. Test-d-'activité-de-la-transcétolase, une cuve spectrophotométrique (1mL), sont introduits : -800 µL de tampon glycyl-glycine 0,1 M pH 7,5 -20 µL de NADH,H + (10 mg.mL -1 ), -5 µL de ThDP (10 mg.mL -1 ), -10 µL de MgCl 2 (10 mg.mL -1 ), -100 µL de L-érythrulose (120 mg.mL -1 ), -50 µL de D-ribose-5-phosphate (50 mg, mL -1 ), -5 µL d'ADH (5000 U.mL -1 ), -10 µL de TK (V TK )

. ?l-d-'eau-ultrapure, Après 5 minutes de centrifugation à 14000 rpm, 800 µL d'acétonitrile sont ajouté à 200 µL de surnageant pour obtenir un échantillon destiné à l'injection en

. Successivement, les culots sont repris doucement avec 200 mL, 100 mL, 20 mL d'eau stérile osmosée (stocké à 4 °C) et enfin avec 2 mL d'un solution glacée de glycérol à 20 % (les cellules sont centrifugées entre chaque reprise) Les cellules ainsi préparées peuvent être utilisées fraichement préparées

A. Sevestre, V. Helaine, G. Guyot, C. Martin, and L. Hecquet, A fluorogenic assay for transketolase from Saccharomyces cerevisiae, Tetrahedron Letters, vol.44, issue.4, pp.827-830, 2003.
DOI : 10.1016/S0040-4039(02)02634-5

K. Chen and F. H. Arnold, Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide., Proceedings of the National Academy of Sciences, vol.90, issue.12, pp.5618-5622, 1993.
DOI : 10.1073/pnas.90.12.5618

W. P. Stemmer, Methods for in vitro recombination (US Patent), pp.605-793, 1997.

F. H. Arnold, Design by Directed Evolution, Accounts of Chemical Research, vol.31, issue.3, pp.125-131, 1998.
DOI : 10.1021/ar960017f

F. H. Arnold, When blind is better: Protein design by evolution, Nature Biotechnology, vol.391, issue.7, pp.617-618, 1998.
DOI : 10.1038/nbt0798-617

F. H. Arnold, Directed evolution: Creating biocatalysts for the future, Chemical Engineering Science, vol.51, issue.23, pp.5091-5102, 1996.
DOI : 10.1016/S0009-2509(96)00288-6

A. V. Shivange, J. Marienhagen, H. Mundhada, and A. Schenk, Advances in generating functional diversity for directed protein evolution, Current Opinion in Chemical Biology, vol.13, issue.1, pp.19-25, 2009.
DOI : 10.1016/j.cbpa.2009.01.019

T. S. Wong, D. Roccatano, and U. Schawaneberg, Steering directed protein evolution: strategies to manage combinatorial complexity of mutant libraries, Environmental Microbiology, vol.17, issue.11, pp.2645-2659, 2007.
DOI : 10.1093/nar/gnh110

H. 18-kamiya, M. Ito, and H. Harashima, Induction of Various Mutations during PCRs with Manganese and 8-Hydroxy-dGTP, Biological & Pharmaceutical Bulletin, vol.30, issue.4, pp.842-844, 2007.
DOI : 10.1248/bpb.30.842

T. S. Wong, D. Roccatano, M. Zacharias, and U. Schawaneberg, A Statistical Analysis of Random Mutagenesis Methods Used for Directed Protein Evolution, Journal of Molecular Biology, vol.355, issue.4, pp.858-871, 2006.
DOI : 10.1016/j.jmb.2005.10.082

R. Higuchi, B. Krummel, and R. K. Saiki, preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions, Nucleic Acids Research, vol.16, issue.15, pp.7351-7367, 1988.
DOI : 10.1093/nar/16.15.7351

S. H. Ke and E. L. Madison, Rapid and efficient site-directed mutagenesis by single-tube 'megaprimer' PCR method, Nucleic Acids Research, vol.25, issue.16, pp.3371-3372, 1997.
DOI : 10.1093/nar/25.16.3371

URL : http://doi.org/10.1093/nar/25.16.3371

R. D. Kirsh and E. Joly, Acids Res, pp.1848-1850, 1998.

M. T. Reetz, M. Bocola, J. D. Carballeira, D. Zha, and A. Vogel, Expanding the Range of Substrate Acceptance of Enzymes: Combinatorial Active-Site Saturation Test, Angewandte Chemie International Edition, vol.58, issue.27, pp.4192-4196, 2005.
DOI : 10.1002/anie.200500767

M. T. Reetz, L. W. Wang, and M. Bocola, Directed Evolution of Enantioselective Enzymes: Iterative Cycles of CASTing for Probing Protein-Sequence Space, Angewandte Chemie International Edition, vol.43, issue.8, pp.1236-1241, 2006.
DOI : 10.1002/anie.200502746

M. T. Reetz, D. Kahakeaw, and J. Sanchis, Shedding light on the efficacy of laboratory evolution based on iterative saturation mutagenesis, Mol. BioSyst., vol.24, issue.2, pp.115-122, 2009.
DOI : 10.1039/B814862G

J. M. Short, Diversa Corporation), U.S. Patent, vol.6171, p.820, 2001.

G. Desantis, K. Wong, B. Farwell, K. Chatman, . Zhu et al., Creation of a Productive, Highly Enantioselective Nitrilase through Gene Site Saturation Mutagenesis (GSSM), Journal of the American Chemical Society, vol.125, issue.38, pp.11476-11477, 2003.
DOI : 10.1021/ja035742h

K. A. 33-kretz, T. H. Richardson, K. A. Gray, D. E. Robertson, X. Tan et al., Gene Site Saturation Mutagenesis: A Comprehensive Mutagenesis Approach, Methods in Enzymology, vol.388, pp.3-11, 2004.
DOI : 10.1016/S0076-6879(04)88001-7

S. V. Taylor, P. Kast, and D. Hilvert, Investigating and Engineering Enzymes by Genetic Selection, Angewandte Chemie International Edition, vol.410, issue.18, pp.3310-3335, 2001.
DOI : 10.1002/1521-3773(20010917)40:18<3310::AID-ANIE3310>3.0.CO;2-P

S. Fong, T. D. Machajewski, C. C. Mak, and C. H. Wong, Directed evolution of D-2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of D- and L-sugars, Chemistry & Biology, vol.7, issue.11, pp.873-883, 2000.
DOI : 10.1016/S1074-5521(00)00035-1

K. E. 36-dean, G. Klein, O. Renaudet, and J. L. Reymond, A green fluorescent chemosensor for amino acids provides a versatile high-throughput screening (HTS) assay for proteases, Bioorganic & Medicinal Chemistry Letters, vol.13, issue.10, pp.1653-1656, 2003.
DOI : 10.1016/S0960-894X(03)00280-4

M. Konarzycka-bessler and U. T. Bornschuer, A High-Throughput-Screening Method for Determining the Synthetic Activity of Hydrolases, Angewandte Chemie International Edition, vol.42, issue.12, pp.1418-1420, 2003.
DOI : 10.1002/anie.200390365

K. M. Mayer and F. H. Arnold, A Colorimetric Assay to Quantify Dehydrogenase Activity in Crude Cell Lysates, Journal of Biomolecular Screening, vol.151, issue.2, pp.135-140, 2002.
DOI : 10.1177/108705710200700206

G. Klein and J. L. Reymond, An enantioselective fluorimetric assay for alcohol dehydrogenases using albumin-catalyzed ??-elimination of umbelliferone, Bioorganic & Medicinal Chemistry Letters, vol.8, issue.9, pp.1113-1116, 1998.
DOI : 10.1016/S0960-894X(98)00165-6

M. T. Reetz, A. Eipper, P. Tielmann, and R. Mynott, A Practical NMR-Based High-Throughput Assay for Screening Enantioselective Catalysts and Biocatalysts, Advanced Synthesis & Catalysis, vol.95, issue.23, pp.1008-1016, 2002.
DOI : 10.1002/1615-4169(200210)344:9<1008::AID-ADSC1008>3.0.CO;2-T

M. Sugiyama, Z. Hong, W. A. Greenberg, and C. H. Wong, In vivo selection for the directed evolution of l-rhamnulose aldolase from l-rhamnulose-1-phosphate aldolase (RhaD), Bioorganic & Medicinal Chemistry, vol.15, issue.17, pp.5905-5911, 2007.
DOI : 10.1016/j.bmc.2007.05.062

S. J. Lee, H. Y. Kang, and Y. Lee, High-throughput screening methods for selecting l-threonine aldolases with improved activity, Journal of Molecular Catalysis B: Enzymatic, vol.26, issue.3-6, pp.265-272, 2003.
DOI : 10.1016/j.molcatb.2003.07.005

H. Lin, H. Tao, and V. W. Cornish, Directed Evolution of a Glycosynthase via Chemical Complementation, Journal of the American Chemical Society, vol.126, issue.46, pp.15051-15059, 2004.
DOI : 10.1021/ja046238v

P. Peralta-yahya, B. T. Carter, H. Lin, H. Tao, and V. W. Cornish, High-Throughput Selection for Cellulase Catalysts Using Chemical Complementation, Journal of the American Chemical Society, vol.130, issue.51, pp.17446-17452, 2008.
DOI : 10.1021/ja8055744

K. L. Morley and R. J. Kazlauskas, Trends biotechnology, pp.231-237, 2005.

S. 53-jennewein, M. Shürmann, M. Wolberg, I. Hilker, R. Luiten et al., Directed evolution of an industrial biocatalyst: 2-deoxy-D-ribose 5-phosphate aldolase, Biotechnology Journal, vol.11, issue.5, pp.537-548, 2006.
DOI : 10.1002/biot.200600020

H. Suenaga, T. Watanabe, M. Sato, and K. Furukawa, Alteration of Regiospecificity in Biphenyl Dioxygenase by Active-Site Engineering, Journal of Bacteriology, vol.184, issue.13, pp.3682-3688, 2002.
DOI : 10.1128/JB.184.13.3682-3688.2002

J. Zhao and C. Zhong, ???????????????????????????, Neuroscience Bulletin, vol.18, issue.1, pp.94-99, 2009.
DOI : 10.1007/s12264-009-1113-y

M. Cascante, J. J. Centelles, R. L. Veech, W. N. Lee, and L. G. Boros, Role of Thiamin (Vitamin B-1) and Transketolase in Tumor Cell Proliferation, Nutrition and Cancer, vol.36, issue.2, pp.150-154, 2000.
DOI : 10.1207/S15327914NC3602_2

B. Comìn-anduix, J. Boren, S. Martinez, C. Moro, J. J. Centelles et al., The effect of thiamine supplementation on tumour proliferation, European Journal of Biochemistry, vol.69, issue.15, pp.4177-4182, 2001.
DOI : 10.1046/j.1432-1327.2001.02329.x

N. J. Veitch, D. A. Mauger, J. J. Cazzulo, Y. Lindqvist, and M. P. Barrett, has a dual subcellular localization, Biochemical Journal, vol.382, issue.2, pp.759-767, 2004.
DOI : 10.1042/BJ20040459

S. Joshi, A. R. Singh, A. Kumar, P. C. Misra, M. I. Siddiqi et al., Molecular cloning and characterization of Plasmodium falciparum transketolase, Molecular and Biochemical Parasitology, vol.160, issue.1, pp.32-41, 2008.
DOI : 10.1016/j.molbiopara.2008.03.005

G. A. Sprenger, Nucleotide sequence of the Escherichia coli K-12 transketolase (tkt) gene, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1216, issue.2, pp.307-310, 1993.
DOI : 10.1016/0167-4781(93)90161-6

J. 70-schäferjohann, J. G. Yoo, B. Kusian, and B. Bowien, The cbb operons of the facultative chemoautotroph Alcaligenes eutrophus encode phosphoglycolate phosphatase., Journal of Bacteriology, vol.175, issue.22, pp.7329-7340, 1993.
DOI : 10.1128/jb.175.22.7329-7340.1993

J. F. 74-coy, S. Dubel, P. Kioschis, K. Thomas, G. Micklem et al., Molecular Cloning of Tissue-Specific Transcripts of a Transketolase-Related Gene: Implications for the Evolution of New Vertebrate Genes, Genomics, vol.32, issue.3, pp.309-316, 1996.
DOI : 10.1006/geno.1996.0124

C. 76-salamon, M. Chervenak, J. Piatigorsky, and C. M. Sax, The Mouse Transketolase (TKT) Gene: Cloning, Characterization, and Functional Promoter Analysis, Genomics, vol.48, issue.2, pp.209-220, 1998.
DOI : 10.1006/geno.1997.5187

G. Schenck, R. Layfield, J. M. Candy, R. G. Duggleby, and P. F. Nixon, Molecular Evolutionary Analysis of the Thiamine-Diphosphate-Dependent Enzyme, Transketolase, Journal of Molecular Evolution, vol.44, issue.5, pp.552-572, 1997.
DOI : 10.1007/PL00006179

G. R. Hobbs, R. K. Mitra, R. P. Chauchan, J. M. Woodley, and M. D. Lilly, Enzyme-catalysed carbon-carbon bond formation: Large-scale production of Escherichia coli transketolase, Journal of Biotechnology, vol.45, issue.2, pp.173-179, 1996.
DOI : 10.1016/0168-1656(95)00165-4

E. G. Hibbert, T. Senussi, S. J. Costelloe, W. Lei, M. E. Smith et al., Directed evolution of transketolase activity on non-phosphorylated substrates, Journal of Biotechnology, vol.131, issue.4, pp.425-432, 2007.
DOI : 10.1016/j.jbiotec.2007.07.949

J. J. Wang, P. R. Martin, and C. K. Singleton, Aspartate 155 of human transketolase is essential for thiamine diphosphate???magnesium binding, and cofactor binding is required for dimer formation, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1341, issue.2, pp.165-172, 1997.
DOI : 10.1016/S0167-4838(97)00067-8

G. Schenk, R. G. Duggleby, and P. Nixon, Heterologous expression of human transketolase, The International Journal of Biochemistry & Cell Biology, vol.30, issue.3, pp.369-378, 1998.
DOI : 10.1016/S1357-2725(97)00154-4

M. Nikkola, Y. Lindqvist, and G. Schneider, Refined Structure of Transketolase from Saccharomyces cerevisiae at 2??0 ?? Resolution, Journal of Molecular Biology, vol.238, issue.3, p.387, 1994.
DOI : 10.1006/jmbi.1994.1299

L. 88-meshalkina, U. Nilsson, C. Wikner, T. Kostikowa, and G. Schneider, Examination of the Thiamin Diphosphate Binding Site in Yeast Transketolase by Site-Directed Mutagenesis, European Journal of Biochemistry, vol.269, issue.2, p.646, 1997.
DOI : 10.1016/0014-5793(92)81197-T

Y. A. Muller, G. Schumacher, R. Rudolph, and G. E. Schulz, The Refined Structures of a Stabilized Mutant and of Wild-type Pyruvate Oxidase from Lactobacillus plantarum, Journal of Molecular Biology, vol.237, issue.3, pp.315-335, 1994.
DOI : 10.1006/jmbi.1994.1233

F. Dyda, W. Furey, S. Swaminathan, M. Sax, B. Farrenkopf et al., Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4-.ANG. resolution, Biochemistry, vol.32, issue.24, p.6165, 1993.
DOI : 10.1021/bi00075a008

O. A. 92-esakova, L. E. Meshalkina, and G. A. Kochetov, Effects of transketolase cofactors on its conformation and stability, Life Sciences, vol.78, issue.1, pp.8-13, 2005.
DOI : 10.1016/j.lfs.2004.12.055

U. 94-nilsson, L. Meshalkina, Y. Lindqvist, and G. Schneider, Examination of Substrate Binding in Thiamin Diphosphate- dependent Transketolase by Protein Crystallography and Site-directed Mutagenesis, Journal of Biological Chemistry, vol.272, issue.3, pp.1864-1869, 1997.
DOI : 10.1074/jbc.272.3.1864

C. Obiol-pardo and J. Rubio-martinez, Homology modeling of human Transketolase: Description of critical sites useful for drug design and study of the cofactor binding mode, Journal of Molecular Graphics and Modelling, vol.27, issue.6, pp.723-734, 2009.
DOI : 10.1016/j.jmgm.2008.11.005

K. G. Morris, M. E. Smith, N. J. Turner, M. D. Lilly, R. K. Mitra et al., Transketolase from Escherichia coli: A practical procedure for using the biocatalyst for asymmetric carbon-carbon bond synthesis, Tetrahedron: Asymmetry, vol.7, issue.8, pp.2185-2188, 1996.
DOI : 10.1016/0957-4166(96)00266-2

E. Racker, . Transketolase, P. D. In, L. Boyer, and K. Myrback, The Enzymes, pp.397-406, 1961.

J. Bolte, C. Demuynck, O. Constant, and L. Hecquet, Microbial Reagents in Organic Synthesis, pp.57-66, 1992.

C. 103-demuynck, J. Bolte, L. Hecquet, and H. Samaki, Enzymes as reagents in organic chemistry: transketolase-catalysed synthesis of d-[1,2-13C2]xylulose, Carbohydrate Research, vol.206, issue.1, p.79, 1990.
DOI : 10.1016/0008-6215(90)84008-I

D. C. Myles, I. Andrulis, P. J. Whitesides, and G. M. , A transketolase-based synthesis of (+)-exo-brevicomin, Tetrahedron Letters, vol.32, issue.37, pp.4835-4838, 1991.
DOI : 10.1016/S0040-4039(00)93473-7

T. Ziegler, A. Straub, and F. Effenberger, Enzyme-Catalyzed Synthesis of 1-Deoxymannojirimycin, 1-Deoxynojirimycin, and 1,4-Dideoxy-1,4-imino-D-arabinitol, Angewandte Chemie International Edition in English, vol.28, issue.5, pp.716-717, 1988.
DOI : 10.1002/anie.198807161

F. 110-charmantray, V. Hélaine, B. Legeret, and L. Hecquet, Preparative scale enzymatic synthesis of d-sedoheptulose-7-phosphate from ??-hydroxypyruvate and d-ribose-5-phosphate, Journal of Molecular Catalysis B: Enzymatic, vol.57, issue.1-4, pp.6-9, 2009.
DOI : 10.1016/j.molcatb.2008.06.005

L. Hecquet, J. Bolte, and C. Demuynck, New Assays for Transketolase, Bioscience, Biotechnology, and Biochemistry, vol.57, issue.12, pp.2174-2176, 1993.
DOI : 10.1271/bbb.57.2174

URL : https://hal.archives-ouvertes.fr/hal-00022356

J. Y. Lee, D. E. Cheong, and G. Kim, A novel assay system for the measurement of transketolase activity using xylulokinase from Saccharomyces cerevisiae, Biotechnology Letters, vol.10, issue.5, pp.899-904, 2008.
DOI : 10.1007/s10529-007-9616-y

M. E. Smith, U. Kaulmann, J. M. Ward, and H. C. Hailes, A colorimetric assay for screening transketolase activity, Bioorganic & Medicinal Chemistry, vol.14, issue.20, pp.7062-7065, 2006.
DOI : 10.1016/j.bmc.2006.06.008

A. Sevestre, F. Charmantray, V. Hélaine, A. Lasikova, and L. Hecquet, Synthesis of stereochemical probes for new fluorogenic assays for yeast transketolase variants, Tetrahedron, vol.62, issue.17, pp.3969-3976, 2006.
DOI : 10.1016/j.tet.2006.02.033

URL : https://hal.archives-ouvertes.fr/hal-00022356

E. G. Hibbert, T. Senussi, S. J. Costelloe, W. Lei, M. E. Smith et al., Directed evolution of transketolase activity on non-phosphorylated substrates, Journal of Biotechnology, vol.131, issue.4, pp.425-432, 2007.
DOI : 10.1016/j.jbiotec.2007.07.949

E. G. Hibbert, T. Senussi, M. E. Smith, S. J. Costelloe, J. M. Ward et al., Directed evolution of transketolase substrate specificity towards an aliphatic aldehyde, Journal of Biotechnology, vol.134, issue.3-4, pp.240-245, 2008.
DOI : 10.1016/j.jbiotec.2008.01.018

M. E. Smith, E. G. Hibbert, A. B. Jones, P. A. Dalby, and H. C. Hailes, Single-Point Mutations, Advanced Synthesis & Catalysis, vol.15, issue.16, pp.2631-2638, 2008.
DOI : 10.1002/adsc.200800489

Y. Kobori, D. C. Myles, and G. M. Withesides, Substrate specificity and carbohydrate synthesis using transketolase, The Journal of Organic Chemistry, vol.57, issue.22, pp.5899-5907, 1992.
DOI : 10.1021/jo00048a023

G. A. Sprenger and M. Pohl, Synthetic potential of thiamin diphosphate-dependent enzymes, Journal of Molecular Catalysis B: Enzymatic, vol.6, issue.3, pp.145-159, 1999.
DOI : 10.1016/S1381-1177(98)00107-6

K. G. Morris, M. E. Smith, N. J. Turner, M. D. Lilly, R. K. Mitra et al., Transketolase from Escherichia coli: A practical procedure for using the biocatalyst for asymmetric carbon-carbon bond synthesis, Tetrahedron: Asymmetry, vol.7, issue.8, pp.2185-2188, 1996.
DOI : 10.1016/0957-4166(96)00266-2

T. D. 122-machajewski and C. H. Wong, The Catalytic Asymmetric Aldol Reaction, Angewandte Chemie International Edition, vol.39, issue.8, pp.1352-1374, 2000.
DOI : 10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J

A. Straub, F. Effenberger, and P. Fischer, Enzyme-catalyzed reactions. Part 4. Aldolase-catalyzed carbon-carbon bond formation for stereoselective synthesis of nitrogen containing carbohydrates, The Journal of Organic Chemistry, vol.55, issue.12, pp.3926-3932, 1990.
DOI : 10.1021/jo00299a043

R. Schoevaart, F. Van-rantwijk, and R. A. Sheldon, Class I fructose-1,6-bisphosphate aldolases as catalysts for asymmetric aldol reactions, Tetrahedron: Asymmetry, vol.10, issue.4, pp.705-711, 1999.
DOI : 10.1016/S0957-4166(99)00044-0

M. D. Bednarski, E. S. Simon, N. Bischofberger, W. D. Fessner, M. J. Kim et al., Rabbit muscle aldolase as a catalyst in organic synthesis, Journal of the American Chemical Society, vol.111, issue.2, pp.627-635, 1989.
DOI : 10.1021/ja00184a034

F. Charmantray, L. Blidi, T. Gefflaut, L. Hecquet, J. Bolte et al., Improved Straightforward Chemical Synthesis of Dihydroxyacetone Phosphate through Enzymatic Desymmetrization of 2,2-Dimethoxypropane-1,3-diol, The Journal of Organic Chemistry, vol.69, issue.26, pp.9310-9312, 2004.
DOI : 10.1021/jo048697k

URL : https://hal.archives-ouvertes.fr/hal-00136047

F. 129-charmantray, P. Dellis, S. Samreth, and L. Hecquet, An efficient chemoenzymatic route to dihydroxyacetone phosphate from glycidol for the in situ aldolase-mediated synthesis of monosaccharides, Tetrahedron Letters, vol.47, issue.19, pp.3261-3263, 2006.
DOI : 10.1016/j.tetlet.2006.03.036

M. Schürmann and G. A. Sprenger, Fructose-6-phosphate Aldolase Is a Novel Class I Aldolase from Escherichia coli and Is Related to a Novel Group of Bacterial Transaldolases, Journal of Biological Chemistry, vol.276, issue.14, pp.11055-11061, 2001.
DOI : 10.1074/jbc.M008061200

J. A. Castillo, J. Calveras, J. Casas, M. Mitjans, P. M. Vinardell et al., -Alkylated Derivatives, and Preliminary Biological Assays, Organic Letters, vol.8, issue.26, pp.6067-6070, 2006.
DOI : 10.1021/ol0625482

URL : https://hal.archives-ouvertes.fr/hal-01357582

X. Garrabou, J. A. Castillo, C. Guérard-hélaine, T. Parella, J. Joglar et al., Asymmetric Self- and Cross-Aldol Reactions of Glycolaldehyde Catalyzed by D-Fructose-6-phosphate Aldolase, Angewandte Chemie International Edition, vol.60, issue.30, pp.5521-5525, 2009.
DOI : 10.1002/anie.200902065

I. Tomoyuki, Microbial aldolases as C-C bonding enzymes : Investigation of structuralfunctional characteristics and application for stereoselective reactions, Thèse de Sciences Naturelles, p.2816, 2006.

T. Inoue, C-C-bonding microbial enzymes: thiamine diphosphate-dependent enzymes and class I aldolases In Asymmetric Synthesis with chemical and biological methods, pp.312-326, 2007.

J. Bolte, C. Demuynck, and H. Samaki, Utilization of enzymes in organic chemistry: Transketolase catalyzed synthesis of ketoses, Tetrahedron Letters, vol.28, issue.45, pp.5525-5528, 1987.
DOI : 10.1016/S0040-4039(00)96770-4

S. K. 138-tian, R. Hong, and L. Deng, Catalytic Asymmetric Cyanosilylation of Ketones with Chiral Lewis Base, Journal of the American Chemical Society, vol.125, issue.33, pp.9900-9901, 2003.
DOI : 10.1021/ja036222p

P. Brewster, F. Hiron, E. D. Hughes, C. K. Ingold, and P. A. Rao, Configuration of Carbohydrates, Hydroxy-Acids and Amino-Acids: Configurations of Amino-Compounds and the Steric Course of Deamination, Nature, vol.33, issue.4213, p.179, 1950.
DOI : 10.1038/166179a0

F. 140-effenberger, M. Hopf, T. Ziegler, and . Hudelmayer, DarstellungO-gesch??tzter (R)-2-Hydroxyaldehyde und ihre Hydrocyanierung, Chemische Berichte, vol.33, issue.7, pp.1651-1659, 1991.
DOI : 10.1002/cber.19911240728

H. Sugano, -Terminal Hexapeptide Amides Modified in Methionine and Isoleucine Residues, Bulletin of the Chemical Society of Japan, vol.46, issue.7, pp.2168-2174, 1973.
DOI : 10.1246/bcsj.46.2168

URL : https://hal.archives-ouvertes.fr/jpa-00214118

A. 142-kleemann, B. Lehmann, and J. Martens, Enantioselective Synthesis of the Hydroxy-Analogues ofD-andL-Methionine, Angewandte Chemie International Edition in English, vol.46, issue.10, p.797, 1979.
DOI : 10.1002/anie.197907971

S. K. Massad, L. D. Hawkins, and D. C. Baker, A series of (2S)-2-O-protected-2-hydroxypropanals (L-lactaldehydes) suitable for use as optically active intermediates, The Journal of Organic Chemistry, vol.48, issue.26, pp.5180-5182, 1983.
DOI : 10.1021/jo00174a006

J. A. Marshall and S. Xie, Synthesis of a C22-34 Subunit of the Immunosuppressant FK-506, The Journal of Organic Chemistry, vol.60, issue.22, pp.7230-7237, 1995.
DOI : 10.1021/jo00127a031

S. S. 147-ramasastry, K. Albertshofer, N. Utsumi, and F. Tanaka, Mimicking Fructose and Rhamnulose Aldolases: Organocatalyticsyn-Aldol Reactions with Unprotected Dihydroxyacetone, Angewandte Chemie International Edition, vol.12, issue.29, pp.5572-5575, 2007.
DOI : 10.1002/anie.200701269

D. Enders and C. Grondal, Direct Organocatalytic De Novo Synthesis of Carbohydrates, Angewandte Chemie International Edition, vol.19, issue.8, pp.1210-1212, 2005.
DOI : 10.1002/anie.200462428

J. Mlynarski and . Paradowska, Catalytic asymmetric aldol reactions in aqueous media, Chemical Society Reviews, vol.349, issue.8, pp.1502-1511, 2008.
DOI : 10.1039/b710577k

A. H. Li, S. Moro, N. Forsyth, . Melman, X. Ji et al., Adenosine Receptor Antagonists, Journal of Medicinal Chemistry, vol.42, issue.4, pp.706-721, 1999.
DOI : 10.1021/jm980550w

S. Y. Ko, -2,3-Dihydroxy Esters:?? Synthesis of Statine and Its Diastereomer, The Journal of Organic Chemistry, vol.67, issue.8, pp.2689-2691, 2002.
DOI : 10.1021/jo015967f

URL : https://hal.archives-ouvertes.fr/in2p3-00309474

M. H. Junttila and O. O. Hormi, Methanesulfonamide: a Cosolvent and a General Acid Catalyst in Sharpless Asymmetric Dihydroxylations, The Journal of Organic Chemistry, vol.74, issue.8, pp.3038-3047, 2009.
DOI : 10.1021/jo8026998

R. 164-chênevert and M. Dasser, Chemoenzymatic Synthesis of the Microbial Elicitor (???)-Syringolide via a Fructose 1,6-Diphosphate Aldolase-Catalyzed Condensation Reaction, The Journal of Organic Chemistry, vol.65, issue.15, pp.4529-4531, 2000.
DOI : 10.1021/jo991989e

A. P. Procopiu, K. Biggadike, F. A. Englich, M. R. Farell, N. G. Hagger et al., Novel Glucocorticoid Antedrugs Possessing a 17??-(??-Lactone) Ring, Journal of Medicinal Chemistry, vol.44, issue.4, pp.602-612, 2001.
DOI : 10.1021/jm001035c

L. Y. Zhong and . M. Shing, Efficient and Facile Glycol Cleavage Oxidation Using Improved Silica Gel-Supported Sodium Metaperiodate, The Journal of Organic Chemistry, vol.62, issue.8, pp.2622-2624, 1997.
DOI : 10.1021/jo9621581

. Cellular, . Molecular-biology, and . Neidhardt, -thréo par formation stéréospécifique d'une liaison C-C. L'objectif de ces travaux vise à modifier la spécificité de substrat de la TK de Saccharomyces cerevisiae par mutagenèse afin d'élargir le potentiel synthétique aux aldoses D-thréo et cétoses L-érythro. Notre stratégie a consisté à créer des banques de TK mutées à partir de courtes séquences du gène TKL1 (identifiées d'après la structure 3D) qui ont été dégénérées grâce à une approche de type « cassette mutagenesis ». Pour identifier les TK recherchées, nous avons développé un test de sélection in vivo basé sur l'auxotrophie vis-à-vis d'un acide aminé. Dans ce but, nous avons synthétisé des sondes appropriées comportant un motif reconnu par la TK naturelle (cétose D-thréo) ou par les TK mutées recherchées (cétose L-érythro ou aldose D-thréo) et la chaîne latérale d'un acide aminé (alanine, valine, leucine, méthionine, thréonine) La faisabilité de ce test a été étudiée en présence des composés cétose D-thréo et de la TK sauvage, vitro, nous avons montré que ces différents composés sont des substrats de la TK. Pour le développement du test de sélection in vivo dans E.coli, les substrats précurseurs de la leucine et de la méthione ont été retenus en raison de la stabilité de l'auxotrophie pour ces acides aminés. Les meilleurs taux de croissance ont été obtenus avec la sonde cétose D-thréo précurseur de la méthionine, 1996.