

STREP Project-microFLUID (2008-2011)

Détection fluorimétrique en circuit microfluidique des ions Pb²⁺, Hg²⁺et Cd²⁺ en milieu aqueux

Djibril Faye

Directrice de thèse : Dr. Isabelle Leray

Toxicité des métaux lourds

Elément	Provenance	Organes cibles
Mercure Hg ²⁺	Sources naturelles, exploitation des minerais, rejets industriels	sang, S.N.C, reins, foie, fœtus, squelette
Plomb Pb ²⁺	Canalisations et peintures au plomb, pollution automobile, rejets industriels	Reins, fœtus, foie, squelette, sang, système nerveux central
Cadmium Cd ²⁺	Sources naturelles (volcans) et anthropiques (raffineries, mines, fabrication des batteries, des engrais	Reins, poumons, squelette, système nerveux central

Toxicité des métaux lourds

Eléments	Concentration Maximale Admissible (C.M.A) en U.E	
Mercure Hg ²⁺	1 μg.L ⁻¹ depuis 2003 0,05 μg.L ⁻¹ pour 2015	
Plomb Pb ²⁺	25 μg.L ⁻¹ depuis 2003 7,2 μg.L ⁻¹ pour fin 2015	
Cadmium Cd ²⁺	5 μg.L ⁻¹ depuis 2003 0,20 μg.L ⁻¹ pour 2015	

(

¹Directive Européennes du 16 décembre 2008 sur la qualité des eaux de consommation

Toxicité des métaux lourds

Méthodes	Limites de détection	coût	Portabilité
Chomatographie	$Pb^{2+} = 2-4 \text{ ng/L}$ $Hg^{2+} = 2-3 \text{ ng/L}$ $Cd^{2+} = 1,5-3 \text{ ng/L}$	18-25 k€	non
ICP-MS	$\begin{split} Pb^{2+} &= 0,3 \text{ ng/L} \\ Hg^{2+} &= 0,08\text{-}0,17 \mu\text{g/L} \\ Cd^{2+} &= 0,2 \text{ ng/L}^{42} \end{split}$	300-500 k€	non
Electrochimie	$\begin{split} Pb^{2+} &= 0,1510 \ \mu\text{g/L}, \\ Hg^{2+} &= 0,0510 \ \mu\text{g/L}, \\ Cd^{2+} &= 3,5\text{-}9,8 \ \mu\text{g/L}, \end{split}$	8-11 k€	oui
Absorption ou Emission atomique	$\begin{aligned} Pb^{2+} &= 3 \ \mu g/L \\ Hg^{2+} &= 4,3\text{-}5, \ 1 \ ng/L \\ Cd^{2+} &= 0,3 \ \mu g/L \end{aligned}$	14-18 k€	non
Fluorescence	$\begin{split} Pb^{2+} &= 4 \ \mu g/L \\ Hg^{2+} &= 0,75\text{-}2 \ \mu g/L^{-} \\ Cd^{2+} &= 0,6\text{-}2,1 \ \mu g/L \end{split}$	5-10 k€	oui

Projet microfluidique Européen

Détection des métaux lourds par microfluidique

Détection par fluorescence

Entrée Chambre avec microcavités

6

Détection par microcavités laser

Sommaire

I. Détection par fluorescence I.1 Principe de la sonde fluorescente I.2 Détection des ions Cd²⁺ par le Rhod-5N I.3 Détection des ions Hg²⁺ par le DPPS-PEG I.3.1 Synthèse et propriétes photophysiques du PS-3PEG et PS-PEG I.3.2 Synthèse et complexation de Hg²⁺ par le DPPS-PEG I.4 Détection des ions Pb²⁺ par le CalixDANS-3-OH I.3.1 Synthèse et propriétes photophysiques du DANS-1-OH I.3.2 Synthèse et complexation du Pb²⁺ par le CalixDANS-3-OH I.5 Conclusion et perspectives II.Détection par microcavités laser

Détection du Pb²⁺, Hg²⁺et Cd²⁺par fluorescence

Principe d'une sonde fluorescente

8

I. Leray et al. Eur. J. Inorg. 2009, 3525–3535.

 CO_2^{-1}

NO₂

3K+

Dosage du Cd²⁺ par le Rhod-5N

$$M + L \longrightarrow ML$$
$$\beta_{11} = \frac{[ML]}{[M].[L]}$$

Limite de détection = $3,1 \ \mu g \ L^{-1} (2,75 \times 10^{-8} \ mol/L)$

✓ complexe stable log $\beta_{11} = 8,85$

I. Leray et al. J. Fluoresc. 2008, 18, 1077-1082.

Dosage du Cd²⁺ par le Rhod-5N

Cations	Log Kapp	Sélectivité K (Cd ²⁺)/K (M ²⁺)	
Rhod-5N	-	-	
Ca ²⁺	$4,20 \pm 0,02$	4,5x10 ⁴	
Zn^{2+}	5,55 ± 0,01	2,0x10 ⁴	
Pb ²⁺	7,95 ± 0,06	8	
Cd^{2+}	8,85±0,02	-	

✓ Interference des ions Pb²⁺

I. Leray et al. J. Fluoresc. 2008, 18, 1077-1082.

Principe de la détection par fluorescence en circuit microfluique

□ Complexation du Cd²⁺ dans circuit microfluidique

Complexation du mercure par le DPPSc

Excitable à $\lambda exc = 324$ nm Soluble dans CH₃CN/H₂O 80/20 Limite de détection = 0,75 µg L⁻¹

 $[DPPSc] = 3,3 \ 10^{-6} M \ CH_3 CN / H_2 O \ (80 : 20 \ v/v) \ pH = 4 \ (HClO_4) \ \lambda exc = 324 \ nm$ I. Leray *et al. Org. Lett.* **2007**, 6, 1133-1136.

Complexation du mercure par le DPPSc

✓ Cations interférents

Cation compétitif + Hg(II)

Cation compétitif 1 0,8 $I_{\rm F}({
m U.A})$ 0,6 0,4 0,2 0 Sans Na(I) K(I) Ca(II) Cu (II) Zn (II) Cd (II) Pb (II) Ag(I)cation [DPPSc] = $10^{-6}M$ ($\lambda exc = 324$ nm, $\lambda em = 408$ nm), [M^{2+}] = $10^{-5}M$ <u>et Hg^{2+}] = 8,8 x10⁻⁷ M, solvant CH_3CN/H_2O 80 : 20 à pH = 4.</u>

I. Leray et al. Org. Lett. 2007, 6, 1133-1136.

Structure des molécules cibles

Synthèse du composé modèle PS-3PEG

Synthèse du composé modèle PS-3PEG

Etudes spectroscopiques du PS-3PEG

PS-3PEG

Synthèse du composé DPPS-PEG

✓ Soluble dans CH₃CN/H₂O 60:40
 ✓ Etude des propriétés photophysiques
 ✓ Complexation des ions Hg²⁺

Etudes spectroscopiques du DPPS-PEG

$$M + L \implies ML \qquad \beta_{11} = \frac{[ML]}{[M].[L]}$$
$$ML + M \implies M_2L \qquad \beta_{12} = \frac{[M_2L]}{[M].[L]}$$

M ____

ML

Limite de détection = $0.27 \ \mu g \ L^{-1} (1.34 \times 10^{-9} \ mol/L)$

 $\beta_{12} = \frac{[M_2 L]}{[ML].[M]}$

Détection en circuit microfluidique

Limite de détection = 1 μ g L⁻¹ (4,98x10⁻⁹ mol/L)

 $\lambda exc = 365 \text{ nm}, \lambda em > 445 \text{ mn}, [DPPS-PEG] = 1,26 10^{-6} \text{ M}, CH_3CH/H_2O 80/20, pH = 4 (HClO_4)$

-23

Complexation du Pb²⁺ par le CalixDANS-4

□ Sonde fluorescente fixée sur les parois du circuit

□ Fluorescence du DANS-1-OH en fonction du pH

-27

□ Fluorescence du composé modèle greffé dans le circuit en fonction du pH

Variation de l'intensité de fluorescence en fonction du pH
 Pas de dégradation du DANS-1-OH dans le circuit

Synthèse du CalixDANS3-OH

-29

□ Dosage du Pb²⁺ par CalixDANS-3-OH en solution pH = 3 M + L → ML $\beta_{11} = \frac{[ML]}{[M][L]}$ log $\beta_{11} = 4,74 + -0,05$

Limite de détection = $10 \ \mu g \ L^{-1} (4.82 \times 10^{-8} \ mol/L)$

[CalixDans3-OH]=2,14x10⁻⁵M, CH₃CN/H₂06:4, pH=3 (HClO₄), $\lambda exc = 365 \text{ nm}$

- ✓ Bonne sensibilité du CalixDANS-3-OH
- ✓ Point isoémissif à 538 nm

Sélectivité du CalixDANS-3-OH en solution

Cation compétitif+ Pb²⁺

Cation compétitif

 $\frac{\lambda_{exc} = 365 \text{ nm}, \lambda_{em} = 572 \text{ nm}, [CalixDANS-3-OH] = 10^{-6} \text{ M}, [M^{2+}] = 10^{-5} \text{ M}, Pb^{2+}] = 10^{-6} \text{ M}, solvant CH_3CN / H_2O 60 : 40 à pH = 3 (HClO_4).}$ $\checkmark \text{ Aucune interférence n'est observée}$

CalixDANS-3-OH greffé $\lambda exc = 365 \text{ nm}, \lambda em = 478 \text{ nm}, [Pb^{2+}] \text{ variable, } pH = 3 (HClO_4)$

✓ Quenching de la fluorescence

Dosage Pb²⁺ en circuit microfluidique Courbe de calibration Cations compétifs Limite de détection = 42 µg L⁻¹ (2,03x10⁻⁷ mol/L)

D. Faye, J-P Lefevre, J.A. Delaire and I.Leray «A new selective lead sensor based on a fluorescent molecular probe grafted on a PDMS microfluidic chip» Journal of Photochemistry and Photobiology A article soumis

-33

Détection du Pb²⁺, Hg²⁺et Cd²⁺par fluorescence

Conclusion et perspectives

- Limite de détection du cadmium de 0,45 μg/L
- Discrimination par extraction sur phase solide
- Synthèse et études photophysiques de PS-3PEG et PS-PEG
- Synthèse et études photophysiques du DPPS-PEG
- ➢ Bonne complexation du Hg²⁺ en circuit microfluidique
- > Optimisation de la limite de détection en circuit microfluidique

Détection du Pb²⁺, Hg²⁺et Cd²⁺par fluorescence Conclusion et perspectives

- Synthèse et greffage du DANS-1-OH et CalixDANS-3-OH dans le circuit
- Optimisation des conditions de détection à partir du DANS-1-OH
- Bonne complexation et sélectivé du CalixDANS-3- OH en solution et en circuit

> Nouvelle approche pour augmenter le sensibilité

Détection par microcavités laser

Principe de la détection par microcavité

Détection de Pb²⁺, Hg²⁺ par microcavités laser

Sommaire

I. Détection par fluorescence

II Détection par microcavité laser
II.1 Synthèse des ligands Hg²⁺ et Pb²⁺
II.2 Préparation des microcavités

Ligand greffé dans la masse
Ligand greffé en surface

II.3 Microcavités par polymérisation 2PP
II.4 Conclusion et perspectives

□ Synthèse du ligand Hg²⁺

Synthèse du ligand Pb²⁺

40

Sommaire

I. Détection par fluorescence II Détection par microcavité laser II.1 Synthèse des ligands Hg²⁺ et Pb²⁺ II.2 Préparation des microcavités - Ligand greffé dans la masse - Ligand greffé en surface **II.3** Microcavités par polymérisation 2PP **II.4** Conclusion et perspectives

Détection de Pb²⁺, Hg²⁺ par microcavités laser

- Choix du polymère
 - Bonnes qualités optiques
 - Séquestration du colorant laser
 - ✓ Gonflable à l'eau
 - ✓ Facilité de préparation des microcavités par lithographie, plasma oxygène.

Poly(styrène-b-acide acrylique)

Image AFM d'un film de PS-b-PAA sec (gauche) et gonflé (droite).

Détection de Pb²⁺, Hg²⁺ par microcavités laser

43

□ Influence de l'indice de refraction

Indice du milieu:

44

✓ Modification du PS-b-PAA

□ Modification des fonctions acides du PS-b-PAA

46

Greffage du ligand Hg²⁺sur PS-b-PAA

Analyse élémentaire: 14 % des fonctions amines sont greffées sur le ligand au Hg²⁺.

Préparation des microcavités

Solubilité des matériaux

PS-b-PAA ligand Hg ²⁺	Solvants
125 mg/mL	Dioxane / Anisole (1 : 1)
75 mg/mL	Dioxane / Anisole (1 : 1)
100 mg/mL	Dioxane / Toluene (1 : 1)
67 mg/mL	Anisole
67 mg/mL	Anisole / THF (1 : 1)

PS-b-PAA . Ligand Hg^{2+} dopé avec 5% de pyrrométhène

✓ Zones d'agrégation sur les films
✓ Qualité optique non satisfaisante

Ligand greffé dans la masse

Analyse élémentaire: 18 % des fonctions acides du polymère PS-b-PAA sont greffées sur le ligand Pb²⁺.

Préparation des microcavités

Solubilité des matériaux

PS-b-PAA ligand	Pb ²⁺	Solvants
125 mg/ml		Dioxane/ Anisole (1:1)
75 mg/ml		Dioxane/ Anisole (1:1)
100 mg/ml		Dioxane/ Toluene (1:1)
67 mg/ml		DMF
67 mg/ml		Anisole

PS-b-PAA. Ligang Pb²⁺ dopé avec 5% de pyrrométhène

✓ Zones d'agrégation sur les films
✓ Pas de bonnes qualités optiques

Sommaire

I. Détection par fluorescence

II Détection par microcavité laser

II.1 Synthèse des ligands
II.2 Préparation des microcavités

Ligand greffé dans la masse
Ligand greffé en surface

II.3 Microcavités par polymérisation 2PP
II.4 Conclusion et perspectives

Groupements thiols à la surface de la microcavité

☐ Preuve de principe de la détection de Hg²⁺

Spectre d'emission de la microcavité en présence de Hg²⁺ à 1µM

Sommaire

I. Détection par fluorescence

II Détection par microcavité laser

II.1 Synthèse des ligands
II.2 Préparation des microcavités

ligand greffé dans la masse
ligand greffé en surface

II.3 Microcavités par polymérisation 2PPII.4 Conclusion et perspectives

Microcavités par polymérisation 2PP

□ Principe de fabrication

Microcavité laser

Microcavités par polymérisation 2PP

□ 2PP du MAPTMS avec le pyrromèthène

Conclusion

- ✓ Deux nouveaux ligands pour la détection des ions Hg^{2+} et Pb^{2+}
- ✓ Deux copolymères poreux pour la détection des ions Hg^{2+} et Pb^{2+}
- ✓ Solubilité des polymères et qualité optique des films insuffisante pour réaliser des microcavités
- ✓ Ligands gréffés à la surface des microcavités laser
- ✓ Preuve de principe de la détection de Hg^{2+} par microcavités laser

Perspectives

□ Préconcentrateurs sélectifs pour détection du Pb²⁺ ou Hg²⁺

REMERCIEMENTS

collaboration: LPQM

Isabelle Ledoux Joseph Zyss Mélanie Lebental Joseph Lautru Sergey Lozenko collaboration: LZH Roman Kiyian collaboration: POLIMI Stéphano Terri Carmela De Marco

Haitao Zhang Doctorante (continue le projet)

 $\langle 0 \rangle$

Financement contrat Européen STREP -
MICROFLUID (2008-2011)60

Détection du Cd²⁺par fluorescence

□ Discrimination des ions Cd²⁺ et Pb²⁺

Détection du Hg²⁺par fluorescence

Etudes spectroscopiques du PS-3PEG

PS-3PEG

<u>PS-3PEG</u> $C = 1,36x10^{-5}M H_2O pH = 4 (tampon HClO_4)$

Détection du Cd²⁺par fluorescence

□ Discrimination des ions Cd²⁺ et Pb²⁺ par préconcentration

рН	% Adsorption Pb ²⁺	% Adsorption Cd ²⁺
7	76-93	13-25
9	95-100	81-100

64

Détection du Pb²⁺par fluorescence

□ Détermination des pKa du DANS-1-OH

Spectres de fluorescence et d'absorption du DANS-OH en fonction du pH solvant CH_3CN/H_2O 60:40

Détection du Pb²⁺par fluorescence

≻Dosage du Pb²⁺ par CalixDans-3-OH en solution pH=5

Détection du Pb²⁺par fluorescence

Dosage du Pb²⁺ par CalixDans-3-OH en solution pH=5

Choix du colorant laser

O

Dégradation du colorant après 10 mn d'irradiation

film du PS-b-PAA dopé avec 2% de colorant laser

Détection du Hg²⁺par fluorescence

Synthèse du composé modèle PS-PEG

OH

TsO

✓ Groupement PEG position para

-71

Détection des métaux lourds Classification de Pearson (dureté et mollesse des acides et des bases)

Acides					
Durs	Interm[*] diaires	Mous			
H ⁺ , Li ⁺ , Na ⁺ , K ⁺ Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ Al ³⁺ , Sc ³⁺ , Ga ³⁺ , In ³⁺ , La ³⁺ , Gd ³⁺ , Lu ³⁺ , Cr ³⁺ , Co ³⁺ , Fe ³⁺ , As ³⁺	Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ Zn ²⁺ , Pb ²⁺ , Sn ²⁺ Sb ³⁺ , Bi ³⁺	Cu ⁺ , Ag ⁺ , Au ⁺ , Tl ⁺ , Hg ⁺ Pd ²⁺ , Cd ²⁺ , Pt ²⁺ , Hg ²⁺ , CH ₃ ⁺ Hg, Pt ⁴⁺ , Te ⁴⁺			
Bases					
Dures	Interm' diaires	Molles			
$\begin{array}{c} H_{2}O, OH^{\check{S}}, F^{\check{S}}, CH_{3}CO_{2}^{\ \check{S}}, PO_{4}^{\ 3\check{S}},\\ SO_{4}^{\ 2\check{S}}, CI^{\check{S}}, CO_{3}^{\ 2\check{S}}, CIO_{4}^{\ \check{S}}, NO_{3}^{\ \check{S}},\\ ROH, RO^{\check{S}}, R_{2}O, NH_{3}, RNH_{2} \end{array}$	$C_{6}H_{5}NH_{2}, C_{5}H_{5}N, R_{3}PO$ $N_{3}^{\check{S}}, Br^{\check{S}}, NO_{2}^{\check{S}}, N_{2}, SO_{3}^{2\check{S}}$	R ₂ S, RSH, RS ^Š , I ^Š , SCN, S ₂ O ₃ ^{2Š} , R ₃ P, R ₃ As, (RO) ₃ P, CN ^Š , RNC, CO, C ₂ H ₄ , H ^Š , R ^Š			