N

N

P2P-MPI: A fault-tolerant Message Passing Interface
Implementation for Grids
Choopan Rattanapoka

» To cite this version:

Choopan Rattanapoka. P2P-MPI: A fault-tolerant Message Passing Interface Implementation for
Grids. Distributed, Parallel, and Cluster Computing [cs.DC]. Université Louis Pasteur - Strasbourg
I, 2008. English. NNT: . tel-00724132

HAL Id: tel-00724132
https://theses.hal.science/tel-00724132
Submitted on 18 Aug 2012

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00724132
https://hal.archives-ouvertes.fr

=
ulpé

UNIVERSITE [l LOUIS PASTEUR
STRASBOURG

Laboratoire des Sciences
de I'lmage, de I'Informatique et
de la Télédétection

UMR CNRS-ULP 7005

Equipe Image et
Calcul Parallele Scientifique

These présentée pour obtenir le grade de

- Docteur de I'Université Louis Pasteur
. Strasbourg |
" Discipline: Informatique

par Choopan Rattanapoka

P2P-MPI :A Fault-tolerant Message

Passing Interface Implementation for
Grids

Soutenue publiquement le 22 avril 2008

Membres du jury

Rapporteurs externes : M. Thilo Kielmann, Associate Professor

Vrije Universiteit, Amsterdam
M. Franck Cappello, Directeur de Recherches
INRIA, Orsay

Rapporteur interne : M. Jean-Jacques Pansiot, Professeur

Université Louis Pasteur de Strasbourg
Examinateur : Mme. Francgoise Baude, Maitre de Conférences
Université de Nice-Sophia Antipolis
Directeurs : Mme. Catherine Mongenet, Professeur
Université Louis Pasteur de Strasbourg
M. Stéphane Genaud, Chargé de Recherches
INRIA, Nancy

Ce document a été composé avec INTEX.

Contents

Résumé en francgais

1

Sy O i W N

Introduction L
P2P-MPI . . .
Llintergiciel
La gestion des pannes
L’implémentation de MPJ L
Conclusion et Perspectives L.

1 Introduction

2 State of the Art

2.1
2.2

2.3
2.4

2.5
2.6

3 The
3.1

Grid Usages o
Programming Environments for Grids
2.2.1 Client/Server Programming Model
2.2.2 Peer-to-Peer Model
2.2.3 Parallel Model o
MPT and Grids o
MPI and Fault Tolerance
2.4.1 Fault Detection
2.4.2 Fault Recovery Techniques
2.4.3 Fault Tolerant MPI implementations
MPLand JAVA 0. o e
Peer-to-Peer Topologies
2.6.1 Centralized Topology
2.6.2 Decentralized Topology
2.6.3 Hybrid Topology
2.6.4 Peer-to-Peer Infrastructure Projects

P2P-MPI1 Middleware

General Architecture
3.1.1 The Peer-to-Peer Infrastructure
3.1.2 The Middleware,
3.1.3 The Communication Library

3

11
11
12
13
18
20
23

27

31
33
35
36
36
37
37
39
39
41
44
46
47
47
43
48
49

CONTENTS

3.2 Application Start-up Protocol oL 58
3.3 Discovery and Reservation L 0L, 60
3.3.1 Entities involved and Notations 60
3.3.2 Reservation Schema00 61
3.4 Host Allocation Strategies o 63
3.5 Experiments with Co-allocation 65
3.5.1 Co-allocation Experiments 65
3.5.2 Application Performance. L. 67
3.6 P2P-MPI Graphical Monitoring Tool 68
3.7 Conclusion e 71
Fault Management 73
4.1 Logical processes and replicas oL 74
4.2 Related Issues in the Literature 0oL 75
4.2.1 Properties of Atomic Broadcast L. 75
4.2.2 Assumptions 76
4.3 Replicas coordination protocol oL 77
4.3.1 Message Identifier (MID) 7
4.3.2 Sending message agreement protocol 7
4.3.3 Reception message agreement protocol 79
4.3.4 Non-deterministic Situations 80
4.3.5 Fault Recovery protocol 84
4.4 Correctness of the protocol oo 85
4.4.1 Atomic broadcast complianceo 85
4.4.2 Handling of Failure Situations inside Atomic Broadcast 85
4.5 Replication and Failure Probability 87
4.6 Fault Detection Backgroundo 88
4.7 Fault Detection in P2P-MPI 91
4.7.1 Assumptions and Requirements L. 91
472 Designissueso e 92
4.7.3 P2P-MPI implementation 93
4.7.4 Automatic Adjustment of Initial Heartbeat 94
4.8 Experiments. 96
4.8.1 Fault Detection Time, 96
4.8.2 Replication Overhead 98
4.9 Conclusion e 101
MPJ Implementation 103
5.1 Imtroduction e 103
5.2 The Single-Port Device o 104
5.3 The Multiple-Ports Device 106
5.4 Collective Communication Operations 109
5.5 Experiments. Lo e 112

5.5.1 Single-Port implementation 113

CONTENTS

5.5.2 Multiple-Port Implementation,
5.6 Conclusion e

6 Conclusion
A Experiment Testbeds and Benchmark Suites

B P2P-MPI API
B.1l Comm e
B.2 Datatype e
B3 Group
B4 IntraComm e
B.5 MPIL . . . e
B.6 MPI_User functionand Op
B.7 Request
B.8 Status

C P2P-MPI User’s Guide
C.1 P2P-MPI Configuration File

C.2 Command lines e
C3 Sample Codes L

D Benmarks (JGF section 1)
D.1 Experiment Setup
D.2 Benchmark Results oo

115
119

121

123

127
127
130
131
132
137
139
140
140

141
141
142
144

CONTENTS

List of Tables

1 La liste des méthodes dans la classe IntraComm. 22
3.1 Characteristics of available computing resources at the different sites . . . 65
3.2 The round-trip time by ping between Nancy and other sites 66
5.1 List of IntraComm methods. 109
B.1 List of P2P-MPI APl classes 127
C.1 The default P2P-MPI configuration file. 145
C.2 The example of Piprogram. v v v v v v v it e e 146

LIST OF TABLES

List of Figures

=N S Ot W N~

© oo

10

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

P2P-MPT structure. e 12
Les étapes de la soumission d'un job. 14
Machines et cores alloués avec concentrate. 16
Machines et cores alloués avec spread. 17
Temps d’exécution de EP et IS en fonction de la strategie d’allocation. . . 18
Un message envoyé de processus logique Pp a Pr. 19
Probabilités de défaillance du FD service en utilisant BRR and DBRR,

pour 5.8 x 10° pannes individuelles. 20
Temps de détection d’une panne en utilisant BRR et DBRR 21
JGF section 2: résultat du benchmark Kernels 23
JGF section 3: résultat du benchmark Large-scale applications 24
Passive and active replication. o oL 43
Three main peer-to-peer topologies. 48
P2P-MPI structure. e 52
File staging using a web server. o oL 56
Steps taken to build an MPJ communicator mapped to several peers.. . . 58
The job reservation procedure. L Lo 61
Hosts and cores allocated in concentrate allocation method 66
Hosts and cores allocated in spread allocation method 67
Execution time for EP and IS depending on allocation strategies. 68
The monitor table 69
Graphical view: screenshot for a couple hundreds of peers on Grid5000. . 69
Overview of the visualization service organization 70
The logical process P; with a replication degree of three. 74
Extra data structures used in a process for replication. 75
A message sent from logical process Py to Pr. 78
Scenario for Algorithm 6 with two processes and replication degree two. . 81
MPI process schema in algorithm 6, when there is fault during the execution. 82
Replication problem on MPI_ANY_SOURCE and MPI_ANY_TAG. 83
Replication problem solved on MPI_ANY_SOURCE and MPI_ANY_TAG. 84

Possible failures on the master while sending to the destination processes 86

9

10

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

Al

D1
D.2
D.3
D4

LIST OF FIGURES

Failure probability depending on replication degree r (f=0.05). 88
Communication pattern in the round-robin protocol (n =6). 90
Communication pattern in the binary round-robin protocol (n =4). . . . 90

Communication pattern in the double binary round-robin protocol (n = 4). 93
Failure probabilities of the FD system using BRR and DBRR (f = 0.05). 95
Application startup. oL 95
Time to detect a fault for BRR and DBRR 97
Performance for IS depending on replication degree. 99
Time spent for 1000 ping-pong messages with different replication degrees. 100
Performance for IS class B depending on replication degree and number

Of Processes. o e 101
The structure of single-port device. 105
The structure of multi-port device. 106
The rendez-vous protocol for sending a message. 108
The steps of asynchronous rotation on four processes. 110
d-ary tree structure. Lo 110
Example for building a binomial tree. 111
The butterfly algorithm for 8 processes. 112
Comparison of MPI implementations performance for IS and EP. 114
Ray-tracer speedups when run on a single site and on two distant sites. . 116
JGF section 2: Kernels benchmark results 117
JGF section 3: Large-scale applications benchmark results 118
The interconnection between nine sites in Grid5000. 124
Barrier test 148
Reduce test 148
Beast test 149

Gather test e 150

Résumé en francais

1 Introduction

Les grilles de calcul offrent de nouvelles perspectives pour résoudre des problemes né-
cessitant des calculs massifs en utilisant de nombreux ordinateurs a large échelle géo-
graphique. Ceci implique de partager des ressources hétérogenes (du point de vue du
matériel ou du logiciel) qui sont administrées par des personnes ou des organisations
différentes. L’un des freins majeurs & l'utilisation des grilles aujourd’hui, est la com-
plexité d’y déployer certains types de programmes. Si certains programmes séquentiels
ou distribués correspondent a des probléemes qui se prétent bien a ces environnements,
de nombreux autres programmes paralléles posent de sérieuses difficultés. L’éventail des
difficultés est large. Elles vont des difficultés pratiques liées aux lacunes des intergiciels
actuels (par exemple ’absence de tolérance aux pannes), aux difficultés théoriques que
posent ces plateformes trés hétérogenes impliquant des acteurs divers (qui requiérent par
exemple un ordonnancement multi-criteres).

Lorsqu’on parle de grilles de calcul, on distingue souvent les grilles composées de
ressources fiables (super-ordinateurs) de celles composées par des ressources volatiles (par
exemple des ordinateurs personnels dont la configuration et ’état du systeme changent
fréquemment). Cette derniére catégorie est souvent appelée desktop grid.

De maniere tres majoritaire, les applications pour le calcul parallele sont développées
en utilisant le standard MPI (Message Passing Interface)[1]. Ce standard définit des
primitives permettant la programmation parallele par passage des messages. Cependant,
MPI a clairement été concu pour des environnements d’exécution stables. Le modele
d’exécution sous-jacent est en effet tres fragile vis-a-vis des pannes: il suffit qu’un seul
des processus de ’application tombe en panne pendant ’exécution pour que ’application
entiere ne puisse plus continuer.

Cette these est consacrée au développement d'un intergiciel qui integre plusieurs
contributions. Le but ultime est d’offrir un environnement d’exécution accessible de
maniere simple aux utilisateurs, et aux programmeurs un moyen de développer des
applications paralleles du type passage de message (MPI) dans un environnement de
grille. L’intergiciel s’appelle P2P-MPI.

11

12 Résumé en francais

2 P2P-MPI

P2P-MPI est basé sur un modele pair-a-pair. Chaque ordinateur démarrant le logiciel
devient un pair, au méme titre que les autres ordinateurs. Démarrer le logiciel permet
d’exprimer des requétes de calcul utilisant les ordinateurs distants, mais implique égale-
ment de partager son propre ordinateur. P2P-MPT est développé uniquement en Java, et
il peut donc étre exécuté sur presque tous les systeme d’exploitation sans re-compiler les
codes sources. Enfin, P2P-MPI fournit un sous-ensemble de ’API de MPI, permettant
le développment de programmes paralleles.

MPIT (java) program

MPI API

Communication Library (message handling, replica management, ...)

Fault Detect. File Transfer Reservation MPD
Service Service Service
(FD) (FT) (RS) P2P

Infrastructure

Virtual Machine (JVM)

Operating System

Figure 1. P2P-MPI structure.

La Figure 1 présente l'infrastructure de P2P-MPI (en gris). P2P-MPI est composé
de trois éléments importants:

L’infrastructure pair-a-pair De nombreux travaux ont porté sur I’étude et la concep-
tion d’infrastructures pair-a-pair. JXTA [2], projet open-source soutenu par Sun
MicroSystems, est un des projets les plus connus car il est le seul a avoir développé
des spécifications synthétisant ce qu’on doit trouver dans un systéme pair-a-pair.
Les principales implémentations de cette spécification sont en C et en Java, et sont
disponibles publiquement.

Ces implémentations fournissent, en plus de I’API, des services comme la décou-
verte automatique des pairs, les canaux de communication abstraits (JXTA pipe),
etc. P2P-MPI, jusqu’a récemment, a utilisé JXTA pour son infrastructure pair-a-
pair. Cependant, a I'usage, JXTA s’est montré inadapté vis-a-vis de nos besoins,
principalement en raison du fait que son service de découverte n’essaye pas de dé-
couvrir tous les pairs. Nous avons donc, dans les versions récentes de P2P-MPI,
développé notre propre infrastructure pair-a-pair, plus simple, mais intégrant de
nouvelles fonctionnalités comme la notion de distance réseau. Cette évolution

3. L’INTERGICIEL 13

nous a permis de tester nos stratégies standards d’allocation des pairs & travers
des expériences de déploiement réel de ’ordre de 1000 processus.

L’intergiciel L’intergiciel représente une grande partie du développement de P2P-MPIL.
Il implémente un certain nombre de services qui sont d’une grande importance pour
faciliter ’acceés et 'exploitation d’un réseau de machines disponibles. Ces services
sont:

o Le service de détection des pannes (FD) est utilisé pour la détection
des pannes pendant ’exécution des applications.

o Le service de transfert des fichiers (FT) est utilisé pour transférer le ou
les fichiers exécutables et de données aux machines distantes.

o Le service de réservation (RS) est utilisé pour réserver un ensemble de
machines apte a satisfaire une requéte d’exécution exprimée par un utilsiateur.

e Le processus MPD représente la ressource locale comme un pair dans le
réseau pair-a-pair. Il filtre les requétes extérieures demandant ['utilisation de
la machine locale, et symétriquement, coordonne les actions nécessaires pour
transmettre une requéte d’exécution initiée localement.

La bibliothéque de communication P2P-MPI suit la spécification MPJ [3], c’est-
a-dire une adaptation du standard MPI & Java. L’interface de programmation
ressemble donc beaucoup & MPI (défini pour C, C++ et Fortran). D’autres
projets ont également proposé des implémentations de MPJ. Le mécanisme de
tolérance aux pannes proposé par P2P-MPI, qui n’impose aucune modification au
code source, n’empéche donc pas la conformité avec MPJ.

3 L’intergiciel

Dans cette section, on présente la fonction principale de U'intergicielle qui est de prendre
en charge 'exécution d’un application parallele. Nous décrivons ci-dessous comment les
processus (FD, FT, RS, et MPD) interagissent lorsque un utilisateur soumet un job. Le
mécanisme vise & réserver un nombre adéquat de ressources disponibles, & transférer les
fichiers nécessaires a ’exécution, et a démarrer simultanément ’ensemble des processus
formant I'application. A l’issue de la procédure, un numéro unique est attribué a chaque
processus démarré, formant ainsi un communicateur MPI. Les étapes sont illustrées dans
le détail par la Figure 2.

(1) Booting up: L’utilisateur joint la plate-forme P2P-MPT en tapant la commande
mpiboot qui démarre MPD, FT, FD, et RS.

(2) Job submission: le job est lancé en tapant une commande du type p2pmpirun -n
n -r r -a alloc prog. Les parametres obligatoire sont n le nombre de processus
pour éxecuter 'application prog. Les autres parametres sont optionels: r est le
taux de replication et alloc est la strategie d’allocation des ressources.

14

(3)

(4)

Résumé en frangais

1)
— S T e

(11 H a1
| ®

(7.1)

MPI program

MPI program 1
\L‘ (10)

© |

Submitter (1

(4.9) P2P-MPI peer-to—peer network

]

Figure 2: Les étapes de la soumission d’un job.

Requesting Peers: 'application contacte son MPD en lui demandant de décou-
vrir un nombre adéquat de ressources disponibles.

Discovery and Reservation: le MPD demande au RS local de procéder aux
réservations des ressources distantes. Le RS local négocie avec les RS distants
pour réserver les ressources puis retourne la liste des ressources réservées au MPD
local.

Registration: la réservation terminée, le MPD local contacte les MPD des ma-
chines réservées en transmettant le nom d’application, le rang dans le communica-
teur du processus MPI, et 'IP et le port du processus a l'origine de la soumission.

Hand-shake: les machines distantes communiquent les ports de leurs processus
FT et FD au processus a 'origine de la soumission pour établir une communication
directe.

File transfer: le code exécutable et les fichiers de données en entrée sont envoyés
via le service FT.

Execution Notification: lorsque le transfert est fait, les services FT des ma-
chines distantes notifient leurs MPD d’exécuter le code exécutable qui vient d’étre
transféré.

Remote executable launch: le MPD exécute 'application.

Execution preamble: les processus qui viennent de se lancer contactent le pro-
cessus & lorigine de la soumission pour constuire le communinateur MPL.

3. L’INTERGICIEL 15

(11) Fault detection: les processus MPI s’enregistrent auprés du service FD pour
pouvoir détecter les pannes pendant ’exécution.

Toutes les étapes de cette procédure permettant d’établir un environnement d’exécution
sont bien str totalement transparentes a I'utilisateur.

Strategie d’allocation des ressources

Notre objectif est de proposer des stratégies d’allocation intuitives pour l'utilisateur.
Actuellement, deux stratégies sont proposées pour illustrer ce qui nous semble manip-
ulable facilement par un utilisateur. L’intergiciel propose a l'utilisateur, a travers ces
deux stratégies, d’arbitrer entre la répartition des processus sur le plus grand nombre de
machines possibles ou au contraire de concentrer les processus quand les machines en of-
frent la possibilité. Aujourd’hui, il y a beaucoup de CPUs multi-cceurs et Iallocation des
processus en utilisant le maximum de coeurs d’une machine peut étre un choix judicieux
car on accroit la localité des processus. Cependant, si ’application a besoin beaucoup
de mémoire, le choix précédent sera pénalisant car plusieurs coeurs dans une machine
se partagent la mémoire, diminuant ainsi la quantité disponible par processus et aug-
mentant la contention des acces mémoires. Nous pensons que l'utilisateur connait son
application et qu’il est le plus & méme de choisir quelle stratégie est la mieux adaptée.
Ces deux stratégies s’appellent spread et concentrate :

o Spread essaie de placer les processus MPI en maximisant le nombre de machines
allouées pour maximiser la mémoire totale utilisable par I’application.

e Concentrate essaie de placer des processus MPI en maximisant le nombre de
ceeurs alloués par machine pour respecter la localité et minimiser les couts des
communications entre machines.

Experiences

La mise en ceuvre effective des stratégies a été testée a grande échelle dans la these.
Les expériences sont faites sur Grid5000 en utlisant six sites : Nancy, Lyon, Rennes,
Bordeaux, Grenoble, and Sophia-Antipolis. La soumission est faite a partir du site de
Nancy. Le tableau ci-dessous résume les caractéristiques de la plate-forme de test utilisée.

16 Résumé en francais

Type d’environment Grid5000 — clusters détaillés ci-dessous.

Site Cluster name | CPU #Nodes | #CPUs | #Cores
Nancy grelon Intel Xeon 5110 60 120 240
Lyon capricorn AMD Opteron 246 | 50 100 100
Rennes paravent AMD Opteron 246 | 90 180 180
Bordeaux bordereau AMD Opteron 2218 | 60 120 240
Grenoble idpot Intel Xeon IA32 8 16 16
Grenoble idcalc Intel Ttanium 2 12 24 48
Sophia-Antipolis azur AMD Opteron 246 | 32 64 64
Sophia-Antipolis sol AMD Opteron 2218 | 38 76 152
Systeme d’exploitation | Linux 2.6.18

Software jdk1.6.0_04, JXTA-J2SE 2.3, p2pmpi-0.28.0

Expériences de co-allocation

Dans cette expérience, on lance une application dont chaque processus affiche simplement
le nom de machine sur laquelle il s’exécute. On observe ol les processus sont placés, en
fonction de la stratégie et du nombre de processus demandé.

Les figures 3 et 4 montrent le placement des processus en utilisant les stratégies
concentrate et spread. La légende en haut & gauche donne le RTT a partir du site de
Nancy et le nombre de machines et cores disponible & chaque site. L’application est
lancée en demandant de 100 a 600 processus, par pas de 50.

200

600

T T T
mmmmm Sophia (17.167 ms, 70 hosts, 216 core)
Grenoble (13.204 ms, 20 hosts, 64 core)
mmmmm Bordeaux (12.674 ms, 60 hosts, 240 core)
500 [~ wessss Rennes (11.612 ms, 90 hosts, 180 core)
Lyon (10.576 ms, 50 hosts, 100 core)
Nancy (0.087 ms, 60 hosts, 240 core)

T T T
mmmmm Sophia (17.167 ms, 70 hosts, 216 core)
Grenoble (13.204 ms, 20 hosts, 64 core)
mmmmm Bordeaux (12.674 ms, 60 hosts, 240 core)
e Rennes (11.612 ms, 90 hosts, 180 core)
Lyon (10.576 ms, 50 hosts, 100 core)
150 - Nancy (0.087 ms, 60 hosts, 240 core)

400
100 300

200 |

Number of allocated hosts
Number of allocated processes

100

100 200 300 400 500 600 100 200 300 400 500 600
Number of demanded processes Number of demanded processes
(a) Allocated hosts (b) Allocated cores

Figure 3: Machines et cores alloués avec concentrate.

Le comportement de concentrate est illustré par la figure 3. Les processus sont placés
sur les 60 machines disponibles & Nancy jusqu’a 200 processus. Puis, lorsque la capacité
de 240 cores & Nancy est utilisée, des machines & Lyon sont choisies (5 pour -n 250),
ce qui est conforme aux attentes étant donné le classement par RTT. Les demandes
suivantes a partir de -n 300 prennent des machines a Lyon, Rennes et Bordeaux. Cela
s’explique par le fait que les latences entre Nancy et les trois sites sont trés proches et
que P2P-MPI mesure la latence en utilisant le port ouvert par 'application et non par

3. L’INTERGICIEL 17

600

— SopHia (17.167 ms, ‘70 hosts, 216 m‘:rre) — SopHia (17.167 ms, ‘70 hosts, 216 m‘)re)

mmmmm Grenoble (13.204 ms, 20 hosts, 64 core) mmmmm Grenoble (13.204 ms, 20 hosts, 64 core)

smssmm Bordeaux (12.674 ms, 60 hosts, 240 core) msssssw Bordeaux (12.674 ms, 60 hosts, 240 core)

mwmwm Rennes (11.612 ms, 90 hosts, 180 core) 500 [~ wewsssm Rennes (11.612 ms, 90 hosts, 180 core)
Lyon (10.576 ms, 50 hosts, 100 core)
Nancy (0.087 ms, 60 hosts, 240 core)

Lyon (10.576 ms, 50 hosts, 100 core)
Nancy (0.087 ms, 60 hosts, 240 core)

400

300

200

Number of allocated hosts
Number of allocated processes

100

100 200 300 400 500 600 100 200 300 400 500 600
Number of demanded processes Number of demanded processes
(a) Allocated hosts (b) Allocated cores

Figure 4: Machines et cores alloués avec spread.

ICMP dont le port peut étre bloqué. De fait, le ping applicatif est sensible a la charge
de la CPU et du réseau au moment de sa mesure qui peut différer de celle d’ICMP.
Avec spread, illustré par la figure 4, les machines sont choisies sur les quatre sites
les plus proche jusqu’a 250 processus. A partir de 300 procesus, la stratégie prends des
machines sur tous les sites et place seulement un processus MPI par machine. On peut
voir clairement dans la figure 4(b), que le nombre de cores utilisés & Nancy augmente
lorsqu’on demande 400 processus. La raison est qu’on dispose de 350 machines au total,
et lorque le nombre de processus excede le nombre de machines disponibles, la stratégie
place les processus non encore placés dans les machines les plus proches, ici a Nancy.

Performance d’une application

Pour observer 'efficacité de chaque stratégie sur 'application, on a choisi de tester deux
applications qui ont des caracteristiques opposées, tirées du NAS benchmarks (NPB3.2):
IS (Integer Sorting) et EP (Embarrassingly Parallel). IS est une application qui commu-
nique beacoup tandisqu’EP est une application qui fait de nombreux calculs indépen-
dants.

La figure 5(a) présente le temps d’exécution de EP de 32 & 512 processus. EP
n’invoque que quatre opérations de communication collective (MPI.Allreduce de un
double) donc la ratio calcul sur communication est important. Quelque soit la stratégie
utilisée pour 'allocation, on obtient des performances tres similaires.

La performance de IS est présentée sur la figure 5(b). Avec 32 procesus, spread obtient
une meilleure performance que concentrate. On peut l'expliquer par le fait qu’avec
spread, les 32 processus restent dans le méme clusteur et que le cott des communications
est assez faible. D’autre part, il n’y a pas de concurrence d’accés a la mémoire par des
processus, comme c’est le cas pour concentrate. A partir de 64 processus demandés,
I'utilisation de spread implique que des processus sont placés hors du clusteur local et
les communications entre clusters pénalisent les performances.

18 Résumé en francais

10 T T T 40

concentrate (CLASS B) —+— concentrate (CLASé B) ——
9 spread (CLASS B) ---x--- | 5 spread (CLASS B) ---x---
8t g ol]
s A
s) 5 Bf 1
o 6 | - @ L
g 57 X 1 2
2 N 2 151 i
4 g
2k J 5 1
T
1 1 1 1 — 0 1
32 64 128 256 512 32 64 128
Number of processes Number of processes
(a) Execution time on EP benchmark. (b) Execution time on IS benchmark.

Figure 5: Temps d’exécution de EP et IS en fonction de la strategie d’allocation.

4 La gestion des pannes

Pour cette partie, nous distinguons deux questions: (1) le comportement de l’application
en cas de pannes et (2) la détection des pannes.

Comportement en cas de panne

P2P-MPI propose la réplication des processus comme mécanisme de tolérance aux pannes.
Un utilisateur peut demander combien de processus seront repliqués au lancement du
programme. La gestion des réplicas par P2P-MPI est totalement transparente pour
l'utilisateur. Le code de D’application n’a pas besoin de changer. En cas de panne,
I’application MPT peut continuer de s’exécuter tant qu’il existe au moins une copie non-
défaillante de chaque processus.

Coté envoyeur, on limite le nombre de messages envoyés en introduisant un agreement
protocole. Pour chaque processus logique, un processus repliqué est élu comme le maitre
du groupe pour envoyer les messages. Les autres processus repliqués n’envoient pas
de messages mais les gardent en mémoire. La figure 6 illustre le déroulement d’une
insruction send de Py a P; ol le processus répliqué P(? est le maitre.

Détection des pannes

P2P-MPI integre un service de détection des pannes. Comme P2P-MPI est basé sur
un modele pair-a-pair, nous excluons la possibilité de recourir & un serveur centralisé
pour détecter des pannes pendant l'exécution des applications. Les chercheurs de la
communauté des systémes distribués ont proposé des détecteurs de défaillances, basés
sur le gossip protocol [4]. C’est un protocole permettant aux différentes machines de
détecter des pannes de machines distantes sans serveur centralisé. L’idée de base du
protocole est que chaque machine augmente régulierement ses pulsations (heartbeat),

4. LA GESTION DES PANNES 19

(2) Commit

Figure 6: Un message envoyé de processus logique Fy a P;.

puis échange régulierement avec quelques autres ’état global du systéme, consitué des
pulsations de chaque machine. Si les pulsations d’une machine n’ont pas augmenté
pendant un certain temps alors cette machine est suspectée d’étre en panne.

Le temps de détection d’'une panne est difficile a définir, car les échanges d’état
globaux sont asynchrones. Notre contribution est I’étude des protocoles de détection de
pannes permettant de prédire un temps de détection de panne en fonction du nombre
de machines. Les routages que nous retenons en fin de compte sont des routages fixes,
i.e le calcul des destinataires des informations de pulsations est déterminé a 'avance.
Nous retenons les protocoles Binary round-robin (BRR) et Double binary round-robin
(DBRR), qui sont proposés dans P2P-MPI. BRR fournit un temps de détection des
pannes plus rapide que DBRR mais le protocoles est moins fiable que DBRR. lorsque le
nombre de machines est petit.

Concernant la fiabilité des deux protocoles, nous 1’établissons par simulation du
systéme. La figure 7 montre une simulation de 5.8 x 109 tirages aléatoires avec & chaque
fois une probabilité de 0, 05 qu’un processus FD quelconque tombe en panne. Les courbes
donnent les probabilités que les protocoles BRR et DBRR soit défaillants (suite & la
défaillance de plusieurs processus FD) a l'issue des tirages aléatoires. On voit que les
protocoles deviennent tres résistants quand le nombre de machines augmente.

Expérience: temps de détection des pannes

Nous avons validé expérimentalement le temps de détection des pannes, tel que prédit
pour les deux protocoles proposés. Dans cette expérience menée sur Grid5000, on lance
une application sur trois sites: Nancy, Rennes, et Sophia-Antipolis puis on tue aléa-
toirement un processus MPI dans une machine et on mesure le temps entre la mort du
processuet le temps de détection par le service de détection des pannes. La configuration

20 Résumé en francais

0.01 T

BRR protocol —+—
DBRR protocol ---%---

0.001
0.0001 :3.
1le-05
1le-06

le-07

Failure probability of fault detection system

1le-08

1e-09 L1 1 I I I
48 16 32 64 128 256

Number of processes

Figure 7: Probabilités de défaillance du FD service en utilisant BRR and DBRR, pour
5.8 x 10° pannes individuelles.

utilisée pour l'experience est la suivante.

Type d’environment | Grid5000 — grillon.nancy, paravent.rennes azur.sophia clusters
Matériel dual-cores AMD Opteron 2GHz, 2GB RAM

Operating System Linux 2.6.14

Interconnexion 2 ports GE cards intra-cluster, 10 Gbps/s entre sites.

Logiciel jdk1.5, p2pmpi-0.20.0

La figure 8 montre le temps moyen mis par les processus pour détecter la panne.
Sont aussi repésentés sur la figure les courbes des temps “théoriques” de détection des
pannes.

Le temps observé de détection des pannes est treés proche de ce qu’on peut prédire
en théorie.

5 L’implémentation de MPJ

P2P-MPI suit la spécification MPJ [3]. L’interface de programmation ressemble donc
beaucoup a MPI (défini pour C, C++ et Fortran). De plus, le mécanisme de tolérance
aux pannes proposé par P2P-MPI, qui n’impose aucune modification du code source,
n’altere pas la conformité avec MPJ.

Dans ce travail de these, nous avons testé deux approches différentes pour implé-
menter la couche bas niveau de la bibliotheque de communication. Nous désignons par
device cette couche bas niveau, qui est la partie de 'implémentation gérant les envois,
réceptions, file d’attente des messages, etc. Nos deux approches sont :

5. L’IMPLEMENTATION DE MPJ 21

14

12

10

Total time (s)
o]

BRR - observed —+—
DBRR - observed

BRR - theoretical --------
DBRR - theoretical

48 16 32 64 128 256
Number of processes

Figure 8: Temps de détection d’'une panne en utilisant BRR et DBRR

Single-port device (SP) Le but est de réduire le nombre de ports utilisés par chaque
processus MPI. Cette hypothese est pertinente dans un environnement de grille,
lorsque les utilisateurs ne peuvent ouvrir un nombre illimité de ports car la politique
adoptée pour le filtrage (utilisation de pare-feux) restreint les ports utilisables.
Dans cette approche, chaque processus MPI utilise un seul port de communication,
ce qui rend le déploiement nettement plus facile en cas de restriction sur 'ouverture
des ports. Pour envoyer un message, il faut ouvrir la connexion, envoyer le message,
et puis fermer la connexion.

Multiple-port device (MP) Le device SP est pénalisé lorqu’il y a beaucoup de com-
munications dans ’application, car le temps systéeme nécessaire & 'ouverture et &
la fermeture de I'unique connexion devient problématique. L’approche proposée
par le device MP consiste a ouvrir plusieurs ports simultanément pour améliorer la
performance. Ceci implique qu’il n’y a pas de restriction importante sur le nombre
de ports ouverts. Dans ce device, chaque processus MPI a deux liens permanents
vers les autres processus. Un lien est utilisé pour écrire les messages et un autre
est utilisé pour lire les messages.

Optimisation des opérations collectives

P2P-MPI introduit des optimisations pour 'implémentation des opérations collectives.
Actuellement, on utilise des algorithmes connus qui ont de bonnes performances en LAN,
mais dont les performaces dans un WAN ou dans un réseau avec des communications
a forte et faible latence, ne sont pas forcément optimales. Les opérations codant les
communications collectives se trouvent dans la classe IntraComm (appendix B.4, page

22 Résumé en francais

132). Le tableau 1 montre le détail des méthodes et des algorithmes utilisés.

Méthode Algorithme

Allgather Gather puis Beast
Allgatherv Gatherv puis Beast
Allreduce Butterfly ou Reduce puis Bceast
Alltoall Asynchronous rotation
Alltoallv Asynchronous rotation
Barrier 4-ary tree

Beast Binomial tree

Gather Flat tree

Gatherv Flat tree

Reduce Binomial tree ou flat tree
Reduce_scatter | Reduce puis Scatterv
Scatter Flat tree

Scatterv Flat tree

Table 1: La liste des méthodes dans la classe IntraComm.

Expériences

La configuration du systeme est :

Type d’environment Grid5000 (grelon.nancy)

Matériel 64 nodes/128 cores Intel Xeon 5110, 2GB RAM

Operating System Linux 2.6.24-1-amd64

Interconnexion Gigabit Ethernet.

Java runtime Java 1.5.0_08.

Benchmark suites JGF section 2 (CLASS B) and JGF section 3 (CLASS A)
P2P-MPI implementation | P2P-MPI-0.27.1 (SP device) and P2P-MPI-0.28.0 (MP device)

On présente ici les résultats des sections 2 et sections 3 de JGF benchmark. Le
résultat de la section 1 de JGF benchmark se trouve dans 'annexe D, page 147. Les
figures 9 et 10 montrent les résultat de Section 2 and Section 3, respectivement.

On utilise 64 machines, chaque machine a deux cores. Donc, on a 128 cores de calcul
au total. L’expérience compare les deux types de devices (SP et MP).

La strategie spread obtient de meilleures performances que la strategie concentrate
dans ces benchmarks. Nous avons observé sur les premiers tests que l'utilisation de
plusieurs cores sur une machine pouvait provoquer une baisse de performance, proba-
blement liée a de la contention des acces mémoires. Dans plusieurs tests, nous avons
noté que la plus grande localité des processus qu’implique cette stratégie, et donc des
temps de communications moindes, ne contre-balancent pas les pénalités dues aux con-
tentions mémoire. On peut conclure que ces benchmarks impliquent un ratio de calcul
sur communication important. Concernant le device SP, les performances atteintes sont
inférieures comme prévu.

Execution time (s)

CONCLUSION ET PERSPECTIVES

P2P-MPI MP (Concentrate)

P2P-MPI MP (Spread) —+—
_P2P-MPI SP-(Spreat) %"

32 64
Number of processes

(a) crypt

128

P2P-MPI MP (Spread) —+—
P2P-MPI MP (Concentrate)
P2P-MPI SP (Spread) ------ |

Execution time (s)

N

140

100

80

60

Execution time (s)

40

6 Conclusion et Perspectives

32 64
Number of processes

(c) serie

128

P2P-MPI MP (Spread) ——"
P2P-MPI MP (Concentrate) —--

P2P-MPI SP (Spread) *---

32 64
Number of processes

128

(e) sparseMatMult

Execution time (s)

Execution time (s)

23

P2P-MPI MP (Spread) —+—
P2P-MPI MP (Concentrate)

(d) sor

Figure 9: JGF section 2: résultat du benchmark Kernels

P2P-MPI SP (Spread) ---%--- _|
il
i
4 8 16 32 64 128
Number of processes
(b) lufact
P2P-MPI MP (Spread) ——
P2P-MPI MP (Concentrate)
P2P-MPI SP (Spread) -----
4 8 16 32 64 128
Number of processes

Ce travail de these a requis des développements trés importants. Ils se concrétisent dans
la réalisation de I'intergiciel P2P-MPI, dont nous assurons la maintenance et la distribu-

24 Résumé en francais

P2P-MPI MP (Spread) —— |
P2P-MPI MP (Concenirate) \
. P2P-MPI SP (Spread) - -4 \

P2P-MPI MP (Spread) —+—
P2P-MPI MP (Concentrate)
P2P-MPI SP (Spread) -

40

35

30

25

Execution time (s)
Execution time (s)
w
o

4 8 16 32 64 128 4 8 16 32 64
Number of processes

128
Number of processes

(a) moldyn (b) montecarlo

18

P2P-MPI MP (Spread) —+—
P2P-MPI MP (Concentrate) 4
iy P2P-MPI SP (Spread) -

14

12

Execution time (s)
N

0.8

0.6

0.4

48 16 32 64 128
Number of processes

0.2

(c) raytracer

Figure 10: JGF section 3: résultat du benchmark Large-scale applications

tion sous une licence publique. L’objectif souhaité est que d’autres équipes de recherche
puissent I'utiliser et reproduire nos expériences. En plus de leffort consacré a rendre
ce logiciel utilisable par tous, un pan complémentaire de ce travail a consisté & ’évaluer
dans des conditions expérimentales inacessibles jusqu’a peu. En effet, depuis 2005, nous
avons acces a la plate-forme expérimentale nationale Grid’5000. Les expérimentations
présentées dans ce travail ne sont pas triviales et ont demandé un temps important de
mise en place. Peu de travaux ont exploré expérimentalement ’exécution de programmes

a passage de messages comptant 600 processus, et répartis géographiquement a 1’échelle
de la France.

Cette these démontre la faisabilité d’un intergiciel destiné aux grilles de calcul,
prenant en compte la dynamicité de ce type de plateforme, et les impératifs des pro-
grammes paralleles a passage de message. Pour cela, nous mettons en avant l'intérét
d’utiliser une architecture la plus distribuée possible : nous reprenons I'idée d’une in-
frastructure pair-a-pair pour 'organisation des ressources, qui facilite notamment la
découverte des ressources, et nous retenons les détecteurs de défaillance distribués pour
gérer la tolérance aux pannes.

6. CONCLUSION ET PERSPECTIVES 25

La dynamicité de ce type d’environnement est également un probleme pour le mod-
ele d’exécution sous-jacent & MPI, car la panne d’un seul processus entraine l’arrét
de lapplication. La contribution de P2P-MPI dans ce domaine est la tolérance aux
pannes par réplication. Nous pensons qu’elle est la mieux adaptée a une architecture
pair-a-pair, les techniques classiques basées sur le check-point and restart nécessitant un
ou des serveurs de sauvegardes. De plus, la réplication est totalement transparente a
I'utilisateur et rejoint ainsi I'objectif de simplicité d’utilisation que nous nous sommes
fixés. Nous pensons que garder un environnement tres simple d’utilisation, entierement
maitrisable par un utilisateur, est un des facteurs permettant d’augmenter le nombre
de resources disponibles sur la grille. Enfin, la contribution majeure de P2P-MPI est la
librairie de communication proposée, qui est une implémentation de MPJ (MPI adapté
a Java), et qui integre la réplication des processus. Ce point particulier de notre travail
plaide pour une collaboration étroite entre l'intergiciel, qui connait I’état de la grille
(détection des pannes par exemple) et la couche de communication qui peut adapter son
comportement en connaissance de cause.

26

Résumé en frangais

Chapter 1

Introduction

The concept of Grid has recently emerged to express the possibilities that networking
technologies let encompass in terms of computer usage. An overview of these possibil-
ities and problems to overcome is given by Foster and Kesselman [5]. Grid computing
offers the perspective of solving massive computational problems using a large number
of computers arranged as clusters embedded in a distributed telecommunication in-
frastructure. It involves sharing heterogeneous resources (based on different platforms,
hardware/software architectures) located in different places, belonging to different ad-
ministrative domains over a network. When speaking of computational grids, we must
distinguish between grids involving stable resources (e.g. a supercomputer) and grids
built upon versatile resources, that is computers whose configuration or state changes
frequently. (e.g. computers in a students computer room which are frequently switched
off and whose OS is regularly re-installed). The latter are often referred to as desktop
grids and may in general involve any unused connected computer whose owner agrees
to share its CPU. Thus, provided some magic middleware glue, a desktop grid may be
seen as a large-scale computer cluster allowing to run parallel application traditionally
executed on parallel computers. However, the question of how we may program such
cluster of heterogeneous computing resources remains unclear.

This thesis work mainly focuses on this challenging issue. Even though some popular
projects, such as SETI@homel6], Folding@home[7], etc, have been able to demonstrate
the use of up to thousands of personal computers or even gaming consoles as a distributed
computing infrastructure, their applicability is limited to embarrassingly parallel compu-
tations (fully independent computation tasks). Moreover, each of these projects is often
dedicated to a unique application. Our work on the contrary, addresses the capability
to program and run on personal computers any parallel application type. For that, we
propose a programming model based on message-passing.

A number of research work have proposed more general programming environments,
which we detail in Chapter 2. Most of the numerous difficulties that appear when
designing such general programming fall in two categories.

« Middleware The middleware management of tens or hundreds grid nodes is a

27

28 CHAPTER 1. INTRODUCTION

tedious task that should be alleviated by mechanisms integrated to the middleware
itself. These can be fault diagnostics, auto-repair mechanisms, remote update,
resource scheduling, data management, etc.

o Programming model Many projects propose a client/server (or RPC) program-
ming style for grid applications offer such a programming model. A major advan-
tage of this paradigm lies in the ability for the client to easily cope with servers
failures. However, the message passing and data parallel programming models are
the two models traditionally used by parallel programmers.

MPI [1] is the de-facto standard for message passing programs. Most MPI imple-
mentations are designed for the development of highly efficient programs, preferably on
dedicated, homogeneous and stable hardware such as supercomputers. Some projects
have developed improved algorithms for communications in grids but still, assume hard-
ware stability. This assumption allows for a simple execution model where the number
of processes is static from the beginning to the end of the application run'. This design
means no overhead in process management but makes fault handling difficult: one pro-
cess failure causes the whole application to fail. This constraint makes traditional MPI
applications unadapted to run on grids because failures of nodes are somehow frequent
in this context.

Another drawback of most MPI implementations lies in the cumbersome manage-
ment of files. First, running on different operating systems implies to manage several
executable file types, as MPI applications are made of OS-dependent binaries?. Sec-
ondly, an MPI application often relies on an existing file sharing system such as NFS
(Network File System), to stage executables and input data files to all processors. When
the set of computers is composed of more than one operating system (imagine the cam-
pus Desktop Grid which has Windows and Linux PCs), we have to compile two versions
of the executable file (one for Windows and one for Linux) and then we have to copy
each version of the executable file to the proper machine manually.

If we put these constraints altogether, we believe a middleware should provide the
following features:

Self-configuration and autonomy. As the number of nodes in a Grid gets bigger,
the difficulty for setting up a coherent platform is also higher. We need something
that gives the platform self-configuration and autonomy. It means that as soon
as a node is online, it should automatically register into the platform and declare
itself ready to run a task. Moreover, when the users execute a task, the middleware
should discover automatically the necessary resources to run the user’s task.

Data management. It is a tedious task to copy the executable files (MPI applications)
and input data to all computing hosts. Thus, the middleware should handle the
data management which means transfer the executable files and input data to all
computing hosts transparently and automatically when the users execute a task.

Except dynamic spawning of process defined in MPI-2.
2The MPI specification defines bindings for C, C++ and Fortran only.

29

Fault management. When the size of the Grid becomes significant, the mean time
between failure (MTBF) of CPU nodes becomes a seriously limiting factor. The
middleware should provide automatic and transparent mechanisms to detect and
handle nodes failures.

Abstract computing capacity. A Grid is by nature composed of heterogeneous re-
sources, and in particular, we may have to deal with a variety of operating systems.
The middleware should provide some facilities for programmers to deploy their ap-
plications regarding this aspect.

The idea that we propose is related to the peer-to-peer model we will discuss in detail
later in chapter 2, page 47. These last years, many projects in the field of distributed
systems have been based on the peer-to-peer model, especially for file sharing. They
proved to be reliable and efficient enough from the user point of view if we consider
their popularity. We think this model has interesting properties that could serve as a
basis for fault-tolerance, self-configuration and autonomy. Our work aims to propose
a middleware infrastructure able to support the execution of parallel programs using a
message passing programming model and whose features meet the list above. We call
this infrastructure a platform. This platform is designed to support a subset of the
standard MPT specification (the minimum set required to program with the message
passing paradigm).

Publications

International Conferences

(1) A Peer-to-Peer Framework for Robust Execution of Message Passing Parallel Pro-
grams, Stéphane Genaud and Choopan Rattanapoka, EuroPVM/MPI 2005, LNCS,
vol. 3666, Springer-Verlag, pages 276-284, Ed. B. Di Martino et al., September
2005.

(2) Fault management in P2P-MPI, Stéphane Genaud and Choopan Rattanapoka,
In proceedings of International Conference on Grid and Pervasive Computing,
GPC’07, LNCS, vol. 4459, Springer, Ed. C. Cérin and K.-C. Li, Paris, May
2007.

(3) Large-Scale Experiment of Co-allocation Strategies for Peer-to-Peer Supercomput-
ing in P2P-MPI, Stéphane Genaud and Choopan Rattanapoka, 5th High Perfor-
mance Grid Computing International Workshop, IPDPS conference proceedings,
IEEE , Miami, April 2008.

Journals

(1) P2P-MPI: A Peer-to-Peer Framework for Robust Execution of Message Passing
Parallel Programs on Grids, Stéphane Genaud and Choopan Rattanapoka, in Jour-
nal of Grid Computing, volume 5(1), pages 27-42, Springer, ISSN:1570-7873 2007.

30 CHAPTER 1. INTRODUCTION

(2) Exploitation of a parallel clustering algorithm on commodity hardware with P2P-
MPI, Stéphane Genaud, Pierre Gangarski, Guillaume Latu, Alexandre Blansché,
Choopan Rattanapoka and Damien Vouriot, in The Journal of SuperComputing,
volume 5, Ed. Springer, Springer, ISSN:0920-8542 (Print) 2007.

Manuscript Organization

This manuscript is divided into five main chapters. Chapter 1, this chapter, is an in-
troduction to my thesis. Then, in Chapter 2 we discuss the ideas and how the other
research projects in the area compares to our work. The main part of the work is de-
tailed throughout chapters 3, 4, and 5. The contribution of P2P-MPI is its integrated
approach: it offers simultaneously a middleware with many of the desired features cited
in introduction, and a general parallel programming model based on a MPI-like program-
ming model. The integration allows the communication library to transparently handles
robustness by relying on the internals of the middleware, relieving the programmer from
the tedious task of explicitly specifying how faults are to be recovered. We describe these
three aspects in separate chapters. Chapter 3 explains the middleware core of P2P-MPL.
Chapter 4 is a study of the fault management in P2P-MPI. This point is linked both
to the middleware resource allocation to meet replication constraints, and fault detec-
tion and notification) and to the communication library (handling of communications in
presence of replicated processes). Finally, Chapter 5 explains the communication library
capabilities.

FEach chapter contains some experimental results. The experiments we conducted
alm to assess the validity of our proposals. When it was possible, we tried to conduct
these experiments at a large scale. We had the opportunity during this thesis to use the
Grid’5000 experimental platform. So, except some simulation results, all experimental
assessments have been done on a real environment.

Finally, we conclude in Chapter 6 by discussing the advantages, disadvantages, lim-
itation and future work to be done on P2P-MPL.

Chapter 2

State of the Art

The term computational grid encompasses many different usages. We have mentioned
in the introduction projects that uses thousands of individual CPUs to solve some so-
called embarrassingly parallel problems i.e, made of independent tasks. We could cite as
another example, the European EGEE grid infrastructure [8], which provides scientific
communities with a distributed computing equipment, claims to count 41,000 CPU and
5 PB disk. Originally designed for the needs of two scientific fields, namely high energy
physics and life sciences, EGEE now integrates applications from many other scientific
fields, ranging from geology to computational chemistry.

Corresponding to such varied infrastructures or such different application require-
ments are different programming models or programming tools. A user may need to
execute a workflow of sequential tasks, explore a solution space using a parameter-sweep
application, use a problem-solving environment such as Ninf [9] or Netsolve [10], or run
a parallel scientific code, to name just a few of these usages.

We are interested here in the latter of the above examples. A user has developed
a parallel program using the message-passing paradigm and he seeks computational
resources to run it. The de-facto standard to write message-passing parallel programs
is the MPI (Message Passing Interface) specification [1]. As the MPI standard has been
initially designed for high performance, it is used in most cases for applications aimed
at clusters and dedicated MPP systems. In our work, we consider the requirements
to (seamlessly) run an MPI application on computational grids which are not solely
composed of clusters or supercomputers. This consideration involves to solve a number
of problems.

Fault-tolerance A key feature of MPI is that applications using it are designed along
a static process model!. More precisely, the static process model implies that during one
MPI application run, MPI creates and manages a communication table called commu-
nicator, for each MPI process to know how to contact each other. So when one of the

IMPI-2 has extra facilities to bypass the static model (e.g. MPI_Spawn). However, it has not been
completely designed to fit the dynamicity of grid environments.

31

32 CHAPTER 2. STATE OF THE ART

computing node fails, there will be a hole in the communicator that causes the whole ap-
plication to fail. Currently, the trend is to exploit platforms with more and more nodes
so we cannot ignore the problem of node failures and the heterogeneity of systems.

A lot of research work has been devoted to fault tolerance in various contexts. We
review in this chapter the main streams developed for fault tolerance, and we focus on
efforts made to integrate fault tolerance into MPI.

Heterogeneity The heterogeneity of operating systems is also a challenge for execut-
ing parallel applications. To compile source codes to an executable file for all operating
systems is a tedious tasks for programmers. A solution may be to use byte code rep-
resented applications that would abstract the application from the low system layer.
The most popular product based on byte code comes from SUN who designed the Java
language. Java allows indeed to create platform independent applications. First, the
java compiler compiles java source codes into byte code programs. Then, we use a java
interpreter (also well-known under the term java virtual machine (JVM)) to execute an
application from the byte code. The Java’s byte code has a standard format thus it can
be executed for all platforms that have a java interpreter. Since then, the programming
language implementations based on a VM have come in the main stream like for example

C#.

System State Dynamicity MPI implementations usually consider a static set of
computational resources: a list of computers is listed in a hostfile and processes are
mapped in round-robin fashion onto these computers. This is totally unadapted to
the dynamicity of Grids: the set of available computers changes frequently, the CPU
occupation of each node varies continuously, the bandwidth between network links is
also constantly changing, the software on nodes changes regularly and in the worst case
(desktop grids) nodes can join and leave at anytime. It is hard for programmers to
handle this situation themselves. We should provide a middleware which keeps the dy-
namicity of nodes in Grid transparent to programmers by providing some mechanism
that would dynamically request available nodes for a computation. Currently, the peer-
to-peer model has proved to be good in harness environments, as demonstrated by the
success of peer-to-peer file sharing applications.

In this chapter, we first discuss grid usages and then focus on the software infrastruc-
ture parts and we will be particularly interested in the programming model for grids.
Then, we review existing research works on many projects that have tried to adapt MPI
to more versatile environments than the traditional parallel computers and we review
the efforts made in this domain. Thus, we do need to consider fault tolerance which has
been studied for a long time in distributed systems as a key feature. Last, we will give
a quick overview of peer-to-peer topologies.

2.1. GRID USAGES 33

2.1 Grid Usages

As stated in the introduction, the usages of Grids today, are extremely varied depending
on the users’ needs, the nature of the resources in the network, and the grid software
deployed. Many trends of large-scale distributed systems in different areas, started as
early as in the mid 1980’s, have found a common denominator in the Grid concept. Yet,
these trends in using distributed systems may have very different focuses. Hence, any
clagsification of Grid usages is subject to controversy. So, the classification we give below
mainly aims at citing some of the most well-known projects in the field.

Meta-computing

The origin of the terms meta-computer and meta-computing are believed to have come

out of the CASA project [11], one of several U.S. Gigabit testbeds around in the late

1980s. Catlett and Smarr have related the term meta-computing to “the use of powerful

computing resources transparently available to the user via a networked environment”

[12]. We consider here the term meta-computing as applying for grids composed of stable

resources, and often expensive computing equipments, with well-provisioned networks.
A couple of middleware systems have been used extensively in this context.

Globus [13]. Started in 1995 by the U.S. Argonne National Laboratory, the Univer-
sity of Southern California’s Information Sciences Institute and the University of
Chicago, the Globus project has given rise to the middleware that had the highest
impact on the grid community and on grid technologies evolution.

It is a enabling technology for the Grid, letting people share computing power,
files, and other tools securely online across corporate, institutional, and geographic
boundaries. One key feature of Globus is its security infrastructure (a public key
infrastructure) which makes possible to gather resources from multiple adminis-
trative domains.

The success of Globus lies in its “toolkit” design, that is some minimal software
bricks able to collaborate to provide some services. More precisely, the basic bricks
for which the Globus Toolkit has implementations are:

¢ Resource management: Grid Resource Allocation and Management Protocol
(GRAM),

o Information Services: Monitoring and Discovery Service (MDS),

e Security Services: Grid Security Infrastructure (GSI),

o Data Movement and Management: Global Access to Secondary Storage (GASS)
and GridFTP.

The development roadmap of Globus follows the specifications developed inside the
Open Grid Forum 2 (OGF), formerly known as Global Grid Forum before 2006.

http://www.ogf.org/

34 CHAPTER 2. STATE OF THE ART

Globus has been used as a basis in a number of other projects, including the GLite
middleware (and its predecessors EDG then LCG) used in the EGEE grid, and
the Advance Resource Connector (ARC) middleware for NorduGrid.

Condor-G [14]. The Condor system [15], developed at the University of Wisconsin-
Madison, was originally termed by their authors as a High Throughput Compu-
tation system [16]. Behind this term is the idea of a system able to deal with
coarse-grained computationally intensive tasks. Tasks can be either sequential or
parallel jobs. Parallel jobs support the MPI and PVM standards in addition to its
own Master Worker MW library for extremely parallel tasks. Condor is typically
used to schedule computational jobs on a dedicated cluster of computers, or to
farm out work to idle desktop computers in a cycle stealing way.

Condor-G adds to the original Condor software extensions to support some of the
Globus protocols. The compatibility with the Globus security and authentication
infrastructure widens the geographic scale at which Condor can be deployed. With
the Globus extension, Condor-G combines the inter-domain resource management
protocols of the Globus Toolkit and the intra-domain resource and job management
methods of Condor to allow the user to harness multi-domain resources as if they
all belong to one personal domain.

Global Computing

Global Computing achieves throughput computing by harvesting numerous unused com-
puting resources connected to the Internet. The aim is to aggregate a substantial com-
putational power in order to tackle problems that cannot be solved on a single system.
Global Computing differs from Meta-computing in the nature of the resources involved.
This has a deep influence on the middleware design as well as the candidate applica-
tions. Contrarily to Meta-computing, Global Computing does not assume the presence
of stable resources in general. Hence, the middleware must address the problem of the
resource volatility. Some interesting projects in this category are Condor, XtremWeb or
Legion. Condor has been described above through Condor-G.

XtremWeb [17] XtremWeb is a typical example of middleware designed to tackle this
goal. XtremWeb’s software architecture is composed of: (1) clients which submit
tasks, (2) workers which represent the pool of computational resources, (3) servers
which connect clients with workers and (4) result collectors. Clients submit their
tasks to a server which maintains a pool of these tasks. Upon starting, workers
register and authenticate to a server (last contacted or root server) and receive
back from the server a list of servers (including itself) which may provide tasks.
Workers then send a work request together with a description of their environ-
ment. According to this information, the server selects a task, and sends back a
description of the task, the tasks inputs, the binary of the application, and the
address of a collector. During the computation, a worker periodically sends alive
messages to the server. The server which monitors the worker will re-schedule the

2.2. PROGRAMMING ENVIRONMENTS FOR GRIDS 35

task to another worker if no alive message has been received before a time-out. In
this protocol, all network connections are initiated by clients or workers with the
objective to avoid firewall problems. It is noteworthy that this design feature is
dictated by the nature of resources.

Legion [18] is one of the pioneer middleware system that has addressed grid computing.
It is based on an integrated object-oriented architecture, to which all services and
program must conform to. To develop a new component, a programmer plugs its
new object into the common programming interface so it can communicate with
the already established object model. A communication library called the Legion
run-time library is the building block for high level languages (e.g Mentat).

Internet computing

Internet computing can be seen as a particular case of distributed computing. The
constraints of the previous projects are that the applications must be embarrassingly
parallel, and have low requirements in the data volume communication. The principle
of harvesting CPU cycles when a user leaves its machine idle is comparable to many
projects in global computing. Many internet computing projects use the processor in
low priority, for instance when the screen-saver starts. Contrarily to global computing,
most projects of internet computing are centered onto one application only. One of the
first Internet computing project is SETI@Home[6].

Data storage

In data-intensive applications, the focus is on synthesizing new information from data
that is maintained in geographically distributed repositories, digital libraries, and databases.
This synthesis process is often computationally and communication intensive as well.
The first example of this application was the European DataGrid project [19]. One of
the primary project’s aims was to store the huge amount of data the upcoming Large
Hadron Collider (LHC) instrument will produce. More generally, this initiative pursued
by the EGEE project has the objective to federate scientific communities in virtual orga-
nizations. The argument is that grids will enable next generation scientific exploration
which requires intensive computation and analysis of shared large-scale database, across
widely distributed scientific communities.

2.2 Programming Environments for Grids

Most people are convinced that Grids offer unprecedented possibilities for a wide range
of distributed or parallel applications. However, the question of how such a set of
resources may be programmed seems to be at its beginning. The programming models
that are currently used are not new. So far, researchers have tried to adapt existing
programming models, and have tried to identify which application type fits better into
which programming environment. That is exactly what this thesis work is also doing:

36 CHAPTER 2. STATE OF THE ART

we give some insights to evaluate how the message-passing paradigm could be adapted
to a Grid environment.

In this section, we summarize the main approaches regarding programming models,
and we illustrate these through typical research projects. We distinguish three major
categories of programming models: the client/server programming model, the peer-to-
peer programming model and the parallel programming model.

2.2.1 Client/Server Programming Model

This model is probably the most popular programming model for Grids because of its
simple concept. The model assumes a client which handles the main program sequence
of instructions, and initiates requests to servers when needed. For example, a client can
request a server hosted on a powerful computer to perform a complex computation.

This model is characterized by its communication scheme, which is typically limited
to communications between the clients and the servers. Many well-known projects (such
as [6]) follow this model to implement embarrassingly parallel applications. From a
technical point of view, there is no problem with making clients communicate with
other clients, or make a server become a client. However, such sophistications in an
application’s structure leads to complex problems regarding the management of failures.
While the simple client-to-servers communication scheme allows to easily recover from
server failures (for instance, if a server has not returned a result before a time-out, ask
another available), the management of synchronizations and interdependence between
clients is difficult.

We now list some representative projects using this programming model:

DIET [20] stands for Distributed Interactive Engineering Toolbox. The project targets
the development of scalable middleware with initial efforts focused on distributing
the scheduling problem across multiple agents. DIET consists of a set of elements
that can be put together to build applications using GridRPC [21], which is a RPC
paradigm. The middleware is able to find an appropriate server according to the
information given in the client’s request, the performance of the target platform and
the local availability of data stored during previous computations. The scheduler
is distributed using several collaborating hierarchies connected either statically or
dynamically (in a peer-to-peer fashion). Data management is provided to allow
persistent data to stay within the system for future re-use.

2.2.2 Peer-to-Peer Model

In a peer-to-peer architecture, computers that have traditionally been used solely as
clients communicate directly among themselves and can act as both clients and servers,
assuming whatever role is most efficient for the network. This reduces the load on servers
and allows them to perform specialized services more effectively. As computers become
ubiquitous, ideas for implementation and use of peer-to-peer computing are developing
rapidly and gaining importance. Both peer-to-peer and grid technologies focus on the

2.3. MPI AND GRIDS 37

flexible sharing and innovative use of heterogeneous computing and network resources.
In section 2.6, we describe more precisely peer-to-peer topologies and some existing
projects that might be considered a basis to build a peer-to-peer model application.

2.2.3 Parallel Model

We call parallel model a programming model in which the program consists in a set of
processes, all running concurrently. The synchronizations between processes are explic-
itly expressed by the programmer in its source code through communications, which
are based on send and receive primitives. The distinctive characteristic of this execu-
tion model as compared to the client/server or peer-to-peer models, is that any process
has an exact and persistent knowledge of all the other processes addresses and may
communicate with them at any moment.

Popular representatives of this programming model are PVM [22] and MPI [1]. In
the field of high performance applications for clusters and supercomputers, MPI is defini-
tively the most used API today. Some of the most popular implementations of MPI are
MPICH[23], MPICH2[24] and LAM/MPI[25] before OpenMPI [26] was created.

It is foreseen that grids may also become an interesting exploitation platform for
high performance applications. Yet, several inherent characteristics of grids make their
efficient exploitation a challenge. The first challenge is related to the heterogeneity of all
the elements composing grids. Processors, as well as network links are heterogeneous.
In the following section, we report the efforts made in several research works to improve
standard MPI implementations so as to improve communication performances in the
presence of mixed wide and local area networks. The problem of processors heterogeneity
is not addressed by these improved libraries. A second challenge lies in the management
of the grid dynamicity. This challenge involves the improvement of middleware services.
It is especially important for MPI applications and its support for fault tolerance. This
issue is reviewed in Section 2.4.

2.3 MPI and Grids

One of the first efforts made by researchers has been to adapt MPI existing implementa-
tions to the wide-area network context found in meta-computing. The major advantage
is to allow a straight-forward port of existing MPI applications to grids. Such an ex-
ample is MPICH-G2 (see below) which is a specific device of MPICH developed to
work with Globus. An early demonstration of a large application deployment can be
found in [27]. This is an MPI application for numerical simulation in the astrophysics
field. About 1500 processors were used on two sites (SDSC at San-Diego and NCSA at
Champaign-Urbana) with four parallel supercomputers (IBM Power-SP and three Ori-
gin 2000). The wide-area network link between the sites had a 622 Mb/s bandwidth,
while the link between the three Origin 2000 is a gigabyte ethernet link.

In addition to the technical difficulty to make several sites communicate, the main

38 CHAPTER 2. STATE OF THE ART

contribution of these projects is the algorithms designed to take advantage of the network
heterogeneity. Here under, we review a couple of the most well-known projects in this
area;

MagPIe [28], developed at the Vrije Universiteit, Amsterdam, has been one of the
first proposals and concrete implementations (on top of mpich-1.1) of collective
communication optimizations for grids. MagPle tries to take advantage of the
hierarchical structures within the communication network to improve collective
communications in the context of meta-computing. The network structure assumed
in this work is a two-level structure: several clusters are linked with wide area links
which have a relatively low bandwidth and high delay as compared to cluster intra-
communications. The optimization relies on the idea that it is possible to use the
wide-area link only once during any collective operation. The results have been
experimentally validated on the DAS system, a federation of clusters throughout
the Netherlands. The network structure of this testbed at the time of writing the
paper [28] matched the above assumptions: the wide-area links had a bandwidth of
6Mb/s and a latency of 10ms, versus 66MB/s and 20us latency within the clusters.

PACX-MPI [29] is an implementation of the Message Passing standard MPI, optimized
for Metacomputing. The major goal of the library is to make MPI applications
run on a cluster of MPP’s and PVP’s without any changes in the sources and
by fully exploiting the communication subsystem of each machine. To reach this
goal, PACX-MPI makes use of the vendor MPI library on the systems, since this
is currently the fastest portable API to the communication subsystem of each
machine.

MPICH-G2 [30] is a grid-enabled implementation of the MPI v1.1 standard. That is,
using services from the Globus Toolkit (e.g., job startup, security), MPICH-G2
allows you to couple multiple machines, potentially of different architectures, to
run MPI applications. MPICH-G2 automatically converts data in messages sent
between machines of different architectures and supports multi-protocol commu-
nication by automatically selecting TCP for intermachine messaging and (where
available) vendor-supplied MPI for intramachine messaging.

GridMPI [31] is a recent project from the National Institute of Advanced Industrial
Science and Technology (AIST) of Japan. This is another grid-enabled MPT imple-
mentation whose aim is to optimize collective communication performances. The
main difference with projects cited above, is that the authors make the assumption
that today, the wide-area links between sites have a much higher bandwidth than
intra-cluster communication links. Indeed, their claim is verified by modern net-
work backbones performance. Hence the algorithms of collective communications
must be redesigned accordingly. They propose algorithms adapted from work from
van de Geijn et al [32] and Rabenseifner [?]. The algorithms utilize multiple node-
to-node connections while regulating the number of nodes simultaneously commu-
nicating, and improve the performance of collective operations on large messages.

2.4. MPI AND FAULT TOLERANCE 39

Experiments using an emulated WAN environment with 10 Gbps bandwidth and
a 10ms latency confirm the gain over standard MPI implementations.

The MPI implementations listed above have tackled the performance issue in mixed
wide and local area networks but they do not address the dynamicity issue. Indeed, grids
are dynamic environments where resources may see their hardware or software config-
uration evolve, or where resources may appear, disappear or change their availability
status at anytime. This is of course a major factor that makes grid application highly
failure-prone.

In the next section, we discuss fault tolerance, which we think is a key feature in a grid
context. Fault-tolerance involves two different issues. The first one is fault detection. It
is a problem in itself to design a scalable, reliable fault detection system, and we review
existing work in Section 4.6. The second issue is fault recovery. Several approaches have
been proposed to design systems able to prevent failures, and we list the main ideas in
Section 2.4.2. Finally, we list in Section 2.4.3 several projects that have integrated fault
tolerance in their MPI implementations.

2.4 MPI and Fault Tolerance

2.4.1 Fault Detection

Failure detection services have received much attention in the literature and many proto-
cols for failure detection have been proposed and implemented. Many implementations
of failure detection services have been proposed and are efficient for local area networks.
However, we will see that they do not perform well in the context of a large scale dis-
tributed system.

The implementation of failure detection protocols are based on timeouts. There are
two basic models of fault detector which are discussed in [33]. One is the push model
and the other is the pull model.

Push Model In this model, monitored components are active and the monitor (failure
detector) is passive. Each monitored component periodically sends messages (heartbeat
messages) to the failure detector which is monitoring the component. The failure detector
suspects a component failure, which means a crashed component, when it fails to receive
a heartbeat message from the component within a certain time interval 7' (timeout).

In the push model, the monitor suspects the failure of a component in the system
after a certain time interval T'. However, there is a large number of messages sent on the
network. If there is a large number of monitored components, the heartbeat messages
can flood the network (problem of the message explosion).

Pull Model In this model, monitored components are passive while the monitor or
failure detector is active. The monitor periodically sends liveness requests ("Are you
alive?" messages) to monitored components. Upon reception of a liveness request, the

40 CHAPTER 2. STATE OF THE ART

monitored component sends a reply to the monitor. When the monitor does not receive
a reply from a monitored component within a certain time interval (timeout), it suspects
the monitored component has failed.

In the pull model the load on the network is reduced and depends on the number of
liveness requests sent by the monitor. However, the monitor can not suspect or detect
the failure of a component until after sending it a liveness request.

Thus, there are several caveats we should keep in mind when choosing or designing
our failure detection system.

Message explosion Despite the large number of components that need to be moni-
tored and their distribution in the system, the failure detector must prevent flood-
ing or overloading the network with failure detection related messages.

Scalability MPI applications running on a Grid system may require a large number of
resources distributed over a wide area network. A failure detection service must
be able to efficiently monitor such large number of resources. It must be able to
quickly detect failure while minimizing the number of wrong suspicions.

The two previous models (push and pull) behave well in small-scale systems but at a
larger scale, a more interesting approach has been proposed in the last decade. Following
the idea that failure detectors should be considered as first class services of distributed
systems [34], many protocols for failure detection have been proposed and implemented.
After a review of existing proposals, we retain the gossip-style fault detection service
proposed by van Renesse [4].

Gossip-style Protocol

In this model, a failure detector is not centralized but distributed as a module and resides
at each host on the network. It maintains a table with an entry for each failure detector
module known to it. This entry includes a counter called heartbeat counter that will be
used for failure detection. Each failure detector module picks another failure detection
module randomly (without concern to the network topology) and sends it its table after
incrementing its heartbeat counter. The receiving failure detector module will merge its
local table with the received table, and it will adopt the maximum heartbeat counter
for each member. If a heartbeat counter for a host member A which is maintained at
a failure detector at another host B has not increased after a certain timeout, host B
suspects that host A has crashed.

Gossip-style protocol is quite simple and can address the problem of message explo-
sion. The number of messages is reduced even if this protocol is used in distributed
systems with a large scale network. However, the drawback of this protocol is that it
does not work well when a large percentage of components crash or become partitioned
away. Then, a failure detector may spend a long time to detect crashed components by
gossip message.

2.4. MPI AND FAULT TOLERANCE 41

2.4.2 Fault Recovery Techniques

As previously explained, a major drawback of MPI on Grids is that the execution model
assumes a constant number of processors during program execution. This assumption
is not suitable regarding the dynamicity of grids. Hence, MPI implementations for
Grids should be fault tolerant. Fault tolerance means that the application should not
automatically abort at the first process fault, but should take an appropriate action
instead. It might be recovery but other alternatives (e.g shrinking the communicator)
are possible. FT-MPI[35] (detailed below) proposes the most general framework for
that purpose. However, most of the time users wish their executions to complete in
spite of failures without modification to their application code. This requires to provide
the runtime support with one of two following following fault tolerance mechanisms.
The first one is rollback-recovery, also known as check-point and restart. This approach
has been widely studied and many implementations have been proposed. The other
approach is replication. Applied to MPI, fault-tolerance consists in replicating some or
all processes of the application. This approach has not been well studied and to the best
of our knowledge we do not know any other project dealing with process replication for
MPI.

Rollback-Recovery Techniques

Two main techniques have been proposed for rollback-recovery protocols: global check-
point or message log.

The global checkpoint consists in taking a snapshot of the entire system state regu-
larly without the assumption of a global clock, but by using the concept of logical clock
introduced by Lamport [36]. So, when a failure occurs on any process, the whole system
can roll back to the latest checkpointing image and continue the computation.

In message log protocol, all processes can checkpoint without begin coordinated. A
process execution is supposed to be piecewise deterministic, which means it is governed
by its message receptions. Thus all communications are logged in a stable media so that
only the crashed processes rollback to a precedent local snapshot and execute the same
computation as in the initial execution, receiving the same messages from the stable
storage.

Global Checkpoint Based There are three classes of global checkpoint protocols
[37]: uncoordinated, coordinated checkpoint and communication induced.

e In uncoordinated checkpoint without message log, the checkpoints of each process
are executed independently of the other processes and no further information is
stored on a reliable media leading to the well known domino effect (processes may
be forced to rollback up to the beginning of the execution). Since the cost of a fault
is not known and there is a chance for losing the whole execution, these protocols
are not used in real applications.

42

CHAPTER 2. STATE OF THE ART

e In coordinated checkpoint, all processes coordinate their checkpoints so that the

global system state (composed of the set of all process checkpoints), is coherent.
The drawback of this mechanism is the performance: the processes need to wait
for a synchronization of the checkpoint and when a failure is detected the whole
application needs to be restarted from the previous image.

Communication Induced Checkpoint (CIC) tries to take advantage of uncoordi-
nated and coordinated checkpoint techniques. Based on the uncoordinated ap-
proach, it piggybacks causality dependencies in all messages and detects risks of
inconsistent states. When such a risk is detected, some processes are forced to
checkpoint. While this approach is very appealing theoretically, relaxing the ne-
cessity of global coordination, it turns out to be inefficient in practice [38]. The two
main drawbacks in the context of cluster computing is (1) CIC protocols do not
scale well (the number of forced checkpoints increases linearly with the number of
processes) and (2) the storage requirement and usage frequency are unpredictable
and may lead to checkpoint as frequently as the coordinated checkpoint technique.

Message Log based According to Alvisi and Marzullo [39], message log protocols fall
into three categories: pessimistic, optimistic and causal.

o Pessimistic log protocols ensure that all messages received by a process are first

logged by this process before it causally influences the rest of the system. MPICH-V
(see Section 2.4.3) is based on this type of protocol. It uses reliable processes called
Channel Memories. Every MPI computing is connected to a channel memory.
When a node sends a message, it sends it to the channel memory of the receiver,
and when it wants to receive a message it asks its own memory channel for it.

The optimistic log protocols [40] eventually log receptions but do not wait for them
before sending new messages. Therefore, they are faster in non-faulty executions
but do not exclude to rollback some non-crashed processes if a fault occurs before
the reception logging.

Causal log protocols try to combine the advantages of the optimistic and the
pessimistic approaches. Its has a much lower overhead than pessimistic logging
while there is no rollback for non faulty processes. This is achieved by piggybacking
events (its past receptions) to messages until these events are safely logged.

Replication Techniques

In replication techniques, a process is replicated and we called the replicated process
replica. These replicas are placed on different computers. Even if some of the replicas
fail, the others continue to process the application. There are two kinds of replication

techniques, one is the active replication [41] and the other one is passive replication [42]

(also known as primary backup).

2.4. MPI AND FAULT TOLERANCE 43

N T~
] Ny

Figure 2.1: Passive and active replication.

To illustrate these two techniques and for the sake of clarity, we choose to replicate
only the server process. Let P, be a client process which sends a message to a server
process P,. To deal with possible fault-tolerance of server process Ps we use replication
and provide P}, P2 ..., P? processes where n is the number of replicas of P;. We say a
replica is operational if it is not idle and executes its code. Otherwise, a replica is idle
waiting to be woken up.

Passive Replication In the passive replication, only one replica is operational. In
figure 2.1 (a), client P. sends a message to only one replica, for example P!. Then
only P} performs the requested operation and returns the result. The other replicas
Psi (2 < 1 < n) are not operational. The state of the passive replicas are updated by
receiving the newest state information from the operational replica P} from time to time.
This is called a checkpoint. If P} fails, one of the passive replicas, say P? takes over it.
In order to catch up with the failed P!, P? starts to execute the application from the
most recent checkpoint. However, the recovery procedure takes time since P? becomes
operational at the checkpoint and re-executes the operations that P! had already done

since the last checkpoint.

Active Replication In this scheme, all the replicas are operational (see figure 2.1(b)).
Client P, sends its message to all the replicas P! (1 < i < n). Each replica performs
the requested operation and returns the result. Since all the replicas are operational,
even if a certain replica Psi, fails, the other replicas Psi (1 #4') can continue to execute
the application without delay. Hence, the recovery procedure in the active replication
requires less overhead than that in the passive one. However, this technique needs more
resources than the previous one.

44 CHAPTER 2. STATE OF THE ART

2.4.3 Fault Tolerant MPI implementations

Let us review now some research projects that proposed MPI implementations support-
ing fault-tolerance. Some have proposed modifications or extensions to an existing MPI
implementations while others have developed their library from scratch.

CoCheck [43] is one of the earliest efforts to make MPI more reliable. CoCheck extends
the single process checkpoint mechanism used in Condor to a distributed message
passing application. Common problems with checkpointing and recovery such as
global inconsistent states and domino effects are eliminated through the use of a
protocol to flush all in-transit messages before a checkpoint is created. Conse-
quently, CoCheck faces the problem of a large overhead because it checkpoints the
entire process state.

Starfish [44] provides a parallel execution environment that adapts to changes in the
cluster caused by node failure and recovery. The Starfish environment for execution
of dynamic MPI programs is based on the Ensemble group communication system.
Starfish uses an event model in which application processes register to listen for
events reflecting changes in cluster configuration and process failures. Starfish
also provides application- and system-driven checkpointing facilities. When a pro-
cess failure is detected, Starfish can automatically recover the application from
a previous checkpoint. However, consistency of communicators is not addressed
in Starfish: in order to recover a single failed process, the entire MPI application
must be restarted. Essentially, many of the powerful dynamic process management
features of Starfish cannot be used directly by MPI applications.

MPI-FT [45] uses a similar approach to the one proposed for real-time data-driven
systems. It is based on a monitoring process, called the observer, which will notify
the rest of the processes in the event of a failure, and the action to be executed
for recovery. Two different modes are proposed. In the first one, each process is
responsible for buffering all message traffic it sends out while in the second case,
all message traffic is buffered by the observer. Checkpoints are inserted explicitly
in the code. They are actually tests for the arrival of the failure message which
is received asynchronously by a non-blocking receive. The failure message is sent
by the observer to the alive peers to invoke the recovery routine. MPI-FT solves
the MPI problem of the dead communicator which refers to the fact that there is
a death of a process by proposing two different solutions, either the preparation
of spawning communicators in advance (one extra communicator to exclude each
potential hole) or the pre-spawning of the replacement process when the program
starts executing. However, the drawback of this system is the amount of memory
needed for the observer process in long running applications.

FT-MPI [35] handles failures at the MPI communicator level and lets the application
manage the recovery. When a fault occurs, all MPI processes of the communicator
are informed about the fault. This information is transmitted to the application

2.4. MPI AND FAULT TOLERANCE 45

through the returning value of MPI calls. The main advantage of F'T-MPI is its
performance since it does not checkpoint nor log, but its main drawback is the lack
of transparency for the programmer.

MPICH-V [46] is a mix of uncoordinated checkpointing and a pessimistic message
logging protocol storing all communications of the system on a reliable media.
To ensure this property, every computing process is associated with a reliable
process called Channel Memory. Every communication sent to a process is stored
and ordered on its associated Channel Memory. To receive a message, a process
sends a request to its associated Channel Memory. After a crash, a re-executing
process retrieves all lost receptions in the correct order by requesting them to its
Channel Memory. The use of Channel Memory however, has a major impact on
the performance (dividing the bandwidth by a factor of two) and on the cost of
the fault tolerance system (high performance requires a large number of Channel
Memories).

MPICH-V2 [47] is an improved version of MPICH-V designed to overcome the major
impact on the performance of using Channel Memory. In MPICH-V2, the mes-
sage logging is split into two parts: on one hand, the message data is stored on
the computing node, following a sender-based approach. On the other hand, the
corresponding event (the date and the identifier of the message reception) is stored
on an event logger which is located on a reliable machine. However, MPICH-V2
still needs reliable nodes for the fault tolerant system.

MPI/FT [48] is the closest project to our proposal. It provides fault-tolerance to MPI
by introducing process replication. Using these techniques, the library can detect
erroneous messages by introducing a vote algorithm among the replicas and can
survive process-failures. The drawback of this project is the increasing resource
requirement by using replicating MPI processes but this drawback can be overcome
by using large platforms such as Grid or desktop Grid.

Open MPI [26] Open MPI initially represented the merger between three well-known
MPI implementations:

e F'T-MPI from the University of Tennessee
o LA-MPI from Los Alamos National Laboratory
o LAM/MPI from Indiana University

with contributions from the PACX-MPI team at the University of Stuttgart. Each
of these MPI implementations excelled in one or more areas. The driving mo-
tivation behind Open MPI is to bring the best ideas and technologies from the
individual projects and create one world-class open source MPI implementation
that excels in all areas.

Open MPI was started with the best of the ideas from these four MPI implemen-
tations and ported them to an entirely new code base. As such, Open MPI also

46 CHAPTER 2. STATE OF THE ART

contains many new designs and methodologies based on (literally) years of MPI
implementation experience.

2.5 MPI and Java

Due to its popularity in nearly all fields of software development, Java has been also
considered as a candidate for parallel programming. Java integrates a number of handy
constructs for network programming and propose RMI for distributed computing. How-
ever, it has the reputation of being “slow” i.e, there does not exist a Java Virtual Machine
able to execute Java code as fast as its pendant in C for example. This reputation has
first discourage people to use it for high-performance computing. With grids and hetero-
geneous resources, the "run everywhere" property of Java becomes a strong argument in
the tradeoff between execution efficiency and deployment efficiency. It is also noteworthy
that JVM performances have improved their performances a lot.

As a matter of fact, a community of researchers have put efforts to extend Java
with constructs dedicated to high performance computing. Many discussions have taken
place at the Java Grande Forum between 1998 and 2003. One recommendation from the
Message Passing Group of this forum is of particular interest for us: the MPJ (Message
Passing for Java) [3] offers an equivalent to the MPI specification for C/C++/Fortran.

Several research works have proposed implementations of MPJ. For the most of them,
the goal is to attain as good performances as the most popular MPI implementations
(mpich, OpenMPI, ...). In addition, several network devices typical of clusters, such
as TCP, Myrinet, Infiniband, are often considered in performance comparisons. Our
proposal P2P-MPI is another MPJ implementation but its first objective was not to
perform better regarding communication times. As we target grids, we initially put
forward two features:

o the ability to restrict the port range used in each computer for communication.
Even if the firewall rules limit the range of open ports, P2P-MPI is able to open
and close TCP connections to match the rules.

e the communication library supports fault-tolerance.

P2P-MPI goal is to demonstrate that we can provide these features in an MPJ imple-
mentation. Nevertheless, we have recently worked at a more efficient implementation,
dropping off the first feature (port range restriction). As other concurrent project, we
have re-implemented the communication library using the Java NIO (detailed in section
3.1.3, page 57).

Below is a list of projects that have proposed a MPI-like implementation for Java.

Java-MPI [49] is a java interface to standard MPL. It is also an implementation of this
interface which makes use of JNI wrappers to a native MPI package. In Java-MPI,

2.6. PEER-TO-PEER TOPOLOGIES 47

Java wrappers are automatically generated from the C MPI headers. This eases
the implementation work, but does not lead to a fully object-oriented API.

MpiJava [3] is an object-oriented Java interface to standard MPI. MpiJava provides
the full functionality of MPI 1.1. It is implemented as a set of JNI wrappers to
native MPI packages.

MPJ Express [50] The motivation of MPJ Express project is that the earlier efforts for
building a Java messaging system have typically followed either the JNI approach,
or the pure Java approach. On commodity platform like fast ethernet, advances
in JVM technology now enable networking applications written in Java to rival
their C counterparts. On the other hand, improvements in specialized networking
hardware have continued, cutting down the communication costs to a couple of
microseconds. Keeping both in mind, the key issue at present is not to debate the
JNT approach versus the pure Java approach, but to provide a flexible mechanism
for applications to swap communication protocols. MPJ offers such a mechanism.

MPJ-Ibis [51] The implementation of MPJ at Vrije Universiteit, called MPJ/Ibis, re-
lies on the Ibis [52] system. Ibis is a multi layer system, one of these being the
Portability Layer (IPL). IPL provides an object-oriented interface to network com-
munication primitives. Different programming models can be implemented above
this layer, using the IPL interface. MPJ/Ibis is one of these programming mod-
els. It is a pure-Java implementation which has shown to deliver high-performance
communications, while being deployable on various platforms, from Myrinet-based
clusters to grids.

2.6 Peer-to-Peer Topologies

Generally, a peer-to-peer (or P2P) computer network refers to any network that does
not have fixed clients and servers, but a number of peer nodes that function as both
clients and servers to the other nodes on the network. This model of network arrange-
ment is contrasted with the client-server model. Any node is able to initiate or complete
any supported transaction. Peer nodes may differ in local configuration, processing
speed, network bandwidth, and storage quantity. Popular examples of peer-to-peer are
file sharing-networks. The peer-to-peer model consists of several topologies. Figure 2.2
shows three main topologies of peer-to-peer model (a) centralized topology, (b) decen-
tralized topology, and (c) hybrid topology.

2.6.1 Centralized Topology

The centralized systems are the most familiar form of topology, typically seen as the
client/server pattern used by databases, web servers, and other simple distributed sys-
tems. All functions and information are centralized into one server with many clients
connecting directly to the server to send and receive information. Many applications

48 CHAPTER 2. STATE OF THE ART

Q O
AN %? %“QQ
OO O oo

(a) (b) ()

Figure 2.2: Three main peer-to-peer topologies.

called "peer-to-peer' also have a centralized component. SETI@Home is a fully central-
ized architecture with the job dispatcher as the server. Similarly, the original Napster’s
search architecture [53] was centralized, although the file sharing was not. The advan-
tage of this topology is that searching other peers or services that other peers provide is
efficient since the centralized server maintains all the information. However, the disad-
vantage is the bottleneck of the centralized server.

2.6.2 Decentralized Topology

Decentralized systems is where all peers communicate symmetrically and have equal
roles. Gnutella [54] is probably the purest decentralized system used in practice today,
with only a small centralized function to bootstrap a new host. Many other file-sharing
systems are also designed to be decentralized, such as Freenet[55] or OceanStore[56].
Decentralized systems are not new; the Internet routing architecture itself is largely
decentralized, with the Border Gateway Protocol used to coordinate the peering links
between various autonomous systems. There is no bottleneck in this topology because
there is no special centralized server. However, the performance of this topology suffers
when searching other peers or their provided services.

2.6.3 Hybrid Topology

The distributed systems often have a more complex organization than one from a simple
topology. Real-world systems often combine several topologies into one system, making
a hybrid topology. Nodes typically play multiple roles in such a system.The hybrid topol-
ogy overcomes the bottleneck of centralized topology and performance of decentralized
topology.

2.6. PEER-TO-PEER TOPOLOGIES 49

2.6.4 Peer-to-Peer Infrastructure Projects

The peer-to-peer infrastructure is a main key for developing peer-to-peer applications.
The peer-to-peer infrastructures should provide some basic facilities such as:

¢ joining the peer-to-peer network,

o discovering the other peers,

« self configuring and insuring robustness,
o providing application scalability.

The research projects in this domain aim to develop the peer-to-peer infrastructures
that are easy for users to work with and also provide some more advantage features over
other implementations. The list below gives some descriptions of the existing projects
working on the improvement of peer-to-peer infrastructure.

CAN [57] the “Content Addressable Networks” work is being done at AT&T Center for
the Internet Research at ICSI (ACIRI). In the CAN model, nodes are mapped onto
a N-dimensional coordinate space on top of TCP/IP. The space is divided up into
N dimensional blocks based on servers density and load information, where each
block keeps information on its immediate neighbors. Because addresses are points
inside the coordinate space, each node simply routes to the neighbor which makes
the most progress towards the destination coordinate. Object location works by
the object server pushing copies of location information back in the direction of
the most incoming queries.

Chord [58] aims to build scalable, robust distributed systems using peer-to-peer ideas.
The basis for much of its work is the Chord distributed hash lookup primitive.
Chord is completely decentralized and symmetric, and can find data using only
log(N) messages, where N is the number of nodes in the system. Chord’s lookup
mechanism is provably robust in the face of frequent node failures and re-joins.

Pastry [59] is a generic, scalable and efficient substrate for peer-to-peer applications.
Pastry nodes form a decentralized, self-organizing and fault-tolerant overlay net-
work within the Internet. Pastry provides efficient request routing, deterministic
object location, and load balancing in an application-independent manner. Fur-
thermore, Pastry provides mechanisms that support and facilitate application-
specific object replication, caching, and fault recovery.

Tapestry [60] is an overlay location and routing infrastructure that provides location-
independent routing of messages directly to the closest copy of an object or service
using only point-to-point links and without centralized resources. The routing
and directory information within this infrastructure is purely soft state (loosely
coupled, anonymous fashion) and easily repaired. Tapestry is self-administering,
fault-tolerant, and resilient under load.

50 CHAPTER 2. STATE OF THE ART

JXTA [2] is a set of open, generalized peer-to-peer protocols, defined as XML messages.
Using the JXTA protocols, peers can cooperate to form self-organized and self-
configured peer groups independently of their positions in the network, and without
the need of a centralized management infrastructure. Peers may use the JXTA
protocols to advertise their resources and to discover network resources (service,
pipes, etc.) available from other peers. Peers form and join peergroups to create
special relationships. Peers cooperate to route messages allowing for full peer
connectivity, The JXTA protocols allow peers to communicate without needing
to understand or manage the potentially complex and dynamic network topologies
which are becoming common.

Chapter 3

The P2P-MPI Middleware

P2P-MPT’s final goal is to allow the seamless execution of parallel programs in grid envi-
ronments. In this thesis, we try to demonstrate that having an execution model tightly
coupled with the middleware brings many benefits with respect to that objective. Before
discussing how the execution model interacts with the middleware, we give an overview
of the whole architecture of P2P-MPI. The set of modules and functions that constitute
P2P-MPI may conceptually be seen as a three layers stack.

On top of the stack is the communication library which exposes an MPJ API. The
communication library represents the execution model. The MPJ specification (see
Section 2.5, page 46) allows to write message-passing parallel programs in Java. The
communication library relies on a middleware layer which provides different services to
the communication library. These are the fault-detection service, the file transfer service,
the reservation service, and discovery service. Most of these services rely themselves on
a lower layer that deals with the resource management. Resource management consists
to attribute identifiers to resources, locate available resources, etc. We call this layer
infrastructure because the way resources are managed strongly depends on how the re-
sources are organized. Very often, resources are registered in a centralized directory.
Another approach is the organization of resources in a peer-to-peer architecture. This
is the approach we chose because it has proved to ease self-configuration and autonomy
of resources in grid environments.

This chapter first presents the general organization of all modules constituting P2P-MPI,
their role and the layer they belong to. Then, we explain in Section 3.2 how these mod-
ules cooperate to fulfill the successive tasks needed to achieve a program execution. This
requires from the middleware to build dynamically a suitable environment for the exe-
cution. A major point in this task is the discovery and the reservation of the resources.
This is the subject of Section 3.3. Section 3.4 discusses the strategies which govern
resource reservation. Experiments have been conducted to check that the strategies ob-
jectives are reached in real conditions, and results are reported in Section 3.5. Finally,
we describe a complementary feature of the middleware in Section 3.6 : the monitoring

51

52 CHAPTER 3. THE P2P-MPI MIDDLEWARE

of peers. This is done with a graphical tool shipped with P2P-MPI that allows to have
a global snapshot of the grid state.

3.1 General Architecture

Figure 3.1 presents the position of the P2P-MPI software in a usual Java running envi-
ronment. P2P-MPI’s parts are grayed out on the figure.

MPI (java) program

MPI APIL

Communication Library (message handling, replica management, ...)

Fault Detect.
Service

(FD)

File Transfer
Service

(FT)

Reservation
Service

(RS)

MPD

P2P

Infrastructure

Virtual Machine (JVM)

Operating System

Figure 3.1: P2P-MPI structure.

P2P-MPI consists of three main parts. These are:
e the peer-to-peer infrastructure,

¢ the middleware,

o the communication library.

On top of the diagram, a message-passing parallel program written in Java uses
the MPJ API to trigger functions from the communication library. The communication
library implements appropriate message handling and relies on four other modules which
are the daemon processes called MPD, FT, FD, and RS. The MPD process relies on the
peer-to-peer infrastructure management layer to make the local resource a peer in peer-
to-peer network. As P2P-MPI is written solely in Java and runs Java programs, it relies
on the Java virtual machine installed locally, and of course on the local operating system.

3.1.1 The Peer-to-Peer Infrastructure

Since the beginning of the project, we have chosen a peer-to-peer (P2P) architecture
because we believe this kind of resource networking allows a simpler infrastructure man-
agement. Our intention was to rely on some general purpose software able to handle

3.1. GENERAL ARCHITECTURE 93

an underlying overlay network of peers. Thus, we considered that this layer should be
implemented by an external, well-tested piece of software. We have studied some of the
projects in this area, such as CAN, Chord, Pastry, Tapestry which were described in the
previous chapter (section 2.6.4, page 49). Recall that these projects share the objective
to store and retrieve objects in some key spaces. Objects and peers are given keys, which
may be seen as their identifiers. Then, the infrastructure management service is able
to search or insert (for example) an object on the peer whose key is the closest to the
object’s key in the key space.

For P2P-MPI, we first require the P2P infrastructure management service to provide
a discovery service able to report some of the resource characteristics (for example CPU,
RAM, hard disk capacity, etc.). In other words, we need to discover nodes (computers)
more than objects on anonymous nodes. Our second requirement is technical: we need a
freely available implementation that we can potentially adapt to our needs (open-source
code), so that we can ship it as a library with the other modules of P2P-MPI. Moreover,
this has to be a Java implementation not to break our “run everywhere” paradigm.

JXTA JXTA [61] is the P2P framework we originally chose to manage the infrastruc-
ture of P2P-MPI peers. To complete the description of JXTA made in Section 2.6.4, the
strong advantages of JXTA are:

¢ it is an open-source initiative,

¢ it produces standard open protocols about what should be objects and operations
in a P2P application. These are platform- and language-independent, XML-based
protocols.

« it benefits from professional-quality implementations of the specifications in Java,
C, C++ and C#. The project is supported by Sun Microsystems.

JXTA meets our requirements in that it provides an elegant publish /subscribe mecha-
nism well adapted to our infrastructure management needs. A computer starting a JXTA
application first joins a universal peer group called the NetPeerGroup (every operation
takes place in a peer group in JXTA). Once it has joined the group, the peer inherits
the services of the group, for instance peer discovery, pipe services, etc.

To advertise about its characteristics, the new peer may build a small XML file called
advertisement, containing custom information besides the administrative data (unique
identifier of the object, peer group, ...). The advertisement is then sent to a publisher
called a Rendezvous. In fact, there are several Rendezvous that cooperate to store the
advertisements in a distributed fashion. P2P applications may then call the discovery
service to find other peers. Once a discovery request is issued, the service will asyn-
chronously triggers events when advertisements matching the request’s criteria are found.

However, due to its design, JXTA only discovers a “sufficient” number of resources,
and there is no means to enforce the discovery service to deliver all known advertisements.

54 CHAPTER 3. THE P2P-MPI MIDDLEWARE

This can be considered a desired feature when targeting overlays at the scale of tens or
hundreds thousands peers, to keep an acceptable amount of network traffic. A detailed
study has been recently carried out about the behavior of JXTA RendezVous [62], which
clearly shows that the peer view of the whole overlay broadens slowly in time and is
always very partial. Moreover, because the JXTA design strongly relies on agynchronous
events, we have no guarantee on the time usage to discover the resources. Also, the time
needed for joining the JXTA NetPeerGroup on startup may be considered long, and may
depend on the bootstrapping rendezvous (maintained by Sun) availability.

The delays observed in previous versions of P2P-MPI based on JXTA, were due to
two startup operations. The MPD (which instantiates a JXTA peer) first joined the
NetPeerGroup. Then, each MPD tried to join (or create if not yet created) a private
peer group to isolate operations related to the P2P-MPI application. Typically, the time
to complete both operations was 30 to 60 seconds using JXTA-J2SE version 2.3 in a 100
Mbps LAN environment.

Custom Infrastructure Management Due to further requirements concerning re-
source allocation (see Section 3.4) we have replaced ! the JXTA layer with a new P2P
infrastructure, designed more specifically for our needs. Our main requirement con-
cerns network locality in the peer overlay: we want peers to be able to know how far
are other peers in terms of network latency. We have reviewed related work sharing
this concern. They share an architecture based on a P2P network. They face the same
issue regarding resource allocation depending of network locality. For instance, the long-
lived project ProActive [63] has added a P2P infrastructure to ease resource discovery.
However, selection of resources for a computation only depends on their CPU load, as
the infrastructure has no knowledge about network locality. Very close to our work
are Zorilla [64] and Vigne [65]. They are two middleware systems which also build a
P2P overlay network aware of peer locality. For that purpose, Vigne uses algorithms
from the Bamboo project [66]. In Vigne, close resources are found using a simple (yet
sometimes misleading) heuristic based on DNS name affinity: hosts sharing a common
domain name are considered as forming a local group. Zorilla (which also uses Bamboo)
proposes flood scheduling: the co-allocation request originated at a peer is broadcasted
to all its neighbors, which in turn broadcast to their neighbors until the depth of the
request has reached a given radius. If not enough peers accepted the job, new flooding
steps are successively performed with an increasing radius until the number of peers is
reached. The difficulty in this strategy, lies in finding suitable values for the flooding
parameters, such as the radius and minimum delays between floods.

However, no software that we could use in replacement of JXTA was available as
a well-separated and independent library. We thus implemented our own peer-to-peer
infrastructure. This infrastructure management layer is simple, light, and fast. The ben-
efits over JXTA in our context are the completeness and speed of resource discovery, and

Lsince p2pmpi-0.27.0.

3.1. GENERAL ARCHITECTURE 95

the network latencies we can capture. Moreover, we could achieve experiments involving
600 processes with our new infrastructure whereas we were struggling to discover about
half of the peers running when using JXTA.

From a user’s point of view, there is barely no change, except that the Rendezvous
terminology of JXTA is replaced by the supernode concept. A supernode is a necessary
entry point for boot-strapping a peer willing to join the overlay. When connecting to a
supernode, the MPD registers to the supernode and retrieves a list of peers that it will
maintain in its internal cache. Thus, in this first implementation of our peer-to-peer
infrastructure, it is a centralized topology where the peers first register to the supernode
by giving its IP and some necessary communication ports. It is left to a future work
to extend the single supernode to a distributed set of supernodes in order to improve
scalability.

3.1.2 The Middleware

The P2P-MPI middleware part consists of the four processes noted MPD, FT, FD, and
RS on introductory Figure 3.1. This is the core of P2P-MPI, which required most of the
developments done in this thesis work. In the following section, we give a brief overview
of the roles of these processes. Details and further discussions will follow in next sections.

The Message Passing Daemon (MPD) is the peer-to-peer module which acts as
a peer-to-peer node in P2P-MPI peer-to-peer network. The MPD’s roles are mainly:

¢ to maintain the peer membership to the overlay by joining on startup and by
subsequently sending periodic alive signals to the supernode,

+ to manage the local peer’s neighborhood knowledge: each neighbor in the cache is
periodically pinged to assess network latency to it,

+ when an application requests a number of resources, it has to coordinate the dis-
covery of peers, the reservation of resources and to organize the job launch.

The File Transfer Service (FT) is a simple service in charge of what is often called
file staging. This task consists in transferring the executable code and input files from
the submitter (the node requesting the parallel program execution) to the computing
nodes when they need it. The FT service can perform the staging in two possible modes.

In the first mode, the full files and data are transfered to the computing nodes. The
FT proceeds sequentially, that is it waits to complete the transfer of all execution files
and input files to a computing node before it starts to transfer files to another node.
This mode hence imposes a startup time which increases linearly with the number of
nodes. We did not implement other methods such as broadcasting data along a tree
because in an environment with frequent failures, the failure of any intermediate node
causes a whole branch of the tree not to receive the files. In P2P-MPI, the fault de-
tection service monitors nodes failures for running applications only. Since we cannot

56 CHAPTER 3. THE P2P-MPI MIDDLEWARE

rely on this service during file staging, it is more difficult to identify missing nodes in a
tree-like broadcasting procedure than in a linear one. Implementing an improved startup
mechanism for an advanced file transfer system is left as a future work.

In the second mode, only the addresses of data are transfered, which allows commu-
nication pipelining and overlapping, as illustrated on Figure 3.2.

Rank 0 Rank 1 Rank 2 Rank n — 1
“’ B e S
=$
S
U$
+S
e r/]
| /
I “arver
! 2 server
- 7
A AU ot) e N
/
5 /
""""""""""""""""""""" [
7/
7/
7/
= 7/ i ~
S 7/ |:| receive URL
7/
7/ .
/ @ receive data
,,, /4

Figure 3.2: File staging using a web server.

The code and data and stored on a web server and the F'T service sequentially sends
the URL to the computing nodes. When the computing nodes receive the URL, they
start to download the files from the indicated URL. As the communication time needed
to transfer the URL is generally shorter that the time needed to download the real data,
the communications fetching data follow a pipeline pattern, provided the web server(s)
does not become a bottleneck. In the best case, almost all the time spent in downloading
real data is overlapped by the time needed to transfer the URLs. This situation corre-
sponds to the figure. If we consider ¢, the time to send the address of the file to any
computing node, and tg the time for any node to download the real data from the web
server, the file staging time ¢, for n nodes is nt, +t4 < ts < t, + nty. The upper bound
occurs if the web server can serve only one connection at a time, hence making the data
delivery sequential. In this worst case, the file staging time is close to the first mode
behavior, whose cost is ntg. The lower bound applies if the web server is able to serve
all requests simultaneously. This is possible if URLs point to different web servers or if
a specialized hardware with several network cards is used. In practise, as the aggregated
throughput obtained with multiple TCP connections is higher than with one connection
in most situations, we have t, < t, + ntg.

3.1. GENERAL ARCHITECTURE 57

The Fault Detection Service (FD) is the service invoked to monitor the resources
in charge of an application execution. The communication library is notified by the FD
service when nodes become unreachable during execution. The communication library
can then take appropriate actions to react to failures. To fit in the peer-to-peer model of
P2P-MPI, we implement the fault detection service as a fully distributed service, using
a gossip-style fault detection. This service is an important actor in the fault tolerant
capabilities of our middleware, and Chapter 4 is devoted to this aspect.

The Reservation Service (RS) is aresource broker. When a user requests a number
of processes for a program execution, the local MPD computes a list of candidate peers
and mandates the local RS to negotiate and reserve computation capabilities among this
set of peers. The local RS contacts each of the remote RS on candidate peers, which
may give all, part, or none of the requested capabilities. The RS role is thus to request
resources, or conversely, it acts as a gate-keeper of the local resource. Each RS decides
on the computing capability it can offer to other RS, based on the user configuration file.
An example configuration file is shown in Section C.1 in appendix. This file describes
the user policy, and may specify for instance a list of denied hosts or the maximum
number of jobs running simultaneously. More details on the role of the RS service are
given hereafter in the discovery and reservation protocol description (c.f Section 3.3.2).

3.1.3 The Communication Library

The communication library exposes an MPI-like API, following the MPJ specification.
The status of the functions can be found in appendix B. Below is a summary of the role
and issues in the development of the communication library. A complete discussion is
in Chapter 5.

The implementation of the API provided by the communication library is original as
compared to other projects in that it integrates a transparent fault-tolerance mechanism
based on process replication. The communication library, in addition to the standard
communication primitives, handles the coherence of process states with respect to the
programming model semantics. The way fault-tolerance is integrated in the communi-
cation library is detailed in Chapter 4.

Concerning the implementation of the standard communication primitives, the com-
munication library implements two devices called single-port device and multi-port de-
vice. A device is the set of structures and internal functions that handles the network
communications over TCP. The two proposed devices correspond to two different strate-
gies we have explored.

The single-port device has been first proposed with P2P-MPI. It encapsulates all
messages in Java objects and uses only one TCP port for communications. All commu-
nications open a connection, send the message, and then close the connection. The idea

o8 CHAPTER 3. THE P2P-MPI MIDDLEWARE

is that communications between different administrative domains may be restrained by
firewall policies and that a limited port range may ease the software usage. This is in
contradiction with the strategy followed by most MPI implementations that open a new
socket as soon as a new communication is needed, or even open one connection between
each pair of processes at startup time (e.g lamboot in LAM/MPT).

Of course, the drawback of this device is the performance. The performance suffers
of the opening and closing connection cost for every message. However, this overhead is
small for applications communicating mostly large size messages.

The multi-ports device improves performance of communications at the price of a
larger range of used ports. The technical difference with the single-port device is that the
Java nio class is used to make messages transit through ByteBuffers, and to simultane-
ously monitor multiple network connections. This implementation is mostly interesting
in environments with high-performance network connections with low restrictions re-
garding the firewall policy.

3.2 Application Start-up Protocol

In this section, we give an overview on how modules in P2P-MPI interact among them-
selves when a user submit a job to execute on a P2P-MPI grid. The steps listed below
are illustrated on Figure 3.3.

1)
— e

() H 1)

@.1) 3 (8)
MPI program MPI program

Grid peer
I

P2P-MPI peer—to—peer network

|

Figure 3.3: Steps taken to build an MPJ communicator mapped to several peers.

(1) Booting up: The user must first join the P2P-MPI platform by typing com-
mand mpiboot which starts the local background daemons MPD, FT, FD, and

3.2.

(10)

(11)

APPLICATION START-UP PROTOCOL 99

RS. MPD acts as a peer in the peer-to-peer network, and makes the computer join
the P2P-MPI peer-to-peer network.

Job submission: The job is then submitted by invoking run command p2pmpirun
-n n -r r -a alloc prog. The mandatory arguments are the n processes requested
to run prog program. The other arguments are optional: r is the replication degree
used to request some fault tolerance (explained in Chapter 4), and alloc tells the
MPD which strategy must govern the allocation of the n processes on available
resources (details about allocation strategy are in Section 3.4).

Then, it will start the process with rank 0 of the MPI application on local host.
We call this process the root process.

Requesting Peers: The application contacts its local MPD to discover enough
nodes to have the capacity to execute a job of n X r processes.

Discovery and Reservation: the local MPD looks into the list of its known
nodes and then issues a reservation request via the local RS to reserve available
nodes by giving the list of subsets of its known nodes. The local RS negotiates and
reserves the remote RS and then returns the result to MPD (detailed in Section
3.3).

Registering: After the reservation is done, the local MPD directly contacts the
reserved nodes MPDs. It declares to the remote MPDs that the job will be executed
by giving the application name, its MPI rank regarding the application to spawn,
and the IP and port of the root process for the MPI application to contact it. The
application will then be able to form its MPI communicator.

Hand-shake: the remote peer sends its FT and FD ports directly to the submitter
MPI process.

File transfer: program and data are downloaded from the submitter host via the
FT service.

Execution Notification: once the transfer is complete the F'T service on remote
host notifies its MPD to execute the downloaded program.

Remote executable launch: MPD executes the downloaded program to join
the execution platform.

Execution preamble: the spawn processes give their rank, IP and application
port to the root process. Then, the root process creates the rank to IP address
mapping communication table , called communicator. Finally, the root process
sends the communicator to all the other processes.

Fault detection: MPI processes register in their local FD service and starts.
Then FD will exchange their heart-beat message and will notify MPI processes if
they become aware of a node failure.

60 CHAPTER 3. THE P2P-MPI MIDDLEWARE

Note that all the steps listed above are transparent to the user. The peer just needs
to be started once with mpiboot. Once it belongs to the peer group, it may request
other peers participation or it can be solicited an unlimited number of times until it
halts (mpihalt).

3.3 Discovery and Reservation

In a grid context, it is not realistic to maintain a static list of resources (such as the
machinefile of most MPI implementations) and hence we rely on the discovery ca-
pabilities of the middleware. Subsequently to the run request p2pmpirun, P2P-MPI
dynamically tries (during a limited time) to reserve a suitable set of resources able to
host all processes involved.

In the previous section, we have enumerated the steps taken to start a parallel appli-
cation. Among these, step (4) hides a complex problem. Choosing among the discovered
resources, which are the most adequate for a specific execution is a difficult problem as
several objectives may be followed. Let us list some considerations:

o First, we need co-allocation and hence resource should be available simultaneously.
We have introduced the Reservation Service (RS) for that purpose.

e Second, the grid is a multi-user platform and the allocation must accommodate
to the local policies of resources, not known in advance, like e.g, the number of
processes that the owner of the resource accept to run simultaneously,

o Third, an MPI application generally benefits from locality of allocated resources
since it minimizes the communication costs.

3.3.1 Entities involved and Notations

Each service maintains a complete or partial knowledge of the P2P network. The supern-
ode maintains the registration of peers through a list called host list. Each list element
is basically the host IP, its services ports, and a “last seen” timestamp.

Each MPD maintains a local cache of the supernode host list, called cached list. 1t
periodically contacts its supernode to update its cached list. A network latency value ig
associated to each host in the cache list. For that, each MPD periodically contacts each
host in its cached list and measures the round-trip time (RTT) of an empty message
sent to it. Notice that this “ping” test is a standard P2P-MPI communication and does
not rely on an ICMP echo measurement, such as ping system command. This approach
would involve portability issues and further, ICMP traffic is often blocked or limited by
firewalls.

Each RS, as a gatekeeper of the local resource, also manages the resource owner
preferences. The owner preferences, expressed in the configuration file, may for instance
allow or disallow such or such other peers. The preferences also concern the way the
CPU is shared, through two settings:

3.3. DISCOVERY AND RESERVATION 61

4 7 4)
3
RS RS
4 i
5 2 !
- MPD 6 - MPD
] N
/ }// -
1
SuperNode
MPI
N\ N
submitter remote host

Figure 3.4: The job reservation procedure.

e the number J of different applications that a node can accept to run simultaneously.
e the number P of processes per MPI application that a node can accept to run.

For instance, J=2 and P=1 would allow two distinct users to run simultaneously one
process each for their respective applications. J=1 and P=2 would allow to simultane-

ously run two processes of a single application (this setting is often used for dual-core
CPUs).

3.3.2 Reservation Schema

We now describe step by step the reservation procedure, as depicted in Figure 3.4. It
actually details steps (3) to (5) in Figure 3.3.

(1) Requesting Peers: Recall a user submits a job with p2pmpirun -n n -r r
-a alloc prog. This starts the MPI application, which in the initialization phase
(MPI.Init) assigns the local MPD the task of discovering and reserving the set of
hosts able to executes n X r processes.

(2) Booking: First, the local MPD verifies if it knows enough (i.e, at least n x
r) nodes in its cached list. If not, it triggers a cached list update request to
supernode to try to acquire recently registered peers. The list is then sorted by
ascending latency values. The MPD asks the local RS to book a number of hosts,
starting from the beginning of its cached list (hence starting with hosts having the

62

CHAPTER 3. THE P2P-MPI MIDDLEWARE

lowest network latencies). Actually, when possible, the request is an overbooking
to anticipate unavailable hosts. In the current version (n x r) + (3logy (n x 7))
hosts are requested.

RS-RS Brokering: Local RS generates a unique hash key, we can see it as
reservation ticket. Then, RS sends a reservation request message to others RS
with this unique hash key.

The RS receiving the reservation request message verifies whether it can accept
this request by checking if the current number of applications being run does not
exceed J. It also checks at this stage if the requester belongs to the denied IP
list. If the request is acceptable, it replies back to the requester by sending an
OK message with the value P. If not, it replies back to the requester with a NOK
message.

RS-MPD Response: The local RS gathers answers from remote RS to form the
list rlist of reserved hosts. This list is then passed back to MPD. Nodes that have
not responded before a given timeout are also marked as dead at this step. The
MPD receives the rlist, and updates its cached list regarding peers marked dead.

Allocation: Then, the MPD allocates the processes to all or a subset of the hosts
in rlist. Because of overbooking, the number of reserved hosts is often larger than
necessary: we call slist the selected subset chosen to map the application processes.
It is the same as rlist except that it is limited to n x r hosts (what we need at
most). Formally slist = rlist[1,..., min(|rlist|,n x r)]. The implication is that all
reservations for hosts in rlist but not in slist are cancelled since they will not be
used. Once slist has been extracted, and before the MPI ranks distribution can
take place, the MPD must decide whether the allocation is feasible. It is feasible
if the two following conditions are met:

(a) |slist| > r

(b) ZLSZZ%SH ¢ > n X r, where ¢; = min(F;, n).

The first constraint says we have at least r selected hosts to insure that no two
replicas would have to reside on a same host. The second constraint is about the
number of processes that can be hosted on the whole: we call ¢; the capacity of
host 4, which is P except for marginal cases (we must not allocate more than n
processes to a single host even if P > n since two copies would be on that host).
We therefore check that the sum of individual host capacities is large enough to
execute all processes. Finally, MPD sends a request to start the MPI application.
The request includes the rank and a unique hash key. The other MPDs are chosen
accordingly to one of the selected allocation strategy (see Section 3.4).

Verify Reservation: The remote MPD verifies that the unique hash key matches
the one its RS holds for the reservation. If the key matches, then the rest of the
job submission process follows at step (6) on Figure 3.3.

3.4. HOST ALLOCATION STRATEGIES 63

3.4 Host Allocation Strategies

There are today many multicore CPUs and we should favor the allocation of processes
on all cores of a CPU if we strictly follow the locality principle. However it might be
more important for the application to access more memory on the whole, which is in
contradiction to the allocation strategy that chooses all cores on each resource as they
share the same memory. We think the user, most of the time, knows these requirements
and should advice the middleware of the application’s specific needs.

In our context, an allocation strategy must meet two criteria.

(a) First, it must assign the nxr processes to the |slist| reserved hosts in a sensible
and understandable way regarding the user’s concerns. An example of “bad”
distribution would for example be one that allocates as many processes as possible
on the last host of slist, that is the host with higher network latency.

(b) Second, in case some processes are replicated, the rank assigned to mapped pro-
cesses must guarantee that no two copies of a process are on the same processor.

For the first criterion, we propose two simple strategies called spread and concentrate.
Below are the algorithms for each strategy, in which we use the following notations: d
is the number of distributed processes so far, and u; the number of processes mapped
onto host 1.

Spread tends to map processes on hosts so as to maximize the total amount of avail-
able memory while maintaining locality as a secondary objective. The strategy is to
assign the MPI processes to all selected hosts (the |slist| closest hosts regarding latency)
in a round-robin fashion.

Algorithm 1: Spread algorithm
d:=0
Vi,ui =0
cont:= TRUE
while cont do
i:=0
while (i < |slist]) AND cont do
if (u; < ¢;) then
U =u; + 1
d:=d+1
if (d =n xr) then
cont := FALSE
//all processes are allocated

L i:=14+1

Concentrate tends to maximize locality between processes by using as many cores as
hosts offer. The strategy is to assign the maximum MPI processes to the capacity of

64 CHAPTER 3. THE P2P-MPI MIDDLEWARE

each host (¢;).

Algorithm 2: Concentrate algorithm

d:=0

Vl‘, U; 1= 0

cont := TRUE

while cont do
i:=0
while (i < |slist]) AND cont do
w; = mian(c;, (n X r) — d)
d:=d+ Ug
if (d =n xr) then

cont := FALSE

L //all processes are allocated

L i=1+1

Once either strategy has reserved enough processes place-holders, we must meet cri-
terion (b) when numbering the processes, i.e, assigning MPI ranks to processes. The
assignment algorithm host is straight-forward: we assign the MPI rank from rank 0 to
n — 1 according to u; and continue along with host ¢ in slist. If some u; = 0, it means no
process has been mapped to host ¢ and we simply cancel the reservation. The algorithm
is as follows:

Algorithm 3: Rank distribution algorithm
rank := 0
for host i in slist do
if u; =0 then
L cancel reservation on host ¢
1:=0
while | < u; do
assign rank rank to host 1
rank := rank + 1
l:=1+1
if rank > n then
L rank := 0

3.5. EXPERIMENTS WITH CO-ALLOCATION 65

3.5 Experiments with Co-allocation

Objectives

The main objective is to assess if the allocation strategies behave really as predicted at
the scale of applications composed of hundreds of processes. A secondary objective is
to observe the impact of both strategies on parallel program executions. This last point
would obviously deserve a larger study, but these preliminary tests sketch important
tendencies.

Experiment Setup

Environment type | Grid5000 — clusters as detailed below.

Site Cluster name | CPU #Nodes | #CPUs | #Cores
Nancy grelon Intel Xeon 5110 60 120 240
Lyon capricorn AMD Opteron 246 | 50 100 100
Rennes paravent AMD Opteron 246 | 90 180 180
Bordeaux bordereau AMD Opteron 2218 | 60 120 240
Grenoble idpot Intel Xeon 1A32 8 16 16
Grenoble idcalc Intel Itanium 2 12 24 48
Sophia-Antipolis azur AMD Opteron 246 | 32 64 64
Sophia-Antipolis sol AMD Opteron 2218 | 38 76 152
Operating System | Linux 2.6.18 or close

Software jdk1.6.0_04, JXTA-J2SE 2.3, p2pmpi-0.28.0

Table 3.1: Characteristics of available computing resources at the different sites

The experiment in this section uses the experimental grid testbed Grid5000. The
resources in our experiment are taken from six sites: Nancy, Lyon, Rennes, Bordeaux,
Grenoble, and Sophia-Antipolis. The job submitter is located at a node in Nancy’s site.
Available resources are summarized in table 3.1. The distant sites are sorted by round-
trip time (RT'T) to local site Nancy. RT'T are measured by an ICMP echo (ping) between
frontal hosts at each site and are reported in table 3.2. We can see that latencies between
Nancy and distant sites are very close for most of them. The bandwidth between sites
is 10Gbps everywhere except the link to Bordeaux which is at 1Gbps.

For all nodes, the parameter that allows the number of executing process on each
application in the configuration is set to the number of cores in the host’s CPU.

3.5.1 Co-allocation Experiments

In this experiment, we run a program whose each process simply echoes the name of
the host it runs on. Through this experiment, we observe where processes are mapped
depending on the chosen strategy and the number of processes requested by counting

66 CHAPTER 3. THE P2P-MPI MIDDLEWARE

Site RTT(ms)
Lyon 10.5
Rennes 11.6
Bordeaux 12.6
Grenoble 13.2
Sophia-Antipolis | 17.1

Table 3.2: The round-trip time by ping between Nancy and other sites

hosts and cores allocated at each site.

For the concentrate strategy, we consider the closer the processes are from Nancy,
the better are the results. For the spread strategy, a good allocation should map only
one process per host as much as possible, and hosts selected should be the closest from
Nancy. The effectiveness of the strategies essentially depends on the accuracy of the
latency measurement, which may differ from the RT'T given by an ICMP echo command
(ping) as explained in Section 3.3.1. The latency we measure with P2P-MPI must not
necessarily be very close to the ICMP RTT, but should preserve the ranking between
hosts relatively to RTT.

Figures 3.5 and 3.6 plot the repartition of processes throughout the sites for the two
strategies. The legends in top-left corners give the RTT to Nancy site and the overall
number of hosts and cores available at each site. The experiment consists in running the
hostname program, requesting from 100 to 600 processes by steps of 50.

600

T T T
mmmmm Sophia (17.167 ms, 70 hosts, 216 core)
Grenoble (13.204 ms, 20 hosts, 64 core)
wamen Bordeaux (12.674 ms, 60 hosts, 240 core)
500 - wewmwsm Rennes (11.612 ms, 90 hosts, 180 core)
Lyon (10.576 ms, 50 hosts, 100 core)
Nancy (0.087 ms, 60 hosts, 240 core)

T T T
mmmmm Sophia (17.167 ms, 70 hosts, 216 core)
Grenoble (13.204 ms, 20 hosts, 64 core)
msssmse Bordeaux (12.674 ms, 60 hosts, 240 core)
wmwes Rennes (11.612 ms, 90 hosts, 180 core)
Lyon (10.576 ms, 50 hosts, 100 core)
150 Nancy (0.087 ms, 60 hosts, 240 core)

400
100 | 300 |

200 |

Number of allocated hosts
Number of allocated processes

100 |

100 200 300 400 500 600 100 200 300 400 500 600
Number of demanded processes Number of demanded processes
(a) Allocated hosts (b) Allocated cores

Figure 3.5: Hosts and cores allocated in concentrate allocation method

For concentrate, in Figure 3.5, the processes are allocated on the 60 hosts available
at Nancy only, up to 200 processes. Next, when the capacity of 240 cores at Nancy

3.5. EXPERIMENTS WITH CO-ALLOCATION 67

600

— SopHia (17.167 ms, ‘70 hosts, 216 c“:rre) — SopHia (17.167 ms, ‘70 hosts, 216 m‘)re)

mmmmm Grenoble (13.204 ms, 20 hosts, 64 core) mmmmm Grenoble (13.204 ms, 20 hosts, 64 core)

smssmm Bordeaux (12.674 ms, 60 hosts, 240 core) msssssw Bordeaux (12.674 ms, 60 hosts, 240 core)

mwmwm Rennes (11.612 ms, 90 hosts, 180 core) 500 [~ wewwssm Rennes (11.612 ms, 90 hosts, 180 core)
Lyon (10.576 ms, 50 hosts, 100 core)
Nancy (0.087 ms, 60 hosts, 240 core)

Lyon (10.576 ms, 50 hosts, 100 core)
Nancy (0.087 ms, 60 hosts, 240 core)

400

300

200

Number of allocated hosts

Number of allocated processes

100

100 200 300 400 500 600 100 200 300 400 500 600
Number of demanded processes Number of demanded processes
(a) Allocated hosts (b) Allocated cores

Figure 3.6: Hosts and cores allocated in spread allocation method

is exceeded by the request, further hosts are first allocated at Lyon (5 for -n 250), as
expected with respect to the RTT ranking. Subsequent requests (from -n 300) reveal
that hosts from Lyon, Rennes and Bordeaux fiercely compete for the latency ranking.
We observe that the latency ranking for these hosts is interleaved with respect to sites.
This is easily explained by the fact that the latencies to Nancy for the three sites are
within 0.6ms (RTT 1.1ms), while the latency measurements made by peers are sensible
to CPU and TCP load variations. This mapping thus seems adapted to applications
involving many communications because of the nearness of processes.

With spread, in Figure 3.6, hosts are chosen from the four closest sites up to 250
processes, but contrarily to concentrate more hosts are allocated in each site. From 300
processes, the strategy leads to take hosts from all sites to keep the load on each peer
to only one process. We can clearly see on Figure 3.6(b), the round-robin allocation of
processes once the host list is exhausted: the number of cores allocated at Nancy makes a
stair at 400 processes since there are not enough hosts (350) to map one process per host
and the closest peers are first chosen to host a second process as they have extra available
cores. On the whole, we observe that all peers have been discovered and the strategy
tends to use them all. So, this is a good strategy to use for application demanding much
memory, as only one application process will be mapped per host provided there are
enough hosts.

3.5.2 Application Performance

To observe the effectiveness of each strategy on applications, we have chosen to test
two programs with opposite characteristics from the NAS benchmarks (NPB3.2), IS
(Integer Sorting) and EP (Embarrassingly Parallel). IS involves many communications
and EP (Embarrassingly Parallel) does independent computations with a final collective
communication.

68 CHAPTER 3. THE P2P-MPI MIDDLEWARE

As a concrete example of allocation strategy impact, we run the benchmark EP from
32 to 512 processes. As mentioned, EP only makes four final collective communication
(MPI.Allreduce of one double) so that the computing to communication ratio is very
high. The graph on the left of Figure 3.7(a) shows that EP using 32 to 256 processes is
slightly faster when allocation strategy spread than with concentrate. This is probably
due to the intensive memory accesses that may represent a bottleneck with concentrate,
not compensated by locality in the collective communication. With 512 processes, the
problem size per process becomes smaller and the overheads related to memory and
communications seem to reach an equilibrium at this point.

10 40
j j j concentrate (CLASS B) —+— concentrate (CLASé B) ——
9 spread (CLASS B) ---x--- i s spread (CLASS B) ---x---
8 4 0l]
7+ |
) i z B[]
FRECH 1 e
£ ! £ ot 1
AR 1 2
[. 15k 4
4 1
10 o]
ir % T \ e
2 1 5% 1
e
1 1 1 1 - 0 1
32 64 128 256 512 32 64 128
Number of processes Number of processes
(a) Execution time on EP benchmark. (b) Execution time on IS benchmark.

Figure 3.7: Execution time for EP and IS depending on allocation strategies.

The performance curves for IS, in Figure 3.7(b), are due to the low computations
to communications ratio. With 32 processes, spread leads to better performances than
concentrate: with spread all processes are in the same cluster so that communications
pay a low latency while there is no overhead due to concurrent memory accesses. This
appears to be the case with concentrate. Using 64 processes with spread means that
four processes are allocated outside the local cluster and the communication overhead
leads to a slowdown. Keeping the processes inside the cluster with concentrate gives a
roughly constant execution time. Figures for 128 processes and above show the same
phenomena.

3.6 P2P-MPI Graphical Monitoring Tool

P2P-MPI contains a visualization tool which provides a global snapshot of the peer-to-
peer network. It provides a graphical GUI displaying the network, either under the form
of a table listing computers name and [P addresses or as a graphical view of peers, with
a layout organized around domain names.

This tool comes in addition to the query command mpihost, which lists the peers
known by the local MPD only. Thus, the information returned by mpihost is incomplete

3.6. P2P-MPI GRAPHICAL MONITORING TOOL 69

because more peers may be running and no information is given regarding to what peers
are doing. Figure 3.8 illustrates the monitoring table. In this snapshot, we have a partial

L Monitor table E]@E]
Order by :) Rank) Subnet @ disponibility Refresh time: @
Mame IF 05 Comain Task Status
hpc-n27 130.79.118.177 |Linux u-strashg.fr Mane Aavailable
hpc-nzz 13079 118173 |Linux u-cstrashg. fr Mone Available
lancelot 13075 152,150 |Linux u-cstrashg. fr Mone Available
hpc-nsz2 130.72.118.172 |Linux u-strashg.fr Mane Aaallable
rmoradred 130.72.192.153 |Linux u-strashg.fr ElectionLCR, Warking
perceval 130.79.192.162 |Linux u-strashn. fr ElectionLCR, Winrking
hpo-n2 1 120.79.118. 171 |Linux u-strashig. fr Mone Availatle
rmarathon 130.79.186.117 |Linux u-strashg.fr ElectionLCR, iarking
tag 120,759,182, 166 |Linux u-strashg. fr ElectionLCR, Working
grille 130,749,152, 148 |Linux u-cstrashg. fr ElectionLCR, Wiorking

Graphical view || Logger
Scan results at Mon Jan 30 17:03:23 CET 2006

Figure 3.8: The monitor table

view of the peers running (IP addresses, operating system type) as well as what they are
doing. Here, five of them are executing an FElectionL. CR application. This is often handy
for the user to see how its processes were mapped to the network. A complementary

PRA®

N\ Nodes Craph

| Disponibility

Figure 3.9: Graphical view: screenshot for a couple hundreds of peers on Grid5000.

view is the graphical layout illustrated by Figure 3.9. This example screenshot shows a
couple hundreds of P2P-MPI peers running on four sites of Grid5000.
The graphical view gives a zoomable view of peers, represented as clusters centered

70 CHAPTER 3. THE P2P-MPI MIDDLEWARE

on their domain name. Clicking on a specific peer makes a popup window appear with
the main characteristics of the resource when available: CPU type, CPU speed, memory
available, etc.

Register/Unregister Query peer list l

List change notification Current peer list

N
A7\
0

Not in cache,
Query peer information.

Visu-Client

cache

Return characteristics Register/Unregister

Figure 3.10: Overview of the visualization service organization
The visualization tool design has two requirements:

o the visualization process should be independent of the other processes: a client
should be able to visualize the network without starting a peer.

o the visualization process should be as little intrusive as possible, and no client
should be able to overflow the network with visualization queries.

To this end, we provide an extra service called VisuProzry. The VisuProxy can be seen
as an intermediate layer between the visualization clients and the supernode. The Vi-
suProxy service periodically queries the Supernode about the peers currently present.
Once a VisuProxy is known, visualization clients may register to the VisuProxy. Regis-
tered clients are then notified when the peer list changes. The VisuProxy does not hold
all information about peers. We do not want a centralized service that would maintain
information about peers dynamic state. Instead, the visualization client has the charge
to contact directly the MPDs of peers announced by the VisuProxy, to get information
about their hardware and software characteristics as well as their state. Each visualiza-
tion client maintains a cache on its disk, containing information returned by previously
queried MPDs. If the announced IP addresses are already known, information from the
cache is used. Otherwise, a query is issued to the corresponding MPDs. If the user
explicitly asks to refresh the information, queries to the remote MPDs are forced.

3.7. CONCLUSION 71

3.7 Conclusion

We have described in this chapter the P2P-MPI middleware. We have explained how
our initial design and implementation choices have evolved to face the problems targeted
by P2P-MPI. Recall that our goal is to address the deployment of large-scale parallel
message-passing programs. In the present case, we have to deal with applications involv-
ing hundreds of processes scattered on computers over a wide geographic area. Since the
beginning of the project, we have proposed a P2P basis to organize resources in a Grid.
We put forward the autonomy of peers, which enables an easy software installation of
individual resources and the absence of a single point of failure since there is no central
directory for resources.

We have also put forward the benefit for applications to cooperate with the mid-
dleware. An example is the failure detection service that will be examined in the next
chapter.

Another benefit can be an efficient allocation of resources by the middleware with
respect to the application’s needs. During, this work, we have modified the middle-
ware to improve the allocation resources. The middleware now accounts for network
locality of peers. This has allowed us to devise two allocation strategies. We propose
the simple and understandable paradigms spread, which maps only one process on the
closest peers, and concentrate, which uses computing resources of closest peers as much
as possible. Users can easily decide, depending on the execution environment and on
their application which strategy is best suited. On one hand, spread involves more net-
work communications but let each computer memory accessed by only one process. On
the other hand, concentrate increases locality of processes but may lead to memory con-
tention or exhaustion. The experiment presented contribute to show that such strategies
can be implemented effectively to tackle the goal of allocating up to 600 processes. Fur-
ther, the allocation strategy effects on program executions have also been verified on
two NAS benchmarks. As a future work, we should focus on improving the accuracy of
our latency measurement so that it becomes closer to ICMP values and less sensitive to
external load. Also, we should work at the design of mixed strategies, or more complex
ones which still do not require the user to be knowledgeable about the platform charac-
teristics. Last, a broad study may be carried out to better understand the impacts of
such allocation strategies on a wider range of applications.

72

CHAPTER 3. THE P2P-MPI MIDDLEWARE

Chapter 4

Fault Management

As stated in the introduction, the robustness of an execution is of tremendous impor-
tance for MPI application since a single faulty process is very likely to make the whole
application fail. Much research work has been done in the area of fault-tolerance for
MPI, and we have reviewed a number of the proposals in Section 2.4.2. These proposals
are all based on check-pointing. We argue that this approach does not fit easily in our
peer-to-peer paradigm because it assumes a reliable server where checkpoints can be
stored. This is the reason why we propose for P2P-MPI, a solution based on process
replication.

This chapter presents how fault management is handled in P2P-MPI. This topic
covers two aspects.

The first one is related to the replication itself, and is covered by Sections 4.1 to
4.5. Section 4.1 introduces the replication scheme in P2P-MPI. Section 4.2 recalls the
issues related to this replication strategy and what has been stated in the literature, in
particular for the atomic broadcast problem. Our contribution is presented in Section
4.3, where we describe our protocol for replication. We then show in 4.4 that our
protocol meets the requirements that have been stated in the literature regarding atomic
broadcast. Finally, we present in Section 4.5 a quantitative study about the failure
probability when using replication or not.

The second aspect deals with fault detection. For an application to be able to recover
using a copy of a failed process, it must first be efficiently informed about the failure.
We present in Sections 4.6 to 4.7 how fault detection is implemented in our framework.
Finally, we present in Section 4.8 experimental results regarding two aspects of our
approach. The first experiment measures how the real system behaves as compared to
prediction in terms of fault detection time. The second experiment shows the overhead
induced by replication on some test cases.

73

74 CHAPTER 4. FAULT MANAGEMENT

4.1 Logical processes and replicas

P2P-MPI implements a replication mechanism to increase the robustness of an execu-
tion. This replication management is absolutely transparent for the programmer. When
specifying a desired number of processes, the user can request the system to run for
each process an arbitrary number of copies called replicas. An exception is made for the
process running on the submitter host, numbered 0 by convention, which is not repli-
cated because we assume a failure on the submitter host is critical. In practice, it is
shorter to request the same number of replicas per process, and we call this constant the
replication degree. Currently, we do not take into account host reliability when mapping
processes during allocation. (Criteria for resource allocation are discussed in Section
3.4). Therefore, the interest of specifying how many replicas should be chosen for one
or several specific processes, is pointless.

In the following, we name a “usual” MPI process a logical process, noted P; when
it has rank ¢ in the application. A logical process P; is implemented by one or several
replicas, noted PZ-O, P

Figure 4.1 shows the group of replicas in a logical process P, with a replication degree
of three.

— — Replicas of
l‘ l l logical process Py

,’//' | ! | ! N
! | ! i ! - |
T N I S O I S
i | Master | ! } ! | !
| } | | | |
! l | ! l | ! l |
| | ! | ! |
1 | ! | ! |
| | | | ! |
| o o |
=N = W |
| | ! | ! |

. 1 HostA ! | Host B ! | Host C !

Figure 4.1: The logical process P; with a replication degree of three.

The replicas are run in parallel on different hosts since the goal is to allow the con-
tinuation of the execution even if some hosts fail.

The replication scheme we introduce should not break the application global coher-
ence. In order to insure the coherence, we must keep the communications coherent with
the semantics of the original MPI program. The following section presents a protocol,
called coordination protocol, whose aim is to insure such a coherence.

4.2. RELATED ISSUES IN THE LITERATURE 75

The coordination protocol relies on two notions we introduced specifically to maintain
coherence. First, in each logical process, one replica is assigned a special role. This
replica is called master. If this process fails, one replica of the group will be elected as
a new master to replace it, and it will update its state to be in the same state as the
master before its failure.

Second, to be able to return or get to a certain state, replicas need to store some
information about messages sent or received. We have added extra data structures in
each process: these are the tables presented in Figure 4.2. Their roles will be explained
with the protocol presented hereafter.

MPI Process

Sending Part Receiving Part

Backup Log History
table table table

Figure 4.2: Extra data structures used in a process for replication.

4.2 Related Issues in the Literature

As discussed in the paragraph devoted to replication techniques in the literature (in
Section 2.4.2), such protocols for replication have been proposed. They fall into two
broad classes. With Passive replication, senders send messages to only one process (the
primary) in the group of receivers which in turns, retransmits the message to replicas
of the group. The other approach is active replication, in which senders send their mes-
sages to all replicas of the destination group. Our protocol follows the latter strategy
except that specific agreement protocols are added on both sender and receiver sides.
The conditions for such group communication to work properly have been well studied
in the literature. We review below what are the requirements stated in the literature.
In the next section (Section 4.3), we explain our protocol, and finally we show how our
system complies to these requirements (Section 4.4).

4.2.1 Properties of Atomic Broadcast

It is well known that active replication requires atomic broadcast (or total order broad-
cast) to insure the coherence of the system. The survey article [67] gives a detailed
description of a number of research work addressing the atomic broadcast issue. The

76 CHAPTER 4. FAULT MANAGEMENT

specification of the atomic broadcast has been defined formally [68] using the two prim-
itives broadcast(m) and deliver(m)'. We assume that every message m can be uniquely
identified, and carries the identity of its sender, denoted by sender(m). A process that
suffers no failure is usually termed correct process. The atomic broadcast is defined by
the following properties:

Validity If a correct process broadcasts a message m, then it eventually delivers m.

Agreement If a correct process delivers a message m, then all correct processes even-
tually deliver m.

Integrity For any message m, every correct process delivers m at most once, and only
if m was previously broadcast by sender(m).

Total order If process p and g both deliver messages m and m’, then p delivers m
before m/, if and only if ¢ delivers m before m/.

4.2.2 Assumptions

It is also important to qualify our system regarding the nature of the distributed system
addressed, in terms of type of failure considered, synchrony of the system and network
links characteristics. Let us list our assumptions for our framework:

o We only consider fail-stop failures (also termed crash failures). It means that
a failed process stops performing any activity including sending, transmitting or
receiving any message. This includes the three following situations: a) the process
itself crashes (e.g. the program aborts on a DivideByZero error), b) the host exe-
cuting the process crashes (e.g. the computer is shut off), or c) the fault-detection
monitoring the process crashes and hence no more notifications of aliveness are
reported to other processes.

This excludes transient failures as well as byzantine failures.
e We consider a partially synchronous system:

— the clock drift remains the same, or the differences in the drifts are negligible,
for all hosts during an application execution,
— there are no global clock.

— communication deliver messages in a finite time.
o We consider the network links to be reliable: there are no message loss.

The assumption about network communication reliability is justified by the fact that we
use TCP which is reliable, and that the middleware checks on startup that the required
TCP ports are not firewalled.

Ldeliver is used instead of receive to mean that the message is really available to the application and
not just received by the network interface.

4.3. REPLICAS COORDINATION PROTOCOL 77

4.3 Replicas coordination protocol

A first requirement, as stated in the previous section, is to be able to uniquely identify
messages. To that end, we use unique identifiers for messages and we detail hereafter
how they are implemented.

4.3.1 Message Identifier (MID)

The communication library computes for each message a unique identifier mid. It is
assumed that any send instruction has a matching receive instruction. The mzd is built
only from information local to the process. It has the following form:

mid = (cid, midkey, count)
with midkey = (src, dest, tag)

where cid is the identifier of the communicator?, src and dest are the MPI rank of
the sender and receiver processes respectively, tag is a tag number of the message and
count is the number of the calling MPI.Send or MPI.Recv for a message which has the
same madkey.

For example, in COMM_WORLD a process of rank 0 sends two messages with the same
tag (tag = 1) to a process of rank 2. The communication library constructs the identifier
of a first message with cid=0, src=0, dest=2, tag=1 and count = 0. Assume that this
is the first time that MPI.Send/MPI.Recv is called with midkey = (0,2,1). Thus, in
MPI.Send, the identifier of the first message is (0,(0,2,1),0) and (0, (0,2,1),1) for the
second message. Symmetrically in the receiver, the first MPI.Recv call will wait for the
message with the identifier (0, (0,2, 1),0) and (0, (0,2, 1), 1) for the second MPI.Recv call.

Thus, the MID has two properties: it is a unique identifier for messages, and it re-
flects the order in which messages are sent and received. As we will see in Chapter 5, it
may be useful in some asynchronous communication implementation. In the example,
the messages could be received in any order in the receive queue, but the extraction
from the queue to the user program would follow the MID order. Hence, we preserve
the message order according to the MPI standard.

Note also that the MID computed on the sender side, is embedded in the header of the
message sent. Indeed, MPI specifies some receive constructs allowing a non-deterministic
order of reception. As discussed in Section 4.3.4, we must be able to check for already
received MID via the history table to prevent incoherences.

4.3.2 Sending message agreement protocol

On the sender side, we limit the number of sent messages by introducing the following
agreement protocol. In each logical process, one replica is elected as master of the group

2For instance, the default communicator created by MPI.Init is COMM_WORLD and has cid = 0.

78 CHAPTER 4. FAULT MANAGEMENT

(2) Commit

Figure 4.3: A message sent from logical process Py to P;.

for sending. The other processes do not send the message over the network, but store it
in their memory. Figure 4.3 illustrates a send instruction from Py to P where replica
Pé] is assigned the master’s role. When a replica reaches a send instruction, two cases
arise depending on the replica’s status:

« if it is the master, it sends the message to all processes in the destination logical
process. Once the message is sent, it notifies the other replicas in its own logical
process to indicate that the message has been correctly transmitted. We say the
master commits its send. The commit is done by sending the message’s MID. The
MIDs are stored into the log tables of each replica.

o if the replica is not the master, it first looks up its log table to see if the message
has already been sent by the master. If it has already been sent, the replica just
goes on with subsequent instructions. If not, the message to be sent is stored into
the backup table and the execution continues. (Execution stops only in a waiting
state on a receive instruction.) When a replica receives a commit, it writes the
message identifier in its log and if the message has been stored, it removes it from
the backup table.

The overview of the sending message agreement protocol is given by Algorithm 4.
The algorithm is divided into two parts. The first one is the algorithm for MPI.Send.
The second part only applies for a non-master replica, and is the action sequence to take
when the replica receives a commit message.

4.3. REPLICAS COORDINATION PROTOCOL 79

Algorithm 4: Sending message agreement protocol on process P.

//(1). When MPI.Send is executed.
if P is master of logical process then
//Master process
Send message M to all replicas of destination process
Send commit message to all replicas of its logical process
Ise
//Non-master process
if mid is in log table then
//Message M already transmitted successful by its master
do nothing
else
L //Status of sending message M is unknown

put M in its backup table

@

//(2). When a replica receives a commit message.
Receive a comimit for message identified by mid
put mid in its log table

if M with mid is in backup table then
// P already invoked MPI.Send and stored message in its backup table

remove M from its backup table
else
L //P did not reach MPI.Send yet

do nothing

4.3.3 Reception message agreement protocol

We have stated in the sending message agreement, that the master sends a message to
all replicas of the receiving logical process. As these multiple send operations cannot
be made atomic, a failure occurring at the master when sending a message may lead to
an incoherent state regarding the replicas on the receiving side. After the failure, some
processes may have got the message while some others may not have.

When the fault detection service detects a node failure, the fault recovery method
is called (see Section 4.3.5). If the master of the sending side has failed, a new master
is elected among its replicas. As this new master did not receive a commit message to
signal the multiple send completion, it starts over the multiple send operation. Thus,
some processes on the receiving side might have received the message from the master
before it failed, and once again from the new master after the failure. To avoid this,
a receiving process uses its history table, which stores MIDs of received messages. So,
before actually receiving the message, the communication library on the receiver side
verifies that the MID is not yet in the table. Otherwise, it simply discards the message.
Algorithm 5 shows the pseudo-code corresponding to this protocol.

80 CHAPTER 4. FAULT MANAGEMENT

Algorithm 5: Reception message agreement protocol on process P.

//(1). When the communication library receives a message
Receive a message with MID = mid

if mid is in history table then

//This message is already handled

ignore this message

else

L //First time to receive this message

wait MPT.Recv to handle message

//(2).When MPI.Recv is executed
read message M from queue and copies it to user buffer
put mid in history table

4.3.4 Non-deterministic Situations

Let us now examine what are the implications of replication on the coherence of an
application. We say an application using replication is coherent if all its master processes
produce the same outputs as the same application without replication.

The protocols specified above can lead to situations where real processes have differ-
ent states, and thus may produce different outputs. The origin of a different state is a
non-deterministic operation. We distinguish two types of non-deterministic operations
during the execution. The first type is related to instructions executed internally in the
process. The second type is related to the communication of values.

Internal Cause

The general case for such situation is a logical process :
(1) assigns a variable a different value on the master and on a replica,
(2) then the master starts to send its value to another logical process,
(3) then the master fails before it can commit its send on the replica.

In this scenario, the replica of the master will restart the send with its own value. The
receivers that did receive the first value will discard the second message, while those that
did not receive the message will accept the second (different) value.

To clarify this, the pseudo code listed in Algorithm 6 exemplifies the situation with
the most evident source of non-determinism: here, the variable is assigned a random
value.

4.3. REPLICAS COORDINATION PROTOCOL 81

Algorithm 6: A sample code with random operations.
if (rank == 0) then

R = Random()

Send R to rank 1

Display R

else

Recv R from rank 0

| Display R

Assume this program is executed with two processes and replication degree two.

e M —
R=5 (L.1)
Display 6 Display 6
s Py
R=2 @ a2 N
Display 2 R = 2 Display 6
Py p
Backup Table
B P

Figure 4.4: Scenario for Algorithm 6 with two processes and replication degree two.

No Fault Scenario Let us first examine the scenario in which no fault occurs during
the execution. This is illustrated by Figure 4.4. Logical process Py (made of two real
processes PJ, the master, and P} its replica) first issues a call to random(). Variable R
is assigned the random value 5 on P{ and 2 on P}. In step (1.1) and (1.2), P{ sends R
to all processes of rank 1, P10 and Pll. Meanwhile, PO1 has reached the send instruction,
and in the absence of commit from the master, saves the message into its backup table
in step (2). All processes are then instructed to output the value of R. The display
outputs of non-master replicas are always discarded®. Hence, all processes display the
same value, which is coherent with the MPI semantics.

Fault Scenario If a fault occurs, it may happen during the send operation. Figure
4.5 shows a fault occurring at the weakest point in the protocol. P(? had nearly finished
to send R to P;. However, it could send R to only P} in step (1.1) and failed before

3 Actually, outputs of all remote processes are routed through a StreamGobbler to the display device
of the submitter. During this redirection, display from non-master replicas are discarded.

82 CHAPTER 4. FAULT MANAGEMENT

sending R to P!. As in the previous scenario, P} had already stored its message in
its backup table in step (2). Figure 4.5(b) shows that Pj has been notified of Py’s
failure. Hence, it becomes the master for Fy. It verifies its backup table and retransmits
messages P(? did not commit*. On the receiving side, P which already had a message
from P{ discards the retransmitted message (with the same MID). On the contrary, P_
accepts the message. Finally, the new master PO1 and P output different values, leading
to an incoherent state. The weakness of the protocol lies in the impossibility to make
the send operation atomic.

R-5 (LD _
Display 6
Display 6
PY P? P 314 P
R=2 A R=2
2 (1.2) /y'
R - 2 Display 2 R-o (3.2) Display 2
B p i i
Backup Table Backup Table
F P 50 Py
(a) (b)

Figure 4.5: MPI process schema in algorithm 6, when there is fault during the execution.

We could imagine that the above situation could be solved by a consensus on the
receiving side: if not all of the processes receive a message then all processes ignore the
message. However, this does not work in the situation the messages have really been
sent but the failure occurs before the commit (cf. footnote 4).

To solve this problem on random numbers, we introduce a new method MPI.Random
which guarantees that all the processes in the same logical process generate the same
random values. Inside the MPI.Random, we use the jobID (each executing MPI execution
has its own jobID) and MPI rank number to generate a seed number as an input to the
Random class in Java. Nonetheless, each execution generates different random numbers
because of the different jobIDs and because each rank has a different seed number.

Non-deterministic Communication Case

As explained in Section 4.3.1, we can compute a unique message identifier as a func-
tion of the source, destination, communicator, tag and sequence number of the message.

4Note also that the failure could have intervened once the send is completed but before the commit
is done.

4.3. REPLICAS COORDINATION PROTOCOL 83

There is one exception to it. MPI specifies the particular constants MPI_ANY_SOURCE and
MPI_ANY_TAG, which can be used in the receive call as source and tag values respectively.
In that case, the receiver cannot compute a unique identifier for all messages. With-
out extra-information, the receiver could face an undecidable problem after a failure,
whether to accept or not a retransmitted message.

Py (master of Pp) * New master Py !

fails before commit © retransmits m;
: 0 ‘:
: F 0 - : . :
: commit m; : : :
1 \'ﬁz i i)
L pl :
P

my my my
L Do
K .
: discard :
: e
Cpl
1. 1 discard :
Discard

extra message

Figure 4.6: Replication problem on MPI_ANY_SOURCE and MPI_ANY_TAG.

Figure 4.6 illustrates the problematic situation. Suppose logical process Py has to
send two messages m; and mo. These messages are received on Pj specifying MPT_ANY_SOURCE.
A failure occurs after Py has really sent m; but before it committed its send. When the
replica becomes the master, it retransmits m; and then sends ms.

The figure presents the situation where P; receives mi again. Indeed, the receiver
is unable to determine, based on the MID computed from the receive instruction argu-
ments, if it is the same message. If these m; messages were accepted (and then used by
the user program), the following extra message mo would be discarded. This execution
would be incoherent with the duplication of messages m;.

To solve this problem, P2P-MPT uses its history table. In the situation above, though
m1 are taken in the receive queue, the m; messages’ headers are then examined. The
receivers see that such MIDs already exist in the history table and discard the messages,
as shown in Figure 4.7. Further messages mq are accepted.

84 CHAPTER 4. FAULT MANAGEMENT

P} (master of Pp) * New master Py !

fails before commit . retransmits my
: 0 ‘ ‘ ‘:
: F 0 ; : . :
: commit my : : :
] f f LR
: 1 :
P

my my my
L p0
K .
: discard :
: p
: 1
. discard : :
Discard

same MID

Figure 4.7: Replication problem solved on MPI_ANY_SQURCE and MPI_ANY_TAG.

4.3.5 Fault Recovery protocol

It remains now to specify how a failure is to be recovered. We must distinguish if the
failure crashes a master or a non-master process. Algorithm 7 summarizes the actions
to be taken at any real process P upon failure notification.

Algorithm 7: Fault recovery protocol.

//When a failure for process D is notified by FD service.
Mark D as dead

if D is the master of my logical process then
elect new master

if P is a new master then
L retransmit + commit all messages in backup table

commit messages to its replicas

If the master of a logical process fails, alive replicas will elect a new master. The
election requires no communication between replicas. Since the communicator contains
all real processes ranks, they simply choose the process with the lowest rank in the
group as the new master. Then, the new master checks for messages in its backup
table. If the backup table contains messages, it means the previous master failed before
it could complete the sending of these messages (completion involves to commit the
corresponding MIDs at the replicas). The new master takes the charge to retransmit all
the messages present in its backup table.

4.4. CORRECTNESS OF THE PROTOCOL 85

In case a non-master process fails the execution continues without any interruption.
Replicas in the same logical process mark this process as dead and the master of the
logical process will not send commit message to this process anymore. Meanwhile,
replicas in all other logical processes also mark this process as dead and will stop sending
MPI messages to this process.

4.4 Correctness of the protocol

4.4.1 Atomic broadcast compliance

As stated in Section 4.2, the active replication technique requires the atomic broadcast to
satisfy four properties. We now explain that our replica coordination protocol matches
the atomic broadcast requirements:

Validity if a correct process broadcasts a message m, then it eventually delivers m.
From our assumption that our system is partially synchronous and that our com-
munication links are reliable, this property is satisfied.

Agreement If a correct process delivers a message m, then all correct processes even-
tually deliver m. If the sender does not crash, the validity property satisfied above
insures that the message will be delivered to all destination processes. If the sender
crashes between any send to the destination processes, a replica of the sender will
become the new master in a finite time. (Or the application crashes if it does not
remain any replica in the logical process of the sender). It will then retransmit the
message to the destination processes. Thus, in the end all destination processes
will receive the message. Hence, the property is satisfied.

Integrity For any message m, every correct process delivers m at most once, and only
if m was previously broadcast by sender(m). On the receiver side, MIDs and the
history table are used to detect and discard duplicated received message. Hence,
we never deliver duplicated message and the property is satisfied.

Total order If process p and q both deliver messages m and m', then p delivers m before
m', if and only if q¢ delivers m before m'. The received message will be delivered
upon the MPI.Recv call from the user program. The communication library always
fetches the received message from its temporary buffer in the order indicated by
the program.

4.4.2 Handling of Failure Situations inside Atomic Broadcast

Let us illustrate with the following example the possible points of failures inside an
atomic broadcast. We consider a process P; implemented by three replicas, and P
being two replicas. Figure 4.8 shows the steps taken by P; when it invokes MPI.Send
to send a message to P». This is the only possible interleaving of messages since the
messages are synchronous and the sending order to replicas is fixed.

86

CHAPTER 4. FAULT MANAGEMENT

: Lo o :
P 3 — R 3
‘ ! Lo Lo ! Py
T : Lo L : :
2 : — T : :
: Lo o :

Ay TAL Ay AL A AL A7

Figure 4.8: Possible failures on the master while sending to the destination processes

In this case, the broadcaster P} may crash at seven different moments (Ay,..., A7)
during the atomic broadcast. We now examine how failures are handled depending of
the moment.

Period ‘

State of the system and actions taken ‘

Ay

All of destination processes (P} and P3) do not receive the message. When
the fault detection service notifies that P| failed, then the new master on
logical process P; is chosen and redo this send operation.

Ag

This situation is identical to Aj.

Az

Pj received the message but P7 did not. However this crash of P} occurs
before the commit stage. Thus, the new master of P, will resend this message.
Thus, P? can receive this message whereas Py discards this message because
the message is already received (looking up its history table).

Ay

This situation is identical to As.

All replicas in P, received the message but the failure happens before the
commit message reaches P? and P?. Hence, whatever process (P? or P}?) is
chosen to be the new master of P, it will resend the message. Thanks to the
history table, all replicas of logical process P, will discard the message.

This situation is identical to As.

At this stage, P? knows that the message is transmitted while P} does not.
When the new master is chosen, it can be either P or P{. If P? becomes
the new master then it does nothing because it knows that the message has
been transmitted. If P} becomes the new master then it will retransmit the
message, but the destination processes will discard the message because the
message is already received (looking up its history table).

Notice that it is sufficient to observe the behavior of the sender to check the protocol

4.5. REPLICATION AND FAILURE PROBABILITY 87

coherence against the atomic broadcast properties. If a failure occurs at any of the other
processes involved, the failed process definitively leaves the group (since we consider
fail-stop failures) and its state should not be considered anymore.

4.5 Replication and Failure Probability

We have examined in the previous sections how replication could be designed and imple-
mented. In this section, we quantify the benefits and the costs of replication on program
execution. We give an expression of the failure probability of an application and how
much replication improves an application’s robustness.

Agsume failures are independent events, occurring equiprobably at each host: we
note f the probability that a host fails during a chosen time unit. Thus, considering a
p processes MPI application without replication, the probability that it crashes is :

Pupppy = probability that 1, or 2,..., or n processes crash
= 1 — (probability that no process crashes)
= 1-(1-fp

Now, when an application has its processes replicated with a replication degree r, a
crash of the application occurs if and only if at least one MPI process has all its r copies
failed. The probability that all of the r copies of an MPI process fail is f7.

Thus, like in the expression above, considering a p processes MPI application with
replication degree 7, the probability that it crashes is

Papp(p,r) =1—(1—f")F

Figure 4.9 shows the failure probability curve depending on the replication degree
chosen (r = 1 means no replication) where f has been arbitrary set to 5%.

Notice that doubling the replication degree increases far more than twice the robust-
ness. For example, a 128 processes MPI application with a replication degree of only 2
reduces the failure probability from 99% to 27%.

But, for the replication to work properly, each process must reach in a definite pe-
riod, a global knowledge of other processes states to prevent incoherence. For instance,
running processes should stop sending messages to a failed process. This problem be-
comes challenging when large scale systems are in the scope. When an application starts,
it registers with a local service called the fault-detection service, introduced in Section
3.1.2. In each host, this service is responsible to notify the local application process of
failures happening on co-allocated processes. Thus, the design of the failure detectors is
of primary importance for fault-tolerance. We discuss this issue in the following section.

88 CHAPTER 4. FAULT MANAGEMENT

=1 ——
r=2 e
=3 —---

b/

b/
ol |
ol
ol
|

0.2

Failure Probability

0.1

S R SRR

0 50 100 150 200 250
Number of processes

Figure 4.9: Failure probability depending on replication degree r (f=0.05).

4.6 Fault Detection Background

Failure detection services have received much attention in the literature and since they
are considered as first-class services of distributed systems [34], many protocols for fail-
ure detection have been proposed and implemented. Two classical approaches are the
push and pull models discussed in [33], which rely on a centralized node which regularly
triggers push or pull actions. Though they have proved to be efficient on local area
networks, they do not scale well and hence are not adapted to large distributed systems
such as those targeted for P2P-MPI.

A more scalable protocol is called gossiping after the gossip-style fault detection
service presented in [4]. It is a distributed algorithm whose informative messages are
evenly dispatched among the links of the system. In the following, we present this
algorithm approach and its main variants.

A gossip failure detector is a set of distributed modules, with one module residing at
each host to monitor. Each module maintains a local table with one entry per detector
known to it. This entry includes a counter called heartbeat. In a running state, each
module repeatedly chooses some other modules and sends them a gossip message con-
sisting in its table with its heartbeat incremented. When a module receives one or more
gossip messages from other modules, it merges its local table with all received tables and
adopts for each host the maximum heartbeat found. If a heartbeat for a host A which
is maintained by a failure detector at host B has not increased after a certain timeout,
host B suspects that host A has crashed. In order to keep the system’s coherence, a
congsensus phase generally follows to acknowledge that host A has failed.

4.6. FAULT DETECTION BACKGROUND 89

Gossiping protocols are usually governed by three key parameters: the gossip time,
cleanup time, and the consensus time. Gossip time, noted Tyossip, is the time interval
between two consecutive gossip messages. Cleanup time, or T¢jeqnuyp, is the time interval
after which a host is suspected to have failed. Finally, consensus time noted Tionsensuss
is the time interval after which consensus is reached about a failed node.

Notice that a major difficulty in gossiping implementations lies in the setting of
Teieanup: it is easy to compute a lower bound, referred to as TgfeTnup, which is the time
required for information to reach all other hosts, but this value can serve as Teqnyp only
in synchronous systems. In asynchronous systems, the cleanup time is usually set to
some multiple of the gossip time, and must neither be too long to avoid long detection
times, nor too short to avoid frequent false failure detections.

Starting from this basis, several proposals have been made to improve or adapt this

gossip-style failure detector to other contexts [69]. We briefly review advantages and
disadvantages of the original and modified gossip based protocols and what has to be
adapted to meet P2P-MPI requirements. Notably, we pay attention to the detection
time (Tclmei;@nup) and reliability of each protocol.
Random. In the gossip protocol originally proposed [4], each module randomly chooses
at each step, the hosts it sends its table to. In practice, random gossip evens the
communication load among the network links but has the disadvantage of being non-
deterministic. It is possible that a node receives no gossip message for a period long
enough to cause a false failure detection, i.e. a node is considered failed whereas it is
still alive. To minimize this risk, the system implementor can increase Tijeqnyp at the
cost of a longer detection time.

Round-Robin (RR). This method aims to make gossip messages traffic more uniform
by employing a deterministic approach. In this protocol, gossiping takes place in definite
round every Tgossip Seconds. In any one round, each node will receive and send a single
gossip message. Destination node d of a message is determined from source node s and
current round number 7, as follows :

d=(s+r) modn, 0<s<n,1<r<n (4.1)

where n is the number of nodes. After r = n — 1 rounds, all nodes have communicated
with each other, which ends a cycle and r (generally implemented as a circular counter) is
reset to 1. For a six nodes system, the set of communications taking place is represented
in the table in Figure 4.10.

This protocol guarantees that all nodes will receive a given node’s updated heartbeat
within a bounded time. The information about a state’s node is transmitted to another
node in the first round, then to two other nodes in the second round (one node gets the
information directly from the initial node, the other from the node previously informed,
etc). At a given round r, there are 1 4+ 2 4 - -+ + r nodes informed. Hence, knowing n

90 CHAPTER 4. FAULT MANAGEMENT

s—d
0]—1, 1-2,223,324,4-5,5-0
0—2, 1-+3,2—=+4,3—=-5,4—-0,5—=1
0—-3, 1-4,2—-5,3—-0,4—-1,5—2
0—4, 1=-5,2—20,3—-1,4—2,5—=3
0—5, 1-0,2—-1,3—-2,4—-3,5—+4

QU N — 3

Figure 4.10: Communication pattern in the round-robin protocol (n = 6).

we can deduce the minimum cleanup time, depending on an integer number of rounds r

such that:)

=71 X Tyossip Where r=[p] , p(p;—) =n

For instance in Figure 4.10, three rounds are required to inform the six nodes of the
initial state of node 0 (boxed). We have underlined the nodes when they receive the

information.

min
cleanup

Binary Round-Robin (BRR). The binary round-robin protocol attempts to min-
imize bandwidth used for gossiping by eliminating all redundant gossiping messages.
The inherent redundancy of the round-robin protocol is avoided by skipping the unnec-
essary steps. The algorithm determines sources and destination nodes from the following
relation:

d=(s+2""1 modn, 1<r<[logy(n)] (4.2)
The cycle length is [loga(n)] rounds, and we have Tgl”e’glmp = [loga(n)] X Tyossip-
0 1st Round

2nd Round

n

L=
<\ v
l 1
p/——\\
2

Figure 4.11: Communication pattern in the binary round-robin protocol (n = 4).

From our experience (also observed in experiments of Section 4.8.1), in a partially
synchronous system, provided that we are able to make the distributed FD start nearly

4.7. FAULT DETECTION IN P2P-MPI 91

at the same time, i.e. within a time slot shorter (logical time) than a cycle, and that
the time needed to send a heartbeat is less than Tyssip, a good choice for Tijeqnyp is the
smallest multiple of T7R% - i.e. 2 X [loga(n)] X Tyossip. This allows not to consider a
fault, the frequent situation where the last messages sent within cycle ¢ on source nodes

arrive at cycle ¢+ 1 on their corresponding receiver nodes.

Note however that the elimination of redundant gossip alleviates network load and
accelerates heartbeat status dissemination at the cost of an increased risk of false detec-
tions. Figure 4.11 shows a 4 nodes system. From equation 4.2, we have that node 2 gets
incoming messages from node 1 (in the 1st round) and from node 0 (2nd round) only.
Therefore, if node 0 and 1 fail, node 2 will not receive any more gossip messages. After
Tjeanup units of time, node 2 will suspect node 3 to have failed even if it is not true.
This point is thus to be considered in the protocol choice.

4.7 Fault Detection in P2P-MPI

From the above description of state of the art proposals for failure detection, we retain
BRR for its low bandwidth usage and quick detection time despite it relative fragility.
With this protocol often comes a consensus phase, which follows a failure detection, to
keep the coherence of the system (all nodes make the same decision about other nodes
states). Consensus if often based on a voting procedure [69]. In that case all nodes
transmit, in addition to their heartbeat table, an extra (n x n) matrix M. The value
M; ; indicates what is the state of node ¢ according to node j. Thus, a FD suspecting a
node to have failed can decide that the node has really failed if a majority of other nodes
agree. However, the cost of transmitting such matrices would induce an unacceptable
overhead in our case. For a 256 nodes system, each matrix represents at least a 64 Kb
message (and 256 Kb for 512 nodes), transmitted every Ty,sp. We replace the consensus
by a lighter procedure, called ping procedure in which a node suspecting another node to
have failed, directly ping this node to confirm the failure. If the node is alive, it answers
to the ping by returning its current heartbeat.

This is an illustration of problems we came across when studying the behavior of
the FD service. We now describe the requirements we have set for the middleware, and
which algorithms have been implemented to fulfill these requirements.

4.7.1 Assumptions and Requirements

P2P-MPI is intended for grids and should be able to scale up to hundreds of nodes.
Hence, we demand its fault detection service to be:

a) scalable, i.e. the network traffic that it generates does not induce bottlenecks,

b) efficient, i.e. the detection time is acceptable relatively to the application execution
time,

92 CHAPTER 4. FAULT MANAGEMENT

¢) deterministic in the fault detection time, i.e. a fault is detected in a guaranteed
delay,

d) reliable, i.e. its failure probability is several orders of magnitudes less than the
failure probability of the monitored application, since its failure would results in
false failure detections.

The assumptions we make regarding our system are those formulated in Section 77:
we assume partial asynchronous system (there is no global clock, the local clock drift dif-
ferences from one host to another is negligible during an application execution). We also
assume non-lossy channels: our implementation uses TCP to transport fault detection
service traffic because TCP insures message delivery. TCP also has the advantage of
being less often blocked than UDP between administrative domains. We also require a
few available ports (3 for services plus 1 for each application) for TCP communications,
i.e. not blocked by firewalls for any participating peer. Indeed, for sake of performances,
we do not have relay mechanisms. During the startup phase, if we detect that the com-
munication could not be establish back and forth between the submitter and all other
peers, the application’s launch stops. Last, we assume that the time required to trans-
mit a message between any two hosts is generally less than Tjesp. Yet, we tolerate
unusually long transmission times (due to network hangup for instance) thanks to a
parameter Tinay hangup S€t by the user (actually Tejeqnyp is increased by Trnes hangup i
the implementation).

4.7.2 Design issues

In early versions of P2P-MPI, the fault detection was based on the random gossip al-
gorithm. In practice however, we were not fully satisfied with it because of its non-
deterministic detection time.

As stated above, the BRR protocol is optimal with respect to bandwidth usage and
fault detection delay. The low bandwidth usage results from the small number of nodes
(we call them sources) in charge of informing a given node by sending to it gossiping
messages: in a system of n nodes, each node has at most logz2(n) sources. Hence, BRR is
the most fragile system with respect to the simultaneous failures of all sources for a node,
and the probability that this situation happens is not always negligible: In the example
of the four nodes system with BRR, the probability of failure can be counted as follows.
Let f be the failure probability of each individual node in a time unit 7' (T' < Teicanup)
and let P (i) be the probability that i nodes simultaneously fail during 7. When 2 nodes
fail, if both of them are source nodes then there will be a node that can not get any gossip
messages. There are 4 such cases, which are the failures of {2,3},{0,3},{0,1} or {1,2}.
When 3 nodes fail, there is no chance FD can resist. There are (g) ways of choosing 3
failed nodes among 4, namely {1,2,3},{0,2,3},{0,1,3},{0,1,2}. And there is only 1 case
4 nodes fail. Finally, the FD failure has probability Py, = P(4) + P(3) + P(2) =

G PO —f+4ar2(1 - f)2

4.7. FAULT DETECTION IN P2P-MPI 93

In this case, using the numerical values of section 4.5 (i.e. f=0.05), the comparison
between the failure probability of the application (p=2,r=2) and the failure probability
of the BRR for n=4, leads to Pyyp2,2) = 0.005 and Fy.4y = 0.0095 which means the
application is more resistant than the fault detection system itself. Even if the FD failure
probability decreases quickly with the number of nodes, the user may wish to increase
FD robustness by not eliminating all redundancy in the gossip protocol.

4.7.3 P2P-MPI implementation

Users have various needs, depending on the number of nodes they intend to use and
on the network characteristics. In a reliable environment, BRR is a good choice for its
optimal detection speed. For more reliability, we may wish some redundancy and we
allow users to choose a variant of BRR described below. The chosen protocol appears
in the configuration file and may change for each application (at startup, all FDs are
instructed with which protocol they should monitor a given application).

The choice of an appropriate protocol is important but not sufficient to get an ef-
fective implementation. We also have to correctly initialize the heartbeating system so
that the delayed starts of processes are not considered failures. Also, the application
must occasionally make a decision against the FD prediction about a failure to detect
firewalls.

| =
v v
/—\\ /——\\
2 2
1st Round — = 3rd Round
,,,,,,,,,,,,,,, 2nd Round . -—______p Ath Round

(a) (b)

Figure 4.12: Communication pattern in the double binary round-robin protocol (n = 4).

94 CHAPTER 4. FAULT MANAGEMENT

Double Binary Round-Robin (DBRR) We introduce the double binary round-
robin protocol which detects failures in a delay asymptotically equal to BRR (O(loga(n))
and is acceptably fast in practice, while reinforcing robustness of BRR. The idea is simply
to avoid to have only one-way connections between nodes. Thus, in the first half of a
cycle, we use the BRR routing in a clock-wise direction while in the second half, we
establish a connection back by applying BRR in a counterclock-wise direction. The
destination node for each gossip message is determined by the following relation:

[(s+2"7") modn if 1 <r < [loga(n)]
d= { (s — 2r—log2()1-1) mod n if [loga(n)] < 72“ < 2[loga(n)] (43)

The cycle length is 2[loga(n)] and hence we have Td”ffglnup = 2[loga(n)] x Tyossip- Figure
4.7.3 shows the communication pattern in the double round-robin protocol for four pro-
cesses. With the same assumptions as for BRR, we set Teieanup = 3[l0oga(n)] X Tgossip

for DBRR.

To compare BRR and DBRR reliability, we can count following the principles of
Section 4.7.2 but this quickly becomes difficult for a large number of nodes. Instead,
we simulate a large number of scenarios, in which each node may fail with a probability
f. Then, we verify if the graph representing the BRR or DBRR routing is connected:
simultaneous nodes failures may cut all edges from sources nodes to a destination node.
This case implies a FD failure. In Figure 4.13, we repeat the simulation for 5.8 x 10°
trials with f=0.05. Notice that in the DBRR protocol, we could not not find any FD
failure when the number of nodes is more than 16, which means the number of our trials
is not sufficient to estimate the DBRR failure probability for such n.

4.7.4 Automatic Adjustment of Initial Heartbeat

In the startup phase of an application execution (contained in MPI.Init), the submitter
process first queries advertised resources for their availability and their will to accept the
job. The submitter constructs a table numbering available resources called the commu-
nicator®, which is sent in turn to participating peers. The remote peers acknowledge this
numbering by returning TCP sockets where the submitter can contact their file transfer
service. It follows the transfer of executable code and input data. Once a remote node
has completed the download, it starts the application which registers with its local FD
instance.

This causes the FDs to start asynchronously and because the time of transferring
files may well exceed Tjeanup, the FD should (i) not declared nodes that have not yet
started their FD as failed, and (ii) should start with a heartbeat value similar to all
others at the end of the MPI.Initbarrier. Thus, the idea is to estimate on each node,
how many heartbeats have been missed since the beginning of the startup phase, to set
the local initial heartbeat accordingly. This is achieved by having the submitter sends

5The submitter is always assigned the number 0.

4.7. FAULT DETECTION IN P2P-MPI 95

0.01

BRR protocol —+—
DBRR protocol ---%---

0.001
0.0001 E.
1le-05
1le-06

le-07

Failure probability of fault detection system

1le-08

1e-09 L1 1 I I I
48 16 32 64 128 256

Number of processes

Figure 4.13: Failure probabilities of the FD system using BRR and DBRR (f = 0.05).

Rank 0 Rank 1 Rank 2 Rank n — 1
tsy S
Send the MPI
tsy communicator
and necessary
mformation
t6‘“71

o fTn-1

Tn—l

D Register with MPD
l Register with FD
D FD monitors process

'

Figure 4.14: Application startup.

to each node, together with the communicator, the time spent sending information to
previous nodes. Figure 4.14 illustrates the situation.

We note ts;, 1 < i < n the date when the submitter sends the communicator to peer
i, and tr; the date when peer i receives the communicator. Each peer also stores date
T; at which it registers with its local FD. The submitter sends At; = ts; — ts1 to any
peer i (1 <7 < n) which can then compute its initial heartbeat h; as:

h; = [(Tz —tr; + Ati)/Tgossip—|a 1<i<n (4'4)

96 CHAPTER 4. FAULT MANAGEMENT

while the submitter adjusts its initial heartbeat to ho = [(To — ts1)/Tgossip |-

Note that we implement a flat tree broadcast to send the communicator instead of
any hierarchical broadcast scheme (e.g. binary tree, binomial tree) because we could
not guarantee in that case, that intermediate nodes always stay alive and pass the
communicator information to others. If any would fail after receiving the communicator
and before it passes that information to others, then the rest of that tree will not get
any information about the communicator and the execution could not continue.

4.8 Experiments

We present in this section some experimental results regarding two aspects of our ap-
proach of fault-tolerance. The first experiment tests the behavior of the fault detection
algorithms in the FD service in real conditions. The second experiment shows the over-
head induced by replication on some test cases.

4.8.1 Fault Detection Time

Objectives

We have seen that P2P-MPI provides two gossip-style protocols: the Binary Round
Robin (BRR) and Double Binary Round Robin (DBRR) algorithms. Because they use a
deterministic routing of information messages, these two modified gossip-style protocols
allow to predict the fault detection time in theory. So, the experiment’s objective is to
compare the predicted detection time with the detection times observed when failures
occur in a real application.

Experiment Setup

We use Grid5000 to get enough processors for the experiment. We run an application
distributed across three the distant sites Nancy, Rennes and Sophia-Antipolis.

Environment type | Grid5000 — grillon.nancy, paravent.rennes azur.sophia clusters
Hardware dual-cores AMD Opteron 2GHz, 2GB RAM

Operating System | Linux 2.6.14

Interconnection 2 ports GE cards intra-cluster, 10 Gbps/s between sites.
Software jdk1.5, p2pmpi-0.20.0

The experiment consists in running a parallel application without replication. After
20 seconds we Kkill all processes on a random node to simulate a node failure. We then log
at what time each node is notified of the failure and compute the time interval between
failure and detection. For both protocols BRR and DBRR, the Tys4p value is set to 0.5
second.

4.8. EXPERIMENTS 97

Experiment Results

Figure 4.15 plots the average of these intervals on all nodes. Also plotted for comparison
is Tejeanup as specified previously, termed “theoretical” detection time on the graph.

14

12

10

Total time (s)
@

BRR - observed —+—
DBRR - observed

BRR - theoretical --------
DBRR - theoretical

48 16 32 64 128 256
Number of processes

Figure 4.15: Time to detect a fault for BRR and DBRR

The detection speed observed is very similar to the theoretical predictions whatever
the number of processes involved, up to 256. The difference with the predictions (about
0.5 s) comes from the ping procedure which adds an overhead, and from the rounding
to an integer number of heartbeats in Equation 4.4. This difference is about the same
as the Tiessip value used, and hence we see that the ping procedure does not induce a
bottleneck.

It is also important to notice that no false detection has been observed throughout
our tests, hence the ping procedure has been triggered only for real failures. There are
two reasons for a false detection: either all sources of information for a node fail, or
Teieanup is too short with respect to the system characteristics (communication delays,
local clocks drifts, etc). Here, given the briefness of execution, the former reason is
out of the scope. Given the absence of false failures we can conclude that we have
chosen a correct detection time Tijeqnup, and our initial assumptions are correct, i.e. the
initial heartbeat adjustment is effective and message delays are less than Tyossp. This
experiment shows the scalability of the system on Grid5000, despite the presence of wide
area network links between hosts.

98 CHAPTER 4. FAULT MANAGEMENT

4.8.2 Replication Overhead
Objectives

It is difficult to give a fair estimation of the cost of replication. The main cost is the
extra resources it requires. The secondary cost is the time penalty since replication
involves extra network communications. We should consider a huge panel of situations
to reflect the costs of replication. Indeed, it depends on the application itself, on the
network environment, and on the available resources. When there are not enough re-
sources, replication will map several processes per processor (hence sharing the CPU
power) and the cost will be much higher than when enough computers are available to
run one replica each. Obviously, assessing the cost of replication would deserve a thor-
ough study. As a first evaluation, we present results obtained on a test application with
an early version of P2P-MPI on commodity hardware, and recent tests with our latest
implementation.

The general idea is that the communication cost of the application should grow lin-
early with the replication degree, since each message is sent to all replicas. Our first tests
with replication were conducted in a student computer room, and we observed the lin-
ear cost of replication on some simple ping-pong test. Unfortunately, we did not gather
enough data to present comparative results here. In Ezperiment 1 however, we show
the impact of replication on an application, the IS program from the NAS benchmark.

We have conducted further experiments using our new multiple port implementation
(see Chapter 5). The environment we used is a state of the art cluster. We chose such
a platform to ease our experiments as they required up to 128 processors. Our general
conclusion is that the replication cost is far more complicated to predict in this high-
performance environment, maybe due to network congestion. Nonetheless, we present
in Ezperiment 2 results as a first evaluation of replication cost.

Experiment 1 Setup

The experiment uses a student computer room of 24 PCs, when the computers were
available.

Environment type | Student computer room

Hardware 24 Pentium-1V 3 GHz, 512 MB RAM.
Interconnection 100 Mbps Ethernet, LAN.

Operating System | Linux 2.6.10.

Software jdk1.5.0, JXTA-J2SE 2.3.3, p2pmpi-0.2.0

Application test

We initially tested the EP (Embarrassingly Parallel) and IS (Integer Sorting) programs
from the NAS benchmarks. As explained in Section 3.5.2 page 67, we chose those pro-

4.8. EXPERIMENTS 99

grams for their opposite characteristics.

We do not present results for EP as the test shows very little difference whether we
use replication or not. Results for IS in this environment are reported in Figure 4.16. IS
requires a number of processes being a power of two, so only eight out of the twenty-four
PCs could be used. NAS benchmark proposes several classes for each test, which denotes
different problem sizes and computation complexities.

100

T
Class A, 4 procs —+—
9 | Class A, 8 procs ---x---
Class B, 4 procs ---*---
Class B, 8 procs &

80

70

60

50

Total time (s)

40

30 g

20 gr

10 — C— - -

0

Replication degree

Figure 4.16: Performance for IS depending on replication degree.

The plot on figure 4.16 shows the time needed to compute a given problem class
with four or eight processes, and its evolution depending on the replication degree. For
example, for curve “Class B, 8 processors”, 3 replicas per logical process means 24 pro-
cessors were involved. We have limited the number of logical processes so that we have
at most one replica per processor to avoid load-imbalance or communications bottlenecks.

The figure shows a linear increase of execution time in the replication degree, with a
slope depending on the number of processors and messages sizes.

Experiment 2 Setup

The cost of replication is measured in this recent experiment with the new multiple port
implementation. We use one of the Grid5000 clusters to have enough nodes to go up to
a replication of four without hosting more than one process per CPU (core).

Environment type | A cluster in Grid5000 — paravent.rennes

Hardware 64 dual-processors AMD Opteron 246 2.0GHz, 2 GB RAM.
Interconnection Gigabit Ethernet.

Operating System | Linux 2.6.19.

Software jdk1.5.0_09, p2pmpi-0.28.0

100 CHAPTER 4. FAULT MANAGEMENT

r4 a8
9 *
8
P 7
)
@
£ s gl
=1 o)
o
s
=] a *
4 E
LK
o X
5] . /"’

0 20000 40000 60000 80000 100000 120000 14000C
Message size (Byte)

Figure 4.17: Time spent for 1000 ping-pong messages with different replication degrees.

Ping-pong

We first try to isolate the communication overhead with a sample ping-pong program,
which simply sends a message to another process and receives it back. The sender is
process Py with rank 0, and the receiver is process P; with rank 1. Notice that Fy is
not replicated (by convention) and hence we measure only once the replication overhead
when P sends its message back to Fy. The ping-pong message is sent 1000 times to
reduce possible start-up side effects (e.g TCP slow start).

The test is done for different message sizes, from 1 KB to 128 KB. We vary the repli-
cation degree for this program, from one to four. We report in Figure 4.17 the round
trip time for the 1000 message exchanges.

We observe that the minimal overhead for replication is less than expected. We
expected the execution of ping-pong with a replication degree r to be r times longer
than ping-pong without replication (¢1). If ¢, is the time for ping-pong with replication
degree r, we always have t, < r-t; in the range of message sizes tested. For example, the
communication overhead induced by a replication degree of two (r = 2) appears almost
negligible for messages up to 64 KB. For a 64 KB message, the overhead is 17% for
r =3, and 50% for r = 4. It goes up to 42% and 73% respectively for 128 KB messages.
Thus, it seems that the communication library efficiently manages multiple connections
in this hardware environment.

Application test

Figure 4.18 shows the performances of IS in the setup described above. Like in Experi-
ment 1, we have at most one process per node (CPU).
The application shows a good speed-up until sixteen processes, while using thirty-

4.9. CONCLUSION 101

two processes nearly leads to a slowdown. (These results outperform the performance
shown in Figure 4.16 because of the vast superiority of hardware used in Experiment 2.)
Hence, if we look at the execution in the relevant range from four to sixteen processes, we
observe that replication adds an overhead smaller than in Experiment 1 with commodity
hardware.

12

10

Communication time(s)
o

4 8 16 32
Number of processes

Figure 4.18: Performance for IS class B depending on replication degree and number of
processes.

Given the type of application IS represents in terms of communications involved,
the results observed in both a high performance cluster and in a commodity hardware
environment are encouraging. A larger panel of applications, as well as a precise analysis
of communication costs for replication should be studied in a future work.

4.9 Conclusion

We have described in this chapter the fault management underlying P2P-MPI. The
first part introduces replication for fault tolerance, and we explain how this fits in our
framework. We show how replication increase the robustness of applications execution.
The fault detection issue is also a part of fault management. Fault detection in our
work consists in an external monitoring of execution done by a specific fault-detection
service. In the second part, we first describe the background of our work, based on recent
advances in the research field of fault detectors. We compare the main protocols recently
proposed regarding their robustness, their speed, and their deterministic behavior, and
we analyze which is best suited for our middleware. We introduce an original protocol
that increases the number of sources in the gossip procedure, and thus improves the
fault-tolerance of the failure detection service, while the detection time remains low.
Last, we present the experiments conducted on Grid5000. One experiment addresses

102 CHAPTER 4. FAULT MANAGEMENT

the fault detection speed and accuracy. The results show that the fault detection speeds
observed in experiments for applications of up to 256 processes, are really close to the
theoretical figures, and demonstrate the system scalability. The second experiment is
a first experimental evaluation of replication overhead. The figures show the cost of
replication on a reference application, in two different computing environments, namely,
a set of networked commodity PCs and a high performance cluster. In both situations,
the communication cost increased with the replication overhead appears to be at most
linear in the replication degree.

Chapter 5

MPJ Implementation

We have seen in Chapter 2 that the MPI standard documents provide a language-
independent specification as well as language-specific (C/C++/Fortran) bindings. How-
ever, no Java binding has been offered or is planned by the MPI Forum. In the late
1990’s, with the evident success of Java as a programming language, and its inevitable
use in connection with parallel as well as distributed computing, the absence of a well-
designed language-specific binding has been considered problematic. Indeed several dif-
ferent MPI-like bindings for Java were developed independently. We have listed some of
these in section 2.5, page 46. To tackle this problem, a community of researchers have
set up a forum, the Java Grande Forum'. Participants to the forum have been work-
ing at the development of a consensus and recommendations on possible enhancements
to the Java language and associated Java standards, for large-scale applications. The
Message-Passing Working Group of the Java Grande Forum formed in 1998, came up
with a recommendation for a common API for MPI-like Java libraries. The chosen name
for the recommendation is MPJ (Message Passing interface for Java) to avoid confusion
with standards published by the original MPI Forum. The rationale for the API design
can be found in [3].

5.1 Introduction

In the early design phase of P2P-MPI, we have rapidly come to the conclusion that
our API had to conform to MPJ. Independently from performance considerations, we
wanted our API to allow us to run on as large panel of codes as possible.

Concerning the implementation, we have not concentrated on performance issues at
first. We wanted to offer a message-passing paradigm, able to execute programs in a
large variety of environments. Among the major limitations to the execution of pro-
grams distributed over different administrative domains are the firewall policies. With

Yhttp://www.javagrande.org/

103

104 CHAPTER 5. MPJ IMPLEMENTATION

P2P-MPI, our strategy has been to limit the range of ports that need to be open to a
minimum. We even developed a first prototype using JXTA pipes, in the spirit of the
P3 project [70]. The idea of P3 was also to propose a message-passing programming
model, even if their API is much simpler than MPJ. We rapidly abandoned the JXTA
option to rely on a more stable communication layer, with a well-controlled behavior.

Thus, until very recently, the MPJ implementation we proposed was targeted to
large scale environments and should only be competitive in terms of performance with
other communication models such as RMI for example. This implementation is solely
based on the Java implementation of TCP sockets, and connections are opened one at a
time so that a single open port is required?. We call this implementation the single-port
implementation.

Recently, we have started a new implementation which assumes no restriction on
open ports. This allows us to use as many sockets as needed to speedup communica-
tions. We rely on the java NIO class (available since JDK 1.4). This class provides the
equivalent of the select operation of libc, which allows a program to monitor multiple
file descriptors, waiting until one or more of the file descriptors become "ready" for some
I/O operation. This new implementation is called multiple-ports.

This chapter explains the design and the implementation of these two strategies. To
differentiate the two kinds of implementation we use the word device, because the only
difference lies in the communication device they use. Though the merge of the common
code base is not achieved yet, we plan to release a single implementation containing both
devices in a near future. The user could choose its preferred device at boot-time.

5.2 The Single-Port Device

In this strategy, each MPI process uses only one local port of communication. Every
communication involves three steps : open the connection, send messages, and then close
the connection.

Figure 5.1 shows the structure of a single-port device. After the MPI communica-
tor is created, a device thread is initiated. The device thread is used to receive MPI
messages and hence the main thread can continue with computations without interrup-
tion. The use of a device thread makes this device behave in asynchronous mode by
nature. Whenever some messages arrive, the message header information is extracted to
compute the message unique identifier (see Section 4.3.1), and the message is inserted
accordingly into the message queue, implemented as a hash table.

Recall that the MPI standard requires that when several messages with the same tag
are sent, they are received in the same order they were sent. The use of the MID to

2 Actually, four extra ports need to be open for the MPD, FD, FT and RS services.

5.2. THE SINGLE-PORT DEVICE 105

MPI message
Device)
Thread Listen
Socket
MPI code
Message
hash table

Figure 5.1: The structure of single-port device.

later extract messages from the receive queue insures that the communication operations
sequence is respected. There is no head-to-head problem in this device because receivers
are always ready to consume messages. The behavior of the basic communication prim-
itives can be summarized as follows.

Send messages. When a MPI.Send is issued, the first step counsists in the encapsu-
lation of the message data into an MPI message object. Then, the main thread (MPI
process) opens the connection to the destination MPI processes. The MPI message
object is serialized and is sent. Finally, the connection between the two processes is
disconnected.

Receive messages. There are two receiving modes in MPI, namely blocking and
non-blocking modes. Also, we must consider two situations regarding the receipt of a
message: the message arrives before or after the receive primitive has been issued by
the user application. Hence, combining the modes and these situations, there are four
possible scenarios which requires specific handling;:

In blocking mode : (i) if the message arrives before the MPI receive is called, the
message is extracted, and its header information is used to create an MID. Then,
the message is put in the hash table using its MID as a hash key. When the MPI
receive is triggered, the MPI main thread looks in the hash table by MID. The
message corresponding to the first matching MID is taken from the hash table to
the user-space buffer. (ii) if MPI receive is called before the message arrives, the
main thread loops looking for the message in hash table. When the message arrives
in the hash table, the main thread takes the message to the user-space buffer.

In non-blocking mode : (i) if the message arrives before the receive is called, the
message is handled as in blocking mode, except that the message is taken out of
the queue during MPI.Wait. (ii) if the message arrives after the receive is called,
the main thread instantiates an MPI Request object, then it continues executing

106 CHAPTER 5. MPJ IMPLEMENTATION

the subsequent application code. Later, the main thread stops at MPI.Wait which
loops looking for the message in the queue. When the message arrives in the hash
table, MPI.Wait takes the message to the user-space buffer.

Summary. This device offers a solution in some situations where the execution en-
vironment has strong limitations with respect to the number of TCP ports that can
be opened. However, it costs some overhead: the major overheads are the numerous
connection openings and closings and the serialization/deserialization of Java object
messages. Even though, this overhead can be acceptable when applications have a high
computation to communication ratio.

5.3 The Multiple-Ports Device

Device thread _O

_O MPI message

Select loop -

MPI code

Expected || Unexpected O
queue queue

Figure 5.2: The structure of multi-port device.

With this device, our goal is to improve communication performance when no re-
striction applies regarding the TCP ports open. Figure 5.2 shows the structure of the
device. After an MPI communicator is created, a device thread is initiated. This de-
vice is based on java NIO and uses SocketChannel as communication channel. The
SocketChannel handles its data through Java ByteBuffers only. So, it is mandatory
to cast user messages so that they transit through ByteBuffer.

Each process connects to every other processes with two channels. One is the write
channel and the other is the read channel. Write channels are in blocking mode while
read channels are in non-blocking mode. The Selector provided in Java NIO lets us
handle multiple channels in the select loop. Semaphores are used on each channel to
insure that no concurrent processes write or read data from this channel at the same time.

Two queues are handled by the device thread. They are called Fzpected queue and
Unexpected queue, and are implemented with two hash tables. The message identifier

5.3. THE MULTIPLE-PORTS DEVICE 107

(MID) is a hash key and message data is a hash value. We use one queue or the other
depending if the message arrives at the receiver side before or after the corresponding
receive operation is called. To better understand these two queues, let us examine them
from two view points: one from the MPI receive call and another from a message arrival.

The MPI receive call’s view : when a MPI receive is called, a Request object
is instantiated. A Request object is implemented by a Java thread which inherits from
the Wait () method to block and make a thread sleep, and from the Notify() method
to wake up a thread. The first action of Request is to look in the unexpected queue to
find a message with a MID matching the receive instruction. If no message with such
MID exist, Request puts the MID and an associated null message in the expected queue.
Then, it calls Wait () to stay blocked waiting for this message. Otherwise, if the message
with the corresponding MID exists in the unexpected queue, it is moved from the queue
to user-space buffer.

The arrived message’s view : when a message arrives, the read message handler
in the selector looks in the expected queue if there already exists an MID for the arrived
message. If the MID exists, it means the MPI receive has already been executed. The
message handler invokes Notify () to wake up a Request object to read the message. If
the MID does not exist, the message handler puts the message data into the unexpected
queue.

Like many MPI implementations, we define two modes for communication. One
for small messages, that the receiver can accept directly in its queue. It is the eager
mode. The implementation switches to the other mode called rendez-vous mode when
the message’s size exceed a fixed limit.

Eager mode

The eager mode is used for sending small messages. In P2P-MPI we set eager size limit
to 128 KB. For any message whose size is lower than 128 KB, the eager mode will be
used. This mode assumes that the receiving buffer on the receiver side is big enough
to store the whole message. There is no exchange of control messages before the actual
data transmission. This minimizes the overhead of control message that may dominate
the total communication time for small messages.

Send message: whenever a send method is called, the sender main thread trans-
forms the message into a java ByteBuffer then writes the message data into the writing
channel. Except in non-blocking send, the main thread spawns a thread to send mes-
sages.

Receive message: when a message arrives to a receiver, the selector notifies the
main thread to perform an action. If the receive is called before the message arrives in
eager mode, the receiver reads a message and puts it in the queue.

108 CHAPTER 5. MP.J IMPLEMENTATION
Rendez-vous mode

The rendez-vous mode is used for communicating large messages, typically greater than
128 KB. There is an exchange of message between the sender and the receiver before
the actual transmission of the data. For large enough messages, the overhead of this
exchange of messages is negligible in terms of the overall communication cost.

Pl P2 P] P2

READY_TO_SEND — MPI_Recv
Unexpected MPI_Send—- Expected

- Queue READY_TO_SEND — | Queue
READY_TO_RECV - MPI_Recv

DATA \
DATA

MPI_Send -

(a) (b)

Figure 5.3: The rendez-vous protocol for sending a message.

Figure 5.3 shows the message exchange in rendez-vous mode before the actual data is
transmitted. There are three steps to send the message. First, sender P, which invokes
one kind of MPI.Send sends a READY_TO_SEND message to receiver P,. A READY_TO_SEND
message contains all the header information corresponding to a real message although
it contains no actual data. If we consider the events of the READY_TO_SEND arrival and
the MPI.Recv call, there are two possible interleaving shown in figure 5.3(a) and 5.3(b)
respectively.

When a READY_TO_SEND message arrives before a MPI.Recv is called, the select loop
which receives the message put it in the unexpected queue with empty data and set
the flag that this message is in rendez-vous mode. Then, MPI.Recv is called which
verifies whether the rendez-vous flag is set or not. Since the message is in rendez-vous
mode, the receiver replies to the sender with a READY_TO_RECV message to tell the sender
that it is now ready to receive the actual data. Finally, when the sender receives the
READY_TO_RECV message, it transmits the actual data to the receiver.

In another case, when a READY_TO_SEND message arrives after a MPI.Recv is called,
MPI.Recv puts the user-buffer in expected queue and waits for the message. When
READY_TO_SEND arrives to the receiver, it replies back with a READY_TO_RECV message.
Then, the transmission of the actual data begins.

5.4. COLLECTIVE COMMUNICATION OPERATIONS 109

5.4 Collective Communication Operations

We detail in this section the optimizations introduced in the collective communication
operations of P2P-MPI. Currently, we use well-known algorithms which have better
performances in local clusters than in wide area networks. We have reviewed in Section
2.3 several contributions in that field. We have not yet integrated these ideas because
the network topology has been taken into account very recently in our middleware.
P2P-MPI in its current state might be seen as a first step towards a more sophisticated
framework using the best suited among the various available algorithms, depending on
the execution platform allocated.

The collective communication operations are found in the IntraComn class (appendix
B.4, page 132). Table 5.1 shows methods and its algorithm.

Method Algorithm

Allgather Gather then Bcast
Allgatherv Gatherv then Beast
Allreduce Butterfly or Reduce then Bceast
Alltoall Asynchronous rotation
Alltoallv Asynchronous rotation
Barrier 4-ary tree

Beast Binomial tree

Gather Flat tree

Gatherv Flat tree

Reduce Binomial tree or flat tree
Reduce scatter | Reduce then Scatterv
Scatter Flat tree

Scatterv Flat tree

Table 5.1: List of IntraComm methods.

The base methods are Alltoall, Alltoallv, Barrier, Bcast, Gather, Gatherv,
Reduce, Scatter and Scatterv. The other primitives Allgather, Allgatherv, Allreduce
and Reduce_scatter are constructed from these base methods. The Allreduce imple-
mentation switches between two algorithms. The butterfly algorithm is used when the
number of processes is a power of two. Otherwise, it simply calls Reduce and then Bcast.
In Reduce, there are also two algorithms. A binomial tree algorithm is used when the
operation of Reduce is commutative. Otherwise, we apply a flat tree algorithm.

Asynchronous rotation

This algorithm is used for A11toall and Alltoallv. Figure 5.4 shows a step-by-step
trace on four processes. It completes in N — 1 steps for N processes. At each step

110 CHAPTER 5. MPJ IMPLEMENTATION

Figure 5.4: The steps of asynchronous rotation on four processes.

i € [1, N — 1], all processes s € [0, N — 1] computes the rank of a single destination
process d as d = (s +14) mod N.

In the example Py sends data to P; then sends to P, and Pj, in step 1, 2, and 3
respectively. In the meantime, P; sends data to P, at first step and then sends it to P;
and Py respectively. We chose this rotation technique to reduce the network simultaneous
load as Alltoall operations are highly congestive. Note also that the network load is
equally balanced between processes in this algorithm.

4-ary Tree

This is the algorithm used in MPI.Barrier. We have made the same choice as MPJ
Express [50] because of the good performance exhibited by this implementation on that
point.

AN

Figure 5.5: 4-ary tree structure.

Figure 5.5 shows the structure of a 4-ary tree structure. Each node can have a
maximum of four children. The tree is build considering node 0 as the root of the tree.

5.4. COLLECTIVE COMMUNICATION OPERATIONS 111

The tree has N nodes, and its depth is [logs(N)]. When building the tree, each node is
assigned an index i € [0; N — 1]. The algorithm used defines for any node i:

o its children are node with index 4¢ + 1,47 + 2,47 4 3, and 4¢ + 4,
« its parent is the node with index [5}]

The MPI.Barrier implementation performs a two phase tree traversal. First, node
0 sends a dummy message (a 1 byte data MPI message) to its children, which in turn
transmit the message to their own children. When the message reach nodes with no
child, these nodes send the message back to their parent. Thus, all messages traverse
the tree back until they are collected at the root.

Binomial Tree

The binomial tree is introduced to reduce network contention. We apply this algorithm
to Bcast and Reduce. A binomial tree is built up recursively, the whole tree at step
j — 1 is appended to the root node in step j. The principle is shown in figure 5.6.

step 1 step 2 step 3 step 4

step 5

Figure 5.6: Example for building a binomial tree.

Contention on a single node is avoided thanks to the distribution of nodes along
the binomial tree: each network link is utilized at most once per round. To manage
the process-to-tree-node assignments of n processes, the following numbering scheme is
used:

112 CHAPTER 5. MPJ IMPLEMENTATION

« each node is numbered in binary digits (from 0 to n — 1)
« each node calculates its parent by resetting the leftmost “1” in its own id to “0”

e each node calculates its chﬂdren.by adding 2’ to its own id where i = {i € N A
loga(id) < i < [loga(id)] AN id 4 2" < n}

The binomial tree also minimizes the concurrency at the root node. One child of the root
node finishes each round. The root node has typically [loga(n)] children. Thus, in the
Bcast case, the root node knows after [loga(n)] that all nodes received the broadcast
message.

Butterfly

The butterfly algorithm [71] is implemented in the Allreduce method. This algorithm
is called only when the number of processes involved is a power of two, and when the
operation used in Allreduce is commutative. If n is the number of processes involved,
the algorithm performs logs(n) steps of pairwise synchronizations.

S ONONONONONONONO.
T N T S
= ONOJ ONO ONO/J ONO)
SN ONONONOIONONONO)
T~ 7

Figure 5.7: The butterfly algorithm for 8 processes.

Figure 5.7 shows the butterfly algorithm for eight processes. Let us call d and s the
destination and source node numbers respectively. The @ symbol refers to exclusive or
(xor) operation and < is left-bit shift. At each step ¢, a node calculates its pair with:
d=s® (1 <i).

5.5 Experiments

Similarly to the experiments conducted in Section 4.8, we present performance results
for different computing environments. We have collected results for earlier versions of
P2P-MPI, which should not behave differently than the current single-port implementa-
tion. The set of benchmarks based on a older version of P2P-MPI is interesting because
of the experimental conditions we had: the first experiment uses commodity hardware
(a student computer room), while the second uses two sites of Grid5000 in august 2005.

5.5. EXPERIMENTS 113

Hence, the tests are complementary to more recent experiment.

We have conducted further experiments using our new multiple-port implementation.
The environment we used is a state of the art cluster. We chose such a platform for two
reasons. First, it is easier to plan our experiments as they required up to 128 processors.
Second, this platform is a well-controlled environment in which we can reproduce exper-
iments. This is a highly desirable feature to make a fair comparison between different
implementations.

Experiments using highly heterogeneous environments such as nodes being dynami-
cally chosen from PCs around is out of the scope. A precise assessment of P2P-MPI’s
behavior on such configurations is difficult because experiments are not easily repro-
ducible.

5.5.1 Single-Port implementation
Objectives

The aim was to have a first feedback on the communication library performance. We
found a student computer room was an adequate environment for testing, regarding the
type of computing environment targeted by P2P-MPI. Then, we got an account of the
Grid5000 testbed, which allowed us to test the software scalability (with more than a
hundred processors for the first time), and to see how latency between site affected the
performance.

Note that all tests are done with a replication degree of one, as replication overhead
has been studied in the previous chapter.

Experiment 1 Setup

The computers are simple PCs, fully available during the experiment. The benchmarks
for these experiments are IS and EP from NAS benchmarks (NPB3.2), like in Section
3.5.2.

Environment type Student computer room

Hardware Intel Pentium4 3GHz, 512MB RAM

Operating System Linux 2.6.10

Interconnection 100 Mbps Ethernet.

Java runtime J2SE-5.0.

MPI Implementations | MPICH-1.2.6 (p4 device), LAM/MPI-7.1.1, and p2pmpi-0.2.0

Experiment 1 Results

It is expected that P2P-MPI achieves its goals at the expenses of an overhead incurred
by several factors. First, the FD service sends regular heart-beats and therefore uses
the network card from time to time. Second, the protocols for replication impose bigger

114 CHAPTER 5. MPJ IMPLEMENTATION

80 T 70

T T
P2P-MPI (CLASS A) —— P2P-MPI (CLASS A) —+—
~ LAM/MPI (CLASS A) ---x--- LAM/MPI (CLASS A) ------
70 w MPICH (CLASS A) ---%--- | 60 MPICH (CLASS A) ---%--- |
T P2P-MPI (CLASS B) & P2P-MPI (CLASS B) &
Thgl LAM/MPI (CLASS B) --m-- LAM/MPI (CLASS B) --m--
60 NN MPICH (CLASS B) --o-- 50 MPICH (CLASS B) ---o-:-

50
40

40

Total time (s)
Total time (s)

30 i

30 &

20 pr g

Number of processes Number of processes

(a) Performance on IS benchmark. (b) Performance on EP benchmark.

Figure 5.8: Comparison of MPI implementations performance for IS and EP.

message headers than those for simple communications. Moreover, compared to fine-
tuned optimizations of communications of MPI implementation (e.g in MPICH-1.2.6,
Thakur [72] uses four different algorithms depending on message size), P2P-MPI has
simpler optimizations (e.g. binomial trees). Finally, the use of a virtual machine (Java)
instead of processor native code leads to slower computations.

Figure 5.8(a) and 5.8(b) plots result from benchmarks IS and EP respectively. We
have kept the same timers as in the original benchmarks. Values plotted are the average
total execution time. For each benchmark, we have chosen two problem sizes (called
class A and B) with a varying number of processors. Note that IS requires the number
of processors be a power of two and that we could not go beyond 16 PCs.

For IS, P2P-MPI shows an almost as good performance as LAM/MPI up to 16
processors. The heart-beat messages seem to have a negligible effect on overall com-
munication times. Surprisingly, MPICH-1.2.6 is significantly slower on this platform
despite the sophisticated optimization of collective communications (e.g it uses four dif-
ferent algorithms depending on message size for MPI_Alltoall). It appears that the
MPI_Alltoallv instruction is responsible for most of the communication time because
it has not been optimized as well as the other collective operations. The EP benchmark
clearly shows that P2P-MPI is slower for computations because it uses Java. In this
test, we are always twice as slow as EP programs using Fortran. EP does independent
computations with a final set of three MPI_Allreduce communications to exchange re-
sults in short messages of constant size. When the number of processors increases, the
share of computations assigned to each processor decreases, which makes the P2P-MPI
performance curve tends to approach LAM and MPICH ones.

5.5. EXPERIMENTS 115

Experiment 2 Setup

We choose two sites from Gridb000 testbed with homogeneous processors to isolate the
impact of communications. The sites are Orsay and Sophia-Antipolis. At the time of
the experiment (august 2005) the backbone link between these two sites has a 2.5 Gbps
bandwidth.

Environment type Grid5000 (gdx.orsay and azur.sophia)

Hardware 128 nodes AMD Opteron 246, 2GB RAM
(64 nodes at Orsay and 64 nodes at Sophia)

Operating System Linux 2.6.12

Interconnection Gigabit Ethernet.

Java runtime Java 1.5.0 08.

Benchmark suites Modified RayTracer from JGF section 3

P2P-MPI implementation | P2P-MPI-0.10.0

The application used in this experiment is the ray-tracer from the Java Grande Fo-
rum MPJ Benchmark. We choose this application because it was reported in [51] to
scale well with MPJ/Ibis. This program renders a 3D scene of 64 spheres into an image
of 150x150 or 500x500 pixels in the original benchmark, but we have enlarged the image
resolution to 2500x2500. Each process does local computations on its part of the scene
for which a checksum is combined with a MPI.Reduce operation by the rank 0 process.
In the end, each process sends its result to process 0.

Experiment 2 Results

In this experiment, we have run several series of executions of the application on different
days of a week. A series consists in a set of executions using from 2 to 128 processes
(one process per processor). We observe how the application scales on a single site (all
processes at Orsay) and then when processes are distributed half on each site. We report
on figure 5.9 the highest and lowest speedups obtained in each case. The application
scales well up to 64 processors on a single site, and in some occasions the execution
involving the two sites is even as quick as the lowest execution on one site. With 128
processors, the scalability largely decreases on one site, and turns to a slowdown with
distant sites. We reach here a computation to communication ratio that does not allow
for more parallelism. However, the experiment confirms the good scalability of the
application provided the image to compute is big enough, even when two distant sites
are involved.

5.5.2 Multiple-Port Implementation

Objectives

This section presents the benchmarks for our recent multiple-port implementation. As
we have not yet been able to set up a complete test including other MPJ or MPT imple-

116 CHAPTER 5. MPJ IMPLEMENTATION

120 F H Linear speed up (ideall) B e |
Orsay site (best) ---&---
Orsay site (worst) --—-®---
Orsay + Sophia sites (best) o~
100 | Orsay + Sophia Sites (WOrst) —-—@:— s 1
80 -
- -
> -
° -
(3] -
L 60 -4
(%)
40 -
B
20 -
0
048 16 32 64 128

Number of processes

Figure 5.9: Ray-tracer speedups when run on a single site and on two distant sites.

mentations, we have mostly compared MP and SP performance.

We have chosen the Java Grande Forum MPJ benchmark suites (JGF in the follow-
ing) for the test. A detailed description of the benchmark can be found in Appendix
A, page 123). Section 1 measures the performance of point-to-point operations in the
communication library. We have also included MPJ-Express performance results for
that section because it passes successfully this test. For Section 2 (kernels) and Section
3 (large-scale applications) we could only compare P2P-MPI SP and MP because MPJ-
Express has a problematic implementation of Allreduce. It modifies the input buffer
during the communication, which invalidates the computed results (the test ends with
the ’validation failed’ message).

Experiment Setup

Environment type

Grid5000 (grelon.nancy)

Hardware 64 nodes/128 cores Intel Xeon 5110, 2GB RAM
Operating System Linux 2.6.24-1-amd64
Interconnection Gigabit Ethernet.

Java runtime

Java 1.5.0_08.

Benchmark suites

JGF section 2 (CLASS B) and JGF section 3 (CLASS A)

P2P-MPI implementation

P2P-MPI-0.27.1 (SP device) and P2P-MPI1-0.28.0 (MP device)

5.5. EXPERIMENTS 117

Experiment Results

We present here the results for JGF Section 2 and Section 3. For sake of clarity, Section
1 results are reported in Appendix D, page 147. Figures 5.10 and 5.11 plots result from
Section 2 and Section 3, respectively.

3 %
P2P-MPI MP (Spread) —— P2P-MPI MP (Spread) ——
P2P-MPI MP (Concentrate) - P2P-MPI MP (Concentrate)
238 ... P2P-MPI SP-(Spread) % 80 i iy k- P2P-MPI SP (Spread) ---*--- _|
26
70
24
60
& 22 =
e o)
@ @
E 2 E 50
g \ g
5 18 3 40
£ £
d g6 o
30
14
20
12 o s
— S
1 L B 10 - P
R e
08 0 -
48 16 32 64 128 48 16 32 64 128
Number of processes Number of processes
(a) crypt (b) lufact
10 16
P2P-MPI MP (Spread) —— P2P-MPI MP (Spread) ——
P2P-MPI MP (Concentrate) L P2P-MPI MP (Concentrate)
9 \ P2P-MPI SP (Spread) -~ | “ . P2P-MPI SP (Spread) -~
8 12
\
7 \
) \ z 10
g s g
s \ s 8
EI 2
g g
£ %
w w 6
4
4
3
s Sy . g
Sy - ¥
1 0 -
48 16 32 64 128 48 16 32 64 128
Number of processes Number of processes
(c) serie (d) sor
140
P2P-MPI MP (Spread) ——"
P2P-MPI MP (Concentrate) -~
P2P-MPI SP (Spread) *----
120 o
100
e
@
g w0
<
s
El
3 60
I
40
20 e
0
48 16 32 64 128

Number of processes

(e) sparseMatMult

Figure 5.10: JGF section 2: Kernels benchmark results

118 CHAPTER 5. MPJ IMPLEMENTATION

P2P-MPI MP (Spread) —— bl P2P-MPI MP (Spread) ——
P2P-MPI MP (Concentrate) \ P2P-MPI MP (Concentrate)
45 P2P-MPI SP (Spread) -+ - \ P2P-MPI SP (Spread) ---%

Execution time (s)
»

R
Execution time (s)
w
o

5 T Ry

4 8 16 32 64 128 4 8 16 32 64 128
Number of processes Number of processes

(a) moldyn (b) montecarlo

18

P2P-MPI MP (Spread) —+—
P2P-MPI MP (Concentrate) 4
iy P2P-MPI SP (Spread) -

14

12

Execution time (s)
-

0.8

0.6

0.4

0.2

48 16 32 64 128
Number of processes

(c) raytracer
Figure 5.11: JGF section 3: Large-scale applications benchmark results

Note that we have used 64 nodes with two cores each, for a total of 128 computing
cores. The experiment compares the two types of P2P-MPI devices SP and MP. As
we have introduced allocation strategies in our latest versions, the impact of the chosen
strastegy is also tested for MP. For SP, we only plot the curves for the spread allocation
strategy because concentrate showed very poor performance as compared to MP. Note
that when the execution requires 128 processes, both strategies should result in the same
allocations because all the cores are used.

The first observation is that the spread strategy gives better results than concentrate
in these benchmarks and on this cluster. The reason is probably that these benchmarks
suites are much CPU and RAM demanding, and that putting two processes on a same
node is not as efficient as using two cores on two separate nodes. The second observation
is that MP outperforms SP in nearly all tests. In the crypt test, the SP implementation
could not scale beyond sixteen processors. Except in montecarlo, where SP is better up
to thirty-two processors, MP-spread generally has the quickest execution times. In SOR
benchmark, we cannot go beyond 32 processes because JGF benchmark stops with an
error ('negative array index exception’). This is the same for montecarlo for more than
64 processes.

5.6. CONCLUSION 119

5.6 Conclusion

We have explained the two alternatives explored regarding the communication library
implementation. The first alternative is an implementation using as few TCP ports as
possible. We can see it as a specific device of the communication library, and we call it
the single-port (SP) device. The assumption here is that it is possible to open firewalls
between different administrative entities for a restricted range of ports. The aim is thus
to ease P2P-MPIT deployments over several networks.

The second alternative is the classical approach of most MPI implementations, which
establishes permanent links between processes. In order to execute an application, a wide
range of ports might be opened. The implementation of this communication device is
called multiple-port (MP).

It is up to the user to understand which implementation best fits its needs and con-
straints. The SP device optimizes the number of ports used but suffers from a lower
performance. The MP device performs better but requires no restrictions on ports.

We have also detailed which algorithms were used in the communication library,
especially for collective communications. Then, the two implementations have been
benchmarked in several environments. The benchmarks must now take into account the
allocation strategies that P2P-MPI provides to its user (see Chapter 3) as it greatly
influences performance. Currently, we lack a sufficient number of programs to make
a fair comparison of well-known MPI and MPJ implementations with P2P-MPI. We
mainly used the JGF benchmark suite to conduct this first evaluation, but we could not
achieve enough comparisons with other implementations (mainly MPJ-Express) to give
definitive comparative results. Our feeling however, is that MPJ-Express performs better
on small messages, and we leave as a future work to establish a thorough performance
test, and to optimize the MP communication device.

We can conclude that no strategy is better in all cases. Allocating all the cores of a
multicore computer with one process per core has sometimes shown a greater overhead
than spreading the processes over several computers. It depends on how much intensive
are the memory accesses in the application. In our context, several benchmarks seemed
to reveal much memory contention with the concentrate strategy.

Finally, we have tested P2P-MPI against MPJExpress on a cluster. MPJExpress has
better performances than P2P-MPI in general. A quick explanation is that P2P-MPI had
not targeted performance at first. So far, we have a short experience at optimizing our
primitives, while MPJExpress has invested much effort in it. However, we are currently
investigating performance results to understand why some operations in P2P-MPI (such
as Gather) outperform the MPJExpress version, while most others are slower. Thus,
improving the performance of the MP implementation is still under work.

120 CHAPTER 5. MPJ IMPLEMENTATION

Chapter 6

Conclusion

We have described in this manuscript, a proposal for an integrated middleware coupled
with a communication library. This proposal has been implemented and is publicly pro-
posed as a free software project named P2P-MPI. A major design feature of P2P-MPI
is its integrated approach. Our thesis is that an effective deployment of message passing
programs on Grids is possible, provided the execution runtime can rely on appropriate
middleware services.

The minimal set of services or features the middleware should provide has been
described in Chapter 3 and Chapter 4.

Chapter 3 explains the design choices made to address the deployment of large-scale
parallel message-passing programs. Since the beginning of the project, we have proposed
a P2P basis to organize resources in a Grid. We have put forward the autonomy of peers,
which enables an easy software installation of individual resources and the absence of a
single point of failure since there is no central directory for resources. We put forward
that the dynamic discovery of available resources upon an execution request is a highly
desirable feature. Another benefit for the application can be an efficient allocation of re-
sources by the middleware with respect to the application’s needs. During, this work, we
have modified the middleware to improve the allocation resources. The middleware now
accounts for network locality of peers. Based on this information, P2P-MPI proposes
simple and understandable resource allocation strategies to the user. We have shown
through real experiments, that we could deploy applications using up to to 600 processes.

Chapter 4 discusses fault-tolerance. The middleware has a failure detection ser-
vice, which notifies failures to the application. We have explained the difficulties to
build a scalable and fast detection system, and how our service has been designed. The
communication library supports fault-tolerance through replication of processes, upon
a simple user request. We have described the underlying protocol, and we have shown
how replication increases the robustness of applications. The overhead of replication
is also studied. Thus, our proposal on fault-management contributes to show that the
middleware support is beneficial to the communication library.

121

122 CHAPTER 6. CONCLUSION

The last Chapter has detailed the communication library implementation. We have
discussed the alternatives of using either a single communication port, better adapted
to Grids, or multiple port to improve communication performance.

Finally, we think P2P-MPI can encourage programmers to parallelize their applica-
tions to benefit from the computational power available even from individual computers.
During this thesis, we have helped at the parallelization of a data clustering method [73].
This work is described in [74]. This method has a high complexity and its parallelization
enhanced its usability. Clusterings with a large number of classes have been completed
in tens of minutes instead of hours in the sequential version. In addition, a noteworthy
aspect is that P2P-MPI makes the parallel execution nearly transparent for the user.
Users keep running the application from their usual computer, as the middleware trans-
parently discovers available computing resources.

Throughout the chapters, we have discussed what could be improved in our proposals.
Let us finally summarize the points that deserve future work. The middleware should rely
on a more decentralized infrastructure, composed of a distributed set of supernodes, to
scale beyond thousands of peers. A linked problem is to maintain an accurate estimation
of the network latencies between peers, or better, being able to guess the topology of
the physical network (similarly to the method used in [75]). As far as replication is
concerned, a formal analysis of the protocol (e.g using model-checking) would make it a
solid brick. A comparison with other approaches of fault-tolerance regarding for instance,
the overhead depending on the number of faults injected, would be also interesting. Last,
much work could be done on the MPJ implementation. In particular, we think P2P-MPI
is a good framework to test new algorithm for mixed wide and local area communications.
Many research works have proposed improved collective communications, which are very
important in the Grid environment we target. Thanks to the cooperation with the
middleware, the communication library could get static or even dynamic information
about the network (topology, load,) to make maybe better decisions in its algorithms.

Appendix A

Experiment Testbeds and
Benchmark Suites

This chapter gives an overview on experimental testbeds and benchmarks, we conducted
during this thesis to test P2P-MPI. In an early experiment, we used a student computer
room as a testbed to simulate a campus grid. We could get up to the maximum of 24
machines for the experiment. Later on, we conducted experiment on a Grid developed
in France, called Grid5000. On this platform, we could reserve and experiment with
up to 350 machines (i.e. a total of 700 CPUs/1040 cores). During these tests we used
applications from two different benchmarks: NAS and JGF.

Grid5000. The project Grid5000' [76] is a testbed designed as a experimental grid.
It is different from other computation grids by its high capacity to let users to do the
reconfiguration and to totally control it. For example, it permits each user to deploy its
proper operating system via Kadeploy2[77]. The term Grid5000 comes from the idea to
build a experimental grid which has the total 5000 processors distributed across nine sites
in France : Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes, Sophia-Antipolis,
and Toulouse. The Interconnection between the different sites are assure by RENATER-
4[78] that provides the bandwidth of 10 Gb/s. The latency between the machines of
different sites varies from 4ms to 29ms. Figure A shows the interconnection between the
different sites in Grid5000. The processors in Grid5000 are quite heterogeneous, as there
are AMD Opteron, Xeon, [tanium2 and PowerPC.

NAS Parallel Benchmarks. The NAS Parallel Benchmarks (NPB)[79], developed
by NASA advanced supercomputing (NAS) division, are the small set of programs
designed to help evaluate the performance of parallel supercomputers. The bench-
marks consist of five kernels : Multigrid(MG), Conjugate gradient(CG), Fast Fourier
transform(FT), Integer sorting(IS), and Embarrassingly parallel(EP) and three pseudo-

Yhttp://www.grid5000.fr

123

124 APPENDIX A. EXPERIMENT TESTBEDS AND BENCHMARK SUITES

Figure A.1: The interconnection between nine sites in Grid5000.

applications : Block-tridiagonal(BT), Scalar-pentadiagonal(SP), and Low-upper sym-
metric gauss-seidel(LU).

We have chosen two kernels, IS and EP from NPB version 3.2, which have opposite
characteristics and translated them in java from C and Fortran respectively, in order to
run them with P2P-MPI.

IS (Integer Sorting). The IS benchmark is based on a bucket sort. The number
of keys ranked, the number of processors used, and the number of buckets employed
are all presumed to be powers of two. The number of buckets is a tuning parameter.
Communication costs are dominated by an MPI.Alltoallv, in which each processor
sends to all others those keys which fall in the key range of the recipient. This bench-
mark is used to measure the integer computation speed and communication performance.

EP (Embarrassingly Parallel). In EP benchmark, each processor independently
generates pseudo-random number (PNs) and uses these to compute pairs of normally-
distributed numbers. No communication is needed until the very end. This benchmark
provides an estimate of the upper achievable limits for floating point performance. EP
is closer to the class of applications usually deployed on computational grids where the
computation takes the major part of the execution and the communication part is less

125

important.

Java Grande MPJ benchmarks. The benchmarks from the Java Grande Forum,
a community initiative to promote the use of Java for so-called Grande applications.
A Grande application is an application which has large requirements for any or all of :
memory, bandwidth, processing power. Java Grande MPJ benchmark suite is one of Java
Grande Forum(JGF) benchmark suites which is designed to measure the performance
for parallel execution on distributed memory multiprocessors.

This benchmark suite is divided into three sections :

¢ Section 1: Low level operations - measuring the performance of low level
operations.
— PingPong: Point-to-point communication
— Barrier: Barrier synchronization

— Alltoall: All-to-all communication

Bcast: Broadcast (one-to-all communication)
— Scatter: Scatter (one-to-all communication)

— Gather: Gather (all-to-all communication)

Reduce: Reduction

¢ Section 2: Kernels - short codes which carry out specific operations frequently
used in Grande applications.

— Series: Fourier coefficient analysis
— LUFact: LU Factorization

SOR: Successive over-relaxation

— Crypt: IDEA encryption

Sparse: Sparse Matrix multiplication

¢ Section 3: Large scale applications - large codes, representing complete Grande
applications.

— MolDyn: Molecular Dynamics simulation
— MonteCarlo: Monte Carlo simulation
— RayTracer: 3D Ray Tracer

We use all three sections in our experiments.

126 APPENDIX A. EXPERIMENT TESTBEDS AND BENCHMARK SUITES

Appendix B

P2P-MPI API

P2P-MPI provides a subset of MPI application programming interface (API) followed
by MPJ specification. P2P-MPI is consist of nine main classes (table B.1).

Classname Description

Comm Point-to-point communication

Datatype primitive datatypes

Group MPI group

IntraComm Collective communication

MPI Main MPT class

MPI_User_function | Abstract class to implement a user-defined operation
Op MPIT collective operation

Request The handle of asynchronous communication

Status The status of a message communication

Table B.1: List of P2P-MPI API classes

B.1 Comm

An point-to-point communication class. The class contains the following methods.

e |Group Group()

Returns group of this communicator.

¢ |Request Irecv(Object recvBuffer, int offset, int count,
Datatype datatype, int src, int tag)

127

128

APPENDIX B. P2P-MPI API

recvBuffer receive buffer

offset initial offset in recvBuffer
count number of elements to receive
datatype received data type

src rank of source

tag message tag

Non-blocking receive operation which returns an Request object.

Request Isend(Object sendBuffer, int offset, int count,
Datatype datatype, int dst, int tag)

sendBuffer send buffer

offset initial offset in sendBuffer
count number of elements to send
datatype send data type

dst rank of destination

tag message tag

Non-blocking send operation which returns an Request object.

int Rank()

Returns rank of process in this communicator.

Status Recv(Object recvBuffer, int offset, int count,

Datatype datatype, int src, int tag)

recvBuffer receive buffer

offset initial offset in recvBuffer
count number of elements to receive
datatype received data type

src rank of source

tag message tag

Blocking receive operation which returns an Status object.

int Send(Object sendBuffer, int offset, int count,
Datatype datatype, int dst, int tag)

B.1.

COMM

129

sendBuffer send buffer

offset initial offset in sendBuffer
count number of elements to send
datatype send data type

dst rank of destination

tag message tag

Basic send operation. it returns number of sent elements in sendBuffer.

Status Sendrecv(Object sendBuffer,
Datatype sendType,
Object recvBuffer,
Datatype recvType,

int sendOffset, int sendCount,
int dst, int sendTag,
int recvOffset, int recvCount,
int src, int recvTag)

sendBuffer send buffer

sendOffset initial offset in sendBuffer
sendCount number of elements to send
sendType send data type

dst rank of destination
sendTag send message tag
recvBuffer receive buffer

recvOffset initial offset in recvBuffer
recvCount number of elements to receive
recvType received data type

src rank of source

recvTag receive message tag

Send and then receive operation. It returns an Status object.

int Size()

Return the number of processes in this communicator.

int Ssend(Object sendBuffer, int offset, int count,
Datatype datatype, int dst, int tag)

sendBuffer send buffer

offset initial offset in sendBuffer
count number of elements to send
datatype send data type

dst rank of destination

tag message tag

Synchronized send operation which returns the number of sent elements.

130 APPENDIX B. P2P-MPI API

B.2 Datatype

The primitive datatypes provides in P2P-MPI.

Static types | Java types
BOOLEAN boolean
BYTE byte

CHAR char
DOUBLE double
FLOAT float

INT int

LONG long

NULL no object
OBJECT java object
SHORT short
STRING string

It contains the following methods for the operation on datatypes.

e |Datatype Contiguous(int count)

count number of elements

Creates a contiguous datatype and return contiguous datatype.

e |int Extent()

Returns the extent of a datatype.

e |int Lb(Q)

Returns the lower bound of datatype.

e |int Size()

Returns the size of a datatype.

e |int UbQ)

Returns the upper bound of a datatype.

B.3. GROUP 131

B.3 Group

Contains operation on MPI groups.

e |static int Compare(Group groupl, Group group2)

groupl first group
group2 second group

Compare two groups.

e |static Group Difference(Group groupl, Group group2)

groupl first group
group2 second group

Creates new group from the difference between groupl and group2.

e |Group Excl(int[] rank)

rank list of rank to be excluded from group

Creates a new group which excludes some ranks from original group.

e |Group Incl(int[] rank)

rank list of rank to be included to new group

Creates a new group which includes some rank from original group.

e |static Group Intersection(Group groupl, Group group2)

groupl first group
group2 second group

Creates a new group from the intersection between groupl and group2.

e |int Rank()

Returns rank in this group.

e |int Size()

132

Returns size of this group.

APPENDIX B. P2P-MPI API

static Group Union(Group groupl, Group group2)

groupl first group
group2 second group

Creates a new group from the union between groupl and group?2.

B.4 IntraComm

This class provides collective communication operations.

void Allgather(Object sendBuffer, int sendOffset,
int sendCount, Datatype sendType,
Object recvBuffer, int recvOffset,
int recvCount, Datatype recvType)

sendBuffer
sendOffset
sendCount
sendType
recvBuffer
recvOffset
recvCount
recvType

send buffer

initial offset in sendBuffer
number of elements to send
send data type

receive buffer

initial offset in recvBuffer
number of elements to receive
received data type

Gathers data from all tasks and distribute it to all.

void Allgatherv(Object sendBuffer, int sendOffset,

int sendCount, Datatype sendType,
Object recvBuffer, int recvOffset, int[] recvCount,
int[] displs, Datatype recvType)

sendBuffer
sendOffset
sendCount
sendType
recvBuffer
recvOffset
recvCount
displs
recvType

send buffer

initial offset in sendBuffer
number of elements to send
send data type

receive bufler

initial offset in recvBuffer

Array of the number of elements to receive
Array of displacement in recvBuffer

received data type

Gathers data from all tasks and distributes it to all (variable size).

B.4. INTRACOMM 133

e |void Allreduce(Object sendBuffer, int sendOffset,
Object recvBuffer, int recvOffset,
int count, Datatype datatype, Op op)

sendBuffer send buffer

sendOffset initial offset in sendBuffer
recvBuffer receive buffer

recvOffset initial offset in recvBuffer

count number of elements in buffer
datatype data type
op operation to do on sendBuffer and recvBuffer buffers

Reduces the result by op operation then broadcast to all processes.

e |void Alltoall(Object sendBuffer, int sendOffset,
int sendCount, Datatype sendType,
Object recvBuffer, int recvOffset,
int recvCount, Datatype recvType)

sendBuffer send buffer

sendOffset initial offset in sendBuffer
sendCount number of elements to send
sendType send data type

recvBuffer receive buffer

recvOffset initial offset in recvBuffer
recvCount number of elements to receive
recvType received data type

Exchanges data to all processes.

e |void Alltoallv{(Object sendBuffer, int sendOffset, int[] sendCount,
int[] sendDispl, Datatype sendType,
Object recvBuffer, int recvOffset, int[] recvCount,
int[] recvDispl, Datatype recvType)

134

sendBuffer
sendOffset
sendCount
sendDispls
sendType
recvBuffer
recvOffset
recvCount
recvDispls
recvType

APPENDIX B.

send buffer

initial offset in sendBuffer

Array of the number of elements to send
Array of displacement in sendBuffer

send data type

receive buffer

initial offset in recvBuffer

Array of the number of elements to receive
Array of displacement in recvBuffer
received data type

Exchanges data to all processes in varied size.

P2P-MPI API

void Barrier()

Synchronized

MPT processes.

void Bcast(Object buffer, int offset, int count,

Datatype datatype, int root)

buffer
offset
count
datatype
root

send /receive buffer

initial offset in buffer

number of elements to send/receive
send /receive data type

rank process which sends buffer

Broadcasts a message to all MPI processes.

IntraComm Create(Group group)

group MPI group

Creates a new intra-communicator.

void Gather(Object sendBuffer, int sendOffset,

int sendCount, Datatype sendType,
Object recvBuffer, int recvOffset,
int recvCount, Datatype recvType, int root)

B.4. INTRACOMM

sendBuffer send buffer

sendOffset initial offset in sendBuffer
sendCount number of elements to send
sendType send data type

recvBuffer receive buffer

recvOffset initial offset in recvBuffer
recvCount number of elements to receive
recvType received data type

root rank process to gather data

Gathers together values from a group of tasks.

135

e |void Gatherv(Object sendBuffer, int sendOffset,
int sendCount, Datatype sendType,
Object recvBuffer, int recv0ffset,
int[] recvCount, int[] displs,
Datatype recvIype, int root)

sendBuffer send buffer

sendOffset initial offset in sendBuffer

sendCount number of elements to send

sendType send data type

recvBuffer receive buffer

recvOffset initial offset in recvBuffer

recvCount Array of the number of elements to receive

displs Array of displacement in recvBuffer
recvType received data type
root rank process to gather data

Gathers together values from group of tasks (varied size).

e |void Reduce_scatter(Object sendBuffer, int sendOffset,
Object recvBuffer, int recvOffset,
int[] recvCount, Datatype datatype, Op op)

sendBuffer send buffer

sendOffset initial offset in sendBuffer

recvBuffer receive buffer

recvOffset initial offset in recvBuffer

recvCount Array of the number of elements to receive
datatype data type

op operation

Combines value and scatters the results.

136 APPENDIX B. P2P-MPI API

e |void Reduce(Object sendBuffer, int sendOffset,
Object recvBuffer, int recvOffset,
int count, Datatype datatype, Op op, int root)

sendBuffer send buffer

sendOffset initial offset in sendBuffer
recvBuffer receive buffer

recvOffset initial offset in recvBuffer

count number of elements

datatype data type

op operation type

root rank process to perform the operation on data

Performs an operation on root process.

e |void Scan(Object sendBuffer, int sendOffset, Object recvBuffer,
int recvOffset, int count, Datatype datatype, Op op)

sendBuffer send buffer

sendOffset initial offset in sendBuffer
recvBuffer receive buffer

recvOffset initial offset in recvBuffer

count number of elements
datatype data type
op operation type

Computes the scan (partial reductions) of data on a collection of processes.

e |void Scatter(Object sendBuffer, int sendOffset,

int sendCount, Datatype sendType,

Object recvBuffer, int recvOffset,

int recvCount, Datatype recvlype, int root)

sendBuffer send buffer

sendOffset initial offset in sendBuffer
sendCount number of elements to send
sendType send data type

recvBuffer receive buffer

recvOffset initial offset in recvBuffer
recvCount number of elements to receive
recvType received data type

root rank process to scatter data

Sends data from root process to all other processes in a group.

B.5. MPI

137

e |void Scatterv(Object sendBuffer, int sendOffset,

int[] sendCount, int[] displs, Datatype sendType,
Object recvBuffer, int recvOffset,
int recvCount, Datatype recvType, int root)

sendBuffer
sendOffset
sendCount
displs
sendType
recvBuffer
recvOffset
recvCount
recvType
root

send buffer

initial offset in sendBuffer

Array of number of elements to send
Array of displacement in sendBuffer
send data type

receive buffer

initial offset in recvBuffer

number of elements to receive
received data type

rank process to scatter data

Sends a buffer from root process in parts to all processes in a group.

e |IntraComm Split(int color, int key)

color control of subset assignment
key control of rank assignment

Split communicator from color and key.

B.5 MPI

The main MPI class.

e Special parameters

ANY_SOURCE
ANY_TAG

source parameter in receive methods to indicate any sources
tag parameter in receive methods to indicate any tags

o Default operations

BAND bit-wised AND

MAX max value
MAXLOC | max value and its location
MIN min value

MINLOC | min value and its location
PROD production
SUM summation

138

e MPI group comparison results

APPENDIX B. P2P-MPI API

two groups are similar (same members, different ranks)

IDENT two groups are identical
SIMILAR
UNEQUAL | two groups are not identical
¢ Predefined Datatypes
BOOLEAN | boolean
BYTE byte
BYTE2 two bytes
CHAR character
CHAR2 two characters
DOUBLE | double
DOUBLE2 | two doubles
FLOAT float
FLOAT2 | two floats
INT integer
INT2 two integers
LONG long
LONG2 two longs
OBJECT | java object or array
SHORT short
SHORT2 | two shorts
STRING | string
e | IntraComm COMM_WORLD

Default communicator.

e |static void Finalize()

Finalization the MPI program.

e |static String Get_processor_name()

Returns a local hostname.

e |static Stringl] Init(Stringl] args)

Initialization the MPI program.

e |static int Rand()

B.6. MPI_USER_FUNCTION AND OP 139

Returns a pseudo-random, uniformly distributed int value from this random num-
ber generator’s sequence.

e |static Rand(int n)

Returns a pseudo-random, uniformly distributed int value between 0 (inclusive)
and the specified value (exclusive), drawn from this random number generator’s
sequence.

e |static double Wtick()

Returns the resolution of Wtime.

e |static double Wtime()

Returns an elapsed time on the calling processor (seconds).

B.6 MPI__User_ function and Op

MPI operations (Op class)

o |Op(MPI_User_function function, boolean commute)

function user defined function
commute true if commutative, otherwise false

The constructor of Op class.

e |boolean isCommute()

Checks if operation is commutative.
MPI programmers can build their own MPI operation by constructing a new class.

e The abstract base class MPI_User_function is defined by:

class MPI_User_function {
public abstract void Call(Object invec, int inoffset,
Object inoutvec, int inoutoffset,
int cont, Datatype datatype) ;

140

APPENDIX B. P2P-MPI API

The programmer should define a concrete subclass of MPI_User_function, im-
plementing the Call method, then pass an object from this class to the Op con-
structor. The MPI_User_function.Call method plays exactly the same role as
the function argument in the standard bindings of MPI. The actual arguments
invec and inoutvec passed to Call will be arrays containing count elements of
the type specified in the datatype argument. Offsets in the arrays can be specified
as for message buffers. The user-defined Call method should combine the arrays
element by element, with results appearing in inoutvec.

B.7 Request

The handle of asynchronous communication

Status Test()

Tests if message reception has completed.

Status Wait()

Block until a waiting asynchronous message is received.

static Status[] Waitall(Request[] requests)

requests array of request objects
Block until all of the operations associated with the active requests in the array
have completed.

B.8 Status

The status of a message communication. It contains

e two public variables

int source | source rank
int tag tag number

¢ and one method

int Get_count(Datatype type)

Returns the number of elements depends on its datatype.

Appendix C

P2P-MPI User’s Guide

C.1 P2P-MPI Configuration File

Table C.1 show default configuration file, P2P-MPI.conf, which resides in environment
variable P2PMPI_HOME. It is divided into subsets of setting as follows :

Bootstrap Setting : SUPERNODE is used to define a machine which is running a
supernode process. VISU_PROXY is used to define a machine which is running a visu__prozy
process. It is an optional setting.

Local Machine Setting : MPD_PORT, FT_PORT, FD_PORT, and RS_PORT are the ports
that P2P-MPI processes (MPD, FT, FD, RS) will be used respectively. MIN_PORT and
MAX_PORT define port range that MPI applications will use. EXTERNAL_IP is optional
and will be used when the machine is behind the firewall or when the machine has a
private IP address. If the user knows that all the machines he needs to use are in a
private network, then he does not have to use EXTERNAL_IP option. HOST_DENY specifies
the list of IP addresses that this machine does not allow to execute MPI applications.
The IP address can be in format XX.XX.XX.XX for a single machine or XX.XX.XX. to
deny all machines which IP address starts with XX.XX.XX (i.e. 192.168.0. refers to all
the machines which have IP address from 192.168.0.0 to 192.168.0.255).

Resource Contribution Setting : MAX_PROCESSES_PER_JOB defines the number of
MPI processes an MPI application can use on the user’s machine. MAX_JOBS defines the
number of MPI applications that can be executed simultaneously on the user’s machine
machine (it is set to 0, if an unlimited number of MPI applications can be executed
simultaneously).

Fault Detector Setting : T_GOSSIP is the period between each fault detection ser-
vice’s gossip message in microseconds. T_MAX_HANG is used to prevent false fault detec-
tion from a temporary network link failure. It is the additional time over the normal

141

142 APPENDIX C. P2P-MPI USER’S GUIDE

detection time. The unit is in microsecond. GOSSIP_PROTOCOL defines the protocol, ei-
ther DBRR (double binary round-robin) or BRR (binary round-robin) protocol. Thus,
the actual fault detection time in theory is ((3logy(n))x T_GOSSIP) + T_MAX_HANG for
DBRR protocol and ((2_loga(n))x T_GOSSIP) + T_MAX_HANG for BRR protocol.

C.2 Command lines

P2P-MPI is distributed with a set of command lines. We divide into three categories :
supernode commands, MPI commands, and visu commands.

Supernode Commands

The list of supernode commands are :

e runSupernode to start a supernode.

choopan@mordred: “$ runSupernode

e stopSupernode to stop supernode process.

choopan®@mordred:~$ stopSupernode

e supernode_stat to check how many MPDs are known in this supernode.

choopan@mordred:~“$ supernode_stat

Host MPD Port Last update
130.79.192.153 19897 0D 0:2:1:441
130.79.192.150 19897 0D 0:0:7:996

Total : 2 MPD known.

MPI Commands

For a machine that need to participate in P2P-MPI network to share and to use shared
resources.

o mpiboot to start all P2P-MPI processes (MPD, FD, FT, and RS).

choopan@mordred: ~“$ mpiboot
[Booting mpd 0.28.0]

MPD started. Log is in /home/stagiaires/choopan/p2pmpi/tmp/mpd-mordred.log

o mpihalt to stop all P2P-MPT processes.

C.2. COMMAND LINES

143

choopan@mordred: “$ mpihalt

FT Shutdown ... Domne.
FD Shutdown ... Dome.
RS Shutdown ... Done.
MPD Shutdown ... Done.

P2P-MPI Shutdown .. Completed

e mpihost to see the list of machines running P2P-MPI in the local hostcache.

choopan®@mordred: “$ mpihost
Hostcache entry of MPD : 127.0.01

Host MPD Port RTT(ms) Alive Last update
lancelot.u-strasbg.fr 19897 27 true 0D 0:0:42:543
pellinore.u-strasbg.fr 19897 40 true 0D 0:0:42:596

Total : 2 MPD known.

« mpistat to see information of executing MPI applications on this machine.

choopan@mordred:~“$ mpistat
Trying to connect to 127.0.0.1:19897...

Gatekeeper (mpd 0.28.0) up and running.
Application Name : Dummy

MPI Rank : 0

Local Port : 19816

Rank 0 IP : 130.79.192.153

e p2pmpirun to run an MPI application.

choopan@mordred: ~$ p2pmpirun
Usage : p2pmpirun -n <numproc> [-r <numreplica> -1 <input filelist>
-w <time> -a <strategy>] <command> [args]

-a <strategy> : name of allocation strategy (gather or scatter)
(default is scatter)
-n <numproc> : number of processes MPI

-r <numreplica> : number of replica per rank
(not needed for 1 replica per rank)
-1 <filelist> : list of input file
(not needed if only the executable file is
to be transfered)
-w <time> : maximum time in seconds to wait for searching nodes
<command> : executable file without .class

144 APPENDIX C. P2P-MPI USER’S GUIDE

args : arguments of executable file

choopan@mordred:~$ p2pmpirun -n 2 Dummy

Visu Command

The set of commands for P2P-MPI graphical interface monitoring tools.

e runVisu to start P2P-MPI graphical interface monitoring tools.

choopan@mordred: “$ runVisu

e runVisuProxy to start a proxy server for visu program to reduce load on MPD.

choopan@mordred: “$ runVisuProxy

C.3 Sample Codes

Table C.2 shows the example of parallel Pi program using P2P-MPI. To program with
P2P-MPI, programmers first need to import P2P-MPI package (import p2pmpi.mpi.*;
inline 1). MPI.Init (args) (in line 9) needs to be called before using other MPI methods.
Because MPI.Init(args) is used to create a default MPI communicator COMM_WORLD.
Finally, all MPI applications must be finished with MPI.Finalize() (in line 41). This
method negociates with MPD to tell MPD that the application is terminated. Thus,
MPD can clean this application from its process table.

C.3. SAMPLE CODES 145

==
= O ©W 00 N O U Rk W N

O © 0N O U kWO W N0 WNRFE O WO O OEWN RO OO OERE RN =O O NSO W N

)
s

AR

SuperNode

R
SUPERNODE=tcp://pellinore.u-strasbg.fr:9700
VISU_PROXY=tcp://tag.u-strasbg.fr:9701

MPD, FT, FD fixed ports

MPD_PORT=9897
FT_PORT=0898
FD_PORT=9899
RS_PORT=9900

B s s s S S S S S
MPI application port range

B s s s S S S s
MIN_PORT=9801

MAX_PORT=9900

PC behind firewall (after doing port forward)

uncomment here and put your external IP

L s s S s s s s s s s s s
#EXTERNAL_IP=

B s s s s s s s s s s s s s s
Maximum Number of simultaneous process per job >= 1
[Need to restart P2P-MPI]

MAX_PROCESSES_PER_JOB=1

B S s s s s s s i
Maximum number of jobs (applications) accepted simultaneously
(0 : unlimited)

B T s s T s s s L s s
MAX_JOBS=0

Hosts IP whose requests will be ignored

coma separated list of IP or networks

B g s s s s T i
#HOST_DENY=130.79.192.150,213.23.45.

B e
Fault detector service

B e s R s e
Period to send gossip message (ms)

T_GOSSIP=500

Tolerate a network failure at maximum T_max_hang (ms)
T_MAX_HANG=5000

Gossip protocol (DBRR, BRR) [default: DBRR]
DBRR (3 log2(n) detection time)

BRR (2 log2(n) detection time)
GOSSIP_PROTOCOL=DBRR

Cache file

PEER_CACHE=/tmp/cache.xml

Table C.1: The default P2P-MPI configuration file.

© 0 N U R W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

146 APPENDIX C. P2P-MPI USER’S GUIDE

import p2pmpi.mpi.*;

public class Pi {
public static void main(String[] args) {
int rank, size, i;
double PI25DT = 3.141592653589793238462643;
double h, sum, x;

MPI.Init(args);
double startTime = MPI.Wtime();

MPI.COMM_WORLD.Size();
MPI.COMM_WORLD.Rank();

size
rank

int[] n = new int[1];
double[] mypi = new double[1];
double[] pi = new double[1];

if(rank == 0) {
n[0] = 1000000; // number of interval
}

MPI.COMM_WORLD.Bcast(n, O, 1, MPI.INT, 0);

0 / (double)n[0];

0.0;

for(i = rank + 1; i <= n[0]; i+= size) {
x = h * ((double)i - 0.5);
sum += (4.0/(1.0 + x*x));

h =1.
sum =

}
mypi[0] = h * sum;

MPI.COMM_WORLD.Reduce(mypi, O, pi, O, 1, MPI.DOUBLE, MPI.SUM, O);

if(rank == 0) {
System.out.println("Pi is approximately " + pi[0]);
System.out.println("Error is " + (pi[0] - PI25DT));
double stopTime = MPI.Wtime();
System.out.println("Time usage = " + (stopTime - startTime) + " s");
}
MPI.Finalize();

Table C.2: The example of Pi program.

Appendix D

Benmarks (JGF section 1)

This chapter gives the results on the JGF section 1 benchmark of three MPJ implemen-
tation : P2P-MPI version 0.27.1 (SP device), P2P-MPI version 0.28.0 (MP device), and
MP JExpress.

D.1 Experiment Setup

We have used Rennes site in Grid5000, using 128 nodes.

Environment type Grid5000, Rennes site (paravent cluster and paraquad cluster)
Number of nodes/cores | 128 nodes/128 cores
Hardware Intel Xeon 5148 LV, 4GB RAM
AMD Opteron 246, 2GB RAM
Operating System Linux 2.6.24-1-amd64
Interconnection Gigabit Ethernet.
Java runtime Java 1.5.0 O8.
Benchmark suites JGF section 1 : Point-to-point communication
MPJ implementation P2P-MPI-0.27.1 (SP device), P2P-MPI-0.28.0 (MP device), and MPJExpress

D.2 Benchmark Results

In the following figures, the caption names refer to the different communication calls
we tested : barrier, reduce, bcast and reduce, followed either by d (for double) or o
(for object), then by the number of elements in the array. For example : Figure D.2
consists of two sub-figures reduce-d-4 and reduce-d-2048. reduce-d-4 shows the result of
MPI.Reduce operation on an array of doubles whose size is 4. and reduce-d-2048 shows
the result of MPI.Reduce operation on an array of doubles whose size is 2048.

147

148

APPENDIX D. BENMARKS (JGF SECTION 1)

10000
P2P-MPI SP —+—
P2P-MPI MP -
% MPJ-Express ---%---
Tk
T¥.
1000
"
- O e
2 -
<]
Qo
100
10
4 8 16 32 64 128
Number of processes
Figure D.1: Barrier test
1e+07 1e+08
P2P-MPI SP —+— P2P-MPI SP —+—
P2P-MPI MP - P2P-MPI MP -~
MPJ-Express --¥-- MPJ-EXpress - -
1e+06
1le+07
100000
B H
10000
1e+06 -
- T
1000 [— - ! e T
100 100000
48 16 32 64 128 4 8 16 32 64 128
Number of processes Number of processes

(a) reduce-d-4 (b) reduce-d-2048

Figure D.2: Reduce test

D.2. BENCHMARK RESULTS

bytes/s

bytes/s

objects/s

objects/s

1e+06

100000

10000

1000

P2P-MPI SP —+—
P2P-MPI MP -
MPJ-Express -

100

le+08

le+07

1e+06

100000

100000

10000

1000

100

1e+06

100000

10000

48 16 32 64 128
Number of processes
(a) beast-d-4
P2P-MPI SP —+—
P2P-MPI MP -
MPJ-Express -
X
48 16 32 64 128
Number of processes
(¢) beast-d-2048
P2P-MPI SP ——
P2P-MPI MP -
MPJ-Express -
—
48 16 32 64 128
Number of processes
(e) beast-o-4
P2P-MPI SP —+—
P2P-MPI MP
MPJ-Express -
,,,,,, N
oy
P
-
48 16 32 64 128

Number of processes

(g) bcast-0-2048

bytes/s

bytes/s

objects/s

objects/s

149

1e+08
P2P-MPI SP —+—
P2P-MPI MP
MPJ-Express
1le+07
1e+06
100000 b
—
]
10000
4 8 16 32 64 128
Number of processes
(b) beast-d-90
1e+08
P2P-MPI SP —+—
P2P-MPI MP -
MPJ-Express
1le+07
|
]
1e+06
48 16 32 64 128
Number of processes
(d) beast-d-46340
1e+06
P2P-MPI SP —+—
P2P-MPI MP %
MPJ-Express "
100000
10000
\\\\
T
|
1000
100
4 8 16 32 64 128
Number of processes
(f) bcast-0-90
1e+06
P2P-MPI SP —+—
P2P-MPI MP
MPJ-Express
100000 =
10000
4 8 16 32 64 128

Figure D.3: Bceast test

Number of processes

(h) bcast-0-46340

150 APPENDIX D. BENMARKS (JGF SECTION 1)

1e+07 1e+08
P2P-MPI SP —+— P2P-MPI SP —+—
P2P-MPI MP - P2P-MPI MP -~
MPJ-Express -~ s MPJ-Express ---%--
1e+06 [t 1e+07 -
100000 B — 1e+06
£ 10000 8 100000
£ 3
B B
1000 10000
—
100 1000
10 — = 100
48 16 32 64 128 4 8 16 32 64 128
Number of processes Number of processes
(a) gather-d-4 (b) gather-d-90
1e+08 le+08
P2P-MPI SP —+— P2P-MPI SP —+—
P2P-MPI MP % P2P-MPI MP -~
MPJ-Express -—x-- MPJ-Express -----
1e+07
1e+07
1e+06
@ o
8 4
g g
E) .. a
100000 i : —
1e+06
10000
—]
1000 100000
48 16 32 64 128 4 8 16 32 64 128
Number of processes Number of processes
(c) gather-d-2048 (d) gather-d-46340
100000 1e+06
P2P-MPI SP —— P2P-MPI SP —+—
P2P-MPI MP - P2P-MPI MP %
MPJ-Express ---%-- MPJ-Express -
10000 Ko 100000
1000 . S 10000
@ k4
g E]
g g
g g
£ 2
g g
100 1000
10 100 s
_
1 — 10
48 16 32 64 128 4 8 16 32 64 128
Number of processes Number of processes
(e) gather-o-4 (f) gather-0-90
1e+06 1le+06
P2P-MPI SP —+— P2P-MPI SP —+—
P2P-MPI MP - P2P-MPI MP -~
MPJ-Express ---%-- MPJ-Express -
100000
100000
) @
H g
8 10000 g
£ £
g g
10000 b
1000 B !
100 1000
48 16 32 64 128 4 8 16 32 64 128
Number of processes Number of processes

(g) gather-0-2048 (h) gather-0-46340

Figure D.4: Gather test

Bibliography

[1]

MPI Forum. MPI: A message passing interface standard. Technical report, Univer-
sity of Tennessee, Knoxville, TN, USA, June 1995.

JXTA. http://www.jxta.org.

Bryan Carpenter, Vladimir Getov, Glenn Judd, Tony Skjellum, and Geoftrey Fox.
MPJ: MPI-like message passing for Java. Concurrency: Practice and Ezperience,
12(11), September 2000.

Robbert van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection
service. In Middleware °98, 1998.

Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann Publishers, August 1998.

SETI@home. http://setiathome.berkeley.edu.
Folding@home. http://folding.stanford.edu.
Egee (Enabling Grids for E-sciencE). http://www.eu-egee.org/.

Satoshi Sekiguchi, Mitsuhisa Sato, Hidemoto Nakada, and Umpei Nagashima. —
ninf—: Network base information library for globally high performance. In Parallel
Object-Oriented Methods and Applications (POOMA), February 1996.

D. Arnold, S. Agrawal, S. Blackford, J. Dongarra, M. Miller, K. Seymour, K. Sagi,
Z. Shi, and S. Vadhiyar. Users’ Guide to NetSolve V1.4.1. Innovative Computing
Dept. Technical Report ICL-UT-02-05, University of Tennessee, Knoxville, TN,
June 2002.

Lyster P., Bergman L., Li P., Stanfill D., Crippe B., Blom R., Pardo C., and Okaya
D. Casa gigabit supercomputing network: Calcrust three-dimensional real-time
multi-dataset rendering. Supercomputing’92, 1992.

Larry Smarr and Charles E. Catlett. Metacomputing. Commun. ACM, 35(6):44-52,
1992.

151

http://www.jxta.org
http://setiathome.berkeley.edu
http://folding.stanford.edu
http://www.eu-egee.org/

152

[13]

[14]

[15]

[16]

BIBLIOGRAPHY

Tan Foster and Carl Kesselman. Globus: A metacomputing infrastructure toolkit.
The International Journal of Supercomputer Applications and High Performance
Computing, 11(2):115-128, 1997.

James Frey, Todd Tannenbaum, Tan Foster, Miron Livny, and Steve Tuecke. Condor-
G: A computation management agent for multi-institutional grids. Cluster Com-
puting, 5:237-246, 2002.

Michael J. Litzkow, Miron Livny, and Matt W. Mutka. Condor - a hunter of idle
workstations. In ICDCS, pages 104-111, 1988.

Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in
practice: the Condor experience. Concurrency and Computation: Practice and
FEzperience, 17(2-4):323-356, 2005.

Gilles Fedak, Cécile Germain, Vincent Néri, and Franck Cappello. Xtremweb: A
generic global computing system. In CCGRID, pages 582-587. IEEE Computer
Society, 2001.

Andrew S. Grimshaw, William A. Wulf, James C. French, Alfred C. Weaver, and
Paul F. Reynolds Jr. Legion: The next logical step toward a nationwide virtual
computer. Technical Report CS-94-21, University of Virginia, August 1994.

EU Data Grid project. http://wuw.eu-datagrid.org.

Eddy Caron and Frédéric Desprez. Diet: A scalable toolbox to build network
enabled servers on the grid. International Journal of High Performance Computing
Applications, 20(3):335-352, 2006.

Keith Seymour, Hidemoto Nakada, Satoshi Matsuoka, Jack Dongarra, Craig A.
Lee, and Henri Casanova. Overview of gridrpc: A remote procedure call api for
grid computing. In Manish Parashar, editor, GRID, volume 2536 of Lecture Notes
in Computer Science, pages 274-278. Springer, 2002.

A. Geist, A. Beguelin, Jack Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
PVM Parallel Virtual Machine, A User’s Guide and Tutorial for Networked Parallel
Computing. MIT Press, Cambridge, Mass., 1994.

MPICH. http://www-unix.mcs.anl.gov/mpi.
MPICH2. http://www.mcs.anl.gov/research/projects/mpich2.

Greg Burns, Raja Daoud, and James Vaigl. LAM: An Open Cluster Environment
for MPI. In Proceedings of Supercomputing Symposium, pages 379-386, 1994.

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra,
Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew

http://www.eu-datagrid.org
http://www-unix.mcs.anl.gov/mpi
http://www.mcs.anl.gov/research/projects/mpich2

BIBLIOGRAPHY 153

[27]

Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and Timo-
thy S. Woodall. Open MPI: Goals, concept, and design of a next generation MPI
implementation. In Proceedings, 11th European PVM/MPI Users’ Group Meeting,
pages 97-104, Budapest, Hungary, September 2004.

Gabrielle Allen, Thomas Dramlitsch, Ian Foster, Nicholas T. Karonis, Matei Ri-
peanu, Edward Seidel, and Brian Toonen. Supporting efficient execution in hetero-

geneous distributed computing environment with cactus and globus. In Proceedings
of SuperComputing 2001, page 52. ACM/IEEE, November 2001.

Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, and Raoul A. F.
Bhoedjang. MagPle: MPI’s collective communication operations for clustered wide
area systems. ACM SIGPLAN Notices, 34(8):131-140, August 1999.

Amnon Barak, Shai Guday, and Richard Wheeler. The MOSIX Distributed Oper-
ating System, Load Balancing for UNIX, volume 672 of Lecture Notes in Computer
Science. Springer-Verlag, 1993. http://www.mosix.cs.huji.ac.il/.

Nicholas Karonis, Brian Toonen, and Ian Foster. MPICH-G2: A grid-enabled im-
plementation of the message passing interface. Journal of Parallel and Distributed
Computing, 63(5):551-563, 2003.

Motohiko Matsuda, Tomohiro Kudoh, Yuetsu Kodama, Ryousei Takano, and Yu-
taka Ishikawa. Efficient mpi collective operations for clusters in long-and-fast net-
works. In CLUSTER, 2006.

Michael Barnett, Lance Shuler, Satya Gupta, David G. Payne, Robert A. van de
Geijn, and Jerrell Watts. Building a high-performance collective communication
library. In SC, pages 107-116, 1994.

Pascal Felber, Xavier Défago, Rachid Guerraoui, and Philipp Oser. Failure detectors
as first class objects. In DOA, pages 132-141, 1999.

Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable
distributed systems. J. ACM, 43(2):225-267, 1996.

Graham Fagg and Jack Dongarrar. FT-MPI: Fault tolerant mpi, supporting dy-
namic applications in a dynamic world. In FuroPVM/MPI User’s GroupMeeting
2000, pages 346-353. Springer-Verlag, Berlin, Germany, 2000.

Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM, 21(7), July 1978.

M. Elnozahy, L. Alvisi, Y. M. Wang, and D. B. Johnson. A survey of rollback-
recovery protocols in message passing systems. Technical Report CMU-CS-96-181,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,
October 1996.

http://www.mosix.cs.huji.ac.il/

154

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

BIBLIOGRAPHY

Lorenzo Alvisi, E. N. Elnozahy, Sriram Rao, Syed Amir Husain, and Asanka De
Mel. An analysis of communication induced checkpointing. In 29th Symposium on
Fault-Tolerant Computing (FTCS’99), pages 242-249. IEEE CS Press, June 1999.

Lorenzo Alvisi and Keith Marzullo. Message logging: Pessimistic, optimistic, and
causal. In Proceeding of the 15th International Conference on Distributed Computing
Systems (ICDCS’95), pages 229-236, 1995.

Robert E. Strom and Shaula Yemini. Optimistic recovery in distributed systems.
ACM Trans. Comput. Syst., 3(3):204-226, 1985.

Fred. B. Schneider. Replication Management Using the State Machine Approach,
chapter 7, pages 169-195. ACM Press, 1993.

N. Budhiraja, F. Schneider, S. Toueg, and K. Marzullo. The Primary-Backup Ap-
proach. In S. Mullender, Distributed Systems, chapter 8, pages 199-216. Addison
Wesley, 1993.

Georg Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Pro-
ceedings of the 10th International Parallel Processing Symposium (IPPS ’96), Hon-
olulu, Hawaii, 1996.

A. Agbaria and R. Friedman. Starfish: Fault-Tolerant Dynamic MPI programs on
Clusters of Workstations. In Proceedings of the 8th IEEE International Sympo-
sium on High Performance Distributed Computing, pages 167-176, Los Alamitos,
California, 1999.

Soulla Louca, Neophytos Neophytou, Arianos Lachanas, and Paraskevas Evripidou.
MPI-FT: Portable fault tolerenace scheme for MPI. In Parallel Processing Letters,
volume 10, pages 371-382. World Scientific Publishing Company, 2000.

George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djailali, Gilles Fedak,
Cecile Germain, Thomas Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic
Magniette, Vincent Neri, and Anton Selikhov. MPICH-V: Toward a Scalable
Fault Tolerant MPI for Volatile Nodes. In SuperComputing 2002, Baltimore, USA,
November 2002.

Aurelien Bouteiller, Franck Cappello, Thomas Herault, Geraud Krawezik, Pierre
Lemarinier, and Frederic Magniette. MPICH-V2: a Fault Tolerant MPI for Volatile
Nodes based on the Pessimistic Sender Based Message Logging, November 2003.

R. Batchu, J. Neelamegam, Z. Cui, M. Beddhua, A.Skjellum, Y. Dandass, and
M. Apte. MPI/FT™: Architecture and taxonomies for fault-tolerant,message-
passing middleware for performance-portable parallel computing. In Proceedings of
the 1st IEEE International Symposium of Cluster Computing and the Grid, Mel-
bourne, Australia, 2001.

BIBLIOGRAPHY 155

[49]

[50]

[51]

[57]

[58]

[59]

[60]

[61]

S. Mintchev. Writing Programs in JavaMPI. School of Computer Science, University
of Westminster, 1997. MAN-CSPE-02.

Mark Baker, Bryan Carpenter, and Aamir Shafi. Mpj express: Towards thread safe
java hpc. In Proceedings of the 2006 IEEE International Conference on Cluster
Computing, September 25-28, 2006, Barcelona, Spain, 2006.

Markus Bornemann, Rob V. van Nieuwpoort, and Thilo Kielmann. MPJ/Ibis: A
Flexible and Efficient Message Passing Platform for Java, volume 3666 of Lecture
Notes in Computer Science. Springer, 2005.

Rob van Nieuwpoort, Jason Maassen, Rutger F. H. Hofman, Thilo Kielmann, and
Henri E. Bal. Ibis: an efficient java-based grid programming environment. In
José E. Moreira, Geoffrey Fox, and Vladimir Getov, editors, Java Grande, pages
18-27. ACM, 2002.

Napster protocol specification. http://opennap.sourceforge.net/napster.txt,
April 2000.

Andy Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technologies, chap-
ter Gnutella, pages 94-122. O’Reilly, May 2001.

The Freenet Project. http://freenetproject.org.

John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton,
Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weatherspoon, Westley
Weimer, Chris Wells, and Ben Zhao. Oceanstore: An architecture for global-scale
persistent storage. In the Ninth international conferance on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), November 2000.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
A scalable content addressable network. Technical Report TR-00-010, Berkeley,
CA, 2000.

Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable Peer-To-Peer lookup service for internet applications. In
Proceedings of the 2001 ACM SIGCOMM Conference, pages 149-160, 2001.

Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object loca-
tion, and routing for large-scale peer-to-peer systems. Lecture Notes in Computer
Science, 2218:329-350, 2001.

B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141,
UC Berkeley, April 2001.

Bernard Traversat, Ahkil Arora, Mohamed Abdelaziz and Mike Duigou, Carl Hay-
wood, Jean-Christophe Hugly, Eric Pouyoul and Bill Yeager. Project jxta 2.0 super-
peer virtual network, May 2003.

http://opennap.sourceforge.net/napster.txt
http://freenetproject.org

156

[62]

[71]

[72]

BIBLIOGRAPHY

Gabriel Antoniu, Lolc Cudennec, Mike Duigou, and Mathieu Jan. Performance
scalability of the JXTA P2P framework. In Proc. 21st IEEE International Paral-
lel and Distributed Processing Symposium (IPDPS 2007), Long Beach, CA, USA,
March 2007.

Denis Caromel, Alexandre di Costanzo, and Clement Mathieu. Peer-to-peer for
computational grids: mixing clusters and desktop machines. Parallel Computing,
33(4-5):275-288, May 2007.

Niels Drost, Rob V. van Nieuwpoort, and Henri Bal. Simple locality-aware co-
allocation in peer-to-peer supercomputing. In Sixth IEEFE International Symposium
on Cluster Computing and the Grid Workshops (CCGRID’06). IEEE, 2006.

Emmanuel Jeanvoine, Christine Morin, and Daniel Leprince. Vigne: Executing
easily and efficiently a wide range of distributed applications in grids. In Proceedings
of Euro-Par 2007, pages 394-403, Rennes, France, 2007.

Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz. Handling churn
in a DHT. In ATEC’04: Proceedings of the USENIX Annual Technical Conference
2004 on USENIX Annual Technical Conference, pages 10-10, Berkeley, CA, USA,
2004. USENIX Association.

Xavier Défago, André Schiper, and Péter Urban. Total order broadcast and multi-
cast algorithms: Taxonomy and survey. ACM Comput. Surv., 36(4):372-421, 2004.

Vassos Hadzilacos and Sam Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical Report TR94-1425, 1994.

Sridharan Ranganathan, Alan D. George, Robert W. Todd, and Matthew C.
Chidester. Gossip-style failure detection and distributed consensus for scalable het-
erogeneous clusters. Cluster Computing, 4(3):197-209, 2001.

Kazuyuki Shudo, Yoshio Tanaka, and Satoshi Sekiguchi. P3: P2P-based middleware
enabling transfer and aggregation of computational resource. In 5th Intl. Workshop
on Global and Peer-to-Peer Computing, in conjunc. with CCGrid05. IEEE, May
2005.

Rolf Rabenseifner and Jesper Larsson Tréaff. More efficient reduction algorithms for
non-power-of-two number of processors in message-passing parallel systems book
series lecture notes in computer science. In Recent Advances in Parallel Virtual
Machine and Message Passing Interface, volume 3241, pages 36—46. Springer, 2004.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collective
communication operation in mpich. International Journal of High Performance
Computing Applications, 19(1):49-66, February 2005.

BIBLIOGRAPHY 157

73]

[74]

[75]

[76]

Alexandre Blansché and Pierre Gangarski. MACLAW: A modular approach for
clustering with local attribute weighting. Pattern Recognition Letters, 27(11):1299—
1306, 2006.

Stéphane Genaud, Pierre Gancarski, Guillaume Latu, Alexandre Blansché,
Choopan Rattanapoka, and Damien Vouriot. Exploitation of a parallel clustering
algorithm on commodity hardware with P2P-MPI. The Journal of SuperComputing,
43(1), January 2008.

Lionel Eyraud-Dubois, Arnaud Legrand, Martin Quinson, and Frédéric Vivien. A
first step towards automatically building network representations. In Anne-Marie
Kermarrec, Luc Bougé, and Thierry Priol, editors, Furo-Par, volume 4641 of Lecture
Notes in Computer Science, pages 160-169. Springer, 2007.

Franck Cappello, Eddy Caron, Michel J. Daydé, Frédéric Desprez, Yvon Jégou,
Pascale Vicat-Blanc Primet, Emmanuel Jeannot, Stéphane Lanteri, Julien Leduc,
Nouredine Melab, Guillaume Mornet, Raymond Namyst, Benjamin Quétier, and
Olivier Richard. Grid’5000: a large scale and highly reconfigurable grid experimen-
tal testbed. In GRID, pages 99-106. IEEE, 2005.

Kadeploy2. http://www-1id.imag.fr/Logiciels/kadeploy/.

Renater: Le réseau national de télécommunications pour la technologies,
I’enseignement et la recherche. http://www.renater.fr/.

D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R., Fatoohi,
S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon, V. Venkatakr-
ishnan, and S. Weeratunga. The NAS Paralell Benchmarks. Technical Report
RNR-94-007, NASA Ames Research Center, March 1994.

http://www-id.imag.fr/Logiciels/kadeploy/
http://www.renater.fr/

	Titre
	Résumé en français
	Introduction
	P2P-MPI
	L'intergiciel
	La gestion des pannes
	L'implémentation de MPJ
	Conclusion et Perspectives

	Introduction
	State of the Art
	Grid Usages
	Programming Environments for Grids
	Client/Server Programming Model
	Peer-to-Peer Model
	Parallel Model

	MPI and Grids
	MPI and Fault Tolerance
	Fault Detection
	Fault Recovery Techniques
	Fault Tolerant MPI implementations

	MPI and Java
	Peer-to-Peer Topologies
	Centralized Topology
	Decentralized Topology
	Hybrid Topology
	Peer-to-Peer Infrastructure Projects

	The P2P-MPI Middleware
	General Architecture
	The Peer-to-Peer Infrastructure
	The Middleware
	The Communication Library

	Application Start-up Protocol
	Discovery and Reservation
	Entities involved and Notations
	Reservation Schema

	Host Allocation Strategies
	Experiments with Co-allocation
	Co-allocation Experiments
	Application Performance

	P2P-MPI Graphical Monitoring Tool
	Conclusion

	Fault Management
	Logical processes and replicas
	Related Issues in the Literature
	Properties of Atomic Broadcast
	Assumptions

	Replicas coordination protocol
	Message Identifier (MID)
	Sending message agreement protocol
	Reception message agreement protocol
	Non-deterministic Situations
	Fault Recovery protocol

	Correctness of the protocol
	Atomic broadcast compliance
	Handling of Failure Situations inside Atomic Broadcast

	Replication and Failure Probability
	Fault Detection Background
	Fault Detection in P2P-MPI
	Assumptions and Requirements
	Design issues
	P2P-MPI implementation
	Automatic Adjustment of Initial Heartbeat

	Experiments
	Fault Detection Time
	Replication Overhead

	Conclusion

	MPJ Implementation
	Introduction
	The Single-Port Device
	The Multiple-Ports Device
	Collective Communication Operations
	Experiments
	Single-Port implementation
	Multiple-Port Implementation

	Conclusion

	Conclusion
	Experiment Testbeds and Benchmark Suites
	P2P-MPI API
	Comm
	Datatype
	Group
	IntraComm
	MPI
	MPI_User_function and Op
	Request
	Status

	P2P-MPI User's Guide
	P2P-MPI Configuration File
	Command lines
	Sample Codes

	Benmarks (JGF section 1)
	Experiment Setup
	Benchmark Results

