N

N
N

HAL

open science

Large Scale Structure with SDSS-III/BOSS

Mariana Vargas-Magana

» To cite this version:

Mariana Vargas-Magana. Large Scale Structure with SDSS-III/BOSS. Cosmology and Extra-Galactic

Astrophysics [astro-ph.CO]. Université Paris-Diderot - Paris VII, 2012. English. NNT:

00726113

HAL Id: tel-00726113
https://theses.hal.science/tel-00726113
Submitted on 29 Aug 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://theses.hal.science/tel-00726113
https://hal.archives-ouvertes.fr

SEESESEE

UNIVERSITE PARIS DIDEROT
UFR de Physique

DOCTORAT de Physique

Mariana Vargas Magana

Large Scale Structure with SDSS I1I- BOSS

These dirigée par Eric Aubourg,

effectuée de septembre 2008-février 2012
au Laboratoire AstroParticule et Cosmologie

soutenue le 16 fevrier 2012.

JURY
. Jean-Paul KNEIB Rapporteur
. Vincent BRETON Rapporteur
. Stephanie ESCOFFIER Membre de Jury
. Pierre BINETRUY Président de Jury
. Jim RICH Membre de Jury

. BEric AUBOURG Directeur de Thése






A mi papd, mi mamd,

Rosita , Germdncito y Sebastien






La mejor forma que tengo para describir mi experiencia al hacer investigacion en
fisica “..es como un viaje a través de una oscura y desconocida mansion . Entras en la primera
habitacion y estd completamente a oscuras. Tropiezas con el mobiliario que te hace caer, pero con

el tiempo acabas sabiendo donde estdn los muebles. Finalmente luego de unos seis meses
encuentras el interruptor de la luz, lo enciendes y todo se ilumina. Entonces descubres donde
estabas exactamente. Luego te trasladas a la siguiente estancia y te pasas otros seis meses en la
oscuridad. De manera que todos estos momentos de tluminacion, algunos muy rdpidos, otros de un
dia o dos, son la culminacion de los muchos meses de tropiezos y caidas en la oscuridad que los
precedieron, y sin los cuales no podian existir.”

Andrew Wiles

En m: caso yo anadiria la mdgica presencia de luciérnagas que tluminaron mai
camino.






Remerciements

Il y a une “boule” des personnes a qui je doit dire merct....

D’abord, je tiens & remercier mes directeurs de thése, Jean-Christophe Hamilton et Eric Aubourg,
pour m’avoir guidé, encouragé, conseillé et m’avoir fait beaucoup voyager. A Jean-Christophe qui a
pris la grande responsabilité de faire sortir cette thése quand 4 la fin de I’épineuse deuxiéme année
j’al commencé a désespérer et grace & qui j’ai beaucoup appris sur I’étude des grandes structures. A
Eric Aubourg qui a toujours répondu a la minute & mes mails, et grice a qui nous faisons parti de
dans cette aventure de ’étude BAO dans la trés grand collaboration SDSS-BOSS, avec les avantages
et défis que cela implique. A Nicolas qui depuis son arrivée dans le groupe a apporté beaucoup de
part ses connaissances a cette recherche et qui lorsqu’il s’est consacré & ’analyse Lyman-alpha a
toujours suivi mon travail. A Antoine Labatie avec qui j’ai pu travailler, discuter et apprendre
a propos de I'analyses des BAO. Je remercie les membres du jury, Stéphanie Escoffier, Jean-Paul
Kneib, Vincent Breton, Jim Rich et Pierre Binetruy. Notamment Stephanie et Jean Paul qui m’ont
apporte enormememt de corrections pour améliorer mon manuscrit.

Je remercie le laboratoire APC qui m’a accueilli pour faire ma thése, et plus particuliérement
Pierre Binetruy, directeur du laboratoire APC, qui m’a fait I’honneur d’étre président de mon jury
de thése. A Yannick, responsable du groupe de Cosmologie et Gravitation et qui a fait un suivi
de mon parcours durant la thése. A Cécile et Jean, pour leurs remarques et suggestions durant
la préparation de la soutenance et avec qui j’ai aussi partagé beaucoup des discussions lors des
cafés-preprint. Aux autres membres du groupe Cosmologie et Gravitation ainsi que les membres
de 'administration du Laboratoire, Sabine, Martine Laird-Bardissa, Martine Piochaud, Aurélia et
Sarodia. Je remercie les thésards qui ont toujours fait partie de mon chemin dans la recherche et le
doctorat, qui sont aussi mes amies; a ceux avec qui j’ai commencé, Sébastien ,Romain, Silvia, Gaél
et Clément qui mon fait apprendre beaucoup avec les cafés-preprints et avec qui j’ai toujours rigolé
et ceux qui ont arrivés aprés comme Joseph, Guillaume et Josquin avec qui j’ai partagé beaucoup
de choses, comme le bureau, les réunion et bien sir le projet Cosmovan. Aux autres thésards des
autres groupes, Ixandra, Massimo, a les thésards qui sont arrivés aprés comme Marie-Anne, Loic,
Alexandre, et mémes ceux qui viennent d’arriver comme Julian, Fabien et Ivan avec qui j'ai passé
de bons moments a Paris.

Je remercie mes amis de Paris et d’ailleurs qui m’ont toujours encouragé & finir la thése. Tout
d’abord mes inséparables amis Sandra, Yareli, Vero, Tofio, Yessica, Ricardo, los Albertos, Ale,
Lesdy, qui sont resté jusqu’a la fin, aux autres trés chers amis qui ont été du debut Emilio, Eloy,
Aleyda, Laura ma voisine, Laura et Aldo.

Je remercie ma famille, ma mére, mon pére, ma soeur Rosita et mon frére Germancito qui sont
toujours presents dans ma vie. Je remercie Sébastien qui m’a toujours accompagné, encouragé,
soutenu et qui m’a fait le chemin plus heureux....









Analyse des structures a grande échelle avec SDSS-III/BOSS

Le travail de ma thése s’est concentré sur U'extraction du signal laissé par les BAO dans la
distribution des galaxies. Celui se présente sous forme d’un pic autour de 150 Mpc dans la fonction
de corrélation & deux point de la matiére. Cette échelle correspond a la distance parcourue par
I’onde acoustique dans le fluide matiére-radiation entre la période d’égalité matiére-radiation et leur
découplage & z~ 1100. Il en résulte une sur-densité a cette échelle autour de chaque perturbation
primordiale. Le but de mon travail était d’effectuer une analyse compléte sur les données prises par
la collaboration SDSS III/BOSS jusqu’a I’été 2011 afin d’apporter des contraintes sur les parameétres
caractérisant 1’énergie noire, wg et w,. On veut savoir si ces observations sont consistantes avec la
fameuse constante cosmologique (wg = 1 et w, = 0) ou si l’équation d’état de 'énergie noire évolue
avec le temps (w,# 0) impliquant alors des scénarios bien plus complexes pour cette composante.
Pour y arriver, j’ai étudié et testé les outils d’analyse avec des simulations log-normal ainsi qu’avec
les données publiques du DR7 de SDSS. J’ai étudié les effets de distorsion des redshifts dans le régime
linéaire avec des simulations et j’ai développé une méthode d’optimisation d’estimateur de fonction
de corrélation. Dans un second temps j’ai réalisé 'analyse compléte des données BOSS-CMASS, qui
utilise les galaxies elliptiques trés lumineuses (LRGs), depuis la construction du catalogue jusqu’a
I’obtention des contraintes cosmologique en passant par la correction des effets systématiques.

Large scale structure with SDSS-III/BOSS

My research focuses on the extraction of the signal imprinted by the BAO on the galaxy dis-
tribution. The BAO feature is a bump at ~ 150Mpc in the two-points correlation function of the
matter in the Universe. This corresponds to maximum distance travelled by acoustic waves in the
matter-radiation fluid during the period from matter/radiation equality to their decoupling at z
~1100. An excess density at a radius of 150 Mpc was left after decoupling around each dark-matter
density peak. The final goal of my work is to perform a complete analysis of the data available
up to summer 2011 in SDSS I1I/BOSS in order to give constraints on isotropised distance Dy and
constraint the dark energy equation of state parameters wg and w,. With such observations, one
wants to check if the data is consistent with the so-called cosmological constant (corresponding
to wp =71 and w, = 0) or if the dark energy equation of state shows a time evolution (wa # 0)
pointing to more complex dark energy scenarios. I studied and tested data analysis tools with log
normal simulations and the public DR7 to achieve this goal. I studied the redshift distortions with
simulations in the linear regime and I developed a optimization method for the correlation func-
tion estimator. The second part of my my work was focused in the analysis of BOSS data.There
are to main programs in the SDSS III/BOSS project: the Luminous Red Galaxies catalogue anda
new technique based on quasars using the Lyman-alpha forest. I have focused my research on the
LRG science. I performed a complete analysis of BOSS-CMASS sample from catalog construction,
systematic corrections and cosmological constrains.
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Introduction

The current paradigm of cosmology is the ACDM model. A number of observational evidences place
this model as the best description we have of the universe up to now. However, our understanding
of the origin and evolution of the universe is not completely decrypted. There are still fundamental
open questions. Among these open questions the nature of the dark energy is one of the most
important issues to be explored by modern observational cosmology. There are several probes that
permit to extract some informations about the equation of state of this unknown component of
the universe: clusters, weak lensing, supernovae and the baryonic acoustic oscillations (BAO). My
research focuses on the extraction of the signal imprinted by the Baryonic Acoustic Oscillations
on the galaxy distribution. This thesis is part of the experimental efforts to learn more about the
nature of this elusive component of the universe: the dark energy.

The BAO feature is a bump at ~ 150M pc in the two-points correlation function of the matter in
the Universe. This corresponds to the maximum distance travelled by acoustic waves in the matter-
radiation fluid during the period from matter/radiation equality to their decoupling at z ~ 1100.
An excess density at a radius of 150 Mpc was left after decoupling around each dark-matter density
peak. We therefore expect today an excess probability to find matter separated by this distance (in
comoving coordinates). This feature can be seen as a standard ruler allowing to study the history
of the expansion of the Universe and infer cosmological information. The physics underlying the
acoustic oscillations is well understood and the value of this standard ruler has been measured with
exquisite accuracy at a redshift z ~ 1100 using WMAP data. The apparent BAO distance scale
measured from observations at different redshift leads to measurements of the Hubble parameter
H(z) and the angular diameter distance D4(z) which are related to the cosmological parameters,
especially to the dark energy parameters (Seo Eisenstein 2003 [23]). One can look for the imprint of
the BAO feature in the galaxy distribution as galaxies are good tracers of the dark matter density
distribution. The first detection of the BAO in the galaxy distribution was obtained with the Sloan
Digital Sky Survey (SDSS) in 2005 (Eisenstein et al 2005[4]) with a sample of 40000 Luminous Red
Galaxies in a volume of 0.72(Gpc/h)3. Many analysis have been performed with different methods
using both the Fourier space power spectrum (Percival 2006 [16] and 2009 [17]; Padmanabhan
2006|14]) or configuration space two-points correlation D the inverse Fourier transform of the former
(Eisenstein 2005 [4]; E.Kazin 2008 [7]). Both the Luminous Red Galaxy sample or the main one
were used with successive releases of the SDSS data. Moreover, some analysis have used combined
dataset (SDSS and 2DFGRs) or larger samples using photometric redshifts instead of spectroscopic
ones. All of these analysis have now led to a convincing detection of the BAO feature. The main
difficulty for detecting and analyzing the BAO scale in the large scale structure of the Universe is its
low statistical significance due to the sparse sampling of the underlying dark matter distribution by



luminous galaxies. One can only expect to be able to observe the BAO feature in the widest galaxy
surveys and it has only been unambiguously detected in the most extended samples like Luminous
Red Galaxies.

The final goal of my work is to perform a complete analysis of the data available up to summer
2011 in SDSS III/BOSS in order to give constraints on the dark energy equation of state parameters
wo and w,. With such observations, one wants to check if the data is consistent with the so-called
cosmological constant (corresponding to wy = 1 and w, = 0) or if the dark energy equation of state
shows a time evolution (w, # 0) pointing to more complex dark energy scenarios. BOSS is one of
the 4 programs composing the third version of the Sloan Digital Sky Survey (SDSS-IIT). There are
two main programs in the SDSS III/BOSS project: the Luminous Red Galaxies (LRG) catalog and
a new technique based on quasars using the Lyman-alpha forest as a tracer of matter in the line of
sight. I have focused my research on the LRG science.

In order to constrain theories against observations the accurate estimation of clustering statistics
from galaxies surveys is necessary. The most widely used statistic in large scale structure analysis
is the two-point correlation function in real and Fourier space. In this work I use the correlation
function analysis, which is more adapted to explain the physics involved in BAO. My work could be
separated in 2 levels : a preparatory work done with simulations to study in details the estimators
and the error analysis that will be used in further chapters to analyze the large scale structure in
BOSS data. The second level was to perform a complete analysis of BOSS galaxies, from catalog
generation to cosmological constraints, using this tools previously developped, tested and once the
estimators were completely understood from the study with mocks.

Thus, in a first time I concentrated on the properties of the estimators of the correlation function
using mock catalogs. I studied the different estimators available in the literature in terms of the bias
and variance. As we will see, the estimators of the correlation function are based on the comparison
of the galaxy distribution with a random distribution that mimics the observational conditions of
data samples. I therefore spent time understanding the elements that have to be taken into account
in random generation to have an accurate estimation of clustering statistics: the radial and angular
selection functions. I also explored the weights.

A second important ingredient for doing clustering analysis is an accurate estimation of the
errors. Measurements in galaxy catalogs are subject to uncertainties that must be properly addressed
in order to compare with theoretical predictions. These uncertainties can be separated according to
their nature in statistical and systematic. The statistical errors are the shot noise and the cosmic
variance. As part of this preliminary work to prepare the BOSS data analysis I studied in this
first stage the systematic and statistical uncertainties using mock catalogs and some data based
methods.

Concerning the systematic errors, they could be separated in theoretical and observational.
Among the uncertainties that comes from the theoretical side we have the effect of peculiar velocities.
The fact that we only have access to redshift as an estimator of the radial distance of galaxies
introduces distortions in the direction parallel to the line of sight due to peculiar velocities of the
galaxies. Although, these distortions introduce an extra-complication in the physical interpretation
of the results, they also provide extra information about cosmological parameters and the mass-
luminosity bias of the tracers we use. I devoted a chapter to study with lognormal simulations
the effect in the correlation function. There are other uncertainties related with theory as the



galaxy bias. The galaxies distribution do not follows exactly the matter distribution and finally the
deviations from the linear description. These issues will be presented in the BAO chapter and they
will be discussed again in the chapter devoted to cosmological constraints. Finally the observational
errors arise from technical limitations due to telescopes and instruments. As an example we have
not perfect sampling (close pairs of galaxies), effects of dust extinction, contamination from sources
(stars), among others. In the chapter devoted to analysis of BOSS data I will talk about the
observational bias and errors specific to BOSS .

Chapter 5 is devoted to the heart of my thesis the BOSS correlation function. In this chapter,
I use the first two years of BOSS data to compute the correlation function of galaxies. These data
constitute the Data Release 9 (DR9) that will be public in summer 2012. The goal of my work was
to generate a complete chain of analysis from catalog generation to the cosmological constraints.
The first step to do clustering analysis is to generate a ’clean’ catalog from noisy data. In the
first section T discuss this process. The definition of a catalog is not a simple task because we
must guaranty that the sample selected is homogeneous and there is no systematic errors or bias
originated by observational issues. The second part is devoted to the computation of the correlation
function and the correction from angular systematic effects. The main systematic error found in
BOSS data is the stellar density (Ross et al., 2012). T explore in detail this source of systematic
error. [ study the effects on the correlation function of other observational variables as the seeing,
extinction, airmass and sky flux. Finally, in the third part I discuss the error estimation. As we will
see the common method to estimate the errors is computing the covariance matrix from simulations.
In this section I explore three different kind of simulations that would permit to validate the error
estimation. The chapter 7 is the culmination of the chain in the context of a large scale structure
analysis: the cosmological constraints generated for the fitting of the correlation function from
BOSS data. The final goal of the observational cosmology is to confront the the results generated
from the statistical data analysis with the predictions from theory. This chapter is devoted to the
cosmological constrains we can get from the analysis of BOSS data.

Finally the chapter 8 is like the cerise sur le gateau, it is inspirited from the work done in
chapter 4 for the estimators and as well is closely linked with the heart of the thesis the BOSS
data correlation function, this chapter presents a methodology to define a new optimized estimator
that seems to perform better that the universal estimator for the correlation: the Landy-Szalay
estimator.

A summary of global conclusions is presented at the end, it does not mean that the research is
finished by contrary the idea is to present a bilan of the results generated of this first stage, the
graduate studies, and to enumerate the perspectives that results from this first exploration.






I. Cosmology in a nutshell

In the current state of cosmology, there is an almost universal consensus about which is the best
description of our Universe. That model is the Standard Cosmological Model. The most exciting
feature of modern cosmology is that now we have an enormous amount of observational data that
enable us to test predictions from theory. In that sense, it is usually said that cosmology has passed
to the era of precision measurements. This chapter introduces the basic notions of modern cosmology
in order to provide the context of my research. Before I describe the standard cosmological model,
also known as ACDM model, I discuss the basic picture in cosmology: the Big Bang theory. I begin
with an overview of the observational evidences that supports the Big Bang cosmology. Then,
I summarize observational evidence that required to go beyond this model, such as the evidence
of existence of non baryonic matter, density perturbations and an extra component of the energy
density.

The second part of the chapter is devoted to the description of the homogeneous Universe. 1
develop the fundamental framework of standard cosmology established by the Einstein equation
in a homogeneous and isotropic metric, the so called Lemaitre-Friedman-Roberton-Walker metric,
giving place to the Friedman equations. The Friedman equations describe the dynamics of the evo-
lution of the Universe. I present the components of the Universe and their evolution. Afterwards
I discuss the notion of distances, that is a key element related to my research subject. I finish this
section giving a brief description of the thermal history of our Universe. The third part is devoted
to the perturbed Universe. We have observed that the Universe is not exactly homogeneous and
isotropic, we observe structures (i.e. voids, clusters and filaments). In order to explain the transition
from a description of an homogeneous Universe to an inhomogeneous one, I begin the third section
discussing inflation as a way to solve some of the problems of the Big Bang model. I present the
statistical description of density fluctuations and their evolution followed by a brief discussion on
the instability paradigm, using the model of spherical collapse that, even if it is an approximation,
illustrates the formation of structures from initial density fluctuations. Finally, I summarize the
cosmological parameters of the ACDM model and discuss some of the current unanswered questions
that will drive the further research in this domain.



I.1 Overview of Observational Cosmology

The modern cosmology emerges with the Big Bang paradigm in the 30’s. The fundamental features
of the standard cosmological model come from this original model. Usually three observational
evidences are recognized as the pillars of the Big Bang Model: the Hubble diagram that exhibits
the expansion of the Universe, the light elements abundance in agreement with Big Bang Nucle-
synthesis(BBN) predictions, and the measurement of the Cosmic Microwave Background (CMB)
evidence of the thermal evolution (hot and dense past) and homogeneity of our Universe (from the
black body radiation spectrum). In fact the BBN provides too an evidence of the hot and dense
past of our Universe.

1.1.1 Hubble Law: Evidence of the expansion of the Universe

The key piece of modern cosmology is the evidence that our Universe is expanding. Edwin Hubble
measured in 1929 (Hubble, 1929) and 1931(Hubble & Humason, 1931) the velocities of Cepheids
and estimated their distances using an empirical period-luminosity relation (see Fig. [L.1]).
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Figure I.1: Hubble Diagram showing the relation between recession velocity of galaxies
and distances. Left panel: original data from Hubble. (Hubble, 1929). Right panel: re-
cent data with more distant galaxies. Both figures from Edward. L. Wright http://www-
cosmosaf.iap.fr/Cours-cosmo-1.htm

Hubble found that the extragalactic galaxies appears to be moving away from us. He also noticed
that the velocity increases with distance. If we believe in the cosmological principle, that tell us
that we do not have a preferred place in the Universe, Hubble’s findings lead immediately to the
conclusion of an expanding Universe: each observer in the Universe detects galaxies receding at a
velocity proportional to their distance with respect to them by a universal factor. This phenomenon
is what we would observe in an expanding Universe. A convenient way to describe this effect, in the
context of general relativity, is to introduce a scale factor a(t) that evolves with time. As the time
passes, the expansion increases the physical distances by a factor a(t). An illustration of expansion



is shown in Fig. [I.2]. In the figure, a grid representing the comoving coordinates is shown. A
comoving frame include directly the expansion effect in the coordinate system. The expansion
increase the physical distances by a factor a(t), the points on the grid maintain their coordinates
and the comoving distance remains constant. The value of the scale parameter is set to one now
(ap = 1). The index 0 in cosmology refers to quantities evaluated at present time.
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Figure I.2: A grid showing the comoving coordinates, the expansion increase the physical
distances by a factor a(t) , the points on the grid maintain their coordinates and the comoving
distance remains constant. From (Dodelson, 2003).

A useful quantity defined from scale the parameter is the Hubble parameter H(a):

a

H

(L.1)

The Hubble parameter tells us the expansion rate of the Universe. The present value of H denoted
by Hg is called the Hubble constant and its value is Hy = 100hkm - s~' - Mpc~! where h=0.738
+0.024 (Riess et al., 2011). Hubble’s findings are known as the Hubble Law and is expressed as
follows:

a

v ~ Hd (1.2)

As this equation shows, the slope of the curve in Fig. 1.1 corresponds to the Hubble parameter.
I will now introduce the basic concept of redshift. In cosmology, velocities are measured via their
redshift which is basically the Doppler effect applied to light waves. If galaxies recede from us, the
expansion of the Universe stretches the wavelength and thus the frequency is lower, spectral lines
go to the red frequencies so the effect is known as redshift. The standard non relativistic Doppler
formula give us the relation between velocity and the redshift :

Aobs 1
14z= 200 == (13)
emit a
with z = ©. This interpretation of cosmological redshift in terms of a Doppler shift that indicates

a recession velocity is known as the kinematic interpretation. This interpretation is clear when
taking the limit z < 1, but when redshift becomes large it could lead to confusion and temptation
of using the relativistic expression. In fact, the redshift must be interpreted as an accumulation



of infinitesimal Doppler shifts caused by photons passing between a family of comoving observers
separated by small distances along the photons paths. This interpretation is based on the fact
that in an expanding universe the curvature is small in nearby regions, thus we can apply special
relativity and interpret the shift in the frequency of photons as a recession velocity.

This recession velocity is in fact a relative velocity between the observer and the object, and in
general relativity there is not a unique way of comparing vectors for widely separated points. In
order to define a relative velocity the vectors must be transported parallelly, and depending on the
chosen path it would lead to different results.

When carrying the vector along the light path corresponds to the interpretation that I presented.
As we see, the interpretation of redshift is not trivial, for a discussion about interpretation see Bunn
& Hogg (Bunn & Hogg, 2009) (Chodorowski, 2011). Even if the interpretation is complex, the
physics is clear. The light from distant galaxies is redshifted, and this provides the observational
evidence for the idea of the expanding Universe.

This notion of an evolving Universe is the fundamental idea at the base of Big Bang theory. If
the Universe is expanding now, going to the past, the distance between objects was smaller than it is
today. Extrapolating this idea back in time we find a time tyi, where scale parameter becomes zero
a(tmin) = 0, thus giving us the notion of the first instant of the Universe, an initial spatial singularity
at a time tyi;, - A second implication of this idea on expansion is that in the past the density of
energy was higher, the energy content of Universe contained in a contracted volume extrapolating
to the initial time will give us a singularity in the energy density. This fact gave the name of Hot Big
Bang model or "great explosion" in a sarcastic manner when this model emerged in the times where
stationary models were still in vogue. Even if this image of explosion is misleading, it represents well
the idea of the first instants of our Universe as hot and dense. An important remark that permit
us to avoid this problem of an initial singularity is that when the Universe exceeds certain density,
quantum effects must be important even for gravitational physics. This should happen at Planck
energy scale Epjancc = (hc5/G)1/2 = 1.22 x 109GeV. The density had achieved this value at the
Planck time. The Planck time delimits the validity of our current theoretical framework, its value
iS tplanck = (hG/C5)1/2 = 5.39 x 10~%s. Tt is from this initial time that we begin the description of
the Universe avoiding to deal with these singularities.

I.1.2 Light Elements Abundances validation of the Big Bang Nucleosynthesis

In the context of Big Bang model, the early Universe was hot and dense. At the first seconds of
the Universe, the vast amount of energetic photons prevented nuclei to be formed. As the Universe
expands, it gets cooler. When Universe achieve an energy below the binding energy of nucleus, the
first nuclei begin to form, these process is called nucleosynthesis.

Knowing the conditions at early Universe and using our knowledge of nuclear physics about
relevant cross sections, it is possible to estimate the primordial abundances of elements. These
predictions depend on the density of protons and neutrons at the time of nucleosynthesis. The
Fig. 1.3 shows the predictions of light elements (*He, deuterium, 3H and lithium) for a range of
baryon densities. The measurements of primordial abundances are shown in form of squares. As the
figure shows, the measurements of light elements are consistent with the Big Bang nucleosynthesis.
Notably deuterium measurements ( (Burles & Tytler, 1998)) constraint the baryon density to only



a few percent of the critical density.
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Figure 1.3: Constraints to the baryon density from the Big Bang Nucleosynthesis[*He, deu-
terium, 3H and lithium]. Solid vertical is fixed by measurements of primordial deuterium
(Kirkman et al., 2003)

Thus, the Big Bang Nucleosynthesis provides an estimate of the baryon density in the Universe.
Baryons contribute at most to a 5% to the density matter. We will see later that the matter density
is estimated to be ~ 20 — 30%, thus nucleosynthesis provides an argument to suspect of existence
of non baryonic matter. Big-bang nucleosynthesis (BBN) provided a key test of the hot Big-Bang
cosmology, the agreement between the light element abundances measurements and predictions,
confirmed the basic idea of Big Bang: the thermal evolution of our Universe.

1.1.3 CMB: Evidence of thermal evolution and homogeneity

The most direct evidence for a hot and dense past comes from the cosmic microwave background
(CMB). Penzias and Wilson measured in 1965 (Penzias & Wilson, 1965) the cosmic background
radiation from the cosmos finding a T= 3.5 & 1K. This result was in agreement with predictions
from the Big Bang model done by Dicke et al.(Dicke et al., 1965) in 1965 of a background radiation
at this temperature. In fact, as we will see later, photons of the CMB were emitted when the
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temperature of the Universe was about T~ 3000K. These photons, because of the expansion, are
redshifted by a factor and now we measured this low temperature.

In 1992 the COBE (Cosmic Background Explorer) satellite measured the shape of the spectrum
of this emission. It matched a perfect blackbody spectrum at a temperature of T = (2.736 + 0.017)
K.(Smoot et al., 1992). In Fig. [L.4], it is shown the intensity of the cosmic microwave radiation
as a function of the wavelength, measured by many experiments in a later time. It shows a perfect
black body spectrum that corresponds to T = 2.726 K. This spectrum provided a direct evidence
of an homogeneous temperature in all directions at 3 decimal precision(Mather et al., 1990).
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Figure I.4: Left panel. A view of the sky as would have been seen by the microwave receiver of
Penzias and Wilson, if it could have surveyed the whole sky. From http://map.gsfc.nasa.gov/.
On the right panel, the COBE (Cosmic Background Explorer) satellite measurements of the
shape of the spectrum of this emission, showing a perfect blackbody at a temperature of 2.726
K(*

We will see later that this fact cause some problems, because an homogeneous temperature
implies thermal equilibrium at the early Universe and therefore a causally connected Universe. I
will discuss later how Inflation envisages to solve this problem of the Big Bang model.

In the framework of the Big Bang Model, the origin of the Cosmic Microwave Background goes
back to early times. After the nucleosynthesis, energy of photons was still high and atoms could
not be formed, the Universe continued expanding, decreasing the energy density. At a temperature
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equivalent to T= 3 x 10? K, the photons not having enough energy to pull off electrons from atoms,
travel freely from this time on, this time is called the decoupling time. These photons from the
decoupling time constitute the CMB. In that sense, CMB offers a snapshot of the Universe at z
~ 1000 when it was 400,000 years old. This snapshot of the Universe supports the use of the
cosmological principle corresponding to an homogeneous and isotropic Universe. In fact it only
supports isotropy then we still need the copernican principle to imply homogeneity.

I.1.4 Beyond the Big Bang Model

While the Big Bang Model was well settled on the three fundamental observational pillars described
above, the observations from the last two decades of the 20" century point out to the need of going
beyond this picture. The Big Bang picture of the Universe implies a smooth, expanding Universe
composed of baryonic matter and radiation. Nowadays, the evidence of temperature fluctuations
in the CMB and the existence of large scale structure, leads to a Big Bang picture of a not exactly
homogeneous Universe. As well as the need to introduce further components, as dark matter to
explain the gravitational field seen in the dynamics of galaxies and required to explain the CMB
anisotropies and structure formation, or the dark energy that was introduced with the discovery of
the accelerated expansion of the Universe. These observations required to go beyond this model, the
addition of the cold dark matter (CDM) give place to the CDM model and the subsequent inclusion
of dark energy give place to the ACDM model. The ACDM model is the most accepted description
of the Universe that we have today. In the following lines I summarize briefly these observational
evidences.

e Dark Matter. In the late 1960s and early 1970s, from rotational curves of galaxies, the
gravitational field was measured enabling to infer the mass. However, when comparing the
result with visible matter a mismatch exist(Rubin & Ford, 1970)(Rubin et al., 1980). This
finding led to the necessity of introducing a new component to account for the missing matter:
the dark matter. The concept of dark matter was originally evoked by Fred Zwicky in 1937
(Zwicky, 1937) to explain the velocity dispersion of galaxies in clusters. The best evidence up
to date of Cold Dark Matter (8¢ significance (Clowe et al., 2006)) is provided by the Bullet
cluster observation Fig. 1.5. The bullet cluster consist of two colliding cluster of galaxies. The
weak-lensing mass map reveals a dark matter clump lying ahead of the collisional gas bullet,
but coincident with the effectively collisionless galaxies (Markevitch et al., 2004). This new
component of the Universe must be non collisional, that means it neither interacts strongly
nor electromagnetically. We will see that this component is fundamental to explain the CMB
anisotropies and structure formation (see Fig. [1.6]).

e Anisotropies in the CMB. Precise measurements of the Cosmic background radiation in 1992
(Smoot et al., 1992) made possible the determination of the temperature fluctuation at the
level of the one part in 10°. These measurements indicate that the Universe was not completely
smooth. The temperature fluctuations found in the CMB imply the existence of primordial
fluctuations at early times. Moreover, such primordial fluctuations are required to explain
the origin of the structures we observe today in galaxy surveys. In Fig.|l.6] we see the all-
sky map of temperature fluctuations seen by the COBE Satellite in 1992, with 7 degree
resolution. The temperature range of the image is & 100 uK. In addition, the all-sky map
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Figure I.5: Left panelthe bullet cluster (1E 0657-558 ) consists of two colliding clusters of
galaxies at z=0.296. It provides the best evidence up to date of Cold Dark Matter with 8¢
significance (Clowe et al., 2006)). An offset of the center of total mass (by gravitational lensing
)from the center of baryonic matter(Hot Gas seen in X-rays) peaks. Right panel, a recent
example of a rotation curve for M33 (21 cm) compared with best fitting-model (continuous
line). Also shown are the contribution from the Halo (dotted dashed line), the stellar disk
contribution (short dashed line) and the gas contribution (long-dashed line) from reference
(Corbelli & Salucci, 2000)

of temperature fluctuations seen by WMAP 18 years later with data from 7 years. The
correspondent angular power spectrum is shown in Fig.[I.7]. Even though I will discuss in
more detail the CMB in a further section, I want to underline some important informations
that come from the anisotropies of the CMB 1) They provide us a way of determining the total
energy density o and thus the curvature of the Universe (the first peak in the CMB power
spectrum corresponds to the angular size of horizon size at last scattering). The analyses
indicate Qy = 1+ 0.2 (Spergel et al., 2003). 2) From the anisotropies, fixing the geometry,
the matter density of the Universe could be inferred giving a value of €, ~ 0.3. That is only
a third of the critical value 3) Fixing the geometry, anisotropies constrain as well the baryon
density?. Current CMB measurements are consistent with the nucleosynthesis baryon density
estimation.

Large Scale Structure. In the last decade of the 20*" century a number of large scale surveys ap-
peared as CfA(1985), APM Galaxy Survey (1990), IRAS(1988), SDSS (2000) and 2dF(1997).
The distribution of galaxies found by these surveys was clearly non random. They indicated
the existence of large scale structures as filaments, voids and clusters (see Fig. [I.8]). These
observations proved that the Universe was not exactly smooth in large scales. In order to
explain the structure observed in the Univers, it seemed necessary to introduce a dark matter
component to the standard model, as well as to allow deviation from the smooth condition. I
will discuss this subject in the section devoted to the perturbed Universe.

Acceleration of the expansion. A similar study to Hubble’s work was done in 1998 with
Type Ia supernovae by Pelmutter (Perlmutter et al., 1999) and Riess (Riess et al., 1998)

%In fact, the height of the first acoustic peak rises with the baryon density.
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simultaneously. The supernovas are the result of a collapse explosion mechanism? that implies
they are rare and really luminous objects. To have an idea of how rare they are, the local
rate of Type Ia supernovae measured recently is about 5x107° SNe Ia Mpc.™3 yr~1(Li et al.,
2011). A supernova is about 10 magnitudes more luminous that a regular novae (their absolute
magnitude is about M ~ —19.5, which is comparable to the brightness of the entire host
galaxy in which they appear). Thus, their large luminosity allows us to detect them even
at high redshift (z ~ 1). The supernovae Type Ia* are particularly useful because from all

3In a system consistent of two component stars; a white dwarf primary, and a mass transferring secondary. The
stars are so close to each other that the gravity of the white dwarf distorts the secondary, and the white dwarf
accretes matter from the companion until achieving the Chandrasekhar limit. Novae is a nuclear explosion caused by
the accretion of hydrogen onto the surface of a white dwarf star, which ignites and starts nuclear fusion.

4Supernova classification is based on their spectral appearance near maximum light, the Type II show hydrogen
in their maximum-light spectrum, while Type I lack hydrogen, Type Ib are related with Helium, etc

Figure 1.6: Top panel. CMB map seen by COBE Satellite in 1992, with 7 degree resolution,
the temperature range of the image is + 100 uK. Bottom panel, CMB seen 18 years later by
WMAP created from 7 years of observations at 0.2 degree resolution. The signal of our galaxy
was subtracted using multifrequency data. The temperature range of image is £200 pK . Image
from http://map.gsfc.nasa.gov/
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Figure I.7: The angular spectrum of the fluctuations in the WMAP full-sky map. Based on
the 7 years data release. From http://map.gsfc.nasa.gov.
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Figure I1.8: The first large scale survey, CfA, appears in 1985 (From
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types of supernovae, they are almost "uniform" in their appearance®. Thus, in principle

they can be calibrated fairly reliably in order to provide accurate distances, based on their
intrinsic brightness. It is important to underline that current theoretical models are not
yet able to accurately reproduce all of the important features of the observed events. The
supernovae measurements extended the interval of distances of previous works, by one order
of magnitude. As Fig. |1.9] shows, Riess and Perlmutter found fainter luminosities, so farther
objects, than predicted in a Universe dominated by matter, and thus possible an acceleration
in the expansion of the Universe.

These results could be explained with other hypothesis that an acceleration of the expansion:
1) questioning the use of supernovae as standard candles, would mean that distant supernovas
behave different than close supernovae, indicating a variation with time of physical process of
supernovae as function of metallicity which would produce systematically a lower luminosity
peak. Based on the fact that the luminosity curves of far and close supernovae are really
similar it is probable that their luminosities were the same too, thus excluding this possibility.
2) Possible absorption by the interstellar medium, indicating less luminous curves 3) A possible
experimental bias. Even if these alternative explanations were not completely excluded, the
preferred explanation was the acceleration of expansion. To understand this choice we have
to understand that the interpretation of the supernovae results arrived in a moment where
there was evidence of the matter density inferior to the critical value (23 ~ 0.4) and results
from CMB indicated a value for the total density Qy ~ 1.

Those measurements were in apparent conflict at that time. In this context cosmologists
were more inclined to believe the SNe type Ia results, because of this preexisting evidence
for a missing-energy component, which predicted an accelerated expansion. With supernova
results interpreted in terms of a cosmological constant, overall measurements matched with
the preferred theoretical model. In Fig. [[.9] the best-fit confidence regions in the Qy; — Qx
plane are shown. These results excluded with high confidence a flat and matter dominated
Universe (€2, = 1) and even an open and matter dominated Universe (2, = 0.3) was strongly
disfavored. In fact, using prior constraints, these results favoured a current acceleration of the
expansion of the Universe, thus an open universe dominated by something else, a cosmological
constant or dark energy (Q4 > 0) ©.

A Universe in accelerated expansion was beyond the Big Bang model that leaded to the
reintroduction to the Einstein equation of the famous blunder of Einstein, the cosmological
constant. The search for an explanation for the acceleration of the expansion gave rise to the
emergence of new physics, possibly a new density component, the dark energy, that would
represent 73% of the total energy density, or in other perspective, modifications to our gravity
theory, or the abandon of the cosmological principle. The preferred theoretical framework to
describe acceleration of expansion is to interpret this new term in the Einstein equation as a
new component in the energy density. This new component, the Dark Energy, very recently
(z ~ 0.4) begins to dominate the density of Universe and it exerts a repulsive force accelerating

°In fact supernovas shows some spread in its luminosity and spectral evolution. But the majority are quite
homogeneous, few are true outliers (70% in a volume-limited sample and %77 in a flux limited-sample)(Goobar &
Leibundgut, 2011).

5Tn the words of Riess The distances of the high-redshift SNe Ia are, on average, 10%-15% farther than ezpected in a
low mass density (Qa = 0.2) universe without a cosmological constant... prior constraints unanimously favor eternally
expanding models with positive cosmological constant (i.e., Qa > 0) and a current acceleration of the expansion....
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the expansion of the Universe. The nature of this Dark energy is considered one of the most
important open questions in modern cosmology. In a further section I will discuss in more
detail about the current understanding and the trails.
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Figure 1.9: Original plots from (Perlmutter et al., 1999) Left panel. Hubble diagram for 42
high-redshift Type Ia supernovae from the Supernova Cosmology Project, and 18 low-redshift
Type Ia supernovae from the Calan/Tololo Supernova Survey, plotted on a linear redshift scale
to display details at high redshift. Right panel. Best-fit confidence regions in the Q,;— plane.
The SN results exclude with high confidence a flat and matter dominated Universe (2, = 1)
and even an open and matter dominated Universe ({2, = 0.3) was strongly disfavored. In fact,
using prior constraints, this results favored an open universe dominated by something else, a
cosmological constant or dark energy (£24 > 0)

1.2 Homogeneous Universe

This section is devoted to the theoretical framework that allows us to study an homogeneous and
isotropic Universe. The theoretical framework used to describe the evolution of the Universe is done
by the integration of cosmological principle in General Relativity.

1.2.1 General Relativity

The General Relativity allows to study a Universe with non trivial geometry (non Euclidean), evo-
lutive and dependent of the energy content of the Universe. General relativity is based on the
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equivalence principle. The equivalence principle states that all laws in physics take the same form
in freely falling frame as they would in the absence of gravity. In this sense, the equivalence princi-
ple guaranties that we can always find a reference system in which the gravitational force is erased
(locally), but gravitation do not disappears. It is hidden in a new property of the space-time: cur-
vature. In this frame, the objects in the absence of non gravitational forces, follow the minimum
action in the curved space-time called geodesics. The innovative feature of general relativity in rela-
tion with the Newtonian framework, is that gravity is a manifestation of the curvature of space-time.

The geometry of space time is described by its metric. It provides the connection between values
of coordinates and physical distance ds?. The invariant element of distance give us the variation
between two events in space time

3
ds? = Z Gudxtdx” (I.4)
w,v=0

where g, is the metric, and dx* is a differential space-time coordinate interval. By now, I have
enunciated the first aspect of general relativity that permits to relate gravity to the metric. The
second aspect of general relativity is that it relates the geometrical properties of the space-time with
the energy content. This element is contained in the Finstein Equation. Let us begin describing
the metric that we will use to describe the Universe and then discuss to the relation between these
geometrical properties and the energy content of the Universe.

1.2.2 Lemaitre-Friedman-Robertson Walker Metric

It seems clear that in order to study the Universe, we must define an adapted metric that describes
the geometrical properties of the Universe. This lead us to a basic principle of cosmology itself.
Cosmology is based on the believe that we do not occupy a special place in the Universe, this
principle is known as the cosmological principle or Copernican principle. From this principle it
follows that, since the Universe appears isotropic around us, it should be isotropic around every
point. Moreover, isotropy around every point implies homogeneity. Thus, we arrive to the conclusion
that our Universe must be homogeneous and isotropic. At this point it is important to clarify
the sense of these terms. Isotropy is the claim that the Universe looks the same in all direction
(invariant under rotations). Homogeneity is the claim that the Universe looks the same at every
point (invariant under translations). Then, we have to precise that the sense of isotropy and
homogeneity is statistical. 1 have already said we have evidences about non homogeneities. To
conciliate these evidences with the cosmological principle we have to think in our Universe as a
realization of a set of possible representations. Thus, the sense of isotropy and homogeneity acts
over the ensemble average of energy density, which is the same in every point of the space at a fixed
time.

The most general space time metric consistent with homogeneity and isotropy in an expanding
Universe is the Robertson-Walker metric, that could be defined in terms of the invariant element of
distance ds?: )
1— kr?

where t is time measured for a comoving observer with constant spatial coordinates, a(t) is the scale

ds? = —di + a2(t) +1r2(df? + sin*0d¢?) (I.5)
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factor and k denotes the curvature of space-time. The curvature is an intrinsic geometrical property
of the space-time.

+1 close
k= 0 flat (1.6)
—1 open

Thus, three possible geometries for the Universe are compatible with this theoretical framework
in a trivial topology: flat, spherical and hyperbolic, corresponding to a close, flat and open Universes
(Fig. Geometries). The flat geometry corresponds with k—0, is the easiest and also the more
familiar. It is described by Euclidean geometry. That is the parallel lines remain at a constant
distance and the sum of angles is equal to 180°. This geometry implies an infinite universe. The
spherical geometry corresponds to k< 0. It is described by Riemmanian geometry. This geometry
is usually represented by spherical surface to understand the basic features. In this geometry,
parallel lines will converge, and sum of angles is greater than 180 °. In a spherical universe an
object travelling in straight line eventually will return where it started, as in the 2D analogue in a
spherical surface. This geometry implies a finite Universe without boundary. Finally, the hyperbolic
geometry corresponds to a k< 0, is the more unfamiliar. It is represented as a sandle -like surface.
It is characterized by the fact that parallel lines diverge away from each other and the sum of angles
is less that 180°. The hyperbolic geometry implies an infinite Universe.

The metric tensor corresponding to the metric of Equation 1.5 in Cartesian coordinates for a
flat Universe is (with c=1.):

1.2.3 Einstein’s Equation

As described above, General Relativity not only allow us to relate the gravity with the geometry
but also allows us to relate the geometrical properties of the space-time with the energetic content.
This is contained in the Einstein’s equation:

1
Gw/ = R/,LI/ + iRg,uV = SWGT,U,Z/ (18)

Einstein’s equation is defined in terms of Einstein’s tensor G, describing the geometry and the
energy momentum tensor 7}, describing the energy content. Einstein’s tensor is written in terms of
guv the metric tensor, I, the Ricci Tensor that depends on the metric and its derivatives”, R the
Ricci scalar that is the contraction of the Ricci tensor with the metric tensor R = g*”R,,,, and G the
Newton constant. As we can observe, the left side of the equation is a function of the metric, and the

"The Ricci tensor is expressed in terms of the Christoffel symbol:

Ry =T0, 0 =10, + 15,0, —T8,T0, (1.9)

@ — el «@ o Guv | 99a,v Bg‘@,,j _ aga.ﬁ
where T, , = 0L}, /0z”. and ', ; = 5 [ el T ue B
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right side function of the energy, so the Einstein’s equation relates geometry of the Universe with
energy content. At the time when Einstein proposed this equation, the common believe between
cosmologist was a static Universe. This equation does not have a stable static solution. This
conducted initially Einstein to add the famous cosmological constant A for philosophical reasons
enabling the possibility of a static Universe®. The cosmological constant provided a way of balancing
the gravitational contraction caused by matter.

With Hubble’s evidence of a non static Universe, this constant disappeared and was reintroduced
recently for a completely different reason: the evidence of the acceleration of expansion. In fact,
the general form of Einstein’s equation is the following:

1
Ruv + SRy — Mg = 871G T (L.10)
It is time now to discuss the left side of the equation. The Energy-Momentum tensor is a symmetric

tensor describing the constituents of the Universe. For the energy-momentum tensor T, it is
assumed a perfect fluid form, thus it is simply expressed in term of the density p and pressure p:

—-p 0 0 O

_ 0O p 0O
T = 0 0 p 0 (I.11)

0 0 0 p

To get the temporal evolution of the components of the energy-momentum tensor, we translate
the usual mass and momentum conservation to a most general criterium of conservation of energy
momentum tensor, in terms of the covariant derivative, it is expressed by:

Vv, T" =0 (I1.12)
Applying this to the LFRW metric and the perfect fluid energy momentum tensor yields:

p+3H(p+p) =0 (L.13)

This equation describes how the expansion of the Universe (as specified by H) leads to local
changes in the energy density. When applied to the different components of the Universe, we get
how the expansion scales the different components of the Universe.

As T mentioned before, from the acceleration of the expansion follows the reintroduction of the
cosmological constant. Adding a cosmological constant to the Einstein equation is equivalent to add
a component of the energy density in the Universe, thus implying to include an energy-momentum

tensor of the form: A

v = %guu
This simple act of placing the A term in the left or right side of the equation involve deep conceptual
differences. Written in the left side must be interpreted as a geometrical property. It represents
thus the curvature of the empty space. In the right side, the interpretation is in energetic terms. It

T, (L14)

8In fact add a constant term is the simpler modification that conserves the null divergence
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represents the energy momentum tensor of a component of the Universe, possibly the vacuum or a
new one. This new component in the energy-momentum tensor is interpreted as a fluid characterized
by its density and pressure. The simplest case is considering a cosmological constant. In terms of
the equation of state of a fluid p = wp, a cosmological constant (with A > 0) corresponds to w=-1.
This particular case give us constant density and negative pressure as the properties of this unknown
fluid® given by the following expressions:

_ A
PA= BxG (L15)

PA = —PA

As we will see later the Friedman equations, when we specify the equation of state of a cos-
mological constant, enables us to interpret the effect of a negative pressure as a repulsive gravity,
generating the acceleration of the expansion.

The supernovae data, fixing the flat geometry, favoured a cosmological constant (see Fig.
[??](Perlmutter et al., 1999)) but it is not the only possibility. In general, a fluid with a equa-
tion of state with w < —1/3 generates an acceleration of expansion. Thus, in order to consider
other possibilities than a cosmological constant, we get the general expression for the evolution of
the density integrating eq. (1.13) and using the general expression for the state equation,

o oc {3 [ 20 4wt} (L.16)

a

This general case is known as dark energy. In what follows I consider this choice to present the
theoretical framework. Is common in literature to refer as dark energy to the energy component
responsible for the acceleration of the expansion in a general way, thus including the particular case
of a cosmological constant. For this text 1 will separate the two cases for clarity.

1.2.4 Friedman equations

At this moment we have the tools to develop the equations that describes the dynamics of the
Universe. The dynamics are described by the scale parameter. To understand the history of the
Universe, we need to determine the evolution of the scale factor with time. General Relativity
provides the connection between this evolution and the energy content of the Universe.

The Friedman equations come from applying the Einstein equation to the Lemaitre-Friedman-
Robertson-Walker (LFRW) metric. They describe the evolution of the scale parameter in an ho-
mogeneous Universe. In fact from Equations 1.7 and [.10 only two equations survive. The first
Friedman equation comes from the time-time component of Einstein equations:

N\ 2
a IrG k
) =227 ; — — I.1
(a) 3 LT g2 (L17)

(2

the overdot denotes a derivative with respect to the cosmic time t, and i indexes all possible grav-
itational sources in the Universe. The Friedmann equation relates the rate of increase of the scale

9Unknown in term of the Standard Model of Particle Physics
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factor, as encoded by the Hubble parameter, to the total energy density of all matter in the Universe.
It is convenient to define critical density . at any given time for which k=0

3H?
=2 [.18
Pe=3rc (1.18)
The current value of p.o = 1.88 x 1072212 . g - cm™3. This allows to relate the total energy density
of the Universe to its local geometry 2 = p”At.

N>1 <—k=+1
Q=1 <= k=0 (I.19)
N<l <—<k=-1

Q<1

Qy=1

MAP990006

Figure 1.10: The total fractional density of the Universe is related to its local geometry. A
value Qy > 1 indicates a spherical geometry, a value g < 0 would indicate an hyperbolic
geometry and Qg = 1 corresponds to a flat universe. Images from http://map.gsfc.nasa.gov

In fact, the usual way to express the first Friedman equation is in terms of the fractional densities

of each component of the critical density 2; = ﬁ 10 That is:
k A
o2 =2 (L = H2(Qy + Qp + O 1.21
(30 + g * )~ 0+ 20

In this expression 2 accounts for a nonzero curvature, it is a convenient way to keep track of how
much energy density is lacking in comparison to a flat Universe.

The second Friedman equation is:
2

i 1(a k
a+2(a> = 477G¥p¢—2ag (1.22)

YEvaluating a current time, we find that the geometry of the universe () is a function of Q,, and Qj, that is :

Qo + U+ Q0 =1 (1.20)
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It is useful to re-express this equation combining with the first equation to get the acceleration

equation:
a A7G

PR (pi + 3pi) (I.23)

)

A few comments about this equation: first, this equation shows us that fluids with pressure
increases the gravitational force decreasing the acceleration. Second, this equation is, as we have said
before when we specify the equation state of dark energy(or particularly a cosmological constant),
enables us to interpret the effect of dark energy as a repulsive gravity, generating the acceleration
of expansion d > 0.

1.2.5 Contents of the Universe

One final piece of information is required to solve the equations: how the pressure and energy
density are related to each other. This question leads to the discussion about the nature of the
different components of the Universe. At this point we will consider three possibilities: matter,
radiation and dark energy (considering a cosmological constant as a particular case in the dark
energy framework). By matter we mean non relativistic matter, in fact it refers to any type of
particles that exert negligible pressure p ~ 0. The second type, radiation, includes all relativistic
particles (v ~ ¢) notably photons and neutrinos will be included. Their radiation pressure is given by
p = pc? /3. To deal with the different components of the Universe, we must specify the relationship
between the energy density and the pressure. Within the fluid approximation used here, we may
assume that the pressure is a single-valued function of the energy density p = p(p). It is often
convenient to define the equation of state in terms of the state parameter, w, by

p=wp (1.24)

This expression for the equation of state describes the different components of the Universe, setting a
value for the equation of state parameter w, w = 0 corresponds to massive non relativistic particles.
Similarly, w = 1/3 corresponds to relativistic particles as photons or other highly relativistic species,
and for the dark energy we only have an upper constraint w < —1/3, the particular case w = —1
corresponds to a cosmological constant.

Using this parametrization of the equation of state 1.24 is possible to solve the evolution equation
for the density of the different components of the Universe 1.13 giving the following expressions for
the evolution of densities as function of scale parameter for a flat universe (k=0):

a3 matter
1 a? radiation
pla) o a(t)3(1+w) - cte cosmological constant (L.25)
3/ 1+'Tw(a)da dark energy

Let us now explain these results in a more heuristic manner. For the case of non relativistic
matter, we know that energy equals to rest mass energy times number density of matter. The rest
mass energy is constant in time and the number density evolves with expansion inversely to the

volume, thus oc @~3, that means energy density of matter would evolves as o< a3. In the case
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of relativistic matter, photons, the expansion of the Universe results in a redshift of the photons.
Because of the redshift, the energy density in a fixed number of photons in a fixed comoving volume,
drops with the physical volume (oc a=3) and by an extra factor of the scale factor as the expansion
of the Universe stretches the wavelengths of light. Thus, the energy density of radiation will scale
as a4

In the case of dark energy, the scenario is more uncertain. The evidence from supernovae suggest
that this new form of energy is compatible with a cosmological constant. It would indicate that
the energy density remains constant with time, but as we have said it is not the only possibility, it
could be more complex. At the present time, a lot of effort is being invested trying to discern this
puzzle. Many current and future experiments envisage, by different methods, to understand the
nature of dark energy. The current approach is to try to constraint the equation of state of dark
energy, looking for a time dependence or a verification of a cosmological constant (parametrization
Chevalier-Palarski-Linder CPL).

z
1+ z)

In Fig. I.11 the evolution of the energy density as function of the scale factor for different
constituents is shown: radiation, matter and cosmological constant. We observe how the different
constituents have dominated at different times, today it seems that cosmological constant dominates
since very recently, before it was the matter and at early times the radiation.

WA = Wo + Wq < (1.26)
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Figure 1.11: Evolution of the energy density as function of the scale factor for different con-
stituents is shown: radiation, matter and cosmological constant. We observe how the different
constituents have dominated at different times, today it seems that cosmological constant dom-
inates since very recently, before was the matter and at early times radiation. Figure from
(Dodelson, 2003)

From the equations of state of the different components of the Universe and the Friedman
equation 1.17, the evolution of the scale factor as a function of time considering only the dominant
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fluid is given by the following expressions:

2/3
at) = (L matter dominated
to
2 1/2
a(t) = (t> sire) a(t) = <%> radiation dominated (L.27)
to a(t) = exp (Ht) cosmological constant dominated
a(t) = exp (3 i H#(a)dco dark energy dominated

These equations express how the scale factor varies with time, and this variation is determined by
the energy density. At early times a o t'/2 when the Universe was radiation dominated, at later
times switches to a o t2/3 during the matter dominated era. As we will see in the next section,
this transition is very important from the point of view of structure formation. Notice that the
Universe expands more slowly in a radiation dominated than in a matter dominated Universe. This
is a consequence of the deceleration that pressure applies (I.12). At this point we must be convinced
that a way to explore the energy content of the Universe is to measure changes in the scale factor.
Very recently, the scale factor has stopped growing as ¢2/3, a signal that a new energy has come to
dominate the cosmological constant or dark energy.
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Figure 1.12: The scale factor varies with time and this variation is determined by the energy

density. At early times a o t'/? when the Universe was radiation dominated, at later times
switches to a o t*/% when matter dominated era. Very recently, the scale factor has stopped
growing as t2/%. Figure from (Dodelson, 2003)

Before going to the next section let us summarize which are the specific components of the
Universe:

e Baryons. It refers to the ordinary matter. In particle physics the baryons are the particles
composed of three quarks. Of the jungle of particles the only stable baryons are neutrons
and protons. Even if electrons are not baryons, in cosmology the use of baryonic matter
traditionally includes electrons. In fact, nuclei vastly outweigh the electrons. They are con-
sidered as non relativistic particles. There are four established ways of measuring €p: 1)
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From nucleosynthesis calculations Q,h? = (0.0214 +.002) (Kirkman et al., 2003). 2)The lumi-
nous matter in the Universe, consisting of stars and radiation-emitting gas, accounts for only
Qph? ~ 0.02. 3) From the quasar spectra, the amount of light absorption by the interstellar gas
gives a measurement of hydrogen, thus gives an estimate of the baryon density ,h? > 0.021
(Rauch et al., 1997). 4) From CMB anisotropies, as we have already said, giving a value of
Qph? ~ 0.0225810 5002 (Larson et al., 2011)

e Dark matter. From the theoretically favoured value of {0y = 1, that agrees with the observed
value and from fractional baryonic density estimations, it follows that a non baryonic matter
component most account for the laking matter: dark matter. We know few things about
the dark matter: it must be OcoldO , that is, non-relativistic, non baryonic and should
interact very weakly with ordinary matter to explain why it is has not been detected until
now. Historically, the way of measure this density component was from the light-to-mass
ratio estimated from the gravitational field of certain systems, providing a value of £, ~ 0.3
(Bahcall et al., 2000). A second method comes from the power spectrum of matter, where
the inferred value is Q,, ~ 0.3 (Percival et al., 2002) or from the bispectrum (Verde et al.,
2002). A third method is provided by the velocity field (Strauss & Willick, 1995). As we have
said before, from the CMB anisotropies we get an estimate Q,,h? ~ 0.16 + 0.004 (Netterfield
et al., 2002). There are others ways of measuring the total mass density taking for example
observations sensitive to the /€, like measurements of X-ray emission or features in power
spectrum. All of the measurements indicated a value around €2, ~ 0.3

e Photons. The photon density is dominated by CMB photons. The energy density associated
to CMB photons is measured via temperature, it gives a value 0, = p.,/perit = 2.47 X 1073 /h2.
These particles are modelled as a relativistic fluid.

e Neutrinos. Are extremely weakly interacting particles. They are modelled as a relativistic
fluid as photons. The contribution to the energy density of neutrinos considering three species
of massless neutrinos today would be €, = p,/p. = 1.68 x 1075/h%. In reality neutrinos
are not massless, thus this consideration leads to another expression that is function of the
neutrinos mass.

e Dark energy. Let us summarize what is have been said until now about dark energy: There
are two sets of arguments pointing toward the existence of a new energetic component in
the Universe. The first one, we observe a total density of the Universe close to the critical
value and our account from all the components is only 1/3 of it. Second argument, from
supernovae we infer an acceleration of the expansion, indicating that the energy density of the
universe now is dominated by another energetic component. From supernovas, the constrains
on the fractional densities using prior constraints are 2,, ~ 0.3 and Qj ~ 0.7. The current
constrains combining different observations (SN+BAO-+CMB) are Q,, = 0.278 £ 0.015 and
Qp =0.722 £0.015

1.2.6 Distances

In the last sections the basic framework for describing an evolving Universe has been presented,
we have now the tools to discuss about the fundamental concept of distances. Measuring distances
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in an expanding Universe is not a trivial exercise, because distances between comoving objects are
constantly changing. Furthermore in FR Cosmology there is no a unique definition of distance. As
we will see, there are three distances that provide us different ways for testing the cosmological
model. The fundamental distance measurement is the comoving distance between two objects (two
points of the grid following expansion). To define the comoving distance we will use the photon
trajectory. Let us suppose that an object emits a signal that arrive to us. To compute the trajectory
we use the equation of the invariant interval eq.[L.5]; the photons not having mass will follow the
geodesic, hence ds? = 0. The photons will follow radial trajectories (d¢ = 0 and df = 0), then
considering a flat Universe give us dr? = ad—:). Finally, to get comoving distance we must integrate
between the emission time and now, giving the following expression:

to dt a(t0)=1 da Zemis dZ
X = c/ — —/ —/ 1.28
o 80~y 2@y () (L.28)

emis

The last equation includes the expressions in terms of scale parameter and the redshift that follows
from simple variable changes. The dependency on cosmological parameters is enclosed in Hubble
parameter or scale factor!'. As we see, in a evolving Universe the notion of distance is complex,
within the time the photons were emitted and we receive the signal, the universe have expanded.
The rate of expansion is determined by the total energy density, thus, it is continuously evolving too,
as a consequence the distances provides a direct probe for the cosmological model. The comoving
distance is not an observable, we have to define others distances.

Angular Diameter Distance

A second definition of distance comes from the measure of the angle subtended by an object 6 of
known physical size 1. The distance ds to that object in a non expanding Universe, assuming the
angle subtended is small (sinf ~ 0) is given by:
da = 1 1.30

A= g (1.30)
da is known as the angular diameter distance. To explain the notion of angular diameter distance
in a expanding Universe let us see Fig. [[.13]. We represent an object by two points at a radial
coordinate 1 separated by a distance 1 that corresponds to the physical size of the object at t;.
To get the expression for 1 we have to use the metric at the time the light was emitted, that is the
expression of the invariant element of distance ds? eq.[I.5] giving the following expression for I:

1= alt;)x1A. (L31)

For convenience, we place the observing time at present g, xo, the photons will propagate radially,

preserving the angle. Thus, the angular size we perceive is Af = m, which give us the final

UThis result consider only the case of a flat geometry, adding the curvature density as Qi = 1 — Qo we can explore
other kind of geometries as spherical and hyperbolic. The expressions used in this chapter could be generalized to
others geometries replacing x by the correspondent term of the geometry accordingly the following table:

k>0 sin(v=QHox/(Ho/[u]) (1.29)
k<0 sinh(vQxHox/(Hov/|[u]) '
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expression for the diameter angular distance:

da =alt)x = 7 f - (L.32)

The angular diameter distance is a measure of how large objects appear to be. As we observe
in Fig.[I.14] the angular diameter distance matches with physical distance for nearby objects, but
for farther objects the angular diameter distance appears to be smaller. Furthermore, as z — oo,
da — 0 meaning that distant objects appears to be nearby.

X1,t1
A~
Ag = (1-(1‘1)/\1A9
X0, to

‘\f\/ﬁ

Figure 1.13: Photons emitted at t1,x; by an object of size 1 = a(t;)x1Af. The photons
follows trajectories of constant (0, ¢) and they would be observed at (to, xo) with and angular
separation given by Af =1/a(t1)x1

Luminous distance

The second definition of distance in FR cosmology consist in using the flux from an object of known
luminosity. The observed flux at F' a distance d from a source of known luminosity L in an non

expanding Universe is given by :
L

Hiars
To generalize the result to a expanding Universe, we notice that the luminosity is given by the
number of photons passing through a comoving spherical shell (radius=x) per unit of time multiplied
by their energy (E = hv = %) The expansion affects the luminosity in two ways, first, the photons
emitted a Aemi¢ Will be redshifted ( Agps = Aemit/a(t)) thus their energies will be lower by a factor
a. The second effect is in the number of photons crossing the shell in a unit of time. Because of
the expansion, at earlier times the physical distances traveled by photons are smaller that at later
times. Thus the number of photons crossing the shell by unit of time at emission will be greater
than at later times by a factor a. The total effect is that observed luminosity will be smaller by a
factor a?. Therefore we get the following expression for the flux:

(1.33)

. La2 (tl)

= (e (1.34)

The luminosity distance is defined so that the flux remains defined as eq.[1.33], hence the following
expression for dy:

- X _
dr = o) X(1+2) (1.35)
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The luminosity distance is a way of expressing the quantity of light received from a source. As
we observe in Fig.[1.14], for closer objects, the physical distance coincide with luminosity distance
as the angular diameter distance does. For farther objects, as a consequence of the expansion they
will appear farther away than they physical distance indicates.

Finally, the three distances are plotted in Fig [1.14] as a function of z for a flat Universe for two
different cosmological models. The dashed lines corresponds to a universe with only matter and the
solid lines for a model with a cosmological constant A and matter. In a A-dominated Universe, at
hight redshifts distances are larger than in a matter dominated one. As we have seen the distances
are function of the cosmological parameters and it is precisely this feature that enable us to study
the expansion of Universe using standard patrons as we will see in a further chapter.
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Figure 1.14: The luminosity distance, comoving distance and angular distance for two cosmo-
logical models. The solid lines corresponds to a A-dominated Universe and the light curves to a
flat matter dominated Universe. As we observed the distances are function of the cosmological
parameters and it is precisely this feature that enable us to study the expansion of Universe
using standard patrons. Figure from (Dodelson, 2003)

1.2.7 Brief Thermal History of the Universe

Within the framework of the Standard Model of cosmology that has been presented in the previous
sections, the Universe is a dynamic entity that have passed for subsequent epochs. Let us gather
all the elements together to reconstruct the thermal history of the Universe in the framework of the
ACDM model.

In Table.[I.1] I show a time line with the principal events in the history of the Universe. I
separate the table in 2 blocks. The first block refers to the first 3 minutes of our Universe. This
part is beyond the purposes of this section, even thought, to have a complete time-line T will give
some comments about this period. The first three minutes of Universe are intimately related to
particle physics. In this short period the fundamental particles were generated. The physics that
governs this era is dictated by theoretically well settled model known as the Standard Model of
Particle Physics. This model, based on the Quantum Field Theory, enables us to describe the
fundamental particles and understand their interactions but still has many open questions. At this
moment, the range of energy explored in accelerators is of the order of 7TeV (CERN). This value
is below the energies achieved in the early Universe thus this range of energies lacks for direct
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validation. Even thought within the theoretical framework of Standard Model of Particle Physics
there is a belief that some events must have take place. Actually, it is in this range of energies
where cosmology could contribute to the understanding of the Standard Model of Particles. In the
following, I will enumerate rapidly the events that marks this first instants of Universe.

Table I.1: Timeline of the Universe

The first 3 minutes

Time (s) Temperature (K)  Energy Epoch
10736 — 10733 1032 1016 Gev Inflation
1073 10%8 109GeV Grand Unification Transition
10~10 10% 103GeV Electroweak phase transition
106 1012 1GeV quark-hadron phase transition.
After the first 3 minutes
Time (s) redshift Temperature (K)  Energy Epoch
3min 10'0 1010 1MeV Nucleosynthesis
10%yrs 3100 104 1leV Radiation-Matter Equality
106 yrs 1100 103 0.3eV Recombination and Decoupling
10° yrs ~10 10 ~ 1073eV Galaxy formation

As we have notice, within the framework of the Standard model the notions of time and temper-
ature are intimately related, being ¢t o< 1/T, thus, to relate the history of the Universe, it becomes
equivalent to use the time or the temperature. Let us use the time for summarizing the first 3
minutes. As we have said, we situate the "beginning " of the Universe at the Planck time, that
sets the limits of validity of gravity theory. At this time it is believed that happens a symme-
try breaking splitting the GUT forces (Grand Unification Theory of non gravitational forces) and
gravity. At a time of 107305(1032K.), the Universe is supposed to follow a period of exponential
expansion known as Inflation that I will introduce in the next section. The Inflation, as we will see,
is necessary to solve some of the problems of the Big Bang Theory. At the end of inflation period,
we suppose the particles were created from the disintegration of the inflaton. Then, the beginning
of of the radiation dominated is set, it is believed that at this early times the energy density of
relativistic particles dominate the energy density of Universe. In this standard picture as time pass,
the Universe continues expanding, and cooling. At a time ~ 1073%(10%8K.), it is predicted that
the Universe underwent a phase transition, called GUT transition where GUT forces split into the
strong and electroweak. At this time, it begins the quark era, the image of the Universe we have
is that it consisted of a plasma of quarks and gluons, photons, electrons and neutrinos that were
interacting. Later on, at a time 107'9(10'°K.) we predict the Electroweak phase transition have
occur . It corresponds to the split of electroweak force in the electromagnetic and weak forces. At
this moment it is supposed that particles acquire mass throughout the Higgs mechanism. Finally at
a time 107%(10'2K.) the Quark Hadron transition must happened, that epoch define the formation
of Hadrons, among which protons and neutrons, are the only stable particles. After the 3 first
minutes of Universe than this standard picture we have a plasma of particles, composed by free
electrons protons, neutrons,photons and neutrinos interacting.
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The second part, after the 3 minutes is what concerns us directly. To summarize the second
part of the ACDM time-line is convenient to use the redshift z and the energy instead of time and
temperature. We begin this second part of the thermal history a little before the first 3 minutes.
At this time, we suppose the fundamental blocks of nuclei were compound, protons and nucleons,
but the interactions with other energetic particles prevented for nuclei formation. At z,ycieo ~ 1016
(~ 3 min), the particles energy was of the order of MeV (~ 101®K). These energies are below
the binding energy of nucleus thus, the first nuclei begin to form. After nucleosynthesis, again we
think the basic blocks of atoms were ready but the interactions with energetic photons prevented
atom formation. The Universe continues cooling to achieve the time where radiation energy density
equals to matter energy density, this time is called fequi» correspondent to a z.q = 3100. At this
moment, it is thought that the matter dominated era begins. As we will see in the following section,
this time would be important since the point of view of fluctuations, it marks the moment where
dark matter density contrast starts to grow. The Universe continues expanding, finally at redshift
Zrecom ~ 1100, we suppose the particle energies were of the order of 10~'eV, thus the photons not
having enough energy to pull of electrons from atoms, allows atoms to be formed. This phenomena
is known as recombination. As a result of recombination, the photons do not interact anymore with
atoms and could traveled freely from this time to now, this time is called decoupling time. To finish
the ACDM thermal history, we suppose the galaxies were formed very recently at redshift (z ~ 10).

Before passing to the next section devoted to the inhomogeneous Universe. 1 underline the events
from this ACDM time-line that would be important from the point of view of evolution of density
fluctuations and structure formation. Three events would be important: the inflation period where
presumably the primordial fluctuations were generated, the transition time between a radiation and
a matter dominated epochs and the decoupling time.

1.3 Inhomogeneous Universe and structure formation

The precedent description of the Universe is based on the homogeneity and isotropy of the Universe.
Nowadays we know that it is not strictly true. As I anticipated, the CMB anisotropies and the
large scale structure shows the existence of primordial fluctuations from which the structures were
formed. This fluctuations in the primordial plasma are supposed to by tinny Ap/p ~ 107° and
observationally we have verified this fact. Presumably this density fluctuations were generated by
quantum fluctuations during the inflation. As I will describe in this section, the standard picture
of structure formation is that structures originate from initial fluctuations in the density field and
grew through gravitational attraction. It is widely accepted that baryonic matter would not provide
enough gravitational attraction to form the observed structures. Thus, a fundamental ingredients
in this description of structure formation would be the dark matter. It would provides the extra
gravitational force to allow structures to form quicker and not inhibit by pressure effects. I will begin
the section describing the Inflationary paradigm that is believed to have set the initial conditions
for the study of density fluctuations and structure formation.
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1.3.1 Inflation

The Inflationary paradigm emerges in 1981 to solve some conceptual problems of Big Bang Cos-
mology: the flatness problem, the Horizon problem and the relics problem. As an extra bonus,
inflationary paradigm provides us with a physical mechanism to explain the deviations from homo-
geneity. Before passing to the basic description of inflation I will discuss briefly problems of the Big
Bang Model to understand how Inflation in inserted in the current Standard Cosmological Model.

e Flatness. In order to explain the flatness problem, let us take eq.[I.17] and reexpresed in terms
of the fractional densities of the critical density.

Q—-1= % (1.36)
Observationally we know that €29 ~ 1 today. Indicating that geometry of our local Universe is
flat. The idea is that, if our Universe is flat now, it must be flat since the beginning because
any deviation from this flatness condition would cause that the Universe become more curved
with time. To understand this point we must notice that |Q2 — 1| is an increasing function
of time, meaning that flat geometry is unstable. In consequence, a value now close to zero
(|9 — 1] ~ 0) would indicates that the primordial value would be infinitely close to zero,
indicating a "fine tuning" problem. To get an order of magnitude of this value, if we consider
a Universe where there is only radiation and dust then the value of {2y observed would require
at early times(tpranck):
0<1-Q<107% (1.37)

e Horizon. To understand this problem we have to introduce the concept of the horizon. As
the Universe has a finite age, we know that even photons can travel only a finite distances
within the age of Universe because of the finite value of speed of light. This gives rise to the
concept of observable Universe. The horizon is defined by the maximum distance an observer
can see. It delimits the space-time events which are in causal contact with observer. By
the same reason then there exist a cone of past space-time events that could influence the
observer denoted as the event horizon distance or past horizon. The horizon is one of most
crucial concepts of FRW model.

To calculate the horizon distances we consider a photon traveling in a radial trajectory (A8 = 0
and A¢ = 0), and we compute the comoving distance traveled by these photon (eq.[1.28]). To
get the physical distances that would measure an observer at a time, £ we have to multiply by
the factor a(t), giving finally the following expression for the horizon distance:

d = a(t) /t ;Z:) — a(®) /0 a‘gcﬂ;@ (1.38)

The comoving horizon is the logarithmic integral of the comoving Hubble radius dpyppe =
1/aH = % The Hubble radius is the distance over which particles can travel in the course of
one expansion if the expansion rate was constant. Hubble radius is another form of measuring
where particles are in causal contact, if they are separated more that the Hubble radius they
cannot communicate now.
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In a matter or radiation dominated Universe, the comoving horizon is approximately equivalent
to comoving Hubble radius (xg = ‘%H ~ dgubble = C%H) Even thought, to explain the horizon
problem we must have in mind the difference between both terms. In the first case, particles
separated more that the horizon distance could never have communicated; in the case of the
Hubble distance, they could not communicate now. To understand this, let us think in a
Hubble radius fixed at present time dgypbie,0 = (aoHop)™'. We must notice that we can make
the comoving horizon distance xp as large as we want if dyupple is a decreasing function of
time. In this way we get an increasing xg as we go back in time (a = 0). This would means
that particles that could not communicate today (i.e. outside Hubble radius at present) where
in causal contact in the past (i.e inside the Hubble radius in the past). In this case the Hubble
radius in past would be larger than now (see Fig.[1.15]).

Now, we have defined the horizon concept, let us return to the horizon problem, that is
the most important problem of Big Bang. The CMB measurements indicate a homogeneous
temperature. A homogeneous temperature implies thermal equilibrium, but widely separated
points on the last scattering surface are completely outside each others horizons. As I said
before, this might happens if Hubble radius was greater in the past , but it could not happen
at the matter or radiation era where the Hubble radius is an increasing function of the time.

e Homogeneity: Within the Standard Model there is no a physical mechanism to generate the
fluctuations of density, these fluctuations are considered only as initial conditions. Inflation
gives us a plausible physical mechanism that would be responsible for both the large scale
homogeneity of the Universe and the small fluctuations that were seeds of structure. Inflation
paradigm gives place to adiabatic, gaussian initial fluctuations.

The main idea of Inflation is that the Universe undergoes a period of accelerated exponential
expansion at early times. Inflation is triggered by the domination of a scalar field ¢. It is charac-
terized by two phases: the first one generates the accelerated expansion, known as slow-roll, where
perturbations are generated and the second phase is called reheating where the scalar field decays
into the standard particles. This scalar field behaves as a perfect fluid with pressure and density
given in terms of ¢:

Py = %2+V(<Z>)
ps= & - V()

The condition of slow roll implies neglecting kinetic compared to potential energy éQ < V(¢), thus
the potential energy is the dominant contribution to the energy density and pressure, resulting in
a equation of state p ~ —p as the cosmological constant implying acceleration of expansion [see
section 1.2.4|. From eq.[l.13] we find the evolution of energy density py = cte and the Friedman
equation with this field as the only source of energy density is:

$rG 871G
H? ~ WT% - ”TV = cte (L40)

Finally solving we get the final expression for the scale factor:

a(t) < exp (\/ 87;(;/)4)15> (1.41)

(1.39)
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As a consequence of this acceleration small regions expand to a huge size rapidly. This accel-
erated expansion thus diminish spatial curvature making the Universe extremely flat. The horizon
problem is solved because of the horizon size increase assuring the causal contact. This means that
the astronomical regions observed today were microscopically small in the past. Since the point
of view from the comoving Hubble radius, the exponential expansion of scale parameter generates
a dramatical increase in the comoving Hubble radius at early times. Meaning that the principal
contribution to the horizon would come from the early times and not from now . The Fig [I.15]
helps us to understand this idea, the regions now separated by several Hubble radius (outside the
circle in the bottom panel ) were in the past in causal contact (inside the circle of top panel). In

Hubble Volume

Figure 1.15: The regions now separated by several Hubble radius (outside the circle in the
bottom panel) were in the past in causal contact (inside the circle of top panel).

figure |1.16] the evolution of Hubble radius with time is shown. The left side shows the inflationary
period and the right side shows the evolution after inflation. Before inflation started the comoving
Hubble radius was larger than any cosmological distance today, so all observable scales where within
the horizon. Inflationary epoch reduces the comoving Hubble radius.

The scales of interest are shown in dark shadow. As we see at the beginning all of them where
within the Hubble radius thus in causal contact, as the Universe inflates, the exit the horizon. When
a perturbation exits the horizon, no causal physics can affect it and it continue frozen with constant
amplitude until it reenters to horizon at later times during the conventional (no accelerating) big
bang expansion.

Finally, Inflation provides a physical mechanism to understand primordial inhomogeneities. In-
flation generates two kind of perturbations scalar and tensor fluctuations in the metric. For purposes
of structure formation we are interested in the scalar ones because they are related to the density
and matter and are responsible for the inhomogeneities. The tensor fluctuations are related to
gravitational waves and they are not coupled with density but they induce fluctuations in the CMB,
in particular B-modes which are therefore a specific observable signature of inflation.
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Now I will sketch how this fluctuations were generated. During inflation one assumes that the
Universe consist of an almost homogeneous field and a uniform metric. This field follows quantum
fluctuations as any other quantum field. Thus, the field could be expressed as ¢ = ¢g + d¢ where
¢ is zero order homogeneous part and d¢ are the quantum fluctuations. This fluctuations are the
same for all wavelengths, d¢p = Ty where Ty is Gibbons-Hawking temperature of the vacuum
state (T = H/2w). This fluctuations average to zero, but their variance is different from zero.
They are characterized by their power spectrum:

I
Py(k) x ——— (1.42)
Mglanck 4
These fluctuations in the field could be related to those of the density by:
av
op=——9 [.43
=35 (L43)

Therefore, inflation produces density perturbations in all scales with amplitude nearly equals for all
the wavelengths (slight deviations because of the gradual change of V) . This density fluctuations
are adiabatic that means fluctuations in the density of all species are correlated. The fluctuations
are also Gaussian, in the sense that the phases of the Fourier modes describing fluctuations at differ-
ent scales are uncorrelated. As a consequence of accelerated expansion, this microscopic quantum
fluctuations transformed into macroscopic fluctuations. Eventually, this fluctuations associated to
cosmological structures exit the horizon at the inflation period and reenter to horizon just before
decoupling. Thus the fluctuations during inflation determines, modulus what happens before the
reentry parametrized throuugh a transfer function (?), the power spectrum of fluctuations. In-
flation leads to the gaussian adiabatic and scale invariant density perturbations.To relate this to
observations usually the power spectra is parametrized by:

P%(k) oc k=71 (1.44)

were ng is the spectral index. The next section will discuss whether or not such spectrum can evolve
so as to reproduce LSS observations.
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Figure 1.16: The evolution of Hubble radius with time is shown. The left side shows the
inflationary period and the right side shows the evolution after inflation. Before inflation started
the comoving Hubble radius was larger than any cosmological distance today, so all observable
scales where within the horizon. Inflationary epoch reduces the comoving Hubble radius



35

1.3.2 Evolution of Density Perturbations

Now that we have the initial conditions, we will concentrate on the evolution of these inhomogeneities
in the density under the action of gravity in an expanding Universe. Study the evolution of density
perturbations in the framework of general relativity is not a trivial exercise, fortunately, most of the
essential physics can be extracted from a Newtonian approach. This approach is valid for the modes
within the Hubble radius (A < dg), for superhorizon modes we have to use a general relativistic
perturbation theory approach.

For the following it is convenient to define the density contrast ¢ in place of using the density:

0= (p—p)/p (I.45)

In the Newtonian framework, the cosmological gravitational potential ¢ = ¢(Z,t) is sourced by
the density fluctuations § = &(&,t) 2, this relation is expressed in the Poisson equation (the last
equality comes from Friedman equation eq.|I.17]):

V2 — 4GS — ng(Ha)gd (1.46)

The basic equations to describe a perfect fluid are the continuity equation that ensures the conser-
vation of mass:

S+ V- [(1+0)7)=0 (1.47)
where ¥ = ¥(Z, 7) is the velocity flow, and the Euler equation that ensures the momentum conser-
vation:

. 1 - 15 1 -
G+ HO+ (0 V)i =—-Vé— —Vp (1.48)
a a ap

with p the pressure. A fourth equation would be necessary to close the system, the equation of
state p = wp = wp(1 + 9), of the fluid in consideration. In order to get an analytic solution of this
system, we are going to consider only the large scales where we can assume the fluctuations are
small (0 < 1) ,thus, we can neglect all the terms 67 and v?, giving the following expressions:

F=0 (1.49)
1

v+ HT = — Vp (1.50)
These two equations combined with the Poisson equation give us a second order equation in
terms only of the density contrast in the linear regime approximation:

. a - 02
0+2-0— Esv% = 471G ps (1.51)

where ¢2 = w. Before passing to the large scale solutions in the linear regime , let us analyze

this equation in a qualitative way. If we traslate to Fourier space, the laplacian operator becomes
V2 — —k2, leading to the following expression:

2 —
i 47TG”} §=0 (1.52)

.. a - 9
6+2a5+68|:a_ 5

2 .y . . . . . — . . —
12Ppositions of particles are described in comoving coordinates @, physical coordinates are r = a(t)@
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This is the equation of an harmonic oscillator with a damping term 2H§ called Hubble Drag. This
equation expresses the competition between the density fluctuations infalling into the gravitational
potential and the effect of expansion which works like a friction term opposing the clumping, as well
as the effect of pressure that opposes compression.We can identify a physical wavenumber k/a'3
where the term in square brackets vanishes, this wavenumber is called the Jeans wavenumber and

is defined as follows: -
VATGp
CS
Even if the analytic expressions are quite complicated, with the qualitative behavior would be
enough to understand in rough terms the evolution of perturbations. The Jeans scale allows us
to separate the two behaviors of solutions. For small scales, k > k; we have oscillatory solutions
and for k < kj we have growing or decaying solutions. The Jeans length characterize the scales
when evolution of the perturbations is dominated by gravity (A > A;) and when the gravitation
is negligible and dominant contribution comes from pressure that prevents growth of perturbations
(A < Ay).In the following table the evolution of Jeans length for the different epochs is presented in
terms of scale parameter:
a a<a
A “ [.54
JOC{CL1/2 0> aeg ( )
From the eq.|[1.54], we observe that the Jeans length in a radiation dominated universe is comparable
to the Hubble radius, implying that only the perturbations outside the horizon grow in this way,
perturbations do not grow inside horizon. In the matter dominated epoch, the Jeans length is
enormous, thus growth applies on all scales. In the next section, we will see how these large scale
fluctuations grow in the different epochs.

Large Scale Limit

In the large scale limit (k — 0), the solution to this equation can be expressed in terms of two
functions depending only on time, one is an increasing function denoted Dy and the other is a
decreasing function denoted by D_.

3(Z,t) = Dy (£)(1)A(Z) + D_(t)(1)B(Z) (1.55)

where A(Z) and B(Z) are two arbitrary functions of positions related the initial field configuration, D
and D_ can be thought as respectively describing the overdense regions that increased their density
contrast with time thanks to the action of gravity and the other describes the underdense regions
that become less dense with time. The growing mode D, is known as the linear growth factor. Let
us calculate the evolution of matter density fluctuations in a simple case, a Universe dominated by
a single fluid. If we consider only the dominant components of the energy density in each epoch,
we would get an idea of the growth of perturbation in the successive periods. We begin with the
simpler case, a matter dominated Universe. In this case there is no pressure term (w = 0), thus,
assuming a solution § = Ddy(Z), eq.|1.51] takes the following form:

D+2HD +3/2H*D =0 (1.56)

13The wavenumber k is expressed in comoving coordinates so the physical wavenumber is k/a
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In a Universe dominated by matter, the evolution of scale factor is a(t) oc t?/3, thus a/a(t) = 2/3t.
In this case the growing solution and the decaying solution are Dy o t2/3 x a and D_ x t*/2 « H
respectively. For calculating the evolution of matter perturbations in a radiation or a Cosmological
constant dominated Universes'*, we have to take into account multiple components that contribute
to the gravitational potential and the result is a more complicated expression for each component
that reads as follows: )

b+ 258 — 4nG Y 8 =0 (L57)

J

where the subscript labels the species and the sum is over all species.

From this expression, the behaviors of the growth factor of matter density fluctuations can
be calculated for the radiation or a cosmological constant dominated epochs. The results are
shown in the following Table(for the derivation see ??). Summarizing the evolution of large scale
perturbations, we have seen that the over dense regions accretes matter from surroundings increasing
the density contrast. This growing of the density fluctuations follows different laws of growing
depending of the epoch in question. In the radiation dominated era the growing is slow only
logarithmic because of radiation pressure. In the matter dominated era by contrary, the fluctuations
grows proportional to a. Finally at the cosmological constant era there is no growing.

Table 1.2: Evolution of large scale perturbations.

Epoch a(t) D(t) D(a)  dyupie(a)
Radiation x t'/2 Imn(t) odn(a) o a?
Matter x 23 o 23 xa x a3/?
Cosmological Constant o et cte xcte x cte

Before passing to the next topic, let us put all the pieces together for studding the evolution of
a perturbation of wavelength A o< a that enters in the Hubble radius in the radiation dominated
epoch. In the radiation dominated epoch, for the wavelengths bigger than A, there is no pressure
support that prevents collapse, but at this stage, the rapid expansion driven by the energy den-
sity of radiation supresses the growth, therefore, the fluctuations grow only logarithmically. The
wavelengths smaller than A are dominated by the radiation pressure and they oscillates as acoustic
waves. The fluctuations continue evolving until achieve matter dominated era. The wavelength
is bigger than A; and the expansion is matter dominated thus any process could suppressed the
growth, the matter fluctuations growths proportional to the scale parameter.

Velocitiy Field

As we have seen in previous sections, a direct observable from surveys is the redshift and it is related
directly to the velocities. Thus, we are interested in the solution for the velocity field in the linear
regime approximation. In fact, from the system of equations 1.46 and .49, we get the solution for

1471 this expression we ignores the pressure terms because we are worried about the density perturbations where
2
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the divergence of the velocity field, done by:

O(k,z) =V -7 =—Ha[fA(z)] (1.58)

In the solution for the velocity field appears a new function f , called the growth factor rate
that is defined as the logarithmic derivate of D in terms of scale factor 1°

dLnD+

r= dLna

(1.61)
Before passing to the next section I give some final remarks about the approach described here.
The above treatment is a simplified view the full treatment must:

e Be relativistic, implying as the starting point the perturbed equation of Einstein This means
a difference from a smooth Universe that is characterized only by one function depending only
of time a(t). In a perturbed Universe two functions are required both of which depends of
time and space. And it must deal with gauge selection.

e This treatment models the components of the Universe as perfect fluids. But in reality the
Universe consist of a mixture of fluids, and between them we have collision particles (photons,
baryons, electrons) thus interactions between differents species must be taken into account.
Imposing the use of Bolztman equation to treat the problem adequately. The metric which
determine the gravitational forces is influenced by all species dark matter, neutrinos photons
and baryons.

e This approach does not deal with non linear behavior, required to explain the collapsed struc-
tures we observe. Others approaches would be necessary as N-body simulations, Perturbations
Theory or approximative analytical approaches as the spherical collapse model that will be
descrived in a further section.

1.3.3 Statistical description of Density Fluctuations

In order to compare the model described until now with observations, we must define the statistical
tools we will be using. As I said before, the most widely considered models are based on the
inflation paradigm that gives place to adiabatic, gaussian initial fluctuations. The fact that the
origin of fluctuations comes from quantum fluctuations implies stochasticity. Thus, the observable
Universe is modeled as a stochastic realization of a statistical ensemble of possibilities. The goal
will be to make statistical predictions that depend on the statistical properties of the primordial

'5Tn fact in the solution for the velocity field appears two new functions f and g, that are defined in terms of D
and D_.
V- u(z,7) = —Ha(1)[fA(z) + gB(2)] (1.59)

where:

dLnD_
[, 00) = gy (L60)
Q(Qma QA) dLna
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perturbations. We describe the density field p(x)as an scalar random field. In fact it is preferable
to work with the contrast of density d(x) whose statistical properties we want to decribe.

5(%) = pE)—<p> (L62)
<p>
Its counterpart in Fourier space is:
- 1 o
<o(k) >= / §(Z)e* i (1.63)

We will assume that the field is statistically homogeneous and isotropic as predicted by cosmological
theories. For the moment, we will consider that 0(Z) is a gaussian field.

The first kind of statistics that we use to characterize a random field is the 2 point statistics.
In the direct space, it is the 2 point correlation function (2PCF). The 2PCF is defined as the joint
ensemble average of the density at two locations separated by a distance r,

E(r) =<d(z)é(z+1) > (L.64)

The physical interpretation of the 2 point correlation function is that it measures the excess
of probability of finding two particles in volume elements dV'1 and dV2 separated by distance
x12 = |21 — @3|, where n is the mean density is:

dPrg = n[1 4 &(212)]dVid Vs (1.65)

For a random distribution & = 0, and the probability of having a pair of particles is given by
the mean density squared independently of distance. If the objects are clustered , the points are
correlated £ > 0 the probability is enhanced, if the objects are anti-correlated & < 0 the probability
is suppressed with respect to a random distribution.

The Fourier transform of the two-point correlation function is the power spectrum:
< 0(k)8(K'") >= dp(k + k) P(k) (1.66)
£(r) = / dBEP (k)R (L67)

In case of gaussian fluctuations the statistical properties of random variables & (E) are completely
determined by the power spectrum.

A convenient way to express the power spectrum to give an intuition of its meaning is:
do? \%4

T ﬁk?’P(k) = A?%(k) (1.68)

which expresses that the contribution to the density variance from each logarithmic bin in £,
that is the variance ' as a function of the scale. Thus A(kg) = 1 would mean fluctuations of the
order of unity implying that linear theory does not works.

16The expression of the variance o2 is

2 _ V. 3 3
o = o | KP(k)dk (1.69)
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1.3.4 CDM Power Spectrum

Now that we have in hands the statistical tools to describe the fluctuations of the density field, let
us pass to discuss what are the predictions of the model described until this moment for the power
spectrum of matter. Theories of structure formation predicts P(k) splits in two parts, the initial or
primordial power spectrum P;(k) when the Universe was very young, the second one describes how
this spectra is altered by various process to produce the P(k) we observe today. It is specified using
the Transfer function T(k) so that:

P(k) = T(k)*Pi(k) (1.70)

For the primordial power spectrum, as we have seen in a previous section, a simple power law is
assumed for some constant spectral index ns. This assumption implies that there is no characteristic
scale.

P(k) oc k™1 (1.71)

To Compute the Transfer function, the standard way is to solve numerically the linearized Bolztman
equations for all particle species in the model (baryons, photons, neutrinos and dark matter) for
0 < 1 and using N body numerical simulations when this condition is broken. Even though, the
main features of power spectrum of matter can be understood qualitatively with the approaches
developed until now. In Table 1.3 the results from previous sections are summarized.

Table 1.3: Evolution of large scale perturbations.
Epoch Inside Outside
Radiation Ln(a) a’
Matter a a

Let us combine this results to get the power spectrum from matter fluctuations. First one
must notice that in the absence of a physical process that imprints a characteristic scale, the power
spectrum must continue being a power law T'(k) = 1. As the Universe expands the horizon keeps
increasing, so the different wavelengths will enter to the horizon scales at different moments. At
horizon entry the power spectrum continue being a power law. Before recombination, the Universe
was dominated by radiation, the perturbations that enter to the horizon did not grow much, log-
arithmically at best. Jeans length was enormous compared with horizon, thus pressure support
prevents growing for a whole range of wavelengths. As the Universe became matter dominated, the
matter perturbations began to grow. Recombination caused Jeans scale to drop drastically down
size of galaxies today, therefore, for the most of scales we can ignore pressure support. Thus, fluc-
tuations that entered to the horizon after matter radiation equality (A > A¢4) were never affected
by microphysics, which means T(k)~ 1 for k < Az}, Fluctuations with k> A_! entered while
contribution of dark matter to the overall density was not dominant, and they did not start to
grow properly until matter domination era. In this case, the suppression of power comes from rapid
background expansion rather than the pressure support. Thus, T(k)? must be a different power
law, is found to be m = —4. Thus, the modes k > )\e_ql have grown by the same factor since the
entered to the horizon. As a consequence, the slope of the power spectrum is down by a factor k?.
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ks k< At
P(k) { ot e (1.72)
k k>

This last expression give us the overall trail of power spectrum of CDM, we know that CDM
plays a predominant role in determining the power spectrum of matter. We will see in a further
chapter how this transfer function is modified with the inclusion of baryons.

1.3.5 Spherical collapse model

The linear perturbation theory developed in the last sections fails when density contrast § > 1 but
most of the observed structures in Universe have density contrast greater than this value. In order to
confront observations with theory there is still a barrier to overcome, the objects that we observe,
galaxies, follows from non linear gravitational evolution. Therefore is crucial to understand the
process involved to extract adequately the information from observations. To get exact solutions
for structure formation we must use simulations N-corps. Even though is possible to illustrate
the physics involved with a simple model called spherical collapse model. The model of spherical
collapse was first studied by Gunn & Gott.

The basic idea is that in the past, which we set at the time of matter dominated Universe to not
have to deal with pressure, we suppose the Universe contains a ideal fluid which average density was
close to critical density. A cause of fluctuations in the density there would be regions which density
is over and under the critic value, this regions are supposed to behave as closed Universe that is,
even if they participate in expansion , they would decelerate expansion a cause of the over density in
relation to the universal expansion of background Universe. This slowing down of expansion would
increase the contrast of density and gravitational potential of the local mass concentration would
be more dominant. Thus this overdensities would increase their radius until achieve a maximum
radius after which they would collapse to form a gravitational structure.

Let’s develop a little bit more the model. In the simplified picture of the spherical collapse
model, we consider an spherical Universe homogeneous and isotropic except for an over density
at the origin with spherical symmetry and pe.;t + 0p. As we see in previous section a Universe
with p > perit, the scale parameter will increase until achieve a maximal value r = 7,4, and then
collapse. The Friedman equation for a closed Universe with only matter is:

.\ 2
<Z> = Ho(Qumoa™ + (1 — Qo)a2) (1.73)

The solution of this equation is usually parametrized in terms of § = Ho7 (2,0 — 1)Y/2] thus:

r(0) = A(1 — cosf)

t(0) = B(6 — sinf) (L74)

with
(1.75)
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The 6 parameter is scaled form of the conformal time. We have that the parameter 6 increase with
time. The motion equation #* = —GM/r? relate the parameters A and B (A3 = GM B?), where M
is the shell enclosed mass in r given by:

4
M = prack <§r§’) (14 0;) (L.76)

where r; is the initial radius of the shell and §; is the average contrast of density within r; at time
t;. Now we have all the elements to describe the simplified picture of formation of a structure. Let’s
see Fig. [1.4] where the evolution of r as a function of 0 is shown. As we can see three epochs can
separated from above solution:

e Turnround The spherical overdensity expands and progressively slows down until reach a
maximal value. The maximal value is achieved at 6 = 7 (dr/dt = 0) and this point is called
the turn around. 1t is said that at ry,q, the sphere decouple from the expansion of the Universe.

e Collapse If only gravity operates, after reaching this maximum value, the radius would decrease
and the sphere will collapse at § = 27 that is achieved at a time known as t..;+, the density
contrast predicted at collapse by linear theory is § ~ 1.69 .

o Virialization Collapse will never occur because other mechanism acts, the virialization, this
mechanism dissipative convert the kinetic energy into thermic movement (random motions)
the sphere will achieve an stationary state before collapse, the radius at which equilibrium is
reached is denoted r,;.. Virialization is defined by the condition of equilibrium V = —2K. It
is supposed to occur at @ = 37 /2 corresponding to a dy;;, ~ 1.58.

1.4 Cosmological Parameters

As a summary of the chapter I finish presenting the parameters that defines the Standard cos-
mological model as well as the better observational constraints at the this moment from (WMAP
7 years+BAO-+supernovae) As we have seen many independent observations are in agreement of
ACDM model, even if T did not give an exhaustive list Even if until now there is no clear evi-
dence against standard cosmological model, a number of questions are still open to speculation.
The most important objection against this model is that we do not know the 96% of the Universe
components. Notably, the dark energy between the open questions, is a fundamental issue that
most be investigated in the following years. A lot of effort is done to get more observational data
to investigate the nature of dark energy. Fourth probes are considered as privileged to developed
this research: lensing, bao, supernovae and clusters. The Baryonic acoustic Oscillations, that is the
subject of this thesis is considered as the least affected by systematics uncertainties at the actual
stage of experiments(DETF).
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WMAP Cosmological Parameters
Model: ledm+-sz+lens
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II. Baryonic Acoustic Oscillations

In this chapter I do a review of the Baryonic Acoustic Oscillations (BAQ), from a theoretical point of
view. The chapter consist of 5 sections. The first section is devoted to present the basic framework.
I begin with an brief non technical introduction to the BAO physics. Then I describe in a more
formal way the picture in the configuration space. To finish the basic framework, I discuss how
the presence of baryons modifies the transfer function presented in the first chapter. In the second
section I explain motivation for studying BAO physics. This physical phenomena understood from
first principles and calibrated precisely with CMB provides a good Standard Ruler to study the
expansion of the universe and decrypt the equation of state of dark energy as well to constraint
cosmology in a complementary way as others methods. In the third part of the chapter I discuss
the limitations of this description: the bias problem originated by the fact the galaxies do not trace
exactly the matter density and the deviations from the linear description'. In the fourth section I
talk about the current understanding of these problems and the standard way to deal with them.
I present briefly the perturbation theory and reconstruction scenarios originated to deal with non
linearities and consequent mode coupling. I present the halo model a semi-analytic approach to
model small scales based on our understanding of structure formation. To finish I talk about the
current state of the art in the measurements of BAO feature and the precision achieved.

II.1 Basic Framework

I1.1.1 A not technical introduction to BAO

In order to explain the Baryonic Acoustic Oscillations, we place ourselves at the time just after
inflation era. As we have seen in the first chapter, the universe was filled with an almost homogeneous
baryon-photon plasma. This plasma showed tinny fluctuations generated presumably by quantum
fluctuations during the inflation. This over-dense regions of the fluid initiates the propagation of
acoustic waves. A way to understand this acoustic waves is thinking in the propagation of sound
wave through a medium. Following the analogy, the over-densities attracted matter from under
dense regions, generating over-pressed regions, this compression in the fluid was accompanied by an

!The redshift distortions generated by fact we have access only to the redshift and not the radial coordinate will
be discussed in a separate chapter.
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increase of density and temperature, the photons were pushed to higher energies and the increase
in radiation pressure opposes the compression driving to a consequent expansion. The expansion
implies a shoot in the density, temperature and pressure that would be balanced by the surroundings
generating the acoustic wave that propagates in the fluid as a sound wave. Because of the radiation
pressure of photons and energy density of photon field were enormous compared with baryons the
speed of propagation was very hight nearly 1/3 of speed of light?.

Figure II.1: Propagation of a spherical wave.
Propagation of a spherical wave. In left panel the superposition of several spherical waves.

With the expansion of the universe the fluid gets cooler and less dense. At the decoupling time,
the baryon fluid pressure is released, the sound speed goes to zero and the wave is frozen at a
radius equal to the sound horizon . The baryon perturbation originally at the same location as
the dark matter perturbation was carried out to form a spherical shell around initial over-densities.
Then the gravitational interaction between over-density of dark matter and the shell of baryons
leads to the final configuration an over-density surrounded by a shell at the acoustic scale. This
configuration of the matter will be the seed of the structure. The photons do not interact anymore
with baryons and could travel freely until now giving us a snapshot of the fluid at the last scattering.
The temperature of the photons reflects the density fluctuations (p proportional T# ) giving place
to temperature fluctuations. The spectra of this fluctuations exhibits an harmonic series of acoustic
peaks that signals a preferred angular scale. This preferred length reflects a preferred scaled in the
last scattering surface (A ~ rpg or [ o< krpg), this length , called the acoustic scale, is the distance
that a sound wave would travel since the radiation-matter equality era until the decoupling time,
it corresponds to the sound horizon at last scattering s = cstrg. Because of baryons represents a
fraction of total matter density, we observe the same acoustic oscillations in matter power spectrum
suppressed by a factor Qp/Qp,.

23ound speed scales as square root of restoring force per unit of inertia and the radiation pressure of an electro-
magnetic field is 1/3 of its energy density
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I1.1.2 Configuration Picture of Acoustic Oscillations

For a more formal explanation let us follow (Eisenstein et al., 2007). We consider a over-density of
this plasma located at the center and suppose the rest of the universe is homogeneous and isotropic
except for this over-density. Because the fluctuations are small the effect of all over-densities will be
a linear superposition. The components of the universe are dark matter, the plasma photon-baryons
and neutrinos. The perturbations are adiabatic implying that all species are equally perturbed 2. In
Figs. [I1.2] and [I1.3] a set of snapshots describing the evolution of a mass profile of the perturbations
are shown. The profile represents the density fraction times the square of radius, the area under
the curve is the mass of the perturbation in comoving coordinates. In Fig.[I.2.a) we see this initial
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Figure I1.2: Snapshot of evolution of the mass profile vs comoving radius of an initial point-like
over-density located at the origin, the black, blue, red and green are respectively dark matter,
baryons, photons and neutrinos rescaled to be at same scale. From (Eisenstein et al., 2007).

configuration of mass profile of the perturbations. At this moment, the baryons are coupled with
photons in a single fluid, the pressure of radiation of photons generates an spherical wave around
the over-density that begins to propagate Fig.[I1.2.b]. The dark matter interact only gravitationally

3In fact relativistic species (photons and neutrinos) are perturbed 4/3 bigger than non-relativistic (baryons and
dark matter)
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in consequence it stays at the center. Neutrinos are not bounded gravitationally, they stream away
from initial point-like perturbations. In panel Figs. [I1.2.b] and [II.2.c], the spherical shell continue
expanding , fractional density drops because energy is being spread in a large area. The neutrinos
spread out and the dark matter remains at the center collecting in the overall density perturbation
increasing the width of the peak.
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Figure I1.3: Snapshot of evolution of the mass profile vs comoving radius of an initial point-like
overdensity located at the origin, the black, blue, red and green are respectively dark matter,
baryons, photons and neutrinos rescaled to be at same scale.From (Eisenstein et al., 2007).

The decoupling of the photons leaves the baryons frozen forming a spherical shell around the over-
density Fig.|11.2.d]. Now the configuration of a dark matter perturbation at the center surrounded
by a shell of baryons begins to interact gravitationally giving place to the final configuration of an
over-density at the center surrounded by a shell at the sound horizon distance Figs. [I1.3.a], [I1.3.b].
Without the pressure of radiation the accretion of matter of over dense regions by gravity is done
even more rapidly that Hubble expansion, increasing the contrast between over-dense and under
dense regions. The final configuration in the original pic at the center surrounded by a shell of
baryons at roughly 150 Mpc in radius (Fig. [I1.3. c|). Finally in Fig.[I1.3.d| we have the density as
function of the comoving radius.
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Each initial perturbation have generated a spherical wave around each over density, the super-
position of this waves hide the preferred sound scale, but statically is still possible to get a signal.
The galaxies will form at z ~ 10 preferably at the over-densities , generating a preferred separa-
tion between galaxies at the acoustic radius. Statistically we can detect this preferred scale in the
correlation function as a peak at the sound horizon. Equivalently, a pic in the correlation function
traduces to a serie of harmonic oscillations.

As we have seen the BAO and CMB are both a consequence of same phenomena the acoustic
oscillations. The differences are that CMB give us a two dimensional snapshot of density fluctuations
and BAO a three dimensional picture In Fig.[I1.4] the angular power spectrum of CMB and the
power spectrum of matter are shown.
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Figure I1.4: Power spectra of matter and Angular power spectrum from CMB. From (White,
2005).

11.1.3 Baryon Signatures in the CDM Transfer Function

I have introduced in chapter 1 the pure CDM transfer function and the phenomenology that deter-
mines its form. Even if CDM plays a predominant role in determining the power spectrum, when
the baryons are taken into account we observe that the coupling between baryons and photons
generates additional structure in the transfer function compared with a pure CDM scenario.

We have seen that between epoch of equality radiation-matter (z.,) and the recombination (zq4)
acoustic oscillations were generated in the plasma photon-baryons. During this phase the amplitude
of baryons can not grow, they undergoes harmonic motion with amplitude and velocity decaying.
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Once the photons are decoupled from baryons we get the the solutions for perturbations in terms
of growing and decaying modes for a pressureless fluid.

The baryons have two effects in the transfer function: the suppression of power and the os-
cillations below the sound horizon. Let us separate the baryons and CDM modes to understand
the total effect. The baryons and CDM modes that enter before matter-radiation equality growth
logarithmically. The baryon modes that enter to the horizon after matter-radiation equality but
before decoupling oscillate with decaying amplitude so they can not contribute to the gravitational
potentials. For the case of CDM modes that enter after equality and before decoupling, they grow
as a universe with matter density without baryons Q. = Q,, — Q5. As a consequence all modes
within the period z.q — 24 are suppressed.

To fix the ideas I use the fitted form proposed by (Eisenstein & Hu, 1998a). This fitting form
of the transfer function models the baryons and dark matter using a effective transfer function for
each species. In a CDM-baryon model universe €2 + Q. = Q. Thus , T, is the transfer function of
CDM, T} is the transfer function of baryons pondered by the fractional density.

_

T(k) = 5LThlk) +

&Tc(k:) (I1.1)
Q

In a CDM model with baryons, there is an additional scale playing a role in the evolution of per-
turbations: the sound horizon at the time of recombination s. The transfer function of dark matter
is affected by baryons only at scales below the sound horizon s where the effect of baryons is a sup-
pression power. This is modeled using a generalized transfer function ~ Ty(k, o, 3.) and a factor
f that smoothes the transition between a transfer function almost without baryons before s and a
baryon loaded solution.

Tc(k) = fTO(kv 11 ﬁc) + (1 - f)TO(k> A, ﬁc)4 (112)
In the case of baryons, T} is given by two oscillatory terms, T\, (k) and Ts(k). The term T,

show a series of declining oscillations ® suppressed by the decay of potentials between Zeq and
zq that corresponds to the limiting case in the absence of CDM. The other term T is a rapidly
decreasing function and it is necessary to describe the transition from large to small scales, it comes
from the fact that the suppression of power is for scales smaller that s.

Ty, = Tw(k) + Ts(k)G (H'5)

In Fig.[I1.5], we show the transfer function from simulations and the fitting form of Einsenstein
and Hu,for different parameters €, and €),,,. The dotted line signals a pure CDM model , showing

“The factor is given by f = 1/[1 + (ks/5.4)%]
®The declining of oscillations is originated by the silk damping not treated in this explanation
5The expressions for the terms T, (k) and Ts(k) are:

_ jo(kS)To(k,Ll)
Tolk) = 1+ (ks/5.2)2

T () = Joth)eM/Ee)
¢ 1+ (By/ks)?

(I1.4)

(IL.5)
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the two effects of baryons in the transfer function, suppression of power and oscillations. We observe
on the top purely baryonic models without CDM, in this case the oscillations have alternating sign
in the transfer function.
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Figure I1.5: Examples of Transfer function of CDM with baryons for deferents set of param-
eters €2, and Q, from simulations and the fitting formula of Eisenstein and Hu. On top pure
baryonic models. Figure from (Eisenstein & Hu, 1998a).

Phenomenologically, to understand the effect of baryons let us imagine a baryonic model without
dark matter. The perturbations still are present, and the subsequent launching of spherical waves
on each over-density. The spherical shells are frozen at recombination time but in this case all the
matter is displaced in the shells, there is no perturbation at the center, so there is no peak in the
correlation function , because it is generated by the correlation between the center and the shell,
indeed there is a change in the slope at twice the sound horizon corresponding to the correlation of
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two points in the sphere. So the presence of baryons is one of the strongest arguments in favour of
non baryonic matter that has decoupled before dark matter.
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Figure II.6: Effect of baryons in power spectrum and correlation function. From

http:/ /scholar.harvard.edu/deisenstein /book /baryon-acoustic-oscillations.

II.2 Defining an Statistical Standard Ruler

In first chapter we have seen that distance measurements as a function of scale factor or redshift
directly map the expansion history. As we have seen in the previous section the acoustic phenom-
ena imprinted a characterist scale in the distribution of matter: the sound horizon. This scale is
completely computable theoretically since first principles. The sound horizon s is given by:

1 2c I V31+Teqg+ \/Teqg T Trec (11.6)
= n .
\/QmHg /3ZeqTeq 1+ \/Teq

The aim of BAO measurements is to learn about the expansion using this characteristic scale
imprinted in matter distribution as a standard ruler.

trec
s:/ cs(14 2)dt
0

The concept of Standard Ruler consist of using an object of known size at a single redshift
(or wich size change in a well-known way with redshift) and use this patron to compare with the
apparent size at different redshifts. This technique is similar in nature to the supernovae that uses
an standard “candle" to calibrate the distances, the difference is the kind of standard pattern used to
map the expansion history. The comoving size of this ruler in the transverse (1) and perpendicular
(r1) directions are related with the observables Af and Az. If we know the true dimensions of 7y
and r; we can access to d4(z) and H(z) respectively. Even if we do not know the comoving size of
an object using the Alcock-Paszhisky it would be possible to access to the product D4 (z)H (z).
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_ cAz
g = m
r1. = (14 2)Da(2)A6. (11.8)

(IL.7)

In the case of BAO we know the size of the acoustic feature thus we can use it as an standard ruler
to study expansion. Using this apparent distances (angular size or redshift extent) we can constrain

Or=D,00 or = {c/H)6z

Observer

Figure IL.7: The comoving size of this ruler in the transverse (r;) and perpendicular (r] )
directions are related with the observables Af and Az.

the parameters of dark energy via their cosmological dependence on the Hubble parameterH (z) ”.

Thus, to study the expansion history of the universe we will measure the Hubble parameter
H(z) and D (z) using the baryonic acoustic feature at different redshifts.

This characteristic scale has a statistical nature, even thought, it could be measured using the
two point statistics (see Fig. IL.8].

7

H(z) = H2 (1 +2)° + Qo (1 + 2)* + Qu(1 + 2)° + Qxeap (3 / 1%’3)@)]1/; (IL9)
Da(z) = liz Oz ;(ZZ). (I.10)

where Qx is the present day dark energy density and Ho = h x 100kms~'Mpc™!, the present day Hubble constant.
This expression implies an equation of state of dark energy wx (z) given by the following expression (?):

wx () = PX(2) (IL11)

The energy density of dark energy thus writes as follows:

z d /
px(2) = px (0)exp (3/ 1+ w(z')) . (IL12)
o 142
In the case of a cosmological constant, ie. w = —1, the expression of H(z) simplifies .
H(z) = H [Qm(1 +2)° + (1 + 2)* + (1 + 2)% + Qx (1 + 2)30F)1/2, (IL.13)

where Q2 x represents the cosmological constant if w=-1.
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Figure I1.8: First Detection of BAO in 2005. Left panel correlation function of LRG’s in SDSS
(Eisenstein et al., 2005). Right Panel power spectrum of main galaxy sample and LRG sample

(Percival et al., 2007). The line corresponds to fitting model from Eisenstein & Hu(Eisenstein
& Hu, 1998b).

The ideal case is to compute the 2 point statistics separating the line-of-sight and parallel direc-
tions, locate the feature corresponding to the sound horizon, and measure Af and A z correspondent
to this sound horizon at variety of redshifts. Then, using the constraints based on CMB results,
compare to the value at z ~ 103 to get d4 and H(z), and infer expansion history. Nowadays, when
data sets do not have enough statistics, the angle average statistics is used, what implies analyzing
the transverse and perpendicular direction together.

A final point must be taken in account before inferring cosmological consequences. As we have
seen to define the distances a fiducial cosmology must be assumed. To deal with the distortions
introduced by taking the wrong cosmology. The standard approach is define a scale parameter
called“dilatation parameter" that takes account of changes in scale issues of taking wrong cosmol-
ogy®. In the case of the angle average correlation function, the dilatation parameter is a combination
of dilation in transverse and perpendicular directions as defined in (Eisenstein et al., 2005):

cz 1/3
Dy = <DM(Z)2H(Z)> . (IL.14)

This definition takes into account that d4 and H(z) changes differently. In addition his quantity
was defined in such a way that the ratio Dy (z)/s(z) is approximately independent of choice of
fiducial cosmology. Thus, measuring s(z) with a fiducial cosmology and given the acoustic scale 7

8When the redshifts are close enough the distortion could be thought simply as a dilatation effect, changing the
spherical features for ellipsoids.
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from CMB we can determine the distance Dy to that redshift using the following expression:

Dy (z) _ Dv,sid(2)
Trs VSp

. (I.15)

As we will see in the following section non linearities, bias and redshift distortions modifies the
acoustic feature. Fortunately, the effect of taking a wrong cosmology is not degenerated with the
theoretical systematics as non linearities, redshift distortions and bias enabling to use this acoustic
feature to investigate the expansion history (Seo & Eisenstein, 2005).

I1.3 Systematic Uncertainties from Theory

At the actual state of BAO measurements, with the increasing volume at redshift precision of spec-
troscopic surveys the systematic error in the BAO method are more likely to arise from theoretical
side (Seo & Eisenstein, 2005). Unfortunately we do not have access to the linear theory mat-
ter power spectrum in real space. Non linear structure formation, redshift distortions and galaxy
clustering bias degrades the acoustic signature (Meiksin et al., 1999) (White, 2005). The correct
modeling of this phenomena is necessary to achieve a precision better than 1% in current and future
experiments. In this section the bias and non linearities will be discussed. Concerning the redshift
distortions a further chapter will be devoted to this important subject.

I1.3.1 Non linearities

As we have said in chapter 1, on large scales the matter distribution is well described by linear
theory, however on smaller scales (about 10 Mpc) dynamics are highly non linear thus, N-body
simulations are required to understand astrophysical process involved. There is a range between
where the behavior is quasi linear and for the BAO phenomena is necesary to model accurately to
achieve the precision required by current and future experiences.

Basically we can distinguish two effects of the non linear regime: first, the gravitational growth
of perturbations in one mode is increasingly coupled with perturbations in others modes, giving
place to higher order contributions. This mode coupling blurs the initial features at given mode,
erasing the contrast. The second effect is the increase of power in large wave numbers (small scales)
due to non linear growth. This additional power modifies the slope of power spectrum as a function
of wave number, the resulting change in slope shifts the position of the peaks.

In Fig.[I1.9] the non linear power spectrum issue from N-body simulations from (Seo & Eisenstein,
2005) is shown for different redshifts (z=0.3, z=1, z=3). The solid lines indicates the power spectrum
divided by a zero baryon power spectrum giving the wiggled part of spectrum, the vertical lines
indicate the k4, defining where the non linearities become important. We observe the two effects
of non linear behavior in power spectrum: loss of contrast and excess power from non linear collapse
. We observe that , as the amplitude of the density perturbations grows with time, these nonlinear
effects become stronger and proceed to larger scales.

The figure shows also how at higher harmonics the peaks are slightly shifted in relation to the
initial power spectrum. In the right panel of Fig.|I1.9] the derivate dLnP/dLnk is shown. This plot
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permit us discern the degree of degradation of acoustic feature.
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Figure I1.9: Left panel. Matter power spectra at various redshifts from Seo and Eisenstein
2005. The solid lines are the power spectrum divided by no wiggled power spectra. the vertical
lines indicate the scale k,,,, where linear theory validity for rms o ~ 0.5 , the value of k4 =
0.11AMpc~" for z = 0.3, kpas = 0.19hMpc—! for 2 = 1 and kyae = 0.53RMpc~? for z=3. We
observe that oscillations are visible at k < k,,qz. The dashed lines are in the redshift space.
Right panel. dLnP/dLnk from the matter power spectrum at various redshifts in real [top
panel | and redshift spaces [bottom panel]. Green line corresponds to input power spectrum
from CMBFAST, black the linear power spectrum at z=49, the non linear power spectrum at
z=3 red, violet z=1 and pink z=0.3. Dashed lines shows the correspondent power spectrum in
the redshift space. Both figures from (Seo & Eisenstein, 2005).

In Fig.|I1.10] the result of non linear behavior is shown in configuration space. The oscillatory
feature traduce to a peak at scale sound horizon, the information in fourier space is carried in the
contrast between peaks and troughs, thus the effect of non linearities generates a broadening of the
peak and a shift generated by mode coupling.

To explain the phenomenology behind non linearities in configuration space, (Eisenstein et al.,
2007) builds a simple model for the non linearity in terms of the differential motion of pairs. In this
model, the pairs initially separated preferentially a 150 Mpc, have moved around 10 Mpc from its
initial condition due to the velocity flows and non linear collapse. Thus the peak in the correlation
function initially placed at 150 will be broadened by this displacement of the matter. This behavior is
modeled using the lagrangian approach up to first order (Zeldovich approximation). The validation
of this analytic approach has been done using N-body simulations. This simple approach suggests
to model the non linear effect as a smoothing gaussian given by

2
P(k) = exp [—; (kz - i%)] (IL.16)

o1

where o and o are given by o = soD and o, = soD(1 + f) with so that characterizes the scale
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Figure II.10: Correlation functions from (Eisenstein et al., 2007). The solid lines is the non
linear correlation issue from simulations , the doted line is the linear correlation function and
the red line is the model correlation function. Left panel for z=0.3, right panel for z=1

of radial displacements. A variant of this model will be used to model the correlation function in
chapter 8.

I1.3.2 Bias

Up to now we have supposed that galaxies map the distribution of matter. However, the matter
distribution do not correspond to the galaxy distribution. The galaxies are biased tracers of the
matter. The common models of the correlation function uses a linear and deterministic bias:

dg(z) = bé(x). (IL.17)

This bias prescription implies that

Py(k) = b*P(k) (T1.18)

Even if usually this first approximation is used, the bias enclose all the complex galaxy formation
dynamics thus is could be expected to be non linear, scale dependent or even stochastic [33, 34] .
There is not accepted framework for bias.

The bias prescriptions available in literature could be described in terms of the following as-
sumptions:

e Linear vs Nonlinear (Scale independent vs scale dependent). At large scales is assumed that a
linear bias is a good description, implying scale independence. Some analyses () suggest that
bias is the sum of two terms one of them k independent and the other one k dependent.

e Lagrangian vs Eulerian. The time where the bias is established determines the lagrangian and
eulerian approaches.
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In the case of lagrangian approach, the bias is established at initial conditions, thus, non linear
evolution affects the bias adding non linearities, scale dependency and stocasity. In Eulerian
approach, the bias is established at present time thus is not subject to non linear behavior.

e Deterministic vs Stochastic . Deterministic or local means that density of galaxy is completely
determined by local density field. Stochastic comes from the hypothesis that galaxy formation
depends on other variables besides density field and in consequence the relation between 9,
and ¢ are stochastic.

There are three major lines of investigations to study galaxy biasing: hydrodynamic simulations
with simplified astrophysics, 2) phenomenological mapping and 3) halo model formalism. Within
Halo model formalism, the bias problem is split in two separated problems: formation and clustering
of dark matter halos, neglecting non gravitational effects, and the second, distribution of galaxies
within halos that includes all non gravitational effects. It is believed that the spatial distribution of
galaxy clusters has little effect from non gravitational effects. In the next section I will explain briefly
the Halo model. Even if a variety of bias prescriptions are available, N-body simulations analysis
concludes that effect of bias is an excess of clustering that appears as an additional constant term
in the biased power spectrum even in non liner regime. This excess of power varies smoothly with
scale at least at large scales implying that bias do not erase the acoustic feature (Seo & Eisenstein,
2005). In Fig.[I1.11], T show an example from (Seo & Eisenstein, 2005) of bias effect in non linear
power spectrum issue from simulations using two simple prescriptions of bias denoted by NUM and
MASS °. The different bias corresponds to different minimum group multiplicity for particles of
N-body simulation. The solid lines corresponds to real space, dashed lines to redshift space. The
multiplicities m= 4, 10 and 30 reproduces the results for bias of 1.7, 2 and 2.5 for NUM and 2.4, 2.7
and 3.1 for MASS at z=1. From the figure we observe an increase in the amplitude of the power as
a function of the bias for both prescriptions of bias. The amplitude depends of the bias prescription,
comparing similar bias in the 2 schemes we observe that (m=4 MASS to m=10 NUM in z=1) the
MASS presents less anomalous power up to k ~ 0.3hMpc~!.

Finally in Fig.[II.12] the logarithmic derivate of the power spectrum dLnP/dLnk is shown,
from the figure we verify that the power spectrum preserves the oscillatory features at least k ~
0.2hMpc—!

11.4 Approaches

Several approaches have been developed to model the quasi non linear range. In the following
subsections 1 discuss briefly some of the approches. I present the variants of perturbation theory,
reconstruction scenario and finally the Halo model. As we will see, the different approaches would
introduce the problem of bias and redshift distortions within their framework.

9The two prescriptions follows the formalism of Halo Ocuppation Distribution (HOD). In this formalism the
distribution of galaxies are deterministic models based on halos and biased tracers. The 2 prescriptions are : NUM
where halos above a threshold have a galaxy and the other MASS where halos above a threshold has as many galaxies
as linear with the mass.
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Figure I1.11: Wiggles from power spectrum from N-body simulations considering 2 bias
schemes: a number weighted scheme denoted NUM, and mass weighted scheme denoted MASS.
The solid lines corresponds to real space, dashed lines to redshift space. The multiplicities m=
4, 10 and 30 reproduces the results for bias of 1.7, 2 and 2.5 for NUM [right] and 2.4, 2.7 and
3.1 for CMASS [left] at z=1. From (Seo & Eisenstein, 2005)
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Figure I1.12: Derivates from biased power spectrum dLnP/dLnk from N-body simulations
considering 2 bias schemes. In top results for z=1 in bottom z=0.3. At each plot real space
plot is in top and redshift space at bottom. In right panel the number weighted case (NUM) in
left side the mass weighted scheme MASS. The colors corresponds different multiplicities m=
4 (red), 10(blue), 30(magenta), that corresponds to bias of 1.7, 2 and 2.5 for NUM [right] and
2.4, 2.7 and 3.1 for CMASS [left] at z=1. The black line the non linear matter power spectrum
in green the input power spectrum. From (Seo & Eisenstein, 2005).
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11.4.1 Perturbations Theory

The fact that the acoustic feature falls in the large scale, enables using perturbation theory as a
correction to linear result.

In this section I presented some of the recent analytical approaches for computing the non linear
matter power spectrum using perturbation theory. I discuss briefly how these analytical approaches
predict the behavior of 2 point statistics of dark matter improving validity range upon a pure linear
theory description. I present the advantages and disadvantages of each one. To finish, I will give
some comments comparing the differents approches.

Standard Perturbation Theory (Eulerian)

The standard approach of perturbation theory (SPT) in Eulerian coordinates is based on the fact
that at large scales we can suppose fluctuations are small, an expansion of density and velocity
around a linear solution provides and accurate description of the cosmological fields:

o0

Sz, )= _ 6" (z,7) (I1.19)
n=1

O(xz,7) = iH(”) (z,7) (11.20)
n=1

In chapter 1, the equations of motion for the general case were introduced and they have been
linearized to solve the system. The idea of Perturbations theory is to extend this result and include
the non linear phenomena.

Advantages and Disadvantages

e Standard perturbation theory taken to infinite order provides an exact solution. In Fig.[I1.13]
the power spectrum from SPT is shown for 1-loop and 2-loop for ACDM model at z—1, and
z=0 compared with N-body simulations. As we can observe from figure, SPT works well at
hight redshift and large scales but is badly behaved for scales and redshift smaller (z ~ 1
agrees with simulation to 1% out to k = 0.2hMpc~1).

e The positivity of the perturbative corrections is not guaranty and SPT has a poor convergence
even adding the higher order corrections. The Fig.|I11.13] shows the predictions from 2-loop
improve the result from 1-loop for z—1, however the same trend is not observed at redshift
z=0, where the result from 2-loop is worst that the predictions from 1-loop. In order to
explain the problems of convergence in Fig.[I1.14] is shown the comparison between SPT and
RPT loop expansion for the nonlinear power spectrum. The PI(DIF} (PS;T) denotes the 1-loop
correction in PT (RPT). Dashed lines denotes negatives contributions and solid lines positive
ones. At large scales the linear contribution dominates as expected but as the nonlinear scale
approaches, the different perturbative corrections become increasingly important , in addition
some contributions cancels among them. By contrast in RPT all contributions are positive
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Figure II.13: The power spectrum from SPT is shown for 1-loop (red solid line) and 2-loop
(blue dashed line) for ACDM model at z=1, and z=0 compared with N-body simulations
(points). In black solid line the linear power spectrum. From (Carlson et al., 2009)

and successive terms dominate at smaller scales and there are no cancellations. The partial
re-summation method of RPT change completely the behavior of perturbation expansion

guarantying the convergence.
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Figure II.14: The PI(DlT) (PI%E),T) denotes the 1-loop correction in PT (RPT). Dashed lines
denotes negatives contributions and solid lines positive ones. From (Crocce & Scoccimarro,

2006)

Renormalized Perturbation Theory (RPT)

Renormalized Perturbation Theory (RPT) reorganizes the expansions of SPT in terms of a quantity
called the non linear propagator G(k, z). In terms of this quantity a partial re-summation is done
and the convergence is dramatically improved.
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This rearrangement in summation terms originates the following power spectrum in RPT:

P(k,z2) = G*(k, 2) Py (k) + Pyc(k, 2)

(I1.21)

where all contributions proportional to Py(k) (original power spectrum) are included in the first
term. The propagator G describes the evolution of a mode £ taking into account all the fourier
modes (all scales), the second term Pj;c represents the power generates by mode coupling.

Advantages and Disadvantages

e RPT provides a physical understanding of different contributions. In the Fig.|II.15] the 2
ingredients of RPT are plotted, where is shown the smoothing of the oscillations due to
de-correlation of Fourier modes in G?Py, and the newly generated power of mode coupling
predominant at small scales. The mode coupling power shows a strong scale dependence.
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Figure I1.15: From (Crocce & Scoccimarro, 2008), in left panel the power spectrum and in
right panel the two-point correlation function described by RPT at z=0. The two ingredients
of RPT are plotted: de-correlation of Fourier modes in G2 Py (in red), newly generated power of
mode coupling (in green), and the final non linear power spectrum in blue. In black the linear

power spectrum.

e In addition, it is possible to derive an expression for the non linear propagator in the fully
non linear regime. ie. high-k limit (kopD > 1):

Gk, z) ~ D(z)e:cp[—%kzaZ(D(z) —1)?]

(I1.22)
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Using this expression we can estimate the validity of linear perturbation theory. The charac-
teristic scale determining the breakdown of linear perturbation theory is thus given by:
o2 = 1 [ Py(g)
v 3 d3q
One of the conclusions of RPT is that the validity of RPT is much limited than commonly
thought. Another important result from RPT is the evidence of the shift generated by non
linear behavior. In Fig.[I1I.16] I show the 2 point correlation function in real space. We observe
this shift in the peak location towards smaller scales . This shift comes from two sources: first
the convolution with G? generates a shift in the acoustic peak due to break of symmetry
of acoustic peak in linear regime, another source of shift is the mode coupling contributions
describing coherent infall velocities '°

(11.23)
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Figure I1.16: The 2 point correlation function in real space, in blue the linear one in red the
non linear. The points corresponds to results from N-body simulations. We observe this shift
in the peak location towards smaller scales . From (Crocce & Scoccimarro, 2008)

e Renormalized pertubation theory provides a good description of two point statistics in real
space. The results are in agreement with N-body simulations (see Fig. 11.16]. Nowadays this
formalism do not include the redshift distortions and bias

Lagrangian Perturbation Theory

In the lagrangian picture the fundamental variable is the displacement field ¥, that maps the original
position ¢ of a particle to the eulerian coordinate x:

z(q,t,) = g+ ¥(q, 1) (11.24)

'The mode coupling contribution contains oscillations out of phase with the acoustic oscillations in the linear
power spectrum. This comes from the fact that non linear corrections are a decreasing function of local spectral
index , thus maximal corrections ocurs at wave numbers where derivative of acoustic oscillations is most negative.
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In the lagrangian picture the displacement field is expanded in series:

=004 9@ 496 4 (11.25)

where V) = (\Il(l))N , is considered smalll quantity. The displacements are related to the overden-

sities, by the following expression in Fourier space derived from the continuity equation'!;

5(k) = / (e V@D 1) (11.26)

Advantages and Disadvantages

e LPT provides a good description of two point statistics. Lagrangian picture is intrinsically
non linear in the density fields and a small perturbation in density fiels carries a considerable
amount of non linear information. Second order Lagrangian PT (2LPT) provide a remarkable
improvement over linear order.In the Fig.[I1.17] the correlation function from LPT (green)
is shown compared with simulations (black) and linear theory (red). The LPT approach
coincides well with simulations.

e Redshift distortions effects could be easily included in the Lagrangian approach . SPT deals
with RD only in the linear regime, it does not reproduce non linear effects in small scales
(fingers of god), commonly the fingers of god effect must be introduced by hand including a
gaussian damping factor. In contrast in LPT the redshift distortions could be included in a
natural way and this damping factor is derives naturally. The power spectrum computed in
linear case (Kaiser formula) is compared with LPT model and the phenomenological model
(Scoccimarro, 2004) with simulations are shown in the Fig.[I1.18] , the power spectrum calcu-
lated with LPT describes the results from simulations and behaves better than 1-loop SPT.

e Another advantage is that this approach could be expanded adding biasing prescriptions , this
analysis have been done by (Matsubara, 2008). The nature of bias included in this approach
is lagrangian, as we have already said it depends on the initial density and velocity fields.

Comparison of perturbation theory approaches

I finish this section showing a figure from (Carlson et al., 2009) where a comparison between dif-
ferents perturbation approaches is done with N-body simulations and giving some final remarks. In
(Carlson et al., 2009), the power spectrum was computed using different perturbations approaches
at two redshifts and for different cosmologies. In Figs. [I1.19] I show only the results for a ACDM
cosmology '?. These figures show some trends that I have exposed along section even if not all the
models appearing in the figure where described in the section. In Fig.[I1.19] we observe in left panels
the power spectrum from RPT'? for 1-loop and 2-loops at redshift z = O(top) and z = 1 (bottom).

YFrom the continuity equation that relies the eulerian and lagrangian coordinates we have that p(x)d*x = pd3q
where p is the mean density, this relation traduces in fourier space to §(z) = [ d°qé6*[x—q—1(q)]—1 where § = p/p—1

2(Qar = 0.25, Qph? = 0.0224, h—0.72, n=0.97 and g = 1)

13¢losure theory for 1-loop and 2-loops at redshift z = 0(top) and z = 1 (bottom)
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Figure I1.17: The correlation function is shown for various redshifts obtained with simulations
(black) and linear theory (red) and the gaussian filtered linear theory power spectrum (green).
From (Matsubara, 2008)
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Figure I1.18: The wiggle part of the power spectrum from N-body-simulations in open circles,
in red dotted line the linear theory power spectrum, in black LPT power spectrum, in green
dashed line 1-loop SPT and in blue dashed line phenomenological model of the redshift power
spectrum (Scoccimarro, 2004). From (Matsubara, 2008)

In right panels the power spectrum from lagrangian perturbation theory, Large-N theory, time -RG
theory , RGTP theory is shown at redshift z = 0(top) and z = 1 (bottom).
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Figure I1.19: In left panels the power spectrum from RPT ( 1-loop in green and 2-loop in
blue) and closure theory for 1-loop (magenta) and 2-loops (cyan) at redshift 2 = 0 (top) and
z =1 (bottom). In left panels the power spectrum from lagrangian perturbation theory (green),
Large-N theory (magenta) (Valageas, 2007), time-RG theory (yellow) (Pietroni, 2008), RGTP
theory (cyan) (McDonald, 2007)is shown at redshift z = 0 (top) and z = 1 (bottom). The black
dotted line is the linear theory. From (Carlson et al., 2009)

We observe that the different perturbations approaches are in well agreement with N-body
simulations at large scales and part of the quasi linear regime. All the approches give a better
prediction for power spectrum than linear regime, but at sufficient small scales all of them fail.
None of the methods appear to be accurate beyond k ~ 0.1hMpc~! at z=0. As is expected the
methods perform better at smaller scales and at higher redshift. We observe that going to higher
orders not always guaranty to achieve a better prediction.

I1.4.2 Reconstruction

In recent years another method to deal with non linear degradation of baryonic feature has been pro-
posed by Eisenstein et al (Eisenstein et al., 2007). The idea of reconstruction is that the degradation
of the peak of BAO is a correctable process. We have seen that non linear gravitational structure
formation and redshifts distortions move galaxies away from original locations, blurring the peak
(or erasing higher harmonics in power spectrum). The main argument is that blurring effect is
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largely due to bulk flows and super cluster formation effects generated by gravitational forces, thus
running backward the gravitational flow will restore the acoustic peak to its linear regime shape.

Bulk flows are generated by density field, and the connection between velocity field and density
fields at that scales are almost linear, thus predicting the velocity field and remove it. This approach
is based on LPT. As we have seen the linear theory motion in LPT is V- ¢ = —§. Thus moving the
particles —g. To introduce the redshift distortions the same procedure is followed but in redshift
space and this takes into account linear redshift distortions. It is important to said that the idea is
not to move all particles back rather is to move densities back to their initial position.

Algorithm of Reconstruction

e Generate a smooth density field to filter high harmonics that are difficult to model.

e Compute the negative Zeldovich displacement ¢ from the smoothed density field.

Then to shift the original particles by s and compute displaced density field dg4.

Shift an initially uniform distributed particles by s to form the shifted density field ds.

The reconstructed density field is defined as 6, = §4—3,. The power spectrum is P, (k) oc (|62]).

r

The reconstruction cannot fully cancel the non linearities because the correction to 6™ implies only
first order. Thus it generates a density field with second order corrections not the the linear density
field. The algorithm is inherently non linear and an effort to understand analytically has been done
in term of LPT (Padmanabhan et al., 2009) (Noh et al., 2009). The method of reconstruction has
been tested by N-body simulations following ACDM model in (Noh et al., 2009). In Fig.[11.20] I
show the results from (Noh et al., 2009) for the correlation functions. In solid line the non linear
correlation function from simulations at z=0. In doted line the reconstruction correlation function
using a smoothing of R = 5h~'Mpc and in short dashed line R = 10h~!Mpc . In long dashed
the initial correlation function before the non linear evolution. As we can observed from the figure
the non-linear evolution has partially washed out the peak in the matter correlation function and
applying reconstruction restores much of the original signal.

It is possible to extend the results to biased tracers. LPT provides a good framework for thinking
in reconstruction. It explains in a natural way how reconstruction works. Reconstruction does not
generate the initial power spectrum but it serves to sharpen the peak and reduce the change in the
peak position generated by mode coupling.

I1.4.3 Halo Model

Another route to understand nonlinear gravitational clustering is done by the Halo Formalism
(Cooray & Sheth, 2002), this semi analytical tool enables to understand statistical properties of

4The peak location comes fro the second order corrections that generates an the out of phase component. The
structure of the mode coupling terms is modified in such a way as to reduce the amplitude of the out of phase
contribution.
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Figure I1.20: The solid line corresponds to the non linear correlation function at z=0. In
doted line the reconstruction correlation function using a smoothing of R = 5h~!Mpc and in
short dashed line R = 10h~'Mpc . In long dashed the initial correlation function before the
non linear evolution. From (Noh et al., 2009)

large scale density and velocity field and at the same time provides a natural way to model the bias.
The Halo model is based on the assumption that matter is located in virialized halos of different
mass, as a consequence the power spectrum of matter could be separated in two contributions:
one coming from the correlation of matter within the halo called 1-halo term, and the contribution
coming from the matter belonging to two different halos, known as the 2-halo term. The size
of halos being smaller than the typical distances between halos enables that statistic properties
could be separated. Thus the specific distribution within halos do not affect large scale structures,
only the spatial distribution of halos. Inversely statistics of the mass density Peld on small scales
are determined by the spatial distribution within the halos, the precise way in which the halos
themselves may be organized into large scale structures is not important. This separation permit to
study distribution of mass in two steps. Distribution of halos and spatial distribution within halos.
A particular assumption is that the physic not described by perturbations theory is confined within
halos, and that halos can be approximated as being in virial equilibrium. Thus the halo model
permits to separate the spatial statistics and the physics involved.

The halo description requires the knowledge of three ingredients: the distribution of halos as
a function of size known as abundance, the spatial distribution within each halo known as mass
profile, and the spatial distribution of halos (clustering). These elements are related to the initial
density field. I refer to the reader to (Cooray & Sheth, 2002), for a detailed description of the
basic equations of this model and the common prescriptions used in the literature for the different
ingredients that goes beyond the scope of this section. The halo model provides a physically mo-
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tivated means of estimating the two-point statistics of the dark matter density field. However, it
has several limitations originated from the simplifying assumptions related to the prescriptions for
the abundance and mass profile. To finish I show some results obtained from this formalism. In
Fig.|11.21] the power spectrum of the dark matter density field at the present time (z = 0) is shown
in solid line. The dotted and short dashed lines show the contributions to the power from the single
and two halo terms. Their sum corresponds to the solid line. In dashed line the power spectrum
measured in numerical simulations (labeled “PD" ). The figure shows the agreement between the
predictions of the model and the simulations.
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Figure I1.21: The power spectrum of the dark matter density field at the present time (z = 0)
is shown in solid line. The dotted and short dashed lines show the contributions to the power
from the single and two halo terms. Their sum corresponds to the solid line. In dashed line the
power spectrum measured in numerical simulations. In From (Cooray & Sheth, 2002)

I1.5 State-of-the-art

To conclude the chapter in Table. II.1 I give a non exhaustive list of the measurements to date of
the baryonic acoustic feature. This summary serves to show the current state of the measurements
and their precision. From the table we observe the context in which the Baryonic Oscillations Sky
Survey emerged.



Table I1.1: Measurements of Baryonic Acoustic Feature.

Reference Type Data Survey # Galaxies V (Gpc) err% z
Eisenstein 2005 3D SDSS 46,000 0.72 4 spec
Cole 2005 3D 2dFGRS 221,000 0.2 5 spec
Hutsi 2005 3D SDSS 46000 0.72 4 spec
Padmanabhan 2007 2D SDSS 600,000 1.5 6 photo
Blake 2007 2D SDSS 600,000 1.5 6 photo
Blake 2011 3D WIGGLEZ 200000 1 4 spec




III. From Sloan Digital Sky Survey to

Baryonic Oscillation Spectroscopic
Survey (SDSS-IITI/BOSS)

This chapter is dedicated to the Baryonic Oscillations Spectroscopic Survey that gives rise the data
used along this thesis to analyze the large scale structure of the universe. This survey is one of the
four programs composing the third version of the Sloan Digital Sky Survey (SDSS-IIT). Recognizing
the great impact that Sloan Digital Sky Survey has made in the history of astronomy I devote
the first part of the chapter to give a brief historical review of the Sloan Digital Sky Survey. 1
begin describing the original project SDSS T (2000-2005), then T review the second version SDSS II
(2005-2008) emphasizing the evolution on the science "design goals" and I finish this section giving
a summary of the scientific achievements in the whole period. The second part is devoted to the
third version of SDSS-III (2008-2014). I describe the evolution of project trying to explain the
motivation for doing a third version. I present the four programs forming this third phase focusing
on the science goals. Finally in third part I concentrate in the Baryonic Spectroscopic Survey, I give
an overview of the survey, I present the science goals, I describe the instruments, the data reduction
process, the coverage and schedule and finally a section to explain the target selection algorithm.
The idea of this part is to provide to the reader a synthesis of the important information of the
survey and data reduction, essential for the data analysis.

II1.1 Sloan Digital Sky Survey

The Sloan Digital Sky Survey is considered to be one of the most influential astronomical surveys
in the last years evaluated by the number of scientific articles that it supported and the number of
references to them. By 2008, to give an idea of the productivity, the number of SDSS-data based
papers reached 1500, 16 of them were within the 100 most cited papers in the past five years. This
characteristic places SDSS as one of the most productive astronomical observatory in this decade
(Madrid & Macchetto, 2009).

The Sloan Digital Sky Survey accomplished in 2010, 10 years of operations in its different

71



72

versions: SDSS-I between 2000-2005, SDSS-IT 2005-2008 and now in its third edition, SDSS-III is
planned to operate between july 2008 until july 2014. In this section the original project of this
survey would be presented.

IIT.1.1 Original Project

The Sloan Digital Sky Survey (York et al., 2000), (Stoughton et al., 2002), (Gunn & Weinberg, 1995)
born in 1978 when a consortium of astronomers gathered to design the next generation survey with
aim of providing to the scientific community a data base suitable to do large scale structure analysis.
In that time the lack of a uniform galaxy sample in wide area of sky prevented to do statistical
analysis, the galaxy surveys available consisted of ~ 20000 galaxies and covers about 700 deg?
(Las Campanas Redshift Survey (LCRS)(Shectman et al., 1996)), in consequence even the lowest
order of the statistical properties of distribution of galaxies at large scale were unknown. Large
scale structure analysis requires a database with high density of objets, so an increase in number of
galaxies and volume surveyed was necessary. In that context SDSS set out to increase two orders of
magnitude over the largest surveys existing in 1995. SDSS proposed to cover the largest fraction of
sky for a digital photo and spectrometric survey at that time. The purpose was set to take spectra
of 5 x107 and 10% QSO, spectra with signal to noise, resolution and wavelength coverage until that
moment only available for small samples.

Performing this uniform spectroscopic sample required a photometric survey with quality and
uniformity of photo data. These requirements since the beginning profiled the project to the design
of a dedicated telescope destinated to generate a photometric survey that serves as the input data
to the target selection algorithms guarantying the uniformity and the redshift completeness of the
spectroscopy sample.

One crucial factor that enabled the SDSS project was the digitalization of photometric data. At
this moment it was recognized that the CCD had better sensitivity, uniformity and linear behavior,
but for large area due to technologic limitations it was preferred the photographic plates . The
technological advances in solid state detectors and the increase in computational processing and
instrument control capabilities enabled to figure out the first large scale imaging survey using CCD
detectors. In this sense SDSS marked the beginning of the era of large area digital surveys.

The strategy of observation was defined to do photometry and spectrometry simultaneously to
optimize the strategy of scanning. The plan was to take photometry in the best conditions of seeing,
sky brightness and sky transparency, and spectroscopy to be done the rest of the time with less
good conditions. This decision was motivated based on the more consuming time of spectrometry
together with the fact that time available in optimal conditions is less frequent. To accomplish this
program in the telescope design it was considered to make easy the change of instruments (camera
et spectrograph).

The design converges to a special purpose 2.5 m telescope (Gunn et al., 2006) in Apache Point
Observatory (APO), New Mexico with a wide angle 3° diameter. For photometry a camera (Gunn
et al., 1998) with a large focal plane of a 30 CCD array of 2048 pixels. The CCDs arranged
in six columns and 5 rows corresponding to the 5 wavebands filters. An additional array of 24
more CCDS serving to astrometric calibration. The telescope would operate in drift scan mode,
permitting almost simultaneously image in five wavebands (Fukugita et al., 1996). An auxiliary 0.7
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m telescope with its respective CCD camera would monitor stars for calibration. And a multi-fiber
spectrograph with two arms, would take 640 spectra at a time. Plates would be manually drilled
with holes corresponding to the target coordinates. Thismanual plugged plate system was chosen
for the spectrograph considering that it accomplish the requirements with less cost than building a
robot to automatize the task.

The coverage of the survey area was chosen to minimize the galactic extinction, sky brightness
and differential refraction, optimizing observing season. The survey area consisted of a slightly
elliptical region centered in the north galactic pole, and when the north galactic cap was inaccessible,
three stripes in the southern would be scanned repeatedly. These stripes gave place when coadded to
observe objets 2 magnitudes fainter opening the possibility of study variable objets. In Fig.[III.1],
the stripes defining the photometric survey are shown and the extinction maps of Schlegel that
determines the survey area (Schlegel et al., 1998).

Figure II1.1: Schlegel Extintion Maps and Stripes of SDSS. From (Schlegel et al., 1998).

The Sloan Digital Sky Survey in its first version successfully accomplished the science require-
ments fixed at the science project. It legged a catalogue of ~ 7 x 10° spectra of galaxies, 9x10%
spectra, of quasars and 2x10° spectra of stars, and a photometric survey of a contiguous region of
sky covering ~ 8000 deg? toward the Northern Galactic Cap, and 700 deg? in three stripes in the
South Galactic Cap. The Fig.|II1.2] shows the coverage of SDSS. This powerful database traduced
in a unprecedented scientific productivity. The scientific researches went beyond the science goals
predicted at the initial project. The next section will give a summary of the results obtained with
SDSS within the first two phases.

Figure II1.2: Data Release 5 Coverage, in red footprint of photometric survey in green foot-
print of spectroscopic survey. From http://www.sdss.org/.
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I11.1.2 SDSS II

Based on the scientific achievements and taking advantage of the potential of the facilities that
promised continuous increasing the power of the database, before the end of operations of SDSS ,
a second version begin to cooking. It used the facilities of SDSS, the telescope, camera and spec-
troscope. This second phase denominated SDSS-II designates a set of 3 programs: Legacy Survey,
Supernova Survey and SEGUE. The Legacy survey aimed to complete SDSS initial photometric
and spectroscopic survey, the supernovae program was dedicated to complete the Hubble diagram
in the low and intermediate redshift interval and the SEGUE was devoted to explore the stellar
populations and dynamics in the Milky Way. The beginning of operations was august 2005 and it
was planned to continue in operation until july 2008.

Legacy Survey

This survey continued the SDSS initial project, its aim was to complete the spectroscopic and
photometric survey in the footprint of initial project, covering uniformly the survey area using the
same target selection algorithm that SDSS. The imaging coverage of the North Galactic Cap had
been almost completed as of the end of SDSS. The last Legacy imaging data was obtained the
second semester of 2006. The spectroscopic survey of SDSS covered only 5700 deg? of the imaging
survey, to cover the rest of the imaging area 524 new plates were used including only the North
Galactic Cap. The coverage was finished in May 2008. Cumulatively between SDSS and SDSS-II,
the total area surveyed was 7646 square degrees in the North Galactic Cap, compared to the goal
of 7700 square degrees. In total as part of Legacy survey a set of 250,000 new objets were classified
as galaxies, and 28,000 new objects were classified as quasars. The total spectroscopic footprint for
Legacy, adding SDSS and SDSS-11, is 8032 square degrees. Of this area, about 750 square degrees
are in the South Galactic Cap.

Supernova Survey

The supernovae is a recognized technique to measure the distance redshift relation using standard
candles whose luminosities are calibrated by objets in the local universe. At that moment in the
Hubble diagram there was a gap in the redshift interval (0.1<z < 0.3). Only 6 of the 157 high quality
SN Ia light curves fell in this interval. Furthermore, in the low redshift range the measurements
came from different surveys, implying different systematics. The goal of supernovae survey was to
address this gap in redshift coverage. The Survey had as objective to achieve a catalogue of 200
intermediate redshift (0.1 < z < 0.4) type Ia supernovae. Another goal of Supernovae Survey was the
minimization an evaluation of SN systematics. In SN surveys systematics errors are comparable with
statistical errors, improved control on the sample was required to acquire better accuracy. In that
sense the requirement imposed densely sampled multi-band SN light curves with well understood
photo calibrated data.

The Supernova Survey carried out repeated imaging on Stripe 82 (southern equatorial stripe)
covering a total of 300-square-degree. These observations took place during September through
November in 2005, 2006, and 2007. The stripe was scanned in total 20 times in SDSS, and an
additional 40 complete coverages of this area were obtained in SDSS-II. A total of 498 spectroscop-



75

ically confirmed Type Ia supernovae was found for the three-season survey. This number is beyond
predictions. In combination with higher redshift samples (ESSENCE, SNLS), SDSSII SN Survey
lead to more robust estimates of cosmological constraints.

SEGUE

From the photometric results from SDSS, the existence of substructures in the stellar halo in the
Milky Way was evidenced . At that moment persisted the idea that our galaxy consisted of an axially
symmetric spheroid with a smooth density profile. The discovery of this substructure motivated
the design of a photometric and spectroscopic survey permitting to study the structure of our
galaxy. In that context appeared in the scenary the Sloan Extension for Galactic Understanding
and Exploration (SEGUE) which science goal was understanding the galaxy structure and testing
models of galaxy formation and evolution. It consisted of a imaging and spectroscopic survey of the
Milky Way and its surrounding halo.

Tt would expand the photometric survey of SDSS, adding 3500 deg?, with the aim of sampling
all the visible sky from Apache Point Observatory. The galaxy extinction restricts the coverage to
regions not close to the bulb. Nowadays, the coverage of this survey enabled to study the transition
between stellar halo and galaxy disk. The survey was designed to take 200 pencil beams spaced
around sky, arranged to sample the sky at intervals of 15° . Two observations of each pencil beam
was done.

It aimed to map stellar populations and their kinematics over large volume of the galaxy covering
distances from inner halo out to galactocentric distances. The targets covered a variety of ages and
metallicities, permitting to enable a whole range of astrophysics projects. In solar neighborhood
the sample includes stars M, L, and T dwarfs BHB and K/M giant stars. A subset of targets are
devoted to unusual stars based in their colors and velocities like low metallicity or high velocity
stars.

II1.1.3 Legacy of SDSS I and II

The combined results of the SDSS I-II (Final Report SDSS-II (Richard et al., 2008)) covered a
imaging survey in five optical bands of 8400 deg? in total, the most part of the survey area (7646
deg 2) is at the northern galactic cap (NGC) and it has 3 equatorial stripes in southern galactic cap
(777 deg ?). The spectroscopic survey covers a total of 8032 deg ? and contains spectra of 900,000
galaxies, 100,000 quasars and 400,00 stars. It also comprehends a supernova survey of 500 Type la
supernovas.

This powerful database was gradually released to public since the first years of operation of
SDSS. Over the eight years of operation of SDSS, seven data released were done almost one per
year, for the 5 years period of SDSS the final data for release was DR5 and for SDSS-II the final
data release version was DR7 (summer 2008) covering the whole period.

SDSS-I-II database have supported a enormous quantity of researches in a broad spectra of astro-
nomical disciplines many findings were part of the scientific goals but many others were completely
unexpected . An analysis of researches shows that only half of the numbers of publications were
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Figure II1.3: Data Release 7 Coverage, in red footprint of photometric survey and in green
footprint of spectroscopic survey. From http://www.sdss.org/

generated within the collaboration, showing that legacy of SDSS contributes to the fundamental
work within all scientific community.

As non exhaustive list of scientific achievements during this first 8 years of operation is:

e Large Scale Structure: precision measurement of large scale clustering and cosmological con-
straints, detection of the BAO signatures in clustering, gravitational lensing.

e Galaxy Formation Clustering in intermediate scales, structure of stellar populations, substruc-
tures in the outer Milky Way, discovery of new companions of the Milky Way and Andromeda.

e Science with QSO. Precision measurements of luminosity distribution of QSO, measurement
of clustering, precision measurements of early structure with Lyman-alpha forest, discovery of
the most distant QSO

e Astrophysics: Properties of galaxies, stellar astrophysics, substellar objets, common origin
of asteroid families, discovery of large populations of substellar objets, discovery of the stars
escaping galaxy

The power of the SDSS database is far from been over, is evident that for the next years It
will continue generating scientific results, and the SDSS will conserve this status as one of the most
influential survey in the history of astronomy, only supered by the next generation wide surveys as
LSST.

II1.2 SDSS III

Basically two reasons have motivated a third phase of Sloan, the potential productivity of SDSS-
database and the fact the SDSS facilities remain been a powerful resource for wide field spectroscopic
surveys. At the moment when the project of a third version began to take form, the camera was still
among the most powerful (if not unique), the technical infrastructure (telescope, instruments asset ,
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etc) and the organization of the collaboration was a strength of SDSS that maintained competitive
for doing wide field spectroscopy even if the development of the spectrographs for 3 programs were
required.

The third version of Sloan, SDSS-TIT (Eisenstein et al 2010 (Eisenstein et al., 2011a), Proposal
SDSS-1II (Proposal, 2008)), called the Massive Spectroscopic surveys of the Distant Universe, the
Milky Way Galaxy and the Extrasolar Planetary Systems, was proposed for 6 years. It is com-
posed by a program of four spectroscopic surveys: the Sloan Extension for Galactic Understanding
and Exploration in his second version (SEGUE-2), the Apache Point Observatory Galactic Evolu-
tion Experiment (APOGEE), the Multi-object APO Radial Velocity Exoplanet Large-area Survey
(MARVELS) and the Baryon Oscillation Spectroscopic Survey (BOSS). The first two dedicated to
explore the structure, dynamics and chemical evolution of our galaxy. the third one to study the
population of giants planets around stars and finally the last one to study the dark energy and
cosmological constraints. BOSS and SEGUE-2 are scheduled for dark time (moonless) while MAR-
VELS and APOGEE for the bright time survey. These four programs will use SDSS infrastructure
with minor changes but each program will use a different spectrograph, SEGUE is the only one that
continued using original SDSS spectrograph.

II1.2.1 SEGUE-II

Like its predecessor, SEGUE-II aimed of study the structure , dynamics and chemical composition of
our Galaxy to contribute to the understanding of the galaxy formation models and stellar evolution.

SEGUE-II continue mapping of stelar populations with almost the same strategy and quality of
its predecessor. It add 1317 deg? to the imaging survey and total of 140 000 spectra of a diversity
of targets. As the first version the targets were selected from SDSS imaging along individual 7 deg?
line-of-sight spread out over imaging survey. Nevertheless, a change in the observational strategy
was done with the aim of maximizing the coverage of the deepest regions of galaxy. In SEGUE II
only deep pointings along the same line-of sight were done, a difference of the first version where
pointings were divided in two categories: short exposures of bright objets and deep pointings. The
Fig.[I11.4] shows the coverage of SEGUE-I and II.

The targets were basically the same: Halo main Sequence turnoff stars, blue horizontal branch
stars, K-giants and M-giants stars, hight velocities and Hypervelocity stars, ultra-subdwarfs , ultra
cool white dwarfs low metallicity stars. A exception of the ultra cool white dwarfs, all target
selection algorithms were adjusted based of the lessons from SEGUE I to achieve a higher success
rate or to achieve larger mean distances. The targets serve to different science goals. The Halo main
Sequence turnoff stars, the blue horizontal branch stars, K-giants and M-giants stars were selected
to study the kinematics and chemical structure of the outer galaxy. Halo high velocity stars and
Hypervelocity stars were selected to study this ejection mechanism originated by interactions with
the Galactics central black hole. The ultra-subdwarfs and ultra cool white dwarfs were selected for
being the most metal poor cool stars in the neighborhood . Finally, the low metallicity candidates
were chosen as future candidates for high resolution spectroscopy to probe nucleosynthesis in the
first generation of metal poor stars.

The first year of SDSS-III, all dark time was dedicated to survey because of the upgrading of
BOSS spectrograph.The spectrograph used in all version of SEGUE was the original one of SDSS
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with 640 fibers, spectral range of 3800 < A < 9200 and a resolution R=A/AA=1800. The final
number of spectra measured was 118,151, and the exposures are accumulated until a fix (S/Na 10
per pixel) threshold at r=19.5 as BOSS does.

SEGUE-1 SEGUE-2

Figure IT1.4: Coverage of SEGUE-I and SEGUE-II. From (Eisenstein et al., 2011b)

I11.2.2 APOGEE

The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a survey designated to
cover the lack of a systematic survey that maps the Milky way. The principal obstacle to realize this
kind of survey is the presence of intergalactic dust that obscures principally the optical band. Until
present the studies of the structure and dynamics of our galaxy are based in different surveys with
a mix of tracers and techniques that generates uncertainties. The program APOGEE emerges as
the first large scale systematic spectroscopic survey. This survey is focused on getting the chemistry
composition and dynamical properties of all populations of stars in our galaxy. In a certain way
it is designed to complement and extend SEGUE. Nevertheless, it goes beyond capabilities of this
survey, because of his high resolution to get abundances and high signal to noise.

Regarding infrastructure it uses the telescope and camera original from SDSS, and the same
plug plate system as BOSS. It uses an infrared 300 fiber cryogenic spectrograph operating in near
infrared (NIR) H - band (1.6 ¢ m) where extinction is lower. The resolution of the spectrograph
is of R=A/AX =~ 30000 and (S/N) of 100 per pixel (compared with SEGUE R—X\/AA—=1800, and
S/N=a 10 per pixel). The high resolution and high signal-to-noise enables to get abundances of
numerous chemical species. The H-band contains lines of molecules OH, CN and CO giving place
a measurements the abundances of H, O and N that are the more abundant elements in the uni-
verse produce by SN II. H-band posseses also lines O,Mg,5i,5,Ca and Ti elements produced in the
explosions of short lived stars, their abundances reflect the shape of initial masse function. Finally
H-band contains elements in the iron peak (Cr V Mn Fe Co and Ni) produced in supernovae type
Ta longer lived lower mass stars. It is designed to provide precise radial velocities across the galactic
budge, disk. The combination between precision velocities and abundances patterns will enable to
test models of galaxy formation

APOGEE plans to take spectra for 10° late type evolved star. The photometric database that
supports the target selection is taken from 2MASS Survey, the selection output is a uniform sample
of giant stars to a flux limited of H ~ 13.5. This tracer is luminous and all found in all the ages
assuring the uniformity of the survey. The resulting homogenous database will surpass by two orders
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of magnitude the total number of high resolution high signal to noise stellar spectra even taken on
all of the world telescopes. The Fig.[IIL.5] shows the planned coverage for APOGEE.
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Figure ITL.5: Coverage of APOGEE. From (Eisenstein et al., 2011b).

II1.2.3 MARVELS

The Multi-Objet APO Radial Velocity Exoplanet Large-area Survey (MARVELS) is devoted to the
formation and dynamical evolution of giant planetary systems. The scientific motivation behind
MARVELS emerges from diversity of masses, semi major axes and eccentricities in extrasolar plan-
ets. Within the standard scenario of planetary system formation, the formation of giant planets
like Jupiter is explained in terms of the core accretion scenario. In principe this kind of planets
was generated in the region beyond the snow line in the protoplanetary disk (where ice is stable)
by the collision of ice bodies achieving masses from 5-10 Earth masses. The subsequent accretion
of gas give places to the final masses of the order of Jupiter mass. These planets are predicted to
have nearly circular orbits with periods of the order of years. Nevertheless, giant planets have been
found with periods of days and with highly eccentric orbits. The high eccentricities are explained in
terms of dynamic interactions with the disk and the shorter periods behavior is explained in terms
of migration models but is not clear which of these mechanism is predominant. This size of the
surveys existing to date do not have the statistical power for studies of planetary system formation
and dynamical evolution. (Over 15 years of observations around 200 planets have been found).
MARVELS aims to provide a large sample of short to intermediate period of giant planets suitable
for statistical analysis. It predicts the discovery of 150 new planets with 0.5 to 10 Jupiter masse.

It uses a infrared fiber fed interferometric spectrograph to measure radial velocities with a
precision and cadence needed to detect giant planets with period lying between days to years. The
detection of planets using doppler spectroscopy involves the observation of doppler shifts in the
spectrum of the star.The fixed delay interferometry method consists in split the incoming beam
and fed an interferometer type Michelson with a fixed optical delay. This uncorrelated fringes are
separated by a disperser and recorded in a two dimensional detector. This configuration adds



80

fringes the interference in the stellar absorption lines. Once the delay of the interferometer is fixed,
the shift in the fringes corresponds to doppler velocity shifts of a detected planet. The Fig.[I11.6]
shows a science exposure prevenient of MARVELS.This technique reduce photon noise by measuring
multiple fringes in a broad band.

Marvels aims to survey of ~8400 bright stars (FGK stars !) in a apparent magnitude V8-12,
visiting each star approximately 24 times over 4 years. The stars are selected from cross-matched
combination of NOMAD (Zacharias et al., 2004) UCAC3 (Zacharias et al., 2010), GSCC2.3 (Lasker
et al., 2008) and 2MASS (Skrutskie et al., 2006) catalogs.

Figure I11.6: The figure shows a science exposure from MARVELS. A zoom shows the region
of the fringed spectrum of an object. The horizontal axis is the wavelength direction. Each
spectral line produces a a modulated fridge pattern in vertical direction. Fitting the shifts in the
vertical position of the fringes over all the spectral lines allows to extract precise measurements
of radial velocities. From (Eisenstein et al., 2011b).

II1.2.4 BOSS

The Baryon Oscillations Spectroscopy Survey (BOSS) as its name indicates, is an spectroscopic
survey that uses the Baryonic Oscillation technique to study the expansion history of the universe.
The expansion of universe is considered as one of the profound question in fundamental physics
(DETF, Albrecht et al (Albrecht et al., 2006)). Four observational probes have been recognized to
disentangle this mystery: Supernovae, BAO, Clusters and Weak lensing. All of these techniques
repose over 2 approaches : a purely geometrical approach of studying the expansion history via
standard patterns: standard rulers in the case of BAO or standard candles in the case of supernovae
or investigating growth of structure over a broad range of redshift (Clusters and Weak Lensing).
The BAO technique is among these techniques the least affected by systematics errors in the phase
of experiments of current phase. BOSS aims to do precise measurements of this characteristic scale
known as BAO distance. It was inspired in the previous work done in SDSS I-II that give place

!Stars belonging to spectral types F, G, or K. Being most similar to the Sun (type G2), these are considered the
most likely to be capable of supporting life on worlds that circle around them within their habitable zones.
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to the first detection of BAO scale in 2005. This detection was done with SDSS and 2dF galaxy
Redshift Survey (Cole et al., 2005), (Eisenstein et al., 2005) and yields a measure of the distance at z
~ 0.275 with 5 %. Using the last data release of SDSS, the measure of this distance at z &~ 0.275 was
estimated with ~2% precision with the galaxy sample. BOSS aims to measure this distance,d4(z)
and H(z) at z—0.35 and z ~0.6 with ~ 1% precision . BOSS is in this sense the natural extension
of SDSS I-1I with proven hardware and acquired experience on the previous versiouns.

In terms of survey it planned to build a catalogue consisting of 1.5 million galaxies in the range
of redshift 0.2< z <0.8 . This quantity will permit to achieve precision of 1 % in the measure of
the absolute BAO scale separating the radial and transverse direction, giving place to constraints
to Hubble parameter H(z) and the diameter distance d4(z). It planes to innovate a new technique
of BAO measurement using the Lyman-alpha forest of quasars as a tracer of matter. To explore
this new technique it will devote 20 % of the fibers to quasar spectra. The science goal is fixed to
160 000 QSO in the redshift interval of 2.3< z <2.8 . The precision of the measure with quasars is
predicted to be of the order of ~4 %.

II1.3 Baryonic Oscillations Spectroscopic Survey in detail

I11.3.1 Scientific Goal

As it has been explain in chapter 2, the oscillations of primordial plasma of baryon-photon previous
to the combination era imprinted a characteristic scale in the matter distribution. This phenomena
called Baryonic Acoustic Oscillation (BAO), appears as a bump in the 2-point correlation function
of galaxies at a comoving scale corresponding to the sound horizon dps0. The value of this char-
acteristic scale could be computed , in absolute units using straightforward physics and the tight
constraints that Cosmic Microwave Background (CMB) measurements impose to the cosmological
parameters.

The BAO technique consists in using this characteristic scale as a standard ruler to measure
cosmological distances over a wide range of redshift, permitting to study the history of Cosmic
expansion. Separating the measure of the BAO scale in the Line of Sight and the perpendicular
directions, permits to constraint the Hubble parameter H(z) and the angular distance d4(z) in-
dependently. The final goal of this measurements is to constraint the equation of the dark energy
parametrized by wy and w, ? and constraint the cosmological parameters Hy and €2, .

BOSS could be seen as of two spectroscopic surveys that are executed simultaneously, the galaxy
survey and the quasar survey. The galaxy survey was planned to extend the results of BAO obtained
in previous versions with the well establish technique using the galaxies as tracers of the underlying
matter. It consist of spectra of 1.5 million massive galaxies in a redshift range of 0.45< 2z <0.7.
The target selection is designed to give a uniform sample with a constant comoving density between
z=0.45 and z=0.6 and then consisting of a magnitude limited sample up to z=0.7. It is the largest
spectroscopic galaxy survey in effective volume and for BAO measurement at z=0.6. the error is
only within a factor two of the cosmic variance limit. These characteristics make BOSS the most
powerful galaxy survey for BAO measurements for the decade .

*Where the equation of dark energy is parametrized as w(a) = wo 4+ wa (1 — @) with a = (1 + 2)7!
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The quasar survey will explore a new method of BAO measurement using the quasar spectra. It
uses the Lya forest as a tracer of structure at high redshift. The Lyman-« forest is the section in the
quasar spectra between alpha emission line and beta emission line. When redshifted photons emitted
by the quasar pass throughout the intergalactic medium they are redshifted and then absorbed by
hydrogen gas producing a series of absorption line in the quasar spectra. This absorption spectra
maps the distribution of matter along the line of sight direction. The quasar sample consist of 1.5
x10° quasars in redshift range of 2.2 < z <4, this sample was designed to permit that Ly « forest
absorption spectra be in the spectral range of the spectrographs. This set of quasars will sample
a sparsely grid of light-of-sight permitting to test a large volume and giving place to a measure of
cosmological distance at high redshift (z=2.5).

In the table ITI.1 the error estimation on the measurement of the BAO scale are shown for the
case of galaxy of low and high redshift and for the case of QSO. The estimation for the case of QSO
assumes 15 QSO for deg? over the whole survey area.

Table ITI.1: Error estimation for BAO measurement. From Project Description 2.
% da % H(z)
Galaxies z=0.35 1 1.8
Galaxies z=0.6 1 1.7
Lya F z=2.5 4.5 2.6

The table II1.2 shows the forecast of parameter constraints over the near future and current
BAO experiments.

Table II1.2: Forecast of parameter constraints over the near future and current BAO. From
the Project Description?.

h QK wo Wp Wq FoM
BOSS LRG 0.008 0.0028 0.089 0.032 0.366 86
BOSS LRG +QSO  0.08 0.0019 0.076 0.029 0.279 122

WiggleZ 0.012 0.0028 0.099 0.035 0.430 66
HETDEX 0.015 0.0021 0.098 0.034 0417 70
WFMOS 0.011 0.0017 0.083 0.033 0.323 95

111.3.2 Coverage and Schedule

BOSS plans to cover a total of 10 000 deg? .The footprint in the NGC corresponds to the boundary
defined in the original project: an elliptical region centered at ra = 15 h 20 m dec= +32 ° It covers

a total area of 7646 deg?and corresponds to region least affected for galactic extinction, following
the Schlegel maps. (Schlegel et al., 1998).

By contrary in the south galactic cap the survey original region covered only three stripes, one
along the celestial equator(20h.7 to 4h, d=0), the other two north and south. It summed a total
777 deg?. For BOSS the idea was to produce a compact and contiguous footprint in the SGC in
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order to do that an additional 2500 deg? was imaged. The boundaries of this region was chosen
trying to reach fields of CFHT Legacy Survey. The program was completed in january 2010. The
Fig.|II1.7] shows the footprint of BOSS and the plates observed during the fist year of operation.

Figure II1.7: BOSS Coverage. In color vino footprint of BOSS, the red regions represents
tiled regions and in blue plates exposed. From (Eisenstein et al., 2011b).

BOSS plans to operate a total of 5 years using dark and grey time. Dark time is assumed to
be 50% and grey time 10% of total time. It began operations in august 2009 and it will finish at
the summer 2014. In Fig.[II1.8] the SDSS schedule is presented, a data release is planned for each
year of data. The first data release, DR8 was delivered in January 2010. It includes all the BOSS
photometry and SEGUE-II spectroscopic data.

2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014

[ |[sEG=2][SEGUE2 paraliel_ . _
| De'vel " BF)SS : : : : I
|
|

[ Devel || MARVELS
| Devel || APOGEE

Figure ITI.8: SDSS-IIT Schedule. From Project Description in http://www.sdss3.org/

111.3.3 Hardware:Camera, Spectroscope, Telescope

BOSS benefits of the facilities of previous version of SDSS. Nevertheless some upgrades were neces-
sary because of SDSS-111/BOSS was designed to observe 1-2 magnitudes fainter in relation with its
predecessor. In this section I describe the instruments used in BOSS specifying in each case were
they are the original ones.
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e Telescope. The Sloan Survey uses a 2.5m f/5 modified Ritchey Chretien ® wide field altitude
azimuth telescope (Gunn et al., 1998). It is located at Apache Point Observatory (APO) in
Southern New Mexico. It images the sky by scanning along great circles at the sidereal rate
or TDI mode that means time delay and integrate. TDI mode involves keeping the telescope
stationary and letting the stars drift across the CCD camera (or one telescope that moves
at a rate that is slowed from the sidereal rate). The objective is to synchronize the readout
rate of the CCD image detector with the rate stars moves across that column. The sky drift
rate varies as the cosine of the declination angle. The readout of each line of CCD camera
must be timed to coincide with the drift rate of a single star across one column of the CCD
camera. It poses a wide field of view of 7 deg? (Gunn et al., 2006). The TDI mode of the
telescope requires an almost flat field with zero distortion. These requirements are satisfied
using a optical configuration consisting of large secondary mirror (half of the primary) and
two corrector lenses. The first corrector lens is a classical Gascoigne astigmatism corrector,
the second is a aspheric plate close to the focus which corrects distortion and the lateral
chromatic aberration introduced by the first element. The result is a almost flat field of 3
deg with zero distortion. The quality of telescope is better that 0.5 arcsec rms images over
the camera field in all bands. Resolution is seeing limited. The seeing is about 0.8 arcsec
in the APO site. It is equipped by a imaging camera that mounts on Cassegrain focus and
two double spectrographs permanently mounted on the rotator.The telescope was designed
to change between photometric mode and spectrometric mode by removing the camera and
muting at the Cassegrain focus a fiber plug plate. The Fig.[II1.9] shows a view of SDSS telescope
and scheme of the instrument.

Figure ITI.9: SDSS Telescope. From http://www.sdss3.org/

e Camera and Filters. For imaging the sky it posses a drift-scanning mosaic CCD camera
(Gunn et al., 1998). It contains 2 sets of CCD arrays, one set for the astrometric measures
and the other set for the photometric measurements. The imaging array consist of 30 CCD of
2048 x 2048 pixels. The pixel size is 24 um (0.396 arcsec sky). There CCD are arranged in a
six columns array and 5 rows (Fig.[II1.10]). Each row observes the sky with a different filter
in a temporal sequence r, i, u , z and g. The imaging survey is taken in a drift scan mode

5 A telescope Ritchey-Chretien is a telescope type Cassegrain design to eliminate the coma aberration. A Cassegrain
telescope is an optic dispositive compound of two mirrors. A primary concave and parabolic mirror and a convex et
hyperbolic secondary mirror. In the Richtey-Chretien telescope both mirrors are hyperbolic
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(TDI mode). The effective wavelength of the 5 filters are 3560 for u, 4680 for g, 6180 for r
7500 for i and 8870 for z. The response functions are shown in the Fig.[I11.10].
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Figure II1.10: Left panel corresponds to a schematic view of CCD array . Right panel the
Response Function of Filters (Gunn et al., 1998).

Finally the array for astrometry measurements consist of an array of 128 x 2048 CCD with
an r filter covering the entire camera.

e Spectrograph.Each spectrograph 7 is a device of two arms one for the blue and one for the red
sides of the spectra.Each spectrograph is fed with optical fibers using aluminum plates. The
plates are drilled with holes corresponding to the positions of the targets and then the fibers
are manually plugged into plates. Each spectroscopic plugged plate has a circular field-of-
view with radius 1.49 degrees. The range of spectrograph is from 3600 < A < 10 000 with a
resolution of R = A\/AX = 1300 — 3000 with a (S/N)? ~ 22 per pix at magnitude limit average
over (7000-8500 and (S/N)? ~ 10 per pix average over (4000-5500 ). The principal update
of BOSS in relation with the predecessor was done in terms of the number of fibers . The
spectrograph passes from 640 fibers with 3 arcsec of diameter to 1000 fibers of 2 arcsecs of
diameter (500 fibers each spectrograph). The increase in fibers yields a rise in survey efficiency
and the smaller diameter traduce in a higher signal to noise spectra. The light from the fibers
is sent to a beamsplitter with a coating that reflects the blue part of the spectrum and allows
the red part to passe through it. Then, 2 cameras, one for the red and the other for the blue
bands , register the 2-dimensional spectra for each one of the objets. An upgrade in cameras
system was done permitting to achieve the requirements in terms of sensitivity for the Lymana
forest measurements. The SDSS CCD of 20482 (24 micron pixel) for the red and blue channels
were replaced by a LBNL CCDs of 4128 x 4114 in red channel (15 micron pixel), and a 40962
(15 micron) pixel e2v CCDs in blue channel. The red side CCD has high quantum efficiency
in the near-infrared and the blue side is adapted to have better sensitivity in this range of the
spectra. This smaller pixel size of CCDs enables the update in fiber system . The Fig.[II1.11]
shows a scheme of BOSS spectrograph.

5TDI mode involves keeping the telescope stationary and letting the stars drift across the chip.The camera surveys
the sky in great circles and a given point on the sky passes through the five filters in temporal succession. The effective
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Figure II1.11: Scheme of BOSS spectrograph. From http://www.sdss3.org/.

I11.3.4 Between observations until reduced data

The process to give place to final data follows different stages that I will briefly explain in the next
enumeration. For detail description of each one of the stages, I refereed the lector to the technical
papers that describe in detail the procedures, in this section I only pretend to give an overview of
the complete procedure that give place to the reduced data that I analyze,

e Photometric Measurements. The camera surveys the sky in great circles, each point on the
sky passes through the five filters in temporal succession. The effective integration time per
filter is 54.1 s, the time to pass over the entire photometric array is 54.1 s. The result of the
scanning is a long strip consistent of 6 scanlines. To cover a region two strips are overlapped in
8 %(1 arc min) forming an stripe 2.54 centered on the great circle coordinates ®*Each scanline
comprehends information of the 5 bands and the 2 astrometric CCD. The information of each
CCD is broken in overlapping series of 10 ’ x13.5’ for easy processing, each series is called
frame and contains 161 lines. The frames than corresponds to the same sky location in each
5 bands are grouped together for processing as a field.

e Photo Reduction.The imaging data follows a series of pipelines that perform astrometric cal-
ibration (Pier et al., 2003), photometric reduction (Lupton et al., 2001) and photometric
calibration (Padmanabhan et al., 2008).

— Astrometric calibration This pipeline relies pixel position to celestial coordinates, it fol-
lows a 3 steps process. First a catalogue is generated in r band, the stars selected from
r-band are matched with USNO CCD Astrograph Catalog if available, then bright stars
detected in astrometric CCD’s are matched with Tycho 2 Catalog. Using this matched
objets the set of transformations defined in terms or r band are translated to the others

integration time per filter is 54.1 s, the time to pass over the entire photometric array is 54.1 s.
"TBOSS posses two spectrographs
8The natural system for processing a drift scan is the great circle coordinates system (mu nu).
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bands matching the others bands centroid positions. The transformations are defined
including chromatic corrections.

— Photometric Reduction The photometric reduction consists in two separated pipelines
postage and frames.

x Postage Pipeline. This pipeline characterizes the behavior of the PSF as a function
of time and localization in the focal plane. It calculates global sky for a field, the
flat field vector and bias level.

* Frames. This pipeline finds deblends, and measures the properties of the objets.
It analyses one field by a time integrating the information contained in 5 different
frames corespondents to 5 filters. It performs at each frame removal of instrumental
signatures (flat field, bias, cosmic rays, bad columns). Then it substrates sky and
finally the objets are detected and their properties measured.

The detection of the objets is done in a 4-steps process for each band. First step is
run the objet-finder that detects BRIGHT objets looking for pixels 200 o above the
noise. Second step is the estimation of sky level by median smoothing the frame on
scale 100 7 and proceed to the subtraction. Third step is searching for peaks 5 o
over smoothed sky. This set of objets are flagged as binnedl and then subtracted.
The frame is rebinned in a 2 x 2 image, the object-finder runs again, resulting in
the sample flagged binned2 and then subtracted, again after rebinning 4x4, the
objet-finder is run a last time, and the set is called binned 4.

Then, the objets are deblended looking for peaks in individual objets. The final list
of objets in done merging the list all of bands and adapting the profile of the image.
Each objet is identified by run, rerun, camcol, field id objectid identifier within each
field, and the genealogy. Finally the pipeline measures properties of each objet and
position between others.

— Photometric Calibration. Photometric calibration consists on relaying outputs of the
CCD to physical fluxes received above the Earth atmosphere. In SDSS I and II the
calibration process implied the comparison of 3 difference telescopes and filters: the aux-
iliary telescope that observed a set of standard stars to determine photometricity and
atmospheric extinction, the SDSS telescope that surveyed a set of fields to calibrate and
finally the Naval Observatory 1m telescope used to extract the standard stars and place
3 photometric system on a uniform system. Because of the systematics introduced for us-
ing different photometric systems, SDSS III met in place a new calibration method called
ubercalibration (Padmanabhan et al., 2008). It consist on using overlapping regions to
realize an internal calibration. In fact the photometric calibration could be separated in
relative calibration and absolute calibration. The relative calibration pretends to estab-
lish a consistent calibration system across the entire survey, the absolute calibration links
it to physical fluxes. The uber-calibration system decouples the two problems. It relays
on repeated observations to constraint the photometric calibrations. To implemented
to SDSS III : 1)Two additional sets data were taken, one set of short scans across scan
directions to get temporal variations in the flat field , the other set consists of long scans
designed to connect every part to survey. ? 2) A photometric model is defined by a set
of parameters (optical response of the telescope a(t), flat field f (i,j, t), and atmospheric

“This data was observed 7 times faster to not affect science goals of the survey.
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extinction k(t)) and 3) Repeated observations of stars are used to constrains the set of
parameters using a likelihood analysis.

e Target Selection The targets to perform spectroscopy are selected based on the photometric
imagining in the 5 bands applying some cuts that generate homogenous samples for the case
of galaxies or using statistical methods in the case of quasars to achieve a high efficiency. The
next subsection details the target selection algorithm.

e Tiling Algorithm Based on the target list the tiling algorithm (Blanton et al., 2003) assigns
targets to the plates, the aim of the algorithm is to assigne targets to fibers with a maximum
efficiency (number of targets assigned in relation to fibers available) and ensuring uniform
completeness in the survey. A practical problem that this algorithm deal with is the fiber
collision. Due to the finite size of fiber plugs a separation of the fibers centers of minimum 62
arcsec is necessary so two targets separated by less than this distance could be covered only
in the regions of overlapping of plates. These targets are denominated collision targets, so
the survey is designed to allocated 99 % of the maximal set of targets that do not have such
collisions and 92 % of all targets.

e Spectra measurement For each observation the aluminum plates previously drilled with holes
corresponding to targets are mounted on a cartridge fixed to the telescope. The observations of
BOSS spectra are done with a criterium of constant signal-to-noise rate to assure completeness
in redshift. It consist of a base of 15 minutes exposures with additional exposures until arrive
to a fix (S/N)? criterium, a rate (S/N)? > 22 per wavelength pixel at i=21 (2 arc sec fiber
magnitude) in red cameras and (S/N)2 > 10 per wavelength pixel at g=22 in blue cameras
with magnitudes corrected for galactic extinction. To give an order of magnitude of the time
required to take a spectra is about 45 minutes in good weather conditions.

e Spectroscopic Reduction After taking spectra, the data follows 2 pipelines spec2d and specld.

— spec2d This pipeline will reduce the 2 dimensional spectrograms to a flux and wavelength
calibrated spectra

— specld This pipeline analyses the combined merged spectra output by spec2d and de-
termines the emission and absorption redshifts , classifies the spectra and measures the
emission lines and fit a continuum with galaxy templates.

111.3.5 Target Selection Algorithms
Galaxy Target Selection

As I already mentionned, BOSS galaxy targets were selected from imaging in the 5 bands. The
selection was designed to give place a sample of luminous and massive galaxies with an uniform
distribution of stellar masses from z ~ 0.2 to z ~0.6. The basis of target selection is that this
kind of luminous galaxies have old stellar systems and in consequence they have a prominent 4000
break in their spectral energy distributions, so the presence of this feature in their spectral energy
distribution allow us to detect them and also determine the redshift considering the band where
this 4000 lies. This criterium was used for the LRG selection in SDSS I-1II.
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The target selection algorithm (Padmanabhan et al in preparation)consists of two sets of cuts
that give rise to two samples at different redshift interval. The Cut I generates the sample called
LOW redshift in the interval 0.2 < z < 0.4 and the Cut II generates the sample called CMASS. The
CMASS sample consists of high mass galaxies and covers redshift greater than z=0.4. The cuts are
defined in terms of the rotated combination of colors, ¢y, ¢, d . that are defined to track the passive
evolution with redshfit of the stellar population:

cp=(r—1)—(g—r)/4—-0.18
= 0.7(g —7) 4+ 1.2(r — 1 —0.18)
dy=(r—i)—(g—r)/8

The definition of the LOW sample is as follows:

“l

<135+ L L5
" * 03 (TTL.5)

¢l < 0.2 (11L.6)
16 < r < 19.6 (1IL7)

The first cut is responsible for setting the luminosity threshold as a function of redshift (Eisenstein
et al., 2001), (Cannon et al., 2006), the cut in ¢, restricts the sample of galaxies to LOW redshift
(z<0.4) and the cut in r ensure good spectroscopic performance.

The definition of the CMASS sample is as follows:

d; >0.55 (II1.8
i< 19.86 + 1.6(d, — 0.8) (II1.9
t < 19.9and ifiper < 21.5

r—1<2
Zpsf — 2 > 9.125 — 0.45z
Tpsf — 1 > 0.3

The first three cuts are defined to separate high redshift galaxies and to account for passively evolu-
tion of massive galaxies accordingly the population synthesis Maraston model (Maraston, 2005)The
second cut is a cut in absolute magnitude or stellar mass where d tracks for redshift (Panmanabhan
et al in preparation) . The Fig.[III.12| shows an illustration of the 3 cuts in d; and i magnitude
using the AGES red sample. This plot was generated using the SDSS photometry and the AGES
redshifts. The black line represents the evolution in the frame of colors using the passive evolution
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model of Maraston. The plot shows the performance of the algorithm, the cut in d; performs the
separation of low and high redshifts and the combination with i cuts guaranties the constance of
the masses in the sample. The last 2 cuts are to reduce the stellar contamination. In relation to its
precessor SDSS I-11, BOSS goes fainter and bluer than LRG sample.
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Figure III.12: Illustration of Target Selection using AGES. The plot shows the frame color
coded by galaxy redshift for red and blue galaxies from AGES red sample, the CMASS cut is
shown and the prediction of the Passive Evolution model of galaxies for a log(M)=11.25

These magnitude cuts use model magnitudes and colors are defined with model magnitudes
except for i gipero which is the magnitude in the 2 arcsec fiber (Stoughton et al., 2002)'0 In case of
SDSS I-IT Petrosian magnitudes have been used because the sample was stronger, in case of BOSS
the cmodel magnitudes are the best choice.'!

0Tn SDSS we have different kind of magnitudes estimates: Pretrosian, model magnitudes and cmodel magni-
tudes.The Petrosian (1976) system, measures galaxy fluxes within a circular aperture whose radius is defined by the
shape of the azimuthally averaged light profile. The model magnitudes.(...to be completed).The cmodel magnitudes
are based on the better-fitting of a particular model in the r band as a matched aperture to calculate the flux in all
bands. The models used are , the exponential and or de Vaucouleurs model, the expressions of the 2 profiles are de
following, the first one corresponds to a pure de Vancouleurs and the second equation an exponential profile.

I(r) = Ioexp—T7.67[(r/ress)" /4] (III.14)
I(r) = Ioexp(—1.68r/resyf) (IIL.15)
(I11.16)

UFor bright galaxies the measurements of the Petrosian magnitudes are preferred in relation with the others because
they have hight signal-to-noise ratio and because they are model independent yield a large fraction of the total flux,
roughly constant with redshift. For the faintest galaxies, estimates of the Petrosian magnitudes become very noisy,
so it is preferred the modelMag is usually a more reliable estimate of the galaxy flux galaxies.
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Figure II1.13: Comovil number density of Galaxy samples. From (Eisenstein et al., 2011b).

Quasar Target selection

The principal goal of BOSS is to provide cosmological constraints using the BAO physics. Because
of quasars are only used as a backlight it is no necessary to define an homogeneous sample, the
unique criteria for doing cosmology is to maximize the surface density of quasars with redshift 2.2
in order to have access to the Lya forest in the wavelength range of the spectrograph (having the
required S/N within the magnitude limits(g ~ 22) ).

However, in addition to large scale structure analysis, BOSS plans to provide a quasar sample
suitable for doing quasar science. So even if for BAO measurements the uniformity of the sample
is not required, for the other quasar science is important to guaranty this characteristic of the
sample. The quasar target selection (Ross et al in preparation) reflects this double motivation. It
is defined in terms of two samples: the CORE and the BONUS samples. The CORE aims to
achieve a uniform sample and the BONUS is concerned to achieve the greatest surface density. The
CORE quasars are selected only from Single Epoch photometry with the same algorithm along the
survey to guaranty a uniform selection function. They posses the confidence of being QSO based
on the highest probability from one or more different methods. The BONUS are selected using a
combination of methods in order to achieve largest surface density (= 20 ), the target selection could
vary along the survey and also could use information from other sources when available. The 20%
of BOSS fibers are reserved to QSO targets , this percentage corresponds to a total of 40 quasar
targets par deg?. From them a half is dedicated to CORE and the other to BONUS targets. The
recovering of quasars is challenging because 2 reasons: the stellar locus at z ~ 2.7 crosses quasar
locus and the photometric error at this depth is important (near flux limits of SDSS imaging). In
consequence the efficiency estimated is about 50 %.

The first year of BOSS data 3 methods of target selection have been used: Kernel density
estimator (Richards et al., 2009) , the Artificial Neural Network (Yeéche et al., 2010) and the
Likelihood method (Kirkpatrick et al 2011 in preparation). A variation of Neuronal Network have
been used too "Combined Neural Network". The first method denominated KDE uses a statistical
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technique known as kernel density estimation, KDE . The kernel density estimate is a generalization
of the concept of a histogram where instead of discrete bins whose locations are defined by a grid
the are substituted by continuous kernel function.Using the KDE Kernel Density estimation on a
training set of known quasars a probability distribution function (PDF) is generated. For the PDF
estimation the 4 colors are used t(u-g, g-r, r-i, i-z) and then for a given object the probability of
being a quasar or a star is computed, and dependiing of the position of the objet in the KDE density
space it acquires a clasification. An aditional cut is used to assure not being close to the stelar locus.

The likelihood method, is based on the generation of a probaility estimation based in Monte
Carlo simulations. Classification of the objets is done based on a rate of likehood of being a quasar
and the likelihood of being other objet. The calculations are performed in the flux espace.

Loso/Agso
p_ 117
Lee/ApE + Lgso/Agso ( )

where Lgso is the likelihood that an object is a quasar and L is the likelihood that an object is
in the “Everything Else” catalog. P is the probability for a single target. The normalization Agso
is the sky area of the QSO catalog. The normalization Agg is the sky area of the Everything Else
catalog.

Finally the neural network method works directly with the fluxes, a neural network is constructed
based on 10 inputs, the g magnitud, 5 error magnitudes and the 4 colors. The neural network is
trained with a set of known objets. The output of the NN provides a function valued between 0 for
non quasar an 1 for quasar that enables to classify the objets.

The target algorithm of quasars have been evolving within the first year of BOSS operation,
globaly for this year in the nominal area the efficiency achieve ~35% that corresponds to ~14 z >
quasars deg—2. The “CORE” selection efficiency is just over ~50%. The science requirement is set
to 15 quasars per deg?. The surface density is now achieving the science requirement goal. In the
Fig.[IT1.14] the number density of quasars is shown with the results of one year of BOSS operations.
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Figure II1.14: Comovil number density of QSO samples. From (Eisenstein et al., 2011b).



IV. Study of correlation function
estimators with simulations

In order to constrain theories against observations the accurate estimation of clustering statistics
from galaxies surveys is necessary. This chapter is devoted to study the estimators and the error
analysis that will be used in further chapters to analyze the large scale structure in BOSS data.

The most widely used statistic in large scale structure analysis is the two-point correlation
function in real and Fourier space. If initial fluctuations are Gaussian, the power spectrum, or its
Fourier transform, the correlation function, provides a complete description of fluctuations. Even
if the initial fluctuations are not exactly Gaussian, the two point statistics provide a good starting
point for higher order analysis. We have seen in the first chapter that the power spectrum is supplied
by theories that describe the state of universe at early times and in the chapter devoted to the BAO
we have seen how this power spectrum had evolved. In that sense, a direct comparison between
theories and observations could be done. Even if £(x) and P(k) are equivalent in theory, the same
statement applied to the estimates of & () and P(k) derived from finite and noisy samples, is not
true (Feldman et al., 1994). Historically, the Baryon Acoustic Oscillations were detected in real
space, even thought, the Fourier analysis have also been used by many authors for data analysis of
large surveys in the last decade. There are advantages and disadvantages of both analyses. In this
work T use the correlation function analysis, which is more adapted to explain the physics involved
in BAO.

For this chapter, I decide to follow an approach that corresponds to the process followed during
my thesis. That is, I study the properties of the estimators of the correlation function and the
systematic and statistical uncertainties using mock catalogs. The structure of the chapter is the
following. In the first section, I first describe the mock catalogs used to study the estimators. The
mock catalogs were generated from log normal simulations. These simulations are not demanding in
computing time and are accurate enough to study the two point statistics in large scales, permitting
to generate many realizations and study precisely the effects of cosmic variance. These mocks will
serve to illustrate the estimators and related concepts and to test different statistical and systematic
effects in the estimator.

In the second section I present the various correlation function estimators available. Briefly
I will define the concepts of cosmic error and cosmic bias that would allow us to compare the
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different estimators. Using the lognormal simulations I show that Landy-Szalay estimator is the
most adequate to analyze large scale structures. In the last part of the section I will concentrate
in the Landy-Szalay estimator and its properties, I present some approached analytical expressions
for the variance and the bias available in the literature. I compare theoretical errors with the
error estimation from simulations. As we will see, the estimators of the correlation function are
based in the comparison of the galaxy distribution with a random distribution which mimics the
observational conditions of data samples. In the fourth section I discuss the random generation that
is a crucial ingredient of the estimators. I discuss the elements that have to be taken into account
in random generation to have an accurate estimation of clustering statistics: the radial and angular
selection functions. I study separately the effect of radial selection function and the geometry. In
the fourth part I join all the pieces to compute the correlation function from realistic simulations.
The simulations mimics the properties of the LRG sample of SDSS-DR7, survey geometry, redshift
distribution, bias and mean density. In this section I study how the completeness of the sample
affects the correlation function. I introduce the radial weights designed to minimize the cosmic
variance. I study the effect of applying them in the estimation of the correlation function.

Finally, the last part is devoted to the error analysis. Measurements in galaxy catalogs are
subject to uncertainties that must be properly addressed in order to compare with theoretical pre-
dictions. These uncertainties can be separated according to its nature in statistical and systematic.
The statistical errors are the shot noise and the cosmic variance. The systematic errors could be
separated in theoretical and observational. Within the uncertainties that comes from the theoretical
side we have the effect of peculiar velocities, projection effects, galaxy bias (galaxy distributions
do not follow exactly the matter distribution), magnitude limited catalogs, etc. The observational
errors arise from technical limitations due to telescopes and instruments. As an example we have
not perfect sampling (close pairs of galaxies), effects of dust extinction, contamination from sources
(stars), among others. In this chapter I will concentrate in the statistical uncertainties, in the chapter
devoted to analysis of BOSS data I will talk about the observational bias and errors proper to BOSS
Survey and in the chapter devoted to cosmological constraints 1 will talk about the uncertainties
coming from theoretical side.

IV.1 Log Normal Simulations

We have said in the last chapter that to describe the density field p(7) one uses an scalar random
field. To introduce the lognormal random field let us remind the definition of the contrast of density

—

d(7) of a continuous density field p(7)
p(7) = p[l +6(7)] = pA (IV.1)

where the fluctuations must have (A) = 1 and A > 0, given a value of the mean density field p.
The idea is to generate a random field A whose variance follows the right power spectrum. One
possibility is to use a gaussian random field for A, motivated by the physical reason we have in-
troduced in the last chapter supposedly generated within Inflation. A gaussian random model is
only valid for a density field with linear evolution (valid in the limit of zero fluctuation amplitudes).
Assuming a finite rms (root mean square) fluctuations o some problems arise because of the non
positivity of the density field. In particular, as a result from this, we assign a non zero probability
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to regions of meaningless negative density. A solution is to use lognormal density fields to simulate
matter distributions. The use of lognormal (LN) random fields to model the distribution of matter
of the universe was proposed and studied by Coles and Jones (Coles & Jones, 1991). This model
which is completely specified statistically as the gaussian one and do not violate the common sense
conditions p > 0. Furthermore, the possibility to use this models to study the clustering statistics
was shown in (Coles & Jones, 1991). The lognormal model is physically motivated as well by a
kinematic argument stating that if initial peculiar velocity are gaussian and extrapolating into non
linear regime leads to a lognormal distribution. Overall arguments there is the simplicity of this
model in comparison with others non gaussian random fields.

A lognomal density field is defined as:

Y = Ae* (IV.2)

where A = ¢~ is the normalization allowing (Y) = 1 and X () is a gaussian random field which
probability density function (PDF) given by the normal distribution with some mean and variance

N(u, 0?):

flz) = exp|(z — p)*/20°] (IV.3)

1
ovor
The resultant random field Y respect the desired properties of the density field, that is (Y) =1
and Y > 0. As well as gaussian field, a log normal gaussian field is completely described by its
correlation function, and has the advantage that the positivity of the field is guaranteed and its
proximity with a gaussian random field allows us to calculate many properties in the same way as
for a gaussian field.

To simulate a lognormal field the starting point is an input power spectrum that we want to
imprint in the random field. We need an expression that relates the power spectrum that must be
applied to a gaussian field in order to get the desired power spectrum for the lognormal random
field. This step is required because what we know how to generate are the gaussian random fields.
This relation is given in terms of the respective correlations functions. The following expression
relates the correlation function of the lognormal gaussian field &7, (k) with the correlation function
of the gaussian random field {¢(k) (Percival et al., 2010):

¢q(k) = Ln[l + £y (k)] (IV.4)

Once we have the expression for the power spectrum. We have to generate a discrete gaussian
random field §(7) in configuration space with a variance o = 1 and mean p = 0.

p(x) = N(1,0) (IV.5)

Then we go to the Fourier space where the different k modes are independent. We get the Fourier

coefficients pi, then, each Fourier mode k= (kz, ky, k-), must have a variance given by the value

of the power spectrum at k = |(kz, ky, k). To do it in Fourier space we only have to multiplying

the gaussian random field p; which variance is 1 by the desired variance /Pg(k) with the power
Ak)3 1

spectrum given by Eq.[IV.4] multiplied by a factor ((27)3 = 75 - And compute the inverse Fourier
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transform again to get the gaussian density field that we will introduce in expression Eq.[IV.2] to
get the final lognormal field.

The density field generated with the lognormal random field is then sampled by a discrete point
distribution, we assume that the galaxies follows a Poisson distribution. A complication comes when
working with galaxies, as we will see later, the distribution of galaxies does not trace exactly the
distribution of matter. The galaxies are more clustered in overdense regions, thus a bias must be
included to account for the amplification of fluctuations, this factor is called galazy bias.

po(x) = bpm () (IV.6)

Thus, to generate the mock galaxies from the resultant density field, the biased density field in each
pixel is used as a probability distribution function. In Fig.[TV.1] a slice of the density field generated
in box of 1600 Mpc? in a grid of 200% pixels.

alog10(N) alog10(N)

r [Mpc/h]
r [Mpe/h]

500 1000 1500

-1500  -1000 -500 0 500 1000 1500 -1500  -1000 -500 0
r [Mpe/h] r [Mpc/h]

Figure IV.1: In left panel an slice of the density field generated with a log normal simulation
using a power spectrum as the input. In right panel the same slide populated with galaxies
following the density field distribution of matter

In panel Fig.|IV.2| a plot of the input power spectrum and the power spectrum from mock
galaxies are shown. To estimate the power spectrum from galaxies the density contrast §(7) =

n(r)

—Tg . 1 :
——5—* is directly Fourier transformed:
g

1 [ [ny(7) . 1
6o = — [ [T\ | gk, = L iR v
g V/[ g ]e " Ngj;e T =W (IV.7)

where the galaxy number density is ng(7) , Ny is the galaxy number and Wy, is the Fourier transform
of the window function of the survey:

Wi =1 / T g3y (IV.8)

In this case, computing the power spectrum of the galaxy distribution is trivial because we compute
it in the periodic box.
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Figure IV.2: The power spectrum introduced to the simulation as input (in solid black line)
and the power spectrum generated from the log normal density field (in dashed yellow line).

IV.2 Estimators

The theory of estimators of large scale structure was developed by Peebles in the 70’s in real and
Fourier space. From that moment a lot of work have been done to improve the estimators, and to
do an accurate estimation of error and bias beyond the simplistic Poisson errors.

Before going to the correlation function estimators let us discuss the assumptions that are
implicit in the measurements of structure from galaxy catalogs. There are two assumptions, the so
called fair sample hypothesis and local Poisson approximation. The fair sample hypothesis states
that the finite part of the observable is a fair sample of the whole universe. Thus separated regions of
the universe could be considered as independent realizations of the same physical process, enabling
to replace ensemble average by spatial averages. The second hypothesis comes from the fact that we
do not have access to the density field directly rather we have a discrete sample, a galaxy catalogue.
Thus, we assume that this point distribution results from a Poisson realization of a underliying
continuous field. Where the probability of finding N objects in a volume v at a location &, with a
mean N = nw is given by:

‘ B NN
Pyen(N) = —e™ (IV.9)

In the first chapter we presented the correlation function as the second order statistics that describes
the clustering of a point process. Based on these 2 hypothesis, the calculation of the two-point
correlation function relies on the fact that it can be defined it in terms of the excess of probability
of finding a pair of galaxies in volume elements dV'1 and dV2 separated a distance ris = |27 — 23]
compared with a random distribution as we have said before (Chapter 1).

dPiy = n2[1 + £(712)]dVidVa (IV.10)
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For a random distribution (£ = 0), the probability of having a pair of particles is given by the mean
density squared independently of distance. If the objects are clustered , the points are correlated
(£ > 0) the probability is enhanced, if the objects are anti-correlated (£ < 0) the probability is
suppressed with respect to a random distribution.

IV.2.1 Correlation Function Estimators

Due to the discrete nature of studied sample, the traditional estimators are based on pairs counting
in the data sample compared with a random sample in the same volume. In what follows we assume
a 3-D data catalogue D of volume V and containing Ny objects, the average number density is
defined as ng = Ng/V. In order to compute its correlation function we have to generate a random
catalogue R, in the same volume V', with N, random objects (n, = N, /V).

The natural or simplest estimator that we could define is compare the pair counting of our data
sample with the random sample. This estimator was proposed by Peebles-Hauser and is given by:

éPH(7'> = % —1 (Peebles& Hauser,1974) (TV.11)

where DD is the normalized number of pairs belonging to a bin 7 in the galaxy catalogue, RR is
the normalized number of pairs belonging to a bin r from the random catalogue.

DD = Ppp(r)
Mgl 1) (1V.12)
RR = 51N

Ppp(r) is the number of pairs belonging to a bin r in the D catalogue and Prp(r) is the number
of pairs belonging to a bin r from R catalogue. The idea of this simple estimator is to deal with
geometry and to avoid the need of calculate separately the edge corrections. Various alternatives
have been proposed to improve the estimator . I summarize the most popular:

Epp(r) = % - (Davis& Peebles, 1983)

u(r) = DEXER 1 (Hamilton, 1993) w13)
Efen(r) = DD-DE (Hewett, 1982) '
Ers(r) = PP=2BDERE ([ andy&Szalay, 1993)

RD is the normalized number of pairs belonging one to the galaxy catalogue one to the random
cataloque, given by:

Prp(r)
N, Ny

In Fig.[IV.3] the different estimators are shown using a single realization of a log normal field with
3,000 and 30,000 mock galaxies within a sphere and a random catalog of the same number of
objects. As we can see from the plot, for the smaller set the estimators have large fluctuations. As
the number of data points increases these estimators converge to the input of the simulation. When
applied to a larger sample the Hewett estimator and Davis-Peebles gives similar results. The same
applies for Landy-Szalay and Hamilton estimators. We will see later that this effect is related to
the fact that we are sampling a density field by a discrete distribution of points. Let us introduce
some definitions that will allow to us select the best estimator for large scale structure analysis.

RD = (IV.14)
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Figure IV.3: In right panel, the correlation function using the five popular estimators from a
realization from a lognormal simulation following a ACDM model with 3000 mock galaxies in
the left and with 30000 in the right. In black, the input correlation function of the simulation.
When the number of objects are small there are large fluctuations as we will see later dominated
by the shot noise. As the number of objects increases the estimators converge to the input of
the simulation.

IV.2.2 Cosmic Error and Cosmic Bias

If we have a statistic A, and A is its estimator, the bias' of the estimator is defined as:

<A>-A

ba A

(IV.15)
The cosmic bias expresses the difference between the expected value and the true value of the
physical quantity concerned. With real data there is no way of evaluate the bias of an estimator if
it exist, nowadays, we can study the bias with simulations.

To study the bias of the estimators 100 lognormal simulations were generated with 30 000 mock
galaxies. The distribution of galaxies follows a power spectrum that we introduce as an input of
the simulation. The power spectrum used corresponds to a ACDM model. For the moment, we
use a simple geometry a sphere centered at origin of radius of 800 Mpc/h. For each realization
the estimator is computed. The empiric mean over 100 realizations is compared with the input
correlation function. In the left panel Fig.[IV 4], the means for each estimator are shown as well as
the input function. In the right panel the bias of the different estimators as defined by Eq.[IV.15]
is plotted. As we can observe from the figures, the estimators that are in better agreement with
the input correlation function are Hamilton and Landy-Szalay. The estimators Davis-Peebles and
Hewett converge to the same mean underestimating the correlation function at large scales. Finally
the naive estimator is the most biased estimator at least on the large scales.

'This term must not be confused with the galaxy bias that takes account of the difference between matter
distribution and galaxy distribution
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Figure IV.4: In left panel, the empiric mean of five popular estimators of the correlation
function from 100 simulations log normal following a ACDM model is shown. In black, the input
correlation function of the simulation. As we observe from the plot the less biased estimators
are the Hamilton and Landy Szalay. In right panel the bias of the different estimators is shown,
as defined by Eq.[IV.15]

Error

The error is defined as the variance of the estimator AA2. That is :
. . 2 . . 2
AA? = <(A— <A >) > - / (A— <A >) P(A)dA (IV.16)

where P(A) is the probability of measure the value of Aina galaxy catalog given a theory, also

called Cosmic Distribution function. Usually it is assumed P(A) is gaussian.

To study the variance of the estimators we follow the same procedure, we estimate the sample
variance of the estimators for the 100 realizations using the corresponding sample mean for each
estimator. In left panel of fig IV.5 I show the variance of the different estimators. As we have seen
in the Fig.[IV.4], the mean of the different estimators do not converge exactly to the real value of
the correlation function, thus in Fig.[TV.5] I plot the mean of Landy-Szalay estimator with the error
bars measured for the different estimators. In the right plot I show the result using the mean value
correspondent to each estimator to show the combined effect.

This simple test permits us to compare the different estimators and statistical uncertainty in
the estimation. A good estimator must minimize the cosmic bias and the cosmic error. We are
interested in the scales related with the bump of BAO, that we call the large scale. As we observe
from the plot at this scales the four estimators seem to give similar variances but taking into account
that the less biased estimators are the Hamilton and Landy Szalay. It seems that the H and LS
show better properties.

Before concluding which is the best estimator let us introduce more definitions. The statistical
error or cosmic error is usually separated in three contributions, even if in practice the three effects
are correlated with each other.
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Figure I'V.5: Sample variance of five popular estimators of the correlation function from 100
simulations log normal following a ACDM model. In black, the input correlation function of
the simulation. The points have been translated 0.5 Mpc for purposes. To isolate the effect of
the variance in left panel I show the errors using the mean value of the LS estimator. In left
panel the result using the mean value correspondent to each estimator is shown.

e Cosmic Variance. This error comes from the fact that we have access only to finite volumes,
S0 given a size L of a survey we have access to a limited number of modes of a given size. In
particular the mean density is not well determined. Another way to understand the cosmic
variance is to relate it to the number of independent representations of the observable universe.
As we measure a statistical quantity averaged over the number of realizations. As the number
of realizations is small the error is large. The cosmic variance is roughly proportional to the
average of two point correlation function & over the whole survey.

o Sample Variance Also called Shot Noise is originated because the galaxy distribution is a
discrete Poisson representation of an underlying continuous field whose statistical properties
we want to describe. This error is proportional to 1/N; , where Ny is the number of data
points. It becomes negligible for large Ny.

e Fdge Effect This error comes from the geometry of the survey, in the borders of the survey
the objects do not have many neighbors as the points in the inner regions do, thus the pair
counts tend to be smaller than they are. The general idea of edge corrections is to give less
weight to the galaxies near the edges than those far away from the boundaries. In fact the
edges effect could be partly corrected for scales r < L .

A characteristic from these estimators that we must notice is that we can reduce the part of
the discreteness effect that comes from the random catalogs using a number of objects N, several
times larger than Ny. In this way the calculations of DR and RR can be arbitrarily improved. To
test this we are going to use simulations with a greater number of objects 100,000 to guaranty
we have enough statistical power. In figure IV.6 the correlation function is shown using only the
Landy-Szalay estimator from the same data sample calculated using a random of the same size and
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a random two and three times the size of the mock galaxy catalog. This figure shows that using a
random sample larger that the data sample we can decrease the sample error.
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Figure IV.6: The correlation function of one realization of 100 000 mock galaxies with a
random set of same size and with a random 2 and 3 times greater than the data set. As we
observe the shot noise decreases with the size of the random set used to compute the correlation
function.

Until now we have shown that Landy-Szalay and Hamilton have similar properties, it is not sur-
prising do to the similarity of the estimator, being Landy Szalay the symmetric version of Hamilton.
In (Pons-Borderia et al., 1999) is shown that the Hamilton estimator is more sensitive to the number
of random thus is preferable to use the Landy-Szalay estimator. We will test this statement com-
paring the results from Hamilton and Landy-Szalay. The dispersion have been computed over 100
simulations using Landy-Szalay estimator in dashed lines and Hamilton in solid lines. In Fig.[TV.7]
I show 1-sigma error from log normal simulations for three different sizes of random set (a random
set equal to data set, in red and blue , a random set 2 and 3 times greater than the data). From the
plot we observe that the difference between the dispersion of Landy Szalay and Hamilton estimators
is indistingible. Thus, these statement must be tested with more realistic simulations.

We can conclude that Hamilton and Landy-Szalay show the better properties, less bias and
small variance. Some references claim the superiority of Landy Szalay over Hamilton but we have
not found difference in their behavior. In fact the difference between these estimators roughly is the
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Figure IV.7: 1-sigma error from log normal simulations for three different sizes of random
set, in black a random set equal to data set, in red a random set 2 times greater than the data
set and in blue three times. Average over 100 simulations of Landy Szalay in dashed lines,
average of 100 realizations of Hamilton in solid lines.

way of dealing with edge effects, thus the differences between them would be enhanced with more
complex geometries where the edges of the sample volume are an important source of incertitude.
In a further section we will test Hamilton and Landy-Szalay estimators in a more realistic scenario
taking into account radial and angular selection functions, to test if Landy-Szalay show better
properties. 1 present in the next section the approximated analytical expressions for mean and
variance of the estimators that point out Landy Szalay as the most adequate estimator of the
correlation function.

IV.2.3 Analytic expressions of mean and variance of estimators

Landy & Szalay (Landy & Szalay, 1993) developed a formalism to calculate cosmic bias and variance
of any estimator based on the pair counts in terms of fluctuations about their mean:
DD = (DD) (1+ «)
RD = (RD) (1+ p) (IV.17)
RR = (RR)(1+7)
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where «, (3,7 are the fluctuations about the mean for a given realization of the data or random set.
By definition, (o) = (8) = () = 0. As we have said before, the variance of 7y could be made arbitrary
small choosing a random set sufficiently large, thus we can suppose var(y) = <72> = 0. Using these
expressions (Eq.[IV.17]) we can express the variance of any estimator based on combinations of pair
counts of data and random sets in terms of the mean of pair counts and their fluctuations. In order
to do that we must calculate the variances of pair counts.

(DD - DD) — (DD)?

(o) =

(DD)?
(5?) = <RD.}Z§]>D>_2 (RD)? (IV 18)
() — (DD - RD) — (DD) (RD)
(DD) (RD)

Landy-Szalay calculated the mean and variance for the different estimators in terms of these fluctu-

ations in the weak correlation limit (|£(L)],

5(%‘ < 1). We will present directly the results avoiding

the cumbersone calculations that could be consulted in reference (Landy & Szalay, 1993). They
found that the mean and variances are given by:

()= (5) (5= () 1
(éor) = (B2) 1+ (A&hp)=(22) (t+D) o)
(Gr)=(B2Ya+n (a8)=(2) v |
(éns) = (22) (a&s)=(22) )
where t:ﬁd[%— ]
: (IV.20)

_ 2 1 a N 2
P = NN [CTP N 2G7;§; + 1} ™ Ng(Ng—1)Gp

Gp and Gy are geometrical factors. G, is the fraction of unique pairs separated a distance r4-dr/2
(in practical terms is equal to RR), G; is the fraction of triplets, that is, given a point the set of
other two points within a radius r 4+ dr/2. Thus, p is approximately the Poisson noise that is the
inverse of the pair counts. As we can observe the H and LS estimators are of second order in the
(1/Ng) thus close to the Poisson variance while PH and DP are of first order in (1/N;). We observe
also that there is an additional bias in estimators DP and H .This bias comes from the integral
constraint (Landy & Szalay, 1993) as we would see in a further section when we introduce this
concept.

The results of this section suggest that the best estimator presented is the Landy-Szalay (LS)
estimator. In fact the Hamilton estimator has proven to be good in large scales too, but the
analytical expressions show that Hamilton is a biased estimator contrary to Landy-Szalay. We will
come back to compare Hamilton and Landy-Szalay in a further section. Meanwhile, it is important
to add that detailed studies have shown that the LS estimator is optimal with respect to the
cosmic bias and cosmic error in the weak correlation limit (Kerscher et al., 2000) and for a random
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distribution(Poisson sample with no correlation) (Landy & Szalay, 1993). Thus, for the following
we will use only this estimator to study in a more realistic scenario the correlation function. Before
going to the random generation we will present the analytic expressions for the cosmic bias and
variance for the Landy-Szalay estimator and how they compare with the errors estimated from log
normal simulations.

IV.2.4 Analytical expression for bias and variance of the LS Estimator
Landy Szalay Cosmic Error

In the last section we have already presented the analytic expression of the cosmic variance for

Landy-Szalay estimator in the weak correlation limit ( ([, |£(L)] < 1)), neglecting edge effects
(r/L < 1) and supposing the average density n, is perfectly determined.

The missing pieces are the expressions of the geometrical factors G, and Gy which could be
computed using Monte Carlo realizations of NV, points randomly distributed within a geometry and
computing the following expression:

(np(r))
Gp(r) = N,(N, —1))/2

_ (re(r))
G = NN — D)V, —9) 2

(IV.21)

where (n,) is the average number of unique pairs over the ensemble of data sets, and (n;) is the
average number of triplets within the sample geometry given one point at the center. Let us compare
this estimation of the errors with the results from lognormal simulations. In Fig.|IV.8| the analytical
estimation for the error is compared with the result from simulation. The error bars are estimated
using expression IV.19 that corresponds essentially to the Poisson noise. We observe that the error
bars from Landy-Szalay estimated analytically underestimates the errors of measurements. This is
due to the fact that the analytical expression assumes the complete knowledge of 4.

Bernstein (Bernstein, 1994) developed a more general expression considering a fluctuating n,
but assuming also the weak correlation limit and neglecting edge effects. The diagonal term is given
by the following expression:

2 2 N .
(f)B ~ 222 +4(1— 205 + QE(L) + jéd F’"’”g(lg 2058) | gy 1]

2 1 1+¢ 1
"'ﬂvz[(ap‘l)e‘a‘l]

where £ is the average two-point correlation function in the whole survey, €2 is the average of the
square of the two-point correlation function over the survey, &.ing is the average of the two-point
correlation function for pairs inside the shell of radius r and thickness Ar, Q3 and Q4 are the 3
and 4 point correlation functions. For the derivation of these expressions we refer to the reader to
the references. As we observe from Eq.[IV.22]|, the more general expression for the cosmic errors
relies on prior assumptions about the behavior of statistics involved thus in general they are not
commonly used to estimate the errors in clustering statistics.

(1V.22)
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Figure IV.8: In black the input correlation function using the error bars (in red) given the
analytical expression IV.19 compare with the error bars given by the standard deviation from
simulations in yellow.

Landy Szalay Cosmic Bias
The expression for the cosmic bias for Landy-Szalay estimator in the weak correlation limit (||, |£(L)] <
1), and neglecting the edge effects(r/L < 1) has a dominant contribution given by.
—&(L
be ~ ﬁ (IV.23)
3

An important concept must be introduced here, the so called Integral constrain . The fact that
we are computing the average density and the correlation function using the same sample has as a
consequence that fluctuations must vanish at the scale of the survey.

1

V e &(r)dr =0 (IV.24)

As a consequence a bias is introduced, meaning that the correct value of £ could be obtained
adding an unknown constant to the measured value. This bias cannot be corrected unless doing
priori assumptions of the form of correlation function at scales larger than those proved by the
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survey, so it must be considered as a source of uncertainty.

IV.3 Random Generation

As we have said before, a crucial ingredient in the correlation function is the random sample. The
estimators defined to now suppose statistically homogeneous catalogs, i.e. with constant fg(r),
but when we deal with real data samples usually we have to deal with non homogeneous samples.
The way to deal non uniform samples is to correct for observational selection effects applying the
same selection function to random catalogs. The selection function represents the fraction of the
total population of galaxies satisfying the limitation criterium at a certain distance or angular
position. The uncertainty in the knowledge of this selection function could influence the result of
the correlation function.

When a random catalogue is created in practice each random point would have a probability
given by the selection function f (é,z) of being included in the random set. In some cases it is
possible to factorize this probability into two independent functions, f (é, z) = C’(é)qb(z), where
C(f) is the angular and ¢(z) the radial selection functions respectively. We will suppose for the
following that it is the case, we will see in the analysis of BOSS data that is a reasonnable hypothesis.

IV.3.1 Radial Selection Function

In general due to observational constraints at different distances, the sample do not necessary have
uniform properties. The apparent brightness of a source depends on the observed flux, since flux
decreases with square of distance, only intrinsically luminous sources at large distances will be
observed. In consequence we have two effects: number density decreases with distances and a
tendency of farther objects to be more luminous. These samples are called fluz limited samples. A
simple way to correct from this observational selection effect is to define a volume limited sample that
consists in extracting from the parent catalog a subsample characterized by a maximum redshift 2,4,
and a minimal luminosity L;,;,. The values of 2,4, and L;,;, are defined such that the apparent
magnitude of objects in these catalogs at distance 2,4, would be larger than the magnitude limit.
Such a selection criterion renders the number density of galaxies in the subsamples independent
of distance. The problem with such samples is a significant information loss (the sample size is
significantly smaller than the parent sample). In Fig.[IV.9] we give an example from SDSS DR4 of
a flux limited catalog and a volume limited catalog.

Unless we work with volume limited samples we must correct for observational selection effects
when analyzing a sample. Thus when working with flux limited samples we must model the expected
number of galaxies in the absence of clustering as a function of redshift what is called the radial
selection function.

na(z) = g (2) (1v.25)

where ¢(z) < 1. The radial selection functions ¢(z) = dN/dz gives the probability that an object
within a given luminosity range will be observed as a function of the distance and redshift. It
is obtained by integrating the luminosity function ®(M, z). The luminosity function provides the
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Figure IV.9: The blue points is an example of a flux limited sample from SDSS DR7. The
points constrained to the dashed lines corresponds to a Volume limited sample that could be
defined from the first one. As we observe from the plot a volume limited catalog implies the
loss of objects and thus a loss of information.

density number of galaxies for each range of absolute magnitude (M). In the case of flux limited
samples the selection function is unity for redshift close to zero and it tends to zero for large redshift,
while for volume limited samples the radial selection function is unity throughout.

fiee S anroan
AT AM (M)

For example, SDSS LRG Early Data Release sample is limited in apparent magnitudes 14.5 < r* <
17.6 in absolute magnitudes corresponding to —22 < M., < —19. Let us introduce some terms. We
observe an object with an apparent magnitude. The absolute magnitude of this object refers to the
apparent magnitude of the object if it was observed at rest at 10 pc. using an aperture that contains
its total flux. In order to convert apparent magnitudes m to absolute magnitudes M you have to
take into account two effects: the cosmological effects and the k corrections. The cosmological effects
refer to angular diameter distance and the cosmological surface-brightness dimming. These effects
are enclosed in the distance modulus DM(z). The distance modulus accounts for the difference in
magnitude due to the difference in distance. DM is the distance modulus defined as DM(z)=m-M
The K-correction takes in account that the measurement (or the spectrum) in the observed frame
corresponds to a narrower and bluer rest frame passe band that depends of the redshift of the object.
This k correction is dependent on the galaxy spectral energy distribution (SED). The expression of
the absolute magnitude is given by:

9(2) (IV.26)

M =m—DM(z) — K(z) (Iv.27)
Thus, for the example:

Mpin(2) = max[—22,14.5 — DM (z) — K(2)]

Mimar(2) = min[—19,17.6, —DM (z) — K(2)]. (IV.28)
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Based on luminosity function computed in (Blanton et al., 2001) for the SDSS bands 2. The expected
redshift distribution was computed given the r* luminosity function and the flux limits using the k
corrections for a "typical" galaxy color of g* — r* = 0.65. In Fig.[IV.10] the redshift distribution of
SDSS galaxies is compared with the average distribution expected giving a reasonable agreement.
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Figure I'V.10: The luminosity function of SDSS-Early Data Release in the * band. The data
points are commissioning data and the black line corresponds to the Schechter fit. In left panel
the redshift distribution of SDSS (histogram) compared with the expected average distribution.
Figures from (Blanton et al., 2001)

In some cases it is difficult to implement this standard way to estimate the expected number
density, as for example in SDSS DR3 LRG sample the luminosity function is very steep, thus
really sensitive to changes in k corrections. Thus instead, the procedure was to model the selection
function, using the average spectrum observed convolved with the response function and then to
apply a low pass filter and finally to fit this model to the observed redshift (Zehavi et al., 2005).

Instead of using these approximative models for the expected number density commonly, the
radial selection function to be applied to the random catalogue is estimated directly from data.
The method consists in using the redshift distribution from data and assign the redshift to the
random set following the same redshift distribution. In practice, there are two ways commonly
used: 1) redistribute the redshift of the data sample to the random sample. 2) resample the redshift
distribution of data so that the overall n(z) shape matches that of the data (smoothed to eliminate
fluctuations from data).

As an example I take the samples used in (Kazin et al., 2010) to do large scale structure analysis.
I take the Full Sample and the Bright Sample. The Full Sample is a quasi flux limited sample.

2The luminosity function is presented using a fit of the Schechter function characterized by three parameters
/phi.[1072R* Mpc™3|, M, and «:

@(M)dM _ O.4ln(10)/phi*10—0,4(]\/[—IW*)(044-1)13117[—10*0-4(1\1—1&1*]d]\/] (IV29)



110

It consists of a set of ~ 100000 galaxies in the range in redshift of z=[0.16, 0.36] and limits in
absolute magnitude are M, = [—23.2, —21.8]. The Bright Sample is a volume limited sample which
consists in ~ 30000 LRG’s in the redshift range z=[0.16, 0.44], with M, = [-23.2,—21.8]. In
Fig.[IV.11]. I show in the left panel the number density of both samples . In the right panel I show
the correspondent correlation function. The random catalog in the first case was generated using
as the radial selection function the redshift distribution of the Full sample while the radial function
is constant in the volume limited case .
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Figure I'V.11: In left panel the number density of Full Sample and Bright Sample from samples
defined by E.Kazin et al 2010. In right panel the correlation function using the samples .

In order to study the effect of radial selection in the estimator 100 realizations were generated
taking different functions for the radial selection and comparing the resultant correlation function
with a uniform selection function. We do not applied geometry effects. To sample the points
accordingly to the desired radial distribution a rejection method was implemented. Let us begin
comparing samples with the same number of objects in an spherical volume where the radial dis-
tribution follows different radial selection functions. In the left panel of Fig (IV.12] the comoving
density of the samples using different radial selections functions (uniform, gaussian and parabolic)
is shown. In the right panel of Fig.[IV.12] the average over 100 realizations following the different
selection functions is shown. As we can observe from the fig IV.12 when the radial selection function
from data is correctly applied to the random, the estimator is no sensible about the form of the
selection function.

Now, let us compare the effect of the radial selection function with samples with the effective
volume, defined as (Feldman et al., 1994):

vV = (2n)® / Brawt (1 + 1/aP)> (IV.30)
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Figure IV.12: The average correlation function over 100 realizations of 30,000 objects fol-
lowing different radial functions. In blue the parabolic, in yellow the gaussian and in red the
uniform. The input correlation function is shown in black.

IV.3.2 Angular Selection Function

In the real large scale surveys usually the geometry of the sample is complex, and because of
observational and instrumental issues, the angular selection function is not trivial. The angular
selection function keeps track of the survey parameter that introduces variations of the mean density
as a function of the direction in the sky, completeness magnitude limit, seeing, dust extinction and
geometry. Thus in order to get an accurate estimate of the correlation function these effects must
be introduced in the random samples.

A scheme to deal with complex angular mask has been developed by Hamilton and Tegmark
(Hamilton & Tegmark, 2004). A software package called MANGLE 3 which implements this scheme is
publically available. We have used this package to deal with the complex angular selection functions
from SDSS data. In the context of MANGLE the angular selection function is replaced by the concept of
angular mask. An angular mask as arbitrary union of arbitrarily weighted angular regions bounded
by arbitrary number of edges. Each subregion of the angular mask is called a polygon. A polygon is
a non overlapping region of the angular mask characterized by a constant weight. Each polygon is
defined as the intersection of caps, where a cap is an spherical disk. The precise definition of a cap
is a region on unitary sphere above some line of constant latitude with respect to an arbitrary polar
axis. In Fig.[IV.13] an illustration of a region of an angular mask correspondent to BOSS survey
defined in terms of polygons, the different colors show the weight of each region.

3The software and documentation are available at http : //casa.colorado.edu/ jsh/mangle/
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Figure IV.13: An example of a section of an angular mask from SDSS DR7. In left panel
the mangle polygons defining the mask , in the right side the same polygons showing the
completeness weight of each region correspondent to the value of the completeness of the sample
in each region.

IV.4 Correlation function from Realistic Simulations

Until now we have explored separately the different aspects that could affect the estimator of the
correlation function, in this section the idea is to mimic a realistic simulations. In order to do it we
use the Luminous Red Galaxies LRG Sample of SDSS-DR7. This sample was used for large scale
structure (LSS) analyses in (Kazin et al., 2010). The data set consists of a flux limited catalog
of ~ 100,000 LRG.The survey covers a total area of 7908 deg? but we are going to use only the
northern hemisphere. The total volume covered is 1.6h73.Gpc3.

The first problem that must be confronted is the volume simulated. In order to achieve a fine
binning and a large volume, the periodicity property of log normal simulations is exploited. A grid
of 2563 with a physical size of 1.6Gpc® is used giving a pixel size about ~ 6Mpec. To reproduce
the volume and geometry of DR7, a cubic volume of 8Gpc® would be generated, to achieve this
volume the simulated box of 1.6Gpc® will be replicated 8 times The correlation function used to
generate de log normal simulation follows a ACDM model with cosmological parameters of WMAP
5 generated with the public code CAMB (Lewis et al., 2000).A galaxy bias of b = 2 was applied,
that is approximately the bias of LRG (b=2.5 from (Labatie et al., 2010) ,b=2.3 (Kazin et al.,
2010).) In a first time, I am not going to use the completeness estimation for each region, only
the survey geometry. An approximative angular window was constructed from the stripes from
photometric survey (tiling geometry) and the plates used in DR7 concatenated using MANGLE tools.
This angular mask considers a constant weight everywhere. It is possible to use the accurate angular
mask prepared by (Blanton et al., 2005) for the DR7 of SDSS that is provided in terms of MANGLE
polygons. Nowadays for the purposes of studying the effects of the geometry is enough to construct
a simple mask what makes fast the mocks generation. A realistic mask for DR7 taking into account
all details of the geometry (bad fields, mask of bright stars, etc) is described with about 200,000
polygons while in the simple approach the number of polygons reduced by 1 order of magnitude
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(~10,000 polygons). To minimize time I decided to work only with the Northern hemisphere. In
the left panel of Fig.[IV.14] the geometry of DR7 sample is shown in galactic coordinates. In the
right panel I show the simplified mask for DR7 only considering the north hemisphere in equatorial
coordinates.

100 150 200 250 300

Figure IV.14: Left panel. The geometry of SDSS LRG sample DR7 in galactic coordinates.
In the right panel the simplified mask used to generate the mock catalog is shown. It was
generated using the tiles from DR7 concatenated with the photometric stripes.

For the radial selection function we use the redshift distribution of data. In Fig.[IV.15] the
redshift distribution of data is shown. To construct the radial function the redshift distribution
is normalized and then fitted by a spline to eliminate the noise to generate the selection function.
Finally, a rejection method is applied to select from the mock the galaxies following the redshift
distribution. In the right panel of Fig.[IV.15] the redshift distribution of the data set is shown and
in left the comoving number density of mocks.

The first purpose is to verify if the estimator is sensitive to the effects of the geometry and
edges. For that we use a set of 100 lognormal realizations for the same input power spectra in 2
cases, the cube that we have been using until now and the complex geometry of SDSS-DR7. In
the Fig.[IV.16] the average correlation function over 100 realizations in a cube compared with 100
realizations mimic the geometry of DR7 is shown. As we can observe from the figure the estimator
shows a slight bias of % at the scales of interest and a increment in the variance of the variance of
% in the case of DR7 geometry compared with the cube.

IV.4.1 Completeness of the Survey

When a survey of galaxies is designed a set of objects is selected following certain criteria via a
target selection algorithm to ensure a complete sample. But even if the design of the survey is
optimal, for different reasons there would be certain rate of success in the spectra measured that
would be function of the angular direction. The completeness of the survey is defined as the rate
between good spectra in relation to the targets assigned by region of sky. In surveys in ongoing data-
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Figure IV.15: In left panel the redshift distribution of data fitted by a spline line to eliminate
the noise is shown. This distribution is normalized and used to generate the radial selection
function. In the right panel the comoving number density of data and mocks is shown.
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Figure IV.16: The average correlation function over 100 realizations of the sample in a cubic
geometry compared with a set of samples following DR7 geometry. As we can observe from the
figure the estimator shows a slight bias at the scales of interest and a increment in the variance
in the case of DR7 geometry compared with the cube.

taking, the completeness of the survey must be taken into account for doing correlation function
analysis. The way to account for the incompleteness of the survey is to assign a weight to each
polygon proportional to the completeness on that region and to sample the random set following
these weights. We will show with the simulations how the incompleteness affects the correlation
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function. In Fig.[IV.17] a region of DRT is shown, the colors corresponds to completeness range
[0.97,1.]. As we can observe in this region the completeness is high , in fact the average completeness
over the survey is 98% (Kazin et al., 2010).
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Figure IV.17: The completeness of a region of DR7 Sample using the file generated by NYE
value added Catalog (Blanton et al., 2005).

Thus as LRG sample is almost a complete sample in this case the effect of taking into account
the completeness in the random generation is negligible. To verify this fact let us compute the
correlation function using a random sample which completeness is set to one in all polygons and a
correlation function using the correct value of the completeness. In order to do that we will use the
mask prepared by Blanton et al (Blanton et al., 2005) publicly available in the NYE value added
catalog. As we observe in Fig.[IV.18] the effects of incompleteness of LRG sample for DR7 is not
significative . It is within the error bars computed by Kazin from N-body simulations in (Kazin
et al., 2010). By contrary, we will see in the further chapter, if we do not considerer completeness
of the survey in BOSS it would have an important effect in the correlation function estimator.

Finally before passing to the next section let us compare in this most realistic scenario the two
estimators that seemed to behaved similarly that is the Hamilton and the Landy Szalay estimator.
It has been said that the superiority of Landy-Szalay has been proven to be nearly of minimal
variance for a random distribution (i.e. Poisson with no correlation) since the original paper in 1993
(Landy & Szalay, 1993). A similar study have been done by(Labatie et al., 2010) with lognormal
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Figure IV.18: The correlation function of DR7 Sample data (Kazin et al., 2010) using the
angular mask generated by NYe value added Catalog (Blanton et al., 2005) considering the
weights given by the completeness in black, considering a completeness equal to 1 everywhere
in the window in blue and as a reference the results from E. Kazin (Kazin et al., 2010).

mocks that mimics SDSS main samples conditions (volume limited samples), probing the superiority
of Landy-Szalay estimator over the others estimators. In Fig.|??| both estimators LS (black) and
H (red) are computed for a realistic scenario, including radial and angular mask of DR7. The two
estimators are indistingibable.

IV.4.2 Radial Weights

It is possible to optimize measurements giving to each galaxy or fraction of space an specific statis-
tical weight chosen to minimize the cosmic error. If we neglect edge effects, considering a constant
weight only function of r it has been shown in (Hamilton, 1993) that the optimal weight is done by:

(IV.31)

where o(r) is the cosmic error of the considered statistic, asumming the gaussian limit that is valid
only in the weakly nonlinear regime leads to the following weight for the two point correlation

function:
1
wi(r) = TEEWENIEE (IV.32)
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where -
JN/ &(r)dv (IV.33)
0

These weights depends of the pair separation. In (White et al., 2011) this weighting scheme has
been used and the £ has been approximated by a power law.

Another common scheme of weights to optimize the correlation function estimator was proposed
by Feldman-Kaiser-Peacok (FKP)(Feldman et al., 1994):
1
[1+ nq(r)P(k)]?
This weighting scheme is used in Eisenstein et al. (2005). These weights are independent of the pair

separation, they only depend on the redshift. Thus, they have the advantage of not introducing any
scale-dependence to the weights. For this reason I consider only the FKP weights for the following.

wi(r) =

(IV.34)

In the Fig.[IV.19] I show some examples of the correlation function of single realizations of the
log normal simulations following the properties of DR7. It is difficult to conclude with only one
realization as the fluctuations related to the shot noise and cosmic variance dominate.
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Figure IV.19: In correlation function computed with no weights (black) and with FKP weight
(red) fore single realizations.

In Fig.[IV.20] I present the effect of the weights for the case of 100 simulations following DR7
geometry and completeness. The correlation function is computed with no weights (black) and with
FKP weights (red) The FKP weights are calculated fixing p(k)=20000. As we observe from the
figure the FKP weights affects only the large scales giving less than 15% difference for scales larger
than 100 Mpc/h. Our results are consistent with results found by (Kazin et al., 2010) where it was
found the radial weights has a marginal effect in the correlation function for DRY.

To understand the behavior of the weights, let us think in density fluctuations at a scale A = 7 /k.
As n(r) is a decreasing function of r, thus we can separate 2 limit behaviors. At small scales (r
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Figure IV.20: In right panel the mean correlation function computed with no weights (black)
with FKP weight (red) .In right panel the relative effect of applying the FKP weights.

small), we have many galaxies per volume, so the error will be dominated by cosmic variance (finite
number of volumes A\3). The idea is to give equal weight per volume what is equivalent to give a
weight proportional to 1/n4. For large scales we have less galaxies, we are dominated by Poisson
noise so we want to weight galaxies equally.

IV.5 Error Estimation

In the case of correlation function we will see that the different scales are correlated, neglecting
off diagonal terms could lead to substantial overestimate of the constraining power of observations.
Thus the treatment of covariance between measurements at different scales would be necessary to
properly test theoretical prediction. Let us remind the definition of covariance matrix. Considering
two estimators A and B we can generalize the concept of variance to introduce the concept of the
covariance between two estimators:

Cov(A, B) = <(Af <A >) (Bf <B >>> (IV.35)

Applying this concept to the same estimator at different scales we get the covariance between
different scales of an estimator, for example, in the case of &r we get:

Ciy = Clriyrj) = (6(r)é(ry)) = (&6ra) ) (€ry)) (1V.36)
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The cross-correlation coefficients are defined as:

rij = ~ Sy (IV.37)

In principle given an estimator and a model of galaxy clustering it is possible to predict analytically
the statistical errors for any geometry and selection function. However, as we have seen in the
previous sections, such error estimates can be cumbersome to compute and they depend on the
assumed clustering model itself. Thus alternative ways of estimate the error are implemented in
clustering analysis. In this section I show the error estimation using different approaches applied to
DRT data. The first approach that I present is using simulations. The simulations are the preferred
way to assess the consistency of the model with the data. These estimations of the errors depend on
the assumed clustering model itself. For some purposes it is desirable to have estimates of statistical
errors and their covariances that depend only on the data set itself. Thus I present some of the
methods commonly used to estimate errors from data as bootstrap, jackknife, etc. The purpose
would be to compare the different methods in order to define the error estimation that would be
used when analyzing BOSS data. The structure of the section is the following, I present the different
methods showing at the same time the results obtained for each one. In the final part of the section
these results are compared.

IV.5.1 Errors from Simulations

One possible way to estimate the errors consists in, given a clustering model, generating a large
number of realistic realizations of mock catalogs using Monte Carlo methods and measuring the
dispersion of the measurements. In this way errors automatically take account of non gaussianity
of the galaxy distribution, cosmic variance, shot noise and the geometry of the survey. To generate
samples with realistic statistics we have many possibilities more or less approximative the most exact
would be to use N-body simulations. N-body simulations have the advantage to follow the fully
non linear and thus non gaussian evolution of structure. However this method would be constrain
by the computer limitations . Another alternative is to use lognormal simulations that have the
advantage to be generated in a fraction of time in relation to the exact N-body simulations. This
kind of simulations allow us to study accurately the clustering properties of galaxies. This errors
automatically take into account cosmic variance, shot noise, and the geometry of the survey and
some systematics. Nowadays they do not take account of the fully non linear behavior (i.e. they
do not take into account the non gaussianity of the galaxy distribution). There exists another kind
of simulations based in second order perturbation theory (2LPT) conjugate with semi-analytical
models of structure formation, so called PTHalos created by (Scoccimarro & Sheth, 2002). This
kind of simulations approximates very well the fully non-linear, thus non-Gaussian, evolution of
structure in a very small fraction of the time and cost of a full n-body simulation. In this chapter
we will only present the result of the log-normal simulations. In the following chapter devoted to
BOSS data we will use a set of simulations based on PTHalos * and a set of realizations of N-body
simulation Lasdamas.

Let us begin showing the result with log normal simulations. The covariance matrix and the
correlation matrix have been computed using 100 lognormal simulations with the simplified angular

4These simulations have been generated within BOSS colaboration Manera et al in prep
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mask of DR7 and the radial selection function already described in the last section. In Fig.[IV.21]
the resultant covariance matrix and the correlation matrix coefficients are shown. The covariance
matrix has a enhanced diagonal and some correlation between off-diagonal elements as expected.
as we have said the simulations method provide the most reliable estimation of the errors. We
will compare this result with the data-based methods that will be implemented in the following
subsection.

Clijredfir ]
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Figure IV.21: The covariance matrix (left) and the correlation coefficients matrix (right)
using 100 log normal simulations using the radial selection function from DR7 data and the
angular selection function with weights equal to the completeness of the survey using files from
the NYE Value Added catalog.

IV.5.2 Error from Data

In this section I present some common recipes based on the data itself for the error estimation in
clustering statistics. 1 summarize in the following list the methods and results obtained in each
case.

e Bootstrap. It is a resampling method consisting in drawing randomly original data set , N
points with the possibility of re-emplacement. The random resample is defined on the set of all
variations of data repetitions allowed. In (Snethlage, 2000) it has been shown that this method
does not lead to reliable estimates of cosmic error for point process. To apply this method 100
subsamples of 10,000 objects with repetitions allowed have been generated. The error bars
are computed using the empiric standard deviation. In plot IV.22 is shown the average of the
100 realizations with the error bars given by the standard deviation. We observe the mean is
in agreement with the measured correlation function from (Kazin et al., 2010). In Fig.[TV.23]
I show the resultant correlation matrix and the covariance matrix multiplied by 2.
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Figure IV.22: In blue the mean correlation function from 100 bootstrap subsamples of 10,000
each. The error bars are given by the standard deviation. In black the correlation function

from the whole sample.
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Figure IV.23: The covariance matrix (left) and the correlation matrix (right) calculated using

the bootstrap method. The whole data sample is subsampled with repetions allowed generating
100 realizations of 10,000 objets.
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Subsample Method. This method consists in dividing the catalog in a number N of smaller
subsamples of the same volume and compute the dispersion measurements. This method has
been proven to overestimate the errors ().To implement this method I divide the sample region
in 10 subregions of approximately same area. I show the regions in left panel of Fig.[refsubs].
The regions are not spatially separated thus the border points must be correlated. In right
panel of Fig.|IV.24| I show the correlation function for each subsample. As we can observe from
the figure, given the small size of subregions there are large fluctuations. In the Fig.[IV.25]
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Figure IV.24: In the left panel, the regions correspondent to each subsample used to estimated
the error via the subsampling method. In right the correlation function of each subsample.

I show in the left panel the mean of the 10 subsamples with the error bars given by the
standard deviation and in the right panel how it compares with the correlation function of the
whole data-set. By contrary to the bootstrap method, in this case, compared with the (Kazin
et al., 2010) the mean of the subsamples is under-estimated. Finally in Fig.[IV.26] I show the
resultant correlation matrix and the covariance matrix multiplied by 72.

Jackknife This method is a variant of the subsample method. The complete sample is divided
into m separate regions on the sky of approximately equal area. Then, the m subsamples are
analyzed removing the i* subsample. The covariance is then estimated:

N-1g _ _
Cl&i.&)) = —— D_(60ra) = Er))(E(ry) — £(ry) (IV.38)
=1

l

The error estimated using this method is reasonably well if the sub-sample measurements
are not strongly correlated. Acordingly to (Scranton et al., 2002) and (Zehavi et al., 2002)
this method gives a good estimate of the cosmic error at large scales compared to results
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from mock catalogs in the context of angular clustering in SDSS galaxy sample. To applied
this method I used the regions defined for the sample method but this time each region will
be removed giving the 10 jackknife subsamples. In Fig.[IV.28] the mean of the correlation
function is shown with the error bars given by the diagonal terms of the covariance matrix.
In the right panel the mean compared with the correlation function compute in (Kazin et al.,
2010). The mean over the jackknife subsamples is slightly under-estimated. Finally in left
panel of Fig.[IV.29] I show the resultant the covariance matrix multiplied by 72 and correlation
matrix (right).

These methods are not accurate for estimate of finite volume effects at the scale of the survey
(Cosmic variance) since they are based on only a single realization of the density field at this volume
is available. This can only be achieved by using the analytic expressions of the cosmic error for the
estimator or using simulations.

IV.5.3 Comparison of Covariance matrices

We have computed the covariance matrix using four different methods, log normal simulations,
bootstrap, subsample and jackknife methods. We have seen that all methods produce covariance
matrices that have off diagonal elements as expected. In Fig.[IV.30] the covariances matrices gen-
erated from the different methods are plotted at the same scale. In botton from left to right, we
have the result from simulation and the subsample. In the top the bootstrap and the jacknife. We
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Figure IV.25: In the left side the mean over the 10 subsamples with the error bars given
by the standard deviation. In the right side the mean compared with the correlation function
computed with the whole sample (Kazin et al., 2010)
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Figure IV.26: The covariance matrix (left) and the correlation matrix (right) using Subsam-
pling method. The whole data-set has been divided in 10 non overlapping regions and the
empiric variance have been computed from the samples.

observe that the bootstrap and the subsampling method generates noisy covariances matrices. In
the case of jackknife even if it is the less noisy of data error methods presents additional correlation
in the covariance matrix compared with simulations.

To do a detailed comparison of the covariance matrices there is no a single well established
method. T will follow (Scranton et al., 2002) where a number of test have been done to compare the
shape and amplitude of covariance matrices in the context of SDSS data. From the tests proposed
I decided to applied the following three:

e Correlation test. The correlation coefficients permit us to qualitatively compare the shape of

the covariance matrices . In Fig.[IV.31], the diferent correlation coeficients matrix at the same
scale. In botton from left to right, we have the result from simulation and the subsample. In
the top the bootstrap and the jacknife. The same trend observed in the covariance matrices,
the bootstrap and subsamples methods give noisy correlations matrices even if they show a
clear diagonal structure. The jackknife approximates the result from simulations but presents
extra structure

Diagonal Test. A more quantitative test consists in comparing the diagonal terms of the co-
variance matrix, A¢(r) and AE/€. In Fig.[IV.32] the different estimation of the errors is shown
given by the diagonal terms of the covariance matrix. In Fig.[IV.33] the errors A¢(r)/Asim&(r)
given by the different methods from the diagonal terms of the covariance matrix compared
with the errors given by simulations are shown. We observe the bootstrap method present
the larger error bars followed by the subsample method and finally the jackknife gives very
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Figure IV.27: In the left panel, the regions correspondent to each subsample used to estimated
the error via the jackknife method. In right, the correlation function of each subsample. As we
observe compared with the Fig.[IV.24] the fluctuations of the correlation function are smaller
given the size of the subsamples.

similar values to the simulations that gives the smaller error bars.

e Product Test. A more complete comparison of the covariance matrix is to include in the
comparison the off diagonal terms. In order to include the off-diagonal terms the quantity
R(r) defined as follows :

1

~

R(r)

N
[Tl
B

(IV.39)

This quantity for a perfect diagonal matrix will be zero and will be equal to 1 for perfect
correlation (or anti-correlation) between each bin. In right panel of Fig.[IV.33] the quantity
R(r) is plotted for the different methods. We observe that the jacknife and the subsamples
present the larger off diagonal correlations compared with bootstrap and simulations that
signals a strong diagonal structure.

From the test performed to the different error estimations I conclude that methods based on data
give noisy estimations of the covariance matrices. The extra structure found could be generated by
the correlation between the borders of the regions defining the subsamples for the case of jackknife
and subsamples methods. The jackknife is the method that presents the best properties among
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Figure I'V.28: In the left side the mean over the 10 jackknife subsamples with the error bars
given by the standard deviation. In the right side the mean compared with the correlation
function computed with the whole sample (Kazin et al., 2010)

the data based error methods but even thought it shows some structure. In general the data
error methods overestimate the errors. In the case of simulations, the mean of simulations is
underestimated. An improvement to the input correlation function should be applied to get a mean
closer to the data mean or a rescaling should be performed.
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Figure IV.29: The covariance matrix multiplied by 72 has been computed following the
Eq.[TV.38]. The whole data-set has been divided in 10 non overlapping regions, and each
subsample is generated removing the region 4 (Jackknife method).
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Figure IV.30: The diferent covariance matrix at the same scale. In botton from left to right,
we have the result from simulation and the subsample. In the top the bootstrap and the jacknife.
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Figure 1V.31: The diferent correlation coeficients matrix at the same scale. In botton from
left to right, we have the result from simulation and the subsample. In the top the bootstrap
and the jacknife.
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Figure IV.32: The errors given by the different methods from the diagonal terms of the
covariance matrix.
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Figure IV.33: In left panel the errors coming from the diagonal of the covariance matrix
compared with errors from the simulations lognormal. In right the R(r) term defined as Eq.
V.10 to compare quantitatively the errors coming from the off-diagonal terms.
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variance matrix is computed. As a reference de result from E. Kazin 2010 in black dashed
line.
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V. Large Scale Correlation Function
from BOSS Data

V.1 Measuring the Correlation Function from BOSS Data

In this chapter, I use the first two years of BOSS data to compute the correlation function of
galaxies. These data constitute the Data Release 9 (DR9) that would be public in summer 2012. It
contains ~500,000 galaxies with good spectra, in a redshift range of [0,0.8], covering 3,500 square
degrees. Two different samples are generated using the BOSS data. The LOWYZ sample, that is
essentially an extension of SDSSI-II LRG sample and the CMASS sample, a mass limited sample.
This chapter focus on the CMASS sample which has ~350000 massive galaxies. The mean density is
n = 3.5x 10~*h/Mpc at z=0.52. The CMASS sample represents the largest sample of the Universe
surveyed at this density [Paper 1 in prep].

The first step to do clustering analysis is to generate a ’clean’ catalog from noisy data. In the
first section I discuss this process. The definition of a catalog is not a simple task because we must
guaranty that the sample selected is homogeneous and there is no systematic errors or bias originated
by observational issues. The basic catalog generation consists of several stages beginning with the
target list determination, spectra selection, correct accounting of legacy data (data from SDSS I-1I),
correction from fiber collision and redshift failures and finally the completeness determination. This
catalog would be compared with the official catalog issue from the clustering galaxy group where I
was involved.

The second part is devoted to the computing of the correlation function and the correction from
angular systematic effects. The principal systematic error found in BOSS data is the stellar density
(Ross et al., 2012). T explore in detail this source of systematic error. I study the effects on the
correlation function of other observational variables as the seeing, extinction, airmass and sky flux.
Some of these variables have been found to contribute to the systematic error of the correlation
function, and even if their contribution is minor in respect to the stellar density, they are taken into
account for computing the weights. In this section two methods to estimate the corrections and
weights have been explored: the iterative weighting scheme suggested within the working group and
the linear regression method that I implemented. The weights computed with these two methods
are compared giving very similar results. Finally I compare the methods with the official method
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to compute the weights based on MCMC developed by A.Sanchez within the working group.

Finally, in the third part I discuss the error estimation. As we have seen in the last chapter
the common method to estimate the errors is computing the covariance matrix from simulations.
In this section I explore three different kinds of simulations that would permit to validate the
error estimation. The first kind of simulations, the log normal mocks, have been presented in the
chapter 4. The second type of simulations , called PTHALOS simulations, are generated using
second order Lagangrian Perturbation theory. They were generated within working group and they
are documented in Manera et al and finally the Nbody simulations, Las Damas, that covers the
geometry of the first semester of BOSS data only. They are documented in Cameron et al. Finally
to close this chapter an analytical approach documented in Roland Putter et al in prep would be
compared with the result of error estimations from simulations.

Data

The catalog was constructed using the data available from January 2010 up to the summer shut down
of 9 july 2011. This spectroscopic data set will form the Data Release 9 in July 2012. There are 808
survey-quality survey plates, and 20 survey-quality commissioning plates containing approximately
487,000 unique galaxy survey targets, at least ~490000 with good redshifts. The total region covers
~3500 deg 2. The coverage of the survey is shown in Fig.(V.1). The geometry of the survey is
determined by the intersection of the photometric and the spectroscopic surveys. The photometric
survey consists of a series of overlapping stripes across the sky defined by the scanning of the two
cameras. The spectroscopic survey consists of a set of plates covering the regions that had passed
by the tiling algorithm. The target algorithm assigns the targets optimally to the plates. I begin
defining some terms that would be useful when working with BOSS data.

o Chunk. It is a region in the sky targeted and tiled at the same time, i.e. all targets coming from
the same target selection code. Usually it covers about 250 deg? (Chunks 1-7) ant typically
50 plates. The current BOSS data consist of 19 Chunks that are shown in the figure V.1.

o Tile. It is a circular region of radius of 1.49 deg which contains the objects for a given
observation, correspondent to the 900 fibers. The tiles are not uniformly distributed on the
space to optimize efficiency and completeness (Blanton et al., 2003). The tiles overlap to
recover the colliding objects. They are trimmed to the chunk boundaries giving place to the
non overlapping polygons (See Fig. V.2 ).

e Sector. A sector is the region of the sky covered by an unique set of tiles (within the chunk
edges). A sector could be made up by many polygons. The polygons do not have to be
necessarily contiguous but these regions must have the same properties. They are natural
place to define completeness (See Fig. V.2). We will see later that it is possible to define
completeness in polygons as well, however , given the small size of polygons it could be
subject to statistical fluctuations.
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Figure V.2: Diagram showing the concepts of sector, tile, mask. From
http : //cas.sdss.org/dr7/

V.1.1 Samples for Large Scale Structure

There are two complete galaxy samples that we can generate from BOSS data: the so-called LOWZ
sample and the CMASS sample. For the clustering analysis I will concentrate in CMASS sample.
The CMASS sample consists of high mass galaxies and covers the redshift range between z=0.43
and z=0.7. Let us remind the definition of the CMASS sample:
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d| > 0.55 (V.1)

i < 19.86 + 1.6(d) — 0.8) (V.2)
17.5 < i < 19.9 (V.3)

i fiber < 21.5 (V.4)

r—i<2 (V.5)

Zpef — 2 > 9.125 — 0.462 (V.6)

ipep — 1> 0.2+ 0.3(20.0 — i) (V.7)
(V.8)

The cuts are defined in terms of the rotated combination of colors, ¢y, ¢, d :

dy=(r—i)—(9—r)/8 (V.9)
(V.10)

The first three cuts are defined to separate high redshift galaxies and to account for passively
evolution of massive galaxies accordingly the population synthesis Maraston model (Maraston et al
2009 (Maraston, 2005)) In particular, the second equation is a cut in absolute magnitude or stellar
mass where d . tracks for redshift (Padmanabhan et al in preparation) . The cut in d; performs
the separation of low and high redshifts and the combination with ¢ cuts guaranties the constance
of the masses in the sample. The last two cuts are designed to reduce the stellar contamination.
The middle cuts are quality cuts. These magnitude cuts uses CMODEL magnitudes and the colors
are defined with MODEL magnitudes except for iger2 which is the magnitude in the 2 arcsec
fiber. (Stoughton et al 2002 (Stoughton et al., 2002)) . All magnitudes are corrected from galactic
extinction. The cmodel magnitudes are defined as follows

cmodel flux = Igey * fracpsf + Iegp * (1.0 — fracpsf)

cmodelmag = 22.5 — 2.5 x alogl10(cmodel flux) — extintion (V.11)

The cmodel magnitudes are based on the better-fitting of a particular model in the r band as a
matched aperture to calculate the flux in all bands. The models used are: the exponential flux (I_,,)
and or de Vaucouleurs model flux (Ie,)'. The terms fracpsf is the best fit linear combination of
the respective profiles.

There are some objets that satisfy the selection from CMASS and LOWZ , thus a minimal
redshift is set to separate both samples, z,;, = 0.43.

!The expressions of the 2 profiles are the following, the first one corresponds to a pure de Vancouleurs and the
second equation an exponential profile.

Loan(r) = Ioexp—T.67[(r/ress) "] (V.12)
Teap(r) = Ioexp(—1.687/resy) (V.13)
(V.14)
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Comoving Density

In Fig. (V.3) the comoving number density of BOSS data are shown, to select the samples the
flag BOSSTARGET1 is used. This flag indicates for a given version of the photometry file and a
given version of the target selection the nature of the targets. In Table 1 BOSS survey primary
target selection flags for galaxies are shown. We will see later that due to the changes in the target
selection and in the photometric reduction it would be necessary to homogenize the sample, thus
the cuts would be reapplied as this flag is not used anymore for the sample generation. However for
getting an idea of the number galaxy density it is accurate enough. In fact the comoving density
would be used to monitor and warranty the homogeneity of the sample.

Table 1. BOSS survey primary target selection flags for galaxies
Masktype BOSS TARGET1

0 GAL LOZ low-z Irgs
1 GAL_CMASS dperp > 0.55, color-mag cut
2 GAL_CMASS COMM  dperp > 0.55, commissioning color-mag cut
3 GAL_CMASS SPARSE GAL_ CMASS COMM & (IGAL CMASS) & (i < 19.9) sparsely sampled
7 GAL_CMASS ALL GAL_ CMASS and the entire sparsely sampled region
6 SDSS KNOWN Matches a known SDSS spectra.
81— T T T T
i All GAL(493845)
CMASS(333654)
LOWZ(103086)

N(Z)[10° (W/Mpc)]

Figure V.3: Comoving number density of BOSS Galaxy samples
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V.1.2 Angular Selection Functions

The angular selection function of BOSS could be separated into two functions in term of MANGLE
polygons, the veto mask accounting for the regions we do not have access and the window that
defines the geometry and accounts for the completeness of the survey. The completeness of the
survey is used as a weight for each region (sector, polygon) that should be applied to random
sample in the correlation function analysis.

Veto Mask

The veto was generated within the working group of BOSS galaxy clustering and they are docu-
mented in Blanton and Tinker in prep. They consist of the concatenation of different components:

e Bad fields of photometric survey. The holes generated by bad fields where no photometry is
available to apply the target algorithm.

e Bright star mask. This mask hides the neighboring around bright stars. It is generated with
the Tycho catalog of stars.

e Center post mask. This mask hides the centers of the plates where is not possible to place a
fiber. It consists of a circular region of 92 arcsec at the center of each tile. Of the N7 tiles
used up to now, the total area of the mask is 7, so even if it is small it should be considered
for precise clustering analysis .

e Collision priority mask. This mask accounts for the objects that received a fiber and had a
higher priority than the LRG’s. It puts a circle with radius 62 arcsec.

Completeness

As we have seen in the last chapter the completeness is fundamental to estimate the angular selection
function of data, permitting to compensate the incompleteness of the sample via the random set.
The basic definition of the completeness is the rate of successful spectra taken to the targets for

each region.

spectras
Completeness = spectras

(V.15)
targets

The completeness defined in this way will account for the missing redshifts independently of the
reason why they were not measured (sky area not yet survey, redshift failure, observational issues,
etc). Some analysis (Ross et al in prep ) separate the completeness in two kinds of completeness
angular and redshift. This practice is useful when looking to understand the systematics, but in
order to do clustering analysis it is more pragmatic to include all the possible effects in only one
quantity that will be apply to the random generation.

In principle for computing the completeness for each sector (polygon) we only need thus a target
list and spectra list. Nevertheless in BOSS survey some considerations must be taken into account
for the correct computing of the completeness and the catalog generation. Before beginning with
the detailed description I enumerate the global procedure to permit the reader to follow the further
subsections.
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V.1.3 Catalog definition

1.

We define a target list which by construction generates a complete sample. The targets lying
in the veto mask as well as the targets corresponding to legacy data (data from previous
versions of SDSS), are subtracted. This data are flagged UNKNOWNCOLL . Regarding the
targets I discuss in detail in further subsections the changes in this target list definition and
the photometric offset between hemispheres.

. We identify the legacy data, which passes the CMASS cuts. In a further subsection we explore

some ways to deal with this sample. These objects are flagged as KNOWN.

. We select a spectra list applying some cuts. We select the non repeated, with good redshift,

CMASS spectra. 2

. The failure targets are identified and corrected as explained in a further subsection.

. The spectra taken are matched to this target list and to the legacy list. Some legacy data have

BOSS spectra. These data are included in the catalog, we flag these objects as DUPLICATE

. The fiber collision objects are identified and corrected as explained in a further subsection.

. The completeness is computed and to homogenize sample a cut in completeness is applied (C

> 0.7).

. We restrict the sample to the redshift range z—[0.43, 0.7], the lower limit is set to separate

from LOWZ catalog because there is an overlap in this region.

V.1.4 Targets Definition

During the first chunks up to Chunk 15 the photometry reduction as well as the target selection
changed. In Table 2 these changes are enumerated. The changes in the target selection generates
inhomogeneities in the sample. The changes in photometric reduction implies some ambiguity in
the definition of the targets and the completeness calculation. The first step to generate the target
list is to homogenize the sample freezing the target selection to the final version. The consequences
of reapplying the cuts depends on the sense of the changes in the target selection:

o FEarly target selection more RESTRICTIVE. In this case we loose targets The missing objects

lie in the borders of the color cuts, what makes difficult the possibility to compensate up-
weighting. However as the latest data is more permissive, an estimation of n(z) with the
earlier and the final target selection could be achieved to evaluate the impact of the changes.
This is the case of LOWZ sample that is not treated in this work.

Early target selection more PERMISSIVE. In this case the only effect would be the loose of
objects. This is the case of CMASS sample where the target selection changes imply a loss of
objects of 3.5% for MAINOOS (7.8% for GATH, for the entire geometry)

>That is using BOSS flags (BOSSTARGET1&2 —0)& (PRIMARY _OBJECT=1) & (ZWARNING _NOQSO =

0)).
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In relation to the photometric reduction and the ambiguity in the completeness it is possible to
proceed in two ways:

Main targets not in Gath Gath targets not in Main008
25T T T T T T T T T T T T T T T 25T T T T T T T T T T T T T T T T T
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i_cmagnitud i_cmagnitud

Figure V.4: Targets from the target run MAINO08 and the combined target list GATH for
each .

e The first possibility is to take the latest photometric reduction and redefine the sample. As a
consequence of the changes in photometry, some galaxies passes the selection cuts in the final
photometry but they were not targeted at the time of observing and inversely. The result is
that many objects scatter across the boundary as we see in figure V.4 where we explored the
implications of using a singular photometric reduction and a combination of them.

e The second choice is to take the selected targets at the time of targeting. This evolving
photometric reduction implies the completeness definition is fixed but the changes in the
photometric reduction could generate an evolving comoving density. If the difference between
reductions do not generates changes in the comoving density this option is preferable as the
completeness definition is safe.

In order to choose the better option to define the target list I will explore two choices to generate
the catalog. I test using photometry reduction MAINOO8 . The catalog generated with this photo-
metric reduction will be call MAINOOS . 1 generate another catalog using this time the photometric
reduction correspondent to each chunk. For the generation of the combined photometry file, I use
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Table 2. Changes in photometric reduction and target selection

chunk targetrun target version Photo Calib Photo Resolve Photo sweep
bossl comm default0 vl 0 4 2009-06-14 2009-06-14
boss2 comm?2 default0 vl 1 2 2009-06-14 2009-09-28
boss3-4 main002  default0 v2 01 2009-06-14 2009-11-16
boss5-6 main005  fall09i v2 0_3 2009-11-16 2009-11-16.v2
boss7-11  main007  fall09i v2_0_5 2009-11-16 2009-11-16.v2
boss12-14 main008  dr8final v2 0.9 2010-05-23 dr8final
bossl5-*  main009  dr8final v2_0_13 2010-05-23 dr8final

Summary of Changes in photometry and target selection
I Fiber magnitude limit i ;2 has changed from 21.7 to 21.5 since chunk 15.
100 % of LOWZ and 90.5% of CMASS was targeted using the DR8 Photometry

the first routine of the mini-pipeline MKSAMPLE created for this purpose within collaboration by
Berkeley Group. This routine begins with the latest photometric reduction MAIN0O9 and for each
chunk within 1-15, the targets from the respective chunk are replaced for their respective reduction
following the table 2. The output file is then used as the target list. The catalog generated with this
file will be called GATH. In both cases, I re-apply the final target selection cuts defined in V.1.1 to
the target list and the veto mask.

In figures V.5 and V.6 the targets corresponding to each chunk are shown using the different
target list, in black the targets common to both target list MAINO0OS and GATH, in red the targets
only present in MAINQ08 and in blue the targets present only in GATH. As we can observe from
the figure, even if the differences between target list are small , the spatial distribution is not
random, there are particular regions as the borders between chuncks and the borders of plates. Now
I compare the distribution of missing targets in the color space. In figure V.4 | in left panel, the
targets from MAINOO8 not matched with any target in GATH as well as the targets from GATH
not found in MAINQOO8 are shown in right panel. As we observe from the figure the scattered objects
from MAINOOS8 are not random they are preferentially from the boundaries in color-mag space, i.e.,
at preferred redshifts.

Then 1 followed the prescriptions described in section 1.1.3 to generate the two catalogs. The
Legacy is excluded, the fiber collision corrected as method 1 and the target failures corrected as
method 2 explained in further sections. The cut in completeness is C=0.7 and the cut in redshift is
[0.43,0.7]. Some statistics of the catalogs are shown in TABLE 3.

Table 3. Statistics from GATH and MAINOO8 catalogs

Starting with 2,288,550 1,591,029
Targets After BossTargetl cut 1410081 990958
Targets After Color cuts 1299425 956689
CMASS galaxies matched with targets 289004 297010
Number of NonCMASS in SpAll 15734 15452

non spectra BOSS, known objects: 14588 14225
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Figure V.5: Targets from the target run MAINOO8 and the combined target list GATH for
each chunk from 1-12.
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Figure V.6: Targets from the target run MAINOO8 and the combined target list GATH for
each chunk from 13-14.

The first test 1 apply is to study how the comoving density evolves for each chunk in both
catalogs. In figure V.7 the comoving density is shown for each chunk in panel A for MAIN0OOS
and in panel B for catalog GATH. As we can observe from the figure in panel B, the comoving
density does not seem to be affected by the changes in photometric reduction within the statistical
fluctuations. Thus, the GATH catalog seems to provide the best characteristics to generate the
catalog.
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Figure V.7: A) Comoving density from the target run MAINQOS for each chunk. B) Comoving
density from the target run GATH for each chunk1-14.

Finally, I compute the correlation function using both catalogs. For each case the random
size is 5 times the size of data set. The random follows the redshift distribution of data and the
completeness. In figure V.8 the correlation function using each one of the catalogs. The correlation
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functions are completely compatible, the small fluctuations are probably generated for the size of
the random.
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Figure V.8: Correlation function using the combined photometric files GATH compared with
sample generated using only one reduction MAINQOOS

V.1.5 North/South Offset

One of the big concern at early analysis of DR9 data within the clustering group was that it has
been found a clear difference in the mean density of south (SGC)and north (NGC) hemisphere in
Galactic coordinates. In figure V.9 the mean density of CMASS galaxy sample for all sample and
separating North South is shown.The galaxy number density for 0.43 < z < 0.7 CMASS sample of
the south hemisphere shows a ~ 3.4% higher number density than the NGC. 3.

Schlafly & Finkbeiner (2010) have found an offset in the colors as a function of the position.
They explained the origin of the offsets by a mixing between calibration errors and errors in the
correction of the galactic extinction. This offset affects the target selection because the CMASS
selection is sensitive to dperp color (and LOWZ sample is sensible to ¢ color). Their results shows
an offset of 0.0064 between North and South in dpeqp. Ross et al found that this offset in dpe,p
between the Northern and southern hemisphere is consistent with the 2% difference in the number
density of the CMASS targets (Ross et al., 2012).

Following the results of Schafly et al and Ross et al, this offset in dpe, was applied to the south
hemisphere targets before applying the color-cuts of the target selection. The figure V.10 shows the
effect in the target selection of applying this offset. In blue the north hemisphere CMASS targets
in red the South hemisphere with offset. As we observe this offset implies more restrictive cuts for

3For the LOWZ sample in the redshift range 0.2 < z < 0.4 the difference in number density is larger ~12%
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Figure V.9: Left panel. Mean number density of GATH catalog separating North and South,
with and without offset applied. Right panel. Mean number density of MAINOO8 and GATH
catalogs, with and without corrections for whole sample.

south targets. This implies a loss of objects of % that corresponds to difference in the mean density
as we can observe from the panel B of the figure V.9.

I study the effect in the correlation function of applying this offset in both catalogs GATH and
MAIN. As we observe from Fig V.11 the effect in the correlation function is negligible, it only adds
some small correlation in large scale.

Now in panel A of figure V.12 I show the correlation function separating the North and South
hemisphere with the offset corrected and not for the south targets. From the figure we observe the
correlation function of North and South seems to follow different behaviors.From the same figure,
panel B we observe that the correction of the offset do not change significatively the south correlation
function. We will see later that after all systematic corrections the discrepancy between North and
South is within the statistical fluctuations.

V.1.6 Target Failure Correction.

The last correction that we must apply to the targets is related to the target failures. There are
some CMASS targets that results in spectra of no CMASS objects, even if this a small fraction when
accounting for the completeness of the survey it is important to deal correctly with these objects we
called target failures. As all the spectra with no CMASS nature are eliminated, a correction must
be done in the targets list to account for this failure rate. If we do not correct from this no CMASS
objects in the denominator, it generates a completeness dependent on galactic latitude related with
the principal polluter the stars. It provokes an inverse weight in the completeness related with the
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Figure V.10: The targets from GATH catalog in the color space. In blue the north hemisphere
CMASS targets in red the South hemisphere with offset. As we observe this offset implies more
restrictive cuts for south targets.

stars contamination in the targets. Heretofore I implemented method 2, in this section I study
different methods to correct for this failure rate. I tested three methods:

e Method 1. We eliminate the objects that were found not to be CMASS spectra (i.e. stars,

gso) from the target list from each polygon.

Method 2. We estimated the proportion of (targets failures)/spectra and we applied this
weight to the targets in each polygon (reducing the number of remaining targets by this
fraction). This option is justified by the fact that the survey is not complete,thus it is natural
to estimate that the proportion of failures would be constant for the rest of the targets not
yet observed. The“target success rate" 7 is defined as :

spectras
T = targets * p NoCMASS (V.16)

spectrascyAss

Method 3. Given that there are few objects per polygon, doing (2) is still subject to large
statistical fluctuations so , as this rate of failures would be function of the galactic latitude, we
applied a global correction function of the galactic latitude . To implemented this method we
separated north and south see figure V.13. As we notice the correction seems to be different for
both hemispheres thus we treat each hemisphere separately. The dependency on the galactic
latitude is not exactly linear, thus, we fit with a spline (see Fig V.13.).
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Figure V.11: The correlation function of applying this offset in both catalogs GATH (right)
and MAIN (left).
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Figure V.12: The correlation function of applying this offset in catalog GATH separating
North and South in left in right the correlation function of south after and before offset correc-

tion.
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Figure V.13: The‘target success rate" as a function of the galactic latitude.

We analyze the results in terms of the completeness and the correlation function and we compare
with the case of not applying any correction. The results are shown in figure V.14 and V.15. The
three methods give rather similar results but not exactly:

e Method 1: In the completeness there seems to remain a very small evolution with galactic
latitude. The resulting correlation function is higher than erroneous initial calculation without
correction.

e Method 2: Completeness does not depend on galactic latitude. The correlation function is
higher than the case with no corrections, and even higher to method 1.

e Method 3: Completeness does not depend on galactic latitude. The correlation function is
very close to that of method 2.

We compare in a further section the different methods for correcting bad targets with the angular
weights included and we compare with the results from the official catalog of BOSS clustering group.
For the moment, we fixed the method 2 to correct for the target failure rate as we considered it
performs a better correction as it considers the rate of failure in a statistical way. As we will correct
in a subsequent section from angular systematics, the method 3 could affect the estimation of the
angular corrections.

V.1.7 Fiber Collision Correction

The finite size of the plugins for the fibers imposes a limit in the selection of targets of 61 arcsec
around which is not possible to observe at the same plate other targets, thus is not possible to get
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Figure V.14: The completeness as a function of the galactic latitude for the 3 methods of
correcting the bad targets.

spectra of two galaxies which angular separation is less than 62 arcsec. The targets that are within
this radius are called colliding targets. The tiling algorithm is optimized to assign targets to fibers,
trying to optimize the non colliding targets. Even though, to retrieve a 7% of this colliding targets
the tiles are designated to overlap. The % of the total area are covered by more than one plates.
Even doing this a % of targets are lost. The fiber collision affects the small scales essentially however
it has an effect in the large scales as we will see. There are two ways to correct from fiber collision.

e Option 1.The first approach to account for the fiber collision used in SDSS-I-II is to include
a fiber correction weight in the completeness. The idea is to identify the targets having close
pairs and not having a fiber assigned, the so called colliding targets and add a weight to the
target with spectra associated to compensate the fiber collision. This method is equivalent to
include the close pairs in the catalog and assigning them the redshift of the closer pair from
legacy data or boss data. We applied the correction in the second form. Taking into account
this correction the final definition of the completeness is:

spectra + closepairs

completeness = : (V.17)
targets + closepairs

As the assigned redshift is essentially random the global effect is a kind of noise originated
from the random of the redshift assigning.

e Option 2 Hong in preparation have proposed an alternative to this approach that gives a
more precise correction for small scales. The method consist in separating the sample in two
populations. A non colliding population with N; elements that consist in all galaxies that are
separated by a distance larger than the fiber collision scale. The second sample includes all
the Ny collide objects. Thus, there are N galaxies targeted and only N’ would have assigned
a fiber, N’ is composed of the N7, non collide targets plus a fraction of the collide targets
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Figure V.15: Correlation function computed with GATH catalog using different methods for
correcting the bad targets. Top left for the hole sample, top right the north hemisphere and
bottom south.

N} = f(N3), that is :
N =N, + N, (V.18)

Following Hong et al the data pairs would be given by:

DD = D1D;y + D1 D4(N2/Nb) + DyD5(N2/N5)?

DR = DyR+ DyR + (N2/N}) (V-19)
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This expression assumes that the data counts of the collide terms with spectra are simply
proportional to all the colliding objects.

Up to now we have applied the method 1 for correcting for the fiber collision.

V.1.8 Legacy Data.

Up to now we have worked with BOSS data exclusively. However, we have to take into account that
for the targets where a spectra is available in Legacy data, they do not have an assigned fiber in the
BOSS survey. Thus BOSS data should be combined with the Legacy Data. In fact the Legacy data
and BOSS data are in principle two separated samples, each one with a completeness, angular and
radial selection function. Thus being strict we must treat as two separated samples and duplicate all
analysis. But because Legacy data represents a small percentage of the targets (1.5%) we preferred
to combine them in a unique sample. Merging both samples is not a trivial issue, the problem arise
when dealing with the random set. In fact the random set must mimic the data set, but because
the data is a combination of two samples, the random generation must take this into account.In
this section we study the ways to deal with this issue and the effects in the correlation function. I
study four different options to deal with legacy with different levels of accuracy, the idea is to study
the effect in the correlation function and select the best choice for the catalog generation.

e Option 1. As the existence or not of known objects do not affect targeting of the object, the
idea is that we can treat the completeness for both samples separately. The legacy data is
taken as a known sample and a completeness equal to 1 is assigned. The BOSS completeness
is computed separately using only the targets with a fiber assigned. It implies that some
sectors will have to values from the completeness. What is proposed, is to generate random
points following boss completeness and weight data with their respective completeness.

fibersassigned

Completeness = (V.20)

targets

e Option 2. The completeness is computed in the same way that option 1. The Legacy objects
are included subsampled to mimic the completeness of BOSS . The close pair are subsampled
to follow BOSS fractions (Boss-known, known-known). It implies a lose of data of 7%. This
is the method implemented in the BOSS clustering Group.

e Option 3. Include the known in the completeness calculation. This option is not exact as
LEGACY data is different in luminosity, redshift and colors. Thus, completeness of SDSS
could not be an indicator of BOSS completeness. But the idea is to compare the error asso-
ciated with the incorrect accounting of legacy data

spectra + known

(V.21)

completeness =
targets + known

e Option 4. Not including legacy data. Loss of data (1.5% of target list) negligible at the current
state.
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Before presenting the results [ begin describing the known sample. It consists of about 14588 objects
(1.5% of target list). In the data available up to now, 914 have been re-observed and from them
517 are CMASS objects. The legacy data is not randomly distributed within BOSS coverage.

Figure V.16: Coverage of Legacy Data, in cyan all data in red legacy data

In figure V.17 the results are shown. As we can observe from the figure including the legacy
has not a big effect in the correlation function, including the legacy data in the completeness seems
to decrease the correlation globally thus it does not seem to be a solution, the method 1 seems
to give similar results than not include the legacy data, The subsampling method do not seems
to give similar results. The correlation function seems to be displaced by constant noise, typically
generated when the random do not follows the same selection function than the data. For the
following I decide to exclude the legacy data, this sample at this stage do not represent a large
fraction.

V.1.9 Summary:Final Catalog

In this section I have discussed the choices taken to construct the catalog and I explored the
implications and justify the choices. To conclude the section I present a summary of the choices
taken to define the final catalog and I present the choices taken in the official catalog. As we will
see at the end of the following section, once corrected from the systematics, the results obtained
with our catalog are pretty similar to the results obtained with the official catalog.

1. The combine photometric target files has been used as the target list. The official catalog uses
this version as well

2. An offset to the rotated color dperp have been applied to the south hemisphere. The official
catalog applies the offset too.
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Figure V.17: Correlation function weighted with Legacy

3. The correction for bad targets is given, statistically , multiplying the targets by the target
failure, given by the rate defined as V.16. The official catalog removes the bad targets and
treats the failures in redshift independently in a similar way to the fiber collision, assigning a
weight wy.

4. The fiber collision correction is done with the nearest neighbor approach. The official catalog
assign a weight wy.to the nearest neighbor, the total weight is given by w, = wys. +wy — 1

5. The Legacy data is not included. The official catalog includes the legacy data subsample to
the BOSS completeness.

6. The completeness cut is C=0.7 and the redshift range—=[0.43,0.7]

V.2 Observational Angular Systematic Errors

In this section I test possible sources of angular systematic errors. I describe the way of correct these
systematics defining a set of weights and finally I study the effect in the correlation function. The
general idea for looking of sources of systematics is to study the fluctuations of the mean density as
a function of the variables that are believed to have an effect in the sample. In Ross et al (2010)
the fluctuations of the mean density as function of five variables have been studied: airmass, sky,
seeing, dust and stellar density. Ross found that stellar density is the principal source of systematic
errors in BOSS galaxies. I begin this section studying closely this variable before taken into account
the other variables responsible of angular systematics. Then, I study the 5 variables considered by
Ross and I add to the analysis one more variable, the offset in photometry.
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V.2.1 Stars

As we have said before an anti-correlation between the mean density of galaxies as a function of
stellar density have been found. The explanation proposed for explaining this anti-correlation is
that where stellar density is high, the surface masked by the stars begins to be have an effect in
the correlation function because of the missing CMASS targets that could not be observed. Thus,
inducing an anti-correlation between density of stars and density of galaxies. The effect is visible in
BOSS and not in previous stages of SDSS because we have enough area that effect of stars become
important. In fact in order to apply a global correction in Ross in prep the dependency of mean
density and the stellar density has been calculated with the whole sample. Even if we agreed that
the best way to compute the weights is in a global treatment, in order to explore and understand
the origin of the systematic error I have done the same kind of exercise separating North and South
hemispheres. For the stars catalog we use all stars in the magnitude range [17.5,20].

The left panel of figure V.18 shows the relation between mean CMASS target density and stellar
density and the right panel shows the mean CMASS spectra versus stellar density. The first remark
is that we observe a different dependency between targets and CMASS spectra densities. The
difference in the slope can be explained because the percentage of targets that are stars has a
positive relationship with stellar density, so the target density vs. stellar density has a more shallow
slope than the spectra density vs. stellar density.
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Figure V.18: The relation between mean CMASS target density and stellar density and the
right panel shows the mean CMASS spectra versus stellar density.

The second remark is that we observe a different dependency between North and South in each
case, however this difference is compatible with the statistical uncertanity. As the dependencies are
different we cut in four regions [-90, -40] [-40, 0] [0, 40] and [40, 90], the results are shown in figure
V.19. The results indicate that in the high latitude regions (North/South) the CMASS density is
compatible with no dependency with stellar density. In the regions of low latitude, we observe the
dependency of North region is two times greater than South region.

The last result seems to indicate some atmospheric effects as the seeing is systematically worse
in south, thus enhancing the effect of stellar density. We explore this hypothesis, for that we
use a pixelised Healpix map of the seeing with Npix=256. For each star we compute a quantity
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Figure V.19: The relation between mean CMASS target density and stellar density for the
bins in galactic latitude: [-90, -40] [-40, 0] [0, 40]
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i

In the left panel of Figure V.20 I present the relation between the normalized CMASS targets

and the surface masked normalized. As we observe for the figure clearly the slope of the fits evolves

with the galactic latitude bins indicating the existence of a non considered systematic effect in the

South no related to the surface masked by the stars. In the right panel of figure V.20 I show the
evolution of the slope of the linear fit as a function of the galactic latitude.

Stellar Correction

Independently of understanding the origin of the systematic error the standard procedure to correct
from a systematic is to estimate the relation of the mean CMASS density as a function of the possible
source of systematic error. In principle there is no reason to find a correlation between CMASS
density and each one of the systematics, and what we must observe would be a flat distribution.
A deviation of a horizontal line indicates a correlation or anti-correlation with a systematic. To
correct a systematic the standard procedure is to apply a weight calculated using the inverse of the
relation between the mean density and the systematic.

The first question that we must overcome is which estimator for mean density of galaxy we will
use for computing the systematic corrections. Both estimators the mean CMASS spectra density or
the CMASS target density are biased, the density of CMASS spectra is biased because the survey is
not complete and CMASS targets density is biased because the target failure rate is correlated with
galactic latitude. As what we want is to correct the galaxy sample, the natural choice is to estimate
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Figure V.20: Left panel. The relation between mean CMASS target density and surface
masked by stars for the bins in galactic latitude: [-90, -40] [-40, 0] [0, 40]. Right panel. The
slope of the linear fit for the relationship between mean galaxy density and surface masked by
the stars as a function of the bin in galactic latitude

the corrections using the CMASS spectra density. In the left panel of figure V.21 the CMASS spectra
density normalized to the mean density as a function of the stellar density is shown after and before
corrections. In right panel of figure V.21, the correlation function is shown after and before stellar
correction. As we observe the stellar density has an important effect in the correlation function, as
the effect of the stars is no accounted in the random, the global effect is to add a constant noise
in the correlation function, when the weights are applied this effect is taken in account and the
correlation function tends to zero as predicted.

V.2.2 Correction of others sources of angular systematic errors

Ross et al found significant fluctuations of the mean density as function of others variables. In
this section I study the way to correct for multiple sources of systematic error and the effect of
the corrections in the correlation function. The variables explored are: I-band sky Flux (we will
denote as sky flux) , the galactic extintion Ar (Extinction), T band PSF FWHM (Seeing), the
airmass, the Schafly offset r-i and g-r (that combined gives place to the dperp offset). In the figures
V.22,V.23 and V.24 the pixelized HEALPIX maps with npix=256 shows the angular distribution
of the systematics explored. This maps were produced within the clustering working group by A.
Ross and S. Ho. In an analog way as stellar density, we calculate the relation between density of
CMASS galaxies as a function of the possible source of systematic error. 1 exclude for the analysis
the pixels without BOSS data, and the pixels outside the ranges defined in the table (outliers of
distribution). In figure V.25 and V.26 the CMASS density normalized to the mean density as a
function of the possible source of systematic error is shown. As we can observe from the figures, we
verify that the main source of systematic error is the stellar density, we find a smooth dependence
on the seeing and dust and an almost null effect of sky flux and airmass.
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Figure V.21: The correlation function is shown after and before stellar correction

When we have more than one source of systematic errors we can not apply directly the standard
procedure described before to correct them, we must account for the possible correlations between
systematics. If variables are completely independent we should correct for each one separately
and take the product of the weights derived to correct each systematic. To take into account of
these correlations between variables we will used two methods: the iterative weights and the linear
regression.

Secing

0.0 e— — 15.0

Figure V.22: I-band sky flux (Sky) and I band PSF FWHM (Seeing) maps with HEALPIX
pixelization of nside=256.
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Figure V.23: Galactic extintion (Ar) and Airmass maps with HEALPIX pixelization of
nside=256.
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Figure V.24: Stellar Density and CMASS galaxy density with HEALPIX pixelization of
nside=256.

V.2.3 [Iterative Weights

The iterative method has been proposed within the BOSS collaboration. It consists of dealing with
each systematic separately in a iterative way, that is, to compute the dependency of the mean
density with one systematic, correct it applying a weight to each galaxy proportional to the inverse
of this relation and recompute the relation of the mean density for next systematic and correct it in
a iterative way. The final weight computed in this way takes into account the correlations between
variables. To apply this method I fit a spline of 5 nodes to the relation between the mean density
and the systematic. The disadvantages of this method is that the fluctuations pixel to pixel are
taken into account in the corrections what could result in an extra noise. We can try to avoid this
over-fitting using a linear function instead, but even if we use a linear function, the resultant weight
will be a expression non linear on the systematics and the problem is that we have no reason to
predict a more complex dependency than linear. In Figures V.25 and V.26, the dependency of the
mean density with the systematic is shown before correction as well as the spline line fit.

Now , in figure V.27 I show the correlation function computed with/without the iterative weight
for both samples MAINOO8 and GATH. As we see the choice of catalog follows the same pattern
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Figure V.25: The dependency of the mean density with the systematic is shown before
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Figure V.26: The dependency of the mean density with the systematic is shown before
correction as well as the spline line fit for the dust and seeing.

than without weights, using both catalogs gives very similar results, the small fluctuations could be
explained by the size of the random set used to compute the correlation function. The choice to
use a linear fit or a spline do not affect the correlation function.

V.2.4 Linear Regression Method

The second method explored to correct angular systematics was a linear regression applied pixel by
pixel. We suppose that the value of the normalized density d,(p) = ng4(p)/ < ny > in each pixel p
is a linear regression of 5 independent variables. These variables are defined as the deviations from
the mean value of the systematic. Then, we compute the best linear combination of parameters
that follows the relation.

Y

sys

by =0g0 [ 1+ Z a; (V.23)

where, ny(p) is the value of the measured mean density at the pixel p, 6%, (p) is the value of the
fluctuation of systematic in relation with the mean value of the systematic, where ¢ runs over the
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Figure V.27: Correlation function with the iterative weights using A. Ross files and applying
an iterative correction with spline for the dependance in the systematic as a function of the
mean density.

number of systematics studied and 49 is the real normalized mean density .

8Lys(p) = sys'(p) — (sys") (V.24)

Under the assumption that 69 = ng/ < ng >= 1. Then, using a linear regression we find the
parameters a that better agrees with the observed density. In this case the weights will be given by:

5
w(p) =) aix 8Ly (p) + 1 (V.25)
=0

In figure V.28 and V.29 the relation between the mean density before and after corrections is
shown. The lines corresponds to the best linear fit to the data points. As we can observe from the
values of the linear fits, after corrections the mean galaxy density does not depend any more on the
systematics. From the plots we confirm that the principal sources of systematics errors are given
by the stellar density followed by the dust and the seeing. The airmass and the sky seems to have
negligible effect.

Now we will compare the results from the iterative method with the results from linear regression
In principe the weights from linear regression must be less agresive given their linear nature. In
figure V.30 the correlation function computed with the same sample and same random set but using
in one case the weights from the iterative method and in the other case the weights from the linear
regression is shown. We observe that both methods give similar results showing the robustness of
the results face to the weighting scheme.
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Figure V.28: The dependency of the mean density with the systematic is shown before and
after correction as well as the linear line fit for dust and seeing.

V.2.5 Effect of angular corrections in correlation function

In the last subsection I tested the two methods to compute the weights and I show they gives similar
results. Now we will explore which is the effect of each systematic in the correlation function. For
this test I used the iterative method. I correct for each systematic independently and I study the
effect in the correlation function. Then I test the effect of applying the four systematics together
excluding stellar correction. In figure V.31 the results are shown, as we can see from the figure
the larger effect is generated by stellar density, that decrease glogablly the correlation in ?%, the
others systematics decrease the correlation only in ~?%, only the seeing increase the correlation
value globally.

Finally T test the correction from angular systematics with the catalogs generated with the
different methods to correct the target failure. As we have seen before, this choice have an important
effect in the correlation function.In figure V.32 and in V.33 the correlation function computed with
the different different target failure correction before and after correcting from angular systematics
is shown. I present the results for the hole sample and separating North and South. As we can
observed from the figures for the whole and north samples the behaviors of the correlation function
seems to follow the same patterns than without corrections, the south hemisphere seems to present
an atypical behavior with the method . This result seems to point out that the best way to correct
from bad targets is the method 2, which gives consistent results between both hemispheres.
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Figure V.29: The dependency of the mean density with the systematic is shown before and
after correction as well as the linear line fit for dust and seeing.

V.2.6 Summary of Correlation Function Corrections

In this section I described the correction of the correlation function from angular systematics effects.
I verify that the main systematic is the stellar density. I study the stellar density in detail, separating
the dependency of the mean density and stellar density in bins of galactic latitude. I found a different
dependency between South and North at low galactic latitude. T explored the explanation for this
systematic effect calculating the surface masked by stars and [ studied its dependency with stellar
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Figure V.31: Correlation function with weights computed separately for each systematic

density. An evolution of this dependency in terms of galactic latitude was found which indicates
an unknown systematic affecting South hemisphere. I tested different sources of systematics effects
(seeing, sky, extinction, stars, air mass, dperp offset) and 2 methods (Iterative weights and Linear
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Figure V.33: The correlation function computed with the different different target failure
correction before and after correcting from angular systematics separating North and South

regression) to estimate the weights to correct from this systematic error. Both methods give similar
results in terms of the correlation function. The main effect of correcting from angular systematics is
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to decrease the correlation function level globally. T tested the effect of the correction from angular
systematics and the method from correcting bad targets. I found that method 2 is consistent
between both hemispheres applying the weights.

V.3 Covariance Matrix

In the last section I have developed the procedure that gives rise to the correlation function from
BOSS data corrected from angular systematic effect. In order to do cosmological analysis with this
correlation function a fundamental ingredient is necessary, the error estimation. In order to compute
the errors three different kind of simulations would be tested. I begin describing briefly each kind of
simulation. Then, I present the covariance matrix compute with them. In a later time we compare
results between simulations to select and validate the method to be used to compute the covariance
matrix. This covariance matrix would be used to do the cosmological parameter estimation in the
final chapter.

V.3.1 Simulations Description
Lasdamas

Lasdamas simulations is a set of cosmological N-body simulations that follow the evolution of dark
matter in the universe. The cosmological model used is €, = 0.25, Qx = 0.75, Qp = 0.04, h = 0.7,
os = 0.8 and ny = 1.0. The power spectrum used to compute the density fluctuations was generated
with CMBFAST (Seljak & Zaldarriaga 1996). The initial positions and velocities were computed
for the particles using the 2LPT code (Scoccimarro). The gravitational evolution was performed
using the publicly available Gadget-2 code (Springel et al. 2005). The halos are identified using a
parallel friends-of-friends (FOF') code with a linking length of b=0.156 in units of the inter-particle
separation. The simulations were generated with the same initial power spectrum but with random
phases. The version generated for BOSS analyses is called CMASS Gamma Weak. It consists of a
set of 40 realizations for 3 regions each one denoted A,B,C, defined as in (?) correspondent to the
early data coverage, that is, the first semester of BOSS data (See Fig. V.34). The definition of the
regions are in table N. The coverage is shown in figure V.34

The simulations do not include fiber collisions and they include the redshift distortions from
velocities. The galaxy mocks have uniform radial selection function in the range z=[0.4, 0.6]. The
halos of dark matter were populated using the HALO model, a HOD was applied, consistent with
a central galaxy placed in the deepest potential particle and the mean velocity was assigned to it,
the satellite galaxies are placed randomly selecting dark matter particles from the halo using their
position and velocities. The 5 parameters of the HOD were fitted (Zheng, Coil, and Zehavi 2007)
globally in three regions to reproduce the galaxy number density and the projected correlation
function panel w,(rp) (See Fig. V.34).

The simulations were created from The Carmen simulation at a static redshift z=0.52, each one
of them consists of a box of 1Gpc/h sideleng. The simulations of regions A,;B and C were generated
using the same boxes thus they must be analyzed separately.
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Figure V.34: Left panel. Coverage of LAS DAMAS CMASS simulation. Right panel. The
projected correlation function for the first semester of BOSS Data used to calibrate the simu-
lations

PTHALOS Simulations

PTHALOS ( Roman Scoccimarro & Ravi Sheth (2001) (?) ) is a fast algorithm which generates
point distributions with similar clustering statistics to those of the observed galaxy distributions.
This approach reproduce the results of numerical simulations requiring minimal computational
resources. The motivation for using PTHALOS simulations is that this kind of simulations are faster
in relation to n-body simulations and provide results similar to them. The gaussian simulations do
not correspond exactly to the distributions generated with N-body simulations. The advantage
of PTHALOS is that in term of the statistics of 2 and 3 orders the distribution generated with
PTHALQOS are correct in large scale even in the non linear regime. The PTHALOS algorithm
consists in the generation of a density field of dark matter at large scale using lagrangian perturbation
theory at second order and it follows some corrections at small scale. These corrections consist in
partition the density field in halos based on the spherical collapse model and the mass function and
then using the distribution of dark matter within halos generated from N-body simulations (Profiles
NFW). Finally the galaxies are generated using a HOD prescription that is fitted to the data at
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small scales using the projected correlation.

The simulations PTHalos are documented in Manera et al 2012. They consist of 600 mocks
generated separating North and South Hemisphere. The simulations are generated at z=0.52. The
mass of the halos have been calibrated with Las damas simulations (Mc Bride 2012) The mocks
follows the mask and completeness from 18 july 2011 for the North and HOD parameters have been
set to fit the projected wy(rp), the redshift distortions are included. The mocks are not accurate at
small scales, below 2.5 Mpc/h. The mocks follows the radial distribution from data.

In figure V.35 I show the mean correlation function of the 600 simulations for the north and
south mocks.

Nb Mocks = 600
L

r North 1
100 E{—T ————— South 7]

8ol

60

50 100 150 200
r{Mpc/h]

Figure V.35: Mean correlation function of 600 PTHALOS simulations

LogNormal

The log normal simulations are generated using a non linear spectra from CAMB (?) with the
same cosmological parameters as LAS DAMAS simulation. The non linear spectra in generated
at redshift z—52. The non linear behavior in CAMB is done using fitted expression from N body
simulations documented in (?) . This non linear behavior do no include the BAO. To include the
non linear behavior to the BAO scale, we use the standard procedure explained in last chapter that
is to take linear power spectrum and we apply a gaussian factor to mimic the non linear degradation
of the BAO oscillations. The redshift distortions are included as explained in last chapter. The
values of the bias and beta parameters are fitted to the observed clustering. The mocks follows the
geometry and completeness of Boss, North and South hemisphere included. The radial selection
function function is given by number density of BOSS data. We generate 1000 simulations with a
random set 5 times greater than the sample.
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V.3.2 Covariance Matrix Comparison

In figure V.36 I show the correlation matrices for the North (left) and South(right) hemispheres
generated from PTHALOS simulations. In figure V.37 I show the covariance matrices for the North
(left) and South(right) hemispheres generated from PTHALOS. In figure V.38 the Boss Covariance
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Figure V.36: Boss Correlation matrices for the North (left) and South(right) hemispheres
generated from PTHALOS simulations.
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Figure V.37: Boss Covariance matrices for the North (left) and South(right) hemispheres
generated from PTHALOS simulations.

matrix and the correlation matrix for the all sample generated from LOG NORMAL simulations
are shown. Finally in figure V.39 1 show the covariance matrices from Lasdamas for each region

19

Figure V.38: Boss Covariance matrix and the correlation matrix for the all sample generated
from LOG NORMAL simulations.

A B and C and their respective correlation matrices.
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As we can verify from the figures V.36, V.38 and V.39, all correlation matrices present an
enhanced diagonal as expected. In the case of log normal simulations we observe an additional
structure with respect of the result of Lasdamas and PTHALOS. Probably this extra structure
comes from the replication of the box to generate the mocks catalogs. In the case of Lasdamas we
observe some fluctuations between regions probably derived of their small size.

V.4 Summary

To conclude the chapter I present the results with the final catalog with errors given by the diag-
onal terms of the covariance matrices from PTHALOS for the North and the South V.40 and the
combined Sample ??7 as well as the pondered mean of North and South. As we observe from the
figures our results are completely compatible with the official catalog. For the next section we will
use the official catalog to generate the constraints in cosmology. The aim of this section was to
generate our own pipeline from the beginning and to show we are able to reproduce all steps to do
large scale analysis. This procedure permit me to understand very well the sample we are using to
constrain the cosmology to understand the corrections involved in the catalog generation and in the
weighting scheme.
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Figure V.39: Boss Covariance matrix and the correlation matrix for the all sample generated
from LAS DAMAS CMASS simulations for regions A,B,C
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Figure V.40: The correlation function with the final catalog for the North and the South.
The errors bars given by the diagonal terms of the covariance matrices from PTHALOS.
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VI. Studying Redshift Distortions with
simulations and more

One of the most promising tools to investigate modified gravity is redshift-space distortion effects
caused by peculiar velocities in galaxy redshift surveys. In this chapter I study the redshift dis-
tortions using simulations. The chapter is organized as follows: in the first section I introduce
the redshift distortions theory. First I describe schematically the redshifts effects, then 1 present
the linear regime description formulated by Kaiser (1987) in Fourier space under the plane parallel
approximation (Hamilton, 1998) and the decomposition in spherical harmonics. As we will see,
the power spectrum in redshift space would appear amplified by an anisotropic factor depending
of the angle uj and the linear redshift distortion parameter 3. The [ parameter is related to the
bias and the matter density via the growth factor rate f(€2). The  parameter enables to study
two different physical effects of the growth of structure, the expansion history encoded in €, and
the gravitational theory encoded in the growth index ~ following the parametrization of (Linder,
2005) of the growth of structure f(£,,) = ). Finally, I will focus on the way of measuring the
linear redshift distortion parameter (3. In the second section I describe the studies I realize with
simulations to study the possibility to measure g parameter from mock catalogs of galaxies. The
first study is done using lognormal simulations where the density field is linear and the input corre-
lation function is known. I used another kind of mock catalogs. The second kind of mocks catalogs
is issued from N-body simulations. In N-body simulations the non linear evolution is taken into
account but are very demanding in computing-time. Thus [ used a single realization and resampling
methods were applied to generated several realizations. These simulations were used to compare
to results obtained with lognormal simulations for a realistic scenario. In both cases, I estimated
the 8 parameter from the ratio of real to redshift space monopole. In section four I present some
preliminary results with real data, BOSS. In this case we do not have access directly to the real
space correlation function, thus the estimation of the g parameter must be computed from the
normalized quadrupole.
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VI.1 Introduction

In redshift surveys the redshift of the objets is used to estimate the radial coordinate. Because the
galaxies have peculiar velocities, the real distance is distortioned by the component parallel to the
line-of-sight of peculiar velocities. The relation between true distance r and the redshift distance s
is:

§=r4+7-T (VL.1)

These displacements are called redshift distortions. The redshift distortions could be separated in
two effects that occurs at different scales. In the large scales, the dominant effect is provocated by
the bulk motions of galaxies and the description could be done in terms of the linear regime. By
contrary in the small scale regime the random motions of virialized galaxies will dominate and the
description have to take into account the non linearities.

Real space: Redshift space:

—
{9 Squashing effect

Linear regime

@ Collapsed

Turnaround

Collapsing Finger-of-god

Figure VI.1: Illustration of Redshift Distortions from Hamilton (Hamilton, 1992)

In order to illustrate the effects let us take the scheme from Hamilton (Hamilton, 1992) in
figure VI.1. In this scheme a spherical overdensity in the center is shown surrounded by a uniform
distribution of matter, represented by the circle where the dots are galaxies and the arrows their
peculiar velocities. The three levels represent the effect of redshift distortions at diferrent scales,
from large (top) to small (bottom) scales. As we observe from the figure in the large scale regime
illustrated by the first block, the main effect would be an squashing effect in the direction of the light
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of sight, breaking the spherical symetry of the shell in real space (left) when passing to the redshift
space (right). We notice that in large scale regime the velocities are small compared with the scales
that we are studying (radius of the sphere). Descending to the smaller scales, the velocities are
larger compared with the radius. There is a particular point where peculiar velocities cancels the
Hubble expansion, this point is known as turnarround, in this particular point all the points in the
redshift space will collapse to a single point. In the third block the small scales are represented, in
this case we observe that the velocities are larger than the shell radius, thus, the mixing between
diferents collapsing shells generated by the virialization process will produce an elongated pattern
known in the literature as the Fingers Of God (FOG). The main effect is a radial streching pointing
to the observer.

In the next section I present the theory behind the redshift distortions in the linear regime I
describe the relation of the distortions with the growth of structures and finally I will focus on the
way of measuring the linear redshift distortion parameter (.

VI.1.1 Linear Regime Description

Even if redshift distortions add complexities to the analysis of large scale structure, they are inter-
esting because they encode important information about the growth of structure. The linear regime
description was formulated by Kaiser (1987) in Fourier space under the plane parallel approxima-
tion that means the observer is sufficiently far from the objets that the displacement is effectively
parallel. A review of linear regime could be found in (Hamilton, 1992). In this approximation the
power spectrum in redshift space takes the following form:

Py(k) = (1+ )P (k) (VL.2)

with P(k) the power spectrum in real space, the subscript s denotes the analogue in redshift
space, p is the cosine of the angle between the line of sight and k£ and § is the linear redshift
distortion parameter. Thus this equation indicates that power spectrum in redshift space would
appear amplified by an anysotropic factor depending of the angle ug This parameter is related to the
matter density and gives information of the growth factor (growth of the newtonian gravitational

potential f(€2)) and bias.

1dLnD
B = f(Qn)bdy, = b dina

where D is the linear density growth factor and f the velocity growth factor, that could be written
as:

(VL3)

F( Q) = Qn(a)” (V1.4)
where 7 is the gravitational growth index (Linder, 2005), ©,,(a) is the matter density.

This parametrization of the growth factor comes from a fitting formula for linear perturbation
growth from (Linder, 2005). The idea is to separate the cosmic expansion history of the cosmic
growth history. This fitting formula is accurate to 0.05% 0.2%. In this parametrization v quantifies
deviations from standard framework. In this way the 3 parameter enables to study two different
physical effects of the growth of structure, the expansion history encoded in €2, and the gravitational
theory encoded in . For standard gravity the value of gamma is v = 0.55 and depending of the
gravity theory it takes other values. The equivalent analysis in configuration space was done by
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Hamilton (Hamilton, 1998). The correlation function is the Fourier transform of the power spectrum,
giving the following expression for the correlation function in redshift space:

&(r) = (1+ 5(9/02)2(V*)7H)%(r) (VL5)

where (V2)~1 is the inverse laplacian.

VI.1.2 Multipolar developpement of 2PCF

Let us consider for the following the separation between pairs in two components, the component
parallel to the line of sight r;; and the componenet perpendicular r) .The solution of VI.5 could be
expressed in terms of spherical harmonics:

E(rusry) = Eo(r) Po(p) + Ea(r) Pa(pn) + Ea(r) Pa(pe) (VL6)
with:
§o(s) = (14 28+ :8%)&r)
L(s)=  (3872B2)[E(r) — &(1)] (VL7)

&(s) = SR2LE(r) + SE(r) — TE(r)]

where y1 = 7 - & is the cosine of the angle between line-of-sight r and the pair separation = (Fig.7?),

P are the Legendre polynomials ! and the following expression for £(r) and &(r):

(r)
(r)

3r73 [y &(s)s%ds

5r75 [4 &(s)stds (VL.9)

¢
§

In Fig. V1.2 T show the theoretical prediction for &(ry, 7)) for a LCDM model in the linear regime
in real and redshift spaces. From figure we observe the effect of redshift distortions in linear regime
is an squashing effect in the line of sight direction changing the circular patterns for ellipsoid due
to the bulk motions of the galaxies.

In the Fig.V1.3 I show the theoretical prediction for the monopole, quadrupole and hexadecapole
again in the linear regime approximation. The monopole term &y corresponds to the average angle
correlation function usually used to study large scale structure. In the absence of redshift distortions
the terms quadrupole and hexadecapole must be null. The negativity of the quadrupole term re-
flects the line-of sight compression of clusters causing by this infalling velocities. The hexadecapole
and all terms (32 are related to the dispersion of velocities.

!The Legendre polynomials 1=0, 2, 4 are:

Py = 1
Py = 3(u? —1)/2 (VL8)
Py= (35u" —30p*+3)/8
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Figure VI.2: Theoretical prediction of £(ry, ) in the linear regime approximation in real
and redshift space
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V1.2 Estimation of the Linear Redshift parameter

The expressions shown in Eq. V1.7 permit us to access to the § information in the case of simulations
when we have access to real {r) and redshift correlation function (monopole) &o(s):

fols) _ (1 LoB 52) (VL10)

3 )

we will use this prescription to find the 8 parameter with simulations. Unfortunately, when working
with real data we do not have acess to the real space correlation function. Commonly the way to
estimate the 8 parameter with real data is using the normalized quadrupole defined as:

€a(s)
&o(s) — fos &o(s')s'2ds’

in the linear approximation valid in the large scale regime , the quadrupole is related directly to the
G parameter as follows:

Q(s) = (VL11)

_ 3B+
Q(S) - 1 2 1 12

+368+:0
In (Cabre & Gaztanaga, 2009) has been shown that the {, and & depends strongly on the shape

of the correlation function ( i.e . €,,,€,ns, the non linear bias and the amplitude), while the
normalized quadrupole depends only on § and o,.

(VI.12)

VI.2.1 Study Redshift Distortions with lognormal Random Fields

The first goal T investigated is how well we can reconstruct the linear amplification redshift pa-
rameter § with mock catalogs issues from lognormal simulations. In the chapter 4, I explained the
generation of galaxy mock catalogs from lognormal simulations, for this section an extra ingredient
is considered: the velocities. In the linear regime approximation, the velocity field is related with

the matter density field by :

v = —aiv?e (VI1.13)

where V2 is the inverse laplacian operator and § = V-%. In Fourier space this expression simplifies
as the inverse laplacian operator becomes 9/0rV =2 = (k- r/k)? = p?.

Using this expression for the velocities in the linear regime we assign the velocities to the mock
galaxies generated using the lognormal density field. The simulations were done considered uniquely
a bias b = 1.

The mocks were generated in a cubic geometry, I generate a set of 200 simulations with 30,000
galaxies each realization, and a random with the same number of objects. No completeness effects
were introduced. In figure VI.4 a slide of the galaxy density issued from a log-normal simulation
of the density field in real (left) and redshift (right) space is shown in the linear regime. We notice
that the global effect of redshift distortions is to make the voids appear emptier and bigger and
a squashing effect along the line of sight. As we observe from the figure, the effects of redshift
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Figure VI.4: Slide of lognormal simulation in real and redshift espace

distortions in real data are subtle, are not easy to observe by eye, but we will see that statistically
the effect is notorius in the 2 point statistics VI.6.

From each mock catalog we compute the 2 point correlation function using the Landy-Szalay
estimator. In practice there exist two equivalent ways of representing the 2D correlation function.
The first one is separating the distances into 2 components, the radial direction 7y (usually denoted
m) along the line-of-sight (LOS) and the perpendicular direction r (usually denoted o) (VI.2). An
equivalent representation of the correlation function in 2 dimensions is £(r, #) where 6 is the angle
between the line of sight s and 7. In figure VI.5 and VIL.6 the real and redshift space correlation
function are shown. As we can observe from the plot the distortions due to the redshift distortions
in the space r — 0 generates deviations from vertical lines .

For the moment we are only considering the large scale effect, i. e. the linear regime. From the
2D correlation function we estimate the spherical harmonics fitting for each bin in r; a quadratic
function for the dependency in &(r;, u? = cos?6) for each simulation. In figures V1.5 and V1.6 I show
the results in real and redshift space respectively. In the left panel the 2d correlation function. In
the right panel I show the results for the harmonics spheric rescaled by the distance s? ( &(s)s?,
€2(s)s? and &4(s)s?) estimated from the average of the 200 Monte Carlo realizations of a lognomal
simulation. In figure VI.5 the red points corresponds to the estimation in real espace taking the
galaxies without applying the velocities. In the figure VI.6 the dots corresponds to the redshift
space, i.e. applying the peculiar velocities. The blue dotted line is the linear correlation function
without Redshift distortions and the green dotted line the linear correlation function with redshift
distortions. As we observe from the fits the fitted &y(s)s?, &(s)s? and £4(s)s? are in agreement with
the linear prediction in both cases up to 50 Mpc. In the case of &4(s)s? we found is very noisy.

Now we will test if we recover the [ parameter set in the lognormal simulation. In the case
of lognormal simulations we have access to the correlation function in real space thus we can use
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Figure VI.5: Left Panel £(6, s) in real space (without redshift distortions), Top Right panels
corresponds to &y(s)s?, &(s)s? and £4(s)s? estimate from 200 Monte Carlo realizations of a
lognomal simulation in real espace (red points), the blue dotted line is the linear correlation
function without Redshift distortions and the green dotted line the linear correlation function
with redshift distortions

expression VI.7 to estimate the § parameter. In figure VI.7 the red points corresponds to the
estimation of 3 parameter from the rate £5(r)/&o(r).The black dotted line correspond to the input
G parameter from the simulation. We observe than the reconstruction of the beta parameter is
possible.

VI1.2.2 Study non linear behavior effects HORIZON Simulation

The HORIZON — 411 Simulation (Prunet et al., 2008) is an N-body simulation using 4096% dark matter
particles in a periodic box of side 2 Gpc/h. This simulation uses the initial conditions given by the
parameters of WMAP 3 years [2,,, = 0.24, Q5 = 0.76, Hy = 73.0,Q = 0.042,n5 = 0.96, 03 = 0.92] .
The particles were evolved using particle mesh scheme of the RAMSES code on a adaptively refined
grid (AMR) with about 140 billions cells permitting a resolution of about 7kpch™! in comoving
coordinates. The power spectrum from simulation is shown in figure VI.8. Using one realization
of the N-body simulation HORIZON — 411 I generated a set of 200 realizations using the Bootstrap
method. The bootstrap method is a resampling method consisting in drawing randomly from
original data set , N points with the possibility of re-emplacement. In figure ?? a slide showing the
fof particles.

Up to now we have considered only the linear regime, now we will explore what happens when we
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Figure VI.6: Left Panel £(0,7) with redshift distortions from lognormal simulations, Top
Right panels corresponds to &gr?, £r2 and &472 estimate from 200 Monte Carlo realizations of
alognomal simulation in redshift espace (red points), the blue dotted line is the linear correlation
function without Redshift distortions and the green dotted line the linear correlation function
with redshift distortions

introduce the non linearities. From the 200 hundred realizations I computed the correlation function
as before in the plane r — 0. In figure VL9 in left Panel the average &(r, ) of the simulations in real
space (without redshift distortions) from HORIZON — 411 simulation. The right panels corresponds
from top to bottom to the average harmonics rescaled by s2 (£y(s)s?, £2(s)s? and &4(s)s?) estimated
from 200 Monte Carlo realizations of halos from HORIZON — 4II simulation in real espace (red points).
In figure VI.10 the analog plot with redshift distortions from HORIZON — 4II simulation. In this case
as we do not have the input correlation function, we can not plot the estimation of the linear theory.

As an illustration I present the analog representation of the correlation function in 2D in the
plane 7| — r where ry is the componenet of the distance parallel to the line-of-sight (LOS) and
r) is the component perpendicular to the line of sight. In figure VI.11 in left panel the average
&(Tpar, ) in real space (without redshift distortions) from HORIZON — 4II simulation, in the top right
panels corresponds to the average &y(s)s? and £3(s)s? estimated from 200 Monte Carlo realizations
of halos from HORIZON — 4II simulation in real espace (red points). In figure VI.12 the analog plot
with redshift distortions from HORIZON — 4II simulation. In the case of the of the plane r;; — |
the redshift distortions effect is modify the circular pattern of the correlation function adding an
squashing effect in the radial direction.

Finally, in figure VI.13 we show the estimation of § parameter using the &(r)/&o(r) with &(s)
redshift distortions from HORIZON — 411 simulation, where &y(r) is the correlation function in real
espace and &(r) in redshift espace. The bias of the simulation is b = 1 by definition as we are
working with halos of dark matter. The black doted line corresponds to the input parameter from
the simulation. We observe than the reconstruction of the beta parameter is possible.
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Figure VI.7: Estimation of 5 parameter using the £(r)/&o(r) with redshift distortions from
lognormal simulations. The input corresponds to the dotted line.

VI.3 Measurement of Linear Redshift Distortion Parameter with
BOSS

The final goal of working with simulations is prepared the way to applied to real data from BOSS,
in this section I show some preliminar results.

Continuing in the same line of the exercise done with simulations we would estimate the redshift
distortion parameter B from the 2D correlation function. We have tested with simulations the
extraction of the beta parameter from the redshift-to-real-space monopole ratio . However with
real data we do not have acces to the real space correlation function, we can estimated from the
projected correlation function but the result would be subject to error. In this case we use the
normalized quadrupole-to-monopole ratio which we have seen is related also to 3 in linear theory.
I will use the current DR9 catalog.
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Figure VI.8:

powergrid (Prunet et al., 2008).

The power spectrum from the simulation Horizon — 411 measured with
The power spectrum is compared with the linear power

spectrum and the non linear prediction using the Smith et al 2003.(Smith et al., 2003). Figure

taken from (Prunet et al., 2008)
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Figure VI.9: Left Panel (r,0) in real space (without redshift distortions) from HORIZON — 4II
simulation, Top Right panels corresponds to &y(s)s?, and &>(s)s? estimate from 200 Monte
Carlo realizations of halos from HORIZON — 411 simulation in real espace (red points)

In figure VI.14 in left panel I show the 2 point correlation function as a function of ry; and r
measured from BOSS data (scaled by r2). We can observe the circular ring correspondent to the
BAO feature at a scale of 100 Mpc/h. In right panel a zoom of the correlation function inthe region



186

C(s0)
0.0
400-
T 300r Leceeen,,
05 ® 200:.°
100) E 1037 '-.o-....t'°'.°’-.
10 0 50 100 150 200
§ x S[Mpc.h.1]
£ 0
o
o0 “ 1000
20 X OG-
2000
& 0 ) & 0 50 100 150 200
6 [Degrees] S [Mpc.h"]
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Figure VI.11: Left Panel {(r),7) in real space (without redshift distortions) from
HORIZON — 411 simulation, Top Right panels corresponds to &y(s)s? and &z(s)s? estimate from
200 Monte Carlo realizations of halos from HORIZON — 411 simulation in real espace (red points).

of 25Mpc/h to distinguish the fingers of god, as we can appreciate the effect in small scales is an
elongation along the line of sight.

Following the same procedure as before I compute the spherical harmonics from the 2D corre-
lation function. In figure VI.15 the black line shows the estimation from the results from data, and
the error bars are the diagonal terms of the covariance matrix computed from PTHALOS simula-
tions from Ross in prep. More details about this covariance matrix could be found in the BOSS

chapter. The lines corresponds to a fit done using the correlation function model explained in the
same chapter.

Finally I figure VI.16 I show in top panel the beta parameter estimated from BOSS data using
expression VI.12. In order to analyze the result I show in the bottom panel of figure VI.16 a result
from (Cabré & Gaztafiaga, 2009) where this procedure to estimate the beta parameter have been
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Figure VI.12: Left Panel {(r|, 7) with redshift distortions from HORIZON — 4l simulation, Top

Right panels corresponds to &y(s)s? and &(s)s? estimate from 200 Monte Carlo realizations of
from HORIZON — 4II simulation in redshift espace (red points)

used with SDSS-DR6 sample. We can measure beta using the asymptotic large scale value of the

quadrupole. In the case of (Cabré & Gaztanaga, 2009) they found S = 0.34 & 0.06 in the range
40-80Mpc/h.

To finish this chapter I would like to say that this is a very preliminary work., In a future work
I would be interested to continue/conclude this work introducing to this simplified picture, the non
linear behavior and wide angle effects as well as the fingers of god modeling. In Samushia 2011

(Samushia et al., 2011) these effects have been considered in the context of DR7 probing to be
important at a level of 20 per cent.

In a second time I would be interested in the fitting of the 2D correlation function, that would
connect this chapter with chapter 7 of cosmological constrains.



188

E(S)/Eqlr)

Horizon rtheta

4 T T T T T
—~——-— Bias=10

|II|-IIIIII|IIE1II'III

TTTTT

|

ih'_“ﬁiHHHH{HHH‘H ittt NI TG

IIIIIlIIJ_;‘_I.LIJ,J_

IIIIIIIII]IIJII[!II|IIIII!1II|III|IIIII

Figure VI.13: Estimation of § parameter using the &,(r)/&o(r) with redshift distortions
from HORIZON — 41 simulations, where &y(r) is the input correlation function generating the
HORIZON — 411 simulation. The input in 0 = 1 parameter.

150 200



189

7 (h'.Mpc)

BOSS Preliminary P £(c,n) BOSS Preliminary &(c,n)
200 y ; 100 10
20
80
8
100
60 10
6
._.40 Tj‘
s
5 =
E 14
o 0 -10
9 2
-20
-20
-2001 -40 0
-200 -100 0 100 200 -20 -10 0 10 20
a (h".Mpc) o (h".Mpc)
Figure VI.14: {(ry,r, ) for BOSS CMASS galaxies in redshift space
005 T T Yy T T T T T T T T T T T T T T T 01— T T T T—T— [ T T T T [ T T T
[ ’ A BOSS Combine ] L[ —— B0SS Combine
r Best Fitichi2=  73.904886 alpha=  0.974000 bias=  1.9200001 ——— |4 ——— BestFitchi2=  73.904886 alpha=  0.974000 bias=  1.9200001
0.04F - | i
: ] 0.05|- |
0.03 E r ]
g f 3 S o000
< C 1 !
0.02- B x L i
oo1 E -0.05 b
0.00F 1 r ]
B e e otoll oy
0 50 100 150 200 50 100 150 200
rMpc/h] {Mpc/h]

Figure VI.15: &(r) for BOSS CMASS galaxies in black, best fit model in blue



190

0.2 T T T T L L
01F ]
g oo .
]
ré
i
L d
p
3
0201 [ R RS | P R B
20 40 60 80 100 120 140
s(Mpch ™)
1.0 3 T T T
05 o....' o
2 9 __maett —ol—.'! ».—-—'»’:- 2% g
."..“.b" o C'.....O.. ® et o o]
”
~ ’
& Qo F ]
!
‘;
_os _
A
[+
-1.0LL, (— o P ;
20 40 60 80
s(Mpe/h)

Figure VI.16: Q(s) for BOSS CMASS galaxies in black (PRELIMINARY PLOT). In left
panel the result for the estimation of Q(s) for SDSS-DR6 from (Cabré & Gaztanaga, 2009).
Measured Q(s) in dots with error in gray and in red the best fit



VII. Constraining Cosmology with
BOSS

This chapter is devoted to the cosmological constrains we can get from the analysis of BOSS data.
In the first section, I describe briefly the fitting procedure even if it is a standard procedure. In
the second section, I describe the model used to fit the correlation function. This work has been
done with the collaboration of A. Labatie who has developed a code which implements the model
correlation function. In the third section I present and discuss the results obtained with BOSS data
and finally I give some conclusions and perspectives.

VII.1 Fitting procedure and Confidence Limits

The fitting procedure! consists in obtaining the best set of parameters, caracterizing a given correla-
tion function model, corresponding to the data. Thus, we have a vector of the observed correlations
in various bins &,. We have a model of {(r) with various free parameters g to be fitted. We con-
struct a vector £z of the expected results for the measurement given the model. We construct the
covariance matrix C' = Cyp(&q, &) that encodes the errors of the estimator in each bin as well as the
correlated errors between bins. Adjusting the parameters to maximize the agreement one obtains
the best fit parameters. A fitting procedure provides us the best fit parameters, the error estimates
on the parameters, and possibly a statistical measure of the goodness of fit. There are two different
approaches in order to obtain these results. One is frequentist and the other is bayesian.

VIIL.1.1 »? Method

The frequentist approach is based on x? (least squares) method for which a goodness of fit can be
established. The x? statistics is written as:

—

X2(0) = (& — €))7 07 & — &) (VIL1)

! For this section a follow closely references (Wall & Jenkins, 2003), (Bevington & Robinson, 1992), (Verde, 2010),
(Press et al., 1992), (Andrae, 2010) ,(Labatie et al., 2011),
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The best set of parameters is found by minimizing the y? value. The x? method is a classical
method for BAO detection and parameter constraints. The x? method is fully model dependent.
It requires a full modeling of the correlation function including the systematics effects. Within the
definition is also included the noise measurement , i. e the covariance measurement of the estimator
é . The classical approach of x? simplifies the problem assumes the covariance is model independent,
that means a constant covariance matrix. The y? is designed for hypothesis where é is gaussian.
If we suppose the model is correct we suppose that the estimator & ~ N (04, C), in this case the
x? statistics follows a chi square distribution x2 with n degrees of freedom. The last statement is
based over the fact that the sum of n independent standard normal variables of )" XZ? follows a
x? distribution.

Goodness of the fit

If the measurements errors are gaussianly distributed and the model is a linear function of the
parameters, the probability distribution of the x? at the minimum follows Chi-square distribution
of n = n — m degrees of freedom where m is the number of parameters and n is the number of data
points. The probability that the observed x? even for a correct model is less than a value %2 is :

P(x* < X3, v) =T(v/2,%%/2), (VIL.2)

where I' is the incomplete Gamma function. The complement gives us the probability that the
observed chi? exceed by chance Y2 even for a correct model. The Q quantity provides a quantitative
measure of the goodness of the fit when evaluated at the best parameters (i.e. x2,,)

Q=1-P(x*/2,v/2) (VIL3)

Chi-Square Boundaries as Confidence levels

Confidence regions are the n dimensional parameter space that contains a certain percentage of the
total probability distribution. It is customary to choose lo (68.3%), 20 (95.4%) and 30 (99.7%).
In general, if p is the number of fitted parameters for which we want to plot the join confidence
region and p is the confidence limit desired, thus you find the Ay? such that the probability of a
chi-square variable with p degrees of freedom being less than p. A table extracted from numerical
recipes is shown in table??. For other values is necessary to look for the Ayx? such that

L(v/2,Ax*) =1 —p. (VIL4)

VII.1.2 Likelihood

While for frequentists events are just frequencies of occurrence, bayesians interpret probabilities as
the degree of belief in an hypothesis. Bayesians consider hypothesis as events. We want to know
the probability of the hypothesis given the data:

P(H)P(D|H)

P(H|D) = =5

(VIL5)
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where P(H|D) is the probability of the model given the data is called the posterior, P(D|H)
the probability of the data given the model is the likelihood, that is the probability of the data
given the hypothesis, and P(H) is the prior. The hypothesis H could be a model, in our case the
AC' DM model, which is characterized by a set of parameters. We are interested in the probability
distribution for this model characterized by a set of parameters g given the data P(6|D). From
this distribution we can extract the most likely value for the parameters and their confidence limits.
Thus we will compute the Likelihood P(D|H) and P(D) = 1, if the data is already taken, and
assuming a particular form for the prior P(H) we have the posterior probability. The prior may
come from a previous measurement or from your belief. The choice for the prior affects the final
result thus particular attention must be paid. Usually flat priors are used in such a case the bayesian
and frequentist approaches gives the same result.

If we ignore the prior, in maximizing the likelihood we will find the most likely hypothesis (pa-
rameters of a given model). The general approach relies on the approximation of the likelihood £ by
a multivariate Gaussian. This approximation is justified by the central limit theorem. The Central
Limit theorem states that the sum of many independent random variables will be approximately

gaussianly distributed:
1

1
= ——x(0)*|. VIL6
(27?)”/2|det01/26xp{ X (@) } (VILE)
For bayesians, confidence regions are found as regions R in model space such that
/P(9|D)d0 =p, (VIL.7)

where p = 0.68,0.95, etc. This implies the prior information, to report results independently of the
prior the ratio of likelihood of the points in the parameter space with the L4, is used:

—2Ln [L(Q)] < threshold. (VIL.8)

max

This threshold is calibrated by calculating the distribution of the likelihood ratio in the case where
a particular model is the true model.

VII.1.3 BAO detection and Significance

In BAO analysis usually before of doing the parameter confidence levels a preliminary test is done
to establish the detection of the baryonic feature. The BAO detection is done by hypothesis testing,

in general we have:
Hp : no BAO hypothesis
H; : BAO hypothesis

The common procedure is to design a test statistic to assess the truth to the null hypothesis
Hy(Labatie et al., 2011) , compute the statistics with the measurement, and calculate its p value
and a significance. If the hypothesis is found to be less likely than a given threshold under Hy, Hy is
rejected and Hj is accepted. The data measurement is the correlation function. The BAO models
¢Bao and no-BAO models o, 40 are parametrized by a set of parameters.
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The x? method for BAO detection consists in computing the x? statistic for the two class of
models corresponding to the two hypothesis.

XBaos = (£ €Ba06)C ™ (€ — EBA0Y)
XooBa0.0 = (o= EnoBa0.0)C ™ (€ — EnoBa0 ) (VIL9)

Then we will compare the best fit for both classes of models given by the minimum value of x2. Thus,
the minimum XZB A0.0 value could be used to the compatibility of the data with the hypothesis H;.
The best fit value follows a Xi?  Where k is the number of parameters of the fit. For the rejection
of the null hypothesis Hy it is necessary to add an artificial parameter 1 in the fit. This parameter
is introduced as a weight factor of épao and &,0540:

Eno = n€paoe + (1 —1)&nopAo.0- (VIL.10)

In this case, the x? value follows a distribution with the numbers of freedom equal to the difference
of parameters number between the 2 classes. Because there is a difference of one parameter between
the two classes, the best fit values follows a chi? distribution:

A2 = min 0,0 — minxy ~ (VIL11)
In practice minx% ¢ is replaced by a minszAO g» giving:

AX? = minxnopao, — MinNXBao.e ~ X1- (VIL12)

VII.2 Modeling the correlation function

To model the correlation function on large scales we follow the procedure of (Eisenstein et al.,
2005)(Blake et al., 2011). This model considers the plane parallel approximation, valid for small
angles of separation. In this classical approach we define a fiducial cosmology and we define a
distortion parameter « introduced to account of deviations of fiducial cosmology. Concerning the non
linearities this model corrects the linear prediction by including the global non linear correction to
the full shape correlation function and a damping of the oscillations generated by the bulk velocities.
There exists another approaches based on RPT (Crocce & Scoccimarro, 2008) implemented in the
literature (Sanchez et al., 2009)(Beutler et al., 2011) that for further works it would interesting to
compare with.

VII.2.1 Dilatation Parameter

Essentially, the correlation function implies the computing of distances and thus, suppose the choice
of certain cosmology to traduce the redshift in distance measurements. The classical approach for
BAO modeling is considering a fiducial cosmology to compute the correlation function. A dilatation
parameter « is introduced to take into account the possibility of a wrong cosmological model:

§(r) = b x &pialar), (VIL13)

where b is the bias.
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The probability distribution of the scale of distortion parameter «, after marginalizing over €2,,,h?
and b?, give us the probability distribution of the distance scale Dy (zeffect) = Dy, fid(Zeffect)
variable (Eisenstein et al., 2005) explained in more detail in a further subsection. To get the
correlation function from power spectrum we perform the Hankel transform:

1
£(r) = 5 / dk k*Pyiq(k) sin(kr)/kr. (VIL.14)
m
The fiducial cosmology is one adopted in the (White et al., 2011) corresponding to a flat ACDM
model, h = 0.71,9Q3 = 0.0226,ns = 0.96,05 = 0.8 Qh% = 0.0224. To construct Py;q(k), we are
going to consider the non linear effects following the procedure of (Eisenstein et al., 2005) and
(Blake et al., 2011).

VII.2.2 Non linear effects

The precision we have achieved is such that we cannot rely entirely on linear theory even at r >
10h~!. There are two effects. We have seen in the BAO chapter that the non linearities erase the
higher harmonics generated by the displacement of the matter due to the bulk flows. A degradation
of the peak in the correlation function appears as a damping of the oscillations in the power spectrum.
The second effect is related to the scale dependence of the growth of structure, it accounts for the
alterations in the power from non linear gravitational collapse.

In order to construct the non linear power spectrum we start from a Py, (k). We generate a non
wiggle power spectrum P,,,. To approximate the suppression of the higher harmonics, a gaussian
g(k) with a non linear radius o, is convolved with the power spectrum :

Paamp(k) = g(k) Pin(k) + [1 — g(k)] Pro (k) (VIL15)

where

g(k) = exp[—k*0% ] (VIL.16)

In fact, it is possible to derivate an expression of the onp using perturbations theory giving the
following expression (Crocce & Scoccimarro, 2008):

1
— [ Pun(k)dk. 111
oni = gr3 | PinlF) (VIL17)

In general, instead of using the last expression, the non linear radius is typically fitted to simulations.

We use ICOSMO (Refregier et al., 2011) to compute the linear and the non wiggle power
spectrum. There are different ways to get these power spectrum giving similar results as using the
fitting formulas of E&H (Eisenstein & Hu, 1998b) that is equivalent to using CMBFast (Seljak &
Zaldarriaga, 1996); (Zaldarriaga, 1998)).

To take into account the non linear enhancement from the clustering, we apply the corrections
derived from N-body simulations and from halo fit model (Smith et al., 2003). These corrections
are calibrated with simulations considering pure CDM models.
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Finally, the first correction affects the wiggles while the second affect the global shape of the
power spectrum so, the non linearities in the BAO must be included separately:

Pdamped,NL(k) = PNL(k?)/in X Pdamp- (VH.lS)

For the Py (k) the common procedure is to use the non linear formula of (Smith et al., 2003)
(provided by CAMB or ICOSMO (Refregier et al., 2011)). T used the code generated by Antoine
Labatie that generates the grid of zi models. This code uses the ICOSMO software for generating
the PL(k’), PNL(k) and in.

VII.2.3 Model of the correlation function the Official Version

For the collaboration paper, the model used to fit the average angle correlation function is docu-
mented in Xiaoying Xu in preparation. The model is slightly similar to the model that T used. The
Tiy, is composed by:

£(r) = B (ar) + A(r), (VIL.19)

where A(r) count for the unknown systematics:
A(r) = ar/r* + ag/r + a3 (VII1.20)
and &, (r) is the Fourier transform of:
Poa() = [Pin(k) — Praa(k)] # expl—(0242) /2] + Paw (), (VIL21)

where P, (k) is the de-wiggled power spectrum from (Eisenstein & Hu, 1998b). The considerate
range of fitting is ~ 30 — 200Mpc/h in r with onr = 8Mpc/h. The fitting was done over 5 free
parameters (ay, az, as, B, ), the interval of measure is [40, 200] which corresponds to 45 bins, giving
place to 40 degrees of freedom. The model is normalized to the data at » = 50Mpc/h before fitting
(N ~ 2.5).

VII.2.4 Extracting the BAO signal

In the case of 2D correlation function, along the line of sight, the BAO directly constrains H(z)
at a redshift z.ffccr. For each redshift shell of thickness dz, the 2D correlation function constrains
the angular diameter distance. In the case of the angular average correlation function (1D), a
combination of tangential and radial components of the signal are mixed. Commonly, the quantity
Dy introduced by (Eisenstein et al., 2005), called the dilatation parameter defined as follow, is used:

cz 1/3

H(z)

Dy(z) = |(1+ 2)2D%(2) (VI1.22)
It consists in two parts, the physical angular diameter distance D 4 and the radial distance cz/H (z).

It reflects the importance relative of the tangential and radial modes in the BAO measurement
(Padmanabhan et al., 2008).
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The dilatation parameter is related to ,,h? that controls the standard ruler scale. The proba-
bility distribution of the scale of distortion parameter o, after marginalizing over ,,h? and b?, give
us the probability distribution of the Dy (zeffect)? as follows:

Dv (zeffect) = aDv, fid(zef fect) (VIL.24)

For the fiducial cosmology we have Dy fiq(z = 0.5) = 2044.26. This relation implies that the
measured value of Dy resulting from the fitting process will be independent of the fiducial cosmology
up to first order. A change in the fiducial cosmology generates a shift in the Dy which is compensated
by a and so let the relation VII.3.4 unchanged. The probability distribution of alpha is calculated
as:

exp[—x*(:)/2]

o) = e ) 2

(VIL.25)

VII.3 Parameter Constraints from BOSS

In order to constrain the cosmological parameters, we fit the model, presented in the last section,
to the galaxy correlation function measured on the BOSS data. There are 3 free parameters Q,,h,
b, a. We fit on the interval [40,200] Mpc. As we have said before to perform the fit, the parameter
onr must be calibrated using the simulations. We used the average correlation function generated
from the six hundred simulations PTHALOS and we fit on the interval [60, 150] correspondent to
the peak of BAO. For this fit, we applied a normalization to the overall correlation function before
performing the fitting. This normalization gives a factor of 2.25. In figure VIIL.1 is shown the mean
of PTHALOS North simulations and the fitted function in the respective range. The resultant
radius was oy, = 6.25.

As we have seen in the chapter of BOSS correlation function, there seems to be a tension
between North and South. Thus, for the observed correlation function we perform the analysis for
4 samples: the North and South galactic caps, the combined sample and the South DR10 which
consists of data available up to date for the South galactic cap. I will discuss in a subsection the
discrepancy North/South in terms of constraints extracted from the two regions. The correlation
function used for the fits are the official versions to be able to compare with the people in the
working group. We have shown in the last chapter that our catalogs give similar results to the
official version, thus the results of the analyses appy to our catalogs. The official &, include stellar
density weights as a function of the magnitude band i for one fiber i;e,, and FKP weights using
a normalization of 20,000. To generate the correlation function of the combined sample, the North
and South samples are treated separately. The South catalog do not have color offset applied. The
random set are generated following the redshift distribution of each region. The pair counts are
computed separately (i.e DD, DR and RR) for each hemisphere. The combine correlation function
is generated combined the pair counts (i.e. DDcomp = D Dyportn + D Dsoutn, €tc.)

2The effective redshift of the sample is:

Ny Ny

wi; W4
zerr =220 QNEJ (zi + ) (VIL23)
i j

Ny number of galaxies within a bin. For the case of CNMASS sample zeffect = 0.55
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The covariance matrices were computed with the six hundred PTHALOS simulations for the
North and South separately, as explained in the chapter of the BOSS Correlation function. For the
combined sample, the covariance matrix is generated from the covariance computed from North Cy
and South Cg as:

Cil=Cy' +C5t. (VIL26)

80vvvv‘{vvvv{vvvv{vvvv
L .

\ mean PTHALOS —
T nl_radius 6.25000 ———

60
401

20

\xi(r) r'2

dol
0 50 100
rMpc/h]

150 200

Figure VII.1: Calibrating the oy with simulations PTHALOS. In black the mean of the 600
realizations of the PTHATLOS simulations using only the north hemisphere. The oy = 6.25.

We perform the fits using

the minimal model described in section 2 which consists of 3 free parameters, only the bias as
nuisance parameter.

VII.3.1 Bin effect

Before testing the two models, we will perform a test of the binning. We perform the fits using two
different sizes of bin, one with bin of 7Mpc equivalent to 25 bins for the range desired and one with
bin of 4Mpc corresponding to 43 bins. For this test we fixe the value of €2, to the fiducial value of
Q= 0.274 (White et al., 2011). For performing the fit we construct a grid 2002 bins of &,,,q With
the 2 free parameters a and b varying in a range [0.8,1.2], and [1.5,3]. We compute the x? for each
model and we look for the minimum. I will compare the results between the 2 binning scheme in
terms of x? results. In figure VIL.2, ?? and VIL3 I show the results of the fits using the minimal
model for the bin of 7Mpc. In the left panels, I show in black the correlation function with the
errors bars given by the diagonal terms of the covariance matrix and in red the best fit function as
well as the parameters that minimizes the x2. In the right panels, I show the contours for 1 — 50
for the plane a — b.
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Figure VII.2: North: Fitting alpha, bias . WMAP as fidutial cosmology-bin 7Mpc.
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In figure VII.4, 7?7 and VIL5 I show the results of the fits using the minimal model for the

binning of 4Mpc. In the left panels, I show in black the correlation function with the error bars
given by the diagonal terms of the covariance matrix and in red the best fit function, with the
parameters that minimizes the x2. In the right panels, I show the contours for 1 — 50 for the plane
a—>b

In table VIL.1, the constraints obtained from the different samples using the 2 binning schemes

are shown. In the second column is given the x? par degree of freedom and in the third column
is given the value of the alpha parameter and lo-errors obtained marginalizing over the bias. The
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Figure VII.5: Combined: Fitting alpha, bias bin 4Mpc width.

fourth column is the value of the bias that minimize the x? and finally the Q-value. As we can see
from the figures there is a disagreement between South and North hemispheres of about 1o , as a
consequence the constraints generated from the combined sample deviate from the North constrains.
In terms of x?/dof and Q-values they indicate acceptable fits to the data. The north gives better
fits compared to South. There is a clear discrepancy in the constraints derived for North and South
that generates the fitted parameters of the combined sample to be pushed to higher values of alpha
and o. Before discussing this tension between North/South hemispheres let us concentrate in North
hemisphere (and the Combined sample) to analyze the effect of the binning in the constraints.
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Table VII.1: Constrains for 4Mpc and 7Mpc bins North , South and Combined Samples

Sample % Q bias Q

North 4 Mpc  41.008/41=1.002  0.9960+0.016  2.1750 0.529
North 7 Mpc  26.823/25=1.073  0.9940£0.016  2.1750 0.635
Comb 4 Mpc  35.396/41-0.863  1.0140+0.015  2.2350 0.283
Comb 7Mpc  27.514/25=1.101  1.00004+0.018  2.2049 0.669
South 4 Mpc  35.4498/41=0.865 1.0640+ 0.023 2.4150 0.283
South 7 Mpc  26.6456/25=1.066 1.0620+ 0.030 2.4000 0.626

It seems the 7 Mpc bin gives better QQ-values. This could be generated by more noisy data for
the case of smaller bins width.In the case of the North the results with both bins with are almost
the same, with a small difference in the alpha fitted parameter inferior to 0.2%. In the case of the
combined sample the different binning schemes generates a change in the fitted parameters of ~ 1%
in « and bias but still within 1-o errors. In the case of South hemisphere the difference in the
binning is less than 0.2% and 0.6% for « an the bias respectively.. The official binning has been
chosen to be 4 Mpc bins for the rest of the chapter.

VIL.3.2 South and South(DR10)

In order to disentangle the disagreement between the North and South samples we will include in
the analysis the data available up to now for the south even if for the conclusions we will try to
restrict the analysis to the DR9 catalog. In figure VIL.6, VII.7 , VII.8 and VIL.9, the correlation
function of South hemisphere for DR9 and DR10 samples with the best fit parameters is shown as
well as the contours 1 — 50 for the 2 binning scheme ( 7Mpc and 4 Mpc bin size).

Let us summarize the results before discussing the discrepancy North/South for the DR9. In
figure VII.10 the contours a 1o, 20 for the North South,and the Combined sample are shown. As
we can see the disagreement between North and South is within 20 for the DR9. By contrast the
contours considering the new data (DR10 ) seems to reduce the disagreement between measurements
to a 1o level. This fact seems to indicate that the correlation function observed at South hemisphere
in DR9 presents an atypically strong correlation and when including more data this behavior average
the weird early result. In the fits we can observe this tendency , when comparing the fits between
south DR9 and south DR10. In the case of DR9 the strong correlation observed pushed the fit
to higher values of alpha and bias, while the fits corespondents to South(DR10) seems to follow
the same behavior of North DR9.The error bars are ~ /2 smaller for DR10 The estimated errors
indicate that the fluctuation is significant?.

In table VII.2 the results of the fits are shown , the minimum x? values and the Q-values indicates
again acceptable fits to the data. The value for DR10 is strangely low compared with the others
binning schemes and samples.

In the case of the South DR10 the results in the fitted parameters with both bin widths present
larger differences than South DR9. The « parameter is in agreement within ~ 1% (compared to
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Figure VII.7: South DR10: Fitting alpha, bias . Bin 7 Mpc

0.2%) and the bias within 2% (compared to 0.6% of DR9). If we consider only the official binning the
difference of the fitted parameters comparing North/South and North/South DR10, the diference
in the fitted « pass from 6% to 4%. and in bias from 10% to 6%.

VII.3.3 Final constraints (), — a, €2,, — Dy and discussion

In order to get the final constraints we vary the 3 parameters ,,h%, b, and «, to get the conjoint
confidence levels a—€) we marginalize over the bias. We continue separating the NGC (Fig. VII.11),
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Figure VII.9: South DR10: Fitting alpha, bias . Bin 4 Mpc

SGC (Fig. VII.13) and the Combined Sample (Fig. VII.12) as well as the South DR10 ( Fig. VII.14).
A summary of the best fitting parameters are presented in the Table VII.3.4 | the error bars were
predicted marginalizing over the remaining parameters.

Now we are going to translate the results of the distorsion parameter « in terms of dilatation
scale Dy = aDy, p;q. In figure VIL.15 the confidence contours Dy = oDy, riq are shown as well as
the 2 degeneracy directions as defined by Eisenstein et al 2005. The first direction corresponds to
a constant measured acoustic peak separation: rs(z4)/Dy(z = 0.55) = cte. The second degeneracy
direction corresponds to a constant measured shape of CDM spectrum Dy (z = 0.55),,h? = cte.
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Table VII.2: Constrains for 4Mpc and 7Mpc bins South DR9 and South DR10

2

Sample X « bias Q
South(DR9) 4 Mpc  35.4498/41-=0.865 1.0640+ 0.023 2.4150 0.283
South(DR9) 7 Mpc  26.6456/25=1.066 1.0620+ 0.030 2.4000 0.626
South(DR10) 4Mpc  33.3851/41—0.814 1.0420+ 0.028 2.3250 0.204
South (DR10) 7Mpc  14.9601/25=0.598 1.0280+ 0.030 2.2800 0.057
26 T T T T T T T T T T T L
Combined 4
North
South 1
SouthDR10
241 —
S 221 .
°
20 —
1-8 1 1 1 1 I 1 1 1 1 I 1 1 1 I I 1 1 1
0.90 0.95 1.00 1.05 1.10 1.15

Figure VIL.10: 1-20 Contours for North (blue), South(red), Combined (black) and the South

DR10(green). Bin 4 Mpc

The orientation of the ellipses with respect to these axes indicates when the fits are influenced by
shape of a pure CDM model and when the acoustic pic exerts an influence in the fit. For computing

rs the fitting formula of Eisenstein& Hu is used.

In table VIL.3.4 the constraints in terms of Dy and Qash? are summarized. The distances
measurements of Dy (z = 55) and ,,h? using the 4 samples gives broadly consistent results to 1o

level.
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Finally I will compare our results to others studies and discuss the cosmological implications. In
table ?? an non exhaustive list of the results from different samples /surveys is shown. Our results
are in agreement with previous studies performed in other samples/surveys.

Within the working group, other results in cosmology are available, Xiaoying with an analog
x? analysis constraint the o parameter and Kushal using DR9 Combined sample data and using
Maximum Likelihood covariance matrix and P (alpha) from Xiaoying’s BAO fits performed a MCMC
to constrain between others €2,,h?. T present these preliminary results in a table to compare with
them. As we can verify in the table our results concerning the o parameter are consistent with
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Xiaoying’s results , the differences are generated because we are not using exactly the same model.
In the case of Q,,h? our results are compatible with the results generated from MCMC also.

VII.3.4 Significance of BAO detection with BOSS

Finally we assess the question of the significance of the detection. We consider two perspectives
commonly used, the first is considering the set of models with no acoustic oscillations, thus replacing
Emod = Enowiggles and the second perspective is considering the set of models with no baryons. In
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Table VIIL.3: Constrains for Dy and ,,h?
Sample Q Dy [
North(DR9) 0.952+0.028 1849.77+£57.24 0.1520+0.10
Combined(DR9) 0.992+0.026 2007.80+53.15 0.144040.007
South(DR9) 1.11244 + 2529.804+ 0.1240+
South (DR10) 1.06269+ 2317.23+ 0.1300+

figure VII.16 the best fit parameters for the models no wiggles for each region is shown.

2 ) 2 . 2
Axnonwiggles(s) = mln(XnoWiggles) - mzn(XBAO)

2 . 2 . 2
Axnonwiggles(s) = mzn(XnoBaryons) - mzn(XBAO)

(VIL.27)
(VIL.28)

In figure VII.17 the best fit parameters for the models without baryons. We combine these
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Table VII1.4: Constrains for Dy and Q,,h? from other studies

Sample range fitting Dy Q,h?
WiGGLEZ Blake et al 2011 [30, 180]h~Y Dy (z=0.6)=2127.7+£127.9 0.166+0.14
WiGGLEZ Blake et al 2011 [10, 180]h71 Dy (z=0.6)=2234.94+115.2 0.13240.11
SDSS-LRG Kazin et al 2009 [60,150|A=1 Dy (2=0.287) = 1132 +£40 Mpc ——
SDSS-LRG Eisenstein et al 2005 [ ? , ?]h~1 Dy (z=0.35)=1370+64 Mpc 0.130+0.01
BOSS DR (preliminar) [20,180]h~" Dy (z=0.55)=2007.80+£53.15  0.1440-£0.007

Table. Constrains for o and Q,,h? from other BOSS collaborators

Covariance  « (Xiaoying) Constrains MCMC

Sample
ML

a=1.028+0.019 Q,,h%=0.1378 +0.0039
a=1.0254+0.021 Q,, = 0.289 + 0.018

ANALYTIC «=1.026+0.019 Hy=69.1=+1.5km/s/Mpc

results with the models with acoustic oscillations considered before to compute the significance of
the detection. In table VII.3.4 the results are summarized. The combined sample gives a detection
with a significance of 4.60 over non wiggles models.

BAO Significance of Detection

Sample

2 2 2 2 2
Xnowiggles Xnobaryons XBAO AXNW AXNB

North(DR9) 4 Mpc
South(DR9) 4 Mpc*
Combined(DR9) 4Mpc
South (DR10) 4Mpc*

55.2057  56.8878  37.3140 17.9510(4.230) 19.5738(4.420)
477540 474059  34.5280 13.2252(3.60)  12.8770(3.60)
58.1823  59.4024  33.7167 25.6824(4.950) 24.4600(5.070)
478985 417652  33.1025 14.7960(3.80)  8.66271(2.90)
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Figure VII.16: Best fit parameters for model no wiggles
Significance from other studies
Sample statistic method Significance
SDSS-LRG DR3 FEisen- correlation function no baryons  3.4¢
stein 2005
2dFGRS Colles 2001 power spectrum no baryons 2.50
SDSS LRG DR4 Hutsi power spectrum no wiggles 3.30
2006
SDSS-LRG DR5 Perci- power spectrum smoothed ps 3.00
val 2005
SDSS-LRG power spectrum smoothed ps 3.60
DR7Percival 2010
SDSS-LRG DR7 correlation function pic position  1.50
E.Kazin 2010
WiGGLEZ Blake 2011  correlation function no wiggles 3.20
BOSS DR9 correlation function no wiggles 4.950
BOSS DR9 correlation function no baryons 5.070




210

T 1T T T [ T T T T | T T T T T T T T T T T T T — T
'BOSS North — 'BOSS North/South —
P R | L st ronboyons 20 _sssttsroae_asesistvass 2175000, 1°_otgmonn o — ||

100 100

X 50 T 50
v L v L
0 0
50 100 150 200 50 100 150 200
r{Mpc/h] r{Mpc/h]
e ————— | I P — |
100 H 100 —
s 50 T 50 .
= oL 1
0 B 0
i I
50 100 150 200 50 100 150 200
r[Mpc/h] r{Mpc/h]

Figure VII.17: Best fit parameters for model no baryons

VIL.4 Conclusions (preliminary) and comments

This analysis is very preliminary we are working in parallel with the working group to crosscheck
the results and the cosmological interpretation. At this moment our results are compatible with the
results of other members of the clustering group . I enumerate some preliminary conclusions.

1. The tension of South in DR9 sample that is more than 1 — ¢ from North seems to be less
significative when including more data (i.e DR10 data). This fact suggests the South in DR9
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presents a large fluctuation.

. The preliminary results indicate a Q,,h? = 0.144 4 0.007 and o = 0.992 + 0.026. The con-
straints in a traduce in constraints in distance scale Dy = 2007.80 & 53.15. Our results are
in agreement with previous studies.

. The combined sample gives a detection with a significance of 4.60 over non wiggles models
for the combined sample. The south has added a Ax? ~ 7 versus an expected Ay? ~ 4.

VII.5 Perspectives

e A further work should consider the wide angle effects,. Actually, in the past, as the
surveys were smaller, the angle of separation was within this approximation. Some
references about this effect could be consulted in Papai &Szapudi 2008 (Papai & Szapudi,
2008).

e In the modeling of the correlation function, it is possible to include a scale dependent
bias B(s).

§rid(r) = B(S) * Egamp,NL(a % 1) (VIL.29)

where B(s) is fitted from N-body simulations using the halo catalogs. That is done

comparing the non linerar redshift space halo correlation function issue from N-body

simulations of halos and the non linear dark matter correlation function isue from our
model correlation function.

e For modeling the correlation function there exists another approach derived from renor-
malized perturbations theory. This procedure was already used by (Sanchez et al., 2009)
and (Beutler et al., 2011)

Enp = bleL(r) + e F 1 Ay (r)EW ()] (VIL30)

where, b, k and Ap;¢ are nuisance parameters and * denotes convolution, 97, /0r is the
derivative of linear correlation function and S(Ll) is given by:

¢y =7Vl (r) = 4n / Py (k)j1 (kr)kdk (VIL31)
this model is inspirated from RPT where the matter power spectruum is :
P =G?P + Puyc (VIL32)

where G is the non linear growth factor and Py;c the power generated by the mode
coupling.

G is well aproximated by a gaussian form, and the leading order contribution to Pys¢ is
the term {lL(r)g(Ll)(r)

e The next step is to use techiniques as MCMC to combine different datasets as CMB -
WMAP7, SNe Ia data, Direct Hubble constant measurement and/or other BAO data.
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VIII. Optimization of correlation
function estimator for BOSS survey

VIII.1 Motivation

Along the chapter 4 we have studied different estimators of the correlation function (Hamil-
ton, Peebles-Hauser, etc) and we have concluded that among them the best properties for a
estimator of the correlation function for large scales is given by the Landy-Szalay estimator.
Similar studies have proven that the Landy-Szalay is the best estimator for the case of no
correlations (Landy & Szalay, 1993), for the week correlation limit (Kerscher et al., 2000) and
in SDSS I-1T geometry (Labatie et al., 2010). However we have shown that the best estimator
depends on the geometry of the survey. We have seen that the best estimator most satisfy
minimum bias and variance. The fact that the bias and variance of different estimators de-
pends of the geometry was the motivation to asked ourselves if it was possible to construct
a estimator optimized for a survey. In particular we would be interested in optimizing the
estimator for BOSS survey. In figure VIIL.1 the performance of the estimator as a function
of the geometry is shown . In top panel the mean of 300 log normal simulations in a cubic
box and in the left panel following the BOSS geometry. In bottom panels, in right side the
bias (scaled by r2) and in right the variance (scaled by r?) for the the different estimators
in a Cubic and in BOSS geometries. As we observe in the plot the bias and errors for the
estimators have different performances as a function of the geometry. An analog plot for DR7
was shown in chapter 4.

As a natural extension of chapter 4, having in hand the tools as the lognormal simulations
and knowing the properties of a survey, in this chapter I study the possibility to optimize the
estimator for the particular case of BOSS. The structure of the chapter is the following in
the first section I describe the methodology followed to optimize the estimator. I describe the
simulations characteristics and performance. Then I describe the estimator definition and the
optimization criterium. As we will see there is a compromise between the minimization of the
variance and the bias. In the second part I discuss the limit cases, to help to set the bar of
the optimization. We will find that the best compromise is the so called mean square error
corresponding to A = 0.5. Once the optimized estimator is defined 1 study the properties of
this estimator. First, I show what is the improvement in the optimized estimator to other
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geometries. Then, I study what is the contribution of the different orders. Finally, to validate
the optimization process we test if there is no over-fitting. The last section is devoted to the
conclusions and perspectives.

Cube Boss Geometry
2007 w w w ] 2007 w w w ]
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Figure VIII.1: Relative performance of estimators depends on geometry. In top left panel
the mean of 300 log normal simulations in a cubic box and in top right panel following the
BOSS geometry for different estimators. In bottom panels, in left side the bias (scaled by r?)
and in right the variance (scaled by r2) for the different estimators in a Cubic and in BOSS
geometries.

VIII.2 Methodology

VIII.2.1 Simulations

In order to optimize the 2 point correlation function for a given geometry we will use the
lognormal simulations described in chapter 4. The advantages of this kind of simulations is
that we know the input correlation function thus the bias could be defined without ambiguity.
For this study we generated a set of 300 log normal simulations following ACDM cosmology
without velocities. The simulations where generated in a 1 Gpc periodic Box with 2563 pixels.
The box was replicated as explained in chapter 4 to cover the entire BOSS geometry . The
galaxies are drawn from the lognormal density field using this as a PDF. The generated mock
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catalogs mimic BOSS geometry and number density of CMASS sample (not updated to DR9).
The random used to compute the correlation function are three times larger than the data.

Before implementing the optimization we tested our simulations to determine the intrinsic
bias of simulations, for this we compare the input correlation function with the correlation
function from Log-normal density field, and the average of 300 galaxy mocks in the box and
in BOSS geometries. The results are shown in figure VIIL.2 in left panel.

In right panel, the deviations of the average correlation function of the simulations in the
Cubic and BOSS geometries from the input correlation function (scaled by r?) is shown as
well as the 1 sigma intervals. The results shown the minimum reliable distance is r=40 Mpc/h.
We observe that mean over the simulations do not reproduce exactly the input correlation
function. There is a slight under estimation of the correlation at the level of the BAO pic.
For the following we will use the mean over density field to avoid introducing an extra bias
from the simulations. In right panel the deviations of the average correlation function of
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Figure VIII.2: In left panel the average correlation function of the 300 simulations in the
Cubic and BOSS geometries, compared with the input model and the correlation function of
the lognormal density field. In right panel the deviations of the average correlation function of
simulations in the box and BOSS geometry from the input correlation function (scaled by r2)
with the 1o intervals are plotted also.

simulations in the box and BOSS geometry from the input correlation function (scaled by 7?)
with the 1o intervals are plotted. As we observe from the figure there is apparently an issue
with the replication and/or drawing of galaxies because the correlation function of galaxies
(yellow region) is significantly more biased than that of the LN field in the box (blue region).

VIII.2.2 Estimator Definition

As we have seen in chapter 4, the different estimators are a combination of the pairs counts
data-data(DD), random-random(RR), and random-data (RD). We can generalize the estima-
tor taking into account all possible combinations of these terms, linear, quadratic and higher
orders and we can look for the parameters that optimize the estimator for a given sample.

Enew(r) = Y cuRy(ry) (VIIL1)
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The list of possible terms are :

0°order cte
RR DR DD DR RR DD

[0)
Vorder \p5: Bp> RR> RR> DR> DR
DRxRR RR?2 DR? DRxDD I
DPZ 7PD27PD27 RRQ (V 2)
2°order DD? DR? DD? RR?

RR2° RR2° DR2’ DR2
DDXRR RR DR? DD?
DR? > DDXxDR’ DDXRR’> DRxRR

Thus for each mock we will compute and store the pair counts (DD, RR, RD).

VIII.2.3 Optimization criterium

In chapter 4 we have said a good estimator must minimize the variance and the bias, these
two criteria will guide the optimization. To find best parameters that optimized the BOSS
estimator we use the method of maximum likelihood *. To consider both criteria, minimum
variance and bias, we need to set separately the x? for each criteria. For minimizing the
variance the x? is defined as the difference between each measure of the correlation function
and the input estimation:

N r 2
X% _ Z Z <£new,s(T;)Ls gth( Z)> (VIH3)

For minimizing the bias we must compare instead of each realization the difference between
the mean of the whole set of simulations and the real correlation function, thus we must
minimize the x? definied as:

Xl% = Z (<£n6w’5(ri)>sim — &un(ri) ) ’ (VIIL.4)

- oLS
i

where: )
<§new,3(ri)>sim =N anew,s(ﬂ‘) (VIIL.5)
The estimator that satisfies both criteria is given by x?(\):
XA @) = (1= X)x5 + Axi (VIIL6)

The errors for the x? are given by the Landy-Szalay errors this choice implies that the opti-
mization is defined with respect to Landy-Szalay errors.

'Tf we supposing the PDF is gaussian, the Maximum Likelihood is equivalent to minimizing the x?.
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VIII.3 Setting the bar for the optimization

As we see from equation VIIL.6 there is a compromise between both criteria: minimum bias
and minimum variance. At first approach it is not clear what is the best choice to optimize
the estimator, we will test the limiting cases to have a feeling of the behavior.

VIII.3.1 Minimum Variance

The first case we explored is the minimum variance estimator that corresponds to A = 0. In
figure VIIL.3 the results are shown. In the left panel the bias and error (RMS) is shown for
the optimized estimator and the Landy-Szalay estimator. As we observe from the figure the
variance for the optimized estimator is reduced for all scales (being at the BAO scales a factor
of 2 smaller) by contrary the bias increases by a factor of 3, resting within the variance level .
In fact the idea of the minimal variance estimator is that if it is possible to know the bias and
correct it, this option will reduce dramatically the variance. To show the effects in the left
panel of figure VIIL.3 the signal to noise ratio for the bias corrected and non corrected is shown
for both cases, optimal estimator and Landy-Szalay. We can see the gain in signal /noise passe
for the optimal estimator compared to Landy-Szalay. This option could be interesting if the
bias is calculated from Monte Carlo simulations.
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Figure VIII.3: Minimal Variance estimator (A = 0). In left panel the bias (solid line) and
error (doted line) for the optimal (red) and the LS (blue) estimators. In right panel, the signal
to noise ratio for the bias corrected (doted line) and non corrected (solid lines) for LS(red) and
BOSS (blue) estimators.

VIII.3.2 Minimum Bias

Now lets study the other case extreme:the minimum bias, where A = 1. In figure VIII.4 in
left panel the bias and error (RMS) is shown for the optimized estimator and the Landy-
Szalay estimator (scaled by r2). As we observe from the figure the variance for the optimized
estimator is huge with respect to Landy-Szalay for all scales, while the bias is smaller in
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respect to Landy Szalay estimator. This limit is not interesting to optimize the estimator. In
terms of signal to noise, the correction of the bias do not improve the estimator.
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Figure VIII.4: Minimal Bias estimator (A = 0). In left panel the bias (solid line) and error
(doted line) for the optimal (red) and the LS (blue) estimators. In right panel, the signal to
noise ratio for the bias corrected (doted line) and non corrected (solid lines) for LS(red) and
BOSS (blue) estimators.

VIII.3.3 Mean Square Errors

The minimum square error estimator is given by A = 0.52. In figure VIIL5 the results are
shown. In the left panel the bias and error (RMS) is shown for the optimized estimator and
the Landy-Szalay estimator. As we observe from the figure there is an improvement of the
variance for the optimized estimator in respect to Landy Szalay , and the bias is reduced
with respect to the minimal variance but is still larger than Landy Szalay however within the
variance error. The argument used in the first case is again applicable in this case. If we
can calculate the bias using Monte Carlo realizations we observe an improvement in terms of
signal to noise from 1 to 2.5 at the scale BAO.

VIII1.3.4 Landy-Szalay

Finally, we look for A that give us an equivalent to Landy Szaly estimator, and we find that
A = 0.96 give us the Landy Szalay estimator. In figure VIIL.6 the results are shown.

2The MSE of an estimator in respect to the estimated parameter 6 is defined as
MSE(f) = E [(§ — 6)]. (VIILT)

The MSE is equal to the sum of the variance and the squared bias of the estimator
MSE(d) = Var(d) + (Bias(é, 9))2 . (VIILS)

The MSE thus assesses the quality of an estimator in terms of its variation and unbiasedness.
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Figure VIIL.5: Mean Square Error estimator (A = 0.5). In left panel the bias (solid line) and
error (doted line) for the optimal (red) and the LS (blue) estimators. In right panel, the signal
to noise ratio for the bias corrected (doted line) and non corrected (solid lines) for LS(red) and
BOSS (blue) estimators.
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Figure VIIIL.6: Landy-Szalay estimator (A = 0.96). In left panel the bias (solid line) and error
(doted line) for the optimal (red) and the LS (blue) estimators. In right panel, the signal to
noise ratio for the bias corrected (doted line) and non corrected (solid lines) for LS(red) and
BOSS (blue) estimators.

VII1.3.5 Optimization Performance as a function r,,;,

Looking to answer the question of the best criteria of optimization we will study the behavior
of the mean error and mean bias in respect to Landy -Szalay as a function of the minimal
distance used in the fit r,,. In top panel of figure VIII.7 the results are shown, each color
represents a value for r,,;,. For each r,,;, we study how the mean error and mean bias varies
as a function of A values. Let us discuss the bias first, the doted line represents the case where
mean bias of the optimal estimator is equal to Landy-Szalay. We observe for a fixed value
of rmin, the bias decreases as we approach to the limit of minimum bias limit(A = 1), but
only in the case of r,,,;, = 50 we achieve a average level below Landy Szalay for A values over
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0.9. We observe that for increasing values of r,;, the mean bias increases also. At low 7
we are biased by the fact that the LN simulations is bad: in a pixel, the galaxies are drawn
uniformly, so there is no power at small scales. Concerning the RMS, for increasing values of
Tmin We have in general mean error smaller with respect to Landy-Szalay for (A < 0.9). We
observe also that in all cases for A values larger than 0.9 the variance exploces.

s F 0 —
< Pt .
2 6 smin=, N
o | smin=3t -
= F in=40 n
g .0 it |
8 r \;
a F ]
s 2 - D
e~ -
= o 3
0.0 02 0.4 0.6 0.8 1.0

Mean Error (ratio to L.S.)
(=}
)

B i mn

o [T I

02 0.4 0.6 0.8

Figure VIII.7: Mean Bias and mean RMS evolution with A for different minimal distance
considered in the fit (7).

VIII.4 Best Compromise \ = (0.5

Before the exploration it seems that the mean square error estimator has (A = 0.5) presented
the best compromise. In figure VIII.8 the bias of Landy-Szalay and the optimal estimator is
shown and the ratio of the optimal error bars respect to Landy-Szalay. The bias is smaller
than 1o and presents an improvement in term of the variance between 20% and 40% with
respect to Landy-Szalay. Now that we have set the bar we will perform some tests to the new
estimator: we will compute the covariance matrices, the effect of applying to other geometry
and the different contributions for the different orders.

VIII.4.1 Orders contribution to optimize estimator

Now we will explore what are the contributions of the different terms in the optimized es-
timator, we compare the contributions by using only first order terms, adding second order
terms, using all terms. In figure VIIL.9, the bias (solid lines) and the variance (dotted lines)
are shown for the 3 cases, first order (green), adding the second order (yellow), using all terms
(red), and compared to the reference the Landy Szalay estimator (blue). As we observe from
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180

the figure in terms of the variance the best case is always using all terms. But even using only

the first order terms we observe a considerable improvement in terms of the variance.

difference in term of bias is less significatif.
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Figure VIIL.9: The bias (solid lines) and variance (dotted lines) are shown for the three cases,
first order (green), adding the second order (yellow), using all terms (red) and compared to the
reference the Landy Szalay estimator (blue). The yellow is so close to red that it is almost
indistinguishable.
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VIII.4.2 Varying Geometry

We have seen that in the cube the estimators presented similar behaviors (bias and variance)
and with more complex geometries the performance varies. Now we study how the optimized
estimator for a complex geometry behaves when it is applied to a simpler geometry. In
figure VIII.10 we explored different combinations, we compare the behavior of the optimized
estimator for BOSS applied to BOSS (in red solid line) to the case where the optimization is
performed over a simpler geometry as a cube and then applied to BOSS (green solid line). As
we observe from the figure there is an considerable increase of the variance of the estimator
for the case where the optimization was performed in a simpler geometry and then applied
to complex one, the errors become larger than Landy-Szalay in this case. Let us explore the
opposite case where the estimator is optimized for BOSS and applied to simpler geometry
(green dotted line), in this case the optimized estimator conserves their properties even if it
is applied to a simpler geometry.
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VII1.4.3 Covariance Matrices

The first test we perform is to assure that the estimator do not introduce correlation between
bins. We calculate the covariance matrices and correlation matrices to compare the Landy-
Szalay and the BOSS estimator. In figure VIII.11 I show the covariances matrices using the
Landy -Szalay estimator and the BOSS estimator as well as the correlation matrices. As we
observe from the figure the improvement in terms of variance is remarkable. Furthermore if
we compare the correlation coefficients matrices we notice there is no extra extra correlation
between bins introduced by the new estimator.

VIIIL.5 Testing if over-fitting

Finally we perform a test to warranty we are not over-fitting. In fact for performing the
optimization we used the same sample to optimize the estimator and to test the estimator.
To test we are not over-fitting the sample we divide the samples in a sample to training and
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Figure VIIL.11: In top panel, Covariance matrices of Landy-Szalay estimator (left) and new
estimator (right). In Bottom panel correlation matrices for the LS estimator (left) and new
estiamtor (right)
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a sample to test it. In figure VIIL.12 the results are show, in solid lines the bias and in dotted
lines the variance. We plot two cases, in green the optimization and test are done with the
training sample and in red the optimization is done with the training sample and the test with
another sample. As we observe the results are still valid for both cases.
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Figure VIII.12: Testing if over-fitting. In solid lines the bias and in dotted lines the rms. We
plot 2 cases, in green the optimization and test are done with the training sample in red the
optimization is done with the training sample and the test with another sample

VIII.6 Conclusions and Perspectives

We have developed a simple and straightforward way to optimize the correlation function
estimator for a given survey. The extra bias introduced can be controlled via the A parameter
to be of the order of the variance. The bias can be exactly calculated via the Monte Carlo
simulations and corrected. We get a gain of the order of 20% to 40% in signal to noise.

The final goal of this work would be to applied this optimized estimator to BOSS data. In
order to validate this estimator there is still a lot of work do be done. As we have seen the bias
present a pic, one of the issue that must be studied is that the optimization is not generating
an artificial peak that biases the measure.

We need to use more realistic simulations as PTHALOS and study the behavior when the non
linear behavior is introduced. Within the collaboration there are available a set of PTHALOS
simulations with BOSS geometry thus the next step is to applied the optimization procedure
on these simulations. With PTHALOS mocks we would test if we get the performance of the
optimized estimator found with log normal simulations. Then, the next test would be to do is
to use the N-body simulations , Las DAMAS CMASS. Even if they cover only a small region
of the DR9 | this kind of simulations is closer to the real galaxy catalogs. In further stage,
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the study could be extended to test the consequences in terms of parameter constraints.

We want to introduce FKP weights that could reduce the gain in S/N as this weighting scheme
id supposed to improve optimally the estimator.

Another possible axe to developed would be the optimization for each bin as we have seen
that the performance of the optimization depends on the range of the optimization.

Finally, this bruit force approach to optimize an estimator implies that for each survey a
similar optimization procedure must be performed giving different coefficients in each case. In
order to really have an impact a interesting question would be to find the magic numbers that
gives the universal best estimator. This kind of study could be performed using techniques as
principal components to find which are the leading terms that determine the optimization. It
would also avoid the huge degeneracy that exist among the coefficients used here, removing
just a few of them does not change the results significantly.
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Conclusions

To conclude this work I present a list of the global conclusions we can get from my research
during this 3 years. These enumeration includes some very preliminary cosmological results
from the BOSS correlation function even if the analysis is not finished (as the survey is still
taking data) and as the cosmological consequences are still being discussed within the working
group.

I studied the properties of the estimators of the correlation function and the systematic and
statistical uncertainties using mock catalogs. Using lognormal simulations I showed that the
performance of the estimators in terms of the variance and the bias depends of the properties
of the survey as the angular mask (geometry) . I showed that within the estimators commonly
used in clustering analysis Hamilton and Landy-Szalay show the better properties, less bias
and small variance. We generate realistic simulations that mimics the properties of the LRG
sample of SDSS-DR7, survey geometry, redshift distribution, bias and mean density. With
these simulations we studied the effect of the completeness of the sample and the radial
selection function on the correlation function. I also studied the effect of radial weights in the
correlation function.

I studied the error estimation using different approaches applied to DR7 data : log-normal
simulations, bootstrap, subsample and jackknife methods. I showed that all methods produce
covariance matrices that have off-diagonal elements as expected. Even though, from the test
performed with the different error estimation, we found that data-based methods give noisy
estimations of the covariances matrices, the extra correlation found could be generated by the
correlation between the borders of the regions defining the subsamples. The jackknife is the
method that presents the best properties among the data-based error methods but even it still
shows some extra correlation. In general we conclude the data error methods overestimates
the errors. In the case of lognormal simulations, the mean of simulations is underestimated
an improvement to the input correlation function most be applied to get a mean closer to the
data mean or a rescaling must be performed.

I studied the redshift space distortions in the linear regime using lognormal simulations. In
particular I explored the possibility to measure 3 parameter from mock catalogs of galaxies
using the spherical harmonics extracted from the 2d correlation function. I also explored also
the estimation of the 8 parameter using mocks catalogs issued from N-body simulations that
includes the non linear effects. I observed that the reconstruction of the beta parameter is
possible in both cases. I presented some preliminary results with real data from BOSS. In this
case the estimation of the § parameter must be computed from the normalized quadrupole
and no conclusion could be drawned yet.
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Concerning the Analysis of BOSS data I performed a complete analysis of the CMASS sample
using the data available up to the summer 2011. This analysis ranges from the catalog
generation up to the cosmological constrains: I studied the choices taken to construct the
catalog and I explored the implications and justify the choices. I described the correction of
the correlation function from angular systematics effects. I verified that the main systematic
is the stellar density. I studied the stellar density in detail, separating the dependency of the
mean density and stellar density in bins of galactic latitude. I found a different dependency
between south a north at low galactic latitude. I explored the explanation for this systematic
effect calculating the surface masked by stars and I studied its dependency with stellar density.
An evolution of this dependency in terms of galactic latitude was found indicating an unknown
systematic affecting south hemisphere. I tested the effect in the correlation function from
others sources of systematics effects (seeing, sky, extinction, stars, air mass, dperp offset) and
I implemented 2 methods (Iterative weights and Linear regression) to estimate the weights
needed to correct from this systematic error. Both methods give similar results in terms of
the correlation function. The main effect of correcting from angular systematics is to decrease
the correlation function level globally.

To finish the conclusions concerning the correlation function from BOSS I showed that the
correlations functions issued from my final catalog and corrected from the angular systematics
are completely compatible with the official catalog. The results validate my pipeline, showing
that T was able to reproduce all steps to do large scale analysis. This procedure permit me
to understand very well the sample we are using to constraint the cosmology, in particular to
understand the corrections involved in the catalog generation and in the weighting scheme.

In collaboration with A. Labatie we fitted the correlation function following the method of
(Eisenstein et al., 2005) with 3 free parameters Qysh2, b, a.. For the fits we used the covariance
matrix computed from the 600 simulations PTHALOS and the official correlation function to
be able to compare with the people in the working group. This analysis is very preliminary we
are working in parallel with the working group to crosscheck the results and the cosmological
interpretation, at this moment our results are compatible with the results of other members
of the clustering group. I enumerate some preliminary conclusions.

(a) We observe a disagreement between North and South within 20 for the DR9. The tension
of South in DR9 sample that is more than 1—o from North seems to be be less significative
when including more data (i.e DR10 data). This fact suggest the South in DR9 present
a large fluctuation.

(b) The preliminary results indicates a €,,h? = 0.144 4 0.007 and o = 0.992 4 0.026. The
constrains in « traduces to constrains in distance scale Dy = 2007.80 £ 53.15. Our
results are in agreement with previous studies.

(¢) The combined sample gives a detection with a significance of 4.60 over non wiggles models
for the combined sample. The south has added a Ax? ~ 7 versus an expected Ayx? ~ 4.

Finally, I have developed a simple and straightforward way to optimize the correlation function
estimator for a given survey. The preliminary results from simulations indicates a gain of the
order of 20% to 40% in signal to noise and the price is to get a larger bias. The extra bias
introduced can be controlled via the A parameter to be of the order of the variance. The
bias can be exactly calculated via the Monte Carlo simulations and corrected. The final goal
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of this work would be to apply this optimized estimator to BOSS data. In order to validate
this estimator there is still a lot of work do be done. I need to use more realistic simulations
as PTHALOS and study the behavior when the non linear effects are introduced and finally
apply it to N-body simulations, LasDamas CMASS. In a further stage, the study could be
extended to test the consequences in terms of parameter constraints. We want to introduce
FKP weights that could reduce the gain in S/N as this weighting scheme is designed to improve
optimally the estimator. We want also to perform optimization for each bin as we have seen
that the performance of the optimization depends on the range of the optimization.We plan
also to use techniques as principal components analysis to find which are the leading terms
that determine the optimization. It would also avoid the huge degeneracy that exist among
the coefficients used here, removing just a few of them does not change the results significantly.
We hope to converge very soon ion this topic and prepare a publication.
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