
HAL Id: tel-00725441
https://theses.hal.science/tel-00725441

Submitted on 27 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic composition of prototocol-based Web services
Ramy Ragab Hassen

To cite this version:
Ramy Ragab Hassen. Automatic composition of prototocol-based Web services. Web. Université
Blaise Pascal - Clermont-Ferrand II, 2009. English. �NNT : 2009CLF21943�. �tel-00725441�

https://theses.hal.science/tel-00725441
https://hal.archives-ouvertes.fr

Note d’ordre : 1943

EDSPIC : 442

Université Blaise Pascal – Clermont-Ferrand II

École Doctorale des Sciences pour l’Ingénieur de Clermont-Ferrand

Thèse de Doctorat
présenté par

Ramy RAGAB HASSEN
pour obtenir le grade de

Docteur d’Université

Spécialité : Informatique

Automatic composition of protocol-based web

services

Thèse dirigée par Pr. Farouk TOUMANI et Pr. Lhouari NOURINE

Soutenue publiquement le 7 Juillet 2009 devant le jury suivant :

Prof. Claude Godart Président

Prof. Djamal Benslimane Rapporteur

Prof. Fabio Casati Rapporteur

Prof. Eugene Asarin Examinateur

Prof. Christophe Rey Examinateur

Prof. Farouk TOUMANI Directeur de Thèse

Prof. Lhouari NOURINE Directeur de Thèse

Prof. Mohand-Said Hacid Invité

This thesis is dedicated to my wonderful parents, my dear brothers

Hani and Nadim and my adorable wife Dalia for their love and support.

I dedicate also this work to my kind in laws.

I

Acknowledgment

My first and most heartfelt thanks go to my advisors, Pr. Farouk

Toumani and Pr. Lhouari Nourine for invaluable discussions and advice

throughout the course of this research, and for many helpful comments and

concise without which this dissertation would not have been achieved. I

cannot thank them enough. I am truly fortunate to have had such advisors

who were able to guide me and gave me both freedom and support to pursue

my research project.

I owe many thanks to Pr. Fabio Casati and Pr. Djamal Benslimane

for taking the time to review my thesis report and providing useful comments

and suggestions to further improve this dissertation. I would like to thank Pr.

Claude Godart, Pr. Eugene Asarin and Dr. Christophe Rey for their precious

participation in my thesis committee. Special thanks go to Pr. Mohand-Said

Hacid for attending my viva, and being always helpful and present during the

last years.

Thanks to my friends Nassim, Saci, Amine Mokhtari, Amine Defous,

Hassane and Ziad for their support during the last decade. I am especially

grateful to Pierre Colomb, my dear office mate and all the people of the

D009 namely Julien Ponge, Olivier Coupelon and Yoan Renaud who were

more than generous in offering their ideas and suggestions regarding many

aspects of this work and for all the amazing moments and fun we have shared.

Thanks guys! Thanks also go to Karima Toumani and Farid Chikhount for

their making Clermont-Ferrand enjoyable place to live. I also want to express

my thanks to Beatrice Bourdieu, Phillipe Mahey, Françoise Toledo, Daniel

Breugnot and Nathalie Fonty. Finally, special thinks to all those people

whose names are not listed here for their assistance and discussions on the

subject matter.

II

I may take the opportunity to express my gratitude to all my teachers,

and everyone who taught me anything. In particular, I would like to thank,

and in a chronical order, Dr. Abdelkamal Tari and Pr. Moussa Kerkar.

III

Résumé

Les services web permettent l’intégration flexible et l’interopérabilité

d’applications autonomes, hétérogènes et distribuées. Le développement de

techniques et d’outils permettant la composition automatique de ces services

en prenant en compte leurs comportements est une question cruciale.

Cette thèse s’intéresse au problème de la composition automatique de ser-

vices web. Nous décrivons les services web par leurs protocoles métiers, formal-

isés sous la forme de machines d’état finies. Les principaux travaux autour de

cette problématique se focalisent sur le cas particulier où le nombre d’instance

de chaque service est fixé a priori. Nous abordons le cas général du prob-

lème de synthèse de protocoles où le nombre d’instances de chaque service

disponible et pouvant intervenir lors de la composition n’est pas borné à pri-

ori. Plus précisément, nous considérons le problème suivant : ’étant donné un

ensemble de n protocoles de services disponibles P1, . . . , Pn et un nouveau pro-

tocole cible PT , le comportement de PT peut-il être synthétiser en combinant

les comportements décrits par les protocoles disponibles?’. Pour ce faire, nous

proposons dans un premier temps un cadre formel de travail basé à la fois sur

le test de simulation et la fermeture shuffle des machines d’états finis. Nous

prouvons la décidabilité du problème en fournissant un algorithme de compo-

sition correct et complet. Ensuite, nous analysons la complexité du problème

de la composition. Plus précisément, nous fournissons une borne supérieure

et inférieure de complexité. Nous nous intéressons également aux cas parti-

culiers de ce problème général. Enfin, nous implémentons un prototype de

composition dans le cadre de la plateforme ServiceMosaic.

Mots clès Services web, Composition de services web, Automate shuffle,

Simulation.

IV

Abstract

Web services enable flexible integration and interoperability of au-

tonomous, heterogeneous and distributed applications. A core challenge for

the web services technology is the development of techniques and tools for

automatically generating composite servicess by taking into account their be-

havioral properties (e.g. business protocols).

In this thesis, we focus on the problem of automatic composition of web

services. We consider web services described by their business protocols which

are formalized as finite states machines. Previous works on this problem dealt

with the particular case where the number of instances of each component

service is bounded and fixed a priori. We tackle the general case of the protocol

synthesis problem where the number of instances of each component service

that can be used in a composition is not bounded a priori. More precisely, we

consider the following problem: ’given a set of n available web service protocols

P1, . . . , Pn and a new target protocol PT , can the behavior described by PT be

synthesized by combining the behaviors described by the available protocols?’.

In order to cope with this problem, we first propose a formal framework for the

composition synthesis based on both the simulation preorder and the shuffle

closure of finite states machines. We prove its decidability through a sound and

complete composition algorithm. Then, we conduct a complexity analysis of

the composition problem. More precisely, we provide upper and lower bounds

on the problem complexity. We also focus on several particular cases of this

general problem. Finally, we implement a composition prototype within the

framework of the ServiceMosaic platform.

Key words Web services, Web services composition, Shuffle automata,

Simulation.

V

Contents

Contents

Contents VI

List of Figures IX

List of Tables XI

1 Introduction 1

1.1 Context . 1

1.2 Contributions . 5

1.2.1 Formal framework for web services composition . 5

1.2.2 Decidability result 6

1.2.3 Complexity issues 6

1.2.4 Prototyping and performance evaluation 7

1.3 Outline . 8

2 Web services 9

2.1 Basic notions . 9

2.1.1 Definition . 9

2.1.2 Architecture . 10

2.2 Business protocols . 15

2.2.1 Definition and motivation 15

2.2.2 Formal models . 17

2.2.3 Emerging standards 19

3 Web services composition 23

3.1 Dimensions of the composition 24

3.1.1 Services model : profile vs. behavior 24

VI

Contents

3.1.2 Composition semantics : semantic vs. syntactic . 25

3.1.3 Composition goals 25

3.1.4 Composition process : manual vs. automatic . . . 26

3.1.5 Composition agility : static vs. dynamic 26

3.2 Existing composition research efforts 27

3.2.1 The Roman model 27

3.2.2 The conversational model 28

3.2.3 Composing web services in Colombo 29

3.2.4 Synthesized web services 31

3.2.5 Graph-based composition 33

3.2.6 Semantic-based composition 34

3.3 Comparison of existing approaches 35

4 Protocol-based web services composition 37

4.1 Preliminaries . 38

4.2 Web services protocol model 45

4.3 The protocol-based composition synthesis problem 46

4.3.1 Generic Composition Synthesis Problem (GCSP) . 49

4.3.2 Protocol synthesis problem: the bounded case. . . 50

4.3.3 Protocol synthesis problem: the unbounded case. . 55

5 Decidability and complexity 57

5.1 Product Closure State Machine (PCSM) 58

5.1.1 Configuration . 63

5.1.2 Definition of the PCSM 65

5.2 Simulation Decidability Problem 66

5.2.1 Composition synthesis algorithm 67

5.2.2 Termination of the composition algorithm. 71

5.2.3 Correctness of the composition algorithm 73

5.3 Complexity analysis . 75

VII

Contents

5.3.1 Complexity bounds 75

5.3.2 Complexity study of particular cases 80

5.4 Discussion . 83

6 Formal background 85

6.1 Panorama of Models . 85

6.2 Languages problems . 87

6.3 Properties of the PCSM languages 91

6.4 Language inclusion, Simulation and Bisimulation 92

6.4.1 Language inclusion decidability problem 92

6.4.2 Simulation and bisimulation decidability problems 93

6.5 Conclusion . 94

7 Prototyping 97

7.1 Prototype . 98

7.2 Performance evaluation . 100

7.2.1 Evaluation goals. 100

7.2.2 Building the test sets. 101

7.2.3 Test 1. 101

7.2.4 Test 2. 103

7.2.5 Test 3. 104

7.2.6 Test 4. 104

7.3 Discussion . 105

8 Conclusion 107

8.1 Summary . 107

8.2 Perspectives . 108

Bibliography 111

VIII

List of Figures

1.1 Example of composition synthesis problem 4

2.1 Standard web services architecture 11

2.2 Web services architecture . 13

2.3 An example of web services protocols. 17

4.1 An example of the simulation of two state machines. 41

4.2 An example of a product of two FSMs 43

4.3 An example of web services protocols. 47

4.4 Example of protocol-based composition 48

4.5 The use of simulation and product to compositions. 51

4.6 Example of the use of many instances for the composition . . 53

4.7 Instances Bounded Limitations 54

5.1 An FSM with associated stacks. 58

5.2 An example of execution of a sequence using a PCSM. 60

5.3 Transformation of FSMs . 62

5.4 An FSM M and a part of the PCSM M⊗. 65

5.5 Example of a simulation tree. 68

5.6 Example of a simulation tree. 70

5.7 Example of the encoding of a simulation tree. 79

6.1 Hierarchy of models . 86

IX

List of Figures

7.1 Experimental results of Test 1 102

7.2 Experimental results of Test 2. 103

7.3 Experimental results of Test 3. 105

7.4 Experimental results of Test 4. 106

X

List of Tables

3.1 Comparison of existing composition synthesis work. 36

6.1 Properties of the languages classes. 89

6.2 Results on the language inclusion preorder. 93

6.3 Results on the simulation preorder. 94

6.4 Results on the bisimulation preorder. 95

7.1 Description of the test sets. 101

XI

One

Introduction

1.1 Context

Web services. Application integration consists of linking wide-area, hetero-

geneous and distributed systems within and across enterprises [ACKM04]. It

allows to simplify and to automate integration activities to the larger extent

possible. However, such an integration requires adaptation of components

(e.g. via middlewares) and turns out to be either resource or time consuming,

or even not realizable [ACKM04].

Web services are gaining acceptance as a promising technology to deal with

integration challenges such as application description, discovery and composi-

tion [HS05]. Web services provides standardized interfaces designed to evolve

in Internet-based open environment. Indeed, the web services technology 1

relies on standardization at both the messaging and the interfaces description

levels. The standardization layers enable simpler integration by going beyond

heterogeneity issues among software components (e.g. data formats, transport

protocols, and interface descriptions).

Web services description. The web services community proposes a mul-

titude of standards to describe web services. These descriptions range from a

1http://www.w3.org/2002/ws/

1

1. Introduction

just ’operations and messages’ level (WSDL[WSD07]) to the business process

level (BPEL[BPE07]) and may take into account additional issues (e.g. se-

curity and transactions). Indeed, a standard functional description of a web

service should consider two main information : the web service profile and

the web service behavior, commonly called business protocol2. The web ser-

vice profile defines the set of operations supported by a service as well as the

set of messages exchanged by these operations. In addition, pre-conditions

on incoming messages and post-effects of operations executions could be con-

sidered. A web service business protocol defines the allowed sequences of

messages (or operations execution) to be exchanged between partners. Thus,

business protocols inform partners about which message to expect and when.

For instance, a buyer might expect a confirmation message whereas the seller

does not issue such a message and hence their interaction will not succeed.

Web services composition. The need for web services composition

[BFHS03, DS05, BCG+05c, MW07, NM02, MS02] raises from the situation

where none of the existing services can satisfy a client request, but a suitable

combination of them would be able to do so. The research problems related

to web services composition vary in nature and depend on several dimensions

such as the composition process (manual vs automatic) and the model used

to describe web services (profile or behavior). For more details, we refer the

reader to a state of the art on the domain [DS05].

Automatic web services composition simplifies the development of software

by reusing existing components and offers capabilities to customize complex

systems built on the fly. It results in flexible applications with high reac-

tivity to failures and dynamic adaptation to context. Moreover, automatic

composition techniques have been developed to enable the verification of web

services composition built either manually or automatically [Hul04]. However,

composing services has been and still be a hard task to achieve. We can cite

2In this thesis, the terms business protocol and protocol -for short- will be used inter-
changeably.

2

1.1. Context

many complexity sources, such as the large number of web services becoming

available on daily basis over the web, the volatile nature of web services (may

disappear, be modified, be temporary unavailable, etc.), and the diversity of

conception models of services due to the modeling needs and to the developers

vision.

In this thesis, we investigate the problem of automatic synthesis of web

services composition. We focus on services described by business protocols

and consider automatic generation of new composite protocols by combin-

ing available component protocols. The business protocols are formalized by

means of finite state machines [HU69]. Recent works have shown the impor-

tance of such a formalism to describe the external behavior of web services

[BCG+03, BCT04b, BCG+05c, BCT06b]. More precisely, we consider the fol-

lowing composition synthesis problem: given a set of n available web service

protocols P1, . . . , Pn and a new target protocol PT , can the behavior described

by PT be synthesized by combining (parts of) the behaviors described by the

available protocols. This composition synthesis problem has raised lots of re-

search work [BCG+03, BDGL+04, HS05, BCG+05b, BCG+05c, BCG+05b,

MW07, FGG+08].

The composition synthesis problem considered in this thesis has al-

ready been addressed in recent literature [BCG+03, BDGL+04, BCG+05b,

BCG+05c, MW07] under the restriction that the number of instances of an

available service that can be involved in a composition is bounded by a con-

stant k fixed a priori. We call this restricted form of the composition synthesis

problem the (k-)bounded instances composition problem. An instance of a web

service is an occurrence effectively running. It should be noted that the re-

stricted setting considered in the previous work is not realistic and has severe

practical limitations that may hamper the usage of automatic service compo-

sition tools by organizations.

In figure 1.1 we illustrate briefly the composition synthesis problem and

the practical limitations of the bounded instances case. We consider the avail-

3

1. Introduction

Figure 1.1: Example of composition synthesis problem

ability of two component services S1 and S2 (figure 1.1-(a)). The first allows

to perform the operation a, then the operation c and ends at a final state.

The second allows to perform the action b. The target service (figure 1.1-(b))

has the following behavior : it starts by performing a, and then allows a client

to perform b as many times as he wants and to end by doing c. A rather

simple composite service is depicted at figure 1.1-(c). This composite service

relies on the invocation of a from S1, then it invokes b from S2 as many times

as required and finally invokes c from S1. Indeed, an execution of the com-

posite service involves a unique instance of S1 and an unbounded number of

instances of S2. It should be noted that the proposed composite service can

not be generated within the settings of the bounded instances composition

since an unbounded number of instances of S2 is required.

The work of [BCG+03, BCG+05c] shows that the bounded instances com-

position problem can be reduced to that of testing the satisfiability of a Propo-

sitional Dynamic Logic [FL79] formula and proposes a double-exptime algo-

rithm. Interestingly, in [MW07] the composition synthesis problem is reduced

4

1.2. Contributions

to the problem of deciding whether there exists a simulation between the target

protocol and the asynchronous product of available ones. The authors built

on this reduction to prove the exptime-completeness of the bounded instances

synthesis problem.

1.2 Contributions

This thesis investigates the unbounded case of the protocol composition syn-

thesis problem [HNT08a, HNT08b]. We study the decidability and the com-

plexity of this problem. We also implement a tool for automatic web services

composition synthesis.

The first result was the decidability of the composition synthesis problem.

Our proof relies on a terminating and a correct composition synthesis algo-

rithm from which we derive an upper complexity bound. A lower complexity

bound is provided as well. Moreover, we study the complexity of two particu-

lar cases of the composition problem. Finally, we evaluate the time complexity

on a prototype over several synthetic benchmarks. In the following we will

detail our contributions.

1.2.1 Formal framework for web services composition

In the same spirit as [MW07], we use a simulation-based framework to model

the composition synthesis problem. We propose a new infinite state machine,

called Product Closure State Machine (PCSM) [HNT08b]. The PCSM model

is based on the notion of the shuffle closure [ORR78] which allows to run

an unbounded number of asynchronous parallel instances of an FSM. Hence,

the PCSM allows to describe a behavior equivalent to the one provided by

all possible collaborations of the existing services. Furthermore, we model

the problem of the composition synthesis as being the one of simulating a

deterministic finite state machine (DFSM) by a PCSM.

5

1. Introduction

The PCSM is a sub-model of both Shuffle Automata [Jed99] and Petri Nets

[Pet73], two models widely used in literature but rarely connected. Indeed,

we were able to describe all possible collaborations of the available component

services using either shuffle automata or Petri nets. However, our choice to

introduce the PCSM is justified by the flexibility that it offers to study the

complexity issues. For instance, we derive easily the NP-completeness of a

restricted case of the general composition synthesis problem. This particular

form of the problem is characterized by target services without loops3. More-

over, we provide a survey on the existing results on the simulation preorder

and various connected relations, namely language inclusion and bisimulation.

The study of such relations is highly interesting with respect to the composi-

tion problem; as witnessed by [FGG+08] where language equivalence relation

is used to compare services.

1.2.2 Decidability result

The protocol-based automatic composition synthesis problem is modeled as

a simulation of a DFSM by a PCSM. We focus on the decidability of the

unbounded case of the composition problem that was left open in recent lit-

erature [BCG+05b, BCG+05c, MW07]. The source of hardness in our proof

comes from the fact that a PCSM is an infinite state machine, and hence a

simulation relation may be of an infinite size. In order to solve this problem,

we proposed a terminating and correct composition synthesis algorithm. The

termination of this algorithm is based on the Dickson lemma [Dic13].

1.2.3 Complexity issues

A non-primitive recursive Ackermannian complexity upper bound is provided

by our work, but the primitive recursiveness of our algorithm remains an open

3In this work, the term loop is used to characterize circuits of variant lengths (not
necessery equal to 1).

6

1.2. Contributions

question. It is worth noting that the existence of a primitive recursive algo-

rithm is a hard question to answer. Indeed, the primitive recursiveness of many

similar simulation problems [KJ06] is an open question from decades. For in-

stance, we can consider the simulation of FSMs by Basic Parallel Processes

[KM02a]. Moreover, an exp-hard lower bound on the composition synthesis

problem is derived from the bounded case studied in the state of art [MW07].

Finally, we have conducted a complementary study of the complexity. We

identified many particular cases of the composition synthesis problem. The

first one considers target services without loops. We prove this case to be a

NP-Complete problem. Another interesting case is the one where component

services do not contain hybrid states. This case turned out to be exp-time.

1.2.4 Prototyping and performance evaluation

We evaluated the performances of the composition algorithm using a pro-

totype implementation. This prototype took place inside the ServiceMosaic

project4, a model-driven environment for modeling, analyzing, and managing

web services.

The experiments executed on the prototype was oriented by our aim at

evaluating the effects induced by some parameters (e.g. the number of services

and the height of nested loops) on the behavior of the composition algorithm.

The choice of these parameters was based on theoretical observations (e.g.

increasing the height of nested loops worsens the composition time). The

conducted tests explain clearly how the variation of each parameter influences

the execution time.

4http://servicemosaic.isima.fr

7

1. Introduction

1.3 Outline

This thesis is organized as follows. Chapter 2 introduces the foundations

of web services and their benefits in the area of applications integration. It

overviews the notion of web services and their functional architecture as pro-

posed by the W3C5. It then presents the web service business protocols model

before looking in depth at different standards and formal models that allow

to describe them. Chapter 3 provides the required material to understand the

web services composition problem. In this chapter we analyze the main work

achieved in the area. We concentrate on key dimensions and aspects that char-

acterize this problem and we provide a panorama of the main proposed com-

position approaches in the literature. Chapter 4 defines the formal model of

web services protocols and defines the composition synthesis problem that we

are interested in. Chapter 5 discusses the theoretical contributions of this the-

sis. It starts by the definition of the Product Closure State Machine (PCSM);

a state machine that allows to run an unbounded number of parallel asyn-

chronous instances of a finite state machine. It then provides a composition

algorithm that we show to be terminating and correct (i.e. the composition

synthesis problem is decidable). Then we focus on the problem complexity.

We end this chapter by a discussion on the relationship between our decid-

ability results and existing ones. Chapter 6 is a state of the art on known

decidability and complexity problems in the area of theory of automata and

state machines. Chapter 7 presents the implemented prototype to compose

web services and provides a detailed analysis of the obtained performances.

Finally, chapter 8 concludes this thesis by anticipating on perspectives.

5http://www.w3c.org

8

Two

Web services

In this chapter, we will start by an overview of the web services basic no-

tions and their interoperability architecture. We then review the web service

business protocols before discussing the different languages and formal models

proposed to describe them.

2.1 Basic notions

In this section, we first provide definitions of web services and then we present

the standard interoperability architecture proposed by the World Wide Web

Consortium(W3C)1, a standardization organism aiming at the development of

interoperability technologies (specifications, guidelines, software, and tools) to

lead the Web to its full potential.

2.1.1 Definition

Web services provides standard-based application interfaces designed to evolve

in Internet-based open environment. The web services technology aims at en-

abling the integration of autonomous, distributed and heterogeneous software

1http://www.w3c.org

9

2. Web services

systems, and to automate systems within and across organizations. Hence,

it simplifies automatic machine-to-machine interoperability. A web service

must be self described, and thus it enables loosely coupled integration of com-

ponents. These components were not necessarily developed to collaborate

together at the origin. In order to achieve such objectives, web services are

based on a set of standards proposed by the W3C, as witnessed by the follow-

ing definition:

Web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described

in a machine-processable format (specifically WSDL). Other systems interact

with the Web service in a manner prescribed by its description using SOAP

messages, typically conveyed using HTTP with an XML serialization in con-

junction with other Web-related standards.

This definition states also that a description of a web service must be

machine-processable and expressed via WSDL specifications. The same holds

for messaging and communication channels which relies on SOAP messages,

over standard TCP/IP protocols such as HTTP.

Before investigating the web services architecture, we will provide a brief

description of SOAP and WSDL.

2.1.2 Architecture

In this section, we will illustrate the web services interoperability architecture

provided by the W3C. This architecture identifies a set of functional compo-

nents and relationships between them. This architecture provides a concep-

tual model, and does not either specify how web services are implemented nor

impose any restrictions on mechanisms to combine them.

A web service is an abstract interface which exposes a set of functionalities

and must be implemented by one or many concrete agents. An agent is a piece

of software or hardware that sends and receives messages.

10

2.1. Basic notions

The web services architecture relies on two entities: the provider and the

consumer as shown in figure 2.1. The provider has the role of creating, adver-

tising and hosting software applications described in a XML-based standard

way, i.e. it must provide an agent that implements the web service. The ser-

vice consumer retrieves somehow the web services, obtains their descriptions

and interacts with them. A distinction is made between the agent which is a

software module that interact with other agents and the entity, the person or

the organization that provides agents and web services interfaces.

Figure 2.1: Standard web services architecture

At first, the requester and the provider become known to each other. Typ-

11

2. Web services

ically, the requester entity becomes somehow aware of the provider entity.

This may happen in two ways : the requester entity knows the provider entity

(e.g. human interaction) and obtains the provider agent address from him,

or the requester entity makes use of some known discovery service to locate a

suitable description of a provided service.

After being aware of each other, both requester and provider must agree

on the web service description and semantics, two different description levels.

The web service description represents an agreement, at syntactic level, on the

mechanisms of interaction between services. It must be a machine processable

specification of the web service interface. It defines low-level programming

details, such as data types, messages, data formats and transport protocols.

It also specifies one or many network bindings to one or many agents. The

web service semantics is a step beyond the syntactic web service description.

Semantics represent a contract on the purpose, the meaning and the conse-

quences of the interactions and may be human or machine processable, implicit

or explicit, legal or informal, etc..

Once agreed on web service description, and eventually semantics, both the

requester and the provider entities implement and embody it into their agents

as appropriate. This can be done, for instance, by hard coding. The agents

are implemented and ready to interact, and thus SOAP messages exchanges

can start.

Figure 2.2 [DS05] illustrates the implementation of the previous architec-

ture as proposed by IBM2. This model consists of three partners : the service

provider, the service consumer and the service registry. The provider has the

role of creating services. He must also describe them in a XML-based stan-

dard way (i.e. WSDL [WSD07]). Then, he publishes them in a central service

registry. The latter contains additional information about services, such as

the address and the contact of the providing company (i.e. UDDI [UDD01]).

The service consumer retrieves the information from the registry and uses the

2http://www.ibm.com

12

2.1. Basic notions

Figure 2.2: Web services architecture

service description obtained to interact with the Web service via messages

exchange (i.e. SOAP [SOA07]).

SOAP

SOAP [SOA07] specifies the format of message for one-way communications

whereas two-ways communications require SOAP to be combined with other

protocols. It provides a set of conventions to implement Remote Procedure

Calls (RPC) and a set of rules dedicated to allow entities exchanging the

messages to define their own formats. It describes how to carry messages over

standard Internet protocols, typically HTTP or SMTP. SOAP is completely

defined by use of W3C XML schema recommendation.

SOAP arose from the difficulties encountered during application integra-

tion via open networks (e.g. Internet). We can cite for example : firewalls, the

absence of a standard communication protocol between applications over the

Internet, the need of loosely coupled interactions between software pieces and

so on. Problems encountered when handling SOAP are mainly the standards

limitations caused by the use of XML such as support to describe various

13

2. Web services

files formats (e.g. images). This fact raises a need for binary or blob for-

mats. XML is resource consuming when transforming and parsing documents

as well. Finally, we underline that SOAP is stateless and semantic-less.

Web Services Description Language : WSDL

Web services descriptions are defined via XML documents. WSDL [WSD07]

provides an interface description of web services and plays the role that

the Interface Description Languages (IDLs) had in conventional middlewares

[ACKM04]. Indeed, WSDL allows to describe the set of operations (function-

alities) provided by a web service and messages consumed and issued by these

operations. Moreover, a WSDL specification must inform about binding mech-

anisms because a web service is not related to some existing middleware. This

absence of middlewares requires information about service location. A great

advantage of WSDL comes from the separation of interfaces and bindings of

concrete services implementation which allows to match many implementa-

tions to an unique interface.

Universal Description, Discovery and Integration : UDDI

The goal of UDDI [UDD01] is to provide a central framework for web service

description and discovery. It defines norms and rules to describe and publish

services and to interrogate the registry. With regard to the discovery, two

main issues are addressed. Firstly, UDDI aims at helping developers to find

information about services to link, and secondly UDDI allows to discover

services dynamically by allowing clients to browse the registry content. The

ultimate existing reason of UDDI was the creation of an Universal Business

Registry (UBR), a registry of all existing services in the world.

Pages inside UDDI are divided into three categories : white, yellow and

green pages. The white pages are organization lists, with information about

contacts as well as services they offer. Hence, clients can find services by

14

2.2. Business protocols

browsing organizations. The yellow pages adopt a classification of companies

and services with regard to an existing taxonomy of activities which may be

standard or customized. Hence, clients can find services by browsing activities.

The green pages inform about how to invoke services, i.e. they point out

WSDL descriptions.

2.2 Business protocols

In the first part of this section, we provide the definition of the abstraction

behind business protocols. Also, we motivate the use of business protocols as

web services description model. In the second part, we illustrate many ex-

isting proposals to model business protocols from formal and standardization

standpoints.

2.2.1 Definition and motivation

The WSDL-based model assume low-level stateless web services interac-

tions. This is by no mean a sufficient interaction model, as witnessed by

[PG03, BCT04b, BCT04a, WSC, BCG+03]. These work raised a strong need

to provide a higher-level statefull abstraction : Business protocols. This higher

description layer specifies the set of conversations that the service can support,

i.e. the valid sequences of operations execution (messages exchange).

Example 1 Let us consider a simple example, with a private search web ser-

vice that allows to perform one of the following operations : login, search,

logout. Under realistic settings, it is easy to see that a valid conversation will

be : (login, search... search, logout), i.e. a client must be logged to do as many

’search’ as he wants, and finally must logout. Whereas, an invalid conversa-

tion is for instance : (logout, search, search), when a client starts by logging

out and then performs many ’search’.

15

2. Web services

The concern of web services protocols is the description of conversations

supported by the service, i.e. its external behavior. The external behavior

specifies clearly the messages or the documents to be exchanged with another

web service during the interactions. Protocols do not care about the internal

behavior of the services and does not inform about its implementation. By

internal behavior we mean the application logic or private details of the op-

erations execution, internal implementation and hidden mappings to partners

from different enterprises the service make use of. Note that a given service

may be implied in several conversations simultaneously and hence multiple

instances of a same protocol can run concurrently.

In order to make the notion of business protocols clearer, we propose the

following detailed example (figure 2.3).

Example 2 One can imagine a select vehicle service with two operations :

SelectVehicle and ModifySelection. The first operation allows a client to make

a selection over a set of existing cars with some assumed options. The next

permits him to change the car for some reason (e.g. because of its price). It

is clear that a client can not change his selection before doing it ! Indeed, the

information on the messages ordering will not appear on a WSDL description

and the provider can expect many erroneous enactments when executing its

proposed service. Figure 2.3(a) depicts the protocol of such a selection service.

It informs the client to start by selecting a given car, and then keep modifying

the selection until a suitable one is selected.

Same as previous, figure 2.3(b) depicts the protocol of an hypothetical fi-

nancing web service. The protocol specifies that the financing service is ini-

tially in the Start state, and that clients begin using the service by executing

the activity estimate payment, upon which the service moves to the Payment

Estimated state (transition EstimatePayment).

In our considered model, the initial state is indicated by an unlabeled

entering arrow without source while final (accepting) states are double-circled

16

2.2. Business protocols

(figure 2.3).

Figure 2.3: An example of web services protocols.

In the remainder of this section, we will present some existing efforts toward

formal modeling and standardization of the web services business protocols.

2.2.2 Formal models

Hereafter, we present formal models of the business protocols that was pro-

posed in the literature.

17

2. Web services

Automata-based model

The deterministic finite state-machines formalism is widely used to represent

business protocols [BCT04a, BCG+05b, BCG+03, BFHS03]. States represent

the different phases a service may go through during its interactions. Transi-

tions are triggered by messages sent by the requester to the provider or vice

versa. Each transition is labeled with a message name. A message corresponds

to an operation invocation or its reply, and in other words, a message is the

input or the output of an operation[BCT04a].

Reasons behind the use of finite state machines are that they represent a

widely understood model, describe reactive behaviors suitably and own the

state notion which is useful for monitoring executions[BCT04b]. These moti-

vate us to consider FSMs as formal model for business protocols, and to build

our work on the research of [BCG+03]. In the following we will briefly review

some examples of use of FSMs as mean to model Business protocols.

In both [BCT04a, BFHS03], authors assume transition labeled by incom-

ing and outgoing messages annotated by polarities "‘!,?"’ which indicates the

direction of the message. The purpose of [BCT04a] is the analyses and the

management of protocols. Among the studied analysis dimensions, we can cite

the replace-ability and the compatibility of services which indicate respectively

whether a service can replace an other for a set of enactments or whether two

services can interact correctly by considering their protocols. The second work

[BFHS03] deals with issues related to the composition of web services such as

the modeling of composite services where component ones have a regular be-

havior. Even if both models rely on finite state automata formalism, a minor

difference do exist, since [BFHS03] uses Mealy machines. Mealy machines are

a particular form of finite state automata which is defined over a two alpha-

bets, one for inputs and the other for outputs. Such a model fits naturally the

concept of incoming and outgoing messages.

In [BCG+05b, BCG+03] authors label transition by abstract activities. An

18

2.2. Business protocols

abstract activity model a message exchanged or an operation execution. The

underlying model is the traditional finite state automata as in [BCT04a]. The

purpose of these efforts is the design of automatic algorithms for web services

composition.

Petri nets

Petri nets are graphical and a formal modeling tool that allow to describe

and to study information processing systems that are characterized as being

concurrent, asynchronous, distributed, parallel and nondeterministic [Mur89].

Petri nets are a much more expressive model than automata, but they lack

the universal computing power of Turing machines.

In the context of web services composition, Petri nets are mainly used as

a tool for execution monitoring [HB03, FLW06] and composition verification

[MSZ01, YTX05, BH05]. They were also used to generate and to synthesize

composite web services [MSZ01]. The drawback when using Petri nets is the

high complexity and even the undecidability of most properties testing.

2.2.3 Emerging standards

As examples of existing standards to describe business protocols we will detail

WSCL[WSC], OWL-S process model[OWL04] and BPEL[BPE07]. The choice

of these standards is motivated by their wide impact on the literature and

research approaches.

WSCL : Web Services Conversation Language

WSCL[WSC] is a proposal for a standard language submitted to the W3C

in order to model business protocols for web services. It aims to be a sim-

ple standard conversation language that can be used by web service protocols

and heterogeneous frameworks and platforms. It provides a specific conver-

sation language and is located between simple state-less interface description

19

2. Web services

languages (e.g. WSDL) and more complex full-process description languages

(e.g. BPEL) which describe conversations as well as application logic and

internal implementations of the web service. WSCL allows the description of

messages as done in WSDL and also their exchange sequences during interac-

tions with other services.

Business Protocol Execution Language

Business Process Execution Language (BPEL) is a description and a com-

position language for business processes. It allows to implement a business

process by defining the invocation order and detailing which operations from

partners services must occur as well as data flow control. A fundamental con-

cept inside the BPEL specification is the notion of partner links. It allows

to describe relationship between partner processes, that is, web services that

interact with each others. BPEL, as most programming languages, offers the

possibility to store messages in variables. They can hold complex data, for

instance SOAP messages from a partner, or simpler data which are only used

internally. To cope with other standards, a BPEL process is exposed as a

Web Service. Consequently, a BPEL process can be invoked by other BPEL

processes transparently in standard way.

OWL-S process model

In order to achieve the needs in the area of semantic web services and mainly to

allow services to reach a high-level expression descriptions, OWL-S (Ontology

Language for Web Services)[OWL04] was proposed. OWL-S incorporate three

essential types of knowledge : profile, process model and grounding. They can

be presented as follows.

• The profile presents what the service requires and provides. It aims

to describe the service as provided by the provider and needed by the

client. Mainly, the profile informs about what organization provides

20

2.2. Business protocols

the service, what functions the service can compute. A function is an

operation described by inputs, outputs, preconditions and effects.

• In OWL-S, a process transforms an input to an output and produces

a transition an effect on the world state. Three types of processes are

supported : atomic, simple and composite processes. An atomic process

is directly invocable. A simple process is an abstraction of an atomic or a

composite one. The later is built with atomic or composite processes by

applying several operators such as : sequence, split, split+join, choice,

if-then-else, etc.

• The grounding provides support about how to use the service. It presents

information on communication protocols, message format, data serial-

izations, transport and addressing. More precisely, grounding maps ab-

stract specification of the service to his concrete implementation. The

grounding is close to WSDL since the atomic processes are related to

operations and the inputs/outputs are related to messages.

21

Three

Web services composition

Web services composition leads to a collaboration of services in order to achieve

a task that can not be performed by using each service. Web services compo-

sition simplifies the rapid development of applications by enabling the reuse

of existing components. The composition problem appears when a client’s re-

quest could not be satisfied by any of the existing services on its own. Hence,

it becomes necessary to combine them in order to create a new value-added

composite web services. Indeed, the implementation of the business logic of

a composite web service involves invocation of many component services. A

web services composition is a recursive process since it applies on simple and

on composite web services.

In this chapter we analyze the main work achieved in the area of web ser-

vices composition. First, we concentrate on key dimensions and aspects that

characterize web services composition problem. Then we provide a landscape

of main composition approaches in the literature. Finally, we compare the

studied approaches with respect to the previous key dimensions.

23

3. Web services composition

3.1 Dimensions of the composition

The problem of web services composition is quite complex and depends on

several dimensions. The first dimension is the model used to describe web

services. They may be defined through their behavior or their profile (or both)

and may entail semantic aspects. Secondly, one can focus on the composition

goals. Indeed, the composition domain covers various research fields (e.g.

synthesis, validation or monitoring). A last question to ask is about how to

compose services ? Thus, the composition process (manual or automatic) and

the composition agility (static or dynamic) are important dimensions to take

into account.

In the sequel, we discuss the aforementioned key dimensions that charac-

terize the composition problem and the proposed approaches. We attempt to

give the reader a clearer understanding of what the composition is about.

3.1.1 Services model : profile vs. behavior

This dimension allows to distinguish two models of services description.

Indeed, most of existing efforts [BCG+03, BDGL+04, HS05, BCG+05b,

BCG+05c, BCG+05b, MW07, FGG+08] can be categorized to deal with web

services described by either their behavior or their profile (or both). The ser-

vices behavior (web services protocols) represents an event driven or a control

flow driven design. An event may correspond to a message exchange or to an

execution of an operation (e.g. database access)1. The services profile deals

with a data driven design where data correspond to the inputs and to the

outputs of services (or more precisely, their operations) and the focus is made

on data transformations via operations executions. Pre-condition on the input

and (conditional) effects are often modeled.

Usually, component and composite services share the same model but it

can happen that they differ. For instance, the roman model [BCG+03] consider

1An operation is commonly called abstract activity or atomic action

24

3.1. Dimensions of the composition

component and composite services as protocols. In [NM02], authors consider

services described by their protocols where each transition is labeled by a

couple (input, output). A target service is an output that the composer must

produce by combining the outputs of existing services.

3.1.2 Composition semantics : semantic vs. syntactic

A web service description can consider semantics or only be limited to a syn-

tactic description level. A syntactic description of a web service represents

an agreement on the mechanisms of interaction between services. It must be

a machine processable specification of the web service interface (e.g. WSDL

or BPEL specifications). A semantic description represents a contract on the

purpose, the meaning and the consequences of the interactions. It may be

human or machine processable, implicit or explicit, legal or informal, etc.. Se-

mantics description usually relies on ontologies [MSZ01]. Note that in many

existing standards, separation between both description levels is flexible (e.g.

OWL-S).

3.1.3 Composition goals

The composition process depends on the expected objectives (e.g. synthesis,

verification and monitoring). The composition synthesis (e.g. [BCG+03]) con-

sists in generating specifications of composite services by combining existing

services . The composition verification (e.g. [NM02, HB03]) aims at establish-

ing whether a web service upholds specified properties (e.g., that it ensures

safety) . The monitoring (e.g. [PBB+04]) takes place at run-time and allows

to analyze various execution parameters (e.g. time or cost) .

25

3. Web services composition

3.1.4 Composition process : manual vs. automatic

Manual composition is based on human intervention and deals with low-level

programming and implementation issues. Examples of manual composition

environments include BPEL [BPE07] and Microsoft BizTalk 2. The manual

composition is usually complex, does not scale and is error prone. Auto-

matic composition simplifies the development of composition specifications by

reusing existing components, and offers capabilities to customize complex sys-

tems built on the fly. This results in flexible applications with high reactivity

to failures and dynamic adaptation to context changes. Moreover, automatic

composition techniques have been developed to enable the verification of web

services compositions computed either manually or automatically. However,

automatic composition has been and still be a hard task to achieve. We can

cite various sources of complexity, such as the difficulty (e.g. the decidability

or the tractability?) of the composition depending on the expressiveness of

the services model and the composition goal, the large number of web services

over the web, and the diversity of the conception models of services due to the

modeling needs and/or to the developers vision.

3.1.5 Composition agility : static vs. dynamic

The static composition takes place at design-time of an application. Thus,

involved components are chosen, linked and assembled together before being

deployed [DS05]. Such a composition is suitable for closed environments where

components do not frequently evolve. Dynamic composition takes place at

run-time and allows to autonomously create complex services by combining

components on the fly based on user requests and context [FS04]. It evolves

in flexible, open environments where selecting and combining components are

done on demand. The dynamic composition technology is usually challenged

by the large number of services becoming available on a daily basis, the volatile

2http://www.microsoft.com/biztalk/en/us/overview.aspx

26

3.2. Existing composition research efforts

nature of web services (e.g. they may disappear, be modified or be temporary

unavailable), and the continuously growing number of services providers.

3.2 Existing composition research efforts

In this section, we will provide an overview of existing web services composition

synthesis approaches. We focus on approaches related to the problem we are

concerned by, i.e. automatic composition synthesis of web services described

by their behavior (business protocols).

3.2.1 The Roman model

In [BCG+03], a web service is modeled by its protocol where a protocol is

given by means of a deterministic finite state machine (DFSM). Transitions

are labeled by the activities that a service can perform. The states indicate the

phases that a service can go through and final states indicate correct haltings.

The authors assume an existing finite community of services, which will be

used to compose the target one. Services from a community share a common

alphabet (set of activities). A target service is described as a protocol over the

common alphabet. The composition problem consists in synthesizing a new

composite protocol which delegates all of its activities to services from the

community. The composite services act exactly as the target one from a client

point of view. The concept of delegation stands for the fact that the composite

service does not run any activity on its own, but makes an invocation of this

activity from an existing service.

The authors reduced the composition synthesis problem to the one of the

satisfiability of a deterministic propositional dynamic logics (DPDL [Eng67])

formula. Hence, a composition exists if and only if the formula is satisfied.

Authors provide 2-exptime complexity bound for their problem. An exptime-

27

3. Web services composition

complete complexity bound on the same problem has been provided later by

[MW07].

The composition synthesis approaches considered above [BCG+03, MW07]

assume the strong restriction that the number of instances of an existing ser-

vice that can be involved in a composition is bounded and fixed a priori by a

constant k, i.e. the bounded instances composition problem. It should be

noted that the restricted setting considered in these work is not realistic and

has severe practical limitations that may limit the usage of automatic service

composition tools by organizations. For more details, we illustrate in section

4.3.3, some very simple cases of web service composition cannot be solved in

such a restricted setting.

3.2.2 The conversational model

In [BFHS03], the authors provided a framework for modeling and specifying

the behavior of web services. They proposed a new approach for the design

and the analysis of composite services. In this framework, an individual web

service is called a peer. The peers communicate through message exchanges

and each peer has a queue that stores incoming messages (a state of affair that

enables asynchronous communications). The model assumes the existence of

a global virtual watcher that keeps track of exchanged messages as they occur

and a conversation is a sequence of messages observed by the watcher. A

composite service is characterized by the whole set of conversations obtained

by the interaction of its components.

The peers are represented by Mealy machines [Mea55], i.e. finite state

transducers that generate an output based on its current state and an input.

Mealy machines are an equivalent model to finite state automata. Surprisingly,

the set of conversations behaves in an unexpected irregular way. For example,

one can exhibit composite web services based on Mealy machines whose set of

conversations is neither regular nor context-free but context-sensitive. This is

28

3.2. Existing composition research efforts

due to the ability of peers to enqueue messages.

To cope with this problem, the authors introduce two operators : prepone

and projection-join. Thus they focus on peers whose conversations sets are

regular languages modulo the both operators, i.e. the set of languages that

after application of both operators are regular. The prepone operator con-

sists in swapping messages in a conversation when they are independent (e.g.

disjoint senders and receivers). The projection-join consists on projecting the

conversations on individual peers and then on joining the obtained parts. In

this context, the authors consider the following composition synthesis prob-

lem. The inputs of the problem are (i) a desired global service specified as a

regular language L and (ii) a set of peers and the messages they can exchange.

The output is the specification of a state machine whose conversations set is

equal to L. Indeed, this state machine is a Mealy one due to the presence of

the prepone and the projection-join operators.

It should be noted that the focus is done on the words (conversations)

without considering the branching structure of the Mealy machine as done in

the previous works [BCG+03, MW07, BDGL+04].

3.2.3 Composing web services in Colombo

Colombo [BCG+05b, BCDG+05, BCG+05a] was proposed as a composition

model that merges the aforementioned transitional behavior (the Roman

model) and messaging (the conversational model). More precisely, a service is

characterized in terms of

1. the set of atomic processes (i.e. operations) it can perform,

2. its effects on the real world described as a relational database R,

3. its transition-based behavior and

4. the messages it can send and receive.

29

3. Web services composition

The transitional based behavior of component services is described by

means of deterministic finite state machines. A transition is labeled by an

activity, i.e. an atomic process, a send-message or a receive-message. An

atomic process performs an internal operation of the service and handles the

state of the real world R. An atomic process may also include a conditional

effects, where conditions depend on both the state of R and the received

messages and the effect itself is an update query issued on R. A target ser-

vice is modeled in the same way as component services while the composition

synthesis problem IS the same as the Roman model.

The decidability of the composition synthesis problem remains an open

question for most cases of the general Colombo framework. Hence, authors

define a sub-model of Colombo, called Colombok,b where both the complexity

and decidability are provided. The assumptions can be summarized as follows

:

1. in any execution of th delegator, only a finite number of values of the

domain of R are read,

2. concurrency when accessing R and messages exchanging is prevented,

3. all messages exchanged during the execution of the delegator are send

or received by it and finally

4. all delegators are (p, q)−bounded, i.e. the finite state machine associated

with the delegator has at most p states and at most q variables values

in its store. This store allows the mediator to queue received messages.

Note that the latter assumption implies a bound on the number of instances

that can be used when synthesizing compositions. Finally, the complexity of

the composition synthesis in Colombok,b is 2-exptime and the proof technique

is based on a reduction to the DPDL formulas satisfiability.

30

3.2. Existing composition research efforts

3.2.4 Synthesized web services

In [FGG+08], authors propose a new model, called synthesized Web services

(SWSs), to describe the web services behavior. An SWS is a quite complex

finite state machine. An SWS is defined by a finite set of states (Q), an

initial state (q0), a transition function (δ) and a synthesis function (σ). A

transition from δ is labeled by a query from LMsg, a query language defined

over a specific class of logic (e.g. first order logic). The synthesis function is

defined over LAct, an action synthesis language defined over a specific class of

logic. Each state q has two local stores Msg(q) and Act(q) in order to keep

respectively a message and an action on q.

Basically, an SWS receives a sequence of messages and produces a set

of activities depending on the real world instance formalized as a relational

database D. The input corresponds to a client request, and the output is

the synthesized actions (a logic formula over a set of simple actions) that the

client may perform to satisfy his need. Upon receiving a sequence of input

messages, an SWS proceeds through two phases : downward (using δ) and

upward (using σ). During the downward phase, given an input message from

the sequence, a state q and D then the transition function δ updates the set

of messages (Msg(q′)) of each successor of q. This phase halts in a state q

if it has (i) an empty transition rule or (ii) an empty message (Msg(q) = ǫ)

or (iii) the input sequence is completely consumed. Note that initially all the

Act′s of states are empty and that the downward phase algorithm generates

a tree T of depth equal to the size of the input sequence. The upward phase

starts by generating an action on each leave q of T depending on Msg(q)

and D. Then, the upward phase algorithm climbs in a bottom-up fashion

and generates for each node q of T , the action Act(q) depending on σ and

on the set {Act(q′), where q′ is a successor of q}. The output of this SWS

execution is Act(q0) which corresponds to the synthesized action that fits the

client needs.

31

3. Web services composition

Authors focus on four decision problems described below :

1. The validation problem : given a service and a conversation, one wants

to know whether the conversation belongs to the set of the valid ones

generated by this service. The validation is useful for, e.g., fraud detec-

tion, compatibility checking.

2. The equivalence problem : aims at determining whether two given ser-

vices are equivalent, i.e. they support the same set of valid conversations.

The equivalence is useful for, e.g., replace-ability checking.

3. The non-emptiness problem : one can be interested in finding out, at

compilation time, whether or not a service makes sense, i.e., whether or

not it can generate valid conversations.

4. The synthesis problem : aims at determining, given a target service

and a set of available services, whether there exists such a mediator

(delegator) that coordinates available services (by routing the output of

one service to the input of another) in order to deliver the target service

by invoking available services as component services.

Authors deal with several classes of SWSs characterized by the class of

logic used to describe LMsg and LAct. A class is denoted by SWS(LMsg, LAct),

where LMsg and LAct range over propositional logic (PL), conjunctive queries

(CQ), union of conjunctive queries (UCQ) and first-order logic (FO). Indeed,

the complexity of the decision problems highly depends on the SWS class

within which web services are defined. As a main contribution of this paper,

authors established lower and upper bounds on these decision problems for

the several SWS(LMsg, LAct) classes. The results are established by, among

other techniques, exploring connections between composition synthesis and

(equivalent) query rewriting using views [CDGLV99, AGK99].

Interestingly, authors characterized the existing services models to belong

to two categories. The first category of models specifies web services behavior

32

3.2. Existing composition research efforts

by means of finite-state machines (FSM) (e.g. the Roman model [BCG+03]).

Other models are based on data-driven finite state machines (transducers)

that generate an output depending on the input and the current state (e.g.

Colombo [BCG+05b] and the conversational model [BFHS03]). Furthermore,

they showed that finite state machines of the Roman model can be expressed

in SWS(PL, PL), while data-driven finite state machines of Colombo can be

expressed in SWS(FO, FO).

The considered composition synthesis problem takes in input an existing

set of SWSs and a target one. The composition aims at generating a me-

diator that behaves as the target SWS. It coordinates SWSs by routing the

output of one service to the input of another one. The mediator receives and

redirects messages but does not access D. It is worth noting that the com-

position synthesis problem considered here is slightly different from the one

considered in the previously cited work [BCG+03, MW07, BFHS03, BCG+05b,

BCDG+05, BCG+05a]. In fact, the SWS-based synthesis do not allow transi-

tions from component services to be interleaved. For instance, if we consider

a service S1 that supports the unique conversation ab and a service S2 that

supports the unique conversation c. The obtained conversation with interleav-

ing are {abc, acb, cab}, where the obtained ones without interleaving are only

{abc, cab}. This fact prevents the results provided by this paper to be directly

applied for our context, which is the same as the Roman model.

3.2.5 Graph-based composition

In [ZAAM03], authors proposed an original graph-based framework to com-

pose services. A web service corresponds to a set of inputs, a set of outputs

and a set of dependencies. A dependency (I, S,O) means that from the in-

put I, an operation of the service S produces the output O. Indeed, for each

input there exists at least one dependency that exploits it. Then, a services

community is described by a community graph where the vertices represent

33

3. Web services composition

the inputs/outputs from the different services and the edges where each edge

is labeled by a service name and represents a dependency. The target service

is described in the same way expect the fact that its dependencies are with-

out services names (i.e. dependencies of the form (I,?,O)). The composition

consists of finding a set of paths in the community graph where each path is

equivalent to a dependency of the target service. A path is said to be equiv-

alent to a dependency if both of them start by the same input and end by

the same output. The composition approach consists of two phases : compo-

nent selection and composition configuration. The first phase aims at finding

an equivalent dependency in the community graph for each dependency from

the goal service description. This phase is solved by a first branching spread

algorithm. The second phase combines the computed paths in order to give

a sort of orchestration model for the composite service. This work gives an

interesting intuition behind the use of graphs to compose services. However,

it suffers from two major drawbacks : (i) composite inputs or outputs are not

taken into account (e.g. ((i1, i2), S, o)) and (ii) there is no mean to express

preconditions and post-effects on operations.

3.2.6 Semantic-based composition

A slightly different way to tackle the composition synthesis arises from various

semantic-based efforts [MJL07, PMBT05, PTB05, GT04]. For instance, in

[NM02] authors propose a model where component services are described by a

DAML-S (currently OWL-S) description. More precisely, a component service

is treated as atomic, i.e. has a unique operation identified by its IOPE (Input,

Output, Pre-conditions, Effects) signature. These services are then translated

in a Petri nets formalism which allows to perform the formal analysis of interest

in the paper. The authors deal with the simulation, the verification and the

automated composition problems. In order to realize the composition, the

authors provides the definition of a net that depicts the behavior of all the

34

3.3. Comparison of existing approaches

services, i.e. the union of the nets modeling each service.It should be noted

that under the considered settings (atomic component services), no possible

interleaving among services operations can be considered by any mean. In

contrast of the previous works from this section, the target service does not

model a behavior to synthesize but rather an output to produce. In fact,

this output corresponds to a suitable combination of the different outputs of

the component services (e.g. the output of the service S1 is the name of the

person, the output of the service S2 is the address of the person whilst the

target service consists of generating the output name and address).

In [SPW+04], authors considered web services presented by the OWL-S

process model. They proposed and proved the correspondence between the

semantics of SHOP2 (a hierarchical task network planner) and the situation

calculus semantics of the OWL-S process model. They provide a sound and

a complete algorithm to plan over OWL-S description using SHOP2 planner.

However, they made their work under two assumptions concerning the services

model due to limitations of the involved planner. Firstly, an atomic process (a

single step web service) can have either output or effect but not both at once.

Secondly, non-atomic processes can not use the Split3 and the Split+Join4

control structures. It should be noted that the target and composite services

are described by OWL-S processes as well however no interleaving is considered

as well.

3.3 Comparison of existing approaches

Table 3.1 summarizes the results about current approaches discussed in the

section 3.2. There efforts are compared on basis of the dimensions analyzed

in section 3.1

3In OWL-S process model, the Split control structure leads to a concurrent execution
of a bag of sub-processes.

4In OWL-S process model, the Split+Join control structure engenders a concurrent
execution of a bunch of sub-processes with barrier synchronization

35

3. Web services composition

CG CSM TSM Sem
[BCG+03] Synthesis Behavior Behavior No

[BDGL+04] Synthesis Behavior Behavior No
[BFHS03] Synthesis & verification Behavior Behavior No

[BCG+05b] Synthesis Behavior Behavior Low
[FGG+08] Synthesis, validation, Behavior Behavior No

equivalence and non-emptiness
[ZAAM03] Synthesis Profile Profile No

[NM02] Synthesis, simulation Behavior Profile Yes
and verification

[SPW+04] Synthesis Behavior Behavior Yes

Table 3.1: Comparison of existing composition synthesis work.

In the table 3.1 CG, CSM, TSM and Sem mean respectively Composition

Goals, Component Service Model, Target Service model and Semantics. The

two first dimensions, namely composition Process and composition Agility are

not illustrated on the table since all works are qualified to be automatic and

dynamic.

36

Four

Protocol-based web services

composition

This chapter deals with the problem of composition synthesis of web services

described by their protocols. It contains the first contribution of this thesis.

It provides a generic definition of protocol synthesis problem that cater for

both cases where the number of instances that can be used in composition is

bounded or unbounded. The former case being widely investigated in liter-

ature [BCG+03], we concentrate on the unbounded case of the composition.

We formalize it using the simulation preorder and the shuffle closure operator.

More precisely, we show that it can be reduced to the simulation of a deter-

ministic finite state machine by an infinite state machine which corresponds

to the shuffle closure of a finite state machine.

This chapter is organized as follows. The first section introduces basic

notions and preliminaries that will be useful in the remainder. Then, we

detail the formal model of web services protocols used in this work. Finally, we

propose a simulation-based formalization of the composition synthesis problem

that we are interesting in.

37

4. Protocol-based web services composition

4.1 Preliminaries

In this section, we first recall the notion of state machines (SM) [HU69]. Then,

we present the simulation preorder1 between state machines. Such a preorder

is usually used to compare state machines basing on their behavior [KJ06].

We also introduce two unusual operators on state machines, namely iterated

product and product closure. As we will see later, these operators turned out

to be useful to model an unbounded number of asynchronous parallel instances

of a finite state machine. Finally, we recall the definition of the Ackermann

function [Wic76].

Definition 1 (State Machine (SM))

A State Machine M is a tuple < ΣM , QM , FM , q
0
M , δM >, where :

• ΣM is a finite alphabet,

• QM is a set of states,

• δM ⊆ QM × ΣM ×QM is a set of labeled transitions (actions),

• FM ⊆ QM is the set of final states, and

• q0M ∈ QM is the initial state.

If QM is finite then M is called a Finite State Machine (FSM). An FSM M

is deterministic (DFSM) iff δM is a function rather of being a relation.

We define below the notions of intermediate and hybrid states of an

FSM and the notion of the norm of a state and an FSM. Let M =<

ΣM , QM , FM , q
0
M , δM > be an FSM. Then: (i) the set of hybrid states of M ,

noted Hs(M), contains all the final states ofM that have at least one outgoing

transition, and (ii) the set of intermediate states of M , noted Is(M), contains

1A preorder is a reflexive and transitive relation.

38

4.1. Preliminaries

the states of {QM − FM} that have at least one incoming and one outgoing

transitions. Let q ∈ QM , then the norm of q, noted Norm(q), is the length

of the shortest path leading from q to a final state. The norm of an FSM M ,

noted Norm(M) is the maximal norm of its states.

Example 3 The intermediate states of the FSM M depicted at figure 4.1(a)

are s1 and s2 (i.e. Is(M) = {s1, s2}), while its set of hybrid states is empty

(i.e. Hs(M) = φ). The norm of s0 is 2 (i.e. Norm(s0) = 2) and the norm of

s3 is 0 (i.e. Norm(s3) = 0). The norm of M is 2 (i.e. Norm(M) = 2).

We provide below a definition of the simulation preorder between two SMs.

Definition 2 (Simulation preorder)

Let M =< ΣM , QM , FM , q
0
M , δM > and M ′ =< ΣM ′ , QM ′ , FM ′ , q

0
M ′ , δM ′ >

be two state machines. A state q1 ∈ QM is simulated by a state q′1 ∈ QM ′,

noted q1 � q′1, iff the following two conditions hold :

1. ∀a ∈ ΣM and ∀q2 ∈ QM such that (q1, a, q2) ∈ δM there is (q′1, a, q
′
2) ∈

δM ′ such that q2 � q′2, and

2. if q1 ∈ FM , then q′1 ∈ FM ′.

M is simulated byM ′, notedM �M ′, iff q0M � q
0
M ′. M andM ′ are simulation

equivalent, noted M =sm M
′ iff M �M ′ and M ′ �M .

Occasionally in the present thesis, we will need to use FSMs with ǫ-

transitions2. In order to compute simulations over these FSMs, the first condi-

tion of the previous definition is adapted as follows: ∀a ∈ ΣM and ∀q2 ∈ QM

s.t. (q1, a, q2) ∈ δM there is ((q′1, a, q
′
2) ∈ δM ′ s.t. q2 � q

′
2), OR there are

((q′1, ǫ, q
′
2) ∈ δM ′ and (q′2, a, q

′
3) ∈ δM ′ s.t. q2 � q

′
3).

2The considered FSMs with ǫ-transitions can have sequences of ǫ-transitions of length
less or equal to 1

39

4. Protocol-based web services composition

Existing work on simulation between finite state machines provide sev-

eral algorithms3 as proposed in [Blo89] (O(m6)), [CPS+91] (O(mn4)), [CS93]

(O(m2)) and finally [HHK95] (O(mn) with m > n) where n is the total states

number of both machines and m is the total transitions number of both

machines. The simulation between finite state machines and infinite state

machines range from exptime-complete [KM02c] to undecidable [KM02a] de-

pending on the considered infinite state machine (e.g. Petri nets [Pet73]).

Concerning simulation between infinite state machines, the only known class

where simulation preorder/equivalence remains decidable are one-counter nets

[AC98].

Interestingly, simulation testing can be seen as a game [Tho93, Sti98] be-

tween an attacker and a defender. Let M =< ΣM , QM , FM , q
0
M , δM > and

M ′ =< ΣM ′ , QM ′ , FM ′ , q
0
M ′ , δM ′ > be two state machines, m ∈ QM and

m′ ∈ QM ′ . In a simulation game the attacker wants to show that (m 6� m′),

while the defender attempts to frustrate this [KM02b]. The game starts by

two tokens, one on each state. The game is formed of many successive rounds

where each round is performed as follows : the attacker takes his token from

m and moves it over a transition from δM labeled by a, and the defender

must move the other token along a transition from δ′M with the same label.

Indeed, if the attacher moves to a final state, the defender must do so. The

attacker wins if the defender can not move (i.e. there is no simulation). The

defender wins if the attacker can not move or if the game is infinite (i.e. there

is simulation). We illustrate this game principle on the following example.

Example 4 We consider the two state machines M and M ′ illustrated on

figure 4.1 and we apply the gaming principle to show that M is simulated by

M ′ but not the reverse. To do so, we must check the simulation between the

initial states q0M and q0M ′ in both directions, i.e. q0M � q
0
M ′ and q0M ′ � q

0
M .

Hence, we start a game row with two tokens, one on each initial state.
3The algorithms are cited in their chronological order of apparition and concern SMs

without ǫ-transitions.

40

4.1. Preliminaries

Figure 4.1: An example of the simulation of two state machines.

• Simulation of M by M’ If the attacker decides to move his token

to s1 or s2 by doing an ′a′ then the defender will move to s′1. After,

the attacker can either move to one of the final states s3 or s4 by doing

respectively ′b′ or ′c′. In both cases, the defender will move respectively to

s′2 or s′3 which are also final. The attacker has no more possible moves,

then the defender wins, i.e. a simulation exists.

• Simulation of M’ by M When the attacker moves his token to s′1
along the transition labeled by ′a′, the defender moves to either s1 or

s2. If the defender chooses s1, the attacker will move to s′3 along the

transition labeled by ′c′, and the defender can not perform an equivalent

move. If the defender chooses s2, the attacker will move to s′2 along the

transition labeled by ′b′, and the defender can not perform an equivalent

move. Hence, the defender has no winning strategy and the attacker

wins, i.e. there is no simulation.

41

4. Protocol-based web services composition

It should be noted that the simulation preorder and the language inclusion

order4 have close semantics and usually connected in literature. A simulation

is a stronger relation than a language inclusion because a simulation implies

a language inclusion, but the reverse does not hold. For instance, in figure

4.1, bothM andM ′ are language equivalent (L(M) = L(M ′) = {ab, ac}) but

M ′ 6� M . More precisely, a simulation between two machines M1 and M2,

ensures (i) an inclusion of the language of M1 (L(M1) in the language of M2

(L(M2)) and (ii) that state of M2 have at least the same branching structure

of the states of M1. It informs that M2 can behave exactly as M1.

We provide below a definition of the asynchronous product (shuffle product

or product for short), iterated product and product closure [WH84].

Definition 3 (Product and iterated product)

Let M =< ΣM , QM , FM , q
0
M , δM > and M ′ =< ΣM ′ , QM ′ , FM ′ , q

0
M ′ , δM ′ >

be two FSMs. Then :

1. The product of M and M ′, denoted M × M ′, is an FSM < ΣM ∪

ΣM ′ , QM × QM ′ , (FM ∪ q
0
M) × (FM ′ ∪ q

0
M ′), (q

0
M , q

0
M ′), λ > where the

transition function λ is defined as follows: λ = {((q, q′), a, (q1, q1
′)) :

((q, a, q1) ∈ δM and q
′ = q′1) or ((q′, a, q1

′) ∈ δM ′ and q = q1)}.

2. Given an integer k, the k-iterated product of M is defined by M⊗k =

M⊗k−1 ×M with M⊗1 =M .

3. The product closure of M , noted M⊗, is defined as follows: M⊗ =
⋃+∞
i=0 M

⊗i (where
⋃

stands for the union of FSMs).

Figure 4.2 illustrates the computation of the product of two FSMs S1 and

S2. Note that in our work, and w.l.o.g, we use FSMs without loops on initial

states as it will be proved in section 5.1.

4An order is reflexive, anti-symmetric and transitive relation.

42

4.1. Preliminaries

Figure 4.2: An example of a product of two FSMs

It is worth noting that for any finite positive integer k, the k-iterated

product M⊗k of an FSM M is still an FSM (more precisely, M⊗k has |QM |
k

states). However, this property does not hold for M⊗. We introduce the

following notations : let R = {P1, . . . , Pn} be a set of FSMs, then ⊙(R)

denotes the union of the asynchronous product of all the subsets elements of

R, i.e., ⊙(R) =
⋃
{Pi1 ,...,Pim}⊆R

(Pi1 × . . . × Pim) where m ∈ [0, n] . Let A

and B be two state machines then we have (i) A ⊆ B iff there exists an

isomorphism H from A to a sub-part of B and (ii) A = B iff A ⊆ B and

B ⊆ A. It should be noted that an isomorphism preserves a simulation.

43

4. Protocol-based web services composition

We note Rm =
⋃n
i=1{P

1
i , . . . , P

m
i }, with m ∈ ℕ, the repository obtained by

creating m copies of each Pi. We provide below a lemma on equivalence of

two forms of products.

Lemma 1 Let R = {P1, ..., Pn} be a repository of protocols then we have

∀k ∈ N : (⊙(Rk)) = ∪ki=1(⊙(R))⊗i.

Proof 1 (sketch) We have ⊙(Rk) = R1∪ ...∪Rk, where Ri,i∈[1,k] is the union

of FSMs which are the products that contain at most i instances of a protocol

and that are formed of at least i instances. By definition, the FSM Ri corre-

sponds to ⊙(R)⊗i. Hence, ⊙(Rk) = ⊙(R)⊗1 ∪ ... ∪ ⊙(R)⊗k = ∪ki=1(⊙(R))⊗i.

■

We end this section by the definition of the Ackermann function. The

Ackermann function is a simple example of computable functions that are not

primitive recursive.

Definition 4 (The Ackermann function)

The Ackermann function is defined recursively for non-negative integers m

and n as follows

• If n = 0, then A(n,m) = m+ 1.

• If n > 0 and m = 0, then A(n,m) = A(n− 1, 1).

• If n > 0 and m > 0, then A(n,m) = A(n− 1, A(n,m− 1)).

Using the Knuth notation, we have A(n,m) = 2 ↑n−2 (m+ 3)− 3. In fact,

x ↑ y equals x(x(x(...x)))
︸ ︷︷ ︸

y

a very large integer totally different from (((x)x)x)
...x

︸ ︷︷ ︸
y

that is (x)(xy−1).

44

4.2. Web services protocol model

4.2 Web services protocol model

The main goal of a web service protocol is to describe the ordering constraints

that govern message exchanges between a service and its clients. The message

exchange is strongly connected to operations execution, since basically an op-

eration is a couple of (possibly empty) messages as described in the WSDL

specification [WSD07]. In our work, we use the deterministic finite state

machines formalism to represent protocols, following the model proposed in

[BCG+03, BCT04a]. States represent the different phases that a service may

go through during its interaction with a requester. Transitions are triggered by

messages sent by the requester to the provider or vice versa. Each transition

is labeled by a message name. A message corresponds to an operation invo-

cation or its reply, i.e. a message is the input or the output of an operation.

A complete sequence of messages exchange between two services is called a

conversation. A web service may be implied in several conversations simulta-

neously and hence multiple instances of a same protocol can run concurrently.

Formally, a protocol is a deterministic finite state machine (DFSM).

A protocol P of a web service S describes the set of the valid conversations

supported by S. More precisely, a valid conversion of P corresponds to an

execution path starting from the initial state of P and ending at a final state,

i.e. a word from L(P). In other words, the set of valid conversations is exactly

the language of P . Usually the messages names are followed by message

polarity [BCT06b] to denote whether the message is incoming (e.g. the plus

sign) or outgoing (e.g. the minus sign). For simplicity reasons, and without

loss of generality, we do not consider message polarities in this work. That

is to say, incoming and outgoing messages are considered to be distinguished

activities. Therefore, our protocol model corresponds to the Roman model

[BCG+05c], i.e. an FSM where transitions are labeled by abstract activities.

45

4. Protocol-based web services composition

4.3 The protocol-based composition

synthesis problem

Let us now turn our attention to the problem of synthesizing composite ser-

vices that are described by their business protocols. We illustrate this problem

using the protocols from figures 4.3 and 4.4. We assume a repository of two

available services S1 and S2 described respectively by their protocols P1 and P2

depicted at Figure 4.3(a) and (b). We consider the development of a new com-

posite web service ST whose target protocol PT is depicted at Figure 4.4(a).

The protocol PT specifies the following behavior. First, a client starts by

selecting a car. Then he has several possibilities to continue his interaction

with the service ST . He can either make a request for a credit or cancel all

the operations performed or iterate many times on the loop ’ModifySelection-

EstimatePayement’.

The interesting question is to see whether or not it is possible to imple-

ment the service ST by combining the functionalities provided by (parts of)

the available services S1 and S2. Dealing with this composition problem at

the business protocol abstraction level, leads to the following question: is it

possible to generate (synthesize) the protocol PT by combining (parts of) the

available protocols P1 and P2?

In our illustrative case the answer is yes and the composite service protocol

PT corresponding to the target protocol PT using the protocols P1 and P2 is

depicted at Figure 4.4(b). In this case, PT is called the target protocol, PC

is called the delegator (composite protocol) while P1 and P2 are called the

component protocols.

From formal standpoint, the services composition synthesis problem was

defined in [BCG+03] as the problem of generating a delegator of a target ser-

vice using available services. A delegator is an FSM whose activities are an-

notated with suitable delegations (protocols names) in order to specify which

available service will run each activity of the target service. To make things

46

4.3. The protocol-based composition synthesis problem

Figure 4.3: An example of web services protocols.

simpler, one can see a delegator as an FSM whose each transition label is pre-

fixed by a component service name. The prefixes allow the execution engine

to know which service will perform each invoked activity. In our example,

the delegator is PC , and the prefixes are either P1 and P2. For instance, this

delagator specifies that the activity selectVehicle of the target protocol is del-

egated to the protocol P1 while the activity estimatePayment is delegated to

the protocol P2. The notion of a delegator as well as its correctness are defined

formally in[BCG+05c].

Indeed, in order to generate composite services, the combination of com-

47

4. Protocol-based web services composition

Figure 4.4: Example of protocol-based composition

ponent services must obey a set of constraints and can not be done anyway.

Firstly, when a composition uses a component service S, all the engaged con-

versations of S must be valid. For instance, when using the vehicle selection

service, a delegator can not invoke the ModifySelection operation before in-

voking the SelectVehicle operation. Also, it invokes the SelectVehicle once and

then it can invoke the ModifySelection a (infinite) many times. Secondly, final

states of the delegator must correspond to final states of all used component

service. That is, one should not leave a running instance of a component

service unterminated . For instance, the PaymentCanceled final state in the

target protocol can not correspond to a set of states including the not final

PaymentEstimated state. Thirdly, a delegator must be correct, i.e. if and only

48

4.3. The protocol-based composition synthesis problem

if the delegator whose the projection without prefixes simulates (after prefixes

deletion) the target service protocol.

In this thesis, we will not provide here a formal definition of the delegation,

since we use instead an approach based on the simulation preorder. But it

should be noted that for many composition synthesis cases, one instance per

service is not sufficient to compute composite services (i.e. the bounded in-

stances assumption [BCG+03]), and the composition may involve a number of

instances that is not bounded a priori. Hence, we introduce below a definition

of a generic composition synthesis problem that makes explicit the number of

instances of protocols allowed in a composition.

4.3.1 Generic Composition Synthesis Problem

(GCSP)

Let R = {Pi, i ∈ [1, n]} be a repository of services protocols, where each

Pi,i∈[1,n] =< Σ, Si, Fi, s
0
i , δi > is a protocol. Indeed, we consider that we are

able to use several copies (duplicates) of each protocol. Hence, for each Pi ∈ R,

we denote by P ji the jth copy of the protocol Pi. Given a protocol repository

R, we note by Rm =
⋃n
i=1{P

1
i , . . . , P

m
i }, with m ∈ ℕ, the repository obtained

by creating m copies of each Pi.

Definition 5 (generic protocol composition problem)

Let R be a set of available service protocols and ST be a target protocol and

let k ∈ ℕ. A generic protocol synthesis problem, noted Compose(R, ST , k) is

the problem of deciding whether there exists a composition of ST using Rk.

Note that, instances of this generic composition problem are characterized

by the maximal number of instances of component protocols that are allowed

to be used in a given composition. We distinguish in the following between two

main cases, namely the bounded instances composition and the unbounded

instances one.

49

4. Protocol-based web services composition

4.3.2 Protocol synthesis problem: the bounded case.

Existing work [BCG+05c, BCG+05b, MW07] that investigated the protocol

synthesis problem made the simplifying assumption that k, the number of

instances of a service that can be involved in composition of a target service

is bounded by a constant k fixed a priori, i.e., they address the problem

Compose(R, PT , k).

The solution proposed in [BCG+03] consists in reducing the problem

Compose(R, ST , 1) into the satisfiability of a suitable formula of Determinis-

tic Propositional Dynamic Logic (DPDL) [FL79]. In [BCG+05b], this DPDL-

based framework proposed was extended to deal with a more expressive pro-

tocol model [BCG+05c].

Interestingly, in [MW07] the protocol synthesis problem is reduced to the

problem of testing a simulation relation between the target protocol and the

product of component protocols. Using such a reduction, [MW07] shows the

Exptime completeness of the bounded instances protocol synthesis problem5.

More precisely, assuming a repository R and a target protocol PT then there

exists a composition of PT using R if and only PT � ⊙(R). Example 5

illustrates the use of the simulation relation to compute a composition.

Example 5 On figure 4.5 we aim at composing PT (figure 4.5-(a)) using P1

and P2 (figure 4.5-(b)). In order to achieve this task, we compute P1 ⊙ P2

(figure 4.5-(c)) and then we check the simulation (PT � P1⊙P2). The dashed

arrows illustrate the computation of this simulation by connecting each pair of

states which will appear on it.

Note that this k-bounded instance protocol synthesis problem can be re-

duced w.l.o.g to the simplest case where k = 1. Indeed, if k > 1 the

problem Compose(R, ST , k) can be straightforwardly reduced to the problem

Compose(Rk, ST , 1). This reduction is trivial because a composition with k in-

5The Exptime upper bound is known from [BCG+05c].

50

4.3. The protocol-based composition synthesis problem

Figure 4.5: The use of simulation and product to compositions.

stances is performed by duplicating each component service k times [BCG+03]

and allowing each copy to run only one instance. The following proposition

summarizes the formalization of the bounded protocol synthesis problem using

the k-iterated product operator and using the simulation preorder as proposed

in [MW07].

Proposition 1 Let Compose(R, ST , k) be a protocol synthesis problem with

k a finite positive integer. The problem Compose(R, ST , k) has a solution iff

ST � ⊙(Rk) or equivalently ST � ∪ki=1(⊙(R))⊗i.

Proof 2 We know that the problem Compose(R, ST , k) has a solution iff ST �

⊙(Rk)) since since (i) (Rk) is the set containing k copies of each component

protocols and (ii) the problem of composing with k instances is defined as being

the one of composing with k copies of each service whose the number of allowed

instances is equal to 1.

51

4. Protocol-based web services composition

Compose(R, ST , k) has a solution iff ST � ∪ki=1(⊙(R))⊗i holds since

⊙(Rk) = ∪ki=1(⊙(R))⊗i. ■

Example 6 illustrates a composition synthesis that requires many instances

of a same service and how one instance may be insufficient to compute com-

positions, but this becomes possible when using two instances.

Example 6 On figure 4.6-(a) we consider a target service PT1 and a compo-

nent service P1 for which only one instance is allowed. It is straightforward

to see that no delegator can be generated since PT1 6� P1. Hence, there is no

possible composition for PT . However, this becomes possible when considering

two instances or copies(P 1
1 and P 2

1) of P1 (figure 4.6-(b)) since PT1 � P
1
1 ⊙P

2
1

. This delegator, that involves the two instances of P1, is depicted on fig-

ure 4.6-(c).

The settings of the bounded instances composition is very restrictive in

the sense that some simple protocol synthesis problems, in which the solution

may use an unbounded number of instances of component protocols, cannot

be solved. We illustrate this limitation on example 7.

Example 7 Figure 4.7 illustrates examples of the composition where the

k-bounded settings prevent the generation of rather simple delegators. On

figure 4.7-(a) we provide two component protocols P1 and P2. As a first

target protocol, we consider PT1 (figure 4.7-(b)). It is easy to see that

Compose(PT , {P1, P2}, k) has no solution for any finite k ∈ ℕ. Now, one

can add epsilon transitions from each final state to the the initial one in both

component services in order to enable the composition and hence he creates

two new protocols P ′1 and P ′2. Indeed, the intuition is to allow an instance

of each of P ′1 and P ′2 to generate respectively an infinite number of sequential

instances of P1 and P2 and we have PT � P ′1⊙P
′
2 (i.e. a composition exists!).

However, note that adding these epsilon transitions allow to only generate an

52

4.3. The protocol-based composition synthesis problem

Figure 4.6: Example of the use of many instances for the composition

53

4. Protocol-based web services composition

Figure 4.7: Instances Bounded Limitations

infinite number of sequential instances and not parallel one. To explicit this

fact, we propose to compute a delegator for the second target service PT2 (fig-

ure 4.7-(b)). The interesting ascertainment on the latter’s behavior is that an

execution of PT2 can involve two parallel instances of P1, that is P 1
1 and P 2

1 .

Indeed, the previous solution (adding ǫ-transitions) does not hold any more

and the real hardness during a composition synthesis comes from the need of

(a priori) unknown number of parallel instances.

54

4.3. The protocol-based composition synthesis problem

These strong limitations motivated our work on the unbounded instance

case of the protocol synthesis problem.

4.3.3 Protocol synthesis problem: the unbounded

case.

In the remainder of this work we study the protocol synthesis problem in the

case where the number of protocol instances that can be used in a composition

are not bounded a priori (i.e., the problem Compose(R, ST ,+∞)).

In other words, given a repository R = {P1, . . . , Pn} of service protocols,

we consider the generation of new composite protocols that can be obtained

by an asynchronous product of any subset of protocols in R+∞.

More precisely, we consider in this paper the decision problem

underlying the general protocol synthesis problem, i.e., the problem

Compose(R, ST ,+∞).

Problem 1 Unbounded composition synthesis problem (UCSP)

Let R and ST defined as previously. Is the problem Compose(R, ST ,+∞)

decidable?

One way to answer this open question is to consider the related ’simulation

relation’ decision problem. Indeed, Compose(R, ST ,+∞) has a solution if ST

is simulated by a product of any subset elements ofR+∞ (i.e., ST � ⊙(R+∞)).

Such a characterization of solutions can also be expressed using the product

closure operator as stated below.

Theorem 1 The problem Compose(R, ST ,+∞) has a solution iff ST �

⊙(R+∞) (or equivalently, ST � (⊙(R))⊗).

Proof 3 Since we are assuming an infinite number of instances, one

can replace the k from proposition 1 by (+∞). Hence, we obtain

Compose(R, ST , k = +∞) has a solution iff ST � ∪ki=1(⊙(R))⊗i and thus

55

4. Protocol-based web services composition

Compose(R, ST ,+∞) has a solution iff ST � ⊙(R+∞). From lemma 1,

we have ⊙(R))⊗ = ⊙(R+∞) thus Compose(R, ST ,+∞) has a solution iff

ST � ⊙(R))⊗.■

The main difficulty for the unbounded case comes from the fact that a

product closure of an FSM is not an FSM. Since ⊙(R) is an FSM, we shall

prove in the sequel that checking simulation between an FSMM and a product

closure of an FSM (i.e., M⊗) is decidable. We formalize this problem as

follows.

Problem 2 Simulation Decidability Problem (SDP)

Let A and M be two FSMs. Is it decidable whether A �M⊗ ?

To investigate the previous problem , we need first to define a suitable

state machine model that enables to describe a product closure of an FSM.

Discussion

In this chapter we introduced the problem of the generic composition synthe-

sis (GCSP). An important contribution was to show that the GCSP can be

formalized as the problem of testing the simulation of a DFSM by the product

closure of an FSM. Since each service may be instantiated one or many times

(possibly infinite times), we provided a definition of the synthesis problem

making the number of involved instances explicit. The next chapter is de-

voted to the investigation of the Simulation Decidability Problem (SDP) and

the tractability of the GCSP.

56

Five

Decidability and complexity

In the previous chapter, we showed that the unbounded composition synthesis

problem (UCSP) can be reduced to a simulation test between a DFSM and a

product closure of an FSM, i.e. the SDP. To cope with this problem, we first

propose a infinite state machine, called Product Closure of State Machines

(PCSM), that enables to describe product closures of FSMs. Then we inves-

tigate the problem of testing a simulation of an DFSM and a PCSM, or more

generally testing a simulation of an FSM and a PCSM. The latter being an

infinite state machine, we develop a technique to prove that while testing the

existence of such a simulation relation, it is sufficient to explore only a finite

part of the PCSM.

This chapter is organized as follows. We start by the definition of a PCSM.

We then provide a composition algorithm and we show it to terminate and to

be correct. We end this chapter by a complexity analysis of our problem and

two of its restrictives forms.

57

5. Decidability and complexity

5.1 Product Closure State Machine (PCSM)

In this section, we introduce the Product Closure State Machine (PCSM) as

a new state machine that will be used to describe the product closure of an

FSM. The PCSM describes the execution of a possibly infinite number of asyn-

chronous parallel instances of an FSM. We first present a PCSM informally

through examples and then we provide its formal definition.

Given an FSM M , its associated PCSM M⊗ can be seen as the FSM M

with unbounded stacks of tokens on each state. Therefore, unlike finite state

machines where the instantaneous description (ID) of a given state machine

is given by its current state, an ID of a PCSM involves the set of states of its

underlaying FSM as well as the number of tokens (i.e. number of instances)

at each state. We illustrate the notion of an ID of a PCSM on the following

example.

Figure 5.1: An FSM with associated stacks.

Example 8 Figure 5.1-(a) illustrates an FSM M that allows to perform ′a′

and then goes to a final state along a transition labeled by ′b′. Assume that,

we are able to run several instances of M . Consider now the global state of

58

5.1. Product Closure State Machine (PCSM)

the PCSM M⊗ at an instant t after the execution of a sequence of activities

aaba. Such a global state is represented by Figure 5.1-(b) which associates with

each state of M a stack of tokens that keep track of the number of running

instances of M . Figure 5.1-(b) shows that at the instante t, two instances of

M are at state s1 while an other token is at state s2. Figure 5.1-(c) depicts all

the running instances of M by shadowing the current state that each instance

has reached. Note that, having a token on a final state is not useful since it

can not move any more.

Informally, PCSM can execute a transition labeled by ′a′ in two ways :

1. creation of a new instance of M : if there is an outgoing transition

labeled by a from the initial state of M to a state q. Upon such a

transition, a token is added to q, or

2. moving an existing instance of M : if there exists two states q and

q′ such that (q, a, q′) ∈ δM and q has one or more tokens, then upon this

transition, a token is moved from q to q′.

We illustrate the execution of a sequence of achtivities by the following

example.

Example 9 Figure 5.2 illustrates the execution of the sequence ′abbc′ by mak-

ing use of a new PCSM M⊗ depicted at figure 5.2-(a). At the beginning (the

instant t), the initial ID of M⊗ is described by empty stakes on all states of

M except the initial one that has an infinite number of tokens (figure 5.2-(a)).

In order to execute the transition labeled by ′a′, we move a token from s0 to

s1. The new ID of M⊗ is provided on figure 5.2-(b) where we have one token

at state s1. This corresponds to the creation of a new instance of M . Then,

we execute the transition labeled by ′b′ by moving a token from s0 to s3. The

new ID of M⊗ is depicted at figure 5.2-(c) where we have one token at each

of s1 and s3. Note that, at this instant (t+2) we have two concurrent running

59

5. Decidability and complexity

Figure 5.2: An example of execution of a sequence using a PCSM.

60

5.1. Product Closure State Machine (PCSM)

instances of the FSM M. To execute the second ′b′ of the sequence, we move

the token from s1 to s3 (figure 5.2-(d)). This corresponds to moving an exist-

ing instance of M . Finally, we execute the transition labeled by ′c′ by moving

the token from s2 to s4 (figure 5.2-(e)). At the instant (t+4) depicted on the

figure 5.2-(e), the PCSM M⊗ is in a final ID since all the running instances

of M are in final states.

Note that, as it can be seen in the previous example, a PCSM M⊗ may

be indeterministic even if its corresponding FSM M is deterministic. For

instance, at instant (t+ 1) and in order to execute the transition labeled by b,

M⊗ can either by creating a new instance ofM (which leads to Figure 5.1-(c))

or by moving a token from s1 to s3.

It is necessary to devote a specific treatment to FSMs that have initial

states with incoming transitions. In such a case, we need to be able to dis-

tinguish between : (i) an infinite number of instances that are at the initial

state and which have not yet started their execution and (ii) the other run-

ning instances that have reached the initial state through one of its incoming

transitions. This problem is illustrated by figure 5.3 where we can see that,

after the execution of the activity a (figure 5.3-(b)), we have to distinguish

the instance that was used. To cope with this problem, we propose a pre-

processing of an FSM M in order to transform it into a simulation-equivalent

FSM M̃ such that M̃ does not contain incoming transitions. The main idea

of such a pre-preocessing is to duplicate the initial state q0 into a new state

q̃0 that has no incoming transitions. We provide below a formal definition of

this transformation.

Definition 6 Transformation of FSMs

Let M =< ΣM , SM , FM , q
0
M , δM > FSM, we build a new FSM M̃ =<

ΣM , S̃M , F̃M , q̃0M , δ̃M > such that :

• S̃M = SM ∪ q̃0M .

61

5. Decidability and complexity

Figure 5.3: Transformation of FSMs

• δ̃M = δM ∪ {(q̃0M , a, q)for each (q0, a, q) ∈ δM}.

• q̃0M ∈ S̃M is the initial state of M̃ .

• F̃M = FM .

We call M̃ the associated FSM of M .

In order to model the infinite number of tokens, it is enough to put them

on the new initial state q̃0M as illustrated by figure 5.3-(c) and we are now able

to distinguish the running instance that has reached q0M . The following lemma

states that an FSM and its associated one are simulation-equivalent.

Lemma 2 Let M =< ΣM , SM , FM , q
0
M , δM > FSM and M̃ =<

ΣM , S̃M , F̃M , q̃0M , δ̃M > be its associated FSM. Then M =sm M̃ (i.e. M � M̃

and M̃ �M).

62

5.1. Product Closure State Machine (PCSM)

Proof 4 (sketch)

1. (M � M̃). We have (q̃0M) is a copy of q0M with the same outgoing

transitions but not the incoming ones. Each incoming transition in q0M
is translated into a transition from q̃0M to the state associated with q0M of

M̃ . Since by construction q0M of M̃ simulates q0M of M , then q0M of M

is simulated by q̃0M .

2. (M̃ � M). The new state q̃0M which is trivially simulated by q0M since

the former has exactly the same set of outgoing transitions (i.e. same

labels and same target states). Hence, the simulation holds.

In the rest of this thesis, and w.l.o.g, we consider FSMs that do not have

initial states with incoming transitions. We see the transformation as a pre-

processing step that can be executed when we need to put in an adequate

form. We now turn our attention to a formal definition of a PCSM. Thus,

we start by defining a configuration, a formal characterization of an ID of a

PCSM.

5.1.1 Configuration

Let M =< ΣM , SM , FM , q
0
M , δM > be an FSM and let |Is(M)| = l and

|Hs(M)| = n be respectively the set of intermediate and hybrid states of

M . We assume states of Is(M) (respectively, Hs(M)) ordered according to

the lexicographical order and relabeled accordingly with integers from 1 to l

(respectively, from l + 1 to l + n). The configurations of M⊗ are formally

defined below.

Definition 7 (Configuration) A configuration C of a product closure M⊗

is a tuple of size l+n of positive integers. The ith element of C, written C[i],

denotes the number of tokens (i.e., instance of M) that are at state i. We

63

5. Decidability and complexity

say that C[i] is the witness of the state i in a configuration C. Note that,

if i ≤ l (respectively, i > l) then C[i] is a witness of an intermediate state

(respectively, an hybrid state).

A configuration C is an initial (respectively, final) configuration of M⊗ iff

C[i] = 0, ∀i ∈ [1, l + n] (respectively, iff C[i] = 0, ∀i ∈ [1, l].

Note that, a configuration informs about the number of tokens (instances of

M) that are at intermediate or hybrid states. Indeed, it is useless to keep

track of tokens that are at final, not hybrid, states since such instances are

terminated and can no longer be used in the future. In the rest of this the-

sis, we consider PCSMs built on FSMs M that have at least an hybrid or an

intermediate state. As shown in section 4.3.2, the real hardness when com-

posing is related to parallel instances. Whenever M has neither hybrid nor

intermediate states, then all sequences of transitions in M have lengths equal

to 1. Hence, M can not have parallel instances and a simple way to solve the

GCSP is to create a new FSM M ′ by adding ǫ-transitions to M from each

final state to the initial one, and then to test a simulation against M ′ instead

of M⊗.

Example 10 In the example of Figure 5.4, the FSM M contains only one

intermediate state (state q1) and one hybrid state (state q2). Hence, a config-

uration associated with M⊗ is a pair of integers where the first (respectively,

the second) integer is the witness of the state q1 (respectively, q2). For in-

stance, the configuration C2 = (2, 0) indicates an instantaneous description of

M⊗ in which there are two instances of M at q1 and zero instances of M at

q2. While the configuration C3 = (0, 1) that there are zero instances of M at

q1 and one instance at q2.
We define below a new preorder on configurations.

Definition 8 Configuration cover Let C and C ′ be two configurations of

M⊗. C covers C ′, denoted by C ′ ⊳ C, iff ∀i ∈ [1, l] : C[i] = C ′[i] and ∀i ∈

[l + 1, l + n] : C[i] ≤ C ′[i].

64

5.1. Product Closure State Machine (PCSM)

Figure 5.4: An FSM M and a part of the PCSM M⊗.

5.1.2 Definition of the PCSM

Using the notion of configuration, we formally define below PCSMs.

Definition 9 (PCSM) Let M =< ΣM , SM , FM , q
0
M , δM > be a FSM with

|Is(M)| = l and |Hs(M)| = n. The associated PCSM of M noted M⊗ =<

ΣM , C, FC , C0, φ >, with:

• C is an (infinite) set of states consisting of all the configurations of M⊗,

• FC is the set of final configurations of M⊗, i.e., {C ∈ C | C[i] = 0,∀i ∈

[1, l]},

• C0 is the initial state of M⊗ and corresponds to the initial configuration,

i.e., C0[i] = 0, ∀i ∈ [1, l + n],

• φ ⊆ C × ΣM × C is an infinite set of transitions. The set φ is built as

follows. Let C1 and C2 be two configurations in C. We have (C1, a, C2) ∈

φ iff (q, a, q′) ∈ δM and one of the following conditions holds:

1. q = q0M and q′ ∈ (FM\Hs(M)) with C1[i] = C2[i], ∀i ∈ [1, l+ n], or

2. q = q0M and q′ ∈ (Is(M) ∪Hs(M)) with C2[q
′] = C1[q

′] + 1, C1[i] =

C2[i], ∀i ∈ [1, l + n] and i 6= q′, or

65

5. Decidability and complexity

3. {q, q′} ⊆ (Is(M) ∪ Hs(M)) with C1[q] > 0, C2[q] = C1[q] − 1,

C2[q
′] = C1[q

′] + 1, C1[i] = C2[i], ∀i ∈ [1, l + n] and i /∈ {q, q′}, or

4. q ∈ (Is(M)∪Hs(M)) and q′ ∈ (FM\Hs(M)) with C2[q] = C1[q]−1,

C1[i] = C2[i], ∀i ∈ [1, l + n] and i 6= q.

We illustrate a part of a PCSM by the following example.

Example 11 Figure 5.4(b) describes a part of M⊗, the PCSM of the FSM

M depicted at Figure 5.4(a). As mentioned before, configurations of M⊗ are

pairs (i, j) where i (respectively, j) is the witness of the state q1 (respectively,

q2). The infinite state machine M⊗ is initially in the configuration C0 = (0, 0)

then it can, for example, execute the activity a, upon which it moves to the

configuration C1 = (1, 0). At this stage, M⊗ has two possibilities to execute

the activity c : (i) by moving the current instance of M that is at state q1

into the final state q3, or (ii) by creating a new instance of M and moving it

from state q0 into the final state q5. Note that, as the final states q3 and q5

are not described in configurations, case (i) make the M⊗ moving back to the

configuration C0 while case (ii) makes it looping on configuration C1.

5.2 Simulation Decidability Problem

Let us first recall the Simulation Testing Problem (SDP).

Problem 3 (SDP)

Let A and M be two FSMs. Is it decidable whether A �M⊗ ?

This section answers positively to this problem by providing an algorithm

that checks the existence of a simulation relation between an FSM and a

PCSM. We prove that the proposed algorithm terminates and is correct (i.e.

sound and complete). The main difficulty to devise our algorithm comes from

the fact that we have to check the existence of a simulation relation between

66

5.2. Simulation Decidability Problem

an FSM and a PCSM, this latter being an infinite state machine. The corner

stone of our proof is to show that to check the existence of such a simulation

relation we need only to explore a finite part of the corresponding PCSM.

5.2.1 Composition synthesis algorithm

Our algorithm is made of three boolean procedures : Check-Sim, Check-

Candidate and Check-Cover.

• The inputs of Check-Sim are an FSM A, a state q from A, a PCSM M⊗

and a configuration C from M⊗. Check-Sim allows to check whether

the state q from A is simulated by the configuration C from M⊗.

• The inputs of Check-Candidate, are an FSM A, a state q′ from A, a

PCSMM⊗, a configuration C fromM⊗ and a letter a from ΣM . Check-

Candidate allows to compute the successor configuration of C from M⊗

by transiting with the letter a. These configurations represent the can-

didates to simulate the state q from A.

• The inputs of Check-Cover are an FSM A, a state q from A, a PCSMM⊗

and a configuration C from M⊗. Check-Cover allows to check whether

the state the configuration C from M⊗ covers one of the configurations

which was tested to simulate q previously.

These procedures are detailed respectively on algorithms 1, 2, 3 and run as

follows. When checking the simulation between a given state q and a config-

uration C, the Check-Sim procedure will recursively generate new simulation

tests by making calls to the Check-Candidate procedure for each transition

(q, a, q′) in A. This latter procedure enables to check if the state q′ is sim-

ulated by at least one configuration C ′ such that (C, a, C ′) is in M⊗. The

execution of the algorithm generates a tree where the nodes are labeled with

pairs (q, C) that correspond to the calls of the Check-Sim algorithm and the

67

5. Decidability and complexity

edges are labeled by the letters from the alphabet that are used when calling

Check-Candidate.

Example 12 Figure 5.5-(c) shows an execution of a Check-Sim between the

initial state q1 of the FSM of figure 5.5-(a) and the initial configuration C0 =

(0, 0) of the product closure of the FSM M of figure 5.5-(b). Recall that ,

configurations of M⊗ are pairs (i, j) where i (respectively, j) is the witness of

the state q1 (respectively, q2).

Figure 5.5: Example of a simulation tree.

A crucial question is then to ensure that the algorithm terminates. Observe

that for each state q′, the number of candidates C ′ generated by the Check-

68

5.2. Simulation Decidability Problem

Candidate procedure is linear in the size of M since for any configuration C

of a PCSM M⊗, the number of outgoing transitions is finite and bounded by

the total number of transitions in M . Therefore, to ensure termination of

the algorithm it remains to show that there are no infinite branches in the

execution tree of the algorithm. Hereafter, we distinguish two cases :

• In the simple case where A is an FSM without loops, it is easy to see

that the corresponding execution tree of the algorithm is finite since the

length of the branches are bounded by the size of the maximal path in

A.

• For the general case, a state q belonging to a loop in A may appear an

infinitely many times in a branch of the execution tree of the algorithm.

Such a case is illustrated on the Figure 5.6-(b) where the branch depicted

in bold font involves many times the state q1 which belongs to the loop

(ab)∗ of the FSM A.

An important technical contribution of this work is to provide necessary

and sufficient conditions that enable to cut such infinite branches. This is

achieved by the second terminating condition of the Check-Sim (i.e., the call

to the Check-Cover procedure) which is based on the following property.

Property 1 Let A and M be two FSMs and we consider the simulation of A

by M⊗. If a state q of A appears infinitely many times in a given branch of

the simulation tree then there is necessarily a sub-path in this branch from a

node (q, C) to a node (q, C ′) such that C ′ is a cover of C. Interestingly, this

condition characterizes the cases where a loop in A is simulated by M⊗.

The proof of this property is a part of the proof of the correctness of the

simulation algorithm (proof 6).

Example 13 Continuing with the example of Figure 5.6(b), the potentially

infinite branch (depicted by bold arrows) which is cut at node (q1, (0, 1)) since

69

5. Decidability and complexity

Figure 5.6: Example of a simulation tree.

the configuration (0, 1) is a cover of the configuration (0, 0) which appear pre-

viously in a node (q1, (0, 0)) in the same branch. Moreover, there exist two

ways to cut a branch. The first is when a final, not hybrid, state appears.

If the corresponding configuration is final, then we have a positive simulation

test. If the corresponding configuration is not final, then we have a negative

simulation test (e.g. the node (q3, C1) is a negative simulation test since q3 is

final but not C1). The second way relies on norms of states as illustrated on

node (q2, C2). We have norm(q2) = 1, and hence the smallest path that must

start from its corresponding configuration (C2) must be able to lead to a final

70

5.2. Simulation Decidability Problem

configuration by executing only one activity (since norm(q2) = 1).

Note that, to verify such a condition, the Check-Cover procedure maintains

for each state q in a given branch a list, noted L(q), of all the configurations

C ′ corresponding to the nodes (q, C ′) of this branch. In our example, we have

at node (q1, (0, 1)) of the bold branch the sequence L(q1) = [(0, 0), (1, 0)].

Algorithm 1: Check-Sim

Input: Two FSM A and M , a state q of A, a configuration C of M⊗

Output: boolean
begin

if q ∈ FA \Hs(A) then

return(
∑|Is(M)|
i=1 C[i] = 0);

if Check-Cover(q,C) then
Return(true);

for each transition (q, a, q′) in δA do
if not(Check-Candidate(q′, C, a)) then

return(false);

return(true);
end

In the following we will show the termination, the soundness and the com-

pleteness of our algorithm.

5.2.2 Termination of the composition algorithm.

The following theorem proves the termination of our algorithm. It mainly

relies on the Dickson lemma [Dic13].

Theorem 2 The algorithm Check-Sim halts.

Proof 5 Let us suppose that the procedure Check-Sim does not halt, i.e. there

exists an infinite branch in its execution tree. This means that a given state

q ∈ SM may appear infinitely many times in this branch, i.e. |L(q)| is infinite.

71

5. Decidability and complexity

Algorithm 2: Check-Candidate

Input: a state q′ of A, a configuration C of M⊗, a ∈ ΣM
Output: boolean
begin

Candidates=∅;
for each transition (C, a, C ′) in φ do

if
∑|Is(M)|
i=1 C ′[i] ≤ norm(q′) then

Candidates= Candidates ∪{C ′};

flag=0;
while Candidates6= ∅ and (not flag) do
C ′ =first element in Candidates;
flag= Check-Sim(q’,C’);

return(flag);
end

Algorithm 3: Check-Cover

Input: a state q of A, a configuration C of M⊗

Output: boolean
begin

for C ′ ∈ L(q) do
if C ′ ⊳ C then

return(true);

return(false);
end

Thus L(q) corresponds to a cover-free sequence (Ci)i∈ℕ of configurations,i.e.

∀j, k ∈ ℕ j < k ⇒ Cj ⋪ Ck.

Since the sum of tokens in intermediate states are bounded by norm(q)

then (Ci)i∈ℕ may be split into a finite number of sub-sequences (Cik)ik∈ℕ, such

that for all C,C ′ ∈ (Cik)k∈ℕ, C[j] = C ′[j] ∀j ∈ [1, l] . In other words, each

(Cik)ik∈ℕ represents a sequence of configurations where the witnesses for inter-

mediate states are the same. Hence, (Ci)i∈ℕ is an infinite cover-free sequence

of configurations iff (Cik)ik∈ℕ is an infinite sequence of configurations without

inclusion, i.e. ∀C1, C2 ∈ (Cik)ik∈ℕ C1 ⊳ C2 ⇔ C1 ⊆ C2.

72

5.2. Simulation Decidability Problem

Hereafter, we will prove that such a sequence (Cik)ik∈ℕ of configurations

without inclusion cannot exist. This proof is based on the following lemma

established by [Dic13] and reported in [Gal91].

Lemma 3 [Gal91] Let n be any integer such that n > 1. Given any infinite

sequence (Ci)i≥1 of n-tuples of natural numbers, there exists positive integers

i, j such that i < j and Ci �n Cj, where �n is the partial order on n-tuples of

natural numbers induced by the natural ordering ≤ on ℕ.

This lemma states that there does not exist an infinite sequence of config-

urations without inclusion. Thus (Cik)ik∈ℕ is not infinite without inclusion.

Thus we conclude that (Ci)i∈ℕ can not be an infinite without cover and there-

fore the procedure Check-Sim halts.■

5.2.3 Correctness of the composition algorithm

Theorem 2 states that our algorithm is correct, i.e. sound and complete.

Theorem 3 The Algorithm Check-Sim is correct.

Proof 6 • Soundness. Suppose that Algorithm Check-Sim returns true.

We show that there exists simulation between q0 and C0, and thus, there

exists simulation between A and M⊗. Let us consider a call to the Algo-

rithm Check-Sim with q a state of A and C a configuration of M⊗. We

can distinguish three acceptance cases :

– q ∈ FA\Hs(A) and (
∑|Is(M)|
i=1 C[i] = 0; i.e. C is final). Then q � C.

– For each transition (q, a, q′) ∈ δA: q′ is simulated by a given C ′.

Then q � C.

– Cover(q, C) = 1. This case represents the difference between our

algorithm and classic simulation algorithms. It corresponds to an

execution of a loop in A which goes through q. That is to say,

73

5. Decidability and complexity

there exists a sub-path in the execution tree from (q, C) to (q, C ′)

such that C ⊳C ′. This cover condition allows us to avoid the test of

simulation between q and C ′, because C ′ possesses the same number

of tokens as C on intermediate states of M and more tokens than

C for hybrid states of M . Since C ′ and C need to simulate the

same state q, we can restrict C ′ to be equal to C by deleting the

extra tokens in hybrid states of C ′.

• Completeness. Now suppose that Algorithm Check-Sim returns false.

First we show that Algorithm Check-Sim looks for all the possibilities to

simulate the state q by a configuration C. In order to simulate q by C, the

Algorithm Check-Sim checks for each transition (q, a, q′) in δA if q′ can be

simulated by a configuration C ′ such that (C, a, C ′) ∈ φ. The Algorithm

Check-Candidate computes all configurations that may be candidate to

simulate q′. Candidates that do not satisfy the condition
∑|Is(M)|
i=1 C ′[i] ≤

norm(q′) are rejected. Indeed, these configurations cannot simulate q′,

since there exists a path from q′ to a final state in FA such that the tokens

on the intermediate states of C ′ cannot be all consumed. From the list

of candidates, the Algorithm Check-Candidate try to find a candidate

configuration that simulates q′. The algorithm returns false if no such a

configuration exist.

Now suppose that the Algorithm Check-Sim returns false. We distinguish

two cases:

– q ∈ FA \Hs(A) and
∑|Is(M)|
i=1 C[i] 6= 0. This means that q is a final

state and C is not a final state. Thus q cannot be simulated by C.

– There is a transition (q, a, q′) in δA such that the state q′ can-

not be simulated. Since all candidate configurations C ′ such that

(C, a, C ′) ∈ φ are checked, we conclude that q cannot be simulated

by C.

74

5.3. Complexity analysis

We conclude that Algorithm Check-Sim is correct.■

It is worth noting that the proposed proof is constructive in the sense

that if the answer is true, the algorithm may be easily modified to exhibit

a simulation relation between its inputs. This is an interesting point in the

context of the protocol synthesis problem since such a simulation relation can

be effectively used to build a delegator.

Theorem 4 Let A and M be two FSMs. It is decidable whether A �M⊗.

Finally, in the following corollary, we derive the main result of this work

regarding the addressed web service composition problem.

Corollary 1 Let ST be a target protocol and R be a repository of protocols.

The problem Compose(R, ST ,+∞) is decidable.

5.3 Complexity analysis

In this section, we investigate the complexity of the GCSP. A lower bound

can be derived immediately from existing work [MW07]. We provide an Ack-

ermannian [Wic76] upper bound that makes our complexity non-elementary.

We then turn our attention to a study of two particular cases of the GCSP,

namely the case where target services have no loops, and the case where the

component services are without hybrid states.

5.3.1 Complexity bounds

We first provide a rather trivial result on the lower bound derived from

[MW07] and then we focus on the upper bound. Indeed, the GCSP is

exptime-hard since the bounded instances composition synthesis studied

in [BCG+03, MW07] is exptime-complete. The latter problem is nothing else

than a particular case of the GCSP.

75

5. Decidability and complexity

Henceforth, we consider an FSM A =< Σ, QA, FA, q
0
A, δA > and a PCSM

M⊗ =< Σ, C, FC , C0, φ > where M =< Σ, QM , FM , q
0
M , δM >. We assume

that M corresponds to ⊙R where R = {P1, ..., Pn} is a repository of web

services protocols. We focus on the problem of testing a simulation of A by

M⊗.

The composition algorithm (algorithm 1) generates a simulation tree (T)

where nodes are made of pairs (state, configuration) : (q, C) with q ∈ QA

and C ∈ C. In order to provide an upper complexity bound for our problem,

we need to evaluate the maximum size of T . The branching factor at each

node (q, C) (the number of successor nodes) does not exceed the number of

the transitions from M . Hence, the difficulty to evaluate the tree size is the

one of evaluating the depth of its longest path. In the following, we will focus

on this computation.

We start by encoding T to uphold an existing result (lemma 4) proposed

by [Soc91, GKOS08]. This lemma provides an upper bound on the length of

dicksonian sequences. A sequence of non-negative integer n-tuples t1, t2,...,tk

is called dicksonian, if for all 1 ≤ i < j ≤ k, (tj − ti) has at least one negative

coordinate. In order to make benifit of this lemma, we will express a branch

of T by mean of a Dicksonian sequence. Note that, the finiteness of a Dickso-

nian sequence relies on the partial order (≤n) on n-tuples of natural numbers

induced by the natural ordering (≤) on ℕ. Indeed, this does not apply di-

rectly to our notion of cover. That motivates us to encode our simulation

tree (T) to a new one (T ′) such that the cover checking between nodes from

(T) is equivalent to checking ≤ℕ over the corresponding nodes from T ′. More

precisely, the branches of the encoded simulation tree T ′ must uphold two

constraints : (i) when testing the simulation, the branches will be cut using

the preorder (≤n) and not using the cover any more, and (ii) The difference of

the maximal coordinates (we denote DMC for short) of two successive tuples

does not exceed 1. We call these constraints the ≤n constraint and the DMC

constraint respectively. The lemma on which we build our computation is

76

5.3. Complexity analysis

provided below.

Let Lf,n denote the maximal length of a dicksonian sequence of n-tuples,

whose maximal coordinates are bounded by a function f . For a function f :

N → N , let f−1(x) be the least number k such that f(k) ≥ x.

Lemma 4 [GKOS08] Let f : N → N be an increasing function, and d ∈ N

be a number such that ∀i > 0 : f(i + 1) − f(i) ≤ A(d, f(i) − 1) . Then

Lf,n < f
−1(A(n + d, f(1)− 1) and the maximal entry of the last n-tuple does

not exceed A(n+ d, f(1)− 1).

We derive below a particular case of the previous lemma that fits well our

settings. More precisely, we consider f(i) = i and d = 0. Hence, we allow the

maximal coordinate on a vector to increase at most by f(i+ 1)− f(i) = 1 at

each step (i.e. invocation of Check-Sim).

Proposition 2 Let f : N → N be an increasing function, such that ∀i > 0 :

f(i + 1) − f(i) ≤ 1 . Then Lf,n < A(n, 0) and the maximal entry of the last

n-tuple does not exceed A(n, 0).

Hereafter, we will provide the tree encoding that will allow us to apply

the proposition 2. We assume that the states from QA are numbered from 1

to |QA|, and hence a state can be represented by uniquely its index. A node

(qk, C) from T is a tuple (k,mi1 , ...,miI , hj1 , ..., hjH) where I = Is(M) and

H = Hs(M). We propose below an encoding with respect to the previous

tuple that will have the form (V1, V2, V3) where Vi,i∈[1,3] is a vector of integers.

• V1 is a vector of |QA|-integers and informs which state qk ∈ QA is present

in the node. In fact, we encode a state qk ∈ QA, i ∈ [1, |QA|], as

follows : (i) V1[k] = 1 and (ii) V2[j]j 6=k,j∈[1,|QA|]
= 0. The intuition

behind this encoding is to prevent the DMC to exceed 1, i.e. verify

the DMC constraint. Secondly, instead of testing the equality between

states of two nodes, it is sufficient to test the ’less or equal’ relation

77

5. Decidability and complexity

between the vectors {V1}, i.e. verify the ≤n constraint. For instance,

assume that |QA| = 5 and there exists q1, q5 ∈ QA and C,C ′ ∈ C such

that N = (q1, C) is a node from T and N ′ = (q5, C
′) is an immediate

successor of N . Hence, the DMC between N and N ′ is equal to 4. Once

the encoding applied, we obtain two new nodes E = (1, 0, 0, 0, 0, C) and

E ′ = (0, 0, 0, 0, 1, C ′) corresponding to N and N ′ respectively. Note that,

both constraintes hold.

• V2 is a vector of integers formed by sub-vectors (V2,1, ..., V2,I), where each

V2,i, i ∈ [1, I] is formed of Norm(QA) integers and informs about the

value of mi. In fact, we use the same encoding approach as in the vector

{V1}. Indeed, if mi = k, k ∈ [1, Norm(QA)], then (i) V2,i[k] = 1 and (ii)

V2,i[j]j 6=k,j∈[1,Norm(QA)] = 0.

• V3 is a vector of H-integers and equals to (hj1 , ..., hjH). Indeed, no

encoding is required with respect to the hybrid states because their cor-

responding components uphold both constraints.

Finally, from the previous encoding, we can evaluate the size of tuples to

α = (|QA|+Norm(QA)∗I+H) integers. All of them range over 0 or 1 except

the last H integers, i.e. the ones that model the hybrid states.

Example 14 As an example of the encoding procedure, we propose to encode

the simulation tree depicted at figure 5.6. On figure 5.7-(a) we recall the

concerned simulation tree, and figure 5.7-(b) depicts the associated encoded

tree. The encoding of states of the target A states occupies the three first

positions of each vector since A has three states. The following two integers

inform about the number of tokens of the unique intermediate state from the

FSM associated with the PCSM. The last integer is the representation of the

token number on the hybrid state of the latter. Note that for this example, we

have α = 3.

78

5.3. Complexity analysis

Figure 5.7: Example of the encoding of a simulation tree.

Before turning our attention to the theorem on the maximal sequence

length, we comment the correctness and the usefulness of our encoding.

Firstly, it is easy to see that the maximal DMC does not exceed 1 between

successive nodes. Secondly, let (q, C) and (q′, C ′) be two nodes of T , and E

and E ′ be their corresponding nodes. We recall that we cut a branch of T

due to a cover if and only if (q = q′) and (C ⊳C ′). By construction, the latter

conjunction of conditions is equivalent to (E ≤α E
′). This means that, in the

encoded tree, it is enough to compare nodes basing on a simple (≤α). Hence,

we conclude that an encoding procedure is correct and an encoded tree fits

well the settings of propositoin 2.

Now that we have a simulation tree T ′ for which the increasing of the

maximal coordinate does not exceed 1 and the branches are cut by doing a

≤α test, we are able to provide below the theorem 5 which gives the upper

complexity bound on the length of the longest path in such a tree.

79

5. Decidability and complexity

Theorem 5 Let A =< Σ, QA, FA, q
0
A, δA > be an FSM and M⊗ =<

Σ, C, FC , C0, φ > be a PCSM, where M =< Σ, QM , FM , q
0
M , δM >. The length

of the longest path in the simulation tree of A by M⊗ does not exceed A(α, 0).

Proof 7 The proposition 2 and our encoding leads us to the following : the

maximal coordinate in the last tuple is equal to A(α, 0) = A(Hs(M) + IsM ∗

Norm(QA) + |QA|, 0). ■

Corollary 2 Let A =< Σ, QA, FA, q
0
A, δA > be an FSM and M⊗ =<

Σ, C, FC , C0, φ > be a PCSM, where M =< Σ, QM , FM , q
0
M , δM >. The size of

the underlaying simulation tree of A by M⊗ does not exceed |δM |
A(α,0).

Proof 8 We have (i) the branching factor at each node is less or equal to

|δM | and (ii) the length of the longest path in the simulation tree does not

exceed A(α, 0). This implies that the size of the simulation tree does not exceed

|δM |
A(α,0).

5.3.2 Complexity study of particular cases

Hereafter, we focus on two particular cases of the generic composition synthesis

problem, namely (i) the case where target services are without loops and (ii)

the case where component services are without hybrid states.

Case 1 : target services without loops

Let us now consider the case where target services are without loops. We

will show the NP-Completeness of this problem. The NP-hardness is proved

by reducing the problem 4 of the inclusion of a finite word in the language

generated by the shuffle closure of another finite word. This problem is known

to be NP-Complete from [JS01].

Problem 4 • Input: u and v two finite words over an alphabet Σ.

80

5.3. Complexity analysis

• Output: a boolean result that informs whether L(u) ⊆ L(v⊗), where

L(u) and L(v⊗) are the languages built on u and v⊗ respectively.

Our problem belongs to NP because we can validate a certificate on the

computed simulation relation in a linear time of the size of the target service.

This fact is true since the target service has no loops and hence the computed

simulation relation has exactly the same number of transitions as the target

service, and at most the same number of states. We will start by providing

the problem considered in [JS01].

Theorem 6 Let A =< Σ, QA, FA, q
0
A, δA > be an FSM and M⊗ =<

Σ, C, FC , C0, φ > be a PCSM, where M =< Σ, QM , FM , q
0
M , δM >. If A has no

loops, then the problem A �M⊗ is NP-Complete.

Proof 9 NP. Since A has no loops, the simulation algorithm will pass only

once through each transition. Hence the computed simulation relation will

have exactly the same number of transitions as the target service. In other

words, the size of the computed solution is equla to the size of the input.

NP-hardness. An instance of the problem 4 is a particular case of our

problem where target services are without loops. Indeed, we consider the word u

as being a target service A with a unique path from the initial state to the final

one, that corresponds to the word u. the word v will correspond to M , which

contains a unique path from the initial state to the final one, that corresponds

to the word v. Hence, we have L(u) = L(A) and L(v) = L(M). The fact

that all services are linear implies that both the simulation existence and the

language inclusion problems are equivalent since no branching structure does

exist.■

81

5. Decidability and complexity

Case 2 : component services without hybrid states

We provide the complexity of the restrictive case of the synthesis composi-

tion problem where the component services are without hybrid states. The

primitive recursiveness of this case is trivial since the simulation algorithm

termination does not rely on the Dickson lemma.

Theorem 7 Let A =< Σ, QA, FA, q
0
A, δA > be an FSM and M⊗ =<

Σ, C, FC , C0, φ > be a PCSM, where M =< Σ, QM , FM , q
0
M , δM >. If M has

no hybrid states, then there exists an algorithm to solve the problem A �M⊗

in O((|QM |
Norm(QA) + |QA|)× (|QM |+ |δM |

Norm(QA) + |δA|)).

Proof 10 We base our proof on the evaluation the maximal part of M⊗

that is involved in a simulation. Indeed, having no hybrid states in QM al-

lows us to estimate a priori the maximal number of parallel instances that

can participate in a simulation. At any instant t, the number of running

instances of M can not exceed Norm(QA) since all states of M are in-

termediate. Hence, it will be enough to duplicate each component service

Norm(QA) times to obtain the maximal set of parallel services instances

(copies) which will be used in a simulation. We allow each of these copies

to run an unbounded number of sequential instances by adding ǫ-transitions

on M as explained previously. In other words, we will check the simula-

tion between A and ∪Norm(QA)
j=1 M ′⊗j , where M ′ is M with ǫ-transitions. The

states number of ∪Norm(QA)
j=1 M ′⊗j is |Q′M |

Norm(QA) = |QM |
Norm(QA) and it has

(|δM ′ |
Norm(QA) ≤ |QM |+ |δM |

Norm(QA)) transitions.

The best known simulation algorithm is provided by [HHK95] and

has a complexity of O(number of states × number of transitions).

Hence, we can derive the following complexity O((|QM |
Norm(QA) + |QA|) ×

(|QM |+ |δM |
Norm(QA) + |δA|)).■

82

5.4. Discussion

5.4 Discussion

In this chapter we presented the main contributions of this thesis concerning

the decidability and the complexity of the composition synthesis problem. The

first result is that the GCSP is decidable and more precisely exptime-hard. We

provide an ackermannian upper bound for the GCSP complexity. We study

two praticular cases of the problem, namely where (i) target services have no

loops, or (ii) component services have no hybrid states.

In the following, we discuss the connection between our decidability result

and a similar one on the simulation of FSMs by Petri nets (PNs) proposed

by [Jan95]. We recall that a PCSM is a particular form of Vector Addition

Systems [KM69] or equivalently Petri nets [Pet73]. It is worth noting that

the existing result on the decidability of testing a simulation between FSMs

and PNs is known for the class of Petri nets without final markings (final

states). The presence or the absence of final markings in Petri nets can alter

the decidability of a given problem. For instance, testing the trace inclusion

between FSMs and PNs is decidable whilst testing the language inclusion

between FSMs and PNs is undecidable [JM95]. Indeed, the difference between

both problems is that the latter consider traces with final markings. Within

our context, the definition of final configurations, basing on intermediate and

hybrid state, has suitable properties that allow us to propose the cover as

preorder to compare configurations. The cover has the advantages of allowing

to cut branches by ensuring a simulation and of being finitely computable. The

existence of such kind of preorders w.r.t any (infinite) set of final markings,

that can be defined in several ways, is still an open decidability problem.

It represents an interesting theoretical perspective for this work beyond the

composition context.

83

Six

Formal background

This chapter will start by providing a panorama of various labeled transition

systems we encountered and dealt with during this thesis. Then, we try to

summarize existing results regarding important problems such as emptiness

checking, universe and closure under complement. Also, we mention existing

efforts on the problems testing the following preorders: language inclusion,

simulation and bisimulation. The study of such proprieties and preorders is

highly interesting with respect to the composition problem; as can witness

[FGG+08] where both emptiness checking and language equivalence are used

to compare web services behaviors.

6.1 Panorama of Models

In this chapter, we will study the following state machines formalisms : Fi-

nite State Machines (FSM) [HU69], Product Closure State Machine (PCSM)

[RNT], Simple Shuffle Automata (SSA) [Jed87], Shuffle Automata (SA)

[Jed99], Push Down Automata (PDA) [HU69], Linear Bounded Automata

(LBA) [HU69], Basic Parallel Processes (BPP) [KM02a], Vector Addition Sys-

tems (VAD) [KM69] and Petri Nets (PN) [Pet73]. Of course, all of these state

85

6. Formal background

machines are sub-models of the Turing machine. We also denote the languages

of each class by L(Name of the state machine) (e.g. L(PN) is the class of

languages of Petri nets).

The figure 6.1 details relationships between all the aforementioned mod-

els. Arrows directions indicate the ’sub-model’ relation. The absence of ar-

rows means that the concerned models are incomparable. The dashed ar-

rows highlight the well known Chomsky classification of the most used ma-

chines classes. Various references led to us to derive the figure 6.1 (e.g.

[Gis81, KM69, HU69, AKT81]).

Figure 6.1: Hierarchy of models

FSMs are a suitable model to represent the individual behavior of each

component service and the target one as well. However, they lack the ex-

pressive power to model the behavior generated by the possible interactions

86

6.2. Languages problems

between an unbounded number of instances of each service (i.e. the unbounded

parallel behavior, or the parallel behavior for short). PDAs are a more expres-

sive model than FSMs because they have stacks that offer a kind of counting

mechanism and PDAs allow to recognize context-free languages. However,

PDAs are easily discarded since they are not able to recognize rather simple

languages (e.g. (abc)⊗) that are recognized by a PCSM and not context-free

ones. Going up within the Chomsky hierarchy leads to the LBA, a highly

expressive state machine even more expressive than our needs. Unfortunately,

most proprieties on the LBAs are undecidable. At this level, the aim is at

characterizing the exact sub-model of LBAs that is required to model paral-

lel behavior. SAs are again a suitable state machine formalism to model the

required parallel behavior but the SAs research area are rarely concerned by

the simulation preorder. A deep look inside the SAs theory inspired us the

proposition of the PCSM. Interestingly, PCSMs are a sub-model of PNs (that

are incomparable with SAs) and hence we can exploit the existing results in

the field. Finally, two super-models of PCSMs deserve to be cited : BPPs

and SSAs. These machines play a symetric role : the BPPs are the smallest

sub-class of PNs that are not SAs, and SSAs are the smallest sub-class of SAs

that are not PNs.

6.2 Languages problems

This section provides a set of properties of each class of language/model from

the ones cited before. The studied properties are :

• Inclusion : tests whether the inclusion between two languages from a

given class is decidable. Let L1 and L2 be two languages, L1 is said to

be included in L2, noted L1 ⊆ L2, iff ∀ω ∈ L1 : ω ∈ L2.

• Universe problem : tests whether it’s decidable or not to check whether

the language from a given class equals the universe language (Σ∗). Let L1

87

6. Formal background

be a language, L1 is said to be the universe language iff ∀ω ∈ Σ∗ : ω ∈ L1.

• Emptiness : tests whether the emptiness of a language from a given

class is decidable. Let L1 be a language, L1 is said to be empty iff

∀ω ∈ Σ∗, ω /∈ L1 or equivalently L1 = φ.

• Intersection emptiness : tests whether the emptiness of the intersection

of two languages from a given class is decidable. Let L1 and L2 be

two languages, the intersection of L1 and L2 is said to be empty iff

∀ω ∈ Σ∗ : ω /∈ L1 ∩ L2.

• Complement : informs whether the class is closed under the complement

operator. Let L1 be a language, its complement L1 is defined such that

∀ω ∈ Σ∗ : ω /∈ L1 ⇒ ω ∈ L1 or equivalently L1 ∩ L1 = φ.

• Intersection : informs whether the class is closed under the intersection

operator. Let ℂ be a class of languages (e.g. regular languages), ℂ is

said to be closed under intersection iff ∀L1, L2 ∈ ℂ : L1 ∩ L2 ∈ ℂ.

In order to avoid possible confusions, we recall that the class of Petri nets

considered in this thesis is the labeled, marked Petri net with final markings

[Pet81]. The presence of the final markings is required to allow the study of

the languages properties.

Table 6.1 summarizes known results with a selected reference for each. For

the non referred cells, the exponent points out an intuition of the proof on

the concerning result. These proofs sketches can be found just after the table.

Inside the table and on columns, we refer all language classes of interest :

regular languages (L(FSM)), context-free languages (L(PDA)), shuffle lan-

guages (L(SA)), Petri net languages (L(PN)) and context-sensitive languages

(L(LBA)). On lines, one can find the studied properties, and the cells indi-

cate whether the property (on the line) is decidable or not for the language

(on the column). Note that for the last two lines of the table, the answer is

88

6.2. Languages problems

closed or not rather than Decidable or not. Finally, D stands for decidable, U

for undecidable, C for closed and N for not closed.

FSM PDA SA PN LBA
Inclusion D[UH79] U[GR63] U4 U[JM95] U[HU69]
Universe D1 U[GR63] U[Iwa82] U7 U[HU69]

Emptiness D2 D[GR63] D[Iwa82] D8 U [HU69]
Intersection D3 U[HAR67] U[Jke96] D9 U [HU69]
emptiness

Complement C[UH79] N[HAR67] N5 N10 C[HU69]
Intersection C[UH79] N[HAR67] N6 C[RV82] C[HU69]

Table 6.1: Properties of the languages classes.

In the following we provide details about the numbers annotating the results

in the previous table. Our goal is to recall in intuitive way the known proofs

on these results.

1. Let R be a regular language. We have R ⊆ Σ∗ and hence to test whether

R = Σ∗ it is enough to test whether Σ∗ ⊆ R. Recall that the universe

language is itself a regular one and then testing whether Σ∗ ⊆ R is equal

to test the inclusion between two regular languages which is a decidable

problem. Finally, we conclude that the universe problem is decidable for

the class of regular languages.

2. The class of regular languages is closed under complement. In order to

test the emptiness of a regular language, it is enough to test the uni-

versality of its complement. Since the universe problem is decidable for

regular languages and the complement is computable, so the emptiness

problem is decidable.

3. The class of regular languages is closed under intersection, and hence

testing the emptiness of the intersection of two regular languages is equal

89

6. Formal background

to test the emptiness of a regular language. The latter is known to be a

decidable problem.

4. Again, the universe language is a regular one. Hence, the universe lan-

guage is a shuffle language. The undecidability of the universe problem

induces the fact that testing the inclusion between a regular language

and a given shuffle language is undecidable. Hence the inclusion between

two shuffle languages is undecidable.

5. The class of shuffle languages is not closed under intersection. Hereafter,

we assume this class to be closed under complement. We know that the

shuffle languages are closed under union, and hence the union of the

complement of two shuffle languages (L1∪L2) will be a shuffle language

(L3). One can negate the previous form, and obtain some thing like the

intersection of any two shuffle languages is a complement of a shuffle

language (L1 ∩ L2 = L3) and hence a shuffle language (by assumption).

This fact leads us to a contradiction with the non-closure of the class

under intersection. Thus, shuffle languages can not be closed under

complement.

6. We consider the following shuffle languages : a∗b∗c and (abc)⊗. It’s easy

to see that their intersection is anbncn. A language that is a shuffle

language, but a context-sensitive one. The latter language allows also

to prove that the class of shuffle languages is a proper subset of the class

of context-sensitive ones (L(SA) ⊂ L(LBA)).

7. The inclusion between regular languages and Petri net languages is

undecidable[JM95]. As illustrated previously (in 1), it is easy to de-

rive the undecidability of the universe problem.

8. The emptiness checking for a Petri net is equivalent to the reachability

problem where the target marking is the final one. Recall that the set of

90

6.3. Properties of the PCSM languages

all final markings can be reduced to only one equal to the zero marking.

From [Lip76], we know that the reachability problem is decidable, and

thus the emptiness one is decidable as well.

9. The class of Petri nets languages is closed under intersection. It results

that hence testing the emptiness of the intersection of two Petri nets

languages is equal to test the emptiness of a Petri net language. The

latter is known to be a decidable problem.

10. Let PN be a Petri net. Note that the emptiness of PN is decidable but

the universe problem is not so. Let us suppose that PN is a Petri net.

We have PN
?
= φ is decidable and this implies that PN

?
= Σ∗ is also

decidable. This engenders a contradiction with the assumption. Hence,

the class of Petri nets is not closed under complement.

6.3 Properties of the PCSM languages

In this section, several properties of L(PCSM) are depicted, mainly the prob-

lems of emptiness checking and universe checking, and finally closure of this

class under intersection operator. The rest of the considered properties (e.g.

the closure under complement) are still open.

Lemma 5 Emptiness checking for the class L(PCSM) is polynomial.

Proof 11 Let R be an FSM. Then L(R⊗) = ∅ iff L(R) = ∅. Emptiness check-

ing for regular languages is a simple instance of graph-reachability problem and

known to be polynomial [HMU01].

Lemma 6 Universe checking for L(PCSM) is linear.

Proof 12 Let R be an FSM, L(R⊗) = Σ∗ iff Σ ⊆ L(R).

91

6. Formal background

• (if) Since Σ ⊆ L(R), so the language of R can be written as Σ∪L(R′),

with R′ an FSM. Thus L(R⊗) = L(Σ ∪R′⊗). We have (Σ)⊗ = Σ∗, thus

L(Σ ∪R′)⊗ = Σ∗ = L(R⊗)

• (only if) L(R⊗) = Σ∗ so all words from Σ∗ are in L(R⊗). We focus on

words from Σ∗ that have the length is 1 (i.e. Σ). Since words of length

1 from L(R⊗) can only appear in L(R) thus, Σ ⊆ L(R).

Lemma 7 The class L(PCSM) is not closed under intersection.

Proof 13 Let us consider an alphabet Σ = {a, b, c}, and two shuffle closure

expressions S1 = a∗b∗c∗ and S2 = (abc)⊗. We have S1 ∩ S2 = anbncn, with n

an integer. The last language is context-sensitive language and not a language

from the class L(PCSM).

6.4 Language inclusion, Simulation and

Bisimulation

The section deals with the language inclusion problem regarding the classes

of languages introduced in the previous section and studies the simula-

tion/bisimulation problem for some models of interest as well.

6.4.1 Language inclusion decidability problem

Table 6.2 summarizes the known results about language inclusion among many

of the presented languages classes. In order to not hamper the table, we

deleted columns/lines corresponding to context-sensitive languages since all

the inclusions, in both directions, are undecidable [HU69]. As previous, in-

side the cells D stands for decidable problems and U stands for undecidable

problems.

92

6.4. Language inclusion, Simulation and Bisimulation

FSM PDA SA PN
FSM D[UH79] U[HU69] U1 U [JM95]
PDA D [HU69] U2 U 1 U3

SA - 4 U2 U1 U3

PN D[JM95] U2 U1 U3

Table 6.2: Results on the language inclusion preorder.

1. Since the universe problem is undecidable for shuffle languages[Iwa82],

one can conclude easily the undecidability of the language inclusion prob-

lem between regular and shuffle languages. Since all the rest of present

languages classes are super-classes of the regular languages, the unde-

cidability result follows for all of them with regard to shuffle languages.

2. The inclusion problem is undecidable between regular and context free

languages. Hence, this is true for the classes of languages that contain

the class of regular languages.

3. Same as in 2.

4. Up to our knowledge, the inclusion of shuffle languages in regular lan-

guages is still an open problem.

6.4.2 Simulation and bisimulation decidability

problems

It should be noted that the considered PNs here are the marked labeled Petri

nets without final markings. This consideration is motivated because most

of existing results on the field of simulation/bisimulation concern this cate-

gory of PNs. An important aspect to point out is that the presence of final

markings or states can alter decidability results. For instance, we mention

the decidability of the trace inclusion and the undecidability of language in-

clusion of regular languages in Petri nets languages [JM95]. Indeed, the main

93

6. Formal background

FSM PDA BPP PN
FSM Polynomial exptime-comp pspace-hard D

[HHK95] [KM02c] [KM02a] [JM95]
PDA exptime-comp U [KJ06] - -

[KM02c]
BPP coNP-Hard - U[Hfi94] U1

[KM02a]
PN D - U1 U1

[JM95]

Table 6.3: Results on the simulation preorder.

difference between the trace and the language inclusion is the consideration

of final markings in the latter. Table 6.3 summarizes known results about

the simulation relation for state machines models of interest. Table 6.4 sum-

marizes most of known results about the bisimulation relation for machines

models of interest. The cells marked by ′−′ stand for problems that are, up

to our knowledge, still open. Note that the LBAs are omitted since, up to our

knowledge, all the existing simulation/bisimuation problems are undecidable.

The SAs are omitted since, up to our knowledge, no simulation/bisimulation

results do exist.

1. All are immediate results of the undecidability of the simulation of a

BPP by a BPP . Recall that the BPP class is a sub class of Petri nets.

6.5 Conclusion

In this chapter, we covered main existing results that have connections to our

work. We attempt also to illustrate many interesting aspects of the theory

94

6.5. Conclusion

FSM PDA BPP PN
FSM Polynomial

[HHK95]
PDA pscpace-comp exptime-Hard

[KM02c] [KM02c]
BPP Polynomial - PSPACE-Complete

[KS05] [Jan03]
PN D[JM95] - - U [KJ06]

Table 6.4: Results on the bisimulation preorder.

of automata and transition systems. We started by giving an overview of

the main known state machines. Next, we have illustrated many decidability

results about properties of machines languages such as the universe and the

emptiness problems. We also provided many decidability results with regard

to the three most studied pre-orders among these classes, namely: language

inclusion, simulation and bisimulation.

95

Seven

Prototyping

In this chapter we detail the implementation of the composition algorithm that

we proposed in this thesis. As mentioned before, our composition algorithm

is not primitive recursive. This motivates us to run an empirical evaluation

of the composition synthesis algorithm performances in order to evaluate its

real-use possible scales. We also studied the time complexity sources that

allows us identify parameters (e.g. state number per component service) that

can make instances easy or hard to solve.

We implemented our algorithm as part of ServiceMosaic1, a model-driven

prototype case tool for modeling, analyzing, and managing web services. We

developed two main components: (i) WS-protocol-generator that enables to

generate synthetic web service protocols according to several input parame-

ters, such as the number of transitions per services, number of services, etc.,

and (ii) WS-protocol-composer that is an implementation of our composi-

tion algorithm. These components have been implemented using the JavaTM

platform version 6 and the Eclipse framework.

This chapter is divided into two sections. The first section describes the

prototype and its environment of development. The second motivates and

1http://servicemosaic.isima.fr

97

7. Prototyping

explains the test sets we have run. It provides an analysis on the obtained

performances curves and their interpretation as well. We end this chapter by

a discussion on the learned lessons from this evaluation.

7.1 Prototype

The implementation was done using the Java platform 5 and 6 and run under

the Eclipse environment2. ServiceMosaic is the umbrella project under which

our prototype has been implemented. The ServiceMosaic project is an inter-

national academic platform that provides facilities for modeling, analyzing,

discovery and adaption of web services models[BCT+06a] (e.g. business pro-

tocols, timed business protocols). The involved research groups are from the

University of New South Wales (Sydney, Australia), the University Blaise Pas-

cal (Clermont-Ferrand, France), the University Claude Bernard Lyon (France)

and the University of Trento (Italy). This platform comprises the following

components that can be all accessed through a set of programmatic SOAP

web service interfaces [MNSPB+07]:

• Models and manipulation components support representing, stor-

ing and manipulating service descriptions and protocols.

• Analysis and management components include various web ser-

vices analysis and management tools. For instance, operators for pro-

tocol compatibility and replaceability analysis [BCT+06a],and protocol

discovery from service execution logs [MNSPB+07].

• The development components provide a visual environment and a

graphical editor for modifying, analyzing and managing model elements.

We used this editor to visualize and to create and to handle target, com-

ponent and composite services. This editor is built on GEF3 (Graphical

2http://www.eclipse.org/
3http://www.eclipse.org/gef/

98

7.1. Prototype

Editing Framework) that allows developers to take an existing applica-

tion model and quickly create a rich graphical editor.

• Models representation and storage components provide In-

put/Output primitives to store and to physically represent (e.g. XML,

relational DB) models on hard drives.

Our contribution within the settings of ServiceMosaic is the advent of

the sub-project WSC : Web Services Composer. The main goal of WSC,

as its name indicates, is to allow the automatic composition of web services

protocols. These protocols can be designed by making use of the ServiceMosaic

development components (editor). We also rely on the models representation

and storage components for the physical representation and storage of our

services.

The WSC project is based on two main functional components, namely :

• Web services protocols generator that enables to generate synthetic

web service protocols according to several input parameters. Indeed,

a user can generate a protocol by parameterizing its states number,

transitions number, final states number, messages number (the alphabet

size) and optionally the hybrid states number. If the last parameter is

not specified, it will range randomly over 0 and the number of final states.

It should be noted that this component allows to generate protocols with

states that are all accessible and useful, i.e. there is at least a path

leading from the initial state to each state and from each intermediate

state there exists at least a path leading to a final state.

• Web services protocols composer that provides an implementation

of our composition algorithm.

99

7. Prototyping

7.2 Performance evaluation

7.2.1 Evaluation goals.

We can observe that the time complexity of our composition algorithm de-

pends on the size of the execution tree of the algorithm Check-sim. The sizes

of such a tree vary depending on two main parameters: the degrees of the

nodes (i.e., the number of childrens of a given node) and the depth of the tree

(i.e. the sizes of the paths between the root and the leaves).

To better understand this issue, we focused our first experiments on the

analysis of the impact of the following parameters on the execution time of

the algorithm:

• Number of services in the service repository, noted #S,

• Total number of distinct message labels that appear in the services of

the repository, noted #M,

• Number of hybrid states in each service in the repository, noted #H,

• Level of nested loop in each service in the repository, noted #L.

Indeed, the degree of a node depends on the number of candidates com-

puted by the procedure Check-Candidate. It corresponds to the number of

transitions labeled by the same message in the services of the repository. Note

that the degree does not depend on the number of active instances of each

service, since using any of them leads to the same configuration. To increase

the node degree one can either increase the number of services (i.e., the value

of #S) or decrease the number of message labels (i.e., the value of #M).

Secondly, The depth of the tree depends on the presence of loops. Indeed,

our proof was based on the Dickson lemma [Dic13] which ensures the finiteness

of the Check-sim procedure when hybrid states are present. This motivates

100

7.2. Performance evaluation

the use of the parameters #H and #L in our tests. The case where only inter-

mediate states are considered, the depth of the execution tree is exponential.

As will be seen below, this theoretical deduction was confirmed by the results

of our experimental tests.

Test ID #S #M #H #L Number of Total number
variants of generated tests

Test 1 200 2, 4, 8 .. 4096 c c 12 12000
Test 2 10, 25, 50, 2, 4, 8 .. 4096 c c 60 60000

100, 200
Test 3 100 10 0,1 .. 4 c 5 5000
Test 4 100 10 c 0, 1, 2, 3 4 4000

Table 7.1: Description of the test sets.

7.2.2 Building the test sets.

To achieve the aforementioned goals, we constructed 4 test sets each of which

focusing on the study of some specific parameters among the ones mentioned

above.

Each test set describes the main features of the studied composition prob-

lem. The description of the test sets, summarized at table 1, as well as the

results of the experimental evaluation are presented in the remainder of this

section. The experiments have been achieved on Xeon double process HT

3GHz and 2GO of RAM. In the presented results, the execution times are

given in milliseconds.

7.2.3 Test 1.

This test set enables to assess the impact of the number of the distinct message

labels that appear in the available services. For this test set (first line of the

table 1, we defined a first variant with a target service and a repository of

101

7. Prototyping

200 available services taking their message from an alphabet of 4096 distinct

labels.

Then starting with this first variant, we generate other variants by relabel-

ing at each step the messages in order to reduce the total number of distinc

labels by magnetitude of 2. The total number of variants is then equal to 12

(i.e., #M = 4096, #M = 2048, #M = 1024, . . . ,#M = 2048). Note that,

the occurrence of symbol c in the table 1 indicates a constant value, generated

randomly, and used for the different variants of the test set.

Figure 7.1: Experimental results of Test 1

For each of the variant of Test 1, we generated and runned 1000 instances.

The result is reported on figure 7.1. Each point of the given curve denotes

the average execution time of the 1000 instances of the corresponding variant.

Observe that when #M decreases below a given threshold, namely 8 in the

figure, this leads to an exponential blow up in the execution time while above

102

7.2. Performance evaluation

this threshold, the values of the parameter #M seem to have less impact on

the performance of the algorithm.

7.2.4 Test 2.

In addition to the number of messages labels (#M), this test set enables to

assess the impact of the number of services available in the service repository

(#S). We considered five variants of this test set obtained by varying the value

of the parameter #S (respectively, 10, 25, 50, 100 and 200). As previously,

for each value of #S, we define several variants for different values of #M

(ranging from 4096 to 2). We generated and executed 1000 instances of each

variant (i.e., a total number of 60000 tests). The average execution time of

each variant is reported on figure 7.2.

Figure 7.2: Experimental results of Test 2.

103

7. Prototyping

Unsurprisingly, the results show that number of available services to ex-

plore during the composition process impacts the global performance of the

algorithm. Moreover, this test set confirms the trend observed previously

regarding the impact of the number of the distinct message labels on the

performance.

7.2.5 Test 3.

Test 3 studies the impact of the number #H of hybrid states (respectively, the

level #L of nesting) in the available protocols. As previously, we generated

a first variant of Test 3 with #S = 100 and #M = 10 and #H = 0 (i.e., no

hybrid state). Then, we generate other variants by modifying the first one by

increasing the number of hybrid states (from 0 to 4). Therefore, we obtain a

total number of 5 variants. We generate and executed 1000 instances of each

variant. The results are depicted at figure 7.3.

Interestingly, we can observe two main phases in the results depicted on

this figure. In the first phase (from #H = 0 to #H = 1) , the augmentation of

the number of hybrid states leads to a proportional increase of the execution

time while we observe the converse behaviour in the second phase (i.e., when

#H > 1, the execution time decreases while #H increases).

In fact, above a given threshold, adding hybrid states increases the number

of accepting states making the complete conversation (i.e., accepted words)

shorter.

7.2.6 Test 4.

Test 4 studies the impact of the level #L of nested loops in the available

protocols. For this test set, we generate 4 variants with a fixed set of 100

services and 10 message labels. We distinguish 4 varaiants with respect to

the values of #L (ranging from 0 to 3). We executed 1000 instances of each

variant and reported the average execution time in figure 7.4. As it can be

104

7.3. Discussion

Figure 7.3: Experimental results of Test 3.

expected, it turned out that the level of nesting leads to an exponential blow

up in the performance of the algorithm.

7.3 Discussion

Performance evaluation results showed the influence numbers of states, tran-

sitions and hybrid states, and the level of nested loops can have on the com-

position synthesis time. As expected, all these parameters plays an important

role. In particular, the nesting level of loops and the hybrid state number can

alter severely the composition time much more than the two other parame-

ters. This evaluation allowed also to deduce the shape of ’easy instances’ of

the composition synthesis problem. Indeed, such instances are characterized

105

7. Prototyping

Figure 7.4: Experimental results of Test 4.

by a large alphabet, a medium number of states, a light hybrid states density

and a low level of nesting loops. Whereas, the ’extremely hard instances’ are

characterized by a binary alphabet, large states and hybrid states number

and finally, a high level of loops nesting in the target protocol (e.g. a target

protocols with all possible transitions between each couple of states).

106

Eight

Conclusion

We conclude this work by summarizing the contributions and by drawing some

perspectives for future work.

8.1 Summary

In this work, we investigated the composition synthesis problem. We pro-

vided a generic definition of protocol synthesis problem that holds for both

the cases where the number of instances that can be used in composition is

bounded or unbounded. The former case was widely investigated in litera-

ture (e.g. [BCG+03, BDGL+04, BCG+05b]) and its exptime-completeness is

known from [MW07]. Hence, we concentrated on the unbounded case of the

composition that we formalized using the simulation preorder and the shuffle

closure operator. More precisely, we proposed a new state machine, called

PCSM, that allows to run an unbounded number of parallel instances of a

finite state machine. Under settings of this framework, we proved the decid-

ability of the underlaying problem and we study its complexity issues. We

provided an Ackermannian upper bound and an exptime-hard lower bound.

We dealt also with two particular cases of the generic composition synthesis

problem, namely (i) the case where target services are without loops which is

107

8. Conclusion

NP-compete and (ii) the case where component services are without hybrid

states which is exptime. Finally, a composition prototype and experimenta-

tions were detailed.

8.2 Perspectives

Several opportunities exist to pursue further research directions by building on

top of the present work. Indeed, we can envision more theoretical refinements

of our results as well as a richer composition model (yet useful in practice).

We briefly detail those perspectives below.

1. Complexity. Right now, we have an Ackermannian upper bound that

can not be improved as long as the decidability proof relies on the Dick-

son lemma. However, identification and complexity characterization of

particular cases can be helpful to build a new decidability proof for the

GCSP and hence a tighter upper bound can be derived. In addition,

having such cases and their corresponding algorithms may allow to sig-

nificantly increase the performances of a composition engine by running

the adequate algorithm w.r.t each particular case.

2. Towards a richer composition model. One strong assumption of

our approach is that the composition relies on a central delegator, which

may turn out to be a limiting factor in practice (e.g., single point of

failure or scalability issues). A first improvement would be to leverage

choreographies by considering direct message exchanges between ser-

vices which would get us rid of the delegator (e.g. the conversational

model [BFHS03]). A second improvement would be to take into ac-

count operations effects on the real world, modeled as update queries

on a relational database. Finally, we should investigate the extension of

our work toward non-functional properties, including timing constraints

108

8.2. Perspectives

(e.g., time-bound message exchanges), transactions support, costs and

security.

3. Decidability problem. Beyond the web services composition context,

an interesting theoretical problem that remains to be solved is the de-

cidability of simulating FSMs by Petri nets with final markings. We

recall that the same simulation problem where the Petri nets have no

final markings was shown to be decidable in [Jan95]. As discussed in

Chapter 5 of this thesis, a technique to solve the former problem relies

on the definition of a new preorder on markings (e.g. cover). This pre-

order will allow cutting branches of simulation trees within finite time

and will ensure a simulation as well.

109

Bibliography

[AC98] P.A. Abdulla and K. Cerans. Simulation Is Decidable for

One-Counter Nets (Extended Abstract). Proceedings of CON-

CUR’98, Lecture Notes in Computer Science 1466: 253–268,

pages 26–8, 1998.

[ACKM04] Gustavo Alonso, Fabio Casati, Harumi A. Kuno, and Vijay

Machiraju. Web Services - Concepts, Architectures and Appli-

cations. Springer, 2004.

[AGK99] F.N. Afrati, M. Gergatsoulis, and T. Kavalieros. Answering

queries using materialized views with disjunctions. Lecture

Notes in Computer Science, pages 435–452, 1999.

[AKT81] Toshiro Araki, Toyohiko Kagimasa, and Nobuki Tokura. Re-

lations of flow languages to petri net languages. Theoretical

Computer Science, 15(1):51–75, 1981.

[BCDG+05] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Me-

cella. Automatic composition of web services in Colombo. In

Proc. of 13th Itallian Symp. on Advanced Database Systems,

2005.

[BCG+03] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Mau-

rizio Lenzerini, and Massimo Mecella. Automatic composition

111

Bibliography

of e-services that export their behavior. In ICSOC, pages 43–58,

Dec. 2003.

[BCG+05a] D. Berardi, D. Calvanese, GD Giacomo, R. Hull, M. Lenzerini,

and M. Mecella. Modeling data & processes for service speci-

fications in colombo. Proc. EMOI-INTEROP. CEUR-WS. org,

2005.

[BCG+05b] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo,

Richard Hull, and Massimo Mecella. Automatic composition

of transition-based semantic web services with messaging. In

VLDB, pages 613–624, 2005.

[BCG+05c] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Mau-

rizio Lenzerini, and Massimo Mecella. Automatic service com-

position based on behavioral descriptions. IJCIS, 14(4):333–

376, 2005.

[BCT04a] B. Benatallah, F. Casati, and F. Toumani. Web service con-

versation modeling: a cornerstone for e-business automation.

Internet Computing, IEEE, 8(1):46–54, 2004.

[BCT04b] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Anal-

ysis and management of web service protocols. In ER, pages

524–541, 2004.

[BCT+06a] B. Benatallah, F. Casati, F. Toumani, J. Ponge, and H.R.M.

Nezhad. Service mosaic: A model-driven framework for web ser-

vices life-cycle management. IEEE Internet Computing, pages

55–63, 2006.

[BCT06b] Boualem Benatallah, Fabio Casati, and Farouk Toumani. Rep-

resenting, analysing and managing web service protocols. DKE,

58(3):327–357, 2006.

112

Bibliography

[BDGL+04] D. Berardi, G. De Giacomo, M. Lenzerini, M. Mecella, and

D. Calvanese. Synthesis of underspecified composite e-services

based on automated reasoning. Proceedings of the 2nd interna-

tional conference on Service oriented computing, pages 105–114,

2004.

[BFHS03] T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification:

a new approach to design and analysis of e-service composition.

In WWW’03. ACM, 2003.

[BH05] L. Bing and C. Huaping. Web Service Composition and Analy-

sis: A Petri-net Based Approach. In Semantics, Knowledge and

Grid, 2005. SKG’05. First International Conference on, pages

111–111, 2005.

[Blo89] B. Bloom. Ready simulation, bisimulation, and the semantics

of CCS-like languages. Massachusetts Institute of Technology,

Dept. of Electrical Engineering and Computer Science, 1989.

[BPE07] Business process execution language for web services version

2.0, 2007. http://docs.oasis-open.org/wsbpel/2.0/.

[CDGLV99] D. Calvanese, G. De Giacomo, M. Lenzerini, and M.Y. Vardi.

Rewriting of regular expressions and regular path queries.

In Proceedings of the eighteenth ACM SIGMOD-SIGACT-

SIGART symposium on Principles of database systems, pages

194–204. ACM New York, NY, USA, 1999.

[CPS+91] R. Cleaveland, J. Parrow, B. Steffen, Laboratory for Founda-

tions of Computer Science, and University of Edinburgh. The

concurrency workbench: A semantics based tool for the verifi-

cation of concurrent systems. Swedish Institute of Computer

Science (SICS), 1991.

113

Bibliography

[CS93] R. Cleaveland and B. Steffen. A linear-time model-checking

algorithm for the alternation-free modal mu-calculus. Formal

methods in system design, 2(2):121–147, 1993.

[Dic13] Leonard Eugene Dickson. Finiteness of the odd perfect and

primitive abundant numbers with n distinct prime factors.

Amer. Journal Math., 35:413–422, 1913.

[DS05] Schahram Dustdar and Wolfgang Schreiner. A survey on web

services composition. International Journal of Web and Grid

Services, 1(1):1–30, 2005.

[Eng67] E. Engeler. Algorithmic properties of structures. Theory of

Computing Systems, 1(2):183–195, 1967.

[FGG+08] W. Fan, F. Geerts, W. Gelade, F. Neven, and A. Poggi. Com-

plexity and composition of synthesized web services. In Prin-

cipals on Database Systems, pages 231–240. ACM New York,

NY, USA, 2008.

[FL79] M.J. Fischer and R.E. Ladner. Propositional dynamic logic of

regular programs. JCSS, 18(2):194–211, 1979.

[FLW06] X. Feng, Q. Liu, and Z. Wang. A Web Service Composition

Modeling and Evaluation Method Used Petri Net. LECTURE

NOTES IN COMPUTER SCIENCE, 3842:905, 2006.

[FS04] K. Fujii and T. Suda. Dynamic service composition using se-

mantic information. In Proceedings of the 2nd international

conference on Service oriented computing, pages 39–48. ACM

New York, NY, USA, 2004.

114

Bibliography

[Gal91] Jean H. Gallier. What’s so special about kruskal’s theorem and

the ordinal γ0? a survey of some results in proof theory. Annals

of Pure and Applied Logic, 53:199–260, 1991.

[Gis81] Jay Gischer. Shuffle languages, Petri nets, and context-sensitive

grammars. Comm. of the ACM, 24(9):597–605, 1981.

[GKOS08] O. Golubitsky, M. Kondratieva, A. Ovchinnikov, and A. Szanto.

A Bound for Orders in Differential Nullstellensatz. Arxiv

preprint arXiv:0803.0160, 2008.

[GR63] S. Ginsburg and G.F. Rose. Some Recursively Unsolvable Prob-

lems in ALGOL-Like Languages. Journal of the ACM (JACM),

10(1):29–47, 1963.

[GT04] M. Ghallab and P. Traverso. Automated Planning: Theory and

Practice. Morgan Kaufmann, 2004.

[HAR67] J. HARTMANIS. Context-free languages and Turing machine

computations. Mathematical Aspects of Computer Science,

1967.

[HB03] R. Hamadi and B. Benatallah. A Petri net-based model for web

service composition. Australasian Database Conference, pages

191–200, 2003.

[Hfi94] H. Hfittel. Undecidable equivalences for basic parallel processes.

volume 789. Springer, 1994.

[HHK95] Monika R. Henzinger, Thomas A. Henzinger, and Peter W.

Kopke. Computing simulations on finite and infinite graphs.

pages 453–462. IEEE Computer Society Press, 1995.

[HMU01] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to

automata theory, languages, and computation. 2001.

115

Bibliography

[HNT08a] Ramy Ragab Hassen, Lhouari Nourine, and Farouk Toumani.

Protocol-based web service composition. In ICSOC, pages 38–

53, 2008.

[HNT08b] Ramy Ragab Hassen, Lhouari Nourine, and Farouk Toumani.

Web services composition is decidable. In WebDB, 2008.

[HS05] R. Hull and J. Su. Tools for composite web services: a short

overview. ACM SIGMOD Record, 34(2):86–95, 2005.

[HU69] J.E. Hopcroft and J.D. Ullman. Formal languages and their

relation to automata. ACM Classic Books Series, 1969.

[Hul04] Richard Hull. Web services composition: A story of models,

automata, and logics. A tutorial for the 2004 EDBT Summer

School in Sardinia, 2004.

[Iwa82] Kazuo Iwama. The universe problem for unrestricted flow lan-

guages. Acta Informatica, 19(1):85–96, 1982.

[Jan95] P. Jančar. Undecidability of bisimilarity for Petri nets and some

related problems. Theoretical Computer Science, 148(2):281–

301, 1995.

[Jan03] P. Jancar. Strong bisimilarity on basic parallel processes in

PSPACE-complete. In Logic in Computer Science, pages 218–

227, 2003.

[Jed87] J. Jedrzejowicz. Nesting of shuffle closure is important. Infor-

mation Processing Letters, 25(6):363–367, 1987.

[Jed99] Joanna Jedrzejowicz. Structural properties of shuffle automata.

Grammars, 2(1):35–51, 1999.

116

Bibliography

[Jke96] Joanna Jkedrzejowicz. Undecidability results for shuffle lan-

guages. Journal of Automata, Languages and Combinatorics,

1(2):147–159, 1996.

[JM95] P. Jancar and F. Moller. Checking regular properties of petri

nets. ICCT, pages 348–362, 1995.

[JS01] Joanna Jedrzejowicz and Andrzej Szepietowski. Shuffle lan-

guages are in P. TCS, 250(1-2):31–53, 2001.

[KJ06] A. KUCERA and P. JANCAR. Equivalence-checking on

infinite-state systems: Techniques and results. Theory and

Practice of Logic Programming, 6(03):227–264, 2006.

[KM69] R.M. Karp and R.E. Miller. Parallel Program Schemata. JCSS,

3(2):147–195, 1969.

[KM02a] A. Kucera and R. Mayr. Simulation preorder over simple pro-

cess algebras. Information and Computation, 173(2):184–198,

2002.

[KM02b] A. Kucera and R. Mayr. Why is Simulation Harder Than Bisim-

ulation? Lecture Notes in Computer Science, CONCUR, pages

594–610, 2002.

[KM02c] Antonín Kucera and Richard Mayr. On the complexity of se-

mantic equivalences for pushdown automata and bpa. In In Pro-

ceedings of the 27th International Symposium on Mathematical

Foundations of Computer Science (MFCSŠ02), volume 2420 of

LNCS, pages 433–445. Springer-Verlag, 2002.

[KS05] M. Kot and Z. Sawa. Bisimulation equivalence of a BPP and a

finite-state system can be decided in polynomial time. Elec-

117

Bibliography

tronic Notes in Theoretical Computer Science, 138(3):49–60,

2005.

[Lip76] R.J. Lipton. The Reachability Problem Requires Exponential

Space. Dept. of Computer Science, Yale University, 1976.

[Mea55] G.H. Mealy. A method for synthesizing sequential circuits. Bell

System Technical Journal, 34(5):1045–1079, 1955.

[MJL07] Chan May, Bishop Judith, and Baresi Luciano. survey and com-

paraison of planning techniques for web services composition.

Technical Report., 2007.

[MNSPB+07] H. Motahari-Nezhad, R. Saint-Paul, B. Benatallah, F. Casati,

J. Ponge, and F. Toumani. ServiceMosaic: Interactive analysis

and manipulation of service conversations. ICDE, 2007.

[MS02] S. McIlraith and T.C. Son. Adapting Golog for Composition of

Semantic Web Services. KR’02, pages 482–493, 2002.

[MSZ01] S.A. McIlraith, T.C. Son, and H. Zeng. Semantic Web Services.

2001.

[Mur89] T. Murata. Petri nets: Properties, analysis and applications.

Proceedings of the IEEE, 77(4):541–580, 1989.

[MW07] Anca Muscholl and Igor Walukiewicz. A lower bound on web

services composition. In FOSSACS, volume 4423 of LNCS,

pages 274–287. Springer, 2007.

[NM02] S. Narayanan and S.A. McIlraith. Simulation, verification and

automated composition of web services. WWW’02, pages 77–

88, 2002.

118

Bibliography

[ORR78] WF Ogden, WE Riddle, and WC Round. Complexity of ex-

pressions allowing concurrency. In Proceedings of the 5th ACM

SIGACT-SIGPLAN symposium on Principles of programming

languages, pages 185–194. ACM New York, NY, USA, 1978.

[OWL04] OWL-S: Semantic markup for web services, 2004.

http://www.w3.org/Submission/OWL-S/.

[PBB+04] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and P. Traverso.

Planning and monitoring web service composition. Lecture

Notes in Computer Science, pages 106–115, 2004.

[Pet73] C.A. Petri. Concepts of net theory. In Proceedings of MFCS,

volume 73, pages 137–146, 1973.

[Pet81] J.L. Peterson. Petri Net Theory and the Modeling of Systems.

Prentice Hall PTR Upper Saddle River, NJ, USA, 1981.

[PG03] M.P. Papazoglou and D. Georgakopoulos. Service-Oriented

Computing. Communications of the ACM, 46(10):25–28, 2003.

[PMBT05] M. Pistore, A. Marconi, P. Bertoli, and P. Traverso. Auto-

mated composition of web services by planning at the knowledge

level. International Joint Conference On Artificial Intelligence,

19:1252, 2005.

[PTB05] M. Pistore, P. Traverso, and P. Bertoli. Automated Composi-

tion of Web Services by Planning in Asynchronous Domains.

Proc. ICAPS05, 2005.

[RNT] R. Ragab, L. Nourine, and F. Toumani.

Web services composition is decidable.

http://www.isima.fr/ragab/RNTReport08.pdf.

119

Bibliography

[RV82] G. Rozenberg and R. Verraedt. Subset Languages of Petri Nets.

Informatik-Fachberichte; Vol. 66, pages 250–263, 1982.

[SOA07] SOAP version 1.2, 2007. http://www.w3.org/TR/soap12-

part1/.

[Soc91] G.M. Socías. An Ackermannian Polynomial Ideal. In Proceed-

ings of the 9th International Symposium, on Applied Algebra,

Algebraic Algorithms and Error-Correcting Codes, pages 269–

280. Springer-Verlag London, UK, 1991.

[SPW+04] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau. HTN

planning for Web Service composition using SHOP2. Web Se-

mantics: Science, Services and Agents on the World Wide Web,

1(4):377–396, 2004.

[Sti98] C. Stirling. The joys of bisimulation. Proceedings of the 23rd In-

ternational Symposium on Mathematical Foundations of Com-

puter Science, pages 142–151, 1998.

[Tho93] W. Thomas. On the Ehrenfeucht-Fraisse game in theoretical

computer science. Proceedings of the International Joint Con-

ference CAAP/FASE on Theory and Practice of Software De-

velopment, pages 559–559, 1993.

[UDD01] UDDI executive white paper, 2001.

http://uddi.org/pubs/UDDI_Executive_White_Paper.pdf.

[UH79] J.H.J. Ullman and JE Hopcroft. Introduction to Automata The-

ory, Languages, and Computation. Addison-Wesley„ 1979.

[WH84] Manfred K. Warmuth and David Haussler. On the complexity

of iterated shuffle. JCSS, 28(3):345–358, 1984.

120

Bibliography

[Wic76] BA Wichmann. Ackermann’s function: A study in the efficiency

of calling procedures. BIT Numerical Mathematics, 16(1):103–

110, 1976.

[WSC] Web service conversation language (WSCL), 1.0.

http://www.w3.org/TR/wscl10/.

[WSD07] Web services description language (wsdl) version 2.0, 2007.

http://www.w3.org/TR/wsdl20/.

[YTX05] Y.P. Yang, Q.P. Tan, and Y. Xiao. Verifying web services com-

position based on hierarchical colored petri nets. In Proceedings

of the first international workshop on Interoperability of hetero-

geneous information systems, pages 47–54. ACM New York,

NY, USA, 2005.

[ZAAM03] R. Zhang, I.B. Arpinar, and B. Aleman-Meza. Automatic Com-

position of Semantic Web Services. Proc. of the 2003 Int. Conf.

on Web Services, 2003.

121

Résumé

Les services web permettent l’intégration flexible et l’interopérabilité

d’applications autonomes, hétérogènes et distribuées. Le développement de

techniques et d’outils permettant la composition automatique de ces services

en prenant en compte leurs comportements est une question cruciale.

Cette thèse s’intéresse au problème de la composition automatique de ser-

vices web. Nous décrivons les services web par leurs protocoles métiers, formal-

isés sous la forme de machines d’état finies. Les principaux travaux autour de

cette problématique se focalisent sur le cas particulier où le nombre d’instance

de chaque service est fixé a priori. Nous abordons le cas général du prob-

lème de synthèse de protocoles où le nombre d’instances de chaque service

disponible et pouvant intervenir lors de la composition n’est pas borné à pri-

ori. Plus précisément, nous considérons le problème suivant : ’étant donné un

ensemble de n protocoles de services disponibles P1, . . . , Pn et un nouveau pro-

tocole cible PT , le comportement de PT peut-il être synthétiser en combinant

les comportements décrits par les protocoles disponibles?’. Pour ce faire, nous

proposons dans un premier temps un cadre formel de travail basé à la fois sur

le test de simulation et la fermeture shuffle des machines d’états finis. Nous

prouvons la décidabilité du problème en fournissant un algorithme de compo-

sition correct et complet. Ensuite, nous analysons la complexité du problème

de la composition. Plus précisément, nous fournissons une borne supérieure

et inférieure de complexité. Nous nous intéressons également aux cas parti-

culiers de ce problème général. Enfin, nous implémentons un prototype de

composition dans le cadre de la plateforme ServiceMosaic.

Mots clès Services web, Composition de services web, Automate shuffle,

Simulation.

IV

Abstract

Web services enable flexible integration and interoperability of au-

tonomous, heterogeneous and distributed applications. A core challenge for

the web services technology is the development of techniques and tools for

automatically generating composite servicess by taking into account their be-

havioral properties (e.g. business protocols).

In this thesis, we focus on the problem of automatic composition of web

services. We consider web services described by their business protocols which

are formalized as finite states machines. Previous works on this problem dealt

with the particular case where the number of instances of each component

service is bounded and fixed a priori. We tackle the general case of the protocol

synthesis problem where the number of instances of each component service

that can be used in a composition is not bounded a priori. More precisely, we

consider the following problem: ’given a set of n available web service protocols

P1, . . . , Pn and a new target protocol PT , can the behavior described by PT be

synthesized by combining the behaviors described by the available protocols?’.

In order to cope with this problem, we first propose a formal framework for the

composition synthesis based on both the simulation preorder and the shuffle

closure of finite states machines. We prove its decidability through a sound and

complete composition algorithm. Then, we conduct a complexity analysis of

the composition problem. More precisely, we provide upper and lower bounds

on the problem complexity. We also focus on several particular cases of this

general problem. Finally, we implement a composition prototype within the

framework of the ServiceMosaic platform.

Key words Web services, Web services composition, Shuffle automata,

Simulation.

V

	manuscrit ragab
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Contributions
	1.2.1 Formal framework for web services composition
	1.2.2 Decidability result
	1.2.3 Complexity issues
	1.2.4 Prototyping and performance evaluation

	1.3 Outline

	2 Web services
	2.1 Basic notions
	2.1.1 Definition
	2.1.2 Architecture

	2.2 Business protocols
	2.2.1 Definition and motivation
	2.2.2 Formal models
	2.2.3 Emerging standards

	3 Web services composition
	3.1 Dimensions of the composition
	3.1.1 Services model : profile vs. behavior
	3.1.2 Composition semantics : semantic vs. syntactic
	3.1.3 Composition goals
	3.1.4 Composition process : manual vs. automatic
	3.1.5 Composition agility : static vs. dynamic

	3.2 Existing composition research efforts
	3.2.1 The Roman model
	3.2.2 The conversational model
	3.2.3 Composing web services in Colombo
	3.2.4 Synthesized web services
	3.2.5 Graph-based composition
	3.2.6 Semantic-based composition

	3.3 Comparison of existing approaches

	4 Protocol-based web services composition
	4.1 Preliminaries
	4.2 Web services protocol model
	4.3 The protocol-based composition synthesis problem
	4.3.1 Generic Composition Synthesis Problem (GCSP)
	4.3.2 Protocol synthesis problem: the bounded case.
	4.3.3 Protocol synthesis problem: the unbounded case.

	5 Decidability and complexity
	5.1 Product Closure State Machine (PCSM)
	5.1.1 Configuration
	5.1.2 Definition of the PCSM

	5.2 Simulation Decidability Problem
	5.2.1 Composition synthesis algorithm
	5.2.2 Termination of the composition algorithm.
	5.2.3 Correctness of the composition algorithm

	5.3 Complexity analysis
	5.3.1 Complexity bounds
	5.3.2 Complexity study of particular cases

	5.4 Discussion

	6 Formal background
	6.1 Panorama of Models
	6.2 Languages problems
	6.3 Properties of the PCSM languages
	6.4 Language inclusion, Simulation and Bisimulation
	6.4.1 Language inclusion decidability problem
	6.4.2 Simulation and bisimulation decidability problems

	6.5 Conclusion

	7 Prototyping
	7.1 Prototype
	7.2 Performance evaluation
	7.2.1 Evaluation goals.
	7.2.2 Building the test sets.
	7.2.3 Test 1.
	7.2.4 Test 2.
	7.2.5 Test 3.
	7.2.6 Test 4.

	7.3 Discussion

	8 Conclusion
	8.1 Summary
	8.2 Perspectives

	Bibliography

	résumé.pdf
	abstract

