifications, and which constraints
should be respected. This is called “meta-model” of model (J. M. Favre 2004a). The relationship
between a model and its meta-model is called “conformation”. Conformation means that the

model respects the specifications imposed by meta-model.

A meta-model may define the representation language of a model. For example, the
meta-model of UML defines how we can construct a model with this language. It describes the
concepts of UML diagrams and their relationship. This meta-model is called MOF (MetaObject
Facility). Because of the hierarchical relationship between models and meta-models, this meta-
model of UML is the Meta-Meta-Model of all models defined in UML.

The relationships between objects, model, meta-model and meta-meta-models concepts

are illustrated in figure 3.2. A simplified view of the MOF is presented in figure 3.3.

M3 [Meta-Meta-Model]

Conformation

M2
[Meta-Model }
Conformation
M1 '
Model
Instantiation
MO

Figure 3-2, object/model/meta-model/meta-meta-model

35

Méthodes d’évolution de modele produit dans les systémes du type PLM

Attribute
Hnames
Hmutiplicity
1
Parameter
+direction type Typo
f :
Operation T
Fname
e
Package . Class DataType
+import Fname ® re— 0.1
1 -
+SUpDer
e [1 l
String Integer Boolean
Assoclation AssociationEnd

Hname
Lhame H
fane e multiplicity

Figure 3-3, Simplified UML meta-model (MOF)

Figure 3.4 shows the relationship between models of UML and MOF. This structure is
standardized by OMG in the MDA. UML in this figure signifies the language, which contains the
concepts of class, associations, etc. In this structure MOF conforms to itself (Kurtev & K. G. van
den Berg 2004) but in other approaches of MDE, this hierarchy can be continued. It means that
we may have meta-meta-meta model which describes the meta-meta-model concepts. In other
words, in general approach to MDE, which is the general extension of MDA standards, all of

“meta” terms are relatives and the based on the user’s needs.

]
MOF
Meta-meta-model
UML
H- Meta-model
Model Model

Figure 3-4, MOF and Models in UML, example standard de figure 3.2

36

The meta-model may identify the specifications of a model nature. The concepts that can

be used to construct a model, the allowed relationship between these concepts and the

constraints are predefined in meta-model. All of these specifications depend on specific purpose

of modeling. This is the domain modeling, that shape a meta-model and contains modeling

requirements. Each concept in models, as well as relationships should be “conformed” to an

entity in meta-model. In another viewpoint, meta-models are the accurate and formal result of

ontology engineering(Goknil & Topaloglu 2005). Figure 3.5 shows a simple example of two

models and their meta-model.

Meta-model

T

Entité Technique

Model

Car

-Name
-ID
-\ersion

Port

-Name
-Color

2.2. Model Transformation

-Name
-ID
Designer
-Name
-Lab
Motor Designer
-Name -Name
-ID -Lab

-Manufacturer

¢

1
1

Carburetor

-Name
-Capacity

Figure 3-5, Two models and their meta-model

-Manipule Person
-Name
Embasement
-Name
-Capacity Manufacurer
-Name
-Factory Name
1 P
1
Frying pan l
-Name Poigne
-ID
X -Name
-Version 1 D
1 Q—‘ A
1 -Model
4 Designer
-Name
Dish -Company
-Name it
-Diameter .

Model transformation is the most powerful tool in MDE that is the core of its usability
and advantages(M. D. Del Fabro & P. Valduriez 2009),(Pierantonio et al. 2007). As mentioned

above, model transformation was invented to ensure the migration between PIM and PSM(OMG

2001). But, the proposed methods may be applicable for other types of transformation between

models, even in the same level of dependence on platform. Many methods and languages are

37

Méthodes d’évolution de modele produit dans les systémes du type PLM

proposed in research and software industries for formulating model transformation, in a general
form, especially on PSM/PIM transformation methods (Gardner & Griffin 2003)(Frédéric Jouault
et al. 2008) or more advanced model transformation used in translation between different
concept frameworks(Willink 2003)(Varré & Balogh 2007)(Kurtev & K. G. van den Berg
2005)(Frédéric Jouault et al. 2008)(Frédéric Jouault et al. 2008)(Frédéric Jouault et al. 2008)(Frédéric
Jouault et al. 2008)(Frédéric Jouault et al. 2008)(Frédéric Jouault et al. 2008)(Frédéric Jouault et al.
2008). The result of these approaches, which will be discussed later in this chapter, shows the
capacity of model transformation to solve the problematic beyond to PSM/PIM transformation

for one, it was invented.

Mechanism of model transformation is based on the meta-models. The overall
mechanism is presented in figure 3.6. The term of transformation model in this figure contains
the comparison results between meta-models. Actually if it is not a model in some ways, but

some technical media chose this name for this part of transformation motor.

Conforms to

Source model Source Meta-model

Transformation model

Transformation

Conforms to
Target Model | Target Meta-model

\ w,

Figure 3-6, Model Transformation mechanism

In this approach, meta-models are compared in order to find the similarities between
them. According to these similarities, for each concept in source meta-model, a correspondent in
target meta-model may be found. The most important task in model transformation is finding
these correspondents. When these correspondences are set up, the transformation will be done
by creating target model from source model. Each concept in source model conforms to an entity
in source meta-model. Its correspondent in target model will be a concept that conforms to the
entity in target meta-model correspondent to this entity in source meta-model. This is

illustrated in figure 3.7.

38

Initial System New System
(source) (Target)
2) The correspondent

of Meta Class 1 in

| Meta-model [y target Meta-model is Meta-model[o
| Class1 | Meta_class 2 ! Class2

B B e o e e e - o e o o - A o e e 2 o -
Conﬁormes Conformes
3) Instance of
1) Class 1 Meta-Class 2 is
conform to Meta-
Class 1 ‘
Model Model

Classl

4) Therefore, Class
2 is transformation
result of Class 1 in

the new system

Figure 3-7, Model Transformation

Lots of researchers, especially in software development, work on different
transformation languages and automated model transformations (Frédéric Jouault & Kurtev
2007). Their researches focus on different types of rules, which are used in model
transformation. Tools that are under MDA standards are related to this part(Kurtev et al. 2007).

[t comes from the importance of this part in whole organization of MDE.

Process of establishing correspondences was addressed in a huge number of researches
in MDE domain. This process enormously depends on the models’ domain. Model differentiation
or comparison aims to compare models and identify similarities between them. It’s clear that it
depends on the model semantics, which are represented by modeling language. In other words,
this is the modeling language that imposes and defines these semantics. Therefore proposed
methods for model differentiation are normally specific to a particular modeling language. The
most common and general language is UML. Several researches devoted to present a generic
model comparison of UML models: by using graphs as a structure of meta-model (Winkelmann
et al. 2008), model regression which emphasis on the recognition of modification on a meta-
model during time (Muccini 2007), matching transformation as one of the pioneer structured
activities to construct a semi-automated model matching, but for some simple examples in (M. D.
Del Fabro & P. Valduriez 2009), model differentiation with meta-model-independent
algorithms(Lin et al. 2007), etc.

39

Méthodes d’évolution de modele produit dans les systémes du type PLM

As an example, (Y. Lin 2007)’s definition of model comparison goes from textual
differentiation to more generic model comparison based on graph isomorphism. But she tried to
introduce a new method of model comparison, which is not dependant on modeling language,

facing the new trend to language invention through domain modeling.

Del Fabro has categorized many tools and methods for model mapping and analyzed
them (M. D. Del Fabro 2007). In his analysis, he considered some criteria for model comparison,
like simplicity, as being powerful by letting express complex rules in a simple way, traceability of
transformation, interoperability, etc. He concluded that in mapping management, a trade-off

should be done between the simplicity and genericity of proposed methods.

As a conclusion to these methods and approaches to the early phase of model
transformation, it should be noted that these researches are focalized on structure comparison
or concepts’ language comparison. It means that in their informatics and software viewpoint, the
differences between meta-models are more related to their terminology or graph
representation. But in this research, the semantic comparison between entities existing in meta-
models is crucial. As a consequence, our approach in model comparison, presented in detail in
the next chapter, is developed in a way more adapted to product model context. In this
approach, we emphasizes on the definition of concepts and relationships existing in product
design and manufacturing and their evolution with a modeling look. The more informatics
technical parts of models, which are treated in model transformation is out of the scope of this
research. The method used in this research is an element-to-element method (M. D. Del Fabro &
P. Valduriez 2009), which tries to compare the meta-models’ entities, one by one, and regarding
to pre-defined rules and list of concepts in the product-modeling domain, find the corresponding
between meta-model elements. This approach is more reliable outside of informatics viewpoint
because of the importance of semantics definition in these applications. Our methodology is

followed by a simple structure similarity method.

3. MDE and PLM

As it was discussed in the previous chapter, the problematic of model evolution in PLM
systems has not yet been treated properly. The methods generally used on the subject of
product model evolution are more based on the business-viewpoint; the proposed solutions
almost relate to operational issues. But we propose that the problematic of product model
evolution can be treated and explained by informatics-based approaches. This approach
increases the rapidity of solution as well as its genericity, and also it reduces the complexity of
industrial problematic by an appropriate problematic formulation. With this viewpoint, the
problematic, what may be so vast and complex, can be represented by a formal and
comprehensive standard language, used in informatics media. Moreover, evolution has an exact
semantic in MDE. Therefore, treating evolution of models in information systems lies properly in

this semantics and can be done by tools and methods of MDE.
Some of facts that prove this appropriateness are listed here:

= The process of product model development in PLM systems is similar to the
process of model creation from its associated meta-model. The PLM core

section defines the entities that may be used in order to construct product

40

models. Their relationships are explained and the constraints, which must be
respected, are listed. The different classes and their allowed attributes as well
as the description of different types of relationships between future-
constructed elements of product models must be predefined. Therefore, close
comparable to model development procedure of MDE; in PLM systems, all
product models must conform to these descriptions, called Product meta-
model. This tight similarity between the overall MDE and PLM context is a

reason to use MDE methods in our problematic.

MDE main problematic is model transformation. Lots of researches have
focalized on design and improvement of the model transformation process. In
the other hand, our problematic can be reformulated to a model
transformation problem. This reformulation will be discussed in chapter 4. It
should be noted that the transformation procedure should be adjusted for each
type of context. Especially, similarity framework highly depends on the domain

in which the evolution takes place.

MDE methods are widely used in software development. Increasing tendency
to use MDE makes it a standard approach to solve problems related to
transformation of models. This attention makes MDE related methods more
valid, structured, standard and accepted in information systems and

information technology areas. (Brambilla et al. 2009)

Model transformation proposes some tools and automated methods, which can
be useful during the research. These tools are normally validated by the

research community and are reliable.

Procedures developed for product model evolution can be reused for other
similar problematic, because they follow a standard form. This use of
developed procedures is useful for other types of evolution, which takes place

in PLM systems.

Using MDE methods helps to implement the solution more properly in PLM or
other information systems. Since, even if the initial problem of evolution is
described in business viewpoint, the solution has an informatics nature and
should be formulized with informatics concepts, which makes using MDE

approach more credible.

Architecture of PLM system has been presented in first chapter. This architecture

consists of two fundamental sections: (i) a core section that contains all PLM facilities proposed

by PLM editors and, (ii) a customization layer that is added to PLM during its implementation in

an enterprise and envelops all specific functionalities. In order to implement MDE viewpoint, it's

tried to represent the structure and concepts existing in the PLM system with MDE principal

semantics and concepts. The division discussed earlier is conformed to this approach.

By mixing MDE and PLM architecture, the core section may contain the product meta-

models. This depends on the architecture of the considered PLM commercial tool. All PLM tools

have a predefined meta-model for product’s data. This meta-model, may be so primitive and

PLM tool lets user constructing a meta-model, which is adapted to its requirements and

41

Méthodes d’évolution de modele produit dans les systémes du type PLM

particularities. In other cases, the PLM tool proposes a rich library of predefined concepts for
product model construction. It’s clear that predefined meta-models of a PLM tool are not let to
be changed or modified, unless for one tool in a specific context and problematic allows the user
to define and propose its own meta-model. This aspect, important in the procedure of model
evolution, will be presented in the next chapter.

Product models are then created by using concepts proposed in product meta-model. It
is done in product modeling section. This section offers a toolbox of all allowed concepts and
controls the constraints imposed by meta-model, that modelers should respect during product
modeling.

Therefore PLM architecture with Model Driven Engineering approach keeps the previous

division.

Product Meta-model

PLM Meta-model

Figure 3-8, PLM product modeling facilities

4. Conclusion

Model Driven Engineering, which is a standard approach, was proposed to facilitate
software development processes, but its principals seem to be suitable for use in other modeling
areas, and not only software engineering. Lots of other modeling frameworks, which use formal
modeling languages can profit from this approach and its related tools and techniques. The core
of MDE is model transformation. Researches on model transformation aim to propose proper
languages and methods automate transformation processes and set up a framework for model

comparison.

MDE is an interesting approach to govern evolution of product model in PLM systems.
It’s a reliable and accepted method for models evolution. Methods that are designed under
standards of model driven engineering are a priori reusable. These advantages make MDE and
associated technologies more interesting for product model evolution problematic. MDE has not
been used widely in PLM design and evolution. Some research have been done to solve
interoperability problems between PLM and other design support systems (such as CAD
systems) or communication problems between different standards (Sadeghi et al. 2009)(Krause
& Kaufmann 2007)(Panetto s. d.), but for product model evolution, a gap is identified.

42

In order to profit from the MDE approach for our research, some task must be fulfilled.
The industrial problematic should be reformulated as a MDE-type problem. The model
comparison should be adapted to the context of product modeling. Therefore, the ontology of
product model should be defined within PLM systems. Moreover all possible and probable
scenarios of product model evolution should be identified and treated. Next chapter consists of

proposing a new methodology for answering product model evolution by treating these
challenges.

43

Méthodes d’évolution de modele produit dans les systémes du type PLM

Chapter 4 Product Model Evolution

1. Beginning of discussion

As discussed in the previous chapters, product model evolution is a critical subject of
product information management in PLM systems, due to the central role of Product models and
BOMs. Product models consist of a hierarchical decomposition of product information and

structure during different phases of product lifecycle

As discussed in chapter 3, the retained approach for managing product model evolution
is model driven engineering (MDE). One important feature of MDE is "Model transformation"; a
semi-standard approach for solving problems related to model evolution in software
engineering: we call it semi-standard because event model transformation presents a generic
approach to solve all kinds of model evolution, but the tools and methods that have been
developed to support this approach do not already have implemented a general algorithm for
any application, therefore, various methods must be applied. Anyway, the increasing usage and
development of this approach in computer science may be sufficient incitation for an experiment
in the domain of product models and bill of material transformation. However, as it is a brand
new approach, its integration in industrial information systems engineering process is restricted
to the implementation phase. Analysis, design and evolution of these systems are not already
treated entirely and are restricted to academic research. But with the growth of complexity in
industrial information systems and the needs for their rapid development, the use of MDE

approach will become more and more unavoidable.

This chapter aims at the description of a solution regarding this approach. In this
proposition, product model evolution is treated by using model transformation techniques. A
general description of the proposition is presented below in figure 4.1. The different phases are
developed and detailed in the rest of the chapter. These phases construct a general roadmap to
solve the evolution question. Let's notice that the proposed roadmap starts with analyzing

industrial problematic. This is mandatory since the following phases depend on the classification

44

of the industrial motivations behind PLM evolution. Then the industrial problematic should be
translated to a computer-supported language. It is essential because the solution proposed is

based on the computer-supported part of MDE.

The next steps are about finding the particularity of the under-study problematic and
specifying on which scenario it relies. Depending on the appropriate scenario, the target meta-
model can be identified or constructed. Due to source and target meta-models, the similarity
framework should be set up by their comparison, and the proper relationships will be
established. The model transformation can then be executed according to these relationships.
These steps will be discussed in detail in the following section, but it must be noted here that the
identification/construction of meta-models and their comparison has a significant role in all the
model evolution processes. All the process of model evolution depends on the way that the

meta-models have been constructed and compared. This assumption is discussed later.

Industrial
Problematic

Precision Phase two: Scenarios et Meta-modeling

Target Meta-model
identification

fﬁJ
f w
refining | S
DSML |2
Translation < Similarity Framework:
Informatics problematic of H Meta-model Comparison
Industrial one Ec And
s Similarity established
Identification of the 8
equivalent scenario B
. = Meta-model semantics
Phase one: suslyss
Preparation
Similarity cases treating
PLM system insertion Transformation
Phase three:
Phase four: Similarity
Execution and implementation framework

Figure 4-1, Overall view of the proposition

2. Phase one: Preparation: modeling industrial problematic

Product model in PLM systems may change due to an industrial initiative. This industrial
initiative, which was described in the second chapter, is usually expressed with a business
definition. Situations such as product configuration modification or PLM system replacement
may cause lead to product model evolution. But they are generally not enough precise and
accurate to be treated with the computer-supported methods, because they are described with a
specific business terminology. The first stage of the evolution treatment is thus to identify the
detailed problematic and find its corresponding solution in terms of MDE classification. Figure

4.2 illustrates the position this first phase.

45

Méthodes d’évolution de modele produit dans les systémes du type PLM

Industrial viewpoint

Industrial problematic

Translation

Informatics viewpoint (Model Driven Engineering)

Informatics equivalent of Is for

: Solutions
problematic

Figure 4-2, Translation of evolution problematic

Since the aimed solution to resolve an industrial problematic is of informatics nature. the

translation of the industrial viewpoint into an informatics viewpoint is necessary to find the

appropriate solution and take benefits from the MDE approach.

During this translation, the nature of product model evolution within PLM system is

identified. The industrial problematic may take place within one of these situations:

In some industrial evolution problematic, product meta-model is not modified or
evolved. It means that the target models are conforming to the same meta-model
as the source models. This problematic can be solved only by models evolution.
For example, product’s component re-arranging or new product development
whose models are conforming to current product meta-model. In these cases, all
concepts or structures additions are compatible with existing meta-models. Let's
develop an example: the information system of an enterprise manages
information about a product with two composed components. Followed by some
internal modifications of a production line, the enterprise wishes to modify the
product components and reorganized them in the way more suitable to the
production constraints. Therefore three new-composed components are created
to demonstrate the decomposition of product, but the new components conform
to the previous meta-model. The other case is adding a new component to
product. If this new component complies with the existing meta-model then any
change on meta-model is eliminated. In these cases the meta-model of the system
doesn’t change. Obviously, other products’ offer evolutions, needing the addition
of new concepts or structures, which do not exist in the current product meta-

model, may not be included in this category.

The industrial evolution problematic is about replacement of the PLM tool by a
new release. In this case, the PLM system may be changed and replaced by a new
PLM system. Each commercial PLM system has some pre-defined concepts that
are used to define and construct the product meta-model. The replacement of
PLM system will change theses concepts. The predefined concepts in the source
PLM system can be slightly different from those of the new PLM system, inducing
difficulties in data transfer and adaptation. As a consequence, the product meta-

model entities should be redefined and the meta-model must be reconstructed in

46

order to conform to the new system. In some industrial PLM systems, the product
meta-model also is predefined and integrated within the system. In these cases,
the PLM replacement will result in the modification of product meta-model. As a
general conclusion, any modification, which necessitates the change of product

meta-model, may be the source of this type of problematic.

* The industrial problematic is not about the PLM tool replacement, but its
adaptation to changes in organizational context. For example, integration of a
new information system within the enterprise systems may require the
modification of product-modeling facilities. In this case, the objective is to change
the structure of data and information within different information systems in
enterprise in the way that these systems become interoperable. In some cases,
this integration does not necessitate any product meta-model modification for
PLM system (as one of the integrated systems). Therefore the integration may be
done by designing an interface between systems. The real problem in PLM tools
adaptation and integration is in case of incompatibility due to different meta-data
structure. Therefore, PLM tools adaptation and integration may induce product
meta-model evolution. In this case, during the integration, the product meta-
model in PLM system should be modified and then a model evolution between
systems should be done to transfer the product models in PLM system to the new
adapted PLM system.

* In some cases, the enterprise has not used a commercial PLM system to manage
its product-related information. However it uses the other type of information
systems to do it. Sometime, these systems are self-developed by enterprise. The
deployment and integration of a new PLM system needs the evolution of product
models, which are adapted and stored in previous legacy systems. In this case the
previous information system is most of the time more adapted and customized to
the enterprise requirements but the new PLM system is more standard and
provides communication facilities with its customers, partners and suppliers. In
this case, the product meta-model in new system should be defined in the way
that the requirements of enterprise as well as the particularities of previous

system should be preserved.

These situations show in which situations this research may find industrial applications.

3. Phase two: Identification of the equivalent Evolution Scenario

The four business situations described in previous section define four scenarios of
evolution from an informatics point of view. It means that the translation of any industrial

problematic around product evolution must be laid within one of these four scenarios.

The first scenario, illustrated in figure 4.3, is about the case when product meta-model
is not modified or totally replaced. In these cases, source and target models conform to the same

meta-model.

47

Méthodes d’évolution de modele produit dans les systémes du type PLM

Meta-model 1 J

Model 1 ' ﬁ Model 2 l

Figure 4-3, First scenario

This scenario takes place when the PLM system remains in place and only some models
are evolved or changed. Another possible case is while PLM system is entirely modified or
replaced, but the new PLM system relies on the same meta-models and product meta-models as

the old one. Generally solution doesn’t require an entire transformation process.

In the second scenario, the product meta-model in the target system is unknown. It
means that final conditions are partly ambiguous and undefined. This type of situation may be
favorable, since even the target meta-model can be adapted and determined in the way that is
suitable for the future application of the information system. On the other hand, it may add
another phase to product model evolution procedure. This type of informatics problematic is
possible when an enterprise desires to change its PLM system or modify it dramatically, but
there is no restriction on the future system basic meta-models. It means that the enterprise

desires to create the best suitable product meta-model.

Meta-model 1 '“ Meta-model 2 '

Model 1 ' “ Model 2 '

Figure 4-4, Second scenario

In order to perform this type of evolution, the target meta-model must firstly be
designed and implemented. This may be completed by using DSM (Domain Specific Modeling)
methods, which are used to construct or identify the concepts and grammars for a specific
domain. This will be presented in the following sections. The source meta-model may be taken
into consideration in the process of construct final meta-model. This implication on one hand
helps to more enriched construct meta-model compared to source meta-model, and on the other
hand can reduce the difficulties in finding correspondent concepts. It means that in this scenario,
a proper and accurate definition of the final meta-model may improve the process of
transformation and decrease the possible lack of information and adaptability between meta-
models. While the product meta-model is defined, the transformation of related models are

similar to the third scenario that will be presented subsequently.

The third scenario, which is the most likely, is a very typical type of model evolution

and transformation. In this case, the source and final meta-models are different and predefined.

48

The possible industrial cases that lead to this type of evolution are all PLM system replacement
in which the new system is defined. For example, an enterprise, which is joined with another one
and must integrate or even replace its PLM system with its mother company. In some conditions,
adapting PLM systems with the other information systems of enterprise or information systems

of partners (clients, suppliers, etc.) may cause this type of transformation.

Meta-model 1 '“ Meta-model 2 l

Model 1 ' ﬁ Model 2 '

Figure 4-5, Third scenario

The procedure to precede this type of evolution will be presented in the next section, but
it should be noted that in the second scenario, after identifying target meta-model, it becomes

approximately similar to this scenario.

The fourth scenario is a very specific case. In the informatics viewpoint, it may never
occur because, in informatics viewpoint, a model has always a meta-model. In other terms, for
constructing a model, a language (meta-model) must be used. Therefore this idea of having a
model without knowing its meta-model is quite unrealistic. But, it may happen occasionally in
industrial context based on legacy systems. It is about the cases that the source meta-model and
models are recognized, but for the final situation, only target models are known. It means that, in
the industrial viewpoint, the final requirements are identified, but the corresponding meta-

models to be inserted in the new system is not properly identified.

Meta-model 1 '“ Meta-model 2 l

Model 1 ' ﬁ Model 2 l

Figure 4-6, Fourth scenario

No structured and on-going method has been identified to solve this type of problematic,

however, some instructions relating to meta-modeling can be found in the following sections.

Processing the first scenario is straightforward and practicable. For the second scenario,
initially, the final meta-model should be defined and constructed. Afterward, the other stages for
both the second and third scenarios are the same, and transformation should be executed. This
is the subject of the second part of this chapter. For the fourth scenario, the corresponding meta-

model should be “identified”. It means that regarding to the requirements in the target model,

49

Méthodes d’évolution de modele produit dans les systémes du type PLM

the concepts of the meta-model should be found and then the whole meta-model be constructed.

In other words, it's not a real transformation problematic. It's about meta-modeling.

3.1. Meta-Modeling, DSML

Meta-models can be considered as a modeling language (J. M. Favre 2004c). Some
modeling languages define the concepts in a general way; they can be used for modeling all
types of systems. But on the other hand, in order to preserve the semantics of a specific domain,
some modeling languages are developed for specific domains. They provide not only the
modeling elements to represent a system, but also the semantics and concepts of the language.
Therefore they are more rich and detailed than a simple modeling language. One approach to
define and develop a specific domain modeling is meta-models. In other words, the meta-models
are the structured representation in DSML, Domain Specific Modeling Language. In DSML, the
ontology of a context is designed and a framework for modeling the concepts is proposed. This
DSML covers also the constraints and different types of rules which must be satisfied or followed
during modeling process. DSML may result in a textual description of concepts and semantics of
the domain. But meta-models can describe and explain these concepts in a more detailed and

clear manner.

In model transformation, the meta-models of both the source and target systems should
be identified before execution of the transformation. In one scenario, the third, this meta-model
should be constructed by experts of the domain. In this case, if the DSML of the current domain
is known, the expert can construct its meta-model via the semantics described in DMSL. But if
even the DSML of the domain is not previously defined, the expert should define it at first by
using the methods and procedures. In the second scenario, the input meta-model of the target
system may be modified in some cases. This might happen when during the model comparison,
lots of concepts or constraints in source meta-model have no correspondent or equivalent in the
target meta-model. Besides, the target meta-model may guide the user when modifying based on
evolutionary requirements. In both cases, DSML has an important position during models

comparison.

DSML plays a crucial role in Model Driven Engineering and its related standards as MDA
(OMG 2001). Lots of research has been devoted to DSML formalization and methods related to
construct DSML, in software engineering (Jackson & Sztipanovits 2009) (Lin et al. 2007) as well
as in industrial modeling context (C.-H. Chen et al. 2003) (Yang et al. 2008). In computer science,
there is a major trend to propose semi-automated process to construct this DSML. The main idea
in this approach is to collect almost all presented concepts in a context of software engineering
with their relationships and associated rules, and then, by proposing an intelligent interface to
users, to help them to make their choices and construct an appropriate DSML, based on their
needs and limits(Santos et al. 2010).

But in industrial engineering domain, constructing DSML requires a capitalization of the
expertise in the considered business domain. Several technical meetings with domain experts
may be necessary. The concepts and particularities of a domain are found during these meetings
and then they are formalized in UML models (T. Asikainen & T. Mannistdé 2009). In product
model context, each enterprise has its own way to describe its product meta-model. But the list

of probable concepts in previous section may be useful in order to initiate the job.

50

In many companies, this phase of meta-modeling is not established in a structured way.
Modeling product in M0 layer may attract huge time and effort investment, but its prior phase of
meta-modeling is done with insufficient attention. Lots of problems in PLM product modeling
problematic could be solved by a proper meta-modeling, if performed in the early phases of PLM

implementation.

One of the most important challenges in product model management is the consistency
and interoperability between different viewpoints of product models. For example, product
configuration as-designed, which is used in enterprise design department, should be
simultaneously coherent with product configuration as-built in manufacturing department. A
proper and structured meta-modeling may help to construct a meta-model, which has the ability
to manage this relationship. This meta-model has all concepts needed to construct these

different models of a product and guarantee their consistency.

4. Phase three: Similarity Framework

As mentioned in the previous chapter, in order to do a transformation process, final and

initial meta-models should be compared and the similarity points between them identified.

The result of this comparison concludes in how much a meta-model is similar to another
one. In other words, for each concept in a model or a meta-model, what is the corresponding

concept in the other model or meta-model?

4.1. Model comparison

In model engineering, lots of researches, presented in the next section, have been
devoted to the model comparison and model differentiation. In meta-model comparison for
transformation, all of these methods and tools of model comparison can be used to compare
meta-models. It means that in the domain the subject of similarities, model and meta-models
make no difference. Model comparison is a process of comparing two models in what, for each
modeling entity in a model, a correspondent or similar concept in the other model is
determined. Moreover, model differentiation, which is about finding differences between models
are a way to establish the correspondences between models. The difference between the term of
model differentiation and model comparison comes from the process of model evolution. In
model comparison, generally the subject is to compare two models, whereas in model

differentiation the subject is to identify the differences of a model during its evolution.

Researches on model differentiation enclose a variety of domain and methods. From the
most simple model differentiation of text comparison to most complicated methods of graph and
structure evaluation. Researchers on model differentiation have generally taken two
approaches: one approach deals more with the differentiation of models during their lifecycle
(Kolovos et al. 2009) (Lin et al. 2007) (Sadeghi et al. 2009) (Rivera & Vallecillo 2008) (Y. Lin
2007). In this approach, the differences between a model in one state of its lifecycle and itself in
the other state of lifecycle are studied. It means that in this approach, the influence of evolution
on a single model is studied. The principal idea of the differentiation in this approach is to
identify the created, deleted and updated concepts during this evolution, so one of the elements

of model differentiation is to find when the comparison must take place.

51

Méthodes d’évolution de modele produit dans les systémes du type PLM

The other approach is about comparing two different models (A. Cicchetti 2008) (A.
Cicchetti et al. 2007) (M. D. Del Fabro & P. Valduriez 2009). In this approach, which is much
newer even in software engineering, two different models are compared in order to find their
similarities or variations. Common methods are textual comparison, which is based on XML
schemas of models (Deridder et al. 2009) or using graph theory to compare more accurately.
Some of model information and knowledge is about its structure and the way that concepts are
related. Some methods (A. Cicchetti et al. 2008) studied that aspect.

4.2. Proposed framework of similarity framework

In the present research the procedure of model comparison relies on syntax comparison
as well as on semantic comparison for product models. This kind of comparison is useful in this
research, because of the importance of semantics in industrial information system modeling.
The modeling language, which is a representation method of these concepts, can play an
important role in this comparison. A language is a way that defines what semantics are needed
and how they are organized between concepts. As discussed earlier, UML language has been
chosen as the reference standard modeling language because of its large dissemination in
industrial domains modeling. Moreover; in lots of researches and practices on product modeling,
UML is used as a modeling language. The modeling language has an important and fundamental
role in model transformation, particularly in model similarity framework, since the entities of
models that should be compared, are facing the entities described in modeling language meta-
models. For example, in UML language, the entities or modeling concepts are described in MOF ;
thus, every UML model uses entities and concepts characterized in UML meta-models, and with a
description and constraints predefined in MOF. As a result, any product meta-model entity
should be “conform” to this meta-model, and using these concepts like attributes and
associations. In other words, the semantics of model concepts should be defined by language
proposed entities (attributes, classes, associations etc in UML), and organized in the way
described and allowed by a modeling language. In conclusion, for proposing a model

transformation, and especially model comparison, modeling language has a central role.

Besides, defining the similarities between models relies on modeling language. This
semantics, which is described in details in the following, may be enriched or modified, based on
the semantics of a specific domain, but its granularity remains intact. [t means that the overall
process of similarity identification is based on the domain language and requirements related to
a system, but the entities to be compared are represented in the modeling language. The
granularity of semantic definition specifies that for a certain concept, which element in modeling
language should be chosen. For example, in a very simple case, the concept of product material
may be specified in a model by a class or an attribute in a product model. Obviously it depends
on the desire and need of the model designer, but it can be important in model comparison and
subsequently model transformation. On the other hand, the granularity depends on the

modeling language facilities.

Since they are both expressed in the same modeling language, namely UML, model
comparison is not to find the correspondences between modeling concepts and simple

conformity or agreement between models. As mentioned above, it is about to find their semantic

52

and syntactic similarities. Therefore, first of all, the concepts and entities that are the objects of

comparison should be defined as well as their granularity.

The other important subject to be determined is to construct a criteria framework for
comparing models and specify the similarity. These criteria are used as a mean to find the
similarities between model concepts. Each pair of concepts (one from source model and the
other from target model) should be compared by these criteria. They consist of syntactic based
criteria as well as semantic based ones. Syntactic based criteria analyze the similarity between
two concepts from form and structure of concept, but semantic-based criteria try to find the
similarities related to characteristics of concepts. They are enriched according to the domain
characteristics. Besides, there are criteria related to the structure of models or concepts. In other
terms, the domain specifications and business related semantics have more influence on the
similarity criteria, but the modeling language shapes the granularity of models and entities,
which must be compared according to these criteria since the modeling language defines the

blocks in a model to be compared.

And in the last but not least, other relating subject is the calculation framework of
similarity. In this framework, the similarity between the elements of model is calculated by
assigning a degree to each element for a specific criterion. These degrees should be assigned
based on expertise and requirements of studied domain. Then, the similarity of each concept is

calculated in function of degrees and the suitable weight allocated to each criterion.

As an example, let's define two elements of "a" from the source meta-model and "b" from
the target meta-model. For each criterion of comparison, based on the domain expertise, a
number that represents the degree of similarity is assigned to this pair of elements. In order to
compute the total similarity between these elements, the similarity degree of all of the criteria
should be added. But during this addition, the weight of each criterion must be taken into
account, because each criterion has its own importance on similarity. This formulation will be

presented later. This calculation process is shown in figure 4.7

53

Méthodes d’évolution de modele produit dans les systémes du type PLM

le results

=

Poss

Framework

ity

S

Figure 4-7, Similarity calculation framework

54

In this research, the model entities, based on the modeling language, are:
* Attributes
* C(lasses (as a set of attributes)
* Relationships:

o Relation inter-class (relation between the concepts existing in a same
class, like between the attributes of a class. This type of relation is not
presented explicitly in UML classification. But when we present two
concepts in a same class, it means that there is the “inter-class

relationship” between them)
o Relation intra-class (association between two or more classes.)

= Association

= Composition

= Aggregation

= Heritage

These are the entities provided by modeling language, but their semantics may be

enriched by information related to usage domain. In other words, different types of associations
may be constructed to represents different types of association between elements. Therefore, if
these model elements without any other associated information related to domain are
compared, then similarities between models, which are independent from the domain of these
models, are identified. This type of similarity is called syntactic. Syntactic similarity is about to
find the similarities syntactically between two entities. Criteria related to a syntactical similarity

are name, type and format of entity. Detailed syntactical criteria which are different for each

type of entity are presented below:

Attribute:

In model comparison, each attribute of a model should be compared with the attributes
of the other model in order to find its more similar correspondent. The problem arises when a
class has an attribute as a correspondent in the other model, which was introduced earlier as
granularity-related problem. In our model comparison, the comparison is done between all
model elements. Therefore, by default, the proposed similarity framework checks the similarity

between classes and attributes.

It should be noted that the attributes constructing a class, possess the semantics of its
associated class as well. It means that in model comparison, attributes are not compared
independently from their classes. For example the attribute “ID Number” of the class “Tool” has
a semantic of ID number of tool. Therefore, during comparison of attributes, their containing
class is compared. In order to fulfill this condition, the name of class is concatenated to the
attribute name, like: “Tool.ID-Number”.

For an attribute, its name is amongst the criteria of similarity. Two attributes from these
two models that have a same name may be correspondents. It depends also on the other criteria.
But the similarity of the names is not restricted to a perfect accordance of their names.

According to the domain and enterprise requirements and terminology, a glossary of each

55

Méthodes d’évolution de modele produit dans les systémes du type PLM

concept must be constructed. In this glossary, all the synonyms of used terms are collected, for
example, for “name”, other terms such as “denomination”, “label”, “appellation”, etc. There is no
difference between the case where two elements have an identical name and the case in which
both of them have the synonyms. If the names of attributes accompanied by their class name are
identical, their score is the highest, 1. If their names of attributes are synonym but their class
names are different, their score is 0.5 and if the name of attributes is not similar at all, their

score is 0.

The second criteria, is the format of attributes. Attributes with the same formats, such as
Number, String, Float, etc. are more likely similar. As the scoring procedure, if both of them have
a same format, the score is 1 and in the other case, it will be 0. But other criterion, which may
influence in comparison of attributes, is their form. Form here means the way that an attribute is
constructed. For example in some companies, for their ID-Number, they use a special form. In
comparing some values of attribute, it should pay attention to these types of possible

dissimilarity, which comes from the enterprise particularities.

Class:

Classes are considered as a set of attributes. Then a class has the semantics of their
attributes and moreover it has the semantics related to this set, like its name. So the criteria
related to classes are the name of the class and the number of attributes along with their
similarities. It means that two classes, which have the same attributes and similarities, are

correspondent.

The most important difficulty of class-related similarity is a class with the attributes
spread in different classes in the other model. For example, class A in source model has two
attributes, a. and b. With the help of model comparison, the correspondent of a and b are found,
they are c and d. But c and d are not in the same class, c is in class C and d is in class D. the
problem now is the correspondent of class A in the target meta-model. In this case, the
correspondent of this class in the other model is the group of these classes. It will be discussed in

more detail in the following sections.

Association and Association End:

Associations are the most complicated elements of the models to compare. Each
association has two association-ends. So for each association in a model, three different entities
must be evaluated. In order to find the correspondent of an association in the other model all of
these three entities should be compared. In the next section, during the discussion of different
possible types of similarity for each entity, the probable situations of association similarity will
be clarified, but it should be noted that an accurate description of the association semantics will
be crucial in association comparison. Here the basic semantics of association entities are

introduced and then they will be enriched.

According to UML semantics, each association is identified by its name. But the
properties of association-ends are more complicated. For each association-end, role names,
ownership indicators, multiplicity, direction, and the type of association should be identified.
The type of association is presented in one of its association ends. An association may be a

simple association, a composition or aggregation, or a specialization/generalization. The

56

associated semantics related to these types demonstrated in association-ends, because their
effects are on each end of association and the classes related to them. All of these types have a
single direction, except a simple type of association, which has a double direction. These
directions are shown in association ends. In the case of an association class, it is considered as a

single class with two associations.

These are semantics related to UML language, however, there are some other
particularities related to a specific domain of modeling, here product configuration model. These

semantics are described in the next section.

All the descriptions presented here are designed with UML modeling language in
accordance to UML meta-model, "MOF". MOF, Meta-Object Facility, is a standard designed and
updated by OMG. It is a meta-model of all UML diagrams (Gardner & Griffin 2003)(OMG 2005). It
provides a detailed description of all elements present in all types of diagrams and their
interaction/relationships. A simple representation of MOF, which more focuses on class

diagram, is illustrated in third chapter, figure 3.3.

As mentioned before and based on the MDE principles, in modeling framework for
product configuration, product models must conform to a product meta-model. This product
meta-model, which defines how to build product models (in terms of concepts and relationships
between them), is constructed using UML. It means that it conforms to MOF. In other words, the
concepts of product meta-model are a set of enriched concepts of MOF, dedicated to the

considered domain (here product configuration within PLM).

The concepts listed here are the most important elements of UML models in product
configuration domain. This list does not cover all product configuration concepts but it contains
the most important and usual ones according to PLM systems features. This list may be extended
or restricted based on the particularity of the industrial case. The aim of this list is to set up an
appropriate framework, which will provide a base to compare more accurately meta-model

concepts. This list is presented in the following:
- Name: a text expression, meaning the name of the concept (item / product / document, etc)

- Reference / ID: a unique combination of text and/or numbers, which accurately identifies a

concept in a unique manner

- Dimension: a set of numbers showing the volume of a part. In Cartesian coordination

system, it includes three numbers, with a specific scale.
- Weight: a number representing the weight with a scale.
- Material: name of material used to make a part, recorded in the system.
- Elementary part: this means that the considered part cannot be splitted into other parts.

- Composed part: this means that the part is composed of at least two other parts

(elementary or composed).

- Specific part: it is a type of parts that is related to a generic part and at least has one valued

parameter in addition to its generic associated part.
- Generic part: it is a type of parts that has at least one non-valued parameter.

- Exemplary part: it is a type of parts, that all of its parameters are valued. This part is

manufactured in enterprise.

57

Méthodes d’évolution de modele produit dans les systémes du type PLM

- Abstract part: All parameters of this type of parts are not valued. This part may be regarded

as a model or template of all other types of parts.

- External document: this means that the considered document is created outside the PLM

system (such as a CAD file).

- Internal document: this means that the considered document is created within the PLM

system.

- State: a text, which can only have certain values (depending on enterprise’s typology to
distinguish the different states of a concept). A state expresses the maturity of information

related to the considered concept

- Version: a number or a combination of text and number, which must change accordingly to

each modification, so to distinguish the various modifications

- Tools: text, which defines the tool (as a resource) that are needed to construct the

associated part.

- Supplier: text, designating the name of a company who has furnished the considered

concept.

- Date of effectiveness: It means the date of validity of the information associated to the

concept

- Production situation: a text can be one of (Manufactured / purchased / subcontracted (co-

designed)) which defines how the company purchases a product.
- Author: text, creator’s name of part or document.

- -User: text, name of a system’s user, who has the access to technical data of a product, a

part or documents. It may have different access rights.

In PLM systems, these concepts are used in order to product models describing products

designed and fabricated in enterprise.

4.3. Method for comparing two models

Product meta-model from each system can be compared. In this process, each meta-
model concept is compared with concepts of the other meta-model in order to find the most

similar concept. The general process is executed as follow:

One concept, such as an attribute is considered, and then compared to all attributes of
the other meta-model according to different criteria. For each criterion, a number that specifies
the degree of similarity is allocated. Then the sum of these degrees multiplied by the weight of
the associated criterion provides the total similarity between these two attributes. Following

formula is used to calculate this similarity:

For each concept i from MM1 (source meta-model) and concept j from MM2 (target
meta-model), according to each criterion n, a degree of similarity is calculated. If two concepts
according to the criterion are identical, then degree of similarity for this criterion, Sn(Lj) is 1. If
there is not any similarity, Sn(i,j) is equal to zero. Sn(i,j) may be a number between 0 and 1, if
they are relatively similar. This value is allocated regarding to the expertise of the case under

discussing. It will be discussed in the following paragraphs.

58

For each criterion, weight or Wn shows the importance of this criterion relatively to
other criteria. This is a normalized number between 1 and 10. Assuming that there is k criteria,

S(i,j) which introduce the overall similarity between concept i and j are calculated as :

S(i,j)= 2 x (Wn*Sn(i,j))
Criteria are different according to compared concepts. If concepts are attributes, classes or
associations, the criteria are the same ones as those presented in the previous section. For
example, if they are attributes, the criteria are name, format and form. It should be noted that
based on discussion in previous section about existing concepts in product configuration meta-
models, this comparison here between attributes (and other types of concepts) are more

oriented and adopted to this application.

The procedure of allocating the degree and weight for criteria may be semi-automatics. It
means that this procedure is not done only by the system in an automatic manner, but the user

of this system is allowed to modify and customize these values.

If overall degree of similarity, S(i,j), for i and j lies in interval [N,C], then they are the
correspondent concepts. N and C are identified and allocated according to the case of study but
as a proposition, they may be calculated as C = 10 and N= 5. If the similarity for i and j is equal to
1 for all of the criteria, which means that i and j are correspondent based on all of them, then
S(i,j) is equal to 10. (Weights are between 1 and 10). Therefore the best and maximum number
for S(i,j) for the correspondence is 10. It’s obvious that the values of N and C can be modified due

to user’s intention.

For example, the attribute “Part.Name"“ from MM1 is compared to all attributes of MM2
(j), and S(Part.Name, j) is calculated for each j in MM2. As an example here, let's imagine that in
MM2, there are three attributes: “Componentldentification”, “ProjectName” and
“Component.code”. Part.Name is a text, which describes the name of a part. Component.Name
determines the name of component, Component.Code shows its codification and Project.Name
defines a project’s name. A project may contain lots of components. The process of calculation
compares different properties of these entities with the properties of Part.Name. For an
attribute these properties or criteria are the name, form and format. These are the results of

comparison:

* Name (Part.Name, Component.Identification) = 1 => part and component as well

as Name and Identification may be considered as the equivalents.
* Form (Part.Name, Component.Identification) = 1 => both of them are text

* Format (Part.Name, Component.Identification) = 1 => both of them doesn’t follow

a special rule of naming.

* Name (Part.Name, Project.Name) = 0.5 => both them explains the name but one

of them is about the part and the other about project.
* Form (Part.Name, Project. Name) = 1 => both of them are the text.

* Format (Part.Name, Project.Name) = 1 => both of them doesn’t follow a special

rule of naming.

* Name (PartName, Component.Code) = 0.5 => both of them contains the

equivalents.

59

Méthodes d’évolution de modele produit dans les systémes du type PLM

* Form (Part.Name, Component.Code) = 0 => it’s clear

* Format (Part.Name, Component.Code) = 0 => codification follows some specific

rules.
Therefore the S are calculated as:
* S (Part.Name, Component.Identification)= 1*3,33+1*3,33+1*3,33=10
* S (Part.Name, Project.Name)= 0,5*3,33+1*3,33+1%*3,33= 8,32
* S (Part.Name, Component.Code) = 0,5*%3,33+0*3,33+0*3,33= 1,66

It shows that “Part.Name” and “Component.Identification” are similar. Although this was a very

simple example, it shows the steps of proposed procedure.
The problems, which may arise in the comparison process, are:

- For one concept, its correspondent concept is of different nature. This happens more
between classes or attributes. For example, one attribute correspondent in MM2 may be a
class. Finding this type of correspondence is not so obvious, as the criteria are different for
comparison of a class and an attribute. In this case, the result of comparison returns nothing
for the concerned class or attributes. It should be done by user’s interaction. The user may

define this correspondence himself.

- For one concept, more than one correspondent concept is found. For example in MM1, only
the “user” for a part is identified but in MM2, the user has been divided in two concepts of
“designer” and “client who command it”. In this case, both of them are the correspondents

of “user” in MM 1. Therefore both of them are user of this part.

Besides exceptions described above, four types of result may be obtained as a similarity

calculation output:
1- For a concept i, a similar concept j is found

2- For a concept i, a similar concept j is not found, but the information related to

conceptiis distributed between several concepts in the other meta-model.

3- For a concept i, no similar concept is found, but the information necessary to set up

similarity link may be extracted from the system.

4- For a concept i, there is no correspondent concept and there is no way to extract

information from anywhere to set up similarity link.

The first possible situation is quite simple. Two concepts are correspondent. Executing a
query may also treat the second situation. This query, which connects the different concepts in
MM1 to different concepts in MM2, specifies which part of semantic in one MM1 concept may be
connected to which part of semantic in MM2 concepts. It means that this query, via the
assignment of correspondent concept pairs, such as (i,j), specifies the similar semantics in two

meta-models.

The third situation is more complicated. In this case, necessary information to build up a
concept in one meta-model must be extracted from information distributed in several concepts
of the other meta-model. In order to solve this type of similarity, a standard process cannot be

applied, but according to particularities of different cases of study, an adapted solution may be

60

proposed. Distribution of necessary information is not only limited to a simple break down of
information in several concepts but also it may even concern a situation where, for identifying a
similar concept between meta-models, industrial data in models level are used. It means that
information existing in models helps to determine necessary information to integrate in the
meta-model level of target system. This similarity is not entirely treated in computer science
literature. However, (Kurtev & K. G. van den Berg 2004) has counted this type of similarity. This

is illustrated in figure 4.8. Next chapter discusses more precisely one example of this type of

similarity.
Source ‘ . ! X Target
Meta-model Comparisonand | ' Meta-model
Correspondences
Conforms Baslh Conforms
ased on
Source Transformation Target

models - = models
Figure 4-8, Inter level Transformation

Although these propositions do not follow a specific pattern or algorithm, for some
general cases, guidelines can be used. Next chapter illustrates a guideline for a specific industrial

case study, which focuses on generic product modeling.

In the fourth situation, some pieces of information are not extractable from the other
meta-model. No means exist to find a correspondent for some of the concepts. Generally there is
no general solution for this type of situation. If a concept in the source meta-model has no
correspondent in the target meta-model, it means that some pieces of information during the
evolution will probably be lost. These pieces of information are not transmissible in the new
system models. If the target system can be changed (the case of installing new PLM tool or
creating new system) the new concepts may be added to the target meta-model in order to store
these pieces of information. But if the target system is imposed (for example in case of an
information system which is going to be integrated into another enterprise system) these pieces
of information in product models will be lost. On the other hand, if a concept of the target meta-
model has no correspondent in the source meta-model, then it means that the new system will

have some non-valued/non-instantiated concepts or properties.

4.4. Constraints and rules

The other components of the models, which should be transformed into the new system,
are the constraints and rules. On one hand, constraints define additional limits to modeling; they
exist in both meta-model and model level. Rules and constraints in the meta-model level
determine the perimeters, which should be respected during the model construction and

execution. They specify the relationships between the entities or concepts of the meta-models.

61

Méthodes d’évolution de modele produit dans les systémes du type PLM

But rules in models govern the concepts in models and their relationships, and generally come
from the modeling language and the domain expertise. They are important parts of models and
should be transformed during model transformation. Before describing a general list of possible
constraints and rules in product configuration context, it should be noted that the boundary
between a rule and a constraint is pretty ambiguous. In other words, rules may be reformulated
and represented as constraints. A constraint can also be described by a set of rules that impose
it. For example, the rule that specifies the relationship between two types of entities in the meta-
model may be described as a constraint. In the simple meta-model for a product like car, they
may exist a mobile part and fix part. Mobile parts in a car like wheel in model are the instance of
the entity “mobile part” in meta-model of product. A rule in model of car may be like that: “all of
the mobile parts should satisfy tests of rotary.” It means that in any model of product, an
instance of test of rotary may be connected to each instance of mobile part. During the model
transformation, this rule should be transformed and applied to any instance of the

correspondent of mobile part in target meta-model as shown in figure 4.9

Initial System New System
(source) (Target)
Meta-model | yen e v — |] obiall) ogi\ell s

Classl _LL o= __ Class2
5 il | v
pa | L

e e, e e e e

| |
Conforms Conforms

‘ 1 |

¥ |
Model ,])[;]

Model R
|
— < hem— ’ * 0
Constraints " 5 Pl 8
Constraints

related to class 1
V related to class 2

Figure 4-9, Transformation of constraints

Constraints may apply on product model within only one phase of its lifecycle, or they
govern the product model during some phases of it. Static constraints are due to a specific state
of product lifecycle and define the limits of product model in this phase. Dynamic constraints
determine the restriction of product model evolution during the different phases of product
lifecycle. In other words, dynamic constraints applied mainly during the transition of the

product model from one phase to another. As an example, the rules that specify the migration of

62

a model from its design phase to manufacturing are dynamic rules and can be represented by

dynamic constraints. The following list proposes some kinds of constraints in product modeling:

o Static Constraints

» Product feasibility: deals with the constraints that are necessitated by developer
for a specific product line, which defines the restriction of product models
components relationship and their relationship. Product feasibility constraints
consist of instantiation rules as well as product constraints. Instantiation rules
define how an exemplary product (real product) is created from its design
model, by taking into account its feasibility. For example, even if in the design
model, a car may have different types of tyre, in a real car, it can have four tyres

of only one type.

= Special constraints based on models: are related to a specific context. In different
cases, the modeling framework may impose the different types of constraints.
These constraints are defined and applied by the expert of modeling domain.
For example, in the generic modeling framework, each specific part must be
associated with a generic part, or each generic part must have some non-valued
attributes. The domain expert defines these constraints during the process of
modeling framework construction for each specific domain. This framework is
called DSML, Domain Specific Modeling Language. This subject is discussed at
the end of this chapter.

» Conformation between model and its meta-model: this type of constraints
guarantees coherence of the models with their associated meta-models. In
general, the modeling framework automatically controls this type of constraints
by validation the conformation model and meta-model. Moreover, the
construction of models in accordance to meta-models, by its nature, ensures the

conformation.

o Dynamic Constraints

* Dynamic constraints applied all along the lifecycle of the models. The evolution of
product models during different development phases is controlled by dynamic
constraints. In other words, they manage the coherence between product model

and data during different phases (design, manufacturing, etc.)

* Dynamic constraints or rules also define how a product model may be modified.
The design of the information system predicts the model evolutions in one
phase of product lifecycle and specifies the rules and constraints to manage

these evolutions in the way that the system can handle them easily.

4.4.1. Constraint/rule Transformation

Constraints and rules are one of the parts of product models. They are written generally
in OCL forms and specify the relationships between concepts; therefore a constraint may be
considered as a phrase contains one (or more) concept(s) of model or meta-model with specific
information about this concept. For example, the constraint “the attribute A of class B should

have an even value” specifies a property for a specific concept. Transformation of this constraint

63

Méthodes d’évolution de modele produit dans les systémes du type PLM

should be followed by a transformation of the concerning concept. When the correspondent of
concept B(A) is found, the constraint should be transformed. Therefore in order to transform a

constraint, the correspondent of existing concepts in it should be “tracked”.

Managing the transformation of constraints is treated after the transformation of
concepts. The transformation of constraints is based on using model transformation results and
the tractability of concepts during transformation. The constraints can be written in OCL (Object
Constraint Language). After the execution of transformation process, the correspondent
concepts are found. The new constraints in the new system are rewritten, as only a textual query
by using the correspondent concepts. Transformation of constraints, as a satellite objects of

meta-models are studied in (B. Amar et al. 2008).

This mechanism of constraint transformation can treat all types of constraints. The
constraints which are related to a modeling languages as well as ones that are concerned the
business and domain of modeling are writable with the OCL languages and place in this form of
concept/property. For example, a constraint may define that the composed part should be
composed of at least two parts. This specific rule links the concepts (part and composed part)
with the property (at least composed of two). For example, the transformation of concepts
results as (part corresponds to external design project) and (composed part corresponds to
internal design project). In the new organization, the enterprise purchases elementary parts and
only assembles them. Therefore, the transformation of constraint may be rewritten of the phrase
with the new concepts: “an internal design project must include at least two external design
projects”. Other types of constraints are treated as this example and transformed by using

tractability of transformed concepts of the models.

4.5. Conclusion

Similarity, the framework is a key component of model transformation. As mentioned
before, it depends on the context of modeling. This proposition has a particularity vis-a-vis the
other transformation methods, which are developed in software engineering. It has been shown
that in research on software engineering, the meta-models are not so different, or in some cases,
transformation is between the languages and therefore the concepts in meta-models represent
only languages concepts with a standard ontology. Consequently, finding similarity between

them is not a very complicated.

But in PLM product modeling, the situation is different. Product modeling does not
follow a general and widely accepted framework. Therefore product modelers use their own-
defined concepts, rules and semantics to design a model. This complicates the model
comparison because there is no common semantics or standards with which the entities of
mode may be compared. In other words, there are different DSML which are not compatible. The
only standards defined in product models are only related to data exchange between systems,
such as STEP. But very structured standard framework for product modeling, which is applied in
PLM systems, does not exist, and the different enterprises use their own framework, adapted to

their requirements and particularities.

On the other hand, PLM systems are complex systems. The product models within them

consist of several entities with their relationship and complicated rules and constraints. These

64

entities cover a large number of concepts in models. Therefore model comparison in PLM
product models is a very difficult task, and its results must be revised and validated regularly by

users and domain experts in order to guarantee its conformity with a context.

5. Phase four: Transformation and implementation

When the model comparison is done and its results are validated by the domain expert,
the transformation becomes similar to the process described in third chapter. It starts when the
product meta-model similarity results are known. Based on similarity identification, the
concepts in the target model can be created from its meta-model. The process is described as

follows:

- A concept in Model 1 is chosen.

- Its meta-concept in Meta-Model 1 is identified.

- The correspondent of this meta-concept in Meta-model 2 is found.

- This meta-concept in Meta-model 2 then must be instanced in order to create the

corresponding concept in Model 2.

This process should be iterated for all existing concepts in the source model. As shown in
the previous chapter, these steps are the general steps of model transformation. Transformation

of constraints and rules are done after the transformation of other concepts in the model.

But the difficulties arrived for constraints that exist in meta-models level. They contain
the knowledge about the modeling domain and language. During the transformation, these
constraints also should be transformed to the target meta-model. But the constraints should be
added to the target meta-model, in order to capture and preserve the knowledge within the
source meta-model. This transformation can be performed by using the correspondence
relationship. As described for tractability, the OCL-represented constraints of source models are
rewritten with the new concepts of target models, which are the correspondents. For constraints
in meta-model, the process is the same. The constraints will be rewritten by using the

correspondent concepts in the target meta-model.

To our knowledge, no commercial or academic tool exists that can execute the model
transformation fully-automatically, due to the complexity of model comparison. The number and
the performance of these software increase during these years. Some of them like UML-QTV are
developed to analyze models and translate them between languages or generate executable
code. Nevertheless, some tools have been developed in order to execute the transformation.
Developed by INRIA of Nantes, ATL, for Atlas Transformation Language, (Frédéric Jouault et al.
2008) is used widely and became a standard tool for model transformation. It is integrated
within Eclipse environment and is known as the best platform of model transformation. ATL
with its own grammar provides facilities to create models, meta-models and to create an ATL
file, which stores the correspondence relationships between concepts in each meta-model. This

tool and its application will be discussed in chapter 6.

65

Méthodes d’évolution de modele produit dans les systémes du type PLM

6. Conclusion

This chapter has proposed an original procedure for executing product model evolution
within PLM systems. This procedure starts with problematic translation that converts industrial
problem to an informatics equivalent. This informatics problematic should be mapped to one of
the four scenarios. According to these scenarios, the solution may vary but all of them take
benefits from the similarity framework. The similarity framework helps users to find the
differences and similarities between meta-models and set up the correspondence relationship.
Different possibilities for these correspondences may occur, that are the input data for

transformation execution.

This proposition is a complete procedure for model evolution in product configuration
management. It covers all phases of model evolution. The previous research on model evolution,
presented in chapters 3 and 4 is more focalized on each phase separately and more commonly
on the transformation process itself. Moreover, the studied models belong to informatics and
software engineering based on languages of modeling and implementation, platforms etc. On the
other hand, this proposition studies an industrial problematic by using computer science
approaches, namely product configuration management. Researches presented in the second
chapter that are related to this problematic do not have an entire and comprehensive sight on
the whole evolution phases. In addition, this proposition aims to benefit from new approaches in
modeling and informatics system design. It introduces these concepts and methods in industrial
product configuration management in order to solve evolution-related problematic. This

procedure will be tested in the next chapter for an industrial problematic.

66

Chapter 5 An Industrial Need of Evolution, Generic
Configuration

Chapter four is devoted to elaborating the general description of the proposed
framework for product model evolution within PLM systems. But as mentioned earlier, this
framework is hugely dependent on the particularities of the studied industrial problematic. In
other words, its main phases should be customized for each case of study. In this chapter, we
illustrate this framework for a particular industrial problematic in PLM systems. It is the
“generic product configuration for an industrial manufacturer of culinary products. Indeed, this
chapter defines and explains a special methodology for construction of “generic” configuration
of product and integration with PLM systems of an enterprise by using of procedure described in

previous chapter.

The studied problematic deals with the migration form a PLM system that can’t manage
the genericity of product lines to a PLM system that is capable to deal with this genericity. In
other words, the existing system contains only models and meta-models to manage “specific”
products. However, the target system is aimed to manage “generic” products. These terms will
be discussed in detail in this chapter. In the studied problematic, the new target system is
supposed to not be pre-defined and the process of information extraction for constructing

needed concepts of target meta-model will be introduced.

This chapter starts by defining the terminology of “generic” /”specific” product
configuration and the importance of this subject in the industries’ information system. The
particularities related to “generic” configuration and its advantages then will be presented. Our
proposed framework for the migration will be customized and presented in details, illustrated
by a particular example. It should be noted that this particular problematic corresponds to the
second scenario of evolution, as described in chapter 4. The target meta-model should be
constructed for this case. As mentioned in the previous chapter, if during meta-modeling, the

considerations related to transformation and existing modeling framework (source meta-

67

Méthodes d’évolution de modele produit dans les systémes du type PLM

models and models) are predicted, the process of transformation may be executed more
properly without lost of source models’ information during the migration. This studied example
is a particular case in model transformation. In this case, the information in model level is used
to determine correspondence relationship. This particularity will be discussed later in this

chapter.

1. “Generic” Modeling

1.1. Product Generic Representation, an industrial need

Implementation of a PLM system within an enterprise is an opportunity to improve its
information management and rationalize its document structure, since it preliminary requires
structuring plenty of product information. Product information to be structured in a PLM is

essentially the documents and the configuration (Rangan et al. 2005)(Briere-Coté et al. 2010).

Analyzing some industrial cases of PLM deployment shows that the management of
product configuration limits, in the most of cases, to construct the configuration of each
commercialized product, independently from configuration of other similar products in the
enterprise. Therefore the amount of information to be managed is relatively huge. This manner
of configuration management can generate some difficulties concerning to the creation and

possible future modification of configurations. Examples of these difficulties are:

* Managing only the “specific” configuration increases the information and data in
the system. Similar products contain some similar data, which can be factorized
and centralized in “generic” configuration. As a result, lots of information should

enter, stock and managed within the system.

* These huge amounts of technical data are sometimes linked, related or inter-
dependent. Any modification on some of them can influence on the others and as
the consequence of each changing in the configuration of a single “specific”
product, the configuration of some of other products may needs the revision.
Therefore, managing the evolution of product models in these systems is difficult

and time consuming.

* Enterprise doesn’t have a global image of its products. It means that all products,
have their own configurations, and any general representation of them in

information system doesn’t exist.

Some commercialized products manufactured by the enterprise belong to a family of
product, or a product line. Therefore, Probably, they have some similar and common properties.
This commonality is not usually taken into account, with and organized and structured
procedure, in industrial practices. As a result, each product configuration is created
independently from the configuration of other similar product. This procedure, as mentioned

before, makes the system so huge and difficult to manage, mostly during its modification.

So, in order to avoid this problem, a suitable solution consists of a “generic”

representation of products belonging to a product line, which factorizes the common

68

information of them, and create one “generic” product configuration, instead of creating

separately a “specific” configuration for each product (Mannisto et al. 2001).

In industry, there are several business viewpoints, like design, manufacturing, supply
chain, etc, and each of them represents a product structure and configuration via its
requirements. Besides, the “specific” product configuration is created based on two more
common viewpoints, design or fabrication(Jiao & Tseng 1999). Therefore, at least two types of
configuration may be managed in PLM systems, “as-designed” and “as-built”. These two types of
“specific” configuration can correspond to two types of “generic” configuration. The “generic”
configuration “as-designed” is more known because the “generic” configuration usually created

by designers and used for design purposes.

With the help of “generic” configuration, the amount of information to be stocked and
treated in the system decreases since all common knowledge are transferred to the “generic”
level and saved only one time. Moreover the evolution of this system is much easier, because a
modification in the “generic” product configuration will be automatically propagated in its entire

specialized “specific” product configuration.

1.2. Levels of product configuration

To effectively manage the information about the product, the product configuration can

be managed at three levels of abstraction(L. Gzara 2000):

- Exemplary Level: it is the most concrete level of the configuration, which is the
decomposition of a given physical product, manufactured and presented to a client. The

evolution of this configuration is used to manage the different phases of product lifecycle "as-

nn non

designed," "as-built", "as-maintained".

- Specific level: it is a more abstract level than the previous level, which represents the
decomposition of a set of products of the same type called "virtual product”, describing the

structure common to all copies made by the same model (same configuration)

- Generic level: the most abstract level that represents the decomposition of an entire

line or range of “specific” products, including options and alternatives.

In each of this level, the evolution of product model signifies a different concept and

requires different procedures. This is shown in figure 5.1.

69

1.3.

Méthodes d’évolution de modele produit dans les systémes du type PLM

Generic Specific

Exemplary
Configuration Configuration Product
Product offer Product Maintenance
Evolution Versioning of fabricated

product

Figure 5-1, Evolution and different levels of abstraction

Properties of “generic” modeling frameworks

Generic configuration has been proposed with the aim to regroup and factorize all of

common properties of the products belonging to product line. So it contains all options and

variants of these products(Gzara et al. 2003). Here some important particularities of “generic”

configuration are presented:

Abstraction:

All the objects (document, components, etc.) in the “generic” product configuration
are abstracted. It means that they can’t be represented physically with real objects.
It's a model for a set of real products or components. The “generic” configuration
should cover all the variants of a product family. So it should have several
parameters without values. Going from “generic” configuration to “specific” one is
done by allocating values to these parameters.

Genericity:

Generic configuration is a representation of a set of products (a range of products). It
means that it contains several parts or components with possible variants (i.e. color)
and optional items (GPS on bicycle). The attributes attached to those parts will be
valued during the transition to “specific” or exemplary configuration. As stated
previously, the genericity of this configuration is intended to factor out the common
information between the various components of exemplary products. This
factorization differentiates data structure from a simple configuration management
product. It should be noted that this concept that should be kept in product model is

often ignored during design and implementation of product model.

Heritage:

70

Within the product configuration, the specialized objects (variant objects that are
assigned to a “generic” object) inherit the properties of their “generic” object. It
means that if a decomposition schema is defined for a “generic” composed object, all
of the objects, which are the specialization of this “generic” object, obey this
decomposition schema. This is a benefit of using object-oriented theory’s concepts in
the product configuration context. The heritage link stands between “generic” entity
and its specialized objects. In a product configuration, both of the specialization and
composition are represented in a hierarchical tree. The composition embodies the
relationship between a composed part and its components. In this hierarchy, a
composite can be derived from its components (there is no circular structure).
Specialization highlights the relationship between an item and its variants. Each
variant inherits not only the properties and attributes of the “generic” part, but also
all relationships of the “generic” part with other entities (including therefore its
composition).

This is illustrated in figure 5.2.

Specialization

Composed A

- Variant A1l

Component 1
Composition e s Variant A2

T Component 2

Component 3

Figure 5-2, Specialization and composition in product configuration

For example, all the “specific” motors, which are related to the “generic” model of a
type of rotary motor, must have all of its attributes, components and structure. If this
“generic” motor has some specifications, all of its related “specific” motors possess
these specifications. And if a property of “generic” rotary model changed, this
property may be modified automatically in all of its “specific” motors. It means that
the “specific” entities are not separated from their “generic” entity after their
creation. In other words, the “specific’ models are always dependent on their
“generic” representation. However, in some cases heritage is applied only in the
beginning of “specific” configuration structuring, which means the saved “specific”
configuration is not more dependent on the “generic” product configuration. These

practices don’t profit from the entire advantages of heritage in “generic” modelling.
Component types:

The “generic” configuration may contain three types of components. A component
may be obligatory, which means that this component exists in all derived “specific”

products. In the other hand, a component can be optional; it belongs to a “specific” or

71

Méthodes d’évolution de modele produit dans les systémes du type PLM

exemplary product depending the customer's choice. It can also be variant or
constant. Variant components proposed a variety of several values for their
properties and during the specialisation, one value should be taken, in contrary with

constant components that don’t propose this choice.

It is also possible to describe levels of compatibility between options and variants of
components. They are defined as the constraints of specialization and explain which

variant or option may be chosen for a product.

2. A New Approach to Built Generic Product Model

As discussed in previous section, a “generic” modelling framework is an appropriate
solution for an enterprise to manage its product configuration. It may be more important for
enterprises that fabricate high-variety products. In this case, a “generic” product may factorize a
huge amount of knowledge in information system. In this section, we demonstrate an
appropriate solution for migration form a specific-based PLM to a “generic” based one,

according to the methodology described in previous chapter.

In our viewpoint, models are constructed from meta-models. The relationship between
“generic” and “specific” models and meta-models are illustrated in figure 5.3. A “generic” model
conforms to a “generic” meta-model. It can then convert to one or more “specific” models by
specialisation. These “specific” models conform to a “specific’ meta-model. Specific model may
have different layers of specialisation, regarding to number of allocating variants or options. An
exemplary object, which is the instance of models, can be created from all of these models. These

instances are independent from each other.

M2 (Meta-Model Meta-Model of Meta-Model of
(Meta-Model) Gerenc Specific
_,[\ = w,
V4 . .
(Conformation C(mform;m(m/,v Confor {ndtmn
; - 3o o+ — e L\k_-
l ‘/ N
Model of ﬁ;_)cciali'l.ﬂ)gn) Model of Specialization Model of Specific
M1 (Models) Generic . Specific > (More Specific)
o -
" — ™ . Instantiation ~
" InStantiatfon ™ TR T e ol T -
- - > " Instantiation
MO (Instances) T ——a
Exemplary
Object

Figure 5-3, levels of abstraction via MDE

2.1. Industrial context and problematic

Our industrial example is about a company with information system that handles only

exemplary and “specific” levels of product configuration. According to the advantages of

72

genericity management, During PLM system implementation, the company’s administration
decided to set up a “generic” configuration framework in order to reduce the cost of data
insertion to system as well as increase the design and manufacturing processes by having a
“generic” view of product. Therefore the problematic consists of two parts, 1) needs to have a
mechanism for building the “generic” models and 2) but which procedure, the new modelling

system should be set up.

The current situation of the enterprise, and its expected future system is summarized in
Table 5.1. In the current system, there is a central database, which contains only the codification
of all parts and products of enterprise, without any information about the structure of products
or the configuration. The configuration management is done by several excel files. In each file,
the components of several products are listed. Therefore, after some years, the number of these
files increases hugely. In the other hand, the communication between enterprise and its partners
become difficult, because these files are not so easy to read or use. The enterprise has developed
a system for communication between its internal sections. But the product structure is not
diffused via this system. Therefore the enterprise has decided to replace its own-made semi-

PLM and set up a commercial PLM.

In its new system, which can communicate easily with the information system of their
partners, the enterprise would like to create the “generic” configuration of its products. Besides
it prefers to migrate its existing products configuration to the new system and reorganise and

stock them with the new structure conforming to “generic” configuration.

73

Méthodes d’évolution de modele produit dans les systémes du type PLM

Existing system used in the enterprise Target system that is aimed to be installed
General state of the current information system General state of the future information system
* Centralized system of codification for all components and * A commercial PLM system, which permits to
products fabricated in the enterprise (CACAOQ) o Manage the knowledge related to products
* Asimple separated information system for o Facilitate the communication
communication o Collaborate with enterprise’s worldwide partners
* Excel files, which contain all of the technical description of o Make the relationship between different products and
products including the configuration of all products. components
Current product configuration system: Future product configuration system:
* A huge number of “specific” product configurations within * Generic product configurations which contain the genericity of
lots of Excel files. several products
* Each product configuration defines a few number of * Possibility to follow the state of evolution of each component
products fabricated within the enterprise. within different products.
0@ G S e @ =41l S pommmasmate. [l :3.,,..., Ot ot AR

v Mmmmmm(m
@) 2201234567001 PF PO 20 Garnd Chet Al Sowden
@ 220123454501-6F PO 22 Garnd Chet A Sowden
@ 220189456711 -PF PO 24 Gamd Chet Ak Sowden
- 2201230267101-PF CAS 14 Pett Chet Alu Sowden

E » Affected tems
+) . 000642-PF Brut PO 22 Grand Chef Al

8) 01y DorumentsiProje - SEBICAL

Google |G+ viGoug B € bookm

it Eveque|Gener stewr 1apport

+ . 000646-PF Brut CAS 16 Pett Chet Alu

O ¥ # @ 000644-PF Brut PO 26 Grand Chef Al
& PrOduCt Rep()l t # @ 000B45.PF Brut CAS 14 Petit Chet Al - mmm‘gmmﬂmm
St Qatharin ¥ mect + @ 0006847-PF Brut CAS 18 Petit Chet Al - W 2.08_000022001-Note Creation CACAQ (view)
+ @ 000641-PF Brut PO 20 Grand Chet Al - mmmwaswmcmmm
Problem tems & @
Reference ftems = @ WWWFW&WWWW

Product Name [pevision CR - Change Request

P5- POIGNEE SOUD.FTA3986-80M1 [
s5ai rappe

4 & Fiche Prodult

Solution ftems

+ ﬂ 2100045680-Outl Bas Emboutissage CR No:
4 2100046209-Outil Bas Frappe

+ @ 2031177420-Embase

+ @ 2019364000-Disque brut 330°2310

+ @ 2018224100-Equipement Elegance Tetal

Requestor:

: AFTANM POLLET Danie | Modiicaton e |

T o SAIN | cromviomo NTLCO + :{ 2019348000-Disque brut 240°2410 Dept Eng ¥
U PRISE AIR FTA28TM POLLET Danir + “¢1 2100023045-Outil Haut Emboutissage
S/E_TUYAU PRISE AIR FTA281) 0 GENERAL DATA @ 2015224200-Equipement Elegsnce Tefal CRType: |Corrective Actic
— C S o Dalaia ey + ¢ 2100043479-Outil Bas Embottissage R Priorlty: [2 = Normal (V4
U t:Bevetlah # 9 2100022505-Outil Haut Frappe
ey . Kot + @ 2019370000-Disque bt 270°2410 Fast Track: No (v
(s Rusaia #] 2100023018-Outil Haut Emboutissage
)) # Tasks to Perform

J Evments changed o # Tasks to Track

rlmplemememon Tirning

Tableau 2, Current and future systems

74

2.2. The Solution

Our solution is based on the MDE principals and the evolution procedure described in
previous chapter. With MDE viewpoint, this industrial problematic may be reformulated to a
process of migration of PLM system with a meta-model, which supports only the “specific”
products to a PLM system with a meta-model that can handle genericity. In other words, in the
initial system only “specific” models conform to product meta-model but our objective is to have

a system in which, associated “generic” models may conform to product meta-model.

This industrial case study corresponds to the second scenario of evolution (cf. chapter 4).
The target meta-model is not identified previously, so our proposition includes an approach for
identification and formulation of the key concepts of “generic” product meta-model. Similar to
problematic, it contains two parts. The first part is to construct the target meta-model, and the
second part is to execute the transformation. In order to construct and feed the “generic”

product meta-model, we used the data that exists in current "specific” system.

To present every step of the proposed approach, we rely on this industrial example on
structuring the “generic” configuration of cookware. According to our overall procedure
described in previous chapter, we have translated the industrial problematic to an informatics
equivalent that is based on MDE principals and concepts. So, the first phase is completed. We
have determined that our problematic corresponds to which scenario, the second. Figure 5.4

illustrates the rest of the procedure, which is customised for this special part of problematic.

There are four types of cookware that is fabricated in this company: frying pan,
saucepan, wok and stockpot. Each type has different models and categories. The information
system of the company manages separately each “specific’ model and the objective of this
procedure is to construct a system, which manages them in a “generic” way. In the following

sections, the different steps of figure 5.4 will be discussed and explained.

The objective of different steps belonging to the second phase is to construct the meta-
model of “generic” configuration. The proposed method to construct this meta-model is based
on the enterprises requirements and expectations for the future system. After several meetings
with the experts of enterprise, the concepts that they need to be present in the future system are
identified. Then these concepts are used to construct the first draft of meta-model. In this step,
entities of the meta-model are not completely defined. This draft should be completed during
the different following steps, via a recursive process. This succession will be demonstrated by a

concrete example.

75

Méthodes d’évolution de modele produit dans les systémes du type PLM

Phase two: Scenarios et Meta-modeling
Similarity Framework:
L , Meta-model Comparison
P] Target Meta-model And
Second scenario identification Similarity established
1% step
Identify all of 4" step

the product Comparison of
Components meta-models
and finding the

3 step ™ A similarities correspondents in

Construct the = S source meta-model
_ target Meta-model / —] l—

and .
204 step ‘the business objects [-1./ / \\5
Identify all of (meta-model —

of generic product)

All the “generic” concepts.
doesn't have

the properties of ' Similarity cases treating
these components A
variability Points ! 7% step
;} Structuring the
4 product model
A | 4™ step \ L s iaa g
A 'Reconstructionof | . =) R
) ‘ ‘target meta-model | ("'“/“\
‘ \ And B /‘- g
| \I— re-Comparison of)
| S Meta-models
PLM system insertion Transformation 6™ st
&r—- Set up the dependency
‘ matrix and then
finding the ‘
Phase four: \ / independent properties
Execution and implementation |

Phase three:
Similarity framework

Figure 5-4, Steps of our proposition

76

Third phase is based on similarity between meta-models. In this phase the
correspondents for meta-models’ entities are identified. As mentioned before, this example is
special case of second scenario. In this case, the target meta-model will be constructed, and the
user can modify its entities or its structure according to his needs and the problematic
situations. We used this particularity and modify the draft of target meta-model even during
meta-model comparison. This innovative part, which will be presented in future sections relays
on data and information from model level of “specific” configuration. In this type of meta-model
comparison and model transformation, establishing the correspondence relationship between
entities of meta-model requires the information from lower layer of modeling. This kind of

model transformation is called inter-level model transformation.

During the forth phase, the transformation and implementation is the execution and
insertion the results into the PLM system. During this research, two internships were done in
order to fulfill a feasibility study for this part of implementation and create a tool. These works

are presented in the sixth chapter.

Following this brief representation of different parts of the proposed method, our
industrial example will be treated in order to clarify these steps and illustrate their details. The
subject of our example, as it was presented before, is a cookware. In each step, an example of
cookware, a frying pane is presented and the details are explained for it. But it's evident that

these details are acknowledged for other types of cookware.

2.2.1. Phase 2:

In the second phase, the target meta-model should be found. In order to identify its

entities, following steps should be taken.

The first step starts by identifying all elements in the composition of various products in
a product line. The list of these components must cover all of “specific” products’ components.
This list defines the data of current system of enterprise. All of the cookware fabricated in the
enterprise has the parts illustrated in the figure 5.5. They are composed of a deep dish, a pin, a
basement, a handle and a screw to fix the handle to basement. These components are stocked in
the current system with different properties. The current system contains all of this data for

each “specific” component and “specific” product.

Figure 5-5, Composition of a pan

The second step is to identify all properties that are the source of the diversity of
products within a “specific” level. It leads to the preparation of a list of variability points .The

main concept of variability point comes from the fact that in a line of products, certain

77

Méthodes d’évolution de modele produit dans les systémes du type PLM

properties of configuration elements differentiate a “specific” product from the others. These
properties are the sources of diversity in a range of products(Zeng & Jin 2007). To build the
“generic” configuration for a line of products, we should identify and manage these sources of
diversity.

The properties of elements at the origin of the variety of pans are listed in the table 5.1.

Objects Properties

Frying pan (the whole product) Dimension of product
Family of product
Deep-Dish Dimension of Deep-Dish
Family of Deep-Dish
Tool of Deep-Dish Codification of Tool of Deep-Dish
Pressed Disk Dimension of Pressed Disk
Tool of Pressed Disk Codification of Tool of Pressed Disk
Equipments (handle, Pin, Basement and
Screw) Family of equipments

Parameters related to dimensions of
equipments as well as dimension of product
(especially for Basement)

lid Dimension du lid
Family of lid
Tool of lid Codification of Tool of lid

Tableau 3, Component properties

These properties distinguish a “specific” product from another. In the current system, in
which there is no trace of genericity, all of “specific” products are stocked with their “specific”
components, which possess different properties. All of these properties of “specific” components

have the value in the system.

In the third step, the nature of concepts of configuration is defined and formalized. It
means that in this step the physical items, documents, plans, etc. should be identified and
represented as a meta-model. The definition of these business objects can define the elements of
the meta-model of product model. This meta-model manage the construction process of the
product model by defining business objects and their relationships. As mentioned before,
product meta-model describes the concepts and their relationships. For our industrial example,

the meta-model of the new system is defined in Figure 5.6.

78

Composed by

Generic component
+Name

+ID Generic Document
+Version

+ID

/ ~+Position

Tool

Specific Piece

+Name
+ID

+ID
+User List

Specific Document

Figure 5-6, the draft of “generic” product meta-model

This meta-model is a draft of final meta-model. It should be modified in order to
determine its attributes and connections. A meta-model for a product describes a language for
representing the real concepts; model’ elements. Therefore the properties of meta-model
entities should have a real signification. In other words, during meta-modeling, we should
always take into account that the models, which will be constructed from this meta-model,

should contain enterprise information, i.e. not just the representations of “generic” product.

2.2.2. Phase 3:

This meta-model then should be compared to the meta-model of the initial system,
“specific” meta-model, in order to find the correspondences between their entities. The fourth
step is to compare the initial and target meta-model to identify these relationships between
concepts by taking into account the similarities between them. Then the type of similarity is
identified based on various cases of similarity, described in previous chapter. Figure 5.7

illustrates the comparison of meta-models, for our industrial example.

79

Méthodes d’évolution de modele produit dans les systémes du type PLM

Composedly

Generic component

Generic Document

+ID
= +Position

Specific Piece

+Name
+ID

Tod

™

+ID
+User List

Specific Document

\r\%(mc Part

+Name
+ID

\\

+ID
+Users List

1¢r Situation

Specific Document

Figure 5-7, Meta-model comparison

In this figure, dark links represent exact similarities between concepts, i.e. instances of

these concepts are identical in target and initial meta-models. They correspond to the first

situation of similarity described in the previous chapter.

Concepts in the squares are the concepts of the target meta-model that are not reflected

in the initial meta-model. They don’t have any correspondent concept. We can find no similar

concept for them in the initial meta-model. They have no equivalent in the current system then

they are not precise and therefore may remain empty in the new system. To avoid this, we must

invent a procedure to find the necessary knowledge from initial models or meta-model, which

helps us to identify these concepts in the target system.

The document is a “generic” concept related to the “generic” parts. Then it will be
determined after construction of the concept of “generic” part. That means that it

remains unmatched.

In the other hand, the heritage relationship between “generic” and “specific”
parts is represented by the factorization of “specific” part’s information to its
associated “generic” part. It will be done by eliminating the specific-related
information in the “specific” part and bring them to its upper level, “generic” part,

after its construction.

The following steps are proposed to identify the information on the construction
of the concept of “generic” part. This is possible based on existing information in

the initial models. To establish connections at meta-model, we use the

80

information that is present in the lower level models. This is a very special case in
model transformation.

no

To illustrate this approach, we present the approach to build the concept of "“generic”

part” from instances of “specific” parts.

The following step is devoted to define the properties of “generic” part from the
dependencies between product concepts and components’ properties. Fifth and sixth steps are
about to find these dependencies and construct the model of “generic” product, which conform
to “generic” configuration draft meta-model. Proposed procedure is to construct some new
concepts, which regroup the component of “specific” product. These new concepts have some
properties that depend on the properties of the containing components. For example, a motor,
which regroups several components have some attributes depending on these components, such
as the capacity. Capacity of a motor is a new concept for a motor that has a value depending on
its components’ or parts’ properties. Therefore “capacity” is not an independent attribute of a
motor. As well, some of the components of motor have some dependent properties on each
other. For example, the diameter of pistons depends on the size of cylinders. The objective of
these steps is to find these dependencies between properties. In order to do it, we design the
product model. This model defines the structure of the product configuration, explaining its
organization, attributes, and entities. At this step, components may regroup or new abstract
elements may be constructed. The purpose is to identify dependencies between the variability
points, which are listed at the end of the second step. To identify these dependencies, we use the
dependency matrix (Dependency Structure Matrix)(Clarkson et al. 2004)(A. A. Yassine & D.
Braha 2003). In this dependency matrix, we compare all the variability points of all components.

If the property in raw depends on the property in column, the according cell is checked.

We distinguish two types of dependence between variability points: the strong
dependency and weak dependency. The strong dependency means that if a variability point has
a fixed value, necessarily the other variability point also has a value. In case of weak dependency,
the variability point can have multiple values. So in this case there is not a match but a
restriction (HARMEL 2007).

After construction of the matrix, we must invert rows and columns to have some
independent “submatrices”. Figure 5.8 illustrates the principle of this technique. In this
hypothetical example, there are 4 properties to compare; property A depends on D and C

depends on the property B.

81

Méthodes d’évolution de modele produit dans les systémes du type PLM

Initial Matrix After Inversion

Figure 5-8, Dependency matrices

These components belong to the owners' parts of 1, 2, 3, and 4. The result of this seventh
step is to complement the work already done in the sixth step. Each independent sub matrix
reveals a possible combination of components (the components associated with the properties

included in the sub-matrix). Figure 5.9 shows this principle with two groups of components.

Product

T
Part 1 Part 2 Part 3 Part 4
A -B (] D
Product
-
A\
Element 2 Element 1
Part 1 Part 4 Part 2 Part 3

Figure 5-9, Components’ regrouping

This grouping introduces two new elements in the intermediate classification. They are
abstract because no physical component corresponds to these elements. Dependencies between
the properties may also help us to factorize properties and attributes to build these abstract
components by removing the redundant attributes of each component. This is illustrated in
Figure 5.10.

82

Product

Product ’
. ‘ \\A‘\ Element 1
- F
4\
Part 2 | Part 3
B -C
Part 2 Part 3

Figure 5-10, Factorization

In Figure 5.10, properties B and C are similar so we can remove them and bring them to
its upper abstract level, and therefore factorize them. But this is not always possible for all cases.
In some cases the new attribute in abstract level, F may be introduced and the value of B and C is

determined while the value of F is known.
At this step there are 3 possible models:

1. There is a common property (high dependency) between the components, and then
we construct the intermediate elements, as Figure 5.10. C and B are identical, or by identifying F,

both will be recognized.

2. There is no common property but it is possible to introduce a new abstract property to
the intermediate elements, which factorizes some properties of the components of the group.

Thanks to this, the number of independent properties decreases.

3. There is no possibility of eliminating the component properties in the group. In this
case, the intermediate element of this group has not attribute but at least we can group the

related components of product and offer a more logical structure.

However, with this grouping, the constraints associated with the properties of

components come together, facilitating their definition and modification.

If we add new properties, we must rebuild or reconfigure the matrix and repeat the
phase of product model construction. The result of these steps is a model structure, which
factorize through the information corresponding to component properties of the product in a

more optimal manner.

The “generic” configuration is built according to the properties that remain independent.
For each set of allowed values of these properties, there is a corresponding “generic”
configuration. Specific configuration, and therefore the exemplary configuration are constructed

by determining properties and choosing optional variants.

By applying steps 5 and 6 to our industrial case, the dependency matrix, which is shown

in figure 5.11 is obtained.

83

Méthodes d’évolution de modele produit dans les systémes du type PLM

P4 |P5|P6|P7[P8|P9|P10|P11[P12]| pi: Dimension of Product

P2: Family of Product

P3: Dimension of Deep-Dish
P4: Family of Deep-Dish

PS5: Dimension of equipments
P6: Family of equipments

P7: Dimension of Lid

P8: Family of Lid

P9: Dimension of Pressed-Disk
P10: Code of Tool of Deep-Dish
P11: Code of Tool of Lid

P12: Code of Tool of Pressed-Disk

Figure 5-11, Dependency matrix of pan

Strong dependencies between properties reduce amount of dependent attributes. These
are summarized in Table 5.3

Property A Property B
Dimension of Deep-Dish Dimension of Product
Family of Deep-Dish Family of Product
Dimension of Pressed Disk Dimension of Product

Dimension of Product (for

Prometers related to the . .
Basement, dimension of Deep-

dimension of Equipements

Dish)
Family of Equipements Family of Product
Dimension of Lid Dimension of Deep-Dish
Family of Lid Family of Product
Tool of Lid Dimension and Family of Lid
. Dimension and Family of Deep-
Tool of Deep-Dish .
Dish
Tool of Pressed Disk Dimension of Pressed Disk

Tableau 4, Dependencies for a pan

The dependency matrix indicates that the size and family of product are independent
properties of a pan, with which it is possible to distinguish the characteristics that define the
“generic” configuration. Therefore the “generic” configuration becomes a function of the family
and size of product. For example, a “generic” frying pan may be “26 cuisine” (26: dimension,
cuisine: family)

The structure of the “generic” nomenclature of this frying pan is illustrated in Figure
5.12.

84

| Frying Pan Lid e Disk L

Tools L

Basement

Pin

Handle

DeepDish —»| PressedDisk Disk DD
—»| Tools DDD

ﬁ

H
i

Tools DD

Figure 5-12, structure of product

This structure is used to describe the “generic” configuration of product. This “generic”
cookware represents the “generic” product of the enterprise, its meta-model “generic”

Then, by using this approach, we can find the information needed to construct the
“generic” concept and add instances of this concept in the associated “generic” models. This
information helps us to identify the attributes present in the “generic” parts. Therefore, our draft

meta-model will be completed by concrete definitions for different entities and concepts existing
in it.

2.2.3. Phase 4:

Model transformation is done by using the results of phase 3. In this phase, based on the
“specific” models, some “generic” models will be constructed and then the “specific” models,
which associated with them, will be reconstructed. In this reconstruction, all factorized
information will be replaced in “specific” model by the heritage concept. Then “specific” model
depends en their “generic” model during its evolution. Each evolution in “generic” model will
influence automatically on associated “specific” models.

The process of transformation and implementation is done as follow: for each source
model concept:

&5

Méthodes d’évolution de modele produit dans les systémes du type PLM

- We identify the meta-concept of initial meta-model.
- The corresponding meta-concept in target meta-model is identified.
- The target model contains the instance of this target meta-concept.

- The information may be needed in order to enrich the concepts of target models will be
added.

This process is done automatically by a tool, which may be fed by XML files. Technical
aspects of model transformation as well as implementation and communication will be

discussed in the next chapter.

3. Conclusion

Generic product configuration is a special case of product model evolution within the
enterprise information system. However, its importance and frequent usage in industry tempted
us to take it as our example of product model evolution in PLM systems. The objective of our
proposition is to manage the entire process of evolution from a “specific’-based system to a
“generic”’-based one. It consists of establishing a methodology for meta-modeling of “generic”-
based models, but we prefer to notice that if the meta-modeling is done properly, finding the
similarity will became more regular. In other words, a good constructed target meta-model leads
to help the model comparison. It means that even if the biggest part of this methodology relays
on meta-modeling, but it must never keep out of mind that model comparison was facilitated by
a good meta-modeling. This methodology is feasible and validated by the company’s experts.
According to their remarks, it can produce the new models conforming to enterprises

requirements and situation.

Until now, it doesn’t exist an organized and structured framework that contains the
criteria to evaluate meta-models and meta-modeling processes, especially for product meta-
model. Our evaluation is based on experts’ observation and validation. These experts are the
future users of system. Needs to set up a concrete and customized based framework for
evaluating product meta-models are seen. Future researches may improve and progress the

process of meta-model evaluation and validation.

Implementation of this method depends also on the commercial tool that is used in the
enterprise. Some tools propose to users an open structure to build up their own plug-ins and
execute their processes within the system, some others don’t allow this. This will be discussed in
the next chapter to show the particularities of implementation. We will talk about the process of
design and test of our tool, and the other functionalities that we would like to add to our

proposed tool.

86

Chapter 6 Tool

Chapter four was devoted to propose a methodology in order to solve the evolution
problematic of product models in PLM systems. The conceptual procedure was illustrated in
figure 4.1. It starts with problematic translation. Then according to an identified scenario, the
solution follows its path throw meta-modeling if it's necessary. Subsequently, in similarity
framework, the source and target meta-models are compared in order to establish the
correspondence relationships between their concepts.The different types of these relationships
are described in chapter four. Results of this stage is then introduced in transformation engine,
to execute the evolution and new models conforming to new meta-models, as well as new data

corresponding to new models to be generated.

Besides to the proposed methodology, we present in this chapter the informatics tool we
develop to support this methodology. The aim is to help and direct PLM users in defining their
meta-models and models, establishing the similarity relations and executing the transformation.
This tool is semi-automatic; besides an automatic part a manual part guides tool’s user toward
the phases that should be followed to accomplish product model evolution. This chapter is
devoted to describe different functionalities and particularities of proposed tool, as well as a

brief description of its design and implementation project.

Before starting this chapter, it should be noted that the user of this tool is a person who
governs the evolution of the PLM in an enterprise. He may be an integrator or a PLM

administrator of the enterprise. In this chapter, “user” refers to this person.

87

Méthodes d’évolution de modele produit dans les systémes du type PLM

1. Tool’s needed functionalities

The most important functionalities of this tool are managing similarity framework and

executing model transformation. Managing similarity framework includes the following

functionalities:

Comparing two meta-models.
Identifying possible correspondences between concepts of two meta-models.
Visualizing of the correspondence relationships.

Determining the type of similarity and proposing a possible solution in case of

abnormality.
Allowing the user to create, delete and modify this proposition.

Visualizing and validation of final proposition.

These functionalities constitute the main core of the proposed tool. In order to fulfill

these functionalities, the following parameters must be accurately identified:

List of possible concepts
Criteria of comparison
Scoring scale for each criterion

Weight for each criterion.

These parameters are issued from the DSM, which describes the concepts and their

properties, as well as their relationship. Therefore, this tool must allow declaring and updating

information related to DSM, which may be used by similarity framework in a semi-automatic

way. Therefore this tool must provide an interface for visualizing and inserting this information.

It should also be able to read input files coming from PLM system and providing output

files which are readable by the PLM system. This tool is feed with information that comes from a

PLM system. PLM systems are supposed to create XMI files, which contain their product’s data

model. Therefore these XMI files should be readable. Also meta-models should be inserted to the

tool.

A use case diagram summarizing the needed functionalities, is presented in figure 6.1:

88

Transformation

Extend

Meta-Model
Insertion

Model Insertion

Meta-Modeling

Model Comparison

Model Comparison
Validation and reafinement

Figure 6-1, Use Case Diagram of proposed tool

2. Tool’s operation

The activity diagram presented in figure 6.2 illustrates the succession of different stages

within this tool in order to ensure the functionalities described in § 1:

Target system
known?

(nsert Source Model and Meta-Model

?

Defining Target Meta Mode)

Yes

(nsen Target Meta ModeH

y

Refinement of Comparison Meta-model Comparison

Figure 6-2, Activity diagram

Transformation

Following sub-sections are detailing the various stages introduced in this diagram.

&9

Méthodes d’évolution de modele produit dans les systémes du type PLM

2.1. Firstsection, Input

Firstly, meta-model and models of initial PLM system should be inserted to the tool. It
may be done manually by uploading XMI files, or as a plug-in, this tool directly is fed by the PLM
system. This depends on the PLM systems particularities. Meta-models are not yet so organized
and structured in PLM systems. They are designed by PLM integrators but it seemed that there is
no output file, which contains them. Therefore, this schema must be designed by the user. Our

tool may provide an interface in order to construct meta-models.

Then, this tool must validate the conformity of model and meta-model. There are some
associated tools, which fulfill this task. In our chosen framwork, Eclipse, which be described
later, this task is done automatically. Subsequently, meta-model of target system should be
identified. If it's known, the modeling interface may help the developer to design its schema, and

if not, he can construct it.

2.2. Second part, DSM and Meta-model Comparison

The next stage is to insert criteria, scores and weight in order to run the model
comparison, as described in forth chapter. The tool can have some pre-inserted contexts
containing the possible concepts, which may exist on meta-models. In the case of formerly-
known modeling context for the tool, the list of possible existing concepts, which may probably
display in meta-models, are shown with their associated criteria, scores and weights. User can
modify this list. If these concepts and associated criteria is not known, he can create this list by
using information exists in meta-models. Indeed, as mentioned in chapter 4, criteria are based

on existing concepts in two meta-models.

The meta-model comparison is then processed, calculation based on the formula
presented in chapter 4 is done, and the list of possible correspondences is presented to the
developer. Next, the user found solutions for different difficult situations. As described in the
forth chapter, these difficult situations correspond to the cases where the correspondences lines
are not straightforward. The user, based on the context, must find the necessary information in
order to establish these correspondences, like the case described in fifth chapter. A graphic
interface, which illustrates the relationship between concepts of two meta-models, the

correspondence line, may help the developer to follow properly the procedure.

2.3. Third part, Transformation

Based on the correspondences, the transformation takes place. For our case, we have
chosen the “Eclipse, ATL platform” to execute this transformation. This platform is presented in

detail in the following section. ATL, proposed by INRIA (Institut National de Recherche en

90

Informatique et en Automatique) de Nantes, is an open platform, which is devoted to transform

models. Transformation process will be described in section 3.

2.4. Forth part, Inserting the data in to new system

In this phase, the new model should be inserted to the new PLM system. It depends on
the particularities of this specific PLM system. The programming language to use for inserting

data files in PLM may hugely influence on this part of tool’s activity.

This is a global overview of the proposed. Section 3 describes in detail how does it work.

3. Tool development advancement

Development of this tool was a subject of an internship within G-SCOP laboratory(C.
Duque 2010). This internship aimed to implement the transformation of product models in PLM

systems by using Eclipse platform.

The general objective is to build a software tool for model transformation, divided into
two steps. The first step is about receiving the source and target meta-models and the particular
source models, and then building the target models by using transformation process. Then the
aim of second step is to use these source and target models and by using codes of earlier
transformation, find new instances of the target models, from the source model instances.
Therefore, in first step, finding the target model is the first challenge of the tool. Figure 6.3

illustrates the first layer processing, transformation of first step.

Source meta- Target meta-

model model
Conformation I f Conformation
Source models - Target models

Figure 6-3, first layer of transformation

Then, in order to use Eclipse as platform environment, inevitably, the two sources and
target meta-models should be translated in an Eclipse appropriate language (Anon 2010). For

meta-models, Eclipse ATL accepts them in Ecore language(Garcia-Magarifio et al. 2009).

91

Méthodes d’évolution de modele produit dans les systémes du type PLM

After finding the target model, which is generated in XMI format, the second layer of
processing allows the migration of data from a PLM tool to another. This means that the
proposed tool have to retrieve instances of the source model (data) and then to build a new ATL
transformation(Frédéric Jouault et al. 2008), which, after execution, will generate a set of
instances conform to the target model (conform: fitting to the target model format) that can then

be inserted in the new PLM system. Figure 6.4 describes this second layer of transformation.

Source models Target models
< »
Instantiation I r \ Ilnstantiation
D i W
Source Instances Target Instances

. (technical data) : (technical data)

Figure 6-4, Second layer of transformation

In order to implement this tool, the first step was to choose the technical environment to

use. For model transformation, there are several possible tools; XSLT, KMTL and ATL.

After some meetings with MDE experts and taking into account the visibility and
selecting Eclipse as our implementation framework, we have chosen Eclipse especially that the

EMF Framework was quite sufficient to meet the required conditions.

Eclipse is an open source community that amid to construct a development platform for
free. The performance of this software can be increased because of the different frameworks,
tools and execution platforms. The EMF (Eclipse Modeling Framework)(Garcia-Magarifio et al.
2009) project is a framework for code generation in order to facilitate the construction of
applications based on the model structure. From a model defined in XMI (XML Metadata
Interchange), EMF provides tools and execution engine to produce a set of Java classes for the
model, all accompanied by a set of other classes which facilitates the process of viewing and
commanding to construct and edit the model as well as a basic editors. Within this framework,
ATL(Atlas Transformation Language)(Anon 2005) is a language for transforming models,
designed by the research group ATLAS at INRIA, as part of the IDM approach. ATL provides
developers with an automated procedure in order to find the target models from a set of source

models.

92

The ATL language is a hybrid of declarative and imperative programming. However the
preferred style is declarative because it easily structures the process of set up correspondences
between source and target meta-models. In the same way, ATL provides imperative instructions

to structure the correspondences that are not easily produced by declarative way.

An ATL transformation program establishes a set of rules which, in one hand, define the
correspondence between the source meta-model and target meta-model, and in the other hand,

determine the path from source model’s elements to create target model’s elements.

The ATL language, developed as a component of Eclipse framework, provides a set of
standard tools, which make it easier to write the transformation. Besides, ATL-Eclipse offers
several additional functions for manipulating models and meta-models. These functions or
features include a textual notation for simple specification of models, such as standard tools that
make a communication bridge between the general language of modeling and representation

language of models in Eclipse.

These functionalities offered by ATL-Eclipse, confirm our choice to implement this
project within Eclipse, since the user doesn’t need to write the Java codes. It is sufficient for him
to enter the UML diagram and then Eclipse is responsible of generating the Java code that exists
behind. These facilities, which are associated with working environment, ATL-Eclipse, make it

easier the process of reading and visualizing projects.

4. Experimentation scenario
In the considered scenario to experiment the proposed tool concerns a bicycle
manufacturer. The initial PLM system used by the manufacturer to manage bicycles data is

based on the following meta-model:

93

Méthodes d’évolution de modele produit dans les systémes du type PLM

1

Composed

+IsFixe
+Name
+ID

1.

Component

+IsFixe
+Name
+ID

Figure 6-5, Source meta-model

Then, due to market changes, the manufacturer feels the need to transform its PLM tool
so to be able to take into account its new production strategy. Therefore, it must change the
meta-model of its PLM to another one in which its product (bicycle) divided into a fixed

structure and a mobile structure. This meta-model is illustrated in figure 6.6.

Product

+ID
+Name

1

N A

Structure Fixe Structure Mobile

0.1 0.1
1.% 1.¥

Part Fixe Part Mobile
+ID +ID
+Name +Name

Figure 6-6, Target meta-model.

To use the new structure, the manufacturer must transform its current product models
(source models), which are currently conform to source meta-model defined in Figure 6.5, into

models which are conform to the target meta-model given in Figure 6.6. In eclipse environment,

94

input models (here source model) are written in XMI formats. The source model, which is

inserted to transformator, is illustrated in figure 6.7.

Bicycle
0.1 |[+mD 0.1
+Name
1 N
Saddle 1 S
TName +Name
+ID
+ID 1
Frame Wheel Pedal
+Name +Name +Name
+ID +ID +ID
+Mode! +Diameter
0.1
0.1 0.1
1 1 1
Brake Tire Rim
+Name +Name +Name
+ID +ID +ID

Figure 6-7, Source Model.

The code transformation script should be able to make the correspondence between the
concepts of source and target meta-models. Then, as mentioned before, a detailed comparison
between these two meta-models must be made. According to this comparison, and based on the
methods proposed in chapter 4, some rules which guarantee the accuracy and correctness of
correspondences are identified and implemented in ATL code of transformation. Without
entering to detail, as an example, some of these rules are: 1) product is always a root component;
2) The mobile structure includes all components that are mobiles. These rules are rewritten in
the form of transformation rules: 1) a composed part becomes the product if and only if it is a

root component; 2) a component is a fixed part, if its attribute “Is Fixe” is true.

As described before, second layer of transformation is about data (model instances). At
this stage of experimentation, the tool has constructed the new model to be inserted into the
target PLM system, but data stored in initial PLM system is not yet compatible with the models

in the new system.

Returning to the example, the bicycle manufacturer company follows a model of a
bicycle, which is made of composed parts and components. It means that all data related to
bicycles fabricated in this company are stored in PLM in the format of the source model. These

bicycles are all of the instances to give as input to the second layer of transformation.

95

Méthodes d’évolution de modele produit dans les systémes du type PLM

Second layer transformation objective is the transformation of data for each bicycle,
which are conform to the model of bicycle, obtained at the first layer of processing (target
model). Therefore in this layer of transformation the superior level is models and the inferior
level contains data. The result of transformation consists of all technical data stored in initial
PLM system, but with the new format, which conforms to new PLM system’s meta-model and

models.

This transformation must be able to define the correspondence between “bicycle
component/composed part system” and “bicycle structure fixed/mobile system”. In the same
way as in the first layer, it begins with model comparison. The principles of this comparison are
same as the precedent. By execution of the two layers of transformation, this tool provides, as a
result, the target model and the new instances. Then, the enterprise is ready to use its new PLM

system, which contains the new meta-model, new models as well as associated data.

As mentioned in forth chapter, loss of information during model transformation depends
on the meta-models’ correspondence. Therefore, in some cases the loss of information is
inevitable. But, one of important advantages of using this process of data transformation is to
ensure that there is no loss of information or data compatibility problems, if the correspondents
are found during meta-model comparison. In addition, new data conforms to new model and, if it

will be necessary, the probable future transformation may be feasible.

.An important problem encountered during this practice is the format of output and
input files in ATL Eclipse platform. The superior level is in Ecore format, but inferior level’s
format is an XMI. The output of first transformation is a XMI file that represents target model,
which is the input of second transformation as the superior level. Therefore, inevitably, XMI files
coming out from first transformation should be “transformed” to Ecore files in order to enter to
second transformation. Without entering to technical details of solution, it should be noted that
this type of translation should be done by another transformation, prepared and implemented
during tool development. Its objective is to translate the XMI files to Ecore files. This is shown in

figure 6.8.

96

Format of

Models
Source meta- Target meta-
model m model]

ECORE
Conformation XMl
Target models
Another
Transformation

Source models m Target models

Instantiation f \

Target Instances
(technical data)

Instantiation

Source Instances
. (technical data)

Figure 6-8, The transformation between formats (translation)

5. Tools Demonstration

As discussed earlier, tool development was designed and implemented in the eclipse ATL
framework. In this platform, the meta-models are inserted in Ecore language, which are shown

in figures 6.9 and 6.10:

97

Méthodes d’évolution de modele produit dans les systémes du type PLM

[ra-

G300 Q- B A1

ATL & Java

5. Navigator 22

-

3% Outline 83

#] Compose.ecore #] Produitecore 52 T Produit.ecorediag 1 4 veloCompose.xmi 1 4 veloProduit.xmi)”3 =

hamedrezaizadpanah/Desktop/Compose2ProduitV2/Produit.ecore

v B

v # produit

=

-

v [StructureFixe
> §3% compose : Article
v B Produit
» 5 name: EString
» 5 ID:EBiginteger
¥ §32 Structure : StructureFixe
» &3 Articule : StructureMobile
v [StructureMobile
» 532 fait: Articuleur
v [Article
» 5 ID:EBiginteger
» F name : EString
v [Articuleur
» 5 name : EString
» § ID:EBiginteger

An outline is not available.

L proviems (O i

'] Error Log] =2 Cunsole]]

Property Value

Trew
u

Figure 6-9, Initial meta-model insertion

[sadERENE S 20 B3 =10 20 FERR AR SR i 5 @ATL &l
5. Navigator 83 == . &) Produit.ecore] Produit.ecorediag] 4 veloCompose.xmi] 4 veloProduit:xmi]”3 = O[5z outline %2 =0
A=A | R Users/hamedrezaizadpanah/Desktop/Compose2ProduitV2/Compose.ecore i

compose

An outline is not available.
v E compose

F 1D : EBiginteger
T name : EString

&2 include : Composant
= Fixe : EBoolean
v [composant
» 5 ID:EBiginteger
» T name : EString
» = Fixe : EBoolean

>
>
¥ &2 Constructedby : Compose
>
>

2 Problems | = Properties 52 @ Error Log} =] Console]

Property Value

u Selected Object: file:/Users fhamedr

/Desktop/C /Compose.ecore J

Figure 6-10, Target meta-model insertion

98

The comparison is done in an ATL environment by connecting the correspondent

concepts, as shown in figure 6.11:

fNNO ATL - Produit2Ecore /Produit2Ec

atl - Eclipse Platform - /Users/hamedrezaizadpanah/Documents/These/These-Scientifique/Eclipse /Wo

3 H @)% 0- Q- |6 - |- §i- 5 o €am oa
5. Navigator 53 = 0O|[[.project (ﬂ;l Produit.ecore li] Produit.ecore]O_J veloProduit.ecore 5% Outline 52 =40
IE% e = |- @path Ecore~/Produit2Ecore/Ecore.ecore oNRET
o == -- @path Produit=/Produit2Ecore/Produit.ecore —_— T
» = fdfd ¥ loel Produit2Ecore : Module
v & Produit2Ecore module Produit2Ecore; @) ouT : OciModel
» (= settings create OUT : Ecore from IN : Produit; @) IN : OcIModel
L_[.project 5 3 5 = = R > ﬁgemllAuicles,Help
= helper context Produit!Produit def : getAllArticles() : Sequence(Produit!Article) =
#] Ecore.ecore

#] Produit.ecore

E_J Produit.ecorediag strf.compose->asSequence()

if not self.Structure.ocllsUndefined() then
let strF : Produit!StructureFixe = self.Structure->first() in

» (F getAllArticulateurs
> Q§ getMyClass : Helper,

» &R produit2Package : M
Produit2Ecore.asm else » € Article2EClass : Laz
@€ Produit2Ecoreatl _Sequence{} » *% Articulateur2€Class
veloProduit.ecore G auLr > “";_ StructureFixe2EClas
% veloProduit.ecorediag 2 » € StructureMobile2EC
4 veloProduit.xmi helper context Produit!Produit def : getAllArticulateurs() : Sequence(Produit!Articuleur) = > “Q{_ArticuleZEReferenct
if not self.Articule.oclIsUndefined() then » % Structure2EReferen
let strM : Produit!StructureMobile - self.Articule->first() in » € compose2EReferent
- strM. fait->asSequence() > ‘EI’_ fait2EReference : La.
Sequence{}
endif

helper def : getMyClass(s : String) : Ecore!EClass =
let allClass : Sequence(Ecore!EClass)=
Ecore!EClass.alllnstances()->asSequence() in
allClass.debug('class')->iterate(c ; res : Ecore!EClass = allClass->first() |
if c.name = s then

c 4
else v
] s
[2. Problems (= Properties 83 9] Error Log] =] Cnnsole} B 3 S]
Property Value
lo* ‘ Writable [Insert ‘ 1 |

Figure 6-11, ATL comparison framework

The initial model should be fed to system in XMI format, and then the result, target

model, is constructed by ATL framework with this format.

99

Méthodes d’évolution de modele produit dans les systémes

du type PLM

aNe ATL - Compose2produit/Compose2ProduitV2.asm - Eclipse Platform - /Users/h di izad| h /Doc /These/These-Scientifique/Eclipse /Workplace
- Eels0-ale o 1k 3= B €A &l
(%= Navigator 53 " = B/([3 produitzEcore.asm [4 veloCompose.xmi [I xmi B itv2.as 530\ 7 = B)(2z outline 3\ - =0
‘ = e <constant value-"self"/> -
<constant value="__resolve__"/> Dl
" An outline is not available.

£ Compose2produit
= settings
[5 .project
#| Compose.ecore
%] Compose.ecorediag
_ Compose2ProduitV2.asm
€ Compose2produitv2.atl
#) Produit.ecore
% Produit.ecorediag
& veloCompose.xmi
4 veloProduit.xmi
& ffd
é Produit2Ecore
(= settings
[.project
&) Ecore.ecore
#] Produit.ecore
%] Produit.ecorediag
Produit2Ecore.asm
@€ Produit2ecore.atl
#] veloProduit.ecore
%) veloProduit.ecorediag
4 veloProduit.xmi

<constant value
<constant value-
<constant value-"18"/>

<constant value-"NTransientLinkSet;.getLinkBySourceElement(S):QNTransientLink;"/>
<constant value-"J.oclIsUndefined():B"/>

<constant value-"15"/>

<constant value-"NTransientLink;.getTargetFromSource(1):1"/>

<constant value
<constant value-"Sequence"/>
<constant value="2"/
<constant value-"A.__resolve__(J):]"/>

<constant value-"QJ.including(J):Q)"/>

<constant value-"QJ.flatten():Q)"/>

<constant value-"e"/>

<constant value-"value"/>

<constant value-"resolveTemp"/>

<constant value-"S"/>

<constant value-"NTransientLink;.getNamedTargetFromSource(JS):1"/>

<constant value-"name"/>

<constant value="__matcher__"/>

<constant value-"A.__matchCompose2produit():V"/>

<constant value-"A.__matchComposant2Produit():V"/>

<constant value-"__exec__"/>

<constant value-"ComposeZproduit"/>

<constant value-"NTransientLinkSet;.getLinksByRule(S):QNTransientLink;"/>

<constant value-"A.__applyCompose2produit(NTransientLink;):V"/>

<constant value-"Composant2Produit"/> s
<constant value-"A.__applyComposant2Produit(NTransientLink;):V"/> 3

(2. problems [=1 Properties 53 "\ @] Error Log| & Console|

Property Value
Info
derived false
editable true
last modified 23200t 2010 11:26:00
linked false
location /Users/hamedrezai /Desktop/C; 2Pr

FammncadDead N A

6. Conclusion

Writable Insert 33:30

Figure 6-12, XMI format of model level

This prototype is a part of the whole project of tool development, which is envisaged and

initiated for this research. The complete tool should be capable of communicating with PLM

systems in order to take into account and give back the information. Besides, it can help users

during the similarity analysis and establishing correspondence relationship between meta-

models’ concepts. Another desired functionality of this tool is to describe possible terminology

of a specific domain and represent the terminology of the PLM system within an enterprise. The

user can modify and update its ontology by an appropriate interface, which guides him through

different levels.

Moreover, during internship of Carolina Duque (C. Duque 2010), an interactive user

guide has been proposed in order to understand and facilitate probable future modification of

prototype codes and procedures.

100

General Conclusion and perspectives

New advancements in information technologies provide a variety of facilities for
enterprises to implement and deploy new information systems. These new innovations of
information technology persuade the enterprises to profit from new abilities of these services
and set up a more reliable and general covering information systems, which manage their
functionalities, facilitate their communications, and treat their data. Product lifecycle
management systems have an important role in this context and prepare a worldwide
collaborative framework in order to organize and manage product-related technical data and
information within the industry and treat workflows and processes related to it. In other words,
theses systems aid the enterprises to stock, organize and share data between their partners and
collaborators. As a result, nowadays, PLM systems have a crucial role between other information
systems in enterprises. They propose a reliable communication between different systems and
follow any changes not only in product structure but also in enterprise’s organization. PLM
systems aren’t restricted to only the used informatics application but also cover all of

information management strategies in enterprise.

Evidently they may be influenced by several probable evolutions that take place within
enterprise. Nowadays, industry faces lots of challenges, which make modification, change and
evolution as ineluctable strategy, aiming to better adapt to its environments or proper respond
to its clients. This wave of change may also touch its information system, which manage and flow
its information and shape its organization. One of these affected systems is PLM. Many industrial
problematic can cause the evolution in PLM systems. Second chapter of this dissertation has
counted several possible sources of PLM evolution. Any change in product, informatics
application or even business processes of enterprise may entail a PLM evolution problematic. As
a summary, it should be noted that one of the most important parts of proposed solution is

finding which part of a PLM system may be affected during the execution of this evolution. In

101

Méthodes d’évolution de modele produit dans les systémes du type PLM

other words, the solution depends totally on the influenced part of PLM architecture. As a
scientific literature conclusion, we would like to point out that the general discussion of PLM
evolution is a vast subject, which has not been yet explored regarding to industrial events and

requirements, despite of huge needs.

Moreover, product model is a central structure in PLM systems. It defines with which
organization the information should be stocked and managed. This makes the product model
more sensitive to any changes of enterprise. Many causes of PLM evolution cause product model
evolution. In the other hand, changes of product model may cause some probable modification in
structure of PLM systems. Therefore there is reciprocal relationship between PLM and product
configuration in the question of evolution. Product model evolution is an old problematic in
industrial information system management. Product is one of the most evolutive object in
enterprise and therefore its model in information system may undergoes lots of modifications.
We have studied the different types of product model evolution and the corresponding effects
and the various related industrial problems. Modifications on product model have different
effects depending on the nature and reason of change. Some demand of modification can be only
treated by simple changes on model itself, but in some others, the higher level of treatment may
be needed to solve the modification problematic. In other words, modeling concepts or elements
should be redefined or added, which even changes the modeling framework. So, the problematic

can change the strategy of product model evolution.

Model Driven Engineering (MDE) has been chosen as our approach to treat the product
model evolution and propose a method to handle and solve the problematic. MDE is a new
paradigm for model management in informatics community, which shows a good performance
in other areas, such as industrial model management. Then, our analyze and proposition are
under the norms and concepts of MDE. MDE separate a modeling framework on several levels. In
each level, the necessary concepts for constructing the lower level concepts are defined. In third
chapter the principles of MDE and their implication in PLM modeling have been presented and
discussed. Model transformation is a core process of MDE. Several methods and tools are
developed to execute model transformation. Our proposed method uses its concept to perform

product model evolution.

We have presented and described the detail of our proposition in forth chapter. In this
method, we have tried to classify the problematic in four different scenarios and then propose a
roadmap for each of them. As discussed in forth chapter, except first scenario, the others arrive
to a similar transformation problematic. But, in second scenario, when design of the new system
will be just considered as a phase of evolution, the process of transformation becomes more
structured with less complication. In other words, a good meta-modeling is considered as a
central part of model transformation. It may be one of the particularities of using MDE-related
methods for industrial problematic. DSML was presented in the forth chapter as a standard
method of meta-modeling; which is used in several business and industrial cases. The overall
proposition for solving product model evolution needs to be more customized for each specific

problematic in order to adapt to its situations and requirements.

For a special case, this proposition was customized and then tested. This case, which was

studied during this research, is a real problematic of transformation from a system that manages

102

the “specific” product configuration to a system, which is capable to handle the genericity of
product. Related concepts in “generic” product models are discussed in fifth chapter, which was
continued to the adaption of overall proposition to this case and finished with explanation of

each step’s details.

To conclude, we prefer to justify our interest to study product model evolution,

implication of MDE and the validity of the proposition.

1. Perspectives

1.1. DSML

Domain of PLM studies needs a very structured and comprehensive modeling language,
which covers the principle concepts of different parts of this type of information system. This
DSML may be also the synergy of concepts that exist in several parts of PLM architecture. Some
efforts have been done to construct an appropriate ontology for PLM and its associated product
model, but it’s not really sufficient. A good DSML may facilitate all process of implementation

and evolution of PLM systems.

1.2. MDE

MDE is a powerful method in model evolution. It has some standards and related tools.
But in industrial cases, especially in information systems, it’s not already used effectively. Some
academic researches have been started, which show its usability and performance in solving
information system problematic. On the other hand, MDE has been presented in order to
simplify complicated modeling framework (by separating model and meta-model) and facilitate
the conception and management of models and make the modification more fast and reliable. In
PLM systems management is not already used as well. Some researches are seemed to be needed

in order to adapt MDE methods to the domain of PLM design and maintenance.

1.3. Comparison methods

MDE model transformation relays hugely on comparison of meta-model. Therefore
several researches are devoted to develop different methods and approaches to model
comparison. These vary from simple text comparison to some more complicated model
differentiation and graph comparison. More adapted to software engineering models, they
should be adapted to information system models in order to fulfill particularities of this domain.
[t should be noted that the DSML and model comparison might be dependent. The concepts that
are defined in DMSL should be compared in model comparison. Therefore these activities are

more interrelated.

1.3.1. Other parts’ evolution in PLM systems

This research was dedicated only to the important problem of product model evolution,

but other parts of PLM architecture may be affected during evolution. For example, workflows,

103

Méthodes d’évolution de modele produit dans les systémes du type PLM

which define the processes to be followed in the enterprise, are sensitive to evolution and
particularly product model evolution. Developing a framework to handle and execute theses

parts’ evolution should be studied in future researches.

104

References

A. A. Yassine & D. Braha, 2003. Complex Concurrent Engineering and the Design Structure
Matrix Method. Concurrent Engineering, 11(3), p.165-176.

A. A. Yassine et al., 2004. Investigating the role of IT - in customized product design.
Production Planning & Control: The Management of Operations, 15(4), p.422.

A. Cicchetti, 2008. Difference Representation and Conflict Management in Model-Driven
Engineering. Universita di L’ Aquila.

A. Cicchetti, D. Di Ruscio & A. Pierantonio, 2007. A Metamodel Independent Approach to
Difference Representation. Journal of Object Technology, 6(9), p.165-185.

A. Cicchetti et al., 2008. Meta-model Differences for Supporting Model Co-evolution. 2nd
Int. Workshop on Model- Driven Software Evolution (MoDSE 2008).

Anon, 2005. ATL User Tutorial.
Anon, 2010. Eclipse Hero User Guide.

B. Amar et al., 2008. Un Framework de tragabilité pour des transformations a caractére
impératif. Dans Langage Mod¢les et Objets LMO’08. Montreal, Canada.

Brambilla, M., Fraternali, P. & Tisi, M., 2009. A Transformation Framework to Bridge
Domain Specific Languages to MDA. Dans Models in Software Engineering. p. 167-
180.

Briére-Coté, A., Rivest, L. & Desrochers, A., 2010. Adaptive generic product structure

modelling for design reuse in engineer-to-order products. Computers in Industry,
61(1), p.53-65.

105

Méthodes d’évolution de modele produit dans les systémes du type PLM

Bézivin, J., 2005. On the Unification Power of Models. Software and System Modeling, 4(2),
p.171-188.

C. Duque, 2010. Automatisation pour la transformation de modeéles orientée aux outils
PLMOUTILS PLM, TUT Grenoble.

C. Sung & S. Park, 2007. A component-based product data management system. The
International Journal of Advanced Manufacturing Technology, 33(5), p.614-626.

Charles Eastman & Jeng, T.S., 1999. A database supporting evolutionary product model
development for design. Automation in Construction, 8(3), p.305-323.

Chen, C.-H., Ling, S.F. & Chen, W., 2003. Project scheduling for collaborative product
development using DSM. International Journal of Project Management, 21(4), p.291-
299.

Clarkson, P.J., Simons, C. & Eckert, C., 2004. Predicting Change Propagation in Complex
Design. Journal of Mechanical Design, 126(5), p.788-797.

Demoly F., 2010. Conception intégrée et gestion d’informations techniques: application a
’ingénierie du produit et de sa séquence d’assemblage. Université de Technologie de
Belfort-Montbéliard - UTBM.

Demoly F. & Gomes, 2009. Assembly-oriented product structure based on preliminary
assembly process engineering. Dans Proceedings of the International Conference on
Engineering Design, ICED’09. ICED’09. Stanford, San Francisco, CA, USA.

Deridder, D. et al., 2009. Model Co-evolution and Consistency Management (MCCM’08).
Dans Models in Software Engineering. p. 120-123.

Dhungana, D. et al., Structuring the modeling space and supporting evolution in software
product line engineering. Journal of Systems and Software, In Press, Corrected Proof.

Eastman, C. M. & Bond A., 1991. A Data Model for Engineering Design Databases. Dans 1st
International Conf. on A.L. in Design. Edinburgh, Scotland.

Eynard, B. et al., 2004. UML based specifications of PDM product structure and workflow.
Computers in Industry, 55(3), p.301-316.

Eynard, B. et al., 2006. PDM system implementation based on UML. Mathematics and
Computers in Simulation, 70(5-6), p.330-342.

Garcia-Magariio, 1., Fuentes-Fernandez, R. & Gémez-Sanz, J.J., 2009. Guideline for the
definition of EMF metamodels using an Entity-Relationship approach. Information
and Software Technology, 51(8), p.1217-1230.

Gardner, T. & Griffin, C., 2003. Review of OMG MOF 2.0 Query/Views/Transformations
Submissions and Recommendations towards final Standard. OMG.

D. Garwood, 1988. Bill of Material, Structured for excellence,

106

Goknil, A. & Topaloglu, Y., 2005. Ontological perspective in metamodeling for model
transformations. Dans Esbjerg, Denmark: ACM, p. 7.

Golovatchev, J.D. & Budde, O., 2007. Next Generation PLM - an integrated approach for the
Product Lifecycle Management. Dans Proceedings of ICCPR2007: International
Conference on Comprehensive Product Realization 2007. Proceedings of ICCPR2007:
International Conference on Comprehensive Product Realization 2007. Beijing, China.

L. Gzara, 2000. Les patterns pour l’ingenierie des systemes d’information produit. Institut
national polytechnique de Grenoble.

Gzara, L., Rieu, D. & Tollenaere, M., 2003. Product information systems engineering: an
approach for building product models by reuse of patterns. Robotics and Computer-
Integrated Manufacturing, 19(3), p.239-261.

HARMEL, G., 2007. Vers une conception conjointe des architectures du produit et de
["organisation du projet dans le cadre de I’Ingénierie Systeme. Université de Franche-
Comté.

Hick, J.-M. & Hainaut, J.-L., 2006. Database application evolution: A transformational
approach. Data & Knowledge Engineering, 59(3), p.534-558.

Hong-Bae Jun et al., 2006. System architecture for closed-loop PLM. Dans Information
Control Problems in Manufacturing 2006. Oxford: Elsevier Science Ltd, p. 805-810.

J. M. Favre, 2004a. Foundations of Meta-Pyramids: Languages vs. Metamodels - Episode II:
Story of Thotus the Baboon. Language engineering for model-driven software
development, number.

J. M. Favre, 2004b. Foundations of Model (Driven) (Reverse) Engineering: Models --
Episode I: Stories of the Fidus Papyrus and of the Solarus. Post-proceedings of
dagsthul seminar on model driven reverse engineering.

J. M. Favre, 2004c. Towards a Basic Theory to Model, Model Driven Engineering. Workshop
on software model engineering, wisme2004, joint event with UML2004.

J. M. Favre & T. NGuyen, 2005. Towards a Megamodel to Model Software Evolution
Through Transformations. Electronic Notes in Theoretical Computer Science, 127(3),
p.59-74.

Jackson, E. & Sztipanovits, J., 2009. Formalizing the structural semantics of domain-specific
modeling languages. Software and Systems Modeling, 8(4), p.451-478.

Jiao, J. & Tseng, M.M., 1999. An Information Modeling Framework for Product Families to
Support Mass Customization Manufacturing. CIRP Annals - Manufacturing
Technology, 48(1), p.93-98.

Jiao, J. et al., 2000. Generic Bill-of-Materials-and-Operations for High-Variety Production
Management. Concurrent Engineering, 8(4), p.297-321.

Jouault, Frédéric & Kurtev, 1., 2007. On the interoperability of model-to-model
transformation languages. Science of Computer Programming, 68(3), p.114-137.

107

Méthodes d’évolution de modele produit dans les systémes du type PLM

Jouault, Frédéric et al., 2008. ATL: A model transformation tool. Science of Computer
Programming, 72(1-2), p.31-39.

Kolovos, D.S. et al., 2009. Different models for model matching: An analysis of approaches
to support model differencing. Dans IEEE Computer Society, p. 1-6.

Krause, F.-L. & Kaufmann, U., 2007. Meta-Modelling for Interoperability in Product Design.
CIRP Annals - Manufacturing Technology, 56(1), p.159-162.

Kurtev, I. & van den Berg, K.G., 2005. MISTRAL: A language for model transformations in
the MOF meta-modeling architecture. Lecture notes in computer science, 3599(s).

Kurtev, I. & van den Berg, K.G., 2004. Unifying approach for model transformations in the
MOF metamodeling architecture. Dans Model-Driven Architecture with Emphasis on
Industrial Applications. Enschede, the Netherlands.

Kurtev, 1., van den Berg, K. & Jouault, Frédéric, 2007. Rule-based modularization in model
transformation languages illustrated with ATL. Science of Computer Programming,
68(3), p.138-154.

Lin, Y., Gray, J. & Jouault, Fré, 2007. DSMDiff: a differentiation tool for domain-specific
models. European Journal of Information Systems, 16, p.349-361.

M. D. Del Fabro, 2007. Gestion de métadonnées utilisant tissage et transformation de
modeles. Université de Nantes.

M. D. Del Fabro & P. Valduriez, 2009. Towards the efficient development of model
transformations using model weaving and matching transformations. Sofiware and
Systems Modeling, 8(3), p.305-324.

Martin Gwyther, 2008. AVEVA NET — AVEVA’s Open PLM Platform forShipbuilding.
International Conference on Product Lifecycle Management.

Muccini, H., 2007. Using Model Differencing for Architecture-level Regression Testing.
Dans Proceedings of the 33rd EUROMICRO Conference on Software Engineering
and Advanced Applications. IEEE Computer Society, p. 59-66.

Mainnisto, T. et al., 1998. Modelling generic product structures in STEP. Computer-Aided
Design, 30(14), p.1111-1118.

Mainnistd, T. et al., 2001. Multiple abstraction levels in modelling product structures. Data &
Knowledge Engineering, 36(1), p.55-78.

Nieva T., 2001. Remote data acquisition of embedded systems using internet technologies: A
role based generic system specification. EPFL.

Noel, F. & Roucoules, L., 2008. The PPO design model with respectto digital enterprise
technologies among product life cycle. International Journal of Computer Integrated
Manufacturing., 21(2), p.139-145.

OMG, 2001. MDA Guide V1.0.1.

108

OMG, 2005. MOF 2.0/XMI Mapping Specification, v2.1.

Oh, Y., Han, S.-hung & Suh, H., 2001. Mapping product structures between CAD and PDM
systems using UML. Computer-Aided Design, 33(7), p.521-529.

Panetto, Meta-modeéles et modéles pour l'intégration et l'interopérabilité des applications
d’entreprises de production. HDR. Université de Henri Poincaré, Nancy 1.

Pierantonio, A. et al., 2007. Special issue on model transformation. Science of Computer
Programming, 68(3), p.111-113.

Rangan, R.M. et al., 2005. Streamlining Product Lifecycle Processes: A Survey of Product
Lifecycle Management Implementations, Directions, and Challenges. Journal of
Computing and Information Science in Engineering, 5(3), p.227-237.

Rivera, J.E. & Vallecillo, A., 2008. Representing and Operating with Model Differences.
Dans Objects, Components, Models and Patterns. p. 141-160.

S. Rachuri et al., 2008. Information sharing and exchange in the context of product lifecycle
management: Role of standards. Computer-Aided Design, 40(7), p.789-800.

Sadeghi, M., Noel, F. & Hadj-Hamou, K., 2009. Development of control mechanisms to
support coherency of product model during cooperative design process. Journal of
Intelligent Manufacturing.

Santos, A.L., Koskimies, K. & Lopes, A., 2010. Automating the construction of domain-
specific modeling languages for object-oriented frameworks. Journal of Systems and
Software, 83(7), p.1078-1093.

Schuh, G. et al., 2008. Process oriented framework to support PLM implementation.
Computers in Industry, 59(2-3), p.210-218.

van Sinderen, M.J. & Ferreira Pires, L., 2004. Model-Driven Architecture with Emphasis on
Industrial Applications. Dans 1st European Workshop, MDA-IA 2004. Enschede, the
Netherlands.

Sudarsan, R. et al., 2005. A product information modeling framework for product lifecycle
management. Computer-Aided Design, 37(13), p.1399-1411.

Svensson, D. & Malmgqvist, J., 2002. Strategies for Product Structure Management at
Manufacturing Firms. Journal of Computing and Information Science in Engineering,
2(1), p.50-58.

T. Asikainen & T. Ménnisto, 2009. Nivel: a metamodelling language with a formal semantics.
Software and Systems Modeling, 8(4), p.521-549.

Terzi S., 2007. A new point of view on Product Lifecycle Management.

Varrd, D. & Balogh, A., 2007. The model transformation language of the VIATRA2
framework. Science of Computer Programming, 68(3), p.214-234.

109

Méthodes d’évolution de modele produit dans les systémes du type PLM

Willink, E.D., 2003. E.D.Willink UMLX: A graphical transformation language for MDA
UMLX: A graphical transformation language for MDA.

Winkelmann, J. et al., 2008. Translation of Restricted OCL Constraints into Graph
Constraints for Generating Meta Model Instances by Graph Grammars. Electronic
Notes in Theoretical Computer Science, 211, p.159-170.

Y. Lin, 2007. 4 model transformation approach to automated model evolution. University of
Alabama at Birmingham,.

Yang, D., Dong, M. & Miao, R., 2008. Development of a product configuration system with
an ontology-based approach. Computer-Aided Design, 40(8), p.863-878.

Zeng, F. & Jin, Y., 2007. Study on product configuration based on product model. The
International Journal of Advanced Manufacturing Technology, 33(7), p.766-771.

Zina, S. et al., 2006. Generic modeling and configuration management in Product Lifecycle
Management. Dans Computational Engineering in Systems Applications, IMACS
Multiconference on. Computational Engineering in Systems Applications, IMACS
Multiconference on. p. 1252-1258.

110

Annexes

111

Méthodes d’évolution de modele produit dans les systémes du type PLM

MANUEL D’UTILISATEUR :
ECLIPSE EMF ET ATL

INTRODUCTION

Dans le cadre de l'ingénierie dirigée par modeles et plus spécifiquement dans la
transformation de modeles, il recommandé d’étre muni d’'un environnement de travail assez

puissant pour pouvoir mettre en place tous les avantages offertes pour cette approche.

Faire une transformation de modeles, demande un logiciel capable de manipuler
modeles, ce qui veut dire qu'il doit étre capable de les générer, les modifier, les instancier, les

transformer, etc.

Le group Eclipse.org a développé tout un module, appelé « Eclipse Modeling Tools» qui
est capable de gérer toutes les situations antérieurement décrites. Ce document est un manuel
d’utilisateur envisagé a donner toute la documentation nécessaire pour réaliser une

transformation de modeles dans la plateforme Eclipse avec la framework EMF.

Dans les chapitres suivants le lecteur pourra trouver la documentation depuis
I'installation d’Eclipse jusqu’a la construction et exécution de toute une transformation ATL.
Avec l'intérét de faire plus agréable la lecture de ce manuel, il est accompagné d’'un exemple qui

rend plus claire toute I'information ci-jointe.
Définition de I'exemple
On suppose étre au sein d’'une entreprise de vélos dont son processus de production suit

le méta-modele suivant :

H Compaosant
= Fixe : EBoolean
& ID : EBiginteger
| © name : EString
5
|
include
[0.*

¢

= Compose
7 |D : EBiginteger
T hame : EString

o Fixe : EBoolean i e S

Constructedhy

Figure 1 : Meta-modéle source

112

Cependant, a cause des conditions du marché, elle a besoin de transformer son méta-

modele pour un autre qui le permettra de savoir quels de ses produits appartient a la structure
fixe du vélo et quels a la structure mobile. La figure 2 montre le nouveau méta-modéle.

L’entreprise doit alors transformer son modeéle de production, qui actuellement est en
accord avec le méta-modeéle source, défini dans la figure 1, pour un modele, conforme au méta-
modele cible de la figure 2.

I'entreprise.

Dans les chapitres suivants on expliquera au fur et a mesure tous les étapes nécessaires
pour transformer ainsi bien, le modéle de production comme toutes les données des produits de

E Aricle H Ariculaleur
T 1D : EBiginteger T name : EString
2 name : EString Z 1D : EBiginteger
o W
compose faut |U
H StructureFixe H StructurebMohile
- -
0.1 articule]
structure SHicie 0.1
A\
= Produit

. 7 1D : EBiginteger

T name : EString

Figure 2 : Méta-modéle cible

. INSTALLATION ECLIPSE EMF
L1

Vous avez déja une version d’Eclipse dans votre ordinateur
Vérification version Eclipse

Tous les versions d’Eclipse ne comptent pas avec ATL ni sont équipées pour travailler
avec de modeles, il faut donc avoir la bonne version. Pour connaitre la version sur laquelle vous

travaille allez dans le menu « Help » a « About Eclipse » puis assurez vous d’avoir les
spécifications suivantes :

113

Méthodes d’évolution de modele produit dans les systémes du type PLM

& About Eclipse

»

Eclipse Modeling Tools

Version: Helios Release (3.6.0)
Build id: 20100603-0907

{c) Copyright Eclipse contributors and others 2000, 2010, All rights reserved.
Visit http:f/eclipse.org/

This product includes software developed by the
Apache Software Foundation http:/fapache.argf

SIS0

@ [Installation Details]

Figure 1 : About Eclipse. Eclipse MyLyn Eclipse.org -EPP
Eclipse Modeling Project Eclipse Packing Project Eclipse.org
1.2 Vous n’avez pas une version d’Eclipse dans votre ordinateur

Pour télécharger Eclipse, allez-vous sur le site www.eclipse.org, choisissez le module «
Modeling » et téléchargez le paquet « Eclipse Modeling Tools (includes Incubating components)

» ensuite choisissez la bonne version selon votre ordinateur et téléchargez- le.
Décompressez le fichier dans le répertoire de votre choix.
[.3 Installation langage ATL
Pour pouvoir coder en langage ATL il faut I'installer a partir du bouton « Install

Modeling Components » (placé dans le menu principal) ; Ce bouton ouvre un menu
qui vous permettra de choisir ATL. Validez la caisse a cocher comme le montre la figure 2, puis
appuyez sur « finish » pour commencer I'installation.

Suite au téléchargement, vérifiez que la caisse a cocher ATL-SDK soit coché et puis
appuyez sur « Next », lors de I'installation, révisez les détailles et pour les valider appuyez sur «

Next », ensuite acceptez les conditions et appuyez sur « Finish »

114

& Eclipse Modeling Components Discovery

Eclipse Modeling Components Discovery %
Pick a modeling component to install it '’
Find: | | [¥] Incubation
Model To Text =
Model to Text (also known as code generation) tools and languages.
] ‘ ’ Acceleo by Ecipse.org, EPL @
Acceleo 15 a standard-based template language focused on usabdity and pragmatism,
m \$ Jet by Ecipse.org, EPL @
JET is an Eclipse-based code generator framework based on ISP,
[:] :)(Xpand by Ecipse.org, EPL @
¥pand is an efficient code generation framework with a statically-typed template language and
support For arbitrary input model types.
Model To Model
Mode! to Model tools and transformation languaages,
(ATL by Ecipse.org, EPL @
ATL 15 a model transformation language and toolkit, inchuding an ATL transformation engine and an
IDE for ATL,
] ¢ Operational QUT by Edipse.org, EFL @
Implementation of the Operational part of the OMG QYT (Query/View/Transformation) open standard
Concrete Syntax Development
Tools and framaworks to develop dedicated modeling tools.
u "3, Extended Editing Framework (Incubation) by Edipse.org, EPL @ g
| o -
@ [Enisn [concel |

Figure 2 : Composants d’Eclipse Helios.

1.4 Démarrer Eclipse
Exécutez le fichier eclipse.exe du répertoire « eclipse »,
ensuite choisissez le workspace, c’est-a-dire le répertoire ou seront stockés tous les

projets a réaliser, puis appuyez sur « OK ».

La premiére fois qu’Eclipse est ouvert, choisissez d’aller sur la « workbench » pour aller

directement a 'environnement de codage.

I. CREER UN PROJET

115

Méthodes d’évolution de modele produit dans les systémes du type PLM

Le module d’Eclipse Helios permet plusieurs développements et n’est pas toujours utilisé
que pour la transformation de modéles, il faut donc, lui mettre en évidence qu'il se dispose a
faire de transformation. Allez dans le menu WindowsaOpen Perspectiveaother... a ATL.

1.1 Créer un projet ATL

Allez sur le menu principal FileaNewaOther... et choisissez « ATL project » comme
I'indique la figure 3

Select a wizard

Create an ATL transformation project

\Wizards:

& Java Project From Existing Ant Buildfile A
= Plug-in Project

. General
> ATL

€ | ATLFile

(ATL Plugin

af
= CVS
. Eclipse Modeling Framework
> Ecore Tools
—* Example EMF Model Creation Wizards
= Java
= Java Emitter Templates

S Plon-in Newvalanment

4

+!

B+ B

I I)

'? | MNext > I Finist | Cancel |

Figure 3 : création d’un projet ATL Ensuite, appuyez sur « Next » et assignez un nom au
projet puis appuyez sur « Finish ».

Dans le menu de gauche, vous avez un nouveau répertoire qui porte le nom donnée au

projet et qui contiendra tous les fichiers nécessaires pour la transformation.

lll. COMMENT FAIRE UNE TRANSFORMATION
III.1 Insérer un méta-modele
Placez vous dans le répertoire d'un projet, ensuite, avec le click droit de la souris,

choisissez newaOthers...aEcore ToolsaEcore Diagram comme 'indique la figure 4.

116

Donnez un mon au diagramme et appuyez sur « Finish ».

Eclipse vous placera, automatiquement, sur un éditeur qui vous permet de designer un

diagramme de class UML. Avec la palette de design, vous pouvez designer de classe, des

associations, des conteneurs, héritage, etc. Par exemple, pour créer une classe, il faut appuyer,

dans la palette, 'option « EClass » et ensuite, la designer sur 'espace de travail.

Dans le menu en bas, sur l'onglet « Properties » vous pouvez modifier le nom et les

propriétés de la classe.

Pour ajouter des attributs, il faut choisir dans la palette, I'option « EAttribute », en suite

faire click sur la classe a la quelle il appartient, puis dans 'onglet « Properties » vous pouvez

customiser les attributs.

& New

Select a wizard

Creates an Ecore diagram.

Wizards:

Java Project from Existing Ant Buildfile
Plug-in Project
General
> ATL
= CYS
+ | Eclipse Modeling Framework
= | Ecore Tools
%
[% Ecore Tools Project
+ b Example EMF Mode! Creation Wizards
+ = Java
+ | Java Emitter Templates
+
-

W €2 3|

()

. Plug-in Development
[=4 Tacke

Figure 4 : création méta-modele.

Voici un exemple d’'un diagramme de classe.

117

> |

Méthodes d’évolution de modele produit dans les systémes du type PLM

S O Sor O * | Conpose
Vantte
Cbmcts Composant
@ Package Fixe . EBoolean
; ¢ |D : EBiginteger
oxtenul g ¢ name : EString
EErun -
CArrot ot e
@ ECpesaton
EArritate 5
SBistteral include |
Cotats O ‘U
Canrectons Compose
. ¢ 1D : EBiginteger
| Lmndian: ¢ name : EString
BArrctation b Vd Fixe : EBoolean
/7
A
|
| 0
,I
J
J
Constructedby
Moklern o Py oty
.\ furd i
Mol e 0o
Moot
N v O
£atorsiond Mt ackot 0
el Ox U et | focmpose) |
Tuters O @
L r LA
AN uem!

Figure 5 : Exemple Diagramme de classe.
Lors de la création d'un fichier « Ecore Diagram » Eclipse génere automatiquement un

fichier .ecore qui décrit le méta-modele dans un autre langage qui suit le Méta-Méta- Modeéle

d’Eclipse, ce qui vous permettrez de lui instancier, et de lui travailler en tant que modéle et ne

pas comme un fichier normal.

[II.2 Création d’une instance
Placez-vous sur le fichier .ecore antérieurement créé et ouvrez-le avec « Sample Ecore

Model Editor ». Par exemple si vous ouvrez le fichier décrit pour le diagramme de figure 5, vous

obtiendrez le résultat suivant :

118

%] *Méta-modeleSource | %] Compose | Compose.ecore (]
8 platForm: fresource/Compose2Produit Y2/ Compose, ecore
= # compose

= L] Compose
5 1D : EBiginteger
T name : EString
5% Constructedby : Compose
o2 Include : Composant
= Fixe : EBoolean
= | Composant
%' 1D : EBigInteger
5 name : EString
= Fixe : EBoolean

=

Figure 6 : modele en format .ecore

Pour créer une instance, placez-vous sur la classe que vous souhaitez instancier, puis

avec le click droit de votre souris choisissez « Create Dynamic Instance... » Comme l'indique la

figure 7.
2| B _‘-3‘: 2 = o platform: fresourcef/Compose2Produity2/Compose. .ecore
15 ATLxmizecore = l compose
5 AuthorzPerson =B %N&w Chid »
=5 ComposezProduityt 4 X
=125 ComposezProduity2 L‘? il Hew: Shing
(= ,settings o C9
¥ (= bin g inc
EJ .classpath R L iR
5] .project =8 E_(:mp q of Cut
E_no build. properties |‘: ’11[; = Copy
#| Compose.ecore s Py
E] Compose.ecorediag Sl
& Composel . xmi X Delete
‘ﬂ‘] Compose2Produity2.asm
€| ComposezProduity2.atl Vahidate
@] library.ecore Control...
LS] library xsd %o st Horarchy
| plugin.properties 9
{12 pro.genmodel o+ Show References
&) Produt.ecore
%) Produit.ecorediag Run As 4
%) produit.genmodel Debug As 4
% produit.xmi Team 4
@ sample_produit.ecore Compare With 4
1= de.vogella.xslt first Replace With 4
125 Famiies2Persans WikiText ¥
125 KM3ZEMF
R library Load Resource...
t Taj org.eclipse.emf.common. ui Refresh
Iij L:J org.eclipse.emf.ecore Show Properties Yiew
* 1= org.eclipse.emf.ecore.xmi
R org.eclipse.emf.edit
R org.eclipse.emf,edit.ui

Figure 7 : création d'une instance.

119

Méthodes d’évolution de modele produit dans les systémes du type PLM

Vous assignerez un nom et un répertoire conteneur pour fichier, par default une instance
est toujours un fichier .xmi, c’est recommandé de garder ce format sauf si vous avez besoin
d’obtenir un fichier avec un format spécial, ensuite, appuyez sur « Finish ».

Vous serez placé dans I'éditeur d’instances d’Eclipse (Sample Reflective Ecore Model
Editor) qui vous permettra de donner une valeur a chaque attribut et d’instancier chaque

association et classe qui sont en contact avec la premiére instance. Voici un exemple :

< veloCompose.xmi

o
= & platform: fresource/Compose2Produitv'2/veloCompose. xmi
=¥ Compose Velo
=l <4 Compose roueDevant
> Composant pneul oueD evant

4
<> Composant freinRouelevant
<» Composant janteR oueDevant
=<4 Compose roueDermere
< Composant pneuRoueD emere
> Composant freinRoueDerriere
< Composant janteR ousDermiere
Composant siege

>

<«

> <> <

~
L 4

B

<> <> ‘V’ <>

Composant Cadre
Composant Chaine
Composant PedaleGauche
Composant PedaleDroite

A
L J

~
4

4
< >
v

Figure 8 : Instance du modéle de la figure 5.

La fagon pour utiliser cet éditeur est de faire click sur la premiere instance, celle qui est
crée automatiquement, ensuite customiser les attributs dans I'onglet « properties », La figure 8

corresponde a une instance d’un vélo selon le méta-modele de la figure 1.

Ensuite, faire click droit sur Vélo et choisir, 'option « New Child », ce que vous permettra

d’instancier les associations liées au Vélo, il est montré une liste avec tous les

liens possibles, en fonction de la classe qui se trouve de I'autre coté de lien, une nouvelle

instance sera créée alors.

Par exemple, VeloaNew ChildaConstructedBy vous permettra de créer une deuxieme
instance de Composé et de la lier au Vélo. Au fur a mesure, vous pourrez instancier tout le

modele.
I11.3 Créer une transformation

La transformation de modeles dans ce document, est toujours en langage ATL, il faut

dong, ajouter un fichier .ATL au répertoire racine du projet.

Placez-vous sur le répertoire du projet. Ensuite, faites click

droitaNewaOther..aATLa ATL File comme l'indique la figure 9. Choisissez le nom de la

120

transformation et le répertoire ou elle doit étre stockée. Puis appuyez sur « Next ». Rentrez le
méta-modele source et cible ainsi que les libraires si vous en avez besoin. Ce formulaire vous
aide a construire I'entéte de la transformation facilement. Si vous le souhaitez, vous pouvez
clicker sur finish dés que vous avez donné un nom pour la transformation et le répertoire ou elle

doit étre stockée, et puis taper a la main 'entéte de la transformation dans I'éditeur.

Ensuite vous serez placé sur I'éditeur d’ATL d’Eclipse, vous pouvez donc, taper le code de
la transformation que vous souhaitez faire. Cet éditeur vous aidera dans la mesure ou il souligne
les mots clés et fait la fermeture automatique des accolades.

€ New - X

Select a wizard

Create an ATL transfarmation file

‘Wizards:
= = ATL ~
€]
.,‘ ATL Plugin
__‘, ATL Project
£ = CVS

+ | Edlipse Modeling Framawork
= L Ecore Too's
%) Ecore Diagram
¥ Ecore Tools Project
- Example EMF Model Creation Wizards

(et
+ = Java
+ | Java Emitter Templates
+ . Plug-in Development
+ = Tacke ¥
==

Figure 9 : Nouvel Transformation Pour vérifier si votre code est juste, c’est-a-dire pour le
compiler, allez dans le menu

principal sur ProjectaBuild Project, les erreurs seront affichées dans l'onglet console.
[II.4 Exécution du code ATL

121

Méthodes d’évolution de modele produit dans les systémes du type PLM

Une fois le code ATL écrit et compilé, allez dans le menu principal sur RunaRun
Configurations... Clickez sur « New launch configuration » pour créer une
configuration d’exécution comme l'indique la figure 10.

- -

F Run Configurations ﬁ_l
Create, manage, and run confiqurations
1 »
-
Norve: | VeloComposedYelcProdut
4 | € AL Codigration € Advarced Commn
g € ATl frarsformation ATL Modue
€ Corposezrrcos [VeloCompose2Y sk Produt VehConpom2velPy 0d 2. atf pe—
1 € Composeitrodavy
o € rardes2Persocs Mat armedals
- St
4 € VroConpomn2iinkoPro ML | Veioompose2VeloProdut NeloCompose ecore
1 @ tLdpss dpphcsbion
N B Java Apciet [15 et aeset el | Workspace... | | Pl system.. | | EMF Rmgsary
3 Java Apple
[: "” z b MM2: | VelosomposelysioProdut Nelorodult. acore
ne — — e - -
Ut Phg-o Test [T 1s metametamoded | Workspace Pl system.. | | OF Ragstry
P 053 Framework
Tash Contust Puge Test Source Models
Jiy Task Context Test N: NeloC omposaXVeloPr odut S veloComposs o
conforms to MM Workspecs .. | | Fle pystem
Target Models
ot {Yolol ongosalVololrod At SveicProdut ame
cord orms 10 MM2 Wirkspace... | [Eim e
Ar e
Mo
| Add sonrte moded. ., | | Ad Largel model ' [!r” oy
< >
Filter matched 13 of 1) Rems
?] &un ! Crse

Figure 10 : créer une nouvelle configuration d’exécution

Ensuite, donnez un nom a votre configuration et choisissez le fichier .atl a exécuter avec
le bouton « workspace » du champ « ATL module ». Ceci vous permettra de choisir les Méta-
modéles source et cible de la transformation. Vous devez toujours choisir le fichier .ecore et non
pas le .ecorediag.

Ensuite dans le champ « Source Model » choisissez le fichier d’instances (normalement le
fichier .xmi), vous pouvez le choisir depuis le « workspace » ou autre.

Puis dans le champ « Target Model » choisissez le répertoire ou sera stocké le résultat de
la transformation et donnez-lui un nom avec I'extension .xmi (sauf si vous souhaitez trouver un

autre type de fichier comme résultat).

122

Ensuite, enregistrez votre configuration avec le bouton « Apply » et puis « Run » pour

I'exécuter. Le résultat se trouvera dans le répertoire antérieurement choisi.

123

Méthodes d’évolution de modele produit dans les systémes du type PLM

Les codes d’Eclipse

-- @path MM2=/VeloCompose2VeloProduit/VeloProduit.Ecore —-- (@path
MM1=/VeloCompose2VeloProduit/VeloCompose.Ecore

module VeloCompose2VeloProduit; create OUT : MM2 from IN : MM1;
-- Ce helper renvoie l'ensemble de roues d'un vélo

helper context MM1!Velo def: getRoues() : OrderedSet (MM1l!Roue) = self.mesRoues->iterate(r;
roues : OrderedSet (MM1!Roue) =

)

OrderedSet{}| if r.oclIsKindOf (MM1!Roue) then

else endif
roues.append(r) roues
-- Ce helper renvoie les pneus d'un ensemble roues

’

-- Ce helper renvoie la

helper context MM1!Velo OrderedSet (MM1!Jante) =

jante d'un ensemble roues

def : getJante(roues : OrderedSet (MM1!Roue))

if not r.maJante.oclIsUndefined() then jantes.append(r.madJante)

)

’

-- Ce helper renvoie le siege d'un vélo
helper context MMI1!Velo def : getSiege() : MMl!Siege = if not self.monSiege.oclIsUndefined()
then

’

else
endif
self.monCadre false

’

else

endif

self.monSiege false

roues->iterate (r; pneus : OrderedSet (MM1!Pneu) = OrderedSet{} |

-- Ce helper renvoie le cadre d'un vélo

helper context MM1!Velo def : getCadre() : MMl!Cadre = if not self.monCadre.oclIsUndefined()
then

-- Ce helper renvoie la chaine d'un vélo

helper context MM1!Velo def : getChaine() : MMl!Chaine = if not self.maChaine.oclIsUndefined()
then

else

endif

self.maChaine false

’

-- Ce helper renvoi l'ensemble de pédales d'un vélo

else endif

pneus

roues->iterate(r; freins : OrderedSet (MM1l!frein) = OrderedSet{} |
else endif

freins

roues->iterate(r; jantes : OrderedSet (MM1!Jante) = OrderedSet{} |
else endif

jantes

MM1!Velo def : getPedales () : OrderedSet (MM1l!Pedale) = self.mesPedales->iterate(p; peds
OrderedSet (MM1!Pedale) =

OrderedSet{} | if p.oclIsKindOf (MM1!Pedale) then

helper

context

else endif

)

peds.append (p) peds

’

--Ce regle transforme une instance de vélo qui suit le modele de Velocomposé a une instance de
vélo qui suit le modele de VeloProduit rule velo {

from v : MM1!Velo

to

e : MM2!Velo (name <- v.name,

ID <- v.ID, structure <- thisModule.strFixe(v), articule <- thisModule.strMobile (v)

)

--Ce regle crée automatiquement la structure fixe d'un velo

lazy rule strFixe { from

}

124

to

v : MMl!Velo

s : MM2!Structure Fixe (monSiege <- thisModule.siege(v.getSiege()), monCadre <-
thisModule.Cadre (v.getCadre()))

--Ce regle crée automatiquement la structure mobile d'un velo

lazy rule strMobile { from

to

v : MMl!Velo

s : MM2!Structure Mobile (mesPneus <-(v.getPneu(v.getRoues()))-

>collect (f|thisModule.Pneu(f)), mesFreins <-(v.getFrein(v.getRoues()))-

>collect (f|thisModule.Frein (f)), mesJantes <-(v.getJante (v.getRoues()))-

>collect (f|thisModule.Jante (f)), maChaine <- thisModule.Chaine (v.getChaine()),

)

mesPedales <- (v.getPedales())->collect (f|thisModule.Pedale (f)), mesRoues <- (v.getRoues())-
>collect (f|thisModule.Roue (f))

--Ce rule transform une instance de sieége qui suit le modele de Velocomposé a une instance de
siege qui suit le modele de VeloProduit lazy rule siege {

from to

s : MM1!Siege

i : MM2!Siege (ID <- s.ID,

name <-s.name

)

--Ce regle transform une instance de cadre qui suit le modele de Velocomposé a une instance de
cadre qui suit le modele de VeloProduit lazy rule Cadre {

}

from to

s : MMI1!Cadre

i : MM2!Cadre (ID <- s.ID,

name <-s.name

)

--Ce regle transform une instance de pneu qui suit le modele de Velocomposé a une instance de
pneu qui suit le modele de VeloProduit lazy rule Pneu {

}

from to

s : MM1!Pneu

i : MM2!Pneu (ID <- s.ID,

name <-s.name

)

--Ce regle transform une instance de frein qui suit le modele de Velocomposé a une instance de
frein qui suit le modele de VeloProduit lazy rule Frein {

}

from to

s : MM1!Frein

i : MM2!Frein (ID <- s.ID,

name <-s.name

)

}

--Ce regle transform une instance de jante qui suit le modele de Velocomposé a une instance de
jante qui suit le modele de VeloProduit lazy rule Jante ({

}

from to

s : MMI1!Jante

i : MM2!Jante (ID <- s.ID,

name <-s.name

)

--Ce regle transform une instance de chaine qui suit le modele de Velocomposé a une instance
de chaine qui suit le modele de VeloProduit lazy rule Chaine {

from to

s : MM1l!Chaine

i : MM2!Chaine (ID <- s.ID,

name <-s.name

)

--Ce regle transform une instance de pédale qui suit le modele de Velocomposé a une instance
de pédale qui suit le modele de VeloProduit lazy rule Pedale {

}

}

}

Annexe I :

from to

s : MM1l!Pedale

i : MM2!Pedale (ID <- s.ID,
name <-s.name

)

--Ce regle transform une instance de roue qui suit le modele de Velocomposé a une instance de

125

Méthodes d’évolution de modele produit dans les systémes du type PLM

roue qui suit le modele de VeloProduit lazy rule Roue {
from to

s : MMI1!Roue

i : MM2!Roue (ID <- s.ID,

)

- @atlcompiler atl2006
module test; create OUT : Ecore from IN: Compose ;
helper context Compose!Compose def : isRacine() : Ecore!EPackage = if
self.refImmediateComposite () .oclIsUndefined() then
not
else
false true
endif; helper context Compose!Compose def : isClassNormal () : Boolean =
if
else
endif;
self.isRacine () then if self.refImmediateComposite().Constructedby->includes (self) then
not
else endif false
true false

helper context Compose!Compose def : getAllCompose() : Sequence (Compose!Compose)=
self.Constructedby->iterate (comp; elements : Sequence (Compose!Compose)=
Sequence{} | if comp.Constructedby.oclIsUndefined() then -- si l'asociation

not

construtedby definie then...
elements.append (comp) —>union (comp.getAllCompose ())
else endif

elements.append (comp)

; helper context Compose!Compose def : getAllComposant() : Sequence (Compose!Composant) =
Compose ! Composant.allInstances () ->asSequence ()

; helper def : getMyClass(s : String) : Ecore!EClass =

let allClass : Sequence (Ecore!EClass)= Ecore!EClass.allInstances()->asSequence() in
allClass.debug('class')->iterate(c ; res : Ecore!EClass = allClass-

>first () |

)

if c.name = s then c

)

; rule composepackage2Epackage {

from pl : Compose!Compose to p2 : Ecore!EPackage (

(pl.isRacine())

else endif

res

nsURI <- 'http://velocompose/1.0', nsPrefix <- 'velocompose', name <- 'VeloCompose',
eClassifiers <- Sequence{}->append (rootClass) -

>union ((pl.getAllComposant ())->collect(d | thisModule.Composant2EClass(d))) -

>union ((pl.getAllCompose () .debug('tous'))->collect (f | thisModule.Compose2EClass(f)))),
rootClass : Ecore!EClass(name <- pl.name,

eStructuralFeatures<-Sequence{}->union ((pl.Constructedby) -

>collect (f|thisModule.Compose2EReference (f))) ->

union ((pl.include)->collect(d | thisModule.Composant2EReference(d))))

} lazy rule Compose2EClass {

from comp : Compose!Compose (comp.isRacine()) to outClassCompose : Ecore!EClass (
name <- comp.name.debug('classCompose'),
eStructuralFeatures<-Sequence{}->union ((comp.Constructedby) -

>collect (f|thisModule.Compose2EReference (f,outClassCompose))) ->

union ((comp.include)->collect (d | thisModule.Composant2EReference(d))))

} lazy rule Composant2EClass {

from comp : Compose!Composant to outClassComposant : Ecore!EClass (

name <- comp.name.debug('classComposant')

)

} lazy rule Compose2EReference {

from comp : Compose!Compose (comp.isClassNormal()) to outEcore : Ecore!EReference (
name <- 'my' + comp.name, containment <- true, eType <- thisModule.getMyClass (comp.name)
)

} lazy rule Composant2EReference {

not

from comp : Compose!Composant to outEcore : Ecore!EReference (

)

}

name <- 'my' + comp.name.debug('nom'), containment <- true, eType <-
thisModule.getMyClass (comp.name)

-- (@path Ecore=/Produit2Ecore/Ecore.ecore -- (@path
Produit=/Produit2Ecore/Produit.ecore

module Produit2Ecore; create OUT : Ecore from IN : Produit;

--ce helper renvoie tous les articles liées a le structure fixe d'un produit

helper context Produit!Produit def : getAllArticles() :

126

Sequence (Produit!Article) =

if not self.Structure.oclIsUndefined() then let strF : Produit!StructureFixe =
self.Structure->first ()

in

else

endif

strF.compose->asSequence () Sequence({}

--ce helper renvoie tous les articulateurs liées a le structure mobile d'un
produit helper context Produit!Produit def : getAllArticulateurs()

Sequence (Produit!Articuleur) =

if not self.Articule.oclIsUndefined() then let strM : Produit!StructureMobile =
self.Articule->first ()

in

else

endif

strM. fait->asSequence () Sequence{}

--ce helper renvoie la class d'arrivé d'une association.
helper def : getMyClass (s :) : Ecore!EClass = let allClass
Sequence (Ecore!EClass) =

String

Ecore!EClass.alllInstances () ->asSequence () in allClass->iterate(c ; res
Ecore!EClass = allClass-

>first () |

if c.name = s then c

else endif

res

)

--regle construit le package qui contient touos les classes.

rule produit2Package { from p : Produit!Produit to Epack: Ecore!EPackage (
nsURI <- 'http://veloproduit/1.0', nsPrefix <- 'veloproduit', name <-
'veloproduit', eClassifiers<-Sequence{}->append (produit) -

>union ((p.getAllArticles())->collect (f|thisModule.Article2EClass(f)))- >
union((p.getAllArticulateurs()) -
>collect (d|thisModule.Articulateur2EClass(d)))—->

append (thisModule. StructureFixe2EClass (p.Structure->first())) -
>append (thisModule. StructureMobile2EClass (p.Articule->first()))

), produit : Ecore!EClass (

name<-p.name,

eStructuralFeatures<-Sequence{}-

>append (thisModule.Articule2EReference (p.Articule))->

append (thisModule. Structure2EReference (p.Structure->first())))

}

--ce regle construit une classe a partir d'un article

lazy rule Article2EClass { from a : Produit!Article to class : Ecore!EClass (
}

}

)

)

name<-a.name

--ce regle construit une classe a partir d'un articulateur

lazy rule Articulateur2EClass { from ar : Produit!Articuleur to class
Ecore!EClass (

name<-ar.name

--ce regle construit une Classe de la structure fixe.

lazy rule StructureFixe2EClass{ from strF : Produit!StructureFixe to class
Ecore!EClass (

name <- 'StructureFixe',

eStructuralFeatures<-Sequence{}->union ((strF.compose) -

>collect (f|thisModule.compose2EReference (f)))

)

}

--ce regle construit une Classe de la structure Mobile.

127

Méthodes d’évolution de modele produit dans les systémes du type PLM

lazy rule StructureMobile2EClass { from strM : Produit!StructureMobile to class
Ecore!EClass (

name<-'StructureMobile',

eStructuralFeatures<-Sequence{}->union((strM.fait) -

>collect (f|thisModule.fait2EReference(f)))

)

}

--Cette regle construit l'association entre un produit et son structure fixe

lazy rule Articule2EReference(

from strF : Produit!StructureMobile to ref : Ecore!EReference (

name <- 'Articule', containment <- true, eType <-

thisModule.getMyClass ('StructureMobile')

)

--Cette regle construit l'association entre un produit et son structure Mobile

lazy rule Structure2EReference(

from strF : Produit!StructureFixe

to ref : Ecore!EReference (name <- 'Structure', containment <- true,

eType <- thisModule.getMyClass ('StructureFixe')

)

--Cette regle construit l'association entre la structure fixe et ses articles.

lazy rule compose2EReference {

}

from a : Produit!Article to ref : Ecore!EReference (name <- 'My'+ a.name,

containment <- true, eType <-thisModule.getMyClass (a.name)

)

--Cette regle construit l'association entre la structure Mobile et ses

articulateurs. lazy rule fait2EReference {

from a : Produit!Articuleur to ref : Ecore!EReference (name <- 'My'+ a.name,

)

containment <- true, eType <-thisModule.getMyClass (a.name)

}

}

128

