
HAL Id: tel-00722632
https://theses.hal.science/tel-00722632v2

Submitted on 17 Mar 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning Methods for Visual Object Detection
Sabit Ul Hussain

To cite this version:
Sabit Ul Hussain. Machine Learning Methods for Visual Object Detection. General Mathematics
[math.GM]. Université de Grenoble, 2011. English. �NNT : 2011GRENM070�. �tel-00722632v2�

https://theses.hal.science/tel-00722632v2
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Imagerie, Vision et Robotique

Arrêté ministérial

Présentée par

Sibt ul Hussain

Thèse dirigée par Bill Triggs

préparée au sein du Laboratoire Jean Kuntzmann
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Machine Learning Methods for
Visual Object Detection

Thèse soutenue publiquement le 07 Décembre, 2011
devant le jury composé de:

Mr. Andrew Zisserman
University of Oxford, England, Rapporteur
Mr. Jiri Matas
Czech Technical University, Czech Republic, Rapporteur
Mr. James Crowley
Institut Polytechnique de Grenoble, France, Examinateur
Mr. Fréderic Jurie
Université de Caen, France , Examinateur
Mr. Bill Triggs
Laboratoire Jean Kuntzmann (CNRS), Directeur de thèse

Dedicated to my beloved parents and grandparents.

Abstract

The goal of this thesis is to develop better practical methods for detecting common

object classes in real world images. We present a family of object detectors that combine

Histogram of Oriented Gradient (HOG), Local Binary Pattern (LBP) and Local Ternary

Pattern (LTP) features with efficient Latent SVM classifiers and effective dimensionality

reduction and sparsification schemes to give state-of-the-art performance on several

important datasets including PASCAL VOC2006 and VOC2007, INRIA Person and

ETHZ. The three main contributions are as follows.

Firstly, we pioneer the use of Local Ternary Pattern features for object detection,

showing that LTP gives better overall performance than HOG and LBP, because it

captures both rich local texture and object shape information while being resistant to

variations in lighting conditions. It thus works well both for classes that are recognized

mainly by their structure and ones that are recognized mainly by their textures. We also

show that HOG, LBP and LTP complement one another, so that an extended feature set

that incorporates all three of them gives further improvements in performance.

Secondly, in order to tackle the speed and memory usage problems associated with

high-dimensional modern feature sets, we propose two effective dimensionality reduc-

tion techniques. The first, feature projection using Partial Least Squares, allows detectors

to be trained more rapidly with negligible loss of accuracy and no loss of run time speed

for linear detectors. The second, feature selection using SVM weight truncation, allows

active feature sets to be reduced in size by almost an order of magnitude with little or

no loss, and often a small gain, in detector accuracy. Despite its simplicity, this feature

selection scheme outperforms all of the other sparsity enforcing methods that we have

tested.

Lastly, we describe work in progress on Local Quantized Patterns (LQP), a general-

ized form of local pattern features that uses lookup table based vector quantization to

provide local pattern style pixel neighbourhood codings that have the speed of LBP/LTP

and some of the flexibility and power of traditional visual word representations. Our

experiments show that LQP outperforms all of the other feature sets tested including

HOG, LBP and LTP.

Résumé

Le but de cette thèse est de développer des méthodes pratiques plus performantes pour

la détection d’instances de classes d’objets de la vie quotidienne dans les images. Nous

présentons une famille de détecteurs qui incorporent trois types d’indices visuelles

performantes – histogrammes de gradients orientés (Histograms of Oriented Gradients,

HOG), motifs locaux binaires (Local Binary Patterns, LBP) et motifs locaux ternaires

(Local Ternary Patterns, LTP) – dans des méthodes de discrimination efficaces de type

machine à vecteur de support latent (Latent SVM), sous deux régimes de réduction

de dimension – moindres carrées partielles (Partial Least Squares, PLS) et sélection

de variables par élagage de poids SVM (SVM Weight Truncation). Sur plusieurs jeux

de données importantes, notamment ceux du PASCAL VOC2006 et VOC2007, INRIA

Person et ETH Zurich, nous démontrons que nos méthodes améliorent l’état de l’art du

domaine.

Nos contributions principales sont :

Nous étudions l’indice visuelle LTP pour la détection d’objets. Nous démontrons que

sa performance est globalement mieux que celle des indices bien établies HOG et LBP

parce qu’elle permet d’encoder à la fois la texture locale de l’objet et sa forme globale,

tout en étant résistante aux variations d’éclairage. Grâce à ces atouts, LTP fonctionne

aussi bien pour les classes qui sont caractérisées principalement par leurs structures

que pour celles qui sont caractérisées par leurs textures. En plus, nous démontrons que

les indices HOG, LBP et LTP sont bien complémentaires, de sorte qu’un jeux d’indices

étendu qui intègre tous les trois améliore encore la performance.

Les jeux d’indices visuelles performantes étant de dimension assez élevée, nous

proposons deux méthodes de réduction de dimension afin d’améliorer leur vitesse et

réduire leur utilisation de mémoire. La première, basée sur la projection moindres carrés

partielles, diminue significativement le temps de formation des détecteurs linéaires,

sans réduction de précision ni perte de vitesse d’exécution. La seconde, fondée sur la

sélection de variables par l’élagage des poids du SVM, nous permet de réduire le nombre

d’indices actives par un ordre de grandeur avec une réduction minime, voire même une

petite augmentation, de la précision du détecteur. Malgré sa simplicité, cette méthode

de sélection de variables surpasse toutes les autres approches que nous avons mis à

l’essai.

vi

Enfin, nous décrivons notre travail en cours sur une nouvelle variété d’indice visuelle

– les « motifs locaux quantifiées » (Local Quantized Patterns, LQP). LQP généralise les

indices existantes LBP/LTP en introduisant une étape de quantification vectorielle –

ce qui permet une souplesse et une puissance analogue aux celles des approches de

reconnaissance visuelle « sac de mots », qui sont basées sur la quantification des régions

locales d’image considérablement plus grandes – sans perdre la simplicité et la rapidité

qui caractérisent les approches motifs locales actuelles parce que les résultats de la

quantification puissent être pré-compilés et stockés dans un tableau. LQP permet

une augmentation considérable de la taille du support local de l’indice, et donc de sa

puissance discriminatoire. Nos expériences indiquent qu’elle a la meilleure performance

de toutes les indices visuelles testés, y compris HOG, LBP et LTP.

Acknowledgments

Plans go wrong for lack of advice; many advisers bring success.

This thesis would not have been possible without the continuous support of my su-

pervisor, Dr. Bill Triggs. His enthusiasm, motivation and patience and his efforts to

explain things simply and clearly helped me to develop a sound understanding of the

subject area and to develop the results in the thesis. While writing the manuscript, he

provided me with sound advice and encouraged me to write in a simple, logical and

understandable way. I was fortunate to have a great mentor and adviser.

I would like to thank my thesis committee Professors Andrew Zisserman, Jiri Matas,

Frédérice Jurie and James Crowley for their encouragement and insightful comments. I

would also like to express my gratitude to all of my colleagues and friends with whom I

had the opportunity of working during this period, and to my teachers for helping me

to grasp the basics, for having confidence in me and motivating me through the difficult

times, and for persuading me to keep on advancing. I would also like to acknowledge

the broader research community for sharing their ideas so openly and the open-source

community for providing many useful programs that aided the work.

The Higher Education Commission of Pakistan and the European Commission (via

the research project CLASS) provided the financial support for this research. Without

this, my thesis would not have been possible.

I am indebted to my Pakistani friends and colleagues in Grenoble, who supported

me through thick and thin, sharing many joyful moments via different sports and events

and making my stay in Grenoble a time that I will always cherish.

Finally, and most importantly, my parents and grandparents deserve a special men-

tion for their continuous and unconditional love, support, sacrifices and prayers. They

deserve all of the credit for lighting the candle and keeping it alight without thought for

themselves. Nor can I forget the love of my dear sisters, who have always motivated and

inspired me and comforted me with their sweet gossip and laughter.

Contents

Abstract iii

Résumé v

Acknowledgments vii

1 Introduction 1
1.1 Challenges . 2
1.2 General Approach . 4
1.3 Main Contributions . 6
1.4 Thesis Organization . 7

2 State of the Art 9
2.1 Classifier Architecture . 10

2.1.1 Bottom-Up Approaches . 10
2.1.2 Top-Down Approaches . 11

2.2 Descriptors . 12
2.3 Classifiers . 14
2.4 Post-Processing . 17
2.5 Computational Efficiency . 18
2.6 Relationship to Past Work . 19

3 Training Methods and Evaluation Metrics 21
3.1 Training Mechanisms . 21
3.2 Non-latent Training . 22

3.2.1 Hard negatives . 23
3.2.2 SVM Algorithm . 23

3.3 Latent Training . 25
3.3.1 Latent Support Vector Machines . 25
3.3.2 Stages of Latent SVM Training . 26
3.3.3 Discussion . 27

3.4 Bilateral Symmetry . 29
3.4.1 Folding . 29
3.4.2 Mirrored Pairs . 30

3.5 Post-Processing . 31
3.5.1 Non-Maximum Suppression (NMS) 31
3.5.2 Bounding Box Prediction. 32

3.6 Evaluation Metrics . 32

x CONTENTS

3.6.1 Detection Error Tradeoff (DET) Plots 33

3.6.2 Precision-Recall Plots . 33

3.6.3 Recall-False Positive Per Image (Recall-FPPI) Plots 35

4 Feature Sets 37
4.1 Histograms of Oriented Gradients (HOG) 38

4.1.1 Implementation Details . 38

4.1.1.1 HOG Dimensionality Reduction 39

4.1.2 Results and Discussion for HOG 40

4.2 Local Pattern Features . 41

4.2.1 Local Binary Patterns (LBP) . 42

4.2.2 Local Ternary Patterns (LTP) . 44

4.2.3 Center-Symmetric Local Patterns (CS-LBP/LTP) 46

4.2.4 Parameter Settings for Local Pattern Features 47

4.2.4.1 Image Preprocessing . 47

4.2.4.2 Color Space . 48

4.2.4.3 Feature map structure . 49

4.2.4.4 Cell Normalization . 50

4.2.4.5 LTP Threshold . 52

4.3 Combinations of Features . 52

4.4 Speed . 54

4.5 Summary . 55

5 Dimensionality Reduction and Classifiers 57
5.1 Dimensionality Reduction . 57

5.1.1 Discriminant Subspace Projection 57

5.1.1.1 Partial Least Squares (PLS) 58

5.1.2 Feature Selection and Sparsity . 64

5.1.2.1 Boosting For Feature Selection 64

5.1.2.2 L1 Feature Selection . 65

5.1.2.3 Weight Truncation Based Sparse Classifiers 68

5.2 Nonlinear Classifiers . 74

5.2.1 Nonlinear Feature Extension . 74

5.2.1.1 Piecewise Feature Extension 75

5.2.1.2 Componentwise Quadratic Classifier 76

5.2.2 PLS Quadratic Classifier . 78

5.2.3 Cascade of Linear and Nonlinear Detectors 79

5.2.4 Discussion . 79

5.3 Summary . 80

6 Experiments 81
6.1 Parameter Settings and Detector Configurations 81

6.2 Results on the INRIA Person Dataset . 83

6.2.1 Non-Latent Detectors . 84

6.2.2 Latent Detectors . 86

6.2.3 Discussion . 86

6.3 The PASCAL Visual Object Challenge Datasets 92

CONTENTS xi

6.4 PASCAL VOC2006 . 93
6.4.1 Feature Sets . 94
6.4.2 Single versus Multiple Roots and Parts 95
6.4.3 Partial Least Squares Dimensionality Reduction 97
6.4.4 Sparsification . 98

6.5 PASCAL VOC2007 . 102
6.6 PASCAL VOC2010 . 104
6.7 ETHZ Dataset . 105
6.8 Summary . 106

7 Conclusions and Perspectives 109
7.1 Key Contributions . 109
7.2 Future Work . 111

A Local Quantized Pattern Feature Sets 115
A.1 Local Quantized Patterns . 116

A.1.1 Implementation Details . 117
A.1.2 Local Pattern Geometry and Sampling 118
A.1.3 Code Book Learning Method . 119

A.2 Results and Discussions . 120
A.2.1 INRIA Person Dataset . 120
A.2.2 PASCAL VOC2006 . 124
A.2.3 Discussion . 125

A.3 Summary . 126

References 129

Chapter 1: Introduction

The most incomprehensible thing about the world is that it is comprehensible.

Albert Einstein

We are living in a digital age. Digital cameras, internet connected computers and smart

phones are an integral and growing part of our lives. Image and video collections

are growing daily: besides personal collections, more than 5 billion images are hosted

on Flickr1, and around 2.1 billion videos on YouTube2. There is a common need

for intelligent machines that can summarize visual content and present it in readily

accessible forms, perform reasoning based on it, and augment it in intelligent ways. This

applies both to commercial media (images, film, television) and to images and video of

events from everyday life.

Although current computers and smart phones can handle computationally intensive

tasks, they are not yet able to performmany of the basic cognitive activities that a normal

person performs unconsciously many times throughout the day, and that form the basis

of his or her intelligent high level decisions. A case in point is the human ability

to interpret visual information, for instance to differentiate between similar object

categories like horse and mule or motorbike and bicycle, and to identify objects of the

same class despite very different shapes or appearances. For example, cruiser, sports,

touring, scooter, dirtbike, etc. are all recognized as kinds of motorbikes. Moreover, this

is possible despite clutter, occlusions and variations in appearance due to changes in

size, position, viewpoint, color, texture, etc.

One of the main goals of computer vision is to equip computers with artificial visual

systems having human-like image understanding capabilities so that the above goals

can be reached. One fundamental task of such systems will be the interpretation and

labeling of scene content. Such interpretation can occur at several levels within an

image:

1Flickr official blog.
2Number of returned search results for the video query ’*’.

2 Introduction

• Image classification is the task of annotating entire images according to the elements

present in them. It says what is present without necessarily saying where3.

• Object detection/localization is the task of identifying the presence, location and

extent of any instances of a given object class that are present in the image. Extent

can be indicated by, e.g., bounding boxes or pixel-level masks. Multiple categories

can be also detected, however identifying all instances of all of the object classes

that are present in everyday images is beyond current technology.

• Semantic segmentation is the task of labeling each image pixel with the object class

that it was generated by.

In this thesis we will be concerned exclusively with the detection/localization task. We

will use the words detection and localization interchangeably. Moreover, although all of

the above recognition tasks can also be performed at the level of specific individuals (a

given person or building), here we will focus on generic class level detection (“person”,

“car”, “horse”, ...).

Reliable practical object detectors would have many applications. Current image con-

tent management systems are based mainly on manually supplied meta-data provided

either by the uploading user or by a specially employed workforce. Annotation is tedious,

costly and error prone, and even at the best it seldom provides very complete coverage

(many instances are missed). Multi-category object detectors would allow images to be

labelled automatically based on their content, thus facilitating content-based browsing,

search and retrieval. Object detection would be also useful for intelligent environments,

for example surveillance systems could automatically identify intruders or aged people

in need of assistance, and smarts cars could use object/human detection coupled with

other cues to avoid collisions. Further application domains include gaming, robotics, en-

tertainment, advertising and manufacturing – indeed any application where intelligent

systems need to observe or interact with humans, objects or animals.

1.1 Challenges

We still have only a very rudimentary understanding of the higher levels of human

visual perception, but we know that it occupies a substantial portion of the brain – more

computation than is readily available with current desktop computers4 – takes several

3http://www.google.com/imghp
4Currently, the combined computers of the planet can perform “only” ∼6.4 × 1018 instructions per

second – similar to the maximum number of nerve impulses sent in a human brain per second – but in
the next 10-20 years individual computers will reach the same computational capacity. Also, although
computers are still quite weak at visual scene understanding, they are already stronger than humans
at many tasks including games such as chess and even at general knowledge quizzes – an IBM Watson
computer recently beat the best human champions in the quiz show Jeopardy.

1.1 Challenges 3

Figure 1.1: Some examples of images of man-made and natural object classes. These illustrate
some of the challenges faced by object category detectors.

years to acquire, and is much richer than current artificial vision systems. Psychophysical

studies suggest that a 6 year old child can recognize 10-30 thousand object categories

[Biederman 1987]. In contrast, current artificial detectors are based on “comparatively

simple” statistical pattern recognition techniques for individual classes, and despite

substantial progress made during the past decade, the detection of visual object classes

remains a challenging problem that receives a great deal of attention in the vision

community [Everingham et al. 2010b,a]. To be practical, any system must address the

following issues:

• Imaging factors: Real world objects appear under a wide range of illumination

conditions in both indoor and outdoor settings. The images may be locally under-

or over-exposed and specularities, shadows, etc., are common. Object images are

also highly viewpoint dependent: the depth dimension is lost; image scale varies

4 Introduction

due to the relative location of the sensor and object; and the appearance of complex

object classes varies significantly with viewing angle.

• Intra-class Variance: Within a given class, objects can exhibit widely varying

shape, color and texture. For example the car category includes convertibles,

coupés, hatchbacks, limousines, etc. Natural classes such as person, cat, dog, etc.,

also have a wide range of articulated poses and non-rigid deformations, resulting

in highly variable object layout and appearance.

• Background Clutter: Objects appear against a wide range of backgrounds, often

in close proximity to or direct interaction with neighbouring objects.

• Occlusion/Truncation: Objects are often occluded by other objects that lie in front

of them or truncated by the borders of the image, so that only a portion of the

object is visible.

Image categorization methods also have to cope with these challenges, but object de-

tection remains somewhat harder because: (i) it has to recover the object locations and

sizes despite pose and appearance variations, occlusions, truncations, etc.; (ii) it has to

detect each object in the image, not just say whether at least one object of the class is

present; (iii) the criteria for success are often stricter – for example, a small person in

the background might be irrelevant for scene-type classification but highly relevant

for a military surveillance application. These difficulties are apparent in performance

figures. For example, in the PASCAL VOC2010 visual object classification and detection

challenges [Everingham et al. 2010a], the best object localization methods have precision

scores ∼2× lower than the best image classification methods. Figure 1.1 shows some

examples of challenging real world images containing common object categories.

1.2 General Approach

Given the above-mentioned challenges, the object detection problem appears to be too

complex to model analytically, so we resort to a learning-based approach in which a

diverse and representative set of training examples is used as a surrogate for a model.

Object detection is thus cast as a problem of classifying potential candidates proposed by

an underlying object position hypothesis generator, andmachine learning is used to learn

a decision rule for these hypotheses from a representative training set. This formulation

allows advances in machine learning to be leveraged and as with other machine learning

problems, many variants have been tested based on supervised, semi-supervised or

unsupervised learning of one class, binary or multiple class models. However it must

be emphasized that machine learning is only part of the solution. Successful object

detection requires a well chosen combination of effective visual representation, domain

1.2 General Approach 5

modeling and flexible classification, so a typical object detector must make choices in

three areas: the object position hypothesis generator; the set of visual descriptors used

to capture object shape, color and texture characteristics; and the object/non-object

classifier based on these features.

Broadly speaking, current systems can be divided into two main categories. In the

first, descriptors are computed only sparsely at locations given by some local feature

detector, and these positions are used to generate possible object hypotheses. In the

vision community such methods are generally known as local feature or constellation

models [Fergus et al. 2003; Leibe et al. 2004]. The local features provide a relatively

sparse set of hypotheses and hence a computationally efficient detector, and they also

allow voting over a relatively large and diverse set of object parts (local features), but

at present the underlying features that they are based on tend to be too local and too

generic to allow state-of-the-art levels of object discrimination. Models with many

inter-connected parts also tend to have high combinatorial complexities, although star-

or tree-structured topologies are typically adopted to reduce this.

In the second approach, a ‘sliding window’ detector is swept across the image at

multiple positions and scales, robust visual features are extracted at each window

position, and a window-level object/non-object classifier is evaluated on these, often

followed by post processing to merge overlapping duplicate detections. The dense

scan of the possible object locations in 3D scale-space makes the detector resistant to

scale and position changes, but it is computationally intensive and the final results are

critically dependent on the quality of the underlying classifier (particularly its false

positive rate, as most of windows tested are negatives). At present, sliding window

detectors give higher accuracies than local feature based approaches for most classes

[Everingham et al. 2010a], although the differences tend to be less pronounced on highly

deformable object classes like cat, dog, etc. and on classes with high degrees of intra-class

or viewpoint variability such as chair, boat, etc. The coarseness of the sampling steps

during the scale and position sweep also influences the performance significantly, as do

details of the training regime.

Both generative and discriminative approaches have been used to learn the un-

derlying classifiers. Generative classifiers define prior and likelihood models for the

appearance of class and non-class instances, deriving the output function indirectly

from the likelihood ratio of these, while discriminative models directly model the

class/non-class decision given the input features. Although generative approaches have

considerable long-term potential for deeper image understanding, the best current

object detectors are trained discriminatively.

The overall performance of any detector depends critically on three elements: the

feature set; the classifier and learning method; and the training set. Although some

detectors based on a single type of feature (e.g. Histograms of Oriented Gradients [Dalal

6 Introduction

2006]) give good performance, experience suggests that better results can usually be

achieved by incorporating several kinds (“channels”) of features. In particular, almost

all of the best-performing methods in recent PASCAL VOC detection challenges have

used several feature channels, combining these with detectors that incorporate multiple

aspects (object appearance models) and displaceable parts. Furthermore, although we

will not investigate this here, it has recently become popular to incorporate segmentation

or contextual cues in either the feature set or in post-processing steps to further improve

the performance. A sliding window detector must typically scan tens of thousands

of windows per image, so the use of any method that is computationally expensive at

the window level makes the complete scanning of the image extremely slow. This is

particularly true during training, where multiple iterations over the training set are

typically required to include selected “hard” negatives (there being too many negative

windows to include all of them explicitly in the initial training set) and resolve aspect

choices and part filters and positions.

1.3 Main Contributions

The goal of this thesis is to develop better practical methods for detecting common object

classes in real world images. The focuses are feature sets, dimensionality reduction

and sparsity. Our sliding window detector combines three powerful feature sets, Local

Binary Patterns (LBP) [Ojala et al. 1996], Local Ternary Patterns (LTP) [Tan and Triggs

2010], and Histograms of Oriented Gradients (HOG) [Dalal and Triggs 2005], with

[Felzenszwalb et al. 2009]’s Latent SVM approach incorporating multiple aspects and

parts. Our combined feature set gives excellent accuracy: our root-only detectors often

outperform state-of-the art root plus parts detectors with competing feature sets and our

root plus parts detectors have even higher accuracies. However feature sets of such high

dimension are slow to train and use so we also study two discriminative dimensionality

reduction techniques. The first, Partial Least Squares (PLS), allows detectors to be

trained more rapidly with no corresponding loss of run time speed or accuracy. The

second, a feature selection method based on SVM weight truncation, allows the size of

the active feature set to be reduced by an order of magnitude with a corresponding gain

in speed and little or no loss in accuracy. We also study several methods for including

a limited set of nonlinearities in the detectors without the prohibitive loss of speed

associated with kernel methods. Finally, in an appendix we describe work in progress on

a generalization of LBP/LTP features that we call Local Quantized Patterns (LQP). This

uses lookup table based vector quantization to provide local pattern style micro-local

appearance codings that have the speed of LBP/LTP and some of the flexibility and

power of traditional visual word representations.

Our main contributions can be summarized as follows:

1.4 Thesis Organization 7

• We pioneer the use of Local Ternary Pattern (LTP) [Tan and Triggs 2010] features

for object detection and show that they give better performance than either HOG or

LBP alone. Moreover, we show that HOG, LBP and LTP complement one another,

so that an extended feature set incorporating all three of them gives very good

performance.

• We study Partial Least Squares (PLS) as a discriminative dimensionality reduction

method to speed the training of linear detectors. The resulting method is as fast

and accurate as a standard linear detector at run time, but much faster to train.

We also present some nonlinear classifiers based on PLS that have slightly better

accuracies than the corresponding linear ones without much loss of speed.

• We show that for our detectors, a simple SVM weight pruning heuristic allows

the active feature set to be reduced in size by an order of magnitude with little or

no loss in accuracy, and sometimes even a gain. We perform a detailed compar-

ison that shows the advantages of our approach relative to other existing feature

selection methods.

• We show that all of the above techniques integrate well with the state of the art

multi-aspect/multi-part Latent SVM approach of Felzenszwalb et al. [2009].

• We present an extensive experimental evaluation of the influence of the various

components and parameters of these methods, and study their performance relat-

ive to other existing approaches on a selection of challenging publicly available

datasets.

• We present Local Quantized Patterns (LQP), an enriched form of Local Pattern

features that combines some of the advantages and flexibility of the local pattern

and visual codebook frameworks.

Overall, these contributions lead to significant improvements in detector perform-

ance, giving state-of-the-art results on several benchmark datasets.

1.4 Thesis Organization

The remainder of the thesis is organized as follows:

• Chapter 2 reviews the state of the art on object detection. After a brief survey of

the different types of object detectors, we present each main component of the

sliding window approach in more detail.

• Chapter 3 presents more details on the SVM training mechanisms, and the proto-

cols that we use for the detector evaluation.

8 Introduction

• Chapter 4 details the three feature sets that we use for object detection HOG,

LBP and LTP, and provides a study of the parameter settings used for both the

individual descriptor channels and combinations of descriptors.

• Chapter 5 describes our feature projection and selection methods, and our ap-

proaches to developing fast nonlinear classifiers.

• Chapter 6 presents the results of a detailed experimental study of our detectors

on each of the datasets that we use for detector training and evaluation, comparing

them to other state of the art methods.

• Chapter 7 presents our main conclusions and discusses some possible directions

for further work.

• Appendix A presents LQP, our fast vector quantized version of local pattern

features, and gives some preliminary experimental results on this.

Chapter 2: State of the Art

Research in visual object detection has gathered considerable momentum in the past

decade because it has finally reached the stage where many practical applications appear

to be within reach. Object detectors have to cope with the effects of varying illumination,

cluttered backgrounds, and widely varying image positions and scales. To adapt to these

difficulties, researchers have developed increasingly informative descriptors and power-

ful classifiers and training mechanisms. Currently, the major factors driving research

are, how to further improve the accuracy, reliability and computational efficiency of

the detectors (both during training and evaluation), and how to learn deeper image

models from less reliable or more weakly annotated training data. Improved accuracy

requires more powerful feature sets, classifier functions and training mechanisms, while

improved speed requires features and classifiers that are more efficient to evaluate and

methods to ensure that they are only evaluated at the necessary places. Although these

goals overlap, they can still be addressed somewhat independently.

Current object detection systems can be divided into two broad classes based on the

way that they approach the problem:

• Bottom-up approaches see objects as collections of parts or local appearance

fragments. They first use relatively generic visual features to find possible locations

for object parts, then combine these using geometric or statistical information

about part layout to hypothesize and evaluate possible object locations in the

image. Highly object specific and/or structural information is thus evaluated only

at a relatively sparse set of possible object locations.

• Top-down approaches view an object as a complete body, perhaps with parts as

sub-elements but always with a single large-scale “part” representing the entire

body. Such approaches typically use dense multiscale scanning of one or more

highly class specific templates across an image pyramid to detect object instances

and their extents.

The distinction between bottom-up and top-down approaches is not sharp. In particular,

recent top-down approaches often include subparts to better model object shape de-

formations and partial occlusions, and on the other hand recent bottom-up approaches

10 State of the Art

use coordinates relative to an object-level detection window to train and evaluate their

part detectors.

Irrespective of the approach employed, object detectors are critically dependent

on their visual descriptors and classifiers: the descriptors must distill the information

needed to detect the class into a readily usable form, which the classifier uses to make

the actual decision at the window level. Post-processing is often also included, e.g. to

remove multiple overlapping detections of the same object or to enforce contextual

constraints. Detectors can thus be classified according to their choices of feature set,

classifier architecture and post-processor.

This chapter provides a brief overview of current object detection approaches, partic-

ularly focusing on the various components of top-down detectors including feature sets,

classifiers and training, and post-processing methods, for increasing the computational

efficiency of the detector.

2.1 Classifier Architecture

2.1.1 Bottom-Up Approaches

Bottom-up approaches represent objects as collections of visually detectable parts or

fragments. They typically use an array of detectors to find sparse sets of candidate

positions for a diverse set of atomic object parts. Here “part” simply means a distinctive

and recurring visual pattern that is closely associated with the object, not necessarily a

semantic body part like leg, torso, forearm, etc. Given the set of candidate part detections,

the detector attempts to use information about the plausible relative locations of parts

to assemble the part detections into coherent object detections. To detect the parts,

either purpose-built detectors are developed for specific classes of parts (e.g. for human

limbs, arms, torsos, etc.) [Mohan et al. 2001; Ioffe and Forsyth 2001; Ronfard et al. 2002;

Mikolajczyk et al. 2004; Felzenszwalb and Huttenlocher 2005; Dalal 2006; Wu and

Nevatia 2007; Dollàr et al. 2008; Gall and Lempitsky 2009; Lin et al. 2009; Schnitzspan

et al. 2009, 2010] or a sparse set of distinctive visual patterns that are statistically

associated with the object is found, e.g. by some form of data mining [Agarwal et al.

2004; Shotton et al. 2005; Opelt et al. 2006; Leibe et al. 2008; Fergus et al. 2003, 2005;

Bouchard and Triggs 2005; Maji and Malik 2009; Vedaldi et al. 2009; Razavi et al. 2011].

Many of the distinctive pattern based detectors use descriptors over generic interest

regions [Lowe 2004; Kadir and Brady 2001; Förstner 1987] or edge/boundary fragments

[Shotton et al. 2005; Opelt et al. 2006] within a visual codebook learning framework

to find discriminative patterns for use as parts, subsequently learning statistical parts

models for their relative locations to produce a constellation style object model [Agarwal

et al. 2004; Shotton et al. 2005; Opelt et al. 2006; Leibe et al. 2008]. Using salient patterns

2.1 Classifier Architecture 11

of this kind provides invariance to small deformations, scale, orientation and viewpoint

changes, thus increasing the robustness of the detector. Conversely, most of the detectors

based on specific classes of parts use either template based detectors [Mohan et al. 2001;

Dalal 2006; Wu and Nevatia 2009; Schnitzspan et al. 2010] or densely sample patches

from the scale-space pyramid [Gall and Lempitsky 2009; Barinova et al. 2010] to locate

the positions and scales of the parts.

In addition to the differences in their parts detectors, bottom-up approaches adopt

several different methods of combining parts. The Constellation model of Fergus et al.

[2003] uses a joint Gaussian distribution over fully-connected parts. Many authors,

including [Fischler and Elschlager 1973; Felzenszwalb and Huttenlocher 2000; Ronfard

et al. 2002], use articulated kinematic tree structures. [Shotton et al. 2005; Opelt

et al. 2006; Leibe et al. 2008; Maji and Malik 2009; Gall and Lempitsky 2009] use star

structured graphical models, and [Agarwal et al. 2004; Schnitzspan et al. 2010] use

pairwise connections among part end points. Finally, some methods simply use the

responses of the part detectors as input to a second layer of training that infers the object

location without directly enforcing any within-parts relationships [Mohan et al. 2001;

Dalal 2006].

Bottom-up detectors are popular because they potentially allow partial occlusions

and unexpected variations in object pose to be handled. One might also hope that they

gain in robustness and reliability because they combine multiple sources of evidence

to generate the final object hypothesis. Unfortunately, their focus on local parts tends

to give them a rather myopic view of the image and they turn out to be sensitive to

the individual part detector responses and often combinatorially more complex than

top-down approaches. As a result, they are less accurate than top-down approaches in

current detector evaluations. Their main weaknesses are the relative unreliability of

small part detectors as compared to larger whole-object ones, and the complexity of the

spatial reasoning that is needed to efficiently combine sets of unreliable part detections

that include many misses and false alarms.

2.1.2 Top-Down Approaches

Top-down approaches make detection decisions mainly on the basis of the appearance of

the complete object, although recent methods often use features associated with implicit

parts as a component of this. Whole objects are typically too complex to generate reliable

responses from generic feature detectors (interest point, etc.), so top-down approaches

usually scan a dedicated object detection window densely across the image at multiple

positions and scales [Papageorgiou and Poggio 2000; Viola and Jones 2004; Dalal and

Triggs 2005; Zhu et al. 2006; Felzenszwalb et al. 2009; Zhu et al. 2010]. The simplest

methods of this type are essentially variants (with modern feature sets and classifiers) of

12 State of the Art

Generate scale-space

image pyramid

Threshold and

perform NMS

Compute features

Output Detections

Input Image

Scan pyramid with

learned classifier

Figure 2.1: An overview of the sliding window approach.

the old idea of scanning a rigid object-shaped template over the image and hence are

commonly known as sliding window detectors.

Figure 2.1 sketches the architecture of a typical basic sliding window detector. A

vector of highly discriminative local visual features is calculated at each location of an

image pyramid over the input image. A rectangular detection window is then scanned

more or less densely over the feature pyramid, at each location evaluating an object/non-

object classifier using the features in the window. The resulting pyramid of classifier

scores is then post-processed with thresholding and non-maximum suppression to

produce the final detections. The window level classifier is essentially a modern variant

of the traditional rigid object template.

Although basic top-down detectors have much simpler architectures than bottom-

up approaches, they give better performances in many realistic scenarios where the

object class being detected is comparatively “rigid” and unoccluded. More complex

top-down detectors implicitly encode spatial layout using dynamic programing style

best-candidate search for object parts or sub-regions [Felzenszwalb et al. 2009; Zhu et al.

2010; Ott and Everingham 2011].

2.2 Descriptors

Visual descriptors are a basic component of any object detection system. They must

capture sufficient information to distinguish class instances from non-class ones while

being resistant to photometric and geometric changes. People have tried many different

kinds of descriptors including: edges and gradients [Gavrila and Philomin 1999; Dalal

2.2 Descriptors 13

and Triggs 2005; Felzenszwalb et al. 2009], convolutional net filters [LeCun et al. 1998;

Garcia and Delakis 2004], wavelets and Haar rectangles [Mohan et al. 2001; Viola and

Jones 2004; Papageorgiou and Poggio 2000; Schneiderman and Kanade 2004; Dollàr

et al. 2008], Bag-of-Words descriptors [Blaschko and Lampert 2008; Harzallah et al.

2009], feature covariance matrices [Tuzel et al. 2006, 2008], local pattern texture features

[Wang et al. 2009], etc.

Early approaches were often based on rigid object-level templates – or in the case of

Gavrila and Philomin [1999], hierarchies of templates – that directly used pixel-level

features, but more recent approaches typically interpose some form of local spatial

pooling between the pixels and the template matching to provide greater resistance to

small spatial deformations of the object. For example, Scale Invariant Feature Transform

(SIFT) [Lowe 2004] and Histogram of Oriented Gradient (HOG) descriptors [Dalal and

Triggs 2005] are based on histogramming pixel-level oriented gradient descriptors into

the cells of a regular spatial grid, and recent Local Binary Pattern (LBP) descriptors

[Wang et al. 2009] do the same with pixel-level local pattern texture codes. HOG and

LBP are currently among the most popular descriptors for object recognition. Their

main advantage over simpler features like Haar wavelets is the high discriminative

power produced by locally-invariant pooling of features with high spatial resolution,

fine orientation resolution and strong resistance to illumination variations. We will

present HOG and LBP in detail in Chapter 4.

Another common family of visual representations is Bag ofWords (BOW) approaches,

where local appearance is characterized by histograms of vector quantized local image

patch descriptors (“visual words”). For example, [Blaschko and Lampert 2008; Lampert

et al. 2008] use vector quantized Speeded Up Robust Feature (SURF) descriptors [Bay

et al. 2008] computed at points sampled from a dense regular grid, and/or from ran-

domly selected or salient image locations. Other approaches such as [Harzallah et al.

2009; Vedaldi et al. 2009] use BOW enriched with multi-resolution spatial information

[Lazebnik et al. 2006; Bosch et al. 2007] to capture both the local object appearance and

its spatial layout.

Many recent methods enhance their performance by combining several feature sets

using either simple concatenation of window-level descriptor vectors, or combinations

of set-level kernels with weights chosen using multiple kernel learning. For example,

Schwartz et al. [2009] combine multi-level HOG [Zhu et al. 2006], color histogram and

texture co-occurrence [Haralick 1979] features. Wang et al. [2009] use HOG and LBP

features. Harzallah et al. [2009] combine HOG with SIFT based Bag-of-Word histograms

computed over a 3-level spatial pyramid [Lazebnik et al. 2006]. Vedaldi et al. [2009]

use multiple kernel learning to combine six feature sets including Bags-of-Words over

SIFT descriptors sampled both densely and at interest points, self-similarity descriptors

[Shechtman and Irani 2007] and edge based descriptors.

14 State of the Art

2.3 Classifiers

The window-level classifier uses the given visual descriptors to decide whether an object

class instance is present in the given input region or window. Typically, classifiers need

to be trained using a large set of manually annotated training examples. Various factors

govern the choice of the classifier architecture including the nature and dimensionality

of the input feature set, the size of the training set, speed considerations, the kind

of output needed (binary or multiclass classification) and the discriminative power

required for the task. The classifiers used for object detection range from decision

stumps over simple rectangular features [Viola and Jones 2004] to convolutional neural

networks [LeCun et al. 1998; Garcia and Delakis 2004] and Support Vector Machines

(SVMs) [Papageorgiou and Poggio 2000; Dalal and Triggs 2005; Felzenszwalb et al.

2009].

Bottom-up approaches can be trained either discriminatively or generatively. For

example, Opelt et al. [2006] use groups of boundary fragments as weak classifiers

in a discriminant AdaBoost learning framework while [Dollàr et al. 2008; Lin et al.

2009] use boosting in a Multiple Instance Learning framework to train both their

component part detectors and their complete object detectors. Conversely, Fergus

et al. [2003] use a generative model where the part appearance, shape and location

parameters are estimated using Expectation-Minimization, and likelihood ratios are

used for discrimination. Likewise, Schnitzspan et al. [2010] model part locations,

extents, etc. as hidden variables in a graphical model and use EM to estimate maximum

likelihood part configurations.

Current top-down approaches tend to be trained discriminatively. The two most

popular choices are SVMs [Cortes and Vapnik 1995; Joachims 1999; Schölkopf and Smola

2002] – which can use either linear or kernel representations – and Boosting [Freund

and Schapire 1996; Schapire and Singer 1999]. However even in these approaches some

generative and bottom-up ideas are used. In particular, the discriminatively trained

latent part positions of Latent SVM [Felzenszwalb et al. 2009] are analogous to the

maximum likelihood part positions obtained when instantiating generative approaches.

Support Vector Machines (SVM)

Support Vector Machines are a form of linear discriminant classifier that provides good

generalization by maximizing the margin – the separation between the boundaries of

positive and negative classes – under a norm constraint on the weight vector. Like most

other linear classifiers, they can either be used directly in linear form (the classifier

score is an affine function of the descriptor vector), or kernelized. Kernel SVMs usually

give somewhat better accuracy than linear ones, but they are much slower to run, and

training is often even slower if it requires the tuning of kernel hyperparameters via

2.3 Classifiers 15

cross-validation.

Papageorgiou and Poggio [2000] and Mohan et al. [2001] use overcomplete diction-

aries of Haar wavelets to train quadratic kernel SVM based object detectors. However

modern detectors typically use linear SVMs for speed, compensating for the loss of

accuracy by adopting extended feature sets. Dalal and Triggs [2005] use linear SVM

over HOG features. Similarly, Wang et al. [2009] use linear SVM over combined HOG

and LBP features in person detectors that also include explicit occlusion modelling.

Blaschko and Lampert [2008] cast the object detection problem as a structured learning

one, learning a mapping from the 2D image to 4D object localization box coordinates

using a generalized SVM algorithm.

Felzenszwalb et al. [2009] introduced Latent SVM, an enhanced form of linear SVM

that incorporates latent variables representing the exact positions and scales of the

detector root template (which is no longer required to coincide exactly with the training

annotation) and its subparts (if present), and that also has the ability to choose the best

of several alternative representations (‘aspects’) for each window. The main advantages

of this framework are that it allows sharper individual templates to be learned despite

small variations of the annotation windows in the training set, and that it provides a

natural extension to more flexible object models that include latent aspects and parts.

We will describe the Latent SVM architecture and training process in more detail in

Chapter 3. Similarly Zhu et al. [2010] use latent structural SVM learning to propose an

efficient method for training three layer hierarchical models.

Other recent methods either use cascades of linear and nonlinear classifiers for

improved speed and performance, or propose other optimizations that allow nonlinear

SVM detectors to be speeded up. For example, Harzallah et al. [2009] use a cascade of

linear and Chi-squared kernel SVMs for their object detectors. Vedaldi et al. [2009] use

Multiple Kernel Learning (MKL) to train cascades of linear, quasi-linear and nonlinear

classifiers. The MKL algorithm finds the optimal linear combination of an underlying

set of simple kernels for the given problem. Vedaldi and Zisserman [2010] expand

additive kernels (Intersection, Hellinger’s, and Chi-squared) in terms of dot products of

nonlinear basis functions of the features, thus allowing them to approximate the kernels

more efficiently. Similar approximations for additive kernels were proposed by Maji

et al. [2008]; Maji and Berg [2009].

Boosted Classifiers

Boosting is a stepwise greedy method for building a strong ensemble classifier from a

pool of much weaker candidate classifiers. At each step it uses an appropriately chosen

reweighting of the input data to choose a suitable new weak classifier to add to the

ensemble. In practice the weak classifier is often chosen from a comparatively small

16 State of the Art

random sample of the available candidates. Boosting succeeds whenever weak classifiers

can be found that are always at least a little bit better than random. There are a number

of different variants, but the original AdaBoost [Freund and Schapire 1996; Schapire

and Singer 1999] is probably still the most well-known and often-used variant despite

its known sensitivity to outliers.

In object recognition, boosting is often used in association with: (i) decision stumps

(thresholded features) over extremely large feature sets – where its greedy stepwise learn-

ing process allows the most relevant features/weak classifiers to be selected efficiently;

(ii) cascade-style detectors that prune out negatives progressively while descending

a cascade of increasingly complex and competent window-level classifiers [Viola and

Jones 2004] – where efficient pruning requires that the classifiers early in the cascade

should be as fast as possible and hence use very few features/weak classifiers. Since

Viola and Jones, AdaBoost and its variants have been used extensively, both to select

subsets of discriminant features and to train detectors. For instance, Laptev [2009] uses

Fisher Linear Discriminants over vector valued HOG features as weak classifiers in his

AdaBoost object detector. Torralba et al. [2007] use GentleBoost over regression stumps

in their multiclass object detection framework, which tailors the classifiers to share

features that are useful across several object categories.

Although boosting is well suited to both feature selection and classifier training

over high cardinality feature sets such as overcomplete Haar wavelets, it rarely equals

the performance of linear SVM over a given, manageably-sized set of features/weak

classifiers, and it is also much slower to train in this case. For this reason, for feature sets

of large but manageable dimensionality such as ours, SVM and its nonlinear variants

remain the methods of choice for training object detectors. It is true that – as is also

the case with some SVM variants such as Intersection Kernel SVM [Maji et al. 2008]

– boosting thresholded component-wise decision stumps over a given set of input fea-

tures implicitly learns nonlinear classifier – specifically a weighted sum of nonlinear

univariate functions of the input features – whereas linear SVMs are restricted to using

linear functions. However our experiments below suggest that linear functions are close

to optimal in our applications and in practice we have never found an instance where

boosting outperforms linear SVM using our features.

Other Classifiers

Some detectors use other classifiers than SVM and Boosting. For instance, [Garcia and

Delakis 2004; Osadchy et al. 2007] use convolutional nets to train their face detector,

and [Gall and Lempitsky 2009; Barinova et al. 2010] use random forests over densely

sampled patches for their part detectors. Schwartz et al. [2009] use Partial Least Squares

(PLS) to project out a small number of discriminant dimensions from their extremely

2.4 Post-Processing 17

high-dimensional feature vector, then train a Quadratic Discriminant Analysis (QDA)

classifier on these reduced dimensions.

2.4 Post-Processing

Integration of Multiple Detections

During the detection process, the classifier is scanned across the image at multiple

scales and positions. For a give real class instance, this often produces several candidate

detections that overlap closely in scale and space. The goal of the detection fusion

or Non-Maximum Suppression (NMS) stage is to integrate or cluster these candidates

to produce a single final detection at the appropriate position and scale without sup-

pressing detections associated with other nearby objects. Several different methods

of merging detections have been developed. Viola and Jones [2004] group candidate

detections into disjoint subsets using an area overlap criterion, then select a single

representative detection per subset. The locations and dimensions of the resulting

bounding boxes are estimated as the averages over the subsets. Dalal [2006] developed a

more robust approach that uses Gaussian kernel mean shift clustering to estimate the

true position and scale of the detection. This performs well but it is rather slow and

it requires the tuning of multiple parameters. Felzenszwalb et al. [2009] adapted the

Viola and Jones [2004] approach to their latent learning framework. Instead of assigning

every pair of detection candidates that overlap to the same subset, they only merge

candidates that overlap significantly, forming separate subsets for any remaining ones.

The candidate with the maximum confidence value in the subset is selected as the final

detection.

Contextual Reasoning

A number of recent detectors use cues derived from the region surrounding the object to

filter out implausible detections, or even to reduce the number of detector evaluations in

some multiclass problems. For instance, rather than fusing the candidate detections for

each object class independently using Non-Maximum Suppression, Desai et al. [2009]

use the empirical relationships of the classes to themselves, the other classes and the

background to learn NMS parameters for each class in a structured learning framework.

In the same spirit, Lampert and Blaschko [2008] take detectors for different categories

and use learned relationships between the categories to perform post-processing. This

generates a dependency graph between the classes that is used to decide which detectors

to use together during scanning. Ramanan [2007] uses pre-learned object segmentation

models as a post-filter to reject false alarms. Harzallah et al. [2009] describe a probabil-

istic framework that includes contextual cues from a global scene-type classifier in their

18 State of the Art

detector.

2.5 Computational Efficiency

To be practical, a detector needs to be computationally efficient in both training and

use. Many otherwise-promising methods fail this test. In a typical detection task

where objects can occur in arbitrary poses at arbitrary image positions and scales,

the detector must scan tens or even hundreds of thousands of candidate windows

per image and check them for the presence of object instances, often running several

component detectors in each window. Usually only a few of these windows actually

contain the object class of interest, whereas detectors based on conventional machine

learning classifiers typically consume a fixed amount of processing time per window

scanned, irrespective of whether or not it contains the class of interest. To increase

the computational efficiency, many methods adopt either a cascade architecture or a

coarse-to-fine search strategy or even both.

Cascade approaches are based on the idea of attentional filtering or early rejection of

unpromising patterns [Baker and Nayar 1996; Viola and Jones 2004]. A nested chain of

classifiers is constructed in such a manner that relatively simple and efficient classifiers

are used to reject the bulk of the negative cases in the first few stages of the cascade,

while the later stages involve increasingly complex classifiers that are trained to handle

the remaining difficult decisions. Besides the many deep boosting-based cascades [Viola

and Jones 2004; Zhu et al. 2006], Harzallah et al. [2009] and Vedaldi et al. [2009]

use shallow cascades of linear and nonlinear SVM classifiers to train their detectors.

Felzenszwalb et al. [2010a] use a cascade architecture to speed up the evaluation of

their parts-based multiple component detectors. Specifically, they evaluate the costly

deformable parts in a learned hierarchy with a set of learned thresholds to allow the

early pruning of implausible hypotheses.

Coarse-to-fine approaches start with coarse-scale features and gradually add finer

scale ones, pruning as many of the surviving negatives as possible at each stage. For

example, Pedersoli et al. [2010, 2011] increase the scanning speed of their detectors by

propagating the partial evaluation score of each detector to the next level down in an

image pyramid. The cascade and coarse-to-fine approaches can be combined to further

reduce the computational cost, e.g. Pedersoli et al. [2011] combine their coarse-to-fine

approach with the cascade of Felzenszwalb et al. [2010a].

One can also use a coarse-to-fine strategy for the detector position and scale scan (as

opposed to the spatial resolutions of the features used). Lampert et al. [2008] formulate

the scanning of the image pyramid as a branch and bound problem. They partition the

set of candidate object locations in the pyramid into local subsets, deriving a detector

score bound for each subset, and using this to prune unpromising subsets. This approach

2.6 Relationship to Past Work 19

is very effective when it can be used, but it requires the existence of good quality and

computationally inexpensive bounds, which is not the case (as far as we know) for our

features and detectors.

2.6 Relationship to Past Work

This thesis presents a family of sliding-window object detectors based on the frameworks

developed by Dalal and Triggs [2005] and Felzenszwalb et al. [2009]. Our original

contributions relate mainly to extensions of the feature set and to the introduction of

effective dimensionality reduction and sparsification methods. Many recent approaches

[Harzallah et al. 2009; Vedaldi et al. 2009; Wang et al. 2009; Schwartz et al. 2009] use

extended feature sets that include several different types of features, but we will argue

that our LBP+LTP+HOG set offers a particularly good trade-off between discriminative

power and computational complexity. Both Dalal and Triggs [2005] and Felzenszwalb

et al. [2009] use variants of HOG features for their detectors. Although HOG alone

gives near state-of-the-art performance for structural classes like vehicles and people,

it performs less well for classes that are characterized more by distinctive texture than

by rigid shape, such as many kinds of animals. Following Ahonen and Pietikäinen

[2007], Wang et al. [2009] used LBP texture features for human detection. Although

this gives performance that is on par with that of HOG for some classes by itself, it does

not give consistently good performance across a broader range of classes and datasets.

One of the main problems is the fact that LBP is sensitive to noise in near-uniform

regions. To counter this, Tan and Triggs [2010] introduced a more discriminant and

robust variant of LBP called Local Ternary Patterns (LTP) for a face recognition task.

We show that LTP also works well for object recognition (better than HOG in many

cases), and that the combination of HOG, LBP and LTP is even stronger at the cost of

increased descriptor dimensionality. Although the local pattern features (LBP/LTP)

perform well, they remain very local and hence somewhat myopic. To tackle this we

introduce Local Quantized Patterns (LQP), a generalization of local pattern features that

allows the patterns to have many more pixels and/or quantization levels and a much

wider range of geometries than standard hard-coded LBP/LTP. We show that LQP gives

better performance than all of the other features that we have tested including HOG,

LBP and LTP.

Regarding dimensionality reduction, Schwartz et al. [2009] used Partial Least Squares

(PLS) [de Jong 1993; Wold et al. 2001] to find a reduced feature space for their nonlinear

classifier. However this requires a multi-dimensional linear projection to the reduced

subspace at run time, so it is relatively costly to run. We show something different:

that when training linear SVM detectors on high-dimensional feature sets, using PLS to

reduce the dimension before SVM training can substantially reduce the overall detector

20 State of the Art

training time with no loss of accuracy, and that pushing the reduced-space classifiers

back through the PLS projection provides a standard linear classifier on the original

feature space, so there is no loss of speed at run time.

The other main approach to dimensionality reduction is feature selection or sparse

learning. There are many different feature selection methods. In particular, many recent

machine learning algorithms use L1 regularization to obtain sparsity – examples include

the L1 regularized logistic regression and L2 loss SVM algorithms of [Fan et al. 2008]

– but at present these methods prove to be less accurate than classical linear SVMs in

our applications. Instead, we show that a very simple and efficient weight-thresholding

heuristic gives results that are more accurate than the best current L1 SVM algorithms.

The resulting method greatly reduces the effective dimensionality of the detectors, thus

enhancing their speed, and it also improves their accuracy slightly in many cases.

Chapter 3: Training Methods and

Evaluation Metrics

We test various types of single- and multi-root and/or multi-part sliding-window de-

tectors. All of these are built by adding a post-processor to a window-level classifier

that is learned over a large set of labeled training examples. In addition to the feature

set, classifier type and training data, the performance of the detector depends consid-

erably on the underlying training mechanism. This chapter details our two non-latent

and latent training mechanisms, our methods of enforcing bilateral symmetry and our

post-processing module. These are all based heavily on Felzenszwalb et al. [2009] and

Dalal [2006], so the details are given mainly for completeness. The chapter finishes

with a discussion of the metrics that we will use to evaluate detector performance in

subsequent chapters.

3.1 Training Mechanisms

There are two approaches to using training annotations, direct (“non-latent”) and latent.

The direct approach is the traditional one. It simply takes the annotation windows,

rescales them all to a fixed size, and directly trains a classifier on the resulting window-

level feature vectors. This approach is simple and fast to train, but it cannot handle

classes whose annotation windows have significant variations in aspect ratio and it

does not take account of two key facts: (i) the given training windows are supplied

manually so they are unlikely to have the best possible alignment in position and scale

with the underlying object, at least if “best” is measured in terms of the preferences of

the final detector; (ii) in use, a practical detector evaluates image windows only at a fixed

set of position and scale increments and with typical manual annotation procedures,

the training windows are unlikely to correspond exactly to one of these. It would be

better to use a training procedure that accounts for misalignments of these kinds. The

latent approach addresses these issues by sampling potential classifier training windows

only at the given increments and relaxing the assumption that the window used must

coincide exactly with the given annotation, instead searching for the “best” training

22 Training Methods and Evaluation Metrics

window among all those that overlap the annotation by at least a certain amount. Here,

“best” denotes the window that generates the strongest (most positive) response from

the current detector. The exact training window positions and scales are thus latent

variables that need to be found during training. Moreover, this approach can easily

be extended to handle other latent variables such as which of several alternative root

detectors to use (potentially with different aspect ratios, etc.), and to find the latent

positions of additional displaceable object subparts. We will discuss each of these two

approaches in turn below.

Furthermore, there are so many potential negative windows in a typical set of

negative training images (i.e. ones containing no positive instance), and competitive

feature sets currently have such high dimension, that it is impossible to include all of the

possible negatives as examples in current (live memory, batch) SVM training methods.

Moreover, even it was, this would often lead to poor learning owing to the overwhelming

predominance of negatives. For this reason it is usual to start with a small initial set of

negatives and to search for and include additional “hard negatives” over several rounds

of classifier retraining. This is also discussed below.

3.2 Non-latent Training

The direct (non-latent) training method is initialized as follows, prior to the search

for hard negatives described below. First the dimensions of the detection window are

estimated from the statistics of the training annotations: the positive annotation boxes

are sorted by aspect ratio and the detection window is chosen to have their mean aspect

ratio, an area covering 80% of them and a resolution covering 80% of them without

up-scaling. Next, the positive training set is obtained by extracting, rescaling and

cropping all of the annotated object instances to fit the chosen detection window. If

preselected negative training windows are not supplied, a small set of initial negative

examples is also obtained by randomly sampling windows from the negative image

pyramid1. The negative set is typically only a few times the size of the positive one to

avoid overly biasing the initial detector towards negative rejection at the expense of

positive acceptance. The initial version of the window-level classifier is trained using

these examples to get a window-scoring function Sρ incorporating the classifier weights

ρ. For example for a linear SVM with window-level feature vector r, Sρ(r) = ρ . r.
1For cell based feature sets like HOG, LTP, etc., we use precomputed feature pyramids for speed. Each

level of the image pyramid is tiled regularly with cells and a feature vector is computed for each cell.
Provided that the detection windows always align with cell boundaries – which we assume for speed and
simplicity given that it gives good results in practice [Dalal 2006; Felzenszwalb et al. 2009] – this allows
the feature vector for any given window to be directly assembled from the feature vectors of its cells. To
allow partially visible objects at the image border to be detected, we return zero filled histograms for
cells that would be beyond the image boundaries. For mirrored pair roots and parts (see below), a binary
beyond-boundary indicator is also added to each cell [Felzenszwalb et al. 2010b] – this helps to calibrate
the detector responses for cells lying on or beyond the boundary.

3.2 Non-latent Training 23

3.2.1 Hard negatives

In typical object detection scenarios there are usually only a few class instances per

image on average, so negative windows outnumber positive ones by four or more orders

of magnitude. It is thus essential for the classifier to be extremely good at suppressing

false positives, which typically requires large negative training sets – again four or more

orders of magnitude larger than the positive ones. However given the size of current

positive training sets and feature vectors, it is impossible to fit so many negatives into

RAM at once, so classical batch SVM training on the complete negative set is impossible.

On-line training methods could be used, but empirically we find that even the best

and most recent of these are slower and less reliable than batch methods: they have

rapid initial convergence but much slower and more erratic end-game convergence and

unfortunately, when comparing many competing methods or variants, searching for

hard negatives, etc., training to near convergence is essential for reliable results.

Instead we use batch SVM training over several rounds, in each round using the

current classifier to search the negative images to find a new set of currently “hard”

negative examples, then retraining the classifier on these together with the initial

negatives and positives [Sung and Poggio 1998; Osuna et al. 1997; Dalal and Triggs

2005]. For maximummargin classifiers such as SVM, only the negative examples that fall

above or near to the negative margin Sρ(r) ≥ −1 have an influence on the final classifier,

and if possible all of these should be included as hard negatives (even though only

those with Sρ ≥ 0 are actually misclassified). It can be shown that this bootstrapping

procedure will converge in a finite number of iterations [Felzenszwalb et al. 2009],

where the number of iterations required depends on the discriminative power of the

features, the size of the learning cache and the size of the dataset. In practice, the

search is repeated at most a limited number of times owing to its computational cost.

The negative images are scanned exhaustively in a given sequence, and all of the hard

negatives that are found are added to the learning cache until the cache is filled. The

classifier is then retrained using the cached examples. Afterwards, the examples that

have become easy (that fall below the negative margin of new classifier) are deleted

from the cache to make room for new hard negatives. This search and retraining process

continues until no more hard negatives can be found (i.e. all of the negative training

images have been scanned) or until it reaches the maximum number of iterations.

3.2.2 SVM Algorithm

By default we trained our non-latent detectors using Dalal’s “densified” (converted

to a dense vector representation) variant of SVMLight2 [Joachims 1999; Dalal 2006].

2svmlight.joachims.org/

24 Training Methods and Evaluation Metrics

We tested several alternative SVM algorithms including LibLinear [Fan et al. 2008]3,

LIBOCAS [Franc and Sonnenburg 2009]4 and the online LaSVM5 solver of [Bordes et al.

2005]. LibLinear turns out to be about 1.6 times faster than SVMLight for equivalent

accuracy, but it uses a sparse representation of feature vectors so it currently (for

our dense feature sets) requires twice as much memory as our densified SVMLight,

making it impractical for large problems. We only became aware of LIBOCAS after

the experiments in this thesis had been run, but it seems to be a useful alternative

to SVMLight. It automatically chooses between the sparse and dense representations

based on memory usage. It is around 5.7 times faster than SVMLight for the dense

representation, and 4 times faster for the sparse representation. This is for double

precision feature vectors, whereas SVMLight uses single precision ones – to handle

large problems, LIBOCAS would need to be converted to use single precision features,

which might make it even faster. The online method LaSVM [Bordes et al. 2005] gave

suboptimal results in our preliminary experiments. It proved to be much slower and

more erratic than batch methods such as SVMLight, and this was reflected in poor

repeatability which made comparative studies difficult. Although SVMLight is an older

algorithm, it is exemplary in this respect.

The fact that object detection training sets typically have overwhelmingly more

negative examples than positive ones can lead to counterintuitive results, such as the

misclassification of all or almost all of the positive training examples at the default SVM

threshold b value owing to the loss function being dominated by negatives6. This is

particularly common during the later stages of training when there are large numbers of

hard negatives. This somewhat counterintuitive setting for b is not necessarily a sign

that the final detectors will perform poorly at more reasonable threshold settings, but it

is a cause for concern because it indicates that the classifiers are typically being trained

at points far from those at which they will be used. The problem can be alleviated by

increasing the relative penalty (hinge loss slope) for positive-class errors using the model

parameter J = C+/C−. Intuitively, setting J to equal or exceed the ratio of negatives to

positives in the core region of the positive class should suffice to put the default training

3www.csie.ntu.edu.tw/~cjlin/liblinear/
4http://cmp.felk.cvut.cz/~xfrancv/ocas/html
5leon.bottou.org/projects/lasvm
6As an aside, the whole notion of separation between positive and negative examples is moot given the

extent to which hard negatives dominate the overall training process. For example, for a single root HOG
detector on the VOC2006 person class with regularization and positive-to-negative weighting parameters
chosen to optimize the final detector AP, the ratio of hard negatives to positives in the final training
cache is 108 : 1 and with the default threshold b chosen by the SVM software all of the positive training
examples are actually misclassified. Even with LBP+LTP+HOG features, the hard negative to positive
ratio is still 38 : 1 and 70% of the positive training examples are misclassified with the default threshold.
These observations indicate limitations of current representations and feature sets. They are not the result
of inappropriate SVM settings. We stress that (even with kernelization etc.), current feature sets are not
sufficient to separate the positives from the hardest negatives, so irrespective of the SVM settings a large
number of errors necessarily arise, even in training.

3.3 Latent Training 25

threshold near the values required for the final detector, but this is not easy to achieve

in practice. Practically, setting J to be too large degrades the final detector performance

and greatly increases the training time. Moreover, the C and J settings interact so that

in principle a grid search is needed to choose the best C, J pair. Luckily, the optimum

appears to be rather flat in practice so that over the range of suitable C values the exact J

value is not too critical, and for faster training a J value near the lower end of this range

is to be preferred.

3.3 Latent Training

As mentioned above, by giving up the idea that training windows must coincide exactly

with annotation ones and instead instituting a search for the best possible (according

to the current detector) training window near the given annotation, we can build a

training method that (i) is better able to deal with annotations of varying aspect ratio

and/or imperfect alignment with the underlying object, and (ii) reflects more closely

the actual usage of the final detector – notably the fact that it tests only a limited set of

window positions and scales that may not coincide exactly with the initial annotations.

These factors result in a better detector in return for a training phase that is more

computationally intensive owing to the search for the best latent window positions. In

this simple case no latent search is needed at run time, so the run time architecture is

not changed. However once the latent search framework is in place, it is easily extended

to handle a runtime choice between several alternative root detectors (aspects) for each

window tested, and a run-time search for the best placement of object sub-parts, thus

providing a more flexible detector for complex visual classes in return for latent variable

computations at run time.

3.3.1 Latent Support Vector Machines

Latent Support Vector Machines (Latent SVMs) were introduced by Felzenszwalb et al.

[2008]7 to train object detectors with displaceable parts. The part positions, and option-

ally the choice of which representation to use for the window among several possible

templates or “aspects”, are encoded as latent variables that need to be instantiated at

run time. For a given input example r, the method searches over the permissible values

of the latent variables to find the ones giving the optimal detector score, i.e.

Sρ(r) = max
z ∈Z(r)

ρ .̟(r, z). (3.1)

7Latent SVM is a form of structured output learning [Tsochantaridis et al. 2006] that is closely related to
multiple instance learning [Andrews et al. 2002].

26 Training Methods and Evaluation Metrics

Here: Sρ(r) is the SVM scoring function; Z(r) is the domain of the latent variables z; ρ is

a vector of learned model parameters including root and part filter weights and part

displacement cost weights; and ̟(r, z) is a feature vector composed of root, part and

part-displacement features extracted from the feature-pyramid at their respective (root

and part) scales and positions given the latent assignment z.

During training, Latent SVM uses the Sρ(ri) to estimate the best model parameters

ρ∗ from the labeled training set D = {(r1, y1), (r2, y2), . . . , (rn, yn)}, where each (ri , yi) is an

example region and its class label. Formally, it minimizes the objective function

LD(ρ) = ‖ρ‖
2 + C

n
∑

i=1

max (0, 1− yi Sρ(ri)) (3.2)

where C is a standard SVM regularization parameter and the max terms are hinge

losses. Note that Sρ(r), which was simply the linear function ρ.r in the non-latent case,

is now convex rather than linear owing to the latent maximization that it contains, so

although LD(ρ) is still convex for negative examples (yi = −1), it is now non-convex for

positive ones (yi = 1). In practice this causes few problems because the latent variables

of positive examples tend to stabilize during the first few latent training iterations and

thereafter remain almost fixed, resulting in effective convexity. However to ensure

orderly convergence it is wise to limit the movement of the positive latent variables

during the first few iterations. Given the latent assignments, LD(ρ) becomes a standard

SVM hinge loss, so any SVM solver can be used to minimize it.

3.3.2 Stages of Latent SVM Training

In practice, latent detectors are trained using an EM-like alternation. In each iteration,

the current estimate of ρ is used both to search for hard negatives and to find the best

latent variable assignment for each included training example, then these assignments

are used to relearn ρ using a standard SVM algorithm. The process is repeated to

convergence. More generally, the training of a generic Latent SVM detector can be

partitioned into four stages, as follows – further details can be found in [Felzenszwalb

et al. 2009]:

Initialization: Latent detectors are initialized in a similar way to non-latent ones. For

single root detectors, the dimensions of the detection window are estimated from the

statistics of the annotation boxes and a non-latent single root detector is initialized from

the positive windows and the sampled negative ones. The detection window dimensions

are chosen using the same procedure as in the non-latent case. For multi-root detectors,

the positive examples are divided into a number of equal groups by their bounding

box aspect ratios, and a separate root is initialized on each group. (This is only a

3.3 Latent Training 27

crude heuristic that captures some of the variability of the training set – if detailed

supplementary annotations such as left-facing, front-facing, etc., are available they can

also be used for initialization, but we will not test this here).

Stage II: The root(s) are then refined by alternation, finding the best root (if there are

several) and root position for each training example and updating the corresponding

root filter weights by SVM training. For a given example, all root window positions that

overlap the annotation box by at least 70% normalized area overlap are tested, and the

root and window giving the best SVM score is taken as the example’s candidate for SVM

training. This procedure is repeated several times using the complete set of positives

and the initial set of negatives, until the root latent variable stabilize.

Stage III: If the final detector will include parts, these are initialized at twice the

resolution of the root features (i.e one octave down in the feature pyramid) to capture

finer details of the object class. Given the desired number of parts and a pool of possible

part shapes, the training algorithm greedily selects the part shape and position that

contains the most energy (sum of squared SVM weights) in the root template, removes

these weights, then proceeds to select the next part. The part filters are initialized by

upsampling the corresponding root filter weights. The parts are attached to the root in a

star topology via quadratic penalties on their relative displacements (dx, dy) from their

ideal locations. This is achieved by adding displacement features d = (dx, dy , d
2
x , d

2
y) to

the SVM feature vector along with the part appearance features. The full SVM feature

vector thus includes all of the root appearance, part appearance and part displacement

features of the best latent configuration found. Once the parts have been initialized, the

Stage II optimization of latent variables on the initial training set is repeated for the root

and parts detector.

Stage IV: Finally, the Stage II optimization is repeated using the complete set of

negative images and searching for hard negatives to augment the negative SVM training

set.

3.3.3 Discussion

The maximum number of iterations for each stage is set empirically, but at each stage

the process is stopped early if the latent labelings of the positive examples do not change

and if all of the hard negatives that are found already belong to the learning cache (i.e. if

there are no hard negatives left in the training images that would impact the detector).

Besides its ability to train multiple roots and part based models, latent training leads

to significant improvements in precision even for single root detectors. For instance,

28 Training Methods and Evaluation Metrics

(a) (b) (c) (d)

Figure 3.1: Images of the positive and negative SVM weights at various stages of latent
learning for detectors based on HOG features on the INRIA Person dataset: (a) Stage I; (b)
Stage II; (c) Stage IV; and (d) the corresponding non-latent detector. The plotting method
of [Dalal 2006; Felzenszwalb et al. 2009] is used in this and subsequent HOG-based SVM
weight plots.

for HOG features on the INRIA Person dataset, latent training increases the Average

Precision (AP) of the single root detector from 74% to 79%. Figure 3.1 shows an example

of models learned during the different stages of latent learning. Note especially the

refinement of the head and shoulder region from Stage I to Stage II, which helps to

explain why adding latency can improve the performance so much. The final latent

template is sharper than the corresponding non-latent one, particularly around the

shoulders, head and feet (which are the most critical regions for human/non-human

discrimination with HOG). More detailed results are given in Chapter 6 – c.f . Table 6.1.

For classes where the annotations vary noticeably in scale relative to the objects

themselves, searching over both scale and position turns out to be essential for good

results. For example, for single root detectors on VOC2006 with HOG31 features (see

Chapter 4), restricting the latent variable search to not include scale variations decreases

the AP from 23.2% to 20.1% for the person class, but has little impact on the AP for the

car class.

Latent learning can be quite sensitive to its initialization and it often gives poor

results if the initial root filters are too noisy. For this reason, the initial latent iterations

are performed using only a limited search range for the positives and (the relatively

small) set of initial negatives. The use of a small negative set helps to preserve the

balance between positives and negatives and to focus the initial training on capturing

positive characteristics. It also leads to faster training given that a relatively large

number of iterations is needed for stabilization in this early phase. In fact, bootstrapping

from the positive examples alone may be possible in some cases: for the VOC2006

person class, simply initializing the root filter from the average of the features of the

cropped positive examples before using it in the complete training cycle reduces the

3.4 Bilateral Symmetry 29

Original Mirror Symmetric Partner + Flipped Folded Folded

Figure 3.2: An illustration of our two methods of enforcing bilateral symmetry among
components, on the VOC2006 sheep class. The mirrored pair method (left) includes the mirror
image of each component as a second competing component, whereas the folding method
(right) trains the component using folded features so that the unfolded filter is symmetric.

final AP by only 1.5%.

For single root detectors, various optimizations that reduce the overall latent training

time are also possible. We pre-calculate and cache the feature vectors for all detector

windows having at least 70% overlap with the original annotation boxes in position

and scale, as this avoids the recalculation of feature pyramids in each iteration and

thus saves a good deal of computation. For single roots there are typically only 8-12

such windows per annotation, whereas for multiple roots or parts there are typically

too many to cache. We also tested the possibility of including several positive windows

from each annotation box in the positive SVM training set. The hope was that including

the best few windows for each annotation would increase the diversity of the limited

positive dataset and help to compensate for the imbalance between the numbers of hard

negatives and positives. We found that although this method works to some extent, it

gives negligible improvement in the overall accuracy.

3.4 Bilateral Symmetry

By default all of our complete latent detectors are forced to be bilaterally symmetric (left-

right mirror symmetric). We tested two methods of enforcing symmetry [Felzenszwalb

et al. 2008, 2009]. Both use the above training mechanism, but they differ in the way

that symmetry is enforced – c.f . Figure 3.2. In both cases, training implicitly considers

both the original image and its mirror image. Our non-latent detectors are also forced

to be symmetric, either by training them on both normal and flipped examples or by

using folding (see below).

3.4.1 Folding

The folding method imposes bilateral symmetry on individual components by forcing

the root filter to be bilaterally symmetric and the parts (if any) to either appear in mirror

30 Training Methods and Evaluation Metrics

(a) (b)

Figure 3.3: Examples of VOC2006 car and cow models learned using our two bilateral
symmetry methods. (a) Models with single folded roots. (b) Models with a mirrored pair of
roots. For both classes, folding causes the loss of some of the characteristic shape information.

symmetric pairs or to be bilaterally symmetric. For the root filters this is achieved by

folding the window and its feature vector in half from left to right and adding the

two halves together, so that the learned half-template is bilaterally symmetric when

unfolded. This is implemented using a lookup table into the feature vector for each

half. The tables work at the cell histogram level. Each entry contains the index of a

histogram bin and its mirror symmetric pair, where a gradient orientation (for HOG) or

uniform code (for LBP/LTP) is paired with the mirror symmetric orientation or code

in the mirror symmetric partner cell. Note that the same effect could be achieved by

flipping the window, extracting its feature vector, adding it to the original feature vector

and eliminating the redundant (owing to symmetry) entries. Bilaterally symmetric parts

are handled in the same manner as the root, while for mirror-symmetric pairs of parts

only one member of each pair is learned, by flipping the features of its partner and

adding them to its own before training (see below).

Besides enforcing symmetry, folding reduces the feature vector size by a factor of

two, making the detector more efficient and allowing more hard negatives to be fitted

into memory, thus effectively reducing the number of training iterations.

3.4.2 Mirrored Pairs

Although folding is efficient and it usually gives better results than no enforcement of

symmetry, it is also quite restrictive. In particular, for non-mirror-symmetric classes

such as sideways facing animals or vehicles, it necessarily confounds left-facing and

right-facing examples, thus reducing the discriminative power – c.f . Figure 3.3. The

second method of enforcing bilateral symmetry simply introduces detector components

in pairs, where the second member of each pair is forced to be the mirror image of

the first but the components and parts themselves are not required to have any special

3.5 Post-Processing 31

symmetry. This doubles the number of components, and feature folding can no longer

be used so the feature vectors are longer too. It also requires latent component selection

to be run during initialization so that the most appropriate component from the pair can

be chosen for the given example. However it is more flexible than the folding method,

in particular allowing left-facing and right-facing examples to be separated. In practice,

to initialize a mirrored pair of components for a group of examples, positives are

partitioned into two subgroups using K-Means under the constraint that an example and

its mirror image must belong to different partitions, then a single detector component is

initialized on one of the partitions – the filter for the other being implicitly obtained by

flipping the initialized one. Once initialized, only one component of each pair is trained:

both the original and the mirror-flipped feature vector are supplied for each window

and whichever fits the component being trained the best is used.

To allow more uniform comparisons among detectors from the perspective of run

times and performance, we will label our detectors with the number of components

that they actually use during image scanning, so mirrored pairs are counted as two

components. We feel that this designation is fairer because in practice the run time for a

mirrored pair is more than twice that for a folded root, and while a mirrored pair can

capture left-right asymmetry, two folded roots can capture two different subclasses or

aspect ratios – which of the two extensions is more useful depends on the object class. In

the tests below we use mirrored pairs by default for multi-component detectors. When

folded roots are used, they will be flagged with a subscript “f”.

3.5 Post-Processing

3.5.1 Non-Maximum Suppression (NMS)

The Non-Maximum Suppression module post-processes the output of the window-

level classifier to generate the final set of detections. Its main role is to fuse repeated

detections of the same object that arise because the densely scanned classifier has fired

on several adjacent windows that overlap significantly in position and scale, all of which

contain the object. The main constraint is that detections caused by the same object

should be merged while ones caused by neighbouring objects should not be. We use

the iterative greedy NMS heuristic of [Felzenszwalb et al. 2009; Viola and Jones 2004].

The mean-shift based clustering procedure of [Dalal 2006] gives similar results, but it

requires several parameters to be set and it is significantly slower. The greedy method

works as follows. The bounding boxes of all of the classifier detections in the image are

mapped back to ground level image coordinates and sorted by their confidence scores c.

The prediction α with the highest confidence score is removed from the list and every

prediction β that overlaps it by more than a pre-specified threshold
area(α∩β)
area(α)

≥ 50%, is

32 Training Methods and Evaluation Metrics

deleted. The process continues recursively until no new predictions can be found, and

the list of the surviving predictions α is returned as the final set of candidate detections.

The major benefits of this method are that it is relatively simple and fast to evaluate,

gives good results and is flexible in the sense that the overlap measure can be tuned to

cover different sizes of position and scale neighbourhoods.

3.5.2 Bounding Box Prediction.

For root-only detectors, the object bounding boxes are obtained directly from the de-

tected root locations. However for detectors with parts, we follow [Felzenszwalb et al.

2009] by using linear regression to estimate each of the bounding box coordinates

(x1, y1,x2, y2) from the locations of the detected root and part windows and the width of

the detected root window (to provide a scale cue). The regression parameters are learned

by running the trained detector on the annotated training data. This method gives a

small improvement in accuracy for some of the object classes, with no degradation for

the others.

3.6 Evaluation Metrics

For use in later chapters, this section briefly summarizes the metrics that we will use for

our detector evaluations. Our detectors use window-level classifiers within a multiscale

image sweeping framework, with non-maximum suppression to merge overlapping

detections. We can thus evaluate their performance at the level of either the window

level classifier or the complete detector. Although the former is fast to run and closely

related to classifier training, experience shows that it is not completely reliable as a

guide to the performance of the final detector [Dalal 2006; Felzenszwalb et al. 2009],

so we use it only as a rough guide to the influence of various feature and classifier

parameter settings. Detector-level evaluation is more closely related to the performance

achievable in real applications and we use it for all of our full detector evaluations and

comparisons.

Currently, the most popular method of summarizing classifier-level performance is

Detection Error Tradeoff (DET) curves [Dalal and Triggs 2005], and the most popular

means of summarizing detector-level performance are Precision-Recall and False Positive

Per Image curves. To facilitate comparison with previous work we use all three of these

in our discussions. We describe each of them in detail below. We frequently also use

the corresponding Area-Under-Curve figures as simple scalar performance metrics for

global comparisons.

To plot any of these curves, the classifier threshold is varied from the lowest possible

value to the highest, and the resulting pairs of positive versus negative performance

3.6 Evaluation Metrics 33

figures (miss rates, etc.) are recorded against each threshold value. In practice this

is done by sorting the raw detector scores on the positive and negative test sets into

ascending order and counting numbers of scores up to the given threshold. To ensure

good coverage without being overwhelmed by negatives, the starting point of our curves

is the threshold that detects 95% of the positive training examples.

3.6.1 Detection Error Tradeoff (DET) Plots

DET curves are a variant of Receiver Operating Characteristic (ROC) curves that remain

readable at the very low false positive rates that are needed for practical detectors. They

plot the Miss Rate (false negatives per positive class member tested) against the False

Alarm Rate (false positives per negative class member tested) on a log-log scale. Lower

curves (closer to the bottom left) are better.

For classical DET curves, these figures are measured per example (window) tested

by the classifier. In a typical object detector tens of thousands of windows are tested

per image and very few of these are usually class instances. Conversely, in a complete

detector, groups of significantly overlapping positively classified windows are typically

merged by a post-processor to produce a single final detection. Given the first point,

one typically plots DET using False Positives per Window tested (FPPW) rather than

False Alarm Rate (they are almost the same as almost all of the windows tested are

negative-class instances), and FPPW’s greater than about 10−4 are not interesting for

practical detectors. The second point makes it problematic to relate counts of classifier

hits and misses to counts of detector hits and misses, so detector-level metrics are usually

preferable to DET for full detector evaluations. A related problem with FPPW is that

test windows typically overlap in both position and scale and each can be sampled more

or less finely by different methods, making it difficult to relate per-window performance

figures to image level detection rates in the source material.

Another point requiring attention in window-level evaluations is that incorrect

processing of pre-cropped examples can easily lead to biases. Both we and Dollár

et al. [2009] observed that some of the window-level classifier results on the INRIA

Person test set in [Sabzmeydani and Mori 2007] and [Maji et al. 2008] are incorrect,

because the classifiers were unintentionally trained and tested on feature sets that

contained systematically incorrect feature values at the window boundaries for the

positive examples owing to incorrect window cropping. Such effects are less likely to

occur in detector-level evaluations as pre-cropped windows are not used.

3.6.2 Precision-Recall Plots

In order to provide performance metrics that relate more closely to their target applic-

ations, object detection researchers have adapted Precision-Recall plots from the text

34 Training Methods and Evaluation Metrics

retrieval community. Classically, Precision-Recall is used to measure the effectiveness

of document retrieval systems at topic level search tasks. “Precision” is the fraction of

the returned documents (detections) that are relevant to the task (correct detections),

and “Recall” is the fraction of the relevant documents (images) in the dataset that are

returned. The classical definitions can be applied directly to image-level classification

and retrieval, but for object-level detection we need to modify them as follows to count

object instances not images:

Precision =
Number of objects correctly detected

Total number of detections reported
=

True positives

All detections

Recall =
Number of objects correctly detected

Total number of objects in dataset
=

True positives

All true instances

This brings up the thorny issues of when a detection lies so far from the true position

and scale of the object that it should be counted as a false positive with a nearby missed

detection rather than as a true detection, and when a real object becomes so small,

occluded or truncated that it should be considered to be irrelevant or undetectable. The

PASCAL Visual Object Challenge (VOC) guidelines [Everingham et al. 2010b] define

standard protocols for object markup and detection overlap when evaluating Precision-

Recall curves and Average Precision (AP) metrics and we follow these here. All of the

predictions from an image are ranked according to their confidence value, then for each

labeled object the prediction with the highest confidence value that overlaps it by at

least 50% (Ao ≥ 0.5) is selected as the true detection and every prediction that is not

selected as a true detection is tagged as a false positive. The true and false detections are

then sorted according to their confidence scores and the precision and recall metrics for

the detections exceeding each given confidence threshold are recorded. The criterion Ao

used to measure the overlap of a prediction window Bp with a ground truth window Bgt

is defined to be the ratio of the area of their intersection to the area of their union:

Ao =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
. (3.3)

Average-Precision (AP) is an Area-Under-Curve metric used to summarize the overall

Precision-Recall performance. It is defined to be the average of the Precision values

over the full [0,1] range of Recall values. In early VOC’s it was computed by averaging

the majorized precision values P̃ at the eleven uniformly-spaced recall values R =

{0, 0.1, . . . , 1}:

AP =
1

|R|

∑

r∈R

P̃(r),

where P(r ′) is the observed Precision at Recall r ′ and P̃(r) = maxr ′≥r [P(r
′)] is the max-

imum precision valued observed over the recall interval [r,1]. Raw empirical Precision-

3.6 Evaluation Metrics 35

Recall curves tend be quite jagged so the majorization was introduced to smooth out

some of the sampling noise introduced by the finite test sample size. One drawback of

this criterion is that it heavily penalizes systems that focus on achieving good precision

over only a limited range of Recall values (e.g. for applications that prioritize high Preci-

sion over full Recall). In 2010, VOC replaced the above 10-sample method with the true

area under the curve to achieve more accurate AP estimates, especially for systems with

limited Recall ranges. Precision values are sampled densely from the actual system over

the complete observed Recall range and the area under the curve is found by numerical

integration. To make comparisons with the existing literature simpler and more uniform,

we use the new AP computation scheme for VOC2010 and the older one for all of our

other results. For multi-class problems, Mean AP – the unweighted mean for the AP

values of the different classes – is used to summarize the overall performance.

3.6.3 Recall-False Positive Per Image (Recall-FPPI) Plots

Recall-False Positive Per Image plots are a DET-like variant of Precision-Recall that

reports detector-level results over entire images. Specifically they plot the object-level

Recall rate against the number of False Positives observed Per Image (FPPI), i.e. (number

of false positive detections)/(number of images tested). This is only useful for comparing

systems head to head on datasets where the average image size and scene type are fixed,

as FPPI numbers depend directly on the image size and the density of image content.

Chapter 4: Feature Sets

The choice of feature set is critical for the performance of an object detector: the more

representative and discriminative it is, the more reliable classification can be. The

feature set must capture the essential similarities between objects of the same class and

differences with objects of rival classes despite highly variable object appearance, pose,

lighting, clutter, background texture, etc. Computational efficiency is also important so

simple features are desirable.

Advances in feature sets have been a constant source of progress over the past decade.

Most of the early publications used just one feature set [Viola and Jones 2004; Dalal

and Triggs 2005; Felzenszwalb et al. 2009], but many researchers now use combinations

of features for better results. In such combinations, the more the feature channels

complement one another, the better and the more flexible the result will be. Our

detectors owe much of their accuracy to the use of a combination of three recent and

highly complementary feature sets: Histograms of Oriented Gradients (HOG); Local

Binary Patterns (LBP); and Local Ternary Patterns (LTP). Together they provide strong

shape and texture cues for object detection.

In this chapter, we give a detailed description of the HOG, LBP and LTP feature sets

and their variants and show how they can be combined to produce a basic detector. We

finish with a discussion of implementation details and parameter settings.

Before starting, note that the results in this chapter are restricted to single root

partless detectors using linear SVM (both non-latent and latent). The restriction to

relatively simple classifiers places the focus squarely on the discriminative power of the

underlying feature set. To set the parameter values we used a two stage process. First,

DET curves (c.f . Sec. 3.6.1) on window-level non-latent classifiers were used to quickly

select interesting ranges of parameter values for detailed evaluation. Second, the final

values were chosen from these sets by running the full detector learning chain (non-

latent or latent as the case may be) and comparing Precision-Recall curves (c.f . Sec. 3.6.2).

We used three datasets: the person class from the INRIA Person dataset [Dalal 2006],

and the person and car classes from the PASCAL VOC2006 dataset [Everingham et al.

2006]. Results for the complete detectors on a wider range of datasets will be given in

Chapter 6.

38 Feature Sets

4.1 Histograms of Oriented Gradients (HOG)

Histograms of Oriented Gradients (HOG) [Dalal and Triggs 2005] are one of the most

successful recent feature sets for visual recognition. Like SIFT [Lowe 2004], HOG

is based on the assumption that local image content can be effectively encoded by

local distributions of edge directions or intensity gradients, even without recording

the precise locations of these. SIFT features were designed for sparse wide-baseline

image matching. They combine a multi-scale Difference of Gaussian interest point

detector, robust dominant orientation estimation and oriented gradient based local

content descriptors. HOG uses a similar descriptor without the multiscale interest

point detector and the dominant orientation estimation. Instead, the descriptor is

computed on a dense grid of uniformly spaced cells at a single scale, with overlapping

local contrast normalization blocks for improved discrimination. HOG has proven to be

particularly effective at capturing coarse object shape (contour) information, with strong

resistance to illumination variations and some robustness to small spatial variations.

Different cell resolutions can be used to capture different levels of information, e.g. a

large, coarse-resolution cell can be used to capture the overall object shape while smaller

and finer-resolution ones capture details of object parts.

Since HOG was introduced, various extensions have been proposed to further en-

hance its discriminative power. For instance, Zhu et al. [2006] extend it to include

variable-sized blocks, Ott and Everingham [2009] use HOG features computed over

both edge images and foreground/background segmented detection windows, and

Felzenszwalb et al. [2009] include both signed and unsigned gradient information in

their HOG cells, using an analytic dimensionality reduction scheme motivated by PCA

to reduce the number of features contributed by each cell.

Although HOG is not our main focus here, for completeness we briefly provide some

implementation details and test results.

4.1.1 Implementation Details

Our implementation of HOG is similar to that of Felzenszwalb et al. [2009]. The

computation involves three main steps: image gradients are computed; the image is

divided into a dense grid of rectangular “cells” and a histogram of gradient orientations

is computed for each cell; and finally the cells are grouped into small (and typically

overlapping) “blocks” and a local contrast normalization is applied to the cell histogram

within each block.

Image gradients are computed using [−1,0,1] finite difference filters. The gradient

orientation at each pixel is quantized (using hard quantization) into n evenly spaced

bins in 0−360◦ (for signed gradients) or 0−180◦ (for unsigned gradients). Each pixel

votes into this orientation bin with a vote proportional to its gradient magnitude. For

4.1 Histograms of Oriented Gradients (HOG) 39

color images, gradients are computed separately on the R, G and B channels and the

channel whose gradient vector has the largest magnitude is quantized. To construct the

cell histograms, the image is divided into square cells, and each pixel contributes its vote

to the histograms of the 4 nearest cells, using bilinear spatial interpolation to provide

soft spatial voting. Cells are then grouped into small blocks of cells and the histogram

entries within each block are normalized to L2 norm 1, after which entries greater than

γ = 0.2 are truncated to γ [Lowe 2004]. To allow faster computation, histograms are

not renormalized after truncation and the block-level Gaussian pixel weightings of the

original SIFT/HOG are not included [Felzenszwalb et al. 2009].

Our HOG features are typically based on 8 × 8 pixel cells arranged into 2 × 2 cell

blocks, with unsigned image gradients quantized into 9 orientation bins (evenly spaced

over 0−180◦) and signed ones into 18 orientations bins (evenly spaced over 0−360◦).

Every possible 2×2 cell block is taken so each (non-boundary) cell is normalized by four

neighbouring blocks leading to four different versions of each cell entry. For unsigned

gradients this results in a 9× 4 feature matrix or equivalently a 36-D “HOG36” feature

vector for each cell.

4.1.1.1 HOG Dimensionality Reduction

If we collect HOG36 feature cells from a large corpus of images and use PCA to analyze

them [Felzenszwalb et al. 2009], it turns out that almost all of the energy lies in the

first 11 PCA components. This suggests that HOG36 features could be mapped to an

11-D feature space with little loss of discriminative power. Such a reduction would be

slow owing to the 36× 11 matrix multiplication required for the projection, but luckily

[Felzenszwalb et al. 2009] (c.f . Figure 4.1), the PCA components are all approximately

constant along either the rows or the columns of the 9×4 HOG feature matrix, which

means that they share either the same constant row vector in R
4 or the same constant

column vector in R
9. Therefore, we can analytically define a 13-D “HOG13” feature from

the 9×4 HOG36 matrix by simply summing it along its rows and columns. Projection

onto the row space R
4 is achieved by summing the 9 orientation bins for a given

normalization block, and projection to the column space R9 is achieved by summing the

4 differently normalized scores for a given orientation. This reduction is much cheaper

than projecting out the top 11 PCA components by explicit matrix multiplication and it

gives identical final detector performance.

More generally, this method allows both signed and unsigned gradient information

to be captured in a HOG feature cell of manageable size. Dalal [2006] observed that for

some object classes signed image gradients give better performance, while for others

unsigned ones do. Including signed as well as unsigned gradients would increase the

feature dimension by a factor of three. E.g. with 9 unsigned orientations, 18 signed ones,

40 Feature Sets

0.45758

1 2 3 4

1

2

3

4

5

6

7

8

9

0.04411

1 2 3 4

1

2

3

4

5

6

7

8

9

0.02514

1 2 3 4

1

2

3

4

5

6

7

8

9

0.01296

1 2 3 4

1

2

3

4

5

6

7

8

9

0.00637

1 2 3 4

1

2

3

4

5

6

7

8

9

0.00531

1 2 3 4

1

2

3

4

5

6

7

8

9

0.00457

1 2 3 4

1

2

3

4

5

6

7

8

9

0.00385

1 2 3 4

1

2

3

4

5

6

7

8

9

0.00372

1 2 3 4

1

2

3

4

5

6

7

8

9

0.00343

1 2 3 4

1

2

3

4

5

6

7

8

9

0.00308

1 2 3 4

1

2

3

4

5

6

7

8

9

Figure 4.1: The top 11 Principal Components of HOG36 features computed on the VOC2006
training set. The 36-D features are arranged as 9× 4 matrices with each row giving the four
different block normalizations for one of the 9 orientations. Note the predominantly horizontal
and vertical structure of the PCA components. The 12th singular value is five times smaller
than the 11th one.

and four block normalizations, the cell descriptor would be a 27× 4 feature matrix with

108 dimensions. This would be prohibitive, but again projecting onto the column and

row spaces gives a 27-D orientation vector (summed over all 4 normalizations) and a

4-D normalization vector (summed over all 27 signed and unsigned orientations), and

hence a 31-D “HOG31” cell vector. Felzenszwalb et al. [2009] have shown, and we can

confirm, that this gives excellent results even though the feature vector is smaller than

the original HOG36 vector.

4.1.2 Results and Discussion for HOG

We tested the HOG36, HOG13 and HOG31 variants of HOG, using 8 × 8 pixel cells

with each cell belonging to four overlapping 2×2 cell blocks for L2 normalization.

Table 4.1 shows Average Precisions (APs) for linear Latent SVM detectors trained on

these features. For the car class, signed orientation information is known to be useful

and HOG31 gives the best performance. For the two person classes, unsigned orientation

information is the most useful because variations in clothing color often reverse the

4.2 Local Pattern Features 41

HOG Types
INRIA VOC2006
Person Car Person

HOG36 79.0 51.7 22.2
HOG13 79.3 50.6 21.0
HOG31 78.7 55.5 23.2

Table 4.1: Average Precisions for Latent SVM detectors trained on our three variants of HOG
features.

contrasts and all three variants give similar performance. Figure 4.2 shows the learned

SVM weights for HOG31 features on these classes. These weights give insight into the

characteristics needed to accept positives while rejecting negatives. For example for

both of the person classes, the positive weights emphasize the head, shoulder, legs

and horizontal connections between the feet and the ground while the negative ones

suppress both vertical edges that continue into the center of the body (thus helping to

eliminate structures such as lamp posts, doors and window borders) and horizontal

edges around the torso and leg areas. The learned weights for the VOC2006 person

class are significantly “noisier” than those for the INRIA Person class. This is to be

expected given that VOC2006 has many annotations of distant people (thus forcing

the use of a smaller, lower resolution detection window) and a much wider range of

poses including sitting, standing, horse/bicycle riding, etc. In the car class, the positive

weights capture the overall body contours and the varied gradients of the wheel regions

while the negative ones suppress examples with orthogonal edges around the contours

and gradients between the wheels. The structure captured by this single-aspect model

is somewhat vague because the different object viewpoints must all be represented by a

single template. The cell-level organization also makes the shape models rather coarse

for all of the classes, but it allows the orientations that best capture the variable layout of

the class to be chosen without having to decide whether edges are occluding or internal,

what to do with edge junctions, how to threshold, etc.

4.2 Local Pattern Features

Texture – characteristics and statistics of local image appearance – is a discriminant

property for many object classes, providing complementary information to object shape.

There is a large literature on statistical and geometrical texture analysis, including

methods ranging from the co-occurrence matrix based method of Haralick [1979] and

the Gabor filter based approach of Jain and Farrokhnia [1991] to the Local Binary

Patterns of Ojala et al. [1996]. Our texture descriptors are based on the “local pattern”

42 Feature Sets

Figure 4.2: The object shape information encoded by HOG31 features. The images display
the learned positive and negative weights for single root linear Latent SVM detectors trained
respectively on the INRIA Person, and the VOC2006 person and car classes.

principle of qualitative analysis of micro-local pixel intensity differences. We tested four

features of this type: Local Binary Patterns (LBP), Local Ternary Patterns (LTP) and the

Center-Symmetric variants of these (CS-LBP/CS-LTP). Moreover, Appendix A describes

work in progress on Local Quantized Patterns (LQP), an extension of the local pattern

idea based on fast lookup table based vector quantization.

4.2.1 Local Binary Patterns (LBP)

LBP’s are computationally simple and highly discriminative descriptors based on the

analysis of qualitative micro-local gray level differences. They have proven successful for

texture classification [Ojala et al. 1996, 2002] and face recognition [Ahonen et al. 2006]

due to their robustness to monotonic grayscale changes, but they were only recently

applied to human detection [Wang et al. 2009; Hussain and Triggs 2010]. LBP generates

texture-histogram descriptors and, as with HOG, most current methods split the image

window into a grid of cells and histogram the descriptors separately within each cell. To

compute LBP descriptors, the neighbourhood of each pixel is mapped to a binary code

using the LBP feature map, the resulting code values are histogrammed over each cell,

and the histograms of the detection window cells are normalized and concatenated into

a feature vector that is used as the window level descriptor.

LBP Feature Map. LBP maps each image pixel c to a binary code Θk
r (c) as follows: the

gray-levels at k regularly spaced points on a circle of radius r around the central pixel c

are sampled, and these samples are thresholded at the gray-level value of the central

pixel to generate a k-bit binary string that is used as the code word for the pixel – c.f .

4.2 Local Pattern Features 43

���

��

���

����

���

���

���

��	

��

���

���

����

		

������

���

���

���

�	�

��

���

�	�

����

�	�

����
���������
��� ���

���

��� ���

��
 ��

��� ���

��� ���

��	 �	�

��� �	�

���� ����

		 �	�

������

	��
�
	�

�	

���

������

�����

������

������

������

	��
�
	�

�	

���

�
����

�	 ���

���� ����
����!��"#������

����

$���$

Figure 4.3: The stages of LBP feature computation. A circle of sample points surrounding the
central pixel is evaluated and thresholded w.r.t. to the value of the central pixel to produce a
binary code, which is then mapped to a uniform code by table lookup.

Figure 4.3. Formally,

Θ
k
r (c) =

k−1
∑

i=0

2i δ(vi − vc) (4.1)

where i runs over the k sample points around the central pixel c, vi and vc are the gray

level values at i and c, and δ(x) = 1 if x > 0 and 0 otherwise.

A length k binary string gives 2k possible code values. Originally, Ojala et al. [1996]

used the complete set of 256 values obtained by thresholding the 8 neighbours of

the central pixel at its gray level value. In our application this would lead to high

dimensional feature sets that would make training difficult. However, Ojala et al. [2002]

found that most of discriminative information in the histogram is carried by the 58 bins

that correspond to so-called uniform patterns, while the remaining bins mainly contain

“noise”. An LBP code obtained from a ring of pixels is called ‘uniform’ if it contains at

most one contiguous group of 1’s within the ring. For a length k binary string there are

k (k − 1) + 2 uniform patterns – 58 for an 8 bit string. By taking the bins corresponding

to uniform patterns and including one additional bin for all of the non-uniform ones,

the number of histogram bins is reduced from 2k to k (k − 1) + 3. The uniform patterns

turn out to be sufficient to capture important image structures such as corners, edges,

etc., and in (low noise) natural images the vast majority of pixels generate uniform

patterns. One can also view the uniform pattern coding as a bank of filters that records

the co-occurrences of blocks of contiguous orientations.

We will use uniform pattern based codings. However while most other work [Ojala

et al. 2002; Ahonen et al. 2006; Tan and Triggs 2010; Wang et al. 2009] uses grayscale

based LBP codes, we find that including color information improves the overall accuracy,

so we use color image based LBP codes. We tested several different color-spaces and

coding methods – see Sec. 4.2.4.2.

Cell Histograms. The pixel-level LBP codes are accumulated over rectangular cells

to produce histograms in the same way as for HOG, using bilinear soft spatial voting

44 Feature Sets

�������

��������

������	

��
��

�����

������

��
�

�����������

�����

��
�

�����������

�����

���

��

���

�
�
��
�
�
�
��

�
�
�
�
�

� ���

��

���

�
�
��
�
�
�
��

!
�
�
�
"�

��
��

�������

��������

������	

������

�� ��	

#"�#

�#

Figure 4.4: The stages of split LTP feature mapping. Separate “≥ + τ” and “≤ − τ” binary
codes are produced w.r.t. to the value of central pixel and each is mapped to a uniform code.

to make the descriptor more robust to small shifts and spatial sampling effects. The

contribution of each pixel is thus distributed among the histograms of the four closest

cells. Our histograms are normalized to sum one for convenience, but this is cosmetic

for local pattern features because (unlike HOG) every histogram has exactly the same

total number of counts. However subsequent nonlinear compression of the normalized

counts does improve the results – see Sec. 4.2.4.4. Finally, the histograms of the cells in

the window are concatenated to form the window-level descriptor.

4.2.2 Local Ternary Patterns (LTP)

LBP is invariant to monotonic gray level changes produced by varying lighting con-

ditions, but it is known [Ahonen and Pietikäinen 2007; Heikkilä et al. 2009] to suffer

from noisiness in near-constant image regions owing to the hard thresholding of the

local neighbourhood at the central pixel value. Local Ternary Patterns (LTP) is a simple

generalization of LBP introduced by Tan and Triggs [2010] that is both considerably

more discriminative than LBP, and more robust to noise in uniform regions. Moreover,

it can be tuned to extract information that is complementary to LBP. We were the first

to test LTP for object detection [Hussain and Triggs 2010].

LTP uses the same sampling structure as LBP, but it replaces the binary codes of LBP

with ternary (3-valued) ones by introducing a dead-zone parameter τ and coding the

surrounding pixels according to whether their values fall above, within ±τ, or below the

gray-level value of the central pixel – c.f . Figure 4.4. Formally, the thresholded value of

pixel i is

δ(vc, vi ,τ) =































+1, vi ≥ vc + τ

0, |vi − vc | < τ

−1, vi ≤ vc − τ

(4.2)

4.2 Local Pattern Features 45

(a) (b) (c) (d) (e)

Figure 4.5: An illustration of our different feature channels on an input image. (a) An input
image. (b) Its HOG descriptor. (c) Its color LBP feature map. (d) Its positive LTP feature map.
(e) Its negative LTP feature map. The images suggest that HOG captures mainly coarse object
shape and LBP extracts microscopic image texture while LTP captures coarser texture and
object contour information.

The best τ value is selected by testing on validation data.

The total number of codes for an LTP that incorporates k pixel-value comparisons

is 3k . Even with the use of uniform pattern style coding, this number is too high to

allow the direct use of LTP codes in cell-histogram feature sets. To work around this,

Tan and Triggs [2010] proposed a splitting approach, which we follow. In this scheme

the length k ternary code is split into separate “≥ τ” and “≤ −τ” binary length k feature

maps as illustrated in Figure 4.4. These are treated as two separate channels of uniform

LBP features in the usual way and the resulting histograms are concatenated to form

the complete LTP descriptor, which thus has twice the dimension of the corresponding

LBP one. Results given in Appendix A suggest that such splitting causes little loss of

discriminative power, at least for the datasets studied here.

The introduction of the threshold τ breaks the monotonic illumination invariance

of LBP, but it helps to suppress the noise that tends to dominate LBP responses in

near-uniform image regions and it provides an additional parameter that can be tuned

to extract information complementary to the LBP features. Empirically, across a number

of common datasets, a threshold of around τ = 5 gray-levels (out of 255) gives the best

performance. Thresholds of between 3 and 10 give very similar results, while larger

ones tend to discard too much texture information and smaller ones give descriptors

that are too strongly correlated with LBP for complementary.

As Figure 4.5 and the experimental results in Sec. 4.3 suggest, LBP and τ = 5 LTP

responses have rather different characters, with LBP capturing mainly dense local

texture and LTP putting more emphasis on stronger textures and object contours. Thus

even though it is still a local texture descriptor, LTP usefully complements LBP. In fact

it would probably be possible to extract multiple levels of texture detail by including

46 Feature Sets

������

������

�������

			

�	

���

��

���

������������������

������������������������������

����������������������������������
���%�%�%�%�%�%�%�%�%�%�%�%

��������������������������������

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

�� ��������������������

&�&�
������������������������������������

&�&�&�&�&�&�&�&�&�&�

��
�������

������� ��������� ��
�����
	���

������� !"#�$

Figure 4.6: The steps of the CS-LBP feature mapping.

several different LTP thresholds. For instance a small value such as τ = 3 gray-levels

could be used to capture weaker local textures while a higher value such as τ = 10

captures only the stronger ones associated with contours. However each new τ value

adds 116 new features to the cell descriptor, which would soon become problematic

in applications such as ours. Similarly, attempting to improve the discrimination of

LBP/LTP by sampling more pixels (e.g. using a larger radius) rapidly increases the

number of features per cell, quickly making training infeasible.

4.2.3 Center-Symmetric Local Patterns (CS-LBP/LTP)

Center-symmetric Local Binary Patterns (CS-LBP) were introduced by Heikkilä et al.

[2009] to meet a need for more compact region-of-interest descriptors in applications

such as wide-baseline matching, image retrieval, etc. LBP histograms are comparatively

large, so they are costly to use in applications where a great many histogram comparisons

are required. CS-LBP is a dimensionality-reduced form of LBP designed to address this.

The sampling of neighbouring pixels is identical to LBP, but instead of comparing each

pixel in the circle to the value of the central one, diametrically opposite pairs of pixels

are compared – see Figure 4.6. This reduces the number of histogram bins from 2k to

2k/2. As this is already quite small, no reduction to uniform codes is needed. Formally,

the feature map computation is

Θ
k
r (c,τ) =

k/2−1
∑

i=0

2i δ(vi − vi+(k/2),τ) (4.3)

where vi and vi+(k/2) denote a center-symmetric pair of pixels and δ(x,τ) = 1 if |x| ≥ τ and

0 otherwise1. As in LTP, τ is introduced to suppress quantization noise in near uniform

image regions. A CS-LBP feature map can be viewed as a special kind of gradient

magnitude map as it compares opposite pixels just like a finite difference operator. Here

we test CS-LBP for object detection and also extend it to CS-LTP in the obvious way, by

replacing the binary code and unsigned δ of Eq. (4.3) with the ternary code and signed

δ from Eq. (4.2).

1Our definition of CS-LBP differs from that of Heikkilä et al. [2009] in that we use absolute differences
between pixels in Eq. (4.3), not simple (signed) ones – otherwise CS-LBP gives much worse results in our
experiments.

4.2 Local Pattern Features 47

Note that our work was carried out independently of the use of a CS-LBP variant by

Zheng et al. [2010] and it has many differences: instead of using simple CS-LBP codes,

Zheng et al. pool the gradient magnitudes of the center-symmetric pairs within the cell,

using neighbouring blocks for contrast normalization with Gaussian down-weighting

of the peripheral pixels of the block. This HOG-like organization increases the feature

dimension by a factor of 4, giving a descriptor with higher dimensionality than standard

LBP. To counter this, Zheng et al. [2010] introduce a dimensionality reduction scheme

based on the distribution of CS-LBP codes in the dataset. In comparison, our CS-LBP

and CS-LTP features are directly analogous to our LBP and LTP ones. We simply record

the counts of local pattern codes in the histograms using bilinear spatial interpolation,

as with LBP. Again we use color images by default, which increases the performance of

the features.

4.2.4 Parameter Settings for Local Pattern Features

For the parameter settings of our local pattern features we present detailed results only

for LBP. Similar conclusions hold for LTP, CS-LBP and CS-LTP as they use the same

basic structure. Our default settings are as follows. Around each pixel we sample 8

points on circle of 1 pixel radius using bilinear interpolation from the unpreprocessed

input image. 59 bin LBP codings are used (58 uniform patterns and one bin for all

of the non-uniform ones). The threshold τ is set to 5 gray-levels, and split uniform

coding is used for LTP. Histograms are built over 8× 8 pixel cells using bilinear spatial

interpolation for smoothing. For color images, codes are computed separately on the

R, G and B color channels and then pooled into the same histogram. Finally, L1-Sqrt

normalization is applied to each cell histogram i.e. the histogram is normalized to sum

1, then square rooted to compress the dynamic range of its bins. We now briefly validate

each of these choices.

4.2.4.1 Image Preprocessing

The datasets that we tested have only a limited range of illumination variations and

we did not find a preprocessor that was helpful. For example, preprocessing using

the method of Tan and Triggs [2010] reduces the object detection performance even

though it significantly improves face recognition results for a wide range of methods

including ones based on LBP and LTP. More precisely, including gamma compression

does not have any significant impact on the performance, while preprocessing the input

with a Difference of Gaussian (DoG) filter reduces it significantly. For example, using a

DoG with an inner kernel of standard deviation 1 pixel and an outer kernel of standard

deviation 3 pixels increases the LBP miss rate on the INRIA Person dataset from 11.2%

to 24.8% at 10−5 FPPW. It seems likely that the low frequency content and smooth

48 Feature Sets

shading information that the center-surround DoG operation discards is useful for

object category recognition, but damaging for the detailed local feature comparisons

within the class that are needed for face recognition. Without DoG, the final contrast

normalization step of Tan and Triggs [2010] makes no difference to the results as LBP is

invariant to this.

4.2.4.2 Color Space

We tested various color models for the local pattern features. Firstly, moving from

grayscale to color information by evaluating local pattern codes separately on the R, G

and B channels and pooling the results into the same histogram leads to significantly

improved performance. For example, using RGB based LBP features on the INRIA

Person dataset instead of grayscale ones reduces the miss rate of the window-level

classifier from 20.6% to 11.2% at 10−5 FPPW. More generally, we tested opponent

color spaces as well as RGB ones, in each case either pooling the features for the three

color channels into a single histogram (‘pooled’) or accumulating them into separate

histograms to make a feature vector three times as large (‘concat’), and we also tested

the individual R, G and B channels in isolation.

Motivated by the fact that the human visual system uses red-green and blue-yellow

opponency to code color [Wandell 1995], we tested the Opponent Color Space (OCS)

models of Wandell [1995] and Sande et al. [2010]. The latter, which converts RGB pixels

to OCS ones by a simple linear transformation























O1

O2

O3























=























0.7071 −0.7071 0

0.4082 0.4082 −0.8165

0.5774 0.5774 0.5774













































R

G

B























, (4.4)

performed better in our experiments. The results for LBP features are shown in Table 4.2.

On the classes tested, concatenated color predictably outperformed pooled color, which

in turn outperformed grayscale. There was no clear winner between the OCS and RGB

color spaces, with each performing better on one of the two person classes and mixed

results on the car class. The results for the individual RGB color channels are also mixed,

with each individual color channel outperforming grayscale on one of the three classes.

Indeed, the green channel alone outperforms every other color representation tested

on the INRIA Person set. However over a broader set of classes (not shown), we found

the results from the individual color channels to be somewhat erratic, so by default we

prefer to use representation that incorporates all three color channels. Similarly, we feel

that the advantages of OCS are neither large enough nor consistent enough to justify

the additional cost of the transformation to the OCS color space as standard practice,

and that the dimension of the concatenated representations is too large for their use

4.2 Local Pattern Features 49

Color Space
INRIA VOC2006
Person Car Person

Gray 75.3 53.8 18.7
Red 73.4 52.7 18.8
Green 84.3 52.9 17.7
Blue 72.1 54.0 16.4

RGB-Pooled 73.9 54.4 21.6
RGB-Concat 78.0 54.1 22.8
OCS-Pooled 67.4 52.2 24.0
OCS-Concat 72.5 55.4 28.2

Table 4.2: Average Precisions for LBP based single root Latent SVM detectors trained on
grayscale, and RGB and OCS color features.

to be recommended as general practice given that their overall performance is only

slightly better than the pooled ones. We thus use the RGB-pooled representation as the

default color coding for all of our local pattern features in the experiments below, while

noting that in individual cases better results may be obtainable by using a concatenated

representation and/or OCS.

4.2.4.3 Feature map structure

The LBP feature mapΘk
r could use any geometric arrangement of k sample points within

the local neighbourhood of radius r, but a circle of 8 points with a radius of 1 pixel

appears to be close to optimal in our application. For example, for 59 bin uniform LBP

codes on the INRIA Person set at 10−5 FPPW, using a square (the 8-neighbours of the

pixel) instead of a circle for sampling increases the miss rate from 11.2% to 14.9% – c.f .

Figure 4.7(a). Decreasing the number of sampling points k to 6 (33 bin uniform code)

increases the miss rate by 4%, while increasing k to 12 (135 bin uniform code) does not

change it – c.f . Figure 4.7(b). Increasing the radius from r = 1 to r = 2 pixels increases

the miss rate by 9.3% for Θ8
2 and by 5.2% for Θ12

2 . Using complete codes (256 bins)

instead of uniform ones (59 bins) does not change the performance.

At the cell level, bilinear interpolation during spatial pooling definitely improves

the performance2 – see Figure 4.7(c). Without it, the Average Precision of LBP on the

INRIA Person test set falls from 74% to 69%, although the resulting detector is also

about 1.6 times faster. These performance differences remain but become smaller when

the local pattern features are combined with HOG, so if speed is critical the local pattern

interpolation could perhaps be dropped at the cost of slightly lower accuracy.

2Note that the local pattern features in our BMVC paper [Hussain and Triggs 2010] were computed with
discrete binning for spatial pooling not bilinear interpolation.

50 Feature Sets

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5
DET − radial vs rectangular sampling

false positives per window (FPPW)

m
is

s
 r

a
te

LBP
Rect

LBP
Circle

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5

DET − effect of number of sampling points

false positives per window (FPPW)

m
is

s
 r

a
te

LBP
k=06

LBP
k=08

LBP
k=10

LBP
k=12

(a) (b)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5
DET − effect of bilinear interpolation

false positives per window (FPPW)

m
is

s
 r

a
te

LBP

LBPinterpolated

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5

DET − effect of normalization

false positives per window (FPPW)

m
is

s
 r

a
te

L
1

L
1
Sqrt

L
2

Log
2

(c) (d)

Figure 4.7: DET curves for several LBP configurations on the INRIA Person dataset. (a)
Sampling points on a circle or a square during LBP map computation. (b) Sampling different
numbers of points on a circle of radius 1 pixel. (c) Using bilinear interpolation rather than
abrupt spatial binning during histogram construction. (d) The effect of different histogram
normalization methods.

A cell size of 8×8 pixels seems to be close to optimal for our applications. Increasing

it to 16× 16 reduces the dimension of the feature vector by a factor of 4, but it increases

the miss rate by 6%.

4.2.4.4 Cell Normalization

Each local pattern cell histogram contains the same total number of counts so L1 nor-

malization simply rescales the feature vector. However, L2 normalization or subsequent

nonlinear transformations of the bins can change the performance so we tested several

different histogram normalization methods. If ϑk is the count in the kth bin of the n-bin

histogram.

4.2 Local Pattern Features 51

Features L1-Sqrt L2
LBP 73.9 73.4
LTP 78.9 71.1
HOG 79.0 79.0

LBP+LTP 80.4 72.7
LBP+HOG 80.6 80.6
LTP+HOG 81.3 79.9

LBP+LTP+HOG 82.8 81.6

Table 4.3: Average Precisions of Latent SVM detectors on the INRIA Person test set us-
ing various combinations of local pattern and HOG36 features under the L1-Sqrt and L2
normalization schemes for LBP/LTP. The LTP features use τ = 5.

• L1: ϑk = ϑk/(
∑n

i=1ϑi)

• L1-Sqrt: ϑk =
√

ϑk/(
∑n

i=1ϑi) – i.e. the histograms are normalized to sum 1 then

square-rooted.

• L2: ϑk = ϑk/
√

(
∑n

i=1ϑ
2
i) – this tends to emphasize cells whose counts are distributed

into many bins.

• Log2: ϑk = log2(ϑk +1) – i.e. a simple logarithmic compression of the histogram

counts.

Note that all of these methods work at the cell level. Adding HOG-style block-wise

normalization does not improve the performance of any of the local pattern descriptors

or cell normalization methods tested.

For LBP based window-level classifiers on the INRIA Person set at 10−5 FPPW, all

of these normalization schemes give miss rates of around 11.2% except L1 which has a

miss rate of 27.4% – c.f . Figure 4.7(d). This suggests that some form of compression is

needed to downweight bins that have very concentrated counts, but that the exact form

of compression used is not critical. However Table 4.3 shows that there are substantial

differences between between the L1-Sqrt and L2 LBP/LTP normalization methods when

used in combinations. We see that L1-Sqrt generally gives the best results, especially

for LTP, although the differences become smaller when HOG features are also present.

L1-Sqrt may predominate because it downweights bins with large numbers of counts

more effectively than L2. In particular, the “all zeros” bins have large numbers of counts

for LTP in uniform regions, and the presence of noise or clutter often leads to the

non-uniform bins of the histograms having quite large numbers of counts.

Based on these observations, we use bilinear vote interpolation and L1-Sqrt normal-

ization for our local pattern histograms.

52 Feature Sets

τ 0 1 3 5 10 15 25

L2 74.9 76.2 75.2 71.1 63.5 55.0 42.9
L1-Sqrt 74.3 76.6 78.1 78.9 76.8 73.1 63.7

Table 4.4: Average Precisions of LTP based Latent SVM detectors on the INRIA Person
dataset, for different LTP threshold values τ under the L2 and L1-Sqrt normalization schemes.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5

DET − Cell size = 8x8

false positives per window (FPPW)

m
is

s
 r

a
te

LBP

LBP+HOG

LTP

LTP+HOG

LBP+LTP

LBP+LTP+HOG

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5

DET − Cell size = 16x16

false positives per window (FPPW)

m
is

s
 r

a
te

LBP

LBP+HOG

LTP

LTP+HOG

LBP+LTP

LBP+LTP+HOG

(a) (b)

Figure 4.8: DET curves of non-latent detectors for individual and combined feature sets on
the INRIA Person test set, for (a) 8×8 cells, (b) 16× 16 cells. In each case LBP+LTP+HOG is
the best performer followed by LBP+LTP. The 8× 8 cells clearly outperform the 16× 16 ones
but have four times higher feature dimension.

4.2.4.5 LTP Threshold

Regarding the LTP threshold τ, we find that τ = 5 gray-levels gives the best overall

performance. Table 4.4 shows Average Precisions for detectors with L1-Sqrt and L2

normalized LTP features and different values of τ on the INRIA Person dataset. L1-Sqrt

gives consistently better accuracy than L2 over the range of values tested, and moreover

it provides more tolerance to suboptimal τ values.

4.3 Combinations of Features

This section compares the accuracies of linear SVM detectors using various combina-

tions of local pattern and HOG36 features – similar conclusions hold for combinations

using HOG13 and HOG31 features. Feature channels can be combined in several ways

including simple linear concatenation, tensoring, kernel averaging and multiple kernel

learning [Vedaldi et al. 2009]. Here the dimension is too high for tensoring to be prac-

4.3 Combinations of Features 53

Features
INRIA VOC2006
Person Car Person

HOG 79.0 51.7 22.2
LBP 73.9 54.4 21.6
LTP 78.9 55.8 28.9

LBP+LTP 80.4 56.7 31.5
LBP+HOG 80.6 55.9 32.1
LTP+HOG 81.3 56.9 33.8

LBP+LTP+HOG 82.8 56.3 34.4

CS-LBP 67.9 45.6 13.4
CS-LTP 72.2 51.4 17.7

CS-LBPLTP 74.2 51.1 21.6
CS-LBP+HOG 78.1 54.5 28.0
CS-LTP+HOG 78.2 54.9 29.5

CS-LBPLTP+HOG 78.4 54.9 30.1

CS-LBP∗ 73.5 47.1 16.9
CS-LTP∗ 72.8 53.2 21.9

CS-LBPLTP∗ 75.2 53.8 24.3
CS-LBPLTP∗+HOG 78.9 56.1 28.4

Table 4.5: Average Precisions of Latent SVM detectors trained on various combinations of
HOG36, LBP, LTP, CS-LBP and CS-LTP on three classes from two datasets. In the last four
rows, instead of using unweighted CS-LBP codes, the pixel’s gradient magnitude is used to
weight its histogram vote then each cell is block-normalized w.r.t. the four neighbouring blocks
as in HOG, in the manner of Zheng et al. [2010].

ticable and for computational efficiency we preferred to avoid kernelization despite its

discriminative power, so we followed a simple channel concatenation approach. This

puts the emphasis on the expressive power of the underlying feature sets and it allows

us to use comparatively simple learning machinery. Nonetheless, in this approach it is

important to choose the relative weightings of the different feature channels appropri-

ately. Experiments on a validation set showed that, with our well-normalized cell-level

histograms, assigning the same weight to each feature channel was sufficient to give

good performance and that the results were not too sensitive to the exact relative values

of the weightings used.

Figure 4.8 shows DET curves for various feature combinations in non-latent window-

level classifiers on the INRIA Person test set, and Table 4.5 presents Average Precisions

for latent detectors on three different object classes. Clearly, even though the HOG

and local pattern features are already quite discriminant on their own, significant

performance improvements can be achieved by combining them. Among the individual

54 Feature Sets

feature sets, LTP gives the best results overall, followed by HOG. In combination,

LBP+LTP+HOG gives the best results followed by LTP+HOG and LBP+LTP. The fact

that the combination LBP+LTP significantly outperforms both LBP and LTP alone

confirms that LBP and LTP extract complementary forms of local texture information.

In fact, as Figure 4.5 suggests, LBP focuses mainly on micro-local texture details while

LTP extracts stronger shape and texture cues.

The center-symmetric variants of LBP and LTP have much lower performance than

the standard ones, both individually and in combinations, so they cannot be recommen-

ded for object detection despite their significantly lower dimensionality. The last four

rows of Table 4.5 show that using a HOG-like CS scheme motivated by [Zheng et al.

2010], where each CS pair’s gradient magnitude is used to vote into the cell histograms

followed by HOG-style block-normalization, does increase the accuracy relative to stand-

ard CS-LBP/CS-LTP, but at the cost of 4 times higher dimensionality and even then

it gives lower performance than standard LBP/LTP. These findings confirm those of

Heikkilä et al. [2009] that although CS-LBP performs well for wide-base line matching,

it is outperformed by LBP for object category recognition.

To the best of our knowledge, for both DET curves of window-level classifiers and

AP’s of non-latent and latent single root linear SVM detectors, the results for our

LBP+LTP+HOG feature set are the best ever reported on these classes. This illustrates

the benefits of using a rich set of complementary features for object detection.

4.4 Speed

Our complete algorithm for local pattern feature computation is summarized in Fig-

ure 4.9. For each feature type and each image pyramid scale, we compute the pixel-level

feature maps, accumulate them into a grid of P×P pixel cells using bilinear interpolation,

then apply cell or block level normalization as appropriate. This approach is also used

for HOG [Felzenszwalb et al. 2009]. It has the advantages of speed and simplicity but it

is limited to window step sizes that are multiples of the cell size. Alternatives include:

(i) computing all features separately for each window as in Dalal and Triggs [2005]

– this is very flexible in that it allows many different options for cell size and shape,

step size, Gaussian weighting, etc. to be evaluated, but it is also very slow (although

Dalal used caching schemes to palliate this); and (ii) using integral histograms [Porikli

2005] or the indirect feature selection approach of [Zhu et al. 2006], neither of which

is as fast as using a fixed grid across the whole image. In our experience the cell-sized

window stepping used in our scheme suffices for high accuracy while allowing rapid

computation – an observation already made in [Dalal 2006].

For comparison, on a 2.4 GHz workstation, a HOG detector based on this image-level

implementation takes about 0.7 seconds to process an INRIA Person test image, whereas

4.5 Summary 55

Input: A scaled image I and a set of feature map parameters Θk
r

Output: A vector of computed features

Initialization
(a) Compute interpolation coefficients and lookup table for uniform features.

Feature Map Computation Θk
r

(a) For LBP, compute the feature map Θk
r Eq. (4.1) for each of the RGB color channels,

then map the LBP codes to uniform ones using table lookup.
(b) For LTP, compute the ≥ τ & ≤ −τ feature maps Eq. (4.2) for tolerance τ, then map

the codes to uniform ones.
(c) For CS-LBP and CS-LTP, compute the binary codes without mapping them to

uniform patterns.

Cell Histograms
(a) Divide the image into a dense grid of P ×P pixel cells.
(b) Construct the code histogram for each cell using bilinear interpolation to weight

each pixel’s vote.
(c) Accumulate the separate R, G, and B votes into a single pooled histogram.

Image Descriptors
(a) Apply L1-Sqrt normalization to each cell histogram.
(b) Collect the descriptors of the complete image into an array organized by cell indices.
(c) The descriptor of any rectangular region consists of its collected cell histograms.

Figure 4.9: A summary of local pattern feature computation.

a window level implementation takes around 8 seconds. Similarly our (non-optimized)

implementation of the linear LBP+LTP+HOG detector takes about 3.4 seconds, or 2.2 if

bilinear spatial interpolation is turned off in the local pattern features.

4.5 Summary

This chapter has detailed the configurations that we will use for our feature sets in all of

the experiments below. Based on the results in this chapter, individually the LTP and

HOG features perform well and the LBP ones perform quite well, but combinations are

even better, with LBP+LTP+HOG performing best and LTP+HOG performing second

best. These findings are confirmed by the detailed experiments in Chapter 6. For the

HOG features, we confirmed that the [Felzenszwalb et al. 2009] HOG13 and HOG31

dimensionality reduction methods give good results. For the local pattern features, the

inclusion of (pooled) color information, the use of bilinear interpolation for histogram

voting, and L1-Sqrt normalization all improve the results, and uniform codes help to re-

56 Feature Sets

duce the dimensionality with little or no loss of discrimination. LTP clearly outperforms

LBP, presumably owing to its ability to suppress noise and focus on contour information,

while the center-surround variants of LBP and LTP are not competitive with the regular

ones owing to their greatly reduced discriminative power.

Chapter 5: Dimensionality Reduction and

Classifiers

In this chapter we discuss both dimensionality reduction methods, including Partial

Least Squares and sparse feature selection, and various forms of fast nonlinear classifiers.

Although we give some illustrative experimental results, full-scale testing is postponed

until Chapter 6.

5.1 Dimensionality Reduction

Our full feature set LBP+LTP+HOG31 has 19968 dimensions for 48×128 detection

windows. Although feature sets of such high dimension do improve discrimination, they

lead to: i) long training times, as the features are bulky to store and slow to process; ii)

an increased risk of overfitting, despite the use of well-regularized classifiers; iii) slow

final detectors – more than half of the total time is often spent computing dot products

between feature vectors and learned classifier weights. We now explore two strategies

for tackling the dimensionality problem by finding reduced-dimensional feature sets

that have similar discriminative power for the given problem: discriminant subspace

projection and relevant feature selection. Among the available discriminant subspace

projection methods we tested Partial Least Squares (PLS), Principal Component Analysis

(PCA) and discriminative topic models. Among the wide range of available feature

selection methods, we tested SVM weight truncation, L1 regularization and boosting

over the feature pool. The following subsections provide details.

5.1.1 Discriminant Subspace Projection

Discriminant subspace methods aim to find a low dimensional linear projection of the

feature vector that preserves much of the discriminative power of the input. We will use

them as preprocessors to reduce the feature dimension before standard SVM learning.

Note that with any such method, if a linear SVM is learned, its weight vector can be

pushed back through the projection to provide an equivalent linear SVM on the original

feature space so expensive multidimensional projection is not needed at run time.

58 Dimensionality Reduction and Classifiers

We tested three methods for learning suitable projection matrices, Partial Least

Squares [Wold et al. 2001; de Jong 1993], Principal Component Analysis (PCA), and

max-margin discriminative topic models [Zhu et al. 2009]. PLS is our method of choice

because it is very efficient and it gives essentially identical performance to the the raw

input features. PCA gives very poor results. For example, for linear SVM over HOG

features on the INRIA Person dataset, training on the leading 30 principal components

reduces the AP by 21% relative to training on the complete feature set. Our preliminary

tests with max-margin topic models also gave less good results than PLS for much longer

run times1, so we will not discuss this further here.

5.1.1.1 Partial Least Squares (PLS)

“Partial Least Squares” or “Projection to Latent Structures” (PLS) is a regularized linear

least squares regression method that was initially developed in chemometrics to solve

ill-conditioned multiple output regression problems in cases with few training examples

and many highly-correlated variables and outputs [Wold et al. 2001]. Here we discuss

the different PLS algorithms only briefly. Further details, a comparison with other

methods and details of nonlinear extensions can be found in [Rosipal and Kramer 2006;

Wold et al. 2001; de Jong 1993].

PLS is a linear L2 regression method, but instead of including a conventional reg-

ularization term it controls the solution by solving the regression problem exactly in

a lower-dimensional space given by a truncated power method basis expansion of the

input space. Consider a conventional damped least squares regression problem XB ≈ Y

where X,Y are respectively the input and output matrices (stored by rows) and B is the

weight matrix to be learned. Regularized least squares solves this as B = (X′X+λI)−1X′Y,

which for large λ can be written as
(

∑∞
k=0

(−X′X)k

λk+1

)

X′Y. This is an expansion of the solu-

tion in terms of the power method basis matrices {X′Y, (X′X)X′Y, (X′X)2X′Y, ...}. The

expansion is intimately linked to regularization in the sense that it quickly extinguishes

directions corresponding to small eigenvalues of X′X (small singular values of X), which

are exactly the ones that diverge when X is close to singular and the undamped solution

B = X+Y = (X′X)−1X′Y is used.

Now consider PLS in the case of scalar outputs (Y is a vector). PLS regularizes the

solution not by fixing a λ and summing to convergence, but by truncating the basis

expansion and then solving the undamped problem exactly in the resulting subspace.

In practice it also orthogonalizes each new vector of the series (X′X)kX′Y against the

previous vectors as it is generated – a standard linear algebra tool known as Lanczos

recursion. Besides greatly improving the numerical stability, this orthogonalization

1This may be an algorithmic issue so further testing of topic model based approaches is probably
warranted.

5.1 Dimensionality Reduction 59

Input: Feature matrix X, class label matrix Y and number of latent variables k
Output: Projection matrix W, orthonormal loading matrix V, latent factor matrix T and
response regressor matrix B

Initialization
(a) Center and scale X and Y to zero mean and unit variance.
(b) Compute S = X′Y.

For i = 1 . . . k

(a) Find the sorted SVD decomposition S =UΣV′

(b) Extract the ith weight, latent and loading vectors
(1) wi =U1

(2) ti = Xwi

(3) pi = X′ti
(c) Scale ti , wi , qi by 1/‖ti‖ so that t′iti = 1.
(d) Orthogonalize pi w.r.t. V to make vi = pi −V(V′pi), then normalize vi to unit length.
(e) Deflate S by projecting out the regressed component, S = S− vi (v

′
iS)

(f) Append the w,t,p,q,v vectors to their respective matrices W,T,P,Q,V.

Compute the final regressor matrix B =WQ′ .

Figure 5.1: The SIMPLS algorithm for the computation of k PLS components.

allows the linear regression to be solved as a series of 1D subproblems with closed form

solutions, at each step deflating Y (removing the part of it that has just been explained)

in preparation for the next step. Note that the PLS solution lies in the subspace spanned

by the directions {X′Y, ..., (X′X)kX′Y} – increasing k reduces the effective regularization,

but the result does not usually coincide with the damped least squares solution (X′X+

λI)−1X′Y for any zero or finite λ until k = Rank(X′X), when the undamped solution is

obtained.

For q-dimensional outputs Y, rather than introducing a q-dimensional block of new

vectors (X′X)kX′Y at each step, standard PLS selects the most useful single X-vector

in the subspace spanned by the block by finding the leading singular vector of the

residual X′Y matrix and sending this through the orthogonalization process. At the

cost of a (possibly approximate) leading eigenvector extraction at each step, this keeps

the regularization effective even when q is large, while assuring rapid decrease of the

residual Y and retaining 1D regression subproblems.

SIMPLS. The historically most common algorithm for PLS is NIPALS [Wold et al.

2001], but here we use SIMPLS [de Jong 1993] which has the advantage of generating an

explicit orthogonal projection matrix for the reduced subspace. Let Xm×n represent the

matrix of the n predicate variables for each of the m examples and Ym×q represent the

60 Dimensionality Reduction and Classifiers

corresponding matrix of response variables. We assume that both are centered to mean

zero. Then SIMPLS estimates the regressor Y ≈ XB column by column in the form

Y ≈ TQ′ where T = XW (5.1)

so that B =WQ′. However to find the next columns of W and Q it proceeds indirectly,

simultaneously constructing a back-regressor X ≈ TP′ and (most importantly) V, an

orthonormalized version of P. First, using the SVD of S = X′Y, it finds the unit vectors

w, q that maximize (Xw)′(Yq). It then finds t = Xw and p = X′t and orthonormalizes p

against the current (initially empty) V matrix to give a new column v of V. Finally S is

orthogonalized against v to provide the S matrix for the next round of the process. The

complete algorithm is given in Figure 5.1.

PLS for Classifiers. Although PLS was designed as a stand-alone regression tool, it can

also be used as a dimensionality reduction method for a subsequent classifier [Schwartz

et al. 2009; Kembhavi et al. 2010]. This is particularly effective in cases where the input

variables are strongly correlated, which happens almost inevitably in object detection

with rich feature sets containing many related features from overlapping regions. Here

we use PLS as a subroutine to project out a small number of highly discriminative

directions for subsequent SVM learning. During each training iteration, after Latent

SVM alignment, we use SIMPLS to find and project out a feature subspace for classifier

training. Below we will report results for both linear and nonlinear classifiers trained in

these reduced spaces.

Note that although B =WQ′ is the PLS regressor matrix so that W might seem to be

a good candidate for the reduced subspace projection, W is not an orthogonal projector

(its columns are not orthonormal). On the other hand, V is orthonormal and being an

orthonormalized version of P it provides a suitable projector as follows: X = TP′ = TR′V′

where R is upper triangular and P =VR is the QR decomposition (orthonormalization)

of P. By the orthonormality of V, XV ≈ TR′V′V = TR′ is a reduced subspace equivalent

to an orthonormalized version of T. Besides being orthonormal, this is an equally

good basis for regressing Y since Y ≈ TQ′ = (TR′)(R′−1Q′). We therefore use the V

matrices to project out our reduced subspaces during SVM learning. This is confirmed

experimentally: projecting the features using V instead of W gives better precision and

computationally more stable solutions. For example, for latent detectors on 30 PLS

dimensions, using W instead of V reduces the AP by 1.3% for the INRIA Person class

(from 79% AP to 77.6% AP) and by 1% for the VOC2006 person class. Figure 5.2 shows

positive and negative SVM weight images for the first five PLS components of W and V

based projection, for HOG features on the INRIA Person class. For W, the components

look superficially meaningful, but this is because they are all similar and highly aligned

5.1 Dimensionality Reduction 61
P
o
si
ti
v
e
W

N
eg
at
iv
e
W

P
o
si
ti
v
e
V

N
eg
at
iv
e
V

Figure 5.2: Positive and negative SVM weight images of the first six PLS components under
the projections W and V for HOG features on the INRIA Person dataset. The last column
shows the final SVM learned from the PLS features.

with the final SVM. This redundancy makes SVM learning more difficult. Conversely,

although the V components are less “readable”, they encode obviously different shape

cues like horizontal edges, head, leg and torso cues, etc., and in combination these lead

to a better final detector.

For classifier learning, there is a single response variable (the class label y) and the

data matrix S becomes a vector, eliminating the need for an SVD and giving very fast

PLS computation times. When dealing with combined feature sets, we simply learn the

PLS reduction on the joint (concatenated) feature vector. The number of PLS dimensions

k for a given problem can be chosen using a validation set, but by default we use k = 30

62 Dimensionality Reduction and Classifiers

1 Component 2 Components

3 Components 29 Components

Figure 5.3: An illustration of the class separations produced by different numbers of PLS
components for HOG features on the initial stage INRIA Person training set. The scatter is
plotted for the newly added (j +1)st component against the best Least Squares regressor on all
preceding components.

for all of our linear classifiers as we find that any value about 25 and 60 typically gives

similar results. For all of our individual and combined feature sets, training against 30

PLS components does not change the AP significantly relative to training against the

corresponding raw input features. Clearly, unlike PCA, the class awareness of PLS allows

it to project out highly discriminant feature combinations even for modest number of

output dimensions.

Although the first PLS dimension already gives a moderately good linear separator,

including additional dimensions does increase the accuracy. The influence of additional

dimensions on the separation between the two classes is illustrated in Figure 5.3. Here

the class scatter for a newly added PLS dimension is plotted against the scatter for the

best least squares class label regressor B on all of the preceding components. We see

5.1 Dimensionality Reduction 63

Time spent (in seconds)

Feature Learning Features Latent Classifier
Total % Speed Up

Type Space Computation Search Learning

HOG36
Raw 1668.0 404.0 1204.0 3276.0

37
PLS 1681.0 476.0 233.0 2390.0

LBP
Raw 2948.0 445.0 1986.0 5379.0

50
PLS 2969.0 507.0 107.0 3583.0

LTP
Raw 4797.0 688.0 2053.0 7538.0

35
PLS 4755.0 774.0 62.0 5591.0

LBP+LTP+HOG
Raw 6449.0 1051.0 2336.0 9836.0

29
PLS 6367.0 1184.0 49.0 7600.0

Table 5.1: A breakdown of the time spent (in seconds) in various stages of single root detector
learning on the VOC2006 person class. PLS significantly speeds up the classifier learning
(which includes the cost of PLS itself), resulting in a reduction in the overall detector training
time of between 25% and 50%.

that the separation gradually increases as dimensions are added [Kembhavi et al. 2010].

Table 5.1 shows that PLS significantly speeds up batch SVM training, often by more

than an order of magnitude, and hence provides a useful reduction in the overall detector

training time. For instance for single root detectors, PLS speeds up detector training

by 25% to 50% depending on the feature set used, and similar increases in speed are

seen in the 2 root case where PLS speeds up the training of LBP+LTP+HOG detectors by

about 45%.

Overall, the advantages of using PLS as a dimensionality reduction tool for SVM

training are as follows:

• The resulting classifiers are much faster to train. Even including the cost of PLS

learning and reduction, PLS often speeds up batch SVM training by an order of

magnitude, leading to faster overall detector training. For example, for 2 Root

Latent SVMs on VOC2006 with LBP+LTP+HOG features and 28 latent training

iterations, training an SVM with PLS reduced features (including the cost of the

PLS) takes around 10 minutes per class in total, whereas training with unreduced

features takes around 125.

• The resulting detectors typically have similar or even slightly better2 accuracies

than the equivalent unreduced ones.

2SVM detectors are based on limited numbers of imperfect training examples, each with background
clutter. PLS dimensionality reduction implicitly averages over many such examples. Presumably this
sometimes manages to project away part of the noise and hence reduce overfitting.

64 Dimensionality Reduction and Classifiers

• The resulting (linear) detectors are just as fast as standard ones because the learned

classifier weights ρ̂ can be pulled back through the PLS projection to give an

equivalent classifier ρ = V ρ̂ on the original feature space.

• Optionally, the low-dimensional representation allows many kinds of nonlinear

classifier to be trained in the reduced space, which might not be feasible in the

unreduced one owing to its high dimensionality – c.f . Sec. 5.2.

5.1.2 Feature Selection and Sparsity

Discriminant subspace projection methods are simple in the sense that they are based

on familiar tools from linear algebra, but the resulting projection matrices are typically

dense. This potentially makes them slow as all of the features in the set need to be

evaluated for use in the projection, and although they downweight irrelevant features

that contribute little or nothing to the final decision, they do not categorically identify

and suppress them. Such features are expected to be common in visual recognition as

many visual classes are characterized by sparse cues such as object outlines or particular

kinds of texture. Discarding the unnecessary features is expected to both speed up

the detector and improve its generalization because it helps the classifier to focus on

structures that are useful for recognition while ignoring noise. Moreover, very sparse

“filter” classifiers could potentially be used in the context of coarse-to-fine or cascade

approaches to further increase the scanning speed.

There are a large number of feature selection methods designed to choose small sets

of discriminative features from large pools of candidate features. We tested three main

approaches: greedy selection based on boosting, sparsity-inducing regularizers such

as the L1 regularized variants of SVM and logistic regression, and importance criteria

based on trained classifier weights.

5.1.2.1 Boosting For Feature Selection

Besides being a classifier training procedure, boosting can also be viewed as a stepwise

greedy method for selecting a set of discriminant features (the chosen weak classifiers)

from a large feature pool [Viola and Jones 2004]. We investigated the used of several

variants of boosting methods, including asymmetric AdaBoost with decision stumps

[Viola and Jones 2004] and GentleBoost with regression stumps [Torralba et al. 2007] as

feature selectors for SVM classifiers3 following latent root and part position estimation.

3It is well known, and our experience confirms, that over any give set of features (weak classifiers),
linear SVM generally finds a better classifier than boosting, or at least finds an equally good one more
quickly. Hence, even though we select features using boosting, we actually relearn the classifier over them
using linear SVM. The main strength of boosting is not the absolute quality of its classifier over the selected
features, but its ability to select good features/weak classifiers from a large and potentially unbounded set
in an efficient stepwise manner.

5.1 Dimensionality Reduction 65

However our initial results on this were not encouraging and we did not pursue this

further. For instance, for LBP+HOG features on the VOC2006 person class, using

AdaBoost to sparsify the feature set to ∼34% nonzeros (∼30 features per cell) reduced

the AP by 9.6% from 32.1% to 22.7%.

5.1.2.2 L1 Feature Selection

Another approach to feature selection is to modify the learning problem in such a

way that its solution will naturally be sparse. Sparsity-inducing regularizers are a

common way of achieving this. These can be non-convex, leading to methods such

as the Relevance Vector Machine [Tipping 2001], but here we preferred to preserve

convexity so we tested only L1 regularizers [Fan et al. 2008; Schwartz et al. 2009]. An L1

regularized sparse classifier is characterized by an objective function of the form

LD(ρ) = ‖ρ‖1 + C

m
∑

i=1

l (Sρ(ri), yi). (5.2)

Here, ‖ρ‖1 denotes the L1 norm of the classifier weight vector ρ. As before, we use

the latent formulation where each of the m training examples consists of an image

region ri and its label yi , and l (Sρ(ri), yi) is a non-negative loss function defined over a

(non-latent or latent) region scoring function Sρ(r). For example, Sρ(ri) = ρ.̟i in the

simplest non-latent case, where ̟i are the region features. The regularization parameter

C balances the contributions of the regularizer and the loss function. We will suppose

that l (Sρ(ri), yi) is a convex function of ρ, so the overall objective function remains

convex (modulo, in the latent case, the search for the latent positions of the positive

examples). The overall objective function is non-differentiable due to the L1 norm, so

mathematical programming based algorithms are needed for optimization. This is an

area of current interest in the machine learning community and new algorithms are

emerging all the time, especially for large scale problems with many features [Langford

et al. 2009; Schwartz et al. 2009].

L1 Regularized Logistic Regression. For logistic regression (LR), we have

l (Sρ(ri), yi) = log (1 + exp−yiSρ(ri)). (5.3)

This loss is twice differentiable, which simplifies the L1LR optimization problem. We

tested the coordinate descent optimization algorithm of [Fan et al. 2008], but the result-

ing detector do not outperform either standard linear SVM or standard L2 regularized

Logistic Regression (where ‖ρ‖1 in Eq. (5.2) is replaced with the squared L2 norm ‖ρ‖
2).

For instance, for LBP+LTP+HOG features on the VOC2006 person class with L1 Logistic

66 Dimensionality Reduction and Classifiers

Regression set to give 16% nonzero weights, the AP is 5.9% lower than that of dense

linear SVM. Even dense L2 Logistic Regression is not competitive with linear SVM,

having a 3.6% lower AP on this class, and a 2.3% lower one on the INRIA Person dataset.

Moreover, with the current algorithm training L1 Logistic Regression is very slow – in

fact even for L2 Logistic Regression a new dual formulation [Yu et al. 2011] was needed

because primal based training was extremely slow.

These results confirm our experience with other Logistic Regression classifiers on

these problems. Despite the substantial overlaps between the positive and negative

training sets, which might suggest that more statistically-based classifiers like Logistic

Regression would have an edge over SVM, SVM consistently gives both better results

and much faster training. Given that the regularizers are the same and the loss functions

are asymptotically the same, this suggests that attempting to enforce a suitable margin

on these datasets is more important than detailed modeling of the overlap statistics.

L1 Regularized SVMs. Although the idea of combining L1 regularization with SVM

is old, the joint non-differentiability of the hinge loss and the L1 regularizer makes the

overall optimization problem somewhat delicate (at least for large scale problems) and

it is only surprisingly recently that this issue has received much attention from the

machine learning community. As a result, the existing algorithms leave something to be

desired4.

Fung and Mangasarian [2002] gave an early second order method based on the dual

of the hinge loss, but this was intended for applications where the number of examples

m is small. Their algorithm scales as O(m3), making it infeasible for object detection

problems where there are tens of thousands of examples in the later stages of training.

Similarly, a feature-oriented reformulation would scale as O(n3) where n is the number

of feature dimensions, which is also prohibitive.

Shalev-Shwartz and Tewari [2009] describe a stochastic mirror descent algorithm

(SMIDAS), making it sparse using a simple trick that works independently of the number

of examples to give run times that scale as O(n) with the feature dimension. We slightly

modified their code to allow different costs (hinge loss slopes) for the positive and

negative examples. Although the resulting method gives comparable results to a dense

SVM classifier in the initial stages of latent learning, as soon as hard examples are

introduced the differences in performance grow substantially and the final detector

gives much worse results. We do not have a good explanation for this and suspect that

the problem is algorithmic.

4We would expect this situation to change over the next year or two, and we are currently on working
this ourselves.

5.1 Dimensionality Reduction 67

0 10 20 30 40 50 60 70 80 90
0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

AP w.r.t Sparse Features

Percentage of Nonzero Weights

A
v
e
ra

g
e
 P

re
c
is

io
n

(a) (b) (c)

Figure 5.4: The effect of L1R-L2SVM classifier sparsity on Average Precision for HOG36

features on the INRIA Person dataset. (a) AP versus the sparsity level. Images of the (b)
positive and (c) negative HOG weights for the classifier with 19% nonzero weights (AP 77%).
The most important information is contained in the shoulder, head and leg signals.

L1 Regularized L2 SVMs. Another related approach is the (misleadingly named) “L2”

SVM variant, where the hinge loss is replaced by its square, making the loss function

differentiable in return for a method that is (in principle at least) less resistant to outliers.

The differentiable loss function allows L1 regularization to be introduced with fewer

algorithmic difficulties and LibLinear [Fan et al. 2008] provides an implementation.

Despite the use of the squared hinge loss, the results given by this L1R-L2SVM method

are encouraging, being much better than both SMIDAS and L1 Logistic Regression. For

example, for HOG36 features on the INRIA Person dataset with 19% nonzeros (642 of

the 3456 weights), L1R-L2SVM achieves 77% AP, as compared to 79% for conventional

SVM with the complete feature set. Figure 5.4(a) shows the impact of sparsity on the

AP for this dataset, obtained by varying the regularization parameter C. Good results

are maintained down to about 14% sparsity. Figure 5.4(b, c) show the learned positive

and negative weights for one of the resulting sparse person classifiers. As expected,

most of the characteristic information is carried by the shoulder, head and leg outlines.

The results for L1R-L2SVM are still 2% below those of a conventional dense SVM, but

they strengthen our intuition that much of the information carried by the features is

redundant, so that sparse classifiers should be able to do almost equally well as dense

ones. The method that we turn to next demonstrates this conclusively.

68 Dimensionality Reduction and Classifiers

0 1000 2000 3000 4000 5000 6000 7000 8000
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Feature Number

M
a
g
n
it
u
d
e
 o

f
W

e
ig

h
ts

Sparsity Plot

Weights

50% Nonzeros

30% Nonzeros

10% Nonzeros

Figure 5.5: Linear SVM weights for the INRIA Person class sorted into increasing order, with
several of the resulting sparsity intervals. Weights that lie within the given sparsity interval,
and that thus make only a small contribution to the overall template energy, are truncated to
zero.

5.1.2.3 Weight Truncation Based Sparse Classifiers

Motivated by the above results, we tested a simple heuristic for converting a traditional

(L2 regularized hinge loss) SVM classifier into a sparse one. If we examine the learned

weights ρ of a linear classifier, many of them typically have quite small magnitudes –

c.f . Figure 5.5. Empirically, the bottom 50% of the weights by magnitude carry only

about 20% of the total SVM weight energy, whereas the top 10% carry about 30% of it.

(Here, weight energy is defined as the sum of the magnitudes of the weights.) This is

to be expected because most of the common visual object classes are characterized by

relatively sparse cues such as object outlines or particular types of texture. To the extent

that the small components represent noise inherited from the training set rather than

features essential for recognition, both classifier accuracy and speed may be benefited

by suppressing them.

Theoretically, any method based on the SVM weight values and the characteristics

of the corresponding features could be used to select the most important weights for

retention, but here, for simplicity, we just sort the weights by magnitude and retain

the largest ones, setting the rest to zero. The detector is then retrained using only

the selected features. Retraining adjusts the weights to compensate for the deleted

features (which are often correlated with retained ones), giving a modest but systematic

improvement in performance.

There are actually several variants of this idea to test. Firstly, we can truncate either

to a given percentage of nonzeros or to a given percentage of the overall weight-energy.

5.1 Dimensionality Reduction 69

However the difference is merely one of labeling and for simplicity we will always

use the percentage of nonzeros here owing to its closer connection with sparsity levels

and hence detector speed. Secondly, for multichannel feature sets, we can either force

the sparsity to be distributed uniformly across the different channels, or work jointly

and let it fall where it will. In practice we do the latter by default, remembering that

the different channels are normalized to have similar ranges of variation and hence

similar overall weights. We will see that each channel does indeed make a significant

contribution to the discriminative power of the feature set, which is an indication that

this choice is reasonable. Thirdly, for multiple roots and roots plus parts the given level

of sparsity can either be enforced as a whole over the entire ensemble, or individually

on each component and part separately. We do the later. Fourthly, we could apply the

sparsification once and for all, or in gradually increasing increments over several stages

of classifier retraining, for example decreasing the number of nonzeros by a factor of

two each time. We do the former as we find that in practice it gives almost identical

results with significantly lower training times. Finally, the sparsification can be applied

at any stage of the latent learning cycle. We tested the following three approaches:

Final Weight Truncation (FWT). In its simplest form, weight truncation can be ap-

plied to an existing detector after the final stage of training, i.e. a dense detector is

trained through all stages, then the result is sparsified and retrained once using the same

hard negatives. (Actually, we skip the retraining if there are more than 50% nonzeros

as in this case it makes only a negligible difference). Figure 5.6 shows Average Preci-

sion plots for FWT sparse detectors with different levels of sparsity and retained SVM

template energy on the 10 classes of the VOC2006 dataset. It is clear that substantial

reductions in the feature set dimension are possible with little or no loss in accuracy.

However although FWT is simple to train and it already gives good results, it is not

optimal because it is trained using latent labels and hard negatives found by the previous

dense detector.

Iterative Weight Truncation (IWT). In this strategy, sparsification is re-run at each

stage of training after Stage II of the latent learning cycle (c.f . Sec. 3.3.2), using hard

negatives and Latent SVM positions obtained from the previous-stage sparse detector.

Training the sparse detectors using their own latent labels and hard negatives improves

their APs to such an extent that they give almost identical results to dense detectors

even for very sparse feature sets, and often even better results for ones of intermediate

sparsity. For example, for LBP+LTP+HOG features on VOC2006 at 10% nonzeros and at

15% nonzeros, IWT gives respectively 39.3% and 39.6% Mean AP as compared to 39.6%

for dense detectors. Although IWT gives good results and it is fast to test, it is rather

slow to train because in each iteration training needs to be done on the complete dense

70 Dimensionality Reduction and Classifiers

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Performance on Sparse Features

Percentage of Nonzeros

A
v
e

ra
g

e
 P

re
c
is

io
n

Bicycle
Bus
Car
Cat
Cow
Dog
Horse
Motorbike
Person
Sheep
Mean AP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Performance on Sparse Features

Percentage of Nonzeros

A
v
e

ra
g

e
 P

re
c
is

io
n

Bicycle
Bus
Car
Cat
Cow
Dog
Horse
Motorbike
Person
Sheep
Mean AP

(a) (b)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Performance on Sparse Features

Percentage of weight energy

A
v
e

ra
g

e
 P

re
c
is

io
n

Bicycle
Bus
Car
Cat
Cow
Dog
Horse
Motorbike
Person
Sheep
Mean AP

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Performance on Sparse Features

Percentage of weight energy

A
v
e

ra
g

e
 P

re
c
is

io
n

Bicycle
Bus
Car
Cat
Cow
Dog
Horse
Motorbike
Person
Sheep
Mean AP

(c) (d)

Figure 5.6: Average Precisions of detectors trained on the VOC2006 datasets and sparsified
using the Final Weight Truncation (FWT) method. Plots (a) and (b) show detectors that were
(a) and were not (b) retrained after enforcing sparsity. Plots (c) and (d) show the APs of
retrained and non-retrained FWT detectors w.r.t. the percentage of the initial SVM weight
energy retained in the sparsified detectors. Note the consistent improvements produced by
retraining and the fact that although about 20% of the total weight energy is carried by the
top 6% of the weights, this figure is somewhat variable making it hard to use percentages of
energy as a means to set numbers of nonzeros or vice versa.

feature set in order to find the weights needed for feature selection, and then again on

the selected features.

Weight Truncation (WT). In this strategy, the detector is sparsified once and for all

after Stage II of the latent learning cycle, and the features selected there are retained

at all subsequent stages. WT gives only slightly less accurate results than IWT (c.f .

Chapter 6) and it is faster to train. However note that it is also somewhat sensitive

to its initialization. In particular, if we initialize both IWT and WT directly after the

5.1 Dimensionality Reduction 71

6.5 12.5 25 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Percentage of nonzeros in root

A
v
e

ra
g

e
 P

re
c
is

io
n

6.5% nonzeros

12.5% nonzeros

25.0% nonzeros

6.5 12.5 25 50
0

0.05

0.1

0.15

0.2

0.25

0.3

Percentage of nonzeros in root

A
v
e

ra
g

e
 P

re
c
is

io
n

6.5% nonzeros

12.5% nonzeros

25.0% nonzeros

(a) (b)

Figure 5.7: Average Precisions for different percentages of nonzero weights assigned to the
root and parts of single root and eight parts WT detectors of VOC2006 person (a) and cat (b)
classes. Each group of bars shows Average Precisions for detectors having various percentages
of nonzeros for their parts and the given percentage of nonzeros in their root.

initialization stage of latent learning rather than at Stage II, WT gives results that are

much worse than IWT.

Compound Detectors. We can use all three of the above strategies to train multi-root

multi-part detectors. Training multi-root detectors using any of these methods and

training multi-root multi-parts ones using FWT or IWT does not present any special

challenges, except that after enforcing sparsity the positives must be rescanned to find

the best latent variables. However multi-root multi-part detectors trained using WT can

give poor performance if the parts are not well initialized. We tested various techniques

for part initialization and found that the best approach was to first use the sparse root

filter to find the best positions and dimensions for the parts, then do a single round of

part training using the complete part feature set as in the original method, then finally

sparsify each part. This allows the algorithm to determine the best gradient orientations

and texture bins to use for the part representation. Once initialized, the usual WT

training method is followed.

Figure 5.7 shows the Average Precisions for different percentages of nonzero weights

assigned to the root and part filters of single root / eight part WT detectors for the

VOC2006 person and cat classes. In both cases, irrespective of the root sparsity, quite

sparse (12.5%) part detectors give the best performance, and adopting this, the sparsest

root setting (6.5%) gives the best performance. (The corresponding APs for dense roots

are respectively 38.0% and 21.2%). Thus, in the experiments below our default method

assigns a somewhat higher percentage of nonzeros to the parts than to the root – typically

1.5–2 times higher5. As already observed, this gives good results with fast training times

5Given that the part filters also run at twice the resolution of their root and thus have many more

72 Dimensionality Reduction and Classifiers

Bike Bus Car Cat Cow Dog Horse Mbike Person Sheep
0

0.1

0.2

0.3

0.4

Object Class

P
e
rc

e
n
ta

g
e
 S

h
a
re

 o
f
F

e
a
tu

re
s

Percentage of different features channel

LBP

LTP

HOG

Bike Bus Car Cat Cow Dog Horse Mbike Person Sheep
0

0.1

0.2

0.3

0.4

Object Class

P
e
rc

e
n
ta

g
e
 S

h
a
re

 o
f
F

e
a
tu

re
s

Percentage of different features channel

LBP

LTP

HOG

(a) (b)

Figure 5.8: Numbers of features contributed by the different feature channels to 10% nonzero
sparse classifiers for the different classes of the VOC2006 dataset. (a) for IWT classifiers. (b)
for WT classifiers.

– e.g., six root eight part detectors with the roots and parts having respectively 10% and

20% nonzeros give 53.4% Mean AP on VOC2006 compared to 54% for dense detectors,

while being 1.5–2.5 times faster.

Discussion

Although SVM weight truncation may seem rather ad hoc, it is computationally effi-

cient and it gives much better results in our experiments than every other sparsific-

ation method that we tested. It allows our detectors to be sparsified down to ∼10%

nonzeros with little or no loss, and in some cases even a small gain in accuracy. The

speed/performance trade-off can easily be adjusted by varying the truncation threshold.

The sparsified detectors also give insight into the properties that are important for

characterizing the various object classes. For instance for the VOC2006 cat class, most of

the features selected come from the LTP channel so texture is probably important for this

class, whereas for the car class most of the selected features are from the HOG channel

so shape information is probably important – c.f . Figure 5.8(b). Figure 5.9 compares

sparse FWT models learned for several object classes with dense ones6. Compared to the

dense models, the sparse ones are relatively clean with little clutter. In this sense they

contain the minimum information needed to represent the object category. Additional

results for FWT, IWT andWT on multi-root multi-part detectors are given in Chapter 6.

features and finer stepping than it, this means that most of the computation time is spent evaluating part
scores.

6The HOG displays use the visualization method from [Dalal and Triggs 2005; Felzenszwalb et al. 2009].
For the LBP/LTP ones, in each cell we display a circle of 8 sectors corresponding to the 8 bits of the local
pattern, where the intensity of a sector is the weighted sum of the SVM weights of the uniform patterns
in the cell that have a ‘1’ bit in that sector. As with HOG, we display positive and negative SVM weights
separately, and for LTP we display only the positive half of the split uniform coding (the images for the
negative halves are similar). These displays are only a heuristic aid to visualizing the image gradients and
patterns that are most important for the discrimination of positives from negatives.

5.1 Dimensionality Reduction 73

a b

Positive Negative Positive Negative

c

d

e

Positive Negative

Figure 5.9: Images of the weights of LBP+LTP+HOG models learned using the dense and
10% nonzero sparse FWT algorithms. Each panel shows the dense and sparse results side
by side, with positive weights shown separately from negative ones: images of weights of
LBP, LTP and HOG channels for INRIA Person (a), and VOC2006 person (b), and images of
weights of only HOG channel for bicycle (c), car (d), and motorbike (e) sets. Note the extent
to which sparsification simplifies the positive weights and suppresses background clutter from
the positive and especially the negative ones.

74 Dimensionality Reduction and Classifiers

5.2 Nonlinear Classifiers

Although the linear classifiers described above do remarkably well, it is reasonable to

expect nonlinear ones to do even better, particularly in the later stages of training where

it becomes increasingly difficult to separate the positives from the hard negatives with

a linear decision boundary. Currently the most commonly used nonlinear classifiers

are kernel SVMs. Most of the common kernels (e.g. Gaussians) essentially have the

effect of localizing comparisons in feature space, allowing nonlinear decision boundaries

to be built in this space. Unfortunately, kernelized classifiers tend to be slow as each

example needs to be compared with a large number of support examples, and additional

layers such as kernel choice or hyperparameter selection often make them prohibitively

slow to train for object detection. For example, even in a PLS reduced feature space, a

typical Gaussian kernel SVM detector takes around 30 seconds to scan an image from

the VOC2006 test set. In the unreduced 20488-D feature space, the analogous classifier

would be hundreds or thousands of times slower again, and even a “fast” nonlinear

method like FastIKSVM [Maji et al. 2008] takes around 80 seconds per image7. Many

researchers have proposed clever methods for speeding up kernel classifier training and

evaluation, but training with a complete set of parameters can still involve weeks of

computation on a cluster of machines [Vedaldi et al. 2009].

Moreover, although the gains that are achievable by kernelizing of the kinds of

feature sets used here are well documented [Dalal 2006], they are relatively modest given

the increase in complexity and run time, and they also appear to be fairly predictable in

the sense that major surprises have been rare. For these reasons we will not study kernel

classifiers further here, instead focusing on more explicit nonlinear mappings that can

hopefully provide some of the advantages of kernelization without its prohibitive costs.

In fact, most of the methods that we study make a separate nonlinear mapping of each

feature dimension, followed by linear classifier training on top of these.

5.2.1 Nonlinear Feature Extension

In this section we cover methods that try to enhance a feature set by including additional

features that are simple nonlinear functions of the existing individual input features,

while still keeping the overall linear classification framework and hence the possibilities

of PLS reduction, sparsification, etc. As a simple example, for each input feature wi we

could include both wi and w2
i in the SVM feature vector. This would allow the method

to learn diagonal quadratic decision boundaries (coordinate aligned ellipsoids) as well

as linear ones. In fact, spherical boundaries (as in one-class SVM, etc.) are obtainable

from a single additional feature
∑

iw
2
i .

7This is on the original feature space. Standard IKSVM can not be used in PLS reduced feature spaces
because PLS features are not guaranteed to be positive.

5.2 Nonlinear Classifiers 75

We will return to the important quadratic case below, but first we present a general

framework for such componentwise feature space extensions. The input features {wi}

are replaced by a larger set of scalar functions {bij (wi)}, so the final classifier has the

form f (w) =
∑

i

∑

j αijbij (wi), i.e. each feature wi is essentially replaced by a learnable

nonlinear function fi(wi) =
∑

j αijbij (wi) defined by the basis functions bij (wi). Typically,

the identity function wi itself will be representable within this basis but the nonlinear

extension will be useful only if the functions learned are actually nonlinear.

This kind of approach can be related to other work in the learning and recognition

literature. In particular [Maji et al. 2008; Maji and Berg 2009; Vedaldi and Zisserman

2010] give methods for expanding additive and homogeneous kernels (including Inter-

section, Hellinger, and Chi-squared kernels) in terms of nonlinear functions of their

feature dimensions. These can be applied to any classifier with a homogeneous kernel,

and by approximating the basis functions one can build fast approximations of the

kernel function. For example, Vedaldi and Zisserman [2010] approximate additive

kernels by dot products of vectors of basis functions, which are in turn approximated

to give closed form rules allowing rapid kernel evaluation. In such methods, the final

classifier has a form analogous to the one above in the sense that it can be expressed as a

linear SVM of basis functions, each of which is a simple function of one or a few of the

input features, possibly with an additional normalization term.

5.2.1.1 Piecewise Feature Extension

Piecewise SVM. As an example of componentwise extension, consider the approach

of Maji et al. [2008]. Although this was originally presented as a method for accelerating

Intersection Kernel classifiers, it can also be viewed as a method of learning general

componentwise nonlinear mappings fi(wi) such that the final classifier
∑

i fi(wi) has

good performance8. Given that viewed independently, the componentwise mappings

learned by [Maji et al. 2008] are extremely nonlinear, we wanted to see whether such

nonlinearities arise in other componentwise approaches.

This can be achieved by discretizing each axis (feature dimension) into a number of

bins and taking the bij (wi) to be bin indicator functions. However even with bilinear

interpolation between bins, this method gives poor results because it introduces a very

large number of bins, each with an independent SVM weight. A smoother but denser

representation can be obtained by using a “bar-chart” encoding, where each feature

wi is encoded by a binary sequence, {1, . . . , 1, x, 0, . . . , 0} where the number of 1’s (and

the fractional residual x) encodes the number of bin boundaries crossed. This forces

the SVM weights to be effectively deltas from one bin to the next, thus encouraging

8However it should be pointed out that the SVM regularization implied by Maji et al.’s kernelized
formulation is non-obvious from a componentwise point of view.

76 Dimensionality Reduction and Classifiers

the learned componentwise functions to be smooth. However we found that even this

representation leads to significant overfitting in our experiments, with the learned

nonlinear functions behaving rather erratically. For instance for HOG36 features on the

INRIA Person dataset at 10−4 FPPW, using a 10 bin indicator function representation for

each of feature dimension instead of the usual linear one increases the miss rate from

20% to 27%, while a 10 bin bar-chart representation increases it by 3%. Given that such

high dimensional encodings are slow to learn and use and that they do not appear to

outperform linear ones, we can not recommend this approach for problems like ours.

Likelihood Ratio Features. We also tested a related approach based on component-

wise likelihood ratios. Here, each feature is replaced by the log likelihood ratio of its

value arising on the positive versus the negative class, log (
Pr(Positive | f eature)
Pr(Negative | f eature)

), then a

linear SVM is learned over these features. The intuition is that these particular nonlinear

functions are likely to be especially useful given that a Naive Bayes classifier would

simply sum them.

Specifically, for each feature a b bin histogram of the feature values over the positive

and negative training examples is built. These histograms are then normalized either

using L1-Sqrt or L2 normalization (c.f . Sec. 4.2.4.4), smoothed by Gaussian filters, and the

corresponding log-likelihood ratio lookup table is built. In use, each feature dimension

is simply mapped through its lookup table using bilinear interpolation, then a linear

classifier is trained and run on the mapped features. Figure 5.10(a) shows the smoothed

log-likelihood ratio histograms for the five features that have the largest magnitude

SVM weights with HOG features on the INRIA Person dataset. Interestingly, the plots

are highly nonlinear and in each case the ratio drops and becomes erratic for high

values of the input feature. This is probably due to the comparatively small number of

positives and the way that the HOG features are normalized and clipped. The results

in Figure 5.10(b) confirm that both L2 normalization and smoothing are needed to

achieve good results, however the quantization can be quite fine. We found that 128

bin histograms together with a smoothing of σ = 3−5 bins gave the best performance.

Overall the results given by this method are comparable to, but not significantly better

than, those of a linear SVM trained directly on the HOG features. The method may be

useful in some problems, but its extra complexity does not seem to be warranted here.

5.2.1.2 Componentwise Quadratic Classifier

The Componentwise Quadratic classifier is a special case of the general componentwise

polynomial approach, using a nonlinear extension with just two features per dimension,

wi and w2
i . In practice we find that it gives almost identical accuracy to IKSVM, and

only slightly better accuracy than a simple linear SVM – e.g. a 1.5% increase in AP on

5.2 Nonlinear Classifiers 77

20 40 60 80 100 120
−2

−1

0

1

2

3

4

5

Likelihood Ratio of Positive to Negative Features

Bin Number

B
in

 V
a
lu

e

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5

DET − INRIA Test Set

false positives per window (FPPW)

m
is

s
 r

a
te

n=128,σ=0 L
1
−Sqrt

n=128,σ=0 L
2

n=128,σ=3 L
1
−Sqrt

n=128,σ=3 L
2

n=128,σ=5 L
1
−Sqrt

n=128,σ=5 L
2

HOG

(a) (b)

Figure 5.10: Results for the log-likelihood ratio features over HOG on the INRIA Person
dataset. (a) Log-likelihood ratio histograms of the five HOG feature dimensions with the
highest magnitude SVM weights. (b) DET curves for classifiers trained on various versions of
the log-likelihood ratio feature set.

the INRIA Person dataset – in about 4.4 seconds per image, which is much faster than

even FastIKSVM [Maji et al. 2008]. Moreover, all of the learned w2
i coefficients turn

out to be very small, so there is little evidence that the noisy and highly nonlinear 1D

functions learned by IKSVM are actually needed for good classification, at least for object

detection with the feature sets used here. Experiments with high order componentwise

polynomial classifiers (cubic and beyond) confirm these observations.

Componentwise mapping can also be used in the PLS-reduced feature space, and

here quite high orders of nonlinearities are feasible. However for our problems and

feature sets the benefits of this seem to be quite limited. For LBP+LTP+HOG on the

INRIA Person dataset with 20 PLS dimensions, both reduced and unreduced compon-

entwise quadratic classifiers give a 1.7% increase in AP over linear SVM, and adding

higher powers of wi gives little further improvement. On the VOC2006 person class,

componentwise quadratics do not give any noticeable improvement in performance.

Overall, the utility of componentwise polynomials and similar nonlinear extentions

appears to be rather limited, at least for visual object detection with the currently-

popular feature sets. For this reason we remain skeptical that methods that produce

highly nonlinear componentwise mappings such as IKSVM will ever be able to signific-

antly outperform linear SVM or simple polynomial feature set expansions of the kind

suggested here.

78 Dimensionality Reduction and Classifiers

(a) (b)

Figure 5.11: An illustration of the limited improvement in separations produced in the
reduced PLS feature space by the full quadratic classifier learned on the final stage training set
(b), relative to the corresponding linear one (a).

5.2.2 PLS Quadratic Classifier

Another means of introducing a limited amount of nonlinearity while still keeping

reasonable control of the overall feature dimensionality and hence the computation time

is to build more general nonlinear classifiers on reduced-dimensional feature spaces.

Here we consider the case of a full quadratic SVM on the PLS-reduced feature space – c.f .

[Schwartz et al. 2009]. By full quadratic we mean that as input features, the SVM feature

space contains all of the reduced wi and w2
i and also all of the bilinear combinations

wiwj , i.e.
n(n+1)

2 features in total. This allows the linear SVM discriminant to represent an

arbitrary quadratic decision surface on the reduced input feature space. This approach is

feasible because PLS projections are highly discriminant even with quite small numbers

of dimensions. For the datasets tested here, 14−20 PLS dimensions (and hence 105–210

SVM dimensions) turn out to give the best results on the validation sets. The relative

weighting of the linear and quadratic components affects the performance, but for good

performance we found that it sufficed to normalize the range of each to unity.

Adding the quadratic features leads to a slightly better separation between the

classes and it also reduces the number of hard negatives found, which in turn reduces

the asymmetry between the positive and negative examples in the later stages of training.

However empirically, the resulting “FullQuad” classifier gives only a modest improve-

ment in performance over the linear one. For instance for HOG features it improves

the AP on the INRIA Person dataset by 2.3%, and by 0.8% on the VOC2006 person

class. Figure 5.11 illustrates the limited increase in separation achieved by training

the PLS full quadratic classifier on the final stage training set obtained by running

the corresponding linear classifier through the complete set of latent cycles. Here the

vertical axes are just random dimensions chosen to be orthogonal to the SVM projection.

5.2 Nonlinear Classifiers 79

Overall, the PLS full quadratic method has the best accuracy of all of the detectors

that we tested on these datasets, giving similar results to IKSVM and Gaussian kernel

SVMs. Still, considering the increase in computational cost, the improvements in

performance over the basic linear detectors are not very substantial. Moreover, the

quadratic PLS classifiers are slower than the corresponding linear ones because back-

projection to the original feature space can no longer be used to avoid the need for

explicit projection to the reduced feature space at run time and because after projection

the features must be then re-expanded to the quadratic feature vector. E.g. FullQuad

requires about 5.7 seconds per image on the VOC2006 dataset, whereas the linear

detector requires only 2.8 seconds.

5.2.3 Cascade of Linear and Nonlinear Detectors

To speed up the PLS quadratic approach we can adopt a two-stage cascade strategy. We

tested two variants of this. In the first approach reduced quadratic classifiers are learned

at each stage of the latent training cycle, but after the final stage an additional linear

SVM pruning classifier is trained to remove as many negatives as possible while keeping

95% of the positives. This is then used as a pre-filter before running the quadratic

classifier. This ‘FullQuadCascade’ approach effectively reduces the testing time to about

4 seconds per image without changing the overall accuracy of the detector. Note that

this training strategy actually gives slightly better results than a detector trained using

the full Linear+Quadratic cascade at each stage of latent training, presumably because

it is not a good idea to prune hard negatives until one knows exactly which ones can

best be pruned.

In the second approach, a classical linear Latent SVM is trained (using PLS) through

the full cycle, then a single PLS based quadratic classifier is trained as a post-filter on

the final-stage hard negatives that pass the resulting linear SVM. This also works, but

the results are less accurate than the first approach. For instance, the second approach

improves the AP by only 0.3% for the VOC2006 person class, whereas the first one

improves it by 0.8%.

5.2.4 Discussion

In general, on these datasets we find that the nonlinear detectors studied are slightly

more accurate than the corresponding linear ones but that the differences are small. In

particular, the hard negatives found in the later stages of training do not appear to have

systematic properties that yield easily to the nonlinearities tested here. Nor is it safe to

assume that the hard negatives found by one method (e.g. linear) will be similar to those

found by another (e.g. nonlinear), so the full latent SVM training cycle generally needs

to be run for the nonlinear detector. It is also important to note that on the datasets

80 Dimensionality Reduction and Classifiers

tested, nonlinear extensions such as quadratic classifiers in the reduced space can easily

overfit so validation is needed to find the optimal number of reduced dimensions. Even

after validation, although it is generally true that in later stages both the number of hard

negatives and the training error become smaller when nonlinear classifiers are used, this

does not always lead to corresponding improvements in performance on the test set.

5.3 Summary

In this chapter we described a number of different approaches to training linear and

nonlinear classifiers for object detection. The emphasis was on practical approaches that

are fast to train and test while at same time giving close to optimal performance.

Although SVM training times scale linearly with the number of examples, for high

dimensional feature sets this still leads to slow training, especially in the later stages

of the training cycle. We showed that incorporating the discriminative dimensionality

reduction method Partial Least Squares provides much faster training for both linear

and some nonlinear object detectors without any corresponding reduction in accuracy.

We also investigated various feature selection methods for reducing the number of

features needed in the detector, concluding that simple truncation of SVM weights

considerably outperforms the other methods tested (including some apparently much

more sophisticated ones), allowing feature vectors to be reduced to 10-15% of their

original sizes with negligible losses in precision.

Linear classifiers are the default choice for our detectors. We investigated several

methods for introducing a degree of nonlinearity using explicit feature mapping while

remaining much faster than conventional kernel classifiers. The resulting methods

provided slight improvements in overall accuracy at a limited cost, without seriously

challenging the predominance of linear methods in these applications. It would be

interesting to see how these classifiers perform in other settings and to compare them

with methods based on closed-form feature mapping such as [Vedaldi and Zisserman

2010].

Chapter 6: Experiments

This chapter provides a detailed experimental evaluation of our approaches. For com-

pleteness, we begin by briefly recapitulating the standard configurations and settings

that are used for detector training and evaluation. We then provide experimental res-

ults and comparisons with state-of-the-art methods on a number of publicly available

benchmark datasets including the INRIA Person dataset [Dalal and Triggs 2005], several

PASCAL Visual Object Challenge (VOC) object detection datasets [Everingham et al.

2010b], and the ETHZ Pedestrian dataset [Ess et al. 2007, 2008]. The most thorough

testing is done on the INRIA Person and VOC2006 datasets. Each section provides a

brief introduction to its dataset followed by a performance analysis of various detector

configurations on it and a comparison of our results to state-of-the-art methods from

other authors. The discussion covers all forms of the detectors that we have developed,

and also analyzes the effect of each detector component on accuracy and speed.

6.1 Parameter Settings and Detector Configurations

We test a number of detector configurations, ranging from a simple non-latent single

root detectors to multi-component multi-part latent ones. This section summarizes the

configurations tested and the parameter settings used. For more details, see chapters 3-5.

As discussed in Sec. 3.6, we use mainly Precision-Recall and their Average Precisions

(APs) to quantify detector accuracy, occasionally using DET curves or Recall-False

Positive Per Image ones when this makes comparison with previous work easier.

Feature Set. By default we use a feature set obtained by simple concatenation of

normalized LBP, LTP and HOG31 histograms. All features are computed over 8×8 RGB

pixel cells with the color channels merged at the histogram level. Bilinear interpolation

is used to distribute votes among neighbouring cells. L2-hysteresis normalization is

used for HOG and L1-Sqrt normalization for LBP/LTP. No image preprocessing is done

before feature extraction (c.f . Chapter 4).

82 Experiments

Multiple Components and Parts. We tested several different forms of detector. Our

non-latent single root detectors are trained using the direct method of Sec. 3.2, while

all forms of latent, multiple component and parts-based detectors are trained using

the latent method of Sec. 3.3.2. Our datasets do not have component-level labellings

so we initialize the components by using the aspect ratios of their annotation boxes

as surrogate component indicators [Felzenszwalb et al. 2009, 2010b]. Parts are also

initialized using the procedure of Sec. 3.3.2. All of our detectors enforce bilateral

symmetry, using either folding (typically only used in the single root case) or mirrored

pairs of components – see Sec. 3.4.

SVM Settings. By default, our single root (latent or non-latent) detectors use linear

classifiers trained with SVMLight [Joachims 1999; Dalal and Triggs 2005], while our

multiple component and/or parts based ones are trained using the LatentSVM imple-

mentation of Felzenszwalb et al. [2009] – the later gives slightly better performance in

this case and it is more efficient owing to its specialized cost function and implement-

ation. In either case, PLS dimensionality reduction and/or weight truncation based

sparsification can optionally be included.

Empirically, we find that setting the SVM regularization parameter C to the inverse

square of the average norm of the training feature vectors, C=(1n
∑n

i=1 ‖x‖)
−2 [Joachims

1999], gives near-optimal results for the root-only detectors trained using SVMLight,

and thus eliminates the need for a cross-validation cycle during training. Similarly,

we follow Felzenszwalb et al. [2009] in fixing C=0.002 for all of the LatentSVM based

multi-component and/or parts based models. Our single root detectors were trained

with positive to negative SVM error weighting J=3, while the part based and multi-

component ones were trained with J=1 because their better accuracy reduces the need

for asymmetric weighting.

Dimensionality Reduction. We tested both Partial Least Squares subspace projection

and Weight Truncation based feature selection. In both cases, each root and each part

filter is reduced in dimension separately, while the part displacement cost features are

left unreduced. In the PLS case, we limit the range of the possible part displacements

by setting their quadratic displacement penalties to infinity outside of a given range

as this gives slightly better results. For sparsification, we tested initial (WT), iterative

(IWT) and final (FWT) Weight Truncation – c.f . Sec. 5.1.2.3. Recall that the first runs

sparse feature selection only once (at Stage II of latent learning), the second runs it in

each round of the training and the third runs it only after full dense detector training.

In the experiments given here, the part filters are by default assigned a percentage of

nonzeros that is twice as high as that of the roots. When “percentage nonzeros” figures

are given, they are totals over the whole part and root feature set.

6.2 Results on the INRIA Person Dataset 83

(a) (b) (c) (d) (e) (f)

Figure 6.1: Some examples of cropped images from the INRIA Person training set. Here, the
internal 32×96 pixel box surrounds the original person, the 16 pixel margin around it (yellow
box) is added to include some contextual information, and the additional 16 pixel margin
(green box) around that is allowed to ensure undistorted feature calculation and interpolation.
(a - d) Two examples of cropped images and their boxes. (e, f) The mean of the images from
the cropped positive training set.

6.2 Results on the INRIA Person Dataset

The INRIA Person dataset was introduced by Dalal and Triggs [2005] to study the prob-

lem of pedestrian (standing or walking human) detection. Although it is limited to one

class and views in which the whole person is visible and comparatively unoccluded, it

remains a moderately challenging dataset that has been used by many authors including

[Zhu et al. 2006; Tuzel et al. 2008; Lin and Davis 2008; Wu and Nevatia 2008; Schwartz

et al. 2009; Wang et al. 2009; Lin et al. 2009; Dollár et al. 2010; Ito and Kubota 2010;

Gerónimo et al. 2010; Gualdi et al. 2010; Vedaldi and Zisserman 2010; Bar-Hillel et al.

2010]. The positive training set contains 641 images with 1208 annotated instances of

pedestrians while the negative training set contains 1218 images of similar scenes with

no pedestrians. Similarly, the positive test set contains 288 images with 589 annotated

instances while the negative test set contains 453 images with no instances. As a con-

venience, the INRIA dataset is shipped with sets of pre-cropped positive windows for

the training and testing of plain (non-latent) classifiers. A corresponding set of negative

training windows must still be sampled by the user. Each training window has size

96× 160 pixels, where the innermost 32× 96 pixels contain the person. A surrounding

16 pixel border is included to provide 64×128 windows that allow some of the visual

context around the person to be captured if required, and an additional surround of 16

pixels (3 pixels in the case of the test set) is included to allow for feature computation

and histogram interpolation without introducing boundary effects – see Figure 6.1.

When evaluating overlaps or drawing detection windows, only the central 32× 96 pixel

region containing the person is used. To increase the number of positive examples, the

training and test sets are traditionally augmented with left-to-right flipped versions of

84 Experiments

Features Non-latent Latent
HOG 73.1 79.0
LBP 67.8 73.9
LTP 75.7 78.9

LBP+LTP 69.7 80.4
LBP+HOG 74.2 80.7
LTP+HOG 79.2 81.4

LBP+LTP+HOG 76.6 82.8

HOG LBP LTP LBP+LTP LBP+HOG LTP+HOG LBP+LTP+HOG
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Features

A
v
e
ra

g
e
 P

re
c
is

io
n

Non−latent detector

Latent detector

Figure 6.2: Average Precisions for non-latent and latent detectors trained using various
combinations of features on the INRIA Person test set.

the original examples, but this is redundant if a bilaterally symmetric detector is used.

6.2.1 Non-Latent Detectors

Among the individual feature channels tested on the INRIA Person dataset, LTP gives

the best performance for the non-latent detector (75.7% AP), followed by HOG then

LBP. Among the feature combinations, LTP+HOG leads the way (79.2% AP) followed by

LBP+LTP+HOG and LBP+HOG – c.f . Figure 6.2. The LTP+HOG figures are better than

the results of [Ott and Everingham 2009; Ramanan 2007], who report respectively 75.7%

and 77.4% AP for linear methods that use additional segmentation cues to achieve better

performance. Ott and Everingham [2009] combine conventional HOG36 features with

HOG36 features computed on the foreground of foreground/background segmented

windows, where the segmentation model is learned offline. They also report 78.3% AP

for the equivalent method using a quadratic kernel classifier. Ramanan [2007] uses a

segmentation model learned offline from extended regions around detections produced

by a traditional HOG36 detector as a postfilter to reduce false positives.

Figure 6.3 provides window-level DET curves comparing our classifiers with the

competing methods of [Dalal and Triggs 2005; Tuzel et al. 2008; Wu and Nevatia 2008;

Dollàr et al. 2008; Schwartz et al. 2009; Wang et al. 2009; Ito and Kubota 2010]. Given

that HOG was already a significant improvement over previous feature sets when it

was introduced, this illustrates the extent of progress in feature sets for object detection

over the past five years. Our window-level classifier achieves 3.5% miss rate at 10−5

FPPW. In comparison, [Schwartz et al. 2009; Wang et al. 2009; Ito and Kubota 2010]

report respectively 5.8%, 5.6% and 5.6% miss rate1. These methods resemble ours in the

sense that they use combinations of heterogeneous feature channels combining color,

1Unfortunately, Precision-Recall or Recall-False Positive Per Image results are not available for all these
detectors so our comparison with them is limited to DET curves.

6.2 Results on the INRIA Person Dataset 85

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0.01

0.02

0.05

0.1

0.2

0.5
DET − performance comparison of different window classifiers

false positives per window (FPPW)

m
is

s
 r

a
te

Dalal & Triggs

Tuzel et al.

Wu & Nevatia

Dollar.et al

Watanabe et al.

Schwartz et al.

Ito & Kubota.

Wang et al.

Our−LBP+LTP+HOG

Figure 6.3: A comparison of the performance of various non-latent window-level classifiers
on the INRIA Person test set. Several of the curves were traced from the original publications
[Tuzel et al. 2008; Wu and Nevatia 2008; Dollàr et al. 2008; Schwartz et al. 2009; Wang
et al. 2009; Ito and Kubota 2010].

shape and texture cues. Schwartz et al. [2009] use a PLS based Quadratic Discriminant

classifier over a very high dimensional feature set (170820 features for 64×128 windows)

obtained by concatenating multi-block HOG [Zhu et al. 2006], co-occurrence matrix

texture [Haralick 1979] and HSV color histogram features. Wang et al. [2009] use a

combination of HOG and LBP features with explicit occlusion modeling in a linear SVM

classifier. Ito and Kubota [2010] use a combination of linear and embedded quadratic

classifiers on extremely high dimensional feature vectors obtained by combining co-

occurrence histograms of oriented color gradients, pairs of edge orientations and color

differences with color histograms in Cb-Cr color space. Our feature set is an order of

magnitude smaller than [Schwartz et al. 2009; Ito and Kubota 2010], and it is faster to

evaluate and gives better results than all three. For instance, it is around 5 times faster

than [Schwartz et al. 2009].

However we again emphasize that tests on window-level classifiers are not a fully

reliable guide to the performance of complete detectors. For example, note that although

our window-level classifier over LBP+LTP+HOG features has a ∼5× lower miss rate

at 10−5 FPPW than our HOG classifier (c.f . Figure 6.3), the corresponding complete

detector has an AP only 3.5% higher (76.6% versus 73.1%). Similarly, in DET plots

the LBP based window-level classifier has better accuracy than the HOG one, but the

situation is reversed for the APs of the complete detectors. For this reason we will

concentrate on complete detector metrics such as AP from now on.

86 Experiments

6.2.2 Latent Detectors

Figure 6.2 compares the Average Precisions of latent and non-latent single root detectors

for various feature sets and combinations. The only difference between the latent and

non-latent detectors is the way that they are trained. Latent training leads to significant

improvements in accuracy for all of the configurations tested. Among the individual

feature sets, LBP shows the largest improvement with a 6.2% increase in AP, followed

by HOG and LTP with respectively 5.9% and 3.2%. Among the feature combinations,

LBP+LTP shows the largest improvement with a 10.7% increase, but the improvement

decreases as the feature set becomes stronger and for LTP+HOG only a 2.2% increase is

observed. This is perhaps due to near-saturation of the method for these features and

dataset. The latent search over position and scale also seems to allow the detector to

find a better registration with the data during training, leading to cleaner, more-sharply

defined root filters – c.f . Figure 3.1.

Multiple roots and/or parts provide only modest improvements in AP on the INRIA

dataset, perhaps because in contrast to the VOC datasets below where humans appear

in a wide range of poses and occlusion states, most of the subjects in the INRIA dataset

are in largely unoccluded and upright poses. Replacing the single folded root detector

with a two root mirrored pair one increases the AP from 82.8% to 83.1%. A 2Root×8Part

detector with default settings (C=0.002) gives 85.9% AP, but this figure is lowered by

significant overfitting for this configuration on this dataset. If we use sparsity as a

regularizer, sparsifying the 2Root×8Part detector to 10% nonzero weights using iterative

sparsification (IWT) and training with C=6.7 × 10−4 improves the AP to 87.3%. This

performance is still below the current state-of-the-art of 88.2% [Felzenszwalb et al.

2009], using HOG31 features alone in the same configuration. We have confirmed

the 88.2% result ourselves for HOG31 with the default C of 0.002. However we find

that the results are sensitive to the exact C value. In general it seems that for HOG31,

LBP+LTP+HOG and similar feature sets, there is a considerable risk of overfitting with

multi-part configurations on the INRIA Person dataset. This is seen in the sensitivity to

C, and also in the increase and the variability of the number of the training iterations

needed for convergence.

6.2.3 Discussion

Figure 6.4 shows some examples of detections on the INRIA test set for latent detectors

with various combinations of features. To provide more meaningful comparisons, all

of the detectors were tuned to a recall rate of 85%. These examples give insight into

the characteristics of the different feature channels. The LBP features have a high false

positive rate at this recall, firing on many regions that have either strong texture or

partial resemblances to human shapes (rows c, d, e, f). The LTP and HOG features

6.2 Results on the INRIA Person Dataset 87

LBP LTP HOG LBP+LTP+HOG

a

b

c

d

e

f

g

h

continued on next page

88 Experiments

LBP LTP HOG LBP+LTP+HOG

i

j

k

l

Figure 6.4: Some examples of detections from our latent single root detectors on the INRIA
Person test set, for various feature sets. The red boxes indicate true detections according to the
PASCAL VOC criteria, the blue boxes indicate false positives, and the green boxes indicate
the ground truth annotations. Notice the similarity of the responses from HOG and LTP
(although LTP is able to detect some instances missed by HOG – rows f, g, k), and the fact that
the combined feature set significantly improves the results.

have similar overall performances, with some cases where LTP corrects false positives

from HOG (rows e, g, k). LTP and HOG both appear to be strongly resistant to lighting

variations, giving good performance in under- and over-exposed conditions (rows a, c, e,

f). As expected, incorporating all three channels to give LBP+LTP+HOG improves the

performance under all conditions.

A more through examination of the errors on the test set reveals the main sources

of problems. Detections can be missed either because the classifier fails to fire – which

happens most often when the subjects appear at very small scales or at the borders of

the image, in unusual poses, under challenging lighting conditions or with significant

occlusions – or because overlapping detections from nearby subjects are incorrectly

merged by the non-maximum suppression method – i.e. in crowded scenes. Moreover,

even at high recall rates, almost all of the false positives occur on images from the

positive test set, not on the negative one. In fact, most of them occur on the bodies of real

subjects at significantly finer scales than the true annotations, thus escaping the mode

6.2 Results on the INRIA Person Dataset 89

merging algorithm. Other notable sources of false positives are overlapping subjects

or crowds, complex structures with strong vertical edges such as lamp poles, trees, etc.,

and uncommon textures on human clothing.

This association of false positives with positive images can be explained as follows.

The negative training set appears to be reasonably representative of the negative test

set so that training on hard negatives from the former makes the detector resistant to

false positives on the latter. However, the negative training set does not contain any

fragments of bodies or clothing and it may not be fully representative of background

structures that are common in the positive images, so the detector has not learned to

reject these – c.f . Figure 6.5.

Clearly this is essentially a training issue not a dataset one: we have simply failed

to exploit the negative information that is present in the positive training images. To

work around this, we could retrain the detectors by including false positives from the

positive images as new hard negative examples, where a detection is labelled as a false

positive if either it does not overlap an annotation or the degree of overlap with the

closest annotation is less than a prespecified threshold. Unfortunately, as Figure 6.5

shows, there are many missing annotations on the positive INRIA training images, which

would lead to many correct but unannotated detections being incorrectly labelled as

false positives. One could perhaps handle this by rewriting the SVM code to give such

hard negatives lower weights (SVM hinge loss slopes) during training, but here we test

a partial fix that does not require either a code rewrite or reannotation of the dataset.

As hard negatives from the positive images, we include only the false positives that

overlap an annotation by more than 0% and less than 30%, simply discarding ones

that have zero overlap. This has the effect of including most of the false positives that

fall on body parts as negatives, without including the many incorrectly-false positives

produced by the missing annotations. A final stage of retraining with these additional

hard negatives increases the overall accuracy of most of our detectors. For instance,

it improves the latent LBP+LTP+HOG detector’s precision from 70% to 75% at 85%

recall rate, and its overall AP from 82.8% to 83.8%. Likewise, it improves the AP

for LBP and LTP by respectively 0.8% (74.7% versus 73.9%) and 1.2% (80.1% versus

78.9%) although interestingly, it provides no improvement for HOG36 features alone.

Similar improvements are seen on some other classes, e.g. for the VOC2006 person

class, including the extra hard negatives improves the AP from 34.4% to 35.3% for

LBP+LTP+HOG features, and from 28.9% to 29.3% for LTP ones, while it reduces the

APs of both HOG36 and LBP features by about ∼4%. Because of these inconsistencies, we

cannot currently recommend including hard negatives from the positive training images

as a general practice, but it remains useful in some cases and the development of more

advanced techniques to use the negative information that is contained in (potentially

incompletely annotated) positive images is an area that warrants further attention.

90 Experiments

(a) (b) (c) (d)

(e) (f)

Figure 6.5: Some examples of responses of our latent single root detector at 95% recall on the
positive INRIA Person training set. The green boxes indicate the original annotations, the
black boxes indicate detections having at least 50% overlap with a true annotation box, the
red boxes indicate detections having overlap > 0% and ≤ 30% with a true annotation box,
and the blue boxes indicate other false positives.

Another possible means of reducing the incidence of false positives on positive

images is contextual modeling, where scene geometry and/or easy-to-detect examples

are used to estimate additional cues such as ground planes [Park et al. 2010], vertical

surfaces, etc., which are then used to discard false positives whose scales or positions are

implausible. A segmentation based post-processor Ramanan [2007] could also be used

to reject low confidence false positives. However even with these methods, improving

the use of the negative information from the positive training images seems to be a

useful first step.

Our single root LBP+LTP+HOG detector takes around 3.4 seconds to process an

INRIA Person test image. In comparison, our HOG, LBP and LTP detectors take respect-

ively around 0.7, 1.7 and 2.6 seconds. The LBP and LTP detectors are slower than HOG

because their feature sets are higher dimensional, making dot products slow to evaluate,

and because the pixel-level bilinear interpolation that is needed to sample a circle from

the neighbourhood of each pixel slows the feature computation.

6.2 Results on the INRIA Person Dataset 91
B
ic
y
cl
e

11 6 111 58 137

B
u
s

16 13 15 12 179

C
ar 59 149 144 117 385

C
at 43 1 16 15 354

C
o
w

23 4 76 62 148

D
o
g

44 6 36 31 305

H
o
rs
e

38 8 63 52 165

M
o
to
rb
ik
e

16 5 32 54 168

P
er
so
n

261 91 88 78 638

S
h
ee
p

29 8 98 91 195

Frontal Rear Left Right Unspecified
Figure 6.6: Pixelwise means of the positive training windows for the 5 viewpoint annotations
of the 10 classes of the VOC2006 dataset. The integers denote the number of available
examples for the given viewpoint. Note that for the majority of the examples the viewpoint is
unspecified. The images here have been resized to 100×100 pixels so they are not displayed at
their true aspect ratios. (Figure courtesy of Tomasz Malisiewicz: http://www.cs.cmu.
edu/~tmalisie/pascal/means_trainval.html)

92 Experiments

6.3 The PASCAL Visual Object Challenge Datasets

The PASCAL VOC datasets [Everingham et al. 2010b] are important visual recognition

benchmarks. The VOC has been run annually since 2005 with the aim of establishing

the best performing methods and advancing the state of the art in image classification,

object detection and semantic segmentation. We use only the object detection datasets.

Each dataset contains a training/validation subset ‘trainval’ and a test subset ‘test’

(which has not been released publicly since VOC2008 – instead a public evaluation

server is provided). There are two sections of the object detection competition: in

‘comp3’, only the provided trainval dataset can be used for training, while in ‘comp4’

any dataset (except the test set) can be used. We follow the comp3 protocol for all of our

experiments.

The VOC datasets contain object classes from four high-level groups, vehicles, an-

imals, household objects and people, with each group being divided into subgroups

such as two wheeled versus four wheeled vehicles and then into individual classes

such as car, bicycle, etc. The image annotations specify the class names and bounding

boxes of all objects of the designated classes that are present, together with additional

information such as viewpoint labellings and information about whether the object is

truncated or difficult to detect without help from the surrounding context. For training

and evaluation we include both the complete and truncated examples, but we exclude

ones labelled as difficult. When training we find that they tend to disturb the learning

process owing to their inherent difficulty and the standard VOC evaluation protocol

ignores errors on ‘difficult’ instances so they are left out of the evaluation as well.

The viewpoint annotations specify only the coarse categories front, rear, left, right,

with any other viewpoint being labeled as unspecified. In practice most examples are

labeled as unspecified. The weakness of these labellings makes learning a separate

detector for each viewpoint difficult because: i) intermediate poses between front,

left, are common and tend to be labelled as ‘unspecified’; ii) for deformable classes

like person, horse, cat it is often difficult to identify a unique viewpoint owing to

complex poses where the head is pointing in a different direction from the body; iii) for

other classes like table, boat it can even be difficult to define the front, etc. Figure 6.6

shows the normalized mean images of the VOC2006 object classes for each of the five

labeled viewpoints. Comparing these to Figure 6.1(e), we see that even if the viewpoint

annotations were used to train separate detectors, the VOC2006 images are significantly

less uniform than the INRIA Person ones and hence less likely to respond to a simple

rigid template based detector.

In this and the following sections we introduce each VOC dataset that we used and

analyze the results of our detectors on it. We tested on VOC 2006, 2007 and 2010 but

we give our most detailed results on 2006. The 2010 dataset includes the 2008 and 2009

6.4 PASCAL VOC2006 93

Methods

M
ea

n

B
ik
e

B
u
s

C
ar

C
at

C
o
w

D
o
g

H
o
rs
e

M
b
ik
e

P
er
so
n

S
h
ee
p

1 1Rootf -HOG 31.6 57.2 40.1 55.0 5.0 31.9 5.3 22.0 41.7 25.1 32.2
2 1Rootf -LBP 33.1 54.0 39.5 53.8 15.9 33.0 9.2 21.1 44.8 21.8 38.4
3 1Rootf -LTP 37.8 56.2 45.2 56.1 17.3 35.8 16.8 29.8 51.4 28.9 40.0
4 1Rootf -LBP+LTP 37.9 58.2 45.7 56.3 18.5 37.3 15.5 29.9 47.1 32.2 38.6
5 1Rootf -LBP+HOG 38.6 56.0 46.8 55.9 20.6 35.7 17.8 30.2 51.9 30.2 41.2
6 1Rootf -LTP+HOG 38.7 58.5 48.5 56.5 14.6 37.9 17.6 30.4 50.6 32.9 39.6
7 1Rootf 39.6 57.4 47.6 55.7 20.8 38.2 17.8 31.8 51.0 34.4 40.8

8 2Rootf 43.1 58.3 57.7 60.6 21.7 40.8 18.5 41.0 54.7 34.6 43.6
9 2Root 43.3 57.5 51.9 58.5 24.0 42.1 20.3 38.3 56.0 39.6 44.3

10 6Root 48.1 64.4 58.8 65.6 21.9 47.5 22.1 47.5 63.5 40.8 48.7
11 1Rootf -11%FWT 38.7 57.4 45.1 56.5 18.8 37.2 18.0 29.0 50.7 33.1 41.0
12 1Rootf -10%WT 38.6 58.1 47.7 56.1 13.8 37.8 19.4 30.4 49.2 32.6 41.3
13 1Rootf -10%IWT 39.3 59.0 47.5 56.4 17.7 38.5 18.4 30.3 50.9 33.6 41.1
14 1Rootf -15%IWT 39.6 58.7 48.4 57.1 18.7 37.9 19.1 30.0 50.8 34.5 41.1
15 6Root-10%IWT 47.9 65.3 60.1 67.0 20.5 46.5 20.7 45.5 64.2 40.5 49.0
16 6Root-10%WT 47.7 65.3 61.2 65.8 21.6 46.2 20.9 44.3 63.3 39.4 48.9
17 1Rootf ×6Part 45.9 64.5 53.9 63.3 27.4 43.3 21.6 40.6 55.7 42.9 46.0
18 6Root×8Part 54.0 69.8 68.0 69.5 34.8 52.5 25.4 52.8 69.9 47.3 49.9
19 6Root×8Part-18%WT 53.4 69.6 66.5 71.0 31.4 51.9 23.6 52.2 69.4 48.9 49.2
20 1Rootf -PLS 39.9 57.6 49.2 55.4 20.0 38.1 19.0 30.4 52.5 34.6 42.1
21 2Rootf -PLS 42.7 58.9 56.0 61.2 21.7 40.3 17.4 39.8 52.5 34.8 44.4
22 1Rootf ×6Part-PLS 45.1 63.6 51.6 61.7 28.4 41.0 21.4 40.3 58.4 41.2 43.3

23 1Rootf ×6Part
1 34.3 59.2 40.7 54.5 8.1 34.6 7.0 28.3 48.5 32.2 30.3

24 2Rootf ×6Part
2 42.5 62.0 49.3 63.5 19.0 41.7 15.3 38.6 57.9 38.0 40.2

25 6Root×8Part3 49.5 67.1 65.8 70.7 26.8 47.7 15.8 48.3 66.0 41.0 45.6

Table 6.1: Average Precisions on VOC2006 for some of our latent detectors and those of

Felzenszwalb et al. [2008, 2009, 2010b]1, 2, 3. The “f” subscript denotes detectors with folded
root filters instead of mirrored pair ones. The feature set used is LBP+LTP+HOG31 unless
otherwise mentioned.

ones as subsets (and 2007 too) so we did not test on these, while 2006 and 2007 were

the last years in which the test set was made publicly available, so many authors have

provided detailed results on these.

6.4 PASCAL VOC2006

The VOC2006 dataset consists of 2618 trainval images containing 4754 annotated

instances and 2686 test images containing 4753 annotated instances of the 10 object

classes bicycle, bus, car, cat, cow, dog, horse, motorbike, person and sheep. We detail

the effects of different feature sets and combinations, single and multiple roots with and

without parts, and sparsity on this dataset. Table 6.1 gives an overview of the results for

94 Experiments

Bicycle Bus Car Cat Cow Dog Horse Mbike PersonSheep Mean
0

0.1

0.2

0.3

0.4

0.5

Object Class

A
v
e

ra
g

e
 P

re
c
is

io
n

HOG

LBP

LTP

LBP+LTP

LBP+HOG

LTP+HOG

LBP+LTP+HOG

Figure 6.7: Average Precisions for single root (1Rootf) latent detectors on VOC2006 using
the given feature sets.

several of our detectors and those of Felzenszwalb et al. [2008, 2009, 2010b].

6.4.1 Feature Sets

Figure 6.7 summarizes the Average Precisions on VOC2006 of single folded root (1Rootf)

latent detectors based on various single and combined feature sets. Several observations

can be made. Firstly on Mean AP, LBP outperforms HOG on VOC2006, beating HOG

on 5 of the 10 classes, notably on animals such as cat, cow, dog, sheep where texture is

a highly discriminative cue. Conversely, HOG outperforms LBP on the other 5 classes

bicycle, bus, car, horse, person, which are characterized more by their geometry than by

their texture.

Secondly, LTP features seem to inherit the good characteristics of both LBP and HOG,

giving consistently better performance than either on both structural and textural object

classes and improving the Mean AP by respectively 4.7% and 6.2%. Note that in these

experiments the threshold of the LTP features was always set to τ = 5 (for 256 level color

images). This is the optimal value for both the VOC2006 car and person classes. The

optimal values for the other classes may be somewhat different, but using a single value

is simpler and in general we find that LTP results are not very sensitive to the exact

value chosen.

To the best of our knowledge, the results for LTP are the best ever reported on

VOC2006 for single root detectors based on a single feature channel. In fact, these

6.4 PASCAL VOC2006 95

detectors outperform the HOG single root and parts approach of [Felzenszwalb et al.

2008] (row 23 of Table 6.1) on 8 of the 10 classes, improving the Mean AP from 34.3%

to 37.8%. Both methods use the same training scheme, the only differences being the

feature set and the fact that the LTP detectors are trained without including parts. The

LTP detectors have a lower feature dimension than the HOG parts based ones, so the

observed improvement seems to be due solely to LTP’s ability to capture rich local

texture and shape information.

Thirdly, as Figure 6.7 shows, combinations of feature sets typically outperform any

of their individual components. Globally, LBP+LTP+HOG gives the best results with

39.6% Mean AP, followed by LTP+HOG with 38.7%. However compared to LTP alone,

LBP+LTP+HOG has 78% more dimensions yet improves the Mean AP only by 1.8%.

This is presumably because the single root detector architecture has only a limited

capacity to model class variability and its results are already close to saturation for these

features.

To sum up, LTP is the most successful individual feature set tested on VOC2006,

but the combination LBP+LTP+HOG has even better performance – an 8% increase in

Mean AP relative to HOG31 features and a 1.8% increase relative to LTP – in return for a

significantly larger feature vector. Given that large feature vectors can limit a detector’s

speed and even – owing to overfitting and the fact that memory usage limits the number

of examples that can be stored in memory during training – its accuracy, LTP features

appear to be a promising compromise for practical detectors.

6.4.2 Single versus Multiple Roots and Parts

We ensure that all of our complete detectors are bilaterally (left-right) symmetric as we

find that this gives better results from the limited training data, without the need to

explicitly flip the positive and negative training sets. Our single root (1Rootf) detectors

use the folding method of Sec. 3.4.1. For multi-root detectors, the components can either

come in mirrored pairs or be individually symmetric using folding – c.f . Sec. 3.4. The

former is more flexible in the sense that the individual components can be asymmetric,

the later in that a larger set of different aspect ratios can be represented. Overall,

compared to 1Rootf on VOC2006, both the 2Root (mirrored pair) and the 2Rootf (2

folded root) methods increase the Mean AP by about 3.5%. 2Root is slightly better than

2Rootf overall but although the differences are quite large for some classes they do

not appear to be systematic within each broad group of classes (c.f . rows 8 and 9 of

Table 6.1). Nonetheless, the results for 2Root on classes such as person, cow, cat suggest

that these classes are better characterized by allowing bilateral asymmetry (left-facing

versus right-facing components) than by enforcing symmetry and allowing two aspect

ratios (e.g. sitting versus standing or front versus side).

96 Experiments

Bike Bus Car Cat Cow Dog Horse Mbike Person Sheep Mean
0

0.1

0.2

0.3

0.4

0.5

0.6

Object Class

A
v
e
ra

g
e
 P

re
c
is

io
n

1Root

2Roots

6Roots

Figure 6.8: Average Precisions for single root (1Rootf), two root (2Root) and six root (6Root)
detectors on the 10 classes of the VOC2006 test set.

Figure 6.8 compares the Average Precisions of single root folded and two and six

root mirrored pair detectors on VOC2006. As expected, increasing the number of

roots generally improves the results, although exceptions such as cat are reminders

that current heuristics for initializing many roots are imperfect and that overfitting

can easily occur. Overall, increasing the number of roots from one to six improves the

mean AP by 8.5%. Owing to our stronger feature set, the performance of our root-only

detectors is roughly on a par with the corresponding HOG31 parts based approaches of

[Felzenszwalb et al. 2009, 2010b]. For example, our 2Rootf (row 8 of Table 6.1) detectors

outperform the 2Rootf ×6Part method of [Felzenszwalb et al. 2009] (row 24) on 5 of

the 10 classes, increasing the Mean AP from 42.5% to 43.1%, while our six root (6Root)

detectors (row 10) have performance close to the current best method, the Felzenszwalb

et al. [2010b] 6Root×8Part approach (row 25). Admittedly our root only detectors have

higher feature dimension than these part based models, but they are still much faster

to train and run owing to the absence of the latent part search. For instance, a 6Root

detector requires about 6.7 seconds to process an image2.

Although our root-only detectors already have very good performance, adding parts

further enhances their accuracy, particularly for classes with high degrees of pose

variability. For example for the 6Root detectors, introducing eight parts (rows 10 and 18

2Note that these timings do not use the parallel version of the Felzenszwalb et al. [2010b] code in which
multiple images/windows are scanned in parallel during training and testing, as we were not able to run
this owing to Matlab license constraints.

6.4 PASCAL VOC2006 97

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
VOC2006 Person

Recall

P
re

c
is

io
n

1Root
f
×6Part (43)

1Root
f
 (34)

1Root
f
×6Part [F] (34)

1Root
f
 [F] (24)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
VOC2006 Car

Recall
P

re
c
is

io
n

1Root
f
×6Part (63)

1Root
f
 (55)

1Root
f
×6Part [F] (55)

1Root
f
 [F] (48)

Figure 6.9: Precision-Recall plots for several root and root plus parts detectors on the (left)
person and (right) car classes of VOC2006. “F” denotes methods from [Felzenszwalb et al.
2009]. The figures in parentheses are the corresponding APs.

of Table 6.1) improves the APs for the person and cat classes respectively by 7.2% and

by 12.5%, while the Mean AP increases by 5.9% from 48.1% to 54.0%.

Relative to the current state-of-the-art 6Root×8Part method of [Felzenszwalb et al.

2010b] (row 25), our 6Root×8Part detectors increase the Mean AP by 5.5%, with better

accuracy on 9 of the 10 classes. In fact our 1Rootf ×6Part detectors (row 17) already

improve on the earlier state-of-the-art 2Rootf ×6Part ones of Felzenszwalb et al. [2009]

(row 24) by 3.4%. However although these detectors have higher accuracies than

other existing parts based ones, they are also quite slow to train and test owing to

the high dimensionality of the feature set. Also note that parts are quite expensive –

computationally, an additional pair of parts costs roughly as much as a newly added

root. For instance, our 6Root×8Part detectors require about 23.5 seconds to process an

image.

Figure 6.9 illustrates that both the improvements from using our extended feature

set and the improvements from adding parts extend across the entire Precision-Recall

range, with the extended features contributing slightly more for high precision/low

recall settings and the parts for low precision/high recall ones.

6.4.3 Partial Least Squares Dimensionality Reduction

The above detectors used linear SVM trained on the raw input features. This gives good

results but it makes training rather slow for high dimensional feature sets. To speed up

training, we can use PLS-reduced feature sets. In both the single root (1Rootf) and two

root (2Rootf) cases, detectors trained using 30D PLS-reduced features per component

have slightly better accuracy than unreduced ones on 5 of the 10 classes (rows 20 –

21 versus 7 – 8 of Table 6.1), with a 0.3% increase in Mean AP for 1Rootf and a 0.4%

98 Experiments

Bike Bus Car Cat Cow Dog Horse Mbike PersonSheep Mean
0

0.1

0.2

0.3

0.4

0.5

0.6

Object Class

A
v
e

ra
g

e
 P

re
c
is

io
n

PLS+SVM

SVM

Figure 6.10: Average Precisions of 2Rootf detectors on the 10 classes of VOC2006, obtained
by training a linear SVM on 30D PLS-reduced and unreduced features.

decrease for 2Rootf . Increasing the PLS dimension to 60 instead of 30 reduces the Mean

AP of 1Rootf by 0.1%. The PLS based detectors are faster to train than unreduced ones.

For example using PLS speeds up the overall training of 2Rootf by about 45%, and

decreases the time spend in classifier learning by a factor of 12. The above conclusions

regarding precision continue to hold for parts based models (row 22).

6.4.4 Sparsification

We tested three variants of our SVM Weight Truncation feature selection method. FWT

sparsifies a given dense final stage detector, IWT recomputes the sparsification during

each cycle of latent learning, and WT selects the active features once and for all at Stage

II of the latent training process. IWT is thus more expensive computationally than

FWT, which in turn is more expensive than WT. Relative to the 39.6% Mean AP of

dense 1Rootf detectors on VOC2006, FWT at 50% nonzeros gives a slightly improved

Mean AP of 39.9%, and even at high sparsity levels such as 11% and 6% nonzeros it still

gives respectively 38.7% and 37.7% Mean AP. Similarly, Figure 6.11 compares 1Rootf

detectors trained with several levels of sparsity using IWT. Sparsification now gives

ever better results. Even with an order of magnitude reduction in the feature dimension

(10% nonzeros), the sparse detectors give better accuracy than dense ones on structural

object classes such as bicycle, motorbike, etc., with only minor losses on more textural

6.4 PASCAL VOC2006 99

Bike Bus Car Cat Cow Dog Horse Mbike Person Sheep Mean
0

0.1

0.2

0.3

0.4

0.5

Object Class

A
v
e

ra
g

e
 P

re
c
is

io
n

2% Nonzeros

5% Nonzeros

10% Nonzeros

15% Nonzeros

Dense

Figure 6.11: Average Precisions on the VOC2006 test set for single root (1Rootf) detectors
with various levels of sparsity. The sparse detectors are trained using Iterative Weight
Truncation. Note that sparsification improves the accuracy in most cases, especially for classes
where geometry (sparse edge layout) is more important than texture. The “nonzeros” figures
(2%, etc.) are the percentage of the original feature set that is used in the final detector.

Bike Bus Car Cat Cow Dog Horse Mbike Person Sheep Mean
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Object Class

A
v
e
ra

g
e
 P

re
c
is

io
n

6Root−10% Nonzeros (WT)

6Root−Dense

6Root+Parts−18% Nonzeros (WT)

6Root+Parts−Dense

Figure 6.12: Average Precisions for sparse and dense six root (6Root) and six root plus parts
(6Root×8Part) detectors trained using Weight Truncation on the VOC2006 test set.

100 Experiments

Roots Parts
D
en

se
S
p
ar
se

D
en

se
S
p
ar
se

D
en

se
S
p
ar
se

D
en

se
S
p
ar
se

D
en

se
S
p
ar
se

Figure 6.13: Dense and sparse (10% nonzero WT) 6Root×8Part models learned for the
VOC2006 bicycle, car, cow, horse and person classes. Only the positive-SVM weight entries
of one filter from each mirrored pair is shown, and the roots and parts are shown separately.
Note that the sparse filters, particularly the roots, are significantly sharper and less cluttered
than the dense ones.

6.4 PASCAL VOC2006 101

classes such as cow and cat. This suggest that relatively small sets of edges and texture

bins suffice to characterize these object classes and that enforcing sparsity filters out

clutter and allows the detector to learn better weights for the surviving features. Overall,

the accuracy of the sparse 1Rootf detectors on VOC2006 is as good as that achieved

by dense detectors, with respectively 39.3%, 39.6% and 39.6% Mean AP for the 10%

nonzero, 15% nonzero, and dense detectors.

Although IWT predictably gives the best results of our three sparsification strategies,

detectors trained using weight truncation (WT) are only slightly less accurate and faster

to train. For example, for 1Rootf at 10% nonzeros (rows 12 and 13 of Table 6.1), WT

gives 38.6% Mean AP compared to 39.3% for IWT while being 12-15% faster. Moreover,

the accuracy differences decrease when multiple roots and parts are included. For

instance, 6Root detectors trained with 10% nonzero WT, 10% nonzero IWT, and dense

features have Mean APs of respectively 47.7%, 47.9% and 48.1%, while for 6Root×8Part

detectors with 18% nonzeros (10% nonzero roots and 20% nonzero parts) WT gives

53.4% Mean AP compared to 54% for dense features (c.f . Figure 6.12), yet training WT

sparse detectors is about 1.5–2.5 times faster than training dense ones. Note that the

Mean AP of these 18% nonzero detectors – which have ∼37 features per cell, as compared

to 31 for dense HOG31 – is 4.1% better than that for the dense HOG31 of Felzenszwalb

et al. [2010b]. Figure 6.13 shows some of our dense and sparse 6Root×8Part models.

Note that introducing sparsity filters out a good deal of the background clutter and

the redundant foreground orientations, leading to cleaner and somewhat sharper final

detectors. This effect seems to be more pronounced for the root filters than the part ones.

To give an idea of the overall performance attained, Figure 6.14 shows some examples

of detections for sparse models on images from the VOC2006 test set.

An examination of the sparse features selected shows that all three feature channels

LBP, LTP and HOG make significant contributions to the sparse detectors. Forcing the

sparsity to be distributed uniformly among them leads to little loss of accuracy, e.g.

reducing the Mean AP of 1Rootf IWT from 39.3% to 39.2%. Note that at 15% nonzeros,

LBP+LTP+HOG31 cells have on average the same number of nonzero elements as HOG31

ones, so subsequent processing costs are similar despite significantly better accuracy. In

fact, even with only 2% nonzeros (∼4 features per cell on average), the combined feature

set still gives better accuracy that either HOG or LBP alone with respectively 31 and 59

features per cell.

Overall, sparsification leads to significant speedups during both training and testing,

typically with little loss of accuracy and in some times even a small gain. It can be

used with any feature set, single or multiple roots, parts, etc. Regarding the choice of

sparsification method, FWT has the advantage that it can be used to sparsify already

trained detectors, and IWT that it achieves the best available accuracy for a given

level of sparsity, but overall we prefer WT owing to its very fast training times and

102 Experiments

person

cow

cow

bicycle

person

person
person

person
person

person

car

person

motorbike

person

horse

person

motorbike

bicycle

person

person cow cow

cow

person

person

person

person

person

motorbike

person

person

person

person

person

person

person

person

person

motorbike

person

motorbike

person

horse

person

person

bus

person

personhorse car
car

Figure 6.14: A few examples of the output of our sparse (10% nonzero WT) 6Root×8Part
detectors on the VOC2006 test set. Each image is scanned by all of the participating detectors,
i.e. bicycle, bus, car, cow, horse, motorbike and person.

minimal loss in accuracy relative to IWT. As an avenue for future work, the speed of

very sparse detectors may make them useful as initial stages of multistage detectors

and soft cascades [Bourdev and Brandt 2005]. As Figure 6.15 shows, even at very high

sparsity levels, the recall range of these detectors remains identical to that of dense

detectors, so it should be possible to find settings that provide useful pruning without

losing too many true positives.

6.5 PASCAL VOC2007

The VOC2007 dataset has the same training and testing protocols as VOC2006 but

twice as many classes and almost twice as many images. The trainval set has 5011

images with 12608 annotated instances while the test set has 4952 images with 12032

annotated instances of the 20 classes aeroplane, bicycle, bird, boat, bottle, bus, car, cat,

6.5 PASCAL VOC2007 103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
VOC2006 Person

Recall

P
re

c
is

io
n

Dense (34)

15% Nonzeros (34)

10% Nonzeros (33)

5% Nonzeros (30)

2% Nonzeros (24)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
VOC2006 Car

Recall
P

re
c
is

io
n

Dense (56)

15% Nonzeros (57)

10% Nonzeros (57)

5% Nonzeros (57)

2% Nonzeros (55)

Figure 6.15: Precision-Recall plots for sparse WT detectors on the VOC2006 (left) person,
and (right) car classes. The figures in parentheses are the corresponding APs.

chair, cow, dining table, dog, horse, motorbike, person, potted plant, sheep, sofa, train

and tv monitor.

We use exactly the same parameter settings as for VOC2006. No separate tuning was

done on the VOC2007 training set. Our findings for the various detector configurations

(types of features, numbers of roots, addition of parts, dimensionality reduction, etc.)

are all consistent with those for VOC2006. Table 6.2 summarizes the results for a

few of our detectors and for the best-performing methods from [Vedaldi et al. 2009]

and [Felzenszwalb et al. 2008, 2009, 2010b]. Our single root 1Rootf detectors (row 1)

already have better accuracy than the 1Rootf ×6Part HOG31 detectors of Felzenszwalb

et al. [2008] (row 6) on 11 of the 20 classes, and adding an additional root (row 2) or

parts (row 4) further improves the results in most cases. Our 1Rootf ×6Part detectors

(row 4) outperform the 2Rootf ×6Part ones (row 7) of Felzenszwalb et al. [2009] on 12 of

the 20 classes, increasing the Mean AP by 1.5% to 28.3%.

With 32.0%Mean AP, the performance of our six root detectors (row 3) is better than

that of the combined localization and classification approach of Harzallah et al. [2009]

who report 28.9%, and on par with the multiple kernel learning approach of Vedaldi

et al. [2009] and the earlier state-of-the-art 6Root×8Part method of Felzenszwalb et al.

[2010b], who report respectively 32.1% and 32.3% Mean AP. Our six root detectors

outperform Vedaldi et al. [2009] on 11 of the 20 object classes and they are also much

faster to train and evaluate – a 6Root detector requires ∼7 seconds to process an image,

as compared to ∼1.2 minutes for the Vedaldi et al. [2009] cascaded multiple kernel

learning approach. Compared to the Felzenszwalb et al. [2010b] 6Root×8Part approach,

our 6Root method gives better results on 8 of the 20 classes. Adding parts give state-

of-the-art results. Our 6Root×8Part method outperforms the [Felzenszwalb et al. 2009]

6Root×8Part HOG31 approach on 16 of the 20 classes, and that of [Vedaldi et al. 2009] on

104 Experiments

Methods

M
ea

n

A
er
o

B
ik
e

B
ir
d

B
o
at

B
o
tt
le

B
u
s

C
ar

C
at

C
h
ai
r

C
o
w

T
ab

le

D
o
g

H
o
rs
e

M
b
ik
e

P
er
so
n

P
la
n
t

S
h
ee
p

S
o
fa

T
ra
in

T
V

1Rootf 22.8 25.7 39.8 9.2 6.3 23.6 33.2 37.3 12.6 10.6 17.3 25.7 9.6 35.5 35.4 14.2 13.1 16.6 24.6 27.0 38.0

2Rootf 26.1 27.5 47.5 0.04 13.8 26.0 37.3 42.4 14.4 16.1 22.9 17.3 13.6 43.7 38.5 32.8 11.7 21.2 23.4 36.9 35.9

6Root 32.0 32.1 54.0 13.2 17.7 24.3 48.7 50.7 17.6 21.4 26.9 25.5 15.8 56.1 45.6 37.6 15.3 22.3 32.0 43.0 40.2
1Rootf ×6Part 28.3 31.0 45.8 10.3 7.6 29.7 38.6 48.6 22.9 17.3 23.2 29.5 13.1 41.2 37.7 34.1 16.2 22.5 26.7 27.1 43.3

6Root×8Part 36.0 39.2 57.9 17.1 21.6 29.7 52.2 56.7 27.9 23.0 27.5 34.1 17.6 60.1 51.4 39.5 14.9 24.3 35.6 44.8 44.8

1Rootf ×6Part
1 21.3 18.0 41.1 9.2 9.8 24.9 34.9 39.6 11.0 15.5 16.5 11.0 6.2 30.1 33.7 26.7 14.0 14.1 15.6 20.6 33.6

2Rootf ×6Part
2 26.8 28.7 55.1 0.6 14.5 26.5 39.7 50.2 16.3 16.5 16.6 24.5 5.0 45.2 38.3 36.2 9.0 17.4 22.8 34.1 38.4

6Root×8Part3 32.3 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6
Vedaldi et al. 32.1 37.6 47.8 15.3 15.3 21.9 50.7 50.6 30.0 17.3 33.0 22.5 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5
Zhang et al. 34.3 36.7 59.8 11.8 17.5 26.3 49.8 58.2 24.0 22.9 27.0 24.3 15.2 58.2 49.2 44.6 13.5 21.4 34.9 47.5 42.3

Table 6.2: Average Precisions for some of our LBP+LTP+HOG31 detectors, Felzenszwalb et al.

[2008, 2009, 2010b]1, 2, 3, Vedaldi et al. [2009] and Zhang et al. [2011] on VOC2007.

15 of the 20 classes. It also outperforms the recent state-of-the-art 6Root×8Part method

of Zhang et al. [2011] on 16 of the 20 classes, improving the Mean AP by 1.7%. The

Zhang et al. method is comparable to ours in the sense that it uses multiple features

(local structured HOG and LBP) without additional context, however it uses boosting to

select the discriminant features.

6.6 PASCAL VOC2010

The VOC2010 dataset has the same 20 classes as VOC2007, but now has 10103 images

with 23374 annotated instances in the trainval set and 9637 images with 22992

annotated instances in the test set. Table 6.3 summarizes the results for some of

our detectors, for Wang et al. [2010] and for two state-of-the-art performers3 [Yu et al.

2010; Felzenszwalb et al. 2010b]. It is not easy to find methods that are comparable

with ours on this dataset because relatively few methods have been tested on it, details

are available for only a few of these, and most of the good performers are complex

methods that include global context, segmentation and similar cues that are beyond

our scope here. Wang et al. [2010] is included because it is the best performer in the

published VOC2010 rankings that is known to resemble our method, using linear SVM

over multiple feature channels including HOG, LBP and dense HOG based bag of words

features. Our 6Root detectors give better performance than Wang et al. on 13 of the 20

classes, with a 2.1% increase in Mean AP.

The other two methods are not directly comparable to ours in the sense that they use

complementary cues – either features extracted from segmentation maps or classification

with global context modeling – in addition to deformable part models. Felzenszwalb

3http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/workshop/

6.7 ETHZ Dataset 105

Methods
M
ea

n

A
er
o

B
ik
e

B
ir
d

B
o
at

B
o
tt
le

B
u
s

C
ar

C
at

C
h
ai
r

C
o
w

T
ab

le

D
o
g

H
o
rs
e

M
b
ik
e

P
er
so
n

P
la
n
t

S
h
ee
p

S
o
fa

T
ra
in

T
V

2Rootf PLS 17.5 32.7 29.7 0.80 1.1 19.8 39.4 27.5 8.6 4.5 8.1 6.3 11 22.9 34.1 24.6 3.1 24.0 2.00 23.5 27.0

6Root 25.6 40.3 35.8 10.5 11.3 23.9 46.9 36.5 11.8 15.9 22.0 14.1 9.0 38.6 38.8 37.6 6.6 31.5 10.2 40.3 31.2

Wang et al.1 23.5 40.4 34.7 2.7 8.4 26.0 43.1 33.8 17.2 11.2 14.3 14.4 14.9 31.8 37.3 30.0 6.4 25.2 11.6 30.0 35.7

6Root×8Part2 33.8 52.4 54.3 13 15.6 35.1 54.2 49.1 31.8 15.5 26.2 13.5 21.5 45.4 51.6 47.5 9.1 35.1 19.4 46.6 38.0

6Root×8Part3 36.8 53.3 55.3 19.2 21 30 54.4 46.7 41.2 20 31.5 20.7 30.3 48.6 55.3 46.5 10.2 34.4 26.5 50.3 40.3

Table 6.3: Average Precisions on VOC2010 for some of our detectors, the LBP+HOG+Bag of

Words method of Wang et al. [2010]1, the segmentation combined method of Felzenszwalb
et al. [2010b]2, and the boosted LBP+HOG+Multi-context detectors of Yu et al. [2010]3 on
VOC2010.

et al. [2010b] use their 6Root×8Part detectors to generate segmentation masks, learn

separate segmentation models from these masks, then use both the detection and the

segmentation modules for their final detector. Yu et al. [2010] combine HOG and

boosted LBP based multi-root multi-part detectors [Felzenszwalb et al. 2010b] with a

multi-context model learned using Radial Basis Kernel SVM over features combining

local, global and inter-class contextual cues. They report a 3% increase in Mean AP

over the HOG based multi-root multi-part detectors of [Felzenszwalb et al. 2010b] on

VOC2010 and a 4% increase on VOC2007. However, the improvement comes at the

cost of both additional complexity and increased training and testing time because to

include the global contextual cues, separate classification models need to be learned for

each class using linear SVM and vector quantized SIFT features. Similarly, to get the

inter-class contextual features, separate root-only HOG and LBP detectors are learned

for each class and all of these need to be evaluated around each detected bounding box.

6.7 ETHZ Dataset

The ETHZ dataset [Ess et al. 2008] consists of three test sequences used to evaluate

pedestrian detectors. They were recorded using a mobile stereo platform at different

locations in a busy city center under various conditions: Sequence 1 (999 images with

5193 annotations) contains images captured on a cloudy day; Sequence 2 (450 images

with 2359 annotations) contains images of moving people recorded in a busy square;

and Sequence 3 (354 images with 1828 annotations) contains images captured on a

sunny day.

To facilitate comparison with other methods tested on this dataset, we plot Recall vs.

False Positives Per Image (FPPI) curves – c.f . Sec. 3.6.3. Figure 6.16 presents results for

our single root detectors trained on the INRIA and VOC2006 person sets and tested on

the ETHZ sequences. For more direct comparison with Schwartz et al. [2009], the INRIA

detectors were trained using the non-latent approach. Although Ess et al. [2007, 2008]

106 Experiments

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ETHZ, Sequence = 01

FPPI

R
e
c
a
ll

VOC2006 (62)
INRIA−plain (61)
Ess.et al07
Ess.et al08
Schwartz.et al09

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ETHZ, Sequence = 02

FPPI

R
e
c
a
ll

VOC2006 (56)
INRIA−plain (53)
Ess.et al07
Ess.et al08
Schwartz.et al09

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ETHZ, Sequence = 03

FPPI

R
e
c
a
ll

VOC2006 (72)
INRIA−plain (67)
Ess.et al07
Ess.et al08
Schwartz.et al09

Figure 6.16: Recall-FPPI plots on the three ETHZ test sets for our linear 1Rootf detectors
trained on the VOC2006 and INRIA person sets, versus some competing methods. The figures
in parentheses are APs on the given test set, where known.

use depth as an additional cue in their detectors, our 1Rootf detectors still give better

performance whether they are trained on INRIA or VOC2006. Likewise, despite being

linear and having a 40× lower feature dimension, they have a higher recall at low FPPI

than the Quadratic Discriminant Analysis based method of Schwartz et al. [2009] on

Sequence 1, and near-identical performance on the other two sequences. Their linearity

allows them to process an image every 3 seconds, whereas Schwartz et al. [2009] take

120 seconds (or 60 for their two stage method). These results show both the accuracy of

our detectors and their ability to generalize across datasets.

6.8 Summary

This chapter has provided experimental results to support the choices of features,

training mechanisms and classification methods introduced in Chapters 4 and 5. Among

the individual feature sets tested, we found that the Local Ternary Patterns (LTP)

introduced for face recognition by [Tan and Triggs 2010] were also very promising

for object recognition, outperforming the well-established HOG on many classes. As

many authors have found [Harzallah et al. 2009; Vedaldi et al. 2009; Wang et al. 2009;

Schwartz et al. 2009; Ott and Everingham 2009], well-chosen combinations of feature

sets often offer improved performance. Here, our LBP+LTP+HOG31 feature set gives

better accuracy than the existing combinations that we are aware of despite being

simpler, faster to calculate, and having relatively modest dimensionality compared to

many of the other combinations that have been proposed.

The good performance of the Latent SVM training and multiple root and part

approach of [Felzenszwalb et al. 2010b] was also confirmed. Adding roots generally

improves the accuracy, as does adding parts, with the resulting detectors having state-of-

the-art accuracies for context-free detectors on the INRIA Person, VOC2006, VOC2007,

and ETHZ datasets, but not competing with the best context-incorporating ones on

6.8 Summary 107

VOC2010. However, our combined feature set is strong enough to allow our root-

only detectors to outperform the corresponding HOG based root plus parts ones of

Felzenszwalb et al. [2009] in many cases. This is useful because root-only detectors are

much faster than ones including parts.

Finally, reducing the feature set dimensionality using Partial Least Squares was

shown to reduce training times with little or no loss of accuracy relative to the cor-

responding unreduced detectors. Alternatively and perhaps more significantly, we

found that enforcing sparsity (feature selection) using a simple SVM weight truncation

heuristic both acts as a regularizer and speeds up training and testing. Even very sparse

feature subsets with only a few features per cell give surprisingly good results, some-

times even improving the accuracy relative to dense features. The combination of rich

feature sets such as LBP+LTP+HOG with sparsification appears to be very promising,

allowing the most pertinent features to be selected while keeping the overall dimension

as low as, or even lower than, that of individual feature sets such as HOG.

Chapter 7: Conclusions and Perspectives

This thesis has made several contributions to algorithms for the visual object detection.

It has presented a family of sliding window Latent SVM object detectors based on a

rich visual feature set that combines Histogram of Oriented Gradient, Local Binary

Pattern and Local Ternary Pattern features to give state-of-the-art performance on sev-

eral important datasets including PASCAL VOC2006 and VOC2007, INRIA Person and

ETHZ. In order to tackle the detector speed and memory usage problems associated

with modern high-dimensional feature sets, it has proposed two effective dimensionality

reduction techniques. The first, feature projection using Partial Least Squares allows

all kinds of detectors to be trained more rapidly with negligible loss of accuracy and

no loss of run time speed for linear detectors. The second, feature selection using SVM

weight truncation allows active feature sets to be reduced in size by almost an order

of magnitude with little or no loss, and often a small gain, in detector accuracy. We

also introduced Local Quantized Patterns, a generalization of local pattern features that

provides local pattern style image neighbourhood codings that have the speed of local

patterns and some of the flexibility and power of traditional visual word representa-

tions. We complemented these contributions with a detailed experimental study of the

influence of the various configuration parameters and components of our approaches,

and a comparison of them with state of the art methods on a selection of challenging

publicly available datasets.

The following sections summarize these contributions and discuss some perspectives

for future work.

7.1 Key Contributions

Local Ternary Patterns and Feature Combinations. Local Ternary Patterns (LTP)

were introduced for face recognition [Tan and Triggs 2010]. We adapted them to object

detection and showed that they give better performance on average than either HOG

features or Local Binary Patterns (LBP) alone. HOG alone gives good results for object

classes that are characterized mainly by shape cues, while LBP gives good results for

classes that are characterized mainly by their local image textures. LTP inherits the good

110 Conclusions and Perspectives

characteristics of both HOG and LBP, capturing rich local texture and shape information

to give equally good performance for both kinds of classes. To the best of our knowledge,

LTP gives the state-of-the-art result for a single feature set on all of the datasets tested.

The results also indicate that LTP is highly resistant to variations in lighting conditions

and to changes in its threshold parameter τ. Moreover, we showed that HOG, LBP and

LTP complement one another, so that an extended feature set that incorporates all three

of them gives further improvements in performance leading to state of the art results

for linear classifiers that use individual or compound feature sets based only on local

appearance cues.

Partial Least Squares. We demonstrated that Partial Least Squares (PLS) is a useful

discriminative dimensionality reduction method for all of the linear detectors that we

tested including ones with multiple roots and/or parts. Using it can speed up classifier

training by an order of magnitude and overall detector training by 25%-50% with little

or no loss of accuracy. There is no loss of run time speed either because the (linear)

classifier learned can be pulled back through the PLS projection to work on the original

feature space, so that no feature projection is needed at run time. We also found that

simple (e.g. quadratic) nonlinear classifiers based on low dimensional PLS-reduced

feature sets give slightly better accuracy than linear ones without too much loss of speed,

remaining much faster than conventional kernel classifiers.

Sparse Classifiers. As an alternative to feature projection, we introduced feature

selection/sparse classifiers based on a simple SVM weight truncation heuristic. This

allows classifiers that have an order of magnitude fewer active features to be obtained

efficiently, with negligible loss in accuracy and often even a small gain. Both training

and testing are faster than for the corresponding dense classifiers. Despite its simplicity,

this method is far more effective than the other feature selection methods that we tested

including L1 approaches and boosting.

Local Quantized Patterns. Although both LBP and LTP perform well in object detec-

tion problems, feature set size considerations prevent them from coding more than an

extremely local neighbourhood around each pixel (typically a circle of 8 immediate

neighbours of the pixel). Conversely, although indirect representations such as Bag of

Words codebooks can handle significantly larger neighbourhoods, they are too slow to

use for pixel-level local pattern coding. We combined the two ideas to produce Local

Quantized Patterns (LQP). These are local pattern features over larger neighbourhoods

than LBP/LTP, that use lookup table based vector quantization to efficiently reduce a

large direct neighbourhood code to a much smaller codebook based output code. In

practice LQP can code neighbourhoods of up to about 25 pixels with no increase in

7.2 Future Work 111

feature vector size and only a negligible increase in run time over LBP/LTP. Codebook

learning is very efficient and neighbourhood shapes can easily be adopted to give the best

results for the given problem. Our experiments show that the resulting LQP features

give state-of-the-art performance, outperforming both LBP/LTP alone, and in many

cases even the LBP+LTP+HOG combination. Work on this is still in progress.

7.2 Future Work

We finish with a few suggestions for extending our work, and for future work in object

detection in general.

Action Recognition/Localization. Humans and their actions are one of the most im-

portant components of audiovisual content. Methods that automatically analyze such

content and provide high-level descriptions, highlights or rapid search capabilities are

still in their infancy. Many current approaches use Bag of Word strategies to recognize

and localize actions, but as in object detection, a multi-faceted approach may be useful

to handle actions at a variety of different image and temporal scales, with extreme

changes in viewpoints and frequent partial occlusions. In particular, humans are cent-

ral to most action recognition problems so sliding window action detectors based on

spatio-temporal visual features should be able to complement other existing approaches.

Recent results such as [Kläser et al. 2010] support this intuition. In this regard, our

features could be extended to the spatio-temporal domain and used in sparse root and

parts detectors to localize actions.

Local Quantized Patterns. Local Quantized Patterns (LQP) are a generalization of

local pattern features that give very good results for the object detection. They need to

be tested in other visual recognition tasks such as face and texture recognition, image

classification, semantic segmentation, etc. Also, only a small subset of the many possible

variants of the LQP idea have been tested. For example, it would be interesting to study

LQP codes over local image representations such as local Haar pyramids, Discrete Cosine

Transforms, etc., and also with more sophisticated pattern comparison techniques such

as Earth Movers distance metrics and kernel representations.

L1 Support Vector Machines. Although our sparse detectors have shown considerable

promise, our current sparsification algorithm is rather heuristic. Ideally we would like

to have a method that provides stronger theoretical guarantees. SVM’s that combine

the traditional hinge loss with L1 weight regularization seem to be the most promising

avenue for this, but current algorithms for learning these are not very satisfactory and

112 Conclusions and Perspectives

more reliable large scale algorithms (that simultaneously handle both many examples

and many features) need to be developed.

Nonlinear Extensions. Kernel classifiers are known to be very powerful for object

detection, but they are usually too slow to be practical. The combination of sparse

feature sets selected using our linear method and fast additive kernel classifiers [Vedaldi

and Zisserman 2010] seems to be a promising way forward.

Contextual Modeling. Although our proposed detectors have good performance, ob-

ject detection is still far from a solved problem and new ideas are needed. One promising

avenue is to include more contextual information into the detectors. In particular, the

inclusion of spatial co-occurrence cues based on nearby objects is likely to reduce

the number of false positives. For instance, Desai et al. [2009] incorporate spatial co-

occurrence statistics of different objects classes into the non-maximum suppression

process to support more probable arrangements/occurrences and discourage less prob-

able ones. Similarly, incorporating segmentation and image classification information

[Ramanan 2007; Harzallah et al. 2009; Yu et al. 2010] and explicit object scale models

[Park et al. 2010] should also improve the performance. As object detection is just

one small piece of the overall jigsaw of scene understanding, modeling the physical,

functional and causal relationships among the detected objects is not only likely to

improve the performance of the detectors, but also to aid in the interpretation of scene

content [Gupta et al. 2011].

Hierarchical Modeling. Our current detectors use shallow structure, however like

many other researchers [Serre et al. 2007; Ranzato et al. 2007] we feel that “deep

hierarchical learning” architectures hold great promise for solving difficult problems like

visual recognition. The proposed top-down detectors could be deepened by including

parts of parts or training mixtures of latent tree models that represent the object parts

as tree nodes [Zhu et al. 2010].

LargeDatasets. Relative to the number of object categories that a human can recognize

and the vast amount of labeled, semi-labeled and unlabeled data that is available on

the internet, current detectors are trained only for small numbers of categories on small

datasets. Both lack of algorithmic maturity and scarce computational resources are to

blame for this. The dominant mode of computation is rapidly migrating from desktop

workstations to clusters of GPUs, cloud computing, etc., but current representations and

algorithms need to be adapted to process the huge amounts of data that are available on

these resources in the most effective manner. Possible solutions include online domain

adaption [Jain and Learned-Miller 2011], where detectors trained offline are adapted

7.2 Future Work 113

to new test data distributions with the help of supplementary training data, active

learning techniques where, e.g., crowd sourcing [Vijayanarasimhan and Grauman 2011]

is incorporated into the detector training loop to allow reliable training from huge

datasets, and combined training where detectors for a large set of categories are trained

jointly by sharing common features among them [Torralba et al. 2007].

3D. Humans use models learned from the 3D world to recognize object categories

and interpret scene content in 2D image space. Conversely, computers are usually

trained and evaluated using only 2D representations. This loss of the third dimension

makes the problem harder. As we are moving to an era where 3D-equipped consumer

cameras, televisions and game consoles will be part of our daily lives, the collection of

large well-segmented 3D datasets will become much easier. Such data could be used to

bootstrap detector training, even if the final detectors are used only for 2D content.

Appendix A: Local Quantized Pattern

Feature Sets

This appendix details some unpublished work in progress. We have seen that despite

their extreme locality and very coarse quantization, local pattern features give good

performance in many object detection tasks. However it is worth asking whether

other variants of this idea – perhaps incorporating more pixels or additional levels of

quantization or using different supports such as filled rectangles or strips of pixels

– would be even more effective. The problem with larger supports and/or deeper

quantization is the number of code values generated and hence the size of the cell-level

local feature histograms. For practical purposes we would like to limit the latter to at

most a few hundred entries per cell. Naively quantizing a group of n pixel gray-level

comparisons into k levels gives a code of size kn, limiting such codes to around 8 binary

comparisons or 5 ternary ones per group. For LBP, uniform patterns were introduced to

address this problem, but it is unclear how best to generalize them to non-circular group

topologies and even for circular ones, the quadratic increase in the number of uniform

patterns with circumference limits uniform coding to groups of at most about 20 pixels

(and even then, the quality of the coding is likely to suffer as the fraction of the kn codes

that are uniform becomes vanishingly small). For ternary and higher order codes this

problem is even more pronounced as the number of codes increases very rapidly with

n and it is not at all obvious what the best analogue of uniformity is. In particular, it

is not obvious that splitting LTP codes into two binary halves as in Chapter 4 allows

LTP to reach its full potential. Nor is it obvious that assigning all of the nonuniform

codes to a single histogram bin is the best solution – it might be better to assign each

nonuniform code to the “nearest” (according to some metric) uniform one. In general it

seems worthwhile to seek methods for learning an efficient and discriminative reduction

from a large set of local codes (say kn) to a much smaller set that allows a compact

representation.

On the other hand “visual word” style approaches, where (potentially) continuous-

valued feature vectors are quantized to a limited number of code values by vector

quantization methods such as K-Means, have become very popular and successful

116 Local Quantized Pattern Feature Sets

in recent years [Leung and Malik 1999; Varma and Zisserman 2002; Schmid 1999;

Csurka et al. 2004]. These visual words approaches were imported from the text

processing community and were initially used mainly for texture classification [Leung

and Malik 1999; Schmid 1999; Varma and Zisserman 2002]. However in recent years

they have been used to solve many vision problems ranging from image classification

[Csurka et al. 2004] to action recognition [Kläser 2010]. Such visual word approaches

certainly be applied to local pattern representations, where they would resolve many

of the issues mentioned above. The problem is that most such approaches (e.g. K-

Means) require a candidate to be compared with every dictionary element to discover

its quantization class, or at very least they require an expensive data structure traversal

for each candidate. This is (just) acceptable for patch-level descriptor quantization in

visual word representations, but it is much too slow for a practical detector that needs

to quantize a local pattern based at every single image pixel and pyramid level. For an

approach of this sort to be useful for object detection, we need to limit the run-time

code evaluation step to a constant-time operation per pixel – e.g. a closed form formula

or a table lookup. We have developed a family of methods based on table lookup that

combine the advantages of local patterns and vector quantization in an efficient and

practical form. For simplicity we will refer to them as Local Quantized Patterns (LQP).

The basic is sketched in the next section, while the subsequent sections give further

details and experimental results.

A.1 Local Quantized Patterns

Although vector quantization against a large dictionary is ordinarily quite slow, if

the set of possible input values is finite and small enough, the quantization code for

each possible input can be precomputed and stored in a lookup table, allowing codes

to be assigned at the cost of a single table lookup per example. We will use this to

learn efficient reductions from initial, very high dimensional discretized local pattern

representations to much lower dimensional vector quantization codings that can be

used to build visual feature histograms. The lookup table representation also allows

dedicated versions of algorithms such as K-Means to be used, making codebook learning

very efficient. As an example of what is feasible, a ternary coding of a local pattern with

n = 16 pixel comparisons gives a 316 = 43 million bin lookup table, while a binary coding

of a pattern n = 24 pixel comparisons gives a 224 = 17 million bin table. In contrast, a

typical vector quantization dictionary might contain 100 output codes.

During codebook learning the (codebook) training dataset is scanned to record the

number of occurrences of each input code that occurs, storing these in a hash table or

index, then these values and counts are passed to an algorithm (e.g. a count-weighted

version of K-Means) that learns the actual codebook. In practice this gives very fast

A.1 Local Quantized Patterns 117

training times because most of the possible input codes do not occur and all of the

counts of those that do are processed in a single step. E.g. for 24 bit binary vectors over

the INRIA Person positive training set, only 671,000 of the 17,000,000 possible input

values actually occur and as a result 10 rounds of K-Means clustering for a 100 element

dictionary takes only 12 minutes.

The above approach has the advantages that it allows local patterns to have many

more pixels and/or quantization levels and a much wider range of geometries than

standard hard-coded LBP/LTP, with only a negligible increase in overall run time. It

also allows the size of the output code to be customized for the application, and adapts

the coding to the dataset for better results. We will demonstrate some of these benefits

on object detection problems below, but even in this case many possibilities remain to

be tested and we make no attempt to test LQP in other applications of local patterns

even though we believe that it would prove equally useful there. Moreover, for now

we have only tested vector quantization methods based on simple L2 patch comparison.

It would also be interesting to test more sophisticated metrics such as Earth Mover

style distances, given that the LQP architecture allows them to be incorporated at no

additional run-time cost.

The LQP approach does have some important limitations. In particular, it requires

a large lookup table at run time and even then it only allows the code length to be

increased by a factor of about 3 (e.g. from 8 to 24 bits for binary codes, or from 5 to

16 for ternary ones) before the lookup table size starts to become prohibitive, while

more finely quantized codes (say 5 or more quantization levels for n ≥ 8) remain beyond

reach.

A.1.1 Implementation Details

LQP codes can incorporate many more pixel comparisons, and hence a much wider

variety of local pixel-level supports, than LBP/LTP. We tested a number of different

geometric layouts including lines, crosses, circles and rectangles. Different numbers of

quantization levels can also be tested, including binary, ternary or even quinary, and

codes can be generated by comparing pixels with either the central pixel of the layout, a

symmetric partner or the next pixel along a chain, or even by coding thresholded local

Haar wavelets. Moreover, the vector quantization stage can use various discriminative

or unsupervised codebook learning methods over a number of different inter-example

distance metrics. Below we discuss each of these choices in turn. However note that for

simplicity, at the cell level we will always retain the now-familiar structure for our LQP

histograms, using 8× 8 pixel cells, bilinear spatial interpolation of votes and L1-Sqrt

normalization, as for LTP.

118 Local Quantized Pattern Feature Sets

����� ����� ������ �	

�
�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
	

����� �������

���

���

��

��

���

���

���

��

���

���

���

���

���

(a) H7 (b) V7 (c) HV7 (d) DA7

���

�� ��

��� ���

���

�����

��������������

������

��������

�������������

��������

������������������

���������������� ��������

�	�	

����

������������������������

����������������

��������������������

����

����������������

��������������������

����

������������������������

������������

����������������

�	�	�	�	

����������������

������������������������

��������

��������

����� ����� ����

���	��

���	��

��	��

���

(e) HVDA7 (f) Disk5 (g) H7-CS

Figure A.1: Some examples of the local pattern geometries that we have tested. The subscript
denotes the diameter of the pixel-level sampling region. In each case, pixels are sampled
around a central pixel (shaded yellow) and compared either with the central pixel or with the
diametrically opposite pixel (CS case).

A.1.2 Local Pattern Geometry and Sampling

As alreadymentioned, for vector quantization tables of practical size, the number of pixel

comparisons in a local pattern neighbourhood is limited to at most about 16 for ternary

coding, and 24 for binary or split ternary coding1. Within these limits many different

neighbourhood geometries are possible and one of the main advantages of LQP is the

fact that it allows efficient codes to be learned for any neighbourhood geometry, thus

encouraging experimentation to find the geometries most suited to the given class. Here

we test a few selected geometries corresponding to horizontal (H), vertical (V), diagonal

(D), and antidiagonal (A) strips; combinations of these like horizontal-vertical (HV),

diagonal-antidiagonal (DA) and horizontal-vertical-diagonal-antidiagonal (HVDA); and

traditional circular or rectangular arrangements – c.f . Figure A.1. Most of these compare

each non-central pixel to the central one, but Center Symmetric (“CS”) codes, where

each pixel is compared to the diametrically opposite one, are also considered. Below,

1Various bit-level implementation strategies could be used to increase these limits somewhat, but we
have not yet investigated this in detail.

A.1 Local Quantized Patterns 119

geometries will be denoted by notation such as HV3
7, where HV is the neighbourhood

shape (here a horizontal-vertical cross), the subscript 7 indicates the neighbourhood

width (a layout 7 pixels in diameter) and the superscript 3 denotes the quantization

(here native ternary – 3* denotes split ternary and 2 binary coding). Separate vector

quantization tables are learned for the “+1” and “-1” halves of split ternary codes. The

results below show that it is almost always worth splitting a ternary code to allow a

larger neighbourhood to be used during local pattern computation.

As usual, codes from different types of neighbourhoods can be combined by histo-

gram concatenation at the cell level, in the same way that (e.g.) LBP+LTP is formed. This

allows more pixels to be included in the combined neighbourhood at the cost of ignoring

co-occurrences between the patterns in its different sub-neighbourhoods. However it

should be noted that very elongated neighbourhoods such as the strips H25 and V25 are

difficult to handle owing to boundary effects because they are so wide that they cross

several cells.

A.1.3 Code Book Learning Method

By default we use K-Means [Elkan 2003] over the standard L2 inter-vector distance

to learn visual codebooks. Our K-Means implementation directly uses the bin counts

as weightings during its cluster mean computations. As K-Means is sensitive to its

initialization and can get stuck in local minima, it is run ten times with different random

initializations and the run that gives the smallest overall vector quantization coding

error provides the codebook for visual word generation. We tested both soft and hard

coding methods. In soft coding, the lookup table cells store the c ≤ 10 nearest code

centers and each local pattern is soft-quantized against all c codes of its cell using

uniform weighting. However we do not use soft coding below as we find that it actually

reduces the accuracy relative to hard coding.

For comparison, we also tested a fast discriminative neighbourhood coding method

that does not require a preliminary quantization of its input, but that does not offer

such dense coverage of the set of possible input values. Specifically, we trained random

forests of classification trees and used them to construct the tree-leaf-level visual codes

in the same way as [Moosmann et al. 2007, 2008]. To better capture the diversity of the

dataset, relatively large numbers of relatively shallow trees were trained. The Random

Forests can handle continuous input values so we used raw pixel differences for the

input vectors.

In our applications, the K-Means codebooks turn out to be both faster to train

and more accurate than Random Forest ones, perhaps because despite its quantized

input, K-Means uses an underlying distance metric and thus provides a smoother, more

distance-sensitive representation of the input space. For instance, using the H3
7+V

3
7

120 Local Quantized Pattern Feature Sets

LQP Type H3 V3 D3 H2 V2 D2 H3-CS V3-CS D3-CS

Strip Size 7 63.3 61.4 60.5 - - - - - -
Strip Size 9 64.9 64.8 61.8 46.4 49.0 47.1 - - -
Strip Size 15 67.2 68.4 62.3 54.7 53.8 51.4 59.3 59.1 52.5

Table A.1: Average Precisions for 1Rootf Latent SVM detectors trained using different types
of individual strip LQP features on the INRIA Person dataset. The missing values correspond
to features that have so few input codes that they can be directly coded without using LQP,
e.g. H3

9-CS has 81 codes in total.

cell-level combination of horizontal and vertical neighbourhoods with 1Rootf Latent

SVM on the INRIA Person dataset, the K-Means coding with 100 centers and hence 200

histogram bins gives 65.3% AP, whereas the Random Forest one with 16 trees of 8 leaf

nodes (a 128 bin histogram) gives only 57.7% AP. Increasing the maximum number of

leaf nodes to 16 (a 256 bin histogram) increases the AP by just 1.3%. For this reason, we

will exclusively use K-Means for the experiments below.

A.2 Results and Discussions

A.2.1 INRIA Person Dataset

Strip Layouts. Table A.1 shows AP’s on the INRIA Person dataset for detectors using

LQP features based on single horizontal, vertical or diagonal strips of pixels. The single-

strip features turn out to be quite weak, giving significantly lower performance than

existing feature sets – LBP, LTP and HOG give respectively 74.0%, 79.0% and 79.0% AP

on this dataset. However it is at least clear that increasing the length of the strip increases

the performance, as does replacing binary codes with ternary ones. The comparable

centre-symmetric features (which compare each pixel with its diametrically opposite

one, not with the centre one, thus halving the size of the input pattern) consistently give

much lower performance – e.g. H3-CS and V3-CS respectively have AP’s of 59.3% and

59.1% – so we will not test them further.

Cross Layouts. Unsurprisingly, including several complementary strips in the LQP

neighbourhood can significantly increase the accuracy – c.f . Table A.2. For instance,

for a 100 word dictionary the cross layout HV3
7 gives 79.5% AP whereas the cell-level

concatenation of the 100 word H3
7 and V3

7 LQP histograms gives only 74.6%. If split

uniform LTP coding is used instead of LQP coding for the H3
7 and V3

7 histograms, the

results are still worse – 60.4% AP for a 4× 33 = 132 dimensional histogram. Clearly, the

richer co-occurrence statistics that HV3
7 LQP captures are more useful than the 100 extra

A.2 Results and Discussions 121

Codebook Size 50 60 80 100 150 200 300

HV3
5 76.8 76.4 76.1 77.9 77.0 80.0 79.9

HVDA3
5 77.3 77.0 79.8 78.7 79.9 81.5 82.3

HV3
7 77.6 77.1 77.8 79.5 79.1 79.6 81.4

DA3
7 75.1 76.1 76.0 77.0 76.3 78.4 79.1

HVDA3∗
7 80.1 81.1 80.2 80.9 81.7 82.0 82.6

Disk3∗5 79.3 79.9 81.3 81.2 82.2 81.3 81.4

Table A.2: The effect of different LQP geometries and codebook sizes on Average Precisions
for single root latent detectors on the INRIA Person dataset.

codewords of H3
7+V

3
7. Despite the inclusion of only two orientations, the HV3

7 results are

already slightly better than HOG and LTP on this dataset, both of which give 79.0% AP.

In contrast, DA3
7, which combines diagonal and antidiagonal strips, gives only 77.0%

AP– presumably horizontal and vertical slices are more discriminant for people than

diagonal ones. Incorporating all four types of strip in a “Union Jack” pattern HVDA

further improves the results, although split coding must be used in this case owing to

the number of pixels in the pattern.

Disk Layouts. Disk-shaped patterns can do even better. Using 100 word codebooks

on the INRIA dataset, the two-ring 24 pixel pattern Disk3∗5 (81.2% AP) outperforms both

the 16 pixel (HVDA3
5, 78.7% AP) and 24 pixel (HVDA3∗

7 , 80.9% AP) Union Jacks, and

also LTP and HOG (both 79.0% AP) – c.f . Table A.2. The VOC2006 results below confirm

that Disk3∗5 has slightly better overall performance than HVDA3∗
7 : presumably because

dense circular sampling in a compact neighbourhood captures more of the characteristic

class structure than sampling a fixed set of rays in the broader neighbourhood covered

by HVDA3∗
7 . In fact, Disk3∗5 gives the best results that we are aware of (for an individual

feature set and a single root detector) on the INRIA Person dataset, being only 1.6%

(0.6% for the 150 word codebook) below the combined feature set LBP+LTP+HOG– c.f .

Chapter 6 (82.8% AP).

Haar Layout. To see whether it would be useful to include multiscale information,

we also tested a Haar wavelet based local pattern. We take 4×4 pixel neighbourhoods

around each pixel, apply the Haar wavelet transform, discard the constant term and

code the remaining 15 wavelet coefficients using LQP ternary coding. In detail, this

involves taking the four 2×2-pixel corner blocks of the neighbourhood and a 2×2 block

containing the average of each corner one, and applying 2×2 horizontal, vertical and

diagonal Haar filters [Papageorgiou and Poggio 2000; Viola and Jones 2004] to each

122 Local Quantized Pattern Feature Sets

τ 0 1 2 3 4 5 7 10 14

Disk33 72.4 77.0 78.7 78.0 78.4 77.2 76.9 76.2 73.3
Disk3∗5 75.4 77.1 79.9 80.9 79.9 81.2 81.0 80.2 78.9
HV3

7 63.6 74.0 75.5 76.7 77.7 79.5 78.4 79.1 78.2
HVDA3∗

7 76.7 79.3 79.9 81.1 80.8 81.2 80.5 80.1 81.8

Disk33 21.1 23.6 25.1 26.4 26.8 27.2 25.4 25.5 25.2
Disk3∗5 23.8 25.0 26.0 28.8 30.1 31.4 31.5 29.7 30.4
HV3

7 11.3 17.0 17.9 20.9 22.5 23.2 25.4 26.9 26.7
HVDA3∗

7 23.8 27.4 25.0 28.7 30.0 31.0 31.0 32.1 32.7

Disk33 53.0 55.0 55.1 54.2 56.0 55.6 55.9 54.8 54.4
Disk3∗5 54.0 55.3 56.1 54.7 55.9 55.9 56.1 56.1 55.4
HV3

7 51.5 51.0 53.1 53.1 53.7 53.7 54.7 54.6 53.8
HVDA3∗

7 53.1 53.4 54.4 55.4 55.4 55.4 56.3 56.4 56.0

Table A.3: Average Precisions of ternary LQP features on the INRIA Person and VOC2006
person and car datasets for different values of the quantization threshold τ.

block. The resulting Haar LQP features give slightly better results than HOG and LTP:

for 100 word codebooks, 80.7% AP versus 79% AP on INRIA Person, and 29.4% AP

versus 25.1% and 28.9% AP on the VOC2006 person class. However the Haar patterns

do not equal the performance of the best Disk and HVDA ones on these datasets.

Splitting and LQP Features. With a 118 word codebook, Disk33 (the LQP form of

LTP’s 8-sample circle of 1 pixel radius) gives identical accuracy to traditional 118-D split

uniform LTP coding. Reducing the LQP codebook size to 88 reduces the accuracy by

only 0.8%. For the 16-sample radius 2 circle Circ35 (the largest pattern for which unsplit

ternary coding is feasible), split coding with 100 word codebooks (200-D histograms)

gives 80.9% AP on INRIA whereas unsplit coding with codebook (histogram) sizes

of 100 and 200 gives respectively 78.8% and 80.5% AP. Similarly, for the VOC2006

person class, split Circ3∗5 gives 28.3% AP while unsplit Circ35 gives respectively 26.0%

and 28.6% AP for 100 and 200 word codebooks, and for the VOC2006 car class split

Circ3∗5 gives 55.0% AP while unsplit Circ35 gives 55.2 % and 54.9% AP. These results in

some sense validate the use of split uniform coding in the original LTP. Overall, our

results consistently show that splitting causes little loss of discriminative power relative

to the equivalent unsplit coding, and that it is beneficial in the sense that it allows larger

spatial supports to be used, thus increasing the overall discriminative power.

Ternary Code Threshold. Table A.3 shows the effect of the ternary code threshold τ

on the APs of various LQP features on the INRIA Person and VOC2006 person and car

classes. For each feature there is a broad range of τ values that gives similar results, but

A.2 Results and Discussions 123

spatially larger patterns (notably the extended cross layouts) need larger values of τ,

presumably because the typical ranges of gray-value variations increase with increasing

pattern diameter. Over the full set of classes, τ = 5 turns out to be the best value for

both of the Disk diameters and also for LTP, whereas τ = 14 is the preferred value for

broad crosses such as HVDA3∗
7 .

Choice of Codebook. Table A.2 also shows how codebook size affects the performance

of various LQP features. As expected – despite some variability owing to the noncon-

vexity of K-Means learning – larger codebooks typically have better performance. By

default we use 100 word codebooks below as they seem to offer a reasonable compromise

between descriptor size and performance, but smaller ones still offer very respectable

levels of performance and larger ones are often even better.

More generally, features can be quantized using either a single codebook (learned

from the positives, the negatives, or the complete training set), or several concatenated

codebooks – for example ones learned separately on the positive and negative training

sets. Moreover, for positive training we can also learn a separate “cell level” codebook

for each cell of the detection window, subsequently quantizing the pixels of each cell of

the current window using that cell’s positive codebook and the global negative one.

Table A.4 shows the effect of these different codebook learning schemes on the

accuracy of INRIA Person detectors using HV3
7 features. The single-codebook results

are better than the multiple-codebook ones and in the multiple codebook case, learning

separate cell-level positive codebooks provides only a small increase in the AP so it does

not seem to be warranted given its extra complexity. Unsurprisingly, using positives

alone for codebook learning is better than using negatives alone – the positive codebooks

are trained on structures that are important for characterizing the object class – but

(perhaps surprisingly) pooling the positives and negatives during training gives worse

results than using either positives or negatives alone. For the binary and split ternary

codings, initializing some of the K-Means centers at the LBP/LTP uniform patterns to

encourage the latter to be well coded does not change the performance. Similarly, for

global positive and negative codebooks, learning the negative codebook first and using

it to initialize the positive one does not change the performance.

By default, we therefore use single 100 word codebooks obtained by running K-

Means on (all of the R, G and B pixels of the annotation windows of) the positive

training data.

Combination With HOG Features. Unfortunately, the LQP features are already so

strong that combining them with other feature sets such as HOG only seems to provide

modest improvements in accuracy on the INRIA Person dataset – c.f . Table A.5. Moreover,

most of the improvement is observed for the comparatively weaker classes of LQP fea-

124 Local Quantized Pattern Feature Sets

Codebook Type Positive Negative Combined Positive & Negative Cell Based
Cell Dimension 100 100 100 200 200

HV3
7 79.5 78.8 77.8 77.0 78.0

Table A.4: The influence of different codebook organizations on the Average Precisions of

detectors using HV3
7 LQP features on the INRIA Person dataset.

LQP Type HV3
7 DA3

7 HVDA3
5 HVDA3∗

7 Disk3∗5 HVDA3
9-CS

AP for LQP 79.5 77.0 78.7 80.9 81.2 78.5
AP for HOG+LQP 81.7 80.5 82.8 82.7 82.8 81.8

Table A.5: Average Precisions on the INRIA Person dataset of detectors trained using HOG36

plus the given ternary LQP feature. The local patterns use 100 word codebooks. The AP for
HOG36 alone is 79.0%, and for LTP+HOG36 it is 81.3%.

tures such as HVDA3
5, with more modest one for strong performers such as Disk3∗5 . This

may well be due to the saturation of the (single root) classifiers used on this dataset

because the results below show that, like other local pattern features, LQP and HOG

are actually quite complementary. Note that exactly the same maximum AP of 82.8% is

achieved by LBP+LTP+HOG.

A.2.2 PASCAL VOC2006

LQP features also give state of the art results on the VOC2006 dataset – c.f . Figure A.2.

For instance, HV3
7 outperforms HOG31 on 8 of the 10 classes, increasing the Mean AP by

4%, and LBP on all 10, increasing the Mean AP by 2.4%. Although LTP still outperforms

HV3
7 on 8 of the 10 classes, Disk3∗5 outperforms LTP on 9 of the 10, increasing the Mean

AP by 1.0%, and HVDA3∗
7 on 5 of the 10, increasing the Mean AP by 0.4%. For 150 word

codebooks, Disk3∗5 even outperforms LBP+LTP+HOG on 6 of the 10 classes, increasing

the Mean AP by 0.2% (albeit at the expense of higher dimensionality – 300 descriptors

per cell versus 208). These improvements occur for both structure-dominated classes

such as cars and people, and texture-dominated ones such as cats and dogs, so LQP

seems to be able to capture both types of cues. To the best of our knowledge, LTP and

LBP+LTP+HOG were respectively the individual and combined feature sets with the

best reported performance on both INRIA Person and VOC2006 (for single root latent

detectors using only local features without additional context), so the LQP features

Disk3∗5 and HVDA3∗
7 appear to be very competitive across the board.

Finally, as with other local pattern features, combining LQP with HOG leads to

A.2 Results and Discussions 125

Bike Bus Car Cat Cow Dog Horse Mbike Person Sheep Mean
0

0.1

0.2

0.3

0.4

0.5

Object Class

A
v
e
ra

g
e
 P

re
c
is

io
n

HOG

LBP

HV
7

3

LTP

Disk
5
3*

LQP Type CB Size Desc Size

M
ea

n

B
ik
e

B
u
s

C
ar

C
at

C
o
w

D
o
g

H
o
rs
e

M
b
ik
e

P
er
so
n

S
h
ee
p

HV3
7

100 100 34.6 55.8 39.8 55.1 16.0 32.8 14.8 21.8 46.9 25.0 38.2
150 150 35.6 56.4 42.0 54.5 16.1 36.5 15.8 22.2 47.6 25.8 38.9

HVDA3
5 300 300 36.2 52.8 43.5 56.8 14.9 35.9 17.3 26.7 48.4 26.8 38.7

HVDA3∗
7

100 200 38.3 58.2 45.9 56.1 14.6 38.0 17.4 27.7 52.4 32.7 39.8
150 300 39.4 58.0 46.5 56.5 19.0 39.0 17.6 28.9 52.7 33.0 42.6

Disk3∗5
100 200 38.8 57.8 46.2 56.1 19.3 37.6 18.8 30.9 50.2 29.9 41.2
150 300 39.8 57.9 49.0 56.3 20.1 37.7 18.9 32.1 50.5 31.9 43.1

LTP 59 118 37.8 56.2 45.2 56.1 17.3 35.8 16.8 29.8 51.4 28.9 40.0
LBP+LTP+HOG 149 208 39.6 57.4 47.6 55.7 20.8 38.2 17.8 31.8 51.0 34.4 40.8

Figure A.2: Average Precisions of single root latent detectors on the VOC2006 test set using

HOG31, LBP, LTP and LQP features. Note that simple HV3
7 outperforms both HOG31 and LBP

but not LTP, while Disk3∗5 outperforms all three and also their combination LBP+LTP+HOG31.

significant performance improvements on VOC2006 – c.f . Table A.6. As expected, the

largest improvements occur for the weaker types of LQP features, with more modest

improvements for the stronger ones.

A.2.3 Discussion

Given the above results, several points seem clear. Firstly, the fact that splitting ternary

codes into their two binary halves leads to little performance loss both validates the use

126 Local Quantized Pattern Feature Sets

LQP Type HV3
7 DA3

7 HVDA3
5 HVDA3∗

7 Disc3∗5 HVDA3
9-CS

AP for LQP 25.0 20.7 26.1 30.2 29.9 17.4
AP for HOG+LQP 33.8 30.1 33.1 33.6 34.8 28.8

Table A.6: Average Precisions on the VOC2006 person class for detectors trained using
HOG36 plus the given ternary LQP feature. The local patterns use 100 word codebooks. The
AP for HOG36 alone is 22.2% and for LTP+HOG it is 33.8%.

of splitting in LTP (and of binary coding in LBP), and suggests that the performance

improvements provided by LQP are due mainly to the increased pattern sizes that

lookup-table based coding permits, not per se to the absence of splitting or to the

replacement of hand-specified codings with adaptive k-means ones. It also suggests

that coding orders higher than ternary will give only limited further improvements and

that they should be handled by splitting, but these points remain to be tested. Secondly,

in agreement with the forms of existing local pattern features, patterns that sample

pixels densely in a compact local neighbourhood around the centre seem to give the best

performance, so disk-shaped ones are likely to be the best choice for many applications.

Thirdly, even for large spatial supports, good results are obtained with quite modest

codebook sizes – often even smaller than the corresponding LTP code. In any case, LQP

can handle large codebooks with no loss of speed at run time – the issue is whether the

subsequent classifier can handle the large histograms that result.

Despite the extra table lookup, LQP features remain very fast to train and test. For

instance, HV3
7, HVDA3∗

7 and Disk3∗5 respectively take about 1.9, 3.1 and 4.5 seconds to

scan a VOC2006 image. The extra time for Disk3∗5 is due to the need to resample pixels

on circles, which takes much longer than the LQP table lookup.

A.3 Summary

This chapter has presented Local Quantized Patterns (LQP), a generalized form of local

pattern feature that replaces the traditional hand-built codebook reductions with vector

quantization, using precompiled lookup tables to make coding very fast at run time.

LQP inherits some of the flexibility and robustness of visual word representations while

retaining the efficiency of local pattern coding. These properties allow LQP to outper-

form traditional local pattern features such as LBP and LTP, and also well-established

feature sets like HOG. LQP can encode larger local neighbourhoods with a wider range

of the topologies at slightly deeper quantization levels and with customizable output

codes, with no noticeable loss of run time speed. The speed gains are provided by using

table lookup for the fast vector quantization of local patterns during both training and

A.3 Summary 127

evaluation.

Our results on a variety of classes from two datasets validated the LQP approach

and suggested that the ability to use larger spatial supports significantly increases

the overall accuracy. Moreover, they validated the use of splitting in the original LTP

representation of [Tan and Triggs 2010] and suggested that it remains useful for ternary

LQP features owing to the larger spatial supports that it allows. Ternary features still

give significantly better performance than binary ones and compact disks of pixels

consistently outperform less compact arrangements such as strips and cross. The central

pixel of the pattern still seems to be the most effective reference for pixel comparisons.

Codebook (and hence descriptor vector) sizes remain modest, and codebook learning

is fast owing to the lookup table architecture. Also using a single codebook learned

from the positive class seems to be the best compromise. Our LQP features give state-of-

the-art error rates. E.g. HV3
7 already performs better than HOG and LBP, while Disk3∗5

outperforms both these and even the combination LBP+LTP+HOG. These are the best

results ever reported for a single feature set on these datasets.

Currently, only a small selection of the many possible LQP configurations has been

tested, and only on object detection. LQP is also likely to be useful in other visual

recognition tasks such as image classification, face recognition, semantic segmentation,

etc., so much remains to be done.

References

S. Agarwal, A. Awan, and D. Roth. Learning to detect objects in images via a sparse, part-

based representation. In IEEE Transactions on Pattern Analysis and Machine Intelligence,

26(11):1475–1490, 2004. pages 10, 11

T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary patterns:

Application to face recognition. In IEEE Transactions on Pattern Analysis and Machine

Intelligence, 28(12), 2006. pages 42, 43

T. Ahonen and M. Pietikäinen. Soft histograms for local binary patterns. In Proceedings

of the Finnish signal processing symposium, FINSIG, volume 5, page 1. 2007. pages 19,

44

S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple-

instance learning. In Proceedings of the Neural Information and Processing Systems,

Vancouver, Canada, 15:561–568, 2002. pages 25

S. Baker and S. Nayar. Pattern rejection. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, San Francisco, USA. 1996. pages 18

A. Bar-Hillel, D. Levi, E. Krupka, and C. Goldberg. Part-based feature synthesis for

human detection. In Proceedings of the 10th European Conference on Computer Vision,

Crete, Greece, page 127–142. 2010. pages 83

O. Barinova, V. Lempitsky, and P. Kohli. On detection of multiple object instances

using Hough transforms. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, San Francisco, USA, pages 2233–2240. IEEE, 2010. pages 11, 16

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-Up Robust Features (SURF). In

Computer Vision and Image Understanding, 110(3):346–359, 2008. pages 13

I. Biederman. Recognition-by-components: A theory of human image understanding.

In Psychological review, 94(2):115, 1987. pages 3

M. Blaschko and C. Lampert. Learning to localize objects with structured output

regression. In Proceedings of the 9th European Conference on Computer Vision, Marseille,

France, pages 2–15, 2008. pages 13, 15

130 REFERENCES

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and

active learning. In Journal of Machine Learning Research, 6:1579–1619, 2005. pages 24

A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial pyramid

kernel. In Proceedings of the 6th ACM international conference on Image and video

retrieval, pages 401–408. ACM, 2007. pages 13

G. Bouchard and B. Triggs. Hierarchical part-based visual object categorization. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San

Diego, USA, volume 1, pages 710–715. 2005. pages 10

L. Bourdev and J. Brandt. Robust object detection via soft cascade. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA. 2005.

pages 102

C. Cortes and V. Vapnik. Support-vector networks. In Journal of Machine Learning

Research, 20(3):273–297, 1995. pages 14

G. Csurka, C. Bray, C. Dance, and L. Fan. Visual categorization with bags of keypoints.

In Workshop on Statistical Learning in Computer Vision, ECCV, pages 1–22. 2004. pages

116

N. Dalal. Finding People in Images and Videos. Ph.D. thesis, Institut Polytechnique de

Grenoble, 2006. pages 5, 10, 11, 17, 21, 22, 23, 28, 31, 32, 37, 39, 54, 74

N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San

Diego, USA, pages 886–893. 2005. pages 6, 11, 12, 13, 14, 15, 19, 23, 32, 37, 38, 54, 72,

81, 82, 83, 84

S. de Jong. SIMPLS: an alternative approach to partial least squares regression. In

Chemometrics and Intelligent Laboratory Systems, 18(3):251–263, 1993. pages 19, 58, 59

C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-class object

layout. In Proceedings of the 12th IEEE International Conference on Computer Vision,

Kyoto, Japan. 2009. pages 17, 112

P. Dollàr, B. Babenko, S. Belongie, P. Perona, and Z. Tu. Multiple component learning

for object detection. In Proceedings of the 9th European Conference on Computer Vision,

Marseille, France. 2008. pages 10, 13, 14, 84, 85

P. Dollár, Z. Tu, P. Perona, and S. Belongie. Integral channel features. In Proceedings of

the 20th British Machine Vision Conference, London, England. 2010. pages 83

REFERENCES 131

P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: A benchmark. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami,

USA. IEEE, 2009. pages 33

C. Elkan. Using the triangle inequality to accelerate K-Means. In Proceedings of the

20th International Conference on Machine learning, Washington, USA, volume 20, pages

147–153. 2003. pages 119

A. Ess, B. Leibe, and L. V. Gool. Depth and appearance for mobile scene analysis. In

Proceedings of the 11th IEEE International Conference on Computer Vision, Rio de Janeiro,

Brazil. 2007. pages 81, 105

A. Ess, B. Leibe, K. Schindler, , and L. van Gool. A mobile vision system for robust

multi-person tracking. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Anchorage, USA. IEEE Press, 2008. pages 81, 105

M. Everingham, L. van Gool, C. Williams, C. Winn, and A. Zisserman. PASCAL

Visual Object Classes Challenge results. http://www.pascal-network.org/

challenges/VOC/voc2010/workshop/index.html, 2010a. pages 3, 4, 5

M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The PASCAL

Visual Object Classes Challenge. In International Journal of Computer Vision, 88(2):303–

338, 2010b. pages 3, 34, 81, 92

M. Everingham, L. van Gool, C. Williams, and A. Zisserman. PASCAL Visual Object

Classes Challenge results. http://www.pascal-network.org/challenges/

VOC/voc/, 2006. pages 37

R. Fan, K. Chang, C. Hsieh, X. Wang, and C. Lin. LIBLINEAR: A library for large linear

classification. In Journal of Machine Learning Research, 9:1871–1874, 2008. pages 20,

24, 65, 67

P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade object detection with deform-

able part models. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, San Francisco, USA, pages 2241–2248. IEEE, 2010a. pages 18

P. Felzenszwalb, R. Girshick, and D. McAllester. Discriminatively trained de-

formable part models, release 4. http://people.cs.uchicago.edu/~pff/

latent-release4/, 2010b. pages 22, 82, 93, 94, 96, 97, 101, 103, 104, 105, 106

P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan. Object detection with

discriminatively trained part based models. In IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2009. pages 6, 7, 11, 12, 13, 14, 15, 17, 19, 21, 22, 23, 26, 28,

29, 31, 32, 37, 38, 39, 40, 54, 55, 72, 82, 86, 93, 94, 96, 97, 103, 104, 107

132 REFERENCES

P. Felzenszwalb and D. Huttenlocher. Efficient matching of pictorial structures. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Hilton

Head Island, USA, pages 66–75. 2000. pages 11

P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. In

International Journal of Computer Vision, 61(1):55–79, 2005. pages 10

P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively trained, multiscale,

deformable part model. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Anchorage, USA. 2008. pages 25, 29, 93, 94, 95, 103, 104

R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised scale-

invariant learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Madison, USA. 2003. pages 5, 10, 11, 14

R. Fergus, P. Perona, and A. Zisserman. A sparse object category model for efficient

learning and exhaustive recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, San Diego, USA. IEEE, 2005. pages 10

M. Fischler and R. Elschlager. The representation and matching of pictorial structures.

In IEEE Transactions on Computers, 100(1):67–92, 1973. pages 11

W. Förstner. Reliability analysis of parameter estimation in linear models with applica-

tions to mensuration problems in computer vision. In Computer Vision, Graphics and

Image Processing, 40:273–310, 1987. pages 10

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for large-scale risk

minimization. In Journal of Machine Learning Research, 10:2157–2192, 2009. pages 24

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and

an application to boosting. In Proceedings of Computational Learning Theory, pages

23–37. Springer, 1996. pages 14, 16

G. Fung and O. L. Mangasarian. A feature selection newton method for support vector

machine classification. Technical Report 02-03, Data Mining Institute, University of

Wisconsin, 2002. pages 66

J. Gall and V. Lempitsky. Class-specific Hough forests for object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA. IEEE,

2009. pages 10, 11, 16

C. Garcia and M. Delakis. Convolutional face finder: A neural architecture for fast and

robust face detection. In IEEE Transactions on Pattern Analysis and Machine Intelligence,

26(11):1408–1423, 2004. pages 13, 14, 16

REFERENCES 133

D. M. Gavrila and V. Philomin. Real-time object detection for smart vehicles. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Fort

Collins, USA, pages 87–93. 1999. pages 12, 13

D. Gerónimo, A. M. López, A. D. Sappa, and T. Graf. Survey of pedestrian detection

for advanced driver assistance systems. In IEEE Transactions on Pattern Analysis and

Machine Intelligence, 32(7):1239–1258, 2010. pages 83

G. Gualdi, A. Prati, and R. Cucchiara. Multi-stage sampling with boosting cascades

for pedestrian detection in images and videos. In Proceedings of the 10th European

Conference on Computer Vision, Crete, Greece, page 196–209. 2010. pages 83

A. Gupta, S. Satkin, A. A. Efros, and M. Hebert. From 3D scene geometry to human

workspace. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Colorado Springs, USA. 2011. pages 112

R. Haralick. Statistical and structural approaches to texture. In Proceedings of the IEEE,

volume 67, pages 786–804. IEEE, 1979. pages 13, 41, 85

H. Harzallah, F. Jurie, and C. Schmid. Combining efficient object localization and image

classification. In Proceedings of the 12th IEEE International Conference on Computer

Vision, Kyoto, Japan, pages 237–244. IEEE, 2009. pages 13, 15, 17, 18, 19, 103, 106,

112

M. Heikkilä, M. Pietikäinen, and C. Schmid. Description of interest regions with local

binary patterns. In Pattern recognition, 42:425–436, 2009. pages 44, 46, 54

S. Hussain and B. Triggs. Feature sets and dimensionality reduction for visual object

detection. In Proceedings of the 21st British Machine Vision Conference, Aberystwyth,

England, pages 112.1–112.10. 2010. pages 42, 44, 49

S. Ioffe and D. A. Forsyth. Probabilistic methods for finding people. In International

Journal of Computer Vision, 43(1):45–68, 2001. pages 10

S. Ito and S. Kubota. Object classification using heterogeneous co-occurrence features.

In Proceedings of the 11th European conference on Computer vision: Part V, page 701–714.

2010. pages 83, 84, 85

A. Jain and F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. In

Pattern recognition, 24(12):1167–1186, 1991. pages 41

V. Jain and E. Learned-Miller. Online domain adaptation of a pre-trained cascade

of classifiers. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Colorado Springs, USA. IEEE, 2011. pages 112

134 REFERENCES

T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges,

and A. Smola, editors, Advances in Kernel Methods - Support Vector Learning. The MIT

Press, Cambridge, MA, USA, 1999. pages 14, 23, 82

T. Kadir and M. Brady. Scale, saliency and image description. In International Journal of

Computer Vision, 45(2):83–105, 2001. pages 10

A. Kembhavi, D. Harwood, and L. Davis. Vehicle detection using partial least squares.

In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010. pages 60, 63

A. Kläser. Learning human actions in video. Ph.D. thesis, Université de Grenoble, 2010.

pages 116

A. Kläser, M. Marszalek, C. Schmid, and A. Zisserman. Human focused action local-

ization in video. In International Workshop on Sign, Gesture, and Activity (SGA) in

Conjunction with ECCV. 2010. pages 111

C. Lampert and M. Blaschko. A multiple kernel learning approach to joint multi-class

object detection. In Pattern Recognition, pages 31–40, 2008. pages 17

C. Lampert, M. Blaschko, and T. Hofmann. Beyond sliding windows: Object localization

by efficient subwindow search. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, Anchorage, USA, pages 1–8. ieee, 2008. pages 13, 18

J. Langford, L. Li, and T. Zhang. Sparse online learning via truncated gradient. In Journal

of Machine Learning Research, 10:777–801, 2009. pages 65

I. Laptev. Improving object detection with boosted histograms. In Image and Vision

Computing, 27(5):535–544, 2009. pages 16

S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching

for recognizing natural scene categories. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, New York, USA, volume 2, pages 2169–2178.

2006. pages 13

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to

document recognition. In Proceedings of the IEEE, 86(11):2278–2324, 1998. pages 13,

14

B. Leibe, A. Leonardis, and B. Schiele. Combined object categorization and segmentation

with an implicit shape model. In Workshop on Statistical Learning in Computer Vision –

ECCV, pages 17–32. 2004. pages 5

REFERENCES 135

B. Leibe, A. Leonardis, and B. Schiele. Robust object detection with interleaved categor-

ization and segmentation. In International Journal of Computer Vision, 77(1):259–289,

2008. pages 10, 11

T. Leung and J. Malik. Recognizing surfaces using three-dimensional textons. In

Proceedings of the 7th IEEE International Conference on Computer Vision, Kerkyra, Greece,

pages 1010–1017. 1999. pages 116

Z. Lin and L. S. Davis. A pose-invariant descriptor for human detection and segmenta-

tion. In Proceedings of the 9th European Conference on Computer Vision, Marseille, France.

2008. pages 83

Z. Lin, G. Hua, and L. S. Davis. Multiple instance features for robust part-based

object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Miami, USA. 2009. pages 10, 14, 83

D. G. Lowe. Distinctive image features from scale-invariant keypoints. In International

Journal of Computer Vision, 60(2):91–110, 2004. pages 10, 13, 38, 39

S. Maji and A. Berg. Max-margin additive classifiers for detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, pages 40–47.

IEEE, 2009. pages 15, 75

S. Maji, A. Berg, and J. Malik. Classification using intersection kernel support vector

machines is efficient. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Anchorage, USA. 2008. pages 15, 16, 33, 74, 75, 77

S. Maji and J. Malik. Object detection using a Max-margin Hough transform. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Miami,

USA, pages 1038–1045. IEEE, 2009. pages 10, 11

K. Mikolajczyk, C. Schmid, and A. Zisserman. Human detection based on a probabilistic

assembly of robust part detectors. In Proceedings of the 8th European Conference on

Computer Vision, Prague, Czech Republic, volume I, pages 69–81. 2004. pages 10

A. Mohan, C. Papageorgiou, and T. Poggio. Example-based object detection in images

by components. In IEEE Transactions on Pattern Analysis and Machine Intelligence,

23(4):349–361, 2001. pages 10, 11, 13, 15

F. Moosmann, E. Nowak, and F. Jurie. Randomized clustering forests for image clas-

sification. In IEEE Transactions on Pattern Analysis and Machine Intelligence, pages

1632–1646, 2008. pages 119

136 REFERENCES

F. Moosmann, B. Triggs, and F. Jurie. Fast discriminative visual codebooks using ran-

domized clustering forests. In Proceedings of the Neural Information and Processing

Systems, Vancouver, Canada, 19:985, 2007. pages 119

T. Ojala, M. Pietikainen, and D. Harwood. A comparative study of texture measures

with classification based on feature distributions. In Pattern Recognition, 29:51–59,

1996. pages 6, 41, 42, 43

T. Ojala, M. Pietikainen, and T. Maenpaa. Multiresolution gray-scale and rotation

invariant texture classification with local binary patterns. In IEEE Transactions on

Pattern Analysis and Machine Intelligence, 24(7):971–987, 2002. pages 42, 43

A. Opelt, A. Pinz, and A. Zisserman. A boundary-fragment-model for object detection.

In Proceedings of the 8th European Conference on Computer Vision, Graz, Austria, pages

575–588. Springer, 2006. pages 10, 11, 14

M. Osadchy, Y. L. Cun, and M. Miller. Synergistic face detection and pose estimation

with energy-based models. In Journal of Machine Learning Research, 2007. pages 16

E. Osuna, R. Freund, and F. Girosi. Training support vector machines: an application to

face detecition. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Puerto Rico, USA, pages 130–136. 1997. pages 23

P. Ott and M. Everingham. Implicit color segmentation features for pedestrian and

object detection. In Proceedings of the 12th IEEE International Conference on Computer

Vision, Kyoto, Japan, page 723–730. 2009. pages 38, 84, 106

P. Ott andM. Everingham. Shared parts for deformable part-basedmodels. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs,

USA. 2011. pages 12

C. Papageorgiou and T. Poggio. A trainable system for object detection. In International

Journal of Computer Vision, 38(1):15–33, 2000. pages 11, 13, 14, 15, 121

D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object detection. In

Proceedings of the 10th European Conference on Computer Vision, Crete, Greece. 2010.

pages 90, 112

M. Pedersoli, J. Gonzàlez, A. Bagdanov, and J. Villanueva. Recursive coarse-to-fine

localization for fast object detection. In Proceedings of the 10th European Conference on

Computer Vision, Crete, Greece, pages 280–293. Springer, 2010. pages 18

M. Pedersoli, A. Vedaldi, and J. Gonzàlez. A coarse-to-fine approach for fast deformable

object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Colorado Springs, USA. 2011. pages 18

REFERENCES 137

F. Porikli. Integral histogram: A fast way to extract histograms in cartesian spaces. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San

Diego, USA, volume 1, pages 829–836. 2005. pages 54

D. Ramanan. Using segmentation to verify object hypotheses. In 2007 IEEE Conference

on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2007. pages 17, 84, 90,

112

M. Ranzato, F. Huang, Y. Boureau, and Y. LeCun. Unsupervised learning of invariant

feature hierarchies with applications to object recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Minneapolis, USA. 2007. pages

112

N. Razavi, J. Gall, and L. V. Gool. Scalable multi-class object detection. In Proceedings of

the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR),

pages 1505–1512. 2011. pages 10

R. Ronfard, C. Schmid, and B. Triggs. Learning to parse pictures of people. In Proceedings

of the 7th European Conference on Computer Vision, Copenhagen, Denmark, volume IV,

pages 700–714. 2002. pages 10, 11

R. Rosipal and N. Kramer. Overview and recent advances in partial least squares. In

Lecture notes in computer science, pages 34–51, 2006. pages 58

P. Sabzmeydani and G. Mori. Detecting pedestrians by learning shapelet features.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

Minneapolis, USA, pages 1–8. IEEE, 2007. pages 33

V. Sande, K. E. A. Gevers, and C. G. M. Snoek. Evaluating color descriptors for object and

scene recognition. In IEEE Transactions on Pattern Analysis and Machine Intelligence,

32(9):1582–1596, 2010. pages 48

R. Schapire and Y. Singer. Improved boosting algorithms using confidence-rated pre-

dictions. In Journal of Machine Learning Research, 37(3):297–336, 1999. pages 14,

16

C. Schmid. A structured probabilistic model for recognition. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Fort Collins, USA, volume II,

pages 485–490. 1999. pages 116

H. Schneiderman and T. Kanade. Object detection using the statistics of parts. In

International Journal of Computer Vision, 56(3):151–177, 2004. pages 13

138 REFERENCES

P. Schnitzspan, M. Fritz, S. Roth, and B. Schiele. Discriminative structure learning of

hierarchical representations for object detection. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, Miami, USA, pages 2238–2245. IEEE, 2009.

pages 10

P. Schnitzspan, S. Roth, and B. Schiele. Automatic discovery of meaningful object parts

with latent CRFs. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, San Francisco, USA. IEEE, 2010. pages 10, 11, 14

B. Schölkopf and A. Smola. Learning with Kernels. The MIT Press, Cambridge, MA, USA,

2002. pages 14

W. Schwartz, A. Kembhavi, D. Harwood, and L. Davis. Human detection using partial

least squares analysis. In Proceedings of the 12th IEEE International Conference on

Computer Vision, Kyoto, Japan. 2009. pages 13, 16, 19, 60, 65, 78, 83, 84, 85, 105, 106

T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object recognition

with cortex-like mechanisms. In Pattern Analysis and Machine Intelligence, IEEE

Transactions on, 29(3):411–426, 2007. pages 112

S. Shalev-Shwartz and A. Tewari. Stochastic methods for L1 regularized loss minimiza-

tion. In Proceedings of the 26th International Conference on Machine learning, Montreal,

Canada, pages 929–936. 2009. pages 66

E. Shechtman and M. Irani. Matching local self-similarities across images and videos.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

Minneapolis, USA, pages 1–8. IEEE, 2007. pages 13

J. Shotton, A. Blake, and R. Cipolla. Contour-based learning for object detection. In

Proceedings of the 10th IEEE International Conference on Computer Vision, Bejing, China.

IEEE Computer Society, 2005. pages 10, 11

K. Sung and T. Poggio. Example-based learning for view-based human face detection.

In IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):39–51, 1998.

pages 23

X. Tan and B. Triggs. Enhanced local texture feature sets for face recognition under

difficult lighting conditions. In IEEE Transactions on Image Processing, 19(6):1635–

1650, 2010. pages 6, 7, 19, 43, 44, 45, 47, 48, 106, 109, 127

M. Tipping. Sparse bayesian learning and the relevance vector machine. In Journal of

Machine Learning Research, 1:211–244, 2001. pages 65

REFERENCES 139

A. Torralba, K. Murphy, and W. Freeman. Sharing visual features for multiclass and

multiview object detection. In IEEE Transactions on Pattern Analysis and Machine

Intelligence, 29(5):854–869, 2007. pages 16, 64, 113

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for

structured and interdependent output variables. In Journal of Machine Learning

Research, 6(2):1453, 2006. pages 25

O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detection and

classification. In Proceedings of the 8th European Conference on Computer Vision, Graz,

Austria, pages 589–600. Springer, 2006. pages 13

O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via classification on riemannian

manifolds. In IEEE Transactions on Pattern Analysis and Machine Intelligence, page

1713–1727, 2008. pages 13, 83, 84, 85

M. Varma and A. Zisserman. Classifying images of materials: Achieving viewpoint and

illumination indepence. In Proceedings of the 7th European Conference on Computer

Vision, Copenhagen, Denmark, volume III, pages 255–271. 2002. pages 116

A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object

detection. In Proceedings of the 12th IEEE International Conference on Computer Vision,

Kyoto, Japan. 2009. pages 10, 13, 15, 18, 19, 52, 74, 103, 104, 106

A. Vedaldi and A. Zisserman. Efficient additive kernels via explicit feature maps. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, San

Francisco, USA. 2010. pages 15, 75, 80, 83, 112

S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Training object

detectors with crawled data and crowds. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Colorado Springs, USA. IEEE, 2011. pages 113

P. Viola and M. J. Jones. Robust real-time face detection. In International Journal of

Computer Vision, 57(2):137–154, 2004. pages 11, 13, 14, 16, 17, 18, 31, 37, 64, 121

B. Wandell. Foundations of vision. Sinauer Associates, 1995. pages 48

X. Wang, T. Han, and S. Yan. An HOG-LBP human detector with partial occlusion

handling. In Proceedings of the 12th IEEE International Conference on Computer Vision,

Kyoto, Japan. 2009. pages 13, 15, 19, 42, 43, 83, 84, 85, 106

X. Wang, X. Zhou, T. X. Han, S. Tang, G. Chen, K. Yu, and T. S. Huang. Liblinear SVM

with HOG-LBP and bag of words (DHOG) features. VOC Object Detection Challenge,

2010. pages 104, 105

140 REFERENCES

S. Wold, M. Sjöström, and L. Eriksson. PLS-regression: a basic tool of chemometrics. In

Chemometrics and Intelligent Laboratory Systems, 58(2):109–130, 2001. pages 19, 58, 59

B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans

by bayesian combination of edgelet based part detectors. In International Journal of

Computer Vision, 75(2):247–266, 2007. pages 10

B. Wu and R. Nevatia. Optimizing discrimination-efficiency tradeoff in integrating

heterogeneous local features for object detection. In Proceedings of the 9th European

Conference on Computer Vision, Marseille, France. 2008. pages 83, 84, 85

B. Wu and R. Nevatia. Detection and segmentation of multiple, partially occluded

objects by grouping, merging, assigning part detection responses. In International

journal of computer vision, 82(2):185–204, 2009. pages 11

H. Yu, F. Huang, and C. Lin. Dual coordinate descent methods for logistic regression

and maximum entropy models. In Journal of Machine Learning Research, pages 1–35,

2011. pages 66

Y. Yu, J. Zhang, Y. Huang, S. Zheng, W. Ren, C. Wang, K. Huang, and T. Tan. Object

detection by context and boosted HOG-LBP. VOC Workshop Talk, 2010. pages 104,

105, 112

J. Zhang, K. Huang, Y. Yu, and T. Tan. Boosted local structured HOG-LBP for object

localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, Colorado Springs, USA, pages 1393–1400. IEEE, 2011. pages 104

Y. Zheng, C. Shen, and X. Huang. Pedestrian detection using center-symmetric local

binary patterns. In Proceedings of the IEEE International Conference on Image Processing,

Hong Kong, China, volume 1, page 1. 2010. pages 47, 53, 54

J. Zhu, A. Ahmed, and E. Xing. MedLDA: maximum margin supervised topic models

for regression and classification. In Proceedings of the 26th International Conference on

Machine learning, Montreal, Canada, pages 1257–1264. ACM, 2009. pages 58

L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical structural learning for

object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, San Francisco, USA. IEEE, 2010. pages 11, 12, 15, 112

Q. Zhu, S. Avidan, M. Ye, and K. Cheng. Fast human detection using a cascade of

histograms of oriented gradients. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, New York, USA. 2006. pages 11, 13, 18, 38, 54, 83, 85

