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Abstract

Speech sounds may be complemented by displayingckparticulators shapes on a
computer screen, hence producawggmented speech,signal that is potentially useful
in all instances where the sound itself might H&adilt to understand, for physical or
perceptual reasons. In this thesis, we introducgysiem calledvisual articulatory
feedbackin which the visible and hidden articulators ofaiéing head are controlled
from the speaker's speech sound. The motivatiothisf research was to develop a
system that could be applied to Computer Aided &moration Training (CAPT) either
for second language learning, or for speech therapy

We have based our approach to this mapping problemstatistical models built from
acoustic and articulatory data. In this thesis weehdeveloped and evaluated two
statistical learning methods trained on paralleickyonous acoustic and articulatory
data recorded on a French speaker by means ofeattoghagnetic articulograph. Our
Hidden Markov models (HMMs) approach combines HM&&d acoustic recognition
and HMM-based articulatory synthesis techniques estimate the articulatory
trajectories from the acoustic signal. In the secapproach, Gaussian mixture models
(GMMSs) estimate articulatory features directly frahe acoustic ones. We have based
our evaluation of the improvement results broughthiese models on several criteria:
the Root Mean Square Error between the original aedovered articulatory
coordinates, the Pearson Product-Moment Correldfioefficient, the displays of the
articulatory spaces and articulatory trajectoréeswell as some acoustic or articulatory
recognition rates. Experiments indicate that the afsstates tying and multi-Gaussian
per state in the acoustic HMM improves the recagmistage, and that the minimum
generation error (MGE) articulatory HMMs parametgydating results in a more
accurate inversion than the conventional maximukelihood estimation (MLE)
training. In addition, the GMM mapping using MLEteria is more efficient than using
minimum mean square error (MMSE) criteria. In cosan, we have found that the
inversion system based on HMMs has a greater aogtian that based on GMMs.

Beside, experiments using the same statistical edstland data have shown that the
face-to-tongue inversion problemg. predicting tongue shapes from face and lip
shapes, cannot be solved in a general way, andttisatmpossible for some phonetic
classes.

In order to extend our system based on a singlakspeto a multi-speaker speech
inversion system, we have implemented a speakeptattlzn method based on the
maximum likelihood linear regression (MLLR). In MR, a linear regression-based
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transform that adapts the original acoustic HMMstliose of the new speaker was
calculated to maximise the likelihood of adaptatitata. This speaker adaptation stage
has been evaluated using an articulatory phonetiognition system, as there are not
original articulatory data available for the neveakers.

Finally, using this adaptation procedure, we haeggetbped a complete articulatory
feedback demonstrator, which can work for any spealKhis system should be
assessed by perceptual tests in realistic condition

Keywords: visual articulatory feedback, acoustic-to-artitofgg speech inversion
mapping, ElectroMagnetic Articulography (EMA), h&d Markov models (HMMSs),
Gaussian mixture models (GMMs), speaker adaptafa@e-to-tongue mapping
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Résumeé

Les sons de parole peuvent étre complétés paichaffe des articulateurs sur un écran
d'ordinateur pour produire de pearole augmentéeaun signal potentiellement utile dans
tous les cas ou le son lui-méme peut étre diffiéileomprendre, pour des raisons
physiques ou perceptuelles. Dans cette these, prégsntons un systéme appetour
articulatoire visue] dans lequel les articulateurs visibles et nonblds d’'une téte
parlante sont controlés a partir de la voix du feau La motivation de cette thése était
de développer un systeme qui pourrait étre applagd@ide a I'apprentissage de la
prononciation pour les langues étrangeres, ou ldashemaine de 'orthophonie.

Nous avons basé notre approche de ce probléemeedsion sur des modeéles
statistiques construits a partir de données aauesi et articulatoires enregistrées sur
un locuteur francais a l'aide d’un articulograpHec&omagnétique. Notre approche
avec les modeles de Markov cachés (HMMs) combisdetshniques de reconnaissance
automatique de la parole et de synthese articadatpour estimer les trajectoires
articulatoires a partir du signal acoustique. Dautre coté, les modeles de mélanges
gaussiens (GMMs) estiment directement les trajegtaarticulatoires a partir du signal
acoustique sans faire intervenir d’'information pétoue. Nous avons basé notre
évaluation des améliorations apportées a ces nwdeledifférents criteres : I'erreur
guadratigue moyenne (RMSE) entre les trajectoirescusatoires originales et
reconstruites, le coefficient de corrélation derBea, I'affichage des espaces et des
trajectoires articulatoires, aussi bien que lesxtde reconnaissance acoustique et
articulatoire. Les expériences montrent que I'sdifion d'états liés et de multi-
gaussiennes pour les états des HMMs acoustiquekoamiétage de reconnaissance
acoustique des phones, et que la minimisationedelir générée (MGE) dans la phase
d’apprentissage des HMMs articulatoires donne déssltats plus précis par rapport a
I'utilisation du critere plus conventionnel de masation de vraisemblance (MLE). En
outre, l'utilisation du critere MLE au niveau theappingdirect de I'acoustique vers
I'articulatoire par GMMs est plus efficace que léteare de minimisation de l'erreur
quadratique moyenne (MMSE). Nous avons égalemenstat® que le systeme
d'inversion par HMMs est plus précis celui baséessiGMMs.

Par ailleurs, des expériences utilisant les mémeéthades statistiques et les mémes
données ont montré que le probleme de reconstrudés mouvements de la langue a
partir des mouvements du visage et des levres ok gEs étre résolu dans le cas
général, et est impossible pour certaines clagsasdbiques.
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Afin de généraliser notre systeme basé sur undocutnique a un systeme d’inversion
de parole multi-locuteur, nous avons implémenté mééhode d’adaptation du locuteur
basée sur la maximisation de la vraisemblance ggnession linéaire (MLLR). Dans
cette méthode MLLR, la transformation basée suédmession linéaire qui adapte les
HMMs acoustiques originaux a ceux du nouveau laguést calculée de maniere a
maximiser la vraisemblance des données d'adaptattmi étage d’'adaptation du
locuteur a été évalué en utilisant un systeme cdenreissance automatique des classes
phonétiques de l'articulation, puisque les donredgisulatoires originales du nouveau
locuteur n’existent pas.

Finalement, en utilisant cette procédure d'adapiatinous avons développé un
démonstrateur complet de retour articulatoire Jjsyg peut étre utilisé par un locuteur
guelconque. Ce systéme devra étre évalué de mamaeceptive dans des conditions
réalistes.

Mots-clés :retour articulatoire visuel, inversion acoustiquiealatoire, articulographe

électromagnétique, modeles de Markov cachées, e®mddé melanges gaussiens,
adaptation au locuteur, inversion des mouvementsada vers les mouvements
linguaux
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Glossary

Phoneme the smallest segmental unit of sound employednm meaningful contrasts
between words.

Allophone one of different ways that a single phoneme maypbonounced. An
allophone is one of a set of multiple possible gmokounds (i.e. phones) used to
pronounce a single phoneme. Allophones are diffexea by the realizations of
secondary phonetic features which are not compingislentification of phonemes,
e.g. aspiration of consonants, devoicing of semwets or liquids before unvoiced
consonants in French.

Phone (or Monophone):

« One physical instance of a phoneme.
» The basic unit revealed via phonetic speech arglysi

* A speech sound or gesture considered as a physieal without regard to its
place in the phonology of a language.

* A speech segment that possesses distinct physiparceptual properties.

Phone in contexta phone that includes the left and/or the rightngtio information.
Biphone: a set of allophones sharing the same left or cghtext.

Triphone: a set of allophones sharing the same left and cghtexts.

XiX






Introduction

Introduction

Motivation of research

“Speech is rather a set of movements made audiale & set of sounds produced by
movements”(Stetson, 1928). This statement means that spmsedot only sounds
which are produced just to be heard but it can @lsoregarded as visible signals
resulting from articulatory movement. Thereforegeesgh sound may be complemented
or augmentedvith visible signals (simple video, display of afly hidden articulators
such as tongue or velum, hand gestures as usedeoh speech by hearing-impaired
people, etc.)Augmented speechay offer very fruitful potentialities in varioupsech
communication situations where the audio signalfiis degraded (noisy environment,
impairment hearing, etc.), or in the domain of gpeeshabilitation (speech therapy,
phonetic correction, etc.).

Visual articulatory feedback systems aim at prawdithe speaker with visual
information about his/her own articulation: thewief visible articulatorsi.e. jaw and
lips, improves speech intelligibility(Sumby and Pollack, 1954), speech imitation is
faster when listeners perceive articulatory gest(F®wleret al, 2003), and the vision
of hidden articulators still increases intelligityil(Badin et al, 2010).

The overall objective of this thesis was thus tealiep inversion tools and to design and
implement a system that allows producing augmestexkech from the speech sound
signal alone, and to use it to buildvisual articulatory feedback systettmat may be
used in Computer Aided Pronunciation Training (CABMfor speech rehabilitation.

The main difficulty is that there is no one-to-omapping between the acoustic and
articulatory domains and there are thus a largebaurof vocal tract shapes that can
produce the same speech signal (Adalal, 1978). Indeed, the problem is under-
determined, as there are more unknowns that nedx tdetermined than input data
available.

Speech inversion was traditionally based on modskll analysis-by-synthesis. One
important issue was to add constraints (contextuguistic...) that are both sufficiently
restrictive and realistic from a phonetic pointvadw, in order to eliminate sub-optimal
solutions. But since a decade, more sophisticaataldriven techniques have appeared,
thanks to the availability of large corpora of eutatory and acoustic data provided by
devices such as the ElectroMagnetic ArticulogradpMA) or motion tracking devices
based on classical or infrared video. The medioaging techniques for obtaining
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vocal tract deformation are sufficiently natureprovide massive articulatory data that
can be exploited for helping both the design amdetaluation of data-driven inversion
methods. Besides, statistical modelling have noached a sufficient maturity to

envisage their applications to real systems.

Organization of the manuscript
The thesis manuscript is organised as follows.

Chapter 1 introduces the aim of visual articulatory feedbackl presents devices that
are able to provide it, followed by the presentatad the talking head developed in
GIPSA-Lab. This interface can animate the visibled éhidden articulators using
ElectroMagnetic Articulography (EMA). Finally, wegsent the different potential uses
of the visual articulatory feedback system.

Chapter 2 provides background information on articulatorgdback production and
perception from previous research. This chaptertsstaith the previous work on
acoustic-to-articulatory speech inversion basegloysical modelling versus statistical
modelling. Then, we describe two statistical apphes that we used: the first approach
is based on hidden Markov models (HMM) and the sdaone is based on Gaussian
mixture models (GMM).

Chapter 3 focuses on the acquisition and the descriptioowfparallel acoustic and
articulatory data. The chapter presents the coctstruof the French corpuses recorded
by one male French speaker using EMA. A comparisgween our French corpus and
an English corpus (MOCHA-TIMIT) is also presentad this chapter. Three audio
corpuses recorded by two males and a female Freaiitke speaker are then described.
These corpuses have been used for the acoustikespa@daptation. The acoustic and
articulatory parameterisation is presented in tiee @ this chapter.

Chapter 4 describes the evaluation criteria used to evalttaeHMM- and GMM-
based methods. The results that include the impnewé of the described methods are
presented and discussed. The improvement of the Hid8&d method is mainly due to
state tying, the increase of the number of Gaussiarthe acoustic stream and the
training of the articulatory stream using the Minmim Generation Error (MGE)
criterion. The improvement of the GMM-based meth®dased on the use of MLE
mapping method instead of MMSE one. Next, we disedsthe best results of the
HMM and GMM.

Chapter 5 describes the adaptation of the acoustic HMM$ef‘teference speaker” to
the new speaker’s voice using the Maximum Likelithdonear Regression (MLLR)
technique. Then, we evaluate this stage on threkoacorpuses described above.
Finally, we describe the prototype of the visudlcatatory feedback system that we
have developed.
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Chapter 6 presents the face-to-tongue mapping debate fourideirliterature. In this
chapter, we applied the same techniques and carped for speech inversion to
evaluate the reconstruction of tongue shape fraa $hape.

Finally, Chapter 7 presents theonclusionsthat summarize the contributions of this
thesis and discusses suggestions for future work.

Note: related project ARTIS

Note that the work presented in this thesis coutet) to the French ANR-08-EMER-
001-02 ARTIS project which involves collaboratiortveen GIPSA-Lab, LORIA,
ENST-Paris and IRIT. The main objective of thiseagh project is to provide
augmented speechith visible and hidden articulators by means ofidual talking
head from the speech sound signal alone or witbovichages of the speaker’s face.
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Chapter 1. Visual articulatory feedback
INn speech

1.1.Introduction

It has become common sense to say that speech marely an acoustic signal but a
signal endowed with complementary coherent tracesh sas visual, tactile or
physiological signals (Baillet al, 2010).

Besides, it has been demonstrated that humansgsosde some degree — articulatory
awareness skills, as evidenced). by Montgomery (1981) or Thomas & Sénéchal
(1998). These results support the hypothesisabatiracy of articulation is related to
guality of phoneme awareness in young children]eMirogeret al. (2008) found that
children older than five years are capable to pcedte articulators positions displayed
using an articulatory model without any preparatoayning in a speech adequate way.
Finally, Badinet al (2010) have recently demonstrated that human sisogee able — to
some extent — to make use of tongue shape visiophfenemic recognition, as they do
with lips in lip reading All these findings suggest that visual articutatéeedback
could help subjects acquire the articulatory stia® needed to produce sounds that are
new to them.

In the present chapter, we describe devices tleaalale to provide a visual articulatory
feedback in section 1.2. In section 1.3, we presetalking head that can produce
speech augmented by the display of hidden artatdaSection 1.4 presents the impact
of tongue visualisation on speech perception; wihiéesection 1.5 presents the state-of-
the-art in the domain of visual feedback for phanetorrection and section 1.6
discusses a general framework for a visual artioygeedback system.

1.2.Visual feedback devices

Several devices are able to provide informationhenmovements of visible and hidden
articulators. The mirror is the much more basic wéyroviding feedback of visible

articulators, ice. jaw and lips) by showing in real-time the speakddce movement.

Moreover, face movement can also be displayedahtm@e or not using simple video
recorded by camera. Concerning hidden articulatoey techniques provide partial
information of the inner speech organs in motion:
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* ElectroPalatoGraphy (EPG) provides real-time videaldback of the location
and timing of tongue contacts with the hard patlteng speech.

« Ultrasound imaging provides a visual feedback bywshg a partial 2D surface
of the tongue.

» ElectroMagnetic Articulography (EMA) provides 2D D movements of a few
coils attached to the tongue or other articulatansjuding the velum, with high
precision.

These techniques are complex to implement, experand esoteric. Our aim is to
develop a new technique of visual articulatory fesexk via virtual talking head that
provide augmented speech and could be used bypaakear easily.

1.3. Talking head and augmented speech

As mentioned earlier, the aim of the present wods o implement and test a visual
articulatory feedback for CAPT. Except for ultrasduechography, which is however
restricted to a limited part of the tongue, there at present no medical imaging
systems capable of displaying the whole set ofcadtors in animation with a

reasonable time and frequency resolution. A maaglipproach offers an interesting
alternative: 3D fine grained articulators models ¢@ build from static volume data
such as Magnetic Resonance Imaging (MRI) or Commploenography (CT), and be

controlled trough motion capture devices such asctEdMagneticArticulography

(EMA) that provides only a few articulators poinksjt at a good sampling frequency
(Badin et al, 2008a). We used the virtual talking head (VTHgatly developed at the
laboratory as a visual display which provides cdesably more complete information
than EPG or echography, as it shows the complétaf seticulators.

The talking head currently developed in our depanins the assemblage of individual
three-dimensional models of various speech orgartieosame speakecf( Badin et
al. (2008a; 2010) for a detailed description). Theseles are built from MRI, CT and
video data acquired from this speaker.

The facial shape is animated by a jaw, lips and faocdel that is controlled by two jaw
parametersjdw height jaw advancg and three lip parametersp(protrusion upper
andlower lip height3.

The non-visible articulators are mainly represenbgdthe velum, jaw and tongue
models. The velum model is essentially controllgdoime parameter that drives the
opening / closing movements of the nasopharyngel phe jaw and tongue model is
primarily controlled by five parameters: the maifeet of thejaw heightparameter is a

rotation of the tongue around a point located & lack; the next two parameters,
tongue bodyand tongue dorsumcontrol respectively théront-back and flattening-
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arching movements of the tongue; the last other two paters¢ongue tip verticabnd
tongue tip horizontatontrol precisely the shape of the tongue tip (BagiSerrurier,
2006).

Figure 1.3-1, which shows possible displays of ttatking head, illustrates the
augmented speeatapabilities offered by the vision of the interaaticulators. Figure
1.3-2 exemplifies in more detail the behaviour ba tongue model by demonstrating
the tongue dorsumcomponent effects, in particular tongue groovingl aongue
bunching.

Figure 1.3-1. Augmented talking head for differgpies of display. Left: “augmented
2D view”, middle: “augmented 3D view”, right: “comnlpte face in 3D with skin
texture”

Figure 1.3-2. lllustration of the tongue body cament of the 3D tongue model. Note
the bunching (left) and the grooving (right)

1.4.Visual feedback perception

While the contribution of visible articulators tgeech perception has been largely
demonstrated, work on the contribution of the visad hidden articulators such as the
tongue or the velum to speech perception is scaceeported by Badiat al (2010).
We summarise here the most recent results that gadveeeing the internal articulators
can provide pertinent information for the perceptid speech.



Chapter 1. Visual articulatory feedback in speech

Grauwinkel et al (2007) compared the intelligibility of syntheticdiovisual speech

with and without visualisation of the internal atiator movements. Additionally, they
present speech recognition scores before and &i@ming in which articulator

movement, with and without tongue, were explaing&tde training was a video

explaining the articulatory movements for all cameats in all vowel contexts in a
transparent side view of the face where tongue mews were visible. They found
that the training of visual information was able dignificantly increase visual and
audiovisual speech intelligibility. The recognitistore after learning lesson with
tongue movements was better than both withoutitrgiand the one that only explained
only the facial movements.

Badin et al. (2010) performed an audiovisual perception tes¥ @V stimuli that have
been played back to subjects in various presentatanditions (audio signal alone,
audiovisual signal without and with tongue, audsonal signal with complete face), at
various Signal-to-Noise Ratios (SNR). They foundttkhe consonant identification
with tongue display was better than without dispigythe tongue and a predominance
of lip reading over tongue reading. They showed af&at the subjects who received
implicit training on tongue reading in clear comalits, had significantly higher
recognition scores in noise than the group traingtle noise condition.

Wik and Engwall (2008) evaluated the contributidribee vision of internal articulators

to speech perception. They asked subjects to fggghé words in acoustically degraded
sentences in three different presentation modesistic signal only, audiovisual with a
front face view and an audiovisual with a transparfeont face view, where tongue
movements were visible. They reported that the anged reality side-view did not

help subjects perform better overall than with fiteat view only, but that it seemed to
have been beneficial for the perception of palathsives, liquids and rhotics,

especially in clusters. Their results indicate thatannot be expected that intra-oral
animations support speech perception in general, that information on some

articulatory features can be extracted and havadtspon speech perception.

1.5. Visual feedback for phonetic correction

Interestingly, phonetic correction is involved mat domains, though with different
specificities,i.e. second language learning and speech rehabilitatiobhoth domains,

researchers have attempted to provide learnersehpawith various forms of signals
that bear information on their spoken productions.

1.5.1.Speech Therapy

Tye-Murray et al. (1993) conducted experiments to determine whetheneasing the
amount of visible articulatory information couldfliteence speech comprehension, and
whether such artefacts are effectively benefidile experiments involved profile view
videofluoroscopy, which allows movements of thega body, lips, teeth, mandible,
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and often velum, to be observed in real-time duspgech, as well as profile view
videoscopy of the same speaker. Subjects were daskeadd speech videofluoroscopic
and video images. The results suggest that seeipgalaryngeal articulators that are
typically invisible does not enhance speech reagerformance. It was also noted that
the subjects performed equally well whenever thegie was visible in the
videofluoroscopic records or not. These conclusgimaild however be considered with
caution, as the quality and the interpretabilitwmfeofluoroscopic images was not very
high.

According to Bernhardet al. (2005; 2008), “research has shown that visuallfaeki
technologies can be effective tools for speechhéta)itation, whether the feedback is
acoustic or articulatofy Acoustic information can be captured by a micaph and
displayed as waveforms, intensity or fundamentadjdency time trajectories, or still
spectrograms (Neret al, 2002; Menin-Sicard and Sicard, 2006). More elatsor
devices can provide real time articulatory inforimat ElectroPalatoGraphy (EPG)
Wrenchet al. (2002) indicate the presence / absence of tongla¢epeontacts in about
60-90 locations on the speaker’s hard palate, whitasound echography (Bernhaedt
al., 2008) provides images of the tongue — in mostcasthe midsagittal plane.

During clinic based sessions conducted by Wregstchl. (2002) the patient could use
the visual feedback of tongue-palate contact padtprovided by EPG to establish velar
and alveolar placement for different phonetic tesgB8esides, these targets could be
demonstrated by the speech therapist when alsoingean EPG-palate. They
concluded that EPG is a potentially useful tooltfeating articulation disorders as well
as for recording and assessing progress duringehtment.

In the tradition of awareness and self-monitorirgjning approaches to phonological
intervention, Bernhardet al. (2005) use an ultrasound machine to freeze specifi
images on the screen in order to allow patientsliscuss and compare their own
productions with target productions proposed bydpeech therapists. They note that
“the ultrasound images provide the patient with enimformation about tongue shapes
and movements than can be gained with other typésedback (the mirror, acoustic
analysis, touch, EPG).” They also note that, wihilalitory self-monitoring can be
challenging for patients with hearing impairmenisual displays help them make
judgments on their own productions.

Note also the only experiment, that we are awan@ speech therapy, in which Fagel
and Madany (2008) attempted to correct lisping ddiew children. They found that
using a VTH to demonstrate the correct (prototypic)nunciation of the /s z/ sounds
did significantly enhance their speech production.

Globally, most studies seerfito support the perspective that articulatory visual
feedback facilitates speech rehabilitation for hepimpaired speakers across a variety
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of sound classes by providing information aboufgtecontact, movement, and shape”
(Bernhardtet al, 2003).

1.5.2.Language learning

Oppositely to speech therapy, most of the liteeiarComputer Aided Pronunciation
Training (CAPT) seems to deal visual feedback tHates not involve explicit
articulatory information. Menzedt al. (2001) mention that “usually, a simple playback
facility along with a global scoring mechanism amdisual presentation of the signal
form or some derived parameters like pitch are idex,” But they pinpoint that a
crucial task is left to the studente. identifying the place and the nature of the
pronunciation problem. According to them, automaipeech recognition (ASR) is
often used to localise the errors, and even tooparfan analysis in terms of phone
substitutions, insertions or omissions, as welliragerms of misplaced word stress
patterns. But they note that, while the “feedbaglpiiovided to the student through a
multimedia-based interface, all the interactiosasried out using only the orthographic
representations”. Though more and more precise fengble ASR systems have
allowed progress in CAPT (Chun, 2007; Cucchiaeinal, 2009), it may be interesting
to explore the potentialities of visual articulatdéeedback.

A limited but interesting series of studies hasdusgrtual talking heads (VTH)
controlled by text-to-speech synthesis to displagesh articulators — including usually
hidden ones such as the tongue. These displayme@aat to demonstrate targets for
helping learners acquiring new or correct articated, though they actually do not
provide a real feedback of the learner’s articukates in speech therapy.

Massaro & Light (2004) found that using a VTH akmguage tutor for children with
hearing losdead to some quantitative improvement of theifgrenances. Later, using
the same talking head, Massaed al. (2008) showed that visible speech could
contribute positively to the acquisition of new sple distinctions and promoting active
learning, though they could not conclude aboutdfiectiveness of showinmternal
articulatory movements for pronunciation training.

Engwall (2008) implemented an indirect visual artory feedback by means of a
wizard-of-Oz set-up, in which an expert phoneticidnose the adequate pre-generated
feedback with a VTH meant to guide the learnerradpce the right articulation. He
found that this helped French subjects improver th@nunciation of Swedish words,
though he did not perform any specific evaluatidérthe benefit of the vision of the
tongue.

Other studies investigated the visual informatiamweyed by the vision of internal
articulators.

10
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Kroger et al. (2008) asked 5 years old children to mimic thearggeech movements
displayed by a VTH for different speech sounds, &mahd that were capable of
interpreting vocal tract articulatory speech soumovements without any preparatory
training in a speech adequate way.

Badinet al. (2010) have recently shown that naive untraindgesis can make use of
the direct and full vision of the tongue providegd &@VTH to improve their consonant
identification in audiovisual VCVs played with awoSignal-to-Noise Ratio or no
speech sound at all. They noticed tloatgue readingvas implicitly and rapidly learned
during the audiovisual perception tests, suggestirag, aslip reading it could be
trained and used in various speech training domains

Finally, we should mention the study of Lewitt & t&a (2010) who used
Electromagnetic Articulography (EMA) to provide amgnted visual feedback in the
learning of non-native speech sounds (Japanesediagonant by American speakers).
Their results indicate that kinematic feedback VYA facilitates the acquisition and
maintenance of the Japanese flap consonant, pngviduperior acquisition and
maintenance. The findings suggest augmented visedback may play an important
role in adults’ L2 learning.

We can conclude from this short survey that: (&)dhect vision of tongue by means of
a VTH can be used, even by naive subjects, andedanained, (2) visual articulatory
feedback is effective in speech (re)habilitationd &3) on-line visual articulatory

feedback has almost never been experimented itaitmain of CAPT.

1.6. Visual articulatory feedback system

A visual articulatory feedback system can be defi@s an automatic system that
provides the speaker with visual information alduather own articulation.

Karlsson (2003) presented a project called Synéared to provide a visual feedback
of visible articulators. Beskowet al. (2004) describe Synface as a telephone aid for
hearing-impaired people that show the lip movemeftthe speaker. The aim of this
project (Karlsson, 2003; Beskoat al, 2004; Agelforset al, 2006) is to animate a
talking face from speech signal with very shortdidelay to facilitate lip-reading. The
developed system consists of a speech recognigeretognises the incoming speech.
The output from the recogniser is used to contnel articulatory movements of the
synthetic talking head.

Our aim is to develop a visual articulatory feedbaystem that provides visual
feedback of both visible and hidden articulatois aivirtual talking head that could be
used for CAPT. We will focus on one specific pagmai providing a learner (speaker
“A”), whose mother tongue is L1, learning the fgreianguage L2, with an articulatory
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Chapter 1. Visual articulatory feedback in speech

feedback displayed by means of the talking heathefteacher (speaker “B”) who is
supposed to be bilingual in L1 and L2.

Within this general framework, paradigms with sevéevels of increasing complexity
could be envisaged. As illustrated in Figure 1.@8ag,first level is to provide the learner
(speaker “A”) with an articulatory feedback using/her articulatory model from
his/her own speech, in his/her mother tongue L1s Tan be done in the same way for
the teacher (speaker “B”) in both L1 and L2.

Figure 1.6-2 shows a second level that providedif@ek to the learner (speaker “A”)
uttering speech in his/her mother tongue L1 ushggarticulatory model of the teacher
(speaker “B”) developed on L1.

A still more elaborate level would be to use tha&catatory model of the learner
(speaker “A”) developed on L1 to provide feedbaokthe learner (speaker “A”)
uttering speech in the foreign language L2. Beiblg @& achieve this depends on the
capabilities of inversion methods learned in onggleage to be extended to another
language.

Learning of a reference speaker
Large off-line corpus / invasive mesures

Figure 1.6-1. Schematic view of the articulatorgdback system for one speaker.
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Adaptation of acoustic space
Small on-line corpus / non invasive measures

Input data

L1

InA:Ac
Out B : Ac

Learning of a reference speaker

Intermediate _ ° SPec
Large off-line corpus / invasive mesures

representation

L1

InB: Ac
Out B : Art

Feedback with
the talking head

Figure 1.6-2. Schematic view of the articulatorgdiback system, where the speaker
receives the feedback through the articulatorsefteacher.

1.7.Conclusion

In this chapter, we have presented devices thatuseaugmented speech in real-time
and via talking heads. We have also presented ithealtalking head developed in
GIPSA-Lab that has been used by Bagliral. (2010) in a tongue reading task. Our aim
is to use the visual articulatory feedback providgdthe GIPSA-Lab virtual talking
head for applications in the domains of speechafhefor speech retarded children, as
more and more asked by speech therapists, and mmation training for second
language learners.

To develop such a feedback system, we need a spaamision system that estimates
the articulatory movement of both visible and hiwld®ticulators from the acoustic

signal. Speech inversion is a long-standing problkesrestified by the famous work by
Atal et al. (1978). It was traditionally based on analysissgpthesis. But since more

than a decade, more sophisticated learning techsitnave appeared, thanks to the
advent of the availability of large corpora of amatory and acoustic data provided by
devices such as the ElectroMagnetic Articulograpmarker tracking devices based on
standard or infrared video.

The next chapter in this thesis will concentratetlo® acoustic-to-articulatory speech
inversion mapping, specifically using statisticaaining methods, to synthesize
articulatory movement from acoustic speech signal.
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Chapter 2. Statistical mapping
techniques for inversion

2.1.Introduction

In Chapter 1, we have presented a visual articilateedback system for speech
training and rehabilitation. The present chaptercentrates on the development of such
a feedback system. Chapter 2 aims to present tteeedit approaches to the problem of
estimation of the articulatory movements from theuwsstic signal, also known apeech
inversionor acoustic-to-articulatory mappingro date, studies on the mapping between
acoustic signal and articulatory signal found ie likerature are based on either physical
models or statistical models of the articulatoryatmustic relation. The goal of Chapter
2 is to review the major studies on acoustic-tezaldtory speech inversion of
literature, and to describe in particular two statal approaches. The first approach is
based on Hidden Markov Models (HMMs), which arditianally used in Automatic
Speech Recognition (ASR) and Text To Speech (THajhssis. Then, the second
approach is based on Gaussian Mixture Models (GMMs3d usually in voice
conversion.

The chapter is organized as follows. Section 2)\deves the literature on speech

inversion. Section 2.3 provides an overview of thglti-stream HMM-based acoustic

phone recognition and articulatory phone synthegsem. Section 2.4 describes the
GMM-based direct acoustic-to-articulatory mapping.

2.2.Previous work

Acoustic-to-articulatory speech inversion mappimghbtem has been the subject of
research for several decades. Because many reseahave been working to perform
and improve speech inversion systems for a long,tifms section aims to present the
major research using physical and statistical apgres. This long-standing problem
was testified by the famous work of (Atat al, 1978). Figure 2.2-1 present a
classification of previous work on speech inversi@ne approach has been to use
articulatory synthesis models, either as part oaaalysis-by-synthesis algorithm, or to
generate acoustic-articulatory corpora which mayused with a codebook mapping.
Much of the more recent works reported have appheachine learning models
including HMMs, GMMs or artificial neural network®ANNSs), to human measured
articulatory data provided by devices such as feetEbMagnetic Articulograph (EMA)
or marker tracking devices based on classicalfoaried video.
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Speech Inversion

Generative approaci

=]

Statistical approach

Frame Trajectory Frame Trajectory

Analysis-by-synthesisAnalysis-by-synthesis ~ ANN, SVM, GMM Episodic HMM
Maeda’s mode Mermelstein’s model Local regression memory
\l/ CASY. Haskins ¥

Hiroyaet al.(2004)

Mawasset al. (2000) Toutioset al.(2005)
Ouniet al.(2005) Richmond (2009) E‘hangt (ZIO%%)lo
Potard (2008) AlMoubavedet al (2010 ing et al.(2010)

Panchapagesaat al. (2011)

Demangeet al.(2011)

Lemmertet al.(2010) Todaet al.(2010)
Zenet al.(2010)

Ananthakrishnaet al (2011

Figure 2.2-1. Generative and statistical approazheed in previews work for speech
inversion problem

2.2.1.Generative approach to inversion based on directdeig
Analysis-by-synthesis approach

The analysis-by-synthesis approach, as implemebyedumerous teams in the past
(Schroeter and Sondhi, 1994; Mawagsal, 2000; Laprie and Ouni, 2002; Ouni and
Laprie, 2005; Potard, 2008; Panchapagesan and AR@dri), was first used to perform
the inversion problem. The speech synthesiserghhe basis in such an approach is an
articulatory model that produces acoustic chareties such as formants from
articulatory control parameters (Maeda, 1990; Rudtinal, 1996). The articulatory
parameters are optimised in order to minimise tis¢tadce between the synthesised
formants and the measured formants.

Like all generative approaches, inversion-by-sysithés computationally demanding,

and presupposes a speaker-adapted model of theet@amgl vocal tract together with a
faithful acoustic model. Formants are often usedcasistic characterization because of
their relative insensibility to voice source.

Potard (2008) presents an acoustic-to-articulatoversion method using acoustic-
articulatory tables pre-computed using an acousyinthesis model. To perform
multimodal inversion, he introduces two types ofnstoaints; generic phonetic
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constraints, derived from the analysis by humaregspof articulatory invariance for
vowels, and visual constraints, derived automdyidedm the video signal.

Mawasset al (2000) present an articulatory approach to syighfeigative consonants
in vocalic context. The articulatory trajectorie$ the control parameters for the
synthesiser —based on an articulatory model (Besget al, 2001) and a vocal tract
electric analog (Badin and Fant, 1984) — are eséichay inversion from audio-video
recordings of the reference subject. The articjatontrol parameters were determined
by an articulatory inversion from formants and kperture using a constrained
optimisation algorithm based on the gradient desceethod. A simple strategy of
coordination of the control of the glottis and thel constriction gesture was used to
synthesise voiceless and voiced fricatives. A fdrpeceptual test based on a forced
choice consonant identification demonstrated thgh lquality of the speech sound.
Moreover, the articulatory data obtained by invamsand the methodology developed
served as the basis for studying human contrdlegjies for speech production

Panchapagesan and Alwan (2011) presented a quaetitstudy of acoustic-to-
articulatory inversion for vowel speech sounds bglgsis-by-synthesis using Maeda’s
articulatory model (Maeda, 1988). Using a cost fiomc that includes a distance
measure between natural and synthesised first tHoemants, and parameter
regularisation and continuity terms, they calibriie Maeda model to two speakers,
one male and one female, from the University ofdbfsin x-ray micro-beam (XRMB)
database. For several vowels and diphthongs fomiile speaker, they found smooth
articulatory trajectories, an average distancegrat®.15 cm, and less than 1% average
error in the first three formants between estimatedsagittal vocal tract outlines and
measured XRMB tongue pellet positions.

Lammertet al. (2008; 2010) used the CASY articulatory synthes(tskarouset al,
2003) using the Mermelstein articulatory model (Melstein, 1973) to train a forward
model of the articulatory-to-acoustic transform @sdacobian using Locally-Weighted
Regression (LWR) models and Artificial Neural Netk® (ANNs). This functional
forward model was however never directly confrorttedeal data.

Codebook Approach

Also referred to as the articulatory codebooks agghn (Schroeter and Sondhi, 1994),
the codebook approach builds lookup tables congisii pairs of segmental acoustic
and articulatory parameters from parallel recordetitulatory-acoustic data, or data
synthesised by an articulatory synthesiser. (1988 ElectroMagnetic Articulography
(EMA, cf. Chapter 3) data recorded by one Swedish male dutiojduilt a codebook of
quantised articulatory-acoustic parameter pairsthieir study, the acoustic vectors
created using Vector Quantisation (VQ) were catiegdrinto a lookup table with 256
codes by finding the shortest Euclidean distandeden the acoustic vectors and each
of a small set of numbered reference vectors. Add@ebook was used to map from
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acoustic segments to VQ codes, and a lookup tahtethen used to map from the VQ
code to an estimated articulatory configuratioodgdenet al, 1996) reported Root-
Mean-Squared (RMS) errors around 2 mm for coilshentongue. They found that the
optimum RMS error over whole test set was produmed time delay between acoustic
and articulatory features of 14.4 ms. The improveinie RMS error due to this delay is
about 0.1 mmi(e. about 5% reduction). Being a discrete methodVi@eapproach does
not give the same level of approximation to thgeadistribution without significantly
increasing the size of lookup table, compared tahods employing continuous
variables. Today this method has largely been cepldy more sophisticated models.

Ouni and Laprie (1999) presents a method to gemeratodebook that represents the
mapping between articulatory and acoustic domaBecause of the non-linearity
between the two domains, the articulatory spaaminsidered as composed of several
hypercubes where the mapping is linear. This ambr@ms to discretize densely the
articulatory space only in the regions where th@mirag is highly non-linear. For this
purpose, a hypercube structure is used. Duringrthpping process, the information
contained in the hypercube structure is used teevet the articulatory parameters from
the acoustic ones. (Ouni and Laprie, 2005) prethensame technique using an adaptive
sampling algorithm to ensure that the acousticsbltgion is almost independent of the
region in the articulatory space. The inversioncpoure retrieves articulatory vectors
corresponding to acoustic entries from the hyperctddebook. The best articulatory
trajectory is estimated using a nonlinear smoothalgorithm together with a
regularization technique. The inversion ensured theerse articulatory parameters
generate original formant trajectories with higlkegsion and a realistic sequence of the
vocal tract shapes.

The advantage of the physical models is that thpldmentation does not require
experimental data for training, but the methodosputationally costly.e. analysis-by-
synthesis approach puts high demands on the quddlitye synthesis. In other words,
the performance — or counter performance — migsulrédrom the synthesis rather than
from the inversion. This approach is currently nhaapplicable to vowels. In addition,
the physical modelling of acoustic and articulatmhationship is complex and difficult
to adapt to any new speaker, and the inversionitgudepends on the speaker
adaptation stage.

2.2.2.Statistical approach to inversion

Another type of approach to acoustic-to-articukatorversion is based on statistical
models of speech production trained on parallelisito — articulatory data acquired on
real speakers, as can be found in the literatui@aBy, we can mention four different
classes: Hidden Markov Models (HMMs), Gaussian Mhigs Models (GMMs),
Artificial Neural Networks (ANNs), and Support Vect Machines (SVMs). This
section describes briefly the methods and resolisid in the literature (Todat al,
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2008), (Richmond, 2007), (Toutios and Margariti®02a; Toutios and Margaritis,
2005b), (Zeret al, 2011). In addition to the data, phonetic infonmatcan be used:
(Hiroya and Honda, 2004), (Zhang and Renals, 2868ng, 2009), (Linget al, 2010),
(Zenet al, 2011).

HMM-based inversion mapping approach

Hiroya and Honda (2004) developed a method thaerawbhes the articulatory
movements from speech acoustics using an HMM-bggedch production model. The
corpus used contains 358 sentences (about 18 mjmpgeken at normal rate by three
Japanese male subjects. After proper labellinghefrecorded corpus, 342 randomly
selected sentences were used as training corpuak, amphone is modelled by a
context-dependent HMM, and the proper inversiopegormed by a state-dependent
linear regression between the observed acoustictlaadcorresponding articulatory
parameters. The articulatory parameters of thésstal model are then determined for
a given speech spectrum by maximizing a posteestimation. In order to assess the
importance of phonetics, they tested their methodeu two experimental conditions,
namelywith andwithout phonemic information. In the former, the phone HMMere
assigned according to the correct phoneme sequdeneach test utterance. In the latter,
the optimal state sequence was determined amorgpsdiible state sequences of the
phone HMMs and silence model. They found that thierage RMS errors of the
estimated articulatory parameters were 1.50 mm ftben speech acoustics and the
phonemic information in the utterance and 1.73 momfthe speech acoustics only.

Zhang and Renals (2008; 2009) developed a simparoach using the MOCHA-
TIMIT?! corpus. Zhang (2009) performs a mean-filteringwadisation to compensate
some EMA measure errors introduced in the recorgtage (Richmond, 2002) and
used the same split of training, validation and $e$ as used in (Richmond, 2002). He
indicates that the jointly trained acoustic-artataly models are more accurate (having
a lower RMS error) than the separately trained paed that Trajectory-HMM training
results in greater accuracy compared with conveatioBaum-Welch parameter
updating. Trajectory-HMM training using the Root &eSquare criteria proves to be
better than using the standard Maximum Likelihootkda. The use of triphone models
shows that context-dependent is an effective waynigrove modelling performance
with little added complexity in training. The loweRMS error of the inversion from
speech signal alone was 1.68 mm. Adding the phaimeld information to get the states
sequence based on forced alignment, the RMS eeatredse to 1.4 mm. Zhang and
Renals (2008) described a system which jointly rojses multi-stream phone-sized
HMMs on synchronous acoustic and articulatory framiée inversion is carried out in

! http://www.cstr.ed.ac.uk/research/projects/articzhmhtml
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two stages: first a representative HMM state aligntmis derived from the acoustic
channel; a smoothed mean trajectory is generated fne HMM state sequence by an
articulatory trajectory formation model using thane HMMs. Depending on the
availability of the phone labels for the test wtege, the state sequence can be either
returned by an HMM decoder, or by forced alignmdatived from phone labels,
leading to RMS errors of respectively 1.70 mm arkB Inm.

Ling et al. (2010) developed a HMM-based prediction of araboily movements from
text, acoustic (inversion) and both text and adousput. The male British English
speaker recorded 1263 sentences (Richmond, 200@). &automatic labelling of the
corpus, they used 1200 sentences to train two faymeontext-dependent HMMs
(quinphone and fully context-dependent models)dditeon to the simple monophone
models. For the inversion mapping, monophone amhdne acoustic model was
trained and a decision tree-based model clustevasyapplied to perform the decoding
of the triphone model of the acoustic feature teega phone sequence. They found
using quinphone that the average RMS error weré hé from only text input, 0.90
mm when both text and acoustic features are gigein@ut. Form only acoustic input,
phone recognition system was trained using triphasmustic model. The accuracy of
this system was 71.49% and the RMS error was 11@8mthis case.

Katsamaniset al(2009) approximated the audiovisual-to-articulatamgpping by an
adaptive piecewise linear model. Model switchingswgoverned by a Markovian
discrete process which captures articulatory dynamiormation. Each constituent
linear mapping is effectively estimated via canahicorrelation analysis. For facial
analysis, active appearance models demonstratéd dutomatic face tracking and
visual feature extraction capabilities. Exploitihgth audio and visual modalities in a
multi-stream HMM-based scheme, they found RMS erranging from 0.5 to 2.5 mm,
depending on the articulator involved.

GMM-based inversion mapping approach

Toda et al(2008) described a statistical approach for boticwdatory-to-acoustic
mapping and acoustic-to-articulatory inversion magpvithout phonetic information.
Such an approach interestingly enables languaggemtent speech modification and
coding. They modelled the joint probability densatfyarticulatory and acoustic frames
in context using GMMs. They employed two differéathniques to establish the GMM
mappings. They used a 5 fold cross validation pioce based on MOCHA-TIMIT
database to evaluate these techniques. Using anommimean-square error (MMSE)
criterion with an 11 frame acoustic window and 3&tare components, they obtained
RMS inversion errors of 1.61 mm for one female &petsew(Q and of 1.53 mm for a
male speakemaskO Using maximum likelihood estimation (MLE) methaehd 64
mixture components, they improved their resultd #b mm for fsewO, and 1.36 mm
for maskO. Note that in order to improve the magpderformance, they smoothed the
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estimated articulatory trajectories by lowpassefitig (e.g., Richmond, 2002). In
addition, the optimum cutoff frequency of the lowpafilter was determined to
minimise the minimum RMS error of the test dat@ath dimension of the articulatory
vector.

Zen et al. (2010) propose a technique of continuous stochéstittire mapping based
on trajectory HMM compared to the trajectory GMMthough GMM or HMM feature
mapping techniques work successfully, the trajéetoare sometimes discontinuous
because of frame-to-frame mapping. To alleviate grbblem, they used the dynamic
feature constrains at the mapping stage. This m@instalso introduces inconsistencies
between training and mapping. The proposed tecknigan eliminate these
inconsistencies and offer entire sequence-leveistaamation rather than frame-to-
frame mapping. Using the same normalisation teglenifor the measured EMA and
also the same training, validation and test partiais in (Richmond, 2002), they found
an average RMS error of 1.52 mm for trajectory HMBIng the correct transcription
for the msak0 speaker of MOCHA-TIMIT corpus. On titkeer hand, the average RMS
error was 1.13 mm for trajectory GMMs. Note thathested this techniques on other
taski.e. speaker conversion and noise compensation andl foetter performance for
the trajectory HMM/GMM than standard ones.

Ananthakrishnan and Engwall (2011) propose a defmifor acoustic and articulatory
gestures using a method that segments the measutiedlatory trajectories and
acoustic waveforms into gestures. Using a simutiasky recorded acoustic-articulatory
database, they used critical points in the utteratac detect the gestures for both
acoustic and articulatory representations. Theylistlthe relationship between the
detected acoustic and articulatory gestures inderthe timing as well as the shape. In
order to study this relationship further, they peamf an acoustic-to-articulatory
inversion using GMM-based regression. Using the sp@akers of the MOCHA-TIMIT
corpus, they performed 10-fold cross-validation armtmalised the MFCC and the
articulatory trajectory vectors of the training @ato zero mean with a Standard
Deviation (SD) of 1. They found an average errot.db mm and 1.55 mm for the male
and the female speakers, respectively. In ordeveduate the acoustic-to-articulatory
inversion in a more intuitive manner, they suggestenethod based on the error at the
estimated critical points. Using this method, tmeyed that the estimated articulatory
trajectories using the acoustic-to-articulatoryersron methods were still not accurate
enough to be within the perceptual tolerance ofauisual asynchrony.

Neural network-based inversion mapping approach

Richmond (2002) used fsewO of MOCHA-TIMIT corpus tagining, validation and

testing data. He used the files whose numbers athd2xfor validation (46 utterances),
those ending with 6 for testing (46 utterances) #r& remaining 368 utterances for
training. To compensate some EMA measure erroredated in the recording stage,

21



Chapter 2. Statistical mapping techniques for isios

Richmond (2002) performed a mean-filtering nornaien. He used the mixture
density network (MDN). In the most general sense, MDN can be considered as
combining a trainable regression function (typigall non-linear regressor such as an
artificial neural network) with a probability detsifunction. A multilayer perceptron
(MLP) was used as a trainable non-linear regressdra GMM. The role of the MLP is
to take an input vector in acoustic domain and toape articulatory domain. Training
consists of updating the MLP weights to optimize earor function, defined as the
negative log likelihood of the target data. Thutndard nonlinear optimization
algorithms may be used to train the MDN. Since MiigN gives a model of conditional
probability density, it is trivial to augment tharget features with derived delta and
delta-delta featurese. dynamic features. Once trained, the input sequeh@eoustic
feature vectors gets an output of a sequence of pdér the static and dynamic
articulatory features. The maximum likelihood paeden generation algorithm (MLPG)
(Tokudaet al, 2000) was applied to this sequence of pdfs irerotd obtain a single,
most probable trajectory which optimizes the caists between the static and
dynamic features. In the case of a sequence of paoifitaining a single Gaussian
mixture component, the optimum is the solution ofet of linear equations. When
multiple mixture components are used, an EM-badgdrithm is applied. The MLP
output trajectories were lowpass filtered usingtfutequencies derived empirically by
lowpass filtering the validation data set. The agerRMS error values using MLP with
38 hidden units was 1.62 mm for the unfiltered atigand decreased to an average of
1.57 mm for the filtered one. The average RMS efwothe tongue coils was 2.2 mm.
Richmondet al. (2003) also modelled the mapping using a neurblar& based on
mixture density estimation. It has been reporteat the multiple representation of
articulatory probability density is effective fand inversion mapping. More recently,
the trajectory mixture density network (TMDN) apach with many more free
parameters has resulted in a decreased RMS erbd@mm on the same training,
validation and testing datasets (Richmond, 200Richimond, 2009) apply TMDN to a
new corpus of articulatory data. This new data seiguQ is relatively large and
phonetically rich, among other beneficial charastms. Three subsets were created
from a total set of 1,263 recorded utterances:amitrg set of 1,137 utterances; a
validation set of 63 utterances comprising; andest tset with the remaining 63
utterances. The obtained result was good, with &S Rerror of 0.99 mm. This
compares very well with the previous lowest re®RI\MS error for equivalent coils of
the MOCHA fsew0 EMA data. The interpretation ofstlwonfirms that the statistical
method for inversion is very much related to thgpas.

Qin and Carreira-Perpifian (2007) study empirictily best acoustic parameterisation
for articulatory inversion. They compare all condiions of the following factors: 1)
popular acoustic features such as MFCC and PLPamithwithout dynamic features; 2)
time delay effect; 3) different levels of smoothiofgthe acoustic temporal trajectories.
Using multilayer perceptron (MLP) to map from adim$eatures to articulatory ones,
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experimental results on a real speech productitebdae show consistent improvement
when using features closely related to the vocatttin particular LSF), dynamic
features, and large window length and smoothingdlwheduce the jaggedness of the
acoustic trajectory). Further improvements are iobth with a 15 ms time delay
between acoustic and articulatory frames. Howetleg, improvement attained over
other combinations is very small (at most 0.3 mm3R&fror) compared to a minimum
RMS error of around 1.65 mm.

Kjellstrom and Engwall (2009) implemented an audiosal-to-articulatory inversion
using simple multi-linear regression or ANNSs. Degliag on the type of fusion (early or
late) between the audio signal and the video si¢maded on independent component
images of the mouth region), they obtained RMS metraction errors for the tongue
shape ranging from 2.5 to 3 mm.

Support vector regression-based inversion mappipg@ach

Toutios and Margaritis (2005a; 2005b) employ theci@e learning technique of
Support Vector Regression (SVR) (Smola and Sch®kd@04) on speech inversion.
They used the same data set as Richmond (200@uBe the SVR works for only one
output, they split the inversion problem in 14 iist functions considering each time a
different EMA coordinate trajectory as output. Ugiprincipal analysis component
(PCA), they move to a new output space of all lidgipal components. PCA lead to
only a slight decrease of the RMS error and themdoan average RMS error of 1.66
mm.

Local regression-based inversion mapping approach

Al Moubayed and Ananthakrishnan (2010) developed amoustic-to-articulatory
inversion system using local regression on the MAAHMIT corpus. They discussed
two methods of local regression and found thatidbal non-parametric regression has
an optimum performance with 1.56 mm of RMSE, witiie local linear regression has
an optimum performance of 1.52 mm of RMSE. A maximlikelihood trajectory
smoothing using the estimated dynamics of theddiors has a higher effect on local
linear regression as compared to local non-paramedgression. Using the same
acoustic and articulatory features, they found ttiet local linear regression is
significantly better than the regression using GeusMixture Models.

Episodic memory-based inversion mapping approach

Demange and Ouni (2011) proposed an acoustic-mskatory inversion method based
on the episodic memory. This method does not relyany assumptions about the
mapping function but rather relies on real syncls®th acoustic and articulatory data
streams. The memory structurally embeds the nakesal of the articulatory dynamics.
In addition, they introduce the concept of gengeagpisodic memory, which enables
the production of unseen articulatory trajectoaesording to the acoustic signals to be
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inverted. They used the MOCHA corpus with the samberances selected for training,
development and test sets as in Richmond (2002jhdMi using any phonemic

knowledge they found an average RMSE of 1.63 mmla®8 mm for the male and the
female speaker, respectively. Using the phonengmsatation of the test records the
average RMS error decreases to 1.45 mm and 1.54amthe male and the female,

respectively.

2.2.3.Discussion

The acoustic-to-articulatory mapping is a difficptbblem because of the one-to-many
mapping between the acoustic and articulatory feafuone acoustic vector can be
produced by more than one articulatory configurati®his chapter presents several
studies of inversion task using different approach€&he goal of all the studies
described above is to recover the articulators’ eneent and to reduce the impact of
non-uniqueness as perfectly as possible at all tinie however difficult to confront the
performance of the proposed solutions since metdat, speakers and languages are
not comparable. The corpora as well as training &@sting conditions are also not
completely comparable. Note also that the globaliexcy of the inversion.¢. RMSE)
was measured in different waysf.(Section 4.2.2, equation (4.2-2) and (4.2-3)). We
however provide a comparison of our results withsthof the literature described above
in Table 4.5-1.

There is no doubt that the most popular choicecolustic modelling for both speech
recognition and synthesis is the HMM. This techeiguas successfully applied for
speech inversion. The GMM-based technique wassalsoessfully applied for speech
inversion mapping. The main difference between HM&éed and GMM-based
mappings is that HMMs use phonetic representatisnaa intermediate between
acoustic and articulatory features. On the othée,sGMMs map directly the acoustic
features with the articulatory ones without the akany other information. In order to
compare the impact of phonetic information, we d®to use HMM and GMM based
mapping to develop and to evaluate two inversia@tesys.

In the next sections, we present the two statisteehniques that we have used: the
HMM-based inversion mapping method based on phomgfbrmation and the GMM-
based mapping based on direct acoustic-to-artmyldrames mapping without any
phonetic information.e. inversion at frame level.

2.3.HMM-based speech recognition and synthesis

As mentioned above, Hidden Markov Models (HMMs) éndbecome more popular in
the development of speech inversion systems. Duhagast several years, they have
successfully been applied to modelling sequencespelech spectra in Automatic
Speech recognition (ASR) and Text To Speech syrt{€3S), and their performance
have been improved by several techniques.
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2.3.1.Hidden Markov Models — General definitions

A hidden Markov model (HMM) (Rabiner, 1989) is atstical model of the Markov
process. In a Markov process the probability afitare event, given the present and the
past events, depends only upon on the probabilithie present event, and not on past
ones.

An HMM consists of a finite set of states in whiehch state is associated with a
distribution. The states are connected, and theseections are characterized by their
transition probabilities (see Figure 2.3-1).

a3 35

T v

® a2 7&% 3 »( o, a4 o o 45 >®
by(0y) bi(0)  by(0y) by(03) bs(04)

/ ; ; ; bs(03 b0
Observatio
Sequence | 91 k

Figure 2.3-1. An example of hidden Markov modeth ®iemitting states

An HMM can be defined by the following elementsr(fmore detailscf. (Rabiner,
1989) or (Younget al, 2009))

e Q={q1 @, ..., q} Is the set of th&\ possible states of the model. The number
of statesN and the possible connections between states &ireddy the user
according to the task.

e O = {01, 0 ..., &} is the K possible observations. If the observations are
continuous, then K is infinite possible observasiomherefore, we will have to
use a continuous probability density function iasteof a set of discrete
probabilities. Usually, the probability density approximated by a sum &f
Gaussian distributions. For the description of @&ussian distributions, the
means and variances are needed. These parametecomputed during the
HMM training using training data and some parametgimation algorithms,
such as the Baum-Welch re-estimation.

* A ={a;}Iis a set of state transition probabilities: foettransition from stateto
statej
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= o= ja =) 16i.1<N @3

whereq; is the current state. Transition probabilitiesigtdsatisfy the following
constraints:

a, >0, 1<i,j<N (2.3-2)
and

N

a, =1 1<is<N (2.3-3)

* B = {bj(a)} is the probability density function (PDF) of aysing vectoro; at
timet being at the stafe

b, (0,) = plofa = i)= icij(ot;u,-m,Z,-m) (2.3-4)

m=1

whereM is the number of Gaussian componenis,are the Gaussian weights.
The mixture weights must satisfy

dYcm=1 1<j<N (2.3-5)

and N(o; Mjm, Yjm) IS a multivariate Gaussian with mean vecigr and
covariance matrigm of them " mixture component, that is

(ot ' :u]m ’ Jm { :ujm m_l (ot - :ujm ):| (23'6)
e, % il

wheren is the dimensionality ad.

 n={m}Iis the initial state distribution, where

=P(qg =i), 1<is<N (2.3-7)

The parameters for a given HMM with fix€d andO can be denoted by the compact
notation

A=(AB,7) (2.3-8)

Once we have an HMM, there are three basic problmsterest. The most difficult
problem is to estimate the parameters of these Im@de training problem). The two
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other problems are to choose the optimal stateseseg which best explains the
observationsife. decodingproblem) and to produce an observed sequenceshydidel
(i.e. evaluationproblem). These two problems are considered agveesionproblem.

2.3.2.HMM Training

Generally, the training problem consists in adpgtithe HMM parameters. The
parameters of an HMM can be estimated from traimiata via Maximum Likelihood
Estimation (MLE)

A =argmax p(O|/1) (2.3-9)
A

However there is no known way to analytically satlve modeld which maximizes the
quantityp(O|/l). But we can choose model parameters such thatatally maximized,

using an iterative procedure, like the Baum-Welldodthm (Baum and Petrie, 1966)
which is one version of the expectation maximisa(igM) algorithm.

Given an observation sequenéla:{ol,oz, OT}, and a HMM modek, we can
compute the probability of the observed sequem(@|/1) thanks to the forward-

backward procedure. In brief, the forward variabléaken as the probability(i) of the
partial observation sequencg,0,, ..., 0, (until timet) and being in statg at time

t, given the model. The backward variable is defined as the prokgbif the partial
observation sequena®,,,0,,,, ..., O; (fromt+1 to the end) given being in state;

at timet and the model, aspi(i). Both a(i) and gi(i) are worked out with the forward-
backward procedure. Once theand § variables have been collected, a set of new
parametersﬁ can be re-estimated from the process is then iterated until there is no
improvement. At each iteration, the probabilig(o|)l) of O being observed from the

model is updated until maximum expectation is redchrhis iterative procedure is
guaranteed to converge on a local maximum.

Our HMM-based speech inversion system needs acoast articulatory HMMs for
acoustic recognition and articulatory synthesispegtively. As stated in (Zhang, 2009),
two training frameworks could be used to estimhésé models.

The first uses separate training: the acousticapéeMMs are trained on the acoustic
data only and the articulatory HMMs are built frdine articulatory data alone using the
MLE training procedure. The idea behind the sepatatining is clearly that training

the two types of HMMs individually is likely to brg out the best performance from
each channel. This framework works even for acousstid articulatory data acquired
separately.
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The second scheme, on the other hand, aims tdyjaiptimise a single model for both
acoustic and articulatory information. The mod@réfore has acoustic and articulatory
components, both modelled as multi-state phond-leMiMs: (1) acoustic HMMs that
perform an acoustic recognition stage that produgmestring of phones and the
associated state durations, and (2) articulatoryM$Mwhich generate articulatory
trajectories from this string of phones with thelwrations. Both the acoustic and
articulatory models have the same topolagythey have exactly the same set of HMM
states and allophonic variations. This structurabées to establishe a stronger bridge
between the acoustic and articulatory speech daved the same phone boundaries
for both acoustic and articulatory streams.

Note that the first training framework has to egply cope with AV asynchrony if any:
there is no guaranty that the best alignment ofnpkgized acoustic models directly
corresponds to the optimal chaining of phone-siagtulatory models. One solution
consists in learning a phasing model such as peapby Govokhinaet al. (2007) for
audiovisual speech synthesis or by Saino et algRfiy computing time-lags between
notes of the musical score and sung phones forMNl{Based singing voice synthesis
system. The second scheme on the contrary preseteestream asynchrony because
internal states of each stream learn static andardis characteristics of each
corresponding parameters. Transient states arefthemot forced to be captured by the
same states: asynchronies are here just of consegjwé statistical learning in a way
similar to the triphone model for tongue kinemaeesly proposed by Okadonet al.
(1999).

As expected, Zhang (2009) found that training jgirthe acoustic and articulatory
features in a multi-stream HMM leads to more adeumaversion results than training
them separately.

The phone-sized HMM are modelled by joint prob#&pililensities of acoustic and
articulatory parameters. These models can be eticthmany ways:

e Use of dynamic (delta) featuregFurui, 1986; Masuket al, 1996). Dynamic
featuresj.e. first time derivative of the features, can be exkpl by trajectories
HMMs to smooth trajectories.

» Context-dependent HMMsDue to coarticulatory effects, it is unlikely that
single context-independent HMM could optimally regent a given allophone.
Therefore context-dependent HMMs are used as anothg to enrich the
model. The idea of context-dependent modellinghest,tinstead of defining
phones, we define phones in their contexts. Wende# left context with a
minus "-" sign, and a right context with a plus 'sin. For example, the phone
"I bounded by a "b" and a "p" is now modelled B:i+p”. Because of the
limited training data available for our system, wee context classes of

phonemes as contexts, in order to have more ocmasefor each class and to
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ensure a better statistiosf.(Section 3.3.1.2). In this case, the “b-i+p” become
“Cbpm-i+Cbpm” where Cbpm clusters bilabial phonerti#s/p/ and /m/.

Inheritance mechanism. For the missing phone’s context, we used an
inheritance mechanism that replaces the missingpladine by the closest
allophone with less context information. For examl “Cbpm-i+Cbpm” does
not exist, we use the “i+Cbpm” model trained usipigones in their right
context, and if the “i+Cbpm” model does not exigher, we use the “i” model
trained using the phone without context.

Tied states.A drawback of building context-dependent modelsthat the
number of HMM states related to all phone contddsomes huge and there
may be a lack of training data. This number ofestatan be reduced by sharing
some states between several models. For each stthanthoice of model
configuration (number of components, full or diagbmovariance matrices,
parameter tying and number of Gaussian mixturg)ften determined by the
amount of data available for estimating the Gaussmxtures parameters and
how the Gaussian model is used in a particularastreTo improve the
robustness and accuracy of the acoustic model$)awve used a decision tree—
based state tying mechanism (Young et al., 2009¢wdllows similar acoustic
states of different context-dependent HMMs to (el tiogether. This should
ensure that all state distributions can be robuefliimated. The state tying
decision tree in the acoustic domain is elaborateskd on the single Gaussian
models. Then, multiple mixture component Gaussiatridutions are iteratively
trained. Note that the number of Gaussian mixtumethe articulatory stream
remains unchanged.

2.3.2.1Multi-stream HMMs

To build the multi-stream HMM-based system, a senplision approach is to

concatenate acoustic and articulatory featuress ha way to tie the two HMMs at
state level during trainingi.¢. synchronous staje The multiple data streams
functionality provided by the HMM ToolKit(HTK) (Young et al, 2009) makes this

type of training possible, by combining the twosset HMMs into a single, two-stream
HMM model. They have the same HMM topology, samenghboundaries. In our

system, we have used a two-stream model: one éoatbustic information and another
one for the articulatory information.

Given the multi-stream observation vec@yi.e. acoustic and articulatory modalities,
the emission probability of multi-streams HMM iven by

2 http://htk.eng.cam.ac.uk/
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Vist

bi (Ot) = |j |:MS stmN(Ost; lujsm’ stm) (2.3-10)

m=1

This equation differs from equation (2.3-4) by tlee ofS streams. For each strean
Ms is the number of mixture componentgi, is the weight of then™ component and
N(Ost; ,ujsm,stm) denotes the multivariate Gaussian distributionhwitean vector
Uswand diagonal covariance matkix, . We choose diagonal covariance matrices in

order to decrease the system complexity and treisuimber of parameters to estimate,
as their reliability is related to the size of tin@ining corpus. The contribution of each
stream is controlled by the weighy, . In our system, the stream weight default is set t

1.0 for all streams, but could be optimised.

2.3.3.HMM-based inversion system

An overview of the multi-stream HMM-based inversisystem is presented in Figure
2.3-3. Before being able to use the HMMs to perfanwersion, we must train them.
The training process is performed by the schemeritbesl above. As shown in Figure
2.3-3, each resulting multi-stream HMM&4 is split into two distinct HMMs: an

acoustic HMMs A% and anarticulatory HMMsAY . In the inversion process, the
sequence of articulatory vectols predicted from the given sequence of acoustic
vectorsX, is defined as

Y = arngax{ p(Y| X)} (2.3-11)
with
p(v]x) = p(v]”, QP QX ) (2.3-12)

whereA represents the parameters set of the HMM@nlde HMM state sequence that
should be determined. By applying the Bayes rukeptain

p(Y|X) = p(Y]AY, Q) p(x| A%, Q)P(1") (2.3-13)

Equation (2.3-13) shows that the HMM-based mappoagm be achieved by a
recognition stage followed by a synthesis stagee plediction of the sequence of
articulatory feature vectarfor a given test sequence of acoustic feature vgatothus
achieved in two stages.

The first step performs phoneme recognition basedhe acoustic HMMsAY) by
solving p(X|/](X),Q)P(/1(X)) of the Equation (2.3-13): phonetic and state dewpds
performed by the Viterbi algorithm that estimatks bptimal state sequence using the
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acoustic HMMs for a given acoustic vector and ao$et priori information provided by
a statistical language model (see Section 2.3.5).

The second step of the inversion aims at reconsiguthe articulatory trajectories from
the chain of phoneme labels and associated stataiahs delivered by the recognition
procedure, performed hg(Y‘/l(y),Q) of the Equation (2.3-13). The synthesis is
performed as follows, using the HTSoftware developed by (Tokudst al, 1995;
Tokudaet al, 2000; Zeret al, 2009).

The synthesised articulatory trajectoty is inferred by the Maximum-Likelihood
Parameter Generation algorithm (MLPG) (Tokwdaal, 2000) using the articulatory
HMMs.

T T T
The articulatory observation parameters £¢” :[Ofy) oY, oW } where

T denotes the transpose operator. For a recognisd K and the state sequer@ethe
sequence of the articulatory observation parameteéss generated by
maximisingP(O(y)‘)l(y),Q). In order to keep the dynamic properties of thaggated

articulatory trajectories, the staticand dynamic featur&y; vectors are useck.

oY) = [ytT : AytTF (2.3-14)
where
AYt =Y = Yiu (2-3'15)

For convenience, a sequence of the static and dgrfeaturesO"” can be expressed
as a linear function of the sequence of statiafesty = |yl ,y2, ..., yi| with

oY =wy (2.3-16)
whereW is a transformation matrix shown in Figure 2.3-2.
Following (Tokudaet al, 2000), we set

aiYIog P(o(y)\Q,A(y)): 0 (2.3-17)

in order to find the maximum dP(O(y)‘Q,A(y)) . Finally, we obtain

3 http://hts.sp.nitech.ac.jp/
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Y= (\NTU ‘]\N)_l\NTU 1y (2.3-18)
wherep andU™ are the mean and covariance matrix, respectively.

Note that the proper state durations are delivérech the recognition step. Another
option is to determine the state durations by mes#na duration model, such as z-
scoring, that must be trained on the data, likext-to-speech synthesis systems (&éen

al., 2007a). The evaluation of the effect of this cledior state duration computation is
presented in section 4.3.1 (Table 4.3-7).

O(Y) W v
Y1 I 0 0 yi DT

Y2 | OI 0 0 : /_\

2D,T| 2Dy | Ay, [=| -1 i | | O 0 " ToT 1o

. ) 5 ' ;
| Dy

Ayt o ... 0/~ | 0 0

\_/\\ 4

Figure 2.3-2. Matrix W of prediction of the sequermé static and dynamic features

oY) as linear function of the static features by Y.i®the dimension of the static
vectors.

2.3.4.Minimum Generation Error (MGE) training

In order to improve the accuracy of the articulatorversion, we have adapted the
Minimum Generation Error (MGE) criterion initiallgeveloped by Wt al. (2006;
2008) for HMM-based text-to-speech synthesis toanticulatory synthesis stage. The
articulatory HMMs are modelled with a single Gaassiinitialised by the Maximum-
Likelihood Estimation (MLE), and re-estimated bystMGE criterion.

In the MGE criterion, we first compute the genearaterror. The optimal state sequence
g is obtained by Viterbi alignment, which is guaeed to find the most likely state

sequence that results in the observed acousticteverand the associated label

sequencel.

q=argma P(q X 4)) (2.3-19)
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For a given state sequengethe generation erroD(Y,\?) is defined by the Euclidean

distance between the generated articulatory tiajiestY using Equation (2.3-18) and
measured trajectoriés i.e.

plv,¥)=|v ¥ :tZ:;Hyt,)?tHZ (2.3-20)

The Generalized Probabilistic Descent (GPD) alporit(Blum, 1954) is used in the
parameter updating stage with the aim to minirr[m(é{,\?) over the training set, and is
implemented as:

X, 0D (y, = %)
=]  —-g) —\In JIn/

A (2.3-21)

update

A=Aog

whereN is the total number of the training sample relat®d and g:%is the step

size whereN is the total frames related to current updated ehoBrom Equation
(2.3-18) and Equation (2.3-20), the updating rue the mean parametgr can be
formatted as

an{r-v) _ 25(9 _Y)T oy (2.3-22)

ou ou
where
o WU w)'wu "z, (2.3-23)
ou
Finally,

_ v HYVUTE Y RITUIE
/uupdate_ :uold _2£(Yn _Yn) (\N U JVV) lW U Z/1 (2_3_24)
Considering thaWWW is a quasi diagonal matrix and diagonal elemergdaager than
other elements, we made an approximatioWs¢ ~ a | wherel is an unit matrix and
Is a constant number for normalization. We appiy #pproximation to the mean vector
by usinga = 1, which leads to:

= oo =26{1, =, W'
:uupdate_:uold —2¢ Yn _Yn W Z/I (2.3-25)

= :Uold - (:ugen - :Uorig ) (2.3-26)
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The simplified updating rules of the HMM parameedetailed in (Wuet al, 2006)
Similarly, the covariance parameterl/o® corresponding to p can be updated as

Uupdate™ Yoid ~ ZE(YAn -Y, )T MTU _]\N)_l\NT Z, ('U _M)

(2.3-27)
5 ) N T R R
Uupdate = Uold - 2‘92 Z (On,t - On,t )(On,t - lun,t)
n=l t=1 (2.3-28)
When we used the above simplification to the Equat.3-18), we found
vV =WU W) WU =W (2.3-29)

This Equation (2.3-29) was used in the updatingsulVe can see the parameter of the
synthesised frame is generated by using the saaticdynamic feature of the related
state.

We have implemented this algorithm by coupling teRest procedure from the HTK
toolkit and the HMGenS procedure from HTS. The H&Rmocedure is the core of
HTK training toolbox (Younget al, 2009). It implements the forward and backward
passes for the re-estimation of the whole set ofMHphone models simultaneously.
The HMGenS procedure is a speech parameter gearetatll based on the expectation-
maximization (EM) algorithm (Zert al, 2007Db).

2.3.5.Language models

In order to improve the recognition performancest@hastic language model can be
used to help constrain the selection to a lingeaiy meaningful state sequence. This
takes into account that all phone sequences arenexdssarily equally likely. The
language model gives the probability of observingaaticular phone sequence. As
shown in Equation (2.3-13), the language model &asignificant effect on the
intermediate recognition accuracy, but the consecgi®n the final estimation is not
straightforward.

To estimateP(1), a phone transcription of a text corpus that aontphonetic
transcriptionsi(e. many phone sequences) is uged) can be estimated for an N-gram
language model by

PA)= R ()= [] PR ) 2330

where/; is thei™ phone and pis the total number of phones.

The choice of a language model will depend on theieation. We have tested two
models: (1) a simple phonotactic grammar can bel igandicate that phonemes in
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context are chained in an appropriate veag. guarantying that the biphone a+b is
always followed by a biphone starting with b; (Z)igram phonetic language model (N
= 2) trained on one year of the phone transcriptibthe newspaper “Le Monde” (year
2003) which ensures that the recognised phonemeessegs respect language-specific —

here French — phonotactics.

——
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Figure 2.3-3. Overview of the acoustic-articulatdtiiM-based speech inversion
system combining two streams: acoustic for recagmind articulatory for synthesis.
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2.4. GMM-based direct inversion

The Gaussian Mixture Models (GMMs) constitute arotblass of statistical models.
GMMs are used as a statistical model of the prdipakdistribution of continuous
measurements. €. features).

The GMM-based mapping is often used for voice cosiva (Stylianouet al, 1998),
(Toda and Shikano, 2005), (Tran, 2010) and in batticulatory-to-acoustic and
acoustic-to-articulatory mapping (Todd al, 2004a; Todaet al, 2008). It predicts
directly the articulatory features from the acoudeatures without passing through a
symbolic representation as with the HMMs. In ortdecompare the performance of the
recognition and synthesis HMM-based inversion aagmowith this direct GMM
mapping approach, we implemented a GMM-based aceawsarticulatory speech
inversion system.

2.4.1.Gaussian Mixture Models — General definitions

Gaussian Mixture Models (GMMs) are among the mtatssically mature methods for
clustering. Though, they are also used intensif@ydensity estimation. A GMM is a
parametric probability density function representesda weighted sum of Gaussian
component densities. GMMs are usually used as anpric model of the probability
distribution of continuous measurements. GMM patanseare estimated from training
data using, for example, the iterative Expectattaximisation (EM) algorithm.

The complete Gaussian mixture model is parameterlsg the mean vectors p,
covariance matriced, and mixture weightsv from all component densities. These
parameters are collectively represented by theinata

A=(w,,Y) (2.4-1)
The next section describes the training procedseel to estimate these parameters.

Notice that the states of unsupervised HMM that @k into account the temporal
dimension of speech to preserve the continuitymslar to the GMM, which does not
need any phonetic informationd. phoneme segmentation and labelling) (Lacharebre
al., 2011).

2.4.2.GMM Training based on EM algorithm

As for the HMMs, the GMMs parameters must be edhan a training phase before
the GMMs can be used for inversion. In this franasdndl technique, we adopt the
approach proposed by Kain for voice transformafigain, 2001). This approach is
based on the modelling of the joint probability sién of source and target vectors
p(Z) = p(X,Y) where
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Xl(l) Xl(Dx) yl(l) yl(DY)
z=[xy]=| + . oo (2.4-2)
XN (1) Xy (Dx)yN (1) W (Dy)
whereX andY are respectively the sequenceNb$ource and target vectoi3, andDy

are respectively the dimensions of the source amget vectorsD=D,+Dy is the
dimension of joint vectorZ.

In the GMM framework, the Probability Density Fuioct (PDF) of a continuous
random variabl& is defined as a sum of normal distributions as:

dz 1) = Sa.nN(z, ym(z),zm(z))' (2.4-3)
m=1

wherez is a realization o (i.e. Z =[XtT, ytT]T where X =[xt (1) xt(DX)]T,

y, = [yt @ ... (Dy)]T ), \@is the parameter set of the GMM, s the total number

of mixture components ang, is the weight associated with th# mixture component
(i.e. the prior probability of" mixture) defined by

M

Ya,=1 and a,20 (2.4-4)

m=1

N(z[;,um(z),zm(z)) denotes th®-dimensional normal distribution defined by

L) @) = 1 10 Y s, 6 _
N(z: 1, 29)= T ex{ @ =) 2 - )} (2.4-5)

with mean vector

(x)
(2) | Hm
Hr, —|:’ur(ny)} (2.4-6)

where ,ur(nx) and ,u,(ny) are the mean vectors of th#" mixture component for the source
and for the target, respectively. The covarianceims defined by:

(xx) (xy)
(z2) — Zm Zm
P {anyx) Z(r%y)} (2.4-7)
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Where matricesy.!® and X" are the covariance matrices of thd" mixture

component for the source and for the target, resadg, and matricesZﬁqyx) and Z(nfy)

are the cross-covariance matrices of th® mixture component for the source and
target. Note that every covariance matrix is fuhich means that the correlation

between each feature is taken into account: thisdeed essential, since it represents
the correlations between X and Y.

Given a training dataset of joint feature vectting, parameters of a GMNL€. weights,
mean vectors and covariance matrices for each coemppcan be efficiently estimated
using the Expectation-Maximisation (EM) algorithithe EM algorithm is run

iteratively until the Iikelihoodp{zt‘/l(z)) reaches a maximum. This training method

robustly estimates model parameters when the anmfuindining data is small (Kain
and Macon, 1998). In this procedure, the GMM patanseare first initialized using the
k-meansalgorithm.

In order to take into account the context and ytsaghics, a segment feature is extracted
over several frameg ¢ L) and used as an input acoustic parameter vectoredxer,
the dimension of the resulting vector is reducegmjecting it on the firsNpca PCA
eigenvectors extracted from the whole training asrp

X, =WX, o X e x|+, (2.4-8)
whereW, andby are determined by Principle Component Analysis.

2.4.3.GMM-based mapping using MMSE

As stated by (Todat al, 2008), the MMSE-based algorithm determines thigeta
parameter from the given source parameter on aehlaydrame basis, using the
Minimum Mean-Square Error (MMSE) criterion propodsd(Stylianouet al, 1998).

The target vectof; that should be predicted from the given sourceoreg observed at
timet, is constrained in a GMM framework as follows:

p(yt\xt,/"z’)=ip(yt\x“mﬁ“’ Plofx 4) (2.4-9)
where

a,N (%, Z )
M
> aN (.45 )
=

P(m‘ >g,/l(z)) = (2.4-10)

and
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F’(yt\xt,m,/‘(z)): N(y, EY), DY) (2.4-11)

The mean vectoE,; and the covariance matrD, of the m™ conditional probability
distribution are written as

£l = i)+ 2T - ) 2412

1

DY) = 3 () — 52 5 0d 7% 57 (2.4-13)

The MMSE-based mapping determines the expectec \aila target parameter vector
¥, given the source parameter vectgas follows:

Y = E[%X] :J- p(yt‘xt ’/](Z) )yt ay, (2.4-14)

= i P(”*Xt A ) EY) (2.4-15)

m=1

The estimated parameter vecfas defined as a weighted sum of the condition@eta
mean vectors, as shown in Equation (2.4-15). Inhemauxture component, the
conditional target mean vector is calculated binedr model based on the correlation
between the source and target parameter vectoshasn in Equation (2.4-12). The
weights are calculated as the posterior probasliof the source vector belonging to
each one of the mixture components, as shown imttequ(2.4-10).

2.4.4.GMM-based mapping using MLE

(Toda et al, 2008) have shown that, although the MMSE-basegpmg works
reasonably well, it is not appropriate for multigbeobability density distributions
because it ignores the covariance of the individaajet distributions even when they
are different from each other. Moreover, inapprateriparameter trajectories having
unnatural movements are caused by the frame-byefrarapping process. Moreover,
Maximum Likelihood Estimation (MLE)-based mapping often used instead of
MMSE-based mapping to improve the mapping perfogaan

In the MLE-based mapping proposed by (Tedal, 2008), the parameter generation
algorithm used for the HMM-based speech synthdkydaet al, 2000) was applied
to the GMM-based mapping. This idea has also bpphea to the HMM-based speech
inversion model (Hiroya and Honda, 2004) and toimrersion mapping using a
artificial neural network based on mixture densisyimation (Richmond, 2006).

The overview of the multi-stream GMM-based mappsiygtem is presented in Figure
2.4-1. The MLE-based mapping determines the tgrgetmeter vector as follows:
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Y = argmyax{ p(Y‘X AP )} (2.4-16)

The EM algorithm is employed to maximisé(‘x,/\(z)). For the given source

parameter sequenc€ the estimation procedure of the target parans#quence’ is
iteratively using EM. The target vectdris initialised by the MMSE-based mapping,
and then Equation (2.4-16) is recursively appli¥dpeing substituted fol” until a
convergence condition is satisfied. An auxiliarydtion of the current target features
vectorsY and of the updated on&ds defined by

M

P(n"{X,Y,/](Z))Iog p(Y,rdx,/W)) (2.4-17)

m=

Q(Y,\?) =

Similarly to Equation (2.3-18) used in the arti¢alg synthesis step of the HMM-based
approach, using Equation (2.4-12) and Equation-13} the sequence of estimated
target static features vectarss given by

- -1 -
V= (WT D(v)‘“\/vj W DM IED

(2.4-18)
where
DW™ = diag[ DY DY .., Dﬁy)‘l} (2.4-19)
Moy () )y ()
DY =3 P(mix,, y;,A? DY (2.4-20)
m=1
and
DWW W) _[Dl(y) 1E1(Y)' Dgy) 1E£y)1, ,DP') lET(V):|
(2.4-21)
el = N CARN =\
Dt Et - Z P(rdxt ' yt 'A )Dm Em,t
= (2.4-22)

In order to alleviate the trajectories discontimsf not only static but also dynamic
features are used as the articulatory feature vettoese dynamic features are used
with a parameter generation algorithm to take iatgount the correlation between
frames in the mapping (Todet al, 2005). The determination of a target parameter
trajectory having appropriate static and dynamuapprties is obtained by imposing an
explicit relationship between static and dynamiatdees (Todeet al, 2004b). As an

output articulatory parameter vectcmtfy) consists of both static and dynamic feature
vectors of the articulatory trajectories, as follow
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o =lyr, ayf (2.4-23)
and

AYt =Y " Y (2.4-24)
The relationship between a sequence of static fesi = [le,y;, U VAl ]T and a
sequence of static and dynamic featur€s” = [ol(y),ogy), 09’)]T can be

represented as a linear conversion:
oY =wy (2.4-25)
whereW is a transformation matrix, shown in Figure 2.3-2.

The MLE-based mapping method enables the detenommalf the target parameter
sequence exhibiting accurate static and dynamicactexistics by maximizing the
likelihood function. Based on both static and dymafeatures, the MLE criterion can
be considered as a statistical smoothing stepviollp the initial parameter sequence
estimated by the MMSE-based mapping.

—_—

Speech database

S —
|< Audio signa Articulatory signa

v

Acoustic Articulatory
parameterisatic parameterisatio
GMM Training

Joint features modelling

Traininc

Inversior
MMSE-based mapﬁ‘l I—EALE-based mappﬁ—l

Initial target feature vector sequence || Inversed articulatory

M trajectories
N NS N\
A AVA

Figure 2.4-1. Overview of the GMM-based acoustiedtiiculatory speech inversion
system

Unseen audio
signal
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2.5.Summary

Various approaches of inversion mapping were foanthe literature. In this chapter,
we reviewed the state of the art of the acoustiartculatory mapping and we choose
the two different statistical techniques which gilie best results in previous work: the
first one is based on HMMs that use phonetic infttan as intermediate level between
acoustic and articulatory stream compared to thersktechnique based on GMMs that
maps directly the acoustic features to the artiomjaones. We have also presented the
theory of statistical mapping based on HMMs and Gdilsls well as a description of
some improvements of these techniques, such asmhleetance mechanism, the tied
states, the increase of Gaussian mixtures, anchithienum generation error training for
HMMs or maximum likelihood estimation criteria fG&GMMs.

To train and test statistical models such as HMM&MMSs, real data are needed. In
the next chapter we present the acoustic and kticy data recorded and used in order
to implement these methods.

42



Chapter 3. Acoustic and articulatory speech data

Chapter 3. Acoustic and articulatory
speech data

3.1.Introduction

A crucial part of any statistical machine learnsgygtem is the data. Depending on the
specific aim of the system, one first has to detleemvhat kind of information must be
present in the corpus to be collected. Two impdrtissues are at stake in the
construction of the speech corpus for our acoustarticulatory system: (1) the
database sizethat refers to the amount of parallel acoustid amticulatory data
available, should be large enough to allow reliabimation of the statistical
parameters; and (2) thehonetic coveragethat describes the extent of the speech
utterances produced by the speaker, should encegmagasuch as possible the space of
possible speech sounds in the language, such asmles, biphones or triphones.

To sum up, the recorded speech corpus should mHxinearesent all the articulatory
movements and corresponding sounds which can el fouthe language. The chosen
sentences must cover maximally allophonic variatiaf each phonemad,e. the
phonemes with their allophonic variations that adepen the right and left contexts.
However, because the experimental settings re@uskort recording session and the
speaker should not feel too much fatigue, the gizbe corpus has to be limited.

In this thesis, two corpuses of one French spe@arded under studio conditions and
the English MOCHA-TIMIT corpus were used. The constion and the analysis of
these corpuses will be presented in the next sectio

3.2.Methods for articulatory data acquisition

While acoustic speech signals can simply be recbfge means of a microphone,
several methods have been proposed over the yearsasure the vocal tract shape and
movement.

3.2.1.X-ray cineradiography

X-ray cineradiography was used for the first timethe 1920’s (Russell, 1928). X-ray
data were very useful to provide knowledge aboeatrttovements of the vocal tract. It
has traditionally been the main source of inforovafior movement of the shape and the
position of the articulators during speech. Theaamtiage of x-ray imaging is that it
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provides images of good resolution at a rate ofuald® images / sec. for the entire
head, while the speaker can sit in upright positidndifficulty with x-rays is to
accurately identify the vocal tract structures ime timages, which are actually
constituted by the projection of the different hesidictures on a sagittal plane. To
enhance the contrast in the images, subjects swadloviscous liquid containing a
contrast agent (barium for instance) that adhevdbd surface of tongue, mouth floor
and to lips. The limited exposure radiation timearsother severe limitation on the
usefulness of x-ray films.

3.2.2.X-ray microbeam cinematography

In order to reduce the risks of x-ray radiationyiténi (1986) and his team has
developed the x-ray microbeam system that usesramdeam of x-ray controlled by
computer to localise and track the movements ofllsgedd pellets attached to the
speakers’ articulators. This method offers a gawe tresolution and covers the whole
vocal tract but does not provide 3D images. AltHotigs system reduces the time of
subject’s exposure under x-ray, it has now beeayelgreplaced by safer methods such
as ElectroMagnetiérticulography.

3.2.3.Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) can provide dethdata of the entire vocal tract
and tongue without any known dangerous effects ten dubject. The images are
amenable to computerized 3D modelling. In addititwe, vocal tract area and volume
can be directly calculated. Because of its extrgmslw acquisition speed, the subject
often has to maintain the articulation for seveedonds. Thanks to technical advances,
it is nowadays possible to collect full 3D dataspkech articulation. However, the rate
of images is still not high enough to observe ratwarticulatory movements. In
addition, the quality of images is rather low. Amat drawback of MRI is that the
subjects have to be positioned in supine positingl on their back, due to the
construction of the MRI scanner and antenna. Thavigtional effects of this
positioning might have some influence on the alditon (Tiedeet al, 2000; Stoneet
al., 2007). Even if MRI imaging does not offer a stifnt fast sampling rate, it
provides 3D images of the vocal tract with a gopdtigl resolution. It is thus now
widely used to collect still images and derive 3bcal tract geometry from these
images (Engwall, 2000).

3.2.4.Ultrasound echography

Another technique for capturing the articulatorywaments of tongue is the ultrasound
echographydf. (Stone et al. (1983; 1990)). Ultrasound is arautiigh-frequency sound

wave that is directed through the lingual softuessSome of the emitted sound waves
from the transducer are reflected back when thaghréhe tongue-air boundary on the
superior surface of the tongue, and return to #raestransducer. The shape of the
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tongue is then estimated from the time delayshéndonstructed image, the surface of
the tongue is visible as a bright line on a blagkcKkground. Huebeet al. (2008)
developed a synchronous acquisition system of matlal speech data. Their system,
called Ultraspeech acquires three streams synchronously in parallsing
multithreading programming techniques: the ultrasbimages of tongue; the front
view of the lips, and the acoustic signal.

Note limitations of Ultrasound imaging due to theetml lack of visibility of the tongue
apex, tongue walls contacts and multiple reflexionghe various tissues that make the
automatic image processing difficult.

3.2.5.ElectroMagnetic Articulography

ElectroMagnetic Articulography (EMA) is a suitalbieeans for tracking movements
within the vocal tract during speech production.isitwell suited to the study of

coarticulation. EMA tracks the motion of flesh piirof the articulators thanks to small
electromagnetic receiver coils glued on the sulgjemtticulators such as the lips, the
tongue body and the tongue tip as shown in Figu2el3The subject's head is then
surrounded by three electromagnetic emitting deitgire 3.2-2. The transmitter coils
generate alternating magnetic fields at differeatjfiencies, which induces alternating
signals in the receiver coils. The signals indugeaach receiver coil consist of 3
components, one from each transmitter coil. The E8§8tem uses the magnitude of
these signals to calculate the cube of the distadcbetween the transmitter and
receiver coils and determine the location (x-y dowates) of the receiver coil by

triangulation.

A practical issue of EMA recording is that it idfaiult to keep the sensor coils fixed
during long recording sessions. Because the aecueattaching of the EMA coils on
the speaker’s articulators is impossible, all dsttauld be recorded in one session:
therefore the size of the corpus and thus the nuwiteentences than can be recorded is
limited. Moreover, it is difficult also to glue doon the velum or at the back of the
tongue. A last but not least problem is the elecaiimentation of the coils that
necessitates a set of wires to transit througlipleand hinders articulation.

3.2.6.Choice of articulatory data recording method

The articulatory data acquisition methods descrddsalve are compared in Table 3.2-1.
EMA offers a good temporal resolution, but not adjepatial resolution. However, it
provides the possibility to control the articulatonodels of the 3D talking head using a
inversion method that transforms the EMA coordisate the articulatory control

4 http://www.ultraspeech.com/
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parameters of these models, as explained in Chéptéhis has thus motivated the
choice of EMA as articulatory data in this thesrkv

Figure 3.2-1. Picture of a subject’s tongue withetn EMA coils attached to the tongue

Transmitter

Receiver
COﬂ\L

. " \\ -, ({( Transmitter
ransmitter \ ‘ of | TCR coil
coil & [,

Figure 3.2-2. lllustration of the principle of thi€ectromagnetic articulograph: the
transmitter and receiver coils positions are indez
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Table 3.2-1 Comparison of 5 speech articulation sneament systems (modified from
(Ridouane, 2006))

EMA MRI Ultrasound X-ray X-ray microb.

Whole Vocal

No Yes No Yes No
Tract

Tongue imaging Pellets Full-lengthFull-length | Full-length Pellets

Velum imaging Yes Yes No Yes No

Time resolution 500 Hz 0-24 Hz 30-200 Hz 30-60 Hz 0-140 Hz

3D Yes Yes No No No
Health hazard No No No Yes Yes
Invasive Yes No Little No Yes
Quality of signal Good Good Degraded Good Good
Head movement Restricted Restricted Restricted Free Free
Portable No No Yes No No
Expensive Yes Yes No Yes Yes

3.3. Acoustic-articulatory corpuses

In our study, we used three EMA corpuses to evaltla¢ approaches described in
Chapter 2. Most of our work has been realised ata doming from the male French
speaker (“PB”) used to develop the talking headtroead in section 1.2. This allows
using his EMA data for animating the talking heaectly, as described in Chapter 5.
Other reasons for using one speaker are the diffiofirecording long enough corpuses
and accustoming naive speakers to EMA.

The first corpus, named “EMA-PB-2007", was recortigdspeaker “PB” in 2007. The
second one, named “EMA-PB-2009”, was recorded byséime speaker “PB” in 2009.
We also used the MOCHA-TIMIT corpus which is publicavailable and thus
constitutes a reference for English in the literatu

3.3.1.EMA-PB-2007 corpus

Articulatory movements were recorded synchronowst the audio signal using the
Carstens 2D EMA system (AG100). Figure 3.3-1 illatgs the positions of the eight
receiver coils on an MRI image of the speaker'sdhe®jaw coil is attached to the
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lower incisors (jaw), whereas three coils are &tdcto the tongue tip (tip), the tongue
middle (mid), and the tongue back (bck) at appratety 1.2 cm, 4.2 cm, and 7.3 cm,
respectively, from the extremity of the tongue;uwgper lip coil (upl) and a lower lip
coil (Iwl) are attached to the boundaries betwdsn wermilion and the skin in the
midsagittal plane. Extra coils attached to the uppeisors and to the nose served as
references to compensate for head movements mitheagittal plane.

The audio-speech signal was recorded at a sampleguency of 22,050 Hz, in
synchronisation with the EMA coordinates (see FegBu3-2). The corpus was recorded
on a single male French subject.

Figure 3.3-1. Positions of the six receiver coittaahed to the lips, the jaw and the
tongue (yellow dots). Positions of coils used dsresnce to correct the head movement
(white dots).
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Figure 3.3-2. lllustration of Parallel acoustic aradticulatory signals for the sentence
“Ma chemise est roussie” (phone boundaries are ¢atiéd by vertical bars — labels are
indicated in the bottom frame)
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3.3.1.1Phonetic content

Corpus EMA-PB-2007 was already available at theirmeigg of this thesis workcf.
(Badinet al, 2008b)). Though it was designed for perceptigtstat was deemed to be
sufficiently well suited to our purpose to be usatknsively: as will be shown below, it
provides a reasonably good phonetic coverage moinanal recording time.

Corpus EMA-PB-2007 consists of a set of two reqmet# of 14 oral and nasal French
vowels without context; two repetitions of 224 nemse Vowel-Consonant-Vowel
(VCV) sequences (uttered in a slow and controlle)wwhere C is one of the 16
French consonants and V is one of 14 French vowels;repetitions of 109 pairs of
CVC real French words differing only by a singleecu the French version of the
Diagnostic Rhyme Test (Peckels and Rossi, 1973B8-,short French sentences,
9 longer phonetically balanced French sentenced, Hn long arbitrary sentences.
Totally, there are 1109 utterances. It was aboutd3%he utterances for the vowels,
51% for VCV, 36% for CVC and 10% for the sentences.

For each utterance, the phones have initially Habelled using a forced alignment
procedure based on the audio signal and the camdspy phonetic transcription based
on already available multi-speaker HMMs. Subsequeanual correction of both
phoneme labels and phoneme boundaries was perfousied thePraat software
developed by Boersma and Weenink (2005). The cenbk allophones were
automatically chosen as the average between bagiramd end of the phonemes. The

36 phonemes areafeiyuogoxedé®dptkfsfbdgvzzmnglwyjo__],

where_and__ are internal short and utterance initial and fioaly pauses respectively.

3.3.1.2Statistic

Altogether the corpus, from which long pauses w@uded, contains approximately
100,000 framesi.e. about 17 minutes of speech, corresponding to §i&thes. The
2218 long pauses (about 34,000 frames, i.e. 6 eshatre related to the beginning and
the end of the 1109 utterances. Figure 3.3-3 shtbephonemes’ distribution in the
corpus. The minimum and maximum number of instarprsphoneme is 17 for the
short pause and 348 for the phoneme /a/.

The theoretical maximum possible number of biphpnes combinations of two
phonemes is 1296 (i.e. 36 x 36 = 1296 biphonesjva¥er, some combinations are
impossible in French: Table 3.3-1, that lists thegible biphones in French, shows that
the total number is 1038. The number of biphonestieg in the present corpus is 705,
with therefore 333 missing biphones. The numbédripliones is 2311.

As stated in the glossary, a phone in context e by its following and preceding
class of phones (contextk. bilabial, dental, velar, open or close vowel. Tdwpus
contains 413 phones in right context, 377 phonelefincontext and 1475 phones in
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both left and right context. The number of misga®nes in right context, compared to
biphones, decrease from 333 to 157. Note that llomgs in their right or left context
have more instances than biphones; similarly, phaméoth left and right context have
more occurrences than triphones.

Table 3.3-1. Possible French allophones

Phoneme

[ac€o0oadeiugoeag
pbmtdsznfw¥lfzkg
jyw

o__1

36 phonemes

Possible biphones = 1038

[acoodeiugoeypbmtdszn ki 28 phonemes x 28 = 784
f3kagjl. [_] 28 phonemes x 2 pause positions = %6

[acoodeiugoeylEd ] 11x3 =33
[e5é]l[pbmtdsznfwlfzkgj ] 2 (18 X 3) = 108

~ ~ A~

[pbmtdsznfwlfzskgj ].[¢3G]

[pbmtdsznfwlfzkgjl.[wy] 17 consonants x 2 semi-vowels = 34
[y]l[acgoodieigce] 1 semi-vowels x 11 vowels= 11
[w]]acgooddeiugoe] 1 semi-vowels x 12 vowels= 12

Possible phones in context = 570

31 x 15 =465
17 classes (contexts)
. .n N 31x2=62
(acé|oodad|ei|u|ooey) 17x 2 =34
. X2=
(pbmjtdsznfv]e|l|f3]kgljlul
w|_) 1x4=4
1x5=5
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Figure 3.3-3. Average number of occurrences of gdadneme in the corpus EMA-PB-
2007

3.3.1.3Articulatory data validation

In order to reduce the noise inherent to the EMAadacquisition system, the
articulatory trajectories were low-pass filtered2@tHz. Before starting the modelling
procedures, we explored the articulatory data bynmging and displaying the
dispersion ellipses of the six coils in the mid#adi plane for each phoneme
corresponding to a standard deviation of one. @H@mved us to verify the coherence
and the validity of the data. Figure 3.3-4 displdlysse ellipses for phoneme /t/, and
shows for instance that the variability of the toedip coil is very low for /t/, as could
be expected since the tongue is in contact withhiéwel palate for this articulation.
Figure 3.3-5 displays the dispersion ellipses lier phoneme /k/, and shows the contact
of the tongue middle with the hard palate for thiticulation. It should however be
reminded that the articulations were sampled airteant midway between the phone
boundaries, which does not completely ensure tatistant corresponds to the actual
centre of the phone since the trajectories aresymmetrical nor synchronous.

To define phoneme classes, confusion trees wetefbuboth vowels and consonants,
based on the matrix of Mahalanobis distances ofcthiis coordinates between the
centre frame of each pair of phone. Each phonensere@esented by its mean over all
the associated instances. Figure 3.3-6 and Fig@& 3hows the confusion matrix of
the vowels and consonants, respectively.
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Using hierarchical clustering to generate dendmograve defined six coherent classes
for vocalic contexts fe € |o e ® |ei|y|u|ood3])as shown in Figure 3.3-7, and
ten coherent classes for consonantal contepis fh | fv g |f3|1|tdszn|j|yg|k

g | w]) as shown in Figure 3.3-9. The schwa, the shadtthe long pausess([ _]) are

ignored in the context classes. Acoustic spectrigtadces cluster classes less
satisfactory from the point of view of phonetics.

f— Hard palate
jaw

[ tip

I id

bek

|:| upl

i

Figure 3.3-4. Dispersion ellipses of the measureordinates of the six EMA coils for
phoneme /t/. These ellipses are computed fromatimples taken at the middle of the
231 instances of /t/ in the corpus.

= Hard palate
[ jaw

- tip

N i

bek
] upl
il

Figure 3.3-5. Dispersion ellipses of the measureardinates of the six EMA coils for
phoneme /k/. These ellipses are computed fromatingles taken at the middle of the
130 instances of /k/ in the corpus.
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Figure 3.3-6. Confusion matrix of measured coortisaof the six EMA coils for vowels
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Figure 3.3-7. Confusion tree of measured coordisatethe six EMA coils for vowels
(the smaller the ordinate, the more confused tleedategories are). The dashed line
corresponds to a threshold level of 16 that leadsix classes.
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Figure 3.3-8. Confusion matrix of measured coortesaof the six EMA coils for
consonants
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Figure 3.3-9. Confusion tree of measured coordisatethe six EMA coils for
consonants (the smaller the ordinate, the moreus®d the two categories are). The
dashed line corresponds to a threshold level afhd leads to nine classes.
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3.3.2.EMA-PB-2009 corpus

In order to better estimating the statistical madkdcribed in Chapter 2, we decided to
record a new corpus that maximises the biphoneragee

3.3.2.1Phonetic content

To record a corpus well suited to a problem, iesessary to compel with a number of
criteria. The sentences should cover the maximuphohetic variability with a limited
number of sentences (several hundreds). To maketashk easier for the speaker, the
sentences should not be too long, but not too shibwer.

Many researchers use the Greedy algorithm for $peegpus design (Frangois and
Boéffard, 2002) (Bozkurtet al, 2003) (Van Santen and Buchsbaum, 1997). The
iterative principle of this algorithm is to starbfm a very large corpus, and then to
eliminate the sentences whose elements are aloeagyed by the others.

For our corpus, we ran the greedy algorithm orstagli phonetic transcriptions of 4289
sentences extracted from the newspaper “Le Mongesir(2003). These sentences are 3
to 7 words long, with no abbreviations nor acrony@srr selection criterion was to
ensure the presence of at least three occurrerfceaah biphone, while trying to
maintain the number of sentences as small as pessie ended up with a list of 736
sentences. We added 266 VCVs (where V is one of4heral and nasal vowels and C
is one of the 16 consonants or one of the 3 senelo®x(16+3)=26¢, 15 long
sentences, which have between 11 and 33 wordsa asidof 140 words used in speech
therapy activities.

As for corpus EMA-PB-2007, the phones have iniiakeen labelled for each utterance
using a forced alignment procedure, but using twaistic HMMs trained on the EMA-
PB-2007 corpus, more appropriate in this case thane general HMMs. Manual
correction of phoneme labels and boundaries whsstisequently performed.

3.3.2.2Recording protocol

In the experiment, a trained male native speaké&rench participated in the recording.
The speaker was seated in an acoustically isolatech. The articulatory data were
recorded synchronously with the audio signal uding Carstens 2D EMA system
(AG200). The same setup as for corpus EMA-PB-2083 used.

The 1157 sentences were read by the speaker. Titenses were displayed on a
computer screen placed at about one meter in obtite speaker. The AKG C 1000S
microphone was located between the speaker and ctmputer screen. For
convenience, the sentences were recorded by batEbesinutes. After each sentence,
the following one was immediately presented. Whaa $peaker made a mistake, he
was invited to utter it again. All sentences weseorded in one session.
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The EMA coordinates were recorded at a 500 Hz samptequency synchronously
with the audio speech, which was recorded at a kagnfate of 44100 Hz, using a 16
bit encoding.

3.3.2.3Comparison between EMA-PB-2007 and EMA-PB-2009
Statistics

In the final selection, the recorded corpus comsté&?2063 phones distributed in 1271
utterances. Note that extra phrases uttered bgpbaker between the official sentences
were added to the corpuse( “c’est fini”, “bon”, “oui” ...). Each phoneme was

represented at least 98 times (see Figure 3.3+18 plhoneme histogram). The number
of occurrences was more than 500 for about thedfatie phonemes. Each phoneme

has a cumulated length of more than 2000 frames3(mn), except the semivowelg,

/w/, the schwala/ and the short pause.

Excluding the long pauses, the total number of &snis 189104j.e. 31.5 minutes.
Compared with corpus EMA-PB-200¢f(Table 3.3-2), this new corpus contains more
biphones. The number of covered biphones is 98B anty 53 missing biphones, and
6772 triphones. Regarding the phones in contel, dbrpus contains 536 phones in
right context, 535 phones in left context and 3@#48ne in both left and right context.
The number of missing phones in right context (34inuch smaller than for corpus
EMA-PB-2007 (157).

Table 3.3-2. Comparison between EMA-PB-2007 and 84009 corpuses

Corpus EMA-PB-2007 | EMA-PB-2009
Size (min) 17 31.5
# phone 5132 22063
# possible biphone 705 985
# possible triphones 2311 6772
# missing possible biphone 333 53
# missing possible phone in right context (ctxtR) 157 34

57



Chapter 3. Acoustic and articulatory speech data

1500

1000

500

aeeiyuogooaegadptkfsfbdgvzszmnegl jgwo _

Figure 3.3-10. Average number of occurrences ohgdamneme in the corpus EMA-PB-
2009

Articulatory data

In order to reduce the noise, we low-pass filtdrezl articulatory trajectories at 20 Hz.
To illustrate the coherence and the validity of daga, the same validation approach as
the EMA-PB-2007 was applied to the EMA-PB-2009 cmxplhe dispersion ellipses of
the six coils in the midsagittal plane for each i#moe were very similar as EMA-PB-
2007 ones.

The same approach as EMA-PB-2007 was used forecingt Figure 3.3-11 and
Figure 3.3-13 shows the confusion matrix of the el@wand consonants, respectively.

Compared to EMA-PB-207 cluster, we find the sameckisses for vocalic contexts ([
e€|loe&|ei|y]|u]ooad3])as shown in Figure 3.3-12, and little differerice
consonantal contexts. We find that /t d n/ was notearly separated from /s z/ in the
alveolar clusterife.[pbm | fv |s | f3|1|tdn|sz|j]|y]|kg]| w])as shown in
Figure 3.3-13. The schwa, the short and the longeg® (p _ _]) are ignored in the
context classes.
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Figure 3.3-11. Confusion matrix of vowels in EMA-P@)9 corpus
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Figure 3.3-12. Confusion tree of articulatory paraters of vowels in EMA-PB-2009
corpus (the smaller ordinate, the more confusedwecategories are). The dashed
line corresponds to a threshold level of 10 thadketo six classes.

59



Chapter 3. Acoustic and articulatory speech data

5 a -

2]

W - =< g xS TR B O T N
I [ B | I

n s z pb my¥ j yu kg wft v I [ 3

Figure 3.3-13. Confusion matrix of consonants inA&=RFB-2009 corpus
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Figure 3.3-14. Confusion tree of articulatory paraters of consonants in EMA-PB-
2009 corpus (the smaller ordinate, the more corduke two categories are). The
dashed line corresponds to a threshold level dfeb keads to eleven classes.
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3.3.3.MOCHA-TIMIT English corpus

In order to be able to compare our results on teadh EMA-PB-2007 and EMA-PB-
2009 corpuses, we used also the MOCHA-TIRIITable 3.3-3 shows a comparison
between the French and the English corpuses. $rctmparison, we excluded the long
pauses in the beginning and the end. Note thaEtigdish articulatory data include one
coil in the velum, in addition to the six coils peat in the two French corpuses.

Table 3.3-3. Comparison between the two Frenchusep and the English one

Corpus EMA-PB-2007 | EMA-PB-2009 | MOCHA-TIMIT
# EMA coils 6 6 7
Size (min) 17 31.5 21
# phone 5132 22063 13960
# phoneme 35 35 43
# possible biphone 705 985 1296
# possible triphones 2311 6772 6262

3.4.Acoustic data for speaker adaptation

As discussed in Chapter 1, the input for visuaicaldatory feedback is the acoustic
speech sound. In order to assess the possiblesextenf our system to more speakers
(cf. Chapter 1, and further Chapter 5), we have usedoorded corpuses for three other
speakers for the speaker adaptation stage.

The first corpus was recorded by a male native dfrespeaker “TH”. Speaker TH
recorded the same speech material as the refespeaker PB in the EMA-PB-2007
corpus. The total corpus is about 16 minutes lexgluding long pauses, and consists
of 1109 utterances.

We used also two other acoustic corpuses of 24@ersess recorded for speech
synthesis purposes: one male “GB” and one fema(& ‘Wative French speakers.

Table 3.4-1 illustrates the size of the corpusesider adaptation. All recordings were
made at least at a sampling frequency of 16 kHzl&hadits per sample, and then re-
sampled to 22.05 kHz in order to apply the sameatjpas to all the data.

® http://www.cstr.ed.ac.uk/research/projects/articzhmhtml
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Table 3.4-1. Statistic of the three audio corpu%esdicate the reference speaker who
record EMA-PB-2007 corpus)

Speaker Size (min) | # Utterances | # Phones
PB* 17 1109 7350
TH 16 1109 7350
GB 12 241 6423
AC 14 240 6551

3.5.Acoustic and articulatory features extraction

In the aim to find the best acoustic parametensafor articulatory inversion task, Qin
and Carreira-Perpiidan (2007) compared all comlmnati of the acoustic
parameterisation. They tried the popular acoust@mtures such as Mel Frequency
Cepstral coefficients (MFCC), Perceptual Lineardiieve Analysis (PLP) or Line
Spectral Frequencies (LSF), with and without dyrafeatures; the time delay effect
and the different levels of smoothing of the acmustmporal trajectories were also
tested. Using anultilayer perceptron (MLP) to map from acoustic domain to the
articulatory one, their experimental results uding MOCHA-TIMIT database showed
improvement when using features closely relatethéovocal tract (in particular LSF),
dynamic features, and large window length and shiogf which reduce the jaggedness
of the acoustic trajectory. Further improvementsensbtained with a 15 ms time delay
between acoustic and articulatory frames. Howetleg, improvement attained over
other combinations was very small.

Because of the limited time of the thesis, nopalisible combinations have been tested.
In preparing the experiments, we decided to usesiimofeature vectors consisting of
the 12 Mel-Frequency Cepstral Coefficients (MFCQ@Y aof the logarithm of the
energy, along with the first time derivatives, cartgal from the signal over 25 ms
windows at a frame rate of 100 Hz.

Articulatory feature vectors consisted of the x gncbordinates of the six active coils.
Their first time derivatives were also added. THéAEtraces were down sampled to
match the 100 Hz shift rate of the acoustic featetors.

3.6.Conclusion

In this chapter, we have described the data usesvatuate the contribution of the
solutions explored in this thesis work to improveowstic-to-articulatory speech
inversion.
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Totally, three EMA-acoustic corpuses have been usdtiis work: two on the same
male French speaker PB, for whom there exist a &m@BD orofacial clone; one for
the female British speaker fsew0 of the MOCHA-TIMi&tabase,

Additional three audio corpuses were used forrgsspeaker adaptation: two male and
one female speakers. Note that we checked mantiadlyautomatic segmentation
performed on the French corpora but not on the delerered with the MOCHA
database in order to be able to compare performainuiher studies that was obtained —
we hope — using the same conditions.

The next chapters of this manuscript will conceaetran our development and
evaluation of the inversion mapping systems.
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Chapter 4. Speech inversion evaluation

4.1.Introduction

This chapter presents the objective performanceusfcontribution on acoustic-to-
articulatory mapping by the different techniquesaiided in Chapter 2 based on data
described in Chapter 3.

In this chapter, section 4.2 presents the evalnatigteria of the performance of the
implemented mapping methods. Section 4.3 presémsetvaluation results and the
influences of different improvement criteria fortboHMM-based and GMM-based
speech inversion systems. The comparison of HMMdbaystem with the GMM-based
system will be presented in section 4.4. Finakgt®n 4.5 presents the conclusion.

4.2.Evaluation criteria

In this section, we present the different critettiat we have used to evaluate the
performance of our HMM and GMM-based speech inearsiystems. One criterium is
based on the distances between measured and estiandiculatory coordinates; the
other one, used when original articulatory datanateavailable, is based on articulatory
recognition. In all case, it is needed to define tbrpuses used for training and testing
the inversion systems.

4.2.1.Train and test corpuses

Cross-validation is a method for evaluating and garmg statistical models. The
principle consists in dividing the data into twatgaone is used to train a modei.e.
optimise the model parameters over the training dadnd the other is used to evaluate
it. In typical cross-validation, the training andiatuation sets must turnover in
successive rounds such that each data has a obfdneimg evaluated. In the basic form
of cross-validation, the k-fold cross-validatiometdata are first partitioned into k
(nearly) equally sized partitions or folds. Subsagly, k iterations of training and
testing are performed.

In our work, we have systematically used a 5-falass-validation training procedure.
The data are split into five partitions approxinhateomogeneous from the point of
view of phone distribution. In each iteration, fqartitions of data are used for training
while the remaining one is used for testing.
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Figure 4.2-1 and Figure 4.2-2, that present thenphme distributions on the partitions
that we have used for the EMA-PB-2007 corpus, confhat the five partitions that we
have created are approximately equivalent. Uponpteton of the 5 training and
testing sequences, the entire data set will beigisetland available to assess the models
and methods.
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Figure 4.2-1. Distribution of number of occurrendes each phoneme of the five
partitions of the EMA-PB-2007 corpus.
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Figure 4.2-2. Distribution of number of frames &ach phoneme of the five partitions

of the EMA-PB-2007.
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4.2.2.Measurements

The Root Mean Square Error (RMSE) and the PearsoduBt-Moment Correlation
Coefficient (PMCC), between the measured and estisndate, are usually used in the
literature to evaluate inversion systems. We hage ased these two criteria and
calculated them over the five test partitions —+d¢f@e the whole corpus —, excluding
the long pauses at the beginning and the end of @#erance.

For each EMA coordinate, we calculated RBISE between the measured and the
estimated trajectory as:

RMSE =\/%2(A¥,t_ M,t)z (4.2-1)

t=1

whereT is the number of frames aggregated over the faréitipns of the test set, and
y,. and y, are respectively the estimated and the measurews/@f thed” EMA

coordinate at time
The global accuracy of the inversion was measuretifierent ways.

We calculated two global RMSE over all coordinatése first was:

RMSE= \/%i( RMSE)’ (4.2-2)

d=1
whereD is the number of EMA coordinates.

We calculated also the slightly different — prodgcian error mathematically always
inferior to the preceding formula — formulationtbe global RMSE often found in the
literature (as in (Hiroya and Honda, 2004), (Zhamgl Renals, 2008), (Lingt al,
2010) or (Todeet al, 2008)). This RMSE, called hefeRMSE, is averaged over all
coordinates as:

D
,LJRMSE:%Z RMSE (4.2-3)
d=1

We also calculated the “Pearson Product-Moment etaifon Coefficient” (PMCC)
which measures the level of amplitude similaritgd @gnchrony of the trajectories as

> 350 %) e )

PPMC = d=1 (=1 (4.2-4)

(53 (0-5) (33 %)

d=1 t=1 t=1

—

e
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Where §, and y, represent the mean values of the estimated ancuneegssajectories
of thed™ EMA coordinate.

4.2.3.Acoustic recognition

The HMM-based inversion method involves an interiaigd stage of automatic
recognition. The acoustic recognition accuracy (jAiscalso aggregated, over the five
partitions of the test set, to assess specifithtyassociated acoustic phonetic decoding
stage and is defined as:

Acc= %’S_' x100% (4.2-5)

whereN, S, D and | arehe total number of phones, the number of suliiiierrors,
the number ofdeletion errors, andhe number ofnsertion errors respectively. The
acoustic recognition corredC¢rrec) that ignores insertion errors was defined as

Correct= N_TD_S x 100% (4.2-6)

4.2.4.Articulatory spaces

Another interesting way to analyse the performantean inversion method is to
compare visually, for the measured and reconstuluitdea, the articulatory spaces of the
EMA coils, i.e. the spaces in the midsagittal plane covered bgitheoils for the whole
corpuses df. further Figure 4.3-1). This could be complementgdabmeasure of the
degree of overlap between the areas of measuredstinthted articulatory spaces.

4.2.5.Articulatory recognition

4.2.5.1Method

When original articulatory data are not availaibteparticular in the case of inversion of
a new speaker, using an acoustic adaptation ssageGhapter 5), the RMSE criterium
cannot be used. In such a case, an interestingnaliiee way to evaluate estimated
articulatory trajectories is to determine how wélley can be recognised by an
automatic “articulatory recognition” system train@al the original data. Engwall (2006)
proposes an articulatory classifier to evaluaterésellts of speech inversion. In addition
to the correlation coefficients and the RMS errog, presents classification scores
summarized as the percentage of correctly cladsiflponemes and places of
articulation, as the performance for different péme groups and in confusion
matrices. Teppermaat al. (2008) presents hidden articulator Markov modelbictv

were trained on articulatory representation of mhtavel transcription, to generate
articulatory confidence measures and recognitisetideature. With this purpose, we
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have trained an HMM-based phonetic decoder on tieukatory data of the reference
speaker PB.

It is expected that phonemes differing only by wwic or velum position —
characteristics not explicitly measured by our EB®up (no velum coil was available
in our recording setup) — cannot be well recogni3é@refore, contrarily to the acoustic
recognition stage which determinpeonemesthis articulatory recognition procedure
was designed to recogniadticulatory phoneme classgsuch as /p b m/, /k gétc. for
whom main articulatory characteristics cannot bstinljuished. Accordingly, we
defined 16 clusters of French phonemdsTable 4.2-1), and used themasculatory
phoneme classder the articulatory recognition. In addition, tweatraphoneme classes
were used: one for the schwa and the short panddha other for the long pause at the
boundaries of sentences. Finally, theseaft&ulatory phoneme classesere used to
train and to recognize the articulatory trajectorier both EMA-PB-2007 and EMA-
PB-2009 corpuses.

Table 4.2-1. Articulatory phoneme classes usethia the articulatory models and to
recognise the articulatory trajectories

Phoneme class name phonemes
Vowels
Open & &
Mid-front g e
Front y
Close el
Mid-back 004d3d
Back u
Consonants
Labial pbm
Alveolar tdszn
Fricative fv
Post-alveolar I3
Velar kg
Uvular-fricative K
Alveolar-lateral I
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Semi-vowels
Palatal ]
Labiopalatal q
Labiovelar w

The HMM-based articulatory recognition system wastlusing a procedure similar to
the one described in Chapter 2. The same articyléature vectors used for inversion
are used here (the andy coordinates of the six active coils with theirsfirtime
derivatives). Various contextual schemes were desagticulatory phoneme classes
without context (no-ctx), with left (L-ctx) or righcontext (ctx-R), and with both left
and right contexts (L-ctx-R). Left-to-right, 3-stgbhoneme class HMMs with a mixture
of 8 Gaussians per state and a diagonal covariaatex were used. The training was
performed using the Expectation Maximization (ENjosithm based on the Maximum
Likelihood (ML) criterion.

The performance of this system was evaluated oratieulatory data of the reference
speaker PB, using the 5-fold cross-validation pdoce described previously. The
articulatory recognition accuracy (AgQ was defined as

_N-D-S-1

Acc,, = x100% (4.2-7)

whereN, S, D and | arghe total number of phones, the number of sultigtitierrors,
the number ofleletion errors, anthe number oinsertion errors respectively.
The percentage corre@drreck.) was defined as

Correct,, = N_TD_S x 100% (4.2-8)

Notice that this measure ignores insertion errors.
4.2.5.2Baseline

To evaluate all articulatory trajectories generafsmm the acoustic signal of the
reference speaker “PB” or from any other speaksigpendently of the inversion
mapping approach used, we need to establish bagekults to serve as reference. We
have used the articulatory recognition resultstha (ctx-R) context for the different
corpuses.

EMA-PB-2007 corpus

Table 4.2-2 shows the articulatory recognition safgercent correct and accuracy) of
the measured articulatory trajectories of EMA-PBF2@orpus. The best performance
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was obtained using context dependent models (wght rcontext) and a bigram
language model of phoneme’s classes trained onMtbede” corpus. In this case, the

recognition accuracy (Agg) was 84.84 %.

Table 4.2-2. Articulatory recognition rates of threasured trajectories of EMA-PB-
2007 corpus (percent correct and accuracy)

NOo-Ctx L-ctx ctx-R L-ctx-R
Correchyt 80.39 90.53 89.27 89.96
AcCCart 79.29 84.15 84.84 80.08

EMA-PB-2009 corpus

Table 4.2-3 displays the articulatory recognitiates of the measured articulatory
trajectories of EMA-PB-2009 corpus, using HMMs el on the same corpus. HMMs
with the same structure as above were used. BeBirp@ance was obtained using
context dependent model (with right context) andbigram language model of

phoneme’s classes trained on “Le Monde” corpushigicase, the recognition accuracy
(Accarn) was 82.47 %. These articulatory HMMs are use@wualuate all articulatory

trajectories generated from models trained on EMBA2R09 corpus, independently of

the used inversion mapping approach.

Table 4.2-3. Articulatory recognition rates of threasured trajectories of EMA-PB-
2009 corpus

No-Ctx L-ctx ctx-R L-ctx-R
Correchyt 68.22 87.42 87.47 89.54
AcCCart 66.91 82.22 82.47 77.36

MOCHA-TIMIT corpus

Table 4.2-4 displays the articulatory recogniti@ies of the measured articulatory
trajectories of fsew0O speaker of MOCHA-TIMIT corpésgure 4.2-3 and Figure 4.2-4
show the hierarchical clustering based on artiomjaMMahalanobis distances of the
vowels and consonants, respectively. Based on thesgograms, we defined 8 vowels
clusters and 12 consonants clusters.
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Figure 4.2-4. Articulatory consonant clusters fpesker fsewO

The best performance was obtained using contexdralgmt model (with right context)
and a bigram language model of phoneme’s clasaggett on training corpus. In this
case, the recognition accuracy (Agcwas 65.02 %. Compared to the result found on
the French corpuses, the recognition accuracy oCM® is lower by more than 15%.
This difference may be due to the re-attachmerntefvelum and the tongue middle
coils (see (Richmond, 2009)) during the recording.
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Table 4.2-4. Articulatory recognition rates of threasured trajectories of MOCHA-

TIMIT corpus
No-Ctx L-ctx ctx-R L-ctx-R
Correchyt 44 .61 66.61 70.51 75.08
AcCart 43.57 61.97 65.02 61.85

The models in right context trained on the measuragkctories that gives the best
results is used as the baseline to evaluate thegmémn of the reconstructed
trajectories for that speaker.

4.3. Evaluation results

4.3.1.HMM-based method

The acoustic-to-articulatory inversion is achiewetivo stages. The first stage performs
the acoustic phoneme recognition, based on thesticquart of the HMMs. The result
is a sequence of recognised phonemes, with theatidos. The second stage of the
inversion is the reconstruction of the articulatorajectories from the chain of phoneme
labels and boundaries delivered by the acoustmgrétion procedure.

4.3.1.1Acoustic recognition

To evaluate the performance of the recogniser, seetlie acoustic HMMs to recognise
the test data and compare the recognised transaspto the manually verified ones
that are used as the reference.

Table 4.3-1 presents the recognition results. Esegnition performances are increased
by the use of phonemes in context. Given the ldn#mount of data, the use of a single
context gives better results than the use of befthahd right contexts. Phonemes with
right context lead to slightly better results thlhase with left context.

Table 4.3-1. Recognition rates (Percent Correctukacy) aggregated over the whole
EMA-PB-2007 corpus

Context No-Ctx L-ctx ctx-R L-ctx-R

Average over 5 folds  #allophones  #allophones  #hbtops | # allophone

o7

Correct, Acc (%) Corr| Acc| Corr Acc Corr Act Cofr ®&Ad

36 291 292 591
88.67| 68.45 90.69| 74.22 91.13| 73.85| 83.62| 66.98

Trained HMMs
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Impact of the mechanism of inheritance of missingMiMs on speech recognition

On the average over the five training partitionEMA-PB-2007 corpus, the number of
trained allophones is 36, 291, 292 and 591 fonthéno-ctx), left (L-ctx), right (ctx-R),
and both left and right (L-ctx-R) contexts, respady. Concerning context-dependent
HMMs, the number of missing test allophone HMM®isaverage 14, 19, and 100 for
the L-ctx, ctx-R, and L-ctx-R contexts, respectyvdlhe ratio of the missing allophones
over the number of trained one is about 5.0 %%.,%nd 17.0 % for the L-ctx, ctx-R,
and L-ctx-R contexts, respectively. In order to eowhe missing allophones, an
inheritance mechanism is used. Therefore, in tléxLand R-ctx cases, the allophone
dictionary maps the trained allophones to themseared the possible missing ones to
the corresponding phoneme without context (no-dtxjhe L-ctx-R case, the dictionary
maps existing allophones to themselves and thangissies to the corresponding ctx-R
ones if they exist, and otherwise to those withamritext (no-ctx). Note that among the
two contexts that could be used to replace thextRctontext, we chose to use the ctx-
R one because it gave systematically better rethdtsthe L-ctx one.

Note moreover that the number of possible allopkome the transcription of the
complete corpus of “Le Monde 2003” newspaper is, 578 and 8799 for the L-ctx,
ctx-R, and L-ctx-R respectively, which correspondsa much higher rate of missing
allophones. This justifies still more the use oktimheritance mechanism in a real
application.

Note that the inheritance mechanism described iap@hn 2 that replaces missing
HMMs, to compensate for the too small size of th&ining sets, increases the
recognition rate by 5 to 10%f( Table 4.3-2). In the next sections, we use context
dependent HMMs only with this inheritance mechanism

Table 4.3-2. Recognition rates using inheritancemaism aggregated over the whole
EMA-PB-2007 corpus

Context NO-CtX L-ctx ctx-R L-ctx-R

Average over 5 folds  #allophones  #allophones  #hbtops | # allophone

\°Z4

Correct, Acc (%) Corr| Acc| Corr Acd Corr Acc Cofr @&d
Trained HMMs 36 291 292 591
88.67| 68.45 90.69| 74.22 91.13| 73.85| 83.62 66.98
Inheritance of missing 36 326 327 916
HMMs 88.67| 68.45| 93.20| 79.67 94.56| 82.54 87.97| 75.50

Impact of tied-states and multi-Gaussian mixture gpeech recognition

In order to improve the robustness and accura¢le@HMM acoustic models, we have
implemented a decision tree-based state tying nmésina(Younget al, 2009) that
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allows grouping similar states corresponding tdedegnt HMMs to improve statistics
reliability when the number of occurrences is tow.l In particular, this makes it
possible to use multiple mixtures component Gauasgistributions to refine the single
Gaussian ones and to improve context-dependency.

The average number of states was about 108, 8B3a8d 1773 for HMMs without
context (no-ctx), with left (L-ctx), right (ctx-Rand both left and right (L-ctx-R)
contexts, respectively. Using tied states, this Inemof states decreases to 398, 385 and
673 for respectively HMM with left (L-ctx), right{x-R) and both left and right (L-ctx-
R) contexts. Note that we used the HTK defaultshodd for merging two states.

Once states’ tying was done, we varied the numb&anissians in the acoustic HMMs
from 1 to 12. Table 4.3-3 shows the associated raltained using the mechanism of
missing HMMs inheritance for the context-dependdMMs, as well as the baseline
without tied states and only one Gaussian per &tateach HMM ¢f. Table 4.3-1). The
best results are found using context dependent Hisidis8 Gaussians.

Table 4.3-3. Recognition rates (Perc@urrect, Accuracy) aggregated over the whole
EMA-PB-2007 corpus as a function of number of Ganss The rates of states
reducing (tied-states) are about 55%, 57% and 684 fctx, ctx-R and L-ctx-R,
respectively.

Context no-ctx L-ctx ctx-R L-ctx-R
# Gaussian Corf  Acc| Corr  Acq Corr  Acc Corr Acg
1 (Baseline) 88.61 68.4b 93.20 79.67 94582.54 | 87.97| 75.50
1 (tied-states) 92.10| 80.05 92.80 79.73 | 87.58] 73.92
2 88.99| 70.35 9259 81.28 93.180.94| 88.35| 75.14
4 89.58| 76.10 93.52 83.3‘5 94.1B3.66 | 89.05| 76.61
6 90.57| 79.22 94.30 84.86 94.885.28| 90.03| 76.88
8 91.24| 81.05 94.64 85.61 9528551 | 90.65 76.99
10 91.96| 82.33 9490 84.99 095.8B5.17 | 90.56 75.88
12 92.57| 83.25 95.01 84.33 95.2B4.97| 90.67| 75.16

Impact of the phonetic language model on acoustiesch recognition

In the previous experiments, we used a bigram tap language model trained on the
phone transcription of the whole corpus. To evauhe impact of the language model,
we used the HMMs that provided the best results@uised-states and 8 Gaussians per
state).

The contribution of the acoustic and language nsdeh be parameterised using two
parameters: the grammar scale factor and the imsgrenalty which were previously
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used with their default values of 1 and O, respetti The grammar scale factor

parameter controls the preference of the probgb#itale between acoustic and

language models. In addition, the penalty scordrotathe preference of the number of
allophones. When the penalty score is set to & leatpe, the system prefers to produce
the recognition result that has a large numbetloplaones. However, the side-effect is

a large number of insertion errors. Because oflitheed number of phones in each

utterance of our corpusesf.(Chapter 3), we fixed the insertion penalty-20. In order

to recognise phoneme sequences respecting Frermmiotpltics, the grammar scale

factor was increased &

Table 4.3-4. Influence of parameterisation on ragtgn performance on the EMA-PB-
2007 corpus

Context No-Ctx L-ctx ctx-R L-ctx-R

Tuning Corr| Acc| Corr| Acc| Corm Acc Corr Acc

Scale factor = 1
Penalty =0

91.24| 81.05 94.64 85.61 95.22 85,51 90.65 76.99

Scale factor = §
Penalty = -20

88.08| 86.45 93.33 90.72 93.%8 90,50 87.69 82.76

We have finally tested four language models thgbtlé@ment grammar networks in
which the probabilities that one allophone candfellanother are recorded. The first
bigram model used (bigragyuy Was trained on the phone labels of the whole usirp
In order to be close to a more realistic situatiwa,trained a bigram model (bigrasm)

on the labels of only the training set of the carpWwe used also a specific language
model — known as phone loop model — in which amgphlbne can follow any other
allophone, and is thus transparent. Finally, weeggetied a bigram model (bigragondd
from the phone transcription of the year 2003 o ‘Monde” newspaper. Table 4.3-5
shows the recognition rates obtained with theseltmguage models.

Table 4.3-5. Impact of the language model on rettmgnperformance on the EMA-
PB-2007 corpus

Context No-ctx L-ctx ctx-R L-ctx-R

Language model Corr | Acc | Corr| Acc| Corr| Acc| Corrf Acg
bigramopus | 88.08| 86.45 93.33| 90.72 93.58 | 90.50 87.69 | 82.76
bigramain 86.88| 85.62 89.63| 84.18 89.07 | 82.97 83.03| 75.47

Allophone loop | 56.61| 56.00 57.80| 57.50 57.40| 56.87 55.41 | 54.99

bigramemonde | 86.10| 85.44 88.69| 84.31 89.71| 86.19 89.51 | 86.35
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We see that the language models lead to recogratioanracies about 25% higher than
the phone loop-grammar. The best recognition perdmce (accuracy of 86.19%) was
achieved using a bigram allophone language modaied on “Le Monde” and right
context (ctx-R) HMMs. This is the configuration dstor the articulatory trajectories
synthesis in the following,

4.3.1.2Articulatory synthesis

As described in Chapter 2, the synthesis is peddrias follows: a linear sequence of
HMM states is built by concatenating the correspogdegmental phoneme HMMs,
and a sequence of observation parameters is gedeusing a specific ML-based
parameter generation algorithm (Zetnal, 2004).

Via this HMM-based approach, the articulatory tcégeies can be inversed from speech
alone or from speech and labels. For these casestate sequence can be generated
using the trained acoustic HMMs by decoding theeansspeech directly or by forced
alignment of the original phone labels. Note tha¢ forced alignment method is
equivalent to perfect recognition. In order to assthe contribution of the trajectory
formation to errors of the complete inversion pohae, we synthesized the articulatory
trajectories using a forced alignment of the statesed on the original labels, emulating
a perfect acoustic recognition stage.

The inversion configuration is 8 Gaussian mixtupes shared state for the acoustic
HMMs; the bigram allophone model trained on “Le Meh is used in recognition
stage; single Gaussians are used for the articylatnrt of HMMs; multistream HMMs
are trained by MLE.

Table 4.3-6. Inversion performances using the Miaiithing method on the EMA-PB-
2007 corpus

Input Criteria no-ctx | L-ctx | ctx-R | L-ctx-R
Audio and label§ URMSE 1.79 1.49| 1.50 1.41
RMSE 1.86 154 155 1.45
PMCC 0.91 0.93| 0.93 0.94
AcCart 71.13 | 81.01] 88.29 89.30
Audio alone MRMSE 1.85 1.63| 1.60 1.61
RMSE 1.92 1.69| 1.66 1.66
PMCC 0.89 0.91| 0.92 0.92
AcCart 69.39 | 76.94| 82.97 82.19

From Table 4.3-6, we can estimate that the cortidhwof the trajectory formation stage
to the overall RMSE amounts to nearly 90 %. Thlatneely high level of errors can
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likely be explained by the fact that the trajecttoymation model tends to over smooth
the predicted movements and does not capture pyopearticulation patterns. Note
that we have found that the missing HMMs inherieaneechanism decreases the RMSE
by about 0.1 mm.

Impact of state duration on articulatory speech skesis

In the inversion stage, the quality of HMM stateation can have an impact on the
articulatory inversion performance. The state dorabf the HMM is needed by the
parameter generation algorithm to generate trajestof the articulatory movement. In
the proposed inversion system, the HMM state domatan be derived directly from the
recognition stage. An alternative way is to decamdy HMM duration at the
recognition stage and to estimate the state dust# the synthesis stage using a z-
scoring model.

The effect of using different state duration prédits can be analysed by comparing
the global errors, which are reported in Table ZA.3F-able 4.3-7 shows the errors of
generated trajectories from decoded state fromamspeech compared to the estimated
duration by z-scoringVe see that the use of state durations produceiebecognition
stage results in an improvement of about 10 % fISE and about 4% for PMCC,
compared to the z-scoring method.

Table 4.3-7. Influence of state duration predictanthe performance of the
articulatory synthesis stage using MLE trained nisd® the EMA-PB-2007 corpus

State duration Criteria no-ctx | L-ctx | ctx-R | L-ctx-R
URMSE 2.09 1.80 1.80 1.72

determined RMSE | 218 | 187| 187 179
USlng Z-SCOI’Ing
method PMCC 0,86 | 0,89| 0,89 0,91

AccCan 61.99 | 71.47| 80.6( 78.73
MRMSE 1.85 1.63 1.60 1.61
decoded from RMSE 1.92 1.69| 1.66 1.66

speech PMCC 0.89 0.91 0.92 0.92
AccCart 69.39 | 76.94| 82.97 82.19

Impact of MGE for the articulatory speech synthesis

To compare the MLE and MGE training criteria, iteissential to look at the difference
between the two types of training method at thelmgis stage, thus using a perfect
recognition stage. The RMSE corresponding to theENihd MGE trained models are
displayed in Table 4.3-8. Note that the trajectoresre estimated using speech signal
and labels as input. We observe that all MGE tchiagiculatory HMMs consistently
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provide an RMSE greater than the MLE trained omés. differences are all significant
at p < 0.005 level using t-test. This confirms thyothesis that training will be most
effective when the training objective and the emsrasurement of the task match. For
the inversion task, the MGE training criterion ettler suited than the MLE one.

Table 4.3-8. Performances of MLE and MGE trainedleh@n the EMA-PB-2007
corpus using a perfect recognition stage.

Training method | Criteria no-ctx L-ctx ctx-R L-ctx-R
HRMSE 1.79 1.49 1.50 1.41
RMSE 1.86 1.54 1.55 1.45
MLE PMCC 0.91 0.93 0.93 0.94
AcCart 71.13 81.01 88.29 89.30
HRMSE 1.56 1.34 1.35 1.31
MGE RMSE 1.62 1.38 1.40 1.35
PMCC 0.92 0.94 0.94 0.94
AcCart 77.03 83.09 88.39 89.67

Table 4.3-9 shows the full inversion result of ENP&-2007 corpus. The recognition
rates of the sound signal were found using 8 Ganssoimponents from different tied-
states. The right context (ctx-R) again gives ltlest result for both recognition and
synthesis.

Table 4.3-9. Performances of the full inversiomgdVGE trained models on the EMA-
PB-2007 corpus

Stage Criteria no-ctx L-ctx ctx-R L-ctx-R
Acoustic Corr 86.10 88.69 89.71 89.51
recognition Acc 85.46 84.31 86.19 86.35
MRMSE 1.72 1.55 1.48 1.58
Inversion from | RMSE 1.79 1.61 1.54 1.64
audio alone PMCC 0.90 0.92 0.93 0.92
AccCan 74.49 78.46 84.56 82.73

As mentioned above, another way to assess therpeni@es of the inversion is to
display the coil coordinate spaces: Figure 4.34pldiys these spaces for the data
measured and those reconstructed by inversion il or MGE trained models in
right context (R-ctx) condition. We see that MGRds to less centralisation than MLE,
very likely in relation with less smoothing and teetattainment of the vowel and
consonant targets.
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m Original
= MLE

Figure 4.3-1. Articulatory spaces synthesised usitid- versus MGE trained models

superposed on the measured articulatory space (goayours, pertaining to
midsagittal articulators contours for a consonanbguced by the same speaker, are

plotted here to serve as a reference frame)

Figure 4.3-2, that displays an example of trajeesosynthesised using MLE and MGE,
confirms that trajectories generated by MGE aresarlato the measured ones than

trajectories generated by MLE.
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Figure 4.3-2. Sample of synthesised Y-coordinaggsdtories of andkal sequence

using MGE and MLE trained models compared to thasuesd trajectories.
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4.3.1.3HMM-based results

In order to assess the influence of the corpusenrversion performances, we analyse
in this section the inversion results obtainedwa other corpuses: EMA-PB-2009 and
MOCHA-TIMIT speakerfsew0

The same improvement described above was appliltese corpuses. We varied the
number of Gaussians for the acoustic HMMs. Fordtieulatory HMMs, using more
than one Gaussian did not improve the results,thacefore only one Gaussian was
used. Therefore, we used the MGE training critetmmprove the articulatory models.
Table 4.3-10, which displays the inversion resulting 8 Gaussians for the acoustic
HMMs, the RMSE and correlation coefficients for tH&M-based inversion, shows
that the use of phones in context increases tHferpgaince of the inversion. The EMA-
PB-2009 corpus contains more data than the EMA-BB~2ne. But the best results are
however not obtained for the phones with both rightd left contexts, but for the
phones with the right context.

Using a language model trained on “Le Monde” coypwe found an acoustic
recognition accuracy of 84.00 % for the phone ghticontext case. This rate gives an
RMSE of 1.45 mm and a correlation coefficient &.

Besides, to assess the contribution of the trajgdtymation to errors of the complete
inversion procedure, we also synthesized thesecta@jes using a forced alignment of
the states based on the original labels, emulatipgrfect acoustic recognition stage.
Table 4.3-10, we can estimate that the contributibthe trajectory formation stage to
the overall RMSE amounts to nearly 90 %. This neddy high level of errors can likely
be explained by the fact that the trajectory foioraimodel tends to over-smooth the
predicted movements and does not capture propearticulation patterns.

In order to compare our method to the literature, applied the improvement of the
acoustic and articulatory HMMs jointly initialisexh the MOCHA-TIMIT corpus. As
for the French corpuses, we found using a langoag@el trained on the labels on the
training corpus, 8 Gaussians on the acoustic HMMd ®IGE trained articulatory
HMMs that the right context (ctx-R) gave the bessult. Section 4.4 presents the
comparisons.
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Table 4.3-10. HMM-based inversion performance$heffrench EMA-PB-2009 and
the English MOCHA-TIMIT corpuses

Corpus Stage Criteria no-ctx L-ctx ctx-R L-ctx-R
Acoustic Corr 71.11 84.65 85.47 85.14
recognition Acc 70.81 82.71 84.00 83.77
HRMSE | 1.73 1.43 1.39 1.45
% Inversion from| RMSE 1.82 1.49 1.45 1.52
g audio alone | pPmMCC 0.84 0.90 0.90 0.89
i AcCart 66.83 79.07 82.89 80.85
= HRMSE | 1.46 1.29 1.25 1.24
Inversion from —puSE [ 153 | 1.34 | 1.30 1.29
audio and
labels PMCC 0.89 0.92 0.92 0.92
AcCar 77.15 85.86 89.42 89.56
Acoustic Corr 57,10 70,63 72,39 70,20
recognition Acc 55,82 67,89 70,20 66,30
% HRMSE | 1.85 1.68 1.66 1.79
2 Inversion from| RMSE 2.02 1.81 1.80 1.94
g audio alone | PMCC 0.72 0.78 0.78 0.74
'<_'z AcCart 55.66 59.84 63.86 57.53
T _ HRMSE | 1,56 1,51 1,49 1,51
Q Inversion from ™ psE T 1,68 1,61 1,59 1,62
audio and
labels PMCC 0,81 0,83 0,83 0,83

Accan 65.27 72.21 77.33 76.60

4.3.2.GMM-based method

As described in Chapter 2, the GMMs were traineadguthe EM algorithm with joint
acoustic-articulatory vectors as feature vectotse GMM-based mapping was then
applied using the minimum mean-square error (MMS&igrion. Todaet al. (2008)
showed that the use of feature vectors built bycatenating multiple acoustic frames,
employed as an input feature to take into accdumtdtynamic constraints on acoustic
parameters, is effective for improving the mappaeguracy.

Thus, if we denote byac(1:T, 1:na) the matrix of the 12 measured MFCC + log-
energy coefficients nhc = 13) and byYewa(1:T, 1:ngma) the matrix of EMA coil
coordinates with their first derivativesg(ya = 24), the joint feature vectarat each time
instant indexed by (t varies betweef andT, Tbeing the total number of frames) is the
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concatenation of @1’ sets of input acoustic frames used for contaixinformation
and one vector of EMA coordinates, as follows:

Z(t1im+ ) = PCA Y ( & 0t 1l p)), Wl L0 B)]  (43-D)

The number of input frames was varied from phonsime (n=4, ~90 ms) to diphone
size =6, ~130 ms), but the dimension&L)xnx.’ of the resulting vector was reduced
to a fixed value of 24 by Principal Component Aédy(PCA). Note that the silent
segments contiguous to the beginning and to theoérehch sentence are taken into
account for the computation of acoustic featurestie frames close to the beginning
and the end of the sentences. The number of migturgoonents was varied from 16 to
128. Each Gaussian is finally represented by acfmfariance matrix (4818), a vector
of means (48) and an associated weighting coefificie

Table 4.3-11 displays the performances of the GMiddead mapping using MMSE for
different parameters, using the EMA-PB-2007 corplise use of multiple acoustic
frames and multiple mixture components is cleadipful for improving the mapping
accuracy. The RMSE decreases when the number dlimesxincreases and reaches a
minimum for a context window of 110 ms. The modtely explanation is that a
diphone size window optimally contains the localopétic features necessary for
inversion.

Table 4.3-11. Inversion performances of the MMSg&edamapping as a function of
number of Gaussians (# mix) and of context sizg (ms

Size of context | Criteria 16 mix 32 mix 64 mix 128 mix
MRMSE 2.25 2.12 2.04 2.07
RMSE 2.37 2.22 2.14 2.17
90 ms
PMCC 0.83 0.85 0.87 0.86
AcCCat 44.86 50.35 52.42 49.31
URMSE 2.25 2.09 2.03 1.99
RMSE 2.36 2.19 2.13 2.09
110 ms
PMCC 0.84 0.86 0.87 0.87
AcCan 46.38 52.65 52.59 51.55
URMSE 2.25 2.10 2.06 2.10
130 ms RMSE 2.37 2.20 2.16 2.20
PMCC 0.83 0.86 0.86 0.86
AcCarnt 45.72 50.59 51.48 48.50
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4.3.2.1Impact of MLE for speech inversion mapping

To improve the mapping performance, the maximurelilood estimation (MLE) was
applied to the GMM-based mapping method as in (Tedaal, 2008). The
determination of a target parameter trajectory wafipropriate static and dynamic
properties is described in Chapter 2. The targgedtory is obtained by combining
local estimates of the mean and variance for eearhdp(t) and its derivative4p(t)
with the explicit relationship between static anghamic featurese(g. 4p(t) = p(t) —
p(t-1)) in the MLE-based mapping. In order to take intocunt coarticulation (Todet
al., 2008) (Tranet al, 2008), the acoustic information is taken from solime span
around the instant of interest. Besides, the dyosrof the articulators is taken into
account by considering the time derivatives ofdheulatory trajectories.

Table 4.3-12 shows the performance of the MLE-basagdping on the EMA-PB-2007
corpus. The best inversion precision is finallyasbéd for a combination of a 110 ms
window with 128 Gaussians that seems to constitike best representation of the
speech material. Moreover, we have found that tkieaeMLE optimisation stage

increases the performances by about 5 %, leadiag ®MSE of 1.96 mm and a PPMC
of 0.89.

Table 4.3-12. Inversion result of MLE-based map@a@ function of number of
Gaussians (# mix) and size of context (ms).

Size of context | Criteria 16 mix 32 mix 64 mix 128 mix
MRMSE 2.25 2.12 2.04 1.95
RMSE 2,37 2,22 2.13 2.04
90 ms
PMCC 0,83 0,86 0.87 0.88
AcCCart 44,72 50.05 53.03 54.97
MRMSE 2.25 2.08 2.00 1.89
RMSE 2.36 2.18 2.09 1.97
110 ms
PMCC 0.84 0.86 0.87 0.89
AcCCart 47.33 51.63 54.73 57.02
MRMSE 2.26 2.11 2.01 1.95
130 ms RMSE 2.37 2.21 2.11 2.04
PMCC 0.83 0.86 0.87 0.88
AcCCart 46.17 51.47 54.15 55.59

4.3.2.2GMM-based results

In this section, we evaluate the GMM-based mappmngthe EMA-PB-2009 and
MOCHA-TIMIT corpuses. For these corpuses, we appliee same improvement
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described above to evaluate the effectiveness efctiipus. The size of the acoustic
context window is increased by concatenating moegghbouring frames. The
dimension of the acoustic vectors is reduced tobg4using a PCA. The mixture
components are also varied from 32 to 128. Tab8138. provides the inversion
performances of both EMA-PB-2009 and MOCHA-TIMITrpases. It shows that the
RMSE decrease when the number of mixture increabe. best result was found using
128 mixtures and a phoneme size of the acoustitexbrwindow. The RMSE is
respectively 1.86 mm and 1.83 mm for EMA-PB-2009pos and fsewQ speaker of
MOCHA-TIMIT corpus. Notice that the uRMSE of MOCHRMIT corpus is 1.69
mm.

Table 4.3-13. Inversion performance of the GMM-basapping using MLE on EMA-

PB-2009 and MOCHA-TIMIT corpus

Corpus | Size of context| Criteria 32 mix 64 mix | 128 mix
LRMSE | 2.01 1.83 1.78
RMSE | 1.01 1.92 1.86
90 ms
PMCC | 0.81 0.83 0.84
. AcCa | 5499 | 5876 61.54
S LRMSE | 1.89 1.81 1.77
‘é’ 110 me RMSE | 1.98 1.90 1.86
3 PMCC | 0.82 0.83 0.84
= AcCai | 55.48 | 59.88 62.13
LRMSE | 1.90 1.80 1.77
130 ms RMSE | 2.00 1.89 1.86
PMCC | 0.81 0.84 0.84
ACCar 54.72 59.42 61.80
LRMSE | 1.77 1.88 1.69
RMSE | 1.93 1.73 1.83
2 0 ms PMCC | 077 | 078 | 0.80
2 AcCat | 4851 | 49.48 50.82
= URMSE | 1.76 1.71 1.69
= RMSE | 1.91 1.86 1.83
% 110 ms PMCC | 077 0.79 0.79
5 AcCat | 48.75 49.12 50.15
g LRMSE | 1.75 1.71 1.69
130 ms RMSE | 1.01 1.86 1.83
PMCC | 0.77 0.78 0.79
ACCar 47.84 48.02 49.42
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4.4.Discussion

In this section, we analyse the best results of Hbdded and GMM-based methods
found using the EMA-PB-2007 corpus. Figure 4.49ptlys the global RMSE statistics
for the HMM-based and GMM-based methods. It condirthat the global RMSE
obtained with the HMM-based inversion (1.54 mmipiser than that obtained with the
GMM-based one (1.96 mm). The resultstest2 (function in MATLAB) shows high
significant difference, (p<1%). This result is surprising if we refer to two thle most
elaborate experiments available in the literatuneg et al. (2010) found 1.08 mm with
HMMs whereas Zeret al. (2010) found 1.13 mm with trajectory GMMs. Evenitak
into account the fact that these experiments wersedb on different speakers and
languages, we did not expect such a differereepossible explanation for this
contrastive behaviour lays perhaps in the fact GstM-based techniques are more
appropriate to deal with unimodal mappings wheren& in source and targets are
largely synchronous, whereas HMM-based techniquesable to deal with context-
dependent mappings and delays between frameswstddiy state transitions.

08 $ =
: +

07 =

i

06 =

05 ol

g 04r- &

03 i s

02 i ‘ o

o — — ~

HMM GMM

Figure 4.4-1. Box plot, comparing HMM and GMM outpused to show the shape of
the distribution, its central value, and variabylitThe graph produced consists of the
most extreme values in the data set (maximum andnoin RMSE), the lower and
upper quartiles, and the median.

Figure 4.4-2 that displays the phoneme-specific ENMSmputed over the centres of all
occurrences of each phoneme, sorted in ascenduhgy dor the HMMs. It can be

observed that the error is higher for back artiwoies than for coronal ones, possibly
due to a lack of frequency resolution in the higigbiencies of MFCCs. No specific
trend was observed for the individual RMSE for eaoh coordinates, except a lower
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error for the jaw than for other articulators (¥agure 4.4-3). The RMSE of the-
coordinate of the upper lip coil (upl_x) and theoordinate of the tongue back (bck_y)

shown in Figure 4.4-3 may explain the problem of @8for the phonemep b m/ and
/g k/, respectively. Figure 4.4-4 superpose the synbd coils spaces on the measured

ones and illustrates the difficulty to predict #méiculators shape for the GMM method.
The dark grey background corresponds to the spavered by the original 5132
phones and the light grey represents the recoy#redes
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Figure 4.4-2. Individual RMSEs for each phoneme.
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Figure 4.4-3. Individual RMSEs for each EMA caoil.
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GMM-based approach

Figure 4.4-4. Articulatory spaces of the EMA cddsthe phones sampled at centre.
Black: measured coordinates; grey: synthesized dioates.
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4.5.Conclusion

This first part of the chapter has presented thaluawion of the two acoustic-to-
articulatory speech inversion systems that we loweloped. The first system is based
on an HMM approach that couples an articulatoryespesynthesis system with an
acoustic speech recogniser instead of using atdmapping function. We have made
use of various techniques to improve the estimatibrthe articulatory movements.
Concerning the acoustic recognition stage, we haweased the recognition rates by
using multi-Gaussians mixtures, context-dependerdets, tied states, missing HMMs
inheritance. Concerning the articulatory synthetage, we have adapted the Maximum
Generation Error (MGE) criterium, proposed by Wual. (2006; 2008) for speech
synthesis, to include an extra training step fa #rticulatory HMMs in order to
improve the estimation of the articulatory trajes. Context-dependant articulatory
HMMs have also brought a significant improvement.

The second system is based on the GMM approaciptbeides a direct mapping from
the acoustic to the articulatory domain. We hawenshthat articulatory trajectories are
improved by using an MMSE-mapping based on a lamgat context window (about

110 ms) to get more contextual information on inputiculatory trajectories have been
also improved by increasing the number of mixtuAdghough the performance of the
system was improved, the estimated trajectoriidestid to centralisation effects due to
the impoverished phonetic contrasts of the GMM-tasethod.

The performance of our direct signal-to-signal magpGMM- based approach is
currently lower than that of our HMM-based approathis could be confirmed by a
perceptive test, but objective performances ateteth different to motivate such an
additional benchmark. As mentioned above, this taseere could be explained by two
reasons.

First, phonetic information is used explicitly irvi1-based system whereas the GMM-
based system only processes contextual frames.

Second, the training of the HMMs is most effectivieen the training criterion and the
task error measurement match. Therefore the HMMmead to minimise the final
reconstruction error are superior to the HMMs tedirito maximise the likelihood. On
the other hand, the GMMs were trained using the &g@brithm, but the mapping was
based on the MMSE-based method. The MLE-based wmhefindher improves the
inversion mapping performance of the GMMs. The M@&ning criterion will be
helpful on the re-estimation of the mixture paraangfor the HMMs.

The diagonal covariance matrix currently used fache state of the models in the
HMM-based system does not take into account thercmwce between acoustic and
articulatory parameters, whereas the GMM-basedesystlioes, by using a full
covariance matrix. In the future, we could testmibdelling the covariance between
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acoustic and articulatory parameters by would frriimprove the performance of the
HMM-based system. The real-time issue — i.e. theetdelay between acoustic input
and articulatory output — however pleads for theNbjpproach with a constant delay
equal to the mapping and synthesis time plus thebeu of contextual frames in the
future taken as input characteristics of the mapjfiess than 100 ms here). Real-time
HMM recognition and synthesis should be considangtle future.

Finally, it is interesting to compare our resutighose available in the literature. Table
4.5-1 summarises these results. Note that it fedif to directly compare these results
because the studies described do not allow comguedbout the optimal inversion
method since data, speakers and languages arénaysgully comparable. Moreover,
the corpora as well as training and testing cooitiare not completely comparable: as
an example, Ananthakrishnaat al. (2011) used a ten-fold cross-validation while we
used a 9/10 of the MOCHA corpus as training setthedremaining corpus as testing
set (without cross-validation). The best resultnidun the literature (Linget al, 2010)
may be due to a still larger corpus. Regardingréisellts that use the same training and
test distribution of fsewO speaker of MOCHA corp(d. Section 2.2), we can
approximately state that our HMMs results are ctosie best results in the literature.

Table 4.5-1 Comparison of inversion results (WRM®ENd in the literature. *
indicates that uRMSE was found using the samesgdtas Richmond (2002): files
whose numbers end with 2 for validation (46 uttees), those ending with 6 for testing

(46 utterances) and the remaining 368 utterancesrémning.

# sentences
Method Researchers Corpus _ . HRMSE
Size (min) (mm)
) 358 sent.
Hiroya et al, 2004 Japanese 1.73
(18 mn)
460 sent.
Zhanget al, 2008 MOCHA, 1.70*
fsewO (21 mn)
Ling et al, 2010 mnguO 1263 sent. 1.08
HMM EMA-PB- | 224 VCV, 1271 sent A
2009 (31.5 mn)
6t al 224 VCV, 109 CVC,
Ben Youssett al, EMA-PB- 88 sent. 1.48
2011 2007
(17 mn)
460 sent.
MOCHA, 1.66*
fsewO (21 mn)
460 sent.
GMM Todaet al, 2008 MOCHA, 1.45
fsewO (21 mn)
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MOCHA, 460 sent. 1.36
maskO
Zenet al, 2010 MOCHA, 460 sent. 1.13
maskO
MOCHA, 460 sent. 156
Ananthakrishnaret fsewO (21 mn) '
al., 2011
MOCHA, 460 sent. 1.45
maskO
EMA-PB- | 224 VCV, 1271 sent
1.77
2009 (31.5 mn)
ot al 224 VCV, 109 CVC,
Ben Youssett al, EMA-PB- 88 sent. 1.96
2010 2007
(17 mn)
460 sent.
MOCHA, 1.69*
fsewO (21 mn)
Richmondet al, MOCHA, 460 sent.
1.62*
2003 fsewO (21 mn)
ANN 460 sent.
Richmond, 2007 MOCHA, 1.40
fsewO (21 mn)
Richmond, 2009 mnguO 1263 sent. 0.99
460 sent.
SVM Toutios, 2005 MOCHA, 1.66*
fsew0 (21 mn)
Local Al Moubayedet al, | MOCHA, 460 sent.
. 1.52
regression 2010 fsewO (21 mn)
460 sent.
o MOCHA, 1.68*
Episodic Demangeet al, fsewO (21 mn)
memory 2011
MOCHA, 460 sent. 1.63
mask0

91







Chapter 5. Toward a multi-speaker visual artiariafeedback system

Chapter 5. Toward a multi-speaker
visual articulatory feedback
system

5.1.Introduction

Visual articulatory feedback systems aim at prowgda speaker with visual information
about his/her own articulation.

Ideally, our aim would be to provide any speakeaimy L1 or L2 language with his /
her own articulators animation. This is obviouslglallenge impossible to manage at
present. Previous chapters have described the taztararticulatory inversion that we
have developed for the reference speaker usediltbthe GIPSA-lab talking head. We
will describe in the present chapter the visuatalatory feedback system that we have
developed for this speaker in his L1 language.

Since our goal is to provide “any” speaker with uak articulatory feedback, the
inversion system needs to be robust and easy tut.ad& have developed an acoustic
adaptation stage that allows various speakers ¢othis system, though the visual
articulatory feedback is restricted to the talkhrepd of the reference subject, and does
not feature the articulatory characteristics spetif the speaker. Figure 5.1-1 shows the
three components of our visual articulatory fee#tbsystem: (1) the speech inversion
mapping based on statistical models trained usaogistic and EMA corpus recorded
by a French speaker presented in chapter 2, (2acbastic speaker adaptation stage
that will describes in the present chapter andh{8)animation of the talking head from
inversed EMA trajectories.
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Figure 5.1-1. Different components of our visudi@ratory feedback system

The present chapter concentrates on the developofights multi-speaker adaptation
system. As shown in Chapter 4, the HMM-based ingarsystem reaches better results
than the GMM-based one. Therefore, we used the Hd\aktd technique to build a first
multi-speaker system.

The present chapter is organised as follows. Se&i® summarises the characteristics
chosen for the HMM-based inversion system thatgihe best results. In section 5.2,
we propose a procedure to adapt our multimodal HMiMghe acoustic domain by
using maximum likelihood linear regression (MLLRJhe methodology used for
evaluation and experimental results are presemesggtion 5.4. Section 5.5 describes
the concrete prototype of our visual articulatoegdback system, where the talking
head is animated automatically from the audio dpesignal, using HMM-based
acoustic-to-articulatory inversion. Finally, congllons and perspectives are presented in
section 5.6.

5.2.Inversion based on Hidden Markov Models

Among the features of HMM-based inversion describethe previous chapters, we
have chosen the following ones in order to ensheebest results. The acoustic and
articulatory models used in this chapter were &dion EMA-PB-2007 corpus using

phones in right context (ctx-R), as they have ledhe best inversion results. The
acoustic HMMs were trained using the ML algorithnthweight Gaussians per state
with state tying. The articulatory HMMs were trathasing MGE criteria using one

Gaussian per state.
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In the framework of adaptation experiments desdrilpethe present chapter, we have
not used the complete cross validation procedune tiained the HMMs on the first
four partition of the EMA-PB-2007 corpus and tesbecthe fifth partition.

Table 4.3-9 shows the performances of the HMM-basedrsion system obtained in
this situation. Note that we used a bigram phoratiguage model trained on one year
of the newspaper “Le Monde”

Table 5.2-1. Performances of the HMM-based inversising 1/5 of the EMA-PB-2007
corpus for testing.

Stage Criteria ctx-R
Acoustic Corr 89,6
recognition Acc 85,92
HRMSE 1,54

Inversion from | RMSE 1,60
audio alone PMCC 0,92
AcCat 83,70

5.3. Acoustic speaker adaptation

In general, adaptation techniques are applied ttebbenodel the characteristics of
particular speakers. Compared to other approadh@sed on GMMs or ANNs for
instance), the mapping between acoustic and aatmyl modalities using HMM-based
approach is not performed at the feature level,dbuhe phonetic level. Based on this
consideration, we investigated the possibility terfprm the inversion by directly
decoding the new speaker’s speech at this levelalg® the accuracy of the inversion
process depends strongly on the performance ofldueding stage, an alternative is to
adapt the reference speaker modets the speaker used to build the original speech
inversion system) to the characteristics of a npgaker in the acoustic domain using a
small amount of training or adaptation data. Tisisactually a standard approach in
multi-speaker acoustic recognition (Leggetter andodfand, 1995; Younget al,
2009).

To build the adaptation database, the new speakesked to utter a corpus of
adaptation sentences. The adaptation procedureeriermed as follows. First, the
speech signal is automatically segmented at theqilwlevel using forced-alignment
and the acoustic models trained on the referendgedu Then, the Maximum

Likelihood Linear Regression (MLLR) technique isedgo adapt each acoustic HMMs.
This additional stage makes the models of the eafe¥ speaker compatible with the
new speaker's voice, but also with a different a&tiouenvironment. The MLLR
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approach estimates linear transformations for nsogelrameters to maximise the
likelihood of the adaptation data (Leggetter andodiand, 1995).

MLLR-Mean updates the model mean parameters to mseithe likelihood of the
adaptation data uttered by a new speaker. The bt parameters are not adapted
since the main differences between speakers atemasisto be characterised by the
means. In other words, the adapted mearase defined as

a=b+Au (5.3-1)

where prepresents the n-dimensional vector of meakshe nxn transformation
matrix, and b represents a bias vector. This rotatan also be written as in equation

(5.3-2), wheref =[L,x] andW =[h A
J=W.E (5.3-2)

The transformation matrix W, defined for each modsl estimated such that the
likelihood of the adaptation data is maximised aatisfies

W =arg maxP( Q |/1W) (5.3-3)

where Q are thep observed utterances associated with the model, Ands the
adapted model.

To improve the flexibility of the adaptation proseshe matrixXW in equation (5.3-3)
should not be estimated for every mixture composepirately. Instead, it is possible
to combine several mixtures in one regression ctEgsending on the amount of
existing adaptation data. A global transform classapplied to every Gaussian
component in the model set when a small amountatd s available. When more
adaptation data become available, the number p$fisamations can be increased and
improves the adaptation stage. For instance evecyov of means in one class is
transformed by the same matrix. This has the adgandf clustering the related mixture
components that should be transformed in a simily (e.g. mixture components that
are acoustically or phonetically related), andnaféasing the amount of adaptation data
for one matrix.

Depending on the available amount of adaptatioa,d#lLR use aregression class
treeto group the Gaussians in a set of model andaosshthe set of transformations to
be estimated. The tying of transformation classe&a®s possible to adapt Gaussians
that do not have any observations at all. Consdtyjeall models can be adapted and
the adaptation process is dynamically refined whesre adaptation data becomes
available.
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5.4.Experiments and results

5.4.1.Articulatory recognition

Since no articulatory data are available for 3hw#f # speakers used in this study, it is
impossible to determine the RMSE between the medsamd the predicted articulatory
trajectories. Therefore, we have based the evaluain the automatic “articulatory
recognition” of the predicted trajectories, as exptd in Chapter 4. Table 4.2-2 shows
the performance of the articulatory recognitiontegstrained on the first four partitions
of the EMA-PB-2007 corpus. These articulatory (RixHMMs have been then used to
evaluate the inversed articulatory trajectoriesalbspeakers.

Table 5.4-1. Articulatory recognition rates of tieasured trajectories of the
remaining fifth partition of the EMA-PB-2007 corp{percent correct and accuracy)

ctx-R Correctar AcCCart
Rates (%) 89,54 85,51

5.4.2.Evaluation of the predicted articulatory trajectas of
new speakers

The acoustic adaptation technique described aibsest3 was applied to adaptation of
the acoustic HMMs trained on 4/5 of the originaéalper’s corpus using 4/5 of the new
speaker’s corpus as adaptation set; the remaibh@flthe new speaker’s corpus was
used to test both acoustic recognition and artiotyarecognition of the recognised and
inversed new speaker’s voice. As described in Ghahtthe sentences used for subject
TH for the adaptation were the same as those usedrdining the initial acoustic
HMMs on PB. In order to avoid possible overtrainthgt may occur when using 5-fold
cross-validation for both the reference articuhatdraining and the new speaker
adaptation, and to avoid the complexity of explgriall possible combinations of
learning and testing partitions for both refereand new speaker, all the test have been

applied using the first 4/5 of the corpus for traghor adaptation and the last 1/5 for
testing.

Figure 5.4-1 shows an overview of the inversion pmag from the acoustic signal of
the new speaker SPKR to the articulatory trajeetoastimated in the PB space. Note
that the intermediary stage of acoustic recognivas also evaluated.
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Figure 5.4-1. Overview of multi-speaker inversicapping and evaluation

Table 5.4-2 shows the various acoustic and artioryarecognition rates: acoustic
recognition of the 36 phonemes, acoustic recognitib the 631 allophones in right
context, and articulatory recognition of the 18 plime classes. We observe that subject
TH has performances very close to those of refer®&®; this could be explained by the
fact that his corpus was recorded in an imitaticden he imitated each sentence after
being prompted by the audio recording from PB, Whiould favour similar dynamics.
Oppositely, the worst performances are obtained féonale speaker AC, both at
acoustic and articulatory levels, which may be iasdr to the sex difference, and the
difference in size and content of the corpus —valig only 192 adaptation sentences.
Intermediate results are obtained for speaker G, thve intriguing degradation of the
articulatory score compared to the fairly good aticuone. However, a more thorough
analysis of the acoustic recognition has showntt@atccuracy rates for the set of 631
allophones in right context (ctx-R) were much lowan for the 36 French phonemes
for this speaker (see Table 5.4-2). This was cowdd by the observation of the detailed
recognition rates for vowels which showed some usioh between different contexts.
Comparing the difference between the recognitidesrafter and before the adaptation
stage, Table 5.4-2 shows that the MLLR adaptati@thod increases the recognition
accuracy of the HMM-based inversion system by 4®®86 for both acoustic and
articulatory rates.

98



Chapter 5. Toward a multi-speaker visual artiariafeedback system

Table 5.4-2. Acoustic and articulatory recognit@ccuracy for all the speakers, using
1/5 of the corpus for testing.

Speaker PB TH GB | AC
Acc (%): Acoustic Phonemes before adaptation 43,6 | 16,99 10,46
Acc (%): Acoustic Phonemes after adaptation 85.83.77| 79.12| 62.81
Acc (%): Acoustic Allophones (ctx-R) after adapbati | 79.88| 76.53 66.77| 48.01
Accart (%): Articulation before adaptation 29,44| 20,04| 14,43
Accar (%): Articulation after adaptation 83.10 82.289.46| 56.77

5.4.3.Performances degradation when reducing the adapiati
corpus size

In order to analyse the effect of the size of tepsation corpus, we have used the two
repetitions of the VCV sequences recorded by “THd @ahe models trained using
EMA-PB-2007 corpus, and varied the size of the tatagn corpus. The first repetition
(274 VCVs) was used for test, while a variable by chosen subset of the second
one (292 VCVs) was used for adaptation. Note thaintumber of possible VCVs is 266
(i.,e. 19 x 14), but some of them were recorded twicgui@ 5.4-2 illustrates the
influence of the corpus size on the adaptationgoerdnce. When we use all the
repetitions in the adaptation stage, the accurdcthe@ acoustic recognition stage is
85.89 %. The acoustic recognition accuracy decsetrsd5.47 % when we use only 7
randomly selected VCVs.

In a second experiment, we tried to evaluate tiaance of the random selection: we
drew 5 times a selection of 8 VCVs for adaptatiangd made the test with the same
material as for the first experiment. We found aaten of about 10 % of the acoustic
recognition accuracyi.e. from 44.08% to 53.14%), which gives an idea of the
reliability of results displayed in Figure 5.4-2.

99



Chapter 5. Toward a multi-speaker visual artiariafeedback system

10C
90
80

70
60 N TN

50
40
30
20
10

Acc (%)
[

292146 98 73 59 49 42 37 33 30 27 25 23 21 20 19 18 17 16 15 14 13 12011918 7
Number of VCV used for adaptation

Figure 5.4-2. Influence of the corpus size on tbeuatic adaptation performance

5.5.Visual articulatory feedback demonstrator

In 2004, a tool was developed at GIPSA-lab to atentize talking head with its visible
articulators’ modelsg.g. Odisioet al.(2004)): this animation software uses articulatory
control parameters files and associated audio figsroduce audiovisual sequences in
real time. This software has been extended to d&clan inversion procedure that
computes these articulatory control parameters ftbhen EMA coils coordinates, as
described below.

5.5.1.Animation of the talking head from EMA

A first possible approach to animate the talkingches based on the conceptnobtion
capture used in the film animation domain (Joon, 2009)emhthe movement of a
small number of markers attached to specific locetiof articulators are monitored and
acquired. In our case, due to the difficulty of egging internal articulators such as the
tongue or the velum, we use ElectroMagnetic Aroguhphy (EMA). After appropriate
scaling and alignment, the coordinates of the aniésobtained in the same coordinate
system as the models. As demonstrated in (Batlial, 2010), this information is
sufficient toinversethe articulatory models of the talking head, to recover using an
optimisation procedure, the control parameters ¢ina the best fit in the midsagittal
plane between the modelled 3D surfaces and the codrdinates position. Figure 5.5-1
displays an example of coils and associated astiotd shapes.
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Figure 5.5-1. GIPSA-Lab’s talking head showing @néculators shapes with the EMA
coils positions

5.5.2.Demonstrator of the visual articulatory feedbackstgm

The visual articulatory feedback demonstrator that have developed using HMM-
based speech inversion mapping contains seveliahsgiroposed to the user:

* Recording a proposed utterange.(VCV, CVC, sentences of the EMA-PB-
2007 corpus) used for adaptation. The number ofréeerded utterances is
chosen by the user.

* Online animation of the talking head from user’sceo Note that in this option,
we invert the user’s speech to the EMA coils cauaites trajectories, which are
then used to control the talking head. The sequehdee recognised phones is
displayed to give an idea of the robustness o&tteptation stage. If they are too
many acoustic recognition errors, the user candée@cording more adaptation
utterances to improve both recognition and inversesults.

» Offline animation of the talking head from audiodaassociated EMA coils
coordinates trajectories files.

Figure 5.5-2 gives an example of articulatory weyeaes estimated from the audio
signal with HMM-based mapping techniques; the alatons produced by the talking
head from the estimated EMA parameters are disgl&yeeach phone to illustrate the
complete demonstrator.
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el
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Figure 5.5-2. Top: Example of measured articulatwajectories (thick line) and
estimated using HMM-based mapping (thin line) ftbeaudio speech alone for the
VCV [eke] (only tongue EMA coils are displayed). Bottom:r@sponding animation of
the talking head (only one frame per phoneme glaygd).
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5.6.Conclusion

This chapter has described a multi-speaker HMM-tas®ustic-to-articulatory speech
inversion system that has allowed us to developisamaVl articulatory feedback
demonstrator.

As a first step toward a multi-speaker system, meestigated the use of an MLLR
model adaptation technique. The quality of thecalditory trajectories was evaluated by
measuring the performance of an articulatory HMMdzh phonetic decoder.
Recognition accuracies range between 56.8 % artl98Zor three speakers, compared
to 83.7 % for the original speaker, demonstratireginterest of the method.

It is now needed to test more speakers, and ty shwile explicitly the influence of the
nature and size of the adaptation corpus.
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Chapter 6. Face-to-tongue mapping

6.1. Introduction

The techniques described in Chapter 2 for acoustarticulatory mapping can be
applied in a straightforward manner to face-to-t@gnapping,i.e. reconstructing
tongue shape from face shape. Since more thanameethe question whether tongue
shape can be predicted from lips and face shapeléed still debated ((Yehiet al,
1998), (Jianget al, 2002), (Bailly and Badin, 2002), (Engwall and Bas, 2003),
(Beskowet al, 2003)). So far, these studies were all basedr@al modelling. The
present Chapter revisits this problem with the nmswphisticated mapping techniques
that we have described above, and compares thiksr@sth those obtained with linear
models using the articulatory data of the EMA-PEB2@orpus.

The present chapter is organised as follows. Se&id presents the state-of-the-art in
Face-to-Tongue inversion, Section 6.3 describethhee approaches explored and the
evaluation of the results. Section 6.4 presentsdibeussion. Finally, conclusions are
presented in section 6.5.

6.2. State-of-the-art

All the studies found in the literature used simdaticulatory data: one point on the jaw
and three points on the tongue recorded by EleamitoGraphy (EMA),
simultaneously with face and lip movements captimg@ marker tracking devices (12
or 18 Optotrak points in Yehiet al.(1998), 17 Qualisys points in Jiaggal.(2002), 25
Qualisys points in Engwall and Beskow (2003) andsk®ev et al (2003)). By
exception, Bailly and Badin (2002) use midsagittatours traced from X-ray pictures:
the tongue is represented by the parameters oflsagittal articulatory model that fits
its shape, while the face and lips are represebyethose of another associated 2D
model. A tongue model is also used in Engwall aegk®w (2003). Note that tongue
and face / lips data in Yehgt al. (1998) were not acquired simultaneously and had to
be time aligned by Dynamic Time Warping (DTW).

The size and nature of the corpus vary a lot: ademtences repeated 5 times by one
American English speaker (total ~400 syllables) drnitmes by one Japanese speaker
(total ~400 syllables) in Yehiat al. (1998); 69 CV syllables with /a, i, u/ and 23
consonants, and 3 sentences repeated 4 times &8l syllables) by four American
English speakers in Jiangt al. (2002); 45 frames selected at the centre of VCV
syllables produced by one French speaker in Baiily Badin (2002); 63 VCV with /a i
u/ context uttered once by one Swedish speakemgwigll and Beskow (2003); 138
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symmetric VC1{C2C3}VCV, 41 CVC and 270 short sertes (total ~2500 syllables)
uttered by one Swedish speaker in Beslebdwal.(2003).

All studies use Multi Linear Regression (MLR) tcedict tongue data from face data.
The inversion is assessed by computing Bearson product-moment correlation
coefficient (PMCC) between measured and predicted data. lack-Knife training
procedure, the data are split imgoarts of whichin -1) are used to determine the MLR
coefficients, and to predict the-th remaining part. The PMCC coefficient is the
average over tha values of the correlation coefficients betweeraotgd by the jack-
knife procedure. The factar is set to 4 or 5 in Yehiat al. (1998) and Jiangt al.
(2002), to 1 in Bailly and Badin (2002), and to ibhCEngwall and Beskow (2003) and
Beskowet al.(2003).

Results are summarised in Table 6.2-1. The firs hefers to tongue coils receptors:
(Tx, Ty), (Mx, My) and Bx, By) correspond to the horizontal and vertical midgabi
coordinates of the coils attached respectivelyhotongue tip, the tongue middle, and
the tongue back; moreovds, refers to the PMCC computed over the six coordmat
For (Bailly and Badin, 2002) and (Engwall and Besk@003),TB, TD, TT and TA
(light gray in Table 6.2-1) refer respectively toettongueBody Dorsum Tip and
Advancecontrol parameters of the articulatory tongue ndéem their results, (Yehia
et al, 1998) claim that the tongue can be recoveremnrzddy well from facial motion;
however, if we exclude jaw and lips coils from theredicted data, we find only
medium correlations (0.65 — 0.79). Medidnhigh correlations are found in (Jiang
al., 2002), whereas lower correlations are obtaine(Emgwall and Beskow, 2003), and
also by (Bailly and Badin, 2002) and (Engwall andsBow, 2003) when using an
articulatory model to track speech movements. Garger corpus, (Beskowet al,
2003) gets a still lower global correlation.

Interestingly, tongue tip (eith@iy or TT) appears to be the tongue region best recovered
in all studies: (Bailly and Badin, 2002) suggekt this may be ascribed to the fact that
the jaw is an articulator with a strong influencelmth labial and lingual shapes.

Phonetic context has a clear influence on the t®siibnget al.(2002) and (Bailly and
Badin (2002) note that results are better for Ghdlables than for C/i/ and C/u/
syllables, while Engwall and Beskow (2003) des@ibemore complex pattern. Bailly
and Badin (2002) remark that articulations assowaa jaw/tongue/lips synergy along
the axis closed/frone(g.[i]) vs. open/backd.g.[a]) are more accurately recovered than
those requiring constrictions deviating from thymergy. In complement, Engwall and
Beskow (2003) note that face information is inmight to accurately predict a non
alveolar vocal tract constriction, which is in liméh Bailly and Badin (2002).

The fact that the lowest mean correlation is olet@im the study with the largest corpus
(Beskowet al, 2003), in complement to the fact that correlagiane higher for CVs in
context than for sentences (Jiaagal, 2002) suggests that linear methods may be
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efficient for restricted ranges of articulationst kess able to cope with the full range of
speech movements.

Table 6.2-1. Correlation coefficients for each ERWordinate bold for maximum and
italics for minimum values) for the various studies

Tx [ Mx | Bx | Ty | My | By | Mean
0,66|0,66|0,71|0,68| 0,57| 0,60| 0,65
0,81|0,83|0,83|0,76(0,80| 0,72| 0,79

(Yehiaet al, 1998)

. 0,721 0,69| 0,71 0,74
(Jianget al, 2002)

0,80| 0,85 0,85 0,83

(Beskowet al, 2003) 0,52

0,83|0,72|0,68|0,83| 0,35/ 0,80| 0,66
(Engwall and Beskow, 2003) | TA | TB | TD | TT
0,26| 0,54| 0,40| 0,75 0,49
(Bailly and Badin, 2002) 0,37|0,71|0,64| 0,74 0,62
MLR |0,58|0,61|0,58|0,78|0,55|0,39| 0,59
HMM |0.71]0.70|0.72| 0.79| 0.68| 0.55| 0,70
GMM |0,83|0,82|0,80|0,87|0,81|0,63| 0,80

(Ben Youssett al,
2010)

6.3. Evaluation

6.3.1.Multi Linear Regression modeling

Following the previous studies described abovehaee first modelled the relations
between face and tongue coordinates by a Multi drineegression (MLR) model.
MLR allows finding the matriXA that ensures the optimal fite. the minimal RMSE
between measured and modelled parameters, as:
Yir = AXYe (6.3-1)

whereY(1:N;, 1:ng) is the matrix of theyr = 6 measured face coils coordinatelx([
Jy, ULX, ULy, LLx, LLy] defined as input) for thi; time instants of théestingset, and
Yer(1:N,, 1:ny) is the matrix of ther = 6 tongue coils coordinatesT§, Ty, Mx, My, Bx,
By] defined as output) estimated for ttesting set. The linear model matri&(1:ng,
1:ny) is classically computed over thraining set as:

A=(YY )Yy, (6.3-2)

107



Chapter 6. Face-to-tongue mapping

whereY(1:N, 1:ny) andYg(1:N, 1:ny) are the measured tongue and face coordinates for
the N time instants of théraining set. The errors betwedfi; andY,r are presented
below.

6.3.1.1Evaluation of the MLR-based inversion

The inversion based on the MLR model led to an RM$B.88 mm and a PMCC of
0.59, using the jack-knife evaluation procedureorter to compare our results to those
of the other studies, we made complementary experisnon reduced speech material:
using one repetition of the symmetrical VCV, wheZeis one of the 16 French
consonants and V = /i a u/ for training and theeottepetition for testing, the RMSE
was 3.29 mm and the PMCC 0.84, which is compardblethe other studies.
Interestingly, when adding the /y/ vowel — whictkmown to be a labial double of /u/ in
French — to the /a i u/ set, the RMSE rises to 387 and PMCC decreases to 0.77,
which confirms the difficulty to predict the tongwhape from the face shape for a
number of articulations.

6.3.2.HMM-based method

Table 6.3-1 that displays the RMSE and the PMCQGHerHMM-based mapping shows
that the best results are obtained for phones both right and left contexts. We also
found that the use of state durations producedeéydce recognition stage results in an
improvement of about 4 % for both RMSE and PMCQOnpared to the z-scoring
method. Besides, we also synthesised these tragsctlirectly from the original labels,
simulating a perfect face recognition stage, ineorb assess the contribution of the
trajectory formation to errors to the complete msi@n procedure, as done for the
acoustic-to-articulatory inversion. From Table 8,3-we can estimate that the
contribution of the trajectory formation stage ke toverall RMSE amounts to about
60 % on average; note that it was nearly 90 % fw &coustics to vocal tract
articulation inversion experiments described inftrst part of the present chapter. This
shows that recognition from face is much less igfficthan recognition from acoustics.
This is confirmed by the results given in Table-B.@&hich shows that — as expected —
the performance of face recognition is much lowantthat of acoustic recognition, by
30 % on average.

Table 6.3-1. RMSE (mm) and PMCC for the HMM in@rsvith different types of
contexts.

Phones from face Original phones

Context| no-ctx | L-ctx | ctx-R | L-ctx -R | no-ctx| L-ctx | ctx-R | L-ctx -R
RMSE 4,22 3,68 3,67 3,64 2,74 2,23 2,17 1,7
PMCC 0,55 0,68 0,68 0,70 0,85 0,89 0,9 0,9
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Table 6.3-2 Recognition rates (Perc&urrect, Accuracy) for phoneme recognition
from Face and phoneme recognition from Acoustics.

Context Nno-ctx L-ctx ctx-R L-ctx —R
Rates Cor Acc Cor Acc Cor Acq Cor Ac
Face 58.91] 47.86 71.28 46.93 71.03 4441 69.46 153.7

Acoustic | 88.90| 68.99 92.601 78.14 93.66 80/90 87.8BD.83

CJ

6.3.3.GMM-based method

Table 6.3-3 shows the RMSE and PMCC for experimasisg different numbers of
mixtures and context window sizes. The RMSE dee®asen the number of mixtures
increases. For 128 mixtures, the optimal contextdew size is 110 ms. The most
plausible interpretation is that a phoneme-sizeddaiv optimally contains necessary
local phonetic cues for inversion. Using the eltlizE optimisation stage was found to
improve the results by 5 %.

Table 6.3-3. RMSE (mm) and PMCC for the GMM inwer¢MLE) with different
numbers of mixtures (# mix) and context windowssizev).

#mix 16 32 64 128

Ctw RMSE| PMCC| RMSE PMCG RMSE PMCC RMSE PMCC
90 3.49 0.70 3.20 0.75 3.06 0.78 2.93 0.30
110 3.44 0.71 3.19 0.75 3.02 0.78 2.90 0.80
130 3.47 0.70 3.19 0.75 3.04 0.78 2.94 0.80
150 3.46 0.70 3.18 0.75 3.03 0.78 2.95 0.19
170 3.49 0.69 3.18 0.75 2.98 0.79 3.27 0.715

6.4.Discussion

This study has shown that the inversion methodedasn HMM, GMM and MLR
models give RMSE levels of 3.64, 2.90 and 3.88 respectively, and correlations of
0.70, 0.80 and 0.59. In order to set a referencéhfse results, we have also computed
(using the jack-knife method) the RMSE restrictedtlie three tongue coils for the
acoustic-to-articulatory inversion using a similgpproach ¢f. (Ben Youssefet al,
2009) for the HMMs): the results were much bettgéhwhe HMM mapping (RMSE:
2.22 mm, PMCC: 0.89), which was expected, but avbrtse with the GMM mapping
(2.55 mm / 0.86), which is surprising and unexmdinTable 6.4-1 shows that vowels /i
a/ are rather well reconstructed with all three hrods, while /y u/ are not. Note
however the surprisingly good result for /u/ wittvMIs, likely due to context effects.
Note also that, if the coronal consonant /t/ islwetovered, the velar one /k/ is not.
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This illustrates the general tendency that coroaadsrelatively well estimated, while
velars are much less, in line with (Engwall andk@sg 2003).

Table 6.4-1. RMSE for individual phonemes (mm).

Phoneme| i a u y p t k

GMM | 2.21|2.44|2.98|3.95|2.77|1.76| 4.81
HMM | 2.85|2.85| 4.03| 4.46| 3.59| 2.54| 5.25
MLR 3.42|2.88|3.91|5.77|3.72| 2.81| 5.50

12
10//‘5‘3 Qo \j
el
s 8 10 2
MLR
12p--mqmmmmmmr o T
11/j P m‘\
W~ o R
 RTeR
S 5 10 2
HMM
1

e

o S SOF AL

GMM

Figure 6.4-1. Dispersion ellipses of coils for pkeerwith errors larger than 10 mm for
at least one coil coordinate: original data (thikkes), estimated data (thin lines),
superposed on original data points for all phonlegh¢ grey dots). Note the general
backing of the estimates.
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Visual comparisons of the spaces covered by tHe metovered with those covered by
the measured ones have revealed a very strongneynder MLR to centralise the

articulations. HMMs maintain spaces very close e originals ones, while GMMs

induce a small retraction of these spaces; thig Bt surprising, as the RMSE and
PMCC estimations rank the GMMs before the HMMs.

Figure 6.4-1 illustrates this general centralisattendency for the phones having a
recovery error larger than 10 mm for at least oh¢he six tongue coils coordinates
(138, 221 and 71 phones for MLR, HMM and GMM regpety). The light grey
background corresponds to the space covered bgrifieal 5132 phones; the ellipses
that represent the recovered phones with high £ tbm lines) are much closer to the
centres of the corresponding originals spacest(tigby) than the ellipses that represent
the corresponding original phones (thick lines)isTiHustrates the difficulty to predict
important characteristics of tongue shape from &ape.

In another attempt to analyse and interpret thaltesFigure 6.4-2 shows confusion
matrices, considering only the central frame ofhegbone, separating vowels and
consonants. This was done based on the Mahaladiigience between each phone
class, using Matlal functions based on one-way multivariate analysigaoiance. The
observation of the matrices has shown that: (1)M&R, the classes for thegredicted
tonguesare identical to those for thmeasured faceswhich points to an erroneous
recovery; (2) for HMM and GMM, the classes for firedicted tongues are identical to
those for the measured tongues (with one exceftiotne vowels with the GMM), but
with much lower distances (a dendrogram distance afould have collapsed the
consonants in 2 or 3 classes for the predictedusdeaving intact the 9 classes for the
measured one), which also points to a low religbdf the inversion.

For vowels, the three groups are maintained byGh®. The linear transform merges
[u] and [y], while associating back vowela {&] to front ones {i]. For consonants,
GMMs maintains all classes, except fpg][that is split, and fort[d n] and f z] which
are merged, but correspond to the same dental datssthe lower distances. The linear
inversion splits jly] as the GMM, and alspp m fv]; it merges k¢] and ] that are
close, with [] which is quite different.
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Original tongue data

Face-to-tongue inversion by GMM

Face-to-tongue by linear mapping
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Figure 6.4-2. Confusion matrices of the tongue @moa estimated from facial
movement using three mapping approach on EMA-PB-208pus
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6.5.Conclusion

We have revisited the Face-to-Tongue inversion Iprabin speech. Using a much
larger corpus than previously in the literaturec@pt for (Beskowet al, 2003)), we
have assessed methods of different complexity aochd that GMMs gave overall
results better than HMMs, and that MLR did pooBMMs and HMMs can maintain
the original phonetic class distribution, thouglthhsome centralisation effects those are
still much stronger with MLR. Previous studies (Yebt al, 1998; Jianget al, 2002;
Beskowet al, 2003) gave fairly good overall results, presumdi#cause MLR copes
well with limited material: we have shown that flarger corpuses, MLR gives poor
results. As suggested by Jiamg al. (2002), more sophisticated context-sensitive
techniques have improved the results fairly mucbwebver, a detailed analysis has
shown that, if the jaw / lips / tongue tip synetips recovering front high vowels and
coronal consonants, the velars are not recoveradl. dh conclusion, it is not possible
to recover reliably tongue from face.
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Chapter 7. Conclusions and perspectives

7.1.Conclusion

The focus of this thesis was the inversion of attowssgnals to articulatory movements

based on statistical methods. These methods wexenmented in a visual articulatory

feedback system that automatically animates a 8{ntahead from the speech sound.
The visualisation of the articulatory feedback coble used in speech therapy and
computer aided pronunciation.

Using electromagnetic articulography, we recorded torpuses of parallel acoustic
and articulatory data and used them to train angdbtwo statistical methods that we
used to develop a robust acoustic-to-articulatpgesh inversion system.

The first system developed is based on HMM modéis. HMM-based method couples
a speech synthesis system with a speech recodmysgointly optimising a single
statistical model for both acoustic and articubatmformation using the multi-stream
functionality supported by the HTK toolkit. The i probability densities of the
acoustic and articulatory features are modelled cbptext-dependent phone-sized
HMM. Our experiments show that the minimum generagrror (MGE) training of the
articulatory stream improves the performance ofsystem, especially for the synthesis
task. States tying and multi-Gaussians mixture veti@sen in the acoustic stream for
the output distribution in each state to provideher modelling capacity.

We also studied in this thesis another inversiothoot we built GMM models that
map directly the acoustic features to the articujabnes. This method is inspired from
the speech conversion system proposed by Toda hikédr® (2005). The MMSE
criterion is used to predict the articulatory tcggies from the acoustic signal input, but
the quality of the inversed articulation is howesgéll insufficient for an articulatory
feedback system. Articulatorgrediction is then further improved by the use loé t
dynamic features in the MLE-based mapping.

We have benefited from the availability of artidoly data to study the relationships
between face and tongue movements using HMMs ani&tdchniques compared to
multi-linear regression (MLR) technique used in titerature. We found that GMMs

gave overall results better than HMMs, and that Mli& poorly. Overall results were

found not good enough to allow stating that it jlassto recover reliably tongue from

face. A detailed analysis showed for instancett@tvelars are not recovered at all.

In order to develop a multi-speaker system, we hased an MLLR adaptation
technigue to adapt in the acoustic domain the bid4Ms to the voice of any new

115



Chapter 7. Conclusions and perspectives

speaker. The evaluation of this method has beea dsimg an articulatory HMM-based
phonetic recogniser. Recognition accuracies dematesihe interest of the method.

Finally, we have developed a complete articulafesdback demonstrator, which can
work for any speaker with an adaptation procedheg tequires a limited amount of
acoustic data. A short vid@demonstrating the inversion of a few utterancekep by
speaker TH are available at http://www.qgipsa-lab.inpg.fr/~atef.ben-
youssef/recherches_en.html

The proposed articulatory feedback system coulduded in phonetic correction by
displaying the target movement produced by thehtsraand the erroneous movement
produced by a learner, and highlighting the diffiees. Using text-to-articulatory
synthesis, we can also display a phoneme sequeac¥CV, words...) to show to the
learner a correct articulation that (s)he can itaita

7.2.Perspectives

Our experiments have also shown that the objegerformance of our HMM-based
speech inversion system is currently superior t® direct acoustic-to-articulatory
mapping system based on the GMM models that we magkemented. Both systems
could be improved by incorporating visual infornoatias input and including this
additional information more intimately in the optgation process that will consider
multimodal coherence between input and output perars: lips are clearly visible and
jaw is indirectly available in facial movements. eTiMM-based system could be
improved by considering other dimensionality reducttechniques such as Linear
Discriminant Analysis (LDA) that are quite effeaivn HMM-based inversion (Traet
al., 2008).

Future work will also investigate different mappiteghniques recently described in the
literature, such as the low-delay implementatiothef GMM-based mapping approach
proposed by Muramatsat al. (2008), which is based on the maximum Ihedd
estimation of the feature trajectories, and thpragch based on trajectory HMM
proposed by Zen et al. in (2010).

This HMM-based demonstrator does not run in reaktiat present, but a real time
version of both voice conversion and inversion eyst based on GMM-based method
(i.e. unfortunately less accurate) has been developeHusberet al. (2011) on the
same data. A real-time implementation of the HMMdzhmapping approach is not as
straightforward as for the GMM-based approach. BAews) in equation (2.3-13), the
HMM-based mapping is not drame-by-frame process. The estimation of the

8 hitp://www.gipsa-lab.inpg.fr/~atef.ben-youssefiartiemo.flv
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articulatory features requires first the decodihghe most likely HMM state sequence
(for the given sequence of acoustic vectors). Ttiask, achieved by the Viterbi
algorithm, is based on a backtracking procedureé thns requires all observations from
the first to the last to be available. In conse@gerhis algorithm is not well adapted to
a real-time implementation. Different approachesghaeen proposed in the literature to
decode HMM online. In (Seward, 2003), the Viterlgaaithm is applied on a sliding
window of consecutive observations. The advantddlei® method is that the additional
delay it adds to the processing chain is constamd g¢qual to the length of the sliding
window). However, this method does not guarantes the sequence of successive
“local” paths is identical to the optimal patle. the path that would have been obtained
if all the observations were taken into accountittdnd Rodet (2008) proposed a short-
time Viterbi algorithm, in which the Viterbi algohim is applied on a sliding window of
variable length. Under certain constraints on th®IMH topology, the proposed
algorithm guarantees that the successive decodbd aee identical to the optimal path.
In this method, a constant maximum latency can dsoobtained by forcing a
suboptimal decoding when the window length excegdsredefined threshold. We
intend to implement a real-time version of the HMislsed mapping method in visual
articulatory feedback system, based on the shore tViterbi algorithm (Bloit and
Rodet, 2008).

Another important line of future work is to developethods with generalisation
capabilities for non-native speaker adaptatiorfpasnstance done by (e.g. Ohkawt
al., 2009). Indeed, it is important that the inversgystem can deal with L2 phonemes
that the learner cannot produce at the beginninig. therefore interesting to evaluate
the generalisation capacity of both HMM and GMMtsyss to some kind of universal
talking head. A preliminary experience on the gah&aition capacity of the HMM-
based technique was thus conducted. We assumethsleeof an L1 having the five

vowels systema/i u € o/ (e.g.Spanish or Japanese), and investigated the gesatiah

to an L2 as French which has also vowels e o y/ that may be difficult to learn.
Using a set of HMMs consisting of the original séttrained (ctx-R) HMMs models,
where only the models correspondingdad 41 € o/ were retained, and vowels o & o

y/ were excluded (keeping on average over the Stipag about 271 used models from

the 327 original ones), we have inverted all adowstinal of the test seté. containing

the sound corresponding to the eliminated mod€igure 7.2-1 shows that the global
RMSE computed over the whole corpus increases frd% mm when we inverse the
acoustic signal using all trained models to 2.02 fonthe models trained only with the

five vowels 4 i u € o/ and all consonants. Moreover, when we calcula@eRMSE by

phoneme, we find that the RMSE found using exisphgneme (trained) models is
doubled compared to the eliminated phoneme mottels ¢raining).
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M Existing models

3,5 M Eliminated models

2,5
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MRMSE (mm)

All /el /a/ /ce/ /ol ly/

Phoneme

Figure 7.2-1. Evaluation of the generalisation ceyyof the HMM-based method

A part of the generalisation problem is relatethifact that the HMM-based method is
based on a recognition stage, where the initiaticoaus acoustic signal is converted in
a chain of phonetic symbols: at the level, smadlustic variations in the acoustic input
are decoded into the same phonetic sequence andahtaken into account. In order to
make the inversion process more permeable to fn@tions, we aim take into account
the acoustic input feature on the articulatory Bgaits stage explicitly. In this case,
Equation (2.3-12) will be updated as:

p(Y[ %)= YAV, Q ¥ RAY, @ X (7.2-1)

For the synthesis Equation (2.3-18), we need o adull covariance matrix to regress
the distance between the acoustic input and thennoéahe decoded state on the
articulatory output space. The new equation wilupdated as:

V= (WSt W)W s (eSO e )

Finally, we aim to use this improvememe( non-native speaker adaptation approach
and use of the acoustic input in the synthesise$tagour visual articulatory feedback
system, based on acoustic-to-articulatory speegtrsion. Subjective tests will have to
complement our objective tests. Such tests coulblve real time perturbed
articulatory feed, in a way similar to that usedNdynhall et al. (2009) with perturbed
auditory feedback.
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This work will hopefully open possibilities for algations in the domain of speech
therapy or CAPT€.g. Engwall & Balter (2007) or (Badiet al, 2008a)). The system
we have developed (2010) is the most elaboratd&eddsystem available at present.
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Appendix A
Résumé en francais de la these

Cette annexe contient un résumé détaillé en frardtatravail effectué dans cette these.

1. Introduction

Il existe des preuves solides montrant que leesysst cognitifs et sensori-moteurs sont
largement couplés et que le liage intuitif entrstge articulatoires et leurs conséquences
audiovisuelles peut étre exploité par le systenregpdif: les articulateurs visibles, tel
que la machoire et les levres, améliorent lirgdilité de la parole (Sumby and
Pollack, 1954), limitation est plus rapide lorsdes gestes articulatoires sont visibles
(Fowleret al, 2003), et la vision des articulateurs cachés,naera langue et le velum,
augmente aussi l'intelligibilité de la parole (Badt al, 2010).

Il apparait donc que lparole augmentéec'est-a-dire la parole audio complétée par
d’autres signaux (vidéo, affichage des articulatecaichés tels que la langue ou le
velum a l'aide d'une téte parlante virtuelle, geste la main utilisés dans le langage
parlé complété par les personnes malentendante3, adfre des potentialités tres

intéressantes dans les situations de communicatioke signal audio lui-méme est

dégradé (environnement bruité, déficience auditete,), ou dans le domaine de la
rééducation de la parole (orthophonie, correctioongtique, etc.)

L'inversion acoustico-articulatoire, c'est-a-daaécupération des gestes articulatoires a
partir du signal audio ou audio-visuel, est en@meiellement un probleme difficile. La
principale difficulté consiste en I'absence de espondance directe univoque entre le
signal acoustique et le geste articulatoire : Atiabl. (1978) ont montré qu’'un grand
nombre de formes du conduit vocal peuvent prodierenéme signal acoustique.
L'utilisation de contraintes (contextuelles, lingtigues, etc.) a la fois suffisamment
restrictives et réalistes d'un point de vue phouoéti peut permettre de sélectionner les
solutions optimales.

L'objectif global de cette thése est donc de déo des outils d'inversion acoustico-
articulatoire et de construire un systéeme pouvaatyire de la parole augmentée a
partir du signal sonore seul. Plus précisémentsnawons tenté de construire un
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systéme de retour articulatoire visuel qui peug étiilisé pour I'apprentissage de la
prononciation assistée par ordinateur dans le easangues secondes, ou pour la
réhabilitation des troubles de la parole.

Ce qui suit est un réesumé de nos contributions.

Note : projet ARTIS. Le travail présenté dans c#ttese a constitué une contribution
importante au projet ANR-08-EMER-001-02 ARTIS endlamoration entre le GIPSA-
lab, le LORIA, 'TENST-Paris et I'IRIT. L'objectifrimcipal de ce projet de recherche est
de fournir de la parole augmentée par les artieulatvisibles et cachés au moyen d'une
téte parlante a partir du signal sonore de paelé@u avec les images vidéo du visage
de du locuteur.

2. Retour articulatoire visuel

Bien que la contribution de la vision des articelass externes (lévres, visage) a la
perception de la parole soit largement établiegtagdes sur la contribution de la vision
des articulateurs cachés tels que la langue ogllarva la perception de la parole sont
extrémement peu nombreuset Badinet al, 2010).

2.1.Retour articulatoire visuel pour la correction phonétique

La correction phonétique intervient dans deux doemi |'apprentissage des langues
étrangeres et la réhabilitation du langage. Dassdeeix domaines, les chercheurs ont
tenté de fournir aux apprenants/patients diveriasig portant de linformation
complémentaire au signal audio et liés a leur pctdn de parole.

Des recherches ont montré que les technologiesetimirr visuel, acoustique ou
articulatoire, peuvent étre des outils efficacesurpta réhabilitation du langage
(Bernhardtet al, 2005; 2008). Les informations acoustiques peutre affichées
comme des formes d'onde, des trajectoires tempsrd# l'intensité ou de la fréequence
fondamentale, ou encore des spectrogrammes @eal, 2002; Menin-Sicard and
Sicard, 2006). Pendant les sessions cliniques dmsdpar Wrenclet al. (2002), le
patient pouvait utiliser le retour visuel des ceoigdangue - palais fournis par Electro
PalatoGraphie (EPG) pour établir le placement xe&laalvéolaire pour les différentes
cibles phonétiques. Bernhardt al. (2005) ont utilisé l'imagerie ultrasonique de la
langue pour afficher la forme de la langue sur cram d’ordinateur et permettre aux
patients de comparer leurs propres productions Bgeproductions cibles proposées
par les orthophonistes. Globalement, la plupart éesles semblent montrer que le
retour articulatoire visuel facilite la réhabilitat de langage par visualisation de la
forme et du mouvement de la langue (Bernhatdt, 2003).

A l'opposé de l'orthophonie, la plupart de la li#dire sur I'apprentissage de la
prononciation assisté par ordinateur semble traiteretour visuel qui n'implique pas
d'informations explicites articulatoires. La recarssance automatique de la parole est
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ainsi souvent utilisée pour localiser les erre@tsméme effectuer des analyses en
termes de substitutions de phone, insertions opregpions. Bien que les systemes de
reconnaissance vocale soient de plus en plus peédigxibles, et aient permis des
progres dans l'apprentissage de la prononciatieistéspar ordinateur (Chun, 2007),
(Cucchiariniet al, 2009), il semble intéressant d'explorer les pakies du retour
articulatoire visuel.

2.2. Téte parlante et parole augmentée

Comme mentionné précédemment, I'objectif du présawail est de mettre en ceuvre et
tester un systeme de retour articulatoire visuek fapprentissage de la prononciation
assisté par ordinateur et pour la réhabilitation ldngage. Une approche par
modélisation offre une alternative intéressante dispositifs tels que I'EPG ou
I'imagerie ultrasonique: la téte parlante virtuetiéveloppée dans notre département
comme assemblage de modeles articulatoires triditoenels des organes de la parole
d’'un méme locuteur construits a partir de donndesgses, telles que des images
obtenues par résonance magnétique (IRM), peutcétrer6lée au cours du temps par
des dispositifs de capture de mouvement tels caréiclilographe électromagnétique
(Electromagnetic ArticulographyYEMA) qui fournit les trajectoires de bobines ealttées
aux articulateurs a une fréquence d'échantillonsafiisamment élevée (Badet al,
2008a). Cette téte parlante offre des possibitiE@parole augmentée en permettant un
affichage visuel des articulateurs visibles et naibles beaucoup plus complet que
I'EPG ou I'échographiect. Badin et al. (2008a; 2010) pour une descripticaitée).

2.3.Systéme de retour articulatoire visuel

Notre systéme de retour articulatoire visuel seceatre sur un paradigme spécifique:
un retour articulatoire au moyen de la téte pagladiun « enseignant » censé étre
bilingue en deux langues L1 et L2, dans le butd#aiun apprenant dont la langue
maternelle est L1 et qui apprend la langue étran2r

Dans ce cadre général, des paradigmes avec pkisis@aux de complexité croissante
pourraient étre envisages :

Le premier niveau consiste a fournir a I'apprengntetour articulatoire en utilisant son
propre modéle articulatoire, dans sa langue mdterhd. Cela peut étre fait de la
méme maniére que pour l'enseignant dans les deguda L1 et L2.

Au deuxieme niveau, le modéle articulatoire deskégnant développé dans la langue
L1 est utilisé pour fournir un retour articulato&d'apprenant qui aura comme tache de
« I'imiter » dans sa langue maternelle L1.

Un niveau encore plus élaboré consiste a utilsenddele articulatoire de I'apprenant
développé dans L1 pour fournir un retour a 'apanémlans la langue étrangére L2. Etre
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capable de réaliser cela dépend des capacités étbsdas d'inversion entrainées dans
une langue a opérer sur une autre langue.

3. Inversion de la parole par des méthodes statistiqge
3.1.Revue de la littérature

L’inversion en parole a été longtemps basée spatadigme d’analyse par la synthese.
Mais depuis une décade, des techniques d’appragéisplus sophistiquées sont
apparues, grace a la disponibilité de corpus inaptst de données articulatoires et
acoustiques produites par des dispositifs tels lgugculographe électromagnétique
(EMA) ou les dispositifs de suivi de marqueurs Basér la vidéo classique ou
infrarouge.

Dans la littérature récente, on peut trouver utagenombre de modeles statistiques de
production et d’inversion de parole : modéles derkda cachés Hidden Markov
Models HMMs) (Hiroya and Honda, 2004), (Zhang and Ren2@98; Zhang, 2009),
(Ling et al, 2010), modeles de mélanges de GaussierBasgstian Mixture Models
GMMs) (Todaet al, 2008), (Zeret al, 2011), réseaux de neurones artificidliicial
Neural NetworksANNSs) (Richmond, 2007), machines a vecteurs ggaeud Support
Vector Machines SVMs) (Toutios and Margaritis, 2005a; Toutios aklrgaritis,
2005b). La différence structurelle entre les HMMsles autres modeles (GMMs,
ANNs, SVMs) réside dans le fait que les HMMs udtis explicitement des
informations phonétiques et des contraintes phatigtees et linguistiques, tandis que
les autres modéles agregent simplement le compentemultimodal de segments de
parole similaires.

Hiroya & Honda (2004) ont développé une méthode egtime les mouvements
articulatoires a partir du son a l'aide d’'un modééeproduction de parole basé sur les
HMMs. Le modéle de chaque phone comprend un HMMpdgametres articulatoires
dépendant du contexte et un associateur linéaile tramsforme les parameétres
articulatoires en spectre de parole pour chacunétlds du HMM. Les modeles sont
construits a partir d’'observations acoustiquesrtatudatoires simultanées acquises par
EMA. La séquence des états HMM correspondant aplmase est déterminée en
cherchant le maximum de vraisemblance de la séquemacpectres de parole produits
par les modéles de production. Les parameétresukatisres sont ensuite déterminés en
cherchant le maximum de 'estimation a posteries garametres articulatoires pour un
spectre de parole donné et la séquence des étadd. HMrreur racine de l'erreur
guadratigue moyenne (Root Mean Square Error, RMBENuUe est de 1,73 mm.

Todaet al. (2008) ont décrit une approche statistique a is ffour la transformation

articulatoire vers acoustique et la transformaiiorerse acoustique vers articulatoire
sans information phonétique. lls modélisent la dénde probabilité conjointe des
trames acoustiques et articulatoires en contexteipanodéele GMM entrainé sur une

134



Résumeé en francais de la these

base de données paralleles acoustiques et anticatat lls utilisent deux techniques
différentes pour établir la transformation GMM. Aven critére d’erreur quadratique
moyenne minimumMinimum Mean Square ErrpMMSE) sur une fenétre acoustique
de 11 trames et 32 composantes pour le GMM, ilseobént des erreurs RMSE
d’'inversion de 1,61 mm pour une locutrice, et d&3Imm pour un locuteur.
L'utilisation d’'une méthode de maximum de vraiseamge Maximum Likelihood
Estimation MLE) avec 64 composantes gaussiennes, rédugrtesirs a 1,45 mm pour
la locutrice, et a 1,36 mm pour le locuteur.

Les études décrites ci-dessus ne permettent pdgtdeniner la méthode d’inversion
optimale, puisque les données, les locuteurs dategies ne sont pas comparables. En
outre, les corpus ainsi que les conditions d’apjssage et de test ne sont pas non plus
comparables.

3.2.Inversion par des modéles de Markov cachés

Les procédures d’apprentissage et de test ongalisées avec les boites a outils HTK
(Young et al, 2009) et HTS (Zen et al 2007). . Nous avonssgtities modeles HMM
gauche-droite a trois états, avec une matrice gariamce diagonale. Les vecteurs de
traits acoustiques et articulatoires sont consgléodinme deux flux dans la procédure
multi-flux de HTK. Les modeles HMMs obtenus sontsiite séparés ehlMMs
articulatoires et HMMs acoustiquesLes HMMs acoustiques sont représentés par 8
gaussiennes par état tandis que les HMMs artidtdatocontiennent une seule
gaussienne par état. Les états ayant des distnitsusitatistiques proches stigs, c’est-
a-dire regroupés pour permettre I'estimation deamatres sur un plus grand nombre
d’occurrences. Pour l'apprentissage, les parameluesiodéle HMM acoustique sont
entrainés suivant le critére de maximum de vraisemale Maximum LikelihoodML).

En complément, nous avons implémenté le critereahémisation de I'erreur généréee
(Minimum Generation ErrgrMGE) (Wuet al, 2006; Wuet al, 2008) pour ré-estimer
les parameétres des HMMs articulatoires.

Différentes variantes ont été testées: phonemes @amexte(no-ctx) avec contexte
gauche (L-ctx) ou droit (ctx-R) et avec contextes gauche et dr@itctx-R) Une
méthode de regroupement hiérarchique, basée sumdtice des distances de
Mahalanobis entre les coordonnées des bobines gmque paire de phonémes, a

permis de définir six classes cohérentes pourdategtes vocaliquesae € |o ¢ & | e
i|y|u|ood3]) etdix classes pour les contextes consonantifjpdsm [fv | | {3 |

l|tdszn]|j|y|kg]|w]). Le schwa et les pauses courtes ou longues () ne sont
pas pris en compte comme contextes.

Un modéle de langage bi-gramme considérant leseségs de phones en contexte est
appris sur la transcription phonétique du journalNlonde (année 2003). L'inversion
est réalisée en deux étapes : la premiére effertageconnaissance phonémique basée
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sur les HMMs acoustiques, et fournit la séquenceatlephones reconnus, ainsi que la
durée de chaque état. Une procédure d’héritage gbedm remplacer un HMM en
contexte manquant dans le corpus d’apprentissagéepgdMM le plus proche (Ben
Youssef et al, 2009). La seconde étape effectue la synthéese tidgsctoires

articulatoires a partir de ces informations a kaide la procédure de formation de
trajectoire proposée par Zehal.(2004).

3.3.Inversion par des modéles de mélange de Gaussiennes

Nous avons mis en ceuvre une mise en correspontiasée sur les GMMs en utilisant
le critere de minimum de I'erreur quadratique mayae(VIMSE), souvent utilisé pour la
conversion de voix. En outre, afin d’améliorer k&gision de l'inversion, nous avons
ajouté une étape d’'optimisation basée sur I'estomadu maximum de vraisemblance
(MLE) (Toda et al, 2008). Les trajectoires des paramétres cibleatdga propriétés
statiques et dynamiques adéquates sont déterm@r@esombinant les estimations
locales de la moyenne et de la variance pour chixgoeep(t) et ses dérivéedp(t) par

la relation explicite entre les parametres stasgeiedynamiquesp( ex.4p(t) = p(t) —
p(t-1)). A chaque trame articulatoire, le contexte eststmit en concaténant les
vecteurs acoustiques de plusieurs trames autolartdeme courante, afin de prendre en
compte le contexte acoustique. De 9 a 13 vectaanssiiques sont prélevés de maniere
eéquirépartie dans une zone temporelle contextdell&ille variable, et réduitsNucp=

24 composantes par Analyse en Composantes Priesifbbdeet al, 2008; Traret al,
2008). Pour chaque trame, le vecteur de traits laastoncaténation du vecteur
articulatoire Dgya des coordonnées (X, y) des bobines EMA et de ldérsvées
temporelles, avec le vecteur acoustiquéNge- composantes. Nous avons fait varier le
nombre de composantes gaussiennes de 16 a 12&abdacontextuelle d’'une taille
phonémique (~90 ms) a une taille plus grande (+#d80 Chaque gaussienne est
représentée par une matrice de covariance ple8x@®}, un vecteur de moyennes (48)
et son coefficient de pondération.

4. Données acoustiques et articulatoires

Alors que les signaux acoustiques de la parole grdudtre enregistrés simplement par
un microphone, plusieurs méthodes ont été propaaédis des années pour mesurer la
forme du conduit vocal et le mouvement des artteuls : cinéradiographie (Russell,
1928), microfaisceaux de rayons X (Kiritani, 198@nagerie par Reésonance
Magnétique (IRM), échographie ultrasonore (Stehal, 1983; Stone, 1990), (Hueber
et al, 2008), par vidéo (Badin et al., 2002) ou artiguégphe électromagnétique (Perkell
et al, 1992).

BN

Dans cette these, trois corpus enregistrés a I'dide articulographe EMA ont été
utilisés : deux corpus francais enregistrés paméne locuteur et un corpus anglais
MOCHA-TIMIT enregistré par une locutrice.
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4.1.Corpus acoustique-articulatoire

Les corpus EMA-PB-2007 et EMA-PB-2009 ont été eistegs par un méme locuteur
francais « PB ». Les données articulatoires onaétglises a I'aide d’un articulographe
électromagnétique (Perkat al, 1992) qui permet de suivre dans le plan médittshgi
des points cutanés a l'aide de petites bobinestréferagnétiques collées sur les
articulateurs. Six bobines ont été utilisées: I'att@achée aux incisives inférieures, trois
autres attachées a la pointe, au milieu, et dadi@rde la langue, et les deux derniéres
attachées a la limite entre la peau et le vermilles Ievres supérieure et inférieure.

Le corpus EMA-PB-2007c{. Badin et al, 2010), est composé de deux répétitions de
224 séquences VCV, deux répétitions de 109 paganats de structure CVC différant
par un seul trait, 68 phrases courtes et 20 phtasgses. Au total, le corpus, dont les
longues pauses ont été exclues, contient approxenaént 100.000 trames (~17 mn)
correspondant a 5132 phones.

En excluant les longues pauses, Le corpus EMA-RB Zbntient au total 189104

trames, soit 31.5 minutes. Par rapport au corpu®Mm-2007, ce nouveau corpus
contient plus de biphones (le nombre de biphoneserb est de 985 par rapport a 705
du corpus EMA-PB-2007). Le nombre de phones enesbatdroit manquants (34) est
beaucoup plus petit que celui du corpus EMA-PB-20G7).

Pour les deux corpus, les phones sont d’abordeigua partir du signal audio et de la
transcription phonétique associée, a I'aide d'unegdure d’alignement forcé basée sur
des HMMs. Les étiquettes et les frontieres de pkosent ensuite corrigées

manuellement. Les 36 phonémes soate ¢ iyuoooe dé ®dptkfsfbdgvz
smnylwyjo__], ou_et__ sontrespectivement les pauses edecaurtes et les
pauses longues en début et fin de phrase.

Les caractéristiques du corpus anglais MOCHA-TIMIGnt comparées a celle des
corpus francais dans le Tableau 1. Il faut notéurggibobine était également attachée
au vélum de la locutrice anglaise, ce qui n'étag [e cas pour le locuteur francais.

Tableau 1. Caractéristiques des 3 corpus utilisés

Corpus EMA-PB-2007 | EMA-PB-2009 | MOCHA-TIMIT
# bobines EMA 6 6 7
Taille (min) 17 31.5 21
# phone 5132 22063 13960
# phonéemes 35 35 43
# biphone possible 705 985 1296
# triphones possible 2311 6772 6262
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4.2.Corpus audio utilisés pour 'adaptation du locuteur

Nous avons utilisé trois autres corpus pour la @ligsl'adaptation au locuteur.

Le premier corpus a €été enregistré par un locutancais « TH », avec le méme texte
que celui du corpus EMA-PB-2007. Au total, ce carmst composé de 1109 phrases
pour un total d'environ 16 minutes.

Nous avons utilisé également deux corpus acoustiqae240 phrases enregistrées pour
la synthese de la parole par deux locuteurs frangai homme "GB" (12 minutes) et
une femme "AC" (14 minutes).

4.3.Extraction des parameétres acoustique et articulatoe

Le signal de parole a été enregistré de maniérehsgne avec les coordonnées des
bobines EMA enregistrées a 500 Hz, et filtrées ggdss a 20 Hz afin de réduire le
bruit.

Les vecteurs de traits acoustiques sont compos&2 deefficients cepstraux en échelle
Mel (Mel Frequency Cepstrum CoefficientdFCC) et du logarithme de I'énergie,
estimés a partir du signal sur des fenétres de 2%&nune fréquence de trame de
100 Hz ; ces vecteurs sont complétés par les dé&riy@emieres temporelles. Les
vecteurs de traits articulatoires sont composéd deoordonnées ety des six bobines
actives, ainsi que leurs dérivées premieres. lagsdioires EMA sous échantillonnées a
100 Hz pour étre synchrones avec les vecteurs agoes.

5. Evaluation
5.1.Critere d’évaluation

Nous avons évalué les différentes méthodes a I'didee procédure de validation
croisée: les données sont séparées en 5 partdjpm®ximativement homogénes du
point de vue de la répartition des phones ; chaauttion est tour a tour utilisée pour
évaluer les performances des modeéles appris suredtant des données. Les
performances sont évaluées sur I'ensemble desubtatsspar (1) la moyenne de la
racine carrée des erreurs quadratiques moyenn@dgR (2) la moyenne quadratique
de la racine carrée des erreurs quadratiques meggiRMSE), (3) les coefficient de
corrélation de PearsoR¢arson Moment Correlation CoefficieRtMCC) entre données
mesurées et données estimées, (4) le taux deiprédis la reconnaissance acoustique
(Acc) pour la phase intermédiaire de reconnaissanoastique pour la méthode HMM,
(5) le taux de précision de la reconnaissance uatimire (AcG.) de 18 classes de
phonemes a partir des trajectoires synthétisées.
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5.2.Inversion de la parole

5.2.1.Méthode d’inversion basée sur les HMMs

Les taux de précision de la reconnaissance ob&ao®liorent avec 'augmentation de
nombre de gaussiennes de 3 a 15 %. La procéduéeitdte de HMMs manquant
permet de gagner entre 5 et 9 % sur les perforrsasie@econnaissance. Le modele de
langage entrainé sur le corpus Le Monde améliotaur de précision de 4 % a 11 %
par rapport un modeéle de langage entrainé surrfgusad’apprentissage. En utilisant
toutes ces améliorations, les taux de précisioremlst varient entre 85.46 % en
I'absence de contexte et la meilleure performarec8@119 % obtenue pour des phones
en contexte droit.

La synthése articulatoire a partir de la séquenéttd décodés par la reconnaissance
diminue l'erreur RMSE de 7 a 12 % comparé a unethgge articulatoire ou la
séquence d’'état est estimée a l'aide d'un modéleddete. Afin d’estimer la
contribution du processus de formation de trajeetai I'erreur RMSE de l'inversion
compléte, nous avons aussi synthétisé les trajest@n utilisant un alignement forcé
des états basé sur les étiquettes originales, émaiasi un étage de reconnaissance
parfaite (voir Tableau 2). L'utilisation du criteMGE dans la phase d’apprentissage
des HMMs articulatoires améliore la performance dexdéles et diminue l'erreur
RMSE de 7 a 13 %. Le niveau relativement élevéedeetreurs montre que la majeure
partie de I'erreur globale (entre 70 et 90 %) et d I'étape de formation de trajectoire
qui lisse de maniere excessive les mouvementstprétline capture pas de maniere

appropriée les patrons de coarticulation.

On voit sur la Tableau 2 que ['utilisation de comés augmente trés sensiblement les
performances, sauf pour le contexte droit et gauthetx-R pour lequel la

reconnaissance est nettement moins bonne, vraigablelrient dio a la taille
relativement limitée des corpus.

5.2.1.Méthode d’inversion basée sur les GMMs

Le Tableau 3 montre les performances pour les rdiftés expériences. L'erreur
quadratique moyenne (RMSE) diminue lorsque le nendlercomposantes augmente, et
atteint un optimum pour une fenétre contextuelledl @ ms pour les corpus francais et
de 90 ms pour le corpus anglais. L’explication llzasgplausible est qu’une fenétre de la
taille d’'un biphone contient de maniere optimales lgaits phonétiqgues locaux
nécessaires a l'inversion. La meilleure précisidnversion est finalement obtenue
pour une fenétre de 110 ms et un ensemble de I3Basantes qui semblent constituer
la meilleure représentation des 36 phonemes. Nemssanoté par ailleurs que I'étape
supplémentaire d’optimisation par MLE augmentepedgormances de I'ordre de 5 %.
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Tableau 2. Performances de la méthode basée sttNBds pour les trois corpus

Corpus Stage Criteria No-Ctx L-ctx ctx-R L-ctx-R
Reconnaissance Acc 85.46 84.31 86.19 86.35
| HRMSE | 172 1.55 | 1.48 1.58

s | Inversiona "pyse | 179 | 161 | 154 | 164
N part';gjumo PMCC | 0.90 0.92 | 0.93 0.92
@ AcCar | 74.49 | 7846 | 8456 | 8273
< | pRMSE | 156 | 134 | 135 1.31
m pglr\t/i?r;'lgl:] 2 | RMSE | 162 1.38 1.40 1.35
et d'étiquettes| PMCC | 0.92 0.94 0.94 0.94

Acca: | 77.03 | 83.09 | 88.39 89.67

Reconnaissance Acc 70.81 82.71 84.00 83.77
| MRMSE | 173 1.43 | 1.39 1.45

@ Inversiona  "pyse | 182 | 149 | 145 | 152
g | partrdaudo Toyce | 084 | 090 | 0.0 | 0.89
m Accat | 66.83 | 79.07 | 82.89 | 80.85
<§'t | MRMSE | 1.6 1.29 1.25 1.24
L pg‘r‘t’ifrj,';’ﬂ d?o RMSE | 1.53 1.34 1.30 1.29
et d'étiquettes| PMCC | 0.89 0.92 0.92 0.92

Acca: | 77.15 | 85.86 | 89.42 89.56

Reconnaissance Acc 55,82 67,89 70,20 66,30
| HRMSE | 185 1.68 | 1.66 1.79

- g‘r‘t’i?rj};’ﬂ 2 | RMSE | 202 181 | 1.80 1.94
= P o PMCC | 072 | 078 | 0.78 | 0.74
< Acca: | 55.66 | 59.84 | 63.86 | 57.53
5 | MRMSE | 156 1,51 1,49 1,51
Q pg‘r‘t’i‘ﬁr;,'gg d?o RMSE | 1,68 1,61 1,59 1,62
ot d'étiquettes| PMCC | 081 0,83 0,83 0,83

Acca; | 65.27 | 7221 | 77.33 76.60
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Tableau 3. Performances de la méthode basée s@N&d en fonction du nombre de

Gaussiennes (# mix) et de la taille du contextg (ms

Corpus Taille du Critere 32 mix 64 mix | 128 mix
URMSE | 2.1Z 2.04 1.9t
RMSE 2,22 2.13 2.04
90 ms PMCC | 0,86 0.87 0.88
~ ACCar 50.05 53.03 54.97
§ HRMSE | 2.08 2.00 1.89
0 RMSE 2.18 2.09 1.97
% 110 ms PMCC | 0.86 087 | 089
= ACCart 51.63 54.73 | 57.02
w URMSE | 211 2.01 1.95
130 ms RMSE 2.21 2.11 2.04
PMCC 0.86 0.87 0.88
ACCar 51.47 54.15 55.59
URMSE | 2.01 1.8¢ 1.7¢
RMSE 1.91 1.92 1.86
90 ms PMCC | 081 0.83 0.84
o ACChr 54.99 58.76 61.54
§ HRMSE | 1.89 1.81 1.77
0 RMSE 1.98 1.90 1.86
% 110 ms PMCC | 0.82 083 | o084
= ACCart 55.48 590.88 | 62.13
w LRMSE | 1.90 1.80 1.77
130 ms RMSE 2.00 1.89 1.86
PMCC 0.81 0.84 0.84
ACChrt 54.72 59.42 61.80
URMSE | 1.7 1.8¢ 1.6¢
o 90 ms RMSE 1.93 1.73 1.83
= PMCC 0.77 0.78 0.80
£ AcCar 48.51 49.48 | 50.82
= URMSE | 1.76 1.71 1.69
= RMSE | 1.01 1.86 1.83
. 110 ms
< PMCC 0.77 0.79 0.79
5 AcCat | 4875 | 49.12 50.15
g HRMSE 1.75 1.71 1.69
130 ms RMSE 1.91 1.86 1.83
PMCC 0.77 0.78 0.79
ACCar 47.84 48.02 49.42
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5.2.2.Discussion

Nous avons analysé les résultats les meilleursnabtpar les méthodes basées sur les
HMMs et les GMMs en utilisant le corpus EMA-PB-200/a RMSE globale obtenue
pour l'inversion par HMMs (1,54 mm) est plus failgjee celle obtenue par GMMs
(1,96 mm). Un test de Student d’échantillons ag@sad montré que la différence est
significative (p <10). Ces résultats sont proches des résultats Issgiéborés de la
littérature : Linget al. (2010) ont trouvé 1,08 mm avec des HMMs alors deweet al
(2010) ont trouvé 1,13 mm avec des GMM de trajeetoiUne explication possible de
des différences entre HMMs et GMMs pourrait étre ¢gs techniques basées sur les
GMMs sont plus appropriées aux mises en correspmedainimodales ou les
événements dans la source et les cibles sont edlanént synchrones, alors que des
techniques basées sur les HMMs sont en mesuraitkr fes deux flux différents et de
pouvoir ainsi prendre en compte d’éventuelles asyrges.

5.3.Relation entre mouvements faciaux et linguaux

Les techniques décrites ci-dessus pour l'inversicoustique-articulatoire peuvent étre
appliguées d'une maniére simple a la mise en ganesnce levres / visage - langue.
Depuis plus d'une décennie, la question de savtarferme la langue peut étre prédite
a partir de la forme des levres et du visage egowos en débat ((Yehiat al, 1998),
(Jianget al, 2002), (Bailly and Badin, 2002), (Engwall and Bas, 2003), (Beskovet

al., 2003)). Ces études sont toutes basées sur unélisadidn linéaire. Cette section
présente ce probléme avec les techniques de miseresspondance plus sophistiquées
gue nous avons décrites ci-dessus, et comparédea#iats avec ceux obtenus avec les
modéles linéaires en utilisant les données artioinés du corpus EMA-PB-2007. La
forme des lévres / visage a été représentée phoheses de la mandibule et des levres,
tandis que la langue était représentée par lesdrdres bobines.

5.3.1.Prédiction de la langue par régression multilinéaie (MLR)

En utilisant la procédure validation croisée supdbtitions, l'inversion basée sur le
modele de régression linéaire multipulti Linear RegressionMLR) a conduit a une
RMSE de 3,88 mm et une PMCC de 0,59. Un expérieanglémentaire sur un corpus
réduit utilisant une répétition des VCVs, ou Cleste des 16 consonnes francaises et V
= /i a u/ pour I'apprentissage, et l'autre rép@titpour les tests, a conduit a une RMSE
de 3,29 mm et un PMCC de 0,84, ce qui est compaabt résultats des autres études.
Lors de I'ajout de la voyelle /y/ - qui est conmar étre un sosie de la labiale /u/ en
francais — aux trois voyelles /i a u/, I'erreur REIS'éléeve a 3,67 mm et le PMCC
diminue a 0,77, ce qui confirme la difficulté degire la forme la langue a partir de de
celle des levres et du visage pour un certain nerdlarticulations.
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5.3.2.Prédiction de la langue par HMMs

Nous avons obtenu les meilleurs résultats avecndedeles HMMs de phones en
contexte gauche et droite avec une RMSE de 3,64&tmm PMCC de 0,70.

Nous avons également constaté que l'utilisation dieges d’état produites par la
reconnaissance faciale améliore de 4% envirorelgrRMSE et le PMCC, par rapport

a la méthode de z-score. Par ailleurs, nous avgaisr@ent synthétisé les trajectoires de
la langue directement a partir des étiquettes ralgs, en simulant une étape de
reconnaissance faciale parfaite, afin d'évaluarolatribution de I'étape de synthese a
I'erreur d'inversion complete, comme nous l'avidia# pour l'inversion acoustico-
articulatoire. On peut estimer que la contributilenla phase de synthése de trajectoire a
I'erreur RMSE globale est de 60% en moyenne; notprele était de prés de 90% pour
I'inversion acoustique-articulation décrite au-desssCela montre que la reconnaissance
faciale est beaucoup moins efficace que la recesaace acoustique.

5.3.3.Prédiction de la langue par GMMs

Nous avons constaté que l'erreur RMSE diminue loestp nombre de gaussiennes
augmente. Pour 128 gaussiennes, et une taillerddréede contexte optimale de 110
ms, nous avons trouvé une erreur RMSE de 2.90 mnunetPMCC de 0.80.
L'interprétation la plus plausible est qu'une feeé&le contexte de taille phonémique
contient les indices phonétiques nécessaires pmwersion. En utilisant la phase
supplémentaire de MLE, les résultats s’améliorasbes d’environ 5%.

5.3.4.Conclusion

Nous avons revisité le probleme de la prédictionadierme de la langue a partir de la
forme des levres et du visage pour la parole. Neugns évalué des méthodes de
complexité différente et constaté que les GMMs @ontes résultats globaux meilleurs
gue les HMMs, tandis que la méthode MLR donne dssiltats les plus mauvais. Les
GMMs et les HMMs peuvent maintenir la répartitiogsctlasses phonétiques d'origine,
avec quelques effets de centralisation ; ces effetsentralisation sont beaucoup plus
forts avec la méthode MLR. Nous avons égalementtr@ayue pour de grands corpus,
la méthode MLR donne de mauvais résultats. Comrggésea par Jiangt al. (2002),
l'utilisation du contexte améliore assez bien Iésuftats. En conclusion, il n'est
cependant pas possible de récupérer de maniéte faforme de la langue a partir du
visage dans le cas général.

6. Retour articulatoire multi-locuteur

Puisque notre objectif est de fournir un retourcatatoire visuel pour n’importe quel
utilisateur, le systéme d'inversion doit étre rabuet facile a adapter. Nous avons donc
développé une phase d'adaptation acoustique guigber d’autres locuteurs d'utiliser le
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systéme, bien que le retour articulatoire visudl lgnité a la téte parlante du locuteur
de référence, et ne comporte pas les caractéestiquticulatoires spécifiques de
I'utilisateur.

6.1. Inversion basée sur les HMMs

Pour I'étage d’adaptation de notre systeme, nwassachoisi la configuration suivante
afin d’assurer les meilleurs résultats. Les modalzsustiques et articulatoires HMMs
initiaux ont été entrainés sur les quatre premipegtitions du corpus EMA-PB-2007
pour des phones en contexte droit (ctx-R), puisgjoit conduit aux meilleurs résultats
d'inversion. Les HMMs acoustiques ont été entraaméstilisant I'algorithme EM avec
huit gaussiennes par état avec la technique d'dids Les HMMs articulatoires,

représentés par une gaussienne par état, onttéaénés en utilisant le critere MGE.

6.2. Adaptation acoustique du locuteur

Pour construire la base de données d'adaptatigiiishteur est invité a prononcer un
ensemble de phrases qui sera utilisé comme corfadapation. La procédure
d'adaptation est réalisée de la maniere suivardet @abord, le signal de parole est
automatiqguement segmenté au niveau phonétiquelesanit un alignement forcé et les
modeles acoustiques entrainés sur le sujet deer&fér Ensuite, la technique de
régression linéaire par maximum de vraisemblandeximum Likelihood Linear
Regression MLLR) est utilisée pour adapter chaqgue HMM acoust. Cette étape
supplémentaire rend les modeles de référence cinigsaavec la voix de l'utilisateur,
et permet aussi de prendre en compte un enviromteraeoustique différent.
L'approche MLLR estime des transformations linéapeur calculer les paramétres des
modeles adaptés a partir des modéles initiaux ddirmaximiser la probabilité des
données d'adaptation (Leggetter and Woodland, 1995)

6.3.Expériences et résultats

6.3.1.Reconnaissance articulatoire

Puisque les données articulatoires ne sont pasrdidps pour les 3 locuteurs, il est
impossible de déterminer la RMSE entre les trajextoarticulatoires mesurées et
prédites. Par conséquent, nous avons réalisé Uaiah de linversion pour ces
locuteurs en appliqguant une reconnaissance autpueadirticulatoire des 18 classes de
phonéme aux trajectoires inférées par inversion. deaformance des modeéles
articulatoires entrainés sur les quatre premieagtitipns du corpus EMA-PB-2007 en
utilisant des phones en contexte droit (ctx-R)des85,51 %. Ces HMMs articulatoires
ont été ensuite utilisés pour évaluer les trajeesoarticulatoires inversées pour tous les
autres locuteurs.
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6.3.2.Evaluation des trajectoires articulatoires de nouvaux
locuteurs

Le Tableau 4 montre les différents taux de recasaaice acoustique et articulatoire :
reconnaissance acoustigue des 36 phonemes, resssmmze acoustique des 631
allophones en contexte droit, et reconnaissanceukatoire des 18 classes de
phonemes. Nous observons que notre systeme optentTH des performances tres
proches de celles obtenues pour le locuteur deer&fé PB, ce qui pourrait s'expliquer
par le fait que son corpus a été enregistré damsade d'imitation: TH a imité chaque
phrase aprés avoir écouté l'enregistrement audiocPBe ce qui favoriserait une
dynamique similaire. Les performances en reconaatesacoustique et articulatoire les
moins bonnes sont obtenues pour la locutrice fémaiAC, ce qui peut étre attribué a la
différence de sexe, et a la différence de tailleleetcontenu du corpus. Des résultats
intermédiaires sont obtenus pour le locuteur GButd@is, une analyse plus
approfondie de la reconnaissance acoustique a égoi le taux de précision pour
I'ensemble des 631 allophones en contexte droiREtétait beaucoup plus faible que
pour les 36 phonémes francais pour GB et AC (valil@au 4). Ceci explique le faible
taux de reconnaissance articulatoire pour ces kbeueurs.

Tableau 4. Taux de précision des reconnaissanaassique et articulatoire pour tous
les locuteurs

Locuteur PB TH GB |AC

Acc (%): Acoustique phonémes 85.983.77| 79.12| 62.81
Acc (%): Acoustique allophones (ctx-R) 79.886.53| 66.77| 48.01
Accart (%): Articulation 83.70 82.23| 69.46| 56.77

Afin d'analyser linfluence de la taille du corpd&daptation, nous avons utilisé les
deux répétitions de séquences VCV enregistréestpat les modeéles HMMs entrainés
a l'aide du corpus EMA-PB-2007. La premiere repétile VCV a été utilisée pour le
test, alors que la deuxieme répétition — choisisme’maniere aléatoire — a été utilisée
pour l'adaptation. Nous avons fait varier la tadle corpus d'adaptation pour évaluer
son influence sur la performance de l'adaptaticorsdue nous utilisons toutes les
répétitions dans la phase d'adaptation, la prétidela reconnaissance acoustique est
de 85,89 %. Cette précision décroit jusqu'a 45,4@f4que seuls 7 VCVs choisis au
hasard sont utilisés pour I'adaptation.

6.4.Démonstrateur de retour articulatoire visuel

Le démonstrateur de retour articulatoire visuel goe&s avons construit consiste a
animer la téte parlante disponible a GIPSA-Lab @ipdes coordonnées des bobines
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EMA obtenues par inversion par la méthode utilis@st HMMs (voir Badin et al.
(2010) pour le contrdle de la téte parlante a pdes coordonnées des bobines EMA).

Le démonstrateur de retour articulatoire visuepps® plusieurs options a l'utilisateur:

Enregistrement du signal audio pour les phrasegogees a l'utilisateur (VCV, CVC,
phrases de corpus EMA-PB-2007). Le nombre de pirasenregistrer est choisi par
l'utilisateur.

Animation en ligne de la téte parlante a partitadeoix de I'utilisateur. Dans ce cas, les
trajectoires articulatoires des bobines obtenues ipeersion du signal audio de
l'utilisateur sont utilisées pour animer la tételapate. La séquence de phones reconnus
est affichée pour donner une idée de la robustdeséa phase d'adaptation. Si la
reconnaissance acoustique est mauvaise, I'ensgitt de phrases supplémentaires
pour I'adaptation améliorera a la fois le résultatia reconnaissance et l'inversion.

Animation hors ligne de la téte parlante a paréirfidhiers de son et de trajectoires de
bobines EMA associées.

7. Conclusions and perspectives

Nous avons développé un systeme de retour artiérdatisuel par inversion acoustico-

articulatoire dans lequel les mouvements articifesoreconstruits sont utilisés pour

piloter une téte parlante virtuelle 3D. A notre waissance, ce systéme n’a pas
d’équivalent dans la littérature.

Dans ce but, nous avons mis en ceuvre, évalué giaréndeux techniques d’inversion

acoustico-articulatoire en parole qui different parfacon dont elles capturent et

exploitent la cohérence multimodale a priori esiva et articulation. Ce travail se base
sur des données acoustiques et articulatoireslglasakynchrones enregistrées a l'aide
d’un articulographe électromagnétique.

Plusieurs remarques peuvent cependant étre faitggopos de ces premiéeres
expériences. Les deux systemes peuvent étre agglibinversion a base de HMMs
pourrait inclure un traitement plus sophistiqué Besynchronie articulatoire /
acoustique en introduisant des modéles de retardegaont révélés efficaces pour la
synthése multimodale par HMMs (Govokhiea al, 2007). Le systeme basé sur les
GMMs pourrait étre amélioré en considérant d’autexhniques de réduction de la
dimensionnalité telles que I'Analyse Discriminartsméaire (LDA) qui sont assez
efficaces pour l'inversion basée sur les HMMs (Tearal, 2008). Les deux systemes
pourraient aussi gagner a incorporer de l'infororatvisuelle en entrée et a inclure de
maniere plus intime cette information additionneléas le processus d’optimisation qui
va considérer la cohérence multimodale entre leanpetres d’entrée et de sortie: en
effet, les levres sont clairement visibles, et ¢sifion de la machoire est également
accessible de maniére indirecte a partir des moemtniaciaux.
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Le traitement en temps réel constitue un élémepbitant pour les travaux futurs. Il
serait ainsi intéressant de mettre en ceuvre I'dlgoe de Viterbi a court terme proposé
par Bloit and Rodet (2008) pour une implémentatemps réel des HMMs.

Un tel systéme de retour articulatoire visuel paifétre intégré comme tuteur dans un
systéme pour la correction phonétigeeg((Engwall and Balter, 2007) ou (Badat al,
2008a)). Badiret al.(2010) ont monté que les sujets ont des perfornsatnes diverses
en lecture linguale, et que cette performance augmente avec I'entra@ne Notons
ainsi que le réalisme du mouvement pourrait comgreles manque de précision des
deétails de forme: la cinématique des trajectoiasutées pourrait étre plus importante
pour la perception que la précision des trajectcates-mémes.
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Résumé

Cette thése présente un systéme de retour articelavisuel, dans lequel les
articulateurs visibles et non visibles d‘une tégelante sont contrélés par inversion a
partir de la voix d'un locuteur. Notre approchecdgorobléme d‘inversion est basée sur
des modeles statistiques élaborés a partir de dsnaéoustiques et articulatoires
enregistrées sur un locuteur francais a l‘aide didiculographe électromagnétique. Un
premier systeme combine des techniques de ressamaie acoustique de la parole et
de synthese articulatoire basées sur des modeledadeov cachés (HMMs). Un
deuxieme systéme utilise des modéles de mélangessigas (GMMs) pour estimer
directement les trajectoires articulatoires a palti signal acoustique. Pour généraliser
le systtme mono-locuteur a un systéme multi-loecuteaus avons implémenté une
méthode d‘adaptation du locuteur basée sur la msaiion de la vraisemblance par
régression linéaire (MLLR) que nous avons évaluéd'ade un systéme de
reconnaissance articulatoire de référence. Enbasrprésentons un démonstrateur de
retour articulatoire visuel.

Abstract

This thesis presents a visual articulatory feedtsystem in which the visible and non
visible articulators of a talking head are cont&dlby inversion from a speaker’s voice.
Our approach to this inversion problem is basedtatistical models built on acoustic
and articulatory data recorded on a French spelakeneans of an electromagnetic
articulograph. A first system combines acousticesperecognition and articulatory
speech synthesis techniques based on hidden Maviamels (HMMs). A second
system uses Gaussian mixture models (GMMs) to agtirdirectly the articulatory
trajectories from the speech sound. In order teeg#dise the single speaker system to a
multi-speaker system, we have implemented a spealagtation method based on the
maximum likelihood linear regression (MLLR) that weave assessed by means of a
reference articulatory recognition system. Finallye present a complete visual
articulatory feedback demonstrator.



