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Abstract

The tremendous development of technology and methodology for electronic
circuit design is leading to systems with high levels of complexity. Both
the ever-shrinking electronic systems and improving efficiency of computer
aided design (CAD) tools enable the design of extremely complex multi-
tasking systems that are heterogeneous mixed-signal Systems on Chip (SoCs).
The cohabitation of many physical domains such as mechanical, chemical,
optical or magnetic in recent SoCs justifies the big effort that takes place
in CAD tools for designing such systems. Nowadays, the design of the
individual components is usually well understood and optimized through the
usage of a diversity of CAD or Electronic Design Automation (EDA) tools,
design languages, and data formats. These are based on applying specific
modeling/abstraction concepts, description formalisms (also called Models of
Computation (MoCs)) and analysis/simulation methods. The designer has
to bridge the gaps between tools and methodologies using manual conversion
of models and proprietary tool couplings/integrations, which is error-prone
and time-consuming. The interaction among the huge quantity of individual
components in recent systems is of vital interest for the overall system to
function in compliancy with the specifications requested by the customer.
At early stages of the design phase the interaction among the variety of
Intellectual Properties (IPs) integrated on the system can only be validated
through the simulation of a system model. Different levels of abstraction
can be defined when modeling some IPs, a high abstraction means capturing
only the gross behavior of the system and keeping a reduced accuracy of
the model with respect to the real device. Analog and digital parts coexist
in one system, it is necessary to model both of them for performing an
overall simulation of the system. Furthermore digital parts involve processors
with their embedded softwares. A crucial issue is nowadays becoming the
validation of the interaction among AMS parts together with the digital and
the embedded software.

For such a target a recent C++ based common design and simulation
platform is establishing itself. Such a platform is based upon the SystemC
(IEEE 1666) kernel and called SystemC AMS, it allows creating and refining
a virtual prototype of the overall system on a high level of abstraction. This
is done by supporting different description formalisms, also called Models
of Computation (MoCs), for arbitrarily describing many types of behavior
and interaction. This makes possible the exploration of different architecture
options, estimation of the performance, validation of re-used parts, verification
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of the interfaces between heterogeneous components and inter-operability
with other systems.

This thesis deals with the modeling of analog and mixed-signal physically
heterogeneous systems. In particular it is presented a study on different
techniques for extracting behavioral models at different levels of abstraction
and computational weights. Although the tools developed for behavioral
model extraction are mostly based on the AMS extension of the SystemC
kernel, the methodology can be applied to other Analog Hardware Description
Languages (AHDL) such as Verilog-AMS and VHDL-AMS. These techniques
are regrouped in three branches.

Firstly, a behavioral modeling technique from a schematic netlist entry
description is studied and automatized in order to extract additional desired
information under the guise of state space equations.

Secondly, techniques based on analytical fittings of frequency responses
are explored for either reducing the model order or for identifying analytical
simulateable models starting from analysis carried out with other application-
specific CAD tools.

Finally, system identification techniques are examined for the extraction
of black-box models from empirically obtained data, either from simulations
of accurate models or from measure data. A proof-of-concept library imple-
mented using SystemC AMS shows the applicability of the methodology and
an LNA case study is developed for a power-minimization specific application.

The mixed nature of the Ph.D., both academic and industrial due to
the collaboration with the STMicroelectronics enterprise, led to concentrate
the modeling efforts on a CMOS image sensor case-study. This case-study
aims at an overall simulation of an industrial platform for mobile application
based on transaction-level modeling using the SystemC kernel. In order
to do so, the analog/digital interfacing between the SystemC AMS MoCs
and different types of SystemC-TLM coding styles is studied and adapted
to the STMicroelectronics’ proprietary TLM protocols as a proof of the
applicability of the SystemC AMS based methodology to the industrial design
flow. The image sensor model is abstracted at different levels using different
SystemC AMS Models of Computation showing impressive simulation time
performances with respect to the low level models (notably the VHDL-AMS
based model). The virtual platform is currently being used for an early
validation of the image correction algorithms and embedded software, this
will result in an improved reliability of the product.

Keywords: Analog and Mixed-Signal (AMS) Design Flow and Methodol-
ogy; Behavioral Modeling; AMS IP reuse; State Space Model; Reduced Order
Modeling; Model of Computation (MoC); Multiphysical and AMS Systems
on Chip (SoCs); OSCI SystemC AMS; VHDL-AMS; System Identification;
Image Sensor; SystemC Transaction Level Modeling (TLM).



v

Acknowledgements

Completing a thesis is a challenge.

I’d like to express my gratitude to all the people that have remained close
to me, both physically and emotionally as well, during these French years.
In order to thank them all properly I desire to write in the language they
respectively speak or better understand.

Comincerò col ringraziare i miei cari nella mia bellissima lingua madre,
l’italiano.
Un ringraziamento speciale va alla mia meravigliosa famiglia quindi Tonino,
Nilde, Claudio, Sofia e le mie due Vittorie. Grazie per non avermi mai
fatto mancare il vostro incoraggiamento ed il vostro supporto.

Un enorme grazie alla persona che mi è stata vicina più di tutti in questi
ultimi anni, la mia dolce Valentina.

Grazie a tutti i miei amici di vecchia data ma anche più recenti, il vostro
sostegno è stato e continua ad essere essenziale.

Doveroso è un ringraziamento a tutti i membri della mia famiglia allargata
i quali contribuiscono a farmi sentire a casa ogni volta che torno in Romagna.

Posso affermare con sicurezza che questa esperienza mi ha veramente
permesso di crescere da tutti i punti di vista e sono grato a tutti per avermi
appoggiato in questa mia scelta. Purtroppo i contatti tra di noi sono diventati
sempre meno frequenti ma non vedo l’ora di riavvicinarmi al luogo in cui
sono cresciuto, in mezzo a voi tutti ed alla mia gente.

Permettez-moi maintenant de passer au français pour adresser mes remer-
ciements les plus sincères à ceux qui ont rendu possible l’achèvement de mes
travaux de thèse.

Un remerciement spécial va à mon directeur de thèse Emmanuel qui a
toujours eu confiance en moi, me donnant ainsi la force et les motivations
pour creuser et m’investir dans la recherche.

Un énorme merci va à Serge, mon tuteur en entreprise, pour m’avoir
suivi et avoir guidé mon intégration dans ce monde énorme qui est STMicro-
electronics. Son aide sous plusieurs aspects, tels que le relationnel aussi bien
que le technique, a été d’inestimable valeur.



vi

Je tiens à remercier les membres du jury qui ont bien voulu accepter de
valoriser ce travail.

Mes remerciements s’adressent également aux acteurs de ma “deuxième
vie”.
Je tiens tout d’abord à remercier les amis Grenoblois ou naturalisés Grenoblois
qui m’ont accompagné pendant ces années de découverte et d’ouverture
d’esprit. Notamment depuis les temps internationaux rabotins je remercie
Alejandro, Cécile et tous ceux qui ont participé à mon intégration initiale, en
passant par mes amis italiens Alessandro, Adriano, Valentina.

Un mot aussi pour remercier les copains français, italiens et espagnols
dont certains ont le plaisir de se confronter avec moi lors des matchs de foot
en salle.

Les amis et collègues de l’ancienne et mémorable équipe RMS et du
Laboratoire TIMA: Stephane, Laurent B., Ke, Asma, Rafik, Nourredine,
Rshdee, Yoann, Louay, Mathieu, Franck, Maxime, Laurent F. j’espère de
vous avoir tous cités.

En restant dans TIMA je voudrais remercier de tout cœur les supérieurs
Salvador, Libor, Haralampos.

Merci aux protagonistes de ma vie industrielle à STMicroelectronics. Un
gros merci aux collègues directs, mais surtout amis, Jean-Michel et Romain
pour tout ce qu’on a passé ensemble et de leur sympathie.

Merci aux collègues de l’équipe SPG de ST: Maxime et Laurent, de
l’équipe Imaging de ST: Stephane et Giuseppe et à ceux de ST-Ericsson:
Philippe, Frédérique, et Karine.

Un gros merci à Nicola, Dario, Ioannis et Massimo pour l’amitié qui s’est
installé entre nous renforcée par les réflexions parfois délirantes lors des repas
à ST.

Of the many people who deserve thanks, I would like to say a word about
the partners of the Beyond-DREAMS European Project. A special thank to
the following for the nice and precious collaboration: Marie-Minerve, François
and Antoine from LIP6, Paris; Martin from NXP, The Netherlands; Peter
from Robert BOSCH, Germany; Karsten from Fraunhofer IIS/EAS, Germany
and Gert-Jan from Dizain-Sync, The Netherlands.

If I have forgotten anyone, I apologize... Thank you all.



Contents

I. Positioning the context 3

1. Introduction 5

1.1. Introduction to physically heterogeneous systems and design methodologies . . 5

1.2. Motivation and research contributions . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2. Research contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3. Thesis structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

II. State-of-the-art of modeling-based design of heterogeneous systems 13

2. Design of heterogeneous embedded systems 15

2.1. Heterogeneities in embedded systems . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1. Hardware and software heterogeneity . . . . . . . . . . . . . . . . . . . . 15

2.1.2. Heterogeneity of the architecture . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3. Multi-physics heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.4. Electrical (digital/AMS/RF) heterogeneity . . . . . . . . . . . . . . . . 16

2.1.5. Summary and terminology . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2. Design flow of heterogeneous mixed-signal systems . . . . . . . . . . . . . . . . 17

2.2.1. MEMS/AMS/RF design flow design flow . . . . . . . . . . . . . . . . . 18

2.2.2. Currently open issues and conclusions . . . . . . . . . . . . . . . . . . . 19

2.3. Modeling-based refinement of heterogeneous systems . . . . . . . . . . . . . . . 20

2.4. State of the art of mixed (analog-digital) modeling languages/tools . . . . . . . 21

2.4.1. Application of modeling languages to hardware design . . . . . . . . . . 22

2.5. Objective of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3. SystemC based environment for virtual prototyping 27

3.1. State of the art of AMS extensions to System C . . . . . . . . . . . . . . . . . . 27

3.2. SystemC AMS 1.0 OSCI standard model abstractions . . . . . . . . . . . . . . 32

3.3. SystemC AMS 1.0 OSCI standard models of computation . . . . . . . . . . . . 33

3.3.1. TDF modeling fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2. ELN modeling fundamentals . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3. LSF modeling fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4. Interaction among SystemC AMS models of computation . . . . . . . . . . . . 36

3.4.1. Continuous-time (ELN or LSF) to/from discrete-time (TDF) or discrete-
event (DE) domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2. Continuous-time conservative to/from non-conservative domain (ELN/LSF) 38

3.4.3. Discrete-time domain to/from discrete event SystemC domain (TDF/DE) 38

vii



viii Contents

3.5. SystemC TLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6. Interaction between SystemC AMS models of computation and SystemC-TLM 2.0 41

3.6.1. Interfacing TDF/TLM2.0 AT . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6.2. Interfacing TDF/TLM2.0 LT . . . . . . . . . . . . . . . . . . . . . . . . 42

III. The contribution 43

4. Specification and implementation of SystemC AMS extension libraries 45

4.1. Introduction to high-level modeling of AMS multi-physics systems . . . . . . . 45

4.2. Contribution to the elaboration of knowledge-based high-level models from a
netlist descriptive view . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2.1. From the netlist to the state space equations with SystemC AMS . . . . 49

4.3. Contribution to the elaboration of knowledge-based models from simulation data 52

4.3.1. Modeling from frequency domain response curves for dynamic components 52

4.3.2. Macro-modeling of static components for SystemC AMS simulations . . 57

4.4. Contribution to the elaboration of black-box models from empirical data . . . . 58

4.4.1. System identification, model structures, parameters and criteria. . . . . 59

4.4.2. Proposed extension of SystemC AMS libraries for building identification
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5. Application of system identification techniques to the closed-loop control for
power consumption optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5.1. Behavioral input/output model . . . . . . . . . . . . . . . . . . . . . . . 68

4.5.2. LNA : Low Noise amplifier . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.3. Envelope Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.4. Nonlinear performance prediction model . . . . . . . . . . . . . . . . . . 72

4.5.5. Adaptive logical control . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.6. LNA performance modes . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.7. Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.8. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.6. SAW based chemical sensor case study . . . . . . . . . . . . . . . . . . . . . . . 80

4.6.1. Overview of the SAW device . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6.2. Behavioral modeling of SAW sensors . . . . . . . . . . . . . . . . . . . . 81

4.6.3. Laplace transfer function model of the SAW sensor . . . . . . . . . . . . 83

4.6.4. Low-level Verilog-A / Cadence-Spectre based modeling . . . . . . . . . . 85

4.6.5. High-level SystemC / SystemC AMS based modeling . . . . . . . . . . . 97

4.6.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5. Industrial case study: CMOS video sensor 105

5.1. CMOS video sensor and SystemC AMS models . . . . . . . . . . . . . . . . . . 105

5.1.1. VHDL-AMS model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.1.2. SystemC AMS ELN-TDF model . . . . . . . . . . . . . . . . . . . . . . 107

5.1.3. SystemC AMS TDF models . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2. SystemC AMS TDF fastest model . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.1. Input image builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2.2. Lens effect model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.3. Bayer filter model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



Contents ix

5.2.4. Video timer model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.5. Pixel module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.6. ADC bank module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.3. CIS modeling styles performance comparison . . . . . . . . . . . . . . . . . . . 118

5.4. CIS model integration in different SystemC-based platforms . . . . . . . . . . . 119

5.5. Beyond-DREAMS OSCI SystemC TLM 2.0 platform integration . . . . . . . . 120

5.5.1. SystemC TLM 2.0 proof-of-concept platform . . . . . . . . . . . . . . . 120

5.5.2. SystemC AMS/SystemC OSCI TLM 2.0 platform simulation results . . 123

5.6. WASABI SystemC bit-cycle accurate platform integration . . . . . . . . . . . . 123

5.6.1. Modeling the whole system . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.6.2. Modeling of the SystemC / SystemC AMS interfacing . . . . . . . . . . 126

5.7. STMicroelectronics CATSEYE SystemC TLM platform integration . . . . . . . 128

5.7.1. Digital to analog control . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.7.2. Analog to digital information passing . . . . . . . . . . . . . . . . . . . 129

5.8. ST-Ericsson SystemC TLM mobile platform integration . . . . . . . . . . . . . 130

5.9. Conclusion and future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6. Conclusions and perspectives 135

A. Technical Annex 139

A.1. SytemC TDF based system identification . . . . . . . . . . . . . . . . . . . . . 139

A.2. SystemC AMS extraction of a Laplace transfer function-based fitted model . . 149

A.3. C-code for the MIPS32 embedded firmware . . . . . . . . . . . . . . . . . . . . 153

List of Figures 157

List of Tables 161

List of Acronyms 163

Bibliography 167

IV. Résumé de la thèse en français 177

Résumé 179

Introduction et état de l’art 181

1. Contributions à la recherche . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

2. Structure de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Environnement de modélisation et simulation SystemC 187

3. SystemC AMS et ses modèles de calcul . . . . . . . . . . . . . . . . . . . . . . . 187

4. SystemC TLM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Contribution à la modélisation de haut niveau de systèmes hétérogènes 189

5. Introduction et regroupement à partir des connaissances de départ . . . . . . . 189

6. Contribution à l’élaboration de modèles de haut niveau basés sur la connaissance
à partir d’une netlist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191



x Contents

7. Contribution à l’élaboration de modèles basés sur la connaissance à partir de

données de simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.1. Macro modélisation de composants statiques pour la simulation en Sys-

temC AMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7.2. Macro modélisation de composants dynamiques pour la simulation en

SystemC AMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8. Contribution à l’élaboration de modèles boîte noire à partir de données empiriques193

9. Application des techniques d’identi!cation de système à la commande en boucle

fermée pour l’optimisation de consommation de puissance. Cas d’étude d’un LNA193

10. Cas d’étude de la conception de l’interface microélectronique pour un capteur

chimique SAW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

11. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Cas d’étude industriel : capteur d’images CMOS 197

12. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

13. Modélisation du CIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

14. Comparaison de performances entre les modèles du CIS . . . . . . . . . . . . . 199

Conclusions 201

Author’s curriculum vitæ 205



1



2



Part I.

Positioning the context

3





Chapter 1.

Introduction

1.1. Introduction to physically heterogeneous systems and design
methodologies

The tremendous development of the last decades in terms of technology and methodology for
electronic circuit design is leading to systems with high levels of complexity. The shrinking of
electronic systems from the point of view of the technology node together with the efficiency
of the computer aided design (CAD) tools allow to design and conceive extremely complex
multi-tasking systems in little area.

On the one hand, from the electronics point of view, the system composition is more and
more split in two parts devoted to two different tasks: the thinking part and the interacting
one. The thinking part is typically the core of the electronics of the system with the highest fill
factor, that is, it contains the most part of electronic devices, consumes the smallest part of
the power and occupies the smallest percentage of the system area. This is obtained thanks to
the small quantity of energy exchange taking place among the different devices of the thinking
part. The interacting part is consecrated to the interfacing with the real world, which means
sensing and controlling real physical quantities. The interfacing with digital world requires
sensors and actuators dealing with analog signals therefore digital to/from analog converters
are needed. When dealing with physical quantities it is well known that, the more impacting
effect we desire the higher the energy involved hence larger area is used.

On the other hand, the research on materials and other scientific fields allowed developing
miniaturized sensors and actuators in a variety of physical domains (mechanical, chemical,
optical, magnetic). Many multi-domain sensors are embedded in nowadays systems thus opening
the way to different physical natures integrated in one chip: physically heterogeneous systems
on chip (SoCs). When it is not feasible to fabricate a SoC for a particular application, typically
because of the heterogeneity of the technological process, an alternative is a system in package
(SiP) that comprises a number of dies in a single package. Examples of the aforementioned
physically heterogeneous systems can be found in different market shares such as the automotive
with sensor networks based on micro electro-mechanical systems (MEMSs) mainly used for
mechanical sensor, or the pharmaceutics with bio-analysis autonomously performed by devices
called “laboratories on chip” (lab-on-a-chip or LOC), or the consumer electronics with the
market-pulling embedded devices like smartphones and tablet personal computers. Figure 1.1
shows the case of a technology push (mainly driven by internal R&D activities) and a market
pull (driven by external forces) as two distinguished phenomena, it is intentionally left to the
reader’s consideration whether the interaction exists and, if it is the case, how interwoven it is.
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6 Introduction

Technology push vs. Market pull

Research & 

Development
Production Marketing

MarketingProduction
Research & 

Development

Need ?

Expressed

Market

Need

Figure 1.1.: Technology push and market pull.

Resuming, increasing complexity and both significant multi physics domain hetero-
geneity and analog/digital heterogeneity of recent SoCs and SiPs are accompanied by
other open issues given by advances in manufacturing technology and semiconductor market dy-
namism. These issues are: increasing environment awareness for low power devices typically
battery-supplied or harvesting of environmental energy; increasing re-use of subsystems for
reducing the design efforts thus reducing the time to market; increasing impact of modern
silicon technologies due to the physical effects taking place in ever shrinking transistor size.

1.2. Motivation and research contributions

1.2.1. Motivation

The design flow of nowadays multi-domain mixed-signal systems is scattered among different
design methodologies supported by diverse computer-aided design (CAD) and electronic design
automation (EDA) tools. The design of heterogeneous systems is still a highly manual work
and not as automatized / standardized as the digital design flow. An intuitive and partial
explanation to this delay of analog on the digital is that AMS systems are concerned by a high
variety of physical phenomena that have to be interpreted and modeled for being understood and
therefore mastered, while digital systems are artificial artifacts thus easily formalizable. Logic
synthesis and place & route tools assist the design of digital systems while heterogeneous design
requires a multidisciplinary approach. A multidisciplinary approach requires the definition of
different description formalisms also called models of computation (MoCs) together with analysis
and simulation methods. Such formalisms/analysis and simulation methods are provided by
CAD/EDA tool vendors and consist of specialized simulators for different physical disciplines
and levels of abstraction together with other capabilities (netlister, graphical user interface,
etc.).

For example the design of a typical micro-electro-mechanical system like a three-axial
accelerometer [Tan 08] requires:

• Optimization and characterization of the micro-mechanical resonator and (separately) the
electro-static field distribution of the comb drive structures, which are driving and sensing
the movements of the flexible structure. This is done with the help of a Finite Element
Analysis tool (e.g. ANSYSTM, COVENTORTM) from mechanical engineering.
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• Simulation of the whole system on the circuit level, taking into account the coupling
between mechanical and electrostatic domain within the MEMS transducer and feedback
from the analog and digital driving and sensing circuits. For this, behavioral simulators
and modeling languages like VHDL-AMS from electrical engineering are employed.

• Layout of the mechanical structure and of the electronic circuits. This is carried out with
the help of IC layout tools.

On the one hand, when an accurate heterogeneous simulation is needed, a co-simulation,
defined as a simulation performed by launching two different simulation kernels, allows interfacing
the variety of domain-specific tools and simulators above listed, thus allowing the overall
heterogeneous simulation. However, this process is far to be seamless and straightforward. It is
not the CAD tool vendors’ priority to provide easily interfaceability to other tiers simulator,
especially if it is the case of competitors in advance in other engineering fields or if their
suites of EDA tools already feature a similar proprietary capability to the user, even if this
capability is not enough. The designers are forced to bridge the gaps between tools and
methodologies using manual conversion of models for achieving proprietary tool coupling and
tool integrations. Obviously these stratagems are error-prone and often unreliable because of
the high subjectivity of their outcome. As short-term axe of research, efforts in the direction of
an easy and user-transparent interaction between simulators should be put. In the long term,
new design methods and integrated tool chains are needed to support the whole process of
specification, design, integration, verification and validation of the components of a complex
AMS system.

On the other hand, going hand in hand with the increasing complexity of nowadays systems
it is the capability of performing an efficient overall system verification early in the design
flow. Virtual prototypes of the components of the system, both the digital and the heterogeneous
parts, will allow performing the verification of the system, which would provide many benefits
such as architecture exploration, performance estimation, validation of reused parts, verification
of the interfaces between RF, analog and digital parts, early verification of the embedded
software development together with its eventual debugging, verification of the interoperability
with other systems, and assessment of the impact of future working environments and new
generations of technologies. The task of modeling is therefore crucial in the design flow of
embedded electronics and modeling languages must be appropriately chosen mainly basing on
the type of sub-systems it is needed to model and at what level of accuracy / abstraction.

From the digital side, the top-down design flow from Register Transfer Level (RTL)
descriptions to gate-level implementation by using the VHDL [IEEE 09c] and Verilog [IEEE 04]
Hardware Description Languages (HDLs) is pretty well established and used by the majority
of digital hardware designers. The relevance of increasing portions of embedded software in
recent systems led to the need for modeling it, hence pushing the research towards system-level
design languages. SystemC [IEEE 09a] and SystemVerilog [IEEE 09b] certainly are widely
affirmed for providing the system-level view. SystemC is an industry-standard language for
electronic system-level (ESL) design based on the C++ programming language, it is promoted
by the Open SystemC Initiative (OSCI) (from December 2011 OSCI and Accellera merged and
became Accellera Systems Initiative [Initiative 12]) and is an IEEE standard (known as IEEE
1666-2005) since 2005. It allows describing systems at more abstract level (but even at the RTL
level) basing on the discrete event driven kernel by giving the possibility to model both the
hardware and the software components. In the recent years the C language surrounded by all
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the C-like dialects has established itself as the solution for developing the software/firmware of
embedded processors, it follows that system level architectural descriptions of such processor
should be described by means of the C language. It is not the case for SystemVerilog for
example, where the programming languages used for the architectural description and the
embedded software are not both based on the C language. In 2008 OSCI also released the
SystemC Transaction-level Modeling Standard, TLM-2.0 [OSCI 09] aimed at enabling SystemC
model interoperability and reuse at the transaction level, providing an essential ESL framework
for architecture analysis, software development, software performance analysis, and hardware
verification.

When it comes to the analog and mixed signal concurrent design such as RF, MEMS,
analog to digital (ADC) or digital to analog conversions (DAC), extensions to the existing
modeling languages have appeared. VHDL and Verilog have shown their AMS extensions
named VHDL-AMS (standard IEEE 1076-2008)[IEEE 07] and Verilog-AMS with its Verilog-A
analog kernel [Accellera 09]. These languages are really hardware description oriented and
lacks in modeling formalisms for describing AMS systems at a behavioral or functional level.
Furthermore they offer no capability of modeling for embedded software and available simulators
are too slow for even think to simulate a complex state-of-the-art heterogeneous SoC. Other high
level tools like Matlab/Simulink do offer an alternative for functional and behavioral modeling
but lack in direct connection with the flow to the hardware implementation and there is no way
to simulate the SW. It has been logical to provide the SystemC framework with AMS extension
since, it is being widely accepted and adopted as a versatile C++ based language commonly
used by system designers, software engineers, and hardware designers. The AMS working group
(AMSWG) of the OSCI has being involving its efforts in the definition of modeling paradigms,
syntax and interfacing layer to the SystemC event-driven kernel, together with the submission
for standardization of the SystemC AMS [OSCI 10, Vachoux 05] extensions since a few years
now. This simulation language is now able to model complex heterogeneous systems with the
help of different MoCs for a description of each individual component.

Behavioral modeling of analog and mixed-signal such as RF or MEMS components is more
and more topical in the industry as part of the design process of integrated systems, since
it allows simulating the entirety of a complex heterogeneous system. The above-mentioned
standardized mixed-signal and mixed-technology behavioral HDLs are facilitated by several
commercial and open source simulators. A behavioral model is the description of a component
as input-output behavior augmented with major non-idealities of real implementations, but
without requiring a complete description of all implementation details. The purpose is mostly
to verify the correct functionality of the system wherein the device is operating in acceptable
CPU times by replacing the target devices with behavioral models.

It is of common sense to consider the design process of technological systems as a V-shaped
model (Figure 1.2) wherein the design has a top-down approach starting from the business
case to the implementation passing through the system specifications. The verification has a
bottom-up approach because it is performed step by step first verifying the functioning of the
device inserted in the sub-subsystem then verifying the sub-subsystem’s functioning inserted in
the subsystem and so on, while keeping back-annotating information for reviewing/modifying
the design at any time an issue is found out.
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Behavioral modeling can greatly simplify the design process in both sides of the V-model,
however, a wrong choice of the model correctness/accuracy can also lead to oversimplification,
messing up the whole process:

• During top-down design. Here the intent is not really to design in the classic acceptation
of the word, that is, start from system specifications and descend with the automated
synthesis to the layout of the system, although some studies are ongoing in this direction
[der Plas 02]. The intent is rather to take advantage of behavioral modeling of digital
and AMS components of the system for helping the designers to perform architectural
exploration and to map top-level performance specifications onto different blocks trading
off different performances and implementation costs (e.g. area, power).

• During bottom-up verification the same behavioral models used for refining the system
in sub-systems and components can be used for verify the correct functioning of the system.
For representing a real interest the model accuracy is improved by enriching them through
details coming from the low-level implementation. The low-level implementation could be
a transistor-level design before the layout thus the extraction of parasitic, or an already
back-ended chip together with simulations including parasitic effects, or a characterization
through measures performed on a physical prototype. Of course details fall apart when
gradually raising the level of abstraction.
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Figure 1.2.: V-model of the design process of a technological system.

Different techniques and strategies for modeling such components can be found depending
on the actual need linked to the position in the V-model of the product design (Figure 1.2).

1.2.2. Research contribution

When dealing with the diversity of natures and domains involved in heterogeneous SoCs, it
is hard to figure out how analog behaviors can be captured and modeled for representing the
functioning of the target sub-systems or components. The modeling formalisms / paradigms
that are available change for each modeling language or framework. Different techniques for
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different types of behavioral modeling have been studied and qualified as modeling techniques
for different requirements. Analog and mixed signal components may be mastered at different
levels of knowledge, it is typically reasonable to resume two cases as follows:

• The structure of the device is known and the physical laws that govern the behavior of the
device are mastered. An analytical inputs/outputs equation, sometimes involving state
variables, can therefore be determined. This is called “modeling of knowledge” (violet
left branch in Figure 1.3), the possibility of disposing of a system exhaustive knowledge
is nowadays less and less probable because of the increasing complexity/coupling of the
devices.

• The physical laws that define the behavior of the device are not a priori known and
only experimental data are available. The device is either physically available (green
right branch in Figure 1.3) (delivered in the form of a prototype IP or a pre-compiled
simulateable model, in both cases, it is considered as a black box) or a fine description
of it (blue center branch in Figure 1.3) issued from structural analysis performed by
ad-hoc domain-specific simulator/tool (FEM for instance) is known. In both cases a
mathematical model has to be built for describing the behavior of the device in order to
perform simulations.
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Figure 1.3.: Behavioral modeling cases for heterogeneous mixed-signal devices.

Different techniques for the modeling have been analyzed and the constructs automatized
for obtaining behavioral models at different levels of abstraction and computational weights,
with particular focus on the SystemC AMS analog and mixed signal extension framework. For
obtaining this, many reduced order modeling techniques are studied and implemented for the
refinement of the model-based top-down design or bottom-up verification. Different case studies
and different models of computation offered by SystemC AMS (but also Verilog-AMS and
VHDL-AMS), are analyzed for proving the efficiency of the proposed methodology. The analog
/ digital interfacing issue is also faced and application-specific solutions are shown for the
interfacing to the SystemC OSCI transaction level modeling TLM-2.0 standard. In particular,
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taking advantage of the industrial collaboration with STMicroelectronics, the methodology for
AMS components is applied to refined models of a CMOS video sensor. The AMS sensor itself
communicates with transaction-level communication protocols proprietary of STMicroelectronics.
It is claimed and proved that the methodology would aid in both shrinking the time to market
by anticipating development phases (embedded software development/debug among others)
and in augmenting the robustness of commercialized products by reducing their bug-proneness.

1.3. Thesis structure

Chapter one has been introducing the framework and the motivations of this work. Chapter two
will first give a brief overview of the different meaning of the word heterogeneity that appears
when dealing with embedded systems. Chapter two will then show the typical industrial flow
of heterogeneous embedded system, in the acceptation of electrical heterogeneity, the problems
and the techniques for modeling and simulation of heterogeneous systems. The objective of the
thesis will be defined here. Chapter three will deal with the C++ based SystemC framework
and its extensions / formalization for analog and mixed signal and transaction level modeling.
The SystemC AMS models of computation and their interaction will be detailed together with
the interaction with the digital transaction level modeling. Chapter four gives my contribution
to the study of modeling techniques for abstracting reduced-order, higher-level models from the
circuit or transistor level both for design and test purposes. In Chapter four an application of
the system identification technique will aim at the closed-loop control of a target device for a
power consumption optimization, a Low Noise Amplifier is shown as a case-study. Chapter
four will also show how the behavioral modeling is applied in the case-study of the design of a
Surface Acoustic Wave-based chemical sensor. Chapter five will deal with the embedded analog
and mixed-signal industrial case study, the CMOS image sensor. Chapter six will then give the
conclusions of my work and future work perspectives.
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Chapter 2.

Design of heterogeneous embedded systems

In this chapter a description of the design flow for heterogeneous systems is given. First, when
talking about heterogeneous embedded systems many thoughts could come to one’s mind. In
section 2.1 an overview of the main kinds of heterogeneity is provided. The focus will then
move on the heterogeneity of multi-physical domains and the heterogeneity between analog
and mixed-signal systems and purely digital systems. The design flow typically used for analog
and mixed-signal systems is described in section 2.2 together with its issues and limitations.
Section 2.3 deals with the techniques for modeling and refinement for the model-based design of
heterogeneous systems. Section 2.4 gives an overview of the state-of-the-art modeling languages
and tools for mixed-signal systems. Finally the last section reminds the objective of the thesis.

2.1. Heterogeneities in embedded systems

The heterogeneity of embedded systems may be highlighted/schematized by illustrating the
overall system as a block diagram. The blocks are used for distinguishing the fields/domains
that induced us to define the system as heterogeneous.

2.1.1. Hardware and software heterogeneity

This kind of heterogeneity is intended when, within a system, the architecture has to be
designed by considering if the tasks have to be performed by a dedicated hardware module or by
loading/running the related algorithms on a standard processor. It is an intrinsic aspect of every
state-of-the-art electronic system. In the particular subject of embedded systems, special care
must be dedicated to the partitioning of hardware and software parts with the intention to use
Application-Specific Integrated Circuit (ASIC) parts whether high performances are required
[Wolf 94], techniques for the HW-SW co-design can be found in literature and nowadays tools
and design methodologies allow developing concurrently both the HW and the SW rather than
developing the SW once the HW is available.

2.1.2. Heterogeneity of the architecture

This kind of heterogeneity refers to the architecture of processors from the point of view
of the digital/hardware architect. Node level heterogeneous architectures (also known as
heterogeneous computing) refers to the use of different processing cores to maximize performance

15
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[Brodtkorb 10]. Compared to traditional symmetric multi-processor (SMP) systems, they
offer high peak performance and are energy and/or cost efficient. The use/study of these
architectures is indeed a hot topic due to deployment of fine-grained parallelism in high-
performance computing, as well as the introduction of parallelism in workstations. Typically,
three commonly found architectures are predominant, Figure 2.1 shows the compositions of the
three architectures:

• Cell Broadband Engine Architecture (CBEA), a traditional CPU core and eight single
instruction multiple data (SIMD) acceleration cores.

• Architecture based on graphics processing units (GPUs), a standard multiple core CPU
combined with a GPU with 30 highly multi-threaded SIMD accelerator cores.

• Architecture based on field programmable gate arrays (FPGAs), a standard multiple core
CPU combined with an FPGA containing an array of logic blocks.

(a) CBEA (b) CPU in combination with GPU (c) CPU in combination with FPGA 
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Figure 2.1.: The Cell Broadband Engine is a heterogeneous chip (a), a CPU in combination with a
GPU is a heterogeneous system (b), and a CPU in combination with an FPGA is also a
heterogeneous system (c).

2.1.3. Multi-physics heterogeneity

In nowadays systems, the coexistence of multiple physical domains or multiple simultaneous phys-
ical phenomena (electromagnetism, chemistry, biology, mechanics, fluidics, thermo-dynamics,
optics) on the same system is a reality, this aspect is emphasized in embedded systems since,
compared to workstations, they have to interact with the real world by sensing physical quanti-
ties by means of sensors and acting by controlling actuators/motors. In addition to the meaning:
more than one physical domain (electrical, mechanical, optical, chemical ...), the adjective
“heterogeneous” may also be used for identifying more than one technological fabrication
process that is different basic materials (silicon, III-V, organic ...) or different co-integration
techniques: planar or stacked SoC or bonding (SiP) [O’Connor 07].

2.1.4. Electrical (digital/AMS/RF) heterogeneity

This heterogeneity refers to the coexistence of purely digital parts, analog and mixed-signal
(AMS) parts and radio frequency (RF) signals, in the same SoC. In such systems the heterogene-
ity is given by the electrical coexistence of purely analog systems with analog inputs/outputs
(amplifiers e.g. operational amplifiers, analog filters, or RF devices such as low noise amplifiers
or mixers), together with mixed-signal systems where digital inputs influence the outputs
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(sensors or actuators) and purely digital synchronous (internal functioning triggered by clock
edges) or asynchronous.

2.1.5. Summary and terminology

The listing of types of heterogeneity just depicted is a first classification from the point of view
of the system composition. If one wants to consider also other heterogeneities related to the
design flow of such systems other senses of heterogeneity can be found:

• heterogeneity of the design processes involved before the object exists physically (specifi-
cation, synthesis, simulation, verification).

• heterogeneity of the types of signal description (continuous and discrete time and value,
cycle and bit accuracy).

• heterogeneity of the models of computation (dataflow, sequential processes, discrete event,
etc.).

In this thesis it will be focused on “heterogeneous systems” (in the sense described
in section 2.1.3) referring to different physical domains involved. Analogously, it will also be
focused on “mixed-signal (AMS) systems” (in the sense described in section 2.1.4) referring
to different electrical natures involved.

Heterogenous systems, according to the definition given right above, do not explicitly imply
that both analog and digital signals are present in the system. Despite this, on the one hand, it
is intuitive that node level SoCs contain a substantial part of digital electronics for processing
data and taking decisions. On the other hand, when retrieving information from other physical
domains, such as a vibration in the case of a MEMS, it is almost obliged to pass through
an analog signal that will be converted to a digital data by means of an Analog to Digital
Converter (ADC). Resuming, for a matter of clarity, in our scope, an heterogeneous system
only defines multi-physics phenomena occurring in it even if, in node level embedded systems,
electrically mixed-signals are implicitly involved.

The aim of this work is to deal with modeling and simulation of these two types of hetero-
geneities, for instance, when a system presents both electrical and multi-physics heterogeneity it
will be called “heterogeneous mixed-signal system” or “heterogeneous AMS system”.

2.2. Design flow of heterogeneous mixed-signal systems

In this section the typical design flow of heterogeneous mixed-signal systems is discussed.

In the following it is considered the case of a MEMS-based wireless sensor network (WSN)
node as a good representative of a heterogeneous mixed-signal system. First, the overall
specifications are defined and a partitioning in functional units (analog, RF, digital, software) is
done. Second, the functional units are refined by system architects, basing on their experience
with similar products, providing a tentative architecture of each functional units taking care
of respecting the required performances. The overall specifications are then mapped on the
macro-blocks that compose the architecture. Different designer teams take care separately of
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the design flows of the digital hardware and software, AMS and MEMS parts, each one with its
specifications.

A possible scenario could be the one of Figure 2.2 where the design flow of a WSN node
designed and commercialized by a MEMS manufacturer is shown. For making the analyzed case
as generic as possible it is assumed that third-party manufacturer are involved. In particular,
Manufacturer1 provides the digital HW and teams A and B are teams following different flows,
A for the design and B for the verification. Manufacturer2 provides the RF transceiver and
analog-to-digital converters, as for the previous manufacturer, team A is in charge of the design
and B of the the verification. For what concerns the MEMS design/verification, they are
internally performed by team A and B while the software team develops the embedded software
for the third-party hardware. The integration is then performed by assembly engineers that are
in charge of the integration and verification of the functioning pre/post layout.
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Figure 2.2.: Many flows co-existing for the design flow of WSN node.

2.2.1. MEMS/AMS/RF design flow design flow

For the MEMS part, an accelerometer for instance, basing on the required specifications, if
currently available devices do not meet the requirements, a device architecture/typology is
chosen among the variety of sensors produced by the MEMS provider, and modifications are
necessary. A new MEMS hardware is needed and traditionally two engineering teams collaborate
to the design of MEMS. One team uses a Finite Element Analysis (FEA) based computer-
aided design (CAD) tool (such as CoventorWareTM[Khankhua 11] ANSYSTM[Malik 08]) to
create the electro-mechanical model. The other team focuses on the electronics frontend and
uses an EDA tool from electronic CAD vendors (such as CadenceTM, MentorGraphicsTMor
SynopsisTM) for performing transistor-level simulations. For verifying the interfacing of both
the mechanical and the electrical aspects, behavioral models of the MEMS are developed
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using Analog Hardware Description Languages (AHDLs) (such as VHDL-AMS) extracting
the behavior from the accurate FEM characterization. This allows to take into account the
coupling between mechanical and electrostatic domain occurring within the MEMS and the
analog and digital driving and sensing circuits. The layout of the mechanical structure and the
electronics circuit is carried out through the help of IC layout tools. Different tools are required
and it is difficult to optimize the performances because of the disparities of tools. This makes
existing MEMS design-methodologies inefficient and leads to extensive and time-consuming
design iterations.

For the AMS/RF part, it is almost the same flow as for the MEMS part but FEM tools are
replaced with special AMS/RF simulators such as SPICE or Agilent ADSTM. Analog HDLs are
nevertheless used for performing simulations of the surrounding electronics with lower details
that, using transistor level simulators, would have demanded too high simulation times.

2.2.2. Currently open issues and conclusions

The above-described flow is well established but unlike the design flow of digital parts it is
not seamless and straightforward, the centralization of the information is lost as soon as the
design flow is separated in many/non-communicating discipline-specific (AMS/RF/MEMS)
design flows. From this point of view a way to unify the exchange of specifications between the
architecture and the implementation level should be introduced.

With this in mind, another point is that the main lack of the design methodology is
the ability to validate the system at the application level through simulations for embedded
heterogeneous AMS systems. A high level modeling language and methodology is needed for
enabling the modeling of the digital HW and SW and the analog with dedicated models of
computations (MoC).

In phase of top-down design, in order to improve the quality and speed by allowing
architects to analyze several scenarios exploring solutions and early performances (architecture
exploration), it is proposed to use reliable high level models of sub-blocks (provided by the
MEMS sensor team for instance) for simulating the system at application level. These models
would be delivered by the teams supplying the IP using a common high level modeling language
(possibly different models at different levels of details). Architects, with the overall specifications
in mind, would inter-exchange the IP models potentially coming from different suppliers by
testing them and commissioning modifications for fitting the required performances.

During bottom-up verification, once implementation is achieved and post-layout simulations
with parasitics effects performed, the higher abstraction level models are updated with detailed
parameters for reflecting the real device as accurately as possible. As opposed to the digital
top-down only methodology, heterogeneous mixed systems need also a bottom-up methodology
to propagate low-level properties/parasitics at system level. The verification is performed at
each level for assuring that performances meet the expectations at each level of abstraction,
normally the verification covers only the target cases of performances under analysis.

Concerning digital ICs design flow, when technology changes, the system described at RTL
is coded in VHDL (studies are ongoing for obtaining the VHDL from C++ [Shcherbakov 11]
and the implementation is directly synthesized and the netlist generated, place & route and
timing analysis tools are used by the backend designers for producing the masks needed for the
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fabrication of the chip. Unlike the digital design, when the technology changes less reuse of
AMS/MEMS IPs is possible, nevertheless, if the technology is not changing it is typically a
matter of resizing components or changing parameters, despite this, a portion of the design flow
must be performed the same. The concept here is that from a low-level point of view no reuse
of AMS/MEMS IPs is possible but from a high-level point of view analog behavioral models
can be reused “as they are” or adjusted for performing a first top level architecture exploration
and feasibility study.

Synthesis in the AMS domain is not feasible yet even if studies are ongoing [der Plas 02,
O’Connor 06, Mitea 11], it is claimed that the top-design will be based on the refinement
of models enabled by different tools for different levels of abstraction, and an analog and
mixed-signal extension of SystemC will play a key role for high level AMS systems modeling.

2.3. Modeling-based refinement of heterogeneous systems

As already mentioned, for the design of digital systems, top-down design is state-of-the-art.
The integration of analog/mixed-signal subsystems, which are mostly designed bottom-up, into
a digitally dominated top-down flow is still a challenge. In the ideal case, top-down refinement
begins with an executable specification of the intended behavior at system level. Refinement
of the executable specification is part of the architecture exploration. The refinement process
consists of a stepwise approach of replacing the blocks in the system with more accurate (less
abstract) models.

Figure 2.3 shows the levels of abstraction in which the design flow or design view can be
exploded. The root is the overall specification then functional units are identified wherein the
functions digital/A(MS)/interfaces are separated and ulteriorly divided in architectural blocks.
Together with the levels of abstraction the languages used for describing the models are shown
as well. The AMS extensions to the SystemC locates at a higher abstraction level than the one
offered by VHDL-AMS

Figure 2.3.: Explosion in levels of abstraction of a heterogeneous analog and mixed-signal system.

The importance of modeling at every level of abstraction for interpreting the functioning of
transistor/circuits/digital has been discussed. Models are everywhere in real world and it has
been mentioned above that behavioral modeling would help at the system view for exploring
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the design space and better understanding at early stages how components would interact. The
top-down is not only the paradigm for designing ICs but it is a paradigm for real life. For most
of the things in our daily life first the overall vision is captured then internal structures can be
unrolled and developed and details unveiled.

A study about the formalization of the different abstraction levels for the AMS design flow
has been carried out in [Paugnat 11]. A mapping of the levels of abstraction with the SystemC
AMS MoCs is proposed and justified by means of a use case example.

2.4. State of the art of mixed (analog-digital) modeling
languages/tools

In order to retrace the evolution of the modeling languages/tools that address heterogeneity
in system design one important effort has been the development of the Ptolemy II software
environment [Brooks 10]. The Ptolemy approach is based on the hierarchical composition of
models, each one being possibly modeled using a different Model of Computation (MoC). A
MoC defines a modeling formalism, i.e., a graphical or textual language with its syntactical
elements, a set of syntax rules and a set of computational rules that define the semantics of
the model. Such models are also called executable models as they can be used for simulation,
synthesis, or formal proof. The Ptolemy II environment supports several MoCs, among others:

• Discrete Event (DE) MoC: is based on a discrete representation of time, which is
suitable for modeling the behavior of digital and sampled systems. The computational
rules for such MoCs are formally defined in the form of an event-driven logic simulator.

• Continuous-Time (CT) MoC: is based on a continuous representation of time, which
is suitable for modeling the behavior of analog/RF systems. The computational rules for
such MoCs are formally defined in the form of an equation solver or a circuit simulator.

• Synchronous Data Flow (SDF) MoC: is an asynchronous message-passing MoC, in
which First-In, First-Out (FIFO) queues model the communication between processes.
Processes encapsulate sequential behaviors and possibly states. This MoC can be either
un-timed (i.e., only the presence of a input token or input data sample can trigger a
process) or timed (i.e., process inputs and outputs are streams of sampled data). This
MoC is suitable for modeling signal processing applications.

The Ptolemy II environment has been extensively used for research purposes and inspired
the development of other system design frameworks such as Metropolis [Balarin 03] or ForSyDe
[Sander 04]. These latter frameworks however deliberately limit their support to only one MoC,
namely concurrent processes in Metropolis and purely synchronous/reactive models in ForSyDe.
The main advantage over the Ptolemy approach is that they provide formal paths from abstract
specifications to implementation through formal refinement, or synthesis, steps. The main
drawback of the Ptolemy framework is its implementation that makes use of the Java structure,
which is noticeably slow when complex broad systems have to be simulated.

MASCOT [Bjureus 01] has been developed as a modeling technique that integrates Specifi-
cation and Description Language (SDL) models and Matlab [MATLAB 11] in a co-simulation
environment. It also supports a modeling methodology, for which abstract specifications are de-
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composed into a set of processes communicating through ideal, infinite-length, FIFOs. Processes
are partitioned into control and data flow, thus associating the former to SDL computation and
the latter to Matlab computation. The underlying MoC is a variant of the SDF MoC called
Composite Signal Flow MoC.

Gielen [Gielen 05] provides an excellent review of methods and tools that have been developed
over the past 10 years at Katholieke Universiteit Leuven (KUL) for the design of mixed-signal/RF
integrated circuits and systems. It clearly shows the needs to have a rich library of behavioral
models of basic building blocks that support a large spectrum of abstraction levels and MoCs. It
also discusses the current lack of systematic methods to generate appropriate behavioral models
of analog/RF building blocks.

Automated methods have been developed for extracting/abstracting behavioral models
from circuit netlists [Nathke 04]. Such approaches fit well with bottom-up verification as the
generated behavioral models have to more or less accurately represent real circuit behaviors.
Although these models may also be used for top-down architectural exploration, other specific
modeling approaches implementing functional behaviors with selected non-ideal effects such as
phase noise or settling time can be used [De Smedt 99].

2.4.1. Application of modeling languages to hardware design

Parallel to the development of modeling representations (models of computation) and techniques
to generate behavioral models, a lot of work has been done on the development of modeling
languages for hardware design. In the 1980’s, gate-level or transistor-level net lists were
mostly used for logic/circuit simulation, timing and Layout-Vs-Schematic (LVS) verification.
In the 1990’s, Hardware Description Languages (HDLs) such as VHDL [IEEE 09c] and Verilog
[IEEE 04] became the main design languages for digital hardware. In the same time, analog
and mixed-signal extensions to these languages (i.e., the IEEE standard VHDL-AMS [IEEE 07]
and Verilog-AMS [Accellera 09]) were developed. In the 2000’s, C-based HDLs such as SystemC
[Black 04, Grotker 02, IEEE 09a], SpecC [Gajski 00], Handel-C [Bowen 98] started to become
the main design languages as they enable the development of more abstract models of complex
systems including embedded software.

SystemC [Black 04, Grotker 02] is a C++ library of classes and methods that support
the description and simulation of digital HardWare and SoftWare (HW/SW) systems from
functional down to register transfer level by using the Discrete Event (DE) MoC. It has seen wide
industry adoption over the past decade. Its development and standardization is coordinated
by the Open SystemC Initiative (OSCI). Since 2006, it is an IEEE standard [IEEE 09a]. Its
application domain is continuously broadening, as it is supporting powerful modeling and
simulation capabilities at system level (e.g. transaction level models [Ghenassia 06, OSCI 09])
and it is currently being extended to better support (real-time) embedded software and AMS
systems. The open source and object-oriented characteristics of SystemC together with the
clear separation of computation and communication in it allow for adding support of various
models of computation in a layered approach [Patel 05]. For digital HW/SW systems modeling,
several competing efforts provide various untimed, synchronous, and timed MoCs such as Finite
State Machine (FSM), Petri Net (PN), Kahn Process Network (KPN), Synchronous Data
Flow (SDF), Synchronous Reactive (SR), and Clocked Synchronous (CS). Examples of such
efforts are SystemC-H [Patel 04], and HetSC [Herrera 06], and UMoC++ [Mathaikutty 06].
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All approaches impose additional rules on how to write modules to make use of one MoC. The
implementation of the MoCs themselves can greatly differ. Some are exclusively implemented
as channels that use regular SystemC events to coordinate their execution with the help of
SystemC’s discrete-event kernel. Some other use dedicated kernel extensions to speed up the
execution of the MoCs.

In parallel to SystemC, SystemVerilog [IEEE 09b] has established itself as a popular hardware
description, verification, and specification language. It is an object-oriented further development
of the “classic” Verilog [IEEE 04] HDL to aid in the creation of complex system models on the
RTL and on the architectural level1 and facilitate their verification using simulation and formal
assertion-based methods. It includes design specification methods, an embedded assertions
language, a test bench language including coverage and an assertions Application Programming
Interface (API) as well as a Direct Programming Interface (DPI) to interface with IP written in
foreign programming languages (using C-bindings). SystemVerilog itself focusses on digital SoC
design and does not yet offer AMS extensions comparable to Verilog-AMS2. The Accellera Verilog
Analog Mixed-Signal Group is currently managing to merge SystemVerilog and Verilog-AMS.
In the meantime, vendor-specific co-simulation solutions are available to couple SystemVerilog
with Verilog-AMS models. Compared to SystemC, SystemVerilog is a more closed environment,
which hinders the integration of new MoCs into the language, which go beyond the semantics
of SystemVerilog itself.

In [Pecheux 05], the modeling of an airbag system has been used to illustrate how the
VHDL-AMS and the Verilog-AMS languages can be used to develop behavioral models with
the necessary accuracy to validate the system’s features while keeping the simulation time
reasonably low (with respect to a full transistor level simulation). In addition, it showed the
behavioral modeling of the chemical reaction, which inflates the airbag. This illustrated the
capability of modeling and simulating physical behaviors other than purely electrical ones and,
maybe most importantly, how a multidisciplinary or multiphysical system might be modeled
and simulated as a whole.

In [Coyitangiye 06], the capability of VHDL-AMS to describe compact semiconductor
models is demonstrated. A first study focuses on the EKV v2.6 MOSFET model taking into
account the thermoelectrical interactions and the extrinsic aspects. The EKV model uses
linearization with respect to surface potential resulting in physically well based expressions for
the whole model. A second study develops a simplified version of the MM11 Philips model,
which takes into account the quantum mechanical effects. This compact MOSFET model is
based on the formulation of the surface potential.

In [Mähne 06], the creation of virtual prototypes of complex micro-electro-mechanical
transducers is presented. Creating these behavioral models can be partially automatized using
a Reduced-Order Modeling (ROM) method. It uses modal decomposition to represent the
movement of flexible structures. Shape functions model the energy conservation and full coupling
between the different physical domains. Both modal shapes and shape functions for strain

1Efficient system modeling on the architectural level with SystemVerilog requires the use of extension libraries
like the ones developed as part of the Open Verification Methodology (OVM) [Systems 08]. These libraries
provide building blocks for well structured and reusable verification components and test environments. To
this end, they also provide support for Transaction-Level Modeling (TLM).

2The Verilog-AMS language [Accellera 09] is an extension of the digital Verilog language that has been
standardized by Accellera. Verilog-AMS bears similar features with VHDL-AMS, but is mostly oriented
towards circuits design.
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energy and lumped capacitances of the structure can be derived in a highly automated way
from a detailed 3-D FE model, available from earlier design stages. Separating the generation of
the reduced-order models (ROM) from the same FE model but for different operation directions
circumvents current limitations of the used ROM method. These sub models are integrated
into a full model of the transducer. VHDL-AMS is used to describe additional strong coupling
effects between the different operation directions, which are not considered by the used ROM
method itself. The application of this methodology on a commercially-available yaw rate sensor,
as an example for a complex transducer, demonstrates the practical suitability of this approach.

Figure 2.4 shows for which tasks popular modeling and verification languages are used in
the SoC design process. We can say that first industrial usage of SystemC AMS is being done
for analog/RF and further MoCs are planned for covering the other physical domains. In figure
the SystemC AMS is represented to cover only the “transaction” level of abstraction but in
most cases it is applicable/used even for the macro-architecture. However the boarders of the
abstraction levels are not unequivocally defined.
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Figure 2.4.: Modeling languages for various physical domains at different abstraction levels, inspired
by [O’Connor 07].

2.5. Objective of the thesis

Accepted that systems are nowadays more an more complex and multi-domain the use of
high level languages for modeling such mixed-signal systems in a C++ environment has led
the establishment of AMS extensions to SystemC. The objective of the thesis has been to
explore the AMS extensions of the SystemC modeling and simulation framework for defining
new modeling methodologies. These methodologies are related to physically heterogeneous
analog and mixed-signal devices with the purpose to automatize the modeling flow for issuing
high-level/reduced-order analytical models with simulation speed constraints. Analog to digital
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interfacing procedures using the SystemC framework will be analyzed with the final aim to
validate the overall platform in its DIGITAL/AMS/RF heterogeneity.
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Chapter 3.

SystemC based environment for virtual
prototyping

3.1. State of the art of AMS extensions to System C

In recent years there have been several parallel efforts to extend SystemC with analog and
mixed-signal capabilities to describe heterogeneous systems.

In [Bonnerud 01], a SystemC simulation framework has been developed that defines analog
signals as new SystemC objects. The simulation semantics is still event-driven, but so called
virtual clocks allow to optimize the simulation of analog and mixed-signal modules. Also, a
behavioral model library of analog and mixed-signal components allows building structural
models of complex systems such as ADCs. However, this approach has not been generalized to
model any kind of analog and mixed-signal behavior and the use of the event-driven formalism
limits its application to signal flow behaviors and fixed time step integration.

In [Biagetti 04], a methodology for writing models of analog components using the SystemC
standard library and simulation kernel is described. Analog modules are implemented as regular
SystemC modules with a specific architecture to handle an adaptive time step simulation. The
simulation of analog or mixed-signal models is event-driven, but each analog block is reactivated
using its own time step. Ordinary differential equations have to be manually discretized with a
proper time step. This approach primarily supports signal flow modeling.

The previous approach has been extended in [Vachoux 06] with the goal to support the
modeling of conservative systems, e.g., by including wire load effects. Their work called
SystemC-WMS allows the implementation of analog modules that communicate with each other
by exchanging energy waves through wave channel interfaces. The wave channel interfaces
are general analog interfaces that can support different physical domains. They allow the
interconnection of modules that describe the component’s physical behavior. As only the
standard communication scheme of the SystemC kernel is used, no modification of the SystemC
library itself is necessary. The wave channel interface simplifies also the interconnection of
independently developed analog modules, because it avoids the interconnection problems
commonly found in signal flow representations of conservative blocks, where the input/output
role of the across (e.g., voltage) and through quantities (e.g., current) associated to the port
have to be decided at implementation time of the module. This is too early because the direction
of the information flow is determined from the interconnection of the modules, which is only
known to the simulator at elaboration time. The wave channel methodology avoids this problem
since incident waves always have the input role and reflected waves the output role. Parallel and
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series connection of modules can be accounted through appropriate channels, which dispatch
the waves to the modules they connect together. This is similar to the scattering junction of
Wave Digital Filters (WDFs). The response of a module to the incident waves is described
through a, b parameters, which are part of the WDF theory. The methodology can be extended
to circuits with mildly nonlinear elements. A half-bridge inverter was modeled as an application
example using SystemC-WMS and simulated using a fourth-order Adams-Bashforth Ordinary
Differential Equation (ODE) solver. The simulation results showed good correspondence to the
ones obtained from an equivalent model created using Matlab’s Simulink Power toolbox and
simulated using the ode15s stiff ODE solver. The simulation took about five times longer in
SystemC-WMS. This can be partly attributed to the different ODE solvers used. Nevertheless
the simulation performance of SystemC-WMS is limited to a good deal by the fact, that for
each integration time step several discrete events are scheduled, which invoke the SystemC
simulation kernel so that discrete and continuous parts cannot run independently from each
other.

In [Al-Junaid 05], SystemC is extended to SystemC-A that supports analog variables and
analog components (e.g., SPICE-like primitives or user-defined components defining arbitrary
Differential Algebraic Equations (DAEs)). Each analog component in a netlist contributes to
the set up of a Modified Nodal Analysis (MNA) system matrix by specifying the contributions
of each conservative terminal to the Jacobian and to the right hand side of the DAE system.
The interconnection of analog and digital models is handled through specific interface models.
Digital to analog interaction is realized by converting a digital signal into an analog signal using
Backward Euler integration with very small time step. Analog to digital interaction is realized
by detecting the crossing of thresholds. The SystemC simulation kernel is modified to include
the execution of an analog solver. Mixed-signal timing synchronization is achieved using a
lock-step mechanism to avoid backtracking. In [Al-Junaid 06] SystemC-A is used to model an
automotive seating vibration isolation system. The case study showed good correspondence
between the simulation results of two equivalent models of the seating vibration isolation system,
one written in SystemC-A and the other in VHDL-AMS. However, the presented solution has
the drawback that it required modifications to the standard SystemC kernel itself to couple the
analog solver with the discrete-event solver instead of providing an abstraction layer on top of
SystemC to allow the parallel integration of various continuous time MoCs. Also, the way of
defining contributions to the system matrix is very close to circuit level and thus may not be
an appropriate approach for complex heterogeneous systems.

In [Vachoux 03], it is defined the context of the development of extensions to the SystemC
modeling framework to support the description and the simulation of analog and mixed-signal
systems, called SystemC AMS. In [Vachoux 05], the developed SystemC-AMS1 prototype is
presented in detail. Two formalisms, or MoCs, are implemented: a timed variant of the
Synchronous Data Flow (SDF) MoC is used to model signal processing dominated behaviors
as well as more general continuous-time behaviors using oversampled models and a linear
network MoC provides a library of linear electrical primitives for describing linear macro models.
Both MoCs are synchronized with the discrete event SystemC simulation kernel through a
synchronization layer, thereby allowing mixed-signal and mixed-MoC simulation.

1The official terminology states that “SystemC AMS” refers to the OSCI standard while “SystemC-AMS” refers
to the simulator
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This early SystemC-AMS prototype has been evaluated towards its applicability to the
modeling of MEMS, which involve several physical domains under the rule of energy conservation
laws. The prototype was examined on a heterogeneous inertial navigation system with micro-
mechanical sensors. Two modeling approaches were reported. In the first one, the mechanical
quantities were mapped on electrical ones, so that the linear electrical network models like
resistor, capacitor, and inductor provided by SystemC AMS could be used to represent the
mechanical dampers, springs, and masses. In the second approach [Markert 07], the mechanical
system was modeled using a non-conservative block diagram with feedback, which was simulated
using the SDF MoC and had simulation performance advantages over the first approach. The
developed models showed good conformance to the results obtained with VHDL-AMS reference
models of the sensor. However, the development effort for the SystemC AMS models was higher
due to the lack of dedicated modeling capabilities for multiphysical systems. The work also
showed a need to integrate such capabilities into SystemC AMS, because the considered system
contained, besides the MEMS sensor and its analog front-end, a tightly coupled digital part
with embedded software for the signal processing of the sensor signal and tuning of the sensor.
For modeling this digital HW/SW part, SystemC AMS is better suited than VHDL-AMS
yielding in a considerable simulation performance advantage.

Similar findings are reported in [Caluwaerts 08], where the modeling of an electromechanical
energy harvester consisting of a resonator, a variable capacitor, a charge pump and a flyback
circuit is presented. A combination of linear electrical primitives and user-defined SDF modules
is used to describe the system. The nonlinear behavior of the involved diodes is modeled as a
resistor, which resistance value is controlled through an SDF module based on the sensed voltage
across the resistor. This very close feedback imposes very small time steps for the transient
simulation due to the required unit delay in the SDF feedback loop to keep the resulting error
small. This clearly shows SystemC AMS’s current limitations regarding the modeling of physical
systems due to the missing nonlinear solver and dynamic time step capabilities.

In [Herrrera 07], it is shown how to couple the SystemC-AMS 0.15RC4 simulator [Vachoux 05]
with HetSC [Herrera 06] to support in parallel a wide range of MoCs. This enables the use of
SystemC for the complete specification of increasingly heterogeneous embedded systems, which
include software control parts, digital hardware accelerators, analog front-ends, etc. Semantical
and syntactical issues for the cooperation of both libraries on top of SystemC are discussed
with a focus on the interfaces provided between the different MoCs for their interaction during
simulation. One possibility for the synchronization of the MoCs from the two libraries is to use
the DE MoC of SystemC as an intermediate layer, as both libraries already offer this synchro-
nization capability. The second possibility allows a direct coupling of specific HetSC MoCs and
SystemC-AMS MoCs using the concept of border channels in HetSC. The paper recognizes
the need to standardize the synchronization semantics between different MoCs. In [Zaidi 10],
it is shown how to couple the timed SDF MoC of SystemC-AMS via the Verilog Procedural
Interface (VPI) with an AMS simulator to do mixed-level co-simulation of AMS systems, in
which most parts of the system are modeled on the system level using SystemC(-AMS) and
selected blocks are replaced through more detailed behavioral (Verilog-AMS or VHDL-AMS)
models or circuit level (SPICE) models.

All two efforts [Herrrera 07, Zaidi 10] show the advantages of the SystemC-AMS architec-
ture, which facilitates the integration of very different modeling formalisms and tools to an
efficient simulation platform supporting the specification, design, and verification of complex
heterogeneous AMS SoCs.
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In [Zhu 10], a formal heterogeneous model of computation framework for SystemC is
introduced and called HetMoC. It complements the already presented approaches [Herrera 06,
Patel 05, Vachoux 05]. It is based on a very formal definition of the semantics for Continuous-
Time (CT), Discrete Event (DE), Synchronous Reactive (SR), untimed Data Flow (DF), and
SDF model domains. A new modeling style for the CT MoC is presented, which has pure CT
dynamics. Based on it, the other MoCs are derived by stepwise abstraction. In this framework,
the target system is modeled as a process network. Blocks are processes that specify computation
and edges are signals to connect processes. For each model domain the signals, domain interfaces,
and processes are defined. The domain interfaces are polymorphic allowing to combine models
using different MoCs. The implementation of the HetMoC framework in SystemC is inspired by
a system level functional modeling style proposed for untimed dataflow models in [Grotker 02].
All models are communicating through standard SystemC sc_core::sc_fifo<T> channels.
As an application example, an adaptive Amplitude-Shift Keying (ASK) transceiver system
is modeled with HetMoC and its simulation results/performance is compared to a SystemC
AMS reference model. The results are promising even though SystemC AMS showed a clear
performance advantage payed with a higher memory consumption due to its more complex but
optimized implementation. HetMoC’s implementation seems to rely for the moment purely
on SystemC’s DE kernel to control its model execution without doing any kernel extension to
optimize its model execution. This could be an explanation for the performance disadvantages
over SystemC AMS. In the perspective of the standardization of AMS extensions to SystemC,
the presented framework is interesting due to its sound formal base to integrate different
modeling domains.

The development of the aforementioned SystemC-AMS prototype [Vachoux 05] was accom-
panied by the SystemC AMS study group [Study-Group 12] with the goal of generalizing and
standardizing the concepts introduced with SystemC AMS. With support from the semiconduc-
tor industry (notably NXP Semiconductors, Infineon Technologies and STMicroelectronics),
the study group promoted the creation of an official working group within the OSCI consortium
that coordinates the development/standardization of SystemC and related libraries. Since its
foundation in 2006, the charter of this OSCI AMS Working Group (AMSWG) has been the
development and standardization of AMS extensions to SystemC to promote their industry
acceptance. Based on the collected requirements and use cases [Vachoux 03], the AMSWG
developed a Language Reference Manual (LRM), which became in March 2010 an official
OSCI standard [OSCI 10]. In parallel to the standard release, the AMSWG published a user’s
guide [Barnasconi 10]. Fraunhofer IIS/EAS released also a conforming Proof of Concept (PoC)
implementation of the SystemC AMS extensions 1.0 [IIS/EAS 10] as a further development
of its former SystemC-AMS prototype. In their first version, the AMS extensions primarily
address the needs for describing the continuous-time behavior of purely electrical AMS SoCs by
proposing three MoCs, which allow their description on different levels of abstraction using
Timed Data Flow (TDF), Linear Signal Flow (LSF), and Electrical Linear Network (ELN).
This makes them well-suited for the design of communication systems, which analog front ends
are tightly coupled to complex digital control, and for the design of Digital Signal Processing
(DSP) applications. However, their modeling capabilities are not yet well suited to describe
energy-conserving multi-physical system components with nonlinear behavior in a formal and
consistent way at a high level of abstraction. The requirements specification for the AMS
extensions shown [Vachoux 03] already mentions these needs to enable their usage, e.g., in the
automotive sector. The OSCI SystemC AMS extensions will be introduced more in details later
on in this Chapter.
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First experiments were already done with the old SystemC-AMS prototype to extend it
for the modeling of conservative elements with nonlinear dynamic algebraic equations. The
results have been reported in [Einwich 06] using a micro relay as a multi-physical example.
The newly proposed nonlinear MoC defines a new module class, which provides callbacks
that can be overloaded to describe the module’s energy-conserving behavior as contributions
to the DAEs system of the nonlinear network formed by the interconnected modules of this
type. To this end, each module defines its contribution to the through values (currents) of
the nodes connected via the module’s ports in dependency of the across values (voltages) and
the derivation of the across values. Additional equations have to be described in the form
0 = F (t, vports, ˙varsports, varsports, v̇ports). The proposed syntax resembles Verilog-AMS, but in
a way that it conforms to the syntax of C++. The advantage of the proposed approach is in
its modularity. The nonlinear MoC integrates itself into the infrastructure of SystemC-AMS
without requiring modifications to the latter. It uses the synchronization layer of SystemC-AMS
to seamlessly interface with the SDF MoC of SystemC-AMS and the DE MoC of SystemC.
Thus, large heterogeneous systems can be simulated, which components have been modeled
using different MoCs in parallel.

In [Uhle 10], it is reported how the previous approach has been refined and generalized.
Natures can now be declared like in VHDL-AMS to associate nodes, terminals, and branches
to physical domains. Thus, model assembly mistakes can be detected upon compile time.
The implemented syntax for describing the energy conserving behavioral has been improved
to be more VHDL-AMS-like and thus user-friendly. The proposed new language constructs
have been aligned with the syntax of the standardized OSCI SystemC AMS extensions. The
implementation is founded on the SystemC-AMS PoC implementation of this standard. The
nonlinear solver can generate events based on threshold crossing and is able to backtrack to
react on events. Thus, if an Non-Linear Network (NLN) model is solely coupled to a DE
model, the synchronization semantics are equivalent with the VHDL-AMS simulation cycle. If
TDF models are additionally coupled to the NLN model, the synchronization becomes more
complex, because synchronization can only happen at the end of a TDF cluster period. The
capabilities of this NLN MoC are demonstrated on a complex electromechanical window lifter
model coupling the electrical, mechanical, and magnetical domains. For a pure NLN model,
both approaches [Einwich 06, Uhle 10] cannot achieve considerable runtime advantages over
an equivalent VHDL-AMS/Verilog-AMS model, as the underlying DAE system and nonlinear
solver algorithms are similar. However, in nowadays typical cases where the complexity of the
digital HW/SW part dominates over the analog part, the system simulation clearly profits from
the more abstract modeling capabilities offered by SystemC and its AMS extensions.

In [Hartmann 09], the modeling of physical control systems with SystemC AMS is described.
A model of a crane with embedded control is used, which has been already previously proposed
as a system modeling benchmark [Moser 99]. Due to numerical stability issues, an external
4th-order Runge-Kutta solver is integrated into the simulation replacing the linear State Space
(SS) solver provided by SystemC AMS. The approach is interesting, because the external solver
is encapsulated in a way that it provides the same interface as the original SS solver and thus
requires only minimal modifications to the model itself.

An extensive bibliography of publications related to the initial SystemC-AMS prototype
and its standardized successor in form of the OSCI SystemC AMS extensions can be found
on the homepage of the SystemC AMS study group [Study-Group 12]. It documents its
growing popularity in the research and industrial communities, who are applying both to a
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variety of application domains, e.g., RF systems [Adhikari 10, Vasilevski 08, Xu 09], control sys-
tems [Hartmann 09], test development [Lu 09], automotive components [Arndt 10, Kreuter 09,
Rafaila 10, Uhle 10], biological labs on chip [Pecheux 10]. The SystemC AMS extensions have
already proved their capability as an integration platform able to support very different modeling
formalisms, which can interact with each other. The openness of the C++-based SystemC
simulation framework allows an extensibility with 3rd party libraries and tools, which cannot be
matched by “classical” HDLs, as they do not give the user such a deep access to the internals
of the simulation mechanism. For the AMS extensions, goals are to make the TDF MoC even
more flexible by supporting features such as the dynamic modification of the TDF time step or
to trigger the TDF cluster execution as a reaction to events. Long term goals are to define a
standard Application Programming Interface (API) for plugging in external solvers and the
formalization of the synchronization layer between the CT and DE MoCs to offer a standardized
API for the integration of new MoCs.

3.2. SystemC AMS 1.0 OSCI standard model abstractions

The SystemC AMS extensions add new abstraction methods for system-level modeling and sim-
ulation of AMS systems to the existing SystemC framework. The model abstractions supported
by the SystemC AMS extensions are based on well-known methods for abstracting analog and
mixed-signal behavior. As shown in Figure 3.1, the abstraction levels distinguish discrete-time
from continuous-time behavior and non-conservative from conservative descriptions.

Discrete-time vs. continuous-time descriptions.

On the one hand discrete-time modeling abstracts signals (e.g., audio or video streams) or
physical quantities (e.g., voltages, currents, and forces) as sequences of values only defined at
discrete time points. Values may be either real values or discrete values (e.g., integer or logic
values). Values between time points are formally not defined, although it is common to consider
them as constant. Behaviors are then abstracted as procedural assignments involving sampled
signals. The description of static (algebraic) non-linear behaviors (e.g., using polynomials)
is supported. Discrete-time modeling is particularly suited for describing signal-processing-
dominated behaviors, for which signals are naturally (over)sampled. It can be also used for
describing continuous-time behaviors, provided that the discrete abstraction produces reasonable
approximations. On the other hand continuous-time modeling gets closer to the physical world,
as signals and physical quantities are abstracted as real-valued functions of time. The time
is now considered as a continuous value. Behaviors are then described using mathematical
equations that can include time-domain derivatives of any order (so-called differential algebraic
equations (DAEs) or ordinary differential equations (ODEs)). Equations must be solved by
using a dedicated linear or non-linear solver, which usually requires complex numerical or
symbolic algorithms. Continuous-time modeling is particularly suited for describing physical
behaviors, as it can naturally account for dynamic effects.

Non-conservative vs. conservative descriptions.

Continuous-time models can be divided into two classes: non-conservative and conserva-
tive models. On the one hand non-conservative models express behaviors as directed flows
of continuous-time signals or quantities, on which processing functions such as filtering or
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integration are applied. Non-linear dynamic effects can be properly described, but mutual
effects and interactions between AMS blocks, such as impedances or loads, are not naturally
supported. On the other hand conservative models are the most detailed continuous-time
models at system level and circuit level, as energy conservation laws (Kirchhoff’s laws) must be
satisfied. As a result, the set of equations to be solved is larger and possibly more complex
than the ones inferred by non-conservative models.

Figure 3.1.: Abstractions in relation to the SystemC AMS models of computation.

3.3. SystemC AMS 1.0 OSCI standard models of computation

The SystemC AMS extensions also define the essential modeling formalisms required to support
AMS behavioral modeling at different levels of abstraction (Figure 3.1). These modeling
formalisms are implemented by using different models of computation (MoCs): Timed Data
Flow (TDF), Linear Signal Flow (LSF), and Electrical Linear Networks (ELN). The three
MoCs are here briefly introduced, in the following the modeling fundamentals for each MoC will
be shown by means of images and explanations extract from the user’s guide [Barnasconi 10]
wherein further details can be found:

• Timed Data Flow (TDF): the execution semantics based on TDF introduce discrete-
time modeling and simulation without the overhead of the dynamic scheduling imposed by
the discrete-event kernel of SystemC. Simulation is accelerated by defining a static schedule,
which is computed before simulation starts, and which executes the processing functions
of the scheduled TDF modules according to the stream direction of the dataflow. The
sampled, discrete-time signals, which propagate through the TDF modules may represent
any C++ type. If, e.g, a real-valued type such as double is used, the TDF signal can
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represent a voltage or current at a given point in time. Complex values can be used to
represent an equivalent baseband signal.

• Linear Signal Flow (LSF): the Linear Signal Flow formalism supports the modeling of
continuous-time behavior by offering a consistent set of primitive modules such as addition,
multiplication, integration, or delay. An LSF model is made up from a connection of such
primitives through real-valued time-domain signals, representing any kind of continuous-
time quantity. An LSF model defines a system of linear equations that is solved by a
linear DAE solver.

• Electrical Linear Networks (ELN): modeling of electrical networks is supported by
instantiating predefined linear network primitives such as resistors or capacitors, which
are used as macro models for describing the continuous-time relations between voltages
and currents. A restricted set of linear primitives and switches is available to model the
electrical energy conserving behavior.

3.3.1. TDF modeling fundamentals

The Timed Data Flow (TDF) model of computation is based on the well-known Synchronous
Data Flow (SDF) modeling formalism. Unlike the untimed SDF model of computation, TDF is
a discrete-time modeling style, which considers data as signals sampled in time. These signals
are tagged at discrete points in time and carry discrete or continuous values like amplitudes.
Figure 3.2 shows the basic principle of the Timed Data Flow modeling. In this figure, there are
three communicating TDF modules called A, B, and C. A TDF model is composed of a set of
connected TDF modules, which form a directed graph called TDF cluster. TDF modules are
the vertices of the graph, and TDF signals correspond to its edges. A TDF module may have
several input and output TDF ports. A TDF module containing only output ports is also called
a producer (source), while a TDF module with only input ports is a consumer (sink). TDF
signals are used to connect ports of different modules together. Each TDF module contains a
C++ method that computes a mathematical function f (i.e., fA, fB, and fC), which depends
on its direct inputs and possible internal states. The overall behavior of the cluster is therefore
defined as the mathematical composition of the functions of the involved TDF modules in the
appropriate order, fC (fB (fA (...))), indicated with Aæ Bæ C in Figure 3.2.

Figure 3.2.: A basic TDF model with 3 TDF modules and 2 TDF signals [Barnasconi 10].

A given function is processed (or “fired” according to the SDF formalism) if and only if
there are enough samples available at the input ports. In this case, the input samples are read
by the TDF module, where the function uses these values to compute one or more resultants,
which are written to the appropriate output ports. In TDF, the number of samples read from
or written to the module ports is fixed during simulation, but the numbers of read and written
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samples by a TDF module are not necessarily equal. A time stamp is associated to each sample
using the local TDF module time. The fixed interval between two samples is called time step.

A TDF module is the basic structural building block allowing to describe both discrete-time
and continuous-time behaviors. It is a class that implements a TDF behavioral description,
and may not instantiate other modules. TDF modules act as primitive modules.

• Discrete-time modeling: discrete-time behavior can be defined in the member function
processing. In this member function, a pure algorithmic or procedural description in
C++ can be given, which is executed at each module activation. The module activation
is defined by the module time step, which can be either user-specified with the member
function set_timestep or derived by time step propagation.

• Continuous-time modeling: a TDF module can be used to embed linear dynamic
equations in the form of linear transfer functions in the Laplace domain or state-space
equations. Although the TDF model of computation processes the samples at discrete
time steps, the equations of these embedded functions will be solved by considering the
input samples as continuous-time signals. The result of the embedded linear dynamic
equations system, which is also continuous in time and value, is sampled into a signal
using a time step which corresponds to the time step of the port, in which the samples are
written.

3.3.2. ELN modeling fundamentals

The Electrical Linear Networks model of computation introduces the use of electrical primitives
and their interconnections to model conservative, continuous-time behavior. The ELN modeling
style allows the instantiation of electrical primitives, which can be connected together using
electrical nodes, to form an electrical network. The mathematical relations between the electrical
primitives are defined at each node in the network, where both the potential (voltage) and flow
(current) quantities are used according to Kirchhoff’s voltage law (KVL) and Kirchhoff’s current
law (KCL). As such, the electrical network is represented by a set of differential algebraic
equations, which will be resolved during simulation to determine the actual circuit behavior.

Figure 3.3 shows an example of an electrical network, with two resistors, a capacitor, and a
current source. Such a network is called an ELN model and is composed of a set of connected
ELN primitive modules, which will form together an ELN equation system or cluster. Each
ELN primitive module can have one or more ELN terminals. The ELN primitive modules
are interconnected via their terminals using ELN nodes. The reference or ground node, which
always has a voltage of zero, is called ELN reference node. ELN terminals are also used as an
interface to connect the ELN model with other ELN models.

3.3.3. LSF modeling fundamentals

The Linear Signal Flow model of computation allows the modeling of AMS behavior defined
as relations between variables of a set of linear algebraic equations. LSF is a continuous-
time modeling style using directed real-valued signals, resulting in a non-conservative system
description. There is no dependency between flow and potential quantities; instead only one
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Figure 3.3.: Example of a basic ELN model representing an electrical network [Barnasconi 10].

real-value quantity is used to represent each signal. Signal flow models can be described
in a block diagram notation. The elementary parts or functions are represented by blocks.
Signals are used to interconnect these blocks. The resulting relations between the blocks define
equivalent mathematical equations. Figure 3.4 shows an example of such a signal flow block
diagram, composed of four LSF modules, which are interconnected using LSF signals. Note
that the addition “operator”, although having a different graphical representation, is also an
LSF module. An LSF model is composed of a set of connected LSF modules, which will form
together an LSF equation system or LSF cluster. The resulting LSF model has input and
output LSF ports to connect it with other modules.

Figure 3.4.: Example of a basic LSF model composed of 4 LSF modules [Barnasconi 10].

3.4. Interaction among SystemC AMS models of computation

In order to understand how the MoCs interact among them it is wise to introduce the layered
structure of the SystemC-AMS simulator architecture to the SystemC framework.
Figure 3.5 shows how these three formalisms are integrated with the discrete event modeling
formalism of SystemC by implementing the AMS extensions in a layered architecture on top of
the standard SystemC kernel. Each formalism requires its own execution layer that implements
the formalism’s underlying MoC. For LSF and ELN MoCs, a linear DAE solver is required and
for the multi-rate TDF MoC, a scheduler. A synchronization layer coordinates the parallel
execution of the different continuous-time MoCs and offers to them a common interface to
interact with each other and with the DE simulation kernel of SystemC. Thus, the simulation
of heterogeneous SystemC models is possible, which employ in parallel different MoCs. The
LRM of the AMS extensions [OSCI 10] just defines the user interfaces to the three offered
MoCs in form of the proposed modeling primitives and their semantics. It also specifies the
exact synchronization semantics between the different MoCs. The interfaces to the model
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execution and synchronization layer are not standardized and can thus vary between different
implementations of the standard. At the time of the writing of this thesis, one Proof of Concept
(PoC) implementation of the OSCI SystemC AMS extensions is available from Fraunhofer
IIS/EAS as open source under the Apache license and is called SystemC-AMS [IIS/EAS 10].

Figure 3.5.: Architecture of the OSCI SystemC AMS extensions 1.0 standard.

The design of embedded analog/digital systems requires the combination of different
models of computation and of different levels of abstraction. This requires the conversion of
communication/synchronization at the border between different models of computation. The
SystemC AMS extensions provide a basic set of language primitives that enable conversion
between SystemC (discrete-event), TDF, ELN, and LSF. In ELN and LSF, converter modules
are provided; in TDF, converter ports are available. It is recommended to model the general
signal flow of a system using the TDF model of computation, if possible. This has the following
advantages:

• The TDF model of computation provides conversion to all other models of computation.

• The TDF model of computation is needed to provide time steps to connected ELN and
LSF components.

3.4.1. Continuous-time (ELN or LSF) to/from discrete-time (TDF) or
discrete-event (DE) domains

Both the ELN and the LSF MoCs will set up and solve an equation system to simulate the
modeled continuous time behavior, based on the basic set of ELN/LSF primitive modules. Any
“external” input value, e.g., from a discrete-event signal or TDF sample, need to be contributed
to the equation system via one of these ELN/LSF primitive modules. Therefore, specialized
primitive modules with ports to the discrete-event domain and TDF MoC are available, which
are called converter modules (sources for writing to ELN/LSF, sinks for writing to TDF/DE).
These modules establish an interface to convert and transfer data from one MoC to the other.
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• Reading from DE or TDF: a module time step has to be assigned to the ELN/LSF
converter module. The ELN/LSF model continuously reads values from the input at
the time points for DE (the samples for the TDF), which are calculated from the time
steps assigned to the ELN/LSF converter module. In the case of reading from DE, the
input value is assumed constant until the next value is read. The input values are then
interpreted to form a continuous-time signal, which is made available at the output of the
converter module.

• Writing to DE or TDF: the samples (for TDF) or the values (for DE) at the output
port are written at the calculated time points, which correspond to the time step assigned
to the converter module.

3.4.2. Continuous-time conservative to/from non-conservative domain
(ELN/LSF)

It is necessary to convert to the TDF and back. Note that ELN and LSF can communicate
with discrete-event and TDF, but not with each other in a direct way, the conversion from LSF
(or ELN) to TDF and then to ELN (or LSF) introduces a delay of one time step.

3.4.3. Discrete-time domain to/from discrete event SystemC domain (TDF/DE)

TDF MoC has its own mechanisms for time annotation, which could result in time differences
between the local time of each TDF module and the time in the discrete-event domain (SystemC
kernel time). Therefore, special care should be taken in synchronizing TDF signals with the
discrete-event domain of SystemC in both directions (i.e., reading from and writing to discrete
event signals). To maintain a high simulation efficiency despite the presence of TDF and
discrete-event domain interactions, a loosely-coupled synchronization mechanism is used, which
is called data synchronization. For TDF modeling this means that discrete events will not
influence the activation and execution of TDF modules.

• Reading from the discrete-event domain: unlike the regular TDF input ports of
class sca_tdf::sca_in<T>, the availability of a discrete event signal at the TDF input
converter ports will not activate module execution. Instead, the TDF module activation
order (schedule) is determined independently at its individual port time step in accordance
with the converter port rate and the TDF module time step. Precondition for correct
data synchronization is that the value read from the converter port should be available at
the first delta cycle of the corresponding time point in the discrete-event domain. As the
TDF cluster runs independently from the discrete-event domain, it could happen that the
previous discrete-event value is read, indicating that a discrete-event process did not write
the value to the channel before the first delta cycle. This would result in a delay in the
signal. To overcome this, a small time offset could be introduced using the port member
function set_timeoffset.

• Writing to the discrete-event domain: the time offset and time step assigned to the
output converter port define, at which time point and time interval a value is written
to the discrete-event domain. Precondition for correct data synchronization is that the
sample written to the converter port can be written to the associated channel at the
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first delta cycle of the corresponding discrete-event time point. In case a channel of class
sc_core::sc_signal<T> is connected to the converter port, discrete-events are generated
only in case of a signal change. In case a channel of class sc_core::sc_buffer<T> is
connected to the converter port, all samples written to the port will generate an event.

3.5. SystemC TLM

In order to interface models of AMS components with the surrounding digital system at a very
high abstraction level in a unified SystemC based framework it is necessary to interface the
SystemC AMS MoCs with the Transaction Level Modeling support for SystemC.

Transaction-level modeling (TLM) is a transaction-based modeling approach founded on
high-level programming languages such as SystemC. It highlights the concept of separating
communication from computation within a system. In TLM notion, components are modeled as
modules with a set of concurrent processes that calculate and represent their behavior. These
modules exchange communication in the form of transactions through an abstract channel.
TLM interfaces are implemented within channels to encapsulate communication protocols. To
establish communication, a process needs to access these interfaces through module ports.
Essentially, the interface is the very part separating communication from computation within
a TLM system. TLM defines a transaction as the data transfer (i.e. communication) or
synchronization between two modules at an instant (i.e. SoC event) determined by the
hardware/software system specification. Using SystemC as a vehicle to provide the Transaction
Level Modeling (TLM) abstraction proved to be the key to the fairly fast deployment of this
methodology. One of the final aims of the TLM paradigm is indeed to bridge the gap between
the embedded software developer and the hardware architect by enabling hardware/software
co-development based on virtual prototypes. TLM-based SoC platforms actually allow early
application software development by the end customer before the actual hardware architecture
is even frozen.

The OSCI released the official OSCI TLM standard and a first proof of concept library called
SystemC-TLM 1.0 in 2005 providing two modeling styles PV (Programmer View) and PVT
(Programmer View Timed). Later on, in 2008 the TLM 2.0 standard defining the interfacing of
memory-mapped bus has been released by OSCI. SystemC TLM models for processors, RAM
and peripheral are represented by SystemC processes that communicate (i.e. exchange packet
data) by means of Interface Methods Calls (IMC) instead of cycle-accurate signals. The TLM
2.0 C++ methods involved in the transfer of data between components can either be blocking or
non-blocking according to two coding styles, loosely-timed (TLM-LT) and approximately-timed
(TLM-AT). These two coding styles provide a good trade-off between simulation speed and
accuracy. The key point idea in TLM 2.0 is that exchanged packet data correspond to the
payloads of transactions, sent along a communication channel with a delay relative to the global
simulation time. This delay can be used to make some components run ahead of the global
simulation time, thus providing a useful mechanism known as temporal decoupling. This way,
context switches between processes are reduced as necessary, and simulation speed is greatly
increased.

In the TLM 2.0 standard the more accurate, approximately-timed (AT) coding style
is typically achieved by using the non-blocking transport interface and the payload event
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queues. While a fast, loosely-timed (LT) coding style is typically expected to use the blocking
transport interface, the direct memory interface, and temporal decoupling (refer to [OSCI 08]
for more details). The blocking transport interface is appropriate where an initiator wishes
to complete a transaction with a target during the course of a single function call, the only
timing points of interest being those that mark the start and the end of the transaction.
The non-blocking transport interface is appropriate wether it is desired to model the detailed
sequence of interactions between initiator and target during the course of a each transaction.
In other words, to break down a transaction into multiple phases, where each phase transition
marks an explicit timing point.

The two modeling styles offered by the SystemC-TLM are equivalent to two levels of
abstraction of modeling of the timing, this is analogous to the SystemC AMS different MoCs.
Other developments of TLM coding styles and interfaces using SystemC have been studied by
other research works. Notably, an extension of the approximately-timed coding style (TLM-AT),
called TLM-DT, for Transaction Level Modeling with Distributed Time has been studied by
Université Pierre et Marie Curie, Paris [Mello 10]. The main idea is to rely on Parallel Discrete
Event Simulation (PDES) principles to simulate a complete More-than-Moore system. In this
approach, there is neither a global scheduler nor a global clock. The temporal decoupling
mechanism of TLM 2.0 is generalized. To each process (TLM) involved in the simulation is
associated a local clock, defining a local time, and the processes synchronize themselves by
embedding timing information in the data packets carried through the communication channels.
Two kinds of PDES exist, the pessimistic and the optimistic PDES. The pessimistic PDES
is regarded as more suitable for the interaction with the SystemC AMS TDF MoC. In the
pessimistic PDES, a process is allowed to increase its local time if and only if it has the guaranty
that it can not receive, on any of its input channels, a message with a timestamp smaller than
its local time, and the simulation relies on the temporal filtering of the incoming messages.

Finally, companies that started using the OSCI SystemC-TLM 1.0 standard at its early
stage in 2005 had firs adapted the coding styles PV and PVT to their needs and preferences.
The case of STMicroelectronics is a bit different since the company has not only created
their own transaction-based protocols by extending the PV and PVT coding styles (see
TLM_TAC, TLM_STBUS and TLM_SYNCHRO protocols in [Ghenassia 06]), but has actually driven
the development of the OSCI standard for memory-mapped bus communications. Once the
2.0 standard has been released companies had to check the compliancy of their previously
developed extended protocols with the new standard and to correct where needed for keeping
the compliancy and take advantage of the infrastructure offered by the OSCI 2.0 release. Since
TLM 2.0 only defines the memory-mapped bus interface, in the case of STMicroelectronics the
philosophy is to keep the compliancy to the TLM 2.0 standard and to develop their own protocols
for the communication not covered by the standard by keeping a timing philosophy close to the
TLM-LT. The concept to bear in mind is that the main purpose of virtual prototyping is to
early develop/debug the embedded software (relaxed timing) instead of performing studies on
the hardware architecture (accurate timing required). Concerning to the coding style of the
STMicroelectronics’ models’ inside, the timing aspect is specifically handled depending on the
application.
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3.6. Interaction between SystemC AMS models of computation
and SystemC-TLM 2.0

The current scenario of available tools for the interaction between AMS systems described at
system level and their surrounding digital world does not offer an efficient, high simulation-
speed interaction. A promising solution certainly is the interaction between SystemC AMS
and SystemC-TLM. Mixed signal simulations would benefit from this unified modeling and
simulation environment thanks to the availability of different levels of abstraction. For instance,
if an AMS intellectual property (IP) described in SystemC AMS has to be simulated together
with its digital control/consuming units, the level of accuracy can be increased by either refining
the timing aspect SystemC-TLM 2.0 AT/LT or by changing the SystemC AMS MoC.

Different interfacing cases can be wise to consider, however it is recommendable to take into
account interfacing between similar levels of abstraction, in this case the highest level offered
by SystemC AMS 1.0, that is the TDF MoC, with the SystemC-TLM 2.0 LT coding style for
relaxed applications (formalized as communication applications) and with the SystemC-TLM 2.0
AT coding style for more severe and crucial applications (formalized as automotive applications).

It is our opinion that generic converters are required in order to automatize the interfacing
between, some works can be found in the literature about the interfacing and ad-hoc solutions
are mostly used depending on the application.

In [Beserra 11] an sc_export was created for converting from SystemC AMS TDF to TLM
1.0 PV coding style. In addition, an sc_port was added and connected into the processor to
generate the interrupts. No other details on the interfacing strategy are provided.

In [Schulz 10], it is shown how analog transmission effects can be reproduced by means
of TLM 2.0 interfaces. This work is addressing the likelihood of TLM transactions in order
for them to reflect as much as possible the analog effects of the line. Non-blocking transport
interfaces are used and the analog line model is described as a SystemC AMS model whose
parameters come from layout extraction. Lookup tables are built since the idea is to do the
time consuming simulations only once, subsequently the lookup tables are used in the SystemC
TLM/AMS simulations.

In [Rafaila 09], an Electronic Control Unit (ECU) for an automotive application is simulated
by interfacing the SystemC AMS TDF to SystemC TLM 1.0 following a master/slave principle.
The ECU is composed by an MCU with AMS sensors/actuators and other peripherals. The
interface between the SystemC model of the microcontroller (MCU) and SystemC AMS models
of the sensors is done through a TLM interface. The MCU acts as the master and the AMS
modules are enhanced with slave interfaces for read/write accesses.

Since the nature of the TLM loosely timed and approximately timed applications is not
unique three interaction cases have been identified. A case-by-case study needs to be performed
and the possible interactions are TDF/TLM-AT, TDF/TLM-LT and TDF/TLM-DT. The latter
will not be discussed in the this thesis. Once the type of interaction is defined the SystemC-
AMS simulator is synchronized with the SystemC kernel by means of application-specific and
user-defined converter ports.
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In the industrial case-study of Chapter 5 a CMOS Image Sensor (CIS) is modeled using
SystemC AMS and it is interfaced to its surrounding virtual SystemC TLM platform. First,
it will be shown how the interfacing to the TLM OSCI coding style takes place by using
point-to-point non-blocking transport interfaces.

Subsequently, the STMicroelectronics’ proprietary protocols are used for interfacing the
CIS model. The TDF MoC is used for the modeling of CIS and the acquired image is sent as
transaction using the proprietary streaming protocol compliant with the OSCI TLM-2.0 coding
style. Which is, as mentioned above, substantially in-line with the LT modeling approach.
On the other side, the sensor control interface is implemented through an ad-hoc interfacing
between the STMicroelectronics’ control protocol and the TDF-based sensor model.

3.6.1. Interfacing TDF/TLM2.0 AT

In the automotive use case, the focus is on intermediate interactions between hardware (analog
and digital) and software. A simulation model mixing SystemC AMS TDF with Bit-True
Cycle-Accurate SystemC may be required. When high simulation speed is necessary and
some time accuracy can be relaxed, the digital part can be modeled with SystemC TLM-AT.
Yet, this type of simulation needs a rather tight synchronization schema that will slow down
the simulation performance significantly versus the TLM-LT. One possible issue is to switch
automatically from a lower abstraction formulation with SystemC TLM-AT coupled with
AMS to a higher abstraction with SystemC TLM-LT coupled with AMS. Unfortunately the
requirements are too different to allow a generic solution.

3.6.2. Interfacing TDF/TLM2.0 LT

In order to have an efficient synchronization mechanism between SystemC AMS and SystemC
TLM the interfacing should become available at the highest possible abstractions, which is TDF
for the analog functions and the LT coding style for TLM 2.0. It is proposed to introduce the
concept of “loosely coupled analog and digital processes” allowing to avoid unnecessary kernel
context switching. Specialized converter channels defining the communication and interface
between TDF and TLM-LT have not been standardized yet. It is expected that these channels
are implemented as TDF modules, which can be instantiated and configured by the user. The
usage of these modules should be defined as being part of design refinement methodology. The
TDF/TLM-LT interface should make use of the temporal decoupling concept as defined in the
TLM 2.0 standard. Preferably, the global time quantum (e.g. using class tlm_global_quantum)
and the quantum keeper should be used to manage time for these specialized converter channels.

In [Damm 08], a solution is proposed for coupling SystemC AMS TDF MoC models with
loosely-timed TLM 2.0 models using a temporal decoupling approach by means of payload
event queues (PEQs) and FIFO buffers.
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Chapter 4.

Specification and implementation of SystemC
AMS extension libraries

4.1. Introduction to high-level modeling of AMS multi-physics

systems

A survey of the circuit modeling techniques that abstract reduced-order, higher level models
from low-level descriptions is given in this section.

The approach we use is related to the modeling scenarios we want to address. The scenarios
are listed in the following and sorted by levels of starting knowledge of the system. Two
categories of systems are firstly identified:

• The physical laws defining the behavior of the device are known (see “modeling of
knowledge” blue regroupment in Figure 4.1).

– Modeling of knowledge. The structure of the device is known and the physical laws
that govern the behavior of the device are mastered. The transistor level representation
of an analog system is considered to be part of this case, since the laws ruling the
devices have been exhaustively characterized by the silicon manufacturer from the
technology point of view (violet branch in Figure 4.1).

– Structural knowledge. If the device cannot be decomposed in elementary blocks
connected as to form a netlist or a transistor level schematic, the analysis of the target
device is typically performed through tools allowing to regard the device structure
itself in its entirety. This is particularly true for micro electro-mechanical systems
(MEMS) where a structural analysis of the system can be performed through ad-hoc
tools based on the finite elements analysis (FEA). The analysis via these type of
tools typically provide input-output response curves in the frequency domain when
the analysis is carried out and a linearization is considered around a biasing point.
Beside frequential response curves, non-linear responses can be obtained too such as
the saturated attenuation of the magnitude of a cantilever vibration. As consequence,
an accurate frequency-domain description of the device is obtained from a structural
analysis performed by ad-hoc domain-specific simulators/tools (FEM for instance),
this flow is represented by the blue branch in Figure 4.1.

• The physical laws that define the behavior of the device are not a priori known.
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– Experiment/Simulation-based modeling. The device is physically available and
experimental/simulation data only are available. The device is either available in the
form of a hardware prototype IP thus experiments can be done, or in the form of a
pre-compiled simulateable model, in both cases, it is considered as a black box with
accessible inputs and outputs (see “Experiment/Simulation-based modeling” blue
regroupment in Figure 4.1).

The three cases just introduced have been sorted by the type of source and starting knowledge
of the user/designer. A second phase consists in analyzing the devices and take advantage
of the available description in order to build a behavioral model. For this purpose the three
flows of Figure 4.1 should be differently regrouped. In all cases (hereunder re-mentioned and
re-sorted) a mathematical model needs to be built for describing the behavior of the device
in order to perform simulations.

• A description of the system representing its netlist or schematic is available (see “From
low level” orange regroupment in Figure 4.1).

– Modeling of knowledge. The full knowledge of the system allows to calculate
an analytical time-domain input/output equation, possibly involving state variables.
Nevertheless, the possibility of having an exhaustive knowledge of the system is
nowadays less and less probable because of the increasing complexity/coupling of the
devices. Furthermore, if the analytical model is too complex in term of computational
effort the order of the model can be reduced by means of Model Order Reduction
(MOR) techniques known in the literature. A survey is available in [Mantooth 03]
showing different techniques of behavioral modeling for analog circuits for Linear
Time-Invariant (LTI), Linear Time-Varying (LTV)/Linear Periodically Time-Varying
(LPTV) and Non-Linear (NL) systems.

• A data file making the relation between input and output is available (see “From a data
set” orange regroupment in Figure 4.1).

– Structural knowledge. A structural analysis can lead to an input-output response
curve in the domain of the frequency composed of a set of points, without an analytical
form. This set of data could be the only information available to model the system or
a low-complexity model could be required. In both the cases, an approximation of the
set of data could be done using a fitting by means of an equation with the desired
order of complexity and frequency range of interest.

– Experiment/Simulation-based modeling. The controllable input(s) is a degree
of freedom that allows to identify the system and associate a mathematical equation.
System identification techniques use statistical methods to build mathematical models
of dynamic systems from measured data. System identification is particularly used
in the field of automatic control and signal processing engineering and the basis
principle is to stimulate both the model and the real system and to minimize the
error between the outputs by identifying the parameters of a given starting equation
(model structure).

Our research contributions addressed all of the three axes with different ap-
proaches. All the approach methodologies have the purpose to automatically individuate
the available starting data and to define a methodology for easily creating behavioral models
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Figure 4.1.: Methodologies for analog behavioral modeling from starting knowledge.

written in an AHDL to be integrated in the virtual test bench at different levels of detail and
launching the overall simulation. Depending on the level of abstraction required for the model
of the analog system the three axes flows can be tuned for the desired level, a trade-off between
model accuracy and model rapidity/simplicity must be accepted and found. More precisely and
generally speaking, the analog device functioning is conditioned by the operational environment
wherein it is inserted, it is mandatory that the modeling methodology focuses on two vital
issues, that are: accuracy of the model in the Region of Operation (RoO) and the peculiar
device behavior that the model is intended to capture and to reproduce.

• Accuracy of the model in the Region of Operation (RoO). The analog device
functioning is conditioned by the operational environment wherein it is inserted. Most of
the cases, the full-scale range behavior of the device is not completely stimulated/excited,
the conditions of operation of the device itself are determined by the environment. In other
terms, usually many internal modes of the device are not excited in normal operation. As
a first remark, since the modeling effort has to be kept as low as required, a model must
firstly capture/reproduce the device behavior inside the range defined by the operational
conditions, the so called Region of Operation (RoO).

• Desired behavior to be captured and reproduced by the model. Generally
speaking, the information/peculiarities of the behavior of the device that we desire to be
captured by the model depend on the usage that is intended to be done with the model
itself. The type of simulation, transient simulation or a frequency domain simulation, is
certainly one of the criteria. Another criterion is the simulation purpose, as opposed to
simple systems modeling when dealing with complex heterogeneous systems, simulations
are carried out in order to validate only a part of the functioning of the overall system.
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Such a part may consist of certain performances of the system that has to be checked for
the compliancy to the specifications. Resuming, it is necessary to choose what aspects of
the behavior must be captured by the model depending on what system performance the
simulation is intended to validate.

In the following sections the three axes flows will be addressed separately and the works
performed for each flow will be detailed as well as the corresponding study cases that validate
the flows/concepts.

4.2. Contribution to the elaboration of knowledge-based high-level
models from a netlist descriptive view

A descriptive starting point for some type of system may typically be a netlist of basic electrical
components. Typical electrical circuit simulators allow to instantiate the symbolic view of
electrical active or passive components from a library of predefined components and to compose
them as to form a network, a selection of the circuit node voltages or branch currents to be
plotted is then done and the transient or frequency domain simulations are launched. In the
frame of our work these simulations are considered low-level simulations with quite complex
electrical models of the primary components. The concerns addressed by our contribution are:

• Extraction of a behavioral model from a netlist. Electrical simulators first elaborate
the instantiated network and build a system of differential equations then they solve the
system keeping trace of the important nodes of the circuit defined by the user. When such
networks has to be simulated in a higher-level environmental context, some simulators
provide higher-level models only accessible/simulateable by means of their tool suite.
There is typically neither simple nor standardized interface or API to their simulator in
order to extract a behavioral model from the netlist information.

• Customizable function of circuit voltages and currents for back-annotating
noteworthy information. Common electrical simulators typically do not provide a
seamless and tool-independent way to extract user-defined noteworthy information (voltages
or currents) of the circuit and to perform calculations from such data in order to obtain
other desired information. More precisely, the reason that moved our researches to provide
such a custom function is to monitor/exploit the power consumption information when
simulating complex AMS systems.

Our research contribution was aimed at overcoming the two issues here explained. The
extraction of a state space model was introduced by [Simeu 00] and further developed for the
tool that we have proposed in [Bousquet 11b] and [Bousquet 11a]. The tool allows accessing
to the power consumption information for models described at the behavioral level. For the
moment the flow is limited to linear analog components and aims at a SystemC AMS-based
modeling. A first possibility is to simulate the implementation-level description by means of
the electrical linear network model of computation. This MoC gives the possibility to model
and simulate linear analog sub-systems at the conservative level. It is possible to access the
instantaneous supply current value and to raise it up to the time data flow MoC higher level
of abstraction by means of specific ELN to TDF signal converters. This solution would reach
a high level of details but the simulation would be computationally heavy, especially in the



Specification and implementation of SystemC AMS extension libraries 49

case of very complex systems. For these reasons a level of abstraction higher than the one
offered by the ELN MoC is needed. On the other hand, AMS modeling and simulation tools
do not provide any information on the consumption of equipment simulated at high-level of
abstractions (SystemC AMS Timed Data Flow (TDF) MoC). This information is available
only when an implementation choice is made, and a lower level description model is available
(ELN-based models). The idea proposed is to automatically extract both behavioral model and
relevant power consumption information from a low-level description (netlist) of a linear circuit,
and to reassemble them in the high level model so that the power information are propagated
during the simulation. Thus, each simulation cycle, it will be possible to extract the supply
electric currents associated with each component of the system and to use the result in order
to estimate the power consumption of the overall system.

4.2.1. From the netlist to the state space equations with SystemC AMS

The type of systems we are focusing on are dynamic linear systems. These systems may
be presented under two forms. The first one is the typical electrical circuit schematic well
understood by electrical engineers, it is composed by connecting linear components such as
resistors, capacitors and inductors. The second one is a mathematical representation of the
dynamic linear system by means of, either a Laplace transfer function, or the state space
equations. The state space model equations are shown below, Equation 4.1 is the state equation
and Equation 4.2 is the output equation. u is the input vector, y is the output vector, x is the
state vector and A, B, C and D are the time invariant matrices of the system in a higher level
model.

ẋ = A ·x(t) + B ·u(t) (4.1)

y(t) = C ·x(t) + D ·u(t) (4.2)

The state space model can be regarded as a block diagram where the vectors are represented
as signals and the matrices are the blocks. Figure 4.2 shows the state space model block diagram
of the system.

Figure 4.2.: State space-based block diagram of a dynamic linear system.

The state space model and the transfer function (Equation 4.3) are the two equivalent ways
of modeling a continuous time linear system. The relationship between these two representations
is given in Equation 4.4. Where L(s) is q ◊ p transfer function matrix between u(t) and y(t),
meaning that a transfer function is needed for each output variable of the Y array.
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L(s) =
Y (s)

U(s)
= K

bmsm + bm≠1s
m≠1 + ... + b1s + b0

ansn + an≠1sn≠1 + ... + a1s + a0
, n Ø m (4.3)

L(s) = C(sI ≠ A)≠1B + D (4.4)

With respect to the SystemC AMS modeling formalisms, a dynamic linear system described
by an electrical network is directly instantiatable by connecting ELN primitives. With respect
to the mathematical representation of a dynamic linear system, SystemC AMS allows to use
Laplace or state space functions by means of the LSF or TDF MoCs. In the case of the LSF
MoC the code in listing 4.1 shows the instantiation of a state space represented model according
to the terminology of Figure 4.2.

Listing 4.1: State space model using the LSF MoC

1 sca_lsf :: sca_ss eqs("eqs" , A, B, C, D);
2 eqs.u(u);
3 eqs.y(y);

The sca_lsf::sca_ss class has two interfacing LSF signals (input u and output y) and
receives the four matrices (A, B, C and D of the state space model) as input parameters. The
idea is to analyze the electrical circuit topology in order to extract an extended state space
model that contains the power consumption information. In the following, it will be explained
how the matrices A, B, C and D of Equations 4.1 and 4.2 are generated from a SystemC AMS
circuit description or SPICE netlist. Three main steps are identified: the generation of a matrix
representing the circuit (the so called circuital matrix), the arrangement of the circuital matrix
and the extraction of the state space matrices.

In the following, the three steps of the flow are illustrated. A case study circuit is used for
better explaining the flow, the circuit is shown in Figure 4.3(a). The first step consists of the
extraction of the circuital matrix. The matrix is obtained in the form of Figure 4.3(b) by
analyzing the circuit topology, no choices of the desired information to be extracted are done at
this step. The circuital matrix represents a set of equation where the variable on the left (one
for each row) is expressed as a linear function of the column variables. Among the independent
row variables only the inputs, the state variables and their derivatives are needed to build the
state space model. All the other variables are undesirable (currents through capacitors, voltages
across inductors).

(a) Circuit topology. (b) Circuital matrix extracted.

Figure 4.3.: Case study.
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The second step consists of a rearrangement of the circuital matrix resulting in the
structure of Figure 4.4(a). For the case study the result of the rearrangement step is shown in
Figure 4.4(b).

(a) Rearrangement of the circuital matrix. (b) Circuital matrix extracted.

Figure 4.4.: Rearrangement step result.

The non-null terms of sub-matrix X2 must be nulled by expressing the dependency of the
state equations as function of the desirable variables only (column variables of sub-matrix X1).
An intermediate matrix called relation matrix is built (Figure 4.5(a)) and the matrices A and
B of the state space model are directly obtained from sub-matrix X1. The A and B matrices
are shown in Figure 4.5(b).

Now a choice must be done on which node voltage or branch current has to be regarded as
output of the state space model. We choose u2 and u4 as output variables. We also want the
model to output the information on the absorbed input current too, the input current of this
passive case study circuit include the information on the power consumption. Therefore we
also choose iR1 as output of the system. For building the matrices C and D of the state space
model the dependency of the chosen outputs to the state variables and inputs. In the case of
u2 it is trivial since it equals to u20. For u4 and iR1 their dependencies are directly obtained
from the relation matrix of Figure 4.5(a).

(a) Relation matrix. (b) State space model result.

Figure 4.5.: State space model.

The result is a state space model, thus a model described at a higher level of abstraction,
that does not lose any information or make approximations. Variables that define containing
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the power consumption information are extracted as outputs of the model and can be used to
perform an additional processing such as a multiplication to node voltages or a time integration.
The key concept is that it is possible to regard any of the variables of a circuit as an output
of the state space model, and this requires only the matrices C and D to be modified. The
matrices A and B are unchanged since they are not directly in relation with the output vector.
Thanks to this flow a SystemC AMS component implementing the state space model in the
LSF MoC is directly obtained from the netlist of the circuit.

More technically speaking, at the moment of the construction of the SystemC AMS module
the automatized flow allows reading an external netlist file and specifying the desired information
to be monitored. During the construction the state space is calculated and during the simulation
it is evaluated/solved. Additionally to the normal input/outputs of the state space model a
further LSF output port is instantiated. The user will decide how to exploit such an information.
The LSF signal could be treated by using LSF primitives such as derivators or integrators.
Otherwise, a conversion to a TDF signal could be done in order to multiply the signal by
another TDF signal, this could be useful for example for calculating the instantaneous power
consumption (multiplication between voltage and current values).

Further details on the methodology can be found in [Bousquet 11b] and [Bousquet 11a]. As
aforementioned, using Equation 4.4 it is possible to obtain different transfer functions with the
same denominator for each defined output of the state space model.

4.3. Contribution to the elaboration of knowledge-based models
from simulation data

The title of this section is quite general. This section concerns the techniques for building
models from simulation data obtained from other knowledge based low-level models, as opposed
to the black box system identification based modeling from simulation data obtained from
empirical data (section 4.4). Sub-section 4.3.1 will describe the adopted technique for modeling
from frequency domain response curves for dynamic linear components. Sub-section 4.3.2 will
deal with the adopted modeling technique from lower-level model simulation results for static
non-linear components.

The methodology will be shown together with the tools used for providing an automated
flow to a reduced order model. Such a model is directly instantiable in a transistor level or
system level test bench for the simulation.

4.3.1. Modeling from frequency domain response curves for dynamic components

As mentioned in section 4.1, domain-specific tools based on FEA are typically used for analyzing
MEMSs during the design phase. A number of analytical and numerical techniques to handle
MEMS macromodel have appeared over the last decade. The purpose is to accurately describe
MEMS behaviors and to take into account changes of design parameters. In our work we intend
to keep a system level view. The models must be rapid and capture the strictly necessary
information. The choice of having such a coarse granularity in modeling is driven by the
matter of fact that impressively big amounts of post-processing are now performed by SW
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algorithms mapped into HW architectures, the target is to enable a system level simulation
of the overall platform. We do not intend to deal with FEAs, the concept is to collect and
elaborate FEA simulation results for obtaining a functional model which is rapidly integratable
in a transistor-level or system-level environment.

A structural analysis can lead to an input-output response curve in the domain of the
frequency composed of a set of points, without an analytical form. This set of data could be the
only information available to model the system or a low-complexity model could be required.
In both the cases, a linear approximation of the set of data could be done using a fitting by
means of an equation with the desired order of complexity and frequency range of interest.
Keeping in mind the purpose to obtain a Laplace transfer function several frequency fitting
techniques exist in the literature. The advantage of the approximation of the input-output
behavior is that the accuracy of the model can be tuned by varying the order of the transfer
function and the region of higher accuracy can be tuned too typically using a weight function,
that becomes a weight array when discretized in the frequency domain.

Generation of dynamic macro-models

In practice, for most dynamic blocks, we do not have an analytical representation of their
behavior. The behavior is most often obtained via a low level simulation of the analog block
(typically transistor-level simulation). For obtaining a macro-model of this block, we can
approximate the frequency response of the device using a fitted function, with high accuracy in
the region of frequency operation of the block. This fitted function reduces the complexity of
the actual transfer function, providing a computationally lighter function with a lower number
of poles and zeros. This approach can also be used in the case that the analytical transfer
function is known. A fitted function in this case can help to provide a simpler model for
simulation in the region of frequency operation.

This fitting is performed as follows. We start from the frequency response in the form of an
array of complex values. The Matlab Rational FittingTM function is used to obtain a fitted
version of the input frequency response. An array of weights must be provided to the fitting
function in order to specify the frequency region with the highest accuracy. The result of the
fitting is a Laplace transform obtained in the form of Equation 4.5.

F (s) = (

n/2
ÿ

i=1

(
Ci

s ≠ Ai
+

Ci

s ≠ Ai
) + D) · e≠s · Delay (4.5)

The level of accuracy of the fitting, thus the number of poles of the Laplace transfer function,
depends on the value of “n” and the range of the frequency region of interest. A typical call to
the fitting function is as follows:

rational_object = rationalfit(f,H(f),ε,w,delayfactor,diszero,n)

where “f” is the array of frequency values and “H(f)” is the array of the complex values related
to the frequency array. The “ε” parameter is the tolerance that must be reached by the fitting
and “w” is the array of weights for the frequency range. The “delayfactor” parameter is a
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scaling factor between 0 and 1 that controls the amount of the “Delay” value used to fit the
data. The “diszero” value is a boolean value that specifies whether the constant term “D” in
Equation 4.5 is zero or nonzero. Finally “n” is an even integer number as it appears in Equation
4.5. The result of the function is a “rational object” belonging to the Matlab RF ToolboxTM it
contains each parameter of Equation 4.5 thus “n/2” values of Ai and “n/2” values of Ci.

Macro-modeling of dynamic components for SystemC AMS simulation

For dynamic blocks, the values of the outputs depend on the values of the inputs at the current
time but also at previous time instants. This type of behavior can be modeled in SystemC AMS
using the TDF or the ELN MoCs. In both cases, with the current version of the language, only
linear systems can be modeled. The modeling of non-linear dynamic blocks is only possible
by using a linearization around an operating point. The ELN MoC is in addition limited to
the use of basic building blocks available in the libraries. On the other hand, the TDF MoC
can be used to represent any linear behavior in terms of its Laplace transfer function or state
space model. The approach presented is shown in Figure 4.6 and uses the TDF MoC. If the
Laplace transfer function of the device is known, this can be readily instantiated in SystemC
AMS using a pole/zero or polynomial representation.
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Figure 4.6.: SystemC AMS macro-modeling of dynamic components by means of a linear approxima-
tion.

The listing 4.2 below illustrates how the instantiation is done for a transfer function
using the polynomial representation of Equation 4.6. Where num and den are vectors con-
taining respectively the ni and di values. The instantiation is performed by exploiting the
“sca_tdf::sca_ltf_nd” class (stands for Linear Transfer Function in the form of Numerator-
Denominator) that is provided among the tool libraries of SystemC AMS.

Listing 4.2: Modeling of a dynamic behavior by using the “sca_ltf_nd” construct for Laplace transfer
functions.

1 SCA_TDF_MODULE(transfer_function) {
2 sca_tdf::sca_ltf_nd ltf_1;
3 sca_tdf::sca_in<double> in;
4 sca_tdf::sca_out<double> out;
5 sca_util :: sca_vector<double> num, den;
6 double k;
7
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8 void initialize ()
9 {

10 num(0) = ...;
11 den(0) = ...;
12 den(1) = ...;
13 }
14
15 void processing() {
16 double tmp = ltf_1(num, den, in.read(), k);
17 out.write(tmp);
18 }
19 ...
20 };

H(s) = k ·

qM≠1
i=0 numi · si

qN≠1
i=0 deni · si

· e≠s · delay (4.6)

A MatlabTM script that converts the fitting results, in terms of parameters of Equation
4.5, to the SystemC AMS code has been developed, it is shown in Annex A.3. Therefore the
starting point for the SystemC AMS model generation are the Ai and Ci complex numbers
while the “D” and “Delay” values are not taken into account in this work as if they were both
at zero. In order to handle a Laplace transfer function within the SystemC AMS environment
the “sca_ltf_nd” class is exploited. The latter is provided among the tool libraries of SystemC
AMS and it implements a transfer function in form of Equation 4.6.

For the conversion of the Laplace transform of Equation 4.5 to the SystemC AMS compatible
form of Equation 4.6, it must be considered that the “sca_ltf_nd” construct cannot accept
complex numbers at its input, therefore it is not allowed to pass the Ai and Ci values as its
arguments. Thus, the couples of elements of Equation 4.5 are added up in order to obtain the
transfer function of Equation 4.7.

F (s) =

n/2
ÿ

i=1

(
N0,i + N1,i · s

D0,i + D1,i · s + s2
) (4.7)

with:

N0,i + N1,i · s

D0,i + D1,i · s + s2
=

Ci

s ≠ Ai
+

Ci

s ≠ Ai
(4.8)

Here, the Nk,i and Dk,i values are real hence allowing the use of the SystemC AMS
“sca_ltf_nd” construct. Subsequently, the“δ=n/2” instances of the 2-pole transfer function
module referring to the elements of Equation 4.8 are instantiated. These 2-pole modules are
called “fract_i” and the corresponding SystemC AMS module is denominated “2poles_tf”.
These instances are arranged in parallel, that is, they have the same overall input and the
outputs are added up as shown in Figure 4.7.
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Figure 4.7.: Structure of the n-poles model.

The two values of Nk and the two values of Dk needed for each one of the “n/2” instances
are obtained from the Ai and Ci values generated from the fitting, as shown in Equation 4.8.
Listing 4.3 shows the code required for the instantiation of the “fract_i” modules and the sum
of their outputs.

Listing 4.3: SystemC AMS code of the n-poles model.

1 SC_MODULE(npoles_model) {
2 2poles_tf∗ fract_1;
3 2poles_tf∗ fract_2;
4 ...
5 adder∗ sigma;
6 SC_CTOR(npoles_model) {
7 fract_1 = new 2poles_tf(‘‘fract_1‘‘);
8 fract_1−>in(input);
9 fract_1−>out(output1);

10 fract_1−>N0 = ...;
11 fract_1−>N1 = ...;
12 fract_1−>D0 = ...;
13 fract_1−>D1 = ...;
14 fract_1−>D2 = 1.0;
15 fract_2 = new 2poles_tf(‘‘fract_2‘‘);
16 ...
17 sigma = new adder(‘‘sigma‘‘);
18 sigma−>in1(output1);
19 sigma−>in2(output2);
20 ...
21 }
22 };

In summary, the generation of a dynamic macro-model in SystemC AMS from its frequency
response or a complex transfer function is sketched in Figure 4.8. The fitting provides a transfer
function decomposed in elements of first order. The converter script receives at its input the
result of the fitting. It provides a transfer function decomposed in elements of second order.
Subsequently it generates the SystemC AMS file by first defining the “2poles_tf” module, then
defining the “adder” module and finally instantiating them in the “npoles_model” module.
The latter is the SC_MODULE that has to be instantiated in the SystemC AMS environment
in order to be simulated together with the overall system. The code of the Matlab generation
script is shown in Annex A.3 while the code of the SystemC AMS generated model is shown in
Annex A.4.

In section 4.6, the methodology is validated with an advanced case study of the design of
a Phase Locked Loop (PLL) based microelectronics frontend interface for a Surface Acoustic
Wave (SAW) based chemical sensor.
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Figure 4.8.: SystemC AMS model generation flow.

4.3.2. Macro-modeling of static components for SystemC AMS simulations

With respect to static blocks, the output at time “t” depends only on the value of the inputs
at the same time “t” as in function Y (t) = f(X(t)) where “f” has an arbitrary form, often
non-linear. Therefore there is no memory involved. The function “f” could have severe non-
linearities and in some case an analytical expression of “f” is not known, thus only a set of points
or graphical representation is available. In these cases the function “f” can be approximated by a
simple analytical equation obtained by different methods as interpolation, fitting approximation,
Taylor expansion, etc. Figure 4.9 shows the flow used for static non-linear analog components,
which could also be applied to the trivial case of static linear behaviors.
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Figure 4.9.: SystemC AMS macro-modeling of static non-linear components.

This type of behavior, described by an analytical equation, can be directly modeled with
SystemC AMS using the TDF MoC. The listing 4.4 illustrates the code required for implementing
this behavior. When the actual model is called, a signal processing function of the TDF module
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reads the input values, next calculates the output values from the current inputs, and finally
writes out the output values.

Listing 4.4: Modeling of static behaviors using SCA_TDF_MODULEs.

1 SCA_TDF_MODULE(...) {
2 ...
3 void processing() {
4 double input = in.read();
5 double tmp = function(input);
6 out.write(tmp);
7 }
8 ...
9 };

In section 4.6, the methodology is used for the modeling of the Voltage Controlled Oscillator
(VCO) of the Phase Locked Loop (PLL) frontend interface for a Surface Acoustic Wave (SAW)
based chemical sensor.

4.4. Contribution to the elaboration of black-box models from

empirical data

The key concept of the black box modeling is that the device itself or a model of it is available
with no knowledge about the internal structure. Therefore experimental/simulation data only
are available. The device is either available in the form of a prototype IP hence experiments can
be done, or in the form of a pre-compiled low-level simulateable model (for example a transistor
level simulation of an analog circuit pre or post layout). In both cases the model/protoype
is considered as a black box with accessible inputs and outputs and has to be stimulated at
its input ports for obtaining the output values. The “Experiment/Simulation-based modeling”
blue regroupment in Figure 4.1 shows the achievement of a behavioral model by means of data
issued from measures or simulation data. It is claimed that starting from sets of uniformly
sampled input/output waveform values it is possible to obtain a behavioral model, also called
representation model, described with the generic equation y(k) = f(γ(k),Θ), where y is the
output, γ is the regression vector and Θ are the model parameters.

Choice of the input stimuli and sampling frequency. The controllable input(s) is
the only degree of freedom. The choice of the well suited stimuli must be carefully done. For
instance, the performance estimation of a microelectronics device under test, essentially depends
on the choice of the input stimuli (stimulation signal). The stimuli must cover a wide band
of frequency in order to stimulate and excite the different functioning modes of the circuit. If
the system identification technique is aimed at testing the functioning of the device, a good
choice allows to detect a variety of faults during the test, thus leading to a good fault diagnosis.
Typically, circuit faults are not all detectable at the same operating frequency. This condition is
mostly verified by using a gaussian or uniformly distributed random signal. In the control field,
a commonly used stimuli are pseudo-random binary sequences (PRBSs) with low amplitude
that are sequences of rectangular pulses modulated in their width, they approximate a discrete
white noise. A condition that has to be fulfilled by the input stimuli is the so called persistent
excitation, that means that the regression vector (internal states with memory) has to perform
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a periodic sweep of the space. For respecting this, it is sufficient that the input power is
distributed on a number of frequencies at least equal to the dimension of the regression vector.

Together with an input signal trend a sampling frequency has to be specified too. The
Shannon theorem must be respected and the sampling frequency must be at least two times
greater than the presumed maximum frequency of the system bandwidth. Higher sampling
frequency ensures a better identification but 10 times the presumed bandwidth is typically
sufficient, no advantages are carried out from going beyond 10 · fMAX .

Data file availability. As already mentioned we assume that we are able to inject a
continuous time input signal (PRBS for instance) in the simulatable model (from now on
called virtual prototype) or in the real prototype (called physical prototype) and to collect the
output signal. These sequences are saved in a data file and those data are the starting point for
identifying the system.

4.4.1. System identification, model structures, parameters and criteria.

Citing Professor Ljung in [Ljung 08]: “System identification is the art and science of building
mathematical models of dynamic systems from observed input-output data. It can be seen as the
interface between the real world of applications and the mathematical world of control theory and
model abstractions. As such, it is an ubiquitous necessity for successful applications. System
identification is a very large topic, with different techniques that depend on the character of the
models to be estimated: linear, nonlinear, hybrid, nonparametric etc.”

The process of constructing models from experimental data is called system identification.
These experimentally derived models are not intended to explain the physical system in totality
or in any meaningful way. In order to control a system we must have a model of its behavior,
understanding the details of that behavior is useful but unnecessary. We need a model adequate
to develop a controller for the real system which provides stability and the desired performance.

System identification techniques use statistical methods to build mathematical models of
dynamic systems from measured data. System identification is particularly used in the field of
automatic control and signal processing engineering and the basis principle is to stimulate both
the model and the real system and to minimize the error between the outputs by identifying the
parameters of a given starting equation (model structure). The terms “system identification”
do not include the identification of the model structure but only the parameters of a given
model architecture. A parametric model is firstly introduced, second the error between model
and the system has to be defined, finally, a criterion to be optimized in order to find the best
parameters for the parametrical model.

The system identification principle is shown in Figure 4.10, u(t) is the system input at the
instant t. ε̂(t) is the error committed by approximating the system output y(t) with ŷ(t). g
is the unknown function representing the real system and ĝ is the mathematical estimated
model. θ is the vector of unknown parameters of the system and θ̂ is the vector containing
their estimators. The system identification aims at determining the g function of Equation 4.9
where γ(t) is the regression vector. Each element of the regression vector is a function of u or y
or a combination of them at different temporal instants. The regression vector can be written
as shown in Equation 4.10.
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Figure 4.10.: System identification principle.

y(t) = g(γ(t), θ) (4.9)

γ(t) = {f(y(t ≠ dy), u(t ≠ du))}, dy > 0, du Ø 0 (4.10)

ŷ(t) = g(γ̂(t), θ̂) (4.11)

y(t) ≠ ŷ(t) = ε̂(t) (4.12)

The prediction of the output value y(t) is done by estimating both the structure of the
function g(γ(t), θ) and its parameters θ as shown in Equation 4.11. The prediction error is given
by Equation 4.12. In order to identify linear systems a large number of well known methods
are available, these techniques give an approximation of the reality since in most cases systems
are non linear. Non linear phenomena are not easily treatable, the distortions observed at the
output can have different natures. In the case of weak non linearities it is possible to neglect
them by approximating the system with a linear model. When distortions are strong they must
be identified and modeled. The best model structure that approximates the real system has to
be found and the parameters of the model estimated.

The main steps typically are:

• the choice of the model structure ĝ that includes the choice of the regression vector γ and
the estimation of the model complexity

• definition of the algorithm for parameter estimation

Model structure. Different model structures appear in the literature, they can be
linear, non-linear, static or dynamic, continuous or discrete in time, determinist or stochastic
[Walter 94]. This thesis will deal with models that are discrete in time (numerical simulations
make these models simple and fast, they are particularly suited for real time applications),
dynamic (in most cases systems have dynamic behaviors), stochastic (they also consider possible
perturbations or noise not dependent on the input values).

If we consider the dynamic system of Figure 4.11 we denote with nu the memory effect on
the input and respectively ny on the output. In the case of a single-input single-output (SISO)
system. The input/output relationship can be written as in Equation 4.13, the models with this
formulation are called Auto-Regressive with eXogenous variable (ARX) models. The output
value y(t) can also be expressed as a function of the regression vector as shown in Equation
4.14.



Specification and implementation of SystemC AMS extension libraries 61

g( y(t-1),y(t-2), ..., y(t-ny),u(t-1),..., u(t-nu),¡)

Z

....

....

u(t)

Dynamic System

+

-1
Z

-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

Z
-1

¼(t)
y(t)

^
y(t)

+-

Figure 4.11.: Modeling of a dynamic system.

y(t) =
ny
ÿ

i=1

aiy(t ≠ i) +
nu
ÿ

j=1

bju(t ≠ j) + ε(t) (4.13)

{ai, i = 1, ..., ny}{bj , j = 1, ..., nu}

y(t) =γT (t)θ + ε(t) (4.14)

Optimization criterion. Once the parametric model structure has been defined, the set
of parameters that best fit the system behavior has to be found. For this purpose a criterion
has to be defined and optimized. The criterion J(θ) is a scalar function of the parameters, it
has to be optimized (minimized or maximized) and the optimal value of the criterion is given by
the best model Ĵ(θ̂). Many criteria are used in the literature such as quadratic, absolute value,
maximum of likelihood, Bayesian, etc... We will focus on the quadratic criteria since they
are the most used thanks to their intuitiveness and to the fact that they are well suited for the
demanded optimization calculations. The criterion can be written as shown in Equation 4.15
where ε(θ) is the error vector depending on the parameters set and Q is an averaging matrix
defined non negative. Very often Q is chosen as diagonal with the wi elements on its diagonal,
the criterion can then be expressed as in Equation 4.15 where i is the index corresponding at
the sampling time. The optimal criterion value (Equation 4.16) is given by the best parameter
set θ̂ (called estimator), then reversely the optimal parameter set is given by Equation 4.17.

Jsquares =εT (θ)Qε(θ) =
1
N

N≠1
ÿ

i=0

wi[y(ti) ≠ ŷ(ti)]2 (4.15)

Ĵ =J(θ̂) = MinθJ(θ) (4.16)

θ̂ =Arg[MinθJ(θ)] (4.17)

The most typical estimator is the one that minimizes the mean squares. The Least Mean
Squares (LMS) estimator is obtained by replacing the Q matrix of Equation 4.15 with the
identity matrix so that the terms wi are ones. The algorithm used for solving the LMS problem
is well known in the literature and it is depicted hereunder in Equations 4.20 to 4.22. The
general structure for representing a linear system is shown in Equation 4.18.
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Y = Xθ + ε (4.18)

Where:
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(4.19)

The regression vector is defined in Equation 4.10. The parameters of the model are estimated
using the simple ordinary LMS algorithm, its principle is to minimize the sum of the error
squares (see Equation 4.15). The criterion function to be minimize is given by Equation 4.21.
The value of θ that minimizes J , on the condition that the matrix is invertible, is given by
Equation 4.22. θ̂ is the unbiased estimator of θ meaning that E(Θ̂) = Θ where E is the expected
value.

ε = Y ≠ Xθ (4.20)

J = εT ε = (Y ≠ Xθ)T (Y ≠ Xθ) (4.21)

θ̂ = (XTX)≠1XTY (4.22)

One of the main concerns when identifying systems is the speed of the algorithm since a
typical application is the on-line control of the system itself. The ordinary LMS algorithm
shown above needs the input and output values to be available before performing the solving of
the system and the matrix (XTX)≠1XT changes at every sampling step.

The Recursive Least Mean Square (RLMS) estimation of the model parameters can
be performed using the equations shown below.

Initialization:
t = 0;
θ̂0 = 0;
P0 = σ≠1I; (σ is a positive constant, I is the identity matrix)

For t = 1, 2, . . . :

Kt =
Pt≠1 · γ(t)

1 + γT (t) ·Pt≠1 · γ(t)
(4.23)

Pt = Pt≠1 ≠
Pt≠1 · γ(t) · γT (t) ·Pt≠1

1 + γT (t) ·Pt≠1 · γ(t)
(4.24)

ε̂(t) = y(t) ≠ γT (t) · θ̂t≠1 (4.25)

θ̂t = θ̂t≠1 + Kt · ε̂(t) (4.26)
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If the stop condition is fulfilled the algorithm stops otherwise it is necessary to perform
other iterations. In the case of the adaptive control of on-line systems the stop condition is not
valid since the identification is performed as long as the control procedure is active.

Penalization of the model complexity. It is often the case where the complexity of
the model has to be kept as low as possible, there may be two main motivations of this limit.
The first is the limited resources onto which the model identification/simulation has to run,
in terms of memory or processing units. In particular this may be the case for embedded
system identification. The second reason is the main purpose of the thesis: to keep the model
complexity as low as possible all the while ensuring to represent its functioning with enough
details, the purpose remains to be able to simulate an entire AMS SoC at a high level of
abstraction.

Resuming, one key point when identifying systems is to prevent the explosion of the
complexity of the model by penalizing the dimension of the regression vector. This penalization
is typically implemented by adding a term in the criterion to be optimized as shown in Equation
4.27. The new overall criterion is called JT OT , it is given by two contributions where α œ [0, 1]
is a parameter that allows to make a trade-off between the accuracy of the model and its
complexity S. S is defined as shown in Equation 4.28, Weight(i) is an array of weights, one
for each element of the regression vector (regressor). Typically, Weight(i) is higher for i
corresponding to high delays in order to penalize high memory models, but for simplifying
Weight(i) can be considered at 1 resulting in S = dim(θ).

JT OT (θ) = α(J(θ)) + (1 ≠ α)S (4.27)

S =
dim(θ)≠1

ÿ

i=0

(Weight(i)) (4.28)

In subsection 4.4.2 it is proposed an automated tool for the identification of a given system
and extraction of a model suitable for SystemC AMS simulations. The tool takes into account a
system identification based on the LMS criterion and implements a trade-off between accuracy
and complexity. A simple case study will be used as illustrative example.

Our contribution to the elaboration of black-box models from empirical data addressed a
Low Noise Amplifier (LNA) case study. Section 4.5 will show how a system identification based
methodology allows to estimate the performances of the identified analog system, an LNA in
our case-study, for test and control purposes.

4.4.2. Proposed extension of SystemC AMS libraries for building identification
models

An extension to the SystemC AMS libraries allows to automate the flow of our modeling scenario,
from a data file of input/output sampled waveforms to the construction and instantiation of a
SystemC AMS suited model of the identified system. If we consider a system with input U
and output Y , we aim at identifying a model in the form of Equation 4.29 where the error is
denoted by Equation 4.30.
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ŷ(t) =a1 · y(t ≠ 1) + . . . + ana · y(t ≠ na)+

b1 ·u(t ≠ nk) + . . . + bnb ·u(t ≠ nk ≠ nb) (4.29)

ŷ(t) ≠ y(t) = ε(t) (4.30)

JT OT = α(
ÿ

i

ε2(ti)) + (1 ≠ α)(na + nb) (4.31)

Figure 4.12 shows in three axis the methodology at different levels of details. On the left is
the concept, we start from the simulation of a detailed model of the device and obtain an ARX
model (Equation 4.29). On the center is a possible scenario wherein the waveform results of a
transistor level transient simulation are used to obtain the vector of the parameters Θ. The model
structure is given by Equation 4.29, na and nb are unknown and the minimization of the criterion
in Equation 4.31 is obtained by searching the space of the architecture (na,nb) for the lowest
value of JT OT . The LMS algorithm is launched for each combination of na œ [1, naMAX ] and
nb œ [1, nbMAX ] and the model details (Θ = [a1, . . . , ana, b1, . . . , bnb] and na, nb) corresponding
to the lowest JT OT are retained and a SystemC AMS model using the Timed Data Flow (TDF)
Model of Computation (MoC) is instantiated.
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Solving a least square problem 

Transistor level circuit 

u(kt),y(kt) waveforms 

Equation system 

The concept A possible scenario 

ARX model of the system Vector   

Vector U 
Vector Y 

[100x1] 

Y=A.  

 

 

                                            .

 

 

With numbers LMS case

 =      = [AT.A]-1.AT.Y  

y(100) 

… 

y(3) 

y(2) 

y(1) 

a1 

a2 

b1 

b2 

b3 

y(99) y(98) 

  …      … 

y(4)    y(3) 

y(3)    y(2) 

y(2)    y(1) 

u(99) u(98) u(97) 

…      …      … 

u(5)   u(4)   u(3) 

u(4)   u(3)   u(2) 

u(3)   u(2)   u(1) 

a1 

a2 

b1 

b2 

b3 

Figure 4.12.: The concept of system identification extensions to SystemC AMS.

Figure 4.13 shows the test bench and how the methodology is implemented in SystemC
AMS. The following steps are performed:

1. The ARX TDF predefined module is instantiated with different argument sets (see the
possibilities in Listing 4.5).

2. During the construction of the ARX TDF module the waveforms data file is loaded.

3. The loaded waveform data are used to calculate the system identification and the resulting
JT OT for the starting combination of na, nb, nk.
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4. The system identification and the corresponding JT OT is then calculated for all the
combinations of na, nb, nk. The maximum number of parameters specified as arguments
in the constructor (see line 3 in Listing 4.5) sets the limits of the search.

5. The model that gives the lowest value of JT OT is retained and, from this point on, the
parameter vector Θ is used for the ARX TDF module to behave as the discovered best
ARX model with one TDF input port and one TDF output port (u and y in Figure 4.13).
The ARX class was originally thought for supporting more than one input and/or output
(see _nb_in,_nb_out) but the proof-of-concept ARX class only implements the SISO
case.

6. The simulation starts and two modes can be chosen: the test mode (solid connection of
Figure 4.13) or the operating mode (dashed connection).

Test mode: it is used to test if the ARX model that has been built behaves correctly. In
order to prove its correctness, when the simulation starts, it will be stimulated with
exactly the same input waveform used for the identification and the model output Ŷ
is compared to the output values used for the identification Y . The “Golden Model”
module provides the golden input and output by reading them from the same CSV1

file used for the identification. The golden output and the model output are then
subtracted and the error ε can be displayed.

Operating mode: it is used for allowing the ARX TDF module to operate in normal
conditions, the stimuli received by the model are driven by the source (illustrated as
“Custom Source” in Figure 4.13).

Listing 4.5: Constructor overloading.

1 ARX(sc_core::sc_module_name, std::string _filename, double alpha, int _nb_in, int _nb_out)
2 ARX(sc_core::sc_module_name, std::string _filename, double alpha, int _nb_in, int _nb_out, int

_na_max, int _nb_max, int _nk_max)
3 ARX(sc_core::sc_module_name, std::string _filename, double alpha, int _nb_in, int _nb_out, int

_na_min, int _na_max, int _nb_min, int _nb_max, int _nk_max)
4 ARX(sc_core::sc_module_name, int _nb_in, int _nb_out, std::vector<param_type>& P, int _na, int

_nb, int _nk)
5 ARX(sc_core::sc_module_name, int _nb_in, int _nb_out, std::vector<param_type>& Pa, std::vector<

param_type>& Pb, int _nk)

GOLDEN
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CUSTOM 
SOURCE 
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model_out 
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golden_out 

ARX  

u  y processing 

constructor WF CSV FILE
 

WF CSV FILE 

 

na nb 
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OM=operating mode

TM=test mode

OM

TM

custom_in 

Figure 4.13.: SystemC AMS-based system identification test bench with both operating and test
modes.

1Comma-Separated-Values file format
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The code is in Annex where Listing A.1 shows the code of the SytemC AMS module called
ARX that, at its construction, performs the system identification by searching the parameter
space for the best model and, during simulation, performs as the model of the identified device.
Listing A.2 shows the SystemC test bench file wherein the ARX model operates.

A simple case study is used here as illustrative example. The system to be modeled and
simulated is a hair dryer, the input u is the on/off control and the output y is the temperature
of the blowed air. The input/output data file is obtained from a Matlab benchmark for system
identification. The output vector, contains 1000 measurements of temperature in the outlet
airstream. The input vector contains 1000 data points, consisting of the voltage applied to the
heater. The input was generated as a binary random sequence that switches from one level to
the other with probability 0.2. The sampling interval is 0.08 seconds.

k=0.99 

naMax=5 

nbMax=5 

nkMax=5 

a1=0.965887 

a2=-0.0321963 

a3=-0.0254143 

a4=-0.11724 

a5=0.0527693 

b1=0.00608647 

b2=0.0641913 

b3=0.0617096 

b4=0.0208348 

Jabs=1.39884 

J=1.47485 

na=5 

nb=4 

nk=2 

Figure 4.14.: Hair dryer ARX model constraints and resulting identified model.

Figure 4.15.: Waveforms resulting from the hair dryer ARX model identification.

Figure 4.14 shows the input constraints given for ensuring a constricted complexity, the
parameter α is 0.99 and the maximum values for na, nb and nk are set at 5. The system
identification provides the best model with the specifications shown on the right of Figure
4.14. The input/output waveforms contain 1000 samples. Figure 4.15 shows the results of the
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simulation configure in test mode. The red curve is the golden input, the green is the golden
output, the blue curve on top is the output of the model (na = 5, nb = 4, nk = 2) that has been
identified using the entirety of the 1000 temporal points. Finally, the blue curve on the bottom
is the error ε between golden and model output.

Resuming, a class for the automated extraction/instantiation of ARX models of an AMS
component from the input/output sampled waveforms has been developed, the minimization of
the optimality criterion is done by taking into account the complexity of the model.

4.5. Application of system identification techniques to the
closed-loop control for power consumption optimization

A new approach for controlling power consumption in RF devices is presented in this section.
The approach is based on the definition of application-dependent performance modes for power
hungry RF circuits and a logical control strategy that adjusts the power supply of each circuit to
the mode required by the application. The control strategy uses embedded sensors, a recursive
parameter identification approach and regression models for performance prediction, while
demanding minimum embedded resources for computation.

The system identification techniques are here used with a slightly different aim with respect
to the “behavioral modeling for overall simulation scope”. Instead of identifying the system
behavior with a mathematical model in order to simulate its functioning in a wider complex
system, the concept here is to perform online successive identifications for controlling the system
performances. The control strategy is robust with respect to circuit parametric deviations due
to the manufacturing process or aging mechanisms.

In the first subsections the methodology is described in a generic way for the control
of a Circuit Under Control (CUC). The final subsections of this section will show how the
methodology has been applied to an RF LNA case-study, a first system identification for defining
the model structure is performed at design phase then the online identification is recursively
performed thanks to envelop detectors as embedded sensors.

During the design phase two steps are required for applying the technique:

• construction of a behavioral input/output model of the CUC through system identification

• definition of a nonlinear model that links the set of parameters in the behavioral model to
the performances of the CUC.

We will mainly discuss the first step, since the scope of this manuscript is to deal with
behavioral modeling for different application purposes. Nevertheless, the second step will also
be briefly depicted in order to show the simulation results allowing to validate the approach.

Figure 4.16 illustrates the approach for the construction of the two models. Monte Carlo
simulation of N samples of the CUC (which includes the embedded sensors) is considered. For
each sample i, the set of performances Pi are calculated by simulation. In addition, a transient
simulation of the CUC is also carried with a persistently exciting input sequence u(k) that
covers the frequency range of the CUC. This is typically a Gaussian stimulus up converted to
the CUC central frequency. The output sequence yi(k) is obtained via the embedded sensor,
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typically an envelop detector. For the set of N CUC samples, we obtain the set of performances
P = {P1, . . . , PN } and the set of output transient sequences Y = {y1(k), . . . , yN (k)}. For a
given model structure with m parameters, an identification algorithm uses the input sequence
u(k) and the resulting set of output sequences Y to estimate the set of behavioral model
parameters Θ = {Θ1, . . . ,ΘN }, where Θi = {θ1

i , . . . , θ
m
i } corresponds to the set of m behavioral

parameters for the i-th sample. Finally, from the set of performances P and the set of behavioral
model parameters Θ, nonlinear regression is used to compute a performance prediction model.

Performance
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Nonlinear

regression
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Sampling of 

process & design
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Identification

Algorithm
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Figure 4.16.: Model building during the design phase.

In Figure 4.16, the structure of the behavioral model for the identification algorithm is
known a priori. In practice, the structure of this model may be obtained after several iterations
until the most accurate prediction models are obtained. Next section will describe how the
behavioral input/output model structure has been built.

4.5.1. Behavioral input/output model

Behavioral modeling aims at finding a mathematical relationship between the input/output
transient sequences of the CUC. For this work autoregressive models are used, so that the
input/output relationship of the ith sample is expressed as

yi(k) = f(γi(k),Θi), (4.32)

γi(k) = [yi(k ≠ 1), . . . , yi(k ≠ ny), u(k ≠ 1), . . . , u(k ≠ nu)]. (4.33)

where γi(k) defines first order regressors that consider the memory of the model. It contains nu

previous values of u(k) and ny previous values of yi(k). Θi is the parameter vector of the model.
In most practical cases, the behavioral model is nonlinear with respect to the parameters.
In this work, a priori knowledge of the CUC (e.g. an LNA) allows us to restrict the study
to dynamic models that are linear with respect to the parameters and function f(.) has a
polynomial form.

To find the model structure, we apply the identification algorithm indicated in Figure 4.17.
Some algorithm constants are fixed by the user according to his a priori knowledge of the
CUC. These include the maximum memory allowed for the input sequence u(k) and the output
sequence y(k), respectively, nu≠max and ny≠max. Also, since the model can be nonlinear with
respect to the input, the maximum powers that can be applied for the input values u(k≠ j) and
output values y(k ≠ j) in the expression of the polynomial function f(.), respectively, pu and
py, are also given as constants. The model structure of the ith CUC sample will now contain
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higher order regressors given by Equation 4.34:

γi(k) = [u(k ≠ 1), . . . , u(k ≠ nu≠max), . . . , u(k ≠ 1)pu , . . . , u(k ≠ nu≠max)pu ,

yi(k ≠ 1), . . . , yi(k ≠ ny≠max)py ]. (4.34)

Begin

Initialization

nu = 0 ; ny = 0 ;

For each circuit :

* Create the regression matrix (A)

* Determine the weight of each regressor

* Least square estimation of θ

* Calculate the determination coefficient R

of the actual regression model

* Calculate the objective function

    min Z = α (1-mean(R  )) + (1- α) S

Z < Z_min

Z_min   = Z  ;

nu_min = nu ;

ny_min = ny ;

nu<=nu_max

ny<=ny_max

nu = nu + 1 ;

ny = ny + 1 ;

End

Yes

2

2

No

Figure 4.17.: Identification algorithm for deriving an input/output model structure.

The algorithm searches a model structure that contains regressors constructed from these
variables. Each regressor has a weight wj associated with it. These weights are used in the
objective function to penalize or encourage the corresponding regressor. They are proportional
to the memory and the exponential power of the variables in the regressor.

The identification algorithm is based on LMS estimation of the parameter vector Θi of the
behavioral model, that is, the value of Θi that minimizes the regression error εi in

Yi = AiΘi + εi, (4.35)

where

Yi =

Q

c

c
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d

d
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b

(4.36)

is the output sequence of length nmax of the ith sample of the CUC, nmax = max{nu≠max, ny≠max}
and

Ai =

Q

c

c

c
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γT
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d

d

d

b

(4.37)
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is the regression matrix composed of vectors of the form of Equation 4.34, which are monomial
terms of polynomial f(.) in Equation 4.33.

The LMS estimation of Θi is given by

Θ̂i = (AT
i Ai)≠1AT

i Yi. (4.38)

The quality of the regression is quantified by the determination coefficient R2
i , given by

R2
i = 1 ≠

εT
i εi

q

k(yi(k) ≠ yi)2
. (4.39)

Finally, a multi-objective cost function is used in the identification algorithm to select the
most suitable model structure. This function is given by

Z = α(1 ≠
1
m

m
ÿ

i=1

R2
i ) + (1 ≠ α)S, (4.40)

where α is a weighting factor for the two criteria of the objective function. S is a criterion used
to penalize the complexity of the behavioral model structure as follows

S =

q

jœselected≠model wj
q

lœfull≠model wl
, (4.41)

where the numerator corresponds to the sum of the weighting factors of the regressors in the
selected model, and the denominator to the sum of the weighting factors in a full model that
contains all possible regressors.

4.5.2. LNA : Low Noise amplifier

Our case-study CUC is a Low Noise Amplifier (LNA) used in the 802.11g standard receivers
that work in the 2.4 GHz ISM BAND. The LNA topology is presented in Figure 4.18(a). This
inductive degenerated cascade structure is compatible with narrow band applications and offers
WiFi performances. The biasing stage of the circuit is formed by resistors R1, R2 and transistor
M3. With the use of gate and source inductances, a real part of the input impedance can be
generated without the need of actual resistances. Thus, inductors Lg and Ls provide appropriate
input matching at 50 Ω. Using this topology we can match the circuit without adding noise
which implies a lower noise figure of the LNA. The gain stage is composed by M1 and M2. M1
provides the high gain, whereas M2 isolates the input from the output, reducing the Miller
capacitor and eliminating the dependency between the gate-drain capacitance and the drain
inductance. Increasing the reverse isolation is important for: (1) lowering the effect of the Local
oscillator leakage produced by the following mixer, and (2) minimizing the feedback from the
output to the input. At the output of the circuit, the parallel Ld-Cd tank resonates at 2.4GHz
and the resistor Rd controls the gain at this frequency. The LNA is designed using the 0.25 um
BiCMOS7RF technology provided by STMicroelectronics. The principle performances of the
LNA at 2.4 GHz are: Gain>12 dB, NF <1.6 dB and IIP3 >5.9 dBm.



Specification and implementation of SystemC AMS extension libraries 71

4.5.3. Envelope Detector

Different sensors that extract RF power and convert it into a low-frequency signal for BIST
purposes are available in the literature [Abdallah 10, Valdes-Garcia 08, Hsieh 06]. The envelop
detector that has been used is detailed in [Abdallah 10]. It has been conceived with a very
simple architecture, based on the following design constraints: minimum silicon area overhead,
high input impedance in the frequency range of interest to avoid undesired loading of the CUC,
high dynamic range suitable for testing different on-chip CUCs, and wide band of operation to
monitor CUCs that work at different frequencies involved in the system. This circuit consists
of two stages as shown in Figure 4.18(b).
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Figure 4.18.: Transistor level circuits.

The first stage is a rectifier that performs half-wave rectification on the current delivered at
the source of the transistor M2. The half-wave rectifier works as follows. The operating point of
the transistor M2 is controlled by the bias current Ipol which flows through the diode-connected
transistor M1. The difference between the fixed gate voltage of M2 and its source voltage is very
close to its threshold voltage, such that M2 is at the verge of conduction. When the current
passing thought the source of M2 is positive, transistor M2 is off and the current passes entirely
through transistor P1 to the ground. During the negative half-cycle, the source voltage of M2
decreases which activates M2. During this half-cycle, the current flowing through M2 is copied
and amplified through the current mirror formed by transistors P2 and P3. It is important
to note that the sensitivity of the detector is mainly controlled by Ipol. In particular, as this
current is reduced, the rectifier is sensitive to smaller signal amplitudes and this characteristic
is critical in an on-line monitoring scenario when the envelope detector is related to the input
of the LNA. On the other hand, a main challenge exists between the high dynamic range of the
envelope detector and its sensitivity. In the second stage, the amplified current is converted
to voltage through Rout which is equivalent to the output resistor rds of the transistor P3 in
parallel with the resistor R1. Finally, in the low pass filter R2-C2 a compromise exists between
the time constant of the settling response and the ripple in the output voltage. The envelope
detector has the following characteristics: an input impedance equal 1.5-11 kΩ in the band
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of operation 500 MHz -10 GHz, an input dynamic range of 35 dB and an area equal to 2170
µm2, which corresponds to 0.543 % of the area of the LNA. Figure 4.19 plots the input-output
characteristic of the envelope detector for the two edges of the frequency band. Furthermore,
the study of the impact of the envelope detector on the LNA specifications is achieved by
simulating the LNA performances with and without the envelope detector. The analysis shows
just a low degradation thanks to the high impedance at the input of the envelope detector.
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Figure 4.19.: Input-output characteristic of the envelope detector.

4.5.4. Nonlinear performance prediction model

Nonlinear regression is performed to obtain a relationship between each performance in the
set P of CUC performances, and the set Θ of estimated parameter vectors as shown in Figure
4.16. Simple functions are required in order to minimize the computation resources required
on-chip. For this, we use a kind of Branch and Bound algorithm to explore a predefined space
of regressors. These regressors use as variables the coefficients Θ of the model structure. The
predefined space is limited to second order polynomial regressors. The steps of this algorithm
for obtaining the regression functions for each performance are as follows:

• Circuit data (P,Θ) are randomly separated into training and validation sets.

• The complete space of regressors is considered to form a reference regression matrix.
Each column of this matrix corresponds to a regressor that is weighted according to its
complexity given by the sum of the power of the involved variables. An initial value of
predicted performances is obtained using the best correlated column of this matrix with
the performance we want to predict.

• The algorithm keeps track of two subsets of columns: a subset of columns currently
accepted in the model and a subset of columns in the reference matrix that have not yet
been considered.
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• In each iteration of the algorithm, the column of the reference matrix that is best correlated
with the regression error obtained in the previous iteration is added to the model and
LMS parameter estimation is performed.

• An objective cost function is calculated from the determination coefficient R2 and the
complexity of the model as in Equation4.40.

• If a considerable improvement of the objective function is found, a new iteration is
considered with the current model, otherwise we return to the previous model and another
column is tried.

• The algorithm stops once there are no further columns to try (the space of regressors has
been explored).

In the LNA case-study the performances tone controlled are here listed but further details can
be found in [Khereddine 12]:

• Input matching and input reflection parameter (S11): it reflects the matching at the input
of the LNA.

• Gain (S21): the LNA represents the first gain stage in a receiver system.

• Noise Figure (NF).

• Non linearity effects (1dB compression, IIP3).

• Isolation parameters (S12, S22).

4.5.5. Adaptive logical control

The control of the CUC can be done either concurrently with the system normal operation,
or during idle times using the same test sequence considered in the design phase (in this last
case, the Gaussian-like persistently exciting input sequence will be generated by the controller,
which can allow the extraction of a more precise behavioral model). As shown in Figure 4.20,
the input/output sequences obtained via the embedded sensors are used by the controller
to estimate the parameters of the CUC behavioral model from which the performances are
predicted.
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Figure 4.20.: Adaptive logical control strategy.
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Recursive parameter identification

For online and offline estimation of the parameter vector Θ of the behavioral model, we use
a recursive LMS algorithm that process data on the fly, thus saving memory resources, and
which requires only additions and multiplications by a constant. The algorithm is initialized as

Θ(0) = 0, Q(0) = ρI, (4.42)

where Q(0) is an initial variance-covariance matrix formed by multiplying the identity matrix I
by a positive constant ρ (as discussed in section 4.5.7). The classical recursive LMS algorithm
is as follows

K(k) =
λ≠1 Q(k≠1) γÕ(k)

1 + λ≠1 γÕT (k) Q(k≠1) γÕ(k)
, 0 π λ Æ 1

ε(k) = y(k) ≠ γÕT (k) Θ̂(k≠1)

Θ̂(k) = Θ̂(k≠1) + K(k) ε(k) (4.43)

Q(k) = λ≠1 Q(k≠1) ≠ λ≠1 K(k) γÕT (k) Q(k≠1),

where γÕT (k) is a subset of the structure given by Equation 4.34, according to the selected
model structure. The recursive parameter estimation stops once convergence is reached (ε(k) is
smaller than a given constant) or a pre-defined number of iterations is attained.

Logical control strategy

The logical control is not intended to be permanently on. It is activated when the application
sets a new performance mode for the CUC which requires a different CUC power supply.
The control follows an iterative algorithm that starts with the CUC power supply set at the
maximum value. During each iteration, the behavioral parameters Θ̂ are estimated by the LMS
recursive algorithm and used by the regression equations to predict the CUC performances P̂ .
These are in turn compared with the specifications required by the new performance mode.
If the specifications are met, the power supply of the CUC is reduced by a pre-defined value
∆V dd and a new iteration is considered. Otherwise, if the specifications are not met, the power
supply is incremented by a value ∆V dd and the control stops.

4.5.6. LNA performance modes

An analytical study on the variation of the LNA performances with respect to changes to the
power supply voltage has been done. For each one of the six afore-defined performances of
the LNA the necessary condition of monotony in the range of interest has been analytically
proved [Khereddine 12]. These theoretical analysis have then been verified by simulation for the
case-study LNA. Figure 4.21 shows transient-level simulations of the performance variation when
the power supply is varied, for all performances except S22 (which does not vary significantly).
These variations are in all cases monotonic.

For a typical application, gain and noise figure are the most important LNA performances
to be controlled. S11 and S12 typically have maximum values that cannot be exceeded (e.g.
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Figure 4.21.: LNA performances versus power supply.

S11 < ≠10dB and S12 < ≠40dB). Similarly, IIP1 and IIP3 have minimum values that cannot
be exceeded (e.g. IIP1 > ≠20dBm, IIP3 > ≠10dBm).

As an example, we define three different performances modes: a MAX mode of maximum
power supply, a MIN mode of minimum power supply and an INT mode of intermediate power
supply. In all modes, the above conditions for S11, S12, IIP1 and IIP3 must be respected. In
MAX mode, Gain > 11.5dB and NF < 1.65dB. In INT mode, Gain > 10dB and NF < 2dB.
Finally, in MIN mode, Gain > 8dB and NF < 2.2dB.

The level of power supply required by each performance mode will be set by the controller.
For later reference, Figure 4.22 shows the power consumption of the CUC as a function of the
power supply voltage obtained by transistor-level simulation.

4.5.7. Simulation results

For building the behavioral and predictive models for the CUC of Figure 4.18(a), the CUC
input stimulus is obtained by mixing a Gaussian signal with an average amplitude of 150 mV,
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Figure 4.22.: LNA consumption versus power supply.

sampled at 10 MHz, with a carrier signal at 2.4 GHz. As shown in Figure 4.23, 200 values
of u(k) and y(k) are obtained for a simulation time of 10 us (the mixer and the ADC/DAC
converters are considered ideal).
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Figure 4.23.: Sampled input and ouput signal.

A Monte Carlo transistor-level simulation of the CUC, with N =1000, has been performed
for three different levels of power supply: 3.3 V (maximum power supply voltage), 2.3 V and
1.3 V. For each level of power supply, the 200 values of the input/output sequences of each
circuit sample are used by the algorithm of Figure 4.17 to identify the model structure. In the
three cases, the following model structure has been retained:

y(k) = θ0 + θ1u(k) + θ2u(k)2 + θ3u(k)3. (4.44)
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This behavioral model gives a determination coefficient R2 higher than 98% for all 3000
circuit samples. For example, the model identified for the 5-th circuit sample is given by

y5(k) = ≠0.03 + 0.78 u(k) ≠ 3.37 u(k)2 + 6.76 u(k)3. (4.45)

Figure 4.24 compares the value predicted by the model and obtained by simulation of the circuit
for 100 different time points. The predicted and the actual values are very close.
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Figure 4.24.: Predicted and simulated output values of the CUC.

A prediction model is built using Branch and Bound algorithm for each performance. The
prediction equations use only the parameters θ0, . . . , θ3 of the behavioral model to predict the
values of all CUC performances, as shown in Figure 4.25.

The simulation of the adaptive logical control strategy has been performed by considering
the CUC at transistor-level and the controller modeled in Verilog-A, the tasks of the latter are
to recursively identify the model parameter set and to run the regression equations to predict
the CUC performances. The CUC is stimulated by the same stimulus described above. Initially,
the CUC is set at the MAX mode, where the maximum power supply of 3.3 V is required.
Next, we simulate the transition to a MIN mode, for which the performances are specified as
indicated in section 4.5.6.

Figure 4.26 shows the different iterations of the algorithm. Each iteration lasts 30 us, with
the convergence time for the recursive parameter identification algorithm being somewhat
smaller. This Figure also illustrates the convergence of the behavioral parameter θ0, for different
iterations. The choice of values for the variables in the recursive LMS algorithm is important,
in particular θ0, ρ and λ in Equations (4.42) and (4.43). The value of ρ must be as large as
possible. The closer the value of λ to 1 the slower the convergence of the algorithm, but the
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Figure 4.25.: LNA performances prediction.

variance of θ̂ after convergence is smaller, oscillating around the optimum value. If λ is closer
to 0, the opposite behavior is observed.

The circuit performances are estimated by the end of each iteration, once convergence has
been achieved. Figure 4.26 shows that the control algorithm needs six iterations to reach a
power supply voltage level of 2.3 V for which one of the specifications of the MIN mode is no
longer respected. In the next iteration, the control stops with a power supply voltage level of 2.5
V, since the controller uses power supply voltage steps of 200 mV (this large value is used here
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Figure 4.26.: Transistor-level simulation of the control strategy.

Table 4.1.: Performance prediction during logical control.

Vdd Saved Predicted/simulated NF S11 S12 Gain IIP1 IIP3

(V) power(%) values ≤ 2.32 ≤ −10 ≤ −40 ≥ 6.2 ≥ −20 ≥ −3

3.1V -14
Prediction 1.70 -12.46 -43.65 10.41 -16.29 1.92

Simulated value 1.57 -13.72 -48.37 12.20 -11.61 5.26

2.9V -26
Prediction 1.74 -12.30 -43.23 10.06 -17.09 1.06

Simulated value 1.59 -13.33 -48.17 11.95 -11.83 4.57

2.7V -38
Prediction 1.99 -12.23 -42.99 8.97 -18.58 0.66

Simulated value 1.62 -12.91 -47.90 11.65 -12.03 3.85

2.5V -49
Prediction 2.25 -11.96 -42.88 7.86 -19.70 0.39

Simulated value 1.66 -12.47 -47.54 11.31 -12.19 3.21

2.3V -54
Prediction 2.39 -11.35 -42.90 7.16 -19.73 0.22

Simulated value 1.71 -11.98 -47.08 10.89 -12.26 2.6902

to reduce simulation time). Table 4.1 illustrates the evolution of the performances predicted,
and the reduction of power consumption at each level of power supply voltage (according to
Figure 4.22). For example, the MIN mode with the power supply controlled at 2.5 V has a
power consumption reduction of 54%.

4.5.8. Conclusions

A new approach for reducing power consumption in RF devices based on adapting the power
supply voltage by means of a logical control strategy has been described. This strategy relies
on embedded sensors, real-time parameter identification and performance prediction, and
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makes use of simple on-chip resources. Significant power savings have been demonstrated at
the transistor-level for an RF LNA case-study with different performance modes. The control
algorithm can guarantee the required specifications for each performance mode, despite circuit
parametric deviations due to the manufacturing process or aging mechanisms.

The Verilog-A/Cadence-Spectre simulations allowed to validate the power saving methodol-
ogy through a performance estimation from a low-level description. From a more abstracted
viewpoint, if the hardware description of the system has to be simulated, a promising solution
would be to describe the analog CUC by means of the available SystemC AMS MoCs while
the control/recursive identification algorithm would be loaded on a SystemC-based model of
an Instruction Set Simulator (ISS). Such a solution would allow to accurately describe the
algorithm execution time according to the amount of hardware resources such as memory size or
processor clock frequency. This would enable a system-level architecture exploration/validation
of the digital control/identification part.

Further details can be found in our works [Khereddine 10, Khereddine 12]. Future perspec-
tives aim at validating this approach in hardware.

4.6. SAW based chemical sensor case study

In this section as a proof of the proposed behavioral modeling-based design methodology it
will be shown how a behavioral model of a chemical sensor based on Surface Acoustic Waves
(SAWs) has been obtained and used for the electrical characterization of the microelectronic
frontend [Cenni 08, Cenni 09a, Cenni 10].

A SAW device is used in this work as the sensing element for a chemical sensor that will be
embedded in a wireless sensor node. The SAW device is intended to detect the concentration
of gaseous mercury in the environment. The microelectronics frontend architecture has been
designed at transistor level in a 0.35µm CMOS technology. The SAW device is embedded in a
phase-locked loop (PLL) that converts the change of concentration of gaseous mercury into a
shift of the loop frequency.

The section will first give an overview of the SAW device and its functioning, then the Matlab
based model reproducing the structural analysis for the SAW sensor will be shown. In order to
perform simulations of the overall sensor including the digital control and read-out blocks it
has been calculated a reduced-order fitting Laplace transfer function in the region-of-interest.
The Laplace transfer function has been implemented both in an AHDL (in our case Verilog-A)
for coupled simulations with the transistor level (such as Cadence-Spectre) and in a higher level
modeling language (such as SystemC AMS) for coupled simulations within the system-level
overall surrounding environment (e.g. SystemC / TLM platform).

In section 4.6.4 it will be shown how the read-out interface has been designed at transistor
level and how a model of the SAW device described in the Hardware Description Language
Verilog-A has been used to carry out post-layout simulations of the overall sensor including
the digital control and read-out blocks. Analog tests on the fabricated circuit have also been
performed demonstrating the functionality of this microelectronics frontend interface.
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In section 4.6.5 it will be shown how the transistor level implementation functionality has
been captured and used to model the overall system using SystemC / SystemC AMS.

4.6.1. Overview of the SAW device

The structure of the SAW device as shown in Figure 4.27 was described in our work [Cenni 09a].
The SAW device receives an input electrical signal which is transformed into a surface acoustic
wave by means of an input InterDigitated Transducer (IDT). The acoustic wave propagates on
a piezoelectric substrate that is covered by a chemically sensitive Au layer between the two
IDTs. The velocity of the SAW depends on the amount of target gas adsorbed in the sensitive
layer, that is, the SAW propagates and undergoes an amount of delay proportional to the
concentration of the adsorbed target gas. The acoustic wave is reconverted into an electrical
signal at the output IDT. From a temporal point of view, the SAW device behaves as a delay
line controlled by the concentration of gas adsorbed in the sensitive layer. From a frequential
point of view, the SAW device has a pass-band behavior with the form of the sinc function.

Figure 4.27.: Structure of the SAW device.

4.6.2. Behavioral modeling of SAW sensors

Two behavioral models of the SAW sensor have been studied but only one of them is presented.
They are both based on the Mason’s model that gives an analytical description of the propagation
of acoustic waves in piezoelectric materials. A comparison of both the models will be done
before presenting a behavioral model suitable for simulation together with the microelectronics
interface.

The first model, the Delta-Mason’s model [Urbanczyc 02], is made of the widely known
Mason’s model (describing piezoelectric transducers with volume elastic waves) and the δ-
function model that consists of a mathematical description of the IDT behavior. This model
requires a quite complex lumped components network for the modeling of each interdigitated
finger. The equivalent circuit of the overall SAW sensor has been built by replicating a high
number of interdigitated fingers for each IDT. It has been tested and considered not suitable for
the simulation of the overall frontend because of the too high computational effort demanded.

The second model is the SAW crossed-field model. It is derived from the Mason’s equivalent
circuit as in the previous case. In this model, the distribution of the electric field under the
electrodes of an excited IDT is approximated as being normal to the piezoelectric surface, as
sketched in Figure 4.28.
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Figure 4.28.: Instantaneous E-field direction in the SAW crossed-field model.

In the building of the crossed-field model, each finger pair is represented by the original
Mason’s equivalent 3-port network block shown in Figure 4.29 [Grobelny 06]. In the figure the
terms F1, v1 and F2, v2 describe the acoustic ports and U, I describes the electrical port.

Figure 4.29.: Equivalent circuit for an IDT electrode and its associated gap between metalizations,
based on the SAW crossed-field Mason’s model (a) and the corresponding three-port
building block (b).

The IDT model is constructed by linking the acoustic ports in cascade and the electrical ports
in parallel, thus resulting in a 3x3 matrix for each IDT. The overall model of the SAW device
(Figure 4.30) is then obtained by instantiating two IDT models (AI , AO), both terminated
with corresponding acoustic impedances, and a T-network (AS) which models the propagation
path of the SAW in the sensor chemical layer.

Figure 4.30.: Equivalent network of both IDTs and the delay path of the SAW chemical sensor.

However, this equivalent circuit of the SAW sensor cannot be simulated using an electrical
simulator. This is because the impedances of Figure 4.29(a) are frequency-dependent in a
way that cannot be represented with typical components such as inductors and capacitors.
In addition, this model leads also to an excessively large number of components. Thus, a
mathematical representation of this equivalent circuit has been described using Matlab, where
the different cascaded blocks have been combined using matrix computations. The resulting
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mathematical model can be easily simulated, but only in the frequency domain [Grobelny 06].
The obtained model is called structural model since the frequency response is obtained by
analyzing the attenuation provided by the model at linearly distributed frequency values in a
large enough range of frequencies (see blue branch in Figure 4.1).

4.6.3. Laplace transfer function model of the SAW sensor

The crossed-field Mason’s model described in Matlab provides the frequency response of the
SAW sensor. In order to obtain a model that can be used with an electrical simulator, we
have used the fact that the SAW device has a pass band behavior. Thus, we have performed a
rational fitting of the computed frequency response in order to obtain a rational function in the
Laplace domain which approximates the crossed-field Mason’s model in the required frequency
range. This fitting function is calculated for a given SAW velocity in the piezoelectric material.
Once the Laplace function is obtained, the Verilog-A library primitives are used to describe
it. The resulting Verilog-A model can then be simulated in both the frequency and the time
domains. Figure 4.31 shows the frequency response of the SAW sensor in magnitude and phase.
The continuous lines refer to the Matlab model and the dashed lines to the rational fitting
function.

Figure 4.31.: Frequency response of the SAW sensor using the Matlab models and the rational fitting
function.

The fitting function H(s) is obtained in the form of Equation 4.46 where n is the number
of poles (n=10 in our case). The band of highest accuracy for the fitting is delimited by the
piece-wise linear curve on the top of Figure 4.31.
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H(s) =
n≠1
ÿ

k=0

Ck

s ≠ Ak
(4.46)

The obtained Laplace fitting function model does not provide an access for emulating the
effect of the gas concentration. In fact, a detailed analysis of the crossed-field Mason’s model in
Matlab (Figure 4.32) has shown that varying the SAW velocity does not affect the amplitude of
the transfer function but only results in a phase shift, if considered in a narrow frequency range.
Thus, the effect of a change in gas concentration, resulting in the SAW velocity variation, has
been modeled with an additional delay model that is placed in cascade with the fitted SAW
model. Figure 4.32 shows the phase of the frequency response of the crossed-field model for
different values of SAW velocity.

Figure 4.32.: Effect of SAW velocity changes in the crossed-field model.

Our target specification is to obtain a gas concentration measurement up to 10 ppm with
linearity better than 1%. We assume that a gas concentration change of 10 ppm results in a
SAW velocity change of 10 m/s. This is however dependent on the experimental conditions.
Unfortunately, this data is not available at this early stage since this requires chemical tests
performed with a fabricated sensor interface. For a SAW velocity change of 10 m/s, the
corresponding delay value D is readily obtained through Equation 4.47, where Φv1 and Φv2

are, respectively, the phases in radians corresponding to the SAW velocities of v1 = 5300 m/s
and v2 = 5290 m/s according to Figure 4.32, and ω0 is the nominal pulsation 2π259.8 MHz.
The SAW sensor has then a conversion factor of about 107 ps/ppm. Thus, for example, if a
measurement resolution of ± 1 ppm is required, the microelectronics interface must have a time
resolution of about ±100 ps.
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D =
Φv1(ω0) ≠ Φv2(ω0)

ω0
=

2.873 ≠ 1.127
2π · 259.8 · 106

= 1.07ns (4.47)

4.6.4. Low-level Verilog-A / Cadence-Spectre based modeling

The Laplace transfer function model of section 4.6.3 has then been implemented using Verilog-A.
Two blocks make the SAW device model: the pass-band rational fitting function and the
controlled delay block.

Microelectronics interface architecture

In order to measure the input-output delay provided by the SAW sensor, different interface
architectures can been considered [Sternhagen 02]. These include oscillators, phase detectors
and phase-locked loops (PLL).

SAW oscillators are based on a loop configuration composed by a single amplifier and the
SAW sensor. A variation in the SAW velocity results in a shift of the oscillation frequency in
order to maintain the total loop phase shift as a multiple of 360¶. However, there may be more
than one frequency within the passband that can permit a loop phase shift of 360¶, giving rise
to an undesirable phenomenon called mode hopping.

Phase detectors compare the phase between the input and the output of the SAW sensor.
These architectures are composed by a local oscillator, whose output is split into two signals.
One signal is directly sent to one input of the phase detector. The other signal is sent to the
SAW sensor input and the output of the SAW sensor is sent to the other input of the phase
detector. Thus, the phase detector measures the phase difference that corresponds to the SAW
sensor input-output delay. This architecture is more robust than the oscillator configuration
but lacks of high resolution because of its voltage output.

The PLL architecture places the SAW sensor in a loop that includes a Voltage Controlled
Oscillator (VCO), a Phase Detector (PD) and a frequency counter. As shown in Figure 4.33
the PD output is used in a closed loop to maintain a constant phase shift across the SAW
sensor by controlling the voltage value VT UNE , thus the loop frequency. Changes of the loop
frequency are proportional to changes of the SAW velocity. The PLL-based architecture offers
both robustness and high resolution thanks to the frequency output.

The architecture of our chemical sensor is shown in Figure 4.34. It consists of two SAW
sensors with their respective PLL-based circuits and a digital control unit. Since SAW devices
are sensitive to temperature changes, two identical measurement units are used in order to
cancel temperature effects. Both sensors are fabricated on the same substrate. While one is
coated with a sensitive layer (indicated as “active” in Figure 4.34), the other (“reference”) is
not. Frequency measurements are performed by the digital control unit which is composed by
the read-out circuitry and a Finite State Machine (FSM) that schedules the sensor phases.
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Figure 4.33.: SAW PLL-based measurement architecture.

Figure 4.34.: Block diagram of the overall measurement system.

Design of the microelectronics interface

The PLL-based measurement architecture of Figure 4.33 has been implemented using fully
differential signals. The differential signal (D) is obtained as the difference of the + and -
signals while the common-mode signal (CM) is their average value. A block diagram closer to
the transistor level implementation of a single PLL is shown in Figure 4.35.

Figure 4.35.: Detailed block diagram of the PLL structure.

In this section the design of each component of the PLL is presented, that is the mixer,
the Low-Pass Filter (LPF), the VCO, the common-mode level shifter and differential voltage
divider. Furthermore the digital control unit composed of a 4-state FSM and the read-out
circuitry will be presented as well as the layout of the overall chip.
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VCO design: The VCO is a Voltage Controlled Ring Oscillator (VCRO) modified from the
design given in [Lu 05]. In order to have low values of phase noise a differential structure has
been considered in a 0.35 µm technology and it has been tuned for a central output frequency
of 259 MHz. The structure consists of a loop containing two differential delay cells. The
instability, so the oscillation, is ensured by inverting the connections in the second delay cell.
Each delay cell is made of four inverters as shown in Figure 4.36. The pairs of transistors M1
and M4 are used as input inverting stages supplied by the control current IT UNED. The pairs
of transistors M2 and M3 are typical cross-coupled CMOS inverters that perform as a latch.
The latch outputs correspond to the output of the delay cell. This configuration allows the
outputs to be stabilized with the maximum power supply, thus reducing the phase noise. The
oscillation frequency is set by means of the ratio between latch and input inverter sizes.

Figure 4.36.: Low phase noise differential delay cell of the VCRO.

Figure 4.37 shows the overall architecture of the VCRO. It consists of two delay cells, an
enabling circuit and an output current buffer. The latter is used to drive the input impedance
of the SAW sensor without affecting the VCRO internal functioning. The differential input
VT UNED controls the oscillation frequency by setting the current flowing through M6. Similarly
the differential input VCT RD allows an external tuning (c.f. M5) needed to correct the effect of
the manufacturing process. This adjustment has to be performed finely at the startup in order
to ensure a good lock frequency of the PLL.

Figure 4.38 shows the output frequency versus the differential input. The VCRO has been
designed in order to have an output frequency for VT UNED=0V around the resonance frequency
of the SAW sensor. The considered range of the VT UNED is from ≠100 mV to +100 mV.

For the VCRO non-linear behavior, the derivative of the frequency over the input voltage has
been simulated. Figure 4.39 illustrates the range of the input VT UNED wherein the deformation
versus an ideal linear curve is less than 1%. The dashed curves represent the minus and plus 1%
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Figure 4.37.: VCRO with differential control and differential external tuning.

Figure 4.38.: VCRO output frequency versus differential voltage input.

variation. As a result from the figure ∆V is always less than 15 mV, that leads to the assertion
that a variation of VT UNED of ±15 mV still ensures a linearity better than 1%. The gain of
the VCRO is 66 MHz/V at the central frequency.

Mixer design: The mixer employed in the frontend electronics is a typical double-balanced
Gilbert cell shown in Figure 4.40. The radio frequency (RF) signal coming from the SAW
sensor is applied to the transistors MN0 and MN1 that perform a voltage to current conversion.
Transistors MN2-MN5 perform a multiplication of the input RF signal and the local oscillator
(LO) signal in the current domain. The two load resistors form a current to voltage conversion
providing a differential intermediate frequency (IF) signal. The gain of the mixer and its
common-mode IF level (VIFCM) are related to the choice of the bias current provided by the
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Figure 4.39.: VCRO non-linear behavior.

current mirror and the size of the resistors. In order to obtain VIFCM = VDD/2 = 1.65 V as
the VCRO requires, the needed values are a bias current of 330 µA and a resistor value of 10
kΩ.

Figure 4.40.: Gilbert cell mixer.

Differential low-pass filter and signal conditioning circuitry: In order to realize
the phase detection function, the differential RC low-pass filter shown in Figure 4.41 is placed
at the output of the mixer. The differential transfer function is given by



90 Specification and implementation of SystemC AMS extension libraries

VT UNED(s)
VIFD(s)

=
1

1 + 5
2sRC

(4.48)

with a cut frequency of fCUT = 1
5πRC . For a cut frequency around 63.7 kHz, the values of

R=100 kΩ and C=10 pF have been used.

Figure 4.41.: Differential RC low-pass filter.

The VCRO provides a peak-to-peak VLOD signal of 2VDD = 6.6 V. Since the maximum
differential LO input accepted by the mixer is about 500 mV peak-to-peak it is mandatory
to attenuate the LO signal (VLOmixerD) to avoid the saturation of the LO input stage of the
mixer. Thus, a 3-resistor-chain voltage divider is inserted at the LO input of the mixer. This
corresponds to the “differential voltage divider” block of Figure 4.35.

The VLOD signal is attenuated by the SAW sensor to about 190 mV of peak-to-peak
amplitude. In order to set the common-mode value of the differential output of the sensor a
“common-mode level shifter” is used to provide a common-mode value VRF mixerCM of VDD/2
and a differential value VRF mixerD of about 105 mV. The common-mode level shifter block of
Figure 4.35 is nothing but a p-MOS amplifier in a common-drain configuration loaded with
another diode-connected p-MOS. The transistor sizes are experimentally obtained in order to
achieve the right common-mode value.

Design of the digital read-out: In order to measure the gas concentration, a digital read-
out circuit has been designed. The idea is to use two counters for the frequency measurement.
The frequency of each PLL must be calculated in order to subtract them and obtain the
frequency shift. In figure 4.42 the two PLLs and associated circuits are referred to as “active”
(A) and “reference” (R). The START signal starts the measurement by enabling the two VCROs
of the PLLs. A 13 bit counter called TIMER is used to allow the two PLLs to reach the steady
state condition (lock state) before starting the frequency count. The lock phase is over when
the TIMER content reaches the value of 212 that is about 60µs after. The output of the VCRO
of each PLL is sent to a frequency divider by four (FD_A and FD_R) and its output is used
to increment the two 16 bit counters (C_A and C_R). The countings are stopped as soon as
one of the counters sets its most significant bit to 1. Next, the signal “end_measure” is set by
the gate P1 and starts the FSM control.

Similarly, the gate P2 selects which counter (between C_A and C_R) is the one that
contains the information. Only the less significant byte of the selected counter is kept. The
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output byte (bus_conv) is then obtained computing the 2’s complement of the data. Finally,
the bit READY is set by the FSM when the measure is available on the output (S). Counters
C_A and C_R are 16 bit sized in order to detect a minimum gas concentration of 0.1 ppm.
The 8 bit sized output is the result of the difference between the two counter contents. It allows
a gas concentration detection up to 25 ppm even if the gas concentration should not exceed 10
ppm to ensure the linearity of the measurement.

Figure 4.42.: Digital read-out and control unit of the overall system.

The architecture of the digital read-out has been coded in the hardware description language
VHDL. The behavioral simulation has been carried out using ModelSim. The code has been
optimized and the gate-level circuit has been synthesized by means of Design Vision (graphical
user interface to Synopsys synthesis environment). The right functioning of the circuit has
been validated considering the worst-case simulations, thus the critical path delay.

Layout of the chip: The circuit is designed in a 0.35 µm standard CMOS technology. The
layout of the analog part is hand-made while the layout of the digital part has been conceived
using the Cadence Soc Encounter tool. The GDS file coming from the Cadence Soc Encounter
tool has been imported to the Cadence layout environment. The layout of the overall chip is
shown in Figure 4.43. It contains the analog control PADs (VCT R for the VCRO), the analog
PADs from and towards the SAW sensor (external component fabricated on a GaN substrate),
the digital PADs (READY, START, output byte, DVDD, DGND), the two PLLs and the
read-out circuit . The total area is about 1.5 mm2.

Simulation results

The simulations presented in this section are post-layout simulations of the PLL circuit. First,
the functioning of the circuit is validated through a transient simulation. The variation of
VT UNED is shown in Figure 4.44. After an initial transient period, the lock state of the PLL is
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Figure 4.43.: Layout of the overall chip.

reached in conditions of no gas concentration, thus no added delay in the SAW Verilog-A model.
The circuits reaches a periodic steady state after about 5 µs at a frequency of 259.2897 MHz.
At 10 µs a 10 ppm variation of gas concentration is emulated by adding a 1.07 ns delay to the
SAW Verilog-A model. The PLL reaches another lock state at about 15 µs at the frequency of
258.509 MHz. This results in a VT UNED voltage drop of 14.1 mV . This value is lower than
15 mV that ensure a linearity of the VCRO better than 1%.

Figure 4.44.: Simulation of a 10ppm gas concentration variation.

Table 4.2 shows the results of transient simulations for different values of simulated gas
concentration. The nominal frequency is the lock frequency in no gas conditions. In the case
of a gas concentration of 0.1 ppm the frequency shift is 8.2 kHz. In the case of 1 ppm, the
frequency shift is around ten times higher. However, for a 10 ppm concentration, the frequency
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Gas concentration Nominal frequency Lock frequency ∆f

[ppm] [MHz] [MHz] [kHz]

10 258.5090 780.7

1 259.2897 259.2072 82.5

0.1 259.2815 8.2

Table 4.2.: Frequency shifts for different simulated gas concentration.

shift with respect to a 1 ppm concentration roughly increases by a factor of 10, and the non
linearity reaches about 5%. The microelectronics frontend has a conversion factor of about 80
kHz/ppm, and linearity decreases as the gas concentration increases.

Figure 4.45 shows the phase noise referred to the output of the VCRO in conditions of no
gas (carrier frequency of 259.2897 MHz).

Figure 4.45.: Phase noise analysis on the VLOD signal.

The phase noise allows us to obtain the sensitivity of the PLL (minimum detectable gas
concentration). Considering the phase noise power PdBc in the band from 1 kHz to 10 MHz
from the carrier fc, the RMS jitter Jrms given by Equation 4.49 [Kester 09] results in about 20
ps. Since the conversion factor is of about 100 ps/ppm, we will have a resolution of about ±
0.2 ppm. It must be noticed that changes of the gas concentration result in a reduction of the
lock frequency that still remains in the sensor pass band.

Jrms =

Ò

2 · 10
PdBc

10

2π · fc
=

Ò

2 · 10
−32.53

10

2π · 259.2897 · 106
(4.49)
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Test results

Figure 4.46 shows the fabricated chip with the microelectronics frontend for the chemical sensor.
We have carried out an electrical test of this frontend, without yet considering the SAW sensor.
Figure 4.46 also shows the pads that have been used for an analog test of one of the chip
PLLs. These pads include the analog power supplies (AVDD = 3.3 V and AGND), the VCRO
frequency tuning pads (VCT R+ connected to VDD and VCT R≠ connected to GND), the pads
to/from the SAW sensor (VLO and VRF differential signals) and the START signal.

Figure 4.46.: Photo of the fabricated chip with the pads used for electrical testing.

For the test of the PLL frontend, we have used the test bench shown in Figure 4.47. The
VRF single-ended sinusoidal signal comes from a signal generator. A balun (SE-D) is used to
convert this signal into a differential signal. The VLO differential signal of the PLL is also
converted by means of another balun (D-SE) into a single-ended signal that is monitored with
a spectrum analyzer or an oscilloscope.

The chip has been glued on an Evaluation Printed Circuit Board (EPCB) shown in Figure
4.48. The electrical pads needed for the validation of one PLL have been wire bonded to the
EPCB lead frame. The EPCB contains the two baluns and some additional components to
form a pass-band filter that can be used as an emulator of the SAW chemical device. Finally,
the EPCB is inserted into a commercial metal box for preventing external interferences.

Experimental measurements show that the PLL locks and provides a steady state signal at
its output when the input signal VRF is within the bandwidth of the PLL. By sweeping the
input signal with steps of 10 kHz, the PLL has shown a lock range from 240.13 MHz to 254.55
MHz, below the design nominal frequency. The VCRO tuning terminals can be used to shift
up the PLL lock range, in order to cover the frequency band of the chemical sensor.
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Figure 4.47.: Experimental test bench.

Figure 4.48.: Photo of the EPCB inside the protection metal box.

Figure 4.49 shows the spectrum of the VLO output signal using a span of 2 MHz. The
input signal has an amplitude of 0 dBm and a frequency of 245.7 MHz. Since the design of the
EPCB is not optimized, the output signal has significant levels of distortion and noise which
prevent a direct comparison with simulation results. Unexpected lobes are also observed due to
interferences probably caused by the EPCB.

The waveform of the VLO signal, as captured by means of the oscilloscope, is shown in
Figure 4.50. The expected square wave has been distorted, due to the test board. While the
frequency of the input signal is 245.7 MHz, the average output frequency calculated by the
oscilloscope is slightly different. The peak-to-peak amplitude obtained is 1.15 V , lower than
the expected 2 ·VDD.

Conclusions and exploitability

A reduced-order behavioral model of the SAW sensor aimed at gas detection has been developed
for performing an overall simulation of its microelectronics interface. A Verilog-A behavioral



96 Specification and implementation of SystemC AMS extension libraries

Figure 4.49.: Spectrum of the VCRO output obtained by the spectrum analyzer, with a span of 2
MHz.

Figure 4.50.: Waveform of the VCRO output obtained with the oscilloscope.

model has been obtained as an approximation of the crossed-field Mason model for a SAW
sensor. The PLL-based microelectronics interface has been designed at transistor level and
post-layout simulations have been performed using the Verilog-A model. The simulation results
allowed to show a potential resolution of the chemical sensor of about 0.2 ppm, with a linearity
better than 5% up to 10 ppm of gas concentration. Real prototypes of the microelectronics
interface chip have been fabricated and electrical tests performed. The PLL frontend has shown
a suitable lock range that can be shifted to fit the requirements of the actual SAW sensor.
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4.6.5. High-level SystemC / SystemC AMS based modeling

The simulation of the microelectronics frontend using a Verilog-A / Cadence-Spectre joint
simulation allows simulating the frontend only in significant amount of simulation times, since
a transistor level simulation is involved. Indeed, a higher abstraction level than the one offered
by this Verilog-A / Cadence-Spectre simulation is needed if system level simulations have to be
done. For instance let’s suppose that a WSN node containing this sensor frontend has to be
simulated together with the the rest of the HW and the embedded SW, and maybe together
with several WSN nodes including an RF channel model a higher abstraction level is needed.
Such a scenario would be similar to the WSN scenario shown in section 5.6. The main difference
is the type of sensors integrated in the WSN nodes. For the case of the pre-collision mitigation
braking system of section 5.6 [Lévêque 12], CMOS image sensors are embedded on each WSN
node while in this scenario a WSN of chemical sensing nodes is imagined.

For this purpose the frontend of a chemical sensor described above has also been modeled
using the SystemC AMS analog and mixed-signal extensions to the SystemC kernel. The
concepts describing the methodology for behavioral modeling of both dynamic and static analog
components has been formalized in sections 4.3.1 and 4.3.2 respectively. In the following the
methodology is applied to the SAW-based chemical sensor case study for the SystemC AMS
high-level modeling of the microelectronics frontend [Cenni 09b].

In this section it will be shown how the concepts explained for the modeling of both static
and dynamic analog components are used in the case of the frontend of the SAW sensor that is
intended to be simulated in a WSN application.

As already presented in section 4.6.3 a rational Laplace transfer function was obtained
and the Matlab script file (see section 4.3.1 and Annex A.3) automatically generates a .h file
(Annex A.4) starting from the transfer function equation, the result file contains the code of
the SystemC AMS reduced order model of the SAW filter. For the reasons discussed in section
4.6.3, the effect of a change in gas concentration has been modeled with an additional SystemC
AMS delay module that is placed in cascade with the fitted SAW sensor model. The value of
the delay is proportional to the gas concentration detected.

Microelectronics interface for the SAW sensor

As already mentioned, in order to measure the input-output delay provided by the SAW
the phase-locked loop (PLL) architecture of Figure 4.33 has been used [Sternhagen 02]. The
microelectronics interface architecture places the SAW sensor in a PLL. The PLL includes a
voltage controlled oscillator (VCO), a phase detector (PD) and a frequency counter. As shown
in Figure 4.33 the PD output is used in a closed loop to maintain a constant phase shift across
the SAW sensor by controlling the voltage Vtune, thus the loop frequency. Changes of the loop
frequency are proportional to changes of the SAW velocity. The PLL-based architecture offers
both robustness and high resolution thanks to the frequency output.

From the SystemC AMS modeling viewpoint the mixer is a SCA_TDF module that performs
a multiplication between its two input values at each computation time step. The low-pass filter
is implemented by means of a 1 pole Laplace transfer function instantiated within a SCA_TDF
module.
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SystemC AMS modeling of the VCO: since the microelectronics frontend for a SAW
chemical sensor has already been designed at transistor level [Cenni 09a], the SystemC AMS
modeling of the interface comes from the need of a behavioral model to be simulated inside the
digital environment of a WSN node. In order to keep the SystemC AMS model of the VCO as
accurate as possible to the behavior of the VCO designed at transistor level the macro-modeling
technique for static block seen in section 4.3.2 is exploited. Figure 4.51 shows the simulation of
the VCO designed at transistor level (dashed line) and the result of the 5th-order polynomial
interpolation (continuous line) used to model the relation “output frequency vs Vtune”. As a
specification of the generic code of Listing 4.4, Listing 4.6 shows the code for the VCO modeling.
For each computational time steps, in the signal processing function of an SCA_TDF module,
the output frequency is calculated by means of the polynomial in Vtune obtained through the
interpolation.

Figure 4.51.: Polynomial interpolation of the VCO static behavior.

Listing 4.6: SystemC AMS modeling of the VCO static behavior using a polynomial interpolation.

1 SCA_TDF_MODULE(vco)
2 {...
3 double gain;
4 void processing() {
5 double t = get_time().to_seconds(); // actual time
6 double input = in.read(); // control voltage Vtune
7 double wvco = polynomial_function(input); // angular velocity
8 out.write(gain ∗ sin(wvco∗t)); // sinusoidal output
9 }

10 };

Overall chemical sensor

The overall detection architecture is composed by two PLL loops as shown in Figure 4.52. Since
SAW devices are sensitive to temperature changes, two identical measurement units are used in
order to cancel temperature effects. Both sensors are fabricated on the same substrate. While
only one is coated with a sensitive layer (indicated as “active” in Figure 4.52), the other is not
(“reference”). The difference of SAW velocities is only associated to the absorption of the target
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gas since temperature changes affect the two sensors in the same way. Frequency measurements
are obtained by means of two frequency counters that use the zero-crossing detection principle.
For each sensor, the number of crossing points counted in a given time frame is stored and,
after the counting phase, the content of both frequency counters is subtracted. The result of
the subtraction is then divided by the temporal frame time in order to get the frequency shift
between the two loops. That is, the counting time is inversely proportional to the frequency
resolution. However, it must be noted that a constant part of the difference of SAW velocities
is inherently caused by the difference of structure of the sensors. Therefore when the detected
concentration in the active SAW is zero a difference of frequencies between the two loops exists.
This frequency “offset” may be compensated by software once the frequency offset is known.

Figure 4.52.: SystemC model of the overall chemical sensor.

In Figure 4.52 the control unit manages two signals through which the measurement system
is switched on and off. The “VCOstart” signal activates the VCO on its positive edge and stops
it on the negative one. As already seen for the VCO the frequency counter is controlled with the
same principle. The counter must start counting on the “COUNTERstart” positive edge and
stop on the negative one. From the modeling point of view the two loops that contain the VCO,
SAW model, delay, gas concentration source, mixer, low-pass filter and the frequency counter
are “SCA_TDF_clusters”. The clusters in question are defined as SC_MODULEs wherein
the models just mentioned (SCA_TDF_MODULEs) are instantiated. In the “sc_main” four
entities are instantiated: the control unit which is a pure SC_MODULE with two outputs,
the two SCA_TDF_clusters and the subtracter. The gas concentration sources inside the two
clusters are set as “no added delay” for the reference cluster and a “test delay” for the active one.
The control unit schedules the phases of the simulation through its implementation as shown in
Figure 4.53. A measuring cycle starts with the positive edge of “VCOstart” thus entering in
the S0 state. Afterwards a transient period is necessary in order to reach the periodic steady
states, one for each loop. The transient period is called “lock_time” and it is extracted from
experimental observations. Once the lock has been reached the “COUNTERstart” goes high
(state S1) thus the frequency counters start counting for a time depending on the required
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resolution. Afterwards the “COUNTERstart” signal goes low (state S3) and the “VCOstart”
signal stays high for a brief phase wherein the loops keep running (VCO running) while the
counting is already finished. In the S3 phase the subtraction between the two frequency counter
contents is performed. Finally the “VCOstart” goes low and the measurement cycle is over.

Figure 4.53.: Control unit outputs.

Simulation results

The simulations shown in Figure 4.54 are carried out using two different gas concentration
values (delay values). The low-pass filter outputs, that is the VCO inputs Vtune, are plotted.
The line on the top is the low-pass filter output of the reference loop, so with no added delay.
The line in the center is related to an active loop detecting a gas amount that causes an added
delay corresponding to a π

4 rad phase. Similarly, the bottom line corresponds to an active
loop for a π

2 rad phase. Figure 4.54 shows that the steady state is reached in the three cases.
Vtune is directly linked to the frequency of the loop since it is the input of the VCO. The
reference loop has the highest frequency and adding delay to the output of the SAW sensor
reflects in a decrease of the loop frequency. Therefore the “lock_time” increases for increasing
gas concentrations.

Figure 4.54.: Low-pass filter outputs.

Figure 4.55 shows the two control signals “VCOstart” and “COUNTERstart”, the outputs
of the frequency counters and the result of their difference. In the simulation the injected delay
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in the active loop is π
4 . The “lock_time” is 25 µs and the “count_time” is 15 µs providing

a frequency resolution of 66 kHz. The calculated lock frequency of the active loop is 3876
15µs so

258.4 MHz and the lock frequency of the reference loop is 3881
15µs so 258.733 MHz. Therefore

resulting in a frequency shift between the two loops of 5
15µs so 333 kHz.

Figure 4.55.: SystemC DE signals of the digital read-out unit.

4.6.6. Conclusions

Two modeling levels of the AMS PLL-based frontend have been shown. The first one is a joint
simulation Verilog-A/Cadence-Spectre, it enabled the transistor level design, the layout design
and the manufacture but cannot allow to simulate an imaginary of a WSN of chemical sensors.
The second is the SystemC / SystemC AMS based modeling of the chemical sensor frontend.
This model has been achieved from the simulation results of the transistor level implementation
shown in our previous work [Cenni 09a]. Such a transistor level implementation is slightly
different from the solution presented in section 4.6.4 since improvements have been obtained,
notably referring to the VCRO implementation. This reason explains why the results shown in
Figures 4.54 and 4.44 are different. However, it has been shown that a SystemC / SystemC
AMS based modeling could reproduce the transistor-level simulations of the frontend if a small
enough value of the simulation time step is chosen. The key concept remains the fact that the
transistor-level analysis leads to the design and manufacturing of the chemical sensor frontend
chip while the SystemC AMS analysis is not aimed at low-level design but is mostly aimed at a
system level feasibility study.

Conclusions and perspectives for the frontend chip manufactured and tested:
Further work will consider the integration of the microelectronics frontend with two real SAW
device test chips, one of them will be coated with the sensitive golden layer and the other will
not. Tests will then be performed in a chemical chamber in order to characterize the overall
device.

Conclusions of the SystemC / SystemC AMS based modeling: The facilities
offered by the SystemC AMS libraries are still in phase of development thus more and more
updates are progressively coming out. Using the available tools of the current release of SystemC
AMS it has been shown how macro-models for static and dynamic blocks can be obtained.
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For the case of dynamic blocks, a way to generate these models from their detailed frequency
response has been presented. These modeling techniques have been illustrated for the case of a
complex chemical sensor that is intended to be simulated in a WSN application.

4.7. Summary
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Figure 4.56.: Case studies for the validation of analog behavioral modeling flows.

Figure 4.56 depicts our contributions inserted in different behavioral modeling techniques.
In the frame of a modeling of knowledge the methodology for the macro-model building from
frequency responses (blue branch) is applied to a Surface Acoustic Wave (SAW) based chemical
sensor case study; the sensor itself has been modeled and simulated together with its micro-
electronic frontend interface and fabricated. For the case of a modeling of knowledges from a
starting netlist the procedure for a customized state space model extraction has been studied
and implemented for the SystemC AMS environment allowing to generate an instantaneous
power consumption signal.

In the scenario of an experiment/simulation-based modeling, an extension library for building
Auto-Regressive models with eXogenous (ARX) variable was developed and the methodology
of black-box modeling is applied to an LNA case study. On the extreme right of Figure 4.56 a
behavioral model of a Low Noise Amplifier (LNA) is obtained via a system identification by
means of simulation data not only for simulation purposes in an overall RF transceiver but
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also for adaptively monitoring and controlling the LNA performances. The concepts of the
statistics are here exploited for monitoring, test and performances control purposes. Chapter 5
will present the industrial CMOS image sensor case-study. Behavioral models of the latter were
developed by means of experimental data issued by an opto-electrical characterization of the
response to the light of the image sensor.
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Chapter 5.

Industrial case study: CMOS video sensor

In this chapter a CMOS image sensor (CIS) based video acquisition platform is modeled using
the SystemC framework. An image acquisition system is composed by three main blocks: an
image sensor followed by an image signal processor (ISP) and a central processing unit (CPU).

This work focuses on the development of a reliable and accurate behavioral model of an
STMicroelectronics CIS with the purpose to simulate its functioning within its surrounding
environment. Nowadays the embedded software development starts only when the CIS is
physically available. The software is debugged and validated by means of image sets issued by
a real sensor. If delays are accumulated during the design process there won’t be much time
left for software development, this will either result in a software non-reliability or in a time-to
market miss if the market is not hit in time with respect to the competitors. Since the ISP
must also be able to control the sensor parameters, the interoperability between sensor and ISP
is normally checked by connecting a board with the sensor chip and the ISP implemented on
field-programmable gate array (FPGA) to the PC-hosted instruction set simulator (ISS) of the
target CPU through an interface board. A virtual prototype of the overall system would avoid,
at early design stages, the use of boards for a first validation of the system. This would also
allow to validate the ISP algorithms at simulation-level by tuning them and stressing them up
to determine their limit working conditions. With respect to a CIS, analog and digital electrical
signals are involved together with analog optical values.

The model of the CIS describes many optical and electrical effects at a high level of
abstraction, going beyond the limitations of the previously developed VHDL-AMS model.
Section 5.1 describes the target CIS, the VHDL-AMS starting model and the SystemC AMS
models using different models of computation are shown . Section 5.2 describes the fastest
SystemC AMS TDF-based model in all its blocks. Section 5.3 will show the comparison among
the CIS modeling styles analyzed in terms of their simulation performance and accuracy. Section
5.4 will generically discuss the issues to be faced when integrating the SystemC AMS model
inside a SystemC platform, the section will also illustrate the types of platform target for the
integration. Sections 5.5, 5.6, 5.7, 5.8 will describe each integration in such platforms. Finally
the conclusions will be given.

5.1. CMOS video sensor and SystemC AMS models

The CMOS video sensor studied is designed by STMicroelectronics in its 90nm imaging-specific
CMOS technology. The size of each pixel of the matrix is 1.4µm x 1.4µm. The pixel architecture
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is called 1T75 because the transistors are shared among the neighboring photodiodes leading to
a 1.75 equivalent transistors per photodiode (see [Cohen 06] for more details). The schematic
diagram of a 4 shared pixel structure is shown in Figure 5.1: four photodiodes share reset,
source follower (SF), and readout (READ) transistors to increase the pixels’ fill factor, each
photodiode having its own transfer gate (TG). The full matrix counts 2 mega pixels (1920x1080).
The capability to perform an analog binning of the pixels before the sampling of the column
lines allows different output frame rates. The sampling is performed by 8 to 12 bits analog to
digital converters (ADCs).

Figure 5.1.: Transistor level schematic of the 1T75 pixel architecture.

From the optical viewpoint the light coming from outside first encounters the macro-lens
system (see Figure 5.2), its complexity depends on the optics of the product. The light beam
is then deflected to the sensitive array of microlenses. The main beam is separated in many
smaller beams and microlenses are used to direct the sub-beam to the central part of each color
filter and to the sensitive surface. The color filter is a mosaic of band-pass light filters, it has
a Bayer pattern, that is red green green blue. The light passes through the cavity formed by
the metal geometry and hits the sensitive surface. The Scanning Electron Microscope (SEM)
cross-section photographs of each layer are shown on the right side of Figure 5.2.

5.1.1. VHDL-AMS model

A VHDL-AMS model of the analog part of the CMOS image sensor had been developed in
STMicroelectronics. Its usage helped the CIS designers at the design stage. Simulations of
the model allowed a rapid and comprehensive view of the waveforms of the control signals
(reset, read, line selection, etc.). For what concerns the conservative domain of energies, the
photodiodes were described as capacitors charged by current sources. The reset of the voltage
across the photodiode to the reference voltage was described by discharging the capacitor plates
through a parallel resistor. The transfer switch was considered as ideal and the rest of the flow
to the column voltage was controlled by ideal analog logic gates and voltage conversions of
the signals. The timing of the control signals issued by the timing block (often referred to as
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Figure 5.2.: Section of the optical path of a CMOS image sensor [Cohen 06].

the Y-decoder) had been accurately described. The VHDL-AMS model had high simulation
duration due to the accurate description of the control signals timing and the differential
equation system to be solved for each photodiode. The simulation time was about 2 hours and
30 minutes for a 2 by 496 pixel array as shown in Table 5.1, but allowed to accurately verify
the digital control. Other VHDL-AMS models of image sensors can be found in the literature
[Dadouche 08, Navarro 05], typically with simulation times of a few minutes for a 100 by 100
array [Navarro 05].

In the following, the SystemC AMS models evolution is regrouped by MoC and sorted by
increasing level of abstraction which also reflects the chronological order of development.

5.1.2. SystemC AMS ELN-TDF model

Following the same principle of the VHDL-AMS a SystemC AMS ELN-TDF first model has
been developed by reproducing the schematic 1T75 architecture of the pixel. As shown in
Fig. 5.3, for what concerns the conservative domain of energies, each photodiode has been
described as a capacitor charged by a current source and a parallel Ron/Roff switch for its reset.
The charging current value is regarded as constant between two image captures. A snippet
of the code is shown in Listing 5.1 for the conservative part, the four components (capacitor,
current_gen, switch and converter) are instantiated and connected as shown in Fig. 5.3 for
each photodiode.

The ELN voltage across each capacitor was converted to a TDF signal and the timing of
transfer-gate (TG) signals and the other read-out control signals managed the driving of the
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Vx column line. Those read-out control signals are provided by the video timing block, the
timing of these signals had been accurately described.

The accuracy and simulation time of the model depend on the chosen TDF time step. For
a good accuracy, a TDF time step of 0.5 µs has been chosen, which allows to simulate a 48 x
48 pixel array within ten minutes. Both the VHDL-AMS and the SystemC AMS ELN-TDF
models describe the sensor at a low level of abstraction comparable to the register-transfer
architectural level (RTL). The capability of SystemC AMS to cover RTL level descriptions is
proved. The SystemC AMS ELN-TDF model allows to gain a speed-up factor of about 35
times compared to the VHDL-AMS model but the performances really depend on the time
step. Despite that, the desired SystemC AMS model is intended to raise the level of abstraction
even further in order to be able to perform simulations of the feedback control loop (CIS/ISP)
while keeping a (relatively) accurate modeling of the analog behavior of the sensor. Therefore,
a TDF-based model has been studied.
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Figure 5.3.: Structure of SystemC AMS ELN-TDF model.

Listing 5.1: Structure of the ELN based photodiode model.

1 SC_MODULE(photo_diode)
2 { // terminal declaration
3 sca_eln::sca_terminal anode;
4 sca_eln::sca_terminal cathode;
5 sc_core::sc_in<bool> rst ;
6 sca_tdf::sc_in<double> input_current;
7 sca_tdf::sc_out<double> out;
8
9 // child module declaration

10 sca_eln::sca_c∗ capacitor ;
11 sca_eln::sca_tdf_isource∗ current_gen;//Current source driven by a TDF input signal
12 sca_eln::sca_de_rswitch∗ rswitch; //Switch controlled by a discrete−event input signal
13 sca_eln::sca_tdf_vsink∗ converter;//Converts voltage to a TDF output signal
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14
15 SC_CTOR(photo_diode): anode("anode"),cathode("cathode")
16 {
17 current_gen = new sca_eln::sca_tdf_isource("current_gen");
18 current_gen −> p(anode);
19 current_gen −> n(cathode);
20 current_gen −> ctrl(input_current);
21 //photodiode capacitance=1fF
22 capacitor = new sca_eln::sca_c("capacitor",1.0e−15);
23 capacitor −> p(anode);
24 capacitor −> n(cathode);
25 //false=off−position, Ron=100µΩ, R off=1T Ω

26 rswitch = new sca_eln::sca_de_rswitch("rswitch", 0.1e−3, 1e12);
27 rswitch −> ctrl(rst) ;
28 rswitch −> p(anode);
29 rswitch −> n(cathode);
30 converter = new sca_eln::sca_tdf_vsink("converter");
31 converter −> p(anode);
32 converter −> n(cathode);
33 converter −> outp(out);
34 }
35 };

5.1.3. SystemC AMS TDF models

Entire array instantiated, many samples per discharge

The first TDF model describes the discharge of the photodiodes as a linear sampled discharge
generated by a multiplication between the current value due to the light and the time.

A code snippet referring to this modeling style is shown in lines 1–4 of Listing 5.2. The two
code lines are intended to be inserted inside the processing method of the photodiode TDF
module. LRT is the last reset time registered at the front of the reset signal (DE to TDF
converter port) and anode is the output. At each TDF time step the time elapsed from the
LRT to the current time is multiplied by the light intensity (L) hitting the photodiode and a
conversion factor K calculated from the pixel sensitivity and the pixel capacitance. The temp
value is compared to the saturation value SAT for implementing the saturation.

The accuracy of the model relies on the granularity of the TDF time step since the read signal
could arrive at any time between two samples of the TDF signal. To avoid this, an interpolation
between two samples is needed. Alternatively, a future dynamic time step extension to SystemC
AMS could be used for introducing a calculation step between the two statically scheduled
sampling instants. In this model, the whole array of pixels was represented by a two dimensional
array of instances of the pixel module. This model presents a simulation time of about 2 minutes
and 40 seconds for a 48 by 48 pixel array using a TDF time step of 0.5 µs for the discharge
(Table 5.1).

Listing 5.2: Photodiode code snippets for different TDF-based modeling styles.

1 // Uniformly sampled linear discharge
2 temp = L∗K∗(get_time().to_seconds()−LRT.to_seconds());
3 if (temp>SAT) temp=SAT; //saturation check
4 anode.write(temp);
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5
6 // Final value of the linear discharge
7 IT = integration_time.to_seconds();
8 temp = IT∗L∗K;
9 if (temp>SAT) temp=SAT; //saturation check

10 anode.write(temp);
11
12 // Final value of the arc−tangent based discharge modeling equation
13 IT = integration_time.to_seconds();
14 S = K∗L; //sensitivity [ electrons/sec]
15 IP = SAT/S; //intersection point [sec]
16 AF = 0.5 + (atan(150∗(IT−IP))/M_PI); //averaging function
17 SN = K∗L∗IT∗(1−AF) + SAT∗AF; //sensing node[electrons]
18 anode.write(SN∗CVF);

One pixel sweeping the array, many samples per discharge

In order to reduce the simulation time, a new modeling style has been introduced. The array
of instances is no more fully instantiated. Instead, only one instance of the pixel sweeps the
whole array row-after-row, like it occurs in an analog-TV like image refresh. The discharge of
the photodiodes is still described as a constant-slope sampled TDF signal and the accuracy
of the model still relies on the granularity of the TDF time step. This new modeling style
allowed to reduce considerably the simulation time thanks to the elimination of huge amounts
of non-relevant processing. It presents a simulation time of about 10 seconds for a 640 by 480
(VGA size) pixel array, with 50 TDF time steps per discharge, (Table 5.1).

One pixel sweeping the array, one sample per discharge

Further improvements have led to consider only the final value of the discharge once the
integration time has elapsed. Two different photodiode discharge models have been implemented:

Linear: On the one hand, in order for the simulation to be fast, the discharge is considered
linear as far as the saturation occurs with a discontinuity of the first order derivative. The
code snippet is shown in lines 6–10 of Listing 5.2. The integration time is stored in the
IT variable and anode is the output. The temp value is compared to the saturation value
SAT for implementing the saturation.

Non-linear: On the other hand, in order for the the model to well represent the real behavior,
the optical characterization results are used for building an approximating analytical
equation of the photodiode discharge. The model is based on the arc tangent trigonometric
function. The algorithm corresponding to the discharge model is shown in lines 12–18 of
Listing 5.2. The discharge model will be detailed in section 5.2.5.

The TDF time step is reduced to one TDF calculation per pixel discharge. Therefore
a fictitious pixel time (p_t in Fig. 5.4) is introduced for representing the SystemC time of
processing of one pixel over the SystemC time of processing of the array. The tremendous gain
in simulation time allowed to simulate a 1920 by 1080 (2 mega pixels) pixel array within about
7 seconds (Table 5.1) and up to 2 seconds in the optimized model.
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5.2. SystemC AMS TDF fastest model

The AMS model is composed by a TDF cluster, as shown in Figure 5.4. Three TDF time steps
are mainly present in the model: the frame time (TDF modules fired at the frame rate), the
pixel time (TDF modules fired every pixel time) and the row time step for the firing of the
bank of ADCs. The frames of the video stream are passed from block to block in the chain.
The images can be generated in three ways in the model (see Figure 5.4 for reference):

• IIB: the first emulates the capture of a moving object on a fixed background, in the
following called input image builder (IIB). The IIB is composed of two sub-modules,
the background builder (BGB) and the object builder (OB). The BGB builds the image
background and the OB draws an object upon it (a car for instance). The OB also models
the electronic rolling shutter (ERS) effect on a running car captured.

• DB: the second emulates the situation of the CIS inserted in a dark box with controlled
input scenarios and tunable light, in the following called dark box (DB). The environment
(ENV) block supplies the image loader (IL) with three TDF control signals. The controls
are: what chart has to be loaded among predefined standardized charts (scenarios), what
color and intensity the light illuminates the chart with. The DB emulates the functioning
of a dark box containing a set of red, green, blue and white light emitting diodes (LEDs)
driven by pulse width modulated (PWM) signals.

• File Loader: the third allows a direct loading of reference image files.

The image issued by the DB or IIB or the file loader (see Figure 5.4) is coded upon a
parametric number of bits (typically between 8 and 10) and sent to the lens module. The
image is sent to the Bayer filter (BF) module which, in turn, sends the data to the inner part
of the model where the TDF time step is reduced to the pixel time step and the whole matrix
is swept by an instance of pixel module. The controller drives the pixel with the light signals
coming from the Bayer filter. The pixel contains four photodiodes driven by the four light
signals and the integration time information. The light signals are updated at the beginning of
each photodiode discharge processing. The value Vx of the discharge process at the end of the
integration time is output by each pixel following the discharge modeling described in Section
5.2.5. The column voltage Vx is then sent to the bank of ADCs (ADC module) and sampled.
Finally, a decimator is needed to convert the row rate TDF signal into a frame rate SystemC
signal.

5.2.1. Input image builder

An input image is needed to emulate a real life scene presented in front of the sensor. It has
been decided to internally synthesize the input images instead of loading them from external
image files. This prevents the input images from being affected by other noise sources, such
as noise resulted from an image format compression or noise present in raw images shot from
other sensors.

As mentioned above the IIB is composed of the BGB module which generates the background
for the input image and the OB which draws an object upon the background. The background
generated is made of 8 horizontal stripes that start with a saturated tint (left side) and gradually
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Figure 5.4.: Block diagram of the SystemC AMS model.

fade to a common grey value (right side). The object is superimposed by the OB onto the
background image, for test purposes it has been chosen an outlined car whose horizontal offset
is shifted by a constant value at every frame.

The OB also takes into account the modeling of the electronic rolling shutter (ERS). This
phenomenon is due to the time skew present between the readout of the different lines of the
visible array. Its effect is modeled by shifting right the position of the lines of the object of a
varying amount that depends on their latitude. The amount is calculated for each row as a
function of the speed of the car, the frame time, and the percentage of the frame time needed
for the overall matrix scan. The synthesized input image is shown in Figure 5.5. The red, green,
and blue (RGB) values are coded upon a parametric number of bits, for test purposes 8 bits
have been chosen.

Figure 5.5.: IIB output affected by ERS effect.

5.2.2. Lens effect model

From the modeling viewpoint the light hitting the lens is considered composed of three rays at
three given frequencies for being packed in an RGB raw image file (three RGB arrows above
the lens in Figure 5.2).
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The lens causes a fainting of the light intensity on the periphery of the image compared to
the center of the image. This is due to a longer path of the light for reaching the periphery of
the CMOS sensor. The visual consequence on the output image is known as natural (or optical)
vignetting and it consists on the reduction of the image brightness at the periphery compared
to the image center.

There exist other types of vignetting, one over all, of noteworthy interest is the pixel
vignetting. It occurs only in digital cameras. It is caused by the sensor nature to produce
stronger signal from incident photons at a right angle, than other photons of same energy which
reach the sensor by any other angle [Laskaris 05]. The effect of pixel vignetting on the captured
image is similar to the natural (or optical) vignetting.

In [Laskaris 05] different modeling techniques are proposed for different sources of vignetting.
The attenuation provided by the natural vignetting has been modeled with the cosine of the
normalized radius at the power of four as shown by Figure 5.6). R is the distance to the image
center and RMAX is the distance at the corners of the image.
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Figure 5.6.: Modeled attenuation of the light intensity.

5.2.3. Bayer filter model

The Bayer patterned Color Filter Array (CFA), well known in the literature, is a mosaic of
band-pass light filters. The pattern is composed of quadruplets of light filtering resins, each
quadruplet has one blue, one red, and two green resins. The green resin on the line of the
red resin is called green-red, the other green is called green-blue. The Bayer pattern is often
referred to as R-Gr-Gb-B. Each light filter has a band-pass transfer function, for instance, the
red filter pass-band is centered on the red light wavelengths, since the response is not ideal a
part of the blue and green wavelengths are absorbed as well.

For modeling the adsorption to the light of the Bayer filter, each RGB triplet of each pixel
is regarded as a light ray hitting the surface of the corresponding filter of the Bayer filter.
For instance, it has been assumed that the light hitting the red filter is a ray composed of
a linear combination of three wavelengths, the RGB components. The quantity of photons
passing through the filter and hitting the photodiode underneath the filter is called “quantum
efficiency". The graph of the quantum efficiency as a function of the wavelength (Figure 5.7)
has been used to calculate 9 coefficients. There are three filter types (red, green and blue)
and three coefficients per filter. For instance, the RinR coefficient defines the quantity of red
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passing through the red filter, GinR and BinR are the green and blue passing through the red
filter, and so on for the other filters. The 9 coefficients are used to calculate the intensity of
light that passes through the filters as shown in Figure 5.8. The coefficients of the Bayer filter
module are technology-dependent since different technologies lead to different coefficients of
adsorption. The Bayer filter input image has 1920x1080 R-G-B triplets, where R, G and B
are 8 bit integer. The Bayer filter output image has 960x540 R-Gr-Gb-B quadruplets, where
R,Gr,Gb and B are float values.

In addition, the Bayer filter module also inserts stuck-at defect spots randomly located
such as hot pixels and dark pixels.
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Figure 5.7.: Quantum efficiency of the CFA.
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Figure 5.8.: Bayer filter modeling.

5.2.4. Video timer model

The controller module is fired at the frame time. It extracts the values of every R-Gr-Gb-B
quadruplets of the image row after row and it sends them to the array of pixel modules. The
controller also reads the integration time information in terms of pixel time and row time from
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the control registers of the sensor. It calculates the actual integration time in picoseconds and
sends it to the each pixel module of the array.

5.2.5. Pixel module

Each pixel module is composed of four TDF photodiode modules, the R-Gr-Gb-B modules.
The photons that pass through the Bayer filters cause a discharge of the voltage node of the
photodiode during the integration time. The discharge has been characterized by measures and
results in being almost linear before the saturation occurs. An arctangent based function has
been used to represent the response of the electrons collected in the photodiode’s well.

Equation 5.1 describes the equations of the model, lines 12–18 of Listing 5.2 show the
SystemC AMS implementation and Figure 5.9 shows the corresponding curves.

• K represents the sensitivity of the well to the light and the time. K is expressed in
electrons/(sec · lx).

• SAT is the saturation value expressed in average number of electrons collected in the well
(full well).

• L is the intensity of the light passing through the Bayer filter and hitting the photodiode.
L is an illuminance quantity, thus it is expressed in lx. L is regarded as an independent
variable.

• IT is the Integration Time regarded as the second independent variable. IT is expressed
in seconds.

• IP is the Intersection Point between the constant slope line (K · L · IT) and the saturation
value SAT. IP depends on L and it is expressed in seconds.

• AF is the arc tangent-based Averaging Function centered in IP . AF is a dimensionless
quantity.

• SN represents the average number of electrons collected in the well. SN is a function of
IT and L. SN uses AF for smoothing the conjunction between the constant slope line
(K · L · IT) and the saturation value SAT. SN is calculated by adding the two terms, red
(K · L · IT · (1-AF)) and black (SAT · AF) curves of Figure 5.9.

• Vx is the column voltage whereto the information flows when the readout of the electrons
occurs.

• CVF is the ConVersion Factor representing the conversion of the electrons of the well into
the column voltage Vx. The CVF has been experimentally characterized and takes into
account the gain of the source follower as well.

Figure 5.9 shows the discharge model. On the Y-axis is SN and on the X-axis is IT. The
data points to be fitted by the model are depicted using the red (x), green (+), and black (x)
markers. These markers are the results of the image sensor optical characterization obtained
by averaging the measures of real test chips. The markers data points are obtained for a 10 lx
illuminance on the sensor plane. The SN obtained fits well the red markers (Γ equals to 150).
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In order to well fit the green and black markers, thus the green and blue photodiode behaviors,
a calibration of Γ and K is done.

Figure 5.9 also shows the SN discharge model for 5, 10 and 15 lx illuminance values on the
sensor plane. Further details can be found in [Cenni 11b].

IP (L) =
SAT

K ·L

AF (IT, L) =
1
2

+
1
π

arctan(Γ(IT ≠ IP ))

SN(IT, L) = K ·L · IT · [1 ≠ AF (IT, L)] + SAT ·AF (IT, L)

V x = CV F ·SN

(5.1)
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Figure 5.9.: Arc tangent based discharge model issued from characterization data.

The three dimensions graph of Figure 5.10 shows SN as function of the integration time (IT )
and the illuminance (L in lux). By cross-sectioning the graph at the illuminance value of 10 lux
(red points) the SN curve values shown in Figure 5.10 are observable. Further improvements
will consider the possibility to define pixel with higher/lower sensitivity for modeling a fixed
pattern noise (FPN).

5.2.6. ADC bank module

The ADC module is fired at the row rate, at every firing it performs a number conversions
equal to the image width in pixel multiplied by 4. The conversions are from a double precision
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Figure 5.10.: Electrons collected as function of the integration time and the illuminance.

float number to a 16 bit integer ranged from 0 to the maximum value reachable with nbitADC
bits (casting to integer variable shown in Equation 5.2). The ADC is a ramp comparator based
ADC, two control registers are used for setting the ADC gain, that is the ramp’s minimum
VRMPPMIN and maximum VRMPPMAX values. The conversion Equation 5.2 is shown below
where ADCCVF is the Conversion Factor calculated by means of both the nbitADC number
and the ramp minimum and maximum and VxR is the column input voltage for the red
photodiode. out_R is the output value for the red photodiode and it is calculated so that
0 Æ out_R Æ 2nbitADC≠1.

ADCCV F =
2nbitADC≠1

VRMPPMAX ≠ VRMPPMIN

out_R = (int)((V xR ≠ VRMPPMIN ) ú ADCCV F ) (5.2)

Figure 5.11 sums up all the data conversions taking place in the SystemC AMS TDF CIS
model. The four quadrants relate to the different steps. First, quadrant 1 shows the Bayer
filter adsorption (for the ideal color filter array (RinR,GinR,BinR) = (1, 0, 0)) from the 8-bit
input values (in Figure (255, g, b) as an example) to the illuminance value called L that hits the
photodiode. A fictitious K compression is then performed to reduce from an illuminance range
of [0,500K] to [10,510] in order not to have completely flat discharges (low-light condition) or
extremely high values (high-light condition). In quadrant 2 the discharge model is selected, the
choice is among the arctang-based (blue curves), the piece-wise linear (orange curves) and a
hyperbolic tangent-based model (not shown in quadrant 2). The curves are not represented
as a function of the time but of the light, the curves are iso-integration-time, hence for high
values of the integration times the saturation value is reached at lower values of illuminance.
The conversion from the sensing node SN to the column voltage Vx is then done by modeling
the read-out circuitry conversion factor CVF. Even if a very low value of electrons have been
collected in the well a minimum Vx (V xMIN ) is anyway present on the column voltage once the
read operation is enabled. The Vx voltage is then compared to the ramp shown in a stand-alone
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graph in figure 5.11, the ramp is generated by a Digital-to-Analog Converter (DAC). The
minimum and maximum ramp values are set by means of control registers. All these bounds
are parameterized since they largely differs depending on the target CIS.

255 

out_max_ideal_bf = 1960*(255*1+g*0+b*0)=500000 

IN [integer] 

OUT [integer] 

L [lux hitting photodiodes] 

Vx [volts] 

2^nbitadc -1 

SN [electrons well] SAT = 6225 

Vxmax = Vxmin + 0.678525 
ADCCVF=(2^nbitadc-1)/(VRMPPmax-VRMPPmin)  

OUT = (Vx-VRMPPmin)*ADCCVF

0  OUT  (2^nbitadc -1) 

510 

piece wise 

linear 

pure hiperbolic tangent arctan based model  

K
 c

o
m

p
re

s
s
io

n
 

L
*0

.0
0
1
+

1
0
lu

x
 

VRMPPmax(CIS)=1.5 

VRMPPmin(CIS) 

VRMPP(code=time) 

step_max 

VRMPPmin 

VRMPPmax 

RAMP 

offset value 

depending on the CISVxmin(Icol) 

10 

steps

increasing IT

Selectable discarge models:

or other models

V
x=

V
xm

in
 +

 (C
V
F*S

N
) 

C
V
F= 

10
9 

[u
V
/e

le
ct
ro

ns
]

In reality V
xm

ax is obtained 

       in black conditions

Figure 5.11.: Synoptic of the data processing within the SystemC AMS TDF CIS model.

Since the time step of the ADC TDF module is the row time a decimator is inserted after
the ADC in order to provide a sc_signal carrying a triple pointer to the 3-dimension array
which is updated at each frame time.

5.3. CIS modeling styles performance comparison

Table 5.1 evaluates the performances of the different CIS models developed, without taking into
account the tlm_isp and tlm_comparator simulation time overheads, that, however, are not
very influent. Since sizes are different, the simulation times for one frame have been relativized
to one pixel for comparison purpose. The simulation time for one pixel is calculated by dividing
the simulation time for one frame by the number of pixel. The reference for the speed-up ratio
is the VHDL-AMS model. A further simplification of the TDF model described in Figure 5.4
consists in encompassing the body of 4 TDF modules (controller, pixel, ADC, decimator) into
one TDF module, this leads to a change in the time steps of the model and only the frame_time
is used for firing all the TDF modules. This simplification leads to 2 seconds of simulation
time for the acquisition of a 2 megapixel frame (bottom line of Table 5.1). In table 5.1 the
fastest SystemC AMS TDF model obtained reaches a tremendous speed-up factor of about 5
orders of magnitude compared to the low-level SystemC ELN-TDF model and of 7 orders of
magnitude compared to the VHDL-AMS model, but the accuracy level is necessarily reduced.
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A low simulation time is crucial if the CIS model is intended to run with the SystemC TLM
description of the overall platform. We can observe that the ELN-TDF model is equivalent to
the VHDL-AMS model in terms of abstraction level but presents a speed-up factor of about
35 times. This demonstrates the suitability of SystemC AMS as a help to RTL level design.
The fastest SystemC AMS TDF model reaches a tremendous speed-up factor but the accuracy
level is reduced in the sense that the simulation of the fastest SystemC AMS TDF models
does not allow to trace voltage waveforms anymore for assisting the hardware/RTL designer.
However, this high-level model can take into account many aspects that would not be possible
to model using VHDL-AMS because of their computational weight. Such aspects are: the
Bayer filter adsorption, the lens and, obviously, the interaction with a SystemC or SystemC
TLM description of the digital hardware of the surrounding platform. These reasons make the
model suitable for embedded software development/debugging or ISP algorithm validation.

Table 5.1.: Simulation performances.

Model Size
Sim time

Time step
Sim Time Speed-up Speed-up

for 1 frame for 1 pixel ratio ratio

VHDL-

2x496 2h 30mn

Maximum

Ref = 9s 1AMS time step

reference = 5ns

ELN for

48x48 10mn

TDF

0.26s 1 x35photo diodes time step

only+TDF =0.5µs

TDF array

48x48 2mn 40s

TDF

69ms x3.7 x131of pixels time step

instantiated =0.5µs

TDF one

640x480 10s

50 TDF steps

32.6µs x7 949 x278 220pixel sweeping per pixel→

the array waveform

TDF one

1920x1080 7s

1 TDF step

3.4µs x77 142 x2.7e6pixel sweeping per pixel→

the array no waveforms

↓

1920x1080 2s

1 TDF step

0.96µs x270 000 x9.2e6Enhancement to per pixel→

one “controller” no waveforms

5.4. CIS model integration in different SystemC-based platforms

The SystemC AMS model of the video sensor is integrated in different SystemC-based platforms
for a demonstration of the concept and for industrial use, that is, a SystemC AMS/SystemC
(TLM) joint simulation allowing to simulate the interoperability between the analog and the
digital part.

Generally speaking, on the one hand, the analog part is controlled by control signals driven
by the digital part. The analog behavior must change according to the changes of the digital
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control signals. On the other hand, the analog part must send the relevant information to the
digital part. This can be done in different ways, typically, analog signals are sampled and these
samples are packaged in packets and sent to the digital part.

In the case of a video sensor platform, on the one hand the model of the sensor must be
able to react according to a large number of control inputs. Notably these can be: changes
of the integration time, changes to the auto-focus control signal, changes to column amplifier
digital and analog gains, changes to the frame rate etc. Therefore many analog aspects have to
be modeled in the SystemC AMS model. On the other hand the output of the sensor model is
coarsely (frame-by-frame) or finely (row-by-row) packaged and sent to the ISP. The analog and
digital parts can be modeled at different levels of details.

In the following sub-sections the interfacing will be done at different levels of abstraction
aiming different target platforms. In the case of the interfacing with the OSCI TLM-2.0 a
proof-of-concept platform is described in next section. Such a platform has been developed in
the frame of a collaborative project called Beyond-Design Refinement of Embedded Analogue
and Mixed-Signal Systems (Beyond-DREAMS) [Beyond-DREAMS 11]. Such a project is a
CATRENE MEDEA+ European project involving both industrial and academic partners. For
almost all TLM-based case-study platforms the sensor sends the entire frame as a transaction,
this makes the interfacing to the TLM straightforward with no particular complexities. A finer
interaction is modeled in the SystemC bit-cycle accurate platform achieved within the frame
of a collaborative project called Wireless systems And SystemC AMS Basic Infrastructure
(WASABI) [WASABI 10] of the French National Research Agency (ANR). Clearly, an accurate
modeling requires a complex model demanding a high simulation time. In order to validate
specific functionalities a solution is to reduce the complexity of the model by focusing on the
target functionality only, such as the auto-exposure.

5.5. Beyond-DREAMS OSCI SystemC TLM 2.0 platform

integration

Some works on the interfacing between SystemC AMS TDF and TLM 2.0 can be found in
the literature and have already been introduced in section 3.6, however each application often
requires different interfacing solutions.

5.5.1. SystemC TLM 2.0 proof-of-concept platform

This section deals with the structure of the SystemC TLM platform. Three TLM blocks
are identified (Figure 5.12): the sensor (tlm_sensor), the ISP (tlm_isp) and the comparator
(tlm_comparator). The SystemC AMS model of the CIS is wrapped by the tlm_sensor. The
tlm_isp performs the interpolation for recovering the input image and the tlm_comparator
performs the comparison between the synthesized input image and the output image.
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Figure 5.12.: SystemC TLM 2.0 platform: top view.

TLM Sensor

The SystemC AMS TDF chain (Figure 5.4) of the CIS model is represented by the light green
blocks of Figure 5.12; it is contained by the sensor_sc_wrapper module. The output is an
sc_signal (black arrowed line in Figure 5.12) driven by the TDF output converter port to the
discrete-event domain of the decimator module. The output sc_signal carries a triple pointer to
a 3-dimension array, the 3 dimensions allow to select the row, the column and the R-Gr-Gb or
B values. Each time the last block of the AMS TDF chain changes the pointer value, the “TDF
to SystemC” converter port makes synchronize the SystemC simulation time with the SystemC
AMS one. When this happens the output sc_signal triggers a sensitive SC_THREAD (black
dashed connection) that makes the inner 2-state-machine (cloud on top of Figure 5.12) initialize
a tlm_generic_payload containing a pointer to the image matrix and sends the transaction
to the tlm_isp by means of the TLM 2.0 blocking interface (delay argument not used) on the
output streaming socket (red connection named “streaming”). All the transactions of this
platform are done this way with the b_transport method. Meanwhile, once the IIB has built
the input image it notifies an sc_event (light blue curved connection) that is detected by the
SC_THREAD that sends the input synthesized image to the comparator. The comparator will
wait for the reception of the reconstructed image in order to perform the comparison.

TLM ISP

The tlm_isp is activated by the reception of the image issued by the sensor. The ISP performs
two main tasks: correction of the image and feedback the control. With respect to the correction
of the image, the first step consists on correcting the Bayer filter inequality of light wavelength
adsorption. In the real system this correction is done by applying coefficients stored in some
sensor-specific read-only register, whose values are issued by the optical characterization and
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written at the manufacturing stage. For simulation purposes, the parameters used for the
correction of the ISP are the inverse of the coefficients of the Bayer filter model, as shown in
top of Figure 5.13.

INTERPOLATION: 
R = R’00 

G = (GR’00+GB’00)/2 
B = B’00 

Before 

interpolation 

(n_bit) 

ISP 

output 

Sensor output 
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   B’00 = B00 * 1/ (RinB+GinB+BinB)  

Figure 5.13.: ISP correction and interpolation.

The second step is to retrieve a raw RGB image from a Bayer patterned image. This step is
called “demosaicing” in the literature and many complex algorithms can be found, the majority
of them are based on an interpolation [Ramanath 02]. In our case and the demosaicing is done
by means of a simple interpolation (bottom of Figure 5.13). It has been decided to keep the
interpolation simple for the demonstrator, but the final aim is the integration of the AMS
model with a state-of-the-art industrial ISP. With respect to the feedback of the control signals
the ISP performs an estimation of the light of the reconstructed image and decides whether the
integration time has to be updated or not (auto-exposure). The ISP sends the new values to the
tlm_sensor using a blocking transport through the “control feedback” transaction link of Figure
5.12. The tlm_sensor receives the new values and updates the integration time sc_signals,
which are read by the controller. The reconstructed image is then sent to the tlm_comparator
through the “reconstructed image” transaction link (Figure 5.12).

TLM Comparator

The comparator performs a pixel-by-pixel comparison following the formula and color legend on
bottom right of Figure 5.14. For each RGB triplets the Euclidean distance between the input
triplet and the output one is calculated and the corresponding pixel of the comparison image
is colored according to the legend on bottom right of Figure 5.14. A comparison technique is
needed in order to make visible a difference between input and output otherwise imperceptible
to the naked eye. This comparison equation is slightly different from the one presented in
[Cenni 11b], the Euclidean norm has been chosen in order not to penalize any color value, since
colors are considered as qualitative information instead of quantitative. A comparison of the
different techniques is shown in [Cenni 11c].



Industrial case study: CMOS video sensor 123

5.5.2. SystemC AMS/SystemC OSCI TLM 2.0 platform simulation results

Figure 5.14 shows the results of a simulation of a CIS of size 400 by 400 (200x200 R-Gr-Gb-B
quadruplets). The IIB synthesizes the input frames (instantaneous shots of the moving “f”
top-left sequence). The “f” shifts horizontally at every frame. The Bayer patterned image
output by the SystemC AMS sensor is initially darker because of a low initial integration time
value, the image is visibly affected by a strong vignetting (lens effect on image), and stuck-at
faulty pixels (top-center sequence). The tlm_isp interpolates (Figure 5.13) the images and
builds the top-right sequence of Figure 5.14 without correcting nor the faulty pixels nor the
vignetting. The tlm_isp estimates an under-exposure on the initial frames and sends a request
to the tlm_sensor for increasing the integration time. The tlm_comparator compares the
instantaneous shots at the CIS model input with the ERS-effect-affected output images and
builds the comparison images (bottom sequence). In the first images the error is higher since a
small surface is white colored, this is due to the fact that the first reconstructed images are
darker. The output images gradually become brighter therefore the error decreases (wider
white colored surface on the comparison images). An interesting observation is that the strong
presence of the vignetting makes the output image periphery darker, the ISP tries to compensate
by increasing the integration time, this results in an output image over-exposed in its center.
The electronic rolling shutter effect is slightly visible in the CIS output and ISP output image
sequences, it allows to see the outlined “f” as if it is leaning backward. The ERS effect is also
noticeable in the comparison images where the boarders of the “f” are affected by a stronger
error.

Such a SystemC AMS/SystemC OSCI TLM 2.0 platform has proved the interfaceability of
the SystemC AMS TDF with the OSCI TLM 2.0. The platform allows validating the concept
of a SystemC AMS/TLM assisted design of a simple overall image acquisition system. The
platform also constituted a delivery for the Beyond-DREAMS project and gave birth to the
[Cenni 11a] and [Cenni 11c] papers.

5.6. WASABI SystemC bit-cycle accurate platform integration

The integration of the SystemC AMS based CIS model within a SystemC bit-cycle accurate
level virtual platform has also been addressed. The modeling and simulation, at the component
level, of an heterogeneous system composed of Wireless Sensor Network nodes is here presented.
The system exhibits complex multi-discipline feedback loops that are likely to be found in many
state-of-the-art applications such as cyber-physical systems. A Precollision Mitigation Braking
System (PMBS) is used as a pragmatic case study to validate the whole approach.

The CIS model together with the other component models presented (60 GHz communication
channel, QPSK RF transceiver, digital microcontroller, simplified car kinetic engine) are written
in SystemC and SystemC AMS, and belong to five distinct yet highly interwoven disciplines:
newtonian mechanics, opto-electronics, analog RF, digital and embedded software.

The work aims at simulating the complex multi-discipline feedback loop of this automotive
application and the related model composability issues. Using the opto-electrical stimulus
and the received RF inter-vehicle data, a car is able to exploit its environmental data to
autonomously adjust its own velocity. This adjustment impacts the physical environment that
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Figure 5.14.: Simulation results of the SystemC AMS/TLM platform.

in turns modifies the RF communication conditions. Results show that this holistic first-order
virtual prototype can be advantageously used to jointly develop the final embedded software and
to refine any of its hardware component part. In particular, cyberphysical systems featuring a
tight combination/coordination between the system’s computational and the physical elements
exhibit by nature complex feedback loops that can yet hardly be captured in currently available
design environments, especially when it comes to integrate software in these loops.

The sub-models have been developed especially for the application (complete 60 GHz QPSK
baseband RF transmission scheme) or reused from previous designs (digital, embedded software
templated microkernel).

The presented heterogeneous system is a direct application of Inter-Vehicle Communication
(IVC) principles for road safety by dissemination of warning information [Luo 05, Lambert 10].
In the automotive industry, such a system is called a Precollision Mitigation Braking System
(PMBS) [Lambert 10].

Figure 5.15(a) depicts the frame of this application, the PMBS is modeled and simulated at
the component level and actually corresponds to a wireless sensor network where each node
represents a car i moving, at night, at velocity vi and acceleration ai on a flat rectilinear road,
as shown in Figure. This component-based modeling approach allows for the refinement at any
time of any of the system’s constituent parts. dij and vij respectively represent the distance
and relative velocity between car i and j. The vehicles are all equivalent and are not allowed to
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(a) (b)

Figure 5.15.: The modeled PMBS system, user’s view.

overtake each other. Each vehicle is equipped with two red tail lamps (turned on), a 320x200
pixels color video sensor at the front, and a 60 GHz RF transceiver for inter-vehicle propagation
of meaningful kinetic values for each car. Periodically, each car sends its kinetic information
and distance estimation to all other cars, allowing them to locally rebuild a quite accurate
representation of the traffic. The video sensor captures the two red light cones emitted by the
preceding car and generates a digital color bitmap image in a memory buffer. Figure 5.15(b)
shows video sensor images corresponding to the far (image on top) and near (image on bottom)
vehicles situations. The image buffer is stored in a 32-bit micro-controller memory that can be
accessed directly by the embedded software in order to compute an estimate of the distance
with the upstream vehicle. Considering several successive sensor frames, it is even possible to
calculate an estimate of the relative speed with the preceding car. To prevent several vehicles
to emit RF data at the same time, a simple Time-Division Multiple Access (TDMA) scheme is
used. A given car is allowed to send information if and only if it has gained the TDMA token.
A special RF token is sent periodically to resynchronize the RF receivers.

5.6.1. Modeling the whole system

The global PMBS system, detailed in Figure 5.16, has been completely modeled in SystemC
and SystemC AMS. The model is composed of 4 main parts and addresses 5 tightly coupled
disciplines, each characterized by its color in the figure: newtonian mechanics (Yellow), opto-
electronics (Red), analog RF (Green), digital electronics (Blue) and embedded software (Mauve).
The fading colors indicate the points of interest, the interdisciplinary interfaces. The top part
(Part 1, Physical environment) of the figure represents the physical environment, i.e. physical
reality. It is modeled in SystemC AMS TDF MoC, receives the real kinetic data from the kinetic
engine of each car, and is responsible for generating the image stimuli for each car, for gathering
the real kinetic data of all cars and for propagating these data to the RF communication channel.
The bottom part (Part 2, Communication channel) represents the 60 GHz communication
channel. The channel, also modeled in SystemC AMS TDF, receives as inputs the RF transmitter
outputs of each car as well as all the kinetic data (inter-vehicle distances and relative velocities)
that considerably impact the channel behavior. The communication channel is responsible
for generating the RF output data that is propagated to each car RF receiver. The middle
part (Part 3, Car wireless sensor nodes) of the figure corresponds to the Wireless Sensor
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Nodes representing the cars. A car is mainly characterized by its digital control that runs
the embedded software and reacts to an external video sensor event (a new video frame has
been received) emitted by the video sensor, to an external RF event (an RF message emitted
by another car has been received) emitted by the RF transceiver, and to an internal timer
interrupt event (used to compute the owner of the TDMA token). The right part (Part 4,
Online display) takes in charge the online (during simulation) display in a graphical window
of the real and approximated kinetic data. The display module is itself composed of two
subparts: a SystemC AMS compatible subpart capable of hardware and software introspection
(used to obtain the values of interest from any software or hardware simulator resource) and
a graphical subpart based on the portable Simple DirectMedia Layer (SDL) graphic library
that generates a vivid bitmapped representation of the simulation. Figure 5.16 clearly exhibits
the complex multi-discipline feedback loop. Using the opto-electrical stimulus (i.e. Reading
Video Sensor and calculating the interpixel distance) and the received RF data (i.e. Reading
RF transceiver receiver), a car is able to adjust its own velocity (i.e. Writing to kinetic engine).
This adjustment impacts the physical environment (i.e. Write to Environment) that in turns
modifies the RF communication conditions (i.e. Write to Communication channel). It is worth
noticing that the environment and RF parts are tightly connected through the kinetic data
and thus considered altogether from a simulation viewpoint. After elaboration of the whole
system model (just before the simulation starts), and by means of a configuration file, each
vehicle i is assigned its initial position on the road xi, velocity vi and acceleration ai. RF can
be activated or not, allowing many different simulation scenarios with open or closed feedback
loops. Details on the modeling of each component of the system can be found in [Lévêque 12],
next sub-section will show how the analog and digital parts are interfaced.

5.6.2. Modeling of the SystemC / SystemC AMS interfacing

The interfacing is done by means of TDF/DE converter ports which read/write from/to discrete
event SystemC signals. For sending the Bayer patterned image captured by the CIS model
to the SystemC model of a 32-bit MIPS32 processor the data are packed and sent according
to the VCI protocol used as a standard communication protocol in the development of the
SoCLib model database1. Figure 5.17 shows how the interfacing is achieved, the image from
the CIS model is retrieved in an sc_signal and the integration time control signals are sent
to the SystemC AMS TDF CIS model by means of sc_signals. Each components has a VCI
interfacing module implementing an FSM machine allowing to read/write on the interconnect
module. The interconnect module, in turn, handles the calls and dispatch them to the good
candidate, which is another VCI interfaced component. The functioning of FSM-based VCI
interface is controlled by a clock signal to which each VCI interface is connected. The sensor
module itself dialogues with its interface by means of sc_signals: the input image (issued by
the environment which loads the right images depending on the distance), the CIS control
signals (e.g., integration time) and the output image.

The presented application virtual prototype contains a embedded software, not so complex
for the current platform size (the main.c code is shown in Annex A.3). However the methodology

1SoCLib is an open platform for virtual prototyping of multi-processors system on chip (MP-SoC). The project
started as an ANR-founded project and it is now maintained at Lip6 (Laboratoire d’Informatique Paris 6).
The communication protocol used in the model library is the VCI (Virtual Component Interface) standard
sponsored by VSIA. In the SoCLib context APIs have been developed for supporting the VCI protocol.
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Figure 5.16.: The modeled PMBS system.
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Figure 5.17.: SystemC / SystemC AMS interfacing though VCI interconnects.

is proved to be efficient for an early validation of the application via early embedded software
development/debug possibilities.

Such a SystemC / SystemC AMS platform has been developed thanks to the partners of
the consortium of the French National Research Agency (ANR) Wireless systems And SystemC
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AMS Basic Infrastructure (WASABI) project [WASABI 10]. The author of this thesis, in
quality of the developer of the CIS model, has been actively working at the interfacing to the
SystemC cycle-bit accurate platform. This work allowed validating the complex multi-discipline
feedback loop of this automotive application and gave birth to the [Lévêque 12] paper.

5.7. STMicroelectronics CATSEYE SystemC TLM platform
integration

One industrial application where the SystemC AMS based modeling of the CIS has been proved
to be a promising methodology is an STMicroelectronics’ SoC for energy-saving purpose. This
SoC is mounted on Personal Computers (PCs) or TV screens exactly where the web-cam
normally is. The SoC embeds a small CIS aimed at face-detection and ambient-light sensing.
The CIS is a grey-level sensor and its size is of 600 by 200 pixels, therefore no Color Filter Array
(CFA) is present in the sensor. An ISP is present in the SoC and a first processing is done
with the purpose to de-noise the image and improve its quality for running the face detection
algorithm on a 32bit micro-processor. On bottom of the sensitive array a group of rows is
devoted to the other function of the SoC, that is the ambient light sensing. The aim of the
product is to be able to react by switching on/off the screen whether nobody is standing in front
of it (absence), or, in generic terms if nobody is watching it (closed eyes), further, other actions
will be taken depending on the level of ambient light sensed. Figure 5.18 shows the block that
composes the processing steps: for the overall captured image (flow on top) a calibration of the
dark signals is done, then the image is descrambled (for recomposing the entire image row after
row), an anti-vignetting processing is performed, then a gamma compression from 10 to 8 bits
and an image cropping. On the bottom of the image the rows read from the sensitive array are
used to evaluate the ambient light and used to perform some adjustment on the integration
time. The tasks allocated to the embedded firmware of the micro-processor are depicted by the
blue blocks, the face detection algorithms are implemented on it. The output images are not
intended to be retrieved from the SoC but some decisions have to be taken.

Figure 5.18.: Overview of the CATSEYE image processing and embedded firmware.
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Figure 5.19 shows the interfacing between the SystemC AMS CIS model and the SystemC-
TLM virtual platform. The clouds are methods of the class where they appear in. The white
TLM sockets are sockets related to the STMicroelectronics’ TAC_TLM protocol except for
the interrupt white socket that is related to the WIRE_TLM protocol. The vtiming module
provides three solutions in order to send an image stream to the following platform. On top left
the file_reader module allows to load predefined generated image files or images pre-acquired
from a previous run of the real sensor test chip. On bottom right the four white blocks together
with 2 clouds are used for connecting the SystemC-TLM virtual platform on the PC to the real
sensor test chip via PCI-express ports.

5.7.1. Digital to analog control

Three banks of registers are instantiated in the vtiming class (top right of Figure 5.19). Read
or write accesses to the registers of the banks of registers take place via TAC_TLM transactions
and different methods are triggered once read or/write operations occur, these are the so
called side effect methods. The sensor_tlm_wrapper module encompasses the SystemC AMS
CIS model (green blocks on the image) that, in turn, is contained by the sensor_sc_wrapper

module. The integration time is handled by the CIS by using two registers for the tuning, a
coarse tuning and a fine tuning. The vtiming_coarse/fine_integtime side effect methods are
configured for being triggered on a write access, the latter is ordered by the rest of the platform.
The two methods redirect to two other methods contained in the sensor_sc_wrapper module.
These two methods update the values of the sc_signals that carry the information of the last
modified values of the integration time. Changes to these signals will then make synchronizing
the SystemC AMS time with the SystemC one at the next firing of the TDF module. The
SystemC AMS CIS model will take into account the new integration time values from the next
image acquisition as it is really occur in the I2C (Inter-Integrated Circuit) connection when
accessing the CIS register banks in order to modify the parameters of the image acquisition.

5.7.2. Analog to digital information passing

The process compute() of the sensor_tlm_wrapper class is sensitive to the output sc_signal,
once the latter is updated (be aware that the content of the signal has to change in order for
it to trigger the method) a packet specific to the streaming protocol is prepared and sent in
two phases via the writer_port streaming socket to the vtiming::compute() process. First
the extension (additional information for specifying the conditions/parameters of the following
data) is sent then the compute() process blocks and wait for the receiver to acknowledge the
reception of the extension, subsequently the payload referring to the acquired image is sent
and the process blocks until the acknowledgement. The same procedure takes place for the
transaction across the idp_out streaming socket for delivering the image to the following ISP
blocks shown in Figure 5.18.

Such an integration has been done as a proof of the CIS model reusability. The CIS model
was not initially developed for fitting the specifications of the CIS employed in the CATSEYE
product. However, since the model is parameterizable its adaptation is fast and straightforward.
The STMicroelectronics Imaging is currently performing analysis and validations of the platform
itself.
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Figure 5.19.: SystemC AMS/ TLM interfacing inside the CATSEYE virtual platform.

5.8. ST-Ericsson SystemC TLM mobile platform integration

The ST-Ericsson application is a SystemC-TLM virtual platform for mobile applications,
typically high-performance smartphone and tablets combining a state of the art application
processor with a HSPA+ (High-Speed Packet Access) modem. The platform incorporates a
SMP (Symmetric Multi-Processing) dual-core technology. The platform is sketched in Figure
5.20, its high complexity justifies the effort demanded by the virtual prototyping in order to
early debug the embedded software and to enable the reuse of IPs. The analog parts have to
be virtually prototyped as well, and in these aspects locates the incoming need for a SystemC
AMS based modeling of sensors and actuators. In this application the sensor is much more
complex in the sense that it has bigger size, it is a color CIS, auto-focus capabilities etc. Not
to mention the fact that at least two image sensors are expected to be part of the platform
(rear located, bigger in size, up to 20MPix and the front-one for video-calls 5MPix from the
specifications).

In the specific, Figure 5.21 shows the interfacing between the SystemC AMS CIS model
and the SystemC-TLM virtual platform. The interfacing takes place roughly as in the previous
CATSEYE application. Some differences can be listed: some class names are changed, only one
register bank is now present. Additionally, only one side effect method named ams_side_effect

calls two inner methods for updating the integration time coarse and fine sc_signals. The
thunder-shaped arrows on the extreme left shows the parameters to be passed to the constructors.
The particularity in this application is that a high number of functions performed by a more
complex state-off-the-art ISP are directly integrated in the tac_smia_sensor::compute()

process. To mention some of them: image crop, pixel sub-sampling, mirroring, image scaling,
digital gain, bit compression etc. Additional information (called Intelligent Status Lines (ISL)
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Figure 5.20.: Overview of ST-Ericsson’s platform for mobile applications.

in Figure) are then added for tagging the pure image data with the settings of the image
acquisition (integration time values, analog gains etc.) that have been used for acquiring that
specific frame. The image is then sent according to the SMIA (Standard Mobile Imaging
Architecture) protocol for imaging devices.
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Figure 5.21.: SystemC AMS/TLM interfacing with ST-Ericsson’s virtual platform.
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Figure 5.22 shows the simulation results of the image acquisition chain of the ST-Ericsson’s
virtual platform. Image 1 is the input image built by the darky-box model and provided to the
SytemC-AMS CIS model. The image is captured by the CIS model by applying the lens shading
effect, the CFA adsorption, stuck-at hot spot pixels, photodiode discharge, analog-to-digital
conversion. The Bayer patterned output of the CIS model is Image 2, it is visibly affected by
vignetting and stuck-at black and white pixels. It should be noted that, for a matter of clarity,
Image 2 is a Bayer patterned image colored according to a grey-scale, while in Figures 5.8,
5.13 and 5.14 the pixels of the Bayer patterned images were colored according to the Bayer
pattern itself, i.e. R-Gr-Gb-B, this gave them a green aspect. The image is then sent to the
ISP with its different steps. Image 3 is the output of the de-noising stage, it applies statistical
calculations for correcting different known CIS noise sources such as Fixed Pattern Noises
(FPNs) (Photo-Response Non-Uniformity (PRNU), Dark-Signal Non-Uniformity (DSNU)).
White-colored hot pixels have visibly been corrected by this stage but black hot pixels are still
present. Image 4 is the output of the lens shading correction stage, the image is brighter than
Image 3 in its borders and corners. Image 5 is the output of the demosaicking stage, the image
is converted from a Bayer-patterned to an RGB image. Image 6 is the output of the white
balance stage, the overall green aspect of the previous image is reduced. Finally, Image 7 is the
output of the color gain stage, it consists of an improvement of both the color contrast and
rendering.

1" 2" 3"

4" 5"

6" 7"

Figure 5.22.: Results of the image processing from the acquisition (sensor input) through the ISP
processing.



Industrial case study: CMOS video sensor 133

The integration of the CIS model in this platform (together with the CATSEYE platform of
section 5.7) showed that no issues have been encountered when interfacing the SystemC AMS-
based model with the STMicroelectronics’ proprietary TLM protocols. ST-Ericsson is currently
validating the SystemC TLM-based virtual platform of their SoC for mobile application (Figure
5.20). First embedded software validations can already be done thanks to such virtual platform.

5.9. Conclusion and future works

We have demonstrated the suitability of SystemC AMS for image sensor modeling. Different
SystemC AMS MoCs were used for modeling different abstraction levels resulting in models
showing different accuracy levels. The performances of the respective models have been
compared. The fastest model of the CIS has been developed by means of the TDF MoC. The
interoperability between analog and mixed-signal components described using SystemC AMS
and their associated digital environment has been proved by integrating the model of a CMOS
image sensor in different digital virtual platforms modeled with SystemC and SystemC-TLM.
The low execution time of the SystemC AMS TDF model, in the same order of magnitude of the
SystemC TLM software prototype, allows performing validation and debug of the whole system
before the hardware availability. Further analog and mixed-signal modeling improvements will
concern with the optical system composed of the lens controlled by a voice coil motor (VCM)
driver for the auto focus capability. A further solution will be to supply the CIS model input
image by means of the rendering of a 3D scene in order to reproduce movie effects (camera or
subject in motion).

No blocking points have been reported concerning the interfacing between the AMS sensor
and the proprietary STMicroelectronics TLM protocols. The first user of the developed CIS
model is ST-Ericsson for their SoC for mobile application, as described in section 5.8 the
model has been successfully integrated and first validations are ongoing in the matter of the
Auto-Exposition (AE) feature. The next-step aim is to be able to validate the stability and
efficiency in terms of convergence speed of two other well known control loops, the Auto-Focus
(AF) and the Automatic White Balancing (AWB).

The validation of the SystemC AMS CIS model in comparison to a CIS test chip has not
been carried out because of two main reasons.

First, a complex inter-division framework, the work inside STMicroelectronics has been
done transversally with different divisions, the team that I have been integrating is aimed at
providing a centralized support for the behavioral modeling-based design flow of AMS devices,
formerly VHDL-AMS based and now moving upward at system level. In order to develop
a CIS model, I have been collaborating with the Imaging division that is in charge of what
concerns with the design and manufacturing of image sensing systems, among others. In order
to collect the model specifications I have been collaborating with the customer/user of the
SystemC-AMS based CIS model, that is the ST-Ericsson’s division in charge of the system level
design of the image acquisition & post-processing frontend of their SoC. Discussions have been
conduced for agreeing on the specifications of the model performances in terms of simulation
time and behaviors to be reproduced for validating the compliance to specific performances
under test. From a technical viewpoint I have been collaborating with the System Platform
Group, this group has a centralized competence on the digital-only SystemC-TLM-based virtual
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prototyping for system architecture exploration and early embedded software development.
The SystemC AMS CIS model has been developed and the interfacing to the SystemC-TLM
platform has been carried out by myself. A first validation of the integration has then been
done by the SystemC-TLM group, the latter acts as methodology provider and support to the
final user/customer ST-Ericsson.

Second, a comparison of the model behavior with a test board for the image sensor chip
demands to set up exactly the same benchmark environmental conditions. Such an environment
setup implies both the configuration of the control registers (fast for the model but time-
consuming for the real CIS) and the calibration of the dark box light conditions for matching
the model stimuli.

Despite this, the model has been built by means of the measure results hence a very high
confidence is put on it and users are satisfied with the trade-off between accuracy and simulation
speed. Our work has demonstrated the applicability at the industrial scale of an AMS system
design methodology based on a SystemC AMS virtual prototyping.



Chapter 6.

Conclusions and perspectives

Conclusions
In my thesis I have been working on the modeling of heterogeneous multiphysics and mixed-signal
systems at a behavioral level.

Such a behavioral modeling of AMS devices is intended to provide many enhancements
to the design flow of a complex System on Chip containing sensors and actuators, hence a
significant analog part.

By composing the behavioral models of single IPs into a virtual platform of the overall
system within a unified C++-based framework it is possible to perform a full verification
of the system. More precisely many benefits are provided such as architecture exploration,
performance estimation, validation of reused parts, verification of the interfaces between RF,
analog and digital parts, early verification of the embedded software development together with
its eventual debugging, verification of the interoperability with other systems, and assessment
of the impact of the future working environment and the silicon technologies used to realize the
system.

In addition, validation through virtual prototypes will test the fit of not-yet-available IPs
inside the target System on Chip, this would obviate the dependency of the design kick-off
date on the availability of the IP in order to anticipate the design process of future products
therefore, why not, anticipate technology advancements.

With respect to the modeling techniques, in this thesis three flows for building models and
for reducing the order of analytical models of heterogeneous mixed-signal are presented.

First, a behavioral modeling technique from schematic netlist entry description, has been
described and automatized from extracting desired information under the guise of state space
equations.

Second, techniques based on analytical fittings of frequency response are explored for either
reducing the model order or for identifying analitycal/simulateable models starting from analysis
carried out with other application-specific CAD tools.

Finally, system identification techniques are studied for the extraction of black-box models
from empirically obtained data, either from simulations of accurate models or from measure
data. A proof-of-concept library implemented using SystemC AMS shows the applicability of
the methodology.
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The behavioral modeling techniques have been exploited for the design and for the test/con-
trol in two major case studies. First, the design of the frontend of a Surface Acoustic Wave-based
chemical sensor exploits the approximation-based modeling techniques for performing simula-
tions down to the layout view. Second, the system identification-based modeling techniques
are applied to a Low Noise Amplifier-based (LNA) case study for an automated control of the
LNA itself through a performance estimation from the parameters of the model. This feedback
control loop is aimed at the power consumption minimization of an RF transceiver.

Although the tools developed for behavioral model extraction are mostly based on the AMS
extension of the SystemC kernel, the methodology can be applied to other Analog Hardware
Description Languages (AHDL) such as Verilog-A and VHDL-AMS.

Subsequently, the industrial nature of the Ph.D. led to concentrate the modeling efforts
on a CMOS image sensor (CIS) case-study. The image sensor model is abstracted at different
levels using different SystemC AMS Models of Computation showing impressive simulation
time performances.

The integration of such a SystemC AMS-based CIS model into SystemC-based image
acquisition virtual platforms has been done for different case-studies. First, the integration
into a SystemC TLM 2.0 proof-of-concept platform has been shown. Second, the SystemC
AMS CIS model has been simulated inside a SystemC-based bit-cycle accurate model of WSN
nodes for an automotive pre-collision mitigation application. Subsequently, the model has been
integrated in two different industrial applications. In both cases the analog/digital interfacing
between the SystemC AMS MoCs and the STMicroelectronics’ proprietary SystemC-TLM
protocols has been validated.

ST-Ericsson is currently performing validations of the TLM virtual platform including the
CIS model. Both the analog and digital part are described using the SystemC framework,
respectively AMS and TLM. The SystemC AMS based design and verification methodology is
now being adopted by ST-Ericsson in the case of an AMS SoC for mobile applications. The
applicability of the methodology to the industrial design flow is proved and will enable the
early embedded software development and debug for AMS SoCs.

Considerations and perspectives
The birth of analog hardware description languages (VHDL-AMS and Verilog-AMS) has enabled
the validation of AMS/digital systems with small quantities of embedded SW. Driven by the
ever-growing complexity of Systems on Chip, modeling tools/languages are requested to abstract
the view at a higher system-level.

For the digital side the SystemC framework is covering this need at system level with
SystemC-TLM. The AMS extensions to SystemC are now offering the generic high-level
modeling capabilities for covering such needs concerning to the AMS parts. Further models of
computation can always be plugged on the SystemC architecture but a standardized interface
definition for plugging other models of computation must be provided.

The team leader in charge of the SystemC-TLM-based virtual prototyping at ST-Ericsson
once stated what follows: “The software development/debug normally starts once hardware
prototypes are available and only 2 months are allocated for the SW debug before the product
hits the market. The TLM-based methodology makes available virtual prototypes of the
platform about 9 months before hardware prototypes. These virtual prototypes are suitable for
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developing and debugging the embedded software. Such a development/debug can therefore
start before the availability of the hardware prototype. This ensures a higher software reliability,
hence a lower error proneness, and up to 2 months of time-to-market gain in the optimistic
ideal case” (see Figure 6.1).

time 

[months]T0 T0+2T0-9

virtual 

prototype

HW

prototype sell

2 months for 

SW dev/debug

9 more months for 

SW dev/debug

Figure 6.1.: Embedded software development/debug anticipation for the design of AMS SoCs.

A fully automated design flow of AMS systems from specifications to architecture exploration
via system level simulations, to RTL synthesis down to the layout place and route is still
quite a faraway achievement; but a system validation through an intertwined simulation of
AMS/RF/Digital HW and SW on a unified C++ environment is now becoming a reality.

In order to enhance the IP reuse for speeding up the design phase the concept of the model
reuse is not sufficient. The packaging aspect is being covered by the IP-XACT IEEE 1685-2009
standard developed by the Accellera Systems Initiative consortium for digital IPs. With
respect to the AMS side, the partners of the European CATRENE MEDEA+ project called
Beyond-Design Refinement of Embedded Analogue and Mixed-signal Systems (Beyond-DREAMS)
[Beyond-DREAMS 11] have submitted a proposal for AMS extensions to the IP-XACT board
in order to handle specifications for analog ports when an IP has to be packaged.

As a continuation of the Beyond-DREAMS European project another European project
called Heterogeneous-INCEPTION is starting. This project will aim at enhancing the capabilities
of the SystemC AMS extensions for modeling multi-sensors/actuators platforms and for power
consumption optimization. From the technical viewpoint it is planned by the SystemC AMS
community to add support for Finite Element Analysis MoCs together with non-linear extensions,
dynamic TDF time step and bond-graph description entry capabilities. The versatility of
the SystemC framework paves the way to future applications and related research fields on
heterogeneity.
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Appendix A.

Technical Annex

A.1. SytemC TDF based system identification

Listing A.1: SystemC-AMS TDF ARX model class
1 /úúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúú

2 ú Copyright(c) 2012 TIMA Laboratory ú

3 ú Author: Fabio Cenni ú

4 úúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúú/
5 #ifndef ARX_01_H_
6 #define ARX_01_H_
7
8 #include <sstream>
9 #include <vector>

10 #include <iterator>
11 #include "ap.h"
12 #include "matinv.h"
13
14 template <class param_type, class data_type>
15 SCA_TDF_MODULE(ARX)
16 {
17 sca_tdf::sca_in <data_type>ú in;
18 sca_tdf::sca_out <data_type>ú out;
19
20 private:
21 double k;
22 int nb_in;
23 int nb_out;
24 unsigned int iteration ;
25 std :: vector <data_type> input_buffer;
26 std :: vector <data_type> output_buffer;
27 data_type accum;
28
29 //std :: vector <param_type> P;
30 std :: vector< std::vector<data_type> > u;
31 std :: vector< std::vector<data_type> > y;
32
33 int na_min, nb_min;
34 int na_max, nb_max;
35 int nk_max;
36
37 int na_opt, nb_opt, nk_opt;
38 std :: vector<param_type> Popt;
39
40 template <class T>
41 bool from_string( T& t, const std::string& s, std:: ios_base& (úf)(std:: ios_base&))
42 {
43 std :: istringstream iss (s) ;
44 return !(iss >> f >> t).fail() ;
45 }
46
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47 void load_waveforms(std::string _filename)
48 {
49 std :: vector <data_type> u_vec;
50 std :: vector <data_type> y_vec;
51 std :: ifstream in_file (_filename.c_str());
52 std :: string line ;
53 int linenum = 0;
54
55 //For each line of the csv file
56 while (getline ( in_file , line ))
57 {
58 std :: istringstream linestream( line ) ;
59 std :: string item;
60 int itemnum = 0;
61
62 //For each field of a line
63 while (getline (linestream, item, ’ , ’ ))
64 {
65 // From string to data_type conversion: item to data
66 data_type data;
67 if (this ≠> from_string<data_type>(data, item, std::dec))
68 {
69 //std :: cout << data << std::endl;
70 }
71 else

72 std :: cout << "from_string␣failed" << std::endl;
73
74 // Storing of input and output waveforms into u(nb_input) and y(nb_output)
75 if (itemnum < nb_in)
76 {
77 u_vec.push_back(data);
78 }
79 else

80 {
81 y_vec.push_back(data);
82 }
83 itemnum++;
84 }
85 linenum++;
86 }
87
88 std :: vector<data_type> temp;
89 for(int j=0; j<nb_in ;j++)
90 {
91 for(unsigned int i=0; i<(u_vec.size()/nb_in); i+=nb_in)
92 {
93 temp.push_back(u_vec.operator [](i+j));
94 }
95 u.push_back(temp);
96 }
97
98 temp.erase(temp.begin(), temp.end());
99 for(int j=0; j<nb_out ;j++)

100 {
101 for(unsigned int i=0; i<(y_vec.size()/nb_out); i+=nb_out)
102 {
103 temp.push_back(y_vec.operator [](i+j));
104 }
105 y.push_back(temp);
106 }
107
108 #ifdef PLOT
109 cout << u[0].size() << endl;
110 cout << y[0].size() << endl;
111 while(!temp.empty())
112 {
113 cout << temp.back() << endl;
114 temp.pop_back();
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115 }
116 #endif

117 }
118
119 void init_attributes()
120 {
121 // Init ports
122 in = new sca_tdf::sca_in<data_type>[nb_in];
123 out = new sca_tdf::sca_out<data_type>[nb_out];
124 }
125
126 void structure_quest()
127 {
128 double Jopt = 1e9;
129 double Jabs_opt;
130
131 for(int na = na_min; na <= na_max; na++) //na_max
132 {
133 for(int nb = nb_min; nb <= nb_max; nb++) //nb_max
134 {
135 for (int nk = 1; nk <= nk_max; nk++) //nk_max
136 {
137 //std :: vector<param_type> P(na+nb);
138 std :: vector<param_type> P;
139 double Jabs;
140 double J;
141
142 //CORE OF THE QUEST
143 this ≠> arx(P, Jabs, na, nb, nk);
144
145
146 #ifdef PLOT
147 cout << "P" << endl;
148 for(unsigned int i=0; i<P.size();i++)
149 cout<< P[i] << endl;
150 cout << "Jabs␣=␣" << Jabs << endl;
151 #endif

152
153 J = kúJabs + (1≠k)ú(na+nb);
154
155 if (J < Jopt)
156 {
157 Jopt = J;
158 Jabs_opt = Jabs;
159 na_opt = na;
160 nb_opt = nb;
161 nk_opt = nk;
162 Popt = P;
163 }
164 }
165 }
166 }
167
168 #ifdef PLOT_BEST
169 cout << "≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠" << endl;
170 cout << "Popt" << endl;
171 for(unsigned int i=0; i<Popt.size();i++)
172 cout<< Popt[i] << endl;
173 cout << "Jabs_opt␣" << Jabs_opt << endl;
174 cout << "Jopt␣" << Jopt << endl;
175 cout << "na_opt␣" << na_opt << endl;
176 cout << "nb_opt␣" << nb_opt << endl;
177 cout << "nk_opt␣" << nk_opt << endl;
178 #endif

179
180 }
181
182 void arx(
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183 std :: vector<param_type>& P,
184 double& Jabs,
185 int na, int nb, int nk
186 )
187 {
188 //Init P
189 //P.erase(P.begin(), P.end());
190 //for ( int i=0; i<(na+nb); i++)
191 // P.push_back(0);
192
193 //Init variables needed for the matrix construction
194 int t = u[0]. size () ;
195 int rownum = t ≠ std::max(na, nb+nk≠1);
196 std :: vector<data_type> temp1;
197 std :: vector<data_type> temp2;
198 typename std::vector<data_type>::iterator it;
199 std :: vector< std::vector<data_type> > X;
200 std :: vector<data_type> Y;
201
202 //Matrix X construction
203 for (int row=1; row<=rownum; row++) //rownum
204 {
205 temp1.erase(temp1.begin(), temp1.end());
206 temp2.erase(temp2.begin(), temp2.end());
207
208 it = y[0].begin();
209 temp1.insert(temp1.begin(), it+t≠na≠1≠(row≠1), it+t≠1≠(row≠1)); // temp1 = y((t≠na≠(row≠1)):(t≠1≠(

row≠1)))’; MATLAB CODE
210 //Swap elements
211 for(unsigned int i=0; i<temp1.size(); i++)
212 {
213 temp1.insert(temp1.begin()+i, temp1.back());
214 temp1.pop_back();
215 }
216
217 it = u[0].begin();
218 temp2.insert(temp2.begin(), it+t≠nk≠nb≠(row≠1), it+t≠nk≠(row≠1)); // temp2 = u((t≠nk≠nb+1≠(row≠1))

:(t≠nk≠(row≠1)))’; MATLAB CODE
219 //Swap elements
220 for(unsigned int i=0; i<temp2.size(); i++)
221 {
222 temp2.insert(temp2.begin()+i, temp2.back());
223 temp2.pop_back();
224 }
225
226 temp1.insert(temp1.end(), temp2.begin(), temp2.end());
227
228 X.push_back(temp1);
229 }
230
231 //Construction of the Y vector of real output, for the solving of the equation system
232 it = y[0].begin();
233 Y.insert(Y.begin(), it+t≠rownum, it+t); // Y=y((t≠rownum+1):t); MATLAB CODE
234 //Swap elements
235 for(unsigned int i=0; i<Y.size(); i++)
236 {
237 Y.insert(Y.begin()+i, Y.back());
238 Y.pop_back();
239 }
240
241 //convert Y,X,P to Y_,X_,P_ using "alglib" libraries
242 ap::template_1d_array<data_type,true> Y_;
243 Y_.setlength(Y.size()) ;
244 ap::template_1d_array<data_type,true> P_;
245 P_.setlength(na+nb);
246 ap::template_2d_array<data_type,true> X_;
247 X_.setlength(Y.size(), na+nb);
248 ap::template_2d_array<data_type,true> transpX_;
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249 transpX_.setlength(na+nb, Y.size());
250
251 // Init Y_
252 for(unsigned int i=0; i<Y.size(); i++)
253 {
254 Y_(i) = Y[i];
255 }
256
257 #ifdef PLOT
258 cout << "Y_" << endl;
259 for(unsigned int i=0; i<Y.size(); i++)
260 cout << Y_(i) << endl;
261 #endif

262
263 // Init P_
264 //for(unsigned int i=0; i<na+nb; i++)
265 //{
266 // P_(i) = P[i];
267 //}
268
269 // Init X_ and transpX_
270 for(unsigned int r=0; r<Y.size(); r++)
271 {
272 for(int c=0; c<na+nb; c++)
273 {
274 X_(r,c) = X[r][c ];
275 transpX_(c,r) = X[r][c ];
276 }
277 }
278
279 // LEAST SQUARES LINEAR SYSTEM SOLVING Y=XúP ≠> P=?
280 // pseudo_inverse = inv(X’úX) ú X’;
281
282
283 // temp=X’úX
284 //ap::template_2d_array<data_type,true> temp_;
285 ap::real_2d_array temp_;
286 temp_.setlength(na+nb, na+nb);
287 for(int i=0; i<na+nb; i++)
288 {
289 for(int j=0; j<na+nb; j++)
290 {
291 data_type res = 0;
292 for(unsigned int k=0; k<Y.size(); k++)
293 res += transpX_(i,k) ú X_(k,j);
294 temp_(i,j) = res;
295 }
296 }
297
298 // inv(temp)=inv(X’úX)
299 int info ;
300 matinvreport rep;
301 rmatrixinverse(temp_, na+nb, info, rep);
302
303 // pseudoinverse = tempúX’ = inv(X’úX)úX’
304 ap::real_2d_array pseudo_inv_;
305 pseudo_inv_.setlength(na+nb, Y.size());
306 for(int i=0; i<na+nb; i++)
307 {
308 for(unsigned int j=0; j<Y.size(); j++)
309 {
310 data_type res = 0;
311 for(int k=0; k<na+nb; k++)
312 res += temp_(i,k) ú transpX_(k,j);
313 pseudo_inv_(i,j) = res;
314 }
315 }
316
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317 #ifdef PLOT
318 cout << "pseudo_inv_" << endl;
319 for(unsigned int i=0; i<na+nb; i++)
320 {
321 for(unsigned int j=0; j<Y.size(); j++)
322 cout << pseudo_inv_(i,j) <<"␣";
323 cout << endl;
324 }
325 #endif

326
327 // P = pseudo_inverse ú Y;
328 for(int i=0; i<na+nb; i++)
329 {
330 data_type res = 0;
331 for(unsigned int k=0; k<Y.size(); k++)
332 res += pseudo_inv_(i,k) ú Y_(k);
333 P_(i) = res;
334 P.push_back(res);
335 }
336
337 #ifdef PLOT
338 cout << "P_" << endl;
339 for(unsigned int i=0; i<na+nb; i++)
340 cout << P_(i) << endl;
341 #endif

342
343 // h = X ú pseudo_inverse;
344 ap::real_2d_array h_;
345 h_.setlength(Y.size() , Y.size()) ;
346 for(unsigned int i=0; i<Y.size(); i++)
347 {
348 for(unsigned int j=0; j<Y.size(); j++)
349 {
350 data_type res = 0;
351 for(int k=0; k<na+nb; k++)
352 res += X_(i,k) ú pseudo_inv_(k,j);
353 h_(i,j) = res;
354 }
355 }
356
357 #ifdef PLOT
358 cout << "h_" << endl;
359 for(unsigned int i=0; i<Y.size(); i++)
360 {
361 for(unsigned int j=0; j<Y.size(); j++)
362 cout << h_(i,j) <<"␣";
363 cout << endl;
364 }
365 #endif

366
367 // Jabs = e’úe = Y’úY ≠ Y’úhúY;
368 //1// temp1= h ú Y
369 ap::real_1d_array temp1_;
370 temp1_.setlength(Y.size());
371 for(unsigned int i=0; i<Y.size(); i++)
372 {
373 data_type res = 0;
374 for(unsigned int k=0; k<Y.size(); k++)
375 res += h_(i,k) ú Y_(k);
376 temp1_(i) = res;
377 }
378
379 #ifdef PLOT
380 cout << "temp1_" << endl;
381 for(unsigned int i=0; i<Y.size(); i++)
382 cout << temp1_(i) << endl;
383 #endif

384
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385 //2// Jabs = Y’úY ≠ Y’útemp1_;
386 double res = 0;
387 for(unsigned int i=0; i<Y.size(); i++)
388 res += (Y_(i)úY_(i)) ≠ (Y_(i)útemp1_(i));
389 Jabs = res;
390 }
391
392 void build_u_y_without_input_file()
393 {
394 std :: vector<data_type> temp_u0;
395 std :: vector<data_type> temp_y0;
396
397 temp_u0.push_back(6.41);
398 temp_u0.push_back(3.41);
399 for(int i=0;i<9;i++)
400 temp_u0.push_back(6.41);
401 for(int i=0;i<10;i++)
402 temp_u0.push_back(3.41);
403 temp_u0.push_back(6.41);
404 temp_u0.push_back(3.41);
405 temp_u0.push_back(3.41);
406 for(int i=0;i<5;i++)
407 temp_u0.push_back(6.41);
408 temp_u0.push_back(3.41);
409
410 u.push_back(temp_u0);
411
412 temp_y0.push_back(4.7661);
413 temp_y0.push_back(4.7637);
414 temp_y0.push_back(4.8394);
415 temp_y0.push_back(5.003);
416 temp_y0.push_back(5.0176);
417 temp_y0.push_back(5.0567);
418 temp_y0.push_back(5.1544);
419 temp_y0.push_back(5.3619);
420 temp_y0.push_back(5.4254);
421 temp_y0.push_back(5.5695);
422 temp_y0.push_back(5.6818);
423 temp_y0.push_back(5.7429);
424 temp_y0.push_back(5.8039);
425 temp_y0.push_back(5.9187);
426 temp_y0.push_back(5.821);
427 temp_y0.push_back(5.4474);
428 temp_y0.push_back(5.0616);
429 temp_y0.push_back(4.6293);
430 temp_y0.push_back(4.2679);
431 temp_y0.push_back(4.0115);
432 temp_y0.push_back(3.8503);
433 temp_y0.push_back(3.7112);
434 temp_y0.push_back(3.5695);
435 temp_y0.push_back(3.5182);
436 temp_y0.push_back(3.6525);
437 temp_y0.push_back(3.8186);
438 temp_y0.push_back(3.8626);
439 temp_y0.push_back(4.0115);
440 temp_y0.push_back(4.3534);
441 temp_y0.push_back(4.705);
442
443 y.push_back(temp_y0);
444 }
445
446 void construction(std:: string _filename)
447 {
448 #ifdef ARRAY_OF_30_VALUES_4_DBG_ECLIPSE
449 this ≠> build_u_y_without_input_file();
450 #else

451 this ≠> load_waveforms(_filename);
452 #endif
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453
454 this ≠> init_attributes();
455 this ≠> structure_quest();
456
457 for(int i=0; i<(nb_opt + nk_opt); i++)
458 {
459 input_buffer.push_back(0);
460 }
461
462 for(int i=0; i<(na_opt); i++)
463 {
464 output_buffer.push_back(0);
465 }
466 }
467
468 public:
469
470 ARX(sc_core::sc_module_name,
471 std :: string _filename,
472 double k,
473 int _nb_in, int _nb_out
474 ) : k(k), nb_in(_nb_in), nb_out(_nb_out), na_min(1), nb_min(1), na_max(10), nb_max(10), nk_max(10)
475 {
476 this ≠> construction(_filename);
477 }
478
479 ARX(sc_core::sc_module_name,
480 std :: string _filename,
481 double k,
482 int _nb_in, int _nb_out,
483 int _na_max, int _nb_max, int _nk_max
484 ) : k(k), nb_in(_nb_in), nb_out(_nb_out), na_min(1), nb_min(1), na_max(_na_max), nb_max(_nb_max),

nk_max(_nk_max)
485 {
486 this ≠> construction(_filename);
487 }
488
489 ARX(sc_core::sc_module_name,
490 std :: string _filename,
491 double k,
492 int _nb_in, int _nb_out,
493 int _na_min, int _na_max,
494 int _nb_min, int _nb_max,
495 int _nk_max
496 ) : k(k), nb_in(_nb_in), nb_out(_nb_out), na_min(_na_min), nb_min(_nb_min), na_max(_na_max),

nb_max(_nb_max), nk_max(_nk_max)
497 {
498 this ≠> construction(_filename);
499 }
500
501 // In case that P is provided at the instantiation , together with na,nb,nk
502 ARX(sc_core::sc_module_name,
503 int _nb_in, int _nb_out,
504 std :: vector<param_type>& P,
505 int _na,
506 int _nb,
507 int _nk
508 ) : nb_in(_nb_in), nb_out(_nb_out), na_opt(_na), nb_opt(_nb), nk_opt(_nk), Popt(P)
509 {
510 this ≠> init_attributes();
511 for(int i=0; i<(nb_opt + nk_opt); i++)
512 {
513 input_buffer.push_back(0);
514 }
515
516 for(int i=0; i<(na_opt); i++)
517 {
518 output_buffer.push_back(0);
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519 }
520 }
521
522 // In case that P is provided in two parts: Pa, Pb
523 ARX(sc_core::sc_module_name,
524 int _nb_in, int _nb_out,
525 std :: vector<param_type>& Pa,
526 std :: vector<param_type>& Pb,
527 int _nk
528 ) : nb_in(_nb_in), nb_out(_nb_out), na_opt(Pa.size()), nb_opt(Pb.size()), nk_opt(_nk)
529 {
530 //Popt building from Pa,Pb
531 Popt.insert(Popt.begin(), Pa.begin(), Pa.end());
532 Popt.insert(Popt.end(), Pb.begin(), Pb.end());
533
534 this ≠> init_attributes();
535 for(int i=0; i<(nb_opt + nk_opt); i++)
536 {
537 input_buffer.push_back(0);
538 }
539
540 for(int i=0; i<(na_opt); i++)
541 {
542 output_buffer.push_back(0);
543 }
544 }
545
546
547 void processing()
548 {
549 accum = 0;
550
551 #ifdef PLOT
552 cout << "input_buffer␣"<< endl;
553 for(unsigned int i=0; i<input_buffer.size();i++)
554 cout<< input_buffer[i] << endl;
555
556 cout << "output_buffer␣"<< endl;
557 for(unsigned int i=0; i<output_buffer.size();i++)
558 cout<< output_buffer[i] << endl;
559 #endif
560
561 for(int i=0; i<nb_opt; i++)
562 {
563 accum += input_buffer[nk_opt≠1+i] ú Popt[na_opt + i];
564 }
565 for(int i=0; i<na_opt; i++)
566 accum += output_buffer[i] ú Popt[i ];
567
568 out≠>write(accum);
569
570 output_buffer.insert(output_buffer.begin(), accum);
571 output_buffer.pop_back();
572
573 input_buffer. insert (input_buffer.begin(), in≠>read());
574 input_buffer.pop_back();
575 }
576
577 };
578 #endif /úARX_01_H_ú/

Listing A.2: ARX test bench main file
1 /úúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúú

2 ú Copyright(c) 2012 TIMA Laboratory ú

3 ú Author: Fabio Cenni ú

4 úúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúú/
5 #include "systemc≠ams.h"
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6
7 #define PLOT_BEST
8 //#define PLOT
9 //#define ARRAY_OF_30_VALUES_4_DBG_ECLIPSE

10
11 #include "golden_model.h"
12 #include "arx_01.h"
13 #include "sub.h"
14
15 typedef double data_type;
16 typedef float param_type;
17
18 int sc_main(int argc,charú argv[])
19 {
20 //nb_in>1 and nb_out>1 handled by the waveform loader but not any further
21 int nb_in = 1;
22 int nb_out = 1;
23 double k = 0.99; // factor for considering the complexity of the system (na+nb)
24 cout << "k=" << k << endl;
25
26 /ú

27 std :: vector<param_type> Popt;
28 Popt.push_back(0.965887);
29 Popt.push_back(≠0.0321963);
30 Popt.push_back(≠0.0254143);
31 Popt.push_back(≠0.11724);
32 Popt.push_back(0.0527693);
33 Popt.push_back(0.00608647);
34 Popt.push_back(0.0641913);
35 Popt.push_back(0.0617096);
36 Popt.push_back(0.0208348);
37 instance = new ARX < param_type, data_type> ("instance", nb_in, nb_out, Popt,5,4,2);
38 ú/
39
40 ARX<param_type, data_type>ú instance;
41 instance = new ARX < param_type, data_type> ("instance", "waveform_1_1_1000.csv", k, nb_in, nb_out, /ú,5ú/

5, /ú,5ú/ 5, 5);
42
43 /ú il codice generera un "UNKNOWN EXCEPTION ERROR" se :
44 if ((u [0]. size () ≠ std::max(na_max, nb_max + nk_max ≠ 1)) < 0)
45 cout << "ERROR: not enough input values to calculate the Least Squares equation system for na,nb,nk up to

namax,nbmax,nkmax" << endl;ú/
46
47 /ú//Custom source instantiation
48 CUSTOM_SRC<data_type>ú source;
49 source = new CUSTOM_SRC<data_type>("custom_src", nb_in);ú/
50
51 /ú//Golden source instantiation, values gathered from the csv≠file lecture
52 GOLDEN_SRC<data_type>ú source;
53 source = new GOLDEN_SRC<data_type>("golden_src", 1, "waveform_1_1_1000.csv");ú/
54
55 //Golden model instantiation
56 GOLDEN_MODEL<data_type>ú g_model;
57 g_model = new GOLDEN_MODEL<data_type>("golden_model", "waveform_1_1_1000.csv");
58
59 //Substractor instantiation
60 SUB<data_type>ú sub;
61 sub = new SUB<data_type>("sub");
62
63 /ú// Automated Bonding
64 sca_tdf::sca_signal<data_type>ú in;
65 sca_tdf::sca_signal<data_type>ú out;
66 in = new sca_tdf::sca_signal<data_type>[nb_in];
67 out = new sca_tdf::sca_signal<data_type>[nb_out];
68
69 for( int i=0; i<nb_in; i++)
70 {
71 source≠>out[i](in[ i ]) ;
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72 instance≠>in[i](in [ i ]) ;
73 }
74
75 for( int i=0; i<nb_out; i++)
76 {
77 instance≠>out[i](out[i ]) ;
78 }ú/
79
80 // Manual Bonding
81 sca_tdf::sca_signal<data_type> golden_in;
82 sca_tdf::sca_signal<data_type> model_out;
83 sca_tdf::sca_signal<data_type> golden_out;
84 sca_tdf::sca_signal<data_type> error;
85
86 g_model≠>golden_in(golden_in);
87 g_model≠>golden_out(golden_out);
88
89 instance≠>in[0](golden_in);
90 instance≠>out[0](model_out);
91
92 sub≠>in1(model_out);
93 sub≠>in2(golden_out);
94 sub≠>out(error);
95
96 sca_util :: sca_trace_fileú atf2 = sca_util::sca_create_tabular_trace_file("ams_trace.dat");
97 sca_util :: sca_trace(atf2, golden_in ,"in") ;
98 sca_util :: sca_trace(atf2, model_out ,"model_out");
99 sca_util :: sca_trace(atf2, golden_out ,"golden_out");

100 sca_util :: sca_trace(atf2, error , "error") ;
101
102 cout << "≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠≠" << endl;
103 cout << "START␣SIMULATION" << endl;
104 sc_core::sc_start(1, sc_core::SC_MS);
105 cout << "STOP␣SIMULATION" << endl;
106
107 return 0;
108 }

A.2. SystemC AMS extraction of a Laplace transfer function-based
fitted model

Listing A.3: Code of the Matlab script generator from a fitted Matlab rational object
1 %úúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúú

2 %ú Copyright(c) 2012 TIMA Laboratory ú

3 %ú Author: Fabio Cenni ú

4 %úúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúú/
5 function [] = toSCA(rational_object)
6
7 SCA_output = fopen(’npoles_tf.h’, ’wt’);
8 fprintf(SCA_output,’#include"systemc≠ams.h"\n\n’);
9

10 % one pole module
11 fprintf(SCA_output,’SCA_SDF_MODULE(2poles_tf){\n\n’);
12 fprintf(SCA_output,’␣␣␣sca_sdf_in<double>␣␣␣␣␣␣in;\n’);
13 fprintf(SCA_output,’␣␣␣sca_sdf_out<double>␣␣␣␣␣out;\n’);
14 fprintf(SCA_output,’␣␣␣double␣␣␣␣␣␣tmp;\n’);
15 fprintf(SCA_output,’␣␣␣double␣␣␣␣␣␣B0;\n’);
16 fprintf(SCA_output,’␣␣␣double␣␣␣␣␣␣B1;\n’);
17 fprintf(SCA_output,’␣␣␣double␣␣␣␣␣␣A0;\n’);
18 fprintf(SCA_output,’␣␣␣double␣␣␣␣␣␣A1;\n’);
19 fprintf(SCA_output,’␣␣␣double␣␣␣␣␣␣A2;\n’);
20 fprintf(SCA_output,’␣␣␣sca_ltf_nd␣ltf_1;\n’);
21 fprintf(SCA_output,’␣␣␣sca_vector<double>␣A,B,S;\n\n’);
22 fprintf(SCA_output,’␣␣␣void␣init()␣␣␣{\n\n’);
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23 fprintf(SCA_output,’␣␣␣␣␣␣B(0)␣=␣B0;\n’);
24 fprintf(SCA_output,’␣␣␣␣␣␣B(1)␣=␣B1;\n’);
25 fprintf(SCA_output,’␣␣␣␣␣␣A(0)␣=␣A0;\n’);
26 fprintf(SCA_output,’␣␣␣␣␣␣A(1)␣=␣A1;\n’);
27 fprintf(SCA_output,’␣␣␣␣␣␣A(2)␣=␣A2;\n’);
28 fprintf(SCA_output,’␣␣␣}\n\n’);
29 fprintf(SCA_output,’␣␣␣void␣sig_proc(){\n’);
30 fprintf(SCA_output,’␣␣␣tmp␣=␣ltf_1(B,A,S,in.read());\n’);
31 fprintf(SCA_output,’␣␣␣out.write(tmp);\n␣␣␣}\n\n’);
32 fprintf(SCA_output,’␣␣␣void␣post_proc()␣␣␣␣{}\n\n’);
33 fprintf(SCA_output,’␣␣␣SCA_CTOR(2poles_tf)␣␣{}\n\n’);
34 fprintf(SCA_output,’};\n\n’);
35
36 % adder module
37 fprintf(SCA_output,’SCA_SDF_MODULE(adder){\n’);
38
39 for n = 1 : (length(rational_object.A)/2)
40 fprintf(SCA_output,’sca_sdf_in<double>␣␣␣␣␣␣in%0.1u’,n);
41 fprintf(SCA_output,’;\n’);
42 end

43
44 fprintf(SCA_output,’sca_sdf_out<double>␣␣␣␣␣out;\n\n’);
45 fprintf(SCA_output,’void␣init()␣␣␣{}\n\n’);
46 fprintf(SCA_output,’void␣sig_proc(){\n\n’);
47 fprintf(SCA_output,’␣␣␣out.write(’);
48 fprintf(SCA_output,’in1.read()␣+␣in2.read()’);
49
50 for n = 3 : (length(rational_object.A)/2)
51 fprintf(SCA_output,’␣+␣in%0.1u.read()’,n);
52 end

53
54 fprintf(SCA_output,’);\n’);
55 fprintf(SCA_output,’}\n’);
56 fprintf(SCA_output,’SCA_CTOR(adder)␣␣{}\n’);
57 fprintf(SCA_output,’};\n\n’);
58
59 % "n" poles module
60 fprintf(SCA_output,’SC_MODULE(npoles_tf){\n\n’);
61 fprintf(SCA_output, ’sca_sdf_in<double>␣␣␣␣␣␣input;\n’);
62 fprintf(SCA_output, ’sca_sdf_out<double>␣␣␣␣␣output;\n’);
63 fprintf(SCA_output,’\n’);
64
65 for n = 1 : length(rational_object.A)
66 fprintf(SCA_output,’sca_sdf_signal<double>␣␣output%0.1u’,n);
67 fprintf(SCA_output,’;\n’);
68 end

69
70 fprintf(SCA_output,’\n’);
71 fprintf(SCA_output,’adderú␣␣␣␣sigma1;\n’);
72
73 for n = 1 : length(rational_object.A)
74 fprintf(SCA_output,’2poles_tfú␣␣␣fract%0.1u’,n);
75 fprintf(SCA_output,’;\n’);
76 end

77
78 fprintf(SCA_output,’SC_CTOR(npoles_tf){\n\n’);
79
80 for n = 1 : (length(rational_object.A)/2)
81 fprintf(SCA_output,’␣␣␣fract%0.1u’,n);
82 fprintf(SCA_output,’␣=␣new␣2poles_tf("fract%0.1u’,n);
83 fprintf(SCA_output,’");\n’);
84
85 fprintf(SCA_output,’␣␣␣␣␣␣fract%0.1u’,n);
86 fprintf(SCA_output,’≠>in(input);\n’);
87
88 fprintf(SCA_output,’␣␣␣␣␣␣fract%0.1u’,n);
89 fprintf(SCA_output,’≠>out(output%0.1u’,n);
90 fprintf(SCA_output,’);\n’);
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91
92 IA = imag(rational_object.A(2ún));
93 RA = real(rational_object.A(2ún));
94 IC = imag(rational_object.C(2ún));
95 RC = real(rational_object.C(2ún));
96
97 B0 = (≠2 ú RC ú RA) ≠ (2 ú IC ú IA);
98 B1 = 2 ú RC;
99

100 A0 = RA^2 + IA^2;
101 A1 = ≠2 ú RA;
102 A2 = 1;
103
104 fprintf(SCA_output,’␣␣␣␣␣␣␣␣␣fract%0.1u’,n);
105 fprintf(SCA_output,’≠>B0␣=␣%0.10e’,B0);
106 fprintf(SCA_output,’;\n’);
107
108 fprintf(SCA_output,’␣␣␣␣␣␣␣␣␣fract%0.1u’,n);
109 fprintf(SCA_output,’≠>B1␣=␣%0.10e’,B1);
110 fprintf(SCA_output,’;\n\n’);
111
112 fprintf(SCA_output,’␣␣␣␣␣␣␣␣␣fract%0.1u’,n);
113 fprintf(SCA_output,’≠>A0␣=␣%0.10e’,A0);
114 fprintf(SCA_output,’;\n’);
115
116 fprintf(SCA_output,’␣␣␣␣␣␣␣␣␣fract%0.1u’,n);
117 fprintf(SCA_output,’≠>A1␣=␣%0.10e’,A1);
118 fprintf(SCA_output,’;\n’);
119
120 fprintf(SCA_output,’␣␣␣␣␣␣␣␣␣fract%0.1u’,n);
121 fprintf(SCA_output,’≠>A2␣=␣%0.10e’,A2);
122 fprintf(SCA_output,’;\n\n’);
123
124 end

125
126 fprintf(SCA_output,’␣␣␣sigma1␣=␣␣new␣adder("sigma1");\n’);
127 for n = 1 : (length(rational_object.A)/2)
128 fprintf(SCA_output,’␣␣␣␣␣␣sigma1≠>in%0.1u(output%0.1u);\n’,n,n);
129 end

130
131 fprintf(SCA_output,’␣␣␣␣␣␣sigma1≠>out(output);\n\n’);
132 fprintf(SCA_output,’␣␣␣sca_trace_fileú␣trace␣=␣sca_create_tabular_trace_file("in_out.dat");\n’);
133 fprintf(SCA_output,’␣␣␣␣␣␣sca_trace(trace,␣input,␣"input");\n’);
134 fprintf(SCA_output,’␣␣␣␣␣␣sca_trace(trace,␣output,␣"output");\n’);
135 fprintf(SCA_output,’␣␣␣}\n\n’);
136 fprintf(SCA_output,’};\n\n’);
137 fclose(SCA_output);
138 open(’npoles_tf.h’) ;

Listing A.4: SystemC-AMS 0.15RC5 generated code directly instantiatable in the SystemC test bench
1 /úúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúú

2 ú Copyright(c) 2012 TIMA Laboratory ú

3 ú Author: Fabio Cenni ú

4 úúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúúú/
5 #include"systemc≠ams.h"
6
7 SCA_SDF_MODULE(2poles_tf){
8
9 sca_sdf_in<double> in;

10 sca_sdf_out<double> out;
11 double tmp;
12 double B0;
13 double B1;
14 double A0;
15 double A1;
16 double A2;
17 sca_ltf_nd ltf_1;
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18 sca_vector<double> A,B,S;
19
20 void init() {
21 B(0) = B0;
22 B(1) = B1;
23 A(0) = A0;
24 A(1) = A1;
25 A(2) = A2;
26 }
27
28 void sig_proc(){
29 tmp = ltf_1(B,A,S,in.read());
30 out.write(tmp);
31 }
32 void post_proc() {}
33 SCA_CTOR(2poles_tf) {}
34 };
35
36 SCA_SDF_MODULE(adder){
37 sca_sdf_in<double> in1;
38 sca_sdf_in<double> in2;
39 sca_sdf_out<double> out;
40
41 void init() {}
42 void sig_proc(){
43
44 out.write(in1.read() + in2.read()) ;
45 }
46 SCA_CTOR(adder) {}
47 };
48
49 SC_MODULE(npoles_tf){
50
51 sca_sdf_in<double> input;
52 sca_sdf_out<double> output;
53 sca_sdf_signal<double> output1;
54 sca_sdf_signal<double> output2;
55 sca_sdf_signal<double> output3;
56 sca_sdf_signal<double> output4;
57
58 adderú sigma1;
59 2poles_tfú fract1 ;
60 2poles_tfú fract2 ;
61 2poles_tfú fract3 ;
62 2poles_tfú fract4 ;
63 SC_CTOR(npoles_tf){
64
65 fract1 = new 2poles_tf("fract1");
66 fract1≠>in(input);
67 fract1≠>out(output1);
68 fract1≠>B0 = ≠7.0653920664e+015;
69 fract1≠>B1 = 7.9360631032e+006;
70
71 fract1≠>A0 = 2.6256034035e+018;
72 fract1≠>A1 = 9.3511469997e+006;
73 fract1≠>A2 = 1.0000000000e+000;
74
75 fract2 = new 2poles_tf("fract2");
76 fract2≠>in(input);
77 fract2≠>out(output2);
78 fract2≠>B0 = ≠1.6764782785e+015;
79 fract2≠>B1 = ≠1.2206010088e+007;
80
81 fract2≠>A0 = 2.6586739213e+018;
82 fract2≠>A1 = 1.0226052047e+007;
83 fract2≠>A2 = 1.0000000000e+000;
84
85 sigma1 = new adder("sigma1");
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86 sigma1≠>in1(output1);
87 sigma1≠>in2(output2);
88 sigma1≠>out(output);
89
90 sca_trace_fileú trace = sca_create_tabular_trace_file("in_out.dat");
91 sca_trace(trace, input, "input") ;
92 sca_trace(trace, output, "output");
93 }
94 };

A.3. C-code for the MIPS32 embedded firmware

Listing A.5: Embedded C firmware
1 /ú

2 ú SOCLIB_GPL_HEADER_BEGIN
3 ú

4 ú This file is part of SoCLib, GNU GPLv2.
5 ú

6 ú SoCLib is free software; you can redistribute it and/or modify
7 ú it under the terms of the GNU General Public License as published by
8 ú the Free Software Foundation; version 2 of the License.
9 ú

10 ú SoCLib is distributed in the hope that it will be useful , but
11 ú WITHOUT ANY WARRANTY; without even the implied warranty of
12 ú MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 ú General Public License for more details .
14 ú

15 ú You should have received a copy of the GNU General Public License
16 ú along with SoCLib; if not, write to the Free Software
17 ú Foundation, Inc., 51 Franklin Street , Fifth Floor, Boston, MA
18 ú 02110≠1301, USA.
19 ú

20 ú SOCLIB_GPL_HEADER_END
21 ú

22 ú Copyright (c) UPMC, Lip6, SoC
23 ú/
24
25 #include "system.h"
26 #include "../segmentation.h"
27
28 #include "soclib/uart.h"
29 #include "soclib/timer.h"
30 #include "soclib/icu.h"
31 #include "soclib/camera_reg.h"
32 #include <stdio.h>
33 #include "table.h"
34
35 static const int period = 100000;
36 volatile uint32_t cptms=0;
37 volatile uint32_t irq_flag;
38 uint32_t table_dist [4];
39 uint32_t id;
40
41 void irq_handler(int irq)
42 {
43 uint32_t iv;
44 uint32_t ti ;
45 uint32_t d;
46
47 iv = soclib_io_get(base(ICU), ICU_IT_VECTOR);
48
49 switch (iv) {
50 case 0:
51 d=soclib_io_get(base(UART),UART_DATA);
52 if (d!=0) {
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53 table_dist[d>>28]= ((d & 0x0fffffff) == 0 x0fffffff ) ? ≠1 : d & 0 x0fffffff ;
54 printf ("data␣%d␣received␣from␣car␣%d\n", d & 0x0fffffff, d>>28);
55 printf ("table␣des␣ecarts␣:␣%d␣%d␣%d␣%d\n",table_dist[0],table_dist[1],table_dist[2],table_dist[3]);
56 }
57 break;
58 case 1:
59 cptms++;
60 cptms=cptms%40;
61 soclib_io_set(base(TIMER), 0úTIMER_SPAN+TIMER_RESETIRQ, 0);
62 irq_flag=1;
63 break;
64 case 2:
65 table_dist[ id ] = calcule_dist((uint32_t ú)base(CAM));
66 soclib_io_set(base(CINE), 0, table_dist[id]) ;
67 break;
68 }
69 }
70
71 void init() {
72 irq_flag=0;
73 id = soclib_io_get(base(UART), UART_ID);
74 soclib_io_set(base(UART), UART_BR, 416);
75 soclib_io_set(base(UART), UART_CTRL, 5); //reception mode
76 soclib_io_set(base(TIMER), 0úTIMER_SPAN+TIMER_PERIOD, period);
77 soclib_io_set(base(TIMER), 0úTIMER_SPAN+TIMER_MODE, TIMER_RUNNING|TIMER_IRQ_ENABLED);
78 soclib_io_set(base(ICU), ICU_MASK_SET, 7);
79 soclib_io_set(base(CAM), CAM_ITROW, 50);
80 soclib_io_set(base(CAM), CAM_ITPIX, 0);
81 set_irq_handler(irq_handler);
82 enable_hw_irq(0);
83 irq_enable();
84 }
85
86 int main() {
87 uint32_t data;
88 uint8_t send_msg=0;
89 uint32_t first =1;
90
91 init () ;
92 printf ("Hello␣from␣cars␣%d\n", id);
93
94 while (1) {
95 if (irq_flag) {
96 irq_flag=0;
97 if (cptms == (id+1)ú8) {
98 soclib_io_set(base(UART), UART_CTRL, 2);
99 soclib_io_set(base(UART), UART_DATA, (table_dist[id] & 0x0fffffff) | (id << 28));

100 printf ("sending␣data...\n");
101 printf ("table␣des␣ecarts␣:␣%d␣%d␣%d␣%d\n",table_dist[0],table_dist[1],table_dist[2],table_dist[3]);
102 }
103 while ( (soclib_io_get(base(UART), UART_STATUS) & 0x2) == 0x2 )
104 pause() ;
105 soclib_io_set(base(UART), UART_CTRL, 5);
106 }
107 pause();
108 }
109
110 return 0;
111 }
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Résumé

Le développement formidable de la technologie utilisée pour la conception de circuits électro-
niques permet aujourd’hui l’intégration de systèmes de plus en plus complexes. Cette avancée
technologique a pu se réaliser grâce à la miniaturisation des dispositifs électroniques qui est aussi
liée à l’amélioration de l’efficacité des outils de “conception assistée par ordinateur” (CAO). La
conception de systèmes hétérogènes extrêmement complexes tels que les “systèmes sur puce”
(SoC) à signaux mixtes, est désormais une réalité. La cohabitation dans les systèmes sur puce
d’aujourd’hui de plusieurs domaines physiques tels que mécaniques, chimiques, optiques ou
magnétiques justifie l’investissement qui a lieu dans les outils de CAO dédiés à la conception de
ces SoCs.

Aujourd’hui, la conception de composants individuels est généralement bien comprise
et optimisée grâce à l’utilisation d’une diversité d’outils de CAO et d’automatisation de la
conception électronique (EDA), de langages de conception, et de formats de données plus ou
moins standard. Ceci implique la mise en œuvre de différents concepts de modélisation et
abstraction, de formalismes de description (aussi appelé “modèles de calcul” (MoC)) et de
méthodes d’analyse et simulation spécialisées. Il revient au concepteur de combler le fossé qui
existe entre les outils et les méthodologies en convertissant manuellement les modèles et en
couplant les outils spécialisés pour tel ou tel domaine, ce qui est source d’erreurs et requière
beaucoup de temps.

La validation des interactions entre cette grande diversité de composants individuels dans
les systèmes récents est d’un intérêt vital pour l’ensemble du système qui doit fonctionner en
conformité avec les spécifications demandées par le client. Au début de la phase de conception,
l’interaction entre les différents blocs de propriété intellectuelle (IP) intégrés dans le système ne
peut être validée que par la mise à disposition d’un modèle dédié à la simulation au niveau
système pour chaque bloc. Différents niveaux d’abstraction peuvent être définis lors de la
modélisation des IPs. Une abstraction de haut niveau modélise seulement le comportement du
système en se contentant d’une précision réduite par rapport au dispositif réel. Des parties
analogiques et numériques coexistent généralement dans un même système. Il est alors nécessaire
de modéliser les deux parties afin de réaliser une simulation globale de celui-ci. Par ailleurs les
parties numériques intègrent des processeurs avec leurs logiciels embarqués. La validation de
l’interaction entre les parties analogiques et à signaux mixtes (AMS) avec les parties numériques
et le logiciel embarqué devient d’une importance cruciale.

Pour atteindre cet objectif, un environnement de conception et de simulation basée sur
le standard IEEE 1666 (SystemC) utilisé pour le numérique s’est récemment affirmé. Cet
environnement, proposé par l’OSCI (“Open SystemC Initiative”) est appelé SystemC AMS. Il
permet de créer et d’affiner un prototype virtuel du système entier à un haut niveau d’abstraction.
L’intégration de différents formalismes de description (MoCs) rend possible la description de
nombreuses formes de comportement et d’interaction. L’exploration de différentes architectures,
l’estimation des performances, la validation de IPs réutilisés (“IP reuse”), la vérification précoce
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du développement du logiciel embarqué et son débogage, la vérification des interfaces entre les
composants hétérogènes et l’interopérabilité avec d’autres systèmes deviennent alors possibles.

Cette thèse traite de la modélisation de systèmes à la fois hétérogènes car intégrant
différents domaines de la physique et à signaux mixtes, numériques et analogiques (AMS). En
particulier, le manuscrit présente une étude approfondie de différentes techniques d’extraction
de modèles comportementaux à différents niveaux d’abstraction et de précision. Bien que les
outils développés pour l’extraction de modèles comportementaux soient principalement basés
sur les extensions AMS du standard IEEE 1666 SystemC, la méthodologie peut être aussi
appliquée à d’autres langages couramment utilisés pour la description de matériel analogique et
mixte (AHDL) tels que VHDL-AMS et Verilog-AMS.

Les techniques d’extraction de modèles peuvent être regroupées en trois branches :
Premièrement, une technique partant d’une description sous forme de schéma au niveau

transistor ou d’une netlist d’entrée est étudiée et automatisée afin d’extraire la représentation
d’état. D’autres informations souhaitées peuvent aussi être extraites par exemple des fonctions
dépendant des tensions ou des courants aux nœuds du circuit. Cette technique peut être utilisée
pour extraire l’information sur la consommation en énergie du circuit analysé.

Deuxièmement, des techniques basées sur l’approximation de réponses fréquentielles par
ajustement analytique sont explorées, soit pour réduire l’ordre d’un modèle déjà disponible ou
bien pour construire un modèle analytique simulable à partir de résultats obtenus avec d’autres
outils de CAO de plus bas niveau.

Enfin, les techniques d’identification de modèles paramétriques sont proposées pour l’ex-
traction de modèles dits à “boîte-noire” à partir de données obtenues de façon empirique, de
simulations de modèles précis ou de données de mesure. Une bibliothèque preuve-de-concept
mise en œuvre en utilisant SystemC AMS démontre l’applicabilité de la méthode par une étude
de cas réalisant la minimisation de la consommation d’un amplificateur faible bruit (LNA).

Le caractère mixte de la thèse, universitaire et industriel (CIFRE), en collaboration avec
l’entreprise STMicroelectronics, a permis la modélisation d’un capteur d’image CMOS com-
mercial. Cette étude de cas vise la simulation globale d’une plate-forme industrielle pour des
applications mobiles décrites au niveau transactionnel, en utilisant le formalisme de modélisation
SystemC-TLM (“Transaction Level Modeling”). Pour ce faire, l’interface analogique/numérique
entre les MoCs propres à SystemC AMS et les différents styles de codage en SystemC-TLM est
étudiée et adaptée aux protocoles TLM propriétaires de STMicroelectronics. Ceci est preuve de
l’applicabilité de la méthode et de son insertion dans un flot de conception industriel basé sur
SystemC AMS. Les modèles du capteur d’image sont extraits à différents niveaux en utilisant
différents modèles de calcul de SystemC AMS. Cette modélisation à différents niveau montre
des gains en temps de simulation impressionnants par rapport aux modèles de plus bas niveau
et notamment au modèle en VHDL-AMS qui a servi de référence. La plate-forme virtuelle
obtenue permet de calibrer de façon précoce les algorithmes de correction d’image et du logiciel
embarqué en augmentant la fiabilité globale du produit. Elle est en cours d’introduction dans
le flot industriel standard.

Mots-clés : Flot, méthodologie de conception de systèmes analogiques et signaux mixtes
(AMS) ; Modélisation comportementale ; Réutilisation de blocs de propriété intellectuelle ;
Modèle de représentation d’état ; Modèle d’ordre réduit ; Modèle de calcul (MoC) ; Système
sur puce (SoC) multiphysique ; OSCI SystemC AMS ; VHDL-AMS ; Identification de modèles
paramétriques ; Capteur d’image ; Modèle transactionnel (SystemC TLM).
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Le flot de conception de systèmes multi-domaines et à signaux mixtes de nos jours est réparti
entre différentes méthodologies de conception supportées par divers outils de conception assistée
par ordinateur (CAO) et d’automatisation de la conception électronique (EDA). La conception
de systèmes hétérogènes est toujours un travail très manuel et pas normalisé comme l’est le
flot de conception numérique. Une explication intuitive et partielle de ce retard de l’analogique
sur le numérique est que les systèmes analogiques abordent une grande variété de phénomènes
physiques qui doivent être interprétés et modélisés pour être compris et donc maîtrisés, tandis
que les systèmes numériques sont des artefacts artificiels et donc plus facilement formalisables.
Les outils pour la synthèse logique et le placement/routage aident à la conception des systèmes
numériques alors que la conception hétérogène nécessite une approche multidisciplinaire. Une
approche multidisciplinaire implique la définition de plusieurs formalismes de description (aussi
appelés modèles de calcul (MoC)), ainsi que des méthodes d’analyse et de simulation. Celles
ci sont pourvues par les fournisseurs d’outils de CAO/EDA et se composent de simulateurs
spécialisés suivant les différentes disciplines et de langages de description à différents niveaux
d’abstraction. Afin d’en faciliter l’utilisation, ces outils sont généralement intégrés dans un
environnement de travail comprenant notamment une saisie de schéma, un “netlister”, un
visualisateur de courbes etc.

Par exemple, la conception d’un composant électromécanique (MEMS) tel qu’un accéléro-
mètre à trois axes [Tan 08] exige :

• L’optimisation et la caractérisation du micro-résonateur mécanique et (séparément) la
distribution du champ électrostatique de la structure en peigne, qui sert au contrôle et
détection des mouvements de la structure flexible. Cela se fait avec l’aide d’une analyse
aux éléments finis (par exemple ANSYS TM, Coventor TM).

• La simulation de l’ensemble du système au niveau du circuit, en tenant compte du couplage
entre le domaine mécanique et électrostatique dans le transducteur MEMS et les échanges
d’informations entre les circuits analogiques et numériques de contrôle et détection. Pour
ce faire, des simulations comportementales à l’aide de langages de modélisation comme
VHDL-AMS sont employés.

• L’implémentation (dessin des masques ou “layout”) de la structure mécanique et des
circuits électroniques. Ceci est réalisé avec l’aide d’outils de dessin des circuits intégrés.

D’une part, quand une simulation précise du système hétérogène est nécessaire, une
co-simulation, définie comme une simulation effectuée par le lancement de deux noyaux de
simulation différents, permet l’interfaçage de la variété d’outils spécifiques aux domaines et des
simulateurs.

Toutefois, ce processus est loin d’être transparent et de réalisation simple. Ce n’est pas
la priorité des fournisseurs d’outils de CAO de fournir un interfaçage facile pour d’autres
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simulateurs, spécialement s’il s’agît d’un concurrent plus avancé dans d’autres domaines du
génie ou si leur suite d’outils EDA dispose déjà d’une capacité similaire mais non suffisante. Les
concepteurs sont obligés de combler le fossé entre les outils et les méthodologies en convertissant
manuellement les modèles et en jonglant avec les différents outils. Bien entendu, ces bricolages
sont source d’erreurs, limités à deux moteurs de simulation, et avec des résultats incertains dûs
à un manque d’outils d’analyse.

D’autre part, la capacité de réaliser une vérification globale du système au début
du flot de conception prend une extrême importance au vu de la complexité croissante des
systèmes. Tant pour les composants numériques que pour les composants mixtes, des prototypes
virtuels de ces composants permettront la vérification du système, tant en ouvrant la porte à
de nombreuses possibilités telles que l’exploration d’architecture, l’estimation des performances,
validation de IPs réutilisées (IP reuse), la vérification de l’interfaçage entre les domaines du
RF, analogiques et numériques, la vérification précoce du développement du logiciel embarqué
avec son débogage, la vérification de l’interopérabilité avec d’autres systèmes, et l’évaluation de
l’impact de nouvelles générations de technologies en avance de phase. La tâche de la modélisation
devient donc cruciale dans le flot de conception de systèmes sur puce (SoC) et les langages de
modélisation doivent être choisis de manière appropriée, essentiellement en se basant sur le
type de sous-systèmes envisagés, et le niveau de précision/abstraction souhaité.

Du côté du numérique, le flot de conception à approche descendante qui part d’une
description “Register Transfer Level” (RTL) et va jusqu’aux portes logiques est bien établi
et utilisé par la majorité des concepteurs du monde numérique. Ce flot utilise les langages
de description de matériel VHDL [IEEE 09c] et Verilog [IEEE 04]. L’importance du logiciel
embarqué dans les systèmes récents a conduit à la nécessité de modéliser le logiciel lui-même, donc
pousser la recherche vers des langages de conception au niveau système. SystemC [IEEE 09a]
et SystemVerilog [IEEE 09b] sont aujourd’hui largement utilisés pour ce niveau. SystemC est
un standard IEEE (connu sous le nom de IEEE 1666-2005 ) depuis 2005. Basé sur le langage
C++, il est promu par l’Open SystemC Initiative (OSCI) qui a fusionné en décembre 2011 avec
ACCELLERA devenant Accellera Systems Initiative [Initiative 12]). SystemC permet de décrire
des systèmes à un niveau plus abstrait (mais aussi au niveau RTL) en se basant sur un noyau
piloté par des événements discrets, ceci donne la possibilité de modéliser à la fois le matériel et
les composants logiciels. Pendant les dernières années, le langage C++ s’est affirmé comme la
solution plus adoptée pour la programmation de processeurs embarqués. Par conséquence un tel
langage de description du matériel basé sur le langage C++ permet d’avoir un environnement
unifié de conception, c’est à dire du matériel et de son logiciel associé, ce qui n’est pas le cas
pour SystemVerilog. En 2008 OSCI a également publié le standard de modélisation niveau
transactionnel comme extension du noyau SystemC, TLM-2.0 [OSCI 09] visant à permettre
l’interopérabilité des modèles en SystemC et leurs réutilisation au niveau transactionnel, en
fournissant un cadre essentiel pour l’analyse de l’architecture au niveau système (ESL), mais
aussi le développement du logiciel, l’analyse des performances du logiciel et la vérification du
matériel.

En ce qui concerne la conception simultanée de sous systèmes à signaux analogiques
et mixtes, comme les parties RF, les MEMS, les conversions de l’analogique au numérique
(ADC) ou bien du numérique à l’analogique (DAC), des extensions de langages de modélisation
existantes ont fait leur apparition. VHDL et Verilog ont produit des extensions pour l’AMS
nommés VHDL-AMS (standard IEEE 1076-2008) [IEEE 07] et Verilog-AMS [Accellera 09]. Ces
langages sont orientés pour la description de matériel et manquent de formalismes suffisants pour
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décrire les systèmes AMS à un niveau comportemental ou fonctionnel. En outre, ils ne disposent
pas de capacité de modélisation des logiciels embarqués et les simulateurs disponibles sont trop
lents pour envisager de simuler la complexité d’un SoC hétérogène de pointe. D’autres outils de
haut niveau comme Matlab/Simulink offrent une alternative pour la modélisation fonctionnelle
et comportementale, mais ils manquent de lien direct avec le flot de conception du matériel et
ils n’offrent aucun moyen de simuler le logiciel. Il a été par conséquent logique d’étudier et de
préparer des extensions AMS du noyau SystemC puisque ce dernier est largement accepté et
adopté comme langage polyvalent basé sur C++ par les concepteurs de systèmes, les ingénieurs
du logiciel, et les concepteurs de matériel. Le groupe de travail AMS (AMSWG) de l’OSCI mis
en place dès 2006 a concentré ses efforts sur la définition des paradigmes de modélisation, de la
syntaxe et de la couche d’interface du noyau SystemC. Ces efforts se sont concrétisés avec la
soumission pour la standardisation des extensions AMS de SystemC [OSCI 10, Vachoux 05]
appelés SystemC AMS 1.0 (2010) auprès de l’OSCI. Ces extensions offrent maintenant la
possibilité de modéliser des systèmes complexes hétérogènes à l’aide de différentes modèles de
calcul (MoC).

La modélisation comportementale des parties AMS, tels que les composants RF ou MEMS
est de plus en plus d’actualité dans l’industrie dans le cadre du processus de conception de
systèmes intégrés, car elle permet de simuler la totalité d’un système complexe et hétérogène.
Les HDL standards pour signaux mixtes mentionnées ci-dessus sont mis en œuvre par plusieurs
simulateurs commerciaux et open source. Un modèle comportemental permet de décrire le
comportement d’un composant comme une fonction entre entrées et sorties qui intègre les
principales fonctionnalités de l’implémentation réelle, mais qui n’exige pas une description
complète de tous les détails de l’implémentation. Le but principal est de vérifier le fonctionnement
correct de l’ensemble du système dans lequel le dispositif est intégré en un temps de simulation
acceptable.

Il est habituel de considérer le processus de conception d’un produit technologique comme
décrit par le modèle en forme de “V” dans la Figure 1. Le côté gauche du “V” montre une
approche de conception descendante à partir de l’analyse du problème jusqu’à la mise en
œuvre en passant par les spécifications du système. L’autre côté décrit la vérification comme
ascendante, depuis le test après fabrication jusqu’à l’insertion dans le système final, en passant
par l’extraction des caractéristiques réelles (parasites, délais ...), la rétro annotation des modèles,
les résimulations.

La modélisation comportementale permet de simplifier considérablement le processus
de conception dans les deux côtés du modèle en “V”. Cependant, un mauvais choix de description
ou de précision pour un modèle donné peut également conduire à une simplification excessive,
et invalider l’ensemble du processus, par exemple en présence de phénomènes fortement non
linéaires.

Lors de la conception descendante, le but n’est pas de concevoir dans l’acception
classique du terme, qui à partir des spécifications du système, permet de descendre à la synthèse
automatisée et à l’implémentation du système, bien que certaines études soient en cours dans ce
domaine [der Plas 02]. L’intention est bien de profiter de la modélisation du comportement des
composants numériques et AMS du système afin d’aider les concepteurs à effectuer l’exploration
architecturale et de décliner les spécifications de performance de haut niveau sur les différents
sous blocs tout en préservant le compromis entre les performances et les coûts de la mise en
œuvre (par exemple la vitesse ou la consommation).
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Lors de la vérification ascendante les mêmes modèles comportementaux peuvent être
réutilisés après rétro annotation. La précision du modèle est améliorée en l’enrichissant de
détails provenant de l’implémentation de bas niveau tels que l’extraction des effets parasites ou
des délais après implémentation ou bien d’une caractérisation effectuée à travers des mesures
sur un prototype physique. Evidemment, les détails se réduisent lorsque le niveau d’abstraction
remonte progressivement.

Manufacturing

Implementation

Layout
Component test

IP speci!cation
Component 

performance

System

speci!cation
System 

performance

Product

performance

Problem

de!nition

Physic

models

Behavioral models

Functional models

Functional model calibration

Behavioral model calibration

Physic model calibration

TO
P

-D
O

W
N

 D
ESIG

N

B
O

TT
O

M
-U

P
 V

ER
IF

IC
A

TI
O

N

Figure 1.: Modèle en “V” du processus de conception d’un produit technologique.

1. Contributions à la recherche

Lorsqu’on traite de la diversité des natures et des domaines de la physique impliqués dans un
SoC hétérogène, il est difficile de comprendre comment les comportements analogiques peuvent
être saisis et modélisés pour représenter le fonctionnement des sous-systèmes/composants
ciblés. Les formalismes/paradigmes de modélisation disponibles changent selon le langage
de modélisation ou l’outil. Différentes techniques ont été étudiées pour différents types de
modélisation comportementale et répertoriées en fonction de leur adaptation aux besoins.
Les composants analogiques et à signaux mixtes (AMS) peuvent être connus avec différentes
connaissances. Il est généralement admis de les regrouper en deux cas comme suit :

• La structure du dispositif est connue et les lois de la physique qui définissent son fonc-
tionnement sont maîtrisées. Une équation analytique d’entrées/sorties, éventuellement
impliquant des variables d’état, peut donc être déterminée. C’est ce qu’on appelle “Modé-
lisation des connaissances” (branche violette à gauche dans la Figure 2). La possibilité de
disposer d’une connaissance exhaustive du système est aujourd’hui de moins en moins
probable en raison de la complexité croissante et de l’interaction non négligeable des
dispositifs entre eux.

• Les lois de la physique qui gouvernent le comportement du dispositif ne sont pas a priori
connues et seules les données expérimentales sont généralement plus facilement disponibles.
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Le dispositif est soit physiquement disponible (branche verte de droite dans la Figure 2)
(boîte noire, livrée sous la forme d’un prototype ou d’un modèle de l’IP précompilé et
simulable), soit une description fine de celui-ci est connue (branche bleu au centre de la
Figure 2). Cette description fine peut être issue d’une analyse structurelle effectuée par
des simulateurs/outils ad hoc (FEM par exemple) qui sont spécifiques au domaine. Dans
les deux cas, un modèle mathématique doit être construit pour décrire le comportement
du dispositif afin d’effectuer des simulations.
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Figure 2.: Types de modélisation comportementale pour des dispositifs hétérogènes et à signaux mixtes.

Différentes techniques de modélisation ont été analysées et automatisées pour obtenir des
modèles comportementaux à différents niveaux d’abstraction et de complexité. Un accent
particulier a été mis sur l’utilisation de l’extension AMS de SystemC. Ces techniques de
modélisation à ordre réduit sont étudiées et mises en œuvre pour la conception descendante et
la vérification ascendante, et sont basées sur le raffinement successif des modèles. Différentes
études de cas et des modèles de calcul offerts par SystemC AMS (mais aussi Verilog-A et
VHDL-AMS), sont montrées pour prouver l’efficacité de la méthodologie proposée. L’interfaçage
analogique/numérique est également présenté, notamment pour des applications ciblées, et des
solutions spécifiques mises en œuvre pour le standard SystemC TLM-2.0.

En particulier, profitant de la nature industrielle de la thèse, la méthodologie pour les
composants AMS est appliquée à des modèles raffinés d’un capteur vidéo CMOS produit par
STMicroelectronics. Le capteur AMS lui-même communique en utilisant des protocoles de
communication au niveau transactionnel, propriété de STMicroelectronics. Il est montré et
prouvé comment la méthodologie aide à réduire le temps de mise sur le marché par anticipation
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sur les phases de développement (notamment le logiciel embarqué) et par amélioration de la
fiabilité des produits commercialisé (déverminage du logiciel).

2. Structure de la thèse

Le premier chapitre introduit le cadre et les motivations de ce travail. Le deuxième chapitre
donne un aperçu de l’environnement SystemC basé sur C++ avec ses extensions AMS et TLM.
Le troisième chapitre décrit ma contribution à l’étude des techniques de modélisation pour
l’abstraction de modèles à haut niveau à partir du bas niveau, aussi bien pour la conception
que pour le test. Le chapitre quatre montre une application de la technique d’identification de
système à un amplificateur faible bruit (LNA) afin d’en optimiser la consommation au travers
d’une boucle de contrôle fermée. Ce chapitre montre également l’application de la modélisation
comportementale à la conception d’un capteur chimique basé sur des ondes acoustiques de
surface (SAW). Le chapitre cinq traite de l’étude d’un capteur d’image CMOS industriel. Le
chapitre six conclut mon travail et propose des perspectives de développements futurs.



Environnement de modélisation et simulation
SystemC

Implémenté comme une extension du langage C++, SystemC (IEEE 1666 de décembre 2005)
fournit une bibliothèque de classes pour la modélisation, dont le modèle d’exécution est adapté
à la simulation de SoCs et, potentiellement, de tout système matériel numérique complexe, avec
ou sans processeurs et logiciel. La modélisation SystemC couvre les concepts de comportements
concurrents, de temps du système simulé et de types de données adaptés à la description du
matériel, ainsi que la modélisation de structures hiérarchiques. Les modèles en SystemC sont
simulables sur station de travail de type PC ou autre, avec des simulateurs open source ou
commerciaux qui augmentent encore la productivité.

3. SystemC AMS et ses modèles de calcul

Les extensions AMS de SystemC ajoutent d’autres méthodes d’abstraction pour la modélisation
à haut niveau de composants AMS au noyau SystemC. Comme le montre la Figure 3, les
niveaux d’abstraction font la distinction entre des comportements en temps discret et en temps
continu et des comportements conservatifs et non conservatifs.

Les extensions AMS de SystemC définissent également les formalismes de modélisation
nécessaires pour soutenir la modélisation comportementale à différents niveaux d’abstraction
(Figure 3). Ces formalismes de modélisation sont mis en œuvre en utilisant différents modèles
de calcul (MoC) : flux de données temporisé (Timed Data Flow : TDF), flux de signal linéaire
(Linear Signal Flow : LSF), et réseau électrique linéaire (Electrical Linear Network : ELN). Les
trois MoCs sont ci-après brièvement introduits, de plus amples détails peuvent être trouvés
dans [Barnasconi 10] :

• Flux de données temporisé (TDF) : la sémantique d’exécution du MoC TDF introduit
une modélisation à temps discret, de plus le TDF évite le surcoût en temps de simulation
donné par l’ordonnancement dynamique imposée par le noyau à événements discrets de
SystemC. La simulation est ainsi accélérée en définissant une planification d’exécution
statique (static schedule). Cette planification est calculée avant le début de la simulation,
et permet d’exécuter les fonctions de traitement de chaque module TDF (méthode
processing) selon la direction du flux de données. Les échantillons en temps discret des
signaux se propagent à travers les modules TDF. Les données de ces signaux peuvent
etre de n’importe quel type C++. Si, par exemple, un type de valeur tel que le réel en
double est utilisé, le signal TDF peut être associé à une tension ou un courant. Les valeurs
complexes peuvent être utilisées pour représenter un signal de bande de base équivalente
dans le cas du RF.
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Figure 3.: Abstractions par rapport aux modèles de calcul de SystemC AMS.

• Flux de signal linéaire (LSF) : le formalisme LSF prend en charge la modélisation de
comportements en temps continu en offrant un ensemble de modules primitifs tels que
l’additionneur, le multiplicateur, l’intégrateur ou le module de retard. Un modèle LSF est
une connexion de ces modules de base liées par des signaux à valeurs réelles qui peuvent
représenter des quantités réelles. Un modèle LSF définit un système d’équations linéaires
qui est résolu par un solveur linéaire d’équations différentielles algébriques (DAE).

• Réseau électrique linéaire (ELN) : la modélisation de réseaux électriques est sup-
portée par l’instanciation d’éléments de base prédéfinis tels que des résistances ou de
condensateurs, qui sont utilisés comme de macro modèles pour décrire les relations en
temps continu entre les tensions et les courants. Un ensemble restreint de primitives
linéaires et des commutateurs est disponible pour modéliser le comportement conservatif
de l’énergie électrique.

4. SystemC TLM

TLM (Transaction Level Modeling), bâti sur SystemC, standardise la modélisation à un niveau
d’abstraction plus élevé que le RTL, en fournissant des modèles de communication de structures
de données complètes (“transactions”) entre blocs, IPs ou circuits complexes, au lieu des signaux
habituels. Le standard TLM de l’OSCI [OSCI 09] permet ainsi à des concepteurs matériels
ou développeurs logiciels de modéliser facilement, et simuler à grande vitesse, des blocs, IPs,
circuits SoC, ou cartes, à l’aide de modules SystemC communiquant par des transactions.



Contribution à la modélisation de haut niveau
de systèmes hétérogènes

5. Introduction et regroupement à partir des connaissances de
départ

Une enquête sur les techniques de modélisation de circuits qui abstraient des modèles d’ordre
réduit ou de haut niveau à partir d’une description de bas niveau est donnée dans cette section.

L’approche que nous utilisons est liée aux scénarios de modélisation que nous voulons aborder.
Les scénarios sont présentés ci-après et classés par le type et niveaux de connaissances de
départ du système. Deux catégories de systèmes sont d’abord identifiées :

• Les lois de la physique qui définissent le comportement du dispositif sont connues (voir le
regroupement bleu “modeling of knowledge” en Figure 2).

– Modélisation des connaissances. La structure du dispositif est connue et les
lois de la physique qui régissent le comportement du dispositif sont maîtrisées. La
représentation au niveau transistor d’un système analogique est considérée comme
faisant partie de cette catégorie, puisque les lois qui régissent les dispositifs ont été
exhaustivement caractérisées par le fabricant de silicium du point de vue du procédé
technologique (branche violette en Figure 2).

– Connaissances structurelles. Si le composant ne peut pas être décomposé en
blocs élémentaires reliés entre eux pour former une netlist ou d’un schéma au niveau
transistor, l’analyse de l’appareil cible est généralement effectuée au moyen d’outils
permettant de considérer la structure du dispositif dans tous ses éléments. Ceci est
particulièrement vrai dans le cas des microsystèmes électromécaniques (MEMS), où
une analyse structurelle du système peut être effectuée par le biais d’outils spécifiques
basés sur l’analyse aux éléments finis (FEA). L’analyse par ce type d’outils fournit
généralement des courbes de réponse des entrées-sorties dans le domaine fréquentiel
et une linéarisation est considérée autour d’un point de repos. À côté des courbes de
réponse fréquentielles, des réponses non linéaires peuvent aussi bien être obtenues
tels que l’atténuation de l’amplitude de vibration d’une micro poutre mécanique.
Comme conséquence, une description précise dans le domaine fréquentiel est obtenue
à partir d’une analyse structurelle effectuée par des simulateurs/outils spécifiques au
domaine (FEM par exemple), ce flot est représenté par la branche bleu en Figure 2.

• Les lois de la physique qui définissent le comportement de l’appareil ne sont pas connues
a priori.
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– Modélisation basée sur des expériences ou des simulations. Le dispositif est
disponible et des données expérimentales ou de simulation sont disponibles. Le dispo-
sitif est disponible soit sous la forme d’un prototype matériel du IP (des expériences
peuvent ainsi être faites), ou sous la forme d’un modèle précompilé simulable, dans
les deux cas, il est considéré comme une boîte noire avec des entrées contrôlables
et des sorties observables (voir regroupement bleu “Experiment/Simulation-based
modeling” en Figure 2).

Les trois cas introduits ont été triés par le type de source et de connaissance de départ
de l’utilisateur/concepteur. Une deuxième phase consiste en analyser les dispositifs et profiter
de la description disponible afin de construire un modèle comportemental. A cet effet, les
trois flots montrés sur la Figure 2 doivent être différemment regroupés. Dans tous les cas
(ci-après rementionnés et retriés) un modèle mathématique doit être construit pour décrire
le comportement du composant afin d’en effectuer des simulations.

• Une description du système représentante sa netlist ou son schéma est disponible (voir
regroupement orange “From low level” de la Figure 2).

– Modélisation des connaissances. La connaissance complète du système permet
de déterminer les équations analytiques d’entrée/sortie dans le domaine temporel,
impliquant éventuellement des variables d’état. Néanmoins, la possibilité d’avoir une
connaissance exhaustive du système est aujourd’hui de moins en moins probable en
raison de la complexité croissante et de l’interaction entre les dispositifs. En outre,
si le modèle analytique est trop complexe en terme d’effort de calcul, sa complexité
peut être réduite par le biais de techniques de réduction de l’ordre du modèle (MOR)
connues dans la littérature. Une enquête est disponible dans [Mantooth 03] montrant
différentes techniques de modélisation comportementale de circuits analogiques pour
des systèmes linéaires invariants dans le temps (LTI), linéaires variants dans le temps
(LTV)/linéaires périodiquement variants dans le temps (LPTV) et non linéaires
(NL).

• Un fichier de données décrivant la relation entrée/sortie est disponible (voir regroupement
orange “From a data set” en Figure 2).

– Connaissances structurelles. Une analyse structurelle peut conduire à une courbe
de réponse d’entrée-sortie dans le domaine fréquentiel composée d’un ensemble de
points, donc sans une forme analytique. Cet ensemble de données pourrait être la
seule information dont on dispose pour modéliser le système ou un modèle de faible
complexité pourrait être requis. Dans les deux cas, une approximation de l’ensemble
de données peut être effectuée à l’aide d’un ajustement d’une équation au dégrée de
complexité souhaité et couvrant la plage des fréquences d’intérêt.

– Modélisation basée sur des expériences ou des simulations. La possibilité
de contrôler la/les entrée/entrées est un degré de liberté suffisant à permettre
d’identifier le système et d’associer une équation mathématique, à condition de
pouvoir récupérer sa sortie. Les techniques d’identification de systèmes utilisent des
méthodes statistiques pour construire des modèles mathématiques paramétriques de
systèmes dynamiques à partir de données mesurées. L’identification de systèmes est
particulièrement utilisée dans le domaine du contrôle automatique et de l’ingénierie
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de traitement du signal. Le principe de base est de stimuler à la fois le modèle et le
système réel et de minimiser l’erreur entre les sorties en identifiant les paramètres
d’une équation de départ (structure du modèle).

Nos contributions à la recherche adressent tous les trois axes avec des approches différentes.
Toutes les approches ont pour but d’identifier automatiquement les données source disponibles
et de définir une méthodologie pour créer facilement des modèles comportementaux (décrites
en utilisant un langage AHDL) à différents niveaux de détail et de lancer la simulation globale
(dans un banc de test virtuel). Selon le niveau d’abstraction requis pour le modèle, les trois
flots de modélisation peuvent être réglés pour le niveau souhaité, un compromis entre la
précision du modèle et sa rapidité/complexité doit être assumé et trouvé. Plus précisément et de
manière générale, le fonctionnement du dispositif analogique est conditionné par l’environnement
opérationnel dans lequel il est inséré. Il est essentiel que la méthodologie de modélisation se
concentre sur deux aspects essentiels, qui sont : la précision du modèle dans sa région de
fonctionnement et la fonctionnalité particulière que le modèle est destiné à capter et à
reproduire.

Dans les sections suivantes, les trois axes sont abordés séparément, et les travaux effectués
pour chaque axe sont détaillés ainsi que les études de cas correspondantes qui valident les flots
et les concepts.

6. Contribution à l’élaboration de modèles de haut niveau basés sur
la connaissance à partir d’une netlist

L’outil que nous proposons permet d’accéder à l’information sur la consommation de puissance
pour des modèles décrits au niveau comportemental. Pour le moment, l’outil est limité à des
composants analogiques linéaires, même si la démarche est générique, et vise à une modélisation
basée sur SystemC AMS. Une première possibilité est de simuler le circuit à l’aide du MoC ELN.
Ce MoC offre la possibilité de modéliser et de simuler des sous-systèmes analogiques linéaires
en gardant l’aspect conservatif de l’énergie. Il est possible d’accéder à la valeur instantanée
du courant d’alimentation et de le remonter jusqu’au niveau d’abstraction plus élevé offert
par le MoC TDF à l’aide de convertisseurs de signaux d’ELN à TDF. Cette solution permet
d’atteindre un niveau élevé de détails, mais la simulation serait lourde en temps de calcule, en
particulier dans le cas de systèmes très complexes. Pour ces raisons, un niveau d’abstraction
plus élevé que celui offert par le MoC ELN est nécessaire. D’autre part, concernant les outils
de modélisation et de simulation AMS ne donne aucune information sur la consommation des
appareils à un haut niveau d’abstraction (SystemC AMS TDF MoC). Cette information est
disponible uniquement lorsque un choix d’implémentation est fait, et un modèle de bas niveau
de description est disponible (modèle ELN).

L’idée proposée est d’extraire automatiquement à la fois un modèle comportemental et
l’information pertinente la consommation d’énergie à partir d’une description de bas niveau
(netlist) d’un circuit linéaire. Ces informations sont ainsi remontées dans un modèle de haut
niveau afin que les informations de puissance soient propagées lors de la simulation. Ainsi, à
chaque cycle de simulation, il sera possible d’extraire les courants d’alimentation électrique
associés à chaque composante du système et d’utiliser le résultat afin d’estimer la consommation
d’énergie du système global.
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7. Contribution à l’élaboration de modèles basés sur la
connaissance à partir de données de simulation

7.1. Macro modélisation de composants statiques pour la simulation en SystemC
AMS

En ce qui concerne les blocs statiques, où la sortie au moment “t” ne dépend que de la valeur
des entrées en même temps “t” comme dans la fonction Y (t) = f(X(t)) où “f” a une forme
arbitraire, souvent non-linéaire. Par conséquent, il n’y a pas de mémoire impliqué. La fonction
“f” pourrait avoir des fortes non-linéarités et dans certains cas, l’expression analytique de “f”
n’est pas connue, donc seulement un ensemble de points est disponible ou une représentation
graphique. Dans ces cas, la fonction “f” peut être approximé par une équation analytique
simple obtenue au moyen de différentes méthodes comme l’interpolation, l’approximation par
ajustement (fitting), le développement de Taylor. La Figure 4 montre le flux utilisé pour des
composants analogiques statiques non linéaires, ce qui pourrait également être appliqué au
cas trivial des comportements statiques linéaires. La dernière colonne de droite fait référence
explicitement à un modèle décrit en SystemC AMS.

Analytical expression
    of "f" not known

TDF MoC

X(n)

Y(n)

Y(t)=f(X(t))

   Device
simulation

Set of Y values
  for different 
      X values

 Polynomial
interpolation

Polynomial
    fitting

     Analytical
approximation
         of "f"

SCA_TDF_MODULE
void processing()
{
 temp=f(X.read());
 out.write(temp);
}

Figure 4.: Macro modélisation de composants non lineaires statiques en SystemC AMS.

7.2. Macro modélisation de composants dynamiques pour la simulation en
SystemC AMS

Pour les blocs dynamiques, les valeurs des sorties dépendent des valeurs des entrées à l’instant
courant, mais aussi à aux instants précédents. Ce type de comportement peut être modélisé en
SystemC AMS en utilisant le MoC TDF ou le MoC ELN. La modélisation des non linéarités
de blocs dynamiques n’est possible qu’en utilisant une linéarisation autour d’un point de
fonctionnement. Le MoC ELN est en outre limité à l’utilisation de blocs de construction de base
disponibles dans les bibliothèques. D’autre part, le MoC TDF peut être utilisé pour représenter
tout comportement linéaire en termes de leur fonction de transfert ou de leur représentation
d’état. L’approche illustré dans la Figure 5 et utilise le MoC TDF. Si la fonction de transfert de
Laplace du dispositif est connue, celle-ci peut être instanciée en SystemC AMS à l’aide d’une
représentation polynomiale ou sous forme de pôles et zéros.
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Figure 5.: Macro modélisation de composants dynamiques en SystemC AMS au moyen d’une approxi-
mation linéaire.

8. Contribution à l’élaboration de modèles boîte noire à partir de
données empiriques

Une extension des bibliothèques SystemC AMS a été développée. Cette bibliothèque permet
d’automatiser le flot de notre scénario de modélisation, à partir d’un fichier de données d’ondes
d’entrée/sortie échantillonnées jusqu’à la construction et instanciation d’un modèle SystemC
AMS adapté du système identifié.

Figure 6 montre en trois axes la méthodologie à différents niveaux de détails. Sur la gauche
se trouve le concept, nous partons de la simulation d’un modèle de bas niveau jusqu’à la
construction et instanciation d’un modèle AutoRégressive à variable eXogène (ARX). Au centre
de la figure se trouve un scénario possible dans lequel les résultats de formes d’ondes d’une
simulation transitoire au niveau du transistor sont utilisés pour obtenir le vecteur de paramètres
Θ du modèle ARX. Sur la droite le flot est mieux expliqué avec des valeurs.

9. Application des techniques d’identification de système à la
commande en boucle fermée pour l’optimisation de
consommation de puissance. Cas d’étude d’un LNA

Une nouvelle approche pour réduire la consommation d’énergie dans les dispositifs RF est
ici décrite. La méthode est basée sur l’adaptation de la tension d’alimentation par le biais
d’une stratégie de contrôle logique. Cette stratégie s’appuie sur des capteurs embarqués, sur
l’identification de paramètres en temps réel et sur l’estimation des performances. Des
économies d’énergie importantes ont été démontrées au niveau transistor pour un LNA RF
avec différents modes de performance. L’algorithme de contrôle peut garantir les spécifications
requises pour chaque mode de performance malgré les écarts paramétriques en raison du
processus de fabrication ou du mécanisme de vieillissement.

Dans le cas d’étude d’un amplificateur faible bruit (LNA) des simulations en Verilog-
A/Cadence-Spectre ont permis de valider l’économie d’énergie apportée par la méthodologie à
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Figure 6.: Le concept de l’extension de SystemC AMS pour l’identification de systèmes.

bas niveau (niveau transistor pour le LNA). D’un point de vue plus abstrait, si la description
matérielle de la partie numérique du système doit être simulé, une solution prometteuse serait de
décrire la CUC analogique au moyen des MoCs de SystemC AMS et de mapper les algorithmes
numériques de contrôle et identification récursive sur un modèle SystemC d’un simulateur de
jeu d’instructions (Instruction Set Simulator : ISS). Une telle solution permettrait de décrire
avec précision le temps d’exécution de l’algorithme en fonction de la quantité de ressources
matérielles (mémoires ou fréquence d’horloge du processeur). Cela permettrait une exploration
d’architecture au niveau système afin de mettre en œuvre la méthodologie de commande
adaptative présentée.

10. Cas d’étude de la conception de l’interface microélectronique
pour un capteur chimique SAW

La méthodologie pour la construction d’un macro-modèle à partir des réponses en fréquence
(branche bleue) est appliquée à un capteur chimique basé sur des ondes acoustiques de surface
(SAW). Le capteur a été modélisé, simulé avec son interface microélectronique de frontend et
fabriqué. Deux niveaux de modélisation de l’interface microélectronique du capteur basée sur
une boucle à verrouillage de phase (PLL) ont été analysés. Le premier consiste en une simulation
Verilog-A/Cadence-Spectre, cette simulation a permis la conception au niveau du transistor et
du layout de la PLL, et la fabrication de puces de test. Pourtant ce niveau d’abstraction ne
permet pas d’envisager la simulation d’un nœud complet d’un réseau de capteurs chimiques sans
fils (WSN). Le deuxième niveau de consiste en modéliser l’interface du capteur chimique à l’aide
de SystemC AMS/SystemC. Les modèle ont été réalisés à partir des résultats de la simulation
de la réalisation au niveau du transistor montré dans nos précédents travaux [Cenni 09a]. Il a
été montré qu’une modélisation SystemC AMS/SystemC pourrait reproduire assez précisément
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les simulations au niveau transistor si on choisi une valeur assez petite du pas de simulation
temporel. Le concept clé est que l’analyse au niveau transistor conduit à la conception et
fabrication de la puce d’interface du capteur chimique tandis que l’analyse SystemC AMS vise
plutôt à une étude de faisabilité au niveau du système.

11. Conclusions

Good 
knowledge of 

the physics of 

the system 

(netlist or 

schematic) 

Building of a 
knowledge-

 ledom desab

Structural 
analysis of the 

system (from 

FEM or other) 

Frequency 
domain 

response 

waveforms 

Fitting on a 
linear transfer 

function 

Physical AMS 
IP: testable / 
measurable 

Black-box modeling 

Representation models 

Virtual AMS IP: 
simulateable 

High level behavioral model 

DuCxy

BuAxx

):

):

01

1n

1n

n

01

1m

1m

m

asa..sas

bsb..sbG(s

))))

)))) ) )(k),f((k)y iii :

Test-bench integration 

Simulation 

Modeling of knowledge Experiment/Simulation 
based modeling 

Any Input/
Output data 

source  

 Input/Output   elif atad 

SAW 
chemical 

sensor 

 
Methodology: “i/o or characterization”  

to “representation model”  

Developed libraries: 

i/o to TDF ARX model generator 

Matlab 

Transfer 
function 

Laplace 
VerilogA 

image sensor, 
charac to ARCTG model 

 Test/Monitoring 
LNA, i/o to NARX 

VerilogA / Spectre 

Laplace 
SCA-TDF 

SystemC   SMA / 

VerilogA / Spectre 

NARX 
VerilogA 

SystemC / AMS / TLM 

 ledom-GTCRA
SCA-ELN/TDF 

Bode 
plot 

Circuit 
netlist 

Informati
on to be 

extracted 

Customized 
state space 

model  

SystemC   SMA / 

Figure 7.: Méthodes de modélisation comportementales et cas d’études.

La Figure 7 montre les cas d’étude abordés à l’intérieur du synoptique qui décrive les flots
de modélisation. Dans le cadre de la modélisation des connaissances la méthodologie pour la
construction d’un macro-modèle à partir des réponses en fréquence (branche bleue) est appliqué
à un capteur chimique basé sur des ondes acoustiques de surface (SAW). Le capteur a été
modélisé, simulé avec son interface microélectronique de frontend et fabriqué. Dans le cadre de la
modélisation des connaissances à partir de la netlist d’un circuit, la procédure pour l’extraction
d’une représentation d’état personnalisée a été étudiée et mise en œuvre pour l’environnement
SystemC AMS, cela permet de générer un signal contentant la puissance instantanée consommé
à chaque instant de la simulation.

Dans le scénario de la modélisation basée sur des simulations, une bibliothèque d’extension
a été développée pour la construction de modèles AutoRégressifs à variable eXogène (ARX).
La méthodologie de modélisation à boîte noire est appliquée à l’étude de cas d’un amplificateur
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faible bruit (LNA). Sur l’extrême droite de la Figure 7 un modèle comportemental d’un LNA
est obtenue par une identification du système par des données de simulation non seulement à
fin de simuler le LNA dans un émetteur-récepteur RF complet, mais aussi pour surveiller et
contrôler de manière adaptative les performances du LNA. Les concepts des statistiques sont
ici exploités à des fins de surveillance et contrôle de performances et pour des buts de test du
dispositif.

Dans le scénario de la modélisation basée sur des expériences, un capteur d’image CMOS
industriel a été modélisé. Des modèles comportementaux de ce dernier ont été mis au point par
des données expérimentales obtenues a travers une caractérisation opto-électrique de la réponse
à la lumière du capteur d’image.



Cas d’étude industriel : capteur d’images
CMOS

12. Motivation

Dans ce chapitre, un capteur d’image CMOS (CIS) sur la base la plateforme d’acquisition
vidéo est modélisé en utilisant l’environnement SystemC. Un système d’acquisition d’image est
composé de trois blocs principaux : un capteur d’image suivi par un processeur de d’images
(ISP) et une unité centrale de traitement (CPU).

Ce travail se concentre sur le développement d’un modèle fiable et précis du comportement
d’un CIS de STMicroelectronics dans le but de simuler son fonctionnement au sein de son
environnement. Aujourd’hui, le développement de logiciels embarqués ne démarre que lorsque
la CIS est physiquement disponible. Le logiciel est débogué et validé au moyen d’ensembles
d’images émises par un capteur réel. Si des retards sont accumulés au cours du processus
de conception il n’y aura pas beaucoup de temps pour le développement de logiciels, ceci
débouchera sur un logiciel non-fiable ou dans un délai de mise sur le marché.

Puisque l’ISP doit également être en mesure de contrôler les paramètres du capteur,
l’interopérabilité entre le capteur et l’ISP est normalement contrôlée en connectant une carte de
test contenant un circuit logique programmable (FPGA) et une vraie puce de test du capteur
avec un PC. Sur ce dernier tourne un modèle du materiel de la plateforme numerique avec
le processeur cible (Instruction Set Simulator : ISS). Un prototype virtuel de l’ensemble du
système permettrait d’éviter, à des stades préliminaires de conception, l’utilisation de cartes
pour une première validation du système. Cela permettrait également de valider les algorithmes
de l’ISP a travers des simulations et de les régler pour déterminer leurs conditions de travail
limite. En ce qui concerne un CIS, des signaux électriques analogiques et numériques sont
impliqués aussi bien que des quantités analogiques optiques.

13. Modélisation du CIS

Le modèle SystemC AMS est composée d’un cluster TDF, comme le montre la Figure 8. Trois
pas de temps de TDF sont présents dans le modèle : le temps de trame (modules TDF exécutés
à chaque temps de trame), le temps de pixel (modules TDF exécutés à chaque temps de pixel)
et le temps de ligne pour l’exécution des convertisseurs analogique/numérique (ADC). Les
trames du flux vidéo sont transmises d’un bloc à l’autre de la chaîne. Les images peuvent être
générés de trois façons dans le modèle (voir Figure 8) :

• IIB : la premier émule la capture d’un objet en mouvement sur un fond fixe (appelée
constructeur de l’image d’entrée (IIB). L’IIB est composé de deux sous-modules, le module
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constructeur du fond (BGB) et le module constructeur de l’objet (OB). Le BGB construit
le fond de l’image et l’OB dessin un objet sur le fond (une voiture par exemple). L’OB
modélise également l’effet de la capture à volet roulant (Electronic Rolling Shutter : ERS)
sur une voiture en marche.

• DB : la deuxième émule la situation d’un CIS inséré dans une boîte sombre avec des
scénarios (charts) d’entrée et des conditions de lumière contrôlables, appelée boîte noire
(DB). Le module environnement (ENV) fournit trois signaux de commande TDF au bloc
chargeur d’image (IL). Les contrôles sont les suivants : quel chart doit être chargé entre
les charts standardisés prédéfinies (scénarios), quelle est la couleur et l’intensité de la
lumière qui illumine le chart. Le DB émule le fonctionnement d’une boîte noire contenant
un ensemble de diodes électroluminescentes (LED) rouges, verts, bleus et blancs contrôlés
par des signaux modulés à largeur d’impulsion (PWM).

• Chargeur de fichier : le troisième permet le chargement direct de fichiers d’image de
référence.
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Figure 8.: Synoptique du modèle en SystemC AMS TDF du capteur d’images.

L’image délivrée par le DB ou IIB ou le chargeur de fichiers (Figure 8) est codée sur un
nombre de bits paramétrique et envoyé au module émulant la lentille. L’image est envoyée au
module émulant le filtre Bayer (BF) qui, à son tour, envoie les données à la partie intérieure du
modèle, où le pas de temps TDF est réduit et l’ensemble de la matrice de pixels est balayée
par une instance du module pixel. Le contrôleur pilote le pixel avec les signaux lumineux en
provenance du filtre Bayer. Le pixel contient quatre photodiodes pilotées par les quatre signaux
lumineux et par la valeur du temps d’intégration. Les signaux lumineux sont mis à jour, au
début de chaque décharge. La valeur de tension à la fin du processus de décharge Vx est donnée
en sortie par chaque photodiode suivant l’équation modélisant la décharge. La tension de colonne
Vx est ensuite envoyé au banc de CAN (module ADC ) et échantillonnés.
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14. Comparaison de performances entre les modèles du CIS

Le Tableau 1 évalue les performances des différents modèles de CIS développés. Puisque les
tailles des trames simulées sont différentes, les temps de simulation pour une trame ont été
relativisés au pixel afin d’effectuer une comparaison. Le temps de simulation pour un pixel est
calculé en divisant le temps de simulation pour une trame par le nombre de pixels de la trame.
Le modèle VHDL-AMS est celui de référence pour calculer le gain en temps de simulation
obtenu par les autres modèles.

Table 1.: Comparaison entre les vitesses de simulation des différents modèles.

Model Size
Sim time

Time step
Sim Time Speed-up Speed-up

for 1 frame for 1 pixel ratio ratio

VHDL-

2x496 2h 30mn

Maximum

Ref = 9s 1AMS time step

reference = 5ns

ELN for

48x48 10mn

TDF

0.26s 1 x35photo diodes time step

only+TDF =0.5µs

TDF array

48x48 2mn 40s

TDF

69ms x3.7 x131of pixels time step

instantiated =0.5µs

TDF one

640x480 10s

50 TDF steps

32.6µs x7 949 x278 220pixel sweeping per pixel→

the array waveform

TDF one

1920x1080 7s

1 TDF step

3.4µs x77 142 x2.7e6pixel sweeping per pixel→

the array no waveforms

↓

1920x1080 2s

1 TDF step

0.96µs x270 000 x9.2e6Enhancement to per pixel→

one “controller” no waveforms

Le modèle plus rapide est développé en SystemC AMS, ce modèle conduit à 2 secondes de
temps de simulation pour l’acquisition d’une trame de 2 méga pixels (dernière ligne du Tableau
1). Ce gain est équivaut à un facteur d’accélération d’environ 5 ordres de grandeur par rapport
au modèle écrit en SystemC AMS ELN et TDF, et de 7 ordres de grandeur par rapport au
modèle VHDL-AMS, toutefois le niveau de précision est nécessairement réduite. Un temps de
simulation rapide est crucial si le modèle du CIS est destiné à fonctionner dans la plate-forme
globale SystemC TLM. Nous pouvons observer que le modèle ELN-TDF est équivalent au
modèle VHDL-AMS en termes de niveau d’abstraction, toutefois celui-ci présente un gain
d’environ 35 fois. Cela démontre la pertinence de SystemC AMS comme aide à la conception
au niveau RTL. Le modèle SystemC AMS TDF plus rapide atteint un formidable facteur de
speed-up, mais le niveau de précision est réduite dans le sens que sa simulation ne permet pas
de tracer des formes d’onde des signaux qui sont, par contre, nécessaires pour le concepteur
matériel/RTL. Cependant, cette modélisation de haut niveau peut permettre de prendre en
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compte de nombreux aspects qui ne seraient pas possible de modéliser à l’aide VHDL-AMS en
raison de leur poids de calcul. Notamment ces aspects sont : l’adsorption du filtre Bayer, la
modélisation de la lentille et, évidemment, l’interaction avec la plate-forme SystemC TLM qui
décrit le matériel numérique entourant le CIS. Ces raisons rendent le modèle approprié pour le
développement/débogage du logiciel embarqué et pour la validation des algorithmes de l’ISP.



Conclusions

Conclusions
Dans cette thèse, j’ai travaillé sur la modélisation à un niveau comportemental de systèmes
multi physiques, hétérogènes et à signaux mixtes.

Cette modélisation comportementale est destinée à fournir de nombreux bénéfices au flot
de conception d’un système sur puce complexe contenant une partie analogique importante,
principalement des capteurs et des actionneurs.

Pour effectuer une vérification complète du système il est proposé de composer les modèles
comportementaux des IPs dans une plateforme virtuelle du système complet en utilisant un
environnement unifié basé sur le langage C++. Plus précisément un grand nombre d’avantages
peuvent être fournis par cette méthodologie, tels que l’exploration d’architecture, l’estimation
des performances, validation de la réutilisation des IPs (IP reuse), la vérification du couplage
entre les domaines du RF, analogique et numérique, la vérification précoce du développement de
logiciels embarqués avec le débogage éventuel, la vérification de l’interopérabilité avec d’autres
systèmes, et l’évaluation de l’impact d’autres bancs de test sur le composant cible.

En outre, la validation par le biais de prototypes virtuels permettra de tester la pertinen-
ce/conformité d’IPs pas encore disponibles à l’intérieur du système cible. Ceci permettrait de
réduire la dépendance de la date de démarrage de la conception par rapport à la disponibilité
d’un prototype matériel de l’IP afin d’anticiper le processus de conception de futurs produits et
par conséquent, pourquoi pas, d’anticiper les avancées technologiques.

En ce qui concerne les techniques de modélisation, dans cette thèse trois flots sont présentés
pour la construction de modèles analytiques et pour la réduction du dégrée de complexité de
ces modèles.

Tout d’abord, une technique de modélisation comportementale en partant de la description
sous forme de netlist, a été décrite et automatisée. Le but étant d’extraire des informations
considérées d’importance par le concepteur sous la forme de représentation d’état.

Deuxièmement, les techniques basées sur l’ajustement analytique de réponse en fréquence
sont explorées avec le but de réduire l’ordre du modèle ou bien pour identifier des modèles
analytiques et donc simulables à partir de l’analyse effectuée avec d’autres outils de CAO
spécifiques à l’application.

Enfin, des techniques d’identification de systèmes sont étudiées pour l’extraction de modèles
boîte noire à partir de données obtenues de manière empirique, soit à partir de simulations de
modèles précis ou à partir de données de mesure. Une bibliothèque preuve-du-concept a été
mise en œuvre en utilisant SystemC AMS, celle-ci démontre l’applicabilité de la méthodologie.

Les techniques de modélisation comportementales ont été exploitées pour la conception et
pour des buts de test et contrôle dans deux études de cas majeurs. D’un côté, la conception de

201



202 Conclusions

l’interface microélectronique d’un capteur chimique de vapeurs de mercure basé sur des ondes
acoustiques de surface (SAW) a été faite. Cette méthode de conception exploite les techniques
de modélisation à base d’approximations pour exécuter des simulations de bas niveau jusqu’au
niveau layout. De l’autre côté, les techniques d’identification de systèmes sont appliquées à
la modélisation d’un amplificateur faible bruit (LNA). Ce cas d’étude vise à une commande
automatique du LNA par une estimation de ses performances à partir des paramètres du modèle.
Cette boucle de rétroaction est destinée à la minimisation de la consommation d’énergie d’un
émetteur-récepteur RF.

Bien que les outils développés pour l’extraction de modèle comportemental soient principa-
lement orienté sur l’extension AMS du noyau de SystemC, la méthodologie peut être appliquée
à d’autres langages de description matérielle analogiques (AHDL) tels que VHDL-AMS et
Verilog-AMS.

Par la suite, le caractère industriel de la thèse à conduit à concentrer les efforts de modéli-
sation sur un capteur d’image CMOS (CIS). Les modèles du capteur d’image sont extraits à
différents niveaux en utilisant différents modèles de calcul de SystemC AMS. Cette modélisation
à différents niveau montre des gains en temps de simulation impressionnants.

L’intégration des modèles AMS du CIS dans différentes plates-formes virtuelles d’acquisition
d’image en SystemC a été faite. Tout d’abord, l’intégration dans une plateforme SystemC TLM
2.0 preuve-du-concept a été achevée. Deuxièmement, le modèle SystemC AMS du CIS a été
simulé dans une plateforme SystemC précise au bit. Cette plateforme est composée des nœuds
d’un réseau de capteurs sans fils (WSN) pour une application automobile, cette application vise
l’assistance au système de freinage des voitures afin d’éviter la collision. Par la suite, le modèle
a été intégré dans deux différentes applications industrielles. Dans les deux cas l’interfaçage
analogique/numérique entre les MoCs de SystemC AMS et les protocoles SystemC-TLM de
STMicroelectronics a été validé.

Le client industriel ST-Ericsson est actuellement à la validation de la plateforme virtuelle
TLM qui contient le modèle du CIS. Tant la partie analogique que la partie numérique sont ainsi
décrites en utilisant l’environnement SystemC, respectivement AMS et TLM. La méthodologie
de conception/vérification basée sur SystemC AMS est en cours d’adoption par ST-Ericsson
dans le cas d’un SoC AMS pour les applications mobiles. L’applicabilité de la méthodologie
pour le flot de conception industriel est prouvée et permettra un développement/débogage
précoce du logiciel embarqué pour des SoCs AMS.

Considérations et perspectives
La naissance des langages de description matérielle analogiqueset mixtes (VHDL-AMS et
Verilog-AMS) a permis la validation de systèmes AMS et numériques avec de petites quantités
de logiciel embarqué. Poussé par la complexité sans cesse croissante des systèmes sur puce,
les outils/langages de modélisation exigent de faire abstraction à une vue de plus haut niveau
qu’on peut définir comme “niveau système”.

Du côté du numérique l’environnement SystemC offre une couverture de ce besoin au
niveau système grâce à SystemC-TLM. Les extensions AMS de SystemC offrent maintenant
les capacités de modélisation génériques de haut niveau même pour les parties AMS. D’autres
modèles de calcul peuvent toujours être branchés sur l’architecture de SystemC, mais une
définition de l’interface normalisée pour le branchement doit être fournie.
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Le chef d’équipe en charge du prototypage virtuel en SystemC-TLM de ST-Ericsson a déjà
déclara ce qui suit : “Le développement/débogue du logiciel commence normalement une fois que
les prototypes matériels sont disponibles et juste deux mois sont alloués pour le débogage avant
que le produit soit vendu. La méthodologie basée sur TLM met à disposition des prototypes
virtuels de la plateforme environ 9 mois avant la disponibilité de prototypes matériels. Ces
prototypes virtuels sont adaptés pour le développement/débogue du logiciel embarqué. Un tel
développement/débogue peut donc commencer avant la disponibilité du prototype matériel.
Cela assure une plus grande fiabilité du logiciel, d’où une faible probabilité de bouges, et jusqu’à
deux mois de gain du temps de mise sur le marché dans le cas idéal optimiste” (voir Figure 9).

time 

[months]T0 T0+2T0-9

virtual 

prototype

HW

prototype sell

2 months for 

SW dev/debug

9 more months for 

SW dev/debug

Figure 9.: Gain de temps et de fiabilité de SoCs AMS.

Un flot de conception entièrement automatisé de systèmes AMS à partir des spécifications à
l’exploration d’architecture au moyen de simulations au niveau du système, jusqu’au layout (en
passant par la synthèse de l’RTL) est encore assez loin d’être mature. Toutefois une validation
du système grâce à une simulation de l’AMS/RF/numérique HW et SW dans un environnement
C++ unifié est désormais une réalité.

Afin d’améliorer la réutilisation des IPs pour accélérer la phase de conception, la réutilisation
des modèles n’est pas suffisante. En ce qui concerner le numériques, l’aspect de l’emballage
(packaging) des IPs est couvert par le standard IEEE 1685-2009 IP-XACT (développé par le
consortium de Accellera Systems Initiative. En ce qui concerne le côté AMS, le consortium
du projet européen CATRENE MEDEA+ appelé Beyond-Design Refinement of Embedded
Analog and Mixed-Signal Systems (Beyond-DREAMS) [Beyond-DREAMS 11] a soumis une
proposition pour les extensions AMS de IP-XACT afin de gérer les spécifications pour les ports
analogiques quand un IP AMS doit être emballé.

Dans la continuation du projet européen Beyond-DREAMS un autre projet européen
appelé Heterogeneous-INCEPTION est en cour de démarrage. Ce projet visera à renforcer
les capacités des extensions de SystemC AMS pour la modélisation de plates-formes multi
capteurs/actionneurs pour l’optimisation de la consommation d’énergie. Du point de vue
technique, il est prévu par la communauté SystemC AMS d’ajouter le support pour l’analyse
aux éléments finis, des extensions pour les comportements non-linéaires, un pas de simulation
TDF dynamique et la possibilité de simuler une description type “graphe de liaisons” (bond-
graph). La polyvalence de l’environnement SystemC ouvre la voie à de futures applications et
champs de recherche sur l’hétérogénéité.
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