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THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
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John W. HUTCHINSON
Professeur, Harvard University, USA, Président

Patrice CARTRAUD
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Rémy DENDIEVEL
Professeur, Grenoble-INP, Directeur de thèse
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Remerciements

Aussi riche soit elle, la thèse est une longue expérience semée d’obstacles et d’embuches.
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Foreword
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“Generalized effective properties of architectured materials” by Duy Trinh at the CdM,

and “New materials with high thermal inertia and high conductivity applied to hosting
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Résumé étendu

en français





Introduction

Dans un contexte de développement de semi-produit pour les industries du transport et du

bâtiment, les matériaux multi-fonctionnels permettent de répondre à plusieurs fonctions

“primaires” et évitent ainsi le recours à des composants distincts pour chacune de ces

fonctions. Il est alors envisageable de gagner en performance à condition de trouver un

matériau techniquement réalisable et économiquement viable. Le nombre de matériaux

monolithiques étant fini, les matériaux architecturés permettent d’élargir les possibilités

par combinaison de plusieurs matériaux constitutifs. En particulier pour des propriétés

contradictoires (rigidité, isolation thermique, acoustique, etc.), les matériaux architecturés

sont en mesure de proposer de très bons compromis.

L’arrangement des phases et le choix des matériaux constitutifs sont autant de para-

mètres qui permettent de concevoir sur mesure une solution architecturée. Cependant,

cette extraordinaire diversité de configuration complexifie la sélection du meilleur com-

promis. Un méthode traditionnelle par essais-erreurs n’est pas appropriée et les méthodes

d’optimisation semblent fournir des outils pertinents pour résoudre en partie ce problème.

Le cas de l’industrie automobile est représentative des problématiques liées au trans-

port en général. Alors que les directives européennes ne cessent de réduire les limites

d’émission de gaz et particules (“Commercial vehicules fact sheet”, n◦ 1, ACEA), le masse

des véhicules ne fait qu’augmenter depuis les années 80. La figure 1 présente l’évolution de

masse des véhicules personnels par catégorie. Cette augmentation est engendrée par les
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Figure 1: Évolution de la masse (moyenne par catégorie de taille) des véhicules personnels aux
États-Unis d’Amérique entre 1975 et 2009 (Davis et al., 2010).

normes de sécurité et la demande croissante de confort. Le gain énergétique et écologique

potentiellement obtenu par l’allègement est tel aujourd’hui que le développement de so-

lutions plus performantes, mais plus onéreuses, deviennent rentables. C’est le cas des
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Résumé étendu - en français

matériaux architecturés.

Sans parler d’allègement, les cahiers des charges issus du bâtiment peuvent être rempli

avec de hautes performances lorsqu’il s’agit de propriétés contradictoires. C’est souvent le

cas pour combiner des propriétés structurelles (rigidité, résistance mécanique) et des pro-

priétés fonctionnelles (isolation thermique ou acoustique par exemple). Les considérations

économiques restent cependant un frein important au développement de tels produits.

La conception sur mesure de matériaux architecturés est proposée dans le cadre de

cette thèse comme une extension des méthodes de sélection des matériaux (Ashby, 2005).

Celles-ci consistent à traduire un cahier des charges en indice de performance. Cet indice

permet de sélectionner les matériaux les plus performants sur une carte des propriétés (e.g.

module de flexion en fonction de la conductivité thermique sur la figure 2). La conception

de matériaux architecturés vise à combiner plusieurs matériaux (ou un matériau et du

vide) pour obtenir une solution qui se rapproche le plus possible des “trous intéressants”

sur les cartes des propriétés.

Interesting 

empty 

region

Uninteresting 

empty region

Figure 2: Principales classes de matériaux représentées sur une carte module de flexion versus
densité. Une partie de la carte est accessible par des matériaux existants. Le reste est vide et
justifie le développement de matériaux architecturés pour combler ces “trous intéressants” (coin
supérieur gauche de la carte).

La particularité des matériaux architecturés est la cœxistence des échelles. Le terme

“architecturé” suggère qu’il existe une ou plusieurs phases supposées homogènes, qui sont

12



0.1 La structure sandwich :

Exemple emblématique de panneau architecturé

distribuées dans l’espace. Le terme “matériaux”, au contraire, affirme que la distribution

des phases est suffisamment fine pour être considérée comme homogène à échelle d’une

pièce (au moins vis à vis des propriétés concernées). On s’attend naturellement à ce que les

méthodes d’homogénéisation fournissent des outils appropriés pour évaluer la performance

des solutions proposées. Les applications qui motivent ces travaux concernent des produits

sous forme de panneau. cette catégorie de matériaux architecturés, avec comme exemple

emblématique le panneau sandwich, illustre particulièrement bien cette cœxistence des

échelles.

Dans ce contexte, ce travail de thèse traite de la conception optimale de panneaux archi-

tecturés à travers trois points principaux : la description des méthodes d’homogénéisation

d’un panneau ; l’optimisation de panneaux architecturés modèles pour la rigidité en flex-

ion et le cisaillement ; et l’optimisation multi-fonctionnelle de raidisseur de panneaux

sandwich isolants. Une introduction préliminaire sur les notions de matériaux architec-

turés, de sélection des matériaux et les modèles mécaniques (plaques et coques) dédiés aux

panneaux est proposée en s’appuyant sur l’exemple emblématique du panneau sandwich.

0.1 La structure sandwich :

Exemple emblématique de panneau architecturé

Une structure dite “sandwich” est un panneau constitué de trois couches, deux couches

(appelées parements ou peaux) disposés symétriquement de chaque côté d’une couche

centrale (appelé cœur ou âme). Deux matériaux différents sont choisis pour les parements

et le coeur. Le premier est choisi pour sa rigidité en traction-compression, le deuxième pour

sa légèreté et sa rigidité en cisaillement. Cette répartition spatiale des deux matériaux

assure une grande rigidité en flexion pour une masse réduite.

Cette structure illustre particulièrement bien le concept de “matériaux architecturés”

qui est de trouver un bon compromis entre propriétés contradictoires grâce à la combinai-

son de plusieurs matériaux et leur distribution dans l’espace.

La structure sandwich permet d’introduire aussi la notion de “matériau hiérarchique”

puisque cette architecture simple de premier niveau (peaux–âme) est souvent complétée

par l’utilisation de matériaux eux-même architecturés. Par exemple, des composites strat-

ifiés fibres–matrice sont utilisés pour les parements. Mais on rencontre surtout une grande

variété de matériaux architecturés pour le cœur du sandwich : des matériaux poreux,

des mousses, ou plus généralement des matériaux cellulaires comme ceux présentés sur

la figure 3. Alors que les peaux sont fortement contraint par la fonctionnalité de rigidité

du panneau en flexion, le coeur a plus de liberté et peut judicieusement contribuer à

une propriété supplémentaire telle que l’isolation thermique ou l’absorption d’énergie aux

chocs.

13



Résumé étendu - en français

Figure 3: Exemples de matériaux architecturés utilisés pour l’âme de structure sandwich. Ces
géométries de treillis, de gaufrages et de nids d’abeille sont sélectionnés pour leur forte capacité
d’absorption d’énergie aux chocs. (Wadley, 2006)

Figure 4: Carte des propriétés module de flexion – masse volumique qui compare des structures
sandwich constituées de parements acier et d’une âme en nids d’abeille acier (rond rouge), avec les
bornes de Voigt et Reuss sur le module Young (rond noir). Les droites pointillées correspondent à

l’indice de performance E
1

3 /ρ (rigidité en flexion d’une plaque à masse minimum) et montre que
la structure sandwich est meilleur que tous les matériaux monolithiques.
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0.1 La structure sandwich :

Exemple emblématique de panneau architecturé

Sélection des matériaux et propriétés équivalentes Le succès d’un matériaux ar-

chitecturés réside dans le choix des matériaux à combiner et leur répartition afin d’obtenir

un bon compromis. On cherche en effet à conserver au maximum les avantages de cha-

cun des matériaux et non les inconvénients de chacun. Alors que la problématique de

l’arrangement spatial des phases est abordée par des méthodes d’optimisation de forme

dans la suite de la thèse, celle du choix des matériaux constitutifs peut être traitée par

des méthodes de sélection des matériaux. Dans les deux cas, il est nécessaire de définir

des indices de performance (ou fonctions objectif) qui traduisent le cahier des charges et

évalue la pertinence de chaque solution (couple matériaux–géométrie). La figure 4 est

une illustration de l’utilisation de carte des propriétés pour comparer la performance de

plusieurs solutions, monolithiques ou architecturés.

Les indices de performance pour les matériaux architecturés font naturellement in-

tervenir des modules équivalents ou macroscopiques qui résultent d’une étape d’homo-

généisation. Il convient d’être particulièrement précautionneux dans le choix de ces pro-

priétés équivalentes, notamment lors de comparaison de matériaux architecturés avec des

matériaux monolithique. La figure 4 illustre les surprises que l’on peut rencontrer. Les

matériaux sandwich représenté sur cette carte dépassent les expressions de Voigt et Reuss,

qui ne sont pas des bornes pour le module de flexion.

Lorsque l’on s’intéresse à la rigidité globale en flexion, l’épaisseur relative du panneau

et le rapport des modules de peaux et d’âme peuvent rendre la contribution du cisaillement

transverse non-négligeable. Ce point est illustré dans le manuscrit et sert de justification à

la prise en compte du module de cisaillement transverse dans les problèmes d’optimisation

traités par la suite.

Nous nous intéressons plus particulièrement aux performances en rigidité mécanique

de panneaux architecturés. Les modèles de poutre et de plaque sont alors des cadres

appropriés à l’étape d’homogénéisation qui permet de calculer les modules équivalents de

rigidité.

Modèles mécaniques de poutre et de plaque L’élancement des poutres et plaques

motive à définir des modèles macroscopiques qui s’affranchissent d’une ou deux coor-

données spatiales. L’approche suivie dans cette thèse est celle de Reissner et consiste

à définir des efforts macroscopiques. Dans le cas du modèle poutre de Timoshenko, ces
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Résumé étendu - en français

efforts sont : 



N(x1) =

∫ h/2

−h/2
σ11 dx3

M(x1) =

∫ h/2

−h/2
σ11x3 dx3

Q(x1) =

∫ h/2

−h/2
σ13 dx3

(1)

où σij sont les composantes du tenseur des contraintes et h l’épaisseur du panneau (fig-

ure 5). Ces efforts macroscopiques sont dénommés force tangentielle N , moment fléchissant

M et force normale Q.

h

b

e
1

e
2

e
3

Figure 5: Plaque homogène d’épaisseur h et largeur b.

Les cinématiques associées sont respectivement la déformation tangentielle e, la cour-

bure χ et le taux de cisaillement γ (figure 6). La loi de comportement élastique reliant

ces déformations aux efforts macroscopiques peut s’écrire sous la forme suivante pour faire

apparaitre les coefficients de souplesse :



e

χ

γ


 =



a b k

b d l

k l f






N

M

Q


 (2)

où les composantes sur la diagonale renseignent sur la réponse élastique du panneau aux

sollicitations élémentaires : la souplesse en traction a, la souplesse en flexion d et la

souplesse en cisaillement transverse f.

Dans le manuscrit, la généralisation au modèle plaque de Reissner-Mindlin est présenté

en détail.

Identification des modules de flexion et cisaillement transverse par essais de

flexion quatre points Les essais de flexion (trois ou quatre points) sont très fréquemment

utilisés pour caractériser les panneaux. L’essai de flexion quatre points présente l’avantage

de solliciter la poutre avec un moment fléchissant homogène entre les deux appuis centraux

(figure 7).

La souplesse de flexion est déduite de la pente de la courbe force–déplacement (figure 8)
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0.1 La structure sandwich :

Exemple emblématique de panneau architecturé

Figure 6: Parallélépipèdes soumis aux trois déformations macroscopiques du modèle poutre de
Timoshenko.

Figure 7: Schéma d’un essai de flexion quatre points. Le chargement est réparti sur les deux
point d’appuis supérieurs. Les distances entre appuis supérieurs est dénommée s, la portée l, et la
longueur en cisaillement L.

0

20

40

60

80

100

120

140

160

180

0 0.5 1 1.5 2

F
or

ce
F

[N
]

Deflection δ [mm]

S−1

step 1
step 2
step 3
Linear fit

Figure 8: Courbes force–déplacement de trois séquences de charge–décharge en flexion quatre
points. La souplesse S est mesurée sur la pente des deuxième et troisième décharges entre 80 et
160 N.
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telle que :

S =
∂δ

∂F
(3)

où F est la force totale appliquée sur les deux appuis supérieurs, et δ est leur déplacement

vertical. Plusieurs séquences de charge–décharge sont effectuées et la pente est mesurée

sur le début des deuxième et troisième décharges.

L’évolution des efforts macroscopique le long de la poutre sont tracés sur la figure 9.

Par intégration de l’énergie élastique sur la poutre, on obtient l’expression suivante pour

la souplesse en flexion quatre points S4p :

S4p =
(3l − 4L)L2

12
d +

L

2
f (4)

où la portée l et la longueur en cisaillement L sont illustrées sur la figure 7. La souplesse

en flexion trois points S3p est déduite de l’expression précédente en choisissant L = l/2 :

S3p =
l3

48
d +

l

4
f (5)

Figure 9: Variations of the bending moment M and the transverse force Q along the beam for a
four-point bending test.

En négligeant la contribution du cisaillement, on peut obtenir une sur-estimation de la

souplesse de flexion d. Si celle-ci n’est pas négligeable, les normes internationales ASTM

(C393, D7250) propose une procédure expérimentale pour déterminer à la fois la souplesse

en flexion et en cisaillement transverse. Cette procédure consiste à effectuer plusieurs essais

de flexion avec une longueur de cisaillement L fixe et différentes portées l. Les souplesses

mesurées sont tracées en fonction de l et doivent s’aligner sur une droite. L’équation

d’Allen (4) permet de relier les coefficients de souplesse à la pente S′ et à l’ordonnée à

l’origine S0 de cette droite : 



d =
4

L2
S′

f =
8

3
S′ +

2

L
S0

(6)
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0.2 Homogénéisation périodique de panneaux architecturés

4e-08

5e-08

6e-08

7e-08

8e-08

9e-08

1e-07

70 80 90 100 110 120 130 140

4-
p

oi
n
t

b
en

d
in

g
co

m
p

li
an

ce
S

[m
2
/N

]

Lower span length l [mm]

S′

S0

Figure 10: Mesures de souplesse en flexion quatre points S pour plusieurs valeur de portée l. Les
coefficients de souplesse en flexion et cisaillement sont calculés à partir de la pente s′ et l’ordonnée
à l’origine S0 de la tendance linéaire.

La position des appuis doit être choisie de sorte que le rapport de longueur l/L doit être

compris entre 3 et 5. En outre, la longueur en cisaillement L dépend aussi de l’épaisseur du

panneau, de la largeur des appuis et de la longueur interne de l’architecture du panneau.

Le rapport L/h doit être supérieur à 2. La géométrie des appuis peut être cylindrique

ou rectangulaire. Il faut juste vérifier que les surfaces de contact soit simultanément suff-

isamment grandes pour limiter l’indentation et suffisamment petite en comparaison de la

longueur de cisaillement L. L’indentation provoquera une non-linéarité sur les courbes

de force–déplacement due à la plastification sous l’appuis. Des appuis trop larges impli-

queront une estimation trop rigide du coefficient de cisaillement.

Même si le cisaillement transverse est pris en compte, l’élancement de la poutre doit

être suffisant pour vérifier les hypothèses d’un modèle poutre (ou plaque). Ainsi, on choisit

typiquement une épaisseur relative h/l inférieur à 0.3. Le choix de la largueur doit prendre

en compte la longueur interne de l’architecture (comme pour la longueur de cisaillement).

Cependant, il convient de la choisir de sorte que le rapport b/h soit compris entre 2 et 5

selon l’épaisseur (respectivement du plus épais au plus fin).

0.2 Homogénéisation périodique de panneaux architecturés

Cette partie détaille uniquement l’étape d’homogénéisation qui est un pré-requis pour

la sélection ou l’optimisation de motifs de panneaux ou tôles architecturés. Nous nous

intéressons dans le cadre de cette thèse uniquement à des architectures périodiques dont

les propriétés équivalentes peuvent être calculées exactement sur la cellule périodique.
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Procédure d’homogénéisation Cette étape d’homogénéisation, illustrée sur la fig-

ure 11, consiste à substituer au panneau architecturé tridimensionnel une coque ou une

plaque bidimensionnelle dont les propriétés homogènes permettent d’estimer le comporte-

ment moyen du panneau. Ces propriétés homogènes équivalentes sont identifiées sur une

cellule périodique soumise à des chargements élémentaires (traction, flexion pure, cisaille-

ment transverse, etc.).

Figure 11: Homogénéisation périodique de panneau : le panneau hétérogène tridimensionnel est
remplacé par une coque ou plate bidimensionnelle avec des propriétés homogènes équivalentes.

En ce qui concerne le modèle coque, les sollicitations élémentaires de traction et flex-

ion sont appliquées par l’intermédiaire d’une pré-déformation. Les frontières de la cellule

périodique sont alors soumises à des conditions de périodicité ou libre de contrainte pour

les faces supérieures et inférieures du panneau. Il est possible d’imposer les efforts macro-

scopiques en ajoutant des équations globales sur ces efforts dont les inconnues sont les

composantes de pré-déformation. L’identification des coefficients de souplesse est possible

soit par ces valeurs de pré-déformations, soit par l’énergie de déformation totale.

Dans le cas du cisaillement transverse, il n’est pas possible de soumettre la cellule

périodique à une telle sollicitation en conservant les conditions aux limites de bord libre

sur les faces supérieures et inférieures. Ce chargement n’est pas équilibré par lui-même.

Deux stratégies sont alors envisagées : relaxer le problème en imposant une contrainte de

cisaillement pur sur l’ensemble des frontières de la cellule (SUBC : static uniform boundary

conditions) ; ou imposer une force volumique proportionnelle à la contrainte de flexion

pure afin d’équilibrer le chargement de cisaillement transverse (BG : bending gradient).
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0.2 Homogénéisation périodique de panneaux architecturés

Contribution du cisaillement transverse Ce paragraphe illustre l’influence du ci-

saillement transverse dans un cas de chargement classique de panneau, et compare les

deux stratégies d’homogénéisation pour le cisaillement. Pour cela une géométrie modèle

de panneau architecturé est choisit. Un échantillon de cette géométrie a été réalisée par

fabrication additive (frittage laser de poudre polyamide) et testée en flexion (figure 12).

Figure 12: Échantillon modèle en configuration d’essai de flexion quatre-points. Il a été réalisé
par frittage laser de poudre polyamide.

La figure 13 présente des mesures et estimations de souplesse en flexion quatre points

en fonction de la portée l et pour trois valeurs de longueur en cisaillement L. Des données

expérimentales sont comparées à des simulations par éléments finis et à l’expression analy-

tique d’Allen (4) qui utilise des coefficients de souplesse identifiés numériquement avec les

chargements SUBC ou BG. Il est mise en évidence une très bonne prédiction du comporte-

ment moyen lorsque les conditions aux limites sont respectées, i.e. avec le chargement issu

du gradient de flexion (BG).

Tôles gaufrées en acier Une autre application de cette procédure d’homogénéisation

de panneau est présentée dans ce chapitre. Il s’agit de tôles gaufrées en acier et du choix

de paramètres géométriques afin d’obtenir les propriétés souhaitées. Plusieurs motifs de

gaufrage sont étudiés, en particulier un motif hexagonal dont les propriétés équivalentes

calculées sont représentées sur la figure 14 en fonction de l’amplitude de gaufrage H.

À partir de ces résultats de calcul sur la cellule périodique, on peut déduire en utilisant

des règles de proportionnalité les propriétés pour d’autres jeux de paramètres géométriques.

Il est alors envisageable de construire un abaque représenté sur la figure 15. On peut alors

sélectionner directement sur cet abaque une tôle gaufrée ayant le même module de flex-

ion qu’une tôle plate de référence, mais pour une épaisseur moindre. En contrepartie, on

génère une diminution du module de traction, que l’on peut mesurer sur la même figure.

Cette étude démontre alors comment les méthodes d’homogénéisation et celle de sélection

des matériaux permettent de construire des outils graphiques efficaces pour la conception

sur mesure de panneaux architecturés.
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Figure 13: Comparaison de l’équation analytique (4) avec les simulations éléments finis et les
données expérimentales. La souplesse en cisaillement f est calculée avec : des conditions aux
limites en contrainte uniformes (lignes bleues) ; une force surface issue du gradient de flexion
(lignes noires).

0.3 Optimisation de forme

Les propriétés équivalentes caractérisent précisément les performances en rigidité des pan-

neaux architecturés. La procédure d’homogénéisation décrite précédemment permet de

identifier ces modules à partir des énergies de déformation résultant de calculs d’élasticité

sur la cellule périodique. Tous les outils sont alors disponibles pour résoudre le problème

d’optimisation cherchant à maximiser un compromis entre les différentes propriétés méca-

niques (flexion et cisaillement transverse par exemple).

Optimisation topologique par ligne de niveau Il existe d’innombrables méthodes

d’optimisation, plus ou moins approprié au problème que l’on se pose ici. Nous nous

sommes intéressés aux techniques d’optimisation de forme. Plus particulièrement, les

techniques d’optimisation topologique autorise une très grande liberté quant à la topologie

(i.e. plus ou moins le nombre de trous) et ne nécessite pas de paramétrisation de la

géométrie. La méthode par ligne de niveau consiste à définir la géométrie implicitement par

l’intermédiaire d’une fonction dit level-set. Son iso-valeur égale à zéro définit la frontière

de la géométrie et donc la modification itérative de cette fonction permet de transformer
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Figure 14: Variations des modules de traction et de flexion en fonction de l’amplitude du gaufrage
H. Deux types de motifs sont étudiés : les motifs non-seuillés, puis les motifs seuillés à 2 mm
pour H > 2 mm.

progressivement la géométrie. C’est cette méthode qui a été choisie et implémentée pour

optimiser la géométrie d’une cellule périodique bidimensionnelle de panneau architecturé.

L’évolution de la fonction level-set est gérée par une équation de transport. Dans le

cas d’un problème d’optimisation de la compliance d’une structure (ou du coefficient de

souplesse équivalent d’une cellule périodique), le champ de vitesse est déduit de la densité

locale d’énergie élastique. Chaque itération consiste donc à résoudre un ou plusieurs

calculs par éléments finis pour chaque sollicitation, puis à résoudre quelques itérations de

l’équation de transport en utilisant les résultats des calculs précédents.

Formulation du problème d’optimisation Nous avons noté l’importance de la con-

tribution du cisaillement transverse à la rigidité globale en flexion d’un panneau dans

certaines configurations. Il est évident qu’une optimisation mono-objectif de la rigidité

en flexion pure aboutirait à la géométrie non satisfaisante de deux plaques uniformes dis-

jointes. Il est alors nécessaire de prendre en compte la rigidité en cisaillement transverse

dans une fonction multi-ojectif comme par exemple une rigidité de flexion trois points ou

un produit de puissance. En choisissant ce dernier, le problème d’optimisation s’écrit :

min
{Ω⊂V s.t. F (Ω)=0}

Jα(Ω) = d
α
f
(1−α) (7)
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Figure 15: Abaque permettant de choisir les valeurs appropriées des paramètres géométriques
(l’épaisseur de tôle t et l’amplitude de gaufrage H) en fonction des modules de rigidité souhaités.
La masse économisée par rapport à une tôle plate est donnée par la réduction d’épaisseur.

où la contrainte F (Ω) = 0 force la fraction de surface à la valeur Āf , en exprimant :

F (Ω) =
A(Ω)

A(V )
− Āf (8)

L’application A désigne l’aire du domaine auquel elle s’applique. La fonction objectif

Jα(Ω) introduit le coefficient α qui quantifie l’importance relative entre flexion et cisaille-

ment. Choisir α = 1 revient à optimiser uniquement la souplesse en flexion, et α = 0

uniquement la souplesse en cisaillement.

Les détails techniques de l’implémentation de la méthode d’optimisation, ainsi que

l’influence de chacun des paramètres sont décrits dans le manuscrit. Seul l’influence du

coefficient α et celle de la géométrie initiale sont mentionnées dans ce résumé étendu.

Constructions de fronts de Pareto Le coefficient α introduit dans la fonction objectif

du problème (7) contrôle l’importance relative de la flexion par rapport au cisaillement

transverse. En effectuant plusieurs simulations avec des valeurs de α allant de 0 à 1, il

est possible de construire une estimation du front de Pareto. Le front de Pareto d’un

problème d’optimisation multi-fonctionnel est l’ensemble des solutions optimales, i.e. des

solutions pour lesquelles il n’en existe aucune autre qui soit meilleur sur tous les indices

de performance.

24



0.3 Optimisation de forme

Sur la figure 16a le meilleur compromis recherché entre flexion et cisaillement se situe en

bas à gauche. Les lignes droites pointillées représentent les valeurs extrêmes inatteignables

et les points correspondent aux motifs de cellule périodique optimisés pour les différentes

valeurs de α. La même géométrie initiale et la même contrainte de surface sont utilisées

pour toutes les simulations. Les points semblent s’aligner sur une courbe convexe qui

s’apparente à un front de Pareto pour ce problème.
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Figure 16: Construction d’un front de Pareto en optimisant la fonction objectif (7) à partir de
la même géométrie initiale mais différentes valeurs du coefficient α. La fraction de surface est
imposée à Āf = 0.5.
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Sensibilité à la géométrie initiale Malgré la méthode d’optimisation choisie qui au-

torise des changements topologiques par coalescence des trous, les résultats montrent une

forte sensibilité à la géométrie initiale. La figure 17 présente en particulier trois géométries

initiales ayant un nombre de trous différent et les géométries optimisées correspondantes

pour une même contrainte de surface Āf = 0.5. On observe que la topologie est conservée

lors de l’optimisation et que le compromis trouvé en terme de souplesses mécaniques est

très différent pour chaque cas.

Parmi les nombreuses simulations d’optimisation effectuées à partir de différentes

géométries initiales montrent que la topologie peut être modifiée dans certain cas, mais

la forte influence de la géométrie de départ sur le résultat est toujours observée. Cette

sensibilité provient de la nature du problème d’optimisation. L’expression d’une fonc-

tion objectif qui dépend des propriétés équivalentes impliquent une non-unicité de la so-

lution du problème d’optimisation du fait de l’homogénéité des sollicitations pour les

déterminer. Cependant cet inconvénient peut aussi devenir un avantage car il rend possi-

ble l’amélioration d’une solution existante tout en restant dans un domaine restreint qui

assure la faisabilité de la solution optimisée.
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Figure 17: Comparaison des rigidités des motifs initiaux et finaux pour trois différentes topologies
initiales et deux valeurs de fraction surfacique Āf = 0.5 et 0.7. Le coefficient d’échange est α = 0.5.

Les motifs périodiques initiaux et finaux de la figure 17 ont été réalisés par frittage

laser sélectif de poudre polyamide. Ces échantillons sont présentés sur la figure 18. Ils ont
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0.4 Conception optimale d’un panneau sandwich isolant

été testés en flexion quatre points avec différentes longueurs de cisaillement afin d’identifier

les modules de souplesse en flexion et en cisaillement. Ces résultats sont présentés dans le

manuscrit et comparés aux prédictions numériques par homogénéisation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18: Échantillons produits par frittage laser sélectif en polyamide : géométries initiales
(a-d), et géométries optimisées associées (e-h).

0.4 Conception optimale d’un panneau sandwich isolant

Nous arrivons à la partie de synthèse de ce travail qui consiste à mettre en œuvre les outils

développés dans le cadre d’une amélioration d’un produit industriel existant. Il s’agit d’un

panneau sandwich isolant conçu et fabriqué par la société Sainte-Marie Constructions

Isothermes. Le panneau est constitué de deux parements en acier inoxydable espacés par

des raidisseurs en acier. L’espace entre les parements et les raidisseurs est comblé avec

de la laine minérale isolante. Un schéma du panneau est présenté sur la figure 19. Le

problème que l’on se propose de traiter est l’optimisation des motifs des raidisseurs avec

une contrainte de non-évidemment dans les zones de pliage (folding distances).

Formulation du problème d’optimisation issu du cahier des charges L’étude

détaillée des fonctions à remplir par le panneau a mis en évidence deux propriétés à prendre

en compte dans le problème d’optimisation. Il s’agit de la rigidité mécanique globale en

flexion (qui fait intervenir les modules équivalent de flexion pur et de cisaillement), et la

diffusivité thermique (qui fait intervenir principalement la conductivité équivalente). La

diffusivité caractérise l’augmentation transitoire de la température sur une face du panneau

lorsque l’on chauffe l’autre face. Cette propriété d’isolation thermique est certifiée par la

norme A754(18) de l’Organisation Internationale de la Marine.
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Résumé étendu - en français

Figure 19: Schéma du squelette du panneau sandwich, constitué de deux parements ( faces) et
de raidisseurs ( stiffeners) régulièrement espacés. La zone de pliage ( folding distance) doit restée
exempte de trou.

Finalement, le problème d’optimisation choisit fait intervenir un produit de puissance

d’une fonction objectif mécanique proportionnelle au coefficient de souplesse en cisaille-

ment, et d’une fonction objectif thermique proportionnelle à la conductivité thermique :

J(Ω) = Jm
(1−α) Jth

α (9)

où le coefficient α quantifie l’importance relative de la fonction thermique sur la fonction

mécanique. Comme précédemment, une contrainte de surface est ajoutée pour stabiliser

le problème.

Front de Pareto et influence des différents paramètres Plusieurs simulations

d’optimisation avec des valeurs du coefficient α permettent de construire un front de

Pareto comme celui tracé sur la figure 20a. Les motifs optimisés correspondants sont

représentés à côté, figure 20b. Ces géométries constituent une famille de motifs optimisés

à partir du même motif initial, et donc avec des caractéristiques semblables. L’opération

a été répétée en modifiant chacun des paramètres un à un, tels que la géométrie initiale,

la fraction de surface, le rapport de forme de cellule périodique. Cela a permis de résumer

l’effet de chacun de ces paramètres sur les deux fonctions objectif mécanique et thermique,

ainsi que sur l’optimalité des géométries obtenues (tableau 1).
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Figure 20: Influence du coefficient α sur les motifs optimisés et leurs propriétés. Ces résultats
sont obtenus à partir de la même géométrie initiale et pour une fraction de surface imposée à
Āf = 0.6.

Rigidité en Isolation Optimalité

cisaillement thermique

Augmentation du coefficient α − − + + 0

Augmentation de la fraction de
surface ρ̄

+ + + − − − 0

Augmentation du
nombre de trous dans
le motif initial

+ +
+

pour les motifs
initiaux réguliers

Augmentation de la largeur de
cellule lc

− − + + + +

Table 1: Résumé de l’effet de chaque paramètre sur les performances et l’optimalité des motifs
périodiques obtenus.
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Sélection de quelques géométries de raidisseur Parmi l’ensemble des motifs pério-

diques optimisés, quatre ont été choisis comme prototype pour poursuivre l’étude. Ils

ont été choisis de sorte que leur propriété thermique soit similaire à celle du raidisseur de

référence mais pourvus d’une rigidité en cisaillement plus importante. Plusieurs valeurs de

fraction de surface et de nombre de trou sont représentées parmi ces motifs sélectionnés.
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Figure 21: Sélection de quatre motifs intéressants au sein des familles de géométrie obtenues par
optimisation.

Des modifications géométriques de régularisation ont été apportées à ces motifs en

perspective d’une production en série. Elles sont présentées en détail dans le manuscrit,

ainsi que leur impact sur les performances de chaque motif.

Sur ces motifs régularisés, une étude plus approfondie a été menée sur leurs propriétés

thermiques et mécaniques. Des simulations thermiques en régime transitoire ont été ef-

fectuées sur ces géométries de raidisseur en trois dimensions en prenant en compte les pare-

ments et la laine minérale. Des résultats graphiques sont présentés sur la figure 22. Les

performances mécaniques globales en flexion ont été mesurées expérimentalement sur des

essais de flexion quatre points avec plusieurs distances de cisaillement. Deux échantillons

prototypes ont été fabriqués par la société Sainte-Marie Constructions Isothermes aux

dimensions de 2980 × 340 × 80 mm. La comparaison des courbes force–déplacement pour

une dimension d’essai est présentée sur la figure 23. La rigidité globale caractérise la pente

de la première partie élastique. Elle est mesurée précisément sur la pente à la décharge de

cycle de charge–décharge dans ce régime élastique. Les coefficients de souplesse en flexion

et en cisaillement sont déterminés par plusieurs essais avec les longueurs de cisaillement

différentes.
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0.4 Conception optimale d’un panneau sandwich isolant

Standard △5 △6 ♦5 ♦6

e 1

e 3

max

min

e 1

e 2

Figure 22: Analyse thermique transitoire tridimensionnelle du raidisseur de référence ( standard)
et des prototypes. Le champ de température (après 60 min) de la face non-exposée est tracé
en correspondance avec le motif du raidisseur qui est situé horizontalement au centre de la face
représentée.
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Figure 23: Courbes de force–déplacement pour un essai de flexion quatre points pour les quatre
prototypes et le panneau de référence. Le modèle ♦6 apparait être le plus performance en terme de
force maximum.

Finalement, que ce soit pour ses performances thermiques ou mécaniques (rigidité et

force maximum), le modèle prototype ♦6 s’est révélé être le meilleur. Il a donc été retenu

par la société Sainte-Marie Constructions Isothermes pour devenir le prochain design des
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Résumé étendu - en français

raidisseurs de ce panneau sandwich isolant.

Conclusions et perspectives

Afin de proposer des solutions matériau performantes pour des cahiers des charges multi-

fonctionnels, la tendance aujourd’hui est de développer des matériaux architecturés dont

l’arrangement spatial des différentes phases permet d’ajuster les propriétés sur mesure.

Les structures sandwich fournissent un cas d’étude privilégié pour ce type d’approche.

Le choix d’un matériau architecturé pour le cœur contribue à obtenir un produit très

performant en terme de masse, d’encombrement, de rigidité et résistance mécanique, et

aussi d’isolation thermique par exemple. Le bon compromis entre ces propriétés résultera

du choix optimal de l’architecture et du dimensionnement.

Dans ce manuscrit de thèse, des outils numériques de conception optimale de matériaux

architecturés périodiques ont été développés et validés. Pour cela, trois points essentiels

ont été abordés :

• l’homogénéisation du motif périodique de panneaux architecturés afin d’identifier

les modules de traction, flexion et cisaillement transverse ;

• la sélection, le dimensionnement et l’optimisation du motif permettant de

fournir le meilleur compromis entre les multiples propriétés et une masse minimum.

Les propriétés considérées sont respectivement le module de flexion et le module de

cisaillement, ou la conductivité thermique et le module de cisaillement ;

• la validation expérimentale par des essais de flexion sur des échantillons modèles

et des prototypes de structures sandwich à grandes échelles.

Ce travail est une contribution au développement de méthodes systématiques de con-

ception optimale de matériaux architecturés et plus particulièrement de structures sand-

wich multi-fonctionnelles. Le résultat le plus probant est surement la proposition finale

d’une géométrie optimisée de raidisseur dans le cadre de l’étude sur les panneaux isolants.

Après les tests de qualification à la résistance au feu, cette géométrie sera probablement

intégrée par la société Sainte-Marie Constructions Isothermes dans la prochaine version

de ce produit. Concernant les tôles gaufrées en acier, ce type de matériau architecturé

fait partie des innovations potentielles d’ArcelorMittal pour répondre aux défis futurs

d’allègement des véhicules. Les méthodes d’optimisation topologique s’ajoutent aux out-

ils existants pour la conception sur mesure des matériaux architecturés.
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Multi-functional materials, capable of performing multiple “primary” functions are a

promising route for implementing new applications if they satisfy both technical and eco-

nomical criteria. Such multi-functionality however is more and more difficult to fulfill with

traditional materials. In situations where structural functions as well as functional ones

(thermal, electromagnetic, acoustic . . . ) are simultaneously required, single materials are

very often unable to fulfill complex and even contradictory requirements. The standard

strategy of materials science, micro-structure optimization, can improve materials proper-

ties, but give only a limited degree of freedom. With multi-functional materials, we have

to play with the co-existence of the different constituents (phase, material, etc.), their

spatial arrangement, their connections.

The price to pay for this extra richness is the extraordinary wide variety of potential

solutions which have to be investigated. This results in a strong difficulty to follow a

conventional trial and error strategy and consequently a new strategy is requested for

such innovative materials where modeling plays a crucial role. Materials of interest for

multi-criteria design have to be identified via modeling before being produced and tested.

Multi-functional specifications for materials and products Automotive industry

is one of the main European actors in research and development of innovative designs

and materials (4% of the turnover of the sector is invested each year in research and

development). Environmental requirements and safety — largely competitive with cost

saving — are among the major driving forces. For example, from the 1990’s the EU

standards (Euro 1 in 1992 to Euro 6 today) define more and more restrictive limits on gas

and particulate emissions (figure 24). The respect of these standards was made possible

in the last decades thanks to large improvement of engine efficiency.

Figure 24: Emission limits for the evolving EU standards in terms of carbon monoxide (CO),
total hydrocarbon (HC), nitrogen oxydes (NOx) and particulate matter (Source : “Commercial
vehicles fact sheet”, n◦1, ACEA).

In parallel, after a substantial decrease before the 1980’s, the weight of cars (figure 25)
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tends to slightly and regularly increase. This is the consequence of increasing the average

cubic capacity of new cars and increasing the number of additional features to improve

the safety and the conveniences of the passengers (such as airbags, electronics for the

engine monitoring and the driver assistance systems . . . ). Weight saving becomes an

issue for car-makers. One of the results has been the introduction of more expensive but

lighter materials such as aluminum alloys and polymer-based composites. From 1990 to

2000, an average increase of +50 to +100 kg of aluminum alloys and +110 to +140 kg of

polymer-based composites can be noticed into cars of size class M2 (family’s cars).
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Figure 25: Sales-weighted curb weight of new domestic and import cars in the US by size class
(model years 1975–2009) (Davis et al., 2010).

Weight has to be saved on constitutive materials by obviously keeping satisfied the

specifications : structural (stiffness, strength, etc.) as well as functional (thermal insula-

tion, acoustic absorption, etc.). For instance, the car roofs have to ensure a prescribed

stiffness at minimal weight. Same function is required for car bonnet with an additional

prescribed crash energy absorption to ensure the requirements for the pedestrian crash

(part of the “European new car assessment program”, Euro NCAP). Another typical ex-

ample is the thermal screen that protects the silencer. It has to fulfill both requirements

on stiffness and thermal insulation at minimum weight.

This trend to fulfill more and often conflicting requirements is common to numerous

fields of industrial interest. For example in the building industry, energy saving and com-

fort are ones of the main objectives of the environmental high quality standards (HQE).

The improvement of thermal insulation and acoustic absorption of the constitutive ma-

terials while keeping good structural properties is crucial. The specific case of insulation

panels dedicated to safety rooms on offshore platforms will be emphasized later as an

illustration of the multi-criteria optimization procedure.
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Architectured materials The trend to combine multiple functions required for ma-

terial products drive to search for attributes that are not offered by any single material.

Material selection based on performance metrics and charts (Ashby, 2005) is an efficient

approach to detect promising materials. The chart on figure 26 locates the main material

classes with respect to flexural stiffness and thermal conductivity. It reveals some “holes”

unfilled with any single material. Some parts of these holes are inaccessible because of

the limitation of the size of the atoms and the nature of the forces that bind them. But

others remain empty and could be, in principle, filled. For a structural application, only

the upper-left corner is interesting and defines a vector for material development. More

generally, to investigate these empty regions, the traditional strategy is based on the de-

velopment of new alloys, new polymers chemistry and new composition of ceramics. It

results in an incremental improvement of the properties from the old existing materials.

In comparison, the alternative strategy of mixing and organizing materials reveal a more

step-like evolution of the gain. The success of the fiber reinforced plastics, foams and

sandwich structures is an encouragement to explore the way of architectured materials

(Fleck et al., 2010).

Interesting 

empty 

region

Uninteresting 

empty region

Figure 26: Flexural-modulus–density chart on which lie the main classes of materials. Part of
the space is occupied by materials, part is empty (the “holes”). Developing new materials in the
direction of the upper-left corner allows components with greater stiffness to conductivity ratio.

What is an architectured material? It is a combination of two or more existing mate-
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rials, or one material and space. The denomination of architectured material is preferred

to hybrid materials which refers more specifically to the mix of organic and inorganic

materials at the atomistic scale (Portier et al., 2001, Walcarius, 2001). The architectured

materials that combine one single material and empty space are part of the porous ma-

terials at large volume fraction of matter and of the cellular materials at low volume

fraction.

Two ideas underly the concept of architectured materials. The first is the duality of the

scales. Sometimes, architectured materials are thought and discussed as an association of

materials with details on the spatial distribution of matter. Sometimes, it is convenient —

for designing and comparing with monolithic materials — to view them as “materials” with

their own density, mechanical and thermal properties. The second concept is the ability

of tailoring the architectured materials through geometrical degree of freedom in order

to tune the effective properties. For instance, the stiffness, strength and permeability of

metallic foam can be modified by the type of porosity (open or close cells), the connectivity,

the volume fraction, the cell size, etc.

Materials from nature often reveal architectures and moreover an imbrication of dif-

ferent levels of architecture denoted hierarchical structures. For instance, the glass sponge

Euplectella, which lives in deep waters, reveals a skeleton with a shape of complex cellular

structure made of glass spicules. The spicules themselves are made of concentric layers of

silica separated by thin protein layers in order to improve the fracture toughness. Usually,

architectures observed in nature are extremely sophisticated and can be interpreted as the

result of a slow evolution (optimization?) process — millions of years of natural selection.

The central idea of this PhD is not to mimic the natural architectured materials but to

follow the approach of tailoring the material distribution driven by a relevant performance

metric or objective function. This can be seen as a first step in a “material by design”

strategy. The next one, not treated here, will be multiplying the levels of architectures. It

could be to assemble different architectured materials within a component or to develop

specific microstructures for the constitutive material of a foam or a truss. The tailored

blanks (figure 28) are an example of how joint steel sheets (made of different alloys with

different thicknesses) can be used to design a component with a tunable behavior to crash.

The emblematic case of sandwich panel : material or structure? Both! As an

emblematic case of architectured materials, the sandwich panel maintains a certain duality

about these two scales. Sometimes it is viewed as two sheets bounded on a core material

and sometimes as a “material” in the general sense with effective properties. Whereas

a structure typically gives a response only for one or few loadings, an effective behavior

implies a response for any loadings. This enables the comparison with monolithic materials

and the use of classical rules of design.
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(a)

(b) (c) (d)

Figure 27: The glass sponge Euplectella : an example from nature of hierarchical system. Its
skeleton (a) is a complex cellular structure (b) made of glass spicules (c) that are concentric layers
of silica and protein (Dunlop et al., 2011).

The distinction between structure and material is clear when speaking about the ef-

fective shear modulus of a metallic foam in comparison with the deflection of a bridge

under its weight. But, when the separation between scales is not clear, the relevant ef-

fective properties are no more intrinsic and may include parameters from the structure

level. This is the case for sandwich panels when the bending modulus depends on the

slenderness and the type of loading.

Figure 28: Example of tailored blank. The inner view of a front door made by butt welding of
two sheets of different steel alloys. [Source: ArcelorMittal]
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How can we distribute matter efficiently ? While convinced by the benefits of

architectured materials, the key issue is how to design them. For example, an hybrid

material made with two different constitutive materials : phase A (with good property P1

but poor property P2) and phase B (with good property P2 but poor property P1). How

to choose the distribution of the phases A and B such that the result will combine the

strength and not the weakness of both ?

This optimization problem is usually solved intuitively thanks to engineering knowl-

edges. Electric cables is a famous example where architecture enables to combine a high

tensile strength, a low flexural stiffness and a low resistivity. But in many multi-functional

problems, finding the architecture that gives the best combination of conflicting properties

is not as straightforward. Numerical optimization methods can help. The distribution of

constitutive phases — seen as an optimization variable — have to be searched for in a

so large admissible space that exploring by trial and error is not an appropriate strategy.

The topological optimization techniques might be relevant tools in this case.

Figure 29: Designing a hybrid — here, one with high strength and high electrical conductivity.
The figure shows the resistivity and reciprocal of tensile strength for 1700 metals and alloys. We
seek materials with the lowest values of both. The construction is for a hybrid of hard-drawn OFHC
copper and drawn low alloy steel, but the figure itself allows many hybrids to be investigated. (Ashby
and Bréchet, 2003)
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In this context, the present work deals with the design of architectured panels following

the three main steps : description of homogenization methods required to estimate panels

properties, optimization of model architectured panel that combine flexural and shear

stiffness, and optimal design of a multi-functional sandwich panel.

With a special interest on the case of sandwich panel, chapter 1 describes some features

of architectured panels. It focuses on the description of the mechanical characteristics

of such panels with a special interest on how can be used material selection methods.

Shell and plate models are described in order to introduced the membrane, flexural and

transverse-shear moduli. A particular interest is given to the transverse-shear contribution

within the global bending response of a panel. The experimental identification of the

relevant moduli are described (three and four-point bending tests).

The issue of evaluating the performances of any unit cell architecture lies in the esti-

mation of effective properties. Chapter 2 is dedicated to the description and the use of

periodic homogenization methods in order to identify the effective plate properties. Based

on the described homogenization procedure, selection and parametric study is presented

on an example of architectured steel sheet in the context of innovative steel solutions

development for automotive applications.

A parametric approach reveals to be reducing and justifies the application of topological

optimization techniques to the specific problem of periodic architectured material. After

a short introduction to shape optimization (on literature and theoretical bases), chapter 3

presents the application of the level-set method to the mechanical but multi-functional

optimization problem that consists in searching the best compromise between flexural and

transverse-shear compliances at a given weight. Some experiments on prototypes produced

by additive manufacturing validates the numerical results.

Finally, a complete procedure is proposed in chapter 4 for the optimal design of

sandwich stiffeners. Insulation sandwich panels, developed and produced by the com-

pany Sainte-Marie Construction Isothermes, provide interesting conflicting specifications.

These specifications leads to a multi-functional optimization problem on the stiffeners,

which is treated with the tools developed in chapter 2 and 3. Prototypes were produced

and tested to validation the optimization approach and select a promising design.
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Chapter 1

An emblematic architectured

material : the sandwich structure





Introduction

As mentioned in the general introduction, sandwich structure is an emblematic example

of the architectured material and an ideal case to apply the strategy of “materials by

design”.

The sandwich structure consists in the association of two materials : a core light ma-

terial in-between two faces (or skins) of a stiff material. The main interest is to combine a

high flexural stiffness with lightness. The flexural stiffness, through the moment of inertia,

strongly depends on the thickness. The insertion of a light material in the middle increases

the thickness while keeping reasonable the global weight. The introduction of such a con-

cept into the human-made structures is quite recent (first discussed by Duleau in 1820 and

really developed during the two World Wars for aircraft construction (Zenkert, 1997)), but

again some examples from nature show similar architectured structures (figure 1.1).

In different contexts of applications, it enables to perform multi-functional specifica-

tions thanks to a wide choice of material combinations and architectures. Section 1.1

presents some applications and typical specifications the sandwich structure is dedicated

for. In the section 1.2, different architectured materials often included in sandwich struc-

tures are described, while the section 1.3 lists and describes the elastic mechanical proper-

ties of the sandwich material itself. In order to examine in more details the kinematic and

the stress distributions into the sandwich panels — but more generally into any kind of

stiffened panels — the macroscopic shell and plate models are presented in the section 1.4.

The question of identification of the macroscopic compliance components is treated in the

last section 1.5.

Figure 1.1: Sandwich-like structure of a bird bone.
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Chap. 1 - An emblematic architectured material : the sandwich structure

1.1 Applications and specifications

Among applications that require flexural stiffness at a minimum weight, the aerospace

and aeronautic industries were the first to afford the development of sandwich structures.

The driving force being the high cost — in fuel or payload — of the weight saved on a

satellite or an airplane. An example is the use of aluminum honeycomb sandwich in an

satellite container on figure 1.2a. These ten last past years, the trend was to increase

the percentage of carbon fibers reinforced plastic (CFRP) in aircraft production. The

next-generation of the Airbus aircraft A350 will be made of more than 50% of composites.

The use of composite laminates provides a high stiffness–lightness ratio and extends the

service intervals between maintenance and corrosion inspections. In combination with

polymer honeycombs, it results in high performance panels that competes with aluminum

structures (figure 1.2b).

(a) Satellite container made of
aluminum honeycomb sandwich
panels.

(b) Nasa development of sandwich with
glass fibers reinforced polymer faces and
a honeycomb polymer core.

Figure 1.2: Examples of sandwich materials used in the aerospace industry.

More generally, all the transportation applications (train, shipbuilding and automo-

tive industries) are concerned. The choice of the materials and the architectures evolves

according to the value-added to each product and the rate of production. The available

fundings for the development of the BMW/Oracle America’s cup trimaran enable the use

of high performance sandwich material specifically designed and hand manufactured, such

as curved panels with honeycomb core and non-uniform ply sequences of CFRP faces. At

the opposite, the automotive applications are submitted to a market with a larger volume

of sold pieces and a relatively low profit margin. The result is the development of new

materials strongly constrained by high-rate and low-cost processes. Only few exceptions

exist for small market of specific vehicles such as refrigerating vehicles. For instance, corru-

gated panels (figure 1.3a) made of hydroformed steel sheets brazed together are developed

in such context.
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1.1 Applications and specifications

(a) A corrugated panel obtained by
brazing of two hydroformed steel sheets
produced by Borit NV. It reveals high
performance for flexural stiffness, fire
and electromagnetic shielding.

(b) A car component obtained by deep-drawing of a
QuietSteel sheet (steel-polymer sandwich) produced by
ArcelorMittal. It performs high acoustic absorption.

Figure 1.3: Architectured materials developed for automotive applications.

But even more than specific stiffness, sandwich structures enable to perform multiple

other requirements mostly thanks to specific core materials :

• Energy absorption. Sandwich panels are widely used for their ballistic properties.

The core material, in this case, is not only chosen for its lightness but also its high

level of energy dissipation. When subjected to an impact test, the sandwich panel is

expected to behave such that the kinetic energy of the projectile is absorbed by both

perforating the upper face and damaging the core material, while keeping the back

face unperforated (Hanssen et al., 2006, Zeng et al., 2010).

• Acoustic absorption. The QuietSteel, a steel-polymer sandwich developed by Arcelor-

Mittal (figure 1.3b), make use of the viscoelastic behavior of the polymer to shift the

resonance frequency and to produce a high acoustic absorption of the sheet for the

given in-use range of frequency (see Grootenhuis (1970) for details on vibrations with

viscoelastic materials). Sometimes, the tunable architecture of the core is a way to

control the absorption behavior of the structure (Gasser et al., 2004).

• Thermal insulation and Fire shielding. The choice of an aerated core material is

particularly adapted to the combination of lightness and thermal insulation since air

have an extremely low thermal conductivity (Ashby, 2005). The problematic is then

to combine insulation and stiffness, while just local stiffeners or joints will fall down

the insulation. In the case of fire shielding, the heat capacity and fusion temperature

are additional properties to take into account for the materials selection.

• Thermal transfer. Contrary to the previous passive properties, it is also possible to

confer on the sandwich structure active properties about thermal exchange. Some

cellular cores allow one or two fluids to flow inside the panel and exchange heat

with the outside or in-between the fluids. The heat can be also stored by filling

the honeycomb cells with a phase change material (Hasse et al., 2010). This is a
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promising way, in houses and buildings, to store the heat from daylight and release

it later.

• Dielectric constant. In the field of telecommunication, some structures need to be

as much as possible transparent to microwaves, like radomes that shield microwave

antennas (Ashby, 2005). Again, the use of an aerated core material leads to a low

dielectric constant while stiffness is ensured by the skins (Huynen et al., 2011).

The last but not least applicative field is the construction industry. While for the

previous high performance applications the sandwich structure is usually more expensive

(because of both process and material costs), its hight structural stiffness allows sometime

the use of cheaper constitutive material. This is the case for most of the interior doors

that are flush doors. It consists in a wood frame filled with a cardboard honeycomb core

and covered by two faces of plywood or vinyl. Concerning the multi-functional aspect,

steel–polymer-foam sandwich panels — such as Ondatherm panels by ArcelorMittal -

(figure 1.4a) — are commonly found in walls of sport facilities or commercial building,

due to their thermal insulating ability as well as their high acoustic absorption and fire

resistance. At the opposite of large series productions, the building construction is made of

unique projects and small markets that enable the development of innovative and unusual

association of materials. Figure 1.4b shows a sandwich plate with a honeycomb polymer

core and glass or steel fibers reinforced concrete. It results in a light, stiff and strong panel

that shows the same surface aspect than a monolithic concrete wall.

(a) Insulation panel Ondatherm T proposed by
ArcelorMittal to build walls with high acoustic and
thermal properties as much as fire protection.

(b) Association of polymer honey-
comb Nidaplast with a fiber rein-
forced concrete Ductal.

Figure 1.4: Examples of sandwich structures in the construction industry.
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1.2 Materials and architectures

1.2 Materials and architectures

Through the detail of the applications listed above as examples, an overview of the variety

of materials and architectured has been proposed. This section will describe an non-

exhaustive list of architectured material that are themselves used as constitutive materials

in sandwich structures.

1.2.1 Composites

The term composites is widely recognized to name inclusion or fiber reinforced materials.

As mentioned previously, glass or carbon fiber reinforced plastic (resp. GFRP or CFRP)

are typically used for high technology products (sports articles, aircraft, military products),

and become common in numerous other fields such as public transportation or machine

engineering (Wielage and Thielemann, 2004). The concept of composites is to combine the

interesting properties of two materials by mixing them. In the case of reinforced plastics, it

consists in combining the lightness and/or cheapness of a polymer matrix with the stiffness

and strength of inclusions or fibers. Different topologies of reinforcement exist :

• Inclusions. Polymer matrices are usually charged by inclusions for cost saving almost

without losing any mechanical properties. Several cases also concern multi-functional

objectives such as electromagnetic properties, conductivity or fire resistance. Metallic

matrices stiffened by ceramic inclusions were widely studied but have been confronted

to a limited resulting toughness.

• Short fibers. Introducing short fibers into polymer matrices leads to a larger increase

of the mechanical properties than introducing inclusions, still keeping the ability to

process with injection molding techniques.

• Unidimensional fibers. This is the most frequently encountered type of reinforcement

(figure 1.5a) due to the terrific increase of the mechanical properties. Anisotropic

properties may appear but can be removed by imposing a symmetric sequence of plies.

While the inescapable hand-crafted manufacture has curbed the use of such materials,

the emerging of mechanization to assemble pre-impregnated plies participates to the

democratization of laminates.

• Textiles. The 2D or 3D woven fabrics (figure 1.5b and c) are being studied as a

solutions to avoid the sensibility of unidimensional composites to defects and buckling.

The development of predictive models for properties and processing — such as resin

transfer molding (RTM) — remains a key issue.

The most common polymers for matrix material are polyester and epoxy resin. Their

low viscosity enables to relatively easily transfer into fabrics. The thermoplastic polymers

often give better impact strength. The three most encountered fiber materials are glass,
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(a) Microstructure of an uni-
directional CRFP (Gonzalez
and Llorca, 2007).

(b) Plates of 2D-weaved
CFRP.

(c) Interlock fabric preform
made of carbon fibres destined
to be filled with a polymer ma-
trix by RTM process (De Luy-
cker et al., 2009).

Figure 1.5: Three types of arrangement of reinforcing fibers : (a) unidirectional, (b) 2d-woven
and (c) interlocked or 3D-woven.

carbon and aramid. The essential criteria of choice is the Young’s modulus over price

ratio. The ratio between high performance carbon and glass fibre is around 5 for the

Young’s modulus and higher than 10 for the price (Carlsson et al., 2004).

Laminated or woven composite plates are frequently joined on honeycomb or other

cellular core materials to produce a sandwich structure. It results in a two-level hierarchical

material.

1.2.2 Porous and cellular materials

Porous and cellular materials are architectured materials made of one single constitutive

material and space. The term porous usually names the high relative density materi-

als, while cellular refers to low relative densities. Both may concern random or organized

architectures. As mentioned for specific applications (section 1.1), these materials are par-

ticularly efficient as core materials in order to provide lightness, impact energy absorption,

thermal insulation, dielectric constant, etc.

Three main architectures must be mentioned :

• Porous materials. That means bulk materials with distributed pores. These archi-

tectures have relatively few degrees of freedom (volume fraction and pore size) which

are often statistical due to the randomness of the distribution. With some specific

processes, it becomes possible to control the spatial organization of the pores (Jauffrès

et al., 2011) and give more deterministic degrees of freedom.

• Foams. The wide concept of foam — what ever ceramic, metallic or organic — is

originally related to a process based on bubbles. However, the classification in terms of

random cellular material predominates and includes similar architectures made with
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other processes such as salt-replication (Despois et al., 2007). The possibilities in

terms of design are large. Ones can change the volume fraction, size and morphology

of the pores (close-cells), connectivity of the struts (open-cells), etc. Their low relative

density is well appreciated as core material and the diversity in constitutive materials

facilitates the joining with the skins. The remaining disadvantage is the quite large

scattering in the effective properties due to the process.

• Truss-lattices, corrugations and honeycombs. These organized cellular materials typi-

cally include the architectures shown on figure 1.6. Honeycomb is the most widespread

core material, sometime in aluminum brazed on aluminum faces, sometime in polymer

with aluminum skins again or laminated plates. The cardboard remains the cheap-

est sandwich structure with a corrugated core. The deterministic aspect avoids the

properties scattering, but makes difficult the high rate manufacturing.

Figure 1.6: Examples of lattices, prismatic corrugations and honeycombs as core materials for
sandwich structures developed form impact energy absorption. (Wadley, 2006)

Finally, porous and cellular materials provide particularly good properties to be in-

cluded in a sandwich structures. The diversity of constitutive materials and process enables

a large number of degrees of freedom that help to tune the effective properties. The result

is a two-level architectured material.

The figure 1.7 shows how optimized truss-lattices may reveal an index E
1
2 /ρ — the

performance metric for designing a flexural beam at minimum mass (Ashby, 2005) —

10 times higher than the foam with a same relative density. The bending deformation

of the foams truss implies a quadratic evolution with the density, whereas truss-lattices

only involved uniaxial deformation of the trusses and are subjected to a linear evolution.
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This observation confirms the architecture could have a large influence on the mechani-

cal properties. It encourages to explore the possible shapes in order to get the optimal

performance, such it was proposed in the literature for cellular core materials (Valdevit,

2004, Queheillalt and Wadley, 2005, Wadley, 2006).

Figure 1.7: The starting material, Al-SiC (Aluminum with 20% of SiC particulates) appears at
the upper right of this chart. The line of yellow ellipses with red labels show the modulus and
density of open-cell foams made from Al–SiC. They should be compared with the measured values
for real Al-SiC foams, shown in red with black labels. The relative densities are listed in brackets.
The modulus and density of lattices made of the same material are shown in green for comparison.
(Ashby, 2011)
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1.3 Mechanical properties of sandwich materials

After briefly presenting the main architectured materials possibly involved in a sandwich

structure, this section focuses the mechanical properties of the sandwich itself. Maintaining

the duality between material and structure, the mechanical properties are presented here

as material properties in order to compare with others. The elastic properties of the

sandwich we are interested in are reminded in the following with a special emphasize on

the transverse-shear contribution. In this section, skins and core are both reduced to

homogeneous material properties (possibly effective if architectured materials).

Figure 1.8: The sandwich structure. The face thickness is t, the panel thickness is h and the
panel depth is b.

According to (Allen, 1970) “a sandwich panel is a thick sheet of lightweight material

with a thin of much stronger, stiffer material bonded securely to each side” (figure 1.8).

The emphasized words are essential features assumed in the following models.

The elastic properties are taken from reference books (Zenkert, 1997, Allen, 1969) that

detail all the aspects of the mechanical behavior of sandwich structures. The relevant

material moduli and geometrical constants used in the following expressions are : the

face thickness t, the panel thickness h, the panel depth b, the volume fraction of the

faces f = 2t/h, the Young’s modulus and the shear-modulus of the faces and of the core

(assumed isotropic) respectively Ef , Gf , Ec and Gc.

The global properties of the panel are denoted with a tilde. The density ρ̃ and the

in-plane Young’s modulus Ẽ are arithmetical averages of the constitutive materials prop-

erties weighted by their volume fraction. The through-thickness Young’s modulus Ẽtt is

computed by averaging the inverse of the Young’s modulus. And the flexural Young’s

modulus Ẽflex is obtained by normalizing the flexural stiffness component by the inertial

moment I = h3/12.

• Density :

ρ̃ =

∫ h
2

−h
2

ρ(x3) dx3 = fρf + (1 − f)ρc (1.1)
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• In-plane Young’s modulus :

Ẽ =
1

h

∫ h
2

−h
2

E(x3) dx3 = Ef

(
f + (1 − f)

Ec

Ef

)
(1.2)

• Through-thickness Young’s modulus :

Ẽtt =

(
1

h

∫ h
2

−h
2

1

E(x3)
dx3

)−1

= Ef

(
f + (1 − f)

Ef

Ec

)−1

(1.3)

• Flexural Young’s modulus :

Ẽflex =
12

h3

∫ h
2

−h
2

E(x3)x3
2 dx3 = Ef

(
1 − (1 − f)3 +

Ec

Ef
(1 − f)3

)
(1.4)

Mode of loading Description B1 B2

1 Cantilever, end load 3 1

2 Cantilever, uniformly distributed load 8 2

3 Three-point bend, central load 48 4

4 Three-point bend, uniformly distributed load 384/5 8

5 End built-in, central load 192 4

6 End built-in, uniformly distributed load 384 4

Table 1.1: Constants to describe modes of loading. (Ashby, 2011)

Whereas the previous properties are intrinsic to the choice of the constitutive materials

and the sizing, the following bending modulus Ẽbend also depends on the loading of the

panel. This modulus consists in the normalized stiffness of the panel for the different

bending tests of table 1.1.
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• Bending modulus :

Ẽbend =

(
1

Ẽflex

+
B1

B2

(
h

l

)2 (1 − f)

Gc

)−1

(1.5)

The ratio B1/B2 represents the type of loading (numerical values are given in ta-

ble 1.1), while the ratio h/l is the relative thickness of the panel (l is the panel length,

see illustration on table 1.1). This modulus is much more a performance metric than a

material modulus but it is expressed in the unit of a modulus in order to be compared

with monolithic materials. The first term in equation (1.5) is the contribution of the pure

flexural deformation, the second term is the transverse-shear contribution. In this second

contribution, the shear deformation is assumed to be strictly restricted to the core. This

is justified by the typical contrast in shear modulus between the faces and the core.

Figure 1.9: Bending modulus – density chart that compare different sizings of a sandwich struc-
tures made of steel faces with honeycomb steel core (red circles) with the extreme Voigt and Reuss

bounds (black circles). The dashed grey lines corresponding to the performance index E
1

3 /ρ (high
bending stiffness of a plate at minimum weight) show the sandwiches overlap all monolithic mate-
rials.

Figure 1.9 illustrates the bending modulus of a sandwich in comparison with monolithic
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and composite materials. The associations of bulk steel with steel honeycombs is compared

to few classes of materials. Different sizings of sandwich structures (faces thickness from

0.4 to 1 mm, and core thickness from 5 to 50 mm) are compared to an homogeneous panel

that would have respectively the Voigt and the Reuss Young’s modulus approximation. It

shows that the spatial distribution of the two materials involved in the sandwich enables

to overlap all the other solutions. In this case, the Voigt and Reuss approximations are not

reachable since making a fiber or inclusion reinforced matrix with bulk steel and honey-

combs have no sense. But it illustrates that the bending modulus is indeed a performance

metric with the dimension of a modulus, and not a real effective modulus.

Transverse-shear contribution It is usually admitted that the core of sandwich con-

structions has no mechanical participation except for splitting as much as possible the two

skins. But for low contrast between face and core materials and especially for thick plates,

the transverse-shear contribution in equation (1.5) may drastically fall down the global

bending modulus.
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Figure 1.10: Evolution of the bending modulus versus the slenderness for three types of loading
(the load numbered 1, 3 and 5 from table 1.1). Four domains, from A to D, are identifiable
respectively to the intensity of the shear contribution. The boundaries of these domains (the vertical
dashed lines) are given by the equation (1.6) for ǫ = 0.01, 0.1 and 10.

For a given type of loading, the shear contribution depends on the relative thickness

h/l — inverse of the slenderness of the plate. A classification in four domains can be done

with respect to the level of the shear contribution to the bending modulus. Figure 1.10

illustrates these categories on a plot that represents the bending stiffness versus the relative

thickness. The limit between each domain is given by the ratio of the flexural contribution
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over transverse-shear contribution :

Ẽflex

(
h

l

)2 (1 − f)

Gc
< ǫ (1.6)

for three value of the criteria ǫ = 0.01, 0.1 and 10 (Allen, 1970). The category A means the

transverse-shear contribution is negligible ; the classical beam theory (see section 1.4.1) is

valid. The category B means the contributions of pure bending and shear are comparable;

the classical beam theory is mainly valid except for concentrated loads. The category C

means the transverse-shear contribution is dominant and have to be taken into account.

The category D means a beam model is no longer relevant.

This remark on the shear contribution predicts that an estimation of the global bend-

ing stiffness for a sandwich with any core architecture — which will be the case while

optimizing — won’t be relevant without taking into account the transverse-shear mode of

deformation.
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1.4 Mechanical shell and plate models

In order to compute the effective compliance of any architectured panel and to get local

informations for future optimization, we need to detail about kinematic and stresses in-

volved in the shell and plate models. In this section, except if specified, no assumption on

the internal architecture of the panel is done. The idea is to get macroscopic models still

valid for any possible architecture by integrating them into the constitutive behavior (the

compliance tensor).

Shell and plate models are deduced from the three-dimensional continuous media by

letting down one dimension. Vanishing it can be done when the out-of-plane dimension

is small compared to the in-plane dimensions. It means that the relative thickness h/l

is small. The three-dimensional displacements and the stress field are expressed from

macroscopic quantities. Then, the balance equation and the constitutive equation are

reformulated in terms of these quantities.

h

b

e
1

e
2

e
3

Figure 1.11: The homogeneous plate with thickness h and depth is b.

1.4.1 Bi-dimensional plane-strain specific case

Considering a panel structure with an invariant direction e2 and a planar loading (e1, e3),

the three-dimensional mechanical problem in this case is reduced to two dimensions with

plane-strain assumption (see figure 1.11 for the frame definition). The slenderness of the

panel geometry enables to simplify again the problem to a unidimensional domain along

e1. Then, the shell and plate models are reduced to beam models normalized by the width

b.

Macroscopic stresses and equilibrium

Isolating a part of a beam and balancing the stresses enables to identify macroscopic

stresses, also denoted internal stresses or generalized stresses. The “macroscopic” denom-

ination underlies an integration in the direction e3 such that these stresses only depend on

the spatial component x1. The macroscopic stresses are the normal force N , the bending
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1.4 Mechanical shell and plate models

moment M and the transverse force Q :





N(x1) =

∫ h/2

−h/2
σ11 dx3

M(x1) =

∫ h/2

−h/2
σ11x3 dx3

Q(x1) =

∫ h/2

−h/2
σ13 dx3

(1.7)

where σij are the three-dimensional stress components and h the thickness of the panel.

Integrating the three-dimensional equilibrium equation, one obtains the following equi-

librium equations in terms of macroscopic stresses :





N ′ + f1 = 0

Q′ + f3 = 0

M ′ −Q + µ2 = 0

(1.8)

where the apostrophe denotes the derivation with respect to the direction x1. The scalars

f1 and f3 are body forces by unit of length respectively in the direction e1 and e3. The

quantity µ2 is a body moment by unit of length in the direction e2.

Constitutive relation

Using a constitutive equation, macroscopic strains are introduced with different assump-

tions depending on the model. The Navier-Bernoulli condition imposes the section to

lie perpendicular to the generating line of the beam. This condition gives the so-called

“Classical beam theory” based on the Euler-Bernoulli equation (Salençon, 2002). The

macroscopic strains are the membrane strain e and the curvature χ. The constitutive

equation comes : [
e

χ

]
=

[
a b

b d

][
N

M

]
(1.9)

where a, b and d are respectively the membrane compliance, the coupling membrane–

flexural compliance and the flexural compliance. For an isotropic homogeneous plate of

Young’s modulus E and Poisson’s ratio ν, the expressions of these compliances are :





a =
1 − ν2

E

1

h

d =
1 − ν2

E

12

h3

b = 0

(1.10)
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The factor (1−ν2) comes from the invariance in the direction e2 (plane-strain hypothesis).

The “Timoshenko theory” is an extension that takes into account the transverse-shear

strain γ when ignoring the Navier-Bernoulli restriction. Constitutive equations become :



e

χ

γ


 =



a b k

b d l

k l f






N

M

Q


 (1.11)

where k, l and f are respectively the coupling membrane-transverse-shear compliance, the

coupling bending-transverse-shear compliance and the transverse-shear compliance. For

an isotropic homogeneous panel, the expressions of these compliances are :





f =
1

G

sr
h

k = l = 0
(1.12)

where G is the shear modulus and sr = 6/5 the shear area ratio for a rectangular homo-

geneous section. This ratio would be 7/6 for a circular homogeneous section, and 2 for a

circular tube. This ratio is a correction to get the same transverse-shear energy density

as in the three-dimensional model :

w∗(Q) =
1

2
fQ2 =

1

2

∫ h/2

−h/2

σ2
12

G
dS (1.13)

This correction is often neglected i.e. taking sr = 1. The previous classical beam theory

is recovered with sr = 0.

One could notice that all the coupling terms of equations (1.10) and (1.12) are zeros

for the homogeneous panel. It remains true for any geometry with specific symmetries —

rotational or (e1, e2)-reflection symmetries.

Equivalence with effective material properties

The sandwich properties are obviously connected with the components of the compliance.

The relations based on the compliance of an homogeneous panel (equation (1.10)) are :

• In-plane Young’s modulus :

Ẽ =
(1 − ν2)

a

1

h
(1.14)

• Flexural Young’s modulus :

Ẽflex =
1 − ν2

d

12

h3
(1.15)
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Kinematic

Until now, only macroscopic quantities have been discussed and we have not mentioned

local quantities yet. It ensures all previous equations to be valid for both homogeneous

plates and any architectured panels.

• Specificities for homogeneous panels The macroscopic strains in the case of

an homogeneous panel are such that :





ε11 = e + χx3

ε13 =
γ

2

6

h2

(
h2

4
− x3

2

) (1.16)

If the shear-strain is zero, the displacement field of an homogeneous panel is obtained

by integration of equation (1.16) :





u1 = (e + χx3)x1

u3 = −χ

2
x1

2 + g(x3)
(1.17)

where the function g is free to accommodate the equilibrium equation.

• Specificities for sandwich panels In the case of sandwich structure, the contrast

in shear modulus between skins and core is so high that the shear deformation is negligible

in the skins and quite homogeneous in the core. That means ε13 ≈ γ
2 inside the core.

• Specificities for architectured panels Separation of scales along axis e1 ensures

that the effective kinematic of an architectured panel takes the form (1.16). Variations

around this kinematic appear because of the spatial organization of the matter.

Whereas the origin of the frame is trivial in both homogeneous and sandwich cases,

the question remains when modeling architectured panels. For instance, translating the

frame origin of a value δx3 in the direction e3 gives a new 3rd coordinate x̂3 = x3 − δx3.

Thus, the macroscopic strains and stresses become :

{
ê = e + χδx3

χ̂ = χ
and

{
N̂ = N

M̂ = −δx3N + M
(1.18)

Then, the compliance matrix becomes :

[
â b̂

b̂ d̂

]
=

(
1 −δx3

0 1

)[
a b

b d

](
1 0

δx3 1

)
(1.19)

These expressions reveal the dependence of the macroscopic stresses, strains and compli-
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ance components with respect to the frame origin. To be able to compare architectured

panel properties with relevance, the origin is chosen such that the coupling terms are zeros

if possible. In the case where a material central symmetry, a rotation or a plane symmetry

exists, it gives a location where this condition can be satisfied.

1.4.2 General plate models

A plate model consists in reducing the three-dimensional domain in a two dimensions

domain into the plane of the plate. It is a generalization of the previous beam model with

vanishing the plane-strain assumption.

Macroscopic stresses and equilibrium

The integration of the stress components in the out-of-plane direction leads to the following

macroscopic stresses (second-order tensors) :





Nαβ(x1, x2) =

∫ h/2

−h/2
σαβ dx3

Mαβ(x1, x2) =

∫ h/2

−h/2
σαβ x3 dx3

Qα(x1, x2) =

∫ h/2

−h/2
σα3 dx3

(1.20)

where α, β = 1, 2 are the subscripts corresponding to the plane of the panel. The macro-

scopic stresses are the membrane forces N and the moments M (both 2nd order tensors),

and the transverse-shear force Q. A translation of the Navier-Bernoulli condition to the

general case exists and refers to the “Kirchhoff-Love” model (equivalent to the classical

beam theory).

Constitutive relation

The shell model provides a constitutive equation that links membrane forces and moments

to membrane strains e and curvatures χ. The expression is similar to eq. (1.9) with the

only difference that the compliances are fourth order tensors and macroscopic stresses and
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strains are second order tensors. It writes using Kelvin’s notation :




e11

e22√
2e12

χ11

χ22√
2χ12




=




a11 a12 a61

a12 a11 a26

a61 a26 a66

b11 b12 b61

b12 b11 b26

b61 b26 b66

b11 b12 b61

b12 b11 b26

b61 b26 b66

d11 d12 d61

d12 d11 d26

d61 d26 d66







N11

N22√
2N12

M11

M22√
2M12




(1.21)

For an orthotropic symmetry, the membrane compliance is reduced to :

[a] =



a11 a12 0

a12 a11 0

0 0 a66


 (1.22)

The remaining terms become for an isotropic homogeneous material :

a11 =
1

Eh
, a66 =

1

2Gh
and a12 = a11 − a66 (1.23)

Similarly, the bending compliance is reduced to :

[d] =



d11 d12 0

d12 d11 0

0 0 d66


 (1.24)

with the following expression for an isotropic homogeneous material :

d11 =
12

Eh3
d66 =

12

2Gh3
and d12 = d11 − d66 (1.25)

The coupling membrane-bending compliance is zero, b = 0.

The plate model or “Reissner-Mindlin” model takes into account the transverse shear,

such as the Timoshenko model for beams. The constitutive equation is the same as

eq. (1.11) with the only difference that the compliance f is a second order tensor, the

coupling compliances k and l are third order tensors and the transverse-shear force and

strain are vectors. For an homogeneous isotropic panel with thickness h, the compliance

matrices are :





f =
6

5Gh
I2

k = l = 0
(1.26)
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where I2 is the identity second order tensor in two dimensions.

Kinematics

Relationships equivalent to eq. (1.16) and (1.17) can be written. The strain components

for an homogeneous panel become :





εαβ = eαβ + χαβx3

εα3 =
γα
2

6

h2

(
x3

2 − h2

4

) (1.27)

For a shear equals to zero (the restriction to the Love-Kirchhoff model), the displacements

become : 



uα = (eαβ + χαβx3)xβ

u3 = −1

2
(χ1β + χ2β)xβ

2 + g(x3)
(1.28)

with a summation over β = 1 to 2. The function g is free to a accommodate the equilib-

rium equations. Figure 1.12 illustrates these six modes of deformation of the Kirchhoff-

Love kinematic : the two in-plane elongations e11 and e22, the in-plane shear e12, the

two curvatures χ11 and χ22, and the twist χ12. Figure 1.13 exhibits the two additional

transverse-shear ratios of the Reissner-Mindlin kinematics.

Figure 1.12: Deformed parallelepiped for the six macroscopic strains of the Kirchhoff-Love kine-
matic.
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Figure 1.13: Deformed parallelepiped for the two transverse-shear ratios of the Reissner-Mindlin
kinematic.

Equilibrium equation

The equilibrium equation is obtained by integration of the three-dimensional equation :





Nαβ,β + fα = 0

Qα,α + f3 = 0

Mαβ,β −Qα + µα = 0

(1.29)

where fα and f3 are the spatial components of the body force by unit of surface and µα

is the body moment by unit of surface in the direction eα.

Other models

The two presented plate models, Love-Kirchhoff and Reissner-Mindlin, are the most classi-

cal models implemented in numerous finite element codes. While the first model is limited

to slender configurations, the second give better estimates taking into account the trans-

verse shear. But the constant, or even parabolic, shear distribution into the thickness is

often far from the reality especially for laminated composite plates. Since the demand

is strong to get a reliable model to be implemented in a low time-consuming 2D finite

element code, the suggestions of enriched models are numerous.

The composite laminates concentrate most of the literature in two classes of models :

the equivalent single layer models and the layerwise models. The single layer models

often assume presupposed distributions of the stress or strain fields through the thickness.

The zigzag models (Whitney and Leissa, 1969, Carrera, 2003) seems to reproduce quite

well the three-dimensional behavior such as the continuity of the shear stress through the

thickness. But they are restricted to symmetric sequences and materials. The layerwise
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models are based on the refinement of the kinematic (Reddy, 1989, Carrera, 2002). Both

local displacements and stresses are well predicted, but the high number of additional

degrees of freedom leads to an extra computational cost.

Proceeding in an asymptotic expansion of the three-dimensional problem in the small

parameter h/l (Caillerie, 1984), the Love-Kirchhoff model is refunded as a first order

problem. Going further into the expansion, higher-order models can be obtained (Buannic

and Cartraud, 2001, Yu et al., 2002a,b) but turn out to be complex to implement. However,

the gradient-bending model (Lebée, 2010) is a higher-order single layer model that seems

to give an interesting compromise between accuracy of the solution, number of additional

variables and complexity of the theory. Highlighting the connection between the transverse

shear and the bending gradient, it follows the Reissner approach and introduces the full

bending gradient as additional macroscopic stresses. This higher-order plate model is

not used in this PhD work but it highlights the connection between transverse shear and

bending gradient that will enable the shear homogenization problem.
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1.5 Experimental identification

Models have a limited interest without being confirmed by experimental tests. This section

details the way to measure the flexural modulus, as well as the transverse-shear modulus

in the case that it is non negligible (section 1.3).

Both three- and four-point bending tests are widely use to characterize panels that

are essentially designed for bending. The four-point bending test has the advantage to

produce a pure-bending zone in-between the internal pads (figure 1.14).

Figure 1.14: Four-point bending test setup. The load is share on the two loading points. The
upper and lower span length are respectively s and l. The shear length is L.
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Figure 1.15: Force–deflection curve for three sequences of loading–unloading on a four-point
bending test. The compliance S is fitted on the unloading slope between 80 and 160 N, for steps 2
and 3.

The bending compliance is measured from the slope of the force–deflection curve —

such as the typical figure 1.15. One has :

S =
∂δ

∂F
(1.30)
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Chap. 1 - An emblematic architectured material : the sandwich structure

where F is the total load force equally distributed on the two load pads, and δ is the

vertical deflection of the load pads with respect to the support pads. Figure 1.15 plots the

force versus the deflection for three steps of loading–unloading respectively up to 80 N for

the first one and 160 N for the lasts two ones. The slope must be fitted on the beginning

of the unloading curve.

The evolution of the macroscopic stresses along the beam are plotted on figure 1.16.

By integration of the elastic energy along the beam, one deduces the following four-point

bending compliance S4p :

S4p =
(3l − 4L)L2

12
d +

L

2
f (1.31)

where the lower span length l and the shear length L are shown on figure 1.14. The three-

point bending compliance S3p is obtained from the previous equation by taking L = l/2 :

S3p =
l3

48
d +

l

4
f (1.32)

Figure 1.16: Variations of the bending moment M and the transverse force Q along the beam for
a four-point bending test.

An overestimation of the flexural compliance d can be obtained by neglecting the shear

contribution. More precisely, ASTM standards (C393, D7250) define an experimental pro-

cedure to determine both the flexural and shear compliances. This procedure consists in

several four-point bending tests with different values of the lower span length l while keep-

ing fixed the shear length L. The bending compliance is measured for two or three values

of the lower span length and plotted versus the span length (figure 1.17). The equation

(1.31) predicts a linear evolution and enables to express the compliance components with

respect to the slope S′ and the intercept S0 :





d =
4

L2
S′

f =
8

3
S′ +

2

L
S0

(1.33)

The values of the lower span length must be chosen in order to get a length ratio l/L
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Figure 1.17: Measured 4-point bending compliance S versus the lower span length l. The flexural
and shear compliance components can be deduce from the slope S′ and the intercept S0 of this linear
evolution.

between 3 and 5. The choice of the shear length L depends itself on the thickness, the

pad width and on the characteristic length of the internal architecture. It should satisfy

a ratio L/h larger than 2. The geometry of the pads can be flat or cylindrical. It must

have a contact surface large enough to avoid indentation of the faces but still relatively

small compared to the shear length L. A pad width too thin will cause a non-linearity

and an overestimation of the shear compliance (i.e. the panel will appear to be softer than

it really is). A pad width too large will lead to an underestimate in the shear compliance

(i.e. stiffer).

Even if the transverse shear is taken into account the slenderness have to be sufficient

in order to guaranty the validity of the plate model, one should check the relative thickness

h/l to be lower than 0.3. Such as for the shear length, the characteristic length of the

architecture have to be included into the choice of the width. However, the width-thickness

ratio b/h must vary from 2 to 5 depending on the thickness (respectively from thick to

thin).
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Chap. 1 - An emblematic architectured material : the sandwich structure

Conclusion

This chapter starts from the observation that the transport and building sectors impose

complex multi-functional requirements for materials. Instead of an incremental improve-

ment of the existing materials, it seems more efficient to design architectured materials.

Few examples have given an overview of the gains affordable by spatially organizing matter

in a well controlled manner. This is particularly significant for the design of core materials

that must perform a high shear stiffness at a minimum weight.

The infinite number of shape possibilities and the non-intuitive multi-functional speci-

fications drive to the development of a numerical method to solve that optimization prob-

lem. But before any optimization, one needs to be able to compute the objective function

or performance index. The selection approach applied to composites and sandwich panels

shows that effective properties is the appropriate manner to evaluate and compare the

performance of architectured materials.
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Highlights

• Architectured materials are shown to be a way to develop new ma-

terial that may provides tailored properties. The diversity of materials

and processes, as well as the high refinement of predictive models enable

to design customized architectured material in order to fulfill complex

multi-functional specifications.

• The sandwich structure is an emblematic case for such “material by

design” approach. The association between faces and core is especially

appropriate to provide several function such as bending stiffness in com-

bination with shear stiffness, thermal insulation, electromagnetic prop-

erties, etc.

• Studying effective properties is a convenient approach to evaluate

the performance of any architecture. Considering a heterogeneous ar-

chitecture as an equivalent homogeneous material enables to compare

with other architectured or monolithic materials, as well as analyzing

the influence of the design parameters. It is illustrated by presenting the

material selection approach on sandwich structures.

• The shell and plate models provide an appropriate framework to iden-

tify the elastic properties of the concerned architectured panels. Four-

point bending test is an efficient experimental way to characterized

both the flexural and transverse-shear (if significant) stiffness moduli.





Chapter 2

Homogenization of periodic

architectured panels





Introduction

The present chapter describes a computational approach to identify the effective elastic

behavior of periodic architectured panels. A validation is done by comparing homoge-

nization results with both experimental data and finite element simulations of four-point

bending test. Then as a direct application of the described homogenization procedure, a

parametric study is performed in order to design embossed steel sheets.

The first section deals with the homogenization techniques. It begins with describ-

ing periodic homogenization of bulk media before focusing on the specific case of pan-

els. Compliance components of the classical shell and plate models (Kirchhoff-Love and

Reissner-Mindlin) can be identified with finite element simulations on the unit cell. Static

approach is used such that the Kirchhoff-Love compliances are computed by applying

membrane forces and bending moments. The homogenization problem for transverse-shear

compliances is more difficult to defined, since a single shear-force is not self-balanced with

stress-free boundary conditions on top-and-bottom faces.

In the second section, an illustrative architectured panel is studied from the experi-

mental, numerical and analytical view points. The contribution of the transverse-shear is

more particularly pointed out.

Finally, an example of architectured panel for automotive applications is studied. It

consists in embossing a steel sheet in order to increase its flexural stiffness. An analysis of

the effective properties of such plates is presented. A parametric study is performed and

promising solutions are proposed.
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Chap. 2 - Homogenization of periodic architectured panels

2.1 Periodic homogenization of elastic properties

Homogenization consists in replacing a heterogeneous material by an effective homoge-

neous material that provides the same overall response. It enables to predict the response

of a part or a structure without the need of modeling locally the heterogeneities. The

relevance of homogenization is usually based on the separation of two scales : the scale of

the stress and strain variations generated by the loading ; and the scale of the variations

due to the heterogeneities.

Both random and periodic heterogeneities can be treated. Since no randomly archi-

tectured material have been studied in this PhD work, only the periodic case is mentioned

in the following. Notions are first introduced on bulk media, then one focuses on the

particular case of panels. The specificity of panels is that the periodicity is restricted to

two directions. In addition, the obtained effective model (shell or plate) is defined on a bi-

dimensional geometry while the heterogeneous material is modeled with three-dimensional

continuous mechanic.

2.1.1 Bulk media

Figure 2.1: Periodic homogenization of bulk media : heterogeneities are replaced by an effective
homogeneous media.

In this section, the unit cell V , periodic in the three directions, is subjected to an

“averaging operation” in order to provide an effective homogeneous media (figure 2.1).

Effective stiffness and compliance tensors are defined such that a linear relation can be

written between mean stress and strain tensors. Mean quantities are defined by averaging
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2.1 Periodic homogenization of elastic properties

over the unit cell and denoted :

〈·〉 =
1

V

∫

V
· dV (2.1)

Following definitions are based on Hill’s lemma which states that the average work over

V equals the work of mean fields :

〈σ · ε〉 = 〈σ〉 · 〈ε〉 (2.2)

This equation holds for any statically admissible stress field σ and any kinematically

admissible strain field ε.

The kinematic approach enables to define the effective stiffness with respect to the

stress average that results for applying a mean strain ε. The tensor components are

identified on :

〈σ〉 = C̃ ε (2.3)

An identification on the average strain energy-density 〈w〉 is equivalent as a consequence

of Hill’s lemma (2.2) :

〈w〉 =
1

2
ε · C̃ ε (2.4)

Kinematic uniform boundary conditions u = ε · x, which satisfy 〈ε〉 = ε, provide a rough

estimate denoted C̃KUBC. Following Michel et al. (1999), a more accurate estimate can be

computed with taking into account periodicity. It deals with applying periodic conditions

on stress and strain, and with searching for a solution to the displacement under the form :

u = εx + u′ (2.5)

where u′ is a periodic fluctuation field. The condition on the averaged strain 〈ε〉 = ε

is consequently satisfied. It can be implemented in a finite element solver either with

periodic boundary conditions on (u−ε ·x), or with applying an initial strain ε and solving

with respect to the unknown perturbation u′ (with periodic boundary conditions).

The static approach is analog to the kinematic approach but applying stress instead of

strain. It enables to define the effective compliance tensor by identification on the strain

average :

〈ε〉 = S̃ σ (2.6)

Again, an identification on the average stress energy-density 〈w∗〉 is equivalent :

〈w∗〉 =
1

2
σ · S̃SUBC σ (2.7)

Static uniform boundary conditions σ · n = σ · n, which satisfy 〈σ〉 = σ, provide a rough

estimate denoted S̃SUBC. Inverse of this tensor S̃−1
SUBC is strongly different from C̃−1

KUBC since
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Chap. 2 - Homogenization of periodic architectured panels

kinematics are different, at least close to the boundaries. In the case of periodic estimates,

a static approach also exists. It assumes the displacement as in equation (2.5) excepted

that the mean strain ε is replaced with an unknown mean strain ε⋆. This additional

unknown is calculated in order to satisfy the stress average constraint :

{
u = ε⋆x + u′ with u′ periodic on ∂V

〈σ(ε⋆)〉 = σ
(2.8)

The inverse of the effective compliance S̃−1
♯

obtained by solving this problem is identical

to C̃
♯
. It leads from the identical boundary conditions in both approaches. However, it

might be interesting for some reasons to prescribe mean stress instead of mean strain (for

instance in non-linear case, or in the following transverse-shear homogenization).

As developed by Bornert et al. (2001), arguments on admissibility sets of theses four

homogenization problems enables to rank the effective tensors as :

S̃−1
SUBC ≤ S̃−1

♯
= C̃

♯
≤ C̃KUBC (2.9)

These relations give a qualitative way to validate any new estimation method of effective

properties.

2.1.2 Panels

Figure 2.2: Periodic homogenization of panel : three-dimensional heterogeneous panel is replaced
with an effective homogeneous bi-dimensional shell or plate.
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2.1 Periodic homogenization of elastic properties

Periodic panels, in comparison with full-periodic bulk media, introduce additional

difficulties since the effective homogeneous panel is reduced to a bi-dimensional plate

model. One direction is no more periodic and is subjected to an “integrating operation”

rather than “averaging” (figure 2.2).

The unit cell V is subjected to mixed boundary conditions. Periodicity is still imposed

for in-plane directions, but stress-free boundary conditions have to be ensured on the

upper-and-lower faces ∂V ± (figure 2.3).

Figure 2.3: Example of unit cell of an architectured plate with normal e3, periodic in direction
e1 and invariant in the direction e2. The unit cell is defined by the domain V , with length lc and
thickness h. The upper and lower boundaries are denoted respectively ∂V + and ∂V −. The lateral
boundaries are denoted ∂Vl without any distinction. The domain Ω is the subset of the unit cell V
filled with matter.

Two homogenization problems enable to identify compliances of the plate model (Reissner-

Mindlin) : one for membrane and flexural compliances, one for transverse-shear compli-

ance.

Membrane and flexural compliance

Buannic et al. (2003) proposed an asymptotic approach for corrugated sandwich panels.

The effective compliances are identified by solving elementary mechanical problems on

the unit cell. Following the asymptotic approach of Caillerie (1984), a solution of the

three-dimensional elasticity problem on the unit cell V is searched under the following

form : 



u = ēx + χ̄xx3 + u′

u3 = −1

2
x · χ̄x + u′3

(2.10)

where the first equation is limited to the two dimensions of the plane (e1, e2). The bi-

dimensional tensors ē and χ̄ are respectively the macroscopic membrane strain and the

macroscopic curvature (see section 1.4.2). The fluctuation field u′ is periodic along the

in-plane directions and unconstrained on the top-and-bottom faces.
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Chap. 2 - Homogenization of periodic architectured panels

Prescribing the kinematic through an initial strain, the homogenization problem to be

solved with respect to u′ becomes :





divσ = 0 on V

σ = C(x)
(
∇su′ + ē + χ̄ x3

)
on V

σ · n = 0 on ∂V ±

u′ x1, x2-periodic on ∂Vl

(2.11)

where ∇s· denotes the symmetric gradient operator.

Similarly to bulk media, the static approach exist and consists in applying a mean

stress. This is the approach we choose in the following in order to identify compliance

components. One introduces unknown main strain e⋆ and main curvature χ⋆ and adds

two constraints on the membrane forces N and moments M (Bourgeois, 1997, Bourgeois

et al., 1997) : 



divσ = 0 on V

σ = C(x)
(
∇su′ + e⋆ + χ⋆ x3

)
on V

σ · n = 0 on ∂V ±

u′ x1, x2-periodic on ∂Vl

〈N(e⋆,χ⋆)〉 = N̄

〈M(e⋆,χ⋆)〉 = M̄

(2.12)

where 〈·〉 denotes in this case the average over the 2D in-plane unit cell since N and M are

two dimensions tensors. The identification of compliance components is straightforward

since the generated macroscopic strains are identical to the unknowns e⋆ and χ⋆. Solv-

ing only three unit cell problems allows to identify all the components of the membrane

compliance :

[a] =




e⋆11(N̄11) e⋆11(N̄22) e⋆11(N̄12)/
√

2

e⋆22(N̄11) e⋆22(N̄22) e⋆22(N̄12)/
√

2√
2e⋆12(N̄11)

√
2e⋆12(N̄22) e⋆12(N̄12)


 (2.13)

where e⋆(N̄α′β′) is solution of the problem (2.12) with ∀(α, β) N̄αβ = δα′αδβ′β
1 and

M̄ = 0. Idem for the flexural compliance :

[d] =




χ⋆
11(M̄11) χ⋆

11(M̄22) χ⋆
11(M̄12)/

√
2

χ⋆
22(M̄11) χ⋆

22(M̄22) χ⋆
22(M̄12)/

√
2√

2χ⋆
12(M̄11)

√
2χ⋆

12(M̄22) χ⋆
12(M̄12)


 (2.14)

where χ⋆(M̄α′β′) is solution of the problem (2.12) with N̄ = 0 and ∀(α, β) M̄αβ = δα′αδβ′β .

1where δ is the Kronecker symbol. δij = 1 if i = j, δij = 0 if not.
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2.1 Periodic homogenization of elastic properties

Tensors (2.13) and (2.14) are written using the Kelvin’s notation. An identification on the

energy is also possible for diagonal components, as it was introduced in the section 2.1.1.

For instance :

a11 =
2h 〈w∗〉
N̄2

11

(2.15)

where w∗ is the stress-energy of the problem (2.12) with ∀(α, β) N̄αβ = δ1αδ1β and M̄ = 0.

Remark As mentioned in the section 1.4.1, the location of the frame is an issue. For

architectured materials that mix matter and space — which is the case in the following —

a generic frame origin can be chosen. It is usually defined such as the coupling membrane–

flexural compliance component vanishes. This choice is such that no membrane strain is

produced from a pure bending moment. It consists in choosing a new frame translated in

the direction e3 with coordinate x̂3 = x3 − δx3 and :

δx3 =
1

|Ω|

∫

Ω
x3 dx (2.16)

where Ω is the subset of the unit cell V filled with matter.

Transverse-shear compliance

The case of transverse-shear compliance is not obvious since no self-balanced shear force

can be applied on lateral boundaries while keeping the upper-and-lower faces stress-free.

Then alternative problems are presented with two types of loading : uniform boundary

conditions even on upper-and-lower faces, and bending gradient body load.

Figure 2.4: Deformed parallelepiped subjected to transverse-shear force trough static uniform
boundary conditions (SUBC).

Uniform boundary conditions A first way to estimate the shear compliance com-

ponents is to solve a problem with uniform (kinematic or static) boundary conditions.
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Chap. 2 - Homogenization of periodic architectured panels

For instance, static uniform boundary conditions (SUBC) imply the following elasticity

problem : 



divσ = 0 on V

σ = C(x)∇su on V

σ · n = Q̄ on ∂V ±

σ · n = (Q̄ · n) e3 on ∂Vl

(2.17)

where Q̄ is the applied overall shear stress. Then, the shear compliance tensor is estimated

by :

[f] =

[
γ̄1(Q̄1) γ̄1(Q̄2)

γ̄2(Q̄1) γ̄2(Q̄2)

]
(2.18)

where γ̄α is the overall shear strain given by :

γα =

〈∫ h
2

−h
2

1

2
(uα,3 + u3,α) dx3

〉
∀α = 1, 2 (2.19)

In addition to the approximation of the periodic boundary conditions with uniform

Neumann conditions (like for bulk media), the stress-free conditions on top-and-bottom

faces are not satisfied. Consequently, this static approach is not yet a bound and the iden-

tified compliance may be far from the real value depending on the architecture. Moreover,

the stress distribution is skewed all over the unit cell and not only close to the boundaries.

For instance, a non-architectured panel presents a homogeneous shear stress in the SUBC

loading, whereas the real stress field is parabolic when taking into account the stress-

free faces. This point will be even more significant in shape optimization because matter

displacement is based on the local stress and strain fields.

Figure 2.5: Deformed parallelepiped subjected to transverse-shear force trough bending gradient
body load (BG).
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2.1 Periodic homogenization of elastic properties

Stress-free and periodic boundary conditions A unit cell problem respectful of

the stress-free boundary conditions was recently proposed by Cecchi and Sab (2007). This

approach was studied in details by Lebée (2010, PhD thesis) up to develop a higher

order plate model. These works formalize the link between transverse-shear and bending

gradient and offer a homogenization problem for shear that uses results from bending.

A boundary shear load with stress-free upper-and-lower faces is not self-balanced but

must be combined with a bending gradient. The idea is to load the unit cell not only

through the boundary conditions but also though a body force load that results from the

homogenization problem (2.12). Finally, the unit cell problem is :





divσ + f = 0 on V

σ = C(x)∇su on V

σ · n = 0 on ∂V ±

u x1, x2-periodic on ∂Vl

(2.20)

with

fi = σ
(M̄αα)
iα

Q̄α

M̄αα
(2.21)

where σ
(M̄αα)
iα is the stress solution to problem (2.12) with N̄ = 0 and M̄ = M̄ααeα ⊗ eα.

Finally, the effective shear compliance is identified again according to equation (2.18).

Diagonal components can also be calculated from the stress-energy w∗ such as :

fαα =
2h 〈w∗〉
Q̄α

(2.22)

2.1.3 Conclusion

After recalling the context of periodic homogenization, the specific case of Love-Kirchhoff

and Reissner-Mindlin periodic plates have been developped.

The static approach is prefered and the compliance components are obtained conse-

cutively by computing the macroscopic strains that result from each membrane force and

bending moment. Calculation of the transverse-shear compliances faces the inability to

apply a self-balanced shear force with stress-free top-and-bottom boundary conditions.

The relationship between bending gradient and transverse-shear gives a method to apply

a shear force through a body load.

In all cases, diagonal compliance components can be derived from the stress-energy

density, which is interesting for further shape optimization.
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Chap. 2 - Homogenization of periodic architectured panels

2.2 Level-set method and ersatz phase

In this section, level-set method coupled with finite element method is used to solve the

previous homogenization problems on a whole mesh of the unit cell. This approach enables

an implicit definition of the geometry and will be useful in shape optimization to transform

shape and topology without remeshing.

Following the approach of Sethian (1999), a level-set function is introduced in order to

capture the geometry. The domain Ω filled with matter is defined implicitly through the

level-set function φ : R3 → R, such that :





φ(x) > 0 ⇔ x ∈ Ω

φ(x) = 0 ⇔ x ∈ ∂Ω ∩ V

φ(x) < 0 ⇔ x ∈ V \Ω̄

(2.23)

Figure 2.6 illustrates this relation between the level-set function φ(x) and the domain Ω.

Figure 2.6: Sketch of an arbitrary level-set function φ(x) and the corresponding domain Ω.

Then, unit cell is entirely meshed and empty spaces are mimicked with an ersatz phase

with a Hooke’s tensor close to zero. This is done using a heterogeneous Hooke’s tensor

defined as :

C(x) = ς
(
φ(x)

)
C̄ (2.24)

where the value of the Hooke’s tensor C̄ for the constitutive material is multiplied by a

smoothed characteristic function of Ω. This function is obtained from applying a smoothed

heavy-side function ς to the level-set function. Among other typical expressions, the heavy-
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2.2 Level-set method and ersatz phase

side function ς : R → R is written as (Yamada et al., 2010) :

ς(φ) =





1 if φ > ω
2 ,

1
2 − φ

ω

(
15
8 − φ2

ω2

(
5 − 6φ2

ω2

))
if |φ| < ω

2 ,

1
c if φ < −ω

2 .

(2.25)

where ω is the smoothing width which is the width of the phase transition, and c the phase

contrast (see figure 2.7). The phase contrast c must be large to mimic holes, but not too

much because that would give a ill-conditioned matrix to invert.

Figure 2.7: Illustration of an arbitrary level-set function φ(x) and the corresponding characteristic
function ς(φ(x)) of equation (2.25).

As for usual FEM simulations, the sensitivity to the mesh size should be analyzed in

order to check the coupling with the heterogeneous constitutive relation and choose the

minimum number of elements that provides an admissible error. More specifically, the

level-set method introduces two artificial parameters — phase contrast and smoothing

width — which have to be fixed.

As a benchmark, homogenization problems are solved with varying the values of pre-

vious parameters c and ω, with the illustrative unit cell geometry shown on figure 2.8a.

This geometry is the result of a trigonometric level-set function plotted on figure 2.8b,
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Chap. 2 - Homogenization of periodic architectured panels

which is typically used for shape optimization. Its expression is :

φ(x1, x3) = cos

(
p1

2πx1
lc

)
cos

(
p3

2πx3
h

)
+ δ (2.26)

where p1, resp. p3, is the number of holes in the direction e1, resp. e3. The offset δ

controls the size of the holes and consequently the area fraction of matter.

(a) (b)

Figure 2.8: (a) Unit cell geometry chosen to study the influence of mesh size, phases contrast
and smoothing width on FEM computations ; (b) Corresponding level-set function with expression
(2.26). The offset is δ = 0.04 and the corresponding area fraction is 0.72.

Effect of the mesh size

The whole unit cell is meshed with triangular linear elements, as shown on figure 2.9 for

respectively 108, 1710 and 4281 elements.

(a) 108 elements. (b) 1710 elements. (c) 42814 elements.

Figure 2.9: Same unit cell geometry discretized respectively with 108, 1710 and 42814 elements.
Computational triangular mesh (red) and discretized geometry (black) displayed with a finer post-
treatment mesh (Comsol Multiphysics).

The flexural and transverse-shear compliances are computed for the same unit cell

geometry (figure 2.8a) but with different meshes. Their evolution with respect to the

number of elements is presented on figures 2.10a and 2.10b.

86



2.2 Level-set method and ersatz phase

N
o
rm

a
li

ze
d

fl
ex

u
ra

l
co

m
p

li
a
n

ce

Elements number

1

1.5

2

2.5

3

1e+02 1e+03 1e+04 1e+05

(a) Flexural compliance.
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(b) Transverse-shear compliance.

Figure 2.10: Evolution of the flexural and transverse-shear compliance components with respect
to the number of triangular elements to mesh the unit cell with the same geometry (figure 2.8a).
Other parameters are : c = 103, ω = 0.04.

The compliance values are normalized by those of a non-architectured panel (a unit

cell without any holes). A good estimation is obtained from a relatively low number of

elements (∼ 500). The complete convergence of both flexural and shear components is

observed for finer mesh with more than 3000 elements. In the following, one will care to

solve any mechanical problem with a sufficiently fine mesh.

Effect of the phases contrast

Figures 2.11a and 2.11b plot the normalized flexural and shear compliances with respect

to phase contrast c. The convergence of the flexural component is observed from a phase

contrast of c = 103. Concerning the shear component, a similar behavior is observed

below c = 104 but a divergence occurs for larger values. This divergence may be due to

local stress peaks within elements on the interface. Since the stress field from flexural

homogenization is applied as a body load for shear homogenization, the prescribed shear

force may be larger than expected.
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(b) Transverse-shear compliance.

Figure 2.11: Evolution of the flexural and shear compliance components with the phases contrast
in Young’s modulus. Other parameters are : 3890 elements, ω = 0.04.

In the following, phase contrast c is chosen in-between 103 and 104 in order to provide

moderate errors on both flexural and shear compliances.

Effect of the smoothing width

The geometry is captured thanks to the level-set function, such that the mesh is the same

whatever the geometry is. Then, the interface between matter and space is not explicitly

meshed and it crosses elements. Within these elements, the variation in Young’s modulus

may produce stress peaks. In order to limit this, the heavy-side function ς is smoothed

such that it introduces a fictitious thick interface. The thickness of this transition is the

smoothing width ω defined in equation (2.25). Solving the homogenization problems with

several values of the smoothing width — for instance ω = 0.04, 0.4 and 1 as shown on

figure 2.12 — enables to plot flexural and shear compliances versus ω, respectively on

figures 2.13a and 2.13b.

Finally, the value of the smoothing width is fixed in the following lower than 0.2 in

order to limit the influence of this artificial parameter while providing a smooth transition

between matter and space. This value makes sense for a level-set function with a gradient

along the zero contour as close as possible to unity. And one has to keep in mind the real

interface thickness may be larger if the level-set gradient is locally weaker than one.
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2.2 Level-set method and ersatz phase

(a) ω = 0.04 (b) ω = 0.4 (c) ω = 1

Figure 2.12: Same unit cell geometry obtained from the level-set function plotted on figure 2.8
with a smoothing width ω — see equation (2.25) — equal respectively to 0.2, 2 and 5.
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Figure 2.13: Evolution of the flexural and shear compliance components with the smoothing width.
Other parameters are : 3890 elements, c = 103.
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2.3 Validation of the homogenization approach

An illustration of the homogenization procedure is given in this section on a bi-dimensional

plane strain periodic panel. The aim is to highlight with a given architectured panel

how the four-point bending behavior can be predicted from the homogenization approach

previously described. The bending compliance S4p will be deduced from the numerical

effective compliance d and f. Results will be compared to bending tests and full-field FEM

simulations. The idea is to validate the choice of taking into account the transverse-shear

contribution as well as the type of loading into the shear homogenization problem.

Unit cell of the architecture chosen for this study is shown on figure 2.14. The panel

is oriented with out-of-plane direction along e3. The unit cell is repeated periodically

in direction e1 and architecture is invariant in direction e2. Sizes of the unit cell are

lc = 24 mm and h = 12 mm. This geometry of architectured panel presents a non-negligible

transverse-shear contribution. Thus it is a good candidate to verify if the bending-gradient

homogenization problem is needed to provide a good prediction.

Figure 2.14: Unit cell of the considered architectured plate, with length lc = 24 mm and thickness
h = 12 mm.

2.3.1 Four-point bending tests

A panel sample based on the unit cell geometry of figure 2.14 was produced in polyamide by

selective laser sintering (SLS). This additive manufacturing technique consists in building

a three-dimensional part by alternative steps of powder bed deposition and selective laser

fusion (Gibson et al., 2009). The company Polyshape was in charge of the process, as part

of a collaboration with the CdM Paris (Centre des Matériaux ). The commercial powder

DuraForm PA was used with an average particle size of 60 µm. The Young’s modulus E is

given in the literature between 1.5 to 3.0 GPa, depending on the composition, porosity and

crystallinity (3DSystems, 2011, Salmoria et al., 2009). Humidity also strongly impact the

elastic behavior (Guérin), thus tests have been performed after a drying operation (1 hour

to 40◦C, then stored into a desiccator) in order to get a humidity as low as possible.

Figure 2.15 shows the prototype sample within the bending test device. The size of the

sample is 210 × 40 × 12 mm, that is 17.5 unit cells. In order to measure the flexural and

90



2.3 Validation of the homogenization approach

transverse-shear compliance components, the procedure detailed in section 1.5 is followed.

It consists in four-point bending tests with different shear lengths, in the present : L = 29,

41 and 53 mm. Additional data have been measured for lower span length l = 82, 106

and 130 mm.

Figure 2.15: Prototype sample made from selective laser sintering (SLS) of polyamide 6 powder.
The unit cell geometry is plotted on figure 2.14. Lower span length is denoted l and shear length
L.

The four-point bending compliance is measured from the unloading slope of the force–

deflection curve :

S4p =
∂δ

∂F
(2.27)

where F [N/m] is the total applied force per unit width and δ [m] is the deflection (i.e. the

vertical displacement of the upper loading points).

Figure 2.16 summarizes compliance data measured thanks to two loading–unloading

sequences and five sets of test lengths (lower span length l and shear length L). Each point

is measured on unloading slopes. The maximum applied force was chosen sufficiently low

such that no damage is produced. It enables to perform several test on the same sample.

2.3.2 Full-field FEM simulations of tests

A simulation by finite element method (FEM) of the test is performed to complete the

experimental data. The symmetry of the test enables to reduce the simulation domain

to half. Stress-free conditions are imposed on all the edges, excepted one subjected to

symmetry. The loading and support points are modeled respectively by traction force

and displacement point constraints. The constitutive material (polyamide) is assumed to

provide an isotropic elasticity with Young’s modulus E = 2.0 GPa and Poisson’s ratio

ν = 0.33. Figure 2.17 shows the resulting stress components σ13 (left) and σ11 (right) of

this full field simulation.
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Figure 2.16: Four-point bending compliance S4p of the sample from figure 2.15. Data were
measured for three values of the span length l and three values of the shear length L.

F/2 F/2 max

min

Figure 2.17: Full-field FEM simulation of a four-point bending test. The dash line show the
symmetry axis. The plotted fields are the stress components σ13 (left) and σ11 (right). Test lengths
are : l = 140 mm and L = 53 mm.

This linear elastic simulation is not a very time-consuming so that it can be repeated

consecutively for several values of the span and shear lengths. The computed values of

the four-point bending compliance are added to the experimental data on figure 2.18 and

present a good agreement. Oscillations around a linear evolution is noted. They result

from the local behavior around the loading and support points. And they depend on the

exact position of these points with respect to the unit cell. The largest oscillations are

obtained for a shear length that is multiple of the unit cell length.

This agreement confirms both the experimental measurement of the compliance on the

unloading slopes, and the assumption of punctual loading and support pads.

92



2.3 Validation of the homogenization approach

1e-07

2e-07

3e-07

4e-07

5e-07

6e-07

7e-07

8e-07

80 100 120 140 160 180 200 220 240

S
4
p

[m
2
/
N

]

Lower span length l [mm]

Figure 2.18: Comparison of the computed compliances (white) with the experimental data from
figure 2.16 (black). A good agreement is observed between full-field simulations and experiments.

2.3.3 Effective approach

The present section describes the way to predict the measured and computed four-point

bending behavior (figure 2.18), from an analytic expression based on beam analysis using

macroscopic compliances computed on the unit cell. The predictive model is progressively

enriched in order to evaluate the contribution of each aspect : with and without shear

contribution ; with uniform or bending gradient boundary conditions.

Without transverse-shear contribution

Beam analysis provide analytical expression for the four-point bending compliance S4p of

an homogeneous beam (or plane-strain panel). They were recalled in section 1.5. Neglect-

ing the transverse-shear contribution, one obtains the following estimation :

S4p ≈ 1

4
L2

d l − 1

3
L3

d (2.28)

where d is the flexural compliance. The value of this compliance is computed by solving

the homogenization problem (2.12) with N̄ = 0, M̄11 = 1 and M̄12 = M̄22 = 0. The

solution stress component σ11 of this problem is plotted on figure 2.19.

Comparison of effective analytical expression (2.28) with experimental data and full-
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Chap. 2 - Homogenization of periodic architectured panels

Figure 2.19: Stress component σ11 on the unit cell subjected to a pure bending moment M̄ .

field simulations is shown on figure 2.20. The slope seems well reproduced, but the absolute

values of compliance are underestimated. Indeed, neglecting the shear contribution means

assuming the shear stiffness to be infinite.
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Figure 2.20: Comparison of the analytical estimation (2.28) with the simulation and experimental
data of figure 2.18. The flexural compliance d is computed by solving the homogenization problem
with pure bending.

With transverse-shear contribution

Previous results encourage to take into account the transverse-shear contribution within

the analytical expression. Equation (1.31) could be rewritten as following in order to

94



2.3 Validation of the homogenization approach

exhibit the linear dependence on l :

S4p =
1

4
L2

d l +

(
6

10
Lf − 1

3
L3

d

)
(2.29)

where f is the transverse-shear compliance. The slope of this expression only depends

on the flexural compliance and is not going to change from previous section (Without

transverse-shear contribution). However, the intercept is sensitive to both flexural and

shear compliances.

The transverse-shear compliance can be computed using one of the two homogenization

problems detailed in section 2.1.2 : with static uniform boundary conditions (SUBC) or

with bending gradient body load (BG). The shear stress component σ13 is plotted in

both cases on figure 2.21. Most of differences lies close to edges because of the different

boundary conditions. Values are specified into table 2.1.

(a) (b)

Figure 2.21: Stress component σ13 on the unit cell subjected to a shear force Q̄ applied through
with : (a) uniform boundary conditions ; (b) an heterogeneous body load proportional to the pure
bending stress field (figure 2.19).

One compares again on figure 2.22 experimental data and full-field FEM simulations

with effective analytical expression (2.29) with the two shear compliance values of table 2.1.

In both cases (SUBC and BG), taking into account the shear contribution makes the

model to get closer to experiments and simulations. However, only the shear compliance

computed with bending gradient body load is able to fit with. The compliances computed

with uniform boundary condition remain too low.

Flexural [10−5/(N·m)] Transverse-shear [10−8m/N]

d f (SUBC) f (BG)

4.64 1.74 8.64

Table 2.1: Compliance components computed on the unit cell for bending and transverse-shear.
The shear component is given for the two loadings : static uniform boundary conditions (SUBC)
and bending gradient (BG).

The impact of the shear contribution and the loading of the homogenization problem
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Figure 2.22: Comparison of the analytical estimation (2.29) with the simulation and experimental
data of figure 2.18. The shear compliance f computed with : (blue lines) static uniform boundary
conditions ; (black lines) gradient bending body load.

reveals to be relatively important in the case treated here. For instance, at l = 130 mm

on figure 2.22, a ratio 2 is observed between the expression with bending gradient method

and the others.

Recalling the discussion of Allen on the shear contribution (see section 1.3), it seems

interesting to check the relevance of the flexural–shear ratio :

f

l2d
=

8.64 10−8

0.152 × 4.64 10−5
= 0.083 (2.30)

This ratio, which is equivalent to expression (1.6), is between 0.01 and 0.1. This ensures

the flexural and shear contributions are comparable which is indeed what the present

calculation confirms.

2.3.4 Conclusion

The bending stiffness analysis of a strongly heterogeneous panel has been performed

through experiments, test simulations, homogenization calculations and effective models.

It leads to two main conclusions.

It was shown how to predict an effective behavior of such periodic architectured plate
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2.3 Validation of the homogenization approach

from analytical expression and homogenization simulation on unit cell. However, full-field

simulations show oscillations of the four-point bending compliance depending on the exact

location of the load and support points. The obtained effective behavior provides only a

mean value and gives no information about the possible deviation from it.

One also concludes that the transverse-shear contribution has to be taken into account

depending on the value of the ratio f/(l2d). Boundary conditions of the shear homoge-

nization problem may have a significant impact on the results and have to be carefully

chosen. This is still more relevant when the local stress distribution is an issue such as in

shape optimization methods.
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2.4 Homogenization of embossed steel sheets

As an other illustrative example of plate homogenization, the practical case of embossed

steel is treated in the present section.

Ten years ago, 75% of the steel alloys involved in car did not exist. It shows how

innovation is central in the development of new steel solutions to fulfill the challenges of

the car makers and to face the competition of concurrent materials. One of the main

objectives for material research consists in lightening structural parts in order to lower gas

consumption and carbon dioxide emissions.

The sheet parts are mainly subjected to bending loading. Then lighten these parts

consists in increasing the flexural stiffness at a minimum weight. Embossing steel sheets

— such that exhibited on figure 2.23 — seems to be a way to increase the moment of

inertia while keeping the mass unchanged. One could imagine replacing a flat sheet with

a thinner embossed sheet that would have identical flexural stiffness.

Figure 2.23: Example of embossed steel sheet made by ArcelorMittal.

In the following, three types of embossed pattern are studied. Plate compliances are

computed using the homogenization procedure presented in section 2.1. A parametric

study is performed in order to select the most promising design.

2.4.1 Embossed patterns

The three periodic patterns proposed are denoted am, hexa and vault patterns. They

consist in an embossed steel sheet defined by a mean surface z = f(x1, x2). The pattern

am models the experimental pattern obtained by ArcelorMittal (figure 2.23). The mean

surface equation of this pattern is assumed to be :

fam

H (x1, x2) =
H

4

(
cos

2πx1
lc

+ cos
2πx2
lc

)
(2.31)

where lc is the edge size of the square unit cell, and H the amplitude of the embossing.
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2.4 Homogenization of embossed steel sheets

Because the square symmetry of this pattern leads to an anisotropic behavior, two al-

ternative patterns are proposed exhibiting hexagonal symmetry. Pattern hexa is obtained

from the surface expression :

fhexa

H (x1, x2) = H

(
8

9
cos

2πx1√
3lc

cos
2πx′2√

3lc
cos

2πx′′2√
3lc

− 7

18

)
(2.32)

where : 



x′2 =
1

2

(
x1 +

√
3x2

)

x′′2 =
1

2

(
−x1 +

√
3x2

) (2.33)

And pattern vault — similar to that mentioned in the literature (Mirtsch et al., 2006,

Bouaziz et al., 2008) — results from :

fvault

H (x1, x2) = H

(
1

2

(∣∣∣∣cos
2πx1√

3lc

∣∣∣∣+

∣∣∣∣cos
2πx′2√

3lc

∣∣∣∣+

∣∣∣∣cos
2πx′′2√

3lc

∣∣∣∣
)
− 1

)
(2.34)

For these hexagonal patterns, the projection of the unit cell on the plane (e1, e2) is rect-

angular with size
√

3lc× lc. The thickness of the steel sheet is t = 0.5 mm for all patterns.

(a) Pattern am. (b) Pattern hexa. (c) Pattern vault.

Figure 2.24: Unit cell of the three patterns of embossed sheet with : (a) square symmetry and
square cell size ; (b,c) hexagonal symmetry and rectangular cell size. The amplitude is H = 2 mm.

As illustrated on figure 2.25, it is proposed to introduce “cropped patterns” defined

by a maximal embossing thickness h. They have the advantage to flatten the top-and-

bottom extremities2, and one could also expect a larger flexural stiffness with an unchanged

occupied volume. Then each pattern provides a non-cropped version when H ≤ h+ t, and

a cropped version when H > h + t. Figure 2.25 shows non-cropped and cropped pattern

hexa for sheet thickness t = 0.5 mm, embossing thickness h = 2.5 mm, and embossing

amplitudes respectively H = 2 mm and H = 3.6 mm.

2Flattening extremities could enable joining with external plates for instance.
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(a) Cropped pattern (H = 2 mm).
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(b) Non-cropped pattern (H = 3.6 mm).

Figure 2.25: Section in plane x2 = 0 of the embossed pattern hexa for : (a) H = 2 mm ; (b)
H = 3.6 mm.

2.4.2 Adaptive mesh

Similarly to the bi-dimensional case, the whole unit cell V is meshed and the geometry

is defined implicitely through a level-set function. But in three-dimensions, the issue of

computing time is a limit and an adaptive mesh is required in order to catch properly the

geometry with an affordable computational cost. Adaptive mesh consists in an iterative

operation that starts from a rough tetrahedral mesh and progressively refines it by dividing

elements close to the interface.

Figure 2.26 exhibits an adaptive mesh used for the simulations on pattern hexa with

H = 3.6 mm. All the following simulations have been performed with meshes that provide

at least two elements in the sheet thickness.
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2.4 Homogenization of embossed steel sheets

Figure 2.26: Adaptive mesh with 140408 elements of the unit cell with pattern hexa (H =
3.6 mm).

2.4.3 Membrane and flexural compliances

Since the slenderness of the embossed plates seems sufficiently large, performances of

each pattern are discussed only considering the Love-Kirchhoff compliances. It will be

confirmed afterward by computation of the transverse-shear compliances, that the shear

contribution is indeed negligible.

A reference sizing is first chosen for identifying compliance components and comparing

patterns. Then, a parametric study enables to select and size the most promising design.

The values of compliance are systematically compared to the non-embossed or flat steel

sheet with same thickness t.

Simulations have been performed with the FEM software Comsol Multiphysics 4.0a.

Adaptive mesh is used as mentioned above. The constitutive material is assumed to be

a representative steel with isotropic elastic properties : Young’s modulus E = 200 GPa

and Poisson’s ratio ν = 0.33. Since we are concerned only with elastic stiffness, it is not

necessary to define more precisely the specific steel considered.

Reference sizing : h = 2.5 mm, H = 2 mm and t = 0.5 mm

The homogenization problem (2.12) is solved applying consecutively each Love-Kirchhoff

membrane force and bending moment. The deformed unit cells with displacement magni-

tude contours are presented for pattern am subjected to membrane forces on figure 2.27,

and to bending moments on figure 2.28.

The compliance values of the flat sheet and the embossed sheets are gathered in ta-

ble 2.2 (note that the Kelvin notations are used, see appendix A). All patterns provide

no coupling terms a61 = a26 = 0 and the same behavior in directions e1 and e2. This is

the case for both membrane and bending components. This is due to the isotropy of the

flat sheet, the rotational invariance of 90◦ around e3 for pattern am, and the hexagonal

symmetry of patterns hexa and vault.
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(a) N̄11. (b) N̄22.

(c) N̄12.

Figure 2.27: Displacement magnitude plotted on the wrapped unit cell for pattern am subjected
to each membrane force : N̄11, N̄22 and N̄12.

(a) M̄11. (b) M̄22.

(c) M̄12.

Figure 2.28: Displacement magnitude plotted on the wrapped unit cell for pattern am subjected
to each bending moment : M̄11, M̄22 and M̄12.
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2.4 Homogenization of embossed steel sheets

Pattern
Membrane [10−8m/N] Flexural [10−1/(N·m)] Averaged thick-

ness [mm]
a11 = a22 a66 a12 d11 = d22 d66 d12

flat 1.00 1.33 -0.33 4.80 6.38 -1.58 0.500
am 4.38 1.46 -2.16 1.19 6.41 0.413 0.503
hexa 3.68 3.76 -0.08 1.76 1.95 -0.190 0.538
vault 3.95 3.50 0.45 1.89 1.96 -0.073 0.513

Table 2.2: Love-Kirchhoff compliance components computed on the unit cell for each pattern
(Kelvin notations).

Presenting stiffness components are usually easier to assess and compare than compli-

ance components. Written in engineering notations, the membrane compliance becomes :

[a] =
1

t




1/Ea
1 −νa21/E

a
2 0

−νa12/E
a
1 1/Ea

2 0

0 0 1/(2Ga
12)


 (2.35)

with the in-plane Young’s moduli Ea
1 and Ea

2 , the membrane shear modulus Ga
12 and the

membrane Poisson’s ratios νa12 and νa21. And the flexural compliance becomes :

[d] =
12

t3




1/Ed
1 −νb21/E

d
2 0

−νb12/E
d
1 1/Ed

2 0

0 0 1/(2Gd
12)


 (2.36)

with the flexural Young’s moduli Ed
1 and Ed

2 , the flexural shear modulus Gd
12 and the

flexural Poisson’s ratios νd12 and νd21.

Table 2.3 summarized the effective plate stiffness of each pattern, according to the

previous engineer notations.

Pattern
Membrane behavior Flexural behavior Mass per

unit area
[kg/m2]

Moduli [GPa] Poisson’s ratio,
νa12 = νa21

Moduli [GPa] Poisson’s ratio,
νd12 = νd21Ea

1 = Ea
2 Ga

12 Ed
1 = Ed

2 Gd
12

flat 200 75.2 0.330 200 75.2 0.330 3.93
am 45.7 68.5 0.493 806 74.9 -0.347 3.95
hexa 54.3 26.6 0.022 545 246 0.108 4.22
vault 50.6 28.6 -0.114 508 245 0.039 4.02

Table 2.3: Effective plate stiffness computed on the unit cell for each pattern (engineer notations).

103



Chap. 2 - Homogenization of periodic architectured panels

For the three patterns and in comparison with the flat sheet, embossing leads to an

increase of the flexural moduli but a decrease of the membrane moduli (up to −75% for the

Young’s modulus of am). For instance on the pattern am, the flexural Young’s modulus

is multiplied by 4, but the in-plane Young’s modulus is divided by 4.4. For patterns hexa

and vault, the deviations from the flat sheet are weaker but show a similar tendency.

Even if such tables of compliance or stiffness values contain the whole elastic behavior,

the intensity of anisotropy is not directly obvious. It becomes clear when plotting the

moduli Ea
1 , Ga

12, E
d
1 and Gd

12 with respect to angle θ around the normal axis e3 (figure 2.29).

Relations about rotation of tensors are recalled in appendix A.

Figure 2.29: Sketch of the rotation of the unit cell around axis e3.

Figures 2.30 and 2.31 plot the variations of the moduli with respect to the angle θ.

They are respectively normalized by the Young’s modulus E and the shear modulus G of

the constitutive steel. The high anisotropy of pattern am, especially on flexural moduli, is

directly quantified. For instance, this pattern reveals to be two times stiffer when subjected

to a in-plane force at 45◦ than along the axis e1 or e2. And the flexural Young’s modulus

is about four times weaker at 45◦ than along the frame axis.

104



2.4 Homogenization of embossed steel sheets

1.5 1 0.5 0 0.5 1 1.5

flat

am

hexa

vault

(a) Normalized in-plane Young’s modulus Ea

1/E

1.5 1 0.5 0 0.5 1 1.5

flat

am

hexa

vault

(b) Normalized in-plane shear modulus Ga

12/G

Figure 2.30: Variations of the in-plane moduli with respect to the angle θ for all patterns.
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Figure 2.31: Variations of the flexural moduli with respect to the angle θ for all patterns.
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Parametric study on the amplitude H

Coming back to the initial objective, the embossed steel solution would be promising if

it could provide the same flexural stiffness to a thinner sheet than that of the currently

used flat sheets. For instance, reducing the thickness of the steel sheet from 0.7 to 0.5 mm

would save around 1.5 kg/m2. Could embossing stiffen a 0.5-thick steel sheet sufficiently

to reach the flexural stiffness of a 0.7-thick sheet ? This question is illustrated on the

compliances chart on figure 2.32.

it seems interesting to explore the embossed designs by varying one of the characteristic

design variable. The amplitude H typically enables to explore continuously the design from

the flat sheet to the cropped embossed sheet.
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Figure 2.32: Flexural versus in-plane Young’s modulus. Could embossing drag a 0.5mm-thick
steel sheet up to the flexural stiffness of a 0.7mm-thick steel sheet ? And then save about 1.5 kg/m2

when shifting the thickness from 0.7 to 0.5 mm.

In order to explore some of the embossed solutions, a parametric study is proposed on

the embossing amplitude H. Figure 2.33 exhibits the unit cell for each pattern am, hexa

and vault, when scanning the design variable H from 0 to 3.6 mm. The maximal embossing

thickness is chosen to h = 2.5 mm, such that the embossing amplitude H = 2 mm is the

limit between non-cropped and cropped versions.

Figure 2.34 shows the variations in flexural and in-plane Young’s moduli when changing

the embossing amplitude H. For H = 0 mm, one (fortunately) finds the modulus of the

flat sheet with t = 0.5 mm. Concerning the flexural modulus, raising H increases the

stiffness up to a maximum for H = 2.4 mm and slightly decreases it afterward. These two

ranges almost coincide with the two types of geometries, non-cropped and cropped, which
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2.4 Homogenization of embossed steel sheets

(a) Geometry am. (b) Geometry hexa. (c) Geometry vault.

Figure 2.33: Periodic unit cell of each pattern with scanning the embossing amplitude H. From
top to bottom : non-cropped patterns (H = 0.8 and 2 mm) and a cropped pattern (H = 3.6 mm).

limit is H = 2 mm. Concerning the in-plane modulus, one observes a monotonic decrease

which also stabilizes for cropped patterns.
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Figure 2.34: Variations of the flexural and in-plane moduli when changing the embossing ampli-
tude H. Two ranges of values appear : from the flat sheet (H = 0 mm) to the thicker non-cropped
pattern (H = 2 mm), followed by the cropped patterns (H > 2 mm).
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Chap. 2 - Homogenization of periodic architectured panels

The same stiffness chart is completed on figure 2.35 with the additional patterns am

and vault. Variations of the moduli of each pattern are compared together when changing

the embossing amplitude H. For pattern am, two sets of values are presented : for θ = 0◦

and for θ = 45◦. Even if a good compromise between bending and shear is obtained at

0◦, it has to be contrasted with the poor results at 45◦. One could notice the maximum

in flexural stiffness do not coincide necessarily with the thickest non-cropped pattern

(H = 2 mm), especially for pattern am.
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Figure 2.35: Reporting patterns am, hexa and vault on the flexural versus in-plane stiffness chart.
Scanning the design variable H (from 0 to 3.6 mm) enables to shift the flat 0.5mm-thick sheet to
the upper-left direction.

The salient result from this study is that pattern hexa provides the highest flexural

stiffness (if we forget pattern am because of its high anisotropy). However, the challenge

that was to reach a flexural modulus equivalent to that of the 0.7mm-thick flat sheet is

not completed. The constitutive sheet thickness must be taken thicker than 0.5 mm.

In order to avoid additional time-consuming computations, one can scale the pattern

size in the direction e3. Figure 2.36 proposes several scaling to shift the constitutive sheet

thickness from 0.5 mm to respectively 0.55, 0.6 and 0.65 mm.
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Figure 2.36: Abacus that enables to read the appropriate sizing (sheet thickness t and embossing
amplitude H) with respect to the required flexural and in-plane Young’s moduli. The resulting
weight saving is given by the sheet thickness.

The objective flexural stiffness is obtained for any design having a sheet thickness

t > 0.52 mm. The most interesting sizing is not necessary that with the smaller thickness

since weight saving have to be contrasted with a substantial decrease of the in-plane

Young’s modulus. Even if the parts that would include such embossed sheets are mainly

subjected to bending, a too weak in-plane modulus could have non-negligible adverse

impacts. Figure 2.36 can be read as an abacus in order to choose a sizing (sheet thickness

and embossing amplitude) from prescribed flexural and in-plane Young’s modulus. The

saved weight is deduced from the thickness reduction of the constitutive sheet.

2.4.4 Transverse-shear compliance

The shear compliance components of Reissner-Mindlin model are obtained from homoge-

nization (2.20) with bending gradient body load. Results are gathered into table 2.4. One

could notice that the scalar dimension of transverse-shear leads to an isotropic behavior

for all patterns, even for the square-symmetric pattern am.

Even if the deviation in shear compliance of the embossed sheets from the flat sheet

is large, one should first calculate the following ratio to estimate the impact of the shear

contribution to further global stiffness :

f

l2d
< 10−6 (2.37)
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Chap. 2 - Homogenization of periodic architectured panels

Pattern
Transverse-shear [10−9m/N]

f11 = f22 f12

flat 31.9 0
am 1.04 0
hexa 0.455 0
vault 0.456 0

Table 2.4: Transverse-shear compliances computed on the unit cell by solving the homogenization
problem with bending gradient body load (see section 2.1.2).

for all patterns and whatever is the in-plane direction. Since this ratio is much lower

than 0.01, the transverse-shear contribution is negligible and embossing does not imply

significant change in global stiffness due to the shear contribution.

2.4.5 Global stiffness

One of the key issues for the implementation of architectured solutions into a component

is to avoid a refined meshing of the architecture and to consider an effective material. We

will illustrate here this strategy.

An illustrative integration of an embossed plate into a fictitious component is proposed.

Abaqus FEM simulations of a rectangular plate (80× 40 mm) have been performed using

the compliance components of the previous patterns into an effective homogeneous plate.

Figure 2.37a exhibits the geometry and the applied homogeneous vertical force per unit

area. Clamped boundary conditions are imposed on all the surrounded edges. Elements

S4 are used and general shell stiffness matrix is specified with the values of table 2.3.

The resulting fields of bending moments M12, M11 and M22 are shown respectively on

figure 2.37b, 2.38a and 2.38b, for a flat steel sheet of thickness 0.5 mm.

The global stiffness of the plate is computed as the ratio of the applied force per unit

area over the deflection at the center point. The values are plotted on figure 2.39 for all

patterns and two orientations of the pattern am ( 0◦ and 45◦).

Assuming that this rectangular plate was only subjected to bending, the expected

global stiffness with pattern hexa should be equal to the global stiffness of the flat sheet

times the normalized flexural modulus Ed
1/E, i.e. 1387 N/m. The FEM simulation gives

1254 N/m and it can be explained by the contribution of the membrane stiffness which is

particularly low for the embossed sheet3. A similar shift is observed on pattern vault. As

a conclusion, in the case of isotropic behavior, ranking and selecting with respect to the

flexural modulus is probably still valid with respect to the global stiffness.

3Simulations confirmed the transverse-shear contribution is negligible for any design, as predicted in
section 2.4.4.
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2.4 Homogenization of embossed steel sheets

(a) Uniform surface load and clamped boundary
conditions.

(b) Bending moment M12.

Figure 2.37: Abaqus FEM simulation on a rectangular plate. (a) Geometry and loading. (b)
Resulting field of bending moment M12 for a flat steel sheet of thickness 0.5 mm.

(a) Bending moment M11. (b) Bending moment M22.

Figure 2.38: Abaqus FEM simulation on a rectangular plate. Resulting fields of bending moments
M11 and M22 for a flat steel sheet of thickness 0.5 mm.
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Figure 2.39: Global bending stiffness of the rectangular plate, figure 2.37a, subjected to a uniform
force per unit area for each pattern. Two orientations are presented for pattern am (0◦ and 45◦).

The case of anisotropic pattern seems more difficult. The decision to dismiss the pat-

tern am because of the large anisotropy of its behavior might not be justified. Figure 2.39
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Chap. 2 - Homogenization of periodic architectured panels

reveals that this pattern, in both 0◦ and 45◦ directions, provides a larger global stiffness

than the others. Not any feature on the comparison of moduli on figure 2.35 could help to

predict such results. However, anisotropy might be a problem to avoid for other reasons

than elasticity.

Thinking about more complex parts, the contributions of the other moduli (in-plane

tension, in-plane shear or twisting) could be less negligible, even for isotropic behavior. In

this case, that would be interesting to write a performance index that takes into account

the contribution of each of these moduli. It sounds like a way to design architectured

materials, such as embossed plates, with respect to this performance index and to compare

with other monolithic materials.
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2.4 Homogenization of embossed steel sheets

Conclusion

Methods of periodic homogenization of panels have been presented in this chapter from

the effective properties definition toward an application of architectured panel design.

In comparison with bulk periodic media, the case of panels adds to homogenization the

concept of “integration” in the out-of-plane direction with identifying effective properties

of a bi-dimensional model from a three-dimensional unit cell. In the case of transverse-

shear behavior, the non-periodicity in the out-of-plane direction excludes homogenization

problem with classical boundary conditions. It requires results on bending gradient theory

in order to have a homogenization problem that keeps satisfied the stress-free boundary

conditions.

The implementation of the homogenization problems have been described in the case

of an implicit definition of the geometry using the level-set method. The influence of the

artificial parameters introduced by the method is studied. Values have been chosen for

the homogenization computations of this chapter and the next optimization chapters.

A validation of the homogenization procedure have been proposed in section 2.3. An

illustrative architectured panel has been produced by additive manufacturing and tested.

Experimental data in addition with FEM simulations of the test enable to validate the

homogenization problems and their implementation. The importance of the shear contri-

bution, as well as the type of loading into the shear homogenization problem, have been

also evaluated thanks to this comparison.

Finally, the implemented homogenization procedure has been used to evaluate the

stiffness performance of embossed steel in an automotive applicative context. Analysis of

few proposed embossing patterns enables to select the most promising and to determine

the appropriated design variables thanks to a parametric study.

The latter example shows that such parametric study is necessarily reduced to few

parametric geometries usually built from intuition. It highlights the interest of adding a

preliminary shape optimization stage which could provide optimized geometries before a

more complete parametric study.
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Highlights

• An efficient homogenization procedure exists in order to identify

the Love-Kirchhoff compliance components, by computing the unit cell

response to each macroscopic loading.

• The transverse-shear contribution in the global bending compliance

of a panel is well predicted by the Allen ratio f/(l2d). The shear compli-

ance can be roughly estimated on a homogenization problem with uni-

form boundary conditions, but a more precise estimation is given with

a bending gradient body load. The latter provides an aesthetic way to

apply a balanced mean shear force while keeping satisfied the stress-free

boundary conditions on the top-and-bottom boundary conditions. It

will be useful for optimization.

• The level-set method enables to defined implicitly any distribution of

matter into the unit cell on a given mesh. It is done by meshing the

whole unit cell and by mimicking holes with an ersatz material.

• Embossed steel is a solution to improve the moment of inertia following

the “material by design” approach in an automotive applicative context.

Periodic homogenization methods are used to identify Love-Kirchhoff

moduli, to compare three different patterns and to propose rules for

choosing the design parameters.



Chapter 3

Shape optimization





Introduction

In the previous chapters, it has been argued with examples that architecturing materials is

a way to improve the performance of multi-functional materials. Engineering approaches

by trial and error, or by parametric study, enable to compute the properties of such

material and their dependence to the design. However, all architectures cannot be explored

and high-performance designs, especially for multi-functional specifications, may not be

intuitive. Thus the use of optimization methods seems relevant in order to highlight

promising architectures.

Optimization consists in searching for the minimum (or maximum) of an objective

function (or a combination of objective functions in the case of multi-functional optimiza-

tion) with respect to variables. In design optimization, objective function often depends

on theses variables through partial differential equations which may imply an extensive

numerical resolution (for instance a finite element simulation of mechanical equations).

Usually, constraints on the optimization variables are added such that they reduce the

admissible space in which the variables are searched for. They can be either explicit such

as bounds on the variables (or a limited domain of design), or implicit such as volume (or

area) constraint.

Literature is extensive on optimization techniques applied to the design of structures,

products or materials. One could classify these methods into three families illustrated

on figure 3.1 : parametric optimization, functional optimization and shape optimization

(with and without ability to change topology). This classification is based on the nature

of the optimization variables, respectively scalars, functions or domains.

Parametric optimization Also named engineering design optimization (EDO), para-

metric optimization consists in describing the design with parameters (continuous or dis-

crete) and finding the set of these parameters that provide the highest performance while

satisfying constraints. Depending on the problem, a suitable algorithm can be found

among a large diversity of optimization methods (Kicinger et al., 2005, Roy et al., 2008,

Awad et al., 2011). Two main groups exist depending on the choice of either a deter-

ministic approach (gradient method, interpolation method, etc.) or a heuristic approach

(evolutionary, genetic, particle swarm, simulated annealing, etc.). On one hand, deter-

ministic algorithms are more suitable for expensive objective function evaluation (finite

element computation, for instance) and enhanced methods of sensitivity analysis (Barthold

and Stein, 1996, Vankeulen et al., 2005) enable to efficiently evaluate the derivative with

respect to the design variables. Main disadvantages are the sensitivity to the initial value

since only local optima are found, and difficulties to manage discrete variables. On the

other hand, heuristic methods enable to find global optimum for both continuous and
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(a) Parametric optimization. (b) Functional optimization (for
instance plies orientations of a
fiber reinforced polymer).

(c) Shape optimization with
fixed topology.

(d) Shape optimization with
topological changes.

Figure 3.1: Illustration of the different families of design optimization : parametric, functional
and shape optimization with and without topological change. Figure (d) specifies the optimization
domain Ω and the design domain V .

discrete variables, but usually need a large number of function evaluation.

Functional optimization It consists in optimizing an objective function with respect

to a design functional. In few cases (linear elasticity, eigenvalue problem, etc.), analytical

expressions exist for the objective function derivative and iterative optimization can be

done using local information. For instance, it was applied to optimize orthotropic material

orientation (Bendsøe et al., 1996), plies orientation in laminated composites (Jibawy et al.,

2011), or microstructure orientation in lamellar metal–ceramic composites (Piat et al.,

2011). But in most of the cases, the design functional is discretized and then parametric

optimization is performed using for instance sensitivity analysis (Lund, 2009).

Shape optimization In this case, the objective function is optimized with respect to

a domain Ω (filled with matter) included into an admissible domain of design V (see

figure 3.1d). The iterative evolution of the domain is based on analytical shape derivative

of the objective function, which is the sensitivity to boundary variations. First results on

shape derivative were obtained for the compliance, so that literature on shape optimization

initially proposed methods to maximize structures stiffness.

Whereas the term “shape optimization” is sometimes restricted to methods with fixed
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topology, we use here the global term that also includes methods that enable partial

or full topological changes. We synthesize below the main techniques, but an extended

bibliography can be found in Hassani (1998a,b,c), Eschenauer and Olhoff (2001), Mackerle

(2003).

(a)

(b)

(c)

(d)

(e)

Figure 3.2: Illustration of some shape optimization method applied on the minimum compliance
cantilever : (a) geometrical optimization with moving mesh ; (b-c) homogenization method respec-
tively before and after penalization ; (d-e) level-set function and corresponding optimized shape.
(www. cmap. polytechnique. fr/ ~ optopo/ and Allaire et al. 2004)

Geometrical optimization consists in meshing the domain Ω and deforming it at each

optimization step (Soko lowski and Zolésio, 1992, Allaire and Pantz, 2006, Liu and Korvink,

2007). It regularly requires time-expensive remeshing when the mesh distortions become

too large. Moreover, no topological change is available (figure 3.2a).

Material approaches are based on a full mesh of the design domain V , on which is de-

fined a fictitious density field. The objective function is evaluated by solving the physical

equations with material properties that depend on the fictitious density according to an

interpolation scheme — which specifies how stiffness varies from that of the constitutive

material when the density value is 1, to zero when the density is 0. This material interpola-

tion scheme may be a power law such as in the widely used SIMP1 method (Bendsøe, 1995,

Tcherniak and Sigmund, 2001, Bendsøe and Sigmund, 2003, Andreassen et al., 2010), or

based on physical schemes such as in the homogenization method (Bendsøe and Kikuchi,

1988, Fuchs, 1999, Allaire, 2002) and others (Bendsøe and Sigmund, 1999). The opti-

mization is then reduced to a functional optimization with respect to the fictitious density

function, based on analytical derivative. At the end of the optimization procedure, a

“composite” solution is obtained with a density in-between 0 and 1 (figure 3.2b). Thus

1Solid Isotropic Material with Penalization.
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a penalization stage is added in order to progressively prohibit the intermediate values

of density (figure 3.2c). The main disadvantage of these material approaches is that the

obtained optimized shape is strongly sensitive to the material interpolation scheme as well

as penalization method.

Inspired from free-interfaces and front-tracking methods, the level-set method (fig-

ure 3.2d,e) is a way to define implicitly the domain Ω on a fixed mesh of the design

domain V (see section 2.2). The iterative optimization of the shape is done by applying

on the level-set function a velocity field that depends on the shape derivative (Sethian,

2000, Osher, 2001, Allaire et al., 2004). The transport equation is usually Hamilton-

Jacobi equation (Sethian, 1999). Physical equations are solved on the full design domain

and empty spaces are mimicked with extremely weak material properties. A smoothed

fictitious interface is introduced to avoid instabilities such as it is done in phase field

simulations. When using Hamilton-Jacobi equation, only partial topological changes are

allowed. Indeed, the maximum principle satisfied by this transport equation makes the

nucleation of new holes impossible. But coarsening of existing holes can occur, which

still enables partial topological changes. Thus initial geometry are usually chosen with

a large number of holes, for instance with trigonometric level-set functions. In the fol-

lowing, level-set method using Hamilton-Jacobi equation is chosen for the optimization

simulations (following Allaire et al., 2004).

Applications In the context of multi-functional optimization of architectured materials,

it seems interesting to mention some examples of the literature. Apart the development

of new methods illustrated on classical compliance problems, shape optimization was ap-

plied to many other problems with various objective functions such as Von Mises stress

(Allaire and Jouve, 2008, Amstutz and Novotny, 2009), actuator compliance (Sigmund

and Torquato, 1999), thermal conductivity (Gersborg-Hansen et al., 2006, Munoz et al.,

2007), shell compliance (Ansola et al., 2002, Novotny et al., 2005, Park and Youn, 2008),

vibration modes (Ma et al., 1995). The particular case of periodic microstructures was first

studied by Sigmund (1995) to tailor materials with prescribed elastic properties. Then,

optimization of various properties have been proposed : thermal expansion (Sigmund and

Torquato, 1997), bulk and shear modulus (Neves et al., 2000, Huang et al., 2011), poros-

ity and permeability for tissue engineering (Hollister et al., 2002, Hollister, 2005), elastic

properties to get auxetic materials (Schwerdtfeger et al., 2011), piezoelectricity (Nelli Silva

et al., 1998), thermal conductivity (Zhuang et al., 2007), stiffness and conductivity (Chen

et al., 2010).

This chapter is dedicated to applying shape optimization to plate unit cell with respect

to membrane, bending and transverse-shear compliances.
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3.1 Shape derivative and optimization algorithm

3.1 Shape derivative and optimization algorithm

The present section shortly presents the concept of shape derivation and its use into a

compliance minimization algorithm based on (Allaire et al., 2004). Implementation in two

dimensions was validated on classical problems and then applied to architectured panels.

3.1.1 Shape Derivative

The description of shape derivative and compliance minimization problem will be done in

two dimensions, but generalization to three dimensions is trivial.

Considering a function J of domain Ω ∈ R
2, shape derivative quantifies its sensitivity

to any infinitesimal variation of the boundary of Ω. One denotes Ωθ the resulting domain

to a small transformation of domain Ω with respect to vector field θ (figure 3.3), i.e. :

Ωθ :=
{
xθ ∈ R

2 : xθ = x + θ(x), x ∈ Ω
}

(3.1)

Figure 3.3: Small transformation of the domain Ω to the domain Ωθ through the vector field
θ. The transformation is sufficiently small and regular to be a diffeomorphism (smoothed and
invertible function).

Then shape derivative of function J(Ω) is defined as the Fréchet derivative at 0 of the

application θ → J(Ωθ), i.e. :

J ′(Ω)(θ) = lim
‖θ‖→0

J(Ωθ) − J(Ω)

‖ θ ‖ (3.2)

In the case of area A(Ω), which only depends on Ω through integration support, one

has :

A(Ω) =

∫

Ω
dx and A′(Ω)(θ) =

∫

∂Ω
θ(x) · n(x) dx (3.3)

where n is the normal to the boundary of Ω. When the function J is the integral of a field
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j(Ω) that also depends on the domain, one can formally denotes :

J(Ω) =

∫

Ω
j(Ω) dx and J ′(Ω)(θ) =

∫

∂Ω
j′(Ω) θ · n dx (3.4)

If j(Ω) is the result of the solution of a partial differential equation, the derivative field

j′(Ω) do not have an analytical expression in the general case. Only specific cases lead to

analytical expressions that depend on an adjoint problem (Allaire, 2002). The simplest

result concerns shape derivative of elastic energy, which leads to a self-adjoint problem

and the following expression :

J(Ω) =

∫

Ω
ε(u) ·Cε(u) dx and J ′(Ω)(θ) =

∫

∂Ω

(
− ε(u) ·Cε(u)

)
θ · n dx (3.5)

where u is the solution of a linear elastic problem with no body load and stress-free

condition on the boundaries to optimize. This important result enables, with choosing

the elastic energy as objective function, to compute from a single FEM simulation both

values of objective function and derivative field j′(Ω).

3.1.2 Optimization algorithm

The optimization problem is usually written as minimizing an objective function J with

a given amount of matter :

min
{Ω⊂V s.t. F (Ω)=0}

J(Ω) (3.6)

where V is the design domain and F (Ω) the area fraction constraint :

F (Ω) =
A(Ω)

A(V )
− Āf = 0 (3.7)

and Āf is the prescribed area fraction.

The constraint problem (3.6) is reduced to an unconstraint minimization problem by

the Lagrangian method. The objective function J(Ω) is replaced by the Lagrangian Ĵ(Ω, λ)

such that :

Ĵ(Ω, λ) = J(Ω) + λF (Ω) (3.8)

where λ is the Lagrange coefficient which becomes an optimization variable in addition to

Ω. Using equations (3.3) and (3.4), the shape derivative of the Lagrangian becomes :

Ĵ ′(Ω)(θ) =

∫

∂Ω

(
j′(Ω) +

λ

A(V )

)
θ · n dx (3.9)

Since j′(Ω) < 0 and λ ≥ 0, this expression must be interpreted as the local competition

between the mechanical derivative that tends to extend Ω (more or less depending on the
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energy density) and the Lagrange coefficient that tends to withdraw uniformly Ω.

The optimization algorithm is synthesized in frame 3.1. The evaluation of the objective

function and the shape derivative is done by finite element method on a fixed mesh of

design domain V . Matter organization is defined by the level-set function (see section 2.2).

The deformation of the shape results from transporting the level-set function φ with the

Hamilton-Jacobi equation :
∂φ

∂t
+ v|∇φ| = 0 (3.10)

where v is the velocity field. This partial differential equation is solved by a finite differ-

ence method on a regular grid using an explicit first order upwind mesh (Sethian, 1999).

Evolving the level-set function on a time range δt is equivalent to a transforming field

θ = v δt n. Thus choosing the velocity field as v = −j′(Ω), the shape is deformed in a

descent direction since equation (3.4) ensures Ĵ ′(Ω)(θ) < 0.

Because the velocity v is not strongly regular through the interface, the level-set func-

tion looses progressively its regularity. Then it has to be reinitialized, for instance to the

signed distance function (for all x it is the distance to the closest boundary ∂Ω, positive

if x ∈ Ω and negative if not ). This operation is done by solving the following equation

until steady-state :
∂φ

∂t
+ sign(φ0) (|∇φ| − 1) = 0 (3.11)

where the initial value φ0 is the level-set function to reinitialize.

The maximum principle satisfied by Hamilton-Jacobi equation disables the creation

of new holes, but partial topological changes are still available by coarsening. Thus the

number of holes in the starting geometry is a key parameter.

The algorithm have been implemented in Matlab coupled with Comsol Multiphysics

3.5 for the finite elements simulations. The level-set management and the resolution of

the Hamilton-Jacobi equation by finite difference method are done using Matlab.
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Frame 3.1 Algorithm which optimizes bi-dimensional shape under area constraint. Shape
transformation results from the transport of the level-set function with Hamilton-Jacobi
equation. (Allaire et al., 2004)

1. Initialize the level-set function to obtain the expected starting geometry

and area fraction.

2. While the maximum number of iterations is not reached :

(a) Evaluate the objective function and shape derivative with FEM

simulations.

(b) While the area constraint is not satisfied :

• Update the Lagrange coefficient from its previous value and the

previous constraint errors.

• Deform the shape by transporting the level-set function with

Hamilton-Jacobi equation. The equation is solved on a time

range δt and for a velocity v = −j′(Ω).

(c) Reinitialize the level-set function to the signed distance function.

It improves the conditioning for Hamilton-Jacobi equation while

keeping the same zero contour line.
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3.1 Shape derivative and optimization algorithm

3.1.3 Numerical results

As a validation of the implementation of this method, numerical results are presented for

two classical problems : a cantilever clamped on one side and subjected to a vertical force

on the other, and a “bridge” with two support points on each side and a vertical force

applied on the middle of the bottom edge. Figure 3.5a shows boundary conditions and

loading for a bending cantilever, and figures 3.5b and 3.5c show the corresponding shape

evolution to minimum compliance at given weight for two different initial geometries.

Features of the final geometry are similar to those obtained from analytical (Dewhurst,

2001), parametric (Mart́ınez et al., 2006), as well as topological optimization (Allaire and

Jouve, 2008), exhibited on figure 3.4.

(a) Dewhurst (2001). (b) Mart́ınez et al. (2006).

(c) Allaire and Jouve (2008) : iterations 20, 70 and 300.

Figure 3.4: Some results of analytical, parametric and shape optimization from literature on the
cantilever problem. Shape ratio and volume constraint are different.

A sensitivity of the final shape to the number of holes in the initial geometry is observed.

However the difference in stiffness between the two optimized structures is less than 1%.

Comparison with topological optimization shows that starting from a sufficient number of

holes enables to compensate for the inability to create holes.

Figure 3.6b presents an other result when minimizing compliance at given weight with

respect to the “bridge” loading specified on figure 3.6a. Topological changes are observed

by coarsening holes.
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(a) Loading and boundary conditions.

(b) Iterations 0, 10, 30, 50 and 80.

(c) Iterations 0, 10, 20, 30 and 40.

Figure 3.5: Compliance minimization of the cantilever boundary condition problem. Level-set
discretized on 100 × 50 pixels and FEM simulations with 50000 elements. The area fraction is
imposed to 0.5 in the two cases.

(a) Loading and boundary conditions.

(b) Iterations 0, 10, 20, 30 and 40.

Figure 3.6: Compliance minimization of the bridge boundary condition problem. Level-set dis-
cretized on 80 × 40 pixels and FEM simulations with 3200 elements. The area fraction is imposed
to 0.5.
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3.1 Shape derivative and optimization algorithm

More refined but similar features are observed when optimizing with respect to a panel

subjected to a four-point bending loading (figure 3.7). Only the right half of the panel is

simulated since geometry and loads are symmetric. The part subjected to pure bending is

filled with two disconnected and invariant faces. The shear area (between load point and

support point) shows a graded decrease of the faces thickness and an increase of diagonal

shear bars that connect the two faces.

(a) Four-point bending load with symmetric boundary condition on left edge.

(b) Optimized structure after 100 iterations.

Figure 3.7: Shape optimization of a panel subjected to a four-point bending test. The resulting
stiffness strongly depends on the location of load point and support point. The area fraction is
imposed to 0.5.

Even if this optimization provides interesting shapes, it results in an optimized struc-

ture which is not robust if the load and support points are changed. Focusing on a periodic

architecture should help to find a compromise between flexural stiffness, transverse-shear

stiffness and weight, which does not depend on the loading location.
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3.2 Optimization of 2D architectured panel

The current section deals with shape optimization of periodic unit cell of architectured

panel. As already mentioned in chapter 1 and 2, the contribution of transverse-shear to the

global bending stiffness is usually negligible excepted for very thick panels or particularly

low shear stiffness. Thus, optimizing with respect to the flexural compliance is justified

in the case presented on figures 3.8 and 3.9. The obtained geometry provides indeed the

maximal flexural stiffness (as far as possible from the neutral axis) but shear stiffness is

zero and any three or four-point bending stiffness of such panel will be also zero.

Figure 3.8: The problem is to find the optimal geometry for the unit cell of an architectured
flexural panel.

Figure 3.9: Optimization of the flexural stiffness with respect to the matter distribution in a
square unit cell (iterations 1, 10, 20, 30, 40 and 50). The resulting shape is not interesting because
global bending stiffness is zero. The shear stiffness must be also included into a multi-functional
objective function.

Even if the shear contribution can be neglected in the performance of the initial geom-

etry, shape optimization with respect to flexural compliance only will inevitably transform

into a geometry for which the shear compliance is critical. Then, shear compliance has

to be included into the objective function in order to converge toward non trivial shapes.

The weight (proportional to the area fraction) take also part of the problem. If not, a unit

cell entirely filled with matter will do it.

Finally, it results in a multi-functional optimization problem with an area fraction

constraint. It will be written as minimization of compliances in order to fit with the shape

optimization problems presented in section 3.1. As a consequence, the following properties

will be discussed in terms of compliances.
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3.2 Optimization of 2D architectured panel

3.2.1 A multi-functional optimization

As described in section 2.1.2, applying a bending moment M on the unit cell enables to

compute the flexural stiffness from the elastic energy :

d =
2h
〈
w(M)

〉

M
=

2h

M

1

|V |

∫

Ω
ε ·Cε dx (3.12)

where w(M) is the energy density that results from applying the bending moment M .

The unit cell is denoted V and Ω is the domain filled with matter. Result (3.5) gives an

analytical expression for the shape derivative of the flexural compliance :

d
′(Ω)(θ) =

2h

M

1

|V |

∫

∂Ω
(−ε ·Cε) θ · n dx :=

∫

∂Ω
d
′ θ · n dx (3.13)

where d ′ denotes the derivative field of the flexural compliance d.

Similarly, the expression of the transverse-shear compliance is :

f =
2h
〈
w(Q)

〉

Q
=

2h

Q

1

|V |

∫

Ω
ε ·Cε dx (3.14)

where w(Q) is the energy density that results from applying the shear force Q. The shape

derivative expression is :

f
′(Ω)(θ) =

2h

Q

1

|V |

∫

∂Ω
(−ε ·Cε) θ · n dx :=

∫

∂Ω
f
′ θ · n dx (3.15)

where f ′ denotes the derivative field of the transverse-shear compliance f.

In order to find an architecture that provides a compromise between flexural and

transverse-shear stiffness, at a given weight, the following optimization problem is written :

min
{Ω⊂V s.t. F (Ω)=0}

Jα(Ω) = d
α
f
(1−α) (3.16)

The constraint F (Ω) = 0 enforces the area fraction to be Āf , with :

F (Ω) =
A(Ω)

A(V )
− Āf (3.17)

The objective function Jα(Ω) introduces a weighting factor α that quantifies the relative

importance between bending and shear. Choosing α = 1 means optimizing only the

flexural compliance, and α = 0 means optimizing only the shear compliance.

The combination of the previous shape derivatives for flexural compliance (3.13) and

for shear compliance (3.15), gives the following expression for the derivative of the objective
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function :

J ′
α(Ω)(θ) = Jα(Ω)

(
α
d
′(Ω)(θ)

d
+ (1 − α)

f
′(Ω)(θ)

f

)

=

∫

∂Ω
Jα(Ω)

(
α
d ′

d
+ (1 − α)

f ′

f

)
θ · n dx

(3.18)

Using the optimization algorithm described in section 3.1.2, any initial geometry can

be iteratively transformed such that the objective function Jα is decreased, by solving the

Hamilton-Jacobi equation with a velocity based on the integrand of equation (3.18).

Area fraction constraint

The area fraction constraint is treated by replacing the objective function by a Lagrangian

that introduces a Lagrange coefficient as an additional optimization variable (see sec-

tion 3.1.2). It simply results in decreasing the velocity field of the Hamilton-Jacobi equa-

tion by a constant proportional to the Lagrange coefficient. This constant competes against

the mechanical derivative field in order to get an unchanged area fraction. And the con-

straint is being satisfied just by finding the appropriate value of Lagrange coefficient.

However for prescribing low area fraction (typically under 0.6), if the constraint is

being satisfied from the first iteration, either vanishing of small connections of matter or

holes coarsening may occur. For instance, on first picture of figure 3.10, the vanishing

of the upper and lower connections is observed with respect to figure 3.9. It drastically

reduces the connectivity of the geometry and since new holes cannot nucleate it makes the

results uninteresting.

Figure 3.10: Optimization with area fraction Āf = 0.5 and satisfying the constraint from the first
iteration. Weighting factor is α = 0.6 and pictures correspond to iterations 1, 10, 20, 30, 40 and
50.

A way to avoid this problem is to delay the satisfaction of the constraint such that op-

timization occurs and enables area fraction reduction without coarsening. This delay was

done with a progressive decrease of the prescribed area fraction. For instance, figure 3.11

shows linear decrease of the prescribed area fraction from Āf = 0.7 to 0.5. Four slopes

have been used such that the real constraint is respectively satisfied at step 5, 10, 20 and

30.

The corresponding evolution of the objective function is plotted on figure 3.12. Plot 3.12a

compares optimization with a fixed constraint Āf = 0.5 for the initial step, and optimiza-

tions with a progressive constraint from Āf = 0.7 to 0.5. The curve with fixed constraint
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Figure 3.11: Evolution of the prescribed area fraction when linearly decreased from Āf = 0.7 to
0.5 within respectively 5, 10, 20 and 30 iterations.

starts upper than that with progressive constraint since the area fraction is lower. Then

it decreases while optimizing. But a gap remains with the others because of the much

simpler topology that cannot be refined.
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Figure 3.12: Evolution of the objective function with and without progressive constraint. Plot (b)
focuses on progressive constraints with lowering of the area fraction within respectively 5, 10, 20
and 30 iterations.

The results with a progressive constraint cannot be distinguished, thus a focus on these

curves is reproduced on figure 3.12b. They reveal two stages : a quasi-linear increase of

the objective function that results from the decrease of the area fraction in addition with

optimization, followed by a decrease as a consequence of the optimization only. For these
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four simulations the connectivity is maintained thanks to a progressive satisfaction of the

constraint that let time to the matter rearrangement. No influence of the number of

iterations is observed on the objective function convergence and the optimized geometry.

Then the most progressive constraint (30 iterations) is chosen in the following.

Figure 3.13 compares the shape evolution when optimizing with a progressive con-

straint spent on 5 and 30 iterations.

(a) Progressive constraint on 5 iterations.

(b) Progressive constraint on 30 iterations.

Figure 3.13: Optimization with satisfying the constraint progressively from Āf = 0.7 to Āf = 0.5.
Weighting factor is α = 0.6 and iterations 1, 10, 20, 30, 40 and 50.

Flexural and shear contributions

In this section, one focuses on the simulation of figure 3.13. It results from the minimization

of the weighted product Jα with α = 0.6 and a prescribed final area fraction Āf = 0.5. The

evolution of the objective function was presented on figure 3.12b (plain line). It deals with

the mean response of the architectured unit cell. By contrast, figure 3.14 concerns the local

response and the evolution of the geometry. For each iteration (1, 10, 20, 30, 40 and 50),

the energy density is plotted on the deformed geometry when subjected respectively to a

bending moment M = 1 N·m/m (figure 3.14b) and a shear force Q = 1 N/m (figure 3.14c).

Magnification is identical in both case.

Concerning the velocity of the Hamilton-Jacobi equation, one has the competition of

three contributions : the shape derivative of the flexural compliance which depends on the

energy density w(M), the shape derivative of the shear compliance which depends on w(Q)

and the Lagrange coefficient. The contributions of the compliances tend to extend the

domain proportionally to the respective energy density, whereas the Lagrange coefficient

tends to withdraw uniformly the domain in order to get the prescribed area fraction.

The transformation from an iteration to the next iteration is given by the result of this

competition, and optimization has converged when these driving forces balance.

132



3.2 Optimization of 2D architectured panel

(a) Energy density w(M) that results from a bending moment M .

(b) Energy density w(Q) that results from a shear force Q.

Figure 3.14: Evolution of the deformed unit cell and the energy density fields corresponding to
the homogenization problems for flexural and transverse-shear compliance (iterations 1, 10, 20, 30,
40 and 50). The surface fraction of matter decreases progressively from Āf = 0.7 to Āf = 0.5.
The weighting factor is equal to α = 0.6.

The transformation of the geometry on figure 3.14 must be interpreted as follows. The

shape derivative, which is the driving force of the motion of matter, is a combination

of the two energy density plotted respectively on figure 3.14a and 3.14b. On the three

first pictures, the area fraction is decreased by locally removing matter where the shape

derivative is the lowest. That is why matter is mainly removed within the core but not

in the faces. Then for the three last pictures, the area fraction is unchanged and matter

added in some place is removed for others, until a balance is found. The weighting factor

α controls the relative importance between flexural and shear contributions.

Influence of the transverse-shear homogenization problem

As described above, the optimization process results from the local value of the energy den-

sity. Consequently, the type of boundary conditions used in the homogenization problem

will impact the distribution of energy density and the results of shape optimization.

In the case of the shear compliance, two types of loading have been mentioned in

section 2.1.2. The problem with bending gradient body load was chosen in all the opti-

mization simulations since it preserves the appropriate boundary conditions. But in this

section, the influence of the loading is studied.

Figure 3.15 compares similar optimizations — with same initial geometry, same weight-

ing factor α = 0.6 and same prescribed area fraction Āf = 0.5 — but with different shear

homogenization problems : kinematic uniform boundary conditions (KUBC), static uni-

form boundary conditions (SUBC) and bending gradient body load (BG).
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(a) KUBC

(b) SUBC

(c) BG

Figure 3.15: Comparison of similar optimizations (same initial geometry, Āf = 0.5, α = 0.6)
but with different types of shear homogenization problem : kinematic uniform boundary condi-
tions (KUBC), static uniform boundary conditions (SUBC) and bending gradient body load (BG).
Iterations 1, 10, 20, 30, 40 and 50 are presented.

Optimization 3.15a is probably the most intuitive since it lets appear bars along the

45◦ directions which are the direction of the principal stresses for a pure shear stress

field. Optimized geometries with SUBC and BC are closer but it still remains differences.

The case of SUBC consists in applying forces on the parts of the lateral edges that present

matter. This boundary condition affects the shape derivative which explains the remaining

trace of matter on the lateral boundaries that seems delayed with respect to the interface

motion.
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Figure 3.16: Transverse-shear compliance f of the optimized geometries of figure 3.15, identified
on a unit cell subjected to a bending gradient body load.
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Histograms on figure 3.16 quantifies the deviations in shear compliance that result from

the geometrical differences between the optimized unit cells of figure 3.15. Optimization

with BG homogenization provides the lowest shear compliance, slightly below that with

the SUBC loading but far from that with the KUBC loading. As expected, the BG

homogenization problem is the most appropriate for the present study.

Pareto front

A Pareto front denotes the subset of solutions (geometries in the present case) providing all

the best compromises between several performance indexes. For each solution of the front,

no other solution can be found such that it provides better values for all the performance

indexes. More details in a context of material design and selection can be found in the

literature (Ashby, 2000).

The weighting factor α, introduced in the multi-objective function Jα (equation (3.16)),

quantifies the relative importance given to the flexural compliance with respect to the

shear compliance. Varying α from 1 (only bending) to 0 (only shear) scans all the pos-

sible compromises between the two compliances and optimization with respect to these

compromises should give indications on a Pareto front. Figure 3.17 exhibits the optimized

unit cell for several values of α. The corresponding values of compliances are reported on

a shear–flexural compliance chart. The compliances are normalized by those of a unit cell

entirely filled with matter, in order to give comprehensive figures. The area fraction is

fixed to 0.5.
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(a) Pareto front built with varying α.
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(b) Optimized patterns after 50 it-
erations with Āf = 0.5.

Figure 3.17: Influence of the weighting factor α on the compliances, while minimizing the weighted
product (3.16). Results are obtained from the starting geometry of figure 3.9 with square size
(lc = h) and an area fraction Āf = 0.5.

For α = 1, the normalized flexural compliance is 1.14 (which is equal to the analytical

value for two faces of thickness 0.25h) whereas the shear compliance is infinite. Opti-

mization with α = 0 slowly converges to a homogeneous panel with thickness 0.5h, whose

normalized flexural compliance is 8 and whose normalized shear compliance is 2.

In order to give to the weighting factor a physical meaning, the three-point bending

compliance can be used as objective function :

S3p =
l3

48
d +

l

4
f (3.19)

In this case, the span length l becomes the weighting factor. Figure 3.18 completes the

Pareto front on the shear–flexural compliance chart. The span length l is normalized by

the panel thickness h.

As a conclusion, a Pareto front is well identified and results obtained by minimizing
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(a) Pareto front completed with optimized patterns obtained with
varying l/h.
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(b) Optimized patterns after 50 it-
erations with Āf = 0.5.

Figure 3.18: Influence of the span length l (normalized by the thickness h) on the compliances,
while minimizing the three-point bending compliance (3.19). Results are obtained from the starting
geometry of figure 3.9 and an area fraction Āf = 0.5.

either the weighted product or the three-point bending compliance are consistent. The

weighted product seems to provide a more efficient optimization than the bending com-

pliance. The difference is so small that it is not relevant, but still can be explained by the

fact that the path optimization is changed when the objective function is changed.
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3.2.2 Influence of the prescribed area fraction

This section presents the impact of the area fraction value on the previous Pareto front.

Figure 3.2.1 gathers optimization results with both weighted product and bending com-

pliance objective function for three values of prescribed area fraction : Āf = 0.5, 0.6 and

0.7. It results in a shift of the Pareto front toward the lower values of flexural and shear

compliances.
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(a) Pareto fronts for Āf = 0.5, 0.6 and 0.7.
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(b) Optimized patterns for Jα with
α = 0.6.

Figure 3.19: Shift of the Pareto front when varying the prescribed area fraction Āf from 0.5 to 0.6
and 0.7. Results with both weighted sum and three-point bending compliance as objective function
are plotted.

High area fraction implies lower compliances values. At the same time, it reduces the

number of degrees of freedom and in particular the influence of the matter distribution on

the transverse-shear compliance. A prescribed area fraction of 0.5 encourages the diversity

in geometries as well as in compromises between flexural and shear compliances.
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3.2.3 Influence of unit cell shape factor

Even if shape optimization enables a large number of transformations and topological

changes, the choice of the unit cell length strongly reduces the space of shapes effec-

tively explored. Then a parametric study has been performed on the unit cell length

lc for a given panel thickness h. Results of optimization conclude that the shape factor

lc/h impacts mostly the shear compliance. The flexural compliances of the optimized ge-

ometries are slightly affected since the normalized values are included between 1.90 and

2.23. Figure 3.20 shows the optimized patterns when varying lc/h from 0.5 to 3, and the

corresponding values of the shear compliance.
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(a) Evolution of the shear stiffness with varying the unit cell shape
ratio lc/h.
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(b) Optimized designs after 50 iter-
ations with Āf = 0.5.

Figure 3.20: Influence of the unit cell shape ratio lc/h on the transverse-shear compliance f, while
minimizing the weighted product (3.16). Results obtained for a prescribed area fraction Āf = 0.5.

Figure 3.20a reveals an optimal shape factor with respect to the transverse-shear com-

pliance. The optimum seems to be reached for a shape factor around 1.3. It corresponds

to a tilt angle of the core bars with respect to the horizontal of 50◦, which is slightly

different from 45◦ as it could have been intuited.
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3.2.4 Influence of the initial geometry

First numerical results on the cantilever example (section 3.1.3) introduces the sensitivity

to the initial geometry. Optimizations with several initial geometries and shape factor have

been performed in order to study this point. The three-point bending compliance is chosen

as objective function with l/h = 4 and Āf = 0.5. Results are gathered in figure 3.21 for

both regular geometries (from trigonometric level-set functions) and random geometries

(randomly distributed circular holes). The compliances of each optimized pattern are

plotted in the flexural–shear compliance chart, in comparison with the Pareto front fitted

on figure 3.18a.
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Figure 3.21: Comparison of the compliances of optimized patterns obtained from several initial
geometries.

This graph shows that even if a large variety of optimized geometries is found, the

previously built Pareto front is still valid. Only one geometry really overcomes this front,

the square unit cell with lozenge bars.
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3.3 Prototype samples produced by selective laser sintering

In order to validate the previous numerical approach, it makes sense to compare — nu-

merically and experimentally — initial and optimized unit cell geometries. To do so, we

consider three initial geometries with an area fraction of Āf = 0.5 and one with Āf = 0.7.

Optimization is performed for each initial geometry with respect to the weighted product

with α = 0.5 (same weight for flexural and shear compliances). The computed compliances

for initial and final geometries are plotted on chart 3.22a and compared to the previously

fitted Pareto fronts.
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(a) Flexural–shear compliance chart with four initial ge-
ometry and the corresponding optimized shapes.
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0.5

0.5

0.5

0.7

(b)

Figure 3.22: Comparison between compliances of initial and optimized unit cells with three dif-
ferent initial topologies and two prescribed area fraction Āf = 0.5 and 0.7. The weighted product
is used as objective function with α = 0.5.

Prototype panels with all these unit cell geometries have been produced by additive

manufacturing. Images of the unit cell geometries can be translated in STL files2, which

enable to produce polyamide samples by selective laser sintering. It was done in a collab-

oration with the company Polyshape and the Centre des Matériaux des Mines de Paris.

Figures 3.23 exhibits the prototype samples : initial geometries (a-d) and corresponding

optimized geometries (e-h). The size of the samples is 210× 40× 12 mm, that is 17.5 unit

cells. Four-point bending tests have been performed on each sample with changing the

2File format to describe three-dimensional objects, widely used by computer-aided design software
and manufacturing. From 2011, ASTM Standard F2915 replaced the STL format with the Additive
Manufacturing File (AMF) format .
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lower span lengths to l = 82, 106 and 130 mm, while keeping unchanged the shear length

L = 29 mm.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.23: Prototype samples produced in polyamide by selective laser sintering : initial ge-
ometries (a-d), and the corresponding optimized shapes (e-h). Results of four-point bending test
on these samples are presented on figure 3.24 and 3.25.

Four-point bending compliances for each geometry and each span length value are

presented on figure 3.24 and 3.25. These data are compared to the following analytical

expression :

S4p =
(3l − 4L)L2

12
d +

L

2
f (3.20)

where d and f are identified thanks to the homogenization problem solved on the unit cell.

A relatively good agreement is obtained between experiments and the effective model.

An improvement of the compliance is clearly observed for Āf = 0.5. Even on figure 3.25,

which is the less convincing, it is noticed a 20% decrease of the compliance for l = 130 mm.

As mentioned in section 3.2.2, increasing the area fraction limits the impact of the

geometry on the properties. Figure 3.25b confirms this feature since no significant decrease

of the compliance is experimentally observed between initial and optimal geometries for

Āf = 0.7.
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Figure 3.24: Comparison of the four-point bending compliance S4p measured experimentally
(points) and that calculated from the analytical expression with effective compliances (lines).
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Figure 3.25: Comparison of the four-point bending compliance S4p measured experimentally
(points) and that calculated from the analytical expression with effective compliances (lines).
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Conclusion

This chapter begins with a general overview of the literature in the field of shape opti-

mization. The wide interest about this approach is confirmed by the large number of new

methods and applicative problems.

Basis on shape derivation and details on the implemented algorithm are presented.

The geometry is defined by the level-set method introduced in section 2.2. Few numerical

results for typical structural optimization problems are discussed and compared to the

literature. It validates the implementation of a topological optimization algorithm by the

level-set method.

The area fraction constraint is satisfied progressively, starting from a higher value of

the area fraction Af = 0.7 and slowly decreasing down to the prescribed value (for instance

Af = 0.5). Then, optimization of periodic architectured panels is treated by searching a

compromise between flexural and shear compliances.

A weighting factor controls the relative importance given to the flexural compliance

with respect to the shear compliance. Optimization simulations are performed with respect

to the shear compliance. Objective function written as either weighted product or three-

point bending compliance reveals to be equivalent in terms of both optimized geometries

and properties. Optimization simulations performed with several values enable to estimate

a Pareto front. The evolution of this front when changing the prescribed value of area

fraction was studied. It was shown that high values tend to limit the impact of the matter

organization on the compliances.

Unfortunately, even if the optimization method enables topological changes, it is shown

to be widely sensitive to the initial geometry — as every gradient-based method. Opti-

mization results on several starting geometries present only few deviations from the Pareto

front. The influence of the unit cell shape ratio is also studied and reveals an optimal value.

Integrating the unit cell size as an additional optimization variable seems relevant.

Finally, an experimental validation of the predicted improvements in properties is

performed. Prototype samples of four initial geometries and the corresponding optimized

geometries are produced by additive manufacturing. The expected compliance values are

confirmed by experimental identification on four-point bending tests.
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Highlights

• Topological optimization by the level-set method is coupled with

homogenization problems in order to find a compromise between flexural

and shear compliance at a given weight (i.e. area fraction). A Pareto

front is built in the flexural–shear compliance chart and studied with

changing the prescribed value of area fraction.

• The initial geometry reveals to strongly impact the optimization re-

sults as it is always the case with gradient-based optimization method.

However, main of the optimized architectures are located on the Pareto

front, and there is only few differences in the optimality of the properties.

• Prototypes produced by selective laser sintering confirm the expected

improvement of architectured material by topological optimization.





Chapter 4

Optimal design of an insulation

sandwich panel





Introduction

This chapter addresses an industrial application of the previously developed optimization

approach for architectured materials. It consists in improving the design of an insulation

sandwich panel produced by the company Sainte-Marie Constructions Isothermes. This

panel provides mechanical, thermal and acoustic performances as well as modularity — it is

easy to include doors and windows —, lightness, reasonable thickness and competitive cost.

It is currently sold singly for buildings (for instance safety rooms on offshore platforms,

figure 4.1).

(a) (b)

Figure 4.1: (a) Integration of the sandwich panels into a safety room to be part of offshore
platforms (b).

An optimal design procedure is developed and applied to the design of a component

of the panel. This procedure comprises four steps :

• Defining an optimization problem by translating the specifications of the component

into objectives and constraints ;

• Optimizing topology and shape with varying parameters such as initial geometry, rela-

tive density and relative importance of each objective ;

• Selecting few promising designs with respect to the estimated performances and adjust-

ing the selected designs to comply with the process requirements ;

• Manufacturing and testing prototype panels that integrate the optimized designs, in

order to evaluate the impact of the new designs on the panels performance.

The outline of the current chapter follows these steps. The first section 4.1 starts with

details on the sandwich panel components : faces, stiffeners and mineral wool (section

4.1.1). The stiffener is the component on which is applied the optimal design procedure.

Then, the panel specifications provided by Sainte-Marie Constructions Isothermes are
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Chap. 4 - Optimal design of an insulation sandwich panel

described (section 4.1.2) and translated into an optimization problem written in terms of

physical properties of the stiffener (section 4.1.3). Section 4.2 presents optimization results

and discussions on the influence of each parameters. Section 4.3 details the way to select

and adjust optimized design in order to convert optimization results into real prototype

panels. Finally, performance evaluation of the prototype panels is done in the last section

4.4. Thermal properties of the whole panels are estimated with 3D transient finite elements

simulations, whereas mechanical properties are measured using four-point bending tests

on samples provided by the company Sainte-Marie Constructions Isothermes.
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4.1 From specifications to optimization problem

4.1 From specifications to optimization problem

4.1.1 Panel description

The panel, produced by Sainte-Marie Constructions Isothermes, is made of two steel faces

spaced by stainless steel stiffeners (figure 4.2a and 4.3). The stiffeners are parallel and

regularly distributed. They are welded to one face from the inside, and to the other from

the outside through holes drilled in the face. High-density mineral wool (200kg/m3) fills

the empty space between the stiffeners (figure 4.2b). Its high thermal inertia provides to

the panel a high insulating property. The stiffeners are usually set horizontally into the

structure to avoid the wool densification with time — which results into a degradation of

thermal insulation.

(a) Lower face with stiffeners. (b) Mineral wool fills the inter-space be-
tween stiffeners.

Figure 4.2: Details on the structural sandwich panel produced by Sainte-Marie Constructions
Isothermes. While stiffeners ensure the stiffness, the mineral wool ensures the thermal insulation.

The contrast in thermal conduction between steel and mineral wool creates short-

circuits through the stiffeners. To reduce this shortcutting, the stiffeners are “aerated”

according to a periodic design. The choice of this design is not trivial and involves the

multi-physic functions of the panel. The optimization method presented in chapter 3 is

applied in the current chapter to the optimization of the stiffener design.

Each stiffener is tailored by laser cutting from a flat sheet, then folded to get the final

U-shape. Close to the fold, a zone must remain free of holes otherwise the fold will be

affected. This zone is characterized by a folding distance shown on figure 4.3.
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Figure 4.3: Sketch of one stiffener welded in-between the two faces. The folding distance defines
two areas free of hole in order to control the folding process.
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4.1 From specifications to optimization problem

4.1.2 Specifications

As described in chapter 1, sandwich constructions for buildings and transports are usually

developed for bending stiffness and additional functions. The present sandwich panel

is a relatively thin1 structural structure that provides mechanical stiffness and strength,

thermal insulation and acoustic absorption at a minimum mass. Table 4.1 summarizes

each function the panel must fulfill.

Functions Technical descriptions

Mechanical

Protect working persons and de-
vices that are inside the safety
room.

Low-energy impacts must imply only non-visible plastic de-
flection (lower than a limit value.)

High-energy impacts must not punch through the panel nei-
ther imply large plastic deformation that may damage the
devices or persons.

The mass should be minimum.

The maximum deflection of a panel subjected to a dis-
tributed load must be lower than a prescribed value.

Thermal

Maintain the temperature inside
the safety room under a critical
threshold.

Thermal resistance and heat capacity must be higher than
that of the current design.

The criteria A-60 from the modified standard A754(18) pre-
scribed by the International Maritime Organization (IMO)
must be satisfied.

Acoustic

Maintain the sound level inside
the safety room under a critical
threshold

The acoustic insulating properties must be higher than pre-
scribed values.

Cost The cost must be lower than a competitive cost

Recycling The panel must be recyclable

Environmental impact The carbon footprint must be lower than that of the current
design

Table 4.1: Specifications for a new version of the insulation sandwich panel to be integrated in a
safety room on offshore platform (provided by Sainte-Marie Constructions Isothermes).

1in comparison with similar products
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In the following, we will focus on the two main functions of the stiffeners :

• Mechanical As the name states, stiffeners are mainly concerned with the global bend-

ing stiffness of the panel. They are involved more precisely into the transverse-shear

contribution, whereas the flexural one is ensured by the faces. Dynamic specification

such as low-energy or even high-energy impacts are ensured by the faces, the panel

thickness and the wool density.

• Thermal Thermal resistance and heat capacity are difficult to measure and the test

from standard A754(18), described in frame 4.1, is preferred. Strictly speaking, the

physical property quantified by this test is the diffusivity D :

D =
k

Cv
(4.1)

where k is the thermal conductivity in W/(m·K) and Cv the volumetric heat capacity

in J/(m3·K). During the transient heating test, the temperature inside the heated face

increases while the non-exposed face keeps a low temperature. Stiffeners are thermally

insulated (by the wool) excepted through the contact with the heated face and with the

non-exposed face. The transient time of stiffeners is negligible such that the temperature

evolution within the stiffeners is quasi-static. It results from a small Biot number for

stiffeners (Incropera et al., 2007). Then, stiffener are mainly subjected to a conductive

behavior characterized by the effective thermal conductivity.

Mass contribution of the stiffeners is negligible with respect to the total mass of the

panel. Indeed, the stiffeners mass is 12 % of the total steel mass of the panel, and 9 % of

the total mass of the panel (faces, stiffeners and mineral wool).

(a) Standard pattern.

12

(b) Folding distance with required
matter (black) and free design domain
(gray).

Figure 4.4: Shape and dimensions (in millimeters) of the unit cell of the standard geometry (a)
and the representation of the constraint of imposed matter areas.
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Frame 4.1 Modified standard IMO A754(18)

It is a slight modification of the standard ISO 834. It consists in exposing one

side of the panel to a heating source and in measuring the temperature on the

opposite face. The temperature of the source Tsource must raise according to

the curve below. The maximum temperature Tmax and the mean temperature

Tmean over the non-exposed face must remain, as long as possible, lower than

respectively +180◦C and +140◦C above the room temperature. The criteria

A-60 is fulfilled if these thresholds are maintained for 60 min.
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Evolution of the temperature Tsource of the convective source in contact with the ex-

posed face, and limits on the maximal and mean temperatures on the non-exposed face

(respectively 165◦C and 205◦C, for a room temperature of 25◦C).

Moreover, some geometrical constraints have to be taken into account. The thickness of

the panel is assumed to be fixed to h = 80 mm. The unit cell with length lc is replicated

in direction e1 to obtain the whole stiffener design. Figure 4.4a shows the unit cell of

the current geometry (as produced by Sainte-Marie Constructions Isothermes), which is

denoted as standard design in the following. In addition, a process requirement has been

mentioned about a minimal distance from the top-and-bottom borders to the closest holes.

This folding distance of 12 mm will be excluded from the design domain — in which the

matter is free to be organized — highlighted in gray on figure 4.4b. By doing this, we

enforce this zone to remain fully dense.
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4.1.3 Optimization problem

Objectives

The aim of this section is to translate the previous specifications on the stiffeners to an

optimization written as the minimization of a global objective function J(Ω) :

min
Ω

J(Ω) (4.2)

The choice is done to include the mechanical and thermal objectives into the global ob-

jective function using a weighted product, such as :

J(Ω) = Jm
(1−α) Jth

α (4.3)

where the mechanical and thermal objective functions, respectively Jm and Jth, are weighted

with a factor α to take between 0 and 1 — unchanged during optimization. To built a

Pareto front, several optimizations will be performed with varying α from 0 to 1, that is

to say increasing the importance of thermal objective relative to stiffness objective.

Mechanical objective function As discussed in the previous section, the stiffeners

must be designed in order to maximize the transverse-shear stiffness. The mechanical

objective function is then the normalized shear compliance introduced in chapter 1 :

Jm(Ω) = f
Gh

sr
(4.4)

where G is the shear modulus of the constitutive material and sr = 6
5 the shear area ratio

(section 1.4).

e 1

e 3

u' #u' #

(a) The fluctuation u′ is periodic on the sides. The
stress is free on the top and bottom. An overall bend-
ing moment M̄ is applied.

max

min

(b) Component σ11 of the resulting stress
field.

Figure 4.5: Computation of the stress field that results from applying a bending moment M̄ : (a)
loading and boundary conditions ; (b) component σ11 of the resulting stress field.
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e 1

e 3

u # u #

(a) The displacement u is periodic on the sides. The
stress is free on the top and bottom. A body force with
components fi is applied to get an overall shear force
Q̄.

max

min

(b) Component σ13 of the resulting stress
field.

Figure 4.6: Homogenization problem to compute the transverse-shear compliance : (a) loading
and boundary conditions ; (b) component σ13 of the resulting stress field.

Based on the homogenization method introduced in chapter 2 and in light of the results

of chapter 3, the shear compliance is computed with a two-steps method. First, one solves

the problem of the unit cell subjected to an overall bending moment M̄ with periodic

condition for the fluctuation2 on the right-and-left boundaries and stress-free condition on

the top-and-bottom boundaries (figure 4.5a). Then, one solves the shear problem itself

with applying the previous solution stress field as a body load (figure 4.6a). This method

enables to apply an overall shear force Q̄ while keeping the correct boundary conditions :

periodicity of the displacement on the right-and-left boundaries and stress-free condition

on the top-and-bottom boundaries. The expression of the shear compliance is :

f =
1

lcQ̄2

∫

Ω
Cε · ε dx (4.5)

where C is the isotropic Hooke’s tensor of the constitutive material and ε the strain field

solution of the shear problem illustrated on figure 4.6.

Since the mechanical objective function is directly proportional to the stress energy

(eq. (4.4) and (4.5)), an analytical expression for the shape derivative exists and will be

included into the transport equation of the level-set function (see section 3.2.1).

Thermal objective function Considering the conductive behavior of the stiffener dur-

ing the test prescribed by the modified standard A754(18), the thermal objective function

to minimize should be the effective thermal conductivity k̃3 through the thickness of the

2The curvature is defined as an additional global degree of freedom, and takes place in the initial strain.
Thus, the unknown variables are no more the displacements u but the fluctuations u′ around the parabolic
displacements generated by the curvature. See section 2.1 for further details.
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panel. It can be estimated using the expression :

k̃3 ≈
(

1

lch Φ̄3
2

∫

Ω
k∇T · ∇T dx

)−1

(4.6)

where k is the thermal conductivity of the constitutive material. The temperature T is

solution of the steady state problem illustrated on figure 4.7, and Φ̄3 is the heat flux

applied on the top boundary.

e 1

e 3

3

(a) The sides are insulated. A through-thickness heat flux
Φ̄3 is applied on the top boundary. And the temperature of
the bottom boundary is imposed.

max

min

(b) Resulting temperature field.

Figure 4.7: Through-thickness conductivity problem in order to identify k̃3 : (a) boundary condi-
tions ; (b) resulting temperature field.

However, by choosing the through-thickness conductivity as thermal objective function,

instabilities appear in solving the Hamilton-Jacobi equation. Indeed, minimizing k̃3 at

a given step means removing matter where the thermal energy density is the largest.

Consequently, the new geometry will present even larger energy density around these

points since the amount of matter has locally decreased. By this way, the energy density

becomes progressively singular. Its introduction into the evolution scheme as a transport

velocity obviously generates numerical instabilities (e.g. figure 4.8).

To prevent this problem, one chooses the objective function to be the normalized

in-plane thermal resistivity :

Jth(Ω) = ρ̃1k (4.7)

where k is the thermal conductivity of the constitutive material. The effective thermal

resistivity ρ̃1 is obtained by the following expression :

ρ̃1 =
1

lch Φ̄1
2

∫

Ω
k∇T · ∇T dx (4.8)

where the temperature field T is solution of the steady state problem illustrated on figure

4.9a, and Φ̄1 is the applied in-plane heat flux. In so doing, we assume that, as far as
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geometrical distribution of matter is concerned, minimizing the through-thickness con-

ductivity is equivalent to maximizing the in-plane conductivity. This is at least suggested

by the restricted case of lamellar geometries shown on figure 4.10. The decrease of the

through-thickness conductivity will be checked a posteriori.

Figure 4.8: Instabilities in the level-set evolution for a thermal objective function Jth(Ω) = k3.
Other parameters are : l = 0.1, α = 0.4, ρ̄ = 0.6.

e 1

e 3

1

(a) The top-and-bottom boundaries are insulated. An in-
plane heat flux Φ̄1 is applied on the left side. And the tem-
perature of the right side is imposed.

max

min

(b) Resulting temperature field.

Figure 4.9: In-plane conductivity problem in order to identify k̃1 : (a) boundary conditions ; (b)
resulting temperature field.

From the minimization of the objective function (4.7), it results an analytical expres-

sion for the shape derivative (Allaire, 2002) :

∂Jth
∂ω

(Ω)(θ) =
1

lchΦ̄2
1

∫

∂Ω
−(k|∇T |2) θ · n ds (4.9)
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Figure 4.10: Illustration of the “orthogonality” of the through-thickness conductivity k3 and the
in-plane conductivity k1.

In addition with the mechanical shape derivative, the expression (4.9) will be included

into the transport equation of the level-set function.

Constraints

The geometrical constraints mentioned in section 4.1.2 are implicitly integrated in the

optimization problem through the choice of the design domain. The mechanical and

thermal simulations — in order to evaluate the objective function as well as the velocity

field for the transport equation — are performed on the whole unit cell. Whereas the

design domain — on which is solved the transport equation — is reduced by the folding

distance on both top and bottom borders (figure 4.4b).

The contribution of the stiffeners to the global mass of the panel is negligible. However,

a constraint on the volume of matter is added to the optimization problem in order to

ensure the stability of the optimization algorithm. It consists in imposing a value for the

area fraction of matter Af (Ω) = Āf , with :

Af (Ω) =
A(Ω)

hlc
(4.10)

where A(Ω) is the area of the domain Ω. This constraint has to be taken into account

explicitly by introducing a Lagrangian. One notices that the area fraction of the standard

design is Af = 0.5.

Summary

Finally, our translation of the specifications into an optimization problem is summarized

in table 4.2 and can be written as :

min
{

Ω such as
A(Ω)
hlc

=Āf

}

(
f
Gh

sr

)(1−α) (
ρ̃1 k

)α
(4.11)

with the computation of the displacements and temperature fields on the whole unit cell,

including a design domain reduced by the folding distance on top and bottom borders.
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Specifications Optimization problem

Objectives
Maximize the shear stiffness
(fGh/sr)

−1
Minimize the shear compliance Jm = fGh/sr

Minimize the thermal through-
thickness conductivity k̃3/k

Minimize the effective in-plane thermal resis-
tivity Jth = ρ̃1k

Constraints
Area fraction constraint
Af (Ω) = Āf

Thickness h and folding distance
constraints

Definition of the simulation and design do-
mains

Table 4.2: Summary of the stiffeners specifications and optimization problem.

In the following, results are presented in terms of performances of the design with

respect to the two specifications, that is to say with respect to the normalized shear

stiffness (fGh/sr)
−1 and the normalized effective through-thickness conductivity k̃3/k.
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4.2 Shape optimization

The optimization algorithm described in section 3.1.2 is used to solve the problem (4.11).

As an example, figure 4.11 shows the evolution of the stiffener’s shape from an initial

geometry defined by a sinusoidal level-set.

Figure 4.11: Evolution of the design from the starting geometry (iteration 1) to the optimized
geometry (iteration 45) for parameters : α = 0.2, Āf = 0.6.

Figures 4.12a and 4.12b plot respectively the evolution of the area fraction and that

of the normalized properties during the simulation of figure 4.11. As mentioned in section

3.2.1, the area fraction is monitored at each iteration with introducing a Lagrange coeffi-

cient. The initial value is purposely imposed higher than the final target value, in order

to improve the optimization efficiency. In the present case, the area fraction at step 1 is

0.7 and decrease progressively down to 0.6 at step 30.

Conductivities in both directions and shear stiffness decrease with the area fraction, as

shown on figure 4.12b. One can notice the impact of optimization with comparing the slope

of decrease of each conductivity, which is steeper for the through-thickness conductivity

k3. This is not obvious for the mechanical objective. A decrease of the stiffness is observed

whereas optimization should increase it. This is due to its large sensitivity with respect to

the area fraction. Thus, optimization does not increase the stiffness but limits its decrease

caused by the lowering of the area fraction.
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Figure 4.12: Evolution during optimization of : (a) the area fraction ; (b) the normalized effective
properties. Data correspond to design evolution displayed on figure 4.11.

Figures 4.13 and 4.14 show respectively the mechanical and the thermal energy density

for the simulation presented on figure 4.11. Both mechanical and thermal energy densities

tend to increase with iterations since the amount of matter decreases. The mechanical

objective function encourages the adding of matter, even more where the energy density

is large. The thermal objective function encourages the removing of matter, even more

where the energy density is large. From iteration 20, the two energy density fields look

similar and a stability occurs between the driving forces for both objective functions. This

balance is related to the weighting factor α.
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Figure 4.13: Transverse-shear energy density versus the iterations of simulation figure 4.11. All
iterations are plotted with the same color scale.

Figure 4.14: Thermal energy density (applying an in-plane flux) versus the iterations of simula-
tion figure 4.11. All iterations are plotted with the same color scale.
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4.2 Shape optimization

4.2.1 Influence of the relative importance between thermal and mechan-

ical objectives

The weighting factor α, from eq. (4.3), is a parameter that controls the relative impor-

tance given to the thermal objective function with respect to the mechanical one. It varies

from 0 (mechanical-only) to 1 (thermal-only). Figure 4.15 shows five geometries optimized

with various values of α, and their location on the stiffness–conductivity chart. An arrow

specifies the values of α, while another shows the direction of improvement : increas-

ing shear stiffness and decreasing through-thickness conductivity. The set of optimized

geometries materializes an extreme limit in this direction that can be reached with any

geometry of area fraction Āf = 0.6. It can be considered as an estimated Pareto front for

stiffness–conductivity with this given area fraction.
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Figure 4.15: Influence of the weighting factor α on the optimized designs and their properties.
Results obtained from the starting geometry of figure 4.11 and area fraction Āf = 0.6.

The variations of geometry might appear visually negligible but the resulting variation

in performance are not. Between the design optimized with α = 0 and that with α =

0.8, one can observe a decrease of about 20% of the conductivity and 10% of the shear

stiffness. The value α = 0.2 is widely used in the following, with keeping in mind that

the conductivity could be reduced by increasing the weighting factor, i.e. by giving more

importance to thermal design criteria.
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The case α = 1 is not represented here, being a singular situation. In this case,

optimization leads to divide the geometry into two parts disconnected (up and bottom).

Thus, both the through-thickness conductivity and the shear stiffness become zero. It is

the result of totally neglecting the stiffness design criteria, and is clearly an unrealistic

geometry.

4.2.2 Influence of the prescribed area fraction

The control of the area fraction is implemented using a Lagrangian method as detailed in

section 3.2.1. Two values have been compared Āf = 0.5, which is the area fraction of the

standard design, and Āf = 0.6. Figure 4.16a is the same stiffness–conductivity chart than

figure 4.15 with reporting the additional designs with an area fraction Af = 0.5 (4.16b).
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tions with Āf = 0.5.

Figure 4.16: Influence of the weighting factor α on the optimized designs and their properties.
Results obtained from the starting geometry of figure 4.11 and area fraction Āf = 0.5 or 0.6.

Note that for the case α = 0.8, the geometry is divided into two parts. Indeed, the

weighting factor dedicated to the mechanical objective (α−1 = 0.2) is too small to enforce

some matter to sit in the middle of the sandwich. From the iteration when the geometry

splits, stiffness and conductivity becomes zero and optimization is no more possible.

As already observed on figure 4.12a, reducing the area fraction decreases both the

shear stiffness and the conductivity. The present results have the same area fraction
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than the design standard but provide a larger shear stiffness and only a slightly larger

through-thickness conductivity.

4.2.3 Influence of the initial geometry

In the previous examples, shapes evolve but topology (number of holes) remains constant

excepted for extreme value of α. Figures 4.17 and 4.18 show different initial geometries

and the corresponding optimized geometries for Āf = 0.5 and 0.6. Each optimized design

matches to a point on the stiffness–conductivity chart.

The Hamilton-Jacobi equation used to transform the level-set function cannot create

new holes. This disability becomes here an advantage since it enables to control the

maximum number of holes, and so to optimize inside a subset of feasible geometries.

The initial geometry implicitly defines a region into the set of admissible geometries,

in which a local optimum is found by the gradient descent algorithm. We can consider

initially random and regular topologies as starting conditions. Figure 4.17 shows optimized

designs with a similar stiffness–conductivity optimality, such that they form a Pareto front.

These optimized designs are local optima around random initial geometries. The regular

initial geometries (figure 4.18) reveal special symmetries that make a difference with the

previous random initializations. The topological refinement (increasing the holes number

of the initial geometry) globally tends to improve the optimality of the multi-functional

objective (toward the upper left corner of the chart).
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Starting geometries Optimized Āf = 0.5 Optimized Āf = 0.6

(a) Optimized designs after 50 iterations, with different initial disordered geometries and area fractions.
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(b) Location of the above geometries on the stiffness–conductivity chart.
Symbols are defined in(a).

Figure 4.17: Influence of the starting disordered geometries on shear stiffness and through-
thickness thermal conductivity, with parameters : α = 0.2 and Āf = 0.5 or 0.6.
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Starting geometries Optimized Āf = 0.5 Optimized Āf = 0.6

(a) Optimized designs after 50 iterations, with different initial regular geometries and area fractions.
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Figure 4.18: Influence of the starting regular geometries on shear stiffness and through-thickness
thermal conductivity, with parameters : α = 0.2 and Āf = 0.5 or 0.6.
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4.2.4 Influence of the unit cell shape factor

The height of the periodic cell is imposed by the sandwich panel thickness. Then, the

shape factor is controlled by the cell length lc. Figures 4.19a and 4.21a presents optimized

designs obtained from different initial geometries : standard, triangle (denoted with the

sign △) and lozenge (denoted with the sign ♦).

Starting patterns Optimized Āf = 0.5 Optimized Āf = 0.6

(a) Optimized geometries obtained from the initial geometry △ (cell length lc = 80, 150 and 220 mm) with
area fraction constraint Āf = 0.5 or 0.6.
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(b) Location of the above geometries in the stiffness–conductivity chart.
Symbols are defined in(a).

Figure 4.19: Influence of the shape factor on shear stiffness and through-thickness thermal con-
ductivity, with initial geometry △ or standard, and parameters : α = 0.2 and Āf = 0.5 or 0.6.
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Starting patterns Optimized Āf = 0.5 Optimized Āf = 0.6

Figure 4.20: Optimized shapes obtained from the initial geometry standard, with an area fraction
constraint Āf = 0.5 or 0.6.

Three shape ratios are simulated with scaling the initial geometry in the horizontal

direction e3 such that lc = 80, 150 and 220 mm. Though the topology has a limited effect

on the properties, the shape ratio enables large shifts on the charts 4.19b and 4.21b.

Starting patterns Optimized Āf = 0.5 Optimized Āf = 0.6

(a) Optimized geometries obtained from the initial geometry ♦ (cell length lc = 80, 150 and 220 mm) with
area fraction constraint Āf = 0.5 or 0.6.
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Figure 4.21: Influence of the shape factor on shear stiffness and through-thickness thermal con-
ductivity, with initial geometry lozenge, and parameters : α = 0.2 and Āf = 0.5 or 0.6.
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The tendency observed on both figure 4.19 and 4.21 is that large unit cells have smaller

conductivity but smaller stiffness. Moreover, it seems to provide more degrees of freedom

— the design domain is larger — which results in an increase in optimality, especially for

initial geometry △. For instance on figure 4.19b, the optimized design with lc = 220 mm

and Āf = 0.6 provides a similar effective conductivity and a larger shear stiffness than the

one with lc = 80 mm and Āf = 0.5.

Comparison of initial geometry △ and standard (figure 4.19) shows that distinct initial

geometries with same topology and shape ratio will give the same optimized design. This

result is comforting.

4.2.5 Summary

The influence on optimization of the weight factor, the area fraction, the initial geometry

and the shape factor of the periodic cell have been systematically investigated. The

table 4.3 summarizes the influence of each parameter on the shear stiffness, the through-

thickness thermal insulation and the optimality. The optimality qualify the distance to the

theoretical Pareto front, in other words, the quality of the stiffness–insulation compromise.

Shear stiffness Through-thickness Optimality

thermal insulation

Increasing the weight-
ing factor α

− − + + 0

Increasing the area
fraction ρ̄

+ + + − − − 0

Increasing the number
of holes in the initial
geometry

+ +
+

for regular
initial geometries

Increasing the cell
length lc

− − + + + +

Table 4.3: Summary of the effect of different control parameters on the efficiency of the optimiza-
tion strategy.
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4.3 From optimization results to prototype panels

Numerous designs have been obtained in the previous section and it is now necessary to

select among these geometries the ones that are the most promising. Then, the selected

designs have to be adjusted in order to be integrated into prototype panels and produced.

4.3.1 Selection of promising designs

Standard △5⋆ △6⋆ ♦5⋆ ♦6⋆

Figure 4.22: Promising geometries selected on figure 4.23 for a further analysis.
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Figure 4.23: Selection of four interesting optimized geometries that provide a similar conductivity
than the standard pattern and a larger stiffness.

The goal of Sainte-Marie Constructions Isothermes is to find a design which, compared

to the standard one, would improve the mechanical properties while keeping a similar

insulating performance. Figure 4.23 gathers all the previously optimized designs as well

as the standard design on the stiffness–conductivity chart. A vertical line divides the chart

into two parts : the part where conductivity is smaller than that of the standard design

(white), and the part where conductivity is larger (gray). The selection rule is to get a

design with a conductivity around this border and a shear stiffness as high as possible.

The four enhanced dots represents the optimized designs selected to be integrated into
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prototypes and produced. Figure 4.22 shows the selected geometries and their reference

name. They are topologically gathered in two groups : the “△-shape” (Standard, △5 and

△6) and the “♦-shape” (♦5 and ♦6).

4.3.2 Adjusting to process requirements

To produce prototypes from the selected optimized designs, the optimal geometries com-

puted have to be “adjusted”. That means that the geometrical features have to be sim-

plified such that they meet the requirements of the laser cutting. In order to do so, the

design edges have to be based on straight lines, circles and simple splines. In addition,

sharp angles are smoothed in order to limit weaknesses in damaging and fatigue phe-

nomenon, which have not been taken into account in the optimization problem. Figures

4.24a-d shows the four selected designs rough-optimized (blue) and smoothed (black).

Changes due to smoothing obviously affect the mechanical and thermal properties.

Figure 4.24e locates on the properties chart the selected design before and after this

adjusting operation. It reveals no tendency in the properties shifts, which remain relatively

small except for the design ♦5. In the case of this design with a small cell length, the

smoothing of sharp angles implies relatively large modifications that are amplified by

periodicity.

The previous performances are estimated by computing the shear compliance and the

effective through-thickness conductivity with 2D finite element simulations. The next

step consists in validating the simplifying hypothesis that have been done to write the

optimization problem. Three-dimensional transient thermal analysis and bending test

have to be performed on the prototypes panel in order to confirm the improvement of the

performances.
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△5⋆ −→ △5

(a) Āf = 0.5, lc = 150 mm.

△6⋆ −→ △6

(b) Āf = 0.6, lc = 220 mm.

♦5⋆ −→ ♦5

(c) Āf = 0.5, lc = 80 mm.

♦6⋆ −→ ♦6

(d) Āf = 0.6, lc = 150 mm.
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(e) Shift on the properties chart of the four geometries, due to the above smooth-
ing operation.

Figure 4.24: Adjusted designs to be conformed with the laser cutting process. Rough-optimized
designs (blue) and adjusted designs (black).
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4.4 Prototype panels performances

In the previous section, optimization results and discussions on the influence of each control

parameters of the optimization procedure were presented. Some promising geometries have

been selected and “adapted” in order to cope with process requirements of laser cutting. In

this section, thermal and mechanical properties of prototype panels integrating new designs

of stiffener are studied. First, a numerical analysis of the transient thermal behavior of

the panels is discussed. Then, scale-one samples (3 m × 34 cm) have been produced and

tested under a four-point bending loading.

4.4.1 Thermal transient analysis

In section 4.1.2, the specification on the insulating performance of the panel has been

translated into a specification on the thermal conductivity of the stiffener. It was assumed

the response of the stiffener to be mainly quasi-static. To check the relevance of the

steady state assumption, three-dimensional transient analysis of the whole sandwich panel

(skins, stiffeners and mineral wool) have been performed by Sainte-Marie Constructions

Isothermes. The insulation test prescribed by the modified standard 754(18) of the IMO

(detailed in section 4.1.2) is simulated on the 3D periodic cell of the panel as shown on

figure 4.25. One face is exposed to a convective source with a progressively increasing

temperature. The non-exposed face is in contact with the ambient air.

150 mm

150 mm
e

3

e
2

e
1

Figure 4.25: Sketch of the three-dimensional unit cell for the transient thermal simulations.

Figure 4.26 compares the temperature fields on the non-exposed face after 60 min for

all stiffener designs. The maximal temperature is obtained right above the stiffener, at

the center of the unit cell. And the minimum is observed on a line at equidistance of the

stiffeners (top and bottom edge of the faces presented on figure 4.26).
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Standard △5 △6 ♦5 ♦6

e 1

e 3
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e 2

Figure 4.26: Three-dimensional transient thermal analysis of the standard design and the proto-
type designs : temperature field on the non-exposed face corresponding to each design after 60 min.

-10

-5

0

5

10

15

20

25

30

△5 △6 ♦5 ♦6

R
el

a
ti

v
e

d
ev

ia
ti

o
n

fr
o
m

th
e

st
a
n

d
a
rd

d
es

ig
n

[%
]

Conductivity
Tmax

Tmean

Figure 4.27: Relative difference in conductivity, maximum temperature and mean temperature,
with taking the standard design as reference.

On figure 4.27, the relative deviation from the standard design for conductivity (2D

linear simulations) is compared to the relative difference on both the maximum and the

average temperatures over the non-exposed face (3D transient simulations). There is no

precise correlation between results in conductivity and temperatures, because transient

analysis is done with taking into account faces and mineral wool that should hide par-

tially the influence of the stiffener. But the same tendency is globally observed and more

precisely, conductivity and maximal temperature rank the prototype designs in the same

177



Chap. 4 - Optimal design of an insulation sandwich panel

order.

Finally, the estimations done for optimizing seem relevant. And the selection strategy,

that is to get a new design with an equivalent insulation performance, is satisfied by all

except one. Only the design △6 could be filtered out because of the high maximum and

mean temperatures computed.

4.4.2 Prototypes testing

This section presents an experimental study of the four-point bending behavior of the

prototype panels. Following the method detailed in section 1.5, the flexural and shear

compliance components are deduced from the four-point bending compliances for three

different shear lengths. Few tests have been performed up to damage of the panel, in such

a way that a discussion is proposed on the influence of the stiffener design on the damage

mode and the ultimate force.

Samples

The four stiffener designs from section 4.3 have been produced by Sainte-Marie Construc-

tions Isothermes and integrated into sandwich samples (figure 4.28).

Figure 4.28: Sandwich samples with optimized and standard stiffeners.

The samples are made with two steel faces (with thickness t = 3 mm) and two stiffeners

cut out in stainless steel plates (thickness 2 mm). Geometry and size are drawn on figure

4.29. Two specimens have been produced for each design (standard, △5, △6, ♦5 and ♦6 ;

see figure 4.26).

Experimental setup

In order to identify independently the flexural and shear compliance components, three

four-point bending tests are performed for each sample with varying the shear length L

(see section 1.5). The lengths (recalled on figure 4.30) for the three setups (A, B and C) are

given into table 4.4. The upper and lower pads are flat and their width is wp = 100 mm.
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Figure 4.29: Geometry and size in millimeters of the sandwich samples produced and tested.

Figure 4.30: Four-point bending test setup and lengths : upper span s, lower span l and shear
length L.

s l L

Setup A 1400 2600 600
Setup B 1000 2200 600
Setup C 600 1800 600

Table 4.4: Lengths in millimeters of the four-point bending tests for the three setups.

The test is performed by applying a vertical displacement with the central cylinder.

The resulting force is transfered through a ball-and-socket joint to a transmitter, that

lies itself on the upper load points (figure 4.31). The transmitter is an I-shape beam

sufficiently stiff to provide a negligible deflection during the test in comparison with that

of the panel.

During the test, displacement and force of the cylinder are continuously measured with

sensors. In addition, small stickers (a white cross on a black background ; see figure 4.28)

are regularly spaced on the visible side of the upper and lower faces. Photos of this visible

side are shot every 10 seconds. Digital image correlation techniques enable to post-treat

the images in order to extract the displacement of each sticker during the bending test.

Image analysis tools were adapted from ImageJ3 plugins (Lhuissier, 2009, PhD thesis).

3Image processing and analysis software in Java, under GNU license.
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Figure 4.31: Four-point bending test setup. A central cylinder applies a displacement on the two
upper load points through the transmitter.

Elastic properties

For each of the ten samples, two loading–unloading sequences were applied. The maximal

displacement is chosen in order to stay in the elastic domain and not to damage the

samples. The four-point bending compliances S4p are measured on the unloading slope of

the force–deflection curve. Figure 4.32 plots the measured compliances for all the samples

and for each setup. As detailed in section 1.5, the variation of the four-point bending

compliance versus the lower span length l should be linear. The slope only depends on the

flexural compliance, whereas the intercept depends on both flexural and shear compliances.

Since the contribution of the core to the flexural modulus is negligible with respect to that

of the faces, it is assumed to be unchanged for all stiffener designs. It is estimated by :

d =
1 − ν2

E

12

h3(1 − (1 − f)3)
(4.12)

where E = 210 GPa is the Young’s modulus of the steel faces, ν = 0.33 the Poisson ratio,

and f = 2t/h the volume fraction of the faces.

Then, the shear compliance is obtained from the fitted intercept S0 :

f =
2

3
L2

d +
2

L
S0 (4.13)

where L is the shear length (figure 4.30).

Dots on figure 4.32 result from the average of few unloading force–deflection slopes,

measured on two samples for each design and each setup. Lines are fitted on the data with

keeping the analytical slope that just depends on the flexural compliance, eq. (4.12). The

samples with design △5 have been unfortunately slightly damaged during the loading–
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Figure 4.32: Variation of the four-point bending compliance versus the lower span length for the
five designs. The compliances are measured on the unloading slopes of the force–deflection curve.
A linear fit is done for each design with the same slope that just depends on the flexural compliance,
eq. (4.12).

unloading sequences since the buckling limit is particularly low. That could explain the

abnormal compliance for setup A with the largest lower span value l = 2600 mm.
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Figure 4.33: Comparison between the shear compliance of the stiffeners computed by homoge-
nization (section 4.3.2) and that of the panel measured on figure 4.32. The shift may be due to the
faces contribution included into the panel compliance.

Figure 4.33 shows the deviation from the standard design of the shear compliance of

the stiffener computed by homogenization simulations, and of the shear compliance the
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panel measured on figure 4.32. The trend is respected, the observed shift might be caused

by the faces that are included into the measured shear compliance of the panel, but not

for the computed stiffeners compliance.

To conclude, design △5 could be filtered out because it has the lowest stiffness. The

three others provide an improvement in elastic properties with respect to the current

design — a negative deviation on figure 4.33.

Non-linear properties

For each design, the two samples have been tested further, leaving the elastic regime and

up to failure : one on the setup A with a deflection up to 50 mm (if possible), and the

other on the setup C with a deflection up to 20 mm. The force–deflection curves are

plotted on figure 4.34a for setup A and on figure 4.34b for setup C.

All the force–deflection curves are divided into three parts. The first part is the elastic

region characterized by a linear increase of the force and a way back along the same

straight line if the panel is unloaded. The second part is an irreversible region presenting

either buckling or plasticity, or more probably both. According to the design, it could

occur at a force intensity unchanged or slightly decreasing. The third part is the final

unloading. The remaining deflection at zero force is directly correlated with the amount

of energy stored into the plastic deformation.

Visually, the first buckling event on the stiffeners was observed at the end of the elastic

region. The buckling phenomenon is a bifurcation at a critical force between an unstable

loading state to another more stable. Here, the bars of the stiffeners that are loaded in

compression buckle into an out-of-plane bending mode. This sudden phenomenon leads to

the plastification of the bars. The maximal force reached at the end of the elastic region

is related to the critical compressive load on the beam that provokes buckling, given by :

Fc =
π2Eb′t′3

12(Kl′)2
(4.14)

where E is the Young’s modulus, b′, t′ and l′ respectively the width, the thickness and the

length of the constitutive bars, and K the effective length factor that takes into account

the boundary conditions.

Figure 4.35a compares the theoretical critical force Fc to the maximal forces measured

on the force–deflection curves (figure 4.34) for each geometry. The critical forces are

computed from lengths estimated as shown in figure 4.36 with a factor K = 0.5, which

corresponds to two clamped boundaries (figure 4.35b). In the case of ♦-shape geometries,

the critical force is also computed with K = 0.7, which corresponds to one clamped
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boundary and one rotation-free boundary condition. Actually, the torsion stiffness of the

other connected bars leads to a boundary condition in-between rotation-free and clamped.
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(a) Setup A, l = 2600 mm.
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(b) Setup C, l = 1800 mm.

Figure 4.34: Force–displacement curve resulting from four-point bending tests on the five prototype
panels. The setup C implies larger forces at a given deflection than the setup A, because the span
lengths are smaller. The ultimate force for each design is almost unchanged between the two setups.

The correlation between the estimated force and the experimental data is good, but
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one should be careful about the strong sensitivity of the estimated buckling lengths on the

results. ♦-shape designs implies a higher critical force than the others because of modified

buckling mode. Moreover, the designs with a high area fraction Af = 0.6 provide the

largest critical force among each topology (△ or ♦ shapes) thanks to their low slenderness.
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Figure 4.35: (a) Comparison of the critical force Fc from equation (4.14) to the ultimate forces
measured on the force–deflection curves (figure 4.34) for each design. (b) Buckling beams with
respectively clamped and rotation-free top-boundary conditions.
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Figure 4.36: Measurements of the width and the length of the constitutive bars involved in buck-
ling.
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Examining carefully the damaging region on figure 4.34 reveals an effect of the topology

on the shape of force–deflection curve. The designs with △ shape exhibits a damage process

at a constant force with a sawtooth curve. It results from discrete steps of deformation

caused by the buckling of each bar of the stiffener. The designs with ♦ shape provide a

higher ultimate force, as well as a smooth damage curve regularly decreasing (sample ♦5

still shows one or two steps just following the ultimate force). Even if a similar buckling

phenomenon appears, it seems to be more continuous because of the different boundary

conditions on the bars involved in buckling.

White cross stickers have been put on the visible side of the two faces, and photos have

been taken every 10 seconds during the test of all the samples. Digital image correlation

have been performed on the image sequences in order to extract the displacements of all

the white crosses. The set of the correlation points enables to create a rough mesh (figure

4.37) on which displacements are linearly interpolated. In order to better understand

the damage process, one computes the evolution of two significant quantities along the

abscissa of the panel : the mean line deflection (average over the upper and lower face

deflections) and the thickness reduction (relative difference between the upper and lower

face deflections).

Figure 4.37: Rough mesh built on the correlation points. Colored vertical lines are abscissa where
the thickness reduction of the section is taken and plotted on figures 4.39, 4.40 and 4.41.

Figure 4.38 shows the thickness reduction on each geometry at a deflection of 40 mm on

setup A. It provides information on absolute intensity, symmetry and spatial localization

of the thickness reduction. It reveals an asymmetrical behavior for designs with low area

fraction Af = 0.5, whereas symmetrical response of designs △6 and ♦6. However, this

correlation have to be put in perspective with the fact that no precaution have been taken

when assembling to set up the stiffeners symmetrically.

To enhance the analysis, figures 4.39, 4.40 and 4.41 present the force-deflection curve

of each design aligned on the evolution of the thickness reduction in four points inside the

right and left shear areas. Plain lines corresponds to the inner sections, whereas dashed

lines correspond to the outer sections (figure 4.37).

Especially on figures 4.39 and 4.40b, the comparison of both force and thickness re-

duction versus deflection highlights the origin of the sawtooth. Each step on the force
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(a) Design Standard.

(b) Design △5.

(c) Design △6.

(d) Design ♦5.

(e) Design ♦6.

Figure 4.38: Superposition of the thickness reduction field on the image, at a deflection of 40 mm,
for the five designs. The color scale of the thickness reduction (in %) is the same for all the designs.

coincides with a drop of the thickness reduction on one of the sections. Thus, it confirms

the buckling and plastification of the constitutive bars is the origin of the sawtooth on the

force–deflection curve.

The comparison between the thickness reduction in the right and left shear ranges

enables to check the symmetry of the panel response. This is the case for designs △6

and ♦6, which present similar evolution between purple curves (right shear range) and

orange curves (left range). One can also observe the propagation of the buckling through

the shear range by comparing couples of plain and dashed lines with the same color. For

instance, design △6 reveals a very similar evolution of the thickness reduction for the

inner (plain-lines) and the outer (dashed-lines) sections. Whereas, the design ♦6 tends to

localize the plastic deformation into the stiffeners below the point loads.

Figures 4.42 and 4.43 detail the kinematic of the mean line deflection and the thickness

reduction along the whole panel. They provide an efficient way to interpret each feature

of the force-deflection curve and highlight the differences in behavior of the two topologies

(V and ♦ shapes). For instance, figure 4.42 enables to visualize the deformation sequences

of each side of the panel and explain each sawtooth on the force–deflection curve. One
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confirms also, on figure 4.43, that the smoothness of the force–deflection curve is the

result of a relative regularity of the buckling process and a localization on the plastic

deformations under the load points.
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Figure 4.39: Behavior of the standard design for setup A : (top) Force–deflection curve ; (bottom)
Thickness reduction into the shear area (each curve corresponds to an abscissa defined on figure
4.37).
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To conclude, a low slenderness of the constitutive bars — obtained by a high area

density — provides a high critical force and, as a result, a high global strength of the

panel. It also seems to encourage a symmetrical behavior, which contribution to the

force–deflection curve is not significant. Moreover, the topology modifies the buckling

boundary conditions and increases the critical force for designs ♦5 and ♦6. It also implies

a smooth force–deflection curve. For all these reasons added to its high shear stiffness, the

design ♦6 seems the more mechanically efficient.
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(a) Design △5.
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(b) Design △6.

Figure 4.40: Behavior of the designs △5 and △6 for setup A : (top) Force–deflection curve ;
(bottom) Thickness reduction into the shear area (each curve corresponds to an abscissa defined on
figure 4.37).
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(a) Design ♦5.
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(b) Design ♦6.

Figure 4.41: Behavior of the designs ♦5 and ♦6 for setup A : (top) Force–deflection curve ;
(bottom) Thickness reduction into the shear area (each curve corresponds to an abscissa defined on
figure 4.37).
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(b) Mean line deflection (average over the upper and lower face deflections) for each time step
defined in (a).
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(c) Thickness deflection (relative difference between the upper and lower face deflections) for
each time step defined in (a).

Figure 4.42: Bending test of the design △6 on setup A : (a) force–deflection curve, (b) mean
line deflection and (c) thickness reduction. (b) and (c) are measured by image analysis. Each gray
level corresponds to an image with a time step of 50 seconds. The purple and orange lines specify
the abscissa where the thickness reduction is token and plotted on figures 4.39, 4.40 and 4.41.
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(b) Mean line deflection (average over the upper and lower face deflections) for each time step
defined in (a).
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(c) Thickness deflection (relative difference between the upper and lower face deflections) for
each time step defined in (a).

Figure 4.43: Bending test of the design ♦6 on setup A : (a) force–deflection curve, (b) mean
line deflection and (c) thickness reduction. (b) and (c) are measured by image analysis. Each gray
level corresponds to an image with a time step of 50 seconds. The purple and orange lines specify
the abscissa where the thickness reduction is token and plotted on figures 4.39, 4.40 and 4.41.
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Conclusion

A complete optimal design of architectured material has been achieved in this chapter.

It was applied to the industrial case of an insulating panel produced by Sainte-Marie

Constructions Isothermes. The aim was to develop a procedure to propose a new geometry

for the stiffener design, in order to maintain equivalent thermal properties and improve

the stiffness and strength of the panel.

First, specifications on the panel have been listed and some have been translated into

functions that stiffeners have to fulfill. Then, the main functions have been translated

into an optimization problem that can be solved by shape optimization. The problem is

to minimize both the shear compliance and the in-plane thermal resistivity. The resulting

geometries were compared together on a performance chart, shear stiffness versus through-

thickness conductivity.

The two-dimensional shape optimization algorithm presented in chapter 3 were used to

solve this multi-functional optimization problem. Each control parameters were studied :

the relative importance of the thermal and mechanical objectives, the area fraction, the

initial geometry and the shape factor. It results on a summary on the impact of each of

these parameters on the two objectives and on the optimality. Moreover, it fulfills a Pareto

front on the shear–conductivity chart and enables — by comparing with the performance

of the standard design — to select four promising geometries.

The four promising geometries have been “adjusted” to cope with industrial constraints

and produced to be integrated into sandwich samples. Awaiting the insulation test of

the modified standard IMO 754(18), a numerical analysis has been performed by Sainte-

Marie Constructions Isothermes. Three-dimensional transient simulations of the test have

concluded in similar performances of the new geometries versus the standard design. Only

the geometry V6 have been filtered out due its insufficient insulating ability.

Four-point bending tests have been performed on ten scale-one samples produced by

Sainte-Marie Constructions Isothermes. From the compliances measured on three test

setups (varying the span length), the shear compliance component have been obtained

for each design. Then, the ultimate force and the damage process have been carefully

studied. The force and displacement sensors in addition with digital image correlation

enables to understand the origins of the damage process : buckling, plasticity, spreading

out or localization of the deformation in the shear zone, symmetry. From this mechanical

analysis, the geometry ♦6 reveals to be the stiffest and strongest among the four.

Finally, the design ♦6 provides equivalent thermal insulation than the standard de-

sign but increase the stiffness and strength of the panel. As a accomplishment of this

work in collaboration with Sainte-Marie Constructions Isothermes, the next release of the

insulating sandwich product will integrate this design.
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Highlights

• A study was performed on the optimal design of a part of an insula-

tion sandwich panel produced by the company Sainte-Marie Construc-

tions Isothermes. The panel specification was translated into a multi-

functional optimization problem treated by topological optimization :

shear stiffness and thermal resistivity.

• Influence of the parameters is discussed. A Pareto front is built with

varying the weighting factor and area fraction. The choice of the initial

geometry and the cell length may have an impact of the optimality.

• A selection stage that consists in plotting the optimized solutions into

a performance chart enables to highlight few promising unit cell geome-

tries. These selected patterns are slightly adjusted according to the

process requirements.

• Three-dimensional thermal transient analysis gave results consistent

with optimization simulation and confirmed the quasi-static assumption.

• Four-point bending tests are performed on scale-one prototype sam-

ples. The ranking of the geometries with respect to the shear stiffness is

similar to that estimated. One of the designs appears to be very promis-

ing and is retained by Sainte-Marie Constructions Isothermes for further

development.





Conclusions & perspectives





Main results obtained during this PhD

Following an approach of “material by design” the generic trend is nowadays to develop

tailored materials in order to tune their properties to the application requirements. The

sandwich structure is an emblematic example of a multi-functional architectured material

obtained by spatially organizing one or few phases at the scale of the panel (faces and

core) or within the core itself.

In this context, this PhD work focuses on the development of numerical tools for opti-

mizing matter distribution within the unit cell of architectured panel. This optimization

tools have been developed following three main directions :

• the homogenization of the membrane, flexural and transverse-shear modulus of any

architectured unit cell ;

• the selection, sizing and optimization of architectured patterns with respect to multi-

functional objectives at a given weight. The multi-functional objectives considered

here are either bending versus shear compliance or thermal conductivity versus shear

compliance ;

• the experimental validation of the numerical predictions by testing prototype model

architectured panel or industrial sandwich structures.

Homogenization of architectured panels is described in order to identify the Reissner-

Mindlin stiffness coefficients. Using the spatial periodicity of the heterogeneous distribu-

tion of matter, this is performed by resolving by FEM some homogenization problems

on the unit cell. While the membrane and flexural components result from a classical

boundary conditions problem, the transverse-shear components do not. An overall shear

loading that satisfies stress-free conditions on the top-and-bottom faces can only be im-

posed through a body load. The bending gradient theory says that the appropriate body

load is derived from the pure bending homogenization problem. This type of loading is

a substitution to uniform boundary conditions that do not satisfy the stress-free condi-

tions. The transverse-shear contribution as well as the influence of the type of loading are

quantified on a particular model architectured panel.

The implementation of these homogenization calculations is performed on the entirely

meshed unit cell defining the subdomain filled with matter using the level-set function.

It enables to systematically compute the effective properties for any architectured panels,

even in a parametric study or an optimization approach.

As an example, the design of embossed steel is carried out as an application of the

proposed achitectured material approach. The previous homogenization procedure is used
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to estimate the performance of such patterned sheets. It leads to the comparison of

different patterns and to derivation of operational rules for a proper dimensioning of the

structure.

To proceed further in the search of high performance geometries according to multi-

functional objective, a topological optimization tool is developed and coupled with ho-

mogenization. The case of bi-dimensional architectured panels that aim at providing a

compromise between flexural and shear stiffnesses is treated. A constraint on the area

fraction is added to the optimization problem by introducing a Lagrangian function. A

progressive satisfaction of the prescribed area fraction while optimizing is proposed and

studied. This simple numerical trick avoids topological simplifications and consequently

getting trivial solutions.

The definition of the appropriate objective function has been discussed. Weighted

product and three-point bending compliance are proposed as objective function and pro-

vide equivalent results. The weighting factor and the span length control the relative

importance given to bending versus shear in the optimization process. In both cases,

changing their value enables to built a Pareto front that gathers the best compromises

reachable within a constraint of a given area fraction. A shift of the Pareto front is ob-

served when the area fraction is increased and less deviations in terms of compliances is

noted for the high values of area fraction.

Even if topological changes are in principle possible, a strong sensitivity to the initial

geometry is observed. Final optimized geometries usually differ in topology, keeping that

of the initial geometry. But they often provide similar features in shape (bars, faces,

curvatures, etc.). It has to be noticed also that the optimized solutions obtained from

several initial geometries all lie onto the estimated Pareto front, excepted few special

symmetric cases. The sensitivity to the initial geometry is explained by two facts. The

implemented optimization belongs to the class of gradient-based methods, which are known

to find local optimum and not global ones. In addition, the homogeneity of the considered

unit cell loadings encourage the multiplicity of the local optima. Concerning the design

domain, the choice of the unit cell length (i.e. the shape ratio) affects the optimality of

the properties, and more especially the shear component.

Finally, this numerical tool for topological optimization of panels unit cell is applied on

a multi-functional industrial case. The company Sainte-Marie Construction Isothermes

produces an insulation sandwich panel that fulfills mechanical and thermal specifications.

The translation into an optimization problem has been proposed. And the optimization

algorithm has been used to build stiffeners geometries with a high-performance compro-

mise between shear stiffness and thermal insulation. The influence of each parameters

is presented and selection rules are utilized to propose four promising stiffeners shapes.

These panels have been realized and are currently tested for an industrial implementation.
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These experiments refer to the optimized sandwich stiffeners. The company Sainte-Marie

Construction Isothermes produced scale-one steel structures of sandwich panel, with re-

spectively the current stiffeners design and four optimized designs. Four-point bending

tests with several span lengths were completed and enable to characterize the elastic mod-

uli as well as the damaging features.

Finally, model architectured panels in polyamide, produced by additive manufacturing

(selective laser sintering), have been realized. The first experimental results (see chapter

2) confirm FEM simulations of the four-point bending tests. They are taken as reference

when compared with the analytical expression that assumes a homogeneous panel with

effective properties. Then, four initial geometries and the corresponding optimized ones

were produced and tested. Thanks to bending tests with several span lengths, both flex-

ural and transverse-shear moduli can be identified. Data demonstrate experimentally the

expected improvement of the elastic properties and quantifies the interest of the approach.

This work is a contribution to the development of systematic methods for optimal

design in the context of architectured materials, applied to sandwich structures. As an

illustrative demonstration, the optimization study on the sandwich stiffeners ends up with

proposing a new design that will be integrated into the next generation of panels produced

by the company. Concerning embossed steel, it is part of the innovative steel solutions

under development by ArcelorMittal in order to fulfill the future challenges in car light-

ening. Topological optimization is added to the available tools for architectured material

development.

Perspectives

The results obtained in this PhD work as well as the limitations and the difficulties suggest

some perspectives and axes for further works. They are proposed into the following items :

• A first limitation to the implemented optimization method lies in the impossibility to

nucleate holes at the transformation stage using the Hamilton-Jacobi equation. It results

from the transport specificity of this equation. In order to overcome this limitation, it

was proposed to locally modify the level-set function to enforce the creation of holes. Al-

laire and Jouve (2008) present such an extension of the level-set algorithm with choosing

the location of holes nucleation with respect to the topological derivative. This expres-

sion differs from the shape derivative since it is defined at any point of the domain and

quantifies the sensitivity to nucleating a infinitesimal hole (Céa, 2000, Novotny et al.,

2007). Another recent and promising method was proposed by Yamada et al. (2010) and
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consists in replacing the transport Hamilton-Jacobi equation by a diffusion-convection

equation. Inspired by the phase field approach, the level-set function is enforced to be -1

or 1 almost everywhere excepted close to the interface. Then the time derivative of the

level-set function φ is written to be proportional to the shape derivative j′ in addition

with the term τ ∇2φ that derives from a fictitious interface energy :

∂φ

∂t
+ j′ − τ ∇2φ = 0 (4.15)

where τ > 0 is a regularization parameter that controls the relative importance between

the fictitious interface energy and the shape derivative. It has been shown by Yamada

et al. (2010) that the use of such an transformation equation allows the nucleation of

holes and the control of the topology complexity by the parameter τ .

In addition to this topological limitation, optimization simulations were performed here

only in a bi-dimensional framework and suggest a higher interest in three dimensions.

Indeed, the three-dimensional case provides more complex morphologies and a larger

set of possibilities that makes much weaker any intuition. An extension of the bi-

dimensional optimization tool have been implemented in three dimensions using the

diffusion-convection equation (4.15). Figure 4.44 shows a preliminary result of opti-

mization from the embossed pattern am (from section 2.4) with respect to the flexural

and transverse-shear compliance in direction e1.

Figure 4.44: Three-dimension optimization from pattern am with respect to the flexural and
transverse-shear compliance in direction e1. Volume fraction progressively decreases from 0.4 to
0.2. The unit cell is plotted at iterations 0, 10, 20, 30, 40. Contours represent the coordinate x3.

This result is clearly promising since the well-known corrugated sheet is obtained.

However some difficulties remain. This problems is very computer-time and memory-

consuming. That limits the numbers of elements available to precisely describe the

geometry and avoid artificial stress peaks on the interface. It explains the quite irregu-

lar geometry observed on figure 4.44. Moreover, it would be interesting to optimize with

respect to the flexural and shear compliance in both directions e1 and e2. This would
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add to more FEM calculations to identify these compliance components. In addition, it

could be worthwhile to introduce the anisotropy factor into the objective function.

• The choice of the multi-objective function have been discussed in chapter 3 when com-

paring the weighted product and the three-point bending compliance. A physically-

based combination of objectives enables to justify the choice of the weighting factor and

to efficiently balance the contributions of each objective. But in the case of multi-physics

objective functions (e.g. thermal and mechanical), such physically-based combination

does not exist (except when a proper value analysis can be performed) and the choice

of the multi-objective function and the weighting factor depend on a preliminary dis-

cussion on the specifications of the architectured material to design. We retrieve here

the classical difficulty to translate a set of requirements into an optimization problem.

Concerning objective function, the present work only focuses on minimizing the elastic

compliance based on the analytical expression of the shape derivative. The extension

to non-linear objective functions is still an open question. Literature provides some

examples of non-linear optimization to think about, such as large displacements (Cho

and Jung, 2003), elasto-plastic structures (Schwarz et al., 2001) and transient thermal

properties (Li et al., 2004). It seems also interesting to include other constraints that aim

at taking into account process requirements or local criteria (e.g. yield limit, fracture,

etc.). For instance, integrating a curvature constraint seems feasible with regard to

Yang et al. (2010).

• The analysis of how the initial geometry affects the optimization results reveals a signif-

icant influence. The approach followed in chapter 4 amounts to populating the Pareto

front with optimized solutions obtained from several initial geometries, then selecting

some of the more promising solutions. Another approach could be to couple the present

gradient-based optimization method with a stochastic approach. For instance, such a

“mixed strategy” could be to generate random initial geometries, to nucleate random

holes or to exchange pixel values as it has been proposed by Garcia-Lopez et al. (2011)

with coupling simulated annealing and SIMP methods.

• In the present context of architectured materials, we focused on applying topological

optimization — that is initially developed for structural design — to a periodic unit

cell. The obtained optimized unit cell provide the best compromise between stiffness

components in order to be periodically repeated everywhere into a structure panel. A

multi-level approach could be proposed by optimizing the distribution of pseudo-periodic

patterns to design complex part made of functionally graded material (Jackson et al.,

1999). This approach is especially interesting since additive manufacturing techniques

provide more and more possibilities in terms of geometry complexity, materials and
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quality. Biological applications already take advantage of this strategy (Parthasarathy

et al., 2011, Genet et al.), but others may come such as a planned PhD work (in contin-

uation of the present one) on both optimization simulations and additive manufacturing

by electron beam melting. Again the integration of process requirements into the opti-

mization problem will be a key issue.

Finally, we have focussed our attention on geometrical optimisation. In parallel , the

classical “materials selection methods” developed by Ashby aims at selecting the best

materials and the best combination of materials. The obvious – and difficult- next step is

to aim at a co-selection of materials and geometries. This would be an additional step on

the road to systematic design of hybrid materials, which is the general background of the

work performed in this PhD.
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A.1 General notations

A.1 General notations

In all the documents, scalars and vector are denoted with italic characters like the scalars

l, ν, α, and the vectors x, n, etc. The context only specifies if it is a scalar or a vector.

The components of the vectors are denoted with indexes like the three spatial variables

x1, x2 and x3. One exception is done for the particular vectors of the spatial reference

frame which are denoted e1, e2, and e3.

Tensors of order 2 or larger are denoted with bold characters like N , e, σ (whatever is

the dimension 2 or 3). Tensors of dimension 2 expanded to the 3rddimension with zeros are

underlined with a tilde like ẽ. The components of the tensors are denoted like scalars with

indexes, for example the 1ststress component σ11 or the first Hook’s tensor component

C1111.

A.2 Kelvin’s notation

For an easier manipulation of the tensors of order 2 and 4, engineer’s notations have been

proposed. The Kelvin’s notation is one of them and consists in writing the stress and

strain tensors as the following vectors :

{σ} =





σ1

σ2

σ3

σ4

σ5

σ6





=





σ11

σ22

σ33√
2 σ23√
2 σ31√
2 σ12





and {ε} =





ε1

ε2

ε3

ε4

ε5

ε6





=





ε11

ε22

ε33√
2 ε23√
2 ε31√
2 ε12





(A.16)

The order of the components are chosen such that :

[σ] =



σ11 σ12 σ31

σ12 σ22 σ23

σ31 σ23 σ33


 (A.17)

Thus, the stiffness tensor becomes the following matrix :

[C] =




C1111 C1122 C1133

√
2 C1123

√
2 C1131

√
2 C1112

C2211 C2222 C2233

√
2 C2223

√
2 C2231

√
2 C2212

C3311 C3322 C3333

√
2 C3323

√
2 C3331

√
2 C3312√

2 C2311

√
2 C2322

√
2 C2333 2 C2323 2 C2331 2 C2312√

2 C3111

√
2 C3122

√
2 C3133 2 C3123 2 C3131 2 C3112√

2 C1211

√
2 C1222

√
2 C1233 2 C1223 2 C1231 2 C1212




(A.18)
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Appendix A - Tensors notations

This stiffness matrix in the Kelvin’s notation is converted from the traditional Voigt’s

notation by pre and post multiply by the matrix :




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0
√

2 0 0

0 0 0 0
√

2 0

0 0 0 0 0
√

2




(A.19)

This Kelvin’s notation have the advantage to be symmetric for strain and stress and

enable to stabilize the elastic-constant inversion of the stiffness tensor. The compliance

matrix becomes the inverse of the stiffness matrix.

The two-dimensional macroscopic stress and strain are treated similarly with keeping

the indexes 1, 2 and 6 to be consistent with the previous three-dimensional notations :

{N} =





N1

N2

N6





=





N11

N22√
2 N12





and {e} =





e1

e2

e6





=





e11

e22√
2 e12





(A.20)

The compliance matrix becomes :

[a] =



a11 a12 a61

a12 a22 a26

a61 a26 a66


 =




a1111 a1122

√
2 a1211

a1122 a2222

√
2 a2212√

2 a1211

√
2 a2212 2 a1212


 (A.21)

A.3 Rotations and anisotropy

The anisotropy of a constitutive law quantify how large are the variations of the material

response when it is rotated. In our case, an anisotropy factor will be defined from the

variations of the effective softness — the inverse of the Young’s modulus — scanning the

direction of the panel’s plane. The representative matrix in the Kelvin’s notation of an

in-plane rotation is : 


c2 2 −
√

2cs

s2 c2
√

2cs√
2cs −

√
2cs c2 − s2


 (A.22)
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A.3 Rotations and anisotropy

where c = cos θ and s = sin θ. The evolution of the compliance components with respect

to the rotation angle θ can be computed using the following rotation matrix :




c4 s4 2c2s2 2cs3 2c3s
√

2c2s2

s4 c4 2c2s2 −2c3s −2cs3
√

2c2s2

2c2s2 2c2s2 (c2 − s2)2 2cs(c2 − s2) −2cs(c2 − s2) −2
√

2c2s2

−2cs3 2c3s −2cs(c2 − s2) c2(c2 − 3s2) −s2(s2 − 3c2) −
√

2cs(c2 − s2)

−2c3s 2cs3 2cs(c2 − s2) s2(s2 − 3c2) c2(c2 − 3s2)
√

2cs(c2 − s2)√
2c2s2

√
2c2s2 −2

√
2c2s2

√
2cs(c2 − s2) −

√
2cs(c2 − s2) (c4 + s4)




(A.23)

to be applied to the representative vector of the compliance tensor :

{a} =





a11

a22

a66√
2a26√
2a61√
2a12





=





a1111

a2222

2a1212

2a2212

2a1211√
2a1122





(A.24)

For example, the evolution of the first component with respect to the rotation angle

is :

a11(θ) = c4a11 + s4a22 + 2c2s2a66 + 2
√

2cs3a26 + 2
√

2c3sa61 + 2c2s2a12 (A.25)

This evolution can be characterized by its average over θ :

ā11 =
1

2π

∫ 2π

0
a11 dθ =

1

8
(3a11 + 3a22 + 2a66 + 2a12) (A.26)

and its standard deviation, which is a measure of the anisotropy :

std(a11)
2 =

1

128

(
17(a211 + a

2
22) − 30a11a22 − 4(a11 + a22)(a66 + a12)

+ 4(a66 + a12)
2 + 40(a226 + a

2
61) + 48a26a61

)
(A.27)

In the specific case of a cubic symmetry, one has a11 = a22 and a61 = a26 = 0, such

that the previous factor becomes :

std(a11)
2 =

a66
2

128

(
1 − a11 − a12

a66

)2

(A.28)

where the ratio (a11 − a12)/a66 is the classical anisotropy factor for materials with or-
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Appendix A - Tensors notations

thotropic symmetry 4.

4the tensor have to be expressed in the frame aligned on the symmetry planes
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Homogénéisation et optimisation topologique de panneaux

architecturés

Résumé
La conception sur-mesure de matériaux architecturés à l’échelle du milli/centimètre est une stratégie pour développer

des matériaux de structure plus performants vis-à-vis de cahiers des charges multifonctionels. Ce travail de thèse

s’intéresse en particulier à la conception optimale de panneaux architecturés périodiques, dans le but de combiner des

exigences mécaniques de flexion et de cisaillement, ainsi que de conductivité thermique.

Le comportement élastique peut être prédit grâce à l’identification sur la cellule périodique des cœfficients de la

matrice des souplesses équivalente. Ces calculs d’homogénéisation ont été mis en œuvre par éléments finis pour estimer

en particulier les souplesses en flexion et en cisaillement transverse. Après validation expérimentale, cette méthode de

calcul constitue un outil d’évaluation des performances mécaniques pour chaque géométrie de cellule périodique (2D ou

3D). À titre d’exemple, et dans un contexte de développement de solutions matériaux architecturés pour l’automobile,

la conception de tôles “texturées” est proposée en menant une étude paramétrique à l’aide de cet outil.

L’implémentation d’un algorithme d’optimisation topologique couplé à la procédure d’homogénéisation permet

d’enrichir les méthodes de conception sur-mesure en élargissant l’espace de recherche des “architectures”. Après l’étude

modèle du compromis entre flexion et cisaillement, le cas industriel d’un panneau sandwich isolant est traité. Dans ce

cas, l’optimisation fournit plusieurs compromis prometteurs entre rigidité en cisaillement et isolation thermique. Ces

géométries ont été réalisées et testées, et une nouvelle version améliorée du panneau sandwich a été sélectionnée.

Mots-clés
Matériaux architecturés, structures sandwich, homogénéisation périodique, optimisation topologique, prototypage

rapide, essais de flexion quatre-points.

Homogenization and topological optimization of architectured

panels

Abstract
The “material by design” strategy consists in tailoring architectured materials in order to fulfill multi-functional

specifications. This PhD study focuses more specifically on designing architectured panels in regards with mechanical

compliances (bending and transverse shear), as well as thermal conductivity.

Recent advances on periodic homogenization of plates are integrated into a finite elements tool that enables to

identify the Reissner-Mindlin effective compliance from the unit cell geometry. The comparison with four-point bending

tests illustrates a discussion on the shear loading for homogenization, and its contribution to the global bending stiffness.

In a context of architectured steel solutions for automotive, a parametric study is treated on “embossed” steel sheets

using this homogenization tool.

As a try to enlarge the space of available “architectures”, a topological optimization algorithm (using the level-set

method) is coupled to the homogenization procedure. The influence of each parameters of the method are studied on

the optimization problem of compromising flexural and shear compliances. Finally, the industrial case of an insulation

sandwich panel is treated. Few optimized geometries, with a high combination of shear stiffness and thermal insulation,

are built, produced and tested. An improved design is highlighted and proposed as next version of this product.

Keywords
Architectured materials, sandwich structures, periodic homogenization, topological optimization, selective laser sin-

tering, four-point bending test.
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